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Pseudo-exponential maps, variants,
and quasiminimality
Martin Bays and Jonathan Kirby

We give a construction of quasiminimal fields equipped with pseudo-analytic maps, generalizing Zilber’s
pseudo-exponential function. In particular we construct pseudo-exponential maps of simple abelian
varieties, including pseudo-℘-functions for elliptic curves. We show that the complex field with the
corresponding analytic function is isomorphic to the pseudo-analytic version if and only if the appropriate
version of Schanuel’s conjecture is true and the corresponding version of the strong exponential-algebraic
closedness property holds. Moreover, we relativize the construction to build a model over a fairly arbitrary
countable subfield and deduce that the complex exponential field is quasiminimal if it is exponentially-
algebraically closed. This property states only that the graph of exponentiation has nonempty intersection
with certain algebraic varieties but does not require genericity of any point in the intersection. Furthermore,
Schanuel’s conjecture is not required as a condition for quasiminimality.
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1. Introduction

1A. Exponential fields. The field C of complex numbers is well-known to be strongly minimal, that is,
any subset of C definable in the ring language is either finite or cofinite. Consequently, the model theory of
C is very tame: there is a very well-understood behaviour of the models (one model of each uncountable
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cardinality, known as uncountable categoricity) and of the definable sets (they have finite Morley rank
and we can understand them geometrically in terms of algebraic varieties). The other most important
mathematical field, the field R of real numbers, is o-minimal, which means that although the class of
models is not well-behaved (not classifiable), there is a very good geometric understanding of the definable
sets (they are the semialgebraic sets). Remarkably, Wilkie [1996] showed that when the real exponential
function ex is adjoined, the structure Rexp is still o-minimal. Adjoining the complex exponential function
ez to C gives the structure Cexp, which cannot be well-behaved in terms of the class of models or the
definable sets because it interprets the ring Z. However, Zilber suggested that in the model Cexp itself,
the influence of Z might only extend to the countable subsets of C. He made the following conjecture.

Conjecture 1.1 (Zilber’s weak quasiminimality conjecture). The complex exponential field Cexp =

〈C;+ , · , exp〉 is quasiminimal: every subset of C definable in Cexp is either countable or cocountable.

A slightly stronger version of the conjecture which avoids reference to definable sets is that every
automorphism-invariant subset is countable or cocountable. As far as we are aware, all known approaches
to the conjecture would give this stronger result anyway. If the conjecture is true then the solution sets of
exponential polynomial equations, which we can call complex exponential varieties, would be expected to
have good geometric properties similar to those of algebraic varieties, provided we avoid some exceptional
cases like Z. If the conjecture is false, another possibility is that R is definable as a subset of C. The field
R with Z as a definable subset is so-called second-order arithmetic, and the definable sets are extremely
wild, with no geometric properties in general.

As one approach to his conjecture, Zilber [2000; 2005b] showed how to construct a quasiminimal
exponential field we call B using a variant of Hrushovski’s predimension method [1993]. He called B a
pseudo-exponential field with the idea that the exponential map is a pseudo-analytic function.

Zilber’s approach was to prove that a certain list of axioms ECFSK,CCP in the infinitary logic Lω1,ω(Q)
behaves in an analogous way to a strongly minimal first-order theory. In particular, all its models are
quasiminimal and it is uncountably categorical.

Theorem 1.2. Up to isomorphism, there is exactly one model of the axioms ECFSK,CCP of each uncount-
able cardinality, and it is quasiminimal.

This theorem appears in [Zilber 2005b]. Some gaps in the proof were filled in the unpublished note
[Bays and Kirby 2013], which this paper supersedes. In this paper we give a new construction of B and
hence a complete proof of Theorem 1.2. The theorem suggests a stronger form of the quasiminimality
conjecture which evidently implies Conjecture 1.1.

Conjecture 1.3 (Zilber’s strong quasiminimality conjecture). Cexp is isomorphic to the unique model B

of ECFSK,CCP of cardinality continuum.

The axioms in ECFSK,CCP will be explained in Section 8, but briefly, there are two algebraic axioms
which are obviously true in Cexp and then three more axioms: Schanuel’s conjecture, strong exponential-
algebraic closedness, and the countable closure property. Schanuel’s conjecture is a conjecture of
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transcendental number theory which can be seen as saying that certain systems of exponential polynomial
equations do not have solutions. Strong exponential-algebraic closedness roughly says that a system of
equations has solutions (even generic over any given finite set) unless that would contradict Schanuel’s
conjecture. The countable closure property says roughly that such systems of equations which are
balanced, in the sense of having the same number of equations as variables, have only countably many
solutions. Zilber proved the countable closure property for Cexp, so we have the following reformulation.

Theorem 1.4 [Zilber 2005b]. Conjecture 1.3 is true if and only if Schanuel’s conjecture is true and Cexp

is strongly exponentially-algebraically closed.

Theorems 1.2 and 1.4 together imply that if Cexp satisfies Schanuel’s conjecture and is strongly
exponentially-algebraically closed then it is quasiminimal. Schanuel’s conjecture is considered out of
reach, since even the very simple consequence that the numbers e and π are algebraically independent is
unknown. Proving strong exponential-algebraic closedness involves finding solutions of certain systems
of equations and then showing they are generic, the latter step usually done using Schanuel’s conjecture.
A weaker condition is exponential-algebraic closedness which requires the same systems of equations
to have solutions, but says nothing about their genericity. We are able to remove the dependence on
Schanuel’s conjecture completely from Conjecture 1.1:

Theorem 1.5. If Cexp is exponentially-algebraically closed then it is quasiminimal.

1B. A more general construction: 0-fields. Our construction is more general and we can use it to
construct also a pseudo-analytic version of the Weierstrass ℘-functions, the exponential maps of simple
abelian varieties, and more generally other pseudo-analytic subgroups of the product of two commutative
algebraic groups. For example, we prove an analogous form of Theorems 1.2 and 1.4 for ℘-functions.
The list of axioms ℘CFSK,CCP(E) and the other notions used in the statement of the theorem will be
explained in Section 9C of the paper.

Theorem 1.6. Given an elliptic curve E over a number field K0 ⊆ C, the list ℘CFSK,CCP(E) of axioms
is uncountably categorical and every model is quasiminimal. Furthermore, if ℘ is the Weierstrass
function associated to E(C), so expE = [℘ : ℘

′
: 1] : C→ E(C) is the exponential map of E(C), then

C℘ := 〈C;+ , · , expE 〉 |H ℘CFSK,CCP(E) if and only if the analogue of Schanuel’s conjecture for ℘ holds
and C℘ is strongly ℘-algebraically closed.

In the most general form, we consider what we call 0-fields, which are fields F of characteristic 0
equipped with a subgroup 0(F) of a product G1(F)×G2(F), where G1 and G2 are commutative algebraic
groups. The complete definition is given in Section 3A, where we also explain how the examples we
consider fit into cases (EXP), generalizing the exponential and Weierstrass ℘-functions above, (COR),
generalizing analytic correspondences between nonisogenous elliptic curves, and (DEQ), generalizing the
solution sets of certain differential equations.

Hrushovski used Fraïssé’s amalgamation method, which produces countable structures. Zilber wanted
uncountable structures so he instead framed his constructions in terms of existentially closed models
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within a certain category. He gave a framework of quasiminimal excellent classes [Zilber 2005a], building
on Shelah’s notion of an excellent Lω1,ω-sentence [1983], to prove the uniqueness of the uncountable
models. The second author showed in [Kirby 2010b] that the quasiminimal excellence conditions can
be checked just on the countable models, and with Hart, Hyttinen and Kesälä we proved in [Bays et al.
2014b] that the most complicated of the conditions to check — excellence — follows from the other
conditions. So in this paper we recast the construction in 4 stages:

(1) We start with a suitable base 0-field Fbase, and describe a category C(Fbase) of so-called strong
extensions of Fbase.

(2) We apply a suitable version of Fraïssé’s amalgamation theorem to the category to produce a countable
model M(Fbase).

(3) We check that M(Fbase) satisfies the conditions to be part of a quasiminimal class, and deduce there
is a unique model of cardinality continuum, which we denote by M(Fbase).

(4) We give the axioms 0CFCCP(Fbase) describing the class.

As a more general form of Theorem 1.2, we prove:

Theorem 1.7. Given an essentially finitary 0-field Fbase of type (EXP), (COR), or (DEQ), the list of
axioms 0CFCCP(Fbase) is uncountably categorical and every model is quasiminimal.

Our notion of 0-fields is algebraic and not every example is related to an analytic prototype. However
cases (EXP) and (COR) do have many analytic examples, given in Definitions 3.1 and 3.2. We call these
analytic 0-fields. For these we are able to prove the countable closure property, extending Zilber’s result
for Cexp and the equivalent result in [Jones et al. 2016] for ℘-functions.

Theorem 1.8. Let C0 be an analytic 0-field. Then C0 satisfies the countable closure property.

One of the key ideas of this paper is that the amalgamation construction is done over a base 0-field
Fbase, and that everything is done relative to that base. Pushing this idea further, we can also work over a
base which is closed with respect to the quasiminimal pregeometry on the model Fbase. This involves
modifying the amalgamation construction, so we only consider extensions of Fbase in which Fbase remains
closed with respect to the pregeometry. There is a direct analogy with extensions of differential fields.
The closed base field takes the role of the field of constants, and we consider extension fields in which
there are no new constants. This is useful because the differential field versions of Schanuel’s conjecture
then apply to say that Schanuel’s conjecture is true relative to the base in the analytic 0-fields.

In the paper [Kirby and Zilber 2014] it was shown that, assuming the conjecture on intersections
with tori (CIT, also known as the multiplicative Zilber–Pink conjecture), any exponential field satisfying
Schanuel’s conjecture and exponential-algebraic closedness is actually strongly exponentially-algebraically
closed. In this paper we are able to adapt that idea to show unconditionally that the difference between
0-closedness and strong 0-closedness (the analogues of exponential-algebraic closedness and strong
exponential-algebraic closedness) disappears if we consider the generic version, meaning relative to a
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closed base. Instead of the CIT we use a theorem which we call the horizontal semiabelian weak Zilber–
Pink, a theorem about intersections of families of algebraic varieties with cosets of algebraic subgroups
of semiabelian varieties. This method allows us to prove Theorem 1.5 and a more general version:

Theorem 1.9. Let C0 be an analytic 0-field. If C0 is 0-closed then it is quasiminimal.

1C. An overview of the paper. In Section 2 we explain our conventions on viewing algebraic varieties
and their profinite covers in a model-theoretic way. We also explain the relationship between subgroups
and endomorphisms of the commutative algebraic groups we study.

In Section 3 we define our 0-fields and their finitely generated extensions. We prove that finitely
generated extensions of suitable (so-called essentially finitary) 0-fields are determined by good bases, and
that these good bases exist and are determined by finite data from a countable range of possibilities. This
is the key step in proving the form of ℵ0-stability which is essential for the existence of quasiminimal
models. The main tool here is Kummer theory over torsion for abelian varieties.

In Section 4 we introduce the predimension notion and use it to define which extensions of 0-fields
are strong. We also use it to define a pregeometry on 0-fields. Then we show that there is a unique
full-closure of an essentially finitary 0-field, and classify the strong finitely generated extensions of
0-fields and of full 0-fields. This completes stage (1) of the construction as described above.

Section 5 covers stage (2) of the construction. We recall a category-theoretic version of Fraïssé’s
amalgamation theorem which is suitably general for us. Then, starting with a suitable base 0-field Fbase, we
consider the category C(Fbase) of strong extensions of Fbase and apply the amalgamation theorem to get a
countable Fraïssé limit M(Fbase). We also consider a variant amalgamating only the 0-algebraic extensions
and another variant where we consider only extensions which are purely 0-transcendental over Fbase.

In Section 6 we show that the Fraïssé limit models we have produced are quasiminimal pregeometry
structures, and hence give rise to uncountably categorical classes. In this way we get the uncountable
models, in particular the model M(Fbase) of cardinality continuum. This is stage (3).

In Section 7 we give a classification of the finitely generated strong extensions of 0-fields, and in
Section 8 we use it to axiomatize our models and prove Theorem 1.7. This completes stage (4).

In Section 9 we consider specific instances of our 0-fields including pseudo-exponentiation, pseudo-
Weierstrass ℘-functions, and others, and prove Theorem 1.2 and half of Theorem 1.6.

In Section 10 we compare our models to the complex analytic prototypes. For Weierstrass ℘-functions
we relate the Schanuel property to the André–Grothendieck conjecture on the periods of 1-motives,
using work of Bertolin, finishing the proof of Theorem 1.6. We briefly discuss the literature on steps
towards proving the 0-closedness and strong 0-closedness properties for analytic 0-fields. Then we
prove Theorem 1.8.

In Section 11 we consider 0-fields which may not be 0-closed but are generically so. These are
the 0-fields produced by the variant construction in which the base Fbase remains closed with respect
to the pregeometry. We state and prove the horizontal semiabelian weak Zilber–Pink, and then prove
Theorems 1.5 and 1.9.
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2. Algebraic background

2A. Algebraic varieties and groups. We use the standard model-theoretic foundations for algebraic
varieties and algebraic groups, as described by Pillay [1998], roughly following Weil. In particular, we
work in the theory ACF0 with parameters for a field K0. Any variety V is considered as a definable set,
and using elimination of imaginaries it is in definable bijection with a constructible subset of affine space.
We always assume we have chosen such a bijection, although we will not mention it explicitly. Given
any field extension F of K0, we write V (F) for the points of V all of whose coordinates lie in F . In
this way, V is a functor from the category of field extensions of its field of definition to the category of
sets. Similarly, given any subset A ⊆ V (F), we can form the subfield of F which is generated by (the
coordinates of) the points in A.

In the same way, a commutative algebraic group G, defined over K0, is considered as a functor from
the category of field extensions of K0 to the category of abelian groups. If G is an algebraic O-module,
that is, the ring O acts on G via regular endomorphisms, defined over K0, we can also consider it as a
functor to the category of O-modules.

Ga denotes the additive group, Ga(F)= 〈F;+ 〉, and Gm the multiplicative group, Gm(F)= 〈F×; · 〉.
An algebraic group is connected if it has no proper finite index algebraic subgroups. The connected

component Go of an algebraic group G is the largest connected algebraic subgroup.
We write G[m] for the m-torsion subgroup of an algebraic group G.
If G is a commutative algebraic group over a field of characteristic 0, we write LG for the (commutative)

Lie algebra of G, the tangent space at the identity considered as an algebraic group. So LG ∼=G
dim(G)
a . If

θ : G→ G ′ is an algebraic group homomorphism, then Lθ : LG→ LG ′ is the derivative at the identity.
For algebraic groups over C, these definitions agree with the usual definitions for complex Lie groups.

2B. Subgroups and endomorphisms. Any connected algebraic subgroup H of a power Gn
m of the multi-

plicative group can be defined by a system of monomial equations: H = ker(M) for some integer square
matrix M ∈Matn(Z) acting multiplicatively. Then LH ≤ LGn

m = Gn
a is the kernel of the same matrix

acting additively.
As we observe in the following lemma, the picture is almost the same when we replace Gm with

an abelian variety G and Z with its endomorphism ring End(G): up to finite index, subgroups are
defined by O-linear equations, namely those which define the corresponding Lie subalgebra. With a few
self-contained exceptions, this lemma is essentially all we will use of the theory of abelian varieties.

Lemma 2.1. Suppose G is Gm or an abelian variety over a field of characteristic 0, and O = End(G) is
its endomorphism ring. Then

(i) any connected algebraic subgroup H ≤ Gn is the connected component of the kernel of an endomor-
phism η ∈ End(Gn)∼=Matn(O),

H = ker(η)o;

(ii) LH ≤ LGn is then the kernel of Lη ∈ End(LGn).



Pseudo-exponential maps, variants, and quasiminimality 499

Proof. (i) By Poincaré’s complete reducibility theorem [Mumford 1970, p. 173], there exists an algebraic
subgroup H ′ such that the summation map 6 : H×H ′→Gn is an isogeny, that is, a surjective homomor-
phism with finite kernel. Let m be the exponent of the kernel of6. Then θ(6(h, h′)) := (mh,mh′) defines
an isogeny θ : Gn

→ H × H ′. Let π2 : H × H ′→ H ′ be the projection. Then (π2 ◦ θ ◦6)(h, h′)= mh′,
so ker(π2 ◦ θ)

o
= (6(H × H ′[m]))o = (H + H ′[m])o = H .

(ii) As H⊆ker(η), the derivative Lη of η at 0 vanishes on LH , so LH6ker(Lη). Also, ker(Lη)= L ker(η),
so we have

dim(ker(Lη))= dim(L ker(η))

= dim(ker(η)) since 0 is a smooth point

= dim H since H has finite index in ker(η)

= dim LH again since 0 is a smooth point.

So LH has finite index in ker(Lη), but ker(Lη)6 LGn, which is torsion-free, so ker(Lη) is connected,
and hence LH = ker(Lη). �

2C. Division points and the profinite cover.

Definition 2.2. Let G be a commutative group and let a ∈ G. A division point of a in G is any b ∈ G
such that, for some m ∈ N+, mb = a.

A division sequence for a in G is a sequence (am)m∈N+ in G such that a1 = a and for all m, n ∈ N+

we have nanm = am .

If (am)m∈N+ is a division sequence for a in G we can define a group homomorphism θ :Q→ G by
θ(r/m)= ram for r ∈ Z and m ∈ N+. This gives a bijective correspondence between division sequences
for a in G and group homomorphisms θ :Q→ G such that θ(1)= a.

Definition 2.3. The profinite cover Ĝ of a commutative group G is the group of all homomorphisms
Q→ G, with the group structure defined pointwise in G. We write ρG : Ĝ → G for the evaluation
homomorphism given by ρG(θ)= θ(1).

Thus the set of division sequences for a in G is in bijective correspondence with ρ−1
G (a), and we think

of elements of Ĝ both as homomorphisms from Q and as division sequences.
The group Ĝ itself is divisible and torsion-free. The image of ρG is the subgroup of divisible points

of G, and ρG is injective if and only if G is torsion-free. In general, ker(ρG) is a profinite group built
from the torsion of G (in fact, it is the product over primes l of the l-adic Tate modules of G).

For an element a ∈ G, we will often use the notation â for a chosen element of Ĝ such that ρG(â)= a.
Of course, â is determined by a only when ρG is injective, that is, when G is torsion-free.

If f : G→ H is a group homomorphism, we can lift it to a homomorphism f̂ : Ĝ→ Ĥ defined by
θ 7→ f ◦θ . In particular, if G⊆ H is a subgroup then Ĝ is naturally a subgroup of Ĥ . (In category-theoretic
language, ˆ is a covariant representable functor and in fact ρG : Ĝ→ G is the universal arrow from the
category of divisible, torsion-free abelian groups into G.)
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When G is a commutative algebraic group we think of Ĝ also as a functor, so we write Ĝ(F) rather
than Ĝ(F) for the group of division sequences of the group G(F).

Model-theoretically we think of Ĝ as the set of division sequences from G, which is a set of infinite
tuples satisfying the divisibility conditions. It can be seen as an inverse limit of definable sets, sometimes
called a pro-definable set [Kamensky 2007].

Remark 2.4. Suppose that G is a Lie group, for example the complex points of a complex algebraic
group, and exp : LG → G is the exponential map. For a ∈ LG, the sequence (exp(a/m))m∈N+ is a
division sequence in G. In fact, the division sequences which arise this way are precisely those which
converge topologically to the identity of G [Bays et al. 2014c, Remark 2.20].

3. 0-fields

3A. 0-fields. In this section we describe the analytic examples we are studying and give the definition
of a 0-field, which is intended to capture and generalize the model-theoretic algebra of the examples.

Definition 3.1 (analytic 0-fields of type (EXP)). The graph of the usual complex exponential function is
a subgroup of Ga(C)×Gm(C). Similarly, if A(C) is a complex abelian variety (or more generally any
commutative complex algebraic group) of dimension d, then the graph 0 of the exponential map of A
is a subgroup of LA(C)× A(C). Here LA(C) is the Lie algebra of A and we can identify it with the
group Gd

a (C). In this paper we only consider the cases when A is Gm or A is a simple abelian variety of
dimension d . We combine these by saying A is a simple semiabelian variety.

We write O for the ring End(A) of algebraic endomorphisms of A. In many cases O=Z, but sometimes,
for example if A is an elliptic curve with complex multiplication, then O properly extends Z. Any η ∈O
acts on LA as the derivative dη, a linear map. Thus O naturally acts on LA(C) as a subring of GLd(C),
and 0 is an O-submodule of LA(C)× A(C).

In the case where A is an elliptic curve E , embedded in projective space P2 in the usual way
via its Weierstrass equation, the exponential map of E(C) is written in homogeneous coordinates as
z 7→ (℘ (z) : ℘ ′(z) : 1), where ℘ is the Weierstrass ℘-function associated with E .

We call all of these examples analytic 0-fields of type (EXP).

Definition 3.2 (analytic 0-fields of type (COR)). The exponential map of a complex elliptic curve
factors through Gm(C), giving an analytic map θ : Gm(C)→ E(C). More generally, there are analytic
correspondences between semiabelian varieties. We take G1 and G2 both to be simple complex semiabelian
varieties of the same dimension d, and assume G1 and G2 are not isogenous. Suppose End(G1) and
End(G2) are both isomorphic to a ring O, and furthermore there is a C-vector space isomorphism
ψ : LG1→ LG2 which respects the actions of O. We choose such a ψ and take 0 to be the image of
the graph of ψ under expG1×G2

: LG1(C)× LG2(C)→ G1(C)×G2(C). Then 0 is an O-submodule of
G1(C)×G2(C), and a complex Lie-subgroup. The graph of the map θ is an example of such a 0, but in
general 0 need not be the graph of a function.
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We call these examples analytic 0-fields of type (COR). By an analytic 0-field we mean one of type
(EXP) or type (COR).

Definition 3.3 (differential equation examples). If f (t) is a holomorphic function in a neighbourhood
of 0 ∈ C, then the pair (x, y)=

(
f (t), exp( f (t))

)
satisfies the differential equation Dx = Dy/y, where

D = d/dt . We can consider the set 0 of solutions of the differential equation not just in a field of
functions but in a differentially closed field F . Then 0 is a subgroup of Ga(F)×Gm(F). The paper
[Kirby 2009] studies this situation for the differential equations satisfied by the exponential maps of
semiabelian varieties S. While these S do not have to be simple, they do have to be defined over the
constant field C of F . In these cases the group 0 is quite closely related to the graph of the exponential
map and can be analyzed via a similar amalgamation construction.

We capture all of these three types of examples in the notion of a 0-field. We next give the assumptions
we use on the algebraic groups, and then define 0-fields. The assumptions we make are not the most
general possible, but they are what we use throughout this paper.

Definition 3.4 (conventions for K0, G2, O, and kO). We take K0 to be a countable field of characteristic 0,
which must be a number field except in case (DEQ) below. Let G2 be a simple semiabelian variety defined
over K0. We write O for the ring End(G2) of algebraic (that is, regular) group endomorphisms of G2 and
assume that they are also all defined over K0. Let kO denote the ring Q⊗Z O.

Remarks 3.5. The ring O has no zero divisors because G2 is simple. So O embeds in kO. If O = Z then
kO is just Q. Every nonzero algebraic group endomorphism of a simple abelian variety is an isogeny, so
becomes invertible in kO. Hence kO is a division ring, and the O-torsion of any O-module is exactly the
Z-torsion.

Definition 3.6 (conventions for G1, G, and the torsion). We consider two cases for the choice of G1,
corresponding to the above analytic examples.

Case (EXP): We take G1 = Gd
a , where d = dim G2. We identify G1 with the Lie algebra LG2, that is,

the tangent space at the identity of G2. As in the analytic case, this identification makes G1 into an
algebraic O-module, that is, an O-module in which every element of O acts as a regular map.

Case (COR): G1 is also a simple semiabelian variety defined over K0, and with all its algebraic
endomorphisms defined over K0. We assume G1 is not isogenous to G2, but End(G1)∼=O and we
choose an isomorphism, so G1×G2 becomes an algebraic O-module over K0.

Let G = G1×G2, and write πi : G→ Gi for the projection maps of the product, for i = 1, 2. We
write the groups G1, G2, and G additively.

For i = 1, 2 the torsion of Gi is contained in Gi (K
alg
0 ), and hence is bounded. We write Tori for the

torsion of Gi (F) for any F such that G(F) contains Tor(G(K alg
0 )). The torsion of G(F) is written Tor(G).

It is equal to (Tor1×Tor2)∩G(F).

Remarks 3.7. Note that for any algebraically closed field F extending K0 the groups Gi (F) and G(F) are
divisible O-modules. Furthermore, G(F)/Tor(G) is divisible and torsion-free, and thus a kO-vector space.
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Definition 3.8 (0-fields). A 0-field (with respect to the O-module G) is a field extension A of K0

equipped with a divisible O-submodule 0(A) of G(A) such that

(1) A is generated as a field by 0(A),

(2) the projection πi (0(A)) in Gi (A) contains Tori for i = 1, 2.

We write 0i (A) for the projections πi (0(A)). The 0-field A is full if, in addition, A is algebraically
closed and the projections 0i (A) are equal to Gi (A).

The kernels of a 0-field A are defined to be

ker1(A) := {x ∈ G1(A) | (x, 0) ∈ 0(A)},

ker2(A) := {y ∈ G2(A) | (0, y) ∈ 0(A)}.

When A is full and ker2(A) is trivial, 0(A) is the graph of a surjective O-module homomorphism
from G1(F) to G2(F) with kernel ker1(F) as in the analytic examples of type (EXP). However the case
(EXP) for our 0-fields is more general.

The most difficult part of this paper uses the Kummer theory of semiabelian varieties over number fields.
This is not needed for the differential equations examples, or more generally in the following variant.

Definition 3.9 (case (DEQ)). A 0-field in case (DEQ) is the same as above except that we require the
full torsion group Tor(G) to be contained in 0(A), and we relax the assumption that K0 is a number field
so it can be any countable field of characteristic 0.

Definition 3.10 (extensions of 0-fields). An extension of a 0-field A is a 0-field B together with an
inclusion of fields A ⊆ B over K0 such that 0(A)⊆ 0(B) and for i = 1, 2 we have keri (A)= keri (B).
We also say that A is a 0-subfield of B.

We refer to the last condition in the definition by saying that the extension preserves the kernels.

One could also consider extensions of 0-fields which do not preserve the kernels, and this would be
necessary for an analysis of the first-order theory such as that done in the paper [Kirby and Zilber 2014].
However, we do not consider such extensions in this paper.

Remarks 3.11 (0-fields as model-theoretic structures). (1) Model-theoretically, we consider a 0-field
as a structure in the 1-sorted first-order language L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation
symbol of appropriate arity to denote a subset of the group G, and we have parameters for the
field K0. Later, we will also be adding parameters for a base 0-field Fbase.

(2) However, our notion of 0-field extension corresponds to an injective L0-homomorphism, not
necessarily an L0-embedding. Specifically, it is not necessary in an extension A ↪→ B of 0-fields
that 0(B)∩G(A)=0(A), although that will be true in most cases we will consider later, for example
when the extension is strong (see Definition 4.3).

(3) Although we use the 1-sorted language with the sort being that of the underlying field, we also refer
to elements of 0 as being from the sort 0, rather than from the definable set 0. Model theorists used
to working with Leq will see there is no important difference.
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(4) By definition, the 0-field A is determined by the submodule 0(A) of G(F). Furthermore, an
extension A ↪→ B is determined by the inclusion of submodules 0(A) ↪→ 0(B). Thus, if F is
a monster model of ACF0, the category of 0-fields is equivalent to the category of divisible O-
submodules of G(F) (whose projections contain Tor1 and Tor2), with embeddings, in a first-order
language with relation symbols for all of the Zariski-closed subsets of G(F) which are defined
over K0. This is more or less the setting in [Zilber 2005b].

Remark 3.12. One might also consider the case that G1 and G2 are equal (or isogenous, which comes to
essentially the same thing). 0 can then be considered as the graph of a new (quasi)endomorphism of G1.
The situation is complicated by the need to consider the extension of the algebraic endomorphism ring
generated by 0. Analytic examples include raising to a complex power on Gm, which is analyzed with a
different setup in [Zilber 2003; 2015].

In an earlier draft of this paper we tried to incorporate this into our setup, and in fact produced an
example where 0 was the graph of a multivalued endomorphism θ on Gm, lifting to a generic action of
the ring Q[θ, θ−1

] on the profinite cover Ĝm. However, this is subtly different from giving an action of
the field Q(θ), which is what occurs for complex powers.

While we expect that such 0 can be treated along the lines of this paper, much as we expect that
the simplicity assumption on the semiabelian variety could be relaxed, these elaborations are left to
future work.

3B. Finitely generated extensions.

Definition 3.13. Let B be a 0-field, and let {A j | j ∈ J } be a set of 0-subfields of B (each with the same
kernels as B). We define

∧
j∈J A j to be the 0-subfield A of B such that 0(A)=

⋂
j∈J 0(A j ).

Lemma 3.14. The 0-field
∧

j∈J A j is a 0-subfield of B.

The proof is straightforward, but we give the details because they show exactly where all the hypotheses
of the definitions are used.

Proof. Let A =
∧

j∈J A j . Since 0(A) is defined as the intersection of a set of O-submodules of 0(B), it
is also an O-submodule of 0(B). A is defined as the subfield of B generated by the coordinates of the
points in 0(A), so 0(A) is an O-submodule of G(A).

If a ∈ ker1(B), then (a, 0) ∈ 0(A j ) for all j ∈ J because ker1(A j ) = ker1(B), so (a, 0) ∈ 0(A). So
ker1(A)= ker1(B) and similarly ker2(A)= ker2(B).

If a ∈Tor1=Tor1(B) then there is b∈G2(B) such that (a, b)∈0(B). Furthermore, for any b′ ∈G2(B)
we have (a, b′)∈0(B) if and only if b′−b ∈ ker2(B). For each j ∈ J, A j is a 0-subfield of B, so 01(A j )

contains Tor1(B), so there is b′ such that (a, b′) ∈ 0(A j ). But ker2(A j )= ker2(B) by assumption, so we
have (a, b) ∈ 0(A j ), and since this holds for all j we have (a, b) ∈ 0(A). Thus 01(A) contains Tor1(B),
and similarly 02(A) contains Tor2(B).

In particular, 0(A) contains all the torsion from 0(B), so since it is the intersection of divisible
O-submodules, it is itself divisible as an O-submodule of G(A). Hence, A is a 0-subfield of B. �
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Definition 3.15. Let B be a 0-field and X ⊆ 0(B) a subset. We say that

A =
∧
{A′, a 0-subfield of B (with the same kernels as B) | X ⊆ 0(A′)}

is the 0-subfield generated by X , and write it as 〈X〉B or, more usually with the B suppressed, as 〈X〉.
We say A is a finitely generated 0-field if 0(A) is of finite rank as an O-module, or equivalently as a

Z-module. Equivalently, A is generated by a finite subset and ker1(A) and ker2(A) are of finite rank.
Note that a finitely generated 0-field is not usually finitely generated as a field, because we insist that

0(A) is a divisible O-submodule.
If Y is a subset of 0(A), we say that A is finitely generated over Y if there is a finite subset X of 0(A)

such that A is the 0-subfield of itself generated by X ∪Y . In particular, for Y a 0-subfield of A, we have
the notion of a finitely generated extension of 0-fields. It is easy to see that an extension A ↪→ B of
0-fields is finitely generated if and only if ldimkO(0(B)/0(A)) is finite.

Definition 3.16. The intersection of full 0-subfields of B (with the same kernels as B) is again a full
0-subfield. Thus we can define a full 0-field A to be finitely generated as a full 0-field if there is a finite
subset X of A such that

A =
∧
{A′, a full 0-subfield of A (with the same kernels as A) | X ⊆ 0(A′)}.

Likewise, there is the notion of being finitely generated as a full 0-field extension.

Except in trivial cases, a finitely generated full 0-field is not finitely generated as a 0-field, and a
finitely generated full 0-field extension is not finitely generated as a 0-field extension.

Definition 3.17. Recall that an O-submodule H of G is pure in G if whenever x ∈ G and nx ∈ H for
some n ∈ N+, then x ∈ H .

Lemma 3.18. If A is the 0-subfield of B generated by X , then 0(A) is the pure O-submodule of 0(B)
generated by X ∪π−1

1 (Tor1)∪π
−1
2 (Tor2).

Proof. This pure O-submodule together with the field it generates is a 0-subfield of B with the same
kernels as B, so it suffices to see that it is contained in 0(A′) for any A′ in the definition of 〈X〉B .
0(A′) contains X by definition, and since πi (0(A′))= Tori and A′ has the same kernels as B, it also

contains π−1
i (Tori ). Hence it also contains Tor(G)∩0(B). Since it is divisible, it follows that it is pure

in 0(B). �

3C. Good bases. Let A be a 0-field, and B a finitely generated 0-field extension of A. So the linear
dimension ldimkO(0(B)/0(A)) is finite. Thus we can find a basis for the extension, by which we mean
a tuple b= (b1, . . . , bn) ∈ 0(B)n of minimal length n such that b∪0(A) generates 0(B), or equivalently
such that b1+0(A), . . . , bn +0(A) is a basis for the quotient kO-vector space 0(B)/0(A).

We consider the locus Loc(b/A) of b, that is, the smallest Zariski-closed subset of G, defined over A
and containing b.
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Definition 3.19. A basis b ∈ 0(B)n for a finitely generated extension A ↪→ B of 0-fields is good if the
isomorphism type of the extension is determined up to isomorphism by the locus Loc(b/A). That is,
whenever B ′ is another extension of A which is generated by a basis b′ such that Loc(b′/A)= Loc(b/A)
then there is an isomorphism of 0-fields B ∼= B ′ fixing A pointwise which takes b to b′.

Proposition 3.20. Suppose we are in case (DEQ), that is, Tor(G)⊆0. Let A ↪→ B be a finitely generated
extension of 0-fields. Then every basis of the extension is good.

Proof. Suppose b is a basis of B over A, and we have another extension B ′ of A with basis b′ such that
Loc(b′/A)= Loc(b/A). There is a (not necessarily unique) field isomorphism θ : B ∼= B ′ over A which
takes b to b′. Now, for an element c ∈ G(B), we have c ∈ 0(B) if and only if there is m ∈ N such that
mc is in the O-linear span of 0(A) and b, because 0(B) is divisible and contains all the torsion of G. It
follows that c ∈ 0(B) if and only if θ(c) ∈ 0(B ′), so θ is an isomorphism of 0-field extensions. So b is a
good basis. �

In the proof it is critical that Tor(G)⊆ 0 since otherwise some division points of the basis will be in 0
but others will not. In general we can specify an extension B of A by specifying a choice of division
sequence b̂ for a basis b such that b̂ ∈ 0̂(B).

Definition 3.21. A 0-field is essentially finitary if it is finitely generated or if it is a finitely generated
extension of a countable full 0-field.

Proposition 3.22 (existence of good bases). Let A be an essentially finitary 0-field, and let B be a finitely
generated 0-field extension of A (with the same kernels as A). Let b be a basis for the extension. Then
there is m ∈ N+ such that any m-th division point of b in 0(B) is a good basis. Furthermore, in case
(DEQ) we may take m = 1, so every basis is good, and we may even remove the assumption that A is
essentially finitary.

The bulk of the proof is contained in the following Kummer-theoretic results.

Definition 3.23. For a commutative algebraic group H , we write T̂ (H) for the kernel of the map
ρH : Ĥ→ H . So T̂ (H) is the group of division sequences of the identity of H (which is the product over
primes l of the l-adic Tate modules Tl(H) of H , whence the notation).

Proposition 3.24. Let H = A×Gr
m be the product of an abelian variety and an algebraic torus. Suppose

that A is defined over a number field K0, and moreover that every endomorphism of A is also defined
over K0. Let D be either Tor(H) or H(L) for an algebraically closed field extension L of K0 and let K
be a finitely generated field extension of K0(D). Let a ∈ H(K ) and suppose that a is free in H over D,
that is, in no coset H ′+γ for a proper algebraic subgroup H ′ of H and γ ∈ D. Let â = (am)m∈N+ be a
division sequence for a in Ĥ(K alg) and consider the Kummer map ξa : Gal(K alg/K )→ T̂ (H) given by

ξa(σ )= (σ (am)− am)m∈N+ .

Then ξa does not depend on the choice of division sequence â, so is well-defined, and the image of ξa is of
finite index in T̂ (H).
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Remark 3.25. For the groups T̂ (H) which occur in this theorem, the finite index subgroups are precisely
those which are open in the profinite topology, so the conclusion of the proposition is that ξa(Gal(K alg/K ))
is open in T̂ (H).

Proof of Proposition 3.24. It is straightforward that ξa is well-defined.
First, suppose D = Tor(H) and K is a finite extension of K0(D)— so by increasing K0, we may

assume K = K0(D). The result then follows from Kummer theory for abelian varieties. For the case
H = A, we refer to [Bertrand 2011, Theorem 5.2], and for the generalization to H = A×Gn

m we refer to
[Bays et al. 2014c, Proposition A.9].

Suppose now that D = H(L), where L is an algebraically closed field. In this case, the result has a
Galois-theoretic proof given as [Bays et al. 2014a, Section 3, Claim 2]. In the case that K = K0(D, a),
the result follows directly from that claim; in general, it follows on noting that

ξa(Gal(K alg/K ))∼= Gal(K (â)/K )∼= Gal(K0(D, â)/K ∩ K0(D, â)),

and K ∩ K0(D, â) is a finite extension of K0(D, a).
See also references in the introduction of [Bays et al. 2014a] for alternative proofs, and [Bertrand 2011,

Theorem 5.3] for an analytic proof.
Finally, suppose D = Tor(H) and K is a finitely generated extension of K0(D). The result in this case

follows from the first two cases. This can be seen model-theoretically in the context of [Bays et al. 2014c]
as a matter of transitivity of atomicity, but we give here a direct argument.

Say B is the minimal algebraic subgroup of H such that, writing θ : H → H/B for the quotient map,
we have θ(a) ∈ (H/B)(Qalg). Let K ′ = K ∩Qalg, so K is a regular extension of K ′ and K ′ is a finite
extension of K0(D). Consider the diagram

1

��

0

��

Gal(K alg/Qalg(K ))

��

ξa
// T̂ (B)

��

Gal(K alg/K )

��

ξa
// T̂ (H)

��

Gal(Qalg/K ′)

��

ξθ(a)
// T̂ (H/B)

��

1 0

where the middle horizontal map is the Kummer map for a, the top map is its restriction, and the bottom
map is the Kummer map for θ(a). The vertical sequences are exact.
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Say a ∈ aB + H(Qalg), where aB ∈ B. By minimality of B, we have that aB is free in B over B(Qalg).
Now the top map agrees with the Kummer map ξaB in B, and so by the second case above, the map
has finite index image. Now since a is free in H over Tor(H), we have that θ(a) is free in H/B over
Tor(H/B), so by the first case applied to H/B, the bottom map in the above diagram also has finite index
image. It follows that the central map has finite index image, as required. �

Now we prove that good bases exist.

Proof of Proposition 3.22. Let b̂ ∈ 0̂(B)n be a division sequence of the basis b, and write b̂ = (bm)m∈N+ .
Then 0(B) is precisely the O-linear span of 0(A) and the bm , so to specify B up to isomorphism
it is enough to specify the ACF-type of b̂ over A. A is an essentially finitary 0-field, so it is either
finitely generated or a finitely generated extension of a countable full 0-field A0. In the former case, let
D = Tor(G) and in the latter case let D = G(A0). For i = 1, 2, write bi = πi (b) and Di = πi (D), and let
ai be a kO-basis for πi (0(A)) over Di .

We consider the different cases in turn.

Case (EXP): Since the extensions are kernel-preserving, (a2, b2) is kO-linearly independent over D2,
and so is free in Gn+k

2 over D2.
So, by Proposition 3.24, ξa2,b2

(
Gal(K0(D, a, b)alg/K0(D, a, b))

)
has finite index in T̂ (Gn+k

2 ). In
particular, its intersection with 0× T̂ (Gn

2) is of finite index.
Since A is generated as a field by K0(D, a) and the division points of a2, it follows that the image

4 := ξb2

(
Gal(A(b)alg/A(b))

)
has finite index in T̂ (Gn

2). So if m is the exponent of the finite quotient
T̂ (Gn

2)/4, then mT̂ (Gn
2) is a subgroup of 4.

Hence, if b′ is an m-th division point of b we have ξb′2

(
Gal(A(b′)alg/A(b′))

)
= T̂ (Gn

2). So all division
sequences of b′ have the same ACF-type over A(b′), and hence b′ is a good basis for B over A.

Case (COR): Again, since the extensions are kernel-preserving, (ai , bi ) is free over Di for i = 1, 2. Since
G1 and G2 are simple and nonisogenous, every algebraic subgroup of Gk+n is of the form H1× H2 for
Hi a subgroup of Gk+n

i , so it follows that (a, b) is free in Gk+n over D. Since A is generated as a field
by K0(D) and the division points of a1 and of a2, we conclude as in case (EXP).

Case (DEQ): This was covered in Proposition 3.20. �

Corollary 3.26. If A is an essentially finitary 0-field there are, up to isomorphism, only countably many
finitely generated kernel-preserving extensions of A.

Proof. Each extension B has a good basis b, and is determined by Loc(b/A). Since A is countable there
are only countably many algebraic varieties defined over it. �

4. Predimension and strong extensions

4A. Predimension. We define a predimension function δ as follows:
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Definition 4.1. Let A ⊆ B be 0-fields. For any 0-subfield X of B that is finitely generated over A, let

δ(X/A) := trd(X/A)− d ldimkO(0(X)/0(A)),

recalling d = dim G1 = dim G2.
Note that since X is assumed to be finitely generated over A, the linear dimension ldimkO(0(X)/0(A))

is finite, and since O acts by K0-definable functions and X is the field generated by0(X), the transcendence
degree trd(X/A) is also finite. Hence the predimension is well-defined.

As a convention, for any finite b ⊂ 0(B), we set

δ(b/A) := δ(X/A),

where X = 〈Ab〉, the 0-subfield of B generated by b∪ A.

Note that δ(b/A)= trd(b/A)− d ldimkO(b/0(A)).

Lemma 4.2. Let A ⊆ B be 0-fields.

(1) Finite character for δ:
If b ⊆ 0(B) is finite, there is a finitely generated 0-subfield A0 of A such that for any intermediate
0-field A0 ⊆ A′ ⊆ A, we have δ(b/A)= δ(b/A′).

(2) Addition formula for δ:
Let X, Y be 0-subfields of B finitely generated over A with X ⊆ Y . Then

δ(Y/A)= δ(Y/X)+ δ(X/A).

(3) Submodularity of δ:
Suppose X, Y are 0-subfields of B with X finitely generated over X ∧Y . Then, abbreviating 〈X ∪Y 〉
by XY , we have

δ(XY/Y )6 δ(X/X ∧ Y ).

Proof. (1) Immediate since transcendence degree and kO-linear dimension have finite character.

(2) Note that the addition formula holds with transcendence degree or linear dimension in place of δ, so
it also holds for δ by linearity.

(3) The submodularity condition is true when δ is replaced by transcendence degree. Linear dimension is
modular, which means

ldimkO(0(XY )/0(Y ))= ldimkO(0(X)/0(X ∧ Y )),

so by subtracting we get the required submodularity of δ. �

4B. Strong extensions.

Definition 4.3. An extension A ⊆ B of 0-fields is said to be a strong extension if for every 0-subfield X
of B that is finitely generated over A, δ(X/A)> 0. In this case, we also say that A is a strong 0-subfield
of B, and write AC B.
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For arbitrary 0-fields A, B, an embedding A ↪→ B is said to be a strong embedding if the image of A
is a strong 0-subfield of B. To denote that an embedding is strong we use the notation A

C
↪→ B.

The method of predimensions and strong (also known as self-sufficient) extensions has been widely
used since it was introduced by Hrushovski [1993]. We now give a few basic results which are well-known
in general, but fundamental to the later development so it would be inappropriate to omit them. Some of
the proofs are slightly more involved for this setting than the more well-known settings, especially those
where no field is present.

Lemma 4.4. The composition of strong embeddings is strong.

Proof. Suppose AC B and BCC . Clearly the kernels of C are the same as those of A, since both are the
same as those of B. Let X ⊆C be finitely generated over A. Then δ(X/A)= δ(X/X ∧ B)+δ(X ∧ B/A)
by the addition formula. We have δ(X/X ∧ B)> δ(XB/B) by submodularity, and δ(XB/B)> 0 because
BCC . Also, δ(X ∧ B/A)> 0 because AC B. So δ(X/A)> 0. �

Given a strong extension AC B of 0-fields, and an intermediate 0-field X , finitely generated over A,
it follows that AC X but it may not be the case that X C B. However, as Y varies over finitely generated
extensions of X inside B, the predimension δ(Y/A) takes integer values bounded below by 0 because
AC B. Thus we can replace X by a finitely generated extension X ′ of X , inside B, such that δ(X ′/A) is
minimal, and from the addition formula for δ it follows that X ′C B.

The next lemma shows that we can find this X ′ in a canonical way. It is crucial for understanding the
finitely generated 0-fields we will amalgamate, and it will allow us to understand the types in our models
and prove there are only countably many of them.

Lemma 4.5. Suppose B is a 0-field and for each j ∈ J , A j is a strong 0-subfield of B. Then
∧

j∈J A j is
also strong in B.

Proof. First we prove that if A1, A2C B then A1 ∧ A2C A1. So suppose X is a finitely generated 0-field
extension of A1 ∧ A2 inside A1. Then

δ(X/A1 ∧ A2)= δ(X/X ∧ A2)> δ(X A2/A2)> 0

using submodularity and the fact that A2CB. So A1∧A2CA1, but A1CB so, by Lemma 4.4, A1∧A2CB.
It follows by induction that if J is finite,

∧
j∈J A j C B.

Now suppose that J is infinite and that X is a 0-subfield of B which is finitely generated as an extension
of A =

∧
j∈J A j . Then we have

A = A∧ X =
∧
j∈J

(A j ∧ X).

Each 0-field A j ∧ X is in the lattice of 0-fields intermediate between A and X . This lattice is isomorphic
to the lattice of vector subspaces of the finite-dimensional vector space 0(X)/0(A) and so has no infinite
chains. Thus there is a finite subset J0 of J such that, writing AJ0 =

∧
j∈J0

A j , we have

A =
∧
j∈J

(A j ∧ X)=
∧
j∈J0

(A j ∧ X)= AJ0 ∧ X.
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Now using the result for finite intersections we have that AJ0 C B, so using also submodularity we have

δ(X/A)= δ(X/AJ0 ∧ X)> δ(AJ0 X/AJ0)> 0,

and hence AC B as required. �

Consider again a strong extension AC B of 0-fields, and an intermediate 0-field X .

Definition 4.6. We define the hull of X in B (also known as the strong closure of X or the self-sufficient
closure of X ) by

dXeB :=
∧
{Y a strong 0-subfield of B | X ⊆ Y }.

The previous lemma shows that dXeB is indeed strong in Y , and we observe also that if X is finitely
generated as an extension of A then so is dXeB . Furthermore, if B C C then it is immediate that
dXeC = dXeB , so we often drop the subscript B.

Lemma 4.7. The hull operator has finite character. That is, if AC B and X is an intermediate 0-field,

dXeB =
⋃
{dX0eB | X0 ⊆ X and X0 is a finitely generated extension of A}.

Proof. Let U be the union in the statement of the lemma. It is immediate from the definition of the hull
that if X0 ⊆ X then dX0eB ⊆ dXeB . It follows that U ⊆ dXeB . Also X ⊆U . Now U is a directed union
of strong 0-subfields of B, and since δ has finite character, it follows that U C B. So dXeB ⊆ U , as
required. �

Finally in this section we give a useful lemma giving a simple sufficient condition for an extension of
a strong 0-subfield also to be strong.

Lemma 4.8. If AC B and A ⊆ A′ ⊆ B with δ(A′/A)= 0, then A′C B.

Proof. Let X ⊆ B be a finitely generated extension of A′. Then

δ(X/A′)= δ(X/A)− δ(A′/A)= δ(X/A)> 0. �

4C. Pregeometry. In this section, F is any full 0-field strongly extending a 0-subfield Fbase. We will
use the predimension function δ to define a pregeometry on F . We could drop the assumptions that
F is full and that F strongly extends some Fbase and give a definition along the lines of that done for
exponential fields in [Kirby 2010a] and for Weierstrass ℘-functions in [Jones et al. 2016]. However, it is
sufficient for our purposes and much more straightforward to do it this way.

Definition 4.9. A 0-subfield A of F , extending Fbase, is 0-closed in F , written A Ccl F , if for any
A ⊆ B ⊆ F with B finitely generated over A and δ(B/A)6 0 we have B = A.

Lemma 4.10. (1) If ACcl F then AC F.

(2) If ACcl F then A is a full 0-subfield of F.

(3) If A j Ccl F for j ∈ J and A =
∧

j∈J A j then ACcl F.

Proof. (1) Immediate.
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(2) Suppose a ∈ G1(F) is algebraic over A. Since F is full, there is b ∈ G2(F) with (a, b) ∈ 0(F).
We have trd((a, b)/A) = trd(b/A) 6 dim G2 = d, so δ((a, b)/A) 6 d − d ldimkO((a, b)/0(A)). If
ldimkO((a, b)/0(A)) = 1 then δ((a, b)/A) 6 0, so since A is closed in F we have (a, b) ∈ 0(A).
Otherwise ldimkO((a, b)/0(A))= 0 so again (a, b) ∈ 0(A). A similar argument is used if b ∈ G2(F) is
algebraic over A. Since G1(A) contains all points of G1 that are algebraic over A, A is an algebraically
closed field. Thus A is a full 0-field.

(3) Suppose δ(B/A)6 0. By submodularity and Lemma 4.5, for each j we have

δ(BA j/A j )6 δ(B/A j ∧ B)= δ(B/A)− δ(A j ∧ B/A)6 0,

so B ⊆ A j . Thus B ⊆ A. �

This notion of 0-closedness induces a closure operator on the field F .

Definition 4.11. If A ⊆ F is any subset, the 0-closure of A in F is defined to be the smallest 0-closed
0-subfield containing A:

0clF (A) :=
∧
{BCcl F | A ⊆ B}.

0clF (A) is a 0-subfield of F , and in particular a subset of F , so 0clF induces a map PF→ PF , which
we also denote by 0clF.

Lemma 4.12. For any 0-subfield A of F , we have 0clF (A)=
⋃

B, where B is the set of all 0-subfields
B ⊆ F such that B is a finitely generated 0-field extension of dAeF and δ(B/dAeF )= 0.

Proof. Since 0clF (A)C F we have dAeF ⊆ 0clF (A). So 0clF (A) = 0clF (dAeF ), and thus we may
assume A C F . Let C =

⋃
B. Using the submodularity of δ it is easy to see that the system B of

0-subfields of F is directed, so its union C is a 0-subfield of F .
Suppose that b is a finite tuple from 0(F) such that δ(b/C)6 0. Then by the finite character of δ and

directedness of the union defining C , there is a finitely generated extension B of A inside C such that
δ(B/A)= 0 and δ(b/B)= δ(b/C). Using the addition formula,

0> δ(b/B)= δ(b/A)− δ(B/A)= δ(b/A)> 0.

So δ(b/A)= 0 and hence b ∈ 0(C). Thus C is 0-closed, so 0clF (A)⊆ C .
Now suppose B is a finitely generated 0-field extension of A with δ(B/A)= 0 and A⊆ DCcl F . Then

δ(BD/D)6 δ(B/B ∧ D)= δ(B/A)− δ(B ∧ D/A)6 0

because AC F . So δ(B ∧ D/A)> 0 and thus B ⊆ D. Hence B ⊆ 0clF (A), and so C ⊆ 0clF (A). �

The predimension function δ is a function depending on the sort 0, but 0-closure will be shown to be
a pregeometry on the field sort. The next lemma allows us to move from one sort to the other.

Lemma 4.13. If ACF and a ∈ Fr0clF (A), there is α ∈0(F) such that π1(α)∈G1(F) is interalgebraic
with a over A and δ(α/A)= 1, and the 0-subfield 〈Aα〉 of F generated by A and α satisfies 〈Aα〉C F.
We can choose α such that a is rational over A(π1(α)), and if A is essentially finitary, also such that α is
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a good basis. Furthermore, the locus Loc(α, a/A) can be taken to be a particular algebraic curve defined
over K0, not depending on A or a.

Proof. We have trd(a/A)= 1 (since otherwise a ∈ 0clF (A)). We have fixed an identification of G1 with
a constructible subset of affine space AN for some N , defined over K0. Let f be the projection map from
G1 to the first coordinate where the projection is dominant, and choose a constructible curve X ⊆ G1

by fixing the values of all the other coordinates to be values in K0. Then X and the map f are defined
over K0. Choose α1 ∈ X (F) with f (α1)= a. Then α1 is interalgebraic with a over A, with a rational
over A(α1), and the locus Loc(α1, a/A) is defined over K0.

Since F is full, there is α ∈ 0(F) with π1(α) = α1. Then α ∈ 0clF (Aa) and a ∈ 0clF (Aα). Then
ldimkO(α/0(A)) = 1 and so since δ(α/A) 6= 0 by Lemma 4.12, trd(α/A) = d + 1 and δ(α/A) = 1. If
there were B ⊇ 〈Aα〉 with δ(B/Aα) < 0 then δ(B/A)6 0, which contradicts a /∈ 0clF (A). So 〈Aα〉C F .
If A is essentially finitary then by Proposition 3.22 we can divide α by some m ∈N+ to ensure it is a good
basis. Since α2 is generic in G2(A) over α1, and G2 is defined over K0, we deduce that Loc(α, a/A) is
defined over K0. �

Proposition 4.14. The 0-closed subsets of F are the closed sets of a pregeometry on F.

Proof. It is immediate that for any subsets A⊆ B of F we have A⊆0clF (A), 0clF (0clF (A))=0clF (A),
and 0clF (A)⊆ 0clF (B).

For finite character, suppose b ∈ 0clF (A). By Lemma 4.12 there is a finitely generated extension
dAeF ⊆ B in F such that δ(B/dAeF )= 0 and b ∈ B. Then there is a finite tuple β ∈0(F) with b rational
over β and δ(β/A)= 0. By finite character of δ from Lemma 4.2, there is a finitely generated 0-subfield
A0 of dAeF such that for any A′ with A0 ⊆ A′ ⊆ dAeF we have δ(β/A′)= 0. So by Lemma 4.12 again,
b ∈ 0clF (A0).

The hull operator is a closure operator which by Lemma 4.7 has finite character. We have A0 ⊆ dAeF ,
so there is a finite subset A00 of A such that dA0eF = dA00eF . Hence b ∈ 0clF (A00), and so 0clF has
finite character.

For exchange, suppose ACcl F and that a, b ∈ F r A with b ∈ 0clF (Aa). Using Lemma 4.13, we
choose α, β ∈ 0(F) corresponding to a and b, respectively.

Now β ∈ 0clF (Aα) so there is a finitely generated 0-field extension A⊆ B inside F with β, α ∈ 0(B)
and δ(B/Aα)= 0. Then we have

δ(B/Aβ)= δ(B/A)− δ(β/A)= δ(B/A)− 1= δ(B/A)− δ(α/A)= δ(B/Aα)= 0,

so α ∈ 0clF (Aβ), or equivalently a ∈ 0clF (Ab). �

We write 0dimF for the dimension with respect to the pregeometry 0clF. However, if F1 and F2 are
both full 0-fields with F1Ccl F2 and A⊆ F1 then 0clF1(A)= 0clF2(A). So from now on we will usually
drop the superscript F and just write 0cl and 0dim except where it might cause confusion.

We have the usual connection between the dimension and the predimension function.
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Lemma 4.15. Suppose that AC F and B is a finitely generated 0-field extension of A in F. Then

(1) 0dim(B/A)=min{δ(C/A) | B ⊆ C ⊆ F}, and

(2) BC F if and only if 0dim(B/A)= δ(B/A).

Proof. Since dBeF ⊆0clF (B), we have 0dim(B/A)=0dim(dBeF/A). Now it follows from the addition
formula that δ(dBeF/A)=min{δ(C/A) | B⊆C⊆ F}, so statement (1) reduces to the left-to-right direction
of statement (2). To prove that, first assume BC F .

Let n = 0dim(B/A) and let b1, . . . , bn be a 0cl-basis for B over A. Applying Lemma 4.13, we get
βi ∈ 0(F) in the closure of B with βi corresponding to bi . Let D be the 0-subfield of F generated by A
and β1, . . . , βn . Then δ(D/A)= n and DC F . Furthermore, 0clF (D)= 0clF (B).

Since D ⊆ 0clF (B), there is C ⊇ B ∪ D such that δ(C/B)= 0. Then

δ(B/A)= δ(C/A)− δ(C/B)= δ(C/A)> δ(D/A)= n,

using that DC F . Reversing the roles of B and D, the same argument shows that δ(B/A) 6 δ(D/A),
and so δ(B/A)= n = 0dim(B/A) as required.

The right-to-left direction of statement (2) now follows from statement (1) and the addition property. �

Remarks 4.16. (1) In the sense of the pregeometry 0cl, the set 0(F) is d-dimensional. Thus when d= 1
such as in pseudo-exponentiation and pseudo-℘, we actually get a pregeometry directly on 0(F).

(2) In the case of pseudo-exponentiation or a pseudo-℘-function, G1(F) = Ga(F) = F , and 0 is the
graph of a function exp, so we have a bijection ϕ : F → 0(F) given by x 7→ (x, exp(x)). The
predimension usually considered for exponentiation, for example in [Zilber 2005b], is a function
on tuples from the field sort, and in fact is just the composite δ ◦ ϕ of the predimension function
described here with ϕ.

(3) It is possible to define a predimension function directly on the field sort, even in our generality.
Given any subfield A of F we write 0(A) for 0(F)∩G(A). For any subset X of F (in the field
sort) we write X alg for the field-theoretic algebraic closure of Fbase(X) in F .

Given subsets X, Y of F , with trd((X ∪ Y )alg/X alg) <∞, define

η(Y/X)= trd((X ∪ Y )alg/X alg)− ldimkO(0((X ∪ Y )alg)/0(X alg)),

which takes values in Z∪ {−∞}.
The predimension functions η and δ are closely related, and we could write

η(Y/X)= δ((X ∪ Y )alg/X alg)

except that X alg usually fails to be a 0-subfield of F by our definition, because as a field it is not
usually generated by the coordinates of the points in 0(X alg). It may not even be algebraic over the
field generated by those points.
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It is possible to define the notion of strong embeddings of 0-fields using this predimension
function instead. Some things are easier with this approach, because the predimension is defined
on a 1-dimensional sort. However we choose to work in the sort 0 because it is a vector space and
hence has a modular geometry, which makes other things much easier.

4D. Full closures. The following theorem and proof follow [Kirby 2013, Theorem 2.18].

Theorem 4.17. If A is a 0-field then there is a full 0-field extension Afull of A such that AC Afull and
Afull is generated as a full 0-field by A. Furthermore, if A is essentially finitary then Afull is unique up to
isomorphism as an extension of A.

Proof. First we prove existence. Embed A in a large algebraically closed field F . Choose a point
a ∈ G1(F) which is algebraic over A and not in π1(0(A)), if such exists. Choose a division sequence
â ∈ Ĝ1(F) for a. Let b ∈ G2(F) be generic over A and choose a division system b̂ for it. (Up to
field isomorphism over A, b̂ is unique.) Let A′ be the field generated by A and the division sequences
â = (am)m∈N+ and b̂ = (bm)m∈N+ , and define 0(A′) to be the O-submodule of G(A′) generated by 0(A)
and the points (am, bm) for m ∈ N+. Since π1(0(A)) already contains the torsion of G1, the extension
preserves the kernels. So A′ is a 0-field extension of A. We have

δ(A′/A)= trd(b/A)− d ldimkO(b/A)= d − d = 0,

so it is a strong extension. Similarly, if there is b ∈ G2(F) which is algebraic over A but not in π2(0(A)),
we can form a similar strong extension. Iterating these constructions, a strong full extension Afull of A is
readily seen to exist.

Now we prove uniqueness under the additional hypothesis that A is essentially finitary. Suppose that
B and B ′ both satisfy the conditions for Afull. Since A is essentially finitary it is countable, and then the
construction above shows that we can take B to be countable as well. Enumerate 0(B) as (sn)n∈N+ such
that for each n, either π1(sn) or π2(sn) is algebraic over A∪ {s1, . . . , sn−1}. This is possible since B is
generated as a full 0-field by A.

We inductively construct a chain of strong 0-subfields An C B, each a finitely generated 0-field
extension of A such that A0 = A and sn ∈ 0(An). We also construct a chain of strong embeddings
θn : An

C
↪→ B ′. Assume we have An and θn . Let An+1 be the 0-subfield of B generated by An and sn+1. As

a field, An+1 is generated by An and the division points of sn+1. If sn+1 ∈0(An), then we have An+1= An

and can just take θn+1 = θn . Otherwise, we have ldimkO(0(An+1)/0(An))> 1. By hypothesis, one of
π1(sn+1) or π2(sn+1) is algebraic over An , say π1(sn+1). Thus trd(An+1/An) = trd(sn+1/An) 6 d. By
inductive hypothesis An C B, so we have δ(An+1/An)> 0. It follows that ldimkO(0(An+1)/0(An))= 1
and trd(An+1/An)= d, so δ(An+1/An)= 0. Thus by Lemma 4.8, An+1C B. Also, π2(sn+1) is generic
in G2 over An .

Since An is a finitely generated 0-field extension of A, by Proposition 3.22 there is m ∈ N such that
{sn+1/m} is a good basis for the extension An C An+1. Replacing sn+1 by sn+1/m, we may assume
m = 1. Now let W be the locus of π1(sn+1) over An (a variety of dimension 0, irreducible over An , but
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not necessarily absolutely irreducible), and let w be any point in W θn , the corresponding subvariety of
G1(B ′). Choose v ∈ G2(B ′) such that (w, v) ∈ 0(B ′). Since w is algebraic over θn(An), which is strong
in B ′, the same predimension argument as above shows that v is generic in G2 over θn(An), so

Loc(w, v/θn(An))=W θn ×G2 = (Loc(sn+1/An))
θn .

Since sn+1 is a good basis over An , we can extend θn to a field embedding θn+1 : An+1 → B ′ with
θ(sn+1) = (w, v), and using again that θn(An)C B ′ we get that 0(θn+1(An+1)) is generated by (w, v)
over 0(θn(An)), and hence θn+1 is a 0-field embedding.

Also, δ(θn+1(An+1)/θn(An))= 0 so θn+1 is a strong embedding by Lemma 4.8.
Now B =

⋃
{An | n ∈ N} and

⋃
{θn(An) | n ∈ N} is a full 0-subfield of B ′ containing A, so it must

be B ′. Hence
⋃
{θn | n ∈ N} is an isomorphism B ∼= B ′. So Afull is unique, up to isomorphism as an

extension of A. �

Proposition 4.18. Let A be a countable full 0-field. Then there are only countably many finitely generated
strong full 0-field extensions of A, up to isomorphism.

Proof. Let AC B be such an extension and let b be a finite tuple generating B over A as a full 0-field,
such that B0 := 〈Ab〉C B, and of minimal length such. Then by Proposition 3.22 we may replace b by
b/m for some m ∈ N+ to ensure that b is a good basis for the extension AC B0. Then B = Bfull

0 , which
by Theorem 4.17 is determined uniquely up to isomorphism by B0, and by Corollary 3.26 there are only
countably many choices for B0. �

5. The canonical countable model

5A. The amalgamation theorem. We use the definition of amalgamation category from [Kirby 2009],
slightly extending work of Droste and Göbel [1992], who were themselves abstracting from Fraïssé’s
amalgamation theorem. We restrict to the countable case. We will apply the general theory to various
categories of 0-fields with strong embeddings as morphisms. The notions of finitely generated, universal,
and saturated all have category-theoretic translations, which we give first.

Definition 5.1. Given a category K, an object A of K is said to be ℵ0-small if and only if for every
ω-chain (Zi , γi j ) in K with direct limit Zω, any arrow A f

−→ Zω factors through the chain, that is, there
are i < ω and A f ∗

−→ Zi such that f = γiω ◦ f ∗. We write K<ℵ0 for the full subcategory of ℵ0-small
objects of K and K6ℵ0 for the full subcategory of the limits of ω-chains of ℵ0-small objects of K.

Definition 5.2. Given a category K and a subcategory K′, an object U of K is said to be K′-universal if
for every object A of K′ there is an arrow A→U in K. U is K′-saturated if for every arrow A f

−→ B in K′

and every arrow A g
−→U in K, there is an arrow B h

−→U in K such that g = h ◦ f . U is K′-homogeneous
if for every object A of K′ and every pair of arrows A f,g

−−→U in K, there exists an isomorphism U h
−→U

in K such that g = h ◦ f .

Some authors refer to K′-saturation as richness with respect to the objects and arrows from K′.
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Definition 5.3. A category K is an amalgamation category if the following hold.

(AC1) Every arrow in K is a monomorphism.

(AC2) K has direct limits (unions) of ω-chains.

(AC3) K<ℵ0 has at most ℵ0 objects up to isomorphism.

(AC4) For each object A ∈ K<ℵ0 there are at most ℵ0 extensions of A in K<ℵ0 , up to isomorphism.

(AC5) K<ℵ0 has the amalgamation property (AP), that is, any diagram of the form

B1 B2

A

`` >>

can be completed to a commuting square

C

B1

>>

B2

``

A

`` >>

in K<ℵ0 .

(AC6) K<ℵ0 has the joint embedding property (JEP), that is, for every B1, B2 ∈ K<ℵ0 there is C ∈ K<ℵ0

and arrows
C

B1

>>

B2

``

in K<ℵ0 .

The point of the definition is that the following form of Fraïssé’s amalgamation theorem holds.

Theorem 5.4 [Kirby 2009, Theorem 2.18]. If K is an amalgamation category then there is an object
U ∈ K6ℵ0 , the “Fraïssé limit”, which is K6ℵ0-universal and K<ℵ0-saturated.

Furthermore, if A ∈ K6ℵ0 is K<ℵ0-saturated then A ∼=U.

Remark 5.5. It follows from saturation and a back-and-forth argument that U is also K<ℵ0-homogeneous.

5B. Amalgamation of 0-fields. We fix a 0-field Fbase which is either finitely generated as a 0-field, or
is a countable full 0-field.

The identity map on a 0-field is obviously a strong embedding; hence, from Lemma 4.4 we have a
category of strong 0-field extensions of Fbase, with strong embeddings as the arrows. We write C(Fbase)

for this category, but usually abbreviate it to C. We also consider the following full subcategories of C.
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Notation 5.6. • Cfull (or Cfull(Fbase)) consists of the full strong 0-field extensions of Fbase.

• Cfg consists of the strong 0-field extensions of Fbase which are finitely generated.

• Cfg-full consists of the strong 0-field extensions of Fbase which are full and finitely generated as full
extensions.

• C6ℵ0 consists of the strong 0-field extensions of Fbase which are countable.

• Cfull,6ℵ0 consists of the strong 0-field extensions of Fbase which are full and countable.

For our categories C and Cfull, it is immediate that ℵ0-small just means finitely generated in the
appropriate sense, and a (full) 0-field is the union of an ω-chain of finitely generated (full) 0-fields if and
only if it is countable.

We will construct our canonical model as the Fraïssé limit of Cfg. In fact it is also the Fraïssé limit
of Cfg-full.

In proving the amalgamation property we actually prove a stronger result, asymmetric amalgamation,
which will be necessary when we come to axiomatize our models. However, the asymmetric property
holds only in the case of full 0-fields, not for Cfg. We also observe that our amalgams are disjoint.

Proposition 5.7. The categories Cfull and Cfull,6ℵ0 have the disjoint asymmetric amalgamation property.
That is, given full 0-fields A0, AL , AR ∈ Cfull, an embedding A0 ↪→ AL and a strong embedding A0

C
↪→ AR ,

there exist A ∈ Cfull and dashed arrows making the following diagram commute:

AL � o
G

��

A0

. �

>>

� p

G
!!

A

AR

/ �

>>

Moreover, if the embedding A0 ↪→ AL is also strong, then so is the embedding AR ↪→ A; furthermore,
identifying A0, AL , and AR with their images in A, we have that AL ∩ AR = A0.

Proof. Since A0 is algebraically closed as a field, we may form the free amalgam A1 of AL and AR

over A0 as fields, that is, the unique (up to isomorphism) field compositum of AL and AR in which
they are algebraically independent over A0. We identify AL and AR as subfields of A1 so, in particular,
AL ∩ AR = A0. We make A1 into a 0-field by defining 0(A1) to be the O-submodule 0(AL)+0(AR)

of G(A1).
Then 0(AL) and 0(AR) are O-submodules of 0(A1).
Suppose that a∈ker1(A1), that is, (a,0)∈0(A1). Then there are (aL ,bL)∈0(AL) and (aR,bR)∈0(AR)

such that (a, 0)= (aL , bL)+ (aR, bR). Then bL =−bR , so

bL , bR ∈ 02(AL)∩02(AR)⊆ G2(AL)∩G2(AR)= G2(A0).
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Since A0 is a full 0-field there is a0 ∈ G1(A0) such that (a0, bL) ∈ 0(A0). Then aL − a0 ∈ ker1(AL)=

ker1(A0), so aL ∈ 01(A0). Similarly, aR ∈ 01(A0), so a ∈ 01(A0).
Thus ker1(A1) = ker1(A0). The same argument shows that ker2(A1) = ker2(A0), and hence the

inclusions of AL and AR into A1 preserve the kernels.
Let us check that the inclusion AL ↪→ A1 is strong. Let X be a 0-subfield of A1 which is finitely

generated over AL . Choose a basis b for the extension, say of length n. Translating by points in 0(AL), we
may assume that b ∈0(AR)

n . Now δ(b/A0)> 0 since A0C AR , so trd(b/A0)> d ldimkO(g/0(A0)= dn.
Since AR is ACF-independent from AL over A0, we have trd(b/AL)= trd(b/A0), and we also have

ldimkO(b/0(AL))= n by assumption, so

δ(X/AL)= trd(b/AL)− d ldimkO(b/0(AL))= δ(b/A0)> 0

as required. Thus AL C A1. The same argument shows that if the embedding A0 ↪→ AL is strong, then so
is the embedding AR ↪→ A1.

Now take A= Afull
1 , which exists and is a strong extension of A1, by the existence part of Theorem 4.17.

Note that if AL and AR are countable then so is A. �

Corollary 5.8. The category Cfg has the amalgamation property. That is, given A0, AL , AR ∈ Cfg and
strong embeddings A0

C
↪→ AL and A0

C
↪→ AR as in the following diagram, there exist A ∈ Cfg and dashed

arrows making the diagram commute.

AL � o
G

��

A0

. �

G

>>

� p

G
!!

A

AR

/ �
G

>>

Proof. Let A0, AL , AR be as in the statement. By the existence part of Theorem 4.17, we can extend each
of the three 0-fields to its full closure.

AL
� � G // Afull

L

A0

. �

G

>>

� p

G
  

� � G // Afull
0

AR
� �

G
// Afull

R

Then, because we have A0C Afull
L and A0C Afull

R , by the uniqueness part of the same theorem there are
embeddings as in the following diagram, which are strong by Lemma 4.8 and finite character of δ.
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AL
� � G // Afull

L

A0

. �

G

>>

� p

G
  

� � G // Afull
0

. �

G

==

� p

G
!!

AR
� �

G
// Afull

R

By Proposition 5.7, we can complete the diagram to

AL
� � G // Afull

L � o

G

  

A0

. �

G

>>

� p

G
  

� � G // Afull
0

. �

G

==

� p

G
!!

A′

AR
� �

G
// Afull

R

/ �
G

>>

and then we can take A to be the 0-subfield of A′ generated by AL ∪ AR , which is in Cfg. �

Theorem 5.9. The categories C and Cfull are amalgamation categories, with the same Fraïssé limit.

Proof. Strong embeddings are injective functions, so monomorphisms. Hence (AC1) holds. It is clear that
the union of a chain of (full) 0-fields is a (full) 0-field, so (AC2) holds. We get (AC4) from Corollary 3.26
for C and Proposition 4.18 for Cfg-full. The amalgamation property (AC5) is proved in Proposition 5.7
and Corollary 5.8. Since every 0-field in C is an extension of Fbase, and every full 0-field in Cfull is an
extension of (Fbase)

full, properties (AC3) and (AC6) follow from (AC4) and (AC5), respectively.
Thus, C and Cfull are both amalgamation categories. Let M be the Fraïssé limit of Cfull. If A ∈ C6ℵ0

then Afull
∈ Cfull,6ℵ0 , so as M is Cfull,6ℵ0-universal there is a strong embedding AfullCM , which restricts

to a strong embedding ACM . Hence M is C6ℵ0-universal. Similarly, using Theorem 4.17 and the Cfg-full-
saturation of M we can see that M is also Cfg-saturated. Hence M is also the Fraïssé limit of Cfg. �

Notation 5.10. We write M(Fbase) for the Fraïssé limit in C.

5C. 0-algebraic extensions.

Definition 5.11. Let AC B be a strong extension of 0-fields. The extension is 0-algebraic if for all finite
tuples b from 0(B) there is a finite tuple c ∈ 0(B) containing b such that δ(c/A)= 0.

Remark 5.12. From Lemma 4.15 we see that if F is a full 0-field such that BC F then the extension
AC B is 0-algebraic if and only if B ⊆ 0clF (A).

Let Calg be the subcategory of C consisting of the 0-algebraic extensions of Fbase.

Proposition 5.13. Calg is an amalgamation category.



520 Martin Bays and Jonathan Kirby

Proof. The proof of Theorem 5.9 goes through, except we also have to show that the amalgam of
0-algebraic extensions is 0-algebraic. So suppose we have the amalgamation square

AL � o
G

��

A0

. �

G
>>

� p

G !!

A

AR

/ � G

>>

as in Corollary 5.8 with AL and AR both 0-algebraic over A0, A′ a full 0-field, and A the 0-subfield of
A′ generated by AL ∪ AR . Then by Remark 5.12, we have AL ∪ AR ⊆ 0clA′(A0) and so A ⊆ 0clA′(A0),
so A0C A is 0-algebraic. �

Write M0 (or M0(Fbase)) for the Fraïssé limit of Calg.

Definition 5.14. A 0-field F strongly extending Fbase is ℵ0-saturated for 0-algebraic extensions over
Fbase if whenever FbaseC AC F with A finitely generated over Fbase and A

C
−→ B is a finitely generated

0-algebraic extension then B embeds (necessarily strongly) into F over A.

Proposition 5.15. M0(Fbase) is the unique countable full 0-field strongly extending Fbase which is 0-
algebraic over Fbase and ℵ0-saturated for 0-algebraic extensions.

Proof. Immediate from the uniqueness part of the amalgamation theorem and Proposition 5.13. �

5D. Purely 0-transcendental extensions. In contrast with 0-algebraic extensions are those we call
purely 0-transcendental extensions. We discuss amalgamation of these, which gives rise to some variant
constructions.

Definition 5.16. Let AC B be a strong extension of 0-fields. The extension is purely 0-transcendental
if for all tuples b from 0(B), either δ(b/A) > 0 or b ⊆ 0(A).

Remark 5.17. If AC B is an extension of full 0-fields then it is purely 0-transcendental if and only if A
is 0-closed in B.

Definition 5.18. When Fbase is a full countable 0-field, we define C0-tr(Fbase) (usually abbreviated to
C0-tr) to be the full subcategory of C consisting of the strong purely 0-transcendental extensions of Fbase.

Lemma 5.19. If A ∈ C0-tr then Afull
∈ C0-tr.

Proof. Consider the case when (a1, a2) ∈ 0(Afull)r0(A) with a1 ∈ G1(Afull) algebraic over A. Since
AC Afull we have trd(a2/A)= d . If δ((a1, a2)/Fbase)6 0 then trd(a1, a2/Fbase)6 d , which implies that
trd(a1/Fbase)= 0. Since Fbase is full, that implies (a1, a2) ∈ 0(Fbase), a contradiction.

Replacing A by the 0-subfield of Afull generated by A∪ {(a1, a2)} and iterating appropriately, we see
that Afull

∈ C0-tr. �
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We will show that C0-tr is an amalgamation category by showing that the free amalgam of purely
0-transcendental extensions is purely 0-transcendental, using a lemma on stable groups.

Lemma 5.20. Let H be a commutative algebraic group defined over an algebraically closed field C.
Suppose a1, a2, a3 ∈ H are pairwise algebraically independent over C and a1+ a2+ a3 = 0. Then there
is a connected algebraic subgroup U of H and cosets ci +U defined over C such that ai is a generic
point of ci +U over C , for each i = 1, 2, 3. In particular, trd(ai/C)= dim U for each i .

Proof. This is the special case for algebraic groups of a result about stable groups due to Ziegler [2006,
Theorem 1]. �

Theorem 5.21. If Fbase is a full countable 0-field then C0-tr and Cfull
0-tr are amalgamation categories.

Notation 5.22. We write M0-tr(Fbase) for the Fraïssé limit in C0-tr(Fbase).

Proof of Theorem 5.21. Axioms (AC1), (AC3), and (AC4) follow immediately from the fact that C0-tr and
Cfull
0-tr are full subcategories of C. Axioms (AC2) and (AC6) are also immediate. It remains to prove (AC5),

the amalgamation property.
Using Lemma 5.19, the same argument as for Corollary 5.8 allows us to reduce the amalgamation

property for C0-tr to the amalgamation property for Cfull
0-tr. So suppose we have full 0-fields

AL AR

A0

0 P

G
aa

. �
G
==

Fbase

?�
G

OO

with A0, AL , and AR all purely 0-transcendental extensions of Fbase. Let A1 be the free amalgam of AL

and AR over A0 as in the proof of Proposition 5.7. We must show that A1 is a purely 0-transcendental
extension of Fbase.

So let B be a 0-subfield of A1 properly containing Fbase and finitely generated over it. It remains to
show that δ(B/Fbase)> 1. If B ∧ AR 6= Fbase then we have

δ(B/Fbase)= δ(B/B ∧ AR)+ δ(B ∧ AR/Fbase)

> δ(BAR/AR)+ δ(B ∧ AR/Fbase) by submodularity

> 0+ 1= 1,

the last line because AR C A1 and AR is purely 0-transcendental over Fbase. So in this case we are done,
and similarly if B ∧ AL 6= Fbase.

So we may assume that B ∧ AR = B ∧ AL = Fbase. Choose a basis b = (b1, . . . , bn) of B over Fbase.
For each i , choose bi

L ∈ 0(AL) and bi
R ∈ 0(AR) such that bi

= bi
L + bi

R . Let BL and BR be the 0-field
extensions of Fbase generated by bL := (b1

L , . . . , bn
L) and bR := (b1

R, . . . , bn
R), respectively.
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We claim that BL ∧ AR = Fbase and that AL ∧ BR = Fbase. To see this, suppose that v ∈ 0(BL ∧ AR)=

0(BL)∩0(AR). Since v ∈ 0(BL) there are si ∈ kO and some a ∈ 0(Fbase) such that v =
∑n

i=1 si bi
L + a.

Let uL = v−a =
∑n

i=1 si bi
L , let u R =

∑n
i=1 si bi

R , and let u = uL +u R =
∑n

i=1 si bi . Then v, a ∈ 0(AR),
so uL ∈ 0(AR), and also u R ∈ 0(AR); hence u ∈ 0(AR). But u ∈ 0(B) and we have B∧ AR = Fbase. So
u ∈ 0(Fbase) and so each si = 0, and thus v ∈ 0(Fbase). So BL ∧ AR = Fbase. The same argument shows
that AL ∧ BR = Fbase, and in particular BL ∧ BR = Fbase.

Let C be the 0-subfield of A1 generated by B ∪ BL , and note that it is also generated by BL ∪ BR . We
have B ∧ BL = Fbase = BL ∧ BR , so applying modularity of linear dimension to the squares

C

B
. �

G

==

BL

0 P

G

bb

Fbase

0 P

G

``

. �
G
==

and

C

BL

. �
G

<<

BR

0 P

G

bb

Fbase

0 P

G
aa

. �
G
==

we get

ldimkO(0(BR)/0(Fbase))= ldimkO(0(C)/0(BL))= ldimkO(0(B)/0(Fbase))= n,

and so bR is kO-linearly independent over 0(Fbase), and hence over 0(A0), since BR ∧ A0 = Fbase. We
have

trd(b/Fbase)> trd(b/A0)> trd(b/A0bL)= trd(bR/A0bL)= trd(bR/A0)> dn

with the last three (in)equalities holding because b = bL + bR , because bR is algebraically independent
from bL over A0, and because A0 C A1 and bR is kO-linearly independent over 0(A0). Similarly,
trd(b/A0)> trd(bL/A0)> dn.

Suppose for a contradiction that δ(B/Fbase)6 0. Then we must have

trd(b/Fbase)= trd(b/A0)= trd(bL/A0)= trd(bR/A0)= dn,

and then we also have

trd(b, bL/A0)= trd(b, bR/A0)= trd(bL , bR/A0)= trd(b, bL , bR/A0)= 2dn,

so b, bL , bR are pairwise algebraically independent over A0.
We apply Lemma 5.20 with H = Gn

= Gn
1 ×Gn

2 , a1 =−b, a2 = bL , and a3 = bR to get a connected
algebraic subgroup U of Gn of dimension dn such that b is in an A0-coset of U . Since trd(b/Fbase)=

trd(b/A0)= dim U , and Fbase is an algebraically closed field, the coset is actually defined over Fbase.
G1 and G2 are nonisogenous and so U is of the form U1×U2 where each Ui is a connected subgroup

of Gn
i . Since dim U = dn, if U2=Gn

2 then U1 is the trivial subgroup of Gn
1 , so π1(b)∈Gn

1(A0). But A0 is
a full 0-field and so b ∈ 0(A0)

n , which contradicts trd(b/A0)= dn (and n > 0). So U2 must be a proper
subgroup of Gn

2 . Since G2 is simple, it follows that π2(b) satisfies an O-linear equation
∑n

i=1 siπ2(bi )= c
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with c ∈ G2(Fbase). Then, since b ∈ 0(B)n and Fbase is a full 0-field, we have
∑n

i=1 si bi
∈ 0(Fbase),

which contradicts b being a basis for B over Fbase.
So we have δ(B/Fbase)> 1, and thus A1 is a purely 0-transcendental extension of Fbase, as required. �

6. Categoricity

In this section we first introduce the abstract notion of a quasiminimal pregeometry structure, which is
a form of the technique of quasiminimal excellence, used to prove uncountable categoricity of a list of
axioms. We then prove that our 0-closed fields do satisfy the conditions to be quasiminimal pregeometry
structures. Later in Section 8 we will give axioms for the 0-closed fields, and then we can deduce
categoricity of this axiomatization.

6A. Quasiminimal pregeometry structures. This definition of quasiminimal pregeometry structures
comes from [Bays et al. 2014b].

Definition 6.1. Let M be an L-structure for a countable language L , equipped with a pregeometry cl
(or clM if it is necessary to specify M). Write qftp for the quantifier-free L-type. We say that M is a
quasiminimal pregeometry structure if the following hold:

(QM1) The pregeometry is determined by the language. That is, if a, a′ are singletons, b, b′ are tuples,
qftp(a, b)= qftp(a′, b′), and a ∈ cl(b), then a′ ∈ cl(b′).

(QM2) M is infinite-dimensional with respect to cl.

(QM3) Countable closure property:
If A ⊆ M is finite then cl(A) is countable.

(QM4) Uniqueness of the generic type:
Suppose that C,C ′⊆M are countable closed subsets, enumerated such that qftp(C)=qftp(C ′). If
a ∈MrC and a′ ∈MrC ′ then qftp(C, a)= qftp(C ′, a′) (with respect to the same enumerations
for C and C ′).

(QM5) ℵ0-homogeneity over closed sets and the empty set:
Let C,C ′ ⊆ M be countable closed subsets or empty, enumerated such that qftp(C)= qftp(C ′),
let b, b′ be finite tuples from M such that qftp(C, b)= qftp(C ′, b′), and let a ∈ cl(C, b). Then
there is a′ ∈ M such that qftp(C, b, a)= qftp(C ′, b′, a′).

We say M is a weakly quasiminimal pregeometry structure if it satisfies all the axioms except possibly
(QM2).

Definition 6.2. Given M1 and M2 both weakly quasiminimal pregeometry L-structures, we say that an
L-embedding θ : M1 ↪→ M2 is a closed embedding if for each A⊆ M1 we have θ(clM1(A))= clM2(θ(A)).
In particular, θ(M1) is closed in M2 with respect to clM2 . When θ is an inclusion map we say that M1 is
a closed substructure of M2. By axiom (QM1), closed substructures are the same as closed subsets.
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Definition 6.3. Given a quasiminimal pregeometry structure M , let K(M) be the smallest class of
L-structures which contains M and all its closed substructures and is closed under isomorphism and
under taking unions of directed systems of closed embeddings. We call any class of the form K(M) a
quasiminimal class.

The purpose of these definitions is the categoricity theorem, Theorem 2.3 in [Bays et al. 2014b].

Fact 6.4. If K is a quasiminimal class then every structure A ∈ K is a weakly quasiminimal pregeometry
structure, and up to isomorphism there is exactly one structure in K of each cardinal dimension. In
particular, K is uncountably categorical. Furthermore, K is the class of models of an Lω1,ω(Q) sentence.

We will verify axioms (QM1)–(QM5) for the Fraïssé limits we constructed. We first make some general
observations which simplify what we have to verify.

Proposition 6.5. Suppose that M is a countable L-structure. Then it satisfies (QM1)–(QM5) if and only
if it satisfies the following axioms:

(QM1′) If a and b are finite tuples and qftp(a)= qftp(b) then dim(a)= dim(b).

(QM2) M is infinite-dimensional with respect to cl.

(QM4) Uniqueness of the generic type.

(QM5a) ℵ0-homogeneity over the empty set:
If a and b are finite tuples from M and qftp(a) = qftp(b) then there is θ ∈ Aut(M) such that
θ(a)= b.

(QM5b) Nonsplitting over a finite set:
If C is a closed subset of M and b ∈ M is a finite tuple then there is a finite tuple c ∈C such that
qftp(b/C) does not split over c. That is, for all finite tuples a, a′ ∈ C, if qftp(a/c)= qftp(a′/c)
then qftp(a/cb)= qftp(a′/cb).

Proof. The first axiom (QM1′) is equivalent to (QM1), because a ∈ cl(b) if and only if dim(a, b)= dim(b),
so if quantifier-free types characterize the dimension they also characterize the closure operation, and
vice versa.

The countable closure property (QM3) is immediate for a countable M .
Axiom (QM5) with C =∅ gives a back-and-forth condition which is equivalent to ℵ0-homogeneity

using the standard back-and-forth argument together with (QM1) and (QM4). Since M is countable, the
back-and-forth construction gives (QM5a). The converse is immediate.

Finally, [Bays et al. 2014b, Corollary 5.3] shows that the case of (QM5) with C closed is equivalent
to (QM5b). �

Remark 6.6. All the axioms refer to quantifier-free types with respect to a particular language, and from
(QM5a) we get the conclusion that if two finite tuples from M have the same quantifier-free type then
they actually have the same complete type (even the same L∞,ω-type, and furthermore they lie in the
same automorphism orbit, that is, they have the same Galois-type). Since M is not necessarily a saturated
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model of its first-order theory, it does not follow that every definable set is quantifier-free definable.
Nonetheless, identifying the language which works allows us to understand the types which are realized
in M .

6B. Verification of the quasiminimal pregeometry axioms. Recall that our language of 0-fields is
L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation symbol of suitable arity to denote a subset of G. We
start by defining the expansion LQE of L0 in which we have the form of quantifier-elimination described
in the previous remark.

Let W be any subvariety of Gn
×Ar defined over Fbase, for some n, r ∈ N. (It suffices to consider

those W which are the graphs of rational maps f : W ′→ Ar , with W ′ ⊆ Gn .) Let ϕW (x, y) name the
subset of G(M)n ×Mr given by

(x, y) ∈W and x ∈ 0n and x is O-linearly independent over 0(Fbase),

and let ψW (y) be the formula ∃x ϕW (x, y).

Definition 6.7. We define LQE to be the expansion of L0 by parameters for Fbase and relation symbols
for all the formulas ϕW (x, y) and ψW (y).

Remark 6.8. Note that the formulas ϕW (x, y) are always expressible in Lω1,ω(L0) (with parameters
in Fbase), so a priori this is an expansion of L0(Fbase) by Lω1,ω-definitions. However, if the ring O
and its action on G are definable and 0(Fbase) is either of finite rank (which is true for example in
pseudo-exponentiation) or is otherwise an L0-definable set, then LQE is just an expansion of L0(Fbase)

by first-order definitions.

For the rest of this section we use tuples both from the field sort of a model M and from 0(M), so to
distinguish them we will use Latin letters for tuples from M and Greek letters for tuples from 0(M).

Theorem 6.9. Take M to be either M(Fbase) or M0-tr(Fbase), the latter only if Fbase is a full 0-field. Then,
considered in the language LQE and equipped with 0cl, M is a quasiminimal pregeometry structure.

Proof. We verify the axioms from Proposition 6.5. The main difficulty is that the axioms refer to the field
sort whereas the construction of M was done in the sort 0, and there is no canonical way to go from one
sort to the other in either direction. However, the sort 0 has rank d with respect to the pregeometry 0cl,
so as we want to include the case d > 1 we have to verify the axioms with respect to the field sort.

First we prove (QM2). For any n ∈N, there is a strong 0-field extension An of Fbase generated by a
tuple α ∈0(An)

n such that α is generic in Gn over Fbase. Then δ(α/Fbase)= dn. This An embeds strongly
in M by the universality property of the Fraïssé limit, so 0dimM(α)= dn by Lemma 4.15. Hence M is
infinite-dimensional.

Now we prove (QM1′) and (QM5a) together. Suppose a, b ∈ Mr with qftpLQE(a) = qftpLQE(b).
Choose a strong 0-subfield ACM which is a finitely generated extension of Fbase such that a ∈ Ar and
δ(A/Fbase) is minimal such. Let α ∈ 0(A)n be a good basis for A over Fbase, such that a is in the field
Fbase(α), let W = Loc(α, a/Fbase), and let V = Loc(α/Fbase). Then M |H ψW (a), so also M |H ψW (b).
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So there is β ∈ 0(M)n such that M |H ϕW (β, b). In particular, β is in V ∩ 0(M)n and is kO-linearly
independent over 0(Fbase). We claim that W = Loc(β, b/Fbase). Suppose not, so W ′ := Loc(β, b/Fbase)

is a proper subvariety of W . We have M |H ψW ′(b), so since a and b have the same quantifier-free
LQE-type, M |H ψW ′(a). So there is some α′ ∈ 0(M)n such that M |H ϕW ′(α

′, a). W is irreducible
over Fbase, so dim W ′ < dim W . Since a is rational over Fbase(α), dim W = dim V , and so α′ lies in
a subvariety V ′ of V with dim V ′ < dim V . But then setting A′ = 〈Fbase, α

′
〉 we have a ∈ A′ r and

δ(A′/Fbase)= δ(α
′/Fbase)= dim V ′− ldimkO(α

′/0(Fbase)) < δ(A/Fbase), which contradicts the choice
of A. Thus Loc(β, b/Fbase) = W , and in particular Loc(β/Fbase) = V . Let B = 〈Fbase, β〉. We further
deduce that BCM , since if not, the same proof would show that δ(A/Fbase) would not be minimal.

By Lemma 4.15, we have 0dim(A)= δ(A/Fbase)= δ(B/Fbase)=0dim(B). Now 0dim(a)=0dim(A)
by the minimality of δ(A/Fbase), since A could be taken within 0cl(a), and 0dim(b) ≤ 0dim(B), so
0dim(b)≤ 0dim(a). By symmetry, 0dim(a)= 0dim(b), so (QM1′) is proved.

Since α is a good basis, there is an isomorphism of 0-fields θ0 : A→ B over Fbase, with θ0(α)= β.
Then also θ0(a)= b. Since M is Cfg-homogeneous (or Cfg

0-tr-homogeneous), θ0 extends to an automorphism
θ of M . That proves (QM5a).

For (QM4), suppose that C1,C2 Ccl M with the same quantifier-free LQE-type according to some
enumeration, and let θ : C1 ∼= C2 be the isomorphism given by the enumeration. Suppose also that
b1 ∈ M rC1 and b2 ∈ M rC2.

Using Lemma 4.13 we get β1, β2 ∈0(M) such that bi ∈Ci (βi ) and Loc(β1, b1/C1) is defined over K0

and is equal to Loc(β2, b2/C2). Also, setting Bi := 〈Ci , βi 〉 we have BiCM and βi is a good basis for Bi

over Ci . By the definition of a good basis, the isomorphism θ extends to θ1 : B1 ∼= B2 with θ1(β1)= β2

and hence θ1(b1)= b2.
Let FbaseC A1CC1 with A1 finitely generated over Fbase, and let A2 = θ(A1). Then θ1 restricts to

an isomorphism θ0 : 〈A1β1〉 ∼= 〈A2β2〉. Also 〈Aiβi 〉C M since δ(〈Aiβi 〉/Ai ) = 1 and βi /∈ 0cl(Ai ).
Since M is Cfg-homogeneous (or Cfg

0-tr-homogeneous), θ0 extends to an automorphism of M . So
qftpLQE(A1b1)= qftpLQE(A2b2) and thus, as A1 ranges over strong 0-subfields of C1 finitely generated
over Fbase, we deduce that qftpLQE(C1b1)= qftpLQE(C2b2) as required.

Finally, to prove (QM5b), let C Ccl M and let b ∈ M be a finite tuple. Let B be a finitely generated
0-field extension of C such that B C M and b ∈ B, and let β ∈ 0(B)n be a good basis for B over C
with b ∈ C(β). Now choose a finitely generated 0-field extension C0 of Fbase in C with C0CC , and a
good basis γ for C0, such that Loc(β, b/C) is defined over Fbase(γ ).

Suppose that finite tuples a, a′ ∈ C have qftpLQE(a/γ )= qftpLQE(a′/γ ). By (QM5a), there is a 0-field
automorphism θ ∈ Aut(M/Fbase(γ )) such that θ(a) = a′. Let A be a strong 0-subfield of 0cl(C0, a)
which is finitely generated over C0 and contains a, and let A′ = θ(A). Then A′CC .

Let V = Loc(β/C). Then Loc(β/A)= Loc(β/A′)= V because V is defined over Fbase(γ ). So, since
β is a good basis, the isomorphism θ0 : A ∼= A′ extends to θ1 : 〈Aβ〉 ∼= 〈A′β〉.

We claim that 〈Aβ〉C B. To see this, suppose that X ⊆ B is a finitely generated extension of 〈Aβ〉,
and let X0 = X ∧C . Let ξ be a basis of X0 over A. Then ξ ∪β is a basis for X over A, since β is a basis
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for B over C and hence for X over X ∧C = X0. So

δ(X/Aβ)= trd(ξ/Aβ)− d ldimkO(ξ/0(A), β)

= trd(ξ/A)− d ldimkO(ξ/0(A))

= δ(ξ/A)> 0

because β is algebraically and linearly independent from C over A and ξ ∈ C . Since B CM we have
〈Aβ〉CM . The same argument shows that 〈A′β〉CM .

Thus, since M is Cfg-homogeneous (or Cfg
0-tr-homogeneous), θ1 extends to an automorphism θ2 of M .

Now θ2 fixes b and γ and θ2(a)= a′, so qftpLQE(a/bγ )= qftpLQE(a′/bγ ). Taking c = γ , considered as
a tuple from the field sort of C , we see that tp(b/C) does not split over c, as required. �

Remark 6.10. A more complete analysis of splitting for pseudo-exponentiation was carried out in the
Ph.D. thesis of Robert Henderson [2014].

We conclude this section by showing that the 0-algebraic types over finite tuples are isolated.

Proposition 6.11. Suppose that a, b are finite tuples in M and that b ∈0clM(a). Then tp(b/a) is isolated
by an LQE-formula.

Proof. Choose a finitely generated 0-field BCM with B ⊆ 0cl(a), and a good basis β for B such that
a, b ∈ Fbase(β). Let W = Loc(β, a_b/Fbase).

Then M |H ϕW (β, a_b) and M |H ψW (a_b). Suppose M |H ψW (a_c). Then there is a tuple γ from
0(M) such that M |HϕW (γ, a_c). So Loc(γ /Fbase)⊆V but FbaseCM and ldimkO(γ /0(Fbase))=dim V
by the definition of ϕW , so γ is generic in V over Fbase. Thus Loc(γ /Fbase)= Loc(β/Fbase) so, since β
is a good basis, the 0-field C generated by γ is isomorphic to B via an isomorphism θ : B→ C such that
θ(β)= γ , and then necessarily θ(a)= a and θ(b)= c.

Using Lemma 4.15 repeatedly,

δ(C/Fbase)= δ(B/Fbase)= 0dim(B)= 0dim(a)6 0dim(C)

and so δ(C/Fbase)=0dim(C), and CCM . Thus θ extends to an automorphism of M , so tp(c/a)= tp(b/a),
so the formula ψW (a_x) isolates tp(b/a). �

7. Classification of strong extensions

We next give a classification of the finitely generated strong extensions. In the next section we will use
it to give axiomatizations of the classes of 0-closed fields we have constructed, generalizing Zilber’s
axioms for pseudo-exponentiation.

Since G is an O-module, each matrix M ∈Matn(O) defines an O-module homomorphism Gn M
−→ Gn

in the usual way. If V ⊆ Gn , we write M · V for its image. Note that if V is a subvariety of Gn then
M · V is a constructible set, and since the O-module structure is defined over K0, if V is defined over A
then M · V is defined over K0 ∪ A. If V is irreducible then M · V is also irreducible.



528 Martin Bays and Jonathan Kirby

We have Gn
= (G1×G2)

n and we write x1, . . . , xn for the coordinates in G1 and y1, . . . , yn for the
coordinates in G2.

Definition 7.1. Let V be an irreducible subvariety of Gn . Then V is G1-free if V does not lie inside any
subvariety defined by an equation

∑n
j=1 r j x j = c for any r j ∈O, not all zero, and any c ∈ G1. We define

G2-free the same way. We say V is free if it is both G1-free and G2-free.
V is rotund (for G as an O-module) if for every matrix M ∈Matn(O) we have

dim(M · V )> d rk M,

where dim means dimension as an algebraic variety or constructible set, rk M is the rank of the matrix M ,
and d = dim G1.

V is strongly rotund if for every nonzero matrix M ∈Matn(O) we have

dim(M · V ) > d rk M.

A reducible subvariety V of Gn is defined to be free, rotund, or strongly rotund if at least one of its
(absolutely) irreducible components is free, rotund, or strongly rotund, respectively. If we say that such a
V is free and (strongly) rotund then we mean that the same irreducible component is free and (strongly)
rotund.

So V is free if it is “free from O-linear dependencies”, and it is rotund if all its images under suitable
homomorphisms are of large dimension.

Lemma 7.2. An irreducible subvariety V ⊆ Gn is G2-free if and only if π2(V ) does not lie in a coset of a
proper algebraic subgroup of Gn

2 . If O = End(G1) then V is G1-free if and only if π1(V ) does not lie in a
coset of a proper algebraic subgroup of Gn

1 .

Proof. This is an immediate consequence of Lemma 2.1(i). �

Proposition 7.3. Suppose that A is a full 0-field, A ⊆ B is a finitely generated extension of 0-fields, and
b ∈ 0(B)n is a basis for the extension. Let V = Loc(b/A).

Then V is free. Furthermore, the extension is strong if and only if V is rotund, and it is purely
0-transcendental if and only if V is strongly rotund.

Proof. If V is not G1-free then, writing b = (b1
1, . . . , bn

1, b1
2, . . . , bn

2) ∈ Gn
1 ×Gn

2 we have
∑n

j=1 r j b
j
1 =

c1 ∈ G1(A). Let c2 =
∑n

j=1 r j b
j
2 . Then (c1, c2) ∈ 0(B) and since A is full and the extension preserves

the kernels we have (c1, c2) ∈ 0(A). That contradicts b being a basis for the extension. So V is G1-free
and, symmetrically, G2-free.

For M ∈Matn(O) we have M ·b ∈0(B)n with ldimkO(M ·b/0(A))= rk M . Furthermore, every finite
tuple from 0(B) generates the same 0-field extension of A as some tuple M · b, because b is a basis.
Thus the extension is strong if and only if for all M we have trd(M · b/A)> d rk M if and only if for all
M we have dim(M · V )Zar > d rk M if and only if V is rotund.
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Similarly any finite tuple from 0(B) which is not in 0(A) generates the same extension of A as a
tuple M · b for some nonzero matrix M , and V is strongly rotund if and only if all such tuples have
δ(M · b/A) > 0. �

Corollary 7.4. Suppose that AC B is a finitely generated strong extension of essentially finitary 0-fields,
that Afull

∧ B = A, that b ∈ 0(B)n is a basis for the extension, and that V = Loc(b/A). Then V is free
and rotund, and it is strongly rotund if and only if B is a purely 0-transcendental extension of A.

Proof. First note that, since A and B are essentially finitary, by Theorem 4.17, Bfull is uniquely determined
up to isomorphism and Afull is uniquely determined as a 0-subfield of Bfull, so the condition that
Afull
∧ B = A makes unambiguous sense. Now the proof of Proposition 7.3 goes through with this weaker

condition in place of A = Afull. �

8. Axiomatization of 0-closed fields

Recall that we have fixed a ring O and algebraic O-modules G1 and G2, both of dimension d, defined
over a countable field K0, we have the product G = G1×G2, and we consider structures in the language
L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation symbol of appropriate arity to denote a subset of G.
We are given an essentially finitary 0-field Fbase containing K0, of type (EXP), (COR), or (DEQ). We add
parameters for Fbase to the language to get a language L Fbase . We also have an expanded language LQE.

Definition 8.1. A model in the quasiminimal class K(M(Fbase)) is called a 0-closed field (with the
countable closure property, on the base Fbase).

Theorem 8.2. An L Fbase structure F is a 0-closed field if and only if it satisfies the following list of axioms,
which we denote by 0CFCCP(Fbase).

(1) Full 0-field: F is an algebraically closed field containing K0 and 0(F) is an O-submodule of G(F)
such that the projections of 0(F) to G1(F) and G2(F) are surjective.

(2) Base and kernels: F satisfies the full atomic diagram of Fbase. (In some examples we will discuss
how this can be weakened.) Also keri (F)= keri (Fbase) for i = 1, 2.

(3) Predimension inequality (generalized Schanuel property): The predimension function

δ(x/Fbase) := trd(x/Fbase)− d ldimkO(x/0(Fbase))

satisfies δ(x/Fbase)> 0 for all tuples x from 0(F).

(4) Strong 0-closedness: For every irreducible subvariety V of Gn defined over F and of dimension dn
which is free and rotund for the O-module structure on G, and every finite tuple a from 0(F), there
is b ∈ V (F)∩0(F)n such that b is kO-linearly independent over 0(Fbase)∪ a (that is, no nonzero
kO-linear combination of the bi lies in the kO-linear span of 0(Fbase)∪ a).

(5) Countable closure property: For each finite subset X of F , the 0-closure 0clF (X) of X in F is
countable.
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Observe that if F is a 0-field for the O-module G, and in particular if it is full and so satisfies axiom
(1), then it satisfies axioms (2) and (3) if and only if FbaseC F .

Lemma 8.3. If F satisfies axioms (1)–(3) then it also satisfies axiom (4) if and only if it is ℵ0-saturated
for 0-algebraic extensions (in the sense of Definition 5.14).

Proof. First assume that F satisfies axioms (1)–(4). Suppose AC F is finitely generated over Fbase and
A
C
↪→ B is a finitely generated 0-algebraic extension. We have assumed that Fbase is essentially finitary,

so Afull and Bfull are unique up to isomorphism as extensions of A and B, respectively, so Afull embeds
(strongly) into Bfull. Choose an embedding. Since Afull embeds in F we have Afull

∧ B (the intersection
taken in Bfull) embedding (strongly) into F , as summarized in the diagram below:

Afull //

��

F

A

66

//

((

Afull
∧ B

==

""

Bfull

B

??

So it remains to embed B in F over Afull
∧ B, so we may assume A = Afull

∧ B. Let a be a basis
for A over Fbase and let b ∈ 0(B)n be a good basis for B over A, which exists by Proposition 3.22. Let
V = Loc(b/A), a subvariety of Gn . Then V is free and rotund by Corollary 7.4. Since B is 0-algebraic
over A we have δ(b/A)= 0, so dim V = dn.

Then, by axiom (4) applied to an irreducible component of V , there is c ∈ 0(F)n ∩ V (F), kO-linearly
independent over 0(Fbase)∪ {a}. Since AC F we have δ(c/A)> 0, so trd(c/A)= dn = dim V . Thus c
is generic in V over A. Let C be the 0-subfield of F generated by A and c. Then c is a good basis of C
over A because this is a property of Loc(c/A), that is, of V . So, by the definition of a good basis, C is
isomorphic to B over A. So F is ℵ0-saturated for 0-algebraic extensions over Fbase.

For the converse, suppose that F is ℵ0-saturated for 0-algebraic extensions over Fbase. Let V be a free
and rotund irreducible subvariety of Gn which is defined over F and of dimension dn, and let a be a
finite tuple from 0(F). Extending a if necessary, we may assume that A = 〈Fbase, a〉C F and that V is
defined over a.

Consider a 0-field extension B of A, generated by a tuple b ∈ 0(B)n such that Loc(b/A) = V .
By Proposition 7.3 the extension is strong. Since V is free, ldimkO(b/0(A)) = n and therefore
δ(b/A) = dim V − dn = 0. So B is a 0-algebraic extension. Thus B embeds into F over A and
so we have b ∈ V (F)∩0(F)n , which is kO-linearly independent over 0(Fbase)∪ {a} as required. �

Proof of Theorem 8.2. Suppose F is a 0-closed field. Then, by definition, F is (isomorphic to) a closed
substructure of the canonical model M or is obtained from M (and its closed substructures) as the union
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of a directed system of closed embeddings. If F is a closed substructure of M then certainly it is a full
0-field strongly extending Fbase, so it satisfies axioms (1)–(3), and it is countable so satisfies axiom (5).

For axiom (4), suppose AC F is finitely generated and A
C
−→ B is a finitely generated and 0-algebraic

extension. Since M is Cfg-saturated, B embeds strongly into M over A and since F is closed in M , B ⊆ F .
So by Lemma 8.3, F satisfies axiom (4).

So closed substructures of M satisfy axioms (1)–(5). Axioms (1)–(4) are preserved under unions of
directed systems of strong embeddings, and all the axioms are preserved under unions of directed systems
of closed embeddings. Hence all 0-closed fields satisfy all five axioms of 0CFCCP(Fbase).

Suppose now that F satisfies axioms (1)–(5). Since it satisfies axioms (1)–(3), we have the pregeometry
0clF on F . If F0 is a finite-dimensional substructure of F then F0 satisfies axioms (1)–(3) and (5)
immediately and, using Lemma 8.3, also axiom (4). Let ā be a 0clF -basis for F0. Using Lemma 4.13, for
each ai ∈ ā, choose αi ∈ 0(F0), interalgebraic with ai over Fbase. Let C = 〈Fbase, α1, . . . , αn〉. Then F0

is 0-algebraic over C and is saturated for 0-algebraic extensions so, by Proposition 5.15, F0 ∼= M0(C).
Now choose an embedding of C into M . Note that 0clM(C) is also 0-algebraic over C and is saturated
for 0-algebraic extensions so is also isomorphic to M0(C). Hence F0 is a 0-closed field.

Now F is the union of the directed system of all its finite-dimensional closed substructures, which by
CCP are countable, and the class of 0-closed fields is closed under such unions by definition; hence F is
a 0-closed field. �

We can now prove Theorem 1.7.

Proof of Theorem 1.7. By Theorem 6.9, M(Fbase) is a quasiminimal pregeometry structure, so by Fact 6.4
the class K(M(Fbase)) is uncountably categorical and every model is quasiminimal. By Theorem 8.2, the
list of axioms 0CFCCP(Fbase) axiomatizes the class K(M(Fbase)). �

Remarks 8.4. (1) It is easy to show that axioms (1)–(4) are Lω1,ω-expressible, and axiom (5) is express-
ible as an Lω1,ω(Q)-sentence.

(2) If we add an (Lω1,ω-expressible) axiom stating that F is infinite dimensional to axioms (1)–(4), the
only countable model is M and so we get an ℵ0-categorical, and hence complete, Lω1,ω-sentence.

9. Specific applications of the general construction

We list several instances of 0-fields that are of interest, starting with the original example.

9A. Pseudo-exponentiation. We take K0 =Q, G1 = Ga, and G2 = Gm. Set O = Z. Let τ be transcen-
dental, and take Fbase to be the field Qab(τ ), where Qab is the extension of Q by all roots of unity. For
each m ∈N+, choose a primitive m-th root of unity ωm such that for all m, n ∈N+ we have (ωmn)

n
= ωm .

We take 0(Fbase) to be the graph of a homomorphism from the Q-linear span of τ to the roots of unity
such that τ/m 7→ ωm for each m ∈ N+. (This Fbase is called SK in the paper [Kirby 2013].)

Then the construction gives a class of fields F with a predicate 0(F) defining the graph of a surjective
homomorphism from Ga(F) to Gm(F), with kernel τZ, which we denote by exp. The predimension
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inequality is precisely Schanuel’s conjecture, and the strong existential closedness axiom is known as
strong exponential-algebraic closedness. Thus we obtain a proof of Theorem 1.2, which we restate in
explicit form.

Theorem 9.1. Up to isomorphism, there is exactly one model 〈F;+ , · , exp〉 of each uncountable cardi-
nality of the following list ECFSK,CCP of axioms.

(1) ELA-field: F is an algebraically closed field of characteristic 0, and exp is a surjective homomor-
phism from Ga(F) to Gm(F).

(2) Standard kernel: The kernel of exp is an infinite cyclic group generated by a transcendental element τ .

(3) Schanuel property: The predimension function

δ(x̄) := trd(x̄, exp(x̄))− ldimQ(x̄)

satisfies δ(x̄)> 0 for all tuples x̄ from F.

(4) Strong exponential-algebraic closedness: If V is a rotund, additively and multiplicatively free
subvariety of Gn

a ×Gn
m defined over F and of dimension n, and ā is a finite tuple from F, then there

is x̄ in F such that (x̄, ex̄) ∈ V and x̄ is Q-linearly independent over ā (that is, no nonzero Q-linear
combination of the xi lies in the Q-linear span of the ai ).

(5) Countable closure property: For each finite subset X of F, the exponential algebraic closure eclF (X)
of X in F is countable.

Proof. We apply Theorem 1.7, but note that axioms (2) and (3) are slightly different from the axioms
given in the statement of Theorem 8.2. The Schanuel property holds on our choice of Fbase because τ
is transcendental, and it follows from the addition property for δ that the two versions of axiom 3 are
equivalent in this case. Since τ is transcendental and the kernel is standard, it follows that Fbase embeds
strongly in F, so the two versions of axiom (2) are also equivalent. �

We denote the canonical model of cardinality continuum by B.

9B. Incorporating a counterexample to Schanuel’s conjecture. We proceed as in the previous example,
except now we choose an irreducible polynomial P(x, y) ∈ Z[x, y] and take (ε, τ ) to be a generic zero
of the polynomial P(x, y). (We assume that P is such that neither ε nor τ is zero.) Choose a division
sequence (εm) for ε, that is, numbers such that ε1 = ε and (εmn)

n
= εm for all m, n ∈N+. Now take K to

be the field Qab(τ, (εm)m∈N+), and define 0(K ) to be the graph of a homomorphism from the Q-linear
span of τ and 1, with τ/m 7→ ωm as above and 1/m 7→ εm .

Now the construction gives us a canonical model BP , the unique model of cardinality continuum of
almost the same list of axioms as those for B, except that Schanuel’s conjecture has this exception with the
formal analogues ε and τ of e and 2πi being algebraically dependent via the polynomial P . More precisely,
the predimension axiom is replaced by an axiom scheme stating that exp(1) and τ are transcendental, that
P(exp(1), τ )= 0, and the condition that for all tuples ā, trd(ā, exp(ā)/τ, exp(1))− ldimQ(ā/τ, 1)> 0.
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More generally, we can take any finitely generated partial exponential field with standard kernel (that is,
a finitely generated 0-field for the appropriate groups and kernels) as Fbase and do the same construction to
build a quasiminimal exponential field M(Fbase) of size continuum with counterexamples to the Schanuel
property within a finite-dimensional Q-vector space, but with the Schanuel property holding over that
vector space. Each M(Fbase) is unique up to isomorphism as a model of appropriate axioms, just as
B is. One could conjecture that Cexp is isomorphic to one of these. Several people have asked us if it
might be possible to prove Schanuel’s conjecture easily by some method showing that Cexp must be
isomorphic to B, just because B is categorical. Examples such as these show that soft methods which
ignore transcendental number theory and analytic considerations cannot hope to work.

9C. Pseudo-Weierstrass ℘-functions. Let E be an elliptic curve over a number field K0. Choose a
Weierstrass equation for E ,

Y 2 Z = 4X3
− g2 XZ2

− g3 Z3

with g2, g3 ∈ K0, which fixes an embedding of E into projective space P2, with homogeneous coordinates
[X : Y : Z ]. Apart from the point O = [0 : 1 : 0] at infinity, we can identify E with its affine part, given by
solutions in A2 of the equation

y2
− 4x3

− g2x − g3 = 0.

For our construction we take G1 =Ga and G2 = E , and we take O = End(E), so O = Z if E does not
have complex multiplication (CM) and O = Z[τ ] if E has CM by the imaginary quadratic τ . In the CM
case, we assume that τ ∈ K0 (and adjoin it if not). Take ω1 transcendental over K0 and ω2 transcendental
over K0(ω1) if E does not have CM, or ω2 = τω1 if E has CM by τ .

As a field, we define Fbase = K0(Tor(E), ω1, ω2), where Tor(E) means the full torsion group of E ,
which is contained in E(Qalg). We define0(Fbase) to be the graph of a surjective O-module homomorphism
from Qω1 + Qω2 to Tor(E), with kernel 3 = Zω1 + Zω2. While this may not specify Fbase up to
isomorphism, we will see that Serre’s open image theorem allows us to specify Fbase with only a finite
amount of extra information.

In a model M , 0(M) is the graph of a surjective homomorphism expE,M : Ga(M)→ E(M) with
kernel 3. Using our chosen embedding of E into P2, we can identify the components of the function
expE,M with functions ℘,℘ ′ :M→M∪{∞}, where expE,M(a)= [℘(a) :℘

′(a) : 1]. We call the function
℘ a “pseudo-Weierstrass ℘-function”.

Note that in our model M , 3 is definable by the formula expE,M(x)= O . In the non-CM case, Z is
definable by the formula ∀y [y ∈3→ xy ∈3], so Q is also definable as the field of fractions. In the CM
case, these formulas define the rings Z[τ ] and Q[τ ].

Following [Gavrilovich 2008], we will apply the following version of Serre’s open image theorem to
show that only a finite amount of extra information is required to specify Fbase as a 0-field.

Fact 9.2. Let E be an elliptic curve defined over a number field K0. Then there exists an m ∈ N such that
every End(E)-module automorphism of the torsion Tor(E) which fixes the m-torsion E[m] pointwise is
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induced by a field automorphism over K0, that is, the natural homomorphism

Gal(K alg
0 /K0(E[m]))→ AutEnd(E)(Tor(E)/E[m])

is surjective.

Proof. When End(E)∼= Z, this is Serre’s open image theorem [Serre 1972, Introduction (3)]. When E
has complex multiplication, it is the analogous classical open image theorem [Serre 1972, Section 4.5,
Corollaire]. �

Unfortunately the proof does not give an effective bound for m, so given an explicit K0 and E we do
not know how to compute it.

We can now prove the first half of Theorem 1.6, which we restate precisely.

Theorem 9.3. Let E be an elliptic curve over a number field K0 ⊆C. Up to isomorphism, there is exactly
one model of each uncountable cardinality of the following list ℘CFSK,CCP(E) of axioms, and these
models are all quasiminimal.

(1) Full ℘-field: M is an algebraically closed field of characteristic 0, and 0 is the graph of a surjective
homomorphism from Ga(M) to E(M), which we denote by expE,M . We add parameters for the
number field K0.

(2) Kernel and base (non-CM case): There exist ω1, ω2 ∈ Ga(M), Q-linearly independent, such that the
kernel of expE,M is of the form Zω1+Zω2 and, for the number m specified by Fact 9.2, the algebraic
type of the pair (expE,M(ω1/m), expE,M(ω2/m)) ∈ E[m]2 over the parameters K0 is specified.

(2) Kernel and base (CM case): There exists a nonzeroω1∈Ga(M) such that the kernel of expE,M is of the
form Z[τ ]ω1, and for the number m specified by Fact 9.2, the algebraic type of expE,M(ω1/m)∈ E[m]
over the parameters K0 is specified.

(3) Predimension inequality: The predimension function

δ(x̄) := trd(x̄, expE,M(x̄))− ldimkO(x̄)

satisfies δ(x̄)> 0 for all tuples x̄ from M where kO =Q or Q(τ ), as appropriate.

(4) Strong ℘-algebraic closedness: M satisfies the specific case of strong 0-closedness from Theorem 8.2
for this choice of G, O, and Fbase.

(5) Countable closure property: As in Theorem 8.2.

Proof. Again we must show that these axioms are equivalent to those given in Theorem 8.2. As in the
exponential case, we have the absolute form of the predimension inequality here, which is equivalent
to the relative statement over the base together with the assertion that ω1 is transcendental and, in the
non-CM case, that ω2 is transcendental over K0(ω1). It remains to show that the axioms here specify the
atomic diagram of Fbase.

So suppose that M and M ′ are both models of the axioms, and their bases, namely the 0-subfields gener-
ated by the kernels, are Fbase and Fbase

′. We have K0 as a common subfield, and the axioms give us kernel
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generators (ω1, ω2)∈M2 and (ω′1, ω
′

2)∈M ′2 such that (α1, α2) := (expE,M(ω1/m), expE,M(ω2/m)) and
(α′1, α

′

2) := (expE,M ′(ω
′

1/m), expE,M ′(ω
′

2/m)) have the same algebraic type over K0. (In the CM case we
define ω2 = τω1 and ω′2 = τω

′

1 to treat the two cases at the same time.) The points αi ∈ E generate the m-
torsion subgroup E[m] of E . So we can define a field isomorphism σ1 : K0(E[m](M))→ K0(E[m](M ′))
by αi 7→ α′i for i = 1, 2. Then we extend σ1 arbitrarily to a field isomorphism

σ2 : K0(Tor(E)(M))→ K0(Tor(E)(M ′)).

Now define an End(E)-module automorphism of Tor(E)(M) by

expE,M

(
ω1

n1
+
ω2

n2

)
7→ σ−1

2

(
expE,M ′

(
ω′1

n1
+
ω′2

n2

))
for all n1, n2 ∈Z. By construction of σ2 this automorphism fixes E[m] pointwise, so by Fact 9.2 it extends
to a field automorphism σ3 of K0(Tor(E)(M)). So, defining σ4 = σ2 ◦ σ3, we get a field isomorphism
σ4 : K0(Tor(E)(M))→ K0(Tor(E)(M ′)) such that

σ4

(
expE,M

(
ω1

n1
+
ω2

n2

))
= expE,M ′

(
ω′1

n1
+
ω′2

n2

)
for all n1, n2 ∈ Z.

The predimension inequality implies that (ω1, ω2) and (ω′1, ω
′

2) have the same field-theoretic type
over Qalg, so we can extend σ4 to a field isomorphism σ5 by defining σ5(ωi )= ω

′

i for i = 1, 2, and this
σ5 is a 0-field isomorphism Fbase→ Fbase

′ as required. �

Later in Proposition 10.1 we will show that the predimension inequality above is the appropriate form
of Schanuel’s conjecture for the ℘-functions, thereby completing the proof of Theorem 1.6.

9D. Variants on ℘-functions. As in the exponential case, we can do variant constructions by chang-
ing the base field Fbase to a different finitely generated 0-field, to incorporate some counterexamples
to the predimension inequality. We can also do constructions of “pseudo-analytic” homomorphisms
Ga(M)→ E(M) which have no complex-analytic analogue. For example, choose an elliptic curve E
without complex multiplication and take the kernel lattice 3=Zω1+Zω2 for ω1/ω2 ∈R totally real (that
is, algebraic and such that it and all its conjugates are real), for example real quadratic. The construction
still works perfectly well to produce a unique quasiminimal model, but no embedding of 3 into C can be
the kernel of a meromorphic homomorphism because it is dense on the line Rω1.

9E. Exponential maps of simple abelian varieties. This is the algebraic setup corresponding to the
complex example described in Definition 3.1. Take G1 = Gd

a and G2 a simple abelian variety of
dimension d , defined over a number field K0. Take O = End(G2), and suppose these endomorphisms are
also defined over K0. Fix an embedding of K0 into C.

Let ω1, . . . , ω2d ∈Cd be generators of a lattice 3 such that Cd/3 is isomorphic to G2(C) as a complex
O-module manifold.
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We take Fbase to be the field generated by the ωi together with Tor(G2), and 0(Fbase) to be the graph
of an O-module homomorphism from Q3 onto Tor(G2).

For abelian varieties of dimension greater than 1 there is no nonconjectural analogue of Serre’s open
image theorem, so we cannot be more specific about an axiomatization of the atomic diagram of the base.
So we have no improvement on the statement of Theorem 8.2 in this case.

9F. Factorizations via Gm of elliptic exponential maps. The examples so far have all been of the expo-
nential type, case (EXP). Here, we give an example in case (COR). Let G1 =Gm and G2 = E , an elliptic
curve without complex multiplication, defined over a number field K0. Let O = Z.

Let ω be transcendental. As a field, Fbase = K0(ω,Tor(Gm),Tor(E)), and we define 0(Fbase) to be
the graph of a surjective homomorphism from Qω+ Tor(Gm) onto Tor(E) with kernel Zω. Then for
M=M(Fbase), 0(M) is the graph of a surjective homomorphism θM : Gm(M)→ E(M).

In the complex case, the exponential map of E factors through the exponential map of Gm as

Ga(C)
[℘:℘′:1]

//

exp

��

E(C)

Gm(C)

θ

;;

and this pseudo-analytic map θM is an analogue of the complex map θ . Since E ×Gm is not simple, the
methods of this paper do not suffice to build a field F equipped with a map θ and pseudo-exponential maps
of Gm and E together, in which the analogue of the above commutative diagram would hold together with
a suitable predimension inequality and a categoricity theorem for a reasonable axiomatization. However,
it seems likely that this is achievable by combining the methods of this paper with those of [Kirby 2009].

Question 9.4. The main obstacle to stability for the first-order theory of B is the kernel. In this case
the kernel is just a cyclic subgroup of Gm, and it is known that Gm equipped with such a group is
superstable. So it is natural to ask whether the first-order theory of M in this case is actually superstable.
One could even ask if any construction of type (B), say with finite rank kernels, produces a structure with
a superstable first-order theory.

9G. Differential equations. We now give an example of type (DEQ). Let K0 be a countable field of
characteristic 0, let G2 be any simple semiabelian variety of dimension d defined over K0, and let G1=Gd

a .
Let O=End(G2). Let C be a countable algebraically closed field extending K0, and define 0(C)=G(C).

Now consider the amalgamation construction using C as the base but considering only purely 0-
transcendental extensions of C , that is, using the category C0-tr(C) in place of C(C). Theorem 6.9
shows we have a quasiminimal pregeometry structure, and hence a canonical model in each uncountable
cardinality. The models we obtain are quasiminimal and 0cl(∅)= C .

This construction is also considered in [Kirby 2009], where it is shown that the first-order theory of
these models is ℵ0-stable. In that paper it is also shown that if 〈F;+ , · , D〉 is a differentially closed field
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and we define 0(F) to be the solution set to the exponential differential equation for G2, then the reduct
〈F;+ , · , 0〉 is a model of the same first-order theory, and C is the field of constants for the differential
field. The paper [Kirby 2009] also considers the situation with several different groups 0S relating to the
exponential differential equations of different semiabelian varieties S, which do not have to be simple,
but they do have to be defined over the constant field C .

10. Comparison with the analytic models

Zilber conjectured that Cexp ∼= B and it seems reasonable to extend the conjecture to the exponential map
of any simple complex abelian variety, and indeed to other analytic functions such as the function θ from
Section 9F. In each example, axioms (1) and (2) are set up to describe properties we know about these
analytic functions, so verifying the conjecture amounts to verifying the other three axioms. We consider
the progress towards each of the axioms in turn.

10A. The predimension inequalities. For the usual exponential function, the predimension inequality
states that for all tuples a from C, trd(a, ea)> ldimQ(a). This is precisely Schanuel’s conjecture.

In the case of an elliptic curve E defined over a number field, the predimension inequality states that
for all tuples a from C, δE(a)= trd(a, expE,C(a))− ldimkO(a)> 0.

Proposition 10.1. The predimension inequality above for the exponential map of an elliptic curve follows
from the André–Grothendieck conjecture on the periods of 1-motives.

The following proof was explained to us by Juan Diego Caycedo, and follows the proof of a related
statement in Section 3 of [Caycedo and Zilber 2014].

Proof. By Théorème 1.2 of [Bertolin 2002], with s = 0 and n = 1, a special case of André’s conjecture
(building on Grothendieck’s earlier conjecture) states that if j (E) is the j-invariant of E , ω1 and ω2 are
the periods of E , η1 and η2 are the quasiperiods of E , P1, . . . , Pn ∈ E(C), ai is the integral of the first
kind associated with Pi , and di is the integral of the second kind associated with Pi , then

trd(2πi, j (E), ω1, ω2, η1, η2, P, a, d)> 2 ldimkO(a/ω1, ω2)+ 4[kO :Q]−1. (1)

In this case, we have that Pi = [℘(ai ) : ℘
′(ai ) : 1] = expE,C(ai ). Since our E is defined over a number

field, j (E) is algebraic. The Legendre relation states ω1η2 − ω2η1 = 2πi , so j (E) and 2πi do not
contribute to the above inequality.

If we assume that a1, . . . , an ∈C are kO-linearly independent over ω1, ω2, we can discard the integrals
of the second kind to get the bound

trd(ω1, ω2, η1, η2, a, expE,C(a))> ldimkO(a/ω1, ω2)+ 4[kO :Q]−1. (2)

Consider the case where there is no CM, so kO =Q. Throwing away η1 and η2 we get

trd(ω1, ω2, a, expE,C(a))> ldimkO(a/ω1, ω2)+ 2. (3)
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From the case n = 0 we see that trd(ω1, ω2) = 2 and since ω1 and ω2 are Q-linearly independent we
have δE(ω1, ω2)= 0. Then (3) implies that for any a we have δE(a/ω1, ω2)> 0, and putting these two
statements together we deduce that δE(a)> 0.

Where E does have CM (and is defined over a number field), Chudnovsky’s theorem [1980, Theorem 1
and Corollary 2] gives us trd(ω1, ω2, η1, η2)= trd(ω1, π)= 2, so in particular trd(ω1)= 1. We also have
kO =Q(τ ) with [kO :Q] = 2, and ω2 = ω1τ , so we can discard ω2, η1 and η2 from (2) to obtain

trd(ω1, a, expE,C(a))> ldimkO(a/ω1)+ 1. (4)

The same argument now shows that δE(a)> 0 for any tuple a. �

Proof of Theorem 1.6. Theorem 9.3 shows that the axioms ℘CFSK,CCP(E) are uncountably categorical
and that every model is quasiminimal. The analytic structure C℘ is a model of the first two axioms by
construction. Proposition 10.1 shows that the predimension inequality given in axiom (3) is the appropriate
analogue of Schanuel’s conjecture for ℘-functions. Axiom (5), the countable closure property, was proved
in this case in [Jones et al. 2016]. �

We will give another proof of the countable closure property in Theorem 1.8 in this paper.
Our understanding of the periods conjecture uses Bertolin’s translation to remove the motives, which

she did only in the cases of elliptic curves and Gm. For abelian varieties of dimension greater than 1
we suspect that the predimension inequality axiom again follows from the André–Grothendieck periods
conjecture, but there are more complications because the Mumford–Tate group plays a role and so we
have not been able to verify it.

10B. Strong 0-closedness. In the case of the usual exponentiation for Gm, Mantova [2016] currently
has the best result towards proving the strong 0-closedness in the complex case. They only consider the
case of a variety V ⊆ Gn where n = 1. A free and rotund V ⊆ G1 is just the solution set of an irreducible
polynomial p(x, y) ∈ C[x, y] which depends on both x and y, that is, the partial derivatives ∂p/∂x and
∂p/∂y are both nonzero.

Fact 10.2. Suppose p(x, y) ∈ C[x, y] depends on both x and y. Then there are infinitely many points
x ∈ C such that p(x, ex) = 0. Furthermore, suppose Schanuel’s conjecture is true and let a be a finite
tuple from C. Then there is x ∈ C such that (x, ex) is a generic zero of p over a.

The observation that there are infinitely many solutions, and the whole statement in the case that p
is defined over Qalg is due to Marker [2006]. The general case stated above is due to Mantova [2016,
Theorem 1.2].

10C. 0-closedness. In Section 11 we will see that for some purposes strong 0-closedness can be weak-
ened to 0-closedness.

Definition 10.3. A full 0-field F is 0-closed if for every irreducible subvariety V of Gn defined over F
and of dimension dn which is free and rotund, V (F)∩0(F)n is Zariski-dense in V .
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Using the classical Rabinovich trick, one can easily show this axiom scheme is equivalent to the
existence of a single point β ∈ V (F) ∩ 0(F)n , for every such V . For the usual exponentiation, 0-
closedness is known as exponential-algebraic closedness. In this direction, Brownawell and Masser [2017,
Proposition 2] have the following.

Fact 10.4. If V ⊆ (Ga×Gm)
n(C) is an algebraic subvariety of dimension n which projects dominantly to

Gn
a then there is a ∈ Cn such that (a, ea) ∈ V .

In this case V can be taken free without loss of generality, and the condition of projecting dominantly
to Gn

a implies rotundity. However it is much stronger than rotundity. Another exposition of this theorem
is given in [D’Aquino et al. 2018].

10D. The pregeometry and the countable closure property. To compare the pregeometry of our con-
structions such as B with the complex analytic models such as Cexp we have to define the appropriate
pregeometry on the complex field. Given a 0-field F , we defined a 0-subfield A of F to be 0-closed
in F if whenever A ⊆ B ⊆ F with δ(B/A)6 0 then B ⊆ A. One can construct 0-fields with no proper
0-closed subfields. Fortunately we are able to show unconditionally that there is a countable 0-subfield
of C which is 0-closed in C.

For Cexp, this was done in [Kirby 2010a] by adapting the proof of Ax’s differential forms version of
Schanuel’s conjecture. A similar proof was given in [Jones et al. 2016] for elliptic curves. The same
method ought to work for any semiabelian varieties, but here we give a different approach, applying the
main result of [Ax 1972] directly to generalize a theorem of Zilber in the exponential case [Zilber 2005b,
Theorem 5.12].

Let C0 be an analytic 0-field, which we recall means a 0-field from Definition 3.1 or 3.2. Then 0
is a complex Lie subgroup of G(C), and L0 ≤ LG(C) is the graph of a C-linear isomorphism between
LG1(C) and LG2(C). Thus 0n is a complex Lie subgroup of Gn(C), so has a complex topology. It might
not be a closed subgroup, so the topology might not be the subspace topology.

Definition 10.5. Given an algebraic subvariety V ⊆ Gn , write V isol for the set of all isolated points of
V (C)∩0n with respect to the complex topology on 0n . For any subset A⊆C we define 0cl′(A) to be the
subfield of C generated by the union of all V isol, where V ranges over the algebraic subvarieties V ⊆ Gn

which are defined over K0(A). We consider 0cl′(A) as a 0-subfield of C by defining 0(0cl′(A)) :=
0 ∩G(0cl′(A)).

Lemma 10.6. 0cl′ is a closure operator on C and for any A ⊆ C, 0cl′(A) is a full 0-subfield of C of
cardinality |A| +ℵ0.

Proof. For transitivity, suppose x is a finite tuple from 0cl′(A) and y ∈ 0cl′(Ax). We may reduce to the
case that α ∈W (C)∩0n is isolated and the tuple x lists the coordinates of α, and β ∈ V (C)∩0m is isolated
and y is a coordinate of β, with W defined over K0(A) and V over K0(Ax). Then V can be written as a
fibre V ′(α) of a subvariety V ′ ⊆ Gm+n over K0(A) projecting to W ⊆ Gn . Then βα ∈ V ′ ∩0m+n is an
isolated point, so β ∈ 0cl′(A).
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Now let A ⊆ C, and set A′ := aclC(K0(A)). Let α0 ∈ G1(A′), let V0 ⊆ G1 be the set of its conjugates,
i.e., the 0-dimensional locus of α0 over K0(A), and let V := V0×G2 ⊆ G. Then V ∩0 is nonempty,
since π1 : 0� G1(C) is surjective, and it consists of isolated points since ker(π1) does. This shows that
A′ ⊆ 0cl′(A), and hence in particular that 0cl′ is a closure operator. Furthermore, this argument shows
that 0cl′(A) is full.

Finally, for the cardinality calculation, note there are only (|A| + ℵ0)-many algebraic varieties V
defined over A and for each there can be only countably many isolated points in V (C)∩0n . �

Proposition 10.7. For an analytic 0-field C0, the closure operators 0cl and 0cl′ are the same. In
particular, 0cl′ is a pregeometry on C.

To prove this we will use a lemma and Ax’s theorem on the transversality of intersections between
analytic subgroups and algebraic varieties.

Lemma 10.8. If H ≤ Gn is a connected algebraic subgroup which is free then the analytic subgroup
H(C)+0n is equal to Gn(C).

Proof. Since G2 is simple and not isogenous to G1, every algebraic subgroup of Gn is of the form H1×H2

with Hi a subgroup of Gn
i , and since H is free it is G2-free. Since O = End(G2) it follows that H is of

the form H1×Gn
2 . Now since π1(0

n)= Gn
1(C) we see H(C)+0n

= Gn(C). �

Fact 10.9 [Ax 1972, Corollary 1]. Suppose that G is a complex algebraic group, A is a connected analytic
subgroup of G, U is open in G, and X is an irreducible analytic subvariety of U such that X ⊆ A, XZar is
the Zariski closure of X , and H is the smallest algebraic subgroup of G containing X. Then

dim(H + A)6 dim XZar
+ dim A− dim X.

Proof of Proposition 10.7. Suppose that A⊆C is 0cl-closed. Let α ∈V isol for some V defined over K0(A).
Replacing α with a subtuple if necessary, we may assume α is kO-linearly independent over 0(A). Then
α is a smooth point of V and of 0n , so by considering tangent spaces we see that trd(α/A)6 dim V 6 nd ,
and hence δ(α/A)6 0. So α ∈ 0n(A) and hence A is 0cl′-closed.

Now suppose A is 0cl′-closed, and that A ⊆ B ⊆ C is a proper finitely generated 0-field extension
in C0 . Let b ∈ 0n(B) be a basis for the extension and let V = Loc(b/A). We will show that δ(b/A) > 0.

Let X be an irreducible analytic component containing b of the analytic subset V (C) ∩ 0n of the
complex Lie group 0n . Since A is 0cl′-closed and b /∈ A, dim X > 1.

We claim that X has some point in A. To see this, let e be a smooth point of X , and take regular local
coordinates ηi at e in Gn such that X is locally the graph of a function from the first dim X coordinates
to the rest. A is algebraically closed as a field, so is topologically dense in C. So there is a point a ∈ X
close to e such that the first dim X coordinates are in A. Let W be the intersection of V with ηi = ai

for i = 1, . . . , dim X . Then W is defined over A and a is an isolated point of W (C)∩0n; hence a is in
Gn(A) as required.

Suppose XZar is not G1-free, so say (x, y)∈ XZar implies a nontrivial O-linear equation
∑n

j=1 r j x j = c.
Then this equation holds for π1(a), so c ∈ G1(A). But then since b ∈ X , already (x, y) ∈ V implies this
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equation, so V is not G1-free, a contradiction since V is the locus of a basis over A. The same proof
shows that XZar is G2-free, so it is free.

Let H be the algebraic subgroup of Gn generated by XZar(C)− b. Then XZar(C)− b is free, so H is
free. So by Lemma 10.8, the subgroup H +0n is equal to Gn .

Applying Fact 10.9 we get

dim(H +0n)6 dim(XZar
− b)+ dim0n

− dim(X − b),

which gives
2dn 6 dim XZar

+ dn− dim X,

but dim X > 0 and XZar
⊆ V so we deduce that dim V > nd. Thus δ(b/A) > 0. So A is 0cl-closed, as

required. �

Proof of Theorem 1.8. Proposition 10.7 shows that 0cl= 0cl′, and so Lemma 10.6 shows that 0cl has
the countable closure property. �

Remark 10.10. In [Kirby 2010a], an algebraic version of the isolated points closure 0cl′ was given,
using the fact that a solution to a system of 2n equations of analytic functions in 2n variables is isolated
if and only if a certain Jacobian matrix does not vanish at the point. So this gives a definition of a
closure operator ecl which makes sense on any exponential field, and it was shown in [Kirby 2010a]
that ecl-closed sets are strong and agree with the 0cl-closed sets as we have defined them here, and in
particular that ecl is always a pregeometry. This algebraic definition of the closure operator was suggested
by Macintyre [1996], although it had previously been used in the real and complex cases by Khovanskii
and by Wilkie.

11. Generically 0-closed fields

In this section we consider 0-fields which may not be strongly 0-closed but are generically strongly
0-closed. Using the variant of the amalgamation construction from Section 5D, we show that such
0-fields are also quasiminimal and that the strong part of strong 0-closedness becomes redundant in this
generic case.

Let K be a full 0-field. Recall from Section 5D that an extension K ⊆ A of K is purely 0-transcendental
if and only if KCcl A if and only if for all tuples b from 0(A), either δ(b/K ) > 0 or b⊆0(K ). Clearly an
extension A of K is purely 0-transcendental if and only if all of its finitely generated subextensions are.

11A. Generic 0-closedness. Recall from Theorem 8.2 that a full 0-field F is strongly 0-closed if for
every irreducible subvariety V of Gn defined over F and of dimension dn which is free and rotund for
the O-module structure on G, and every finite tuple a from 0(F), there is b ∈ V (F)∩0(F)n such that b
is kO-linearly independent over 0(Fbase)∪ a.

Assuming the Schanuel property, that is, that FbaseC F , we can extend the tuple a to a finite tuple
a′ such that A := 〈Fbase, a′〉C F and V is defined over A. Then taking b ∈ V (F) ∩ 0(F)n which is
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kO-linearly independent over 0(Fbase)∪ a′, that is, over 0(A), we see that

06 δ(b/A)= trd(b/A)− d ldimkO(b/0(A))= trd(b/A)− dn.

So trd(b/A)> dn, but b ∈ V , V is defined over A, and dim(V )= dn. So b is generic in V over A, and
hence over Fbase(a). So it follows that in the presence of the Schanuel property, strong 0-closedness is
equivalent to the condition that for any V and a as above, there is b ∈ V (F)∩0(F)n which is generic in
V over Fbase(a).

Recall also the weaker property of 0-closedness from Definition 10.3: F is 0-closed if for every
irreducible subvariety V of Gn defined over F and of dimension dn which is free and rotund, V (F)∩0(F)n

is Zariski-dense in V .
For the concept of generic 0-closedness with respect to a subfield K , we need to consider extensions

of the form K Ccl AC B where A and B are finitely generated as extensions of the full 0-field K . Say α
is a basis of A over K and β is a basis of B over A, and that V := Loc(β/A) and W := Loc(α, β/K ).
We also assume that Afull

∧ B = A. Then by Corollary 7.4 both V and W are free, V is rotund, and W is
strongly rotund.

Definition 11.1 (generic 0-closedness). Let F be a full 0-field and K Ccl F , K 6= F . Suppose V ⊆ Gn

is free and rotund, irreducible, and of dimension dn. Suppose also that there is α ∈ 0(F)r , kO-linearly
independent over 0(K ) such that V is defined over K (α), and such that for β ∈ V , generic over K (α),
the variety W := Loc(α, β/K ) is strongly rotund.

We say that F is generically 0-closed over K (G0C over K ) if, for all such V , we have that
V (F)∩0n(F) is Zariski-dense in V .

F is generically strongly 0-closed over K (GS0C over K ) if, whenever V and α are as above, there is
γ ∈ V (F)∩0n(F), kO-linearly independent over 0(K )∪α.

We say F is G0C or GS0C without reference to K to mean G(S)0C over 0clF (∅).

Proposition 11.2. Suppose F is a full 0-field and K Ccl F , K 6= F. Then F is GSΓ C over K if and only
if F is ℵ0-saturated for 0-algebraic extensions which are purely 0-transcendental over K .

Proof. This is essentially the same as the proof of Lemma 8.3. �

It is immediate from the definitions that GS0C over K implies G0C over K . In [Kirby and Zilber 2014]
it was shown that if the conjecture on intersections with tori (CIT, now also known as the multiplicative
case of the Zilber–Pink conjecture) is true, then any exponential field satisfying the Schanuel property
which is exponentially-algebraically closed is also strongly exponentially algebraically closed. We use
similar ideas here to prove that G0C over K implies GS0C over K . The Schanuel property is replaced
by the assumption that K is 0-closed in F , and instead of the Zilber–Pink conjecture it is enough to use
the weak version, which is a theorem.

Given any variety S and subvarieties W, V ⊆ S, the typical dimension of W∩V is dim W+dim V−dim S.
If X is an irreducible component of W ∩ V it is said to have atypical dimension (for the intersection) if
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dim X > dim W + dim V − dim S.

We also say that X is an atypical component of the intersection. For the multiplicative group, the weak
Zilber–Pink theorem is known as weak CIT and is due to Zilber [2002, Corollary 3]. The semiabelian
form of the statement is the following theorem [Kirby 2009, Theorem 4.6].

Fact 11.3 (“semiabelian weak Zilber–Pink”, basic version). Let S be a semiabelian variety, defined over
an algebraically closed field of characteristic 0. Let (Wb)b∈B be a constructible family of constructible
subsets of S. That is, B is a constructible set and W is a constructible subset of B × S, with Wb the
obvious projection of a fibre. Then there is a finite set HW of connected proper algebraic subgroups of
S such that for any b ∈ B and any coset c+J of any connected algebraic subgroup J of S, if X is an
irreducible component of Wb ∩ c+J of atypical dimension with c ∈ X then there is H ∈ HW such that
X ⊆ c+H.

We also need a version for subvarieties not of S but of varieties of the form U × S, which is sometimes
called a “horizontal” family of semiabelian varieties.

Theorem 11.4 (“horizontal semiabelian weak Zilber–Pink”). Let S be a semiabelian variety and let U be
any variety. Let (Wb)b∈B be a constructible family of constructible subsets of U × S. Then there is a finite
set HW of connected proper algebraic subgroups of S such that for any b ∈ B and any coset c+J of any
connected algebraic subgroup J of S, if X is an irreducible component of Wb ∩ (U × c+J ) of atypical
dimension with c ∈ X then there is H ∈HW such that X ⊆ U × c+H. Furthermore, H can be chosen
such that we have

dim X 6 dim(Wb ∩ (U × c+H))+ dim(H ∩ J )− dim H. (∗)

Proof. First suppose U is a point, so U × S ∼= S. The main part of the statement is then Fact 11.3. For the
“furthermore” part, suppose (∗) does not hold for the H we chose from HW . Then rename HW as H1

W . We
give an inductive argument to find a new HW which suffices. We have the irreducible X as a component
of the intersection (Wb∩c+H)∩c+(H ∩ J ), and the failure of (∗) says that X is atypical as a component
of this intersection considered as an intersection of subvarieties of c+H . Translating everything by c,
we get that X−c is an atypical component of the intersection (Wb−c ∩ H)∩ (H ∩ J ) inside H . Now
apply Fact 11.3 again with H in place of S to get a proper connected algebraic subgroup H ′ of H from
the finite set H2

W :=H1
W ∪

⋃
H∈H1

W
H(Wb−c∩H)b,c such that X ⊆ c+H ′. If necessary we can iterate this

construction and since dim H ′ < dim H it stops after finitely many steps, and the HW we eventually find
is still finite.

Now consider arbitrary U . Suppose first that all fibres of the coordinate projection π :Wb→ S have
the same dimension k, constant with respect to b. Take HW to be the finite set H(π(Wb))b∈B given by this
theorem with U a point. We will see that this works as required.

Indeed, let c+J be a coset in S, let X be an atypical component of Wb ∩ (U × c+J ), let Y be any
irreducible component of π(Wb)∩ c+J containing π(X), and let H ∈ H(π(Wb))b∈B be as given by the
theorem.
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Then by considering dimensions of fibres, we have

dim X = dim(π(X))+ k

6 dim Y + k

6 dim(π(Wb)∩ c+H)+ dim(H ∩ J )− dim H + k

= dim(Wb ∩ (U × c+H))+ dim(H ∩ J )− dim H.

Now for a general family W ⊆ B×U × S, write π :U × S→ S for the projection and define

W k
= {(b, u, s) ∈W | dim(Wb ∩π

−1(s))= k}

for each k = 0, . . . , dim W. By the definability of dimension, these W k are all constructible subsets
of W, partitioning it, and each W k satisfies the above constancy condition on fibres. For any c+J , any
component X of Wb ∩ (U × c+J ) contains a dense constructible subset which lies in some piece W k

b . So
we can take HW to be

⋃
k HW k . �

Now we can prove that GS0C and G0C are equivalent.

Proposition 11.5. Suppose F is a full 0-field and K Ccl F , K 6= F. Then F is GSΓ C over K if and only
if it is GΓC over K .

Proof. As remarked earlier, it is immediate that GS0C over K implies G0C over K . So assume F is
G0C over K . Let V , α, β, and W be as given in Definition 11.1. Let Vα,dep be the set of points of
V (F) which are kO-linearly dependent over 0(K )∪α. We shall find a proper Zariski-closed subset of V
containing Vα,dep.

We first work in case (EXP), so G2 is a simple semiabelian variety of dimension d and G1 = Gd
a ,

which we identify with the Lie algebra LG2 of G2.
For a d(r + n)-square matrix M and a d(r + n)-column vector c, let 3M,c ⊆ G

d(r+n)
a be given by

x ∈ 3M,c if and only if Mx = c. So as M and c vary, we get the family of all possible affine linear
subspaces. Let UM,c =W ∩ (3M,c×Gr+n

2 ).
Now suppose ξ ∈ Vα,dep∩0(F)n . Let ζ = (α, ξ)∈0(F)r+n . We also write ζ = (ζ1, ζ2)∈Gr+n

1 ×Gr+n
2 .

Let J be the smallest algebraic subgroup of Gr+n
2 such that ζ2 lies in a K -coset of J , say ζ2 ∈ c′2+ J

with c′2 ∈ G2(K )r+n . Since ξ ∈ Vα,dep, we see that J is a proper algebraic subgroup of Gr+n
2 .

By Lemma 2.1, there is M ∈Matr+n(O) such that J = (ker(M))o and LJ = ker(M). Since K is a full
0-field, there is c′1 ∈Gr+n

1 (K ) such that c′ := (c′1, c′2)∈0(K )
r+n . Then M(ζ−c′)∈0(K )r+n since K ≤ F

preserves the kernels. Now 0(K ) is a kO-subspace of 0(F), so in particular is existentially closed as an O-
submodule, so there exists c′′∈0(K )r+n such that Mc′′=M(ζ−c′). Set c= (c1, c2) := c′+c′′∈0(K )r+n ,
so M(ζ − c) = 0. Then ζ − c is divisible in ker(M), since 0(F) is divisible and torsion-free, so
ζ − c ∈ LJ × J .

Now we have ζ ∈ UM,c1 ∩ (G
r+n
1 × c2+J ). Let X be the irreducible component of this intersection

containing ζ .
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We next show that X has atypical dimension for the intersection. From the definition of the predimension
δ and its relationship with 0dim we have

dim X > trd(ζ/K )= δ(ζ/K )+ d ldimO(ζ/0(K ))

= δ(ζ/K )+ dim J

> 0dimF (ζ/K )+ dim J,

dim X > 0dimF (α/K )+ dim J. (5)

Since α ∈ 0(F)r was chosen kO-linearly independent over 0(K ) and such that 〈K , α〉C F , we have

0dimF (α/K )= δ(α/K )= trd(α/K )− d ldimO(α/0(K ))= trd(α/K )− dr. (6)

Since W = Loc(α, β/K ), and V = Loc(β/K (α)) has dimension dn, using (6) we have

dim W = dim V + trd(α/K )= d(r + n)+0dimF (α/K ). (7)

From (5) and (7),
dim X > dim W + dim J − d(r + n)

= dim W + (dim J + d(r + n))− 2d(r + n)

= dim W + dim(Gr+n
1 × c2+J )− dim(Gr+n),

but W is free, so dim UM,c1 < dim W and so

dim X > dim UM,c1 + dim(Gr+n
1 × c2+J )− dim(Gr+n). (8)

So X has atypical dimension.
Applying Theorem 11.4, there is a proper algebraic subgroup H of Gr+n

2 from the finite set HU such
that X ⊆ Gr+n

1 × c+H . We have ζ ∈ X , so ζ2 ∈ c+H . J was chosen as the smallest algebraic subgroup
of S such that ζ2 lies in a K -coset of J , so J ⊆ H and hence H ∩ J = J . So, from the “furthermore”
clause of Theorem 11.4 we have

dim X 6 dim(UM,c1 ∩ (G
r+n
1 × c2+J ))+ dim J − dim H. (9)

We write T J = LJ × J and TH = LH × H , thinking of them as the tangent bundles. Then we have

UM,c1 ∩ (G
r+n
1 × c2+J )=W ∩ (c1+LJ ×Gr+n

2 )∩ (Gr+n
1 × c2+J )

=W ∩ c+T J

=W ∩ ζ+T J

⊆W ∩ ζ+TH,

so
dim(UM,c1 ∩ (G

r+n
1 × c2+J ))6 dim(W ∩ ζ+TH). (10)
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Combining (9), (10), and (5) we get

0dimF (α/K )+ dim J 6 dim(W ∩ ζ+TH)+ dim J − dim H,

0dimF (α/K )+ dim H 6 dim(W ∩ ζ+TH). (11)

By Lemma 2.1, there is M ∈Matr+n(O) such that H = ker(M)o and LH = ker(M), so TH = ker(M)o

for the action of O on G. So M : Gr+n
→ Gr+n factors as Gr+n � Gr+n/TH → Gr+n , where the first

homomorphism is the quotient map, and the kernel of the second homomorphism is the finite group
ker(M)/ ker(M)o. Now let θH :W �W/TH be the restriction of the quotient map Gr+n � Gr+n/TH .
Then dim(W/TH)= dim(M ·W ). Now H is a proper subgroup of Gr+n

2 , and dim(H)= dim(ker(M))=
d(r + n− rk M), and so M is nonzero. Then since W is strongly rotund,

dim(W/TH)= dim(M ·W ) > d rk M = d(r + n)− dim H.

So using the fibre dimension theorem, the dimension of a typical fibre of θH is

dim(typical fibre)= dim W − dim(W/TH)

< (d(r + n)+0dimF (α/K ))− (d(r + n)− dim H)

= 0dimF (α/K )+ dim H. (12)

The fibre of θH in which ζ lies is W ∩ ζ+TH , so (11) says exactly that ζ lies in a fibre of θH of atypical
dimension. By the fibre dimension theorem, there is a proper Zariski-closed subset WH of W, defined
over K , containing all the fibres of θH of atypical dimension.

Since α is generic in the projection of W, and hence of WH , the subset VH,α := {y ∈ V | (α, y) ∈WH }

is proper Zariski-closed in V . Let Vα :=
⋃

H∈HW
HH,α. Then Vα is also a proper Zariski-closed subset

of V, and we have shown that Vα,dep ⊆ Vα.
So since F is G0C over K , there is a point β ∈ 0(F)n ∩ V (F)r Vα(F). Since β /∈ Vα,dep, β is

kO-linearly independent over 0(K )∪α. Hence F is GS0C over K as required.
The proof for case (COR) is very similar, but instead of ζ ∈ (c1+LJ )× (c2+J ) we have subgroups

J1 ⊆ Gr+n
1 and J2 ⊆ Gr+n

2 which correspond to each other in the sense that they are connected com-
ponents of solutions to the same system of O-linear equations. So we get ζ ∈ (c1+J1)× (c2+J2) with
dim J1= dim J2= ldimkO(ζ/0(K )) < r+n. Then a similar calculation shows that ζ lies in a component
of the intersection W ∩ c+(J1× J2) of atypical dimension, and we apply the weak Zilber–Pink for the
semiabelian variety Gr+n and proceed as in case (EXP). �

11B. Sufficient conditions for quasiminimality.

Theorem 11.6. Suppose F is a full 0-field with the countable closure property which is generically
0-closed over some countable K Ccl F. Then F is quasiminimal.

Proof. We take Fbase = K and consider the category C0-tr(K ). By Theorem 5.21 it is an amalgamation
category so we have a Fraïssé limit M0-tr(K ). By Theorem 6.9, M0-tr(K ) is a quasiminimal pregeometry
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structure, so defines a quasiminimal class K(M0-tr(K )). Substituting Proposition 11.2 for Lemma 8.3, the
proof of Theorem 8.2 shows that the models in this class are precisely the full 0-fields which are purely
0-transcendental extensions of K , are ℵ0-saturated with respect to the 0-algebraic extensions which are
purely 0-transcendental over K , and satisfy the countable closure property. Hence by Propositions 11.2
and 11.5, F is in K(M0-tr(K )) and hence is quasiminimal. �

If F is the complex field, in practice it might be difficult or impossible to identify a countable 0-closed
K and prove directly that F is generically 0-closed over K . Thus the following corollaries may be more
useful.

Corollary 11.7. Suppose F is a full 0-field with the countable closure property which is 0-closed. Then
F is quasiminimal.

Proof. Clearly 0-closedness implies generic 0-closedness. �

Since Cexp has the countable closure property by Theorem 1.8, this completes the proof of Theorem 1.5.
We can do slightly better.

Corollary 11.8. Suppose F is a full 0-field with the countable closure property which is almost 0-closed.
That is, for all but countably many free and rotund, irreducible subvarieties V ⊆ Gn of dimension dn,
0n(F)∩ V (F) is Zariski-dense in V . Then F is quasiminimal.

Proof. Suppose F is almost 0-closed, and take K1 to be a countable subfield of F over which all the
countably many exceptional varieties V are defined. Take K =0clF (K1). Then F is generically 0-closed
over K . �

Overall we have proved the following generalization of Theorem 1.5, which applies to the exponential
function, the Weierstrass ℘-functions, the exponential maps of simple abelian varieties, and more.

Theorem 11.9. Let C0 be an analytic 0-field. If C0 is almost 0-closed then it is quasiminimal.

Proof. Combine Corollary 11.8 with Theorem 1.8, which gives CCP. �

Since being 0-closed implies being almost 0-closed, Theorem 1.9 follows. Theorem 1.5 is a special
case.

Remark 11.10. We do not know if almost 0-closedness is a necessary condition for quasiminimality.
For example in the exponential case, is it possible to build an uncountable quasiminimal exponential
field F with a definable family (Vp)p∈P of rotund and free varieties such that for only countably many p
(perhaps none) there is (x̄, ex̄) ∈ Vp(F)?
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On faithfulness of the lifting
for Hopf algebras and fusion categories

Pavel Etingof

To Alexander Kirillov, Jr. on his 50th birthday with admiration

We use a version of Haboush’s theorem over complete local Noetherian rings to prove faithfulness of the
lifting for semisimple cosemisimple Hopf algebras and separable (braided, symmetric) fusion categories
from characteristic p to characteristic zero, showing that, moreover, any isomorphism between such
structures can be reduced modulo p. This fills a gap in our earlier work. We also show that lifting
of semisimple cosemisimple Hopf algebras is a fully faithful functor, and prove that lifting induces
an isomorphism on Picard and Brauer–Picard groups. Finally, we show that a subcategory or quotient
category of a separable multifusion category is separable (resolving an open question from our earlier
work), and use this to show that certain classes of tensor functors between lifts of separable categories to
characteristic zero can be reduced modulo p.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and let W (k) be its ring of Witt vectors,
I = (p)⊂W (k) the maximal ideal, K the fraction field of W (k), and K its algebraic closure. In [Etingof
and Gelaki 1998] it is shown that any semisimple cosemisimple Hopf algebra over k has a unique (up to
an isomorphism) lift over W (k). In [Etingof et al. 2005, Section 9], this result is extended to separable
(braided, symmetric) fusion categories, i.e., those of nonzero global dimension.1

Moreover, in [Etingof et al. 2005, Section 9.3], it is claimed that lifting is faithful, i.e., if liftings of
two Hopf algebras are isomorphic over K then these Hopf algebras are isomorphic, and similarly for
categories (Theorem 9.6, Corollary 9.10). This is used in a number of subsequent papers.

However, it recently came to my attention that the proofs given in that paper for those faithfulness
results are incomplete. Namely, the proof of Lemma 9.7 (used in the proof of Theorem 9.6) says that by
Nakayama’s lemma, it suffices to check the finiteness of a certain morphism φ of schemes over W (k)
modulo the maximal ideal I (i.e., over k). But it is, in fact, not clear how this follows from Nakayama’s
lemma. Namely, finiteness over k does imply finiteness over W (k)/I N for any N ≥ 1, but this is not

MSC2010: 16T05.
Keywords: lifting, Hopf algebra, tensor category, separable.

1In [Etingof et al. 2005], separable fusion categories are called nondegenerate. But this terminology is confusing since for
braided fusion categories, this term is also used in an entirely different sense: to refer to categories with trivial Müger center. For
this reason, we adopt a better term “separable” introduced in [Douglas et al. 2013].
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sufficient to conclude finiteness over W (k).2 In fact, the reductivity of the group of twists must be used
in the proof; see Remark 2.12.

The main goal of this paper is therefore to provide complete proofs of the results on faithfulness of
the lifting. This may be done by using results on geometric reductivity and power reductivity of reductive
groups over rings; see [Seshadri 1977; Franjou and van der Kallen 2010]. We also prove results on integral-
ity of stabilizers of liftings, and show that lifting is a fully faithful functor for semisimple cosemisimple
Hopf algebras, and defines an isomorphism of Brauer–Picard and Picard groups of (braided) separable
fusion categories. Finally, we prove that subcategories and quotient categories of separable categories
are separable (resolving a question from [Etingof et al. 2005, Section 9.4]), and use this to prove that
certain types of tensor functors between liftings of separable categories descend to positive characteristic.

The paper is organized as follows. In Section 2 we describe algebro-geometric preliminaries, i.e., the
results on geometric reductivity and power reductivity and their applications. In Section 3 we apply these
results to proving faithfulness of the lifting and integrality of stabilizers for semisimple cosemisimple
Hopf algebras and prove that lifting of such Hopf algebras is a fully faithful functor. In Section 4 we
generalize the results of Section 3 to tensor categories and tensor functors, thus providing complete proofs
of the results of [Etingof et al. 2005, Section 9.3] and [Etingof and Gelaki 2000, Theorem 6.1]. Also,
we apply these results to show that the Brauer–Picard and Picard groups of (braided) separable fusion
categories are preserved by lifting. Finally, in Section 5 we show that a subcategory and quotient category
of a separable category is separable, and apply it to prove a descent result for tensor functors between
liftings of separable categories.

2. Auxiliary results from algebraic geometry

In this section we collect some auxiliary results from algebraic geometry that we will use below.

2A. Power reductivity. Let k be an algebraically closed field of characteristic p > 0 and let W (k) be its
ring of Witt vectors, I = (p)⊂W (k) the maximal ideal, K the fraction field of W (k) and K its algebraic
closure.

If X is a scheme over a ring R and R′ is a commutative R-algebra, then X R′ will denote the base
change of X from R to R′.

By a reductive group over a commutative ring k we will mean a smooth affine group scheme with
connected fibers, as in [SGA 3 III 1970]. Such a group G is split when it contains a split fiberwise maximal
k-torus as a closed k-subgroup. In our applications, G will always be split, and, in fact, will be a quotient
of a product of general linear groups by a central torus.

We start with restating a result from [Franjou and van der Kallen 2010], which is a combination of
their Proposition 6 and Theorem 12.

2E.g., K is not module-finite over W (k), even though it becomes module-finite (in fact, zero) upon reduction modulo I N, and
is also finite over K.
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We call a ring homomorphism ψ : B→ C power-surjective if for any element c ∈ C, some positive
integer power cN belongs to Imψ .

Proposition 2.1. Let k be a commutative Noetherian ring and let G be a split reductive group over k.
Let A be a finitely generated commutative k-algebra on which G acts rationally through algebra auto-
morphisms. If J is a G-invariant ideal in A, then the map induced by reducing mod J : AG

→ (A/J )G is
power-surjective.

In [Franjou and van der Kallen 2010] this property of G is called power reductivity. It is not assumed
there that k is Noetherian, but we will use Proposition 2.1 only for Noetherian (in fact, complete local)
rings k.

Remark 2.2. It was explained to us by W. van der Kallen that power reductivity of G (i.e., Proposition 2.1)
over complete local Noetherian rings k follows from [Thomason 1987, Theorem 3.8]. Namely, from this
theorem one easily gets property (INT) of [Franjou and van der Kallen 2010] and then power reductivity.
This is discussed in Section 2.4 of that paper and in Theorem 2.2 of [van der Kallen 2007]. (The latter
paper assumes a base field, but this assumption is not essential.) Compare also with [Grosshans 1997,
Theorem 16.9] and [Springer 1977, Lemma 2.4.7].

2B. Faithfulness of lifting for reductive group actions. We will need the following proposition, which
is sufficient to justify the main results of [Etingof et al. 2005, Section 9.3].

Proposition 2.3. Let V be a rational representation of a split reductive group G on an affine space
defined over W (k). Let v1, v2 ∈ V (W (k)). Assume that the G-orbits of the reductions v0

1, v
0
2 ∈ V (k) are

closed and disjoint. Then v1, v2 are not conjugate under G(K ).

Proof. This follows from [Seshadri 1977, Theorem 3, part (ii)] for R =W (k), X = V and Y = V/G :=
SpecO(V )G . Namely, this theorem says that v0

1, v
0
2 are distinct points of Y (k). This implies that there

exists a G-invariant polynomial f ∈O(V ) such that f (v0
1) 6= f (v0

2) in k. But f (v0
i ) are the reductions of

f (vi ) mod I, so f (v1) 6= f (v2) in W (k). But then v1, v2 cannot be conjugate under G(K ).
Here is another proof, using Proposition 2.1, for k=W (k), A=O(V ) and J = IO(V ). Proposition 2.1

says that for any f ∈O(Vk)
G(k), some power f N of f lifts to a G-invariant h ∈O(V ). Now, by Haboush’s

theorem [1975], we can choose f so that f (v0
1)= 0 and f (v0

2)= 1. Then h(v1) ∈ I and h(v2) ∈ 1+ I,
hence h(v1) 6= h(v2), and v1, v2 cannot be conjugate under G(K ). �

Remark 2.4. The closedness assumption for G-orbits in Proposition 2.3 cannot be removed. For instance,
let G =Gm and V = A1 be the tautological representation of G. Take v1 = p and v2 = 1. Then v0

1 = 0
and v0

2 = 1, so their G-orbits are disjoint. On the other hand, v1 and v2 are conjugate by the element
p ∈ G. Note that the orbit of v0

2 is A1
\ {0}, hence not closed.

The reductivity assumption cannot be removed, either. Namely, let G =Ga be the group of translations
x 7→ x + b, and V be the 2-dimensional representation of G on linear (not necessarily homogeneous)
functions of x . Let v1 = px and v2 = 1+ px . Then v0

1 = 0, v0
2 = 1. These are G-invariant vectors, so

their orbits are closed and disjoint. Still, v1 is conjugate to v2 by the transformation x 7→ x + 1/p.
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2C. Integrality of the stabilizer. Let V be a rational representation of a split reductive group G on an
affine space defined over W (k). Let v ∈ V (W (k)) and v0

∈ V (k) be its reduction modulo p. Let S⊂ G
be the scheme-theoretic stabilizer of v, and S = S(K ) be the stabilizer of v in G(K ). Let S0 = Sk ⊂ Gk

be the scheme-theoretic stabilizer of v0, and S0 = S0(k)= S(k) be the stabilizer of v0 in G(k).

Proposition 2.5. Assume that

(i) the G-orbit of v0 is closed;

(ii) S0 is finite and reduced;

(iii) there is a lifting map i : S0→ S such that i(S0) ∈ G(W (k)) and the reduction of i(g0) modulo p
equals g0 for any g0 ∈ S0. In other words, the reduction map S(W (k))→ S(k)= S0 is surjective.

Then i is an isomorphism. In other words, all the natural maps in the diagram

S(k)← S(W (k)) ↪→ S(K ) ↪→ S(K )

are isomorphisms.

Proof. Let U be a defining representation of G, presenting it as a closed subgroup of GL(U). The main
part of the proof is showing that the matrix elements of any g ∈ S in some basis of U(W (k)) are integral
over W (k). To this end, we want to construct a lot of S-invariants in O(U), so that O(U) is integral over
the subalgebra generated by these invariants.

Let X = Gv0
⊂ Vk be the G-orbit of v0 over k, which is closed by (i). Since S0 is reduced by (ii),

the natural morphism Gk/S0→ Vk given by g 7→ gv0 defines an isomorphism Gk/S0 ∼= X. Therefore,
we have O(X ×Uk)

G(k)
= O(Uk)

S0. Thus, given a homogeneous f ∈ O(Uk)
S0 of some degree `, we

may view f as a G-invariant regular function on X ×Uk . By Proposition 2.1, some power f N lifts to a
G-invariant polynomial h f on V ×U, homogeneous of degree N` in the second variable (as O(X ×Uk)

is a quotient of O(V ×U) by a G-invariant ideal). Then h f (v, · ) is a lift over W (k) of f N (v0, · ), which
is an S-invariant element of O(U), homogeneous of degree N`.

Since by (ii) S0 is finite, Noether’s theorem allows us to pick a finite collection of homogeneous
generators f1,..., fm ∈O(Uk)

S0, of some degrees `1,...,`m . Let h f j be a lift of f Nj
j as above, j = 1,...,m.

Lemma 2.6. The algebra O(U) is module-finite over W (k)[h f1, . . . , h fm ].

Proof. First, O(Uk)
S0= k[ f1, . . . , fm] is module-finite over k[ f N1

1 , . . . , f Nm
m ]. Also, by Noether’s theorem,

O(Uk) is module-finite over O(Uk)
S0. Thus, O(Uk) is module-finite over k[ f N1

1 , . . . , f Nm
m ].

Let w0
1, . . . , w

0
r be homogeneous module generators of O(Uk) over k[ f N1

1 , . . . , f Nm
m ], of degrees

p1, . . . , pr . Letwj be any homogeneous lifts ofw0
j over W (k), j=1, . . . , r . We claim thatw1, . . . , wr are

module generators of O(U) over R :=W (k)[z1, . . . , zm], where z j acts by multiplication by h f j . Indeed,
set deg(z j )= Nj` j . For each degree s, we have a natural map ψs : R[s− p1]⊕· · ·⊕R[s− pr ]→O(U)[s],
where [s] denotes the degree s part; namely, ψs(b1, . . . , br )=

∑r
j=1 bjwj . The map ψs is a morphism of

free finite-rank W (k)-modules, and the reduction of ψs mod I is surjective, since w0
1, . . . , w

0
r generate

O(Uk) as a module over k[ f N1
1 , . . . , f Nm

m ]. Hence, ψs is surjective as well, which implies the lemma. �
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By Lemma 2.6, for any linear function F ∈ U∗(W (k)) (where U∗ is the dual representation to U),

Fn
+ a1 Fn−1

+ · · ·+ an = 0, (1)

where a j ∈W (k)[h f1, . . . , h fm ].
Let g ∈ S. Acting by g on equation (1), and using that ga j = a j (since by construction the h f j are

S-invariant), we get that gF also satisfies (1). This means that if u ∈U(W (k)), then gF(u)∈ K is integral
over W (k) (as a j (u) ∈ W (k)). Since the integral closure of W (k) in K is W (k), the ring of integers in
K , we get that gF(u) ∈W (k), hence gF ∈ U∗(W (k)). Thus gF ∈ U∗(Q), where Q ⊂W (k) is a finite
extension of W (k). So, the matrix elements of g in some free W (k)-basis of U belong to Q. Thus, g is a
lift of some g0 ∈ S0 over Q. Using (iii), consider the element g := gi(g0)

−1
∈ S∩G(Q)= S(Q), and let

gN ∈ S(Q/(pN )) be the reduction of g modulo pN. By construction, the image of g in G(k) is 1. Since
S0 is finite and reduced by (ii), this implies that gN = 1 for all N. Thus, g= 1 and g= i(g0), as desired. �

Remark 2.7. Condition (i) in Proposition 2.5 is essential. Indeed, take G=GL(2) acting on V = V2⊕V1,
where Vm is the natural representation of G on homogeneous polynomials of two variables x, y of
degree m. Take v= x1(y1− px1)+ y2 ∈ V (W (k)). Then v0

= x1 y1+ y2. If gv0
= v0 then g preserves y2,

hence y1, so it preserves x1. Thus g = 1, hence S0 = 1. On the other hand, S = {1, s}, where s(y)= y,
s(x)= (1/p)y− x .

The reductivity of G is essential as well. To see this, take G = Aff(1), the group of affine linear
transformations (a, b) given by x 7→ ax + b, a 6= 0, and take V = Q ⊕ U, where Q is the space of
quadratic (not necessarily homogeneous) functions of x , and U is the 1-dimensional representation with
basis vector z defined by (a, b)(z)= a2z. We can then take v= x(1− px)+z, so that v0

= x+z. Then, as
before, S0 = 1, but S = {1, s}, where s(x)=−x + 1/p. Note that the G-orbit of v0 is closed in this case.

2D. Finiteness of the orbit map. The results of this subsection are not needed for the proof of the main
results. They are only used in the proofs of Theorems 3.5 and 4.8 and are included mainly to justify
Lemma 9.7 of [Etingof et al. 2005], whose original proof is incomplete.

We keep the setting of Proposition 2.5.

Lemma 2.8. (i) For all r ≥ 1, O(S)/(pr ) is a free W (k)/(pr )-module of rank |S0|.

(ii) S is the lift of S0 to W (k), i.e., O(S) is a free W (k)-module of rank |S0|. Thus, the tautological
morphism π : G→ G/S is finite étale.3

Proof. (i) Let Fun(X, R) stand for the set of functions from X to R. We have a natural homomorphism
τ :O(S)→ Fun(S0,W (k)), given by τ( f )(g0)= f (i(g0)). Let τr :O(S)/(pr )→ Fun(S0,W (k)/(pr ))

be the reduction of τ modulo pr. Then τr is a homomorphism between finite W (k)/(pr )-modules (since
S0 is finite), and it is an isomorphism modulo p. Hence τr is surjective. Also, the length of O(S)/(pr ) is
at most r |S0| (as it has |S0| generators), while the length of Fun(S0,W (k)) equals r |S0| since it is a free
W (k)/(pr )-module of rank |S0|. This implies that τr is an isomorphism, giving (i).

3Note that the quotient G/S makes sense as a scheme of finite type over W (k).
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To prove (ii), note that τ is surjective, as it is surjective modulo p. Let J := Ker τ . Tensoring with K,
we get a short exact sequence of K -vector spaces

0→ K ⊗W (k) J →O(SK )→ Fun(S0, K )→ 0.

Since SK is automatically reduced, and S(K )= S is isomorphic to S0 by Proposition 2.5, we obtain by
counting dimensions that K ⊗W (k) J = 0, i.e., J is the torsion ideal in O(S). Since S is of finite type, J
is finitely generated, hence killed by pN for some N ≥ 1. Hence, if J 6= 0, then there exists f ∈ J such
that f /∈ pO(S). Since pN f = 0, this contradicts (i) for r > N, yielding the first statement of (ii). The
second statement (the étaleness of π ) follows since S0 is reduced. �

Consider the morphism φ : G→ V given by φ(g) = gv, which we call the orbit map. It induces a
natural morphism ν : G/S→ V such that φ = ν ◦π . It is easy to see that every scheme-theoretic fiber
of ν is either a point or empty. Hence, by [EGA IV4 1967, Proposition 17.2.6], ν is a monomorphism.

For a W (k)-scheme X and a closed point x ∈ X over k or K, denote by X̂x the formal neighborhood
of X. Namely, if R is a local Artinian W (k)-algebra with residue field k, respectively K, then X̂x(R) is
the set of homomorphisms O(X)→ R which lift x .

Let Y ⊂ V be a closed G-invariant subscheme such that ν factors through a morphism µ : G/S→ Y.

Proposition 2.9. Suppose that

(i) for any point g of G/S over k or K, the morphism of formal neighborhoods µg : Ĝ/Sg → Ŷµ(g)
induced by µ is an isomorphism; and

(ii) Y consists of finitely many closed G-orbits both over k and over K.

Then µ is a closed embedding. In particular, the morphisms µ, ν, φ are finite.

Proof. Let us cut down the target of µ. Pick a G-invariant polynomial b0 ∈O(Vk) such that b0(v
0)= 0

and b0 = 1 on all the other orbits of G in Yk . Since by (ii), Yk consists of finitely many closed G-orbits,
such b0 exists by Haboush’s theorem [1975].

Now use Proposition 2.1 to lift some power bN
0 of b0 to a G-invariant polynomial b ∈O(V ) such that

b(v)= 0 (namely, choose any lift b of bN
0 and then replace b with b−b(v)). Also, consider a polynomial

c′ ∈O(VK ) such that c′(v)= 0 but c′ 6= 0 on all other orbits of G on YK . Since by (ii), YK is a union of
finitely many closed G-orbits, c′ exists, and by setting c′ = pM c for sufficiently large M ∈ Z+, we obtain
a polynomial c ∈O(V ).

Now consider the closed subscheme Z ⊂ Y cut out by the equations b = 0, c = 0. Then the morphism
µ factors through a monomorphism µ : G/S→ Z, and it suffices to show that this morphism is a closed
embedding. We will do so by showing that, in fact, µ is an isomorphism.

Lemma 2.10. The morphism µ is surjective.

Proof. This follows since by construction, Z has only one G-orbit both over k and over K (namely, that
of v0, respectively v). �
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Lemma 2.11. The morphism µ is étale.

Proof. By (i), µ is a formally étale morphism between affine W (k)-schemes of finite type. This implies
the statement. �

Now the proposition follows from Lemmas 2.10 and 2.11, since a surjective étale monomorphism is
an isomorphism, [EGA IV4 1967, Theorem 17.9.1]. �

Remark 2.12. The reductivity of G is essential in Proposition 2.9. Namely, let p > 2 and consider the
action of G = Ga by translations x 7→ x + b on the 3-dimensional space V of quadratic polynomials
in x . Let v = x − px2. Then b ◦ v = x + b− p(x + b)2 = b− pb2

+ (1− 2pb)x − px2. Thus, the map
φ : G→ V, φ(g)= gv, is given by

φ(b)= (b− pb2, 1− 2pb,−p).

We have
O(φ−1(0,−1,−p))=W (k)[b]/(b− pb2, 2− 2pb)=W (k)[1/p] = K

(as pb = 1 in this ring). This implies that φ is not finite (as K is not a finitely generated W (k)-module),
even though it is finite over K and over W (k)/I N for each N.

We note that in this example the orbits of v over K and its reduction v0 over k are closed, and the
scheme-theoretic stabilizers S of v and S0 of v0 are both trivial. Also, one may take Y to be the curve
consisting of polynomials −px2

+ αx + β such that 4pβ = 1− α2. This curve is G-invariant, and the
map µ : G = G/S→ Y is a monomorphism which induces an isomorphism on formal neighborhoods.
However, Yk has two orbits, α = 1 and α = −1, and µ lands in the first one. We have a G-invariant
polynomial b0 on Vk separating these orbits, namely b0 =

1
2(1− α). But power reductivity does not

apply since G is not reductive, and no power of b0 lifts to a G-invariant in O(Y), since YK has only one
G-orbit, so the only invariant regular functions on Y are constants. As a result, we cannot define a closed
subscheme Z ⊂ Y such that µ factors through a surjective morphism µ : G/S→ Z.

3. Faithfulness of the lifting for Hopf algebras

3A. Faithfulness of the lifting. If H is a semisimple cosemisimple Hopf algebra over k, let H̃ denote
its lift over W (k) constructed in [Etingof and Gelaki 1998, Theorem 2.1], and let Ĥ := K ⊗W (k) H̃.

Let H1, H2 be semisimple cosemisimple Hopf algebras over k.

Theorem 3.1 [Etingof et al. 2005, Corollary 9.10]. If Ĥ1 is isomorphic to Ĥ2 then H1 is isomorphic
to H2.

Proof. By the assumption, dim H1 = dim H2 = d, a number coprime to p. Indeed, by Theorem 3.1 of
[Etingof and Gelaki 1998] in a semisimple cosemisimple Hopf algebra we have S2

= 1, where S is the
antipode, and by the Larson–Radford theorem [1988], we have Tr(S2) 6= 0.

Fix identifications H̃1∼=W (k)d, H̃2∼=W (k)d as W (k)-modules; they, in particular, define identifications
H1 ∼= kd, H2 ∼= kd as vector spaces over k.
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Let V be the space of all possible pre-Hopf structures, i.e., product, coproduct, unit, counit, and
antipode maps on the d-dimensional space, without any axioms, regarded as an affine scheme. In other
words, if E = Ad is the defining representation of G, then

V = E⊗ E⊗ E∗ ⊕ E⊗ E∗⊗ E∗ ⊕ E ⊕ E∗ ⊕ E⊗ E∗.

Then V is a rational representation of G=GL(d), and H̃1, H̃2 together with the above identifications give
rise to two vectors v1, v2 ∈ V (W (k)), while H1, H2 correspond to their reductions mod I, v0

1, v
0
2 ∈ V (k).

Moreover, by the assumption of the theorem, v1, v2 are conjugate under the action of G(K ). We are going
to show that the reductions v0

1, v
0
2 are conjugate under the action of G(k), i.e., H1 ∼= H2, as claimed.

Let H ∼= kd be a semisimple cosemisimple Hopf algebra over k, and u be the corresponding vector in
V (k).

Lemma 3.2 [Etingof et al. 2005, Section 9]. The G-orbit Gu of u is closed.

Proof. Let u′ ∈Gu. Then u′ corresponds to a d-dimensional Hopf algebra H ′ such that Tr |H ′(S2)= d 6= 0,
since this is so for all points of Gu. Hence H ′ is semisimple and cosemisimple by the Larson–Radford
theorem. But then the stabilizers of u, u′ in G(k), which are isomorphic to Aut(H),Aut(H ′), are finite;
see [Etingof and Gelaki 1998, Corollary 1.3]. Hence, dim Gu′ = dim Gu = dim G. This implies that
u′ ∈ Gu. Hence, Gu is closed. �

Thus, the orbits of v0
1, v

0
2 are closed. Hence, Theorem 3.1 follows from Proposition 2.3. �

3B. Integrality of the stabilizer.

Theorem 3.3. Let H1, H2 be semisimple cosemisimple Hopf algebras over k, and g : Ĥ1→ Ĥ2 be an
isomorphism. Then g maps H̃1 isomorphically to H̃2, i.e., it is a lift of an isomorphism g0 : H1→ H2

over W (k). In particular, for a semisimple cosemisimple Hopf algebra H over k, the lifting map
i : Aut(H)→ Aut(Ĥ) defined in [Etingof and Gelaki 1998, Theorem 2.2] is an isomorphism.

Proof. By Theorem 3.1, we may assume that H1= H2= H. Let v ∈ V (W (k)) be the vector corresponding
to H̃, and v0

∈ V (k) be its reduction mod I, corresponding to H. Let S := Aut(Ĥ) ⊂ G(K ) be the
stabilizer of v, S0 :=Aut(H)⊂G(k) be the stabilizer of v0, and S0 be the scheme-theoretic stabilizer of v0.

By Lemma 3.2, the G-orbit of v0 is closed. Also, by [Etingof and Gelaki 1998, Theorem 1.2,
Corollary 1.3], S0 is finite and reduced. Finally, by [Etingof and Gelaki 1998, Theorem 2.2], we have
a lifting map i : S0 ↪→ S such that for any g0 ∈ S0, i(g0) is integral, and the reduction modulo p of i(g0)

equals g0. Thus, Proposition 2.5 applies, and the result follows. �

Remark 3.4. Theorems 3.1, 3.3 also hold for quasitriangular and triangular Hopf algebras, with the same
proofs.

3C. Finiteness of the orbit map. We would now like to prove an analog of Lemma 9.7 of [Etingof et al.
2005] in the Hopf algebra setting.
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Theorem 3.5. Let H be a semisimple cosemisimple Hopf algebra over k, and v ∈ V (W (k)) be the vector
corresponding to H̃ . Then the morphism φ : G→ V defined by φ(g)= gv is finite.

Proof. Let S be the scheme-theoretic stabilizer of v. Theorem 3.3 and Lemma 2.8 imply that S is the
lift of S0 over W (k), and the tautological morphism π : G→ G/S is finite étale. We also have a natural
morphism ν : G/S→ V induced by φ, such that φ = ν ◦π .

Let Y ⊂ V be the closed subscheme of Hopf algebra structures with Tr(S2)= d. Then Y is a closed
G-invariant subscheme, and ν factors through a morphism µ : G/S→Y. By the Larson–Radford theorem,
d 6= 0 in k, so any Hopf algebra of dimension d over k or K is semisimple and cosemisimple. Hence, by
Ştefan’s theorem [1997] (restated in [Etingof and Gelaki 1998, Theorem 1.1]), Y consists of finitely many
orbits both over k and over K , which are closed by Lemma 3.2. Also, it follows from [Etingof and Gelaki
1998, Theorem 2.2], that µ induces an isomorphism on formal neighborhoods. Thus, Proposition 2.9
applies, and the statement follows. �

Remark 3.6. Theorems 3.1, 3.3, 3.5 are subsumed by the results of Section 4. However, we felt it was
useful to give independent direct proofs of these theorems which do not use tensor categories.

3D. Fullness of the lifting functor. Finally, let us prove the following result, which appears to be new.

Theorem 3.7. Let H1, H2 be semisimple cosemisimple Hopf algebras over k. Then any Hopf algebra
homomorphism θ : Ĥ1→ Ĥ2 is a lifting of some homomorphism θ0 : H1→ H2. In other words, the lifting
functor defined by [Etingof and Gelaki 1998, Corollary 2.4], is a fully faithful embedding from the category
of semisimple cosemisimple Hopf algebras over k to the category of semisimple (thus, cosemisimple) Hopf
algebras over K .

Proof. We first prove the following lemma.

Lemma 3.8. Let H be a semisimple cosemisimple Hopf algebra over k. Then lifting defines a bijection
between Hopf ideals of H and Hopf ideals of Ĥ . The same applies to Hopf subalgebras.

Proof. A Hopf ideal J ⊂ A of a semisimple Hopf algebra A corresponds to a full tensor subcategory
CJ ⊂ Rep H of objects annihilated by J, and this correspondence is a bijection. Full tensor subcategories,
in turn, correspond to fusion subrings of the Grothendieck ring of Rep A. So the first statement follows
from the fact that the Grothendieck rings of H and Ĥ are the same. The second statement is dual to the
first statement, since the orthogonal complement of a Hopf ideal in A is a Hopf subalgebra of A∗, and
vice versa. �

Now let B = Im θ ⊂ Ĥ2. Then by Lemma 3.8, B is a lifting of some Hopf subalgebra B0 ⊂ H2. Note
that B0 is semisimple, since its dimension divides the dimension of H2 by the Nichols–Zoeller theorem
[1989], hence is coprime to p. Thus, without loss of generality we may replace H2 with B0, i.e., assume
that θ is surjective.

Now let J =Ker θ ⊂ Ĥ1. Then by Lemma 3.8, J is a lift of some Hopf ideal J0⊂ H1. Let C0= H1/J0.
Then C0 is cosemisimple, as it is a quotient of H1, so by the Nichols–Zoeller theorem, its dimension is
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coprime to p. Moreover, Ĉ ∼= Ĥ1/J. Thus, without loss of generality we may replace H1 with C0, i.e.,
assume that θ is an isomorphism.

But in this case the desired statement is Theorem 3.3. �

4. Faithfulness of the lifting for fusion categories

4A. Faithfulness of the lifting. Now we generalize the results of the previous section to separable fusion
categories. (For basics on tensor categories we refer the reader to [Etingof et al. 2015].) Most of the proofs
are parallel to the Hopf algebra case, and we will indicate the necessary modifications. We will develop
the theory for ordinary fusion categories; the case of braided and symmetric categories is completely
parallel.

We call a fusion category C separable if its global dimension is nonzero. This is equivalent to the
definition of [Douglas et al. 2013] by Theorem 3.6.7 in that paper.

If C is a (braided, symmetric) separable fusion category over k, let C̃ be its lift to W (k) constructed in
[Etingof et al. 2005, Theorem 9.3, Corollary 9.4], and let Ĉ := K ⊗W (k) C̃.

Let C1, C2 be (braided, symmetric) separable fusion categories over k. First we prove the following
theorem, which is Corollary 9.9(i) of [Etingof et al. 2005].

Theorem 4.1. If Ĉ1 is equivalent to Ĉ2 then C1 is equivalent to C2.

Proof. We will treat the fusion case; the braided and symmetric cases are similar.
We generalize the proof of Theorem 3.1. As in [Etingof et al. 2005, Section 9.3], we may assume that

C1 and C2 have the same underlying semisimple abelian category C with the tensor product functor ⊗,
a skeletal category with Grothendieck ring Gr(C). So it has simple objects X i , i ∈ I, with X0 = 1, and
X i⊗X j =

⊕
m k N m

i j Xm . We will also fix the unit morphism ι : 1⊗1→ 1, and the coevaluation morphisms.
Define a pretensor structure on C to be a triple (8,8′, ev), where 8 is an associativity morphism, 8′ an
“inverse” associativity morphism in the opposite direction, and ev is a collection of evaluation morphisms,
but without any axioms. Then a tensor structure on C is a pretensor structure such that8◦8′=8′◦8= Id
and (8, ev) satisfy the axioms of a rigid tensor category (with the fixed unit and coevaluation morphisms);
see [Etingof et al. 2015, Definitions 2.1.1 and 2.10.11].

Let
N s

i jl := [X i ⊗ X j ⊗ Xl : Xs] =
∑

m

N m
i j N s

ml =
∑

p

N s
ip N p

jl .

Let V be the space of all pretensor structures on C, which is an affine space over W (k) of dimension
2
∑

i, j,l,s(N
s
i jl)

2
+ rank Gr(C) (where the first summand corresponds to pairs (8,8′) and the second

summand to ev). Then the Ĉi give rise to vectors vi ∈ V (W (k)), and the Ci correspond to their reductions
v0

i modulo I.
Now let us define the relevant affine group scheme G. To this end, following [Etingof et al. 2005,

Section 9.3], let T = Aut(⊗) be the group of automorphisms of the tensor product functor on C. Then
T acts naturally on V by twisting (where after twisting we renormalize the coevaluation and unit
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morphisms to be the fixed ones). Let T0 ⊂ T be the subgroup of “trivial twists”, i.e., ones of the form
JX,Y = zX⊗Y (z−1

X ⊗ z−1
Y ), where z ∈ Aut(IdC) is an invertible element of the center of C. Then T0 is a

closed central subgroup of T which acts trivially on V. Let G := T/T0. Then G is an affine group scheme
acting rationally on V. Moreover, T =

∏
i, j,m GL(N m

i j ), and T0 is a central torus in T, hence G is a split
reductive group.

Let C be a separable fusion category over k of some global dimension d 6= 0, and u be the corresponding
vector in V (k). Let Aut(C) denote the group of isomorphism classes of tensor autoequivalences of C.

Lemma 4.2 [Etingof et al. 2005, Section 9]. The G-orbit Gu of u is closed.

Proof. Let u′ ∈ Gu. Then u′ corresponds to a fusion category C′. Moreover the global dimension of C′ is d ,
since this is so for all points of Gu, and the global dimension depends algebraically on 8,8′, ev. Thus, C′

is separable. But then the stabilizers of u, u′ in G(k), which are isomorphic to Aut(C), Aut(C′) are finite
by [Etingof et al. 2005, Theorem 2.31] (which applies in characteristic p for separable categories; see
[Etingof et al. 2005, Section 9]). Hence, dim Gu′ = dim Gu = dim G. This implies that u′ ∈ Gu. Hence,
Gu is closed. �

Thus, the orbits of v0
1, v

0
2 are closed. Hence, Theorem 4.1 follows from Proposition 2.3 and the fact

that the natural map T (W (k))→ (T/T0)(W (k)) is surjective. �

Remark 4.3. Note that Theorem 4.1 implies [Etingof et al. 2005, Theorem 9.6]; namely, the complete
local ring R in Theorem 9.6 without loss of generality may be replaced by W (k).

Remark 4.4. We can now complete the proof of [Etingof and Gelaki 2000, Theorem 6.1], which states,
essentially, that any semisimple cosemisimple triangular Hopf algebra over k is a twist of a group algebra.
The original proof of this theorem appearing in that work is incomplete (namely, it is not clear at the
end of this proof why F ◦ F ′ = Id). This is really a consequence of faithfulness of the lifting. Namely, if
(A, R) is a semisimple cosemisimple triangular Hopf algebra over k, and (A′, R′)= F ◦ F ′(A, R), then
(A, R) and (A′, R′) have isomorphic liftings over K; hence by Theorem 3.1 they are isomorphic.

Another proof of [Etingof and Gelaki 2000, Theorem 6.1] is obtained by using Theorem 4.1 for
symmetric tensor categories. Namely, consider the separable symmetric fusion category C := Rep(A, R).
Then Ĉ is a symmetric fusion category over K. Hence, by Deligne’s theorem [1990] (see also [Etingof
et al. 2015, Corollary 9.9.25]), Ĉ = RepK (G, z), where G is a finite group of order coprime to p and
z ∈ G is a central element of order ≤ 2 (the category of representations of G on superspaces with
parity defined by z). Thus, Ĉ ∼= D̂ as symmetric tensor categories, where D = Repk(G, z). Hence, by
Theorem 4.1, C ∼= D, i.e., (A, R) is obtained by twisting of (k[G], Rz), where Rz = 1⊗ 1 if z = 1 and
Rz=

1
2(1⊗1+1⊗z+z⊗1−z⊗z) if z 6=1 (note that if z 6=1 then |G| is necessarily even, so p>2 and 1

2 ∈k).

Remark 4.5. Let G be a finite group. Recall from [Etingof et al. 2015] that categorifications of the
group ring ZG over a field F correspond to elements of H 3(G, F×). Hence, the lifting map for pointed
fusion categories which categorify ZG is the natural map α : H 3(G, k×)→ H 3(G, K×) arising from
the isomorphisms H i (G, K×) ∼= H i (G, K×f ) and H i (G, k×) ∼= H i (G, k×f ), where K×f is the group of
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elements of finite order (i.e., roots of unity) in K×, and k×f is the group of roots of unity in k×. The map
α is then induced by the Brauer lift map k×f → K×f , and is clearly injective since the Brauer lift identifies
k×f with a direct summand of K×f . Thus, for pointed categories faithfulness of the lifting is elementary.

Similarly, braided categorifications ZG over F (for abelian G) correspond to quadratic forms G→ F×

(see [Etingof et al. 2015]), and lifting for such categorifications is defined by the Brauer lift for quadratic
forms, hence is clearly faithful.

4B. Integrality of the stabilizer.

Theorem 4.6. Let C1, C2 be (braided, symmetric) separable fusion categories over k, and g : Ĉ1→ Ĉ2 be
an equivalence. Then g defines an equivalence C̃1→ C̃2, i.e., it is isomorphic to the lift of an equivalence
g0 : C1→ C2 over W (k).

Proof. As before, we treat only the fusion case; the braided and symmetric cases are similar. By
Theorem 4.1, we may assume that C1 = C2 = C. Let v ∈ V (W (k)) be the vector corresponding to C̃, and
v0
∈ V (k) be its reduction mod I, corresponding to C. Let S :=Aut(̂C) be the stabilizer of v, S0 :=Aut(C)

be the stabilizer of v0, and S0 the scheme-theoretic stabilizer of v0.
By Lemma 4.2, the G-orbit of v0 is closed. By Theorem 2.27 and Theorem 2.31 of [Etingof et al. 2005]

(both valid in characteristic p for separable fusion categories, see Section 9 of that paper), S0 is finite
and reduced. Finally, by Theorems 9.3 and 9.4 there, we have a lifting map i : S0 ↪→ S, such that for all
g0 ∈ G(k), i(g0) is integral and the reduction of i(g0) modulo p equals g0. Thus, Proposition 2.5 applies,
and the result follows (again using that the natural map T (W (k))→ (T/T0)(W (k)) is surjective). �

Remark 4.7. (1) Recall that a multifusion category is called separable if all of its component fusion
categories are separable; see [Etingof et al. 2005, Section 9] and [Douglas et al. 2013]. Theorems
4.9 and 4.11 extend to separable multifusion categories with similar proofs.

(2) Theorem 4.6 is not stated explicitly in [Etingof et al. 2005], but is claimed implicitly in the (incom-
plete) proof of Theorem 9.6 there.

4C. Finiteness of the orbit map. Let us now prove Lemma 9.7 of [Etingof et al. 2005] (which completes
the proofs in Section 9.3 of that paper).

Theorem 4.8. Let C be a (braided, symmetric) separable fusion category over k, and v ∈ V (W (k)) be
the vector corresponding to C̃. Then the morphism φ : G→ V defined by φ(g)= gv is finite.

Proof. We treat the case of fusion categories; the braided and symmetric cases are similar. The proof
is parallel to the proof of Theorem 3.5. Namely, let S be the scheme-theoretic stabilizer of v. Then
φ = ν ◦π , where π : G→ G/S is finite étale, and ν : G/S→ V. Let Y ⊂ V denote the closed subscheme
of vectors corresponding to fusion categories of global dimension d̃ := dim(̃C). Then ν factors through
µ : G/S→ Y. By [Etingof et al. 2005, Theorem 2.27], Y consists of finitely many G-orbits both over
k and over K. Also, these orbits are closed by Lemma 4.2. Finally, by Theorem 9.3 and Corollary 9.4
of the same paper, µ induces an isomorphism on formal neighborhoods. Thus, Proposition 2.9 applies,
and the statement follows. �
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4D. Faithfulness of the lifting and integrality of the stabilizer for tensor functors. Let us now prove
similar results for tensor functors, i.e., Theorem 9.8 and Corollary 9.9(ii) of [Etingof et al. 2005].

Theorem 4.9. Let C,D be two (braided, symmetric) separable fusion categories over k, and F1, F2 :C→D
two (braided) tensor functors. Let g : F̂1→ F̂2 be an isomorphism of lifts of F1, F2 over K . Then g is a
lift of an isomorphism g0 : F1→ F2. In particular, if F̂1, F̂2 are isomorphic then so are F1, F2.

Proof. The proof is similar to the proofs of Theorems 3.1, 3.3 and Theorems 4.1, 4.6. We treat the case of
tensor functors between fusion categories; the cases of braided and symmetric categories are similar.

We may assume that F1, F2 coincide with a given functor F as additive functors, and differ only by the
tensor structures. Let V be the space of pretensor structures on F, i.e., pairs (J, J ′) of endomorphisms of
the functor F( · ⊗ · ), without any axioms. Then a tensor structure on F is such a pair (J, J ′) for which
J ◦ J ′ = J ′ ◦ J = Id, and J satisfies the tensor structure axiom, [Etingof et al. 2015, Definition 2.4.1].
Let G be the group scheme of all automorphisms of the functor F. Then G is a split reductive group
(a product of general linear groups) which acts on V by “gauge transformations”. Moreover, the functors
F̃j , j = 1, 2, correspond to vectors vj ∈ V (W (k)), and the Fj correspond to their reductions v0

j modulo p.

Lemma 4.10. Let u ∈ V (k) be a vector representing a tensor functor F. Then the orbit Gu is closed.

Proof. Let u′ ∈ Gu. Then u′ corresponds to a tensor functor F ′. But the group of automorphisms of
a tensor functor between separable fusion categories is finite by [Etingof et al. 2005, Theorem 2.27].
Hence the stabilizers of u, u′ in G(k), which are isomorphic to Aut(F), Aut(F ′), are finite. Hence,
dim Gu′ = dim Gu = dim G. This implies that u′ ∈ Gu. Hence, Gu is closed. �

By Lemma 4.10, Proposition 2.3 applies. Thus, F1∼= F2 as tensor functors. So we may assume without
loss of generality that F1 = F2 = F for some tensor functor F.

Let v ∈ V (W (k)) and v0
∈ V (k) be its reduction modulo p. Let S0 = Aut(F) ⊂ G(k), S0 be the

scheme-theoretic stabilizer of v0, and S = Aut(F̂)⊂ G(K ). Then S0 is finite and reduced by [Etingof
et al. 2005, Theorem 2.27]. Also, by Theorem 9.3 and Corollary 9.4 of the same work, we have a lifting
map i : S0 ↪→ S such that for any g0 ∈ S0, i(g0) is integral and the reduction of i(g0) modulo p is g0.
Hence, Proposition 2.5 applies, and the result follows. �

Corollary 4.11. For a (braided, symmetric) separable fusion category C over k, the lifting map i :
Aut(C)→ Aut(̂C) defined in [Etingof et al. 2005, Theorem 9.3], is an isomorphism.

Proof. Theorem 4.9 implies that i is injective, and Theorem 4.6 implies that i is surjective. �

4E. Application to Brauer–Picard and Picard groups of tensor categories. Recall from [Etingof et al.
2010] that to any fusion category C one can attach its Brauer–Picard groupoid BrPic(C). This is a 3-group,
whose 1-morphisms are equivalence classes of invertible C-bimodule categories, 2-morphisms are bimodule
equivalences of such bimodule categories, and 3-morphisms are isomorphisms of such equivalences.
Similarly, if C is braided then one can define its Picard groupoid Pic(C), a 3-group whose 1-morphisms
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are equivalence classes of invertible C-module categories, 2-morphisms are module equivalences of such
module categories, and 3-morphisms are isomorphisms of such equivalences.

Theorems 9.3 and 9.4 of [Etingof et al. 2005] then imply that if C is separable then we have the lifting
morphism i :BrPic(C)→BrPic(̂C) and (in the braided case) i :Pic(C)→Pic(̂C) of the underlying 2-groups.

Corollary 4.12. Let C be a separable fusion category over k.

(i) The lifting morphism i : BrPic(C)→ BrPic(̂C) is an isomorphism.

(ii) If C is braided then the lifting morphism i : Pic(C)→ Pic(̂C) is an isomorphism.

Proof. (i) By [Etingof et al. 2010, Theorem 1.1], for any separable fusion category D one has an isomor-
phism ξ : BrPic(D)∼=Autbr(Z(D)) of the Brauer–Picard group BrPic(D) with the group of isomorphism
classes of braided autoequivalences of the Drinfeld center of D. It is clear that this isomorphism is compati-
ble with lifting. Therefore, the statement at the level of 1-morphisms follows from Corollary 4.11. Also, re-
call that π2(BrPic(D))= Inv(Z(D)), the group of isomorphism classes of invertible objects of Z(D). Thus,
at the level of 2-morphisms i comes from the obvious isomorphism Inv(Z(C))∼= Inv(Z (̂C)), which gives (i).

(ii) By [Davydov and Nikshych 2013], if D is braided then Pic(D) is naturally identified with the subgroup
of Autbr(Z(D)) of elements that preserve D ⊂ Z(D) and have trivial restriction to D. Thus, (ii) follows
from (i) and Theorem 4.9. Also, recall that π2(Pic(D)) = Inv(D), the group of isomorphism classes
of invertible objects of D. Thus, at the level of 2-morphisms i comes from the obvious isomorphism
Inv(C)∼= Inv(̂C), which gives (ii). �

Note that in Corollary 4.12, i does not define an isomorphism of 3-groups, since π3 of these 3-groups
is the multiplicative group of the ground field, and k× � K×. However, we can lift i to an injection at
the level of 3-morphisms. For simplicity assume that k = Fp (this is not restrictive since by [Etingof
et al. 2005, Theorem 2.31], any separable fusion category in characteristic p is defined over Fp). Then by
Hensel’s lemma, the surjection W (k)×→ k× defined by reduction modulo p uniquely splits, since all
elements of k× are roots of unity of order coprime to p (the Brauer lift, see Remark 4.5). Then i extends
to a morphism of 3-groups using the corresponding splitting β : k×→W (k)× ⊂ K×. In particular, using
the main results of [Etingof et al. 2010], this implies the following result.

Theorem 4.13. Let G be a finite group and k = Fp. Then any G-extension of C canonically lifts to a
G-extension of Ĉ, and any braided G-crossed category D with D1 = C canonically lifts to a braided
G-crossed category D̂ with D̂1 = Ĉ.

Remark 4.14. One can propose the following definition (which we are not making completely precise
here). We recall (and refer, e.g., to the textbook [Yau and Johnson 2015] for details and some history)
that a linear algebraic structure is defined by a colored PROP P (say, over Z). Realizations of P over a
commutative ring R are then P-algebras over R. We call an algebraic structure P 3-separable if every
finite-dimensional realization A of P over a field k

(i) has a finite and reduced group of automorphisms (i.e., has no nontrivial derivations);
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(ii) has no nontrivial first order deformations;

(iii) has a vanishing space of obstructions to deformations.

These conditions should be expressed as requiring that H i (A) = 0 for i = 1, 2, 3 for an appropriate
cohomology theory, controlling deformations of A. Then A should admit a unique lifting from a field k of
characteristic p to W (k), and this lifting should have the faithfulness and stabilizer integrality properties
similar to Theorems 3.1, 3.3, 4.1, 4.6, 4.9: any isomorphism g of liftings of A1, A2 over K is defined
over W (k) and hence is a lifting of an isomorphism g0 : A1→ A2. We have seen a number of examples
of 3-separable structures: semisimple cosemisimple (quasitriangular, triangular) Hopf algebras, separable
(braided, symmetric) fusion categories, (braided) tensor functors between such categories.4 It would
therefore be interesting to make this notion more precise, and prove a general theorem on the existence
and faithfulness of the lifting for 3-separable structures, which would unify the results of [Etingof et al.
2005, Section 9], [Etingof and Gelaki 1998], and this paper. It would also be interesting to find other
examples of 3-separable structures.

5. Descent of tensor functors between separable fusion categories to characteristic p.

5A. Separability of subcategories and quotient categories. We will first prove separability of subcate-
gories and quotients of separable categories. First we need the following result, which is a generalization
of [Etingof and Ostrik 2004, Theorem 2.5].

Theorem 5.1. Let C be a finite tensor category and D a finite indecomposable multitensor category.
Let F : C → D be a quasitensor functor. If F is surjective (i.e., every object of D is a subquotient of
F(X), X ∈ C) then

(i) F maps projective objects to projective ones; and

(ii) D is an exact module category over C.

Proof. (i) The proof is almost identical to the proof of [Etingof and Gelaki 2017, Theorem 2.9]. We
reproduce it here for the convenience of the reader.

Let Pi be the indecomposable projectives of C. Write F(Pi )= Ti ⊕ Ni , where Ti is projective, and Ni

has no projective direct summands. Our job is to show that Ni = 0 for all i . So let us assume for the sake
of contradiction that Np 6= 0 for some p.

Let Pi⊗Pj =⊕r cr
i j Pr . Since the tensor product of a projective object with any object in D is projective,

the objects Ti ⊗ Tj , Ti ⊗ Nj , and Ni ⊗ Tj are projective. Thus,(⊕
i

Ni

)
⊗ Nj ⊃

⊕
r

(∑
i

cr
i j

)
Nr (2)

as a direct summand.

4Semisimplicity/cosemisimplicity for Hopf algebras and separability for fusion categories may be forced in the setting of
linear algebraic structures by adding an auxiliary variable x and the relation dx = 1, where d is the global dimension.



566 Pavel Etingof

Let 1 =
∑

l 1l be the irreducible decomposition of the unit object of D, and let s be such that
Y :=

∑
r dr Nr 1s is nonzero (it exists since Np 6= 0). Denote by X j the simples of C, and let d j be their

Frobenius–Perron dimensions. For any i , r , we have
∑

j d j cr
i j = Di dr , where Di := FPdim(Pi ). Thus,

tensoring inclusion (2) on the right by 1s , multiplying by d j and summing over j , we get a coefficientwise
inequality [⊕

i

Ni

]
[Y ] ≥

(∑
i

Di

)
[Y ]

in Gr(Ds), where Ds := D⊗ 1s . This implies that the largest eigenvalue of the matrix of
[⊕

i Ni
]

on
Gr(Ds) is at least

∑
i Di , which is the same as the largest eigenvalue of

[⊕
i F(Pi )

]
. Since F is surjective,

all the entries of
[⊕

i F(Pi )
]

are positive. Thus, by the Frobenius–Perron theorem (see Lemma 2.1 of
[Etingof and Gelaki 2017]),

[⊕
i Ni

]
=
[⊕

i F(Pi )
]
. This implies that Ni = F(Pi ) for all i . Thus, F(Pi )

has no nonzero projective direct summands for all i .
However, let Q be an indecomposable projective object in D. Then Q is injective by the quasi-Frobenius

property of finite multitensor categories. Since F is surjective, Q is a subquotient, hence a direct summand
of F(P) for some projective P ∈ C. Hence Q is a direct summand of F(Pi ) for some i , which gives the
desired contradiction.

(ii) This follows from (i) and the fact that in a multitensor category, the tensor product of a projective
object with any object is projective. �

Theorem 5.2. Let C, D be multitensor categories and let F : C→ D be a surjective tensor functor. If
C is separable, then so is D. In other words, a quotient category of a separable multifusion category is
separable.

Proof. Consider first the special case when C is a tensor category (i.e., 1 ∈ C is simple). Without loss
of generality, we may assume that D is indecomposable. By Theorem 5.1, D is an exact C-module
category, hence semisimple (as C is semisimple). Moreover, we have the surjective tensor functor
F � F : C � Cop

→ D�Dop. Let us take the dual of this functor with respect to D. By [Etingof et al.
2005, Proposition 5.3], we get an injective tensor functor (i.e., a fully faithful embedding)

(F � F)∗D : Z(D) ↪→ (C� Cop)∗D.

But the category (C� Cop)∗D is semisimple, since C is separable and D is semisimple. Hence, Z(D) is
semisimple. Thus, by Corollary 3.5.9 of [Douglas et al. 2013], D is separable.

The general case now follows by applying the above special case to the surjective tensor functors
Fi : Ci i → F(1i )⊗D⊗ F(1i ), where the 1i are the simple composition factors of 1 in C, and where
Ci i := 1i ⊗ C⊗ 1i . �

The following theorem resolves an open question in [Etingof et al. 2005, Section 9.4]:

Theorem 5.3. A (full) multitensor subcategory of a separable multifusion category is separable.
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Proof. Let F : C ↪→ D be an inclusion of C into a separable category D. Then by [Etingof et al. 2005,
Proposition 5.3], we have a surjective tensor functor F∗D : D→ C∗D, where C∗D is a multitensor category.
By Theorem 5.2, C∗D is separable. Hence D = (C∗D)

∗
D is separable as well. �

5B. Descent of tensor functors.

Theorem 5.4. Let C1, C2,D be separable multifusion categories over k. Let Fi : Ci→D be tensor functors.
Let F : Ĉ1→ Ĉ2 be a tensor functor such that F̂2 ◦ F ∼= F̂1. Then there exists a tensor functor F0 : C1→ C2

such that F2 ◦ F0 ∼= F1, and F ∼= F̂0. In other words, if tensor functors G and G ◦ F are integral then F is
integral.

Note that Theorem 3.7 is recovered from Theorem 5.4 when D = Veck (namely, Hi = Coend Fi ).
Moreover, if D = Rep A, where A is a semisimple k-algebra, then Theorem 5.4 gives a generalization of
Theorem 3.7 to weak Hopf algebras.

Proof. The proof is similar to the proof of Theorem 3.7. If C is a separable multifusion category over k,
there is a natural bijection between full tensor subcategories of C and Ĉ. In particular, Im F is a lift of
some multifusion subcategory E ⊂ C2. By Theorem 5.3, E is separable. Thus, we may replace C2 by E ,
i.e., we may assume without loss of generality that F is surjective.

Also, we may replace D with the image Im F2 of F2, which is separable by Theorem 5.2 (or
Theorem 5.3), i.e., we may assume without loss of generality that F2 (hence F̂2, hence F̂1, hence F1) is
surjective.

Consider the dual functor F∗D̂ : (̂C2)
∗

D̂→ (̂C1)
∗

D̂ = (̂C1)
∗
D, which is an inclusion of multifusion categories

by [Etingof et al. 2005, Proposition 5.3]. Thus, (̂C2)
∗

D̂ is a lift of some multifusion subcategory B of
(C1)

∗
D. Moreover, by Theorem 5.3, B is separable, so (̂C2)

∗

D̂ = (̂C2)
∗
D
∼= B̂. Let H : B ↪→ (C1)

∗
D be the

corresponding inclusion functor. Then the dual functor H∗D : C1→ B∗D is a surjection, and F ∼= F ′ ◦ Ĥ∗D,
where F ′ : B̂∗D ∼= Ĉ2 is an equivalence. By Theorem 4.6, F ′ is isomorphic to the lift F̂ ′0 of an equivalence
F ′0 : B

∗
D
∼= C2; hence F is isomorphic to the lift F̂0 of a tensor functor F0 = F ′0 ◦ H∗D : C1→ C2. This

proves the theorem. �

Theorem 5.5. Let C1, C2,D be separable multifusion categories over k. Let Fi :D→ Ci be tensor functors,
such that F1 is surjective. Let F : Ĉ1→ Ĉ2 be a tensor functor such that F ◦ F̂1 ∼= F̂2. Then there exists a
tensor functor F0 : C1→ C2 such that F0 ◦ F1 ∼= F2, and F ∼= F̂0. In other words, if tensor functors G and
F ◦G are integral and G is surjective then F is integral.

Proof. We may replace C2 with Im F2, which is separable by Theorems 5.2 or 5.3, and assume that
F2, F̂2, F are surjective. Then by [Etingof et al. 2005, Proposition 5.3], we have an inclusion (F̂1)

∗

Ĉ2
:

(Ĉ1)
∗

Ĉ2
↪→ D̂∗Ĉ2

= D̂∗C2
. The image of (F̂1)

∗

Ĉ2
is then a lift of some multifusion subcategory B ⊂ D∗C2

. By
Theorem 5.3, B is separable. Let H : B ↪→ D∗C2

be the corresponding inclusion functor. Then (F̂1)
∗

Ĉ2

defines an equivalence L : (Ĉ1)
∗

Ĉ2
∼= B̂ such that (F̂1)

∗

Ĉ2
= Ĥ ◦ L . Then

Ĥ ◦ L ◦ F∗Ĉ2
= (F̂1)

∗

Ĉ2
◦ F∗Ĉ2

= (F̂2)
∗

Ĉ2
= (̂F2)

∗
C2
.
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Thus, by Theorem 5.4, L ◦ F∗Ĉ2
= M̂ for some M : C2→ B. Dualizing, we get M̂∗C2

= F ◦ L∗Ĉ2
, where

L∗Ĉ2
: B̂∗C2
→ Ĉ1 is an equivalence. By Theorem 4.6, L∗Ĉ2

= N̂ for some equivalence N : B∗C2
→ C1. Thus,

F = F̂0, where F0 := M∗C2
◦ N−1. �

Remark 5.6. In spite of Theorems 5.4 and 5.5, in general we don’t know if any tensor functor F : Ĉ1→ Ĉ2

between liftings of separable (multi)fusion categories is always isomorphic to a lifting of a tensor functor
F0 : C1→ C2, even in the case when C2 = Veck and C1 = Rep H, where H is a semisimple cosemisimple
Hopf algebra over k. In this special case, this is the question whether any Drinfeld twist J for Ĥ is gauge
equivalent to a lifting of a twist J0 for H.

Likewise, we don’t know if any fusion category or semisimple cosemisimple Hopf algebra in charac-
teristic zero whose (global) dimension is coprime to p descends to characteristic p.
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Mean square in the prime geodesic theorem
Giacomo Cherubini and João Guerreiro

We prove upper bounds for the mean square of the remainder in the prime geodesic theorem, for every
cofinite Fuchsian group, which improve on average on the best known pointwise bounds. The proof
relies on the Selberg trace formula. For the modular group we prove a refined upper bound by using the
Kuznetsov trace formula.

1. Introduction

There is a striking similarity between the distribution of lengths of primitive closed geodesics on the
modular surface and prime numbers. If we consider the asymptotic of the associated counting function, the
problem of finding optimal upper bounds on the remainder is intriguing, especially because the relevant
zeta function is known to satisfy the corresponding Riemann hypothesis.

We start with reviewing briefly the framework of the problem (for a more detailed introduction we
refer to [Sarnak 1980; Iwaniec 1995, §10.9]), and then state our results. Since the definitions extend to
every finite volume Riemann surface, we work in this generality, and only at a later point do we specialize
to the modular surface.

Every cofinite Fuchsian group 0 acts on the hyperbolic plane H by linear fractional transformations,
and every hyperbolic element g ∈ 0 is conjugated over SL2(R) to a matrix of the form(

λ1/2 0
0 λ−1/2

)
, λ ∈ R, λ > 1.

The trace of g is therefore Tr(g)= λ1/2
+ λ−1/2, and we define its norm to be N (g)= λ. Since the trace

and the norm are constant on the conjugacy class of g, if we set P = {γ gγ−1, γ ∈ 0}, we can define the
trace and the norm of P by Tr(P)= Tr(g) and NP = N (g). Moreover, we say that g (and P) is primitive
if g cannot be expressed as a positive power (greater than one) of another element g0 ∈ 0. Every class
P can then be written as P = Pν0 for some primitive conjugacy class P0 and some positive integer ν ≥ 1.

For X > 0 define the counting function

π0(X)= ]{P0 : NP0 ≤ X}. (1-1)

This work was supported by the Max Planck Institut für Mathematik. We would like to record our thanks to the Institute for the
excellent working conditions.
MSC2010: primary 11F72; secondary 11L05, 11M36.
Keywords: prime geodesic theorem, Selberg trace formula, Kuznetsov trace formula, Kloosterman sums.
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A hyperbolic conjugacy class P determines a closed geodesic on the Riemann surface 0\H, and
its length is given exactly by log NP . For this reason we say that π0(X) in (1-1) counts primitive
hyperbolic conjugacy classes in 0, lengths of primitive geodesics on 0\H, or, by abusing language,
“prime” geodesics.

It is a result from the middle of the last century (see e.g., Huber [1961], although the result was already
known to Selberg) that as X→∞ we have the asymptotic formula

π0(X)∼ li(X), (1-2)

where li(X) is the logarithmic integral. The asymptotic coincides with that of the prime counting function,
since we have

π(X)= ]{p ≤ X : p prime} ∼ li(X) as X→∞. (1-3)

The structure of the two problems is also similar. The study of primes is strictly related to the study of
the zeros of the Riemann zeta function ζ(s); on the other hand, for primitive geodesics we need to study
the zeros of the Selberg zeta function Z0(s), which is defined for <(s) > 1 by

Z0(s)=
∏
P0

∞∏
ν=0

(1− (NP0)
−ν−s),

the outer product ranging over primitive hyperbolic classes in 0, and extends to a meromorphic function
on the complex plane.

It is an interesting question to determine the correct rate of the approximation in (1-2) and (1-3), namely
to prove optimal upper bounds on the differences

π(X)− li(X) and π0(X)− li(X). (1-4)

In the case of primes, the conjectural estimate |π(X)− li(X)| � X1/2 log X is equivalent to the Riemann
hypothesis (see e.g., [Ivić 1985, Theorem 12.3]).

To understand what type of control we should expect on the difference on the right in (1-4), we
introduce the weighted counting function

ψ0(X)=
∑

NP≤X

30(NP),

where 30(NP)= log(NP0) if P is a power of the primitive conjugacy class P0 and 30(x)= 0 otherwise.
The function ψ0(X) is the analogous of the classical summatory von Mangoldt function ψ(X) in the
theory of primes, and studying π0(X) is equivalent to study ψ0(X), but it is easier to work with the latter.

The asymptotic (1-2) for π0(X) translates into ψ0(X)∼ X as X tends to infinity. The spectral theory
of automorphic forms provides a finite number of additional secondary terms and we define the complete
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main term M0(X) to be the function

M0(X)=
∑

1
2<s j≤1

X s j

s j
, (1-5)

where s j is defined by λ j = s j (1− s j ), λ j are the eigenvalues of the Laplace operator 1 acting on
L2(0\H), and the sum is restricted to the small eigenvalues, that is, those satisfying 0≤ λ j <

1
4 . Since

the eigenvalues of 1 form a discrete set with no accumulation points, the sum in (1-5) is finite. The
remainder P0(X) is then defined as

P0(X)= ψ0(X)−M0(X).

Various types of pointwise upper bounds have been proved in the past years on P0(X), and we review
them in Remark 1.5 below. In a different direction, it is possible to study the moments of P0(X), and this
has been neglected so far.

In the case of the prime number theorem, it is a classical result (assuming the Riemann hypothesis)
that the normalized remainder

ψ(ey)− ey

ey/2

admits moments of every order and a limiting distribution with exponentially small tails (see [Wintner
1935, p. 242] and [Rubinstein and Sarnak 1994, Theorem 1.2]). The aim of this paper is to prove the
following estimate on the second moment of P0(X).

Theorem 1.1. Let 0 be a cofinite Fuchsian group. For A� 1 we have

1
A

∫ 2A

A
|P0(X)|2 d X � A4/3.

Remark 1.2. By construction the zeros of the Selberg zeta function correspond to the eigenvalues of 1.
The zeros corresponding to small eigenvalues give rise to the secondary terms in the definition of M0(X),
and there are no other zeros in the half plane <(s) > 1

2 . In this sense Z0(s) satisfies an analogous of the
Riemann hypothesis, and the fact suggests that we might have

P0(X)� X1/2+ε
∀ε > 0, (1-6)

since this is the case for the primes under RH. However, the same method of proof fails, due to the
abundance of zeros of Z0(s) (which in turn is related to the fact that Z0(s) is a function of order two,
while ζ(s) is of order one), and only gives

P0(X)� X3/4. (1-7)

For a proof we refer to [Iwaniec 1995, Theorem 10.5]. On the other hand, it is possible to prove that (1-6), if
true, is optimal, since we have the Omega result by Hejhal [1983, Theorem 3.8, p. 477, and note 18, p. 503]

P0(X)=�±(X1/2−δ) ∀δ > 0,
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which can be strengthened to �±(X1/2(log log X)1/2) for cocompact groups and congruence groups.

Remark 1.3. Recently Koyama [2016] and Avdispahić [2017; 2018] have tried an approach to find upper
bounds on P0(X) using a lemma of Gallagher [1970, Lemma 1]. Their results are of the type

P0(X)� Xη+ε
∀ε > 0,

where η = 7
10 or η = 3

4 for 0 cocompact or ordinary cofinite, respectively, and with X outside a set
B ⊆ [1,∞) of finite logarithmic measure, that is, such that

∫
B X−1 d X <∞. Theorem 1.1 improves on

this to the extent that η can be taken to be any number greater than 2
3 . Indeed, a direct consequence of

Theorem 1.1 is that for every cofinite Fuchsian group and for every ε > 0, the set

B = {X ≥ 1 : |P0(X)| ≥ X2/3(log X)1+ε}

has finite logarithmic measure. Iwaniec [1984a, p. 187] claims without proof that “it is easy to prove that
P0(X)� X2/3 for almost all X”. Theorem 1.1 proves his claim (up to ε) for X outside a set of finite
logarithmic measure.

In the case of the modular group we can prove a stronger bound than for the general cofinite case. In
this case we can exploit the Kuznetsov trace formula, obtaining the following.

Theorem 1.4. Let G = PSL(2,Z). For A� 1 and every ε > 0,

1
A

∫ 2A

A
|PG(X)|2 d X � A5/4+ε.

Remark 1.5. The estimate in (1-7) is currently the best known pointwise upper bound in the case of
general cofinite Fuchsian groups. For the modular group and congruence groups it is possible to prove
sharper estimates. Iwaniec [1984b, Theorem 2], Luo and Sarnak [1995, Theorem 1.4], Cai [2002, p. 62],
and Soundararajan and Young [2013, Theorem 1.1] have worked on reducing the exponent for the modular
group G = PSL(2,Z). The currently best known result is

PG(X)� Xη+ε, for η = 25
36 and every ε > 0,

due to Soundararajan and Young. The exponent 7
10 , proved by Luo and Sarnak, holds also for congruence

groups, see [Luo et al. 1995, Corollary 1.2], and for cocompact groups coming from quaternion algebras,
see [Koyama 1998].

Observe that not only is the exponent η = 1
2 out of reach, but it seems to be a hard problem reaching

and, afterwards, breaking the barrier η = 2
3 . Iwaniec [1984a, p. 188; 1984b, (12)] suggested that this

follows from the assumption of the Lindelöf hypothesis for Rankin L-functions. In Theorem 1.1 we
prove the bound with the exponent 2

3 on average, unconditionally, for every cofinite Fuchsian group.
Theorem 1.4 is saying that PG(X)� X5/8+ε on average. This goes halfway between the trivial bound
(1-7) and the conjectural estimate (1-6).
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In the proof of Theorem 1.4 we use a truncated formula for ψ0(X), proved by Iwaniec [1984b,
Lemma 1], condensing the analysis of the Selberg trace formula, and relating P0(X) to the spectral
exponential sum

R(X, T )=
∑
t j≤T

X i t j .

The trivial bound for this sum, in view of Weyl’s law (see e.g., [Iwaniec 1995, Corollary 11.2] or [Venkov
1990, Theorem 7.3]), is |R(X, T )| � T 2. Reducing the exponent of T is possible at the cost of some
power of X (see [Iwaniec 1984b; Luo and Sarnak 1995]), and Petridis and Risager conjectured [2017,
Conjecture 2.2] that we should have square root cancellation, that is,

R(X, T )� T 1+εX ε

for every ε > 0. This would give the conjectural bound (1-6) for the modular group. In the appendix to
[Petridis and Risager 2017] Laaksonen provides numerics that support this conjecture. In the proof of
Theorem 1.4 (see Proposition 4.5) we prove that we have

1
A

∫ 2A

A
|R(X, T )|2 d X � T 2+εA1/4+ε,

and hence |R(X, T )| � T 1+εX1/8+ε on average.
The mean square estimate in Theorem 1.4 reduces to proving a similar estimate for certain weighted

sums of Kloosterman sums. We obtain the desired bounds in a relatively clean way by applying the
Hardy–Littlewood–Pólya inequality [Hardy et al. 1934, Theorem 381, p. 288] in a special case: for
0< λ < 1, λ= 2(1− p−1), and {ar } a sequence of nonnegative numbers, then we have

∑
r,s

r 6=s

ar as

|r − s|λ
�λ

(∑
r

a p
r

)2/p

. (1-8)

With more work it is possible to sharpen Theorem 1.4 by replacing Aε by some power of log A. To do
this, one can use a version of (1-8) with explicit implied constant proved by Carneiro and Vaaler [2010,
Corollary 7.2, (7.20)], or the extremal case of (1-8) with (λ, p)= (1, 2), and a logarithmic correction,
proved by Li and Villavert [2011].

We also note that we simply use the Weil bound when estimating the weighted sums of Kloosterman
sums and we do not exploit any cancellation amongst the Kloosterman sums. Exploring this phenomenon
could lead to a power-saving improvement of Theorem 1.4.

For the proof of Theorem 1.1 we use the Selberg trace formula with a suitably chosen test function
that fulfills our needs. In the general case of 0 cofinite, unlike in the modular group case, Iwaniec’s
truncated formula for ψ0(X) is not available. It is probably possible to prove an analogous result, but we
preferred to work directly with the trace formula. In fact, in order to prove his formula, Iwaniec uses
some arithmetic information on the structure of the lengths of closed geodesics on the modular surface
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[Iwaniec 1984b, Lemma 4], namely their connection with primitive binary quadratic forms (proved by
Sarnak [1982, §1]), and it is unclear whether a similar argument works for the general cofinite case.

Remark 1.6. We do not discuss the first moment of P0(X). Following the argument of [Phillips and
Rudnick 1994, Theorems 1.1 and 1.4] it should be possible to prove that for every cofinite Fuchsian group
0 there exists a constant L0 such that we have

lim
A→∞

1
log A

∫ A

1

(
P0(X)
X1/2

)
d X
X
= L0.

2. Proof of Theorem 1.1

In this section we explain the structure of the proof of Theorem 1.1. We decided to keep this section to a
more colloquial tone, and to relegate the technical computations to the next section. Hence the proof of
the theorem is completed in Section 3.

The starting point of our analysis is the Selberg trace formula, that we recall from the book of Iwaniec
[1995, Theorem 10.2]. An even function g is said to be an admissible test function in the trace formula if
its Fourier transform h(t) (see (2-4) for the convention used to define the Fourier transform) satisfies the
conditions [Iwaniec 1995, (1.63)]

h(t) is even,

h(t) is holomorphic in the strip |=(t)| ≤ 1
2 + ε,

h(t)� (1+ |t |)−2−ε in the strip. (2-1)

For an admissible test function g, the Selberg trace formula is the identity

∑
P

g(log NP)
2 sinh((log NP)/2)

30(NP)= IE + EE + PE + DS+CS+ AL , (2-2)

where the sum on the left runs over hyperbolic conjugacy classes in 0, and the terms appearing on the
right are explained as follows.

The term IE denotes a contribution coming from the identity element, which forms a conjugacy class
on its own. We have

IE =−
vol(0\H)

4π

∫
+∞

−∞

th(t) tanh(π t) dt.

The term EE denotes a contribution from the elliptic conjugacy classes in 0 (there are only finitely many
such classes). Denote by R a primitive elliptic conjugacy class, and let m = mR > 1 be the order of R.
We have

EE =−
∑
R

∑
1≤`<m

(
2m sin

(
π`

m

))−1 ∫ +∞
−∞

h(t)
cosh

(
π
(
1− 2`

m

)
t
)

cosh(π t)
dt.
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The term PE denotes a contribution from the parabolic conjugacy classes, which are associated to the
cusps of 0. Let C denote the total number of inequivalent cusps. Then we have

PE =
C

2π

∫
+∞

−∞

h(t)ψ(1+ i t) dt +Cg(0) log 2.

Here ψ(z) is the digamma function, i.e., the logarithmic derivative of the gamma function, ψ(z) =
(0′/0)(z). The term DS corresponds to the discrete spectrum, and is given by

DS =
∑

t j

h(t j ),

where the sum runs over the spectral parameter t j , associated to the eigenvalue λ j of the Laplace operator
via the identity λ j =

1
4 + t2

j

(
here and in the following we assume that t j ∈

[
0, i

2

]
for λ j ∈

[
0, 1

4

]
, and

t j > 0 for λ j >
1
4

)
. The term CS comes from the continuous spectrum, and is given by

CS =
1

4π

∫
+∞

−∞

h(t)
−ϕ′

ϕ

( 1
2 + i t

)
dt,

where ϕ(s) is the scattering determinant for the group 0 [Iwaniec 1995, p. 140]. Finally, the term AL is a
single term that comes from a combination of the spectral part and the geometric part [Iwaniec 1995,
(10.11) and (10.17)], and it is defined by AL = 1

4 h(0)Tr
(
8
( 1

2

)
− I
)
, where 8(s) is the scattering matrix

associated to 0.
A first naive choice of test function in the Selberg trace formula (2-2) is

gρ(x)= 2 sinh
( 1

2 |x |
)
1[0,ρ](|x |), (2-3)

where ρ = log X . If we choose g(x) in this way, then the left hand side of (2-2) reduces exactly to the
function ψ0(X). Unfortunately the function gρ(x) in (2-3) is not an admissible test function, and we
need therefore to take a suitable approximation of it. An analysis of the right hand side in (2-2) then leads
to the desired results. To see that gρ is not admissible in the trace formula, consider its Fourier transform
hρ(t). We have

hρ(t)=
∫

R

gρ(x)e−i t x dx = 2
∫ ρ

0
sinh

( 1
2 x
)
(ei t x
+ e−i t x) dx . (2-4)

The integral can be computed directly, which gives, for t =± i
2 ,

hρ
(
±

1
2 i
)
= 4 sinh2( 1

2ρ
)
, (2-5)

and, for t 6= ± i
2 ,

hρ(t)=
2

1
2 + i t

cosh
(
ρ
( 1

2 + i t
))
+

2
1
2 − i t

cosh
(
ρ
( 1

2 − i t
))
−

2
1
4 + t2

. (2-6)

The last integral in (2-4) shows that hρ(t) is even and entire in t , but from (2-6) we see that we only have
hρ(t)� t−1 as t tends to infinity, and so we do not have sufficient decay as required in (2-1).
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We construct two functions g±(x) that approximate from above and below the function gρ , and are
admissible in the Selberg trace formula. Let q(x) be an even, smooth, nonnegative function on R with
compact support contained in [−1, 1] and unit mass (i.e., ‖q‖1 = 1). Let 0< δ < 1

4 and define

qδ(x)=
1
δ

q
(

x
δ

)
.

For ρ > 1 define g± to be the convolution product of the shifted function gρ±δ with the function qδ,
namely

g±(x)= (gρ±δ ∗ qδ)(x)=
∫

R

gρ±δ(x − y)qδ(y) dy. (2-7)

Taking convolution products has the advantage that the Fourier transform of the convolution is the
pointwise product of the Fourier transforms of the two factors. Hence if we denote by q̂δ(t) the Fourier
transform of qδ, that is,

q̂δ(t)=
∫

R

qδ(x)e−i t x dx, (2-8)

and by h± the Fourier transform of g±, then we obtain

h±(t)= hρ±δ(t)q̂δ(t). (2-9)

Since the function q̂δ(t) is entire and satisfies, for |=(t)| ≤ M <∞,

q̂δ(t)�
1

1+ δk |t |k
∀k ≥ 0

(see Lemma 3.1), we conclude that h±(t) is an entire function and satisfies h±(t)� (1+|t |)−2−ε for some
ε > 0 in the strip |=(t)| ≤ 1

2 + ε, as required in (2-1). This shows that the function g± is an admissible
test function in the trace formula. By construction, the function g±(x) is supported on |x | ∈ [0, ρ+ δ± δ].
Moreover we have the inequalities (see Lemma 3.2), for x ≥ 0,

g−(x)+ O(δex/21[0,ρ](x))≤ gρ(x)≤ g+(x)+ O(δex/21[0,ρ](x)).

If we set

ψ±(X)=
∑

P

g±(log NP)
2 sinh((log NP)/2)

30(NP),

then using the asymptotic ψ0(X)∼ X we conclude that we have the inequalities

ψ−(X)+ O(δX)≤ ψ0(X)≤ ψ+(X)+ O(δX).

From this we deduce that we have

1
A

∫ 2A

A
|P(X)|2 d X � 1

A

∫ 2A

A
|ψ±(X)−M0(X)|2 d X + O(δ2 A2), (2-10)

and in order to prove Theorem 1.1 we give bounds on the right hand side in (2-10). We found convenient
to pass to the logarithmic variable ρ = log X , since this simplifies slightly the computations. Moreover,
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we insert a weight function in the integral to pass from the sharp mean square to a smooth one. Consider
a smooth, nonnegative real function w(ρ), compactly supported in [−ε, 1+ε], for 0< ε < 1

4 . In addition,
assume that 0≤ w(ρ)≤ 1, and that w(ρ)= 1 for ρ ∈ [0, 1]. Let

wR(ρ)= w(ρ− R). (2-11)

In view of the inequality

1
A

∫ 2A

A
|ψ±(X)−M0(X)|2 d X �

∫
R

|ψ±(eρ)−M0(eρ)|2wR(ρ) dρ, (2-12)

where R = log A, we see that in order to estimate the last integral in (2-10) it suffices to upper bound the
integral on the right in (2-12). In the following, abusing notation, we write ψ±(ρ) in place of ψ±(eρ),
and M0(ρ) in place of M0(eρ).

At this point we can exploit the Selberg trace formula to analyze ψ±. The terms of the discrete spectrum
DS associated to the small eigenvalues λ j ∈

[
0, 1

4

] (
corresponding to the spectral parameter t j in the

interval
[
0, i

2

]
, and for technical convenience we include the eigenvalue λ j =

1
4

)
need particular care. We

define M±(ρ) to be the sum of such terms, namely

M±(ρ) :=
∑

t j∈
[

0, i
2

] h±(t j ).

In view of the definition of the complete main term in (1-5) it is easy to prove (see Lemma 3.3) that we have

M±(ρ)= M0(ρ)+ O(δeρ + eρ/2).

Hence we have

ψ±(ρ)−M0(ρ)= ψ±(ρ)−M±(ρ)+ O(δeρ + eρ/2)

= IE±+ EE±+ PE±+ DS′
±
+CS±+ AL±+ O(δeρ + eρ/2), (2-13)

where the term DS′
±

denotes now the contribution from the discrete spectrum restricted to the eigenvalues
λ j >

1
4 . The first three terms and the term AL± in (2-13) can be bounded pointwise (see Lemma 3.5–3.7) by

|IE±| + |EE±| + |PE±| + |AL±| � eρ/2+ log(δ−1).

Squaring and integrating in (2-13) we obtain therefore∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ

�

∫
R

|DS′
±
|
2wR(ρ) dρ+

∫
R

|CS±|2wR(ρ) dρ+ O(eR
+ δ2e2R

+ log2(δ−1)). (2-14)

In Propositions 3.10 and 3.11 we prove that the following estimate holds:∫
R

|DS′
±
|
2wR(ρ) dρ+

∫
R

|CS±|2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1). (2-15)
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Combining (2-14) and (2-15) we obtain∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ�

eR

δ
+ eR/2 log2(δ−1)+ δ2e2R,

and choosing δ = e−R/3 to optimize the first and the last term, we arrive at the bound∫
R

|ψ±(s)−M0(s)|2wR(ρ) dρ� e4R/3.

Recalling (2-10) and (2-12), and setting R = log A, we conclude that we have

1
A

∫ 2A

A
|P(X)|2 d X �

∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ+ O(δ2 A2)� A4/3.

This proves Theorem 1.1.

3. Technical lemmata

In this section we prove the auxiliary results needed in Section 2 to prove Theorem 1.1. We start with a
simple computation to bound the function q̂δ(t) and its derivatives.

Lemma 3.1. Let 0< δ < 1
4 , q̂δ(t) as in (2-8), and let t ∈ R. Let j, k ∈ N, j, k ≥ 0. We have∣∣∣∣d j q̂δ

dt j (t)
∣∣∣∣� δ j

1+ |δt |k
,

and the implied constant depends on j and k.

Proof. From the definition of q̂δ(t) we have

d j q̂δ
dt j (t)=

d j

dt j

∫
R

q(x)e−i tδx dx = (−iδ) j
∫

R

x j q(x)e−i tδx dx . (3-1)

Bounding in absolute value we get
d j q̂δ
dt j (t)� δ j . (3-2)

Integrating by parts in the last integral of (3-1), and using that q(x) is smooth and has compact support,
we obtain instead

d j q̂δ
dt j (t)= (−1)k

(−iδ) j

(−i tδ)k

∫
R

e−i tδx dk

dxk (x
j q(x)) dx �

δ j

|δt |k
. (3-3)

Combining (3-2) and (3-3) we obtain

d j q̂δ
dt j (t)� δ j min(1, |δt |−k)�

δ j

1+ |δt |k
.

This proves the lemma. �
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The function q̂δ(t) is used to construct the convolution product g± = gρ±δ ∗ qδ that approximate
the function gρ . In the next lemma we show that gρ is bounded from above and below by g+ and g−
respectively, up to a small error.

Lemma 3.2. Let ρ > 1 and 0< δ < 1
4 . Let gρ(x) and g±(x) as in (2-3) and (2-7) respectively. For x ≥ 0

we have
g−(x)+ O(δex/21[0,ρ](x))≤ gρ(x)≤ g+(x)+ O(δex/21[0,ρ](x)). (3-4)

Proof. Observe that g± = gρ ∗ qδ, and since both factors in the convolution product are nonnegative,
we conclude that g±(x) ≥ 0 for every x ∈ R. Observe also that g± is supported on the compact set
{|x | ≤ ρ+ δ± δ}. By definition of g± we can therefore write, for x ≥ 0,

g±(x)= 2
∫

R

1[0,ρ±δ](|x − y|) sinh
( 1

2 |x − y|
)
qδ(y) dy = 2 · 1[0,ρ+δ±δ](x)

∫
Q

sinh
( 1

2 |x − y|
)
qδ(y) dy,

where Q = [max{−δ, x − (ρ± δ)}, δ]. For 0≤ x ≤ δ we have

gρ(x)= O(δ) and g±(x)= O(δ),

so that (3-4) holds trivially.
For x > δ we have x − y > 0 for every y ∈ Q, and using the addition formula for the hyperbolic sine

we can write

g±(x)= 2 · 1[0,ρ+δ±δ](x)
∫

Q

[
cosh

( 1
2 y
)

sinh
( 1

2 x
)
− cosh

( 1
2 x
)

sinh
( 1

2 y
)]

qδ(y) dy

= 2 · 1[0,ρ+δ±δ](x) sinh
( 1

2 x
) ∫

Q
qδ(y) dy+ O(δex/21[0,ρ+δ±δ](x)). (3-5)

Now for δ < x < ρ± δ− δ we have Q = [−δ, δ], so that (3-5) reduces to

g±(x)= gρ(x)+ O(δex/21[0,ρ+δ±δ](x)).

For ρ− 2δ ≤ x ≤ ρ we can bound by positivity in (3-5)

g−(x)≤ gρ(x)+ O(δex/21[0,ρ](x)),

so that the first inequality in (3-4) holds in this case. Finally for ρ ≤ x ≤ ρ+2δ we observe that gρ(x)= 0
and g+(x)≥ 0, and so we conclude that the second inequality in (3-4) holds in this case. This proves the
lemma. �

The function h±(t) associated to g±(x) gives, for t corresponding to small eigenvalues, the terms appear-
ing in the definition of the main term M0(X) in (1-5), up to small error. We prove this in the next lemma.

Lemma 3.3. Let ρ > 1, 0 < δ < 1
4 , and let h±(t) as in (2-9). Let t j ∈

(
0, i

2

]
be the spectral parameter

associated to the eigenvalue λ j ∈
[
0, 1

4

)
. There exists 0< ε0 < 1

4 such that

h±(t j )=
eρ(1/2+|t j |)

1
2 + |t j |

+ O(δeρ + eρ(1/2−ε0)). (3-6)



582 Giacomo Cherubini and João Guerreiro

Proof. Recall that there are only finitely many eigenvalues λ j in
(
0, 1

4

)
, and therefore there exists

0< ε0 < 1
4 such that |t j | ≥ ε0 for every λ j ∈

(
0, 1

4

)
. Observe that for |t | ≤ 1

2 we have

q̂δ(t)=
∫

R

q(x)e−i tδx dx = 1+ O(δ|t |).

The claim then follows from (2-5) and (2-6), and from the fact that h±(t)= hρ±δ(t)q̂δ(t). �

Remark 3.4. Equation (3-6) also holds for λ j =
1
4 , except that we have to multiply the first term by a

factor of 2.

The next three lemmata show that in the problem of estimating P0(X) using the Selberg trace formula
we can neglect the terms coming from the identity class, the elliptic classes, and the parabolic classes, as
they contribute a small quantity.

Lemma 3.5. Let ρ > 1, 0< δ < 1
4 , and let g± and h± as in (2-7) and (2-9) respectively. Then we have∫
+∞

−∞

th±(t) tanh(π t) dt �
eρ/2

ρ2 + log(δ−1).

Proof. Recall that we have h±(t)= hρ(t)q̂δ(t), and that by Lemma 3.1 we have q̂δ(t)� (1+|δt |k)−1 for
every k ≥ 0. Using (2-6) and the definition of the hyperbolic cosine we can write

hρ±δ(t)

=
2

1+ 2i t
(e(ρ±δ)(1/2+i t)

+ e−(ρ±δ)(1/2+i t))+
2

1− 2i t
(e(ρ±δ)(1/2−i t)

+ e−(ρ±δ)(1/2−i t))−
2

1
4 + t2

. (3-7)

Bounding in absolute value the integrand associated to the last term in (3-7), we obtain∫
R

∣∣∣∣ t q̂δ(t) tanh(π t)
1
4 + t2

∣∣∣∣ dt �
∫

R

dt
(1+ |t |)(1+ |δt |)

� log(δ−1)+ 1. (3-8)

Now consider the integrand associated to the first term in (3-7) We integrate by parts twice and obtain

I := 2
∫

R

t q̂δ(t) tanh(π t)e(ρ±δ)(1/2+i t)

1+ 2i t
dt

= 2
2∑

j=1

(−1) j−1 e(ρ±δ)(1/2+i t)

(i(ρ± δ)) j

d j−1

dt j−1

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)∣∣∣∣+∞
t=−∞

+ 2
∫

R

e(ρ±δ)(1/2+i t)

(i(ρ± δ))2
d2

dt2

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)
dt.

By Lemma 3.1 we see that the boundary terms vanish, and we can bound

d2

dt2

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)
�

1
(1+ |δt |k)

(
δ2
+

1
1+ |t |2

)
,

for every k ≥ 0, with implied constant depending on k. Fixing k > 1 we obtain

I �
eρ/2

ρ2

∫
R

1
(1+ |δt |k)

(
δ2
+

1
1+ |t |2

)
dt �

eρ/2

ρ2 . (3-9)
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The other terms in (3-7) are treated similarly, and are bounded by the same quantity. Adding (3-8) and
(3-9) we obtain the desired estimate. �

Lemma 3.6. Let ρ > 1, 0< δ < 1
4 , and h± as in (2-9). Let m, ` ∈ N, with m ≥ 2 and 1≤ ` < m. Then∫

R

h±(t)
cosh(π(1− 2`/m)t)

cosh(π t)
dt �

eρ/2

ρ2 ,

with implied constant that depends on m and `.

Proof. Recall that h±(t)= hρ±δ(t)q̂δ(t), and use (3-7) to express hρ±δ(t). The integrand associated to
the last term in (3-7) is bounded by∫

R

cosh(π(1− 2`/m)t)
(1+ t2) cosh(π t)

dt �
∫

R

dt
1+ t2 � 1.

Now consider the term exp
(
(ρ± δ)

( 1
2 + i t

))
in (3-7). The corresponding integral contributes

J := 2
∫

R

e(ρ±δ)(1/2+i t)q̂δ(t) cosh(π(1− 2`/m)t)
(1+ 2i t) cosh(π t)

dt

= 2
2∑

j=1

(−1) j−1 e(ρ±δ)(1/2+i t)

(i(ρ± δ)) j

d j−1

dt j−1

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)∣∣∣∣+∞
t=−∞

+2
∫

R

e(ρ±δ)(1/2+i t)

(i(ρ± δ))2
d2

dt2

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)
dt.

The boundary terms vanish, and by Lemma 3.1 we can bound

d2

dt2

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)
�

1
(1+ |t |)(1+ |δt |k)

(
1

1+ |t |2
+ δ2

)
where the implied constant depends on m and `. Hence we get

J �
eρ/2

ρ2

∫
R

1
(1+ |t |)(1+ |δt |k)

(
1

1+ |t |2
+ δ2

)
dt �

eρ/2

ρ2 .

The terms associated to the other exponentials in (3-7) are treated similarly, and are bounded by the same
quantity. �

Lemma 3.7. Let ρ > 1, 0< δ < 1
4 , and let g± and h± as in (2-7) and (2-9). Then

g±(0) log 2+
1

2π

∫
+∞

−∞

h±(t)ψ(1+ i t) dt � δeρ/2+ log(δ−1).

Proof. We use here the formula given in [Iwaniec 1995, (10.17)] to get back to an integral involving g±.
We have

g±(0) log 2+
1

2π

∫
+∞

−∞

h±(t)ψ(1+ i t) dt =
h±(0)

4
− γ g±(0)+

∫
∞

0
log
(
sinh

( 1
2 x
))

dg±(x). (3-10)
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By (3-7) we know that
h±(0)

4
= eρ/2+ O(δeρ/2+ 1), (3-11)

and by definition of g±(x) we have g±(x)= O(δ) for |x | ≤ δ. The last integral in (3-10) is analyzed as
follows. For x ∈ [0, δ] we bound

d
dx

g±(x)= (gρ±δ ∗ q ′δ)(x)�
∫ δ

−δ

sinh
( 1

2 |x − y|
)
|q ′δ(y)| dy� 1

δ
sinh(δ)‖q ′‖1� 1,

so that we have, uniformly in δ,∫ δ

0
log
(
sinh

( 1
2 x
))

dg±(x)�
∫ δ

0

∣∣log
(
sinh

( 1
2 x
))∣∣ dx � 1.

For x > δ we integrate by parts obtaining∫
∞

δ

log
(
sinh

( 1
2 x
))

dg±(x)=−g±(δ) log
(
sinh

( 1
2δ
))
−

1
2

∫
∞

δ

g±(x)

sinh
( 1

2 x
) cosh

( 1
2 x
)

dx .

Since g±(δ)� δ, the boundary term is bounded by O(δ log(δ−1)). If we write cosh
( x

2

)
= sinh

( x
2

)
+e−x/2,

the integral associated to e−x/2 can be bounded by∫
∞

δ

g±(x)e−x/2

sinh
( 1

2 x
) dx �

∫ 1

δ

dx
x
+

∫
∞

1
e−x/2 dx � log(δ−1)+ 1.

Finally we have

−
1
2

∫
∞

δ

g±(x) dx =−2 cosh
( 1

2(ρ± δ)
)
+ O(1)=−eρ/2+ O(δeρ/2+ 1).

The exponential cancels with the first term in (3-11), and combining the other estimates we obtain the
claim. �

We turn now our attention to finding upper bounds for the mean square of the spectral side in the
Selberg trace formula. We start with an estimate for the integral of h±(t1)h±(t2).

Lemma 3.8. Let 0 < δ < 1
4 , let hρ±δ(t) be as in (2-9), and let wR(ρ) be as in (2-11). Let R > 1, and

t1, t2 ∈ R. Then we have∫
R

hρ±δ(t1)hρ±δ(t2)wR(ρ) dρ�
eRv(t1)v(t2)
1+ |t1− t2|2

+
eRv(t1)v(t2)
1+ |t1+ t2|2

+ eR/2v(t2
1 )v(t

2
2 ),

where v(t)= (1+ |t |)−1, and the implied constant does not depend on δ.

Proof. In order to express hρ±δ we consider again (3-7).
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Multiplying hρ±δ(t1) with hρ±δ(t2), the product of the first exponential in (3-7) (from the factor
hρ±δ(t1)) and the last term from the factor hρ±δ(t2) contributes∫

R

4e(ρ±δ)(1/2+i t1)

(1+ 2i t1)
( 1

4 + t2
2

)wR(ρ) dρ =
∫

R

2e(ρ±δ)(1/2+i t1)w′R(ρ)( 1
2 + i t1

)2( 1
4 + t2

2

) dρ� eR/2v(t2
1 )v(t

2
2 )‖w

′
‖1

� eR/2v(t2
1 )v(t

2
2 ). (3-12)

Now consider the product of the first exponential in (3-7) for hρ±δ(t1) and the same term for hρ±δ(t2).
This contributes∫

R

4e(ρ±δ)(1+i(t1+t2))

(1+ 2i t1)(1+ 2i t2)
wR(ρ)dρ� eRv(t1)v(t2)min(1, |t1+ t2|−2

‖w′′‖1)�
eRv(t1)v(t2)
1+ |t1+ t2|2

. (3-13)

The other terms in the product hρ±δ(t1)hρ±δ(t2) are bounded similarly by (3-12) and (3-13), except that
we need to replace |t1+ t2| by |t1− t2| when we integrate the product exp((ρ± δ)(±1± i(t1− t2)). This
concludes the proof. �

In order to exploit at best the bound proved in the previous lemma, we estimate the size of the spectrum
on unit intervals.

Lemma 3.9. Let 0 be a cofinite Fuchsian group, let ϕ(s) be the scattering determinant associated to 0,
and let T > 1. We have

]{T ≤ t j ≤ T + 1}+
∫

T≤|t |≤T+1

∣∣∣∣−ϕ′ϕ ( 1
2 + i t

)∣∣∣∣ dt � T .

Proof. Recall Weyl’s law in its strong form (see [Venkov 1990, Theorem 7.3])

]{t j ≤ T }+
1

4π

∫ T

−T

−ϕ′

ϕ

( 1
2 + i t

)
dt =

vol(0\H)
4π

T 2
+

C

π
T log T + O(T ),

where we recall that C is the number of inequivalent cusps of 0. Consider the equation above at
the point T + 1, and subtract from it the same quantity for T . In order to shorten notation we write
f (t)=−(ϕ′/ϕ)

( 1
2 + i t

)
. We get

]{T ≤ t j ≤ T + 1}+
1

4π

∫
−T

−T−1
f (t) dt +

1
4π

∫ T+1

T
f (t) dt = O(T ). (3-14)

The function f (t) is bounded from below by a constant k that depends on the group (this follows from
the Maass–Selberg relations, see [Iwaniec 1995, (10.9)]). Hence we have∫

−T

−T−1
f (t) dt ≥ k.

Since the number ]{T ≤ t j ≤ T + 1} is nonnegative, we can write∫ T+1

T
f (t) dt ≤

∫ T+1

T
f (t) dt +

∫
−T

−T−1
f (t) dt − k+ 4π · ]{T ≤ t j ≤ T + 1} = O(T )− k = O(T ).
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Again from the fact that f (t) is bounded from below by a constant, we infer that in fact we have∫ T+1

T
| f (t)| dt � T .

Similarly we find ∫
−T

−T−1
| f (t)| dt � T,

and from (3-14) we conclude that we also have ]{T ≤ t j ≤ T + 1} � T . This proves the lemma. �

At this point we can prove bounds on the mean square of the discrete and continuous spectrum in the
Selberg trace formula. We discuss first the discrete spectrum.

Proposition 3.10. Let 0< δ < 1
4 , let h± as in (2-9), and let R > 1. We have∫

R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ)dρ�
eR

δ
+ eR/2 log2(δ−1).

Proof. Recall that h±(t)= hρ±δ(t)q̂δ(t), and that q̂δ(t)� (1+|δt |k)−1 for every k ≥ 0. Using Lemma 3.9
this implies that the series ∑

t j>0

h±(t j )

is absolutely convergent, and we can write∫
R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ) dρ =
∑
t j>0

∑
t`>0

q̂δ(t j )q̂δ(t`)
∫

R

hρ±δ(t j )hρ±δ(t`)wR(ρ) dρ.

By Lemma 3.8 we can estimate the integral and bound the double sum by

eR
∑

t j ,t`>0

|q̂δ(t j )q̂δ(t`)|v(t1)v(t2)
1+ |t j − t`|2

+ eR/2
∑

t j ,t`>0

|q̂δ(t j )q̂δ(t`)|v(t2
1 )v(t

2
2 ), (3-15)

where v(t) = (1+ |t |)−1. Using Lemma 3.1 to bound q̂δ(t)� (1+ |δt |k)−1 for every k ≥ 0, we can
estimate the second sum in (3-15) by

eR/2
( ∑

t j≤δ−1

1
t2

j
+

∑
t j>δ−1

1
δt3

j

)2

� eR/2(log2(δ−1)+ 1).

Now consider the first sum in (3-15). By symmetry and positivity, we can consider only the sum over
t`≥ t j . Moreover we split the sum in order to optimize the bounds available. Consider a unit neighborhood
of the diagonal t` = t j . Using Lemma 3.9 we can estimate

eR
∑
t j>0

∑
t j≤t`≤t j+1

|q̂δ(t j )q̂δ(t`)|
(1+ |t j |)(1+ |t`|)

� eR
∑

t j≤δ−1

1
t j

∑
t j≤t`≤t j+1

1
t`
+

eR

δ2

∑
t j>δ−1

1
t2

j

∑
t j≤t`≤t j+1

1
t2
`

�
eR

δ
.
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The tail of the double sum, that is, the range t j > δ
−1 and t` > t j +1, can be analyzed (we follow here the

same method as in Cramér [1922]) by using a unit interval decomposition for the sum over t`, together
with Lemma 3.9, to get

eR

δ2

∑
t j>δ−1

1
t2

j

∑
t`>t j+1

1
t2
` |t`− t j |

2
�

eR

δ2

∑
t j>δ−1

1
t2

j

∞∑
k=1

1
(t j + k)k2 �

eR

δ2

∑
t j>δ−1

1
t3

j

�
eR

δ
.

Finally, the range t j ≤ δ
−1 and t` > t j + 1 is bounded by

� eR
∑

t j≤δ−1

1
t j

∑
t`>t j+1

1
t`|t`− t j |

2 � eR
∑

t j≤δ−1

1
t j

∞∑
k=1

1
k2 �

eR

δ
.

We conclude that we have ∫
R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1),

as claimed. �

The analysis of the continuous spectrum is similar, and we obtain the same bounds. With the proposition
below we conclude the list of auxiliary results needed to prove Theorem 1.1.

Proposition 3.11. Let 0< δ < 1
4 and h± be as in (2-9). Let R ≥ 1. Then∫

R

∣∣∣∣∫
R

h±(t)
−ϕ′

ϕ

( 1
2 + i t

)∣∣∣∣2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1). (3-16)

Proof. Recall that we have h±(t) = hρ±δ(t)q̂δ(t), and that q̂δ(t)� (1+ |δt |k)−1 for every k ≥ 0. For
simplicity we write

f (t)=
−ϕ′

ϕ

( 1
2 + i t

)
.

Let J denote the integral in (3-16). Due to the decay properties of q̂δ and to Lemma 3.9, J is absolutely
convergent, and so we can write

J =
∫

R

∫
R

f (t1) f (t2)q̂δ(t1)q̂δ(t2)
∫

R

hρ±δ(t1)hρ±δ(t2)wR(ρ) dρdt1dt2.

The innermost integral is bounded using Lemma 3.8. This gives

J � eR
∫

R

∫
R

| f (t1) f (t2)q̂δ(t2)q̂δ(t2)|
(1+ |t1|)(1+ |t2|)(1+ |t1− t2|2)

dt1dt2+ eR/2
∫

R

∫
R

| f (t1) f (t2)q̂δ(t2)q̂δ(t2)|
(1+ t2

1 )(1+ t2
2 )

dt1dt2.

(3-17)
The second integral in (3-17) is bounded by(∫ δ−1

0

| f (t)|
1+ t2 dt +

∫
∞

δ−1

| f (t)|
δt3 dt

)2

� (log(δ−1)+ 1)2� log2(δ−1),
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where in the first inequality we have used a unit interval decomposition of the domain of integration, and
Lemma 3.9 to bound the integral of | f (t)| in unit intervals. Now consider the first integral in (3-17). By
symmetry and positivity we can consider only the integral over t2 ≥ t1 ≥ 0. A unit neighborhood of the
diagonal t1 = t2 gives∫ δ−1

0

| f (t1)|
1+ t1

∫ t1+1

t1

| f (t2)|
1+ t2

dt2dt1+
∫
∞

δ−1

| f (t1)|
δ2t3

1

∫ t1+1

t1

| f (t2)|
δ2t3

2

dt2dt1

�

∫ δ−1

0

| f (t1)|
1+ t1

dt1+
∫
∞

δ−1

| f (t1)|
δ4t4

1
dt1�

1
δ
.

The tail of the double integral, that is, the range t1 ≥ δ−1 and t2 ≥ t1+ 1, can be bounded as follows:∫
∞

δ−1

| f (t1)|
δ2t3

1

∫
∞

t1+1

| f (t2)|
δ2t3

2 |t2− t1|2
dt2dt1�

∫
∞

δ−1

| f (t1)|
δ4t5

1

dt1� 1.

The range t1 ≤ δ−1 and t2 ≥ t1+ 1 contributes∫ δ−1

0

| f (t1)|
1+ t1

∫
∞

t1+1

| f (t2)|
(1+ t2)(1+ δ2t2

2 )|t2− t1|2
dt2dt1�

∫ δ−1

0

| f (t1)|
1+ t1

dt1� δ−1.

Summarizing, we have showed that we have the bound

J �
eR

δ
+ eR/2 log2(δ−1),

which is what we wanted. This proves the proposition. �

4. Modular group

This section is devoted to the proof of Theorem 1.4, concerning the case G = PSL2(Z). Our approach
starts with a lemma of Iwaniec [1984b, Lemma 1], which gives

ψG(X)= X + 2<
(∑

t j≤T

X1/2+i t j

1
2 + i t j

)
+ O

(
X
T

log2 X
)
,

where 1 ≤ T ≤ X1/2(log X)−2 (and it is understood that the sum runs over t j > 0). Note that in this
case the only small eigenvalue of 1 is λ= 0, so that MG(X)= X and PG(X)= ψG(X)− X . From the
equation above we deduce that

1
A

∫ 2A

A
|PG(X)|2 d X � 1

A

∫ 2A

A

∣∣∣∣∣∑
t j≤T

X1/2+i t j

1
2 + i t j

∣∣∣∣∣
2

d X + A2

T 2 log2 A. (4-1)

We now describe the outline of the proof of Theorem 1.4. The main idea is to use the Kuznetsov trace
formula to estimate the mean square of ∑

t j≤T

X1/2+i t j

1
2 + i t j
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or, equivalently by partial summation, the mean square of

R(X, T )=
∑
t j≤T

X i t j . (4-2)

Therefore, we start by setting up the Kuznetsov trace formula with a test function that gives us a smooth
version of the sum in (4-2), and we estimate the mean square of the weighted sum of Kloosterman sums
that show up in its geometric side (Lemma 4.1). This allows us to bound the spectral side of the trace
formula (Lemma 4.2). In order to control the behavior of the Fourier coefficients in the spectral sums of
the trace formula we use a smoothed average of these sums. This way we obtain (Lemma 4.4) a mean
square estimate of a smoothed version of R(X, T ), from which we extract a mean square estimate for the
sharp sum (Proposition 4.5).

We now start by setting up the Kuznetsov trace formula. Let φ(x) be a smooth function on [0,∞]
such that

|φ(x)| � x, x→ 0,

|φ(l)(x)| � x−3, x→∞,

for l = 0, 1, 2, 3. Define

φ0 =
1

2π

∫
∞

0
J0(y)φ(y) dy,

φB(x)=
∫ 1

0

∫
∞

0
ξ x J0(ξ x)J0(ξ y)φ(y) dydξ,

φH (x)=
∫
∞

1

∫
∞

0
ξ x J0(ξ x)J0(ξ y)φ(y) dydξ,

φ̂(t)=
π

2i sinhπ t

∫
∞

0
(J2i t(x)− J−2i t(x))φ(x)

dx
x
,

where Jν is the Bessel function of the first kind and order ν. By the properties of the Hankel transform
we have

φ(x)= φB(x)+φH (x).

We now choose φ as in [Luo and Sarnak 1995]. For X, T > 1 we set

φX,T (x)=
−sinhβ
π

x exp(i x coshβ),

2β = log X + i
T
,

and apply the Kuznetsov trace formula [1980, Theorem 1] with φX,T as the test function. Let { fi }
∞

i=1 be
an orthonormal basis of Maass cusp forms for SL2(Z), with eigenvalues λ j =

1
4 + t2

j . These cusp forms
have Fourier expansions [Kuznetsov 1980, (2.10)]

f j (z)=
√

y
∞∑

n=1

ρ j (n)Ki t j (2πny) cos(2πnx),
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where Kν(x) is the K -Bessel function. For l1, l2 ≥ 1 the trace formula reads∑
t j

φ̂(t j )ν j (l1)ν j (l2)+
2
π

∫
∞

0

φ̂(t)
|ζ(1+ 2i t)|2

di t(l1) di t(l2)dt = δl1,l2φ0+

∞∑
c=1

S(l1, l2, c)
c

φH

(
4π
√

l1l2

c

)
,

where ρ j (l)= ν j (l) cosh(π t j )
1/2, di t(l)=

∑
d1d2=l(d1/d2)

i t , and S(l1, l2, c) is the classical Kloostermann
sum. By [Luo and Sarnak 1995, p. 234] we have

φ̂X,T (t j )= X i t j e−t j/T
+ O(e−π t j ), (4-3)

(φX,T )0� X−1/2, (4-4)

2
π

∫
∞

0

φ̂X,T (t)
|ζ(1+ 2i t)|2

(di t(n))2dt � T log2 T d2(n), (4-5)

Sn((φX,T )B)� n1/2 X−1/2 log2 n, (4-6)

where

Sn(ψ)=

∞∑
c=1

S(n, n, c)
c

ψ

(
4πn

c

)
. (4-7)

Analyzing the right hand side of the Kuznetsov trace formula, we prove a bound for the mean square
of Sn(φX,T ) as follows.

Lemma 4.1. Let A, T > 2 and let n be a positive integer. Then, for any ε > 0,

1
A

∫ 2A

A
|Sn(φX,T )|

2 d X �ε (n A1/2
+ T 2)(An)ε.

We postpone the proof of Lemma 4.1 to the end of the section, and we show here how to recover a
similar bound on the spectral side of the Kuznetsov trace formula.

Lemma 4.2. Let A, T > 2 and let n be a positive integer. Then, for any ε > 0,

1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X �ε (n A1/2
+ T 2)(AnT )ε.

Proof. By the trace formula and the bounds in equations (4-4)–(4-6) we deduce

1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X � 1
A

∫ 2A

A
|Sn(φX,T )|

2 d X + T 2 log4 T d4(n)+
n log A log4 n

A
.

Observing that d4(n)� nε, the claim follows from Lemma 4.1. �

Once we have bounds for a fixed n, we average over n ∈ [N , 2N ]. Let h(ξ) be a smooth function
supported in [N , 2N ], whose derivatives satisfy

|h(p)(ξ)| � N−p for p = 0, 1, 2, . . .
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and such that ∫
+∞

−∞

h(ξ) dξ = N .

The next lemma is a result of Luo and Sarnak [1995].

Lemma 4.3. Let h be as above. Then∑
n

h(n)|ν j (n)|2 =
12
π2 N + r(t j , N ),∑

t j≤T

|r(t j , N )| � T 2 N 1/2 log2 T .

Proof. See [Luo and Sarnak 1995, p. 233]. �

Lemma 4.4. Let A, T > 2. Then, for any ε > 0,

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X �ε A1/4 T 2(AT )ε.

Proof. By the previous lemma

1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)
=

1
N

∑
t j

(∑
n

|ν j (n)|2h(n)
)
φ̂(t j )

=
12
π2

∑
t j

φ̂(t j )+
1
N

∑
t j

r(t j , N )φ̂(t j )

=
12
π2

∑
t j

φ̂(t j )+ O(T 2 N−1/2 log2 T ), (4-8)

where the last step can be obtained by |φ̂(t j )| � e−t j/T and partial summation. Note now that from (4-3)
it follows that ∑

t j

φ̂(t j )=
∑

t j

X i t j e−t j/T
+ O(1). (4-9)

Combining (4-8) and (4-9) we deduce that∑
t j

X i t j e−t j/T
�

1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)
+ T 2 N−1/2 log2 T .

Taking absolute value, squaring, and integrating over X , we infer that

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X � 1

A

∫ 2A

A

∣∣∣∣ 1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)∣∣∣∣2 d X + T 4 N−1 log4 T .
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Moreover, by Cauchy–Schwarz and the properties of h, we have∣∣∣∣ 1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)∣∣∣∣2� 1
N 2

( 2N∑
n=N

|h(n)|2
)( 2N∑

n=N

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2)

�
1
N

2N∑
n=N

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2
Finally, we obtain

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X �ε

1
N

2N∑
n=N

(
1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X
)
+

T 4+ε

N

�ε (N A1/2
+ T 2)(AN T )ε + T 4+ε

N
,

where the last inequality follows from Lemma 4.2. Choose N = A−1/4T 2 to complete the proof. �

The next step is to replace the smoothed sum
∑

X i t j e−t j/T with the truncated one. This gives us a
corresponding mean square estimate for R(X, T ).

Proposition 4.5. Let A, T > 2, and let R(X, T ) be as in (4-2). Then, for any ε > 0,

1
A

∫ 2A

A
|R(X, T )|2 d X �ε A1/4T 2(AT )ε.

Proof. We start by choosing a smooth function g that approximates the characteristic function of [1, T ].
Let g be a smooth function supported on

[ 1
2 , T + 1

2

]
such that 0≤ g(ξ)≤ 1, and g(ξ)= 1 when ξ ∈ [1, T ].

By the strong Weyl’s law we know that
∣∣{t j :U ≤ t j ≤U + 1}

∣∣�U , and so we have

R(X, T )=
∑

t j

g(t j )X i t j + O(T ).

Define ĝ(ξ) to be the Fourier transform of g(ξ) exp(ξ/T ). By [Luo and Sarnak 1995, pp. 235–236] we
have that∑

t j

g(t j )X i t j

=

∫ 1

−1
ĝ(ξ)

(∑
t j

(Xe−2πξ )i t j e−t j/T
)

dξ + O
(∑

t j

e−t j/T

t j
+

e−t j/T

|T − t j | + 1
+

log(T + t j )e−t j/T

T

)
,

where the error term can be bounded by O(T log T ). Also note the estimate

ĝ(ξ)�min
(

T,
1
|x |

)
. (4-10)

Defining

k(X, T, ξ) :=
∑

t j

(Xe−2πξ )i t j e−t j/T ,
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we deduce that

1
A

∫ 2A

A
|R(X, T )|2 d X

�
1
A

∫ 2A

A

∣∣∣∣∫ 1

−1
ĝ(ξ)k(X, T, ξ) dξ

∣∣∣∣2 d X + T 2 log2 T

�
1
A

∫ 2A

A

∣∣∣∣∫
|ξ |≤δ

ĝ(ξ)k(X, T, ξ) dξ
∣∣∣∣2 d X + 1

A

∫ 2A

A

∣∣∣∣∫
δ<|ξ |≤1

ĝ(ξ)k(X, T, ξ)dξ
∣∣∣∣2 d X + T 2 log2 T .

The first term in the sum above we bound, using Lemma 4.4 and the first bound in (4-10), by∫
|ξ |≤δ

|ĝ(ξ)|2
∫
|ξ |≤δ

1
A

∫ 2A

A
|k(X, T, ξ)|2 d Xdξ �ε A1/4T 4(AT )εδ2,

and the second term, using again Lemma 4.4 and the second bound in (4-10), by∫
δ<|ξ |≤1

|ĝ(ξ)|2|ξ |
∫
δ<|ξ |≤1

1
|ξ |

1
A

∫ 2A

A
|k(X, T, ξ)|2 d Xdξ �ε A1/4T 2(AT )ε log(δ−1).

On taking δ = T−2 we obtain the claim. �

We are now able to conclude the proof of Theorem 1.4. Let 2 < T ≤ A1/2(log A)−2. By partial
summation, ∑

t j≤T

X1/2+i t j

1
2 + i t j

=
R(X, T )X1/2

1
2 + iT

+ i X1/2
∫ T

1

R(X,U )(1
2 + iU

)2 dU.

Therefore,

1
A

∫ 2A

A

∣∣∣∣∑
t j≤T

X1/2+i t j

1
2 + i t j

∣∣∣∣2 d X � 1
A

∫ 2A

A

∣∣∣∣ R(X, T )X1/2

1
2 + iT

∣∣∣∣2 d X + 1
A

∫ 2A

A

∣∣∣∣X1/2
∫ T

1

R(X,U )( 1
2 + iU

)2 dU
∣∣∣∣2 d X.

The first term on the right hand side is bounded, in view of Proposition 4.5, by O(A5/4+ε). The second
term can be bounded by using Cauchy–Schwarz inequality and again Proposition 4.5, giving

A(log T )
∫ T

1

1
U 3

(
1
A

∫ 2A

A
|R(X,U )|2 d X

)
dU �ε A5/4+ε

∫ T

1
U−1 dU �ε A5/4+ε.

Inserting these bounds in (4-1) we obtain

1
A

∫ 2A

A
|ψG(X)− X |2 d X �ε A5/4+ε

+
A2

T 2 log2 A.

Choosing T = A3/8 above concludes the proof of Theorem 1.4.
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Weighted sums of Kloosterman sums. In the remainder of the section we prove Lemma 4.1. Recall that
we want to estimate, on average, the following sum of Kloostermann sums

1
A

∫ 2A

A
|Sn(φX,T )|

2 d X,

where Sn(ψ) is the weighted sum of Kloosterman sums defined in (4-7), i.e.,

Sn(ψ)=

∞∑
c=1

S(n, n, c)
c

ψ

(
4πn

c

)
,

with n a (large) positive integer. The function φX,T carries some oscillation in X , that we exploit when
integrating over X ∈ [A, 2A].

Lemma 4.6. Let A, T > 2, and let z1, z2 be positive real numbers. Then

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X � z1z2 A exp

(
−

A1/2(z1+ z2)

T

)
and

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X �

z1z2 A1/2

|z1− z2|
.

For the last bound we assume z1 6= z2.

Proof. Inserting the definition of φX,T we can write the integral as

z1z2

π2

∫ 2A

A
|sinhβ|2 exp(i coshβz1+ i coshβz2) d X. (4-11)

Bounding the integrand uniformly using

|sinhβ|2� X and exp(i coshβz1+ i coshβz2)� exp
(
−

A1/2(z1+ z2)

T

)
,

we obtain the first bound

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X � z1z2 A exp

(
−

A1/2(z1+ z2)

T

)
.

To obtain the second bound we use integration by parts in (4-11) to get

z1z2

π2 f (X) exp(i coshβz1+ i coshβz2)

∣∣∣∣2A

A
+

z1z2

π2

∫ 2A

A
f ′(X) exp(i coshβz1+ i coshβz2) d X,

where

f (X)=
2X |sinhβ|2

i sinhβz1+ i sinhβz2
.

We can bound these terms (up to a constant) by

z1z2 A3/2

|z1− z2|
,
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which gives us the second bound

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X �

z1z2 A1/2

|z1− z2|
.

This proves the lemma. �

The lemma above will provide the necessary bounds to establish Lemma 4.1.

Proof of Lemma 4.1. We expand the square in the integrand and exchange the integral with the sums, so
that we can rewrite the integral as

∞∑
c1,c2=1

S(n, n, c1)S(n, n, c2)

c1c2

1
A

∫ 2A

A
φX,T

(
4πn
c1

)
φX,T

(
4πn
c2

)
d X. (4-12)

We now split the sum in (4-12) into two sums 6d and 6nd , where 6d is the sum over the diagonal terms
c1 = c2, and 6nd is the sum over the terms c1 6= c2. We shall make use of the Weil bound on Kloosterman
sums throughout the proof, namely

|S(n, n, c)| ≤ (n, c)1/2c1/2d(c). (4-13)

Moreover, we have ∑
c≤x

(n, c) d2(c)� x log3 x d(n).

We bound the diagonal terms using the first bound in Lemma 4.6 (with z1 = z2 = (4πn)/c), obtaining

6d � n2 A
∑

c

(n, c)d2(c)
c3 exp

(
−

A1/2n
T c

)
� T 2 log3(An) d(n).

To bound the nondiagonal terms we interpolate the two bounds in Lemma 4.6 to get, for 0< λ < 1,

1
A

∫ 2A

A
φX,T

(
4πn
c1

)
φX,T

(
4πn
c2

)
d X �

(
n2 A
c1c2

)1−λ( n A1/2

|c1− c2|

)λ
.

Therefore,

6nd �

∞∑
c1 6=c2=1

|S(n, n, c1)S(n, n, c2)|

c1c2

(
n2 A
c1c2

)1−λ( n A1/2

|c1− c2|

)λ

�λ (n A1/2)2−λ
( ∞∑

c=1

|S(n, n, c)|2/(2−λ)

c2

)2−λ

,
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where the last inequality follows from the Hardy–Littlewood–Pólya inequality (1-8). Applying the Weil
bound (4-13) we obtain

6nd �λ (n A1/2)2−λ
( ∞∑

c=1

((n, c)1/2d(c)
√

c)2/(2−λ)

c2

)2−λ

�λ (n A1/2)2−λ
( ∞∑

c=1

(n, c)d2(c)
c1+(1−λ)/(2−λ)

)2−λ

�λ (n A1/2d(n))2−λ.

Pick λ= 1− ε and note that d(n)�ε nε to finish the proof. �
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Elliptic quantum groups and Baxter relations
Huafeng Zhang

We introduce a category O of modules over the elliptic quantum group of slN with well-behaved
q-character theory. We construct asymptotic modules as analytic continuation of a family of finite-
dimensional modules, the Kirillov–Reshetikhin modules. In the Grothendieck ring of this category
we prove two types of identities: Generalized Baxter relations in the spirit of Frenkel–Hernandez
between finite-dimensional modules and asymptotic modules. Three-term Baxter TQ relations of infinite-
dimensional modules.
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Introduction

Fix slN a special linear Lie algebra, C/(Z+Zτ) an elliptic curve, and h̄ a complex number. Associated to
this triple is the elliptic quantum group Eτ,h̄(slN ) introduced by G. Felder [1995]. It is a Hopf algebroid
(neither commutative nor cocommutative) in the sense of Etingof and Varchenko [1998], so that the tensor
product of two Eτ,h̄(slN )-modules is naturally endowed with a module structure. In this paper we study
(finite- and infinite-dimensional) representations of the elliptic quantum group.

Suppose h̄ is a formal variable. Eτ,h̄(sl2) is an h̄-deformation [Enriquez and Felder 1998] of the
universal enveloping algebra of a Lie algebra sl2⊗ Rτ , where Rτ is an algebra of meromorphic functions
of z ∈ C built from the Jacobi theta function of the elliptic curve. For g an arbitrary finite-dimensional
simple Lie algebra, Eτ,h̄(g) is defined [Jimbo et al. 1999] to be a quasi-Hopf algebra twist of the affine
quantum group Uh̄(Lg), an h̄-deformation of the loop Lie algebra g⊗C[z, z−1

]. It admits a universal

MSC2010: primary 17B37; secondary 17B10, 17B80.
Keywords: elliptic quantum groups, asymptotic representations, Yang–Baxter equation.
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dynamical R-matrix in a completed tensor square, which provides solutions R(z; λ) ∈ End(V ⊗ V ), for
V a suitable Eτ,h̄(g)-module, to the quantum dynamical Yang–Baxter equation:

R12(z−w; λ+h̄h(3))R13(z; λ)R23(w; λ+h̄h(1))= R23(w; λ)R13(z; λ+h̄h(2))R12(z−w; λ)∈End(V⊗3).

Here z, w are complex spectral parameters, λ is the dynamical parameter lying in a Cartan subalgebra of g,
the subindices of R indicate the tensor factors of V⊗3 to be acted on, and the h(i) are grading operators
arising from the weight grading on V by the Cartan subalgebra. See the comments following (1.1).

Such R-matrices R(z; λ) appeared previously in face-type integrable models [Felder and Varchenko
1996a; Hou et al. 2003]; for instance, the R-matrix of the Andrews–Baxter–Forrester model comes from
two-dimensional irreducible modules of Eτ,h̄(sl2), as does the 6-vertex model from the affine quantum
group Uh̄(Lsl2). The definition of Eτ,h̄(slN ) in [Felder 1995], by RLL exchange relations, is in the spirit
of Faddeev, Reshetikhin and Takhatajan, originated from quantum inverse scattering method. We mention
that elliptic R-matrices describe the monodromy of the quantized Knizhnik–Zamolodchikov equation
associated with representations of affine quantum groups, e.g., [Frenkel and Reshetikhin 1992; Galleas
and Stokman 2015; Konno 2006; Tarasov and Varchenko 1997].

Recently Aganagic and Okounkov [2016] proposed the elliptic stable envelope in equivariant elliptic
cohomology, as a geometric framework to obtain elliptic R-matrices. This was made explicit [Felder
et al. 2017] for cotangent bundles of Grassmannians, resulting in tensor products of two-dimensional
irreducible representations of Eτ,h̄(sl2). The higher rank case of slN was studied later by H. Konno [2017].

Meanwhile, Nekrasov, Pestun and Shatashvili [2018] from the 6d quiver gauge theory predicted the
elliptic quantum group associated to an arbitrary Kac–Moody algebra, the precise definition of which (as
an associative algebra) was proposed by Gautam and Toledano Laredo [2017a]. See also [Yang and Zhao
2017] in the context of quiver geometry.

We are interested in the representation theory of Eτ,h̄(g) with h̄ ∈ C generic. The formal twist
constructions [Enriquez and Felder 1998; Jimbo et al. 1999] from Uh̄(Lg) might reduce the problem to
the representation theory of affine quantum groups, which is a subject developed intensively in the last
three decades from algebraic, geometric and combinatorial aspects. However their work involves formal
power series of h̄ and infinite products in the comultiplication of Eτ,h̄(g). Some of these divergence
issues were addressed by Etingof and Moura [2002], who defined a fully faithful tenor functor between
representation categories of BGG type for Uh̄(LslN ) and Eτ,h̄(slN ). Towards this functor not much is
known: its image, the induced homomorphism of Grothendieck rings, etc.

In this paper we study representations of Eτ,h̄(slN ) via the RLL presentation [Felder 1995] so as to
bypass affine quantum groups, yet along the way we borrow ideas from the affine case. Compared
to other works [Cavalli 2001; Etingof and Moura 2002; Felder and Varchenko 1996b; Gautam and
Toledano Laredo 2017a; Konno 2009; 2016; Tarasov and Varchenko 2001; Yang and Zhao 2017], our
approach emphasizes more on the Grothendieck ring structure of representation category. It is a higher
rank extension of a recent joint work with G. Felder [2017].
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The presence of the dynamical parameter λ is one of the technical difficulties of elliptic quantum
groups. To resolve this, we need a commuting family of elliptic Cartan currents φ j (z) ∈ Eτ,h̄(slN ) for
j ∈ J := {1, 2, . . . , N − 1}. They act as difference operators on an Eτ,h̄(slN )-module V , and their matrix
entries are meromorphic functions of (z, λ) ∈ C× h where h denotes the Cartan subalgebra of slN . As in
[Felder and Zhang 2017], we impose the following triangularity condition:1

(i) There exists a basis of V , with respect to which the matrices φ j (z) are upper triangular and their
diagonal entries are independent of λ.

Our category O is the full subcategory of category BGG [Etingof and Moura 2002] of Eτ,h̄(slN )-modules
subject to condition (i), see Definition 1.7. It is abelian and monoidal. It contains most of the modules in
[Cavalli 2001; Etingof and Moura 2002; Konno 2009; 2016; Tarasov and Varchenko 2001], although
the proof is rather indirect. (We believe category O to be the image of the functor [Etingof and Moura
2002].)

We extend the q-character of H. Knight [1995] and Frenkel and Reshetikhin [1999] to the elliptic case.
The q-character of a module V encodes the spectra of the φ j (z), which are meromorphic functions of z
thanks to condition (i). It distinguishes the isomorphism class [V ] in the Grothendieck ring K0(O), and
embeds K0(O) in a commutative ring. Our main results are summarized as follows:

(A) Proposition 4.10 on limit construction of infinite-dimensional asymptotic modules Wr,x , for r ∈ J and
x ∈ C, from a distinguished family of finite-dimensional modules, the Kirillov–Reshetikhin modules.

(B) Theorem 4.15 on generalized Baxter relations à la Frenkel and Hernandez [2015], the isomorphism
class of any finite-dimensional module is a polynomial of the [Wr,x ]/[Wr,y] for r ∈ J and x, y ∈ C.

(C) Corollary 5.2 relating an asymptotic module W to a module D and tensor products S′ and S′′ of
asymptotic modules such that [D][W] = [S′] + [S′′].

The above results are known in category HJ of Hernandez and Jimbo [2012] for representations over
a Borel subalgebra of an affine quantum group Uh̄(Lg). Category HJ contains the modules L±r,a for
a ∈ C and r a Dynkin node of g. The L±r,a are “prefundamental” in that their tensor products realize all
irreducible objects of HJ as subquotients, and they are not modules over Uh̄(Lg), which makes Borel
subalgebras indispensable. The Grothendieck ring of HJ is commutative.

Result (A) is the asymptotic limit construction [Hernandez and Jimbo 2012] of the L−r,a . Result (B) is
the relation [Frenkel and Hernandez 2015] between finite-dimensional modules and the L+r,a . Result (C)
is either Q Q∗-system [Feigin et al. 2017a; Hernandez and Leclerc 2016] or Q Q̃-system [Frenkel and
Hernandez 2016], as there are two choices of the modules D for W= L+r,a .

Hernandez and Leclerc [2016] interpreted the Q Q∗-system as cluster mutations of Fomin–Zelevinsky.
They provided conjectural monoidal categorifications of infinite rank cluster algebras by certain subcate-
gories of HJ.

1In terms of the Ki (z) from (1.8), we have φ j (z)= K j (z+ ` j h̄)K j+1(z+ ` j h̄)−1 where ` j = (N − j − 1)/2. These are
elliptic deformations of diagonal matrices in slN .
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In a quantum integrable system associated to Uh̄(Lg), the transfer-matrix construction defines an action
of the Grothendieck ring K0(HJ) on the quantum space; to an isomorphism class [V ] is attached a transfer
matrix tV (z).

Result (B) is one key step [Frenkel and Hernandez 2015] in solving the conjecture of Frenkel and
Reshetikhin [1999] on the spectra of the quantum integrable system, which connects the eigenvalues of
the tV (z) to the q-character of V by the so-called Baxter polynomials [Baxter 1972]. These polynomials
are eigenvalues of the tL+r,a (z) up to an overall factor [Frenkel and Hernandez 2015]. In this sense the
L+r,a have simpler structures than finite-dimensional modules, and the tL+r,a (z) are defined as Baxter Q
operators, as an extension of earlier works of V. Bazhanov et al. [1997; 1999; Bazhanov and Tsuboi
2008] for g a special linear Lie (super)algebra. Result (C) has as consequence the Bethe Ansatz equations
for the roots of Baxter polynomials [Feigin et al. 2017a; Frenkel and Hernandez 2016].

Recently category HJ was studied for quantum toroidal algebras [Feigin et al. 2017b].
For elliptic quantum groups there are no obvious Borel subalgebras. Our idea is to replace the L±r,a

over Borel subalgebras by the asymptotic modules W(r)
d,a (with a new parameter d ∈ C) over the entire

quantum group, which we now explain.
Let θ(z) := θ(z | τ) be the Jacobi theta function. For r ∈ J a Dynkin node, a ∈ C a spectral parameter,

and k a positive integer, by [Cavalli 2001; Tarasov and Varchenko 2001] there exists a unique finite-
dimensional irreducible module W (r)

k,a which contains a nonzero vector ω (highest weight with respect to
a triangular decomposition) such that:

φ j (z)ω = ω, if j 6= r and φr (z)ω =
θ(z+ ah̄+ kh̄)
θ(z+ ah̄)

ω.

This is a Kirillov–Reshetikhin (KR) module, a standard terminology for affine quantum groups and
Yangians once the θ symbol is removed.

The core of this paper (Section 4) is analytic continuation with respect to k. We modify the asymptotic
limits L−r,a of Hernandez and Jimbo [2012], as in [Felder and Zhang 2017; Zhang 2017].

Firstly the existence of the inductive system (W (r)
k,a)k>0 in [Hernandez and Jimbo 2012] relied on a

cyclicity property of M. Kashiwara, Varagnolo–Vasserot and V. Chari, which is unavailable in the elliptic
case. We reduce the problem to Eτ,h̄(sl2) by counting “dominant weights” in q-characters (Theorem 3.4),
as in the proofs of T -system of KR modules over affine quantum groups by H. Nakajima [2003] and D.
Hernandez [2006].

Secondly we express the matrix coefficients of any element of Eτ,h̄(slN ) acting on the W (r)
k,a , viewed

as functions of k ∈ Z>0, in products of the θ(kh̄+ c) where c ∈ C is independent of k; see Lemma 4.8.
In [Hernandez and Jimbo 2012] these are polynomials in k by induction. Our proof relies on the RLL
comultiplication and is explicit.

Since θ(kh̄+c) is an entire function of k, we take k in the matrix coefficients to be a fixed complex num-
ber d . This results in the asymptotic module W(r)

d,a on the inductive limit lim
→

W (r)
k,a . The module Wr,x in (A)

is W(r)
x,0. All irreducible modules of category O are subquotients of tensor products of asymptotic modules.
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For g of general type (A)–(C) and their proofs can be adapted to affine quantum groups, whose
asymptotic modules appeared in the appendix of [Zhang 2017], as well as Yangians [Gautam and
Toledano Laredo 2016; 2017b]. Borel subalgebras or double Yangians are not needed.

Results (A)–(C) were established for affine quantum general linear Lie superalgebras [Zhang 2018];
their proofs require more than q-characters as counting dominant weights is inefficient [Zhang 2016]. It
is interesting to consider elliptic quantum supergroups [Galleas and Stokman 2015].

For elliptic quantum groups associated with other simple Lie algebras, one possible first step would be
to derive the RLL presentation; see [Guay et al. 2017; Jing et al. 2017] for Yangians.

The R-matrix of Baxter and Belavin is governed by the vertex-type elliptic quantum group [Jimbo et al.
1999]. The equivalence of representation categories between this elliptic algebra and Eτ,h̄(slN ) [Etingof
and Schiffmann 1998], a Vertex-IRF correspondence, might give a representation theory meaning to the
original Baxter Q operator of the 8-vertex model [Baxter 1972].

The paper is structured as follows. In Section 1 we review the theory of the elliptic quantum group
associated to slN and define category O of representations. We show that the q-character map is an injective
ring homomorphism from the Grothendieck ring K0(O) to a commutative ring Mt of meromorphic
functions. Then we present the q-character formula of finite-dimensional evaluation modules.

Section 2 is devoted to the proof of the q-character formula.
We derive in Section 3 basic facts on tensor products of KR modules (T -system, fusion) from the

q-character formula. They are needed in Section 4 to construct the inductive system of KR modules and
the asymptotic modules. We obtain a highest weight classification of irreducible modules in category O.
As a consequence, all standard irreducible evaluation modules of [Tarasov and Varchenko 2001] are in
category O.

In Section 5 we establish the three-term Baxter TQ relations in K0(O), which are infinite-dimensional
analogs of the T -system. These relations are interpreted as functional relations of transfer matrices in
Section 6.

1. Elliptic quantum groups and their representations

Let N ∈Z>0. We introduce a category O (abelian and monoidal) of representations of the elliptic quantum
group attached to the Lie algebra slN , and prove that its Grothendieck ring is commutative, based on
q-characters.

Fix a complex number τ ∈ C with Im(τ ) > 0. Define the Jacobi theta function

θ(z)= θ(z | τ) := −
∞∑

j=−∞

exp
(
iπ
(

j + 1
2

)2
τ + 2iπ

(
j + 1

2

)(
z+ 1

2

))
, i =

√
−1.

It is an entire function of z ∈ C with zeros lying on the lattice 0 := Z+Zτ and

θ(z+ 1)=−θ(z), θ(z+ τ)=−e−iπτ−2iπ zθ(z), θ(−z)=−θ(z).
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Fix a complex number h̄ ∈ C \ (Q+Qτ), which is the deformation parameter.
Let h be standard Cartan subalgebra of slN ; it is a complex vector space generated by the εi for

1≤ i ≤ N subject to the relation
∑N

i=1 εi = 0. Let CN
:=⊕

N
i=1Cvi and Ei j ∈EndC(C

N ) be the elementary
matrices: vk 7→ δ jkvi for 1≤ i, j, k ≤ N . Define the EndC(C

N
⊗CN )-valued meromorphic functions of

(z; λ) ∈ C× h by

R(z; λ)=
∑

i

E⊗2
i i +

∑
i 6= j

(
θ(z)θ(λi j − h̄)
θ(z+ h̄)θ(λi j )

Ei i ⊗ E j j +
θ(z+ λi j )θ(h̄)
θ(z+ h̄)θ(λi j )

Ei j ⊗ E j i

)
.

In the summations 1 ≤ i, j ≤ N , and λi j ∈ h∗ sends
∑N

i=1 ciεi ∈ h to ci − c j ∈ C. By [Felder 1995],
R(z; λ) satisfies the quantum dynamical Yang–Baxter equation:

R12(z−w; λ+ h̄h(3))R13(z; λ)R23(w; λ+ h̄h(1))

= R23(w; λ)R13(z; λ+ h̄h(2))R12(z−w; λ) ∈ EndC(C
N )⊗3. (1.1)

If R(z; λ)=
∑

p cp
λ x p⊗ yp with x p, yp ∈ EndC(C

N ), then

R13(z; λ+ h̄h(2)) : u⊗ v j ⊗w 7→
∑

p

cp
λ+h̄ε j

x p(u)⊗ v j ⊗ yp(w),

for u, w ∈ CN and 1≤ j ≤ N . The other symbols have a similar meaning.
Let M :=Mh be the field of meromorphic functions of λ ∈ h. It contains the subfield C of constant

functions. A C-linear map 8 of two M-vector spaces will sometimes be denoted by 8(λ) to emphasize
the dependence on λ.

1A. Algebraic notions. Since the elliptic quantum groups will act on M-vector spaces via difference
operators, which are in general not M-linear, we need to recall some basis constructions about difference
operators. Our exposition follows largely [Etingof and Varchenko 1998], with minor modifications as in
[Felder and Zhang 2017].

Define the category V as follows. An object is X =⊕α∈hX [α] where each X [α] is an M-vector space
and, if nonzero, is called a weight space of weight (or h-weight) α. Let wt(X)⊆ h be the set of weights
of X . Write wt(v)= α if v ∈ X [α].

A morphism f : X→ Y in V is an M-linear map which respects the weight gradings. Let Vft be the
full subcategory of V consisting of X whose weight spaces are finite-dimensional M-vector spaces (“ft”
means finite type in [Felder and Varchenko 1996b]).

Viewed as subcategories of the category of M-vector spaces, V and Vft are abelian.
Let X and Y be objects of V . Their dynamical tensor product X⊗Y is constructed as follows. For

α, β ∈ h, let X [α]⊗Y [β] be the quotient of the usual tensor product of C-vector spaces X [α]⊗C Y [β] by
the relation

g(λ)v⊗Cw = v⊗C g(λ+ h̄β)w, for v ∈ X [α], w ∈ Y [β], g(λ) ∈M.
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Let ⊗ denote the image of ⊗C under the quotient. X [α]⊗Y [β] becomes an M-vector space by setting
g(λ)(v⊗w)= v⊗g(λ)w. For γ ∈ h, the weight space (X⊗Y )[γ ] is then the direct sum of the X [α]⊗Y [β]
with α+β = γ .

For α, β ∈ h, a C-linear map 8 : X → Y is called a difference map of bidegree (α, β) [Etingof and
Varchenko 1998, §4.2] if it sends every weight space X [γ ] to Y [γ +β −α], and if

8(g(λ)v)= g(λ+β h̄)8(v) for g(λ) ∈M and v ∈ X.

Such a map can be recovered from its matrix as in the case of M-linear maps. Choose M-bases B and B′

for X and Y respectively. Define the B′ × B matrix [8] by taking its (b′, b)-entry [8]b′b(λ) ∈ M, for
b ∈ B and b′ ∈ B′, to be the coefficient of b′ in 8(b). Then for any vector v =

∑
b∈B gb(λ)b of X where

gb(λ) ∈M, we have2

8(v)=
∑
b′∈B′

b′
∑
b∈B

[8]b′b(λ)× gb(λ+ h̄β).

When X = Y , a difference map is also called a difference operator. To define its matrix, we always assume
B′ = B.

By an algebra we mean a unital associative algebra over C.
As in [Etingof and Varchenko 1998, Definition 4.1], an h-algebra is an algebra A, endowed with

h-bigrading A =⊕α,β∈hAα,β which respects the algebra structure and is called the weight decomposition,
and two algebra embeddings µl , µr : M→ A0,0 called the left and right moment maps, such that for
a ∈ Aα,β and g(λ) ∈M, we have

µl(g(λ))a = aµl(g(λ− h̄α)) and µr(g(λ))a = aµr(g(λ− h̄β)).

Call (α, β) the bidegree of elements in Aα,β . A morphism of h-algebras is an algebra morphism preserving
the moment maps and the weight decompositions.

From two h-algebras A and B we construct their tensor product A⊗̃B as follows. For α, β, γ ∈ h, let
Aα,β⊗̃Bβ,γ be Aα,β ⊗C Bβ,γ modulo the relation

µA
r (g(λ))a⊗C b = a⊗C µ

B
l (g(λ))b for a ∈ Aα,β, b ∈ Bβ,γ , g(λ) ∈M.

Let (A⊗̃B)α,γ be the direct sum of the Aα,β ⊗̃Bβ,γ over β ∈ h (⊗̃ denotes the image of ⊗C under the
quotient ⊗C→⊗̃). Multiplication in A⊗̃B is induced by (a⊗̃b)(a′⊗̃b′)= aa′⊗̃bb′. The moment maps
are given by

µA⊗̃B
l : g(λ) 7→ µA

l (g(λ))⊗̃1 and µA⊗̃B
r : g(λ) 7→ 1⊗̃µB

r (g(λ)) for g(λ) ∈M.

To an h-graded vector space one can attach naturally an h-algebra. Let X be an object of V . Let
DX
α,β denote the C-vector space of difference operators X→ X of bidegree (α, β). Then the direct sum

2 Note that difference maps of bidegree (α, α) make sense for arbitrary M-vector spaces.
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DX
:= ⊕α,β∈hDX

α,β is a subalgebra of EndC(X). It is an h-algebra structure with the moment maps

µr(g(λ))v = g(λ)v and µl(g(λ))v = g(λ+ h̄α)v for v ∈ X [α], g(λ) ∈M.

Tensor products of difference operators are also difference operators. To be precise, let X and Y be
two objects of V . Let 8 : X→ X and 9 : Y → Y be difference operators of bidegree (α, β) and (β, γ ),
respectively. The C-linear map

X ⊗C Y → X⊗Y, v⊗Cw 7→8(v)⊗9(w)

is easily seen to factor through X ⊗C Y → X⊗Y and induces the C-linear map 8⊗9 : X⊗Y → X⊗Y ,
which is shown to be a difference operator of bidegree (α, γ ). As in [Etingof and Varchenko 1998,
Lemma 4.3], the following defines a morphism of h-algebras

DX
⊗̃DY

→ DX⊗Y , 8⊗̃9 7→8⊗9.

1B. Elliptic quantum groups. For 1 ≤ i, j, p, q ≤ N let Ri j
pq(z; λ) be the coefficient of vp ⊗ vq in

R(z; λ)(vi ⊗ v j ); it can be viewed as an element of M after fixing z ∈ C. The elliptic quantum group
E := Eτ,h̄(slN ) is an h-algebra generated by3

L i j (z) ∈ Eεi ,ε j for 1≤ i, j ≤ N

subject to the dynamical RLL relation [Etingof and Varchenko 1998, §4.4]: for 1≤ i, j,m, n ≤ N ,

N∑
p,q=1

µl(R pq
mn(z−w; λ))L pi (z)Lq j (w)=

N∑
p,q=1

µr(Ri j
pq(z−w; λ))Lnq(w)Lmp(z). (1.2)

There is an h-algebra morphism [Etingof and Varchenko 1998; Felder and Varchenko 1996b]

1 : E→ E⊗̃E, L i j (z) 7→
N∑

k=1

L ik(z)⊗̃Lk j (z), for 1≤ i, j ≤ N (1.3)

which is coassociative (1⊗̃1)1= (1⊗̃1)1 and is called the coproduct. For u ∈ C,

8u : E→ E, L i j (z) 7→ L i j (z+ uh̄) for 1≤ i, j ≤ N (1.4)

extends uniquely to an h-algebra automorphism (spectral parameter shift).
Strictly speaking, E is not well-defined as an h-algebra because of the additional parameter z; this is

resolved in [Konno 2016] by viewing z, h̄ as formal variables. In this paper we are mainly concerned
with representations in which (1.2)–(1.4) make sense as identities of difference operators depending
analytically on z.

3We use slN , as in [Felder 1995; Felder and Varchenko 1996b], to emphasize that h is the Cartan subalgebra of slN . Other
works [Cavalli 2001; Konno 2016] use glN for the reason that the elliptic quantum determinant is not fixed to be 1.
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Let SN be the group of permutations of {1, 2, . . . , N }. For 1 ≤ k ≤ N , let Sk be the subgroup of
permutations which fix the last k letters. The k-th fundamental weight $k and elliptic quantum minor
Dk(z) are defined by [Tarasov and Varchenko 2001, (2.5)]:

$k :=

k∑
i=1

εi ∈ h, (1.5)

2k(λ) :=
∏

N−k+1≤i< j≤N

θ(λi j ) ∈M×,

Dk(z) :=
µr(2k(λ))

µl(2k(λ))

∑
σ∈Sk

sign(σ )
N−k+1∏

i=N

Lσ(i),i (z+ (N − i)h̄) ∈ E . (1.6)

Here sign(σ ) ∈ {±1} denotes the signature of the permutation σ . We take the descending product over
N ≥ i ≥ N − k+ 1 in (1.6). Set $0 := 0.

We shall need the following elements L̂k(z) of Eεk ,εk as in [Tarasov and Varchenko 2001, (4.1)]:

L̂ N (z) := L N N (z) and L̂k(z)= Lkk(z)
N∏

j=k+1

µr(θ(λk j ))

µl(θ(λk j ))
. (1.7)

Theorem 1.1 [Tarasov and Varchenko 2001, Proposition 2.1] and [Konno 2016, (E.18)]. DN (z) is central
in E and grouplike: 1(DN (z))= DN (z)⊗̃DN (z).

The simple roots αi := εi − εi+1 for 1 ≤ i < N generate a free abelian subgroup Q of h, called the
root lattice. Let Q+ and Q− be submonoids of Q generated by the αi and −αi respectively. Define the
lexicographic partial ordering ≺ on h as follows:

α ≺ β if β −α = nlαl +

N−1∑
i=l+1

niαi ∈ Q with nl ∈ Z>0.

This is weaker than the standard ordering α ≤ β if β −α ∈ Q+.

Corollary 1.2. Dk(z) commutes with the L i j (w) for N − k < i, j ≤ N and 1(Dk(z))−Dk(z)⊗̃Dk(z) is
a finite sum

∑
α xα⊗̃yα over {α ∈ h | −$N−k ≺ α} where xα and yα are of bidegree (−$N−k, α) and

(α,−$N−k) respectively.

The proof of the corollary is postponed to Section 2A.

1C. Categories. From now on unless otherwise stated vector spaces, linear maps and bases are defined
over M. Let X be an object of Vft. A representation of E on X consists of difference operators L X

i j (z) :
X→ X of bidegree (εi , ε j ) for 1≤ i, j ≤ N depending on z ∈ C with the following properties:4

4This is called a representation of finite type in [Felder and Varchenko 1996b]. From condition (M1) it follows that the
coefficients of the L X

i j (z) are meromorphic functions with respect to any basis of X .
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(M1) There exists a basis of X with respect to which all the matrix entries of the difference operators
L X

i j (z) are meromorphic functions of (z, λ) ∈ C× h.

(M2) Equation (1.2) holds in DX with µl and µr being moment maps in DX .

Call X an E-module. Property (M2) can be interpreted as an h-algebra morphism E→ DX sending
L i j (z)∈E to the difference operator L X

i j (z) on X . Applying ρ to the elements of (1.6)–(1.7), one gets differ-
ence operators DX

k (z) and L̂ X
k (z) acting on X with bidegree (−$N−k,−$N−k) and (εk, εk), respectively.

When no confusion arises, we shall drop the superscript X from L X , DX and L̂ X to simplify notations.
A morphism 8 : X→ Y of E-modules is a linear map which respects the h-gradings (so that 8 is a

morphism in category V) and satisfies 8L X
i j (z)= LY

i j (z)8 for 1≤ i, j ≤ N . The category of E-modules
is denoted by Rep. It is a subcategory of Vft and is abelian since the kernel and cokernel of a morphism
of E-modules, as h-graded M-vector spaces, are naturally E-modules.5

Definition 1.3 [Etingof and Moura 2002, §4]. Õ is the full subcategory of Rep whose objects X are such
that wt(X) is contained in a finite union of cones µ+ Q− with µ ∈ h.

For X and Y objects in category Õ, the L X⊗Y
i j (z) :=

∑N
k=1 L X

ik(z)⊗LY
k j (z) define a representation of E

on X⊗Y which is easily seen to be in category Õ. So Õ is a monoidal subcategory of V . Similarly, Õ is
an abelian subcategory of Rep.

Definition 1.4 [Felder and Zhang 2017, §2]. An object in Fmer consists of a finite-dimensional vector
space V equipped with difference operators Dl(z) : V→ V of bidegree (−$N−l,−$N−l) (see footnote 2)
for 1≤ l ≤ N depending on z ∈ C such that:

(M3) There exists an ordered basis of V with respect to which the matrices of the difference operators
Dl(z) are upper triangular, the diagonal entries are nonzero meromorphic functions of z ∈ C, and
the off-diagonal entries are meromorphic functions of (z, λ) ∈ C× h.

A morphism 8 : V → W in Fmer is a linear map commuting with the Dl(z). (Namely, 8DV
l (z) =

DW
l (z)8 : V → W for 1 ≤ l ≤ N . Here we add the superscripts V and W in the Dl(z) to indicate the

space on which they act.)

For V an object of Fmer, the operators Dl(z) being invertible because of the triangularity, one has a
unique factorization of operators for 1≤ l ≤ N :

Dl(z)= KN (z)KN−1(z+ h̄)KN−2(z+ 2h̄) · · · KN−l+1(z+ (l − 1)h̄). (1.8)

Notably Kl(z) : X→ X is a difference operator of bidegree (εl, εl). Property (M3) still holds if the Dl(z)
are replaced by the Kl(z).

5In other works [Cavalli 2001; Etingof and Moura 2002; Felder and Varchenko 1996b; Gautam and Toledano Laredo 2017a;
Konno 2009; 2016; Tarasov and Varchenko 2001; Yang and Zhao 2017] a module V is an h-graded C-vector space; morphisms
of modules depend on the dynamical parameter λ, so do their kernel and cokernel; the abelian category structure is nontrivial.
The scalar extension gives a module V ⊗C M in the present situation. Since our modules and morphisms are M-linear, the
dependence of kernels and images on the dynamical parameter does not matter.
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The forgetful functor from Fmer to the category of finite-dimensional vector spaces equips Fmer

with an abelian category structure. (For a proof, we refer to [Felder and Zhang 2017, §2.1] where
another characterization of category Fmer in terms of Jordan–Hölder series is given.) Let us describe its
Grothendieck group K0(Fmer).

The multiplicative group M×
C

of nonzero meromorphic functions of z ∈ C contains a subgroup C×

of nonzero constant functions. Let M be the quotient group of (M×
C
)N by its subgroup formed of

(c1, c2, . . . , cN ) ∈ (C
×)N such that c1c2 · · · cN = 1. We show that K0(Fmer) has a Z-basis indexed by M.

For f = ( f1(z), f2(z), . . . , fN (z))∈ (M×C )
N , the vector space M with the following difference operators

Dl(z) is an object in category Fmer denoted by M f :

g(λ) 7→ g(λ− h̄$N−l) fN (z) fN−1(z+ h̄) fN−2(z+ 2h̄) · · · fN−l+1(z+ (l − 1)h̄).

We have Kl(z)g(λ)= g(λ+ h̄εl) fl(z). As a consequence of (M3) in Definition 1.4, all irreducible objects
of category Fmer are of this form.

Lemma 1.5. Let e, f ∈ (M×
C
)N . The objects Me and M f are isomorphic in category Fmer if and only if

e, f have the same image under the quotient (M×
C
)N �M.

Proof. Write e= (e1(z), e2(z), . . . , eN (z)) and f = ( f1(z), f2(z), . . . , fN (z)).
Sufficiency: assume el(z)= fl(z)cl with cl ∈ C× and c1c2 · · · cN = 1. For 1≤ l < N , choose bl such

that cl = ebl h̄ . Set bN := −b1−b2−· · ·−bN−1. Then ebN h̄
= c−1

1 c−1
2 · · · c

−1
N−1 = cN and the following is

a well-defined element of M×:

ϕ(x1ε1+ x2ε2+ · · ·+ xNεN )= eb1x1+b2x2+···+bN xN for x1, x2, . . . , xN ∈ C.

Indeed ϕ(α+β)= ϕ(α)ϕ(β) and ϕ(xε1+ xε2+ · · ·+ xεN )= 1 for x ∈ C. Notably,

ϕ(λ+ h̄εl)= ϕ(λ)ϕ(h̄εl)= eh̄blϕ(λ)= clϕ(λ).

So Me→M f , g(λ) 7→ g(λ)ϕ(λ) is an isomorphism in category Fmer.
Let 8 :Me→M f be an isomorphism in category Fmer. Set ϕ(λ) :=8(1). Then ϕ(λ)∈M×. Applying

8Kl(z)= Kl(z)8 to 1 we get

ϕ(λ+ h̄εl) fl(z)= ϕ(λ)el(z).

So el(z)/ fl(z) = ϕ(λ+ h̄εl)/ϕ(λ), being independent of z, is a constant function cl ∈ C×. We have
el(z)= fl(z)cl and ϕ(λ+ h̄εl)= clϕ(λ). It follows that

ϕ(λ)= ϕ(λ+ h̄ε1+ h̄ε2+ · · ·+ h̄εN )= c1c2 · · · cNϕ(λ),

which implies c1c2 · · · cN = 1. So e and f have the same image in M. �

For each f ∈M, let us fix a preimage f ′ in (M×
C
)N and set M( f ) :=M f ′ . Then the isomorphism

classes [M( f )] for f ∈M form a Z-basis of K0(Fmer). When no confusion arises, we identify an element
of (M×

C
)N with its image in M.
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Lemma 1.6. Let V be in category Fmer. Assume B is an ordered basis of V with respect to which the
matrices of the difference operators Kl(z) are upper triangular. Then for b ∈ B and 1≤ l ≤ N there exist
ϕb(λ) ∈M× and fb,l(z) ∈M×

C
such that

[Kl]bb(z; λ)= fb,l(z)
ϕb(λ)

ϕb(λ+ h̄εl)
.

Recall that [Kl]bb(z; λ) is the coefficient of b in Kl(z)b. This lemma says that if the matrices of the
Kl(z) are upper triangular, then their diagonal entries must be of the form f (z)h(λ), and the h(λ) can be
gauged away uniformly.

More precisely, the new basis {ϕb(λ)b | b ∈ B} with the ordering induced from B satisfies (M3) in
Definition 1.4; the diagonal entry of Kl(z) associated to ϕb(λ)b is fb,l(z). This yields the following
identity in the Grothendieck group K0(Fmer):

[V ] =
∑
b∈B

[M( fb,1(z), fb,2(z), . . . , fb,N (z))].

Proof. Write B = {b1 < b2 < · · · < bm}. We proceed by induction on the dimension m = dim(V ). If
m = 1, then there exist f = ( f1(z), f2(z), . . . , fN (z)) ∈ (M×C )

N and an isomorphism 8 :M f → V in
category Fmer. Let 8(1)= ϕ(λ)b1. Then applying 8Kl(z)= Kl(z)8 to 1 we obtain the desired identity

fl(z)ϕ(λ)= [Kl]b1b1(z; λ)ϕ(λ+ h̄εl).

If m > 1, then the subspace V ′ of V spanned by (b1, b2, . . . , bm−1) is stable by the Kl(z) and Dl(z) by
the triangularity assumption. So V ′ is an object of category Fmer and we obtain a short exact sequence
0→ V ′→ V → V/V ′→ 0. The rest is clear by applying the induction hypothesis to V ′ and V/V ′,
which have ordered bases {b1 < b2 < · · ·< bm−1} and {bm + V ′} respectively. �

Definition 1.7. O is the full subcategory of Õ consisting of E-modules X such that X [µ] endowed with
the action of the Dl(z) belongs to Fmer for all µ ∈ wt(X).

The definition of Õ is standard as in the cases of Kac–Moody algebras [Kac 1990] and quantum
affinizations [Hernandez 2005]. Definition 1.7 is a special feature of elliptic quantum groups. It is meant
to loosen the dependence on the dynamical parameter λ.6

O is an abelian subcategory of Õ. For X in category O, (1.8) defines difference operators Kl(z) : X→ X
of bidegree (εl, εl) for 1≤ l ≤ N .7

Following [Cavalli 2001, Definition 2.1], a nonzero weight vector of a module X in category Õ is
called singular if it is annihilated by the L i j (z) for 1≤ j < i ≤ N .

Lemma 1.8. Let X be in category O. If v ∈ X is singular, then Ki (z)v = L̂ i (z)v for all 1≤ i ≤ N.
6For the elliptic quantum group associated to an arbitrary finite-dimensional simple Lie algebra, Gautam and Toledano Laredo

[2017a, §2.3] defined a category of integrable modules on which the action of the elliptic Cartan currents, analogs of Dk(z), is
independent of λ. The asymptotic modules that we will construct in Section 4 are not integrable.

7The Kl (z) do not come from the elliptic quantum group, yet formally they are elliptic Cartan currents K+l (z) in [Konno
2016, Corollary E.24], arising from a Gauss decomposition of an L̂-matrix [Ding and Frenkel 1993].
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Proof. Descending induction on i : for i = N we have KN (z)= L N N (z)= L̂ N (z). Assume the statement
for i > N − t where 1≤ t < N . We need to prove the case i = N − t . Let α be the weight of v and let Y
be the submodule of X generated by v. By [Cavalli 2001, Lemma 2.3], Y is linearly spanned by vectors
of the form

L p1q1(z1)L p2q2(z2) · · · L pnqn (zn)v,

where 1 ≤ pl ≤ ql ≤ N and zl ∈ C for 1 ≤ l ≤ n. So α+ εp − εq /∈ wt(Y ) for 1 ≤ p < q ≤ N , and any
nonzero vector ω ∈ Y [α] is singular. Apply Dk(z) to ω. At the right-hand side of (1.6) only the term
σ = Id is nonzero and equal to L̂ N (z)L̂ N−1(z+ h̄) · · · L̂ N−k+1(z+ (k− 1)h̄)ω by (1.7). It follows that

Dt+1(z)v = L̂ N (z)L̂ N−1(z+ h̄) · · · L̂ N−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v

= KN (z)L̂ N−1(z+ h̄) · · · L̂ N−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v

...

= KN (z)KN−1(z+ h̄) · · · KN−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v.

Here we applied the induction hypothesis to N , N − 1, . . . , N − t + 1 successively to singular vectors to
the right of the underlines. Since the Kl(z) are invertible, in view of (1.8) we must have L̂ N−t(z+ t h̄)v =
KN−t(z+ t h̄)v. �

We extend the q-character theory of H. Knight and Frenkel and Reshetikhin to category O, as in [Felder
and Zhang 2017, §3]. Take the product group Mw :=M× h, by viewing h as an additive group. Let
$ :Mw� h be the projection to the second component.

As in [Hernandez and Leclerc 2016, §3.2], let Mt be the set of formal sums
∑

f∈Mw
c f f with

integer coefficients c f ∈ Z such that for µ ∈ h, all but finitely many c f with $( f )= µ is zero; the set
{$( f ) : c f 6= 0} is contained in a finite union of cones ν+ Q− with ν ∈ h. Make Mt into a ring; addition
is the usual one of formal sums and multiplication is induced from that of Mw.

Definition 1.9. Let X be in category O. For µ∈wt(X), since X [µ] equipped with the difference operators
Dk(z) is in category Fmer, in the Grothendieck group of which we have [X [µ]] =

∑dim X [µ]
i=1 [M( f µ,i )]

where f µ,i ∈M for 1 ≤ i ≤ dim X [µ]. Each of the ( f µ,i ;µ) ∈Mw is called an e-weigth of X . Let
wte(X) be the set of e-weigths of X . The q-character of X is defined to be

χq(X) :=
∑

µ∈wt(X)

dim X [µ]∑
i=1

( f µ,i ;µ) ∈Mt.

Proposition 1.10. Let X and Y be in category O. The E-module X⊗Y is also in category O and
χq(X⊗Y )= χq(X)χq(Y ).

Proof. Clearly X⊗Y is in category Õ. Let us verify property (M3) of Definition 1.4. The idea is almost
the same as that of [Felder and Zhang 2017, Proposition 3.9], which in turn followed [Frenkel and
Reshetikhin 1999, §2.4]. For α, β ∈ h, let us choose ordered bases (vαi )1≤i≤pα and (wβj )1≤ j≤qβ for X [α]
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and Y [β], respectively, satisfying (M3). Note that (vαi ⊗w
β

j )α,β,i, j forms a basis B of X⊗Y . Choose a
partial order E on B with the properties

vαi ⊗w
β

j E v
α
r ⊗w

β
s if i ≤ r and j ≤ s,

vαi ⊗w
β

j C v
γ
r ⊗w

δ
s if γ ≺ α and β ≺ δ.

For 1≤ k ≤ N , by Corollary 1.2, DX⊗Y
k (z)(vγr ⊗wδs )= DX

k (z)v
γ
r ⊗DY

k (z)w
δ
s + Z where Z is a finite sum

of vectors in X [γ +$N−k +η]⊗Y [δ−$N−k −η] for η ∈ h such that −$N−k ≺ η. So the ordered basis
B induces an upper triangular matrix for DX⊗Y

k (z) whose diagonal entry associated to vγr ⊗wδs is the
product of those associated to vγr and wδs . This implies (M3) for the weight spaces (X⊗Y )[α] with bases
B∩ (X⊗Y )[α] and the multiplicative formula of q-characters as well. �

For f (z) ∈M×
C

and α ∈ h we make the simplifications

f (z) := ( f (z), . . . , f (z); 0) and eα := (1, . . . , 1;α) ∈Mw.

Definition 1.11. Let 1 ≤ i, k ≤ N such that i 6= N . Set `k := (N − k − 1)/2. For a ∈ C, define the
following elements of Mw:

Ai,a :=

(
1, . . . , 1︸ ︷︷ ︸

i−1

,
θ(z+ (a− `i )h̄)

θ(z+ (a− `i − 1)h̄)
,

θ(z+ (a− `i )h̄)
θ(z+ (a− `i + 1)h̄)

, 1, . . . , 1︸ ︷︷ ︸
N−i−1

;αi

)
.

9k,a :=
(
θ(z+ (a− `k)h̄), . . . , θ(z+ (a− `k)h̄)︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

; a$k
)
.

Yk,a :=

(
θ
(
z+

(
a− `k +

1
2

)
h̄
)

θ
(
z+

(
a− `k −

1
2

)
h̄
) , . . . , θ(z+ (a− `k +

1
2

)
h̄
)

θ
(
z+

(
a− `k −

1
2

)
h̄
)︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

;$k

)
.

k a :=

(
θ(u+ h̄)θ(u− h̄)

θ(u)2
, . . . ,

θ(u+ h̄)θ(u− h̄)
θ(u)2︸ ︷︷ ︸

k−1

,
θ(u+ h̄)
θ(u)

, 1, . . . , 1︸ ︷︷ ︸
N−k

; εk

)∣∣∣∣
u=z+ah̄

.

Ai,a, Yk,a and 9k,a are elliptic analogs of generalized simple roots, fundamental `-weight [Frenkel and
Reshetikhin 1999] and prefundamental weight [Hernandez and Jimbo 2012]. Set ci j := 2δi j − δi, j±1 and
Y0,a =90,a := 1. Then (in the products 1≤ j ≤ N )

Yk,a =
9k,a+ 1

2

9k,a− 1
2

and Ai,a =
∏

j

9 j,a+
ci j
2

9 j,a−
ci j
2

= Yi,a− 1
2
Yi,a+ 1

2

∏
j=i±1

Y−1
j,a . (1.9)

The interplay of A, 9 is the source of the three-term Baxter’s Relation (5.32) in category O. Note that A
and Y can also be written in terms of k :
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Ai,a = i a−`i
i + 1

−1

a−`i
, Yk,a =

k∏
j=1

j
a−`k−

1
2+ j−k

, (1.10)

9N ,a = θ
(
z+

(
a+ 1

2

)
h̄
)
, YN ,a =

θ(z+ (a+ 1)h̄)
θ(z+ ah̄)

. (1.11)

1D. Vector representations. Let V := ⊕N
i=1Mvi with h-grading V [εi ] = Mvi . Rewriting (1.1) in the

form of (1.2), we obtain an E-module structure on V :

L i j (z)vk =

N∑
l=1

θ(z+ h̄)
θ(z)

R jk
il (z; λ)vl .

The factor θ(z+ h̄)/θ(z) is used to simplify the q-character, see (1.12).
If i ≤ N−k+1, since L pq(z)vi =0 for all N ≥ p>q> N−k, only the term σ = Id in (1.6) survives and

Dk(z)vi =
µr(2k(λ))

µl(2k(λ))

N−k+1∏
j=N

L j j (z+ (N − j)h̄)vi = gi
k(z; λ)vi ,

gi
k(z; λ)=

∏
j>N−k

θ(λi j + h̄)
θ(λi j )

for i ≤ N − k,

gN−k+1
k (z; λ)=

θ(z+ kh̄)
θ(z+ (k− 1)h̄)

.

If i > N−k+1, then L N−k+1,i (z)vN−k+1= θ(h̄)θ(z+λN−k+1,i )vi/(θ(z)θ(λN−k+1,i )). By Corollary 1.2,
Dk(z)vi = gN−k+1

k (z; λ)vi . Let us perform a change of basis (see [Konno 2016, (E.2)])

ṽi := vi

∏
l>i

θ(λil + h̄) ∈ V [εi ].

After a direct computation, we obtain

Dk(z)ṽi = ṽi ×

{ 1 for i ≤ N − k,
θ(z+kh̄)

θ(z+(k−1)h̄)
for i > N − k.

(1.12)

The basis {ṽ1 < ṽ2 < · · ·< ṽN } of V satisfies property (M3) of Definition 1.4, so V is in category O. For
a ∈ C, let V (a) be the pullback of V by the spectral parameter shift 8a in (1.4). Naturally V (a) is in
category O; it is called a vector representation. Combining with (1.8) we have

χq(V (a))= 1 a + 2 a + · · ·+ N a.

1E. Highest weight modules. Let X be in category Õ. A nonzero weight vector v ∈ X [α] is called a
highest weight vector if it is singular and L̂k(z)v = fk(z)v for 1 ≤ k ≤ N ; here the fk(z) ∈M×

C
. Call

( f1(z), f2(z), . . . , fN (z);α) ∈Mw the highest weight of v; by Lemma 1.8 it belongs to wte(X) if X is
in category O.
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If there is a highest weight vector v ∈ X [α] of X which also generates the whole module, then X
is called a highest weight module, see [Cavalli 2001, Definition 2.1]. In this case, by [Cavalli 2001,
Lemma 2.3], X [α] = Mv and wt(X) ⊆ α + Q−, so the highest weight vector is unique up to scalar
product. This implies that X admits a unique irreducible quotient. The highest weight of v is also called
the highest weight of X ; it is of multiplicity one in χq(X) if X is in category O.

All irreducible modules in category O are of highest weight.
By [Cavalli 2001, Theorem 2.8] two irreducible highest weight modules in category Õ are isomorphic

if and only if their highest weights are identical in Mw; all singular vectors of an irreducible highest
weight module in category Õ are proportional. It follows that the q-characters distinguish irreducible
modules in category O.

Let R be the set of d ∈Mw which appears as the highest weight of an irreducible module in category O.
For d ∈R, let us fix an irreducible module S(d) in category O of highest weight d. Let R0 and Rfd be
the set of d ∈R such that S(d) is one-dimensional and finite-dimensional, respectively.

We shall need the completed Grothendieck group K0(O). Its definition is the same as that in [Hernandez
and Leclerc 2016, §3.2]; elements are formal sums

∑
d∈R cd[S(d)] with integer coefficients cd ∈ Z such

that ⊕d S(d)⊕|cd | is in category O and addition is the usual one of formal sums. As in the case of
Kac–Moody algebras [Kac 1990, §9.6], for d ∈ R the multiplicity md,X of S(d) in any object X of
category O is well-defined due to Definition 1.7, and [X ] :=

∑
d md,X [S(d)] belongs to K0(O). In the

case X = S(d) the right-hand side is simply [S(d)] as me,S(d) = δd,e for e ∈R.
By Proposition 1.10, K0(O) is endowed with a ring structure with multiplication [X ][Y ] = [X⊗Y ] for

X and Y in category O. Together with Definition 1.9, we obtain

Corollary 1.12. The assignment [X ] 7→ χq(X) defines an injective morphism of rings χq : K0(O)→Mt.
In particular, K0(O) is commutative.

Let Ofd be the full subcategory of O consisting of finite-dimensional modules. It is abelian and
monoidal. Its Grothendieck ring K0(Ofd) admits a Z-basis [S(d)] for d ∈Rfd, and is commutative as a
subring of K0(O).

By Proposition 1.10, S(d)⊗S(e) admits an irreducible subquotient S(de), so the three sets R⊃Rfd⊃R0

are submonoids of Mw.

Lemma 1.13. Let d = (( fk(z))1≤k≤N ;µ) ∈Mw.

(i) Suppose d ∈R. Then for 1≤ k < N we have

fk(z)
fk+1(z)

= c
n∏

l=1

θ(z+ al h̄)
θ(z+ bl h̄)

and µk,k+1 =

n∑
l=1

(al − bl)

for certain a1, a2, . . . , an, b1, b2, . . . , bn ∈ C and c ∈ C×.

(ii) If d ∈Rfd, then (i) holds and after a rearrangement of the al, bl we have al − bl ∈ Z≥0+ h̄−10 for
all l.
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(iii) d ∈R0 if and only if (ii) holds with al − bl ∈ h̄−10 for all l.

Proof. Results (i) and (iii) are essentially [Felder and Varchenko 1996b, Theorems 6 and 9], which can be
proved as in [Felder and Zhang 2017, Theorem 4.1] by replacing L+−, L−+ therein with Lk,k+1, Lk+1,k .
Result (ii) comes from either [Cavalli 2001, Theorem 5.1] or [Felder and Zhang 2017, Corollary 4.6]. �

As examples YN ,a, 9N ,a ∈R0. Call an e-weigth e∈Mw dominant or rational if e= dm where d ∈R0

and m is a product of the Yi,a or the 9i,a9
−1
i,b , respectively with a, b ∈ C and 1 ≤ i ≤ N . Lemma 1.13

implies that all elements of Rfd or R are dominant or rational, respectively.

Theorem 1.14 [Cavalli 2001]. Rfd is the set of dominant e-weigths.

Proof. It suffices to prove Yn,a ∈ Rfd for 1 ≤ n < N . Note that V (w) and γ from [Cavalli 2001,
(1.19)] correspond to our V (−w/h̄)⊗S(θ(z−w)/θ(z−w− h̄)) and −h̄. Let us rephrase [Cavalli 2001,
Theorem 4.4] in terms of the V by replacing z and w in [loc. cit.] with −ah̄ and z.

The E-module V (a)⊗V (a+ 1)⊗ · · ·⊗V (a+ n− 1) admits an irreducible quotient S which contains
a singular vector ω of weight $n such that L̂k(z)ω =3k(z)gk(λ)ω where for 1≤ k ≤ N (set δk≤n = 1 if
1≤ k ≤ n and δk≤n = 0 if n < k ≤ N )

3k(z)=
θ(z+ (a+ 1)h̄)
θ(z+ ah̄)

θ(z+ (a+ n)h̄)
θ(z+ (a+ n− δk≤n)h̄)

for gk(λ) ∈M×.

As a subquotient of tensor products of vector representations, S belongs to category O. By Lemma 1.6,
the gk(λ) can be gauged away, and the highest weight of S is 3N (z)Yn,a−1+(N+n)/2 ∈Rfd. This implies
Yn,a−1+(N+n)/2 ∈Rfd. �

A sharp difference from the affine case [Hernandez and Jimbo 2012, Theorem 3.11] is that category O
does not admit prefundamental modules, i.e., 9r,a /∈R if r < N . One might want to introduce a larger
category with well-behaved q-character theory, so that modules of highest weight 9r,a exist. For this
purpose, the finite-dimensionality of weight spaces should be dropped because of [Felder and Varchenko
1996b, Theorem 9]. The recent work [Bittmann 2017] on representations of affine quantum groups is in
this direction.

1F. Young tableaux and q-character formula. Let P be the set partitions with at most N parts, i.e.,
N -tuples of nonnegative integers (µ1≥µ2≥ · · · ≥µN ). To such a partition we associate a Young diagram

Yµ := {(i, j) ∈ Z2
| 1≤ i ≤ N , 1≤ j ≤ µi },

and the set Bµ of Young tableaux of shape Yµ. We put the Young diagram at the northwest position so
that (i, j) ∈ Yµ corresponds to the box at the i-th row (from bottom to top) and j-th column (from right
to left). By a tableau we mean a function T : Yµ→ {1 < 2 < · · · < N } weakly increasing at each row
(from left to right) and strictly increasing at each column (from top to bottom).

For µ= (µ1 ≥ µ2 ≥ · · · ≥ µN ) ∈ P and a ∈ C, we have the dominant e-weigth

θµ,a :=

(
θ(z+ (a+µ1)h̄)

θ(z+ ah̄)
,
θ(z+ (a+µ2)h̄)

θ(z+ ah̄)
, . . . ,

θ(z+ (a+µN )h̄)
θ(z+ ah̄)

;

N∑
j=1

µ jε j

)
.
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The associated irreducible module in category Ofd is denoted by Sµ,a .

Theorem 1.15. Let µ ∈ P and a ∈ C. For the Eτ,h̄(slN )-module Sµ,a we have

χq(Sµ,a)=
∑

T∈Bµ

∏
(i, j)∈Yµ

T (i, j)
a+ j−i

∈Mt. (1.13)

For ν = (1≥ 0≥ 0≥ · · · ≥ 0), we have Sν,a ∼= V (a), and (1.13) specializes to the q-character formula
in Section 1D. As an illustration of the theorem, let N = 3 and µ= (2≥ 1≥ 0). Pictorially Bµ consists of

1
1 2 ,

1
1 3 ,

1
2 2 ,

1
2 3 ,

1
3 3 ,

2
1 3 ,

2
2 3 ,

2
3 3 .

The fourth tableau gives rise to the term 2 a+1 3 a 1 a−1 in χq(Sµ,a).

Remark 1.16. Theorem 1.15 is an elliptic analog of the q-character formula for affine quantum groups
[Frenkel and Mukhin 2002, Lemma 4.7]. In principle it can be deduced from the functor of Gautam
and Toledano Laredo [2017a, § 6]. This is a functor from finite-dimensional representations of affine
quantum groups to those of elliptic quantum groups (including our Sµ,a), and it respects affine and elliptic
q-characters.

The proof of Theorem 1.15 will be given in Section 2D. It is in the spirit of [Frenkel and Mukhin
2002], based on small elliptic quantum groups of Tarasov and Varchenko [2001].

2. Small elliptic quantum group and evaluation modules

The aim of this section is to prove Corollary 1.2 and Theorem 1.15.
Recall that h is the C-vector space generated by the εi for 1≤ i ≤ N subject to the relation

ε1+ ε2+ · · ·+ εN = 0.

For 1 ≤ k ≤ N , define the C-vector space hk to be the quotient of h by ε1 = ε2 = · · · = εN−k = 0. (By
convention hN = h.) The quotient h� hk induces an embedding Mhk ↪→M.

Let Eh
k and Ek be the h-algebra and hk-algebra, respectively, generated by the L i j (z) for N−k< i, j ≤ N

subject to relation (1.2) with summations N − k < p, q ≤ N . (This makes sense because the R pq
i j (z; λ)

for N − k < i, j, p, q ≤ N belong to Mhk .) The following defines an hk-algebra morphism

1k : Ek→ Ek⊗̃Ek and L i j (z) 7→
N∑

p=N−k+1

L i p(z)⊗̃L pj (z).

One has natural algebra morphisms Ek → Eh
k → E sending L i j (z) to itself; the second is an h-algebra

morphism. D1(z),D2(z), . . . ,Dk(z) from (1.6) are well-defined in Eh
k and Ek . Their images in E are the

first k elliptic quantum minors.
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2A. Proof of Corollary 1.2. The hk-algebra with coproduct (Ek,1k) is isomorphic to the usual elliptic
quantum group Eτ,h̄(slk); here we view hk as a Cartan subalgebra of slk so that Eτ,h̄(slk) is an hk-algebra.
Under this isomorphism, by (1.6), Dk(z) ∈ Ek corresponds to the k-th elliptic quantum minor of Eτ,h̄(slk).
So Theorem 1.1 can be applied to (Ek,Dk(z),1k) and then to the algebra morphism Ek→ E . The first
statement of the corollary is obvious, and the second is based on the fact that for i, j > N−k the difference
1−1k at L i j (z) is a finite sum over α∈h of elements in Eεi ,α⊗̃Eα,ε j with εN−k+1≺α and so εi , ε j ≺α. �

We believe 0 6= α+$N−k ∈ Q+ in Corollary 1.2, as in [Damiani 1998, §7] and [Zhang 2016, §3].

2B. Small elliptic quantum group of Tarasov–Varchenko. Let us define the linear form λi ∈ h∗ by
taking i-th component for 1≤ i ≤ N ,

x1ε1+ x2ε2+ · · ·+ xNεN 7→ xi −
1
N
(x1+ x2+ · · ·+ xN ).

The linear form λi j of Section 1 is λi −λ j . For γ ∈ h and 1≤ i, j ≤ N , set γi := λi (γ ) and γi j := γi −γ j

as complex numbers. We hope this is not to be confused with the previously defined vectors λi ∈ h
∗ and

εi , αi ,$i ∈ h.
Following [Tarasov and Varchenko 2001, §3], let M2 be the ring of meromorphic functions f (λ{1}, λ{2})

of (λ{1}, λ{2}) ∈ h⊕ h whose location of singularities in λ{1} does not depend on λ{2} and vice versa. For
brevity, we write f (λ{1}) or f (λ{2}) instead of f (λ{1}, λ{2}) if the function does not depend on the other
variable.

Definition 2.1 [Tarasov and Varchenko 2001]. The small elliptic quantum group e := eτ,h̄(slN ) is the
algebra with generators M2 and ti j for 1 ≤ i, j ≤ N and subject to relations: M2 is a subalgebra. For
f (λ{1}, λ{2}) ∈M2 and 1≤ i, j, k, l ≤ N ,

ti j f (λ{1}, λ{2})= f (λ{1}+ h̄εi , λ
{2}
+ h̄ε j )ti j ,

ti j tik = tik ti j ,

tik t jk =
θ(λ
{1}
i j − h̄)

θ(λ
{1}
i j + h̄)

t jk tik for i 6= j,

θ(λ
{2}
jl − h̄)

θ(λ
{2}
jl )

ti j tkl −
θ(λ
{1}
ik − h̄)

θ(λ
{1}
ik )

tkl ti j =
θ(λ
{1}
ik + λ

{2}
jl )θ(−h̄)

θ(λ
{1}
ik )θ(λ

{2}
jl )

til tk j for i 6= k and j 6= l.

Here λ{1}i j = λ
{1}
i − λ

{1}
j and λ{2}i j = λ

{2}
i − λ

{2}
j .

The small elliptic quantum group e is equipped with an h-algebra structure: Elements of M2 are of
bidegree (0, 0). ti j is of bidegree (ε j , εi ). The moment maps are given by

µl(g(λ))= g(λ{2}) and µr(g(λ))= g(λ{1}).
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Let X be an object of Vft. A representation ρ of e on X is a morphism of h-algebras ρ : e→DX such that
for f (λ{1}, λ{2}) ∈M2 and v ∈ X [γ ],

ρ( f (λ{1}, λ{2})) : v 7→ f (λ, λ+ h̄γ )v.

A morphism of two representations (ρ, X) and (σ, Y ) is a morphism 8 : X → Y in Vft such that
8ρ(ti j )= σ(ti j )8 for 1≤ i, j ≤ N . Let rep be the category of e-modules. The following result is [Tarasov
and Varchenko 2001, Corollary 3.4].

Corollary 2.2. Let (ρ, X) be a representation of e on X. Then, for a ∈ C,

L i j (z) 7→
θ(z+ ah̄+ λ{2}i − λ

{1}
j )

θ(z+ ah̄)
ρ(t j i )

defines a representation of E on X , called the evaluation module X (a).

There is a flip of the subscripts i and j because the bidegrees of L i j and ti j are flips of each other. See
also [Tarasov and Varchenko 2001, (3.6)] where Ti j (u) comes from t j i .

X 7→ X (a) defines a functor eva : rep→ Rep. Let F be the full subcategory of rep whose objects are
finite-dimensional e-modules X with X (x) being in category O. Then eva restricts to a functor of abelian
categories F→Ofd, and induces an injective morphism of Grothendieck groups K0(F) ↪→ K0(Ofd).

For 1≤ k ≤ N , define t̂k ∈ e in the same way as (1.7):8

t̂N (z) := tN N and t̂k(z)= tkk

N∏
j=k+1

µr(θ(λk j ))

µl(θ(λk j ))
.

Let µ ∈ h. There exists a unique (up to isomorphism) irreducible e-module Vµ with the property Vµ
admits a nonzero vector v of weight µ such that t̂kv = v, ti jv = 0 for 1 ≤ i, j, k ≤ N and j < k; it is
called standard in [Tarasov and Varchenko 2001, §4]. Let Lµ denote the complex irreducible module
over the simple Lie algebra slN of highest weight µ. For ν ∈ h, let dµ[ν] = dimC Lµ[ν] where Lµ[ν] is
the weight space of weight ν.

Theorem 2.3 [Tarasov and Varchenko 2001, Theorem 5.9]. The e-module Vµ is finite-dimensional if and
only if µi j ∈ Z≥0+ h̄−10 for 1 ≤ i < j ≤ N. If µ̃ ∈ h is such that µi j − µ̃i j ∈ h̄−10 and µ̃i j ∈ Z≥0 for
i < j , then dim Vµ[µ+ γ ] = dµ̃[µ̃+ γ ] for γ ∈ Q−.

In the theorem µ̃ is uniquely determined by µ since Z ∩ h−10 = {0}. Such an e-module Vµ is in
category F . Indeed, the evaluation module Vµ(a) is irreducible in category Õ of highest weight(

θ(z+ (µ1+ a)h̄)
θ(z+ ah̄)

,
θ(z+ (µ2+ a)h̄)

θ(z+ ah̄)
, . . . ,

θ(z+ (µN + a)h̄)
θ(z+ ah̄)

;µ

)
.

One checks that such an e-weigth is dominant. So Vµ(a) is in category Ofd by Theorem 1.14. The
character χ(Vµ) of Vµ is

∑
γ dµ̃[µ̃+ γ ]eµ+γ ∈Mt.

8The t̂a are slightly different from the t̂aa in [Tarasov and Varchenko 2001, (4.1)]. Yet they play the same role.
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The isomorphism classes [Vµ] where µ ∈ h and µi j ∈ Z≥0+ h̄−10 for i < j form a Z-basis of K0(F),
and [Vµ] 7→χ(Vµ) extends uniquely to a morphism of abelian groups χ : K0(F)→Mt, which is injective
thanks to the linear independence of characters of irreducible representations of the simple Lie algebra slN .

2C. Category O′
fd. We are going to prove Theorem 1.15 by induction on N . The idea is to view the

irreducible E-module Sµ,a as an Eh
N−1-module and to apply the induction hypothesis. For this purpose,

we need to adapt carefully the definitions of finite-dimensional module category Ofd and its q-characters
in Section 1C to Eh

N−1. To distinguish with E and to simplify notations, we shall add a prime (instead of
the index N−1) to objects related to Eh

N−1. Notably h′ := hN−1.
We define category O′fd. An object is a finite-dimensional h-graded vector space X (viewed as an object

of category Vft) endowed with difference operators L X
i j (z) : X→ X of bidegree (εi , ε j ) for 2≤ i, j ≤ N

depending on z ∈ C such that:

(M1’) There exists a basis of X with respect to which the matrix entries of the difference operators L X
i j (z)

are meromorphic functions of (z, λ) ∈ C× h.

(M2’) L i j (z) 7→ L X
i j (z) defines an h-algebra morphism Eh

N−1→ DX .

(M3’) X admits an ordered weight basis with respect to which the matrices of the difference operators
DX

l (z) for 1 ≤ l < N are upper triangular and their diagonal entries are nonzero meromorphic
functions of z ∈ C.

A morphism in category O′fd a linear map 8 : X→ Y such that 8L X
i j (z)= LY

i j (z)8 for 2≤ i, j ≤ N .
Category O′fd is an abelian subcategory of Vft.

The h-algebra morphism Eh
N−1→ E induces restriction functor Ofd→O′fd.

Let X be in category O′fd. Equation (1.8) defines difference operators K X
l (z) : X → X of bidegree

(εl, εl) for 2 ≤ l ≤ N . Condition (M3’) implies that for each weight α, the weight space X [α] admits
an ordered basis Bα with respect to which the matrix of K X

l (z) is upper triangular and has as diagonal
entries fb,l(z) ∈M×

C
for b ∈ Bα. Following Definition 1.9, we define the q-character of X to be

χ ′q(X)=
∑

α∈wt(X)

∑
b∈Bα

(1, fb,2(z), fb,3(z), . . . , fb,N (z);α) ∈Mt.

It is independent of the choice of the bases Bα, as one can use category Fmer to characterize the fb,l(z),
see the comments after Lemma 1.6.

Remark 2.4. Let X be in category Ofd, viewed as an object of O′fd. Then χ ′q(X) is obtained from χq(X)
by replacing each e-weigth g of the E-module X with g′; here for g = (g1(z), g2(z), . . . , gN (z);α) ∈Mt

we define

g′ := (1, g2(z), g3(z), . . . , gN (z);α) ∈Mt.

Reciprocally, if X is an irreducible E-module in Ofd of highest weight (e1(z), e2(z), . . . , eN (z);α) ∈Rfd,
then χq(X) can be recovered from χ ′q(X). Indeed, since the N -th elliptic quantum minor is central, by



620 Huafeng Zhang

Schur’s lemma, it acts on X as a scalar. Each e-weigth ( f1(z), f2(z), . . . , fN (z);β) of the E-module X
is determined by the its last N components in χ ′q(X) as follows:

e1(z+ (N − 1)h̄)e2(z+ (N − 2)h̄) · · · eN (z)= f1(z+ (N − 1)h̄) f2(z+ (N − 2)h̄) · · · fN (z).

The highest weight theory in Section 1E carries over to category O′fd since L̂k(z)∈ E
h
N−1 for 2≤ k ≤ N .

Irreducible objects in O′fd are classified by their highest weight, and the q-character map is an injective
morphism from the Grothendieck group K0(O′fd) to the additive group Mt. Let P′ be the set of partitions
with at most N − 1 parts (ν2 ≥ ν3 ≥ · · · ≥ νN ). For such a partition and for c, a ∈ C,(

1,
θ(z+ (a+ ν2)h̄)
θ(z+ ah̄)

,
θ(z+ (a+ ν3)h̄)
θ(z+ ah̄)

, . . . ,
θ(z+ (a+ νN )h̄)

θ(z+ ah̄)
; cε1+

N∑
j=2

ν jε j

)

is the highest weight of an irreducible Eh
N−1-module in category O′fd, which is denoted by S′ν,c,a .

As in Section 1F, ν is identified with its Young diagram Yν . Let B′ν be the set of Young tableaux
Yν→ {2< 3< · · ·< N } of shape ν.

Lemma 2.5. Assume that Theorem 1.15 is true for Eτ,h̄(slN−1)-modules. Then for ν ∈ P′ and c, a ∈ C,
the q-character of the Eh

N−1-module S′ν,c,a is

χ ′q(S
′

ν,c,a)= ecε1
∑

T∈B′ν

∏
(i, j)∈Yν

T (i, j)
′

a+ j−i
∈Mt.

Proof. We shall need EN−1-modules which are h′-graded Mh′-vector spaces; similar category of finite-
dimensional modules and q-characters are defined, based on the h′-algebra isomorphism Eτ,h̄(slN−1)∼=EN−1

in Section 2A.
For ν := (ν2 ≥ ν3 ≥ · · · ≥ νN ) ∈ P′ and a ∈ C there exists a unique (up to isomorphism) irreducible

EN−1-module, denoted by S′ν,a , which contains a nonzero vector ω of h′-weight ν2ε2+ν3ε3+· · ·+νNεN

such that

L i j (z)ω = 0 and L̂k(z)ω =
θ(z+ (a+ νk)h̄)
θ(z+ ah̄)

ω

for 2≤ i, j, k ≤ N with j < i . We endow the M-vector space X :=M⊗Mh′
S′ν,a with an Eh

N−1-module
structure in category O′fd.

Let w be a nonzero weight vector in S′ν,a . Its h′-weight is written uniquely in the form

(ν2ε2+ ν3ε3+ · · ·+ νNεN )+ (x2α2+ x3α3+ · · ·+ xN−1αN−1) ∈ h
′,

where x j ∈ Z≤0. Define the h-weight of g(λ)⊗Mh′
w, for g(λ) ∈M×, to be

(cε1+ ν2ε2+ ν3ε3+ · · ·+ νNεN )+ (x2α2+ x3α3+ · · ·+ xN−1αN−1) ∈ h,

and define the action of L i j (z) for 2≤ i, j ≤ N by the formula

L i j (z)(g(λ)⊗Mh′
w)= g(λ+ h̄ε j )⊗Mh′

L i j (z)w.
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(M1’)–(M2’) are clear from the EN−1-module structure on S′ν,a . Choose an ordered weight basis B of S′ν,a
over Mh′ such that the matrices of Dk(z) for 1 ≤ k < N are upper triangular and their diagonal entries
belong to M×

C
. Then the ordered basis {1⊗Mh′

b |b∈ B}=: B ′ of X satisfies (M3’). So X is in category O′fd.
The matrices of Dk(z) with respect to the basis B ′ of X and the basis B of S′ν,a are the same. So χ ′q(X)

up to a normalization factor ecε1 , is equal to the q-character of the Eτ,h̄(slN−1)-module Sν,a . The latter
is given by (1.13).

X has a unique (up to scalar) singular vector and is of highest weight, so it is irreducible. A comparison
of highest weights shows that X ∼= S′ν,c,a . �

Fix µ ∈P a partition with at most N parts. Given a tableau T ∈Bµ, by deleting the boxes 1 in T , we
obtain a Young diagram T−1({2, 3, . . . , N }) with at most N − 1 rows, which corresponds to a partition
in P′, denoted by νT . Let Wµ be the set of all such νT with T ∈ Bµ. For ν ∈Wµ, define cν to be the
cardinal of the finite subset Yµ \ Yν of Z2.

Again take the example N = 3 and µ= (2≥ 1) after Theorem 1.15. The eight tableaux in Bµ with 1
deleted give four Young diagrams and partitions

= (1), = (2), = (1≥ 1), = (2≥ 1).

The corresponding integers cν are 2, 1, 1, 0.

Lemma 2.6. Let µ ∈ P and a ∈ C. In the Grothendieck group K0(O′fd)

[Sµ,a] =
∑
ν∈Wµ

[S′ν,cν ,a].

Proof. Let e′ be the subalgebra of e generated by M2 and the ti j for 2≤ i, j ≤ N . One can define similar
abelian category F ′ of e′-modules (which are h-graded M-vector spaces) equipped with:

(a) The evaluation functor ev′a : F ′→O′fd from e′-modules to Eh
N−1-modules.

(b) The injective character map χ : K0(F ′)→Mt from the h-grading.

Theorem 2.3 applied to the h′-algebra eτ,h̄(slN−1), from the scalar extension in the proof of Lemma 2.5,
one obtains an irreducible object V ′ν,c in category F ′ for ν = (ν2 ≥ ν3 ≥ · · · ≥ νN ) ∈ P′ and c ∈ C with
the following properties:

(c) V ′ν,c admits a nonzero vector v of weight cε1+ ν2ε2+ ν3ε3+ · · ·+ νNεN and t̂kv = v, ti jv = 0 for
2≤ i, j, k ≤ N and i < j .

(d) χ(V ′ν,c) is equal to the character of the irreducible sl′N−1-module of highest weight cε1 + ν2ε2 +

ν3ε3+· · ·+νNεN ; here sl′N−1 is the parabolic Lie subalgebra of slN (with the same Cartan algebra h)
associated to the simple roots α2, α3, . . . , αN−1.

By comparing highest weight we observe that ev′a(V
′
ν,c)
∼= S′ν,c,a in category O′fd.
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Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µN ) ∈ P. Set µ := µ1ε1+µ2ε2+ · · · +µNεN . Then Sµ,a ∼= eva(Vµ) in
category Ofd. By diagram chasing

K0(Ofd)

Res
��

K0(F)
eva

oo

Res
��

χ
//Mt

K0(O′fd) K0(F ′)
ev′a

oo

χ

66

Lemma 2.6 is equivalent to the character identity χ(Vµ) =
∑

ν∈Wµ
χ(V ′ν,cν ). Since the left- and right-

hand sides are the character of a representations of slN by Theorem 2.3 and sl′N−1 by (d), respectively,
this identity is a consequence of the branching rule for representations of the reductive Lie algebras
slN ⊃ sl′N−1. �

2D. Proof of Theorem 1.15. We proceed by induction on N . For N = 1 and µ = (n), since Sµ,a is
one-dimensional, its q-character is equal to its highest weight(

θ(z+ (a+ n)h̄)
θ(z+ ah̄)

; nε1

)
=

n∏
j=1

1 a+ j−1.

Suppose N > 1. By Lemma 2.5, the induction hypothesis in the case of N − 1 gives the q-character
formula for all the Eh

N−1-modules S′ν,c,a where ν ∈ P′ and c ∈ C. So the q-character χ ′q(Sµ,a) of the
Eh

N−1-module Sµ,a is known by Lemma 2.6.
Since Sµ,a is an irreducible E-module in category Ofd, by Remark 2.4, χq(Sµ,a) can be recovered from

χ ′q(Sµ,a). Since Bµ is the disjoint union of the B′ν for ν ∈Wµ, it suffices to check that for each e-weigth
(mT

1 (z),mT
2 (z), . . . ,mT

N (z);α) at the right-hand side of (1.13), where T ∈Bµ, the following product

mT (z) := mT
1 (z+ (N − 1)h̄)mT

2 (z+ (N − 2)h̄) · · ·mT
N (z)

is the eigenvalue of scalar action of DN (z) on Sµ,a . Notice first that

N∏
p=1

θ(z+ (a+ N − p+µp)h̄)
θ(z+ (a+ N − p)h̄)

=

∏
(i, j)∈Yµ

θ(z+ (a+ j − i + N )h̄)
θ(z+ (a+ j − i + N − 1)h̄)

.

By (1.12), each box i x contributes to θ(z+ (x + N )h̄)/θ(z+ (x + N − 1)h̄), so the right-hand side of
the identity is exactly mT (z). By Remark 2.4, the left-hand side is the scalar of DN (z) acting on Sµ,a .
This completes the proof of Theorem 1.15. �

3. Kirillov–Reshetikhin modules

We study certain irreducible E-modules via q-characters.
Fix a ∈ C. For k ∈ C and 1≤ r ≤ N , define the asymptotic e-weigth

w
(r)
k,a :=9r,a+k9

−1
r,a ∈Mw. (3.14)
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Assume k ∈ Z≥0. We identify k$r with the partition (k ≥ k ≥ · · · ≥ k) where k appears r times. Then
w
(r)
k,a=Yr,a+ 1

2
Yr,a+ 3

2
· · · Yr,a+k− 1

2
= θk$r ,a by (1.9)–(1.10), and the finite-dimensional irreducible E-module

S(w(r)
k,a) in category Ofd is denoted by W (r)

k,a and called Kirillov–Reshetikhin module (KR module).
The Yi,a+m and Ai,a+m for 1≤ i ≤ N and m ∈ 1

2 Z are linearly independent in the abelian group Mw,
and generate the subgroups Pa and Qa and the submonoids P+a and Q+a , respectively. The inverses of
these submonoids are denoted by P−a and Q−a respectively. By (1.13) and (1.10),

wte(Sµ,a)⊂ θµ,aQ−a ⊂ Pa for µ ∈ P.

Indeed, let Tµ ∈Bµ be such that the associated monomial in (1.13) is θµ,a . Then for S ∈Bµ, we must
have S(i, j)≥ Tµ(i, j) for all (i, j) ∈ Yµ.

Following [Frenkel and Mukhin 2001, § 6], we call f ∈ Pa right-negative if the factors Yi,a+m with
1≤ i < N appearing in f , for which m ∈ 1

2 Z is minimal, have negative powers.

Lemma 3.1 [Frenkel and Mukhin 2001]. Let e, f ∈ Pa . If e and f are right-negative, then so is e f .

All elements in Q−a different from 1 are right-negative by (1.9).

Lemma 3.2. Let k ∈ Z>0 and 1≤ r < N.

(1) For 1≤ l ≤ k, w
(r)
k,a A−1

r,a A−1
r,a+1 · · · A

−1
r,a+l−1 is an e-weigth of W (r)

k,a of multiplicity one in χq(W
(r)
k,a).

(2) An e-weigth of W (r)
k,a different from those in (1) and from w

(r)
k,a must belong to w

(r)
k,a A−1

r,a A−1
s,a− 1

2
Q−a for

certain 1≤ s < N with s = r ± 1.

(3) Any e-weigth of W (r)
k,a is either w

(r)
k,a or right-negative.

Proof. The Young diagram Yk$r is a rectangle of r rows and k columns. For (1)–(2) the proof of
[Zhang 2018, Lemma 3.4] works by applying Theorem 1.15 to W (r)

k,a
∼= Sk$r ,a−`r . For (3), w

(r)
k,a A−1

r,a is
right-negative, and so is any element of w

(r)
k,a A−1

r,aQ−a . �

For 1 ≤ r < N and k, t, a ∈ C, define as in [Frenkel and Hernandez 2016, §4.3] and [Zhang 2018,
Remark 3.2]

d(r,t)k,a :=
9r,a+t

9r,a

∏
s=r±1

9s,a− 1
2

9s,a− 1
2−k
= w

(r)
t,a

∏
s=r±1

w
(s)
k,a− 1

2−k
∈Mw. (3.15)

If k, t ∈ Z≥0, then d(r,t)k,a ∈Rfd and set D(r,t)
k,a := S(d(r,t)k,a ).

Lemma 3.3. Let 1≤ r < N and m, k ∈ Z>0.

(1) The dominant e-weigths of W (r)
k+m−1,1⊗W (r)

k,0 and W (r)
k−1,1⊗W (r)

k+m,0 are

w
(r)
k+m−1,1w

(r)
k,0 and w

(r)
k+m−1,1w

(r)
k,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l for 1≤ l ≤ k,

w
(r)
k−1,1w

(r)
k+m,0 and w

(r)
k−1,1w

(r)
k+m,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l for 1≤ l < k,

respectively. All such e-weigths are of multiplicity one.

(2) The module W (r)
k−1,1⊗W (r)

k+m,0 is irreducible.
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Proof. For (1), one can copy the last two paragraphs of the proof of [Fourier and Hernandez 2014,
Theorem 4.1], since the right-negativity property of KR modules in the elliptic case (Lemma 3.2) is the
same as in the affine case. Let T be the tensor product module of (2). Suppose T is not irreducible. Then
there exists 1≤ l ≤ k− 1 such that T admits an irreducible subquotient S ∼= S(dl) where by (1.9)

dl := w
(r)
k−1,1w

(r)
k+m,0

l∏
j=1

A−1
r, j =

9r,k9r,k+m

9r,l+19r,l

∏
s=r±1

9s,l+ 1
2

9s, 1
2

.

Set µ :=$(dl). The weight space S[µ−αr ] is nonzero since the 9r do not cancel in dl , and its possible
e-weigths are dl A−1

r,l , dl A−1
r,l+1 since S is a subquotient of W (r)

k−l−1,l+1⊗W (r)
k−l+m,l⊗(⊗s=r±1W (s)

l, 1
2
). If dl A−1

r,l

is an e-weigth of S, then

w
(r)
k−1,1w

(r)
k+m,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l−1 A−2

r,l ∈ wte(T )= wte(W
(r)
k−1,1)wte(W

(r)
k+m,0)

which contradicts with the q-characters of KR modules in Lemma 3.2. So k> l+1 and S[µ−αr ]=Mv 6=0.
Let ω be a highest weight vector of S. Then

p := µr,r+1 = 2k− 2l +m− 1, Lr,r+1(z)ω = A(z; λ)v, Lr+1,r (z)v = B(z; λ)ω

for some meromorphic functions A and B of (z, λ) ∈ C × h. For 1 ≤ i ≤ N , let gi (z) ∈ M×
C

be
the i-th component of dl ∈Mw. Then L i i (z)ω = gi (z)ϕi (λ)ω for certain ϕi (λ) ∈ M× by (1.7). Set
h(z) := gr (z)/gr+1(z). We have

h(z)=
θ(z+ (k− `r )h̄)θ(z+ (k+m− `r )h̄)
θ(z+ (l + 1− `r )h̄)θ(z+ (l − `r )h̄)

=
θ(z−w1)θ(z−w2)

θ(z−w3)θ(z−w4)
,

where w1 := (`r − k)h̄, w2 := (`r − k−m)h̄ and so on. Applying (1.2) with (i, j)= (r + 1, r)= (n,m)
to ω, as in the proof of [Felder and Zhang 2017, Theorem 4.1], we obtain(
θ(z−w+λr,r+1+ ph̄)θ(h̄)
θ(z−w+h̄)θ(λr,r+1+ ph̄)

gr+1(z)gr (w)−
θ(z−w+λr,r+1)θ(h̄)
θ(z−w+h̄)θ(λr,r+1)

gr+1(w)gr (z)
)
ϕr (λ+h̄εr+1)ϕr+1(λ)

=
θ(z−w)θ(λr,r+1+h̄)
θ(z−w+h̄)θ(λr,r+1)

B(w; λ)A(z; λ+h̄εr ).

Multiplying both sides by θ(z−w+h̄)/(gr+1(z)gr+1(w)) and noticing gr+1(z)= θ(z−w3)/θ(z−w3−lh̄),
one can evaluate w at w1 and w2 to obtain identities of meromorphic functions of (z, λ):

Ã(z; λ)xi (λ)=
θ(z−wi + λr,r+1)

θ(z−wi )
f (λ)h(z) for i = 1, 2.

Here we set ϕ(λ) := ϕr (λ+ h̄εr+1)ϕr+1(λ) and

Ã(z; λ) :=
A(z; λ+ h̄εr )

gr+1(z)
, xi (λ) :=

B(wi ; λ)

gr+1(wi )
, f (λ) := −

θ(h̄)ϕ(λ)
θ(λr,r+1+ h̄)

.

Since f (λ)h(z) 6= 0, we have xi (λ) 6= 0 and so

θ(z−w1+ λr,r+1)θ(z−w2)

x1(λ)θ(z−w3)θ(z−w4)
=
θ(z−w2+ λr,r+1)θ(z−w1)

x2(λ)θ(z−w3)θ(z−w4)
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as nonzero meromorphic functions of (z, λ). This forces w1−w2 = mh̄ ∈ Z+Zτ , which certainly does
not hold. This proves (3). �

Theorem 3.4. For 1 ≤ r < N , t ∈ Z≥0 and k > 0, we have the following identities in the Grothendieck
ring of category Ofd:

[D(r,t)
k,k+1] + [W

(r)
k−1,1][W

(r)
k+t+1,0] = [W

(r)
k+t,1][W

(r)
k,0], (3.16)

[D(r,t+1)
k,k ][W (r)

k+t,0] = [D
(r,0)
k+t+1,k+t+1][W

(r)
k−1,0] + [D

(r,t)
k,k ][W

(r)
k+t+1,0]. (3.17)

Proof. Set T := W (r)
k+t,1⊗W (r)

k,0 and d := w
(r)
k+t,1w

(r)
k,0. Then S := S(d) is an irreducible subquotient of T

and by (3.14)–(3.15)

d = w
(r)
k−1,1w

(r)
k+t+1,0 and d(r,t)k,k+1 = A−1

r,1 A−1
r,2 · · · A

−1
r,k d.

Set m = t + 1 in Lemma 3.3. Then S ∼=W (r)
k−1,1⊗W (r)

k+t+1,0, and there is exactly one dominant e-weigth
(counted with multiplicity) in wte(T ) \wte(S), namely d(r,t)k,k+1. This proves (3.16), which implies after
taking spectral parameter shifts

[D(r,t+1)
k,k ] = [W (r)

k+t+1,0][W
(r)
k,−1] − [W

(r)
k−1,0][W

(r)
k+t+2,−1],

[D(r,0)
k+t+1,k+t+1] = [W

(r)
k+t+1,0][W

(r)
k+t+1,−1] − [W

(r)
k+t,0][W

(r)
k+t+2,−1],

[D(r,t)
k,k ] = [W

(r)
k+t,0][W

(r)
k,−1] − [W

(r)
k−1,0][W

(r)
k+t+1,−1].

Equation (3.17) becomes a trivial identity involving only KR modules. �

D(r,t)
k,k+1 is special in the sense of [Nakajima 2003] as it contains only one dominant e-weigth. For t = 0,

D(r,0)
k,k+1
∼=W (r−1)

k, 1
2
⊗W (r+1)

k, 1
2

by showing that the tensor product is special as in [Nakajima 2003], and (3.16)
is the T -system of KR modules.

Corollary 3.5. Let 1≤ r < N , a ∈ C and k, t ∈ Z>0.

(1) d(r,t)k,a A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1 ∈ wte(D

(r,t)
k,a ) for 1≤ l ≤ t .

(2) Any e-weigth of D(r,t)
k,a different from those in (1) and d(r,d)k,a belongs to d(r,t)k,a {A

−1
r,a−k−1, A−1

s,a−k− 1
2
}Q−a ,

for certain 1≤ s < N with s = r ± 1.

Proof. This comes from Lemma 3.2 and Theorem 3.4. �

Lemma 3.6. Let 1≤ r < N and t ∈ Z≥0. There is a short exact sequence

0→ D(r,t)
1,a →W (r)

t+1,a−1⊗W (r)
1,a−2→W (r)

t+2,a−2→ 0

of E-modules in category Ofd.

Proof. Let T and S be the second and third terms above (zero excluded). Let ω1 and ω2 be highest weight
vectors of W (r)

t+1,a−1 and W (r)
1,a−2 respectively. Then ω1⊗ω2 is a highest weight vector of T and generates

a submodule T ′. Suppose T ′ = T . Then T is a highest weight module whose highest weight is equal to
that of the irreducible module S. There is a surjective morphism of modules T → S, the kernel of which
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is D(r,t)
1,a by (3.16) (one applies a spectral parameter shift 8a−2 to the equation with k = 1). This is the

desired short exact sequence.
Suppose T 6= T ′. Then [T ′] = [S] or [T ′] = [D(r,t)

k,a ]. By comparing highest weights, we have
[T ′] = [S]. So the weight space T ′[(t + 2)$r − αr ] is one-dimensional. Corollary 2.2 applied to
W (r)

t+1,a−1
∼= S(t+1)$r ,a−`r−1, one finds g(λ) ∈M× such that Lr+1,r+1(z)ω1 = ω1 and (set b := a− `r −1)

Lr,r+1(z)ω1 =
θ(z+ (b+ t)h̄+ λr,r+1)

θ(z+ bh̄)
ω′1 and Lrr (z)ω1 =

θ(z+ (b+ t + 1)h̄)
θ(z+ bh̄)

g(λ)ω1,

where 0 6= ω′1 is of weight (t + 1)$r −αr . Similarly Lr+1,r+1(z)ω2 = ω2 and

Lr,r+1(z)ω2 =
θ(z+ (b− 1)h̄+ λr,r+1)

θ(z+ (b− 1)h̄)
ω′2

with ω′2 6= 0 of weight $r −αr . Since ω1, ω2 are highest weight vectors, we have

Lr,r+1(z)(ω1⊗ω2)

= Lr,r+1(z)ω1⊗Lr+1,r+1(z)ω2+ Lrr (z)ω1⊗Lr,r+1(z)ω2

=

(
θ(z+ (b+ t)h̄+ λr,r+1)

θ(z+ bh̄)
ω′1

)
⊗ω2+

θ(z+ (b+ t + 1)h̄)
θ(z+ bh̄)

g1(λ)ω1⊗

(
θ(z+ (b− 1)h̄+ λr,r+1)

θ(z+ (b− 1)h̄)
ω′2

)
.

Setting z=−(b+t+1)h̄ we obtain ω′1⊗ω2 ∈ T ′, and so ω1⊗ω
′

2 ∈ T ′. The weight space T ′[(t+2)$r−αr ]

is at least two-dimensional, a contradiction. �

Lemma 3.6 is inspired by [Moura and Pereira 2017, § 5.3], to transform identities in the Grothendieck
group into exact sequences by restriction to sl2, see [Chari 2002]. More generally, we have the short
exact sequences in category Ofd by [Felder and Zhang 2017, Proposition 4.3 and Corollary 4.5]:9

0→ D(r,t)
k,k+1→W (r)

k+t,1⊗W (r)
k,0→W (r)

k−1,1⊗W (r)
k+t+1,0→ 0,

0→ D(r,0)
k+t+1,k+t+1⊗W (r)

k−1,0→ D(r,t+1)
k,k ⊗W (r)

k+t,0→ D(r,t)
k,k ⊗W (r)

k+t+1,0→ 0.

These exact sequences hold for affine quantum (super)groups [Fourier and Hernandez 2014; Zhang 2018].
In the super case the proof is more delicate since Lemma 3.2(3) fails.

4. Asymptotic representations

We construct infinite-dimensional modules in category O as inductive limits (k→∞) of the KR modules
W (r)

k,a for fixed 1≤ r < N and a := `r .
The general strategy follows that of Hernandez and Jimbo [2012]:

(i) Produce an inductive system of vector spaces W (r)
0,a ⊆W (r)

1,a ⊆W (r)
2,a ⊆ · · · .

(ii) Prove that the matrix entries of the L i j (z) are good functions of k ∈ Z≥0.

9The elliptic quantum group of [Felder and Zhang 2017] is slightly different as it is defined by another R-matrix, which is
gauge equivalent to the present R by [Enriquez and Felder 1998].
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(iii) Define the module structure on the inductive limit of (i).

Step (i) is done in Lemma 4.2, step (ii) in Lemma 4.8, and step (iii) in Proposition 4.10. We shall see that
the proofs in each step are different from [Hernandez and Jimbo 2012].

In what follows, by k> l we implicitly assume that k, l ∈Z≥0. For k> l, set Zkl :=W (r)
k−l,a+l

∼= S(k−l)$r ,l

and fix a highest weight vector ωkl ∈ Zkl . By (1.7), we have for 1≤ i ≤ r < j ≤ N ,

L i i (z)ωkl = ωkl
θ(z+ kh̄)
θ(z+ lh̄)

N∏
q=r+1

θ(λiq + (k− l + 1)h̄)
θ(λiq + h̄)

for L j j (z)ωkl = ωkl .

Note that Zk0 =W (r)
k,a , and we simply write ωk0 =: ωk .

Lemma 4.1. Let t > k > l > m. There exists a unique morphism of E-modules

Gl
k,m : Zkl⊗Zlm→ Zkm

such that Gl
k,m(ωkl⊗ωlm)= ωkm . Moreover the following diagram commutes:

Z tk⊗Zkl⊗Zlm
Gk

t,l⊗ Id
//

Id⊗Gl
k,m
��

Z tl⊗Zlm

Gl
t,m
��

Z tk⊗Zkm
Gk

t,m
// Z tm

(4.18)

Proof. (Uniqueness) Let F and G be two such morphisms and let X be the image of F − G. Then
ωkm /∈ X . If X 6= 0, then X has a highest weight vector v 6= 0, which is proportional to ωkm by the
irreducibility of Zkm , a contradiction. So X = 0 and F = G. The commutativity of (4.18) is proved in the
same way.

(Existence) Let b ∈ C and n ∈ Z>0. By Lemma 3.6 there exists a surjective E-linear map

W (r)
n−1,b+1⊗W (r)

1,b→W (r)
n,b.

An induction on n shows that the E-module W (r)
1,b+n−1⊗W (r)

1,b+n−2⊗ · · ·⊗W (r)
1,b+1⊗W (r)

1,b can be projected
onto W (r)

n,b. Setting (n, b)= (k−m, a+m) we obtain a surjective E-linear map

g : Zk,k−1⊗Zk−1,k−2⊗ · · ·⊗Zm+2,m+1⊗Zm+1,m =: T � Zkm .

Taking (n, b) to be (k−l, a+l) and (l−m, a+m), we project the first k−l and the last l−m tensor factors
of T onto Zkl and Zlm respectively. The tensor product of these projections gives f : T � Zkl⊗Zlm . Since
ωkl⊗ωlm, ωkm and ω := ωk,k−1⊗ωk−1,k−2⊗ · · ·⊗ωm+2,m+1⊗ωm+1,m ∈ T are highest weight vectors of
the same e-weigth, by surjectivity one can assume f (ω)= ωkl⊗ωlm and g(ω)= ωkm . It suffices to prove
that g factorizes through f , and so g = Gl

k,m f . Set Y := ker( f ) and Z := ker(g). The image of g being
irreducible, Z is a maximal submodule of T . Since ω /∈ Y + Z , we have Y + Z = Z and Y ⊆ Z . �
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We need two special cases of the G; for k > l and t − 1> l,

Fk,l = Gl
k,0 : Zkl⊗W (r)

l,a →W (r)
k,a and Gt,l = Gl+1

t,l : Z t,l+1⊗Zl+1,l→ Z tl .

As in [Hernandez and Jimbo 2012, §4.2], for k > l define the restriction map

Fk,l :W
(r)
l,a →W (r)

k,a, v 7→ Fk,l(ωkl⊗v).

It is a difference map of bidegree ((l − k)$r , 0).
Applying (4.18) with t > k > l > 0 to ωtk⊗ωkl⊗W (r)

l,a gives Ft,k Fk,l = Ft,l . So (W (r)
l,a , Fk,l) is an

inductive system of vector spaces.10

Applying (4.18) with k > l + 1> l > 0 to ωk,l+1⊗Zl+1,l⊗W (r)
l,a , we obtain

Fk,l(Gk,l(ωk,l+1⊗v)⊗w)= Fk,lFl+1,l(v⊗w) for v⊗w ∈ Zl+1,l⊗W (r)
l,a . (4.19)

Lemma 4.2. The linear maps Fk,l are injective.

Proof. Assume K := ker(Fk,l) 6= 0; it is a graded subspace of W (r)
l,a . Choose µ ∈ wt(K ) such that

µ+αi /∈wt(K ) for all 1≤ i < N and fix 0 6=w ∈ K [µ]. We show that w is a singular vector, so w ∈Mωl

and ωl ∈ K , a contradiction. It suffices to prove that L j i (z)w ∈ K for all 1 ≤ i < j ≤ N ; this implies
L j i (z)w = 0 because by assumption on µ the weight space K [µ+ εi − ε j ] vanishes.

Suppose j > r . If 1 ≤ p ≤ N and p 6= j , then (k − l)$r + εp − ε j /∈ wt(Zkl) by Theorem 1.15. It
follows that for v ∈W (r)

l,a we have in Zkl⊗W (r)
l,a ,

L j i (z)(ωkl⊗v)= L j j (z)ωkl⊗L j i (z)v = ωkl⊗L j i (z)v.

It follows that L j i (z)K ⊆ K because of the commutativity:

L j i (z)Fk,l = Fk,l L j i (z) for 1≤ i, j ≤ Nwith j > r. (4.20)

Suppose j ≤ r . For p > r since r ≥ j > r we have L pi (z)w ∈ K and so L pi (z)w = 0. For p ≤ r , by
Theorem 1.15, L j p(z)ωkl = 0 if p 6= j . This implies

L j i (z)(ωkl⊗w)= L j j (z)ωkl⊗L j i (z)w =
θ(z+ kh̄)
θ(z+ lh̄)

g(λ)(ωkl⊗L j i (z)w)

for certain g(λ) ∈M×. Applying Fk,l we obtain Fk,l L j i (z)w = 0, as desired. �

In what follows k and l denote positive integers, while i , j , m, n, p, q , s, t , u and v denote the integers
between 1 and N related to the Lie algebra slN .

Lemma 4.3. For k > l and 1≤ i ≤ N we have

Ki (z)Fk,l =

(
θ(z+ kh̄)
θ(z+ lh̄)

)δi≤r

Fk,l Ki (z). (4.21)

10In the affine case [Hernandez and Jimbo 2012, (4.26)] the structure map comes from the stronger fact that Zkl⊗Zlm is of
highest weight with Zkm being the irreducible quotient.
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Proof. We compute Di (z)(ωkl⊗v) for v ∈W (r)
l,a based on the coproduct of Corollary 1.2. If −$N−k ≺ α

then α+$N−k /∈ Q− and (k− l)ωkl +α+$N−k /∈wt(Zkl). The extra terms xα⊗̃yα in the coproduct do
not contribute, and so Di (z)(ωkl⊗v)= Di (z)ωkl⊗Di (z)v. By (1.8) a similar identity holds when Di (z)
is replaced by Ki (z), because Ki (z)ωkl = (θ(z+ kh̄)/θ(z+ lh̄))δi≤rωkl is independent of λ. By applying
Fk,l to the new identity involving Ki (z), we obtain (4.21). �

From now until Corollary 4.7, we shall fix integers j and p with the condition 1≤ j ≤ r < p ≤ N. By
Corollary 2.2, there are elements ω j p

kl ∈ Zkl for k > l such that

L j p(z)ωkl =
θ(z+ (k− 1)h̄+ λ j p)

θ(z+ lh̄)
ω

j p
kl .

Indeed ω j p
kl = tpjωkl in the evaluation module Zkl ∼= V(k−l)$r (l). Since Y(k−l)$r is a rectangle, Mω

j p
kl is

the weight space of weight (k− l)$r + εp − ε j .

Lemma 4.4. In the E-module Zkl we have ω j p
kl 6= 0 and

L pj (z)ω
j p
kl =−ωkl

θ(z+ lh̄− λ j p)θ((k− l)h̄)θ(h̄)
θ(z+ lh̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

.

The product is taken over integers q such that r + 1≤ q ≤ N and q 6= p.

Proof. The weight grading on Zkl = S(k−l)$r ,l indicates t j pω
j p
kl = g(λ)ωkl for certain g(λ) ∈M. The last

relation of Definition 2.1 with a = d = j and c = b = p is applied to the highest weight vector ωkl , the
second term vanishes and

θ(λ j p + (k− l + 1)h̄)
θ(λ j p + (k− l)h̄)

g(λ)=
θ((k− l)h̄)θ(−h̄)

θ(λ j p)θ(λ j p + (k− l)h̄)

∏
q>r

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

.

This implies ω j p
kl 6= 0. We conclude that L pj (z)ω

j p
kl = θ(z+ lh̄− λ j p)g(λ)ωkl/θ(z+ lh̄). �

Lemma 4.5. Let k− 1> l. In the E-module Zk,l+1⊗Zl+1,l we have

L pj (z)(a
(l)
j p(k; λ)(ωk,l+1⊗ω

j p
l+1,l)−ω

j p
k,l+1⊗ωl+1,l)= 0,

where

a(l)j p(k; λ) :=
θ((k− l − 1)h̄)θ(λ j p − h̄)

θ(h̄)θ(λ j p)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Furthermore Gk,l(a
(l)
j p(k; λ)(ωk,l+1⊗ω

j p
l+1,l)−ω

j p
k,l+1⊗ωl+1,l)= 0.

Proof. We compute L pj (z)(ω
j p
k,l+1⊗ωl+1,l)=

∑N
q=1 L pq(z)ω

j p
k,l+1⊗Lq j (z)ωl+1,l . Since ωl+1,l is a highest

weight vector, the terms with q > j vanish. The weight of Lq j (z)ω
j p
k,l+1 is (k− l−1)$r + εq − ε j , which



630 Huafeng Zhang

does not belong to wt(Zk,l+1) for q < j . So only the term q = j survives. By Lemma 4.4

L pj (z)(ω
j p
k,l+1⊗ωl+1,l)

= L pj (z)ω
j p
k,l+1⊗L j j (z)ωl+1,l

=−
θ(z+ (l + 1)h̄− λ j p)θ((k− l − 1)h̄)θ(h̄)

θ(z+ (l + 1)h̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

ωk,l+1

⊗
θ(z+ (l + 1)h̄)
θ(z+ lh̄)

∏
q>r

θ(λ jq + 2h̄)
θ(λ jq + h̄)

ωl+1,l

=−
θ(z+ lh̄− λ j p)θ((k− l − 1)h̄)θ(h̄)

θ(z+ lh̄)θ(λ j p + h̄)2
∏

r<q 6=p

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

(ωk,l+1⊗ωl+1,l).

Similar arguments lead to

L pj (z)(ωk,l+1⊗ω
j p
l+1,l)= L pp(z)ωk,l+1⊗L pj (z)ω

j p
l+1,l

=−
θ(z+ lh̄− λ j p)θ(h̄)2

θ(z+ lh̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + 2h̄)
θ(λ jq + h̄)

(ωk,l+1⊗ωl+1,l).

The ratio of the two coefficients of ωkl⊗ωl+1,l above is a(l)j p(k; λ + h̄ε j ), which is easily seen to be
independent of z. For the last identity, let x be the vector in the argument of Gk,l . Then both Gk,l(x) and
ω

j p
kl belong to the one-dimensional weight space of weight (k− l)$r + ε j − εp. These two vectors are

proportional, the first is annihilated by L pj (z), while the second is not. So Gk,l(x)= 0. �

Corollary 4.6. Let k− 1> l. In the E-module Zkl we have

L j p(z)ωkl = Gk,l(ωk,l+1⊗ω
j p
l+1,l)× b(l)j p(k, z; λ),

where

b(l)j p(k, z; λ) :=
θ(z+ (k− 1)h̄+ λ j p)θ((k− l)h̄)

θ(z+ lh̄)θ(h̄)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Proof. The idea is similar to [Zhang 2018, Lemma 7.6]. We compute L j p(z)(ωk,l+1⊗ωl+1,l). As in the
proof of Lemma 4.5, only two terms survive:

L j p(z)(ωk,l+1⊗ωl+1,l)= L j j (z)ωk,l+1⊗L j p(z)ωl+1,l + L j p(z)ωk,l+1⊗L pp(z)ωl+1,l

=
θ(z+ kh̄)

θ(z+ (l + 1)h̄)

∏
q>r

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

ωk,l+1⊗
θ(z+ lh̄+ λ j p)

θ(z+ lh̄)
ω

j p
l+1,l

+
θ(z+ (k− 1)h̄+ λ j p)

θ(z+ (l + 1)h̄)
ω

j p
k,l+1⊗ωl+1,l

= e(l)j p(k, z; λ)(ωk,l+1⊗ω
j p
l+1,l)+

θ(z+ kh̄+ λ j p)

θ(z+ (l + 1)h̄)
(ω

j p
k,l+1⊗ωl+1,l).
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Here e(l)j p(k, z; λ) is the following meromorphic function of (k, z, λ) ∈ C×C× h:

θ(z+ kh̄)θ(z+ lh̄+ λ j p)

θ(z+ (l + 1)h̄)θ(z+ lh̄)
θ(λ j p + (k− l − 1)h̄)

θ(λ j p)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Set x := a(l)j p(k; λ)(ωk,l+1⊗ω
j p
l+1,l)− ω

j p
k,l+1⊗ωl+1,l , which is in the kernel of Gk,l by Lemma 4.5. It

follows that for any g(λ) ∈M we have

L j p(z)ωkl = L j p(z)Gk,l(ωk,l+1⊗ωl+1,l)= Gk,l(L j p(z)(ωk,l+1⊗ωl+1,l)+ g(λ)x).

Let us fix g(z; λ) := θ(z+ kh̄+λ j p)/θ(z+ (l + 1)h̄). Then L j p(z)(ωk,l+1⊗ωl+1,l)+ g(z; λ)x is propor-
tional to ωk,l+1⊗ω

j p
l+1,l and L j p(z)ωkl = Gk,l(ωk,l+1⊗ω

j p
l+1,l)× b(l)j p(k, z; λ) where

b(l)j p(k, z; λ) = e(l)j p(k, z; λ)+g(z; λ)a(l)j p(k; λ)

= b(k, z; λ)×
∏

r<q 6=p

θ(λ jq+(k−l)h̄)
θ(λ jq+h̄)

,

b(k, z; λ) :=
θ(z+kh̄)θ(z+lh̄+λ j p)

θ(z+(l+1)h̄)θ(z+lh̄)
θ(λ j p+(k−l−1)h̄)

θ(λ j p)
+
θ(z+kh̄+λ j p)θ((k−l−1)h̄)θ(λ j p−h̄)

θ(z+(l+1)h̄)θ(λ j p)θ(h̄)
.

The function b(k, z; λ), viewed as an entire function of k, satisfies the same double periodicity as
θ(kh̄)θ(kh̄+ z+ λ j p − (l + 1)h̄). One checks that b(l, z; λ)= 0. This implies

b(k, z; λ)= θ(kh̄+ z− h̄+ λ j p)θ(kh̄− lh̄) f (z; λ),

where f (z; λ) is a meromorphic function of (z; λ) ∈ C× h independent of k. Now setting kh̄ =−z, we
obtain f (z; λ)= 1/(θ(z+ lh̄)θ(h̄)). �

Corollary 4.7. Let 1≤ i, j ≤ N with j ≤ r . For k− 1> l and x ∈W (r)
l,a

L j i (z)Fk,l(x)= Fk,l
θ(z+ kh̄)
θ(z+ lh̄)

µl

( N∏
q=r+1

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

)
L j i (z)x

+ Fk,l+1Fl+1,l

( N∑
p=r+1

ω
j p
l+1,l⊗µl(b

(l)
j p(k, z; λ))L pi (z)x

)
. (4.22)

Proof. Consider L j i (z)Fk,l(x) = Fk,l
(∑N

p=1 L j p(z)ωkl⊗L pi (z)x
)
. As in the proof of Lemma 4.5,

L j p(z)ωkl = 0 if p /∈ { j, r + 1, r + 2, . . . , N }. For p = j , we obtain the first row of (4.22), while for
r < p ≤ N , Corollary 4.6 and (4.19) with v = ω j p

l+1,l give the second row. �

Fix weight bases Bl of W (r)
l,a for l > 0 uniformly so that Fk,l(Bl)⊆ Bk .
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We view b(l)j p(c, z; λ) in Corollary 4.6 as a meromorphic function of (c, z, λ)∈C2
×h. For 1≤ i, j ≤ N ,

l > 0 and c, z ∈ C, define L(l)
j i (c, z) :W (r)

l,a →W (r)
l+1,a by

L(l)
j i (c, z)x = Fl+1,l L j i (z)x =

θ(z+ (γ j + δi j − 1)h̄+ λ j i )

θ(z)
Fl+1,l ti j x for j > r,

L(l)
j i (c, z)x =

θ(z+ ch̄)
θ(z+ lh̄)

N∏
q=r+1

θ(λ jq + (c+ γ jq + δi j − δiq)h̄)
θ(λ jq + (l + γ jq + δi j − δiq)h̄)

Fl+1,l L j i (z)x

+

N∑
p=r+1

b(l)j p(c, z; λ+ (γ + l$r + εi − εp)h̄)Fl+1,l(ω
j p
l+1,l⊗L pi (z)x) for j ≤ r.

Here x ∈W (r)
l,a [γ + l$r ] and δi j is the usual Kronecker symbol. Corollary 2.2 applied to the evaluation

module W (r)
l,a
∼= Vl$r (0) indicates that for b′ ∈ Bl+1 and b ∈ Bl

L(l)
j i (c, z) is a difference map of bidegree (ε j − $r , εi ). Its matrix entry [L(l)

j i ]b′b(c, z; λ) is a
meromorphic function of (c, z, λ) ∈ C2

× h. Moreover, θ(z)θ(z+ lh̄)[L(l)
j i ]b′b(c, z; λ) is entire on

(c, z) for generic λ.

As a unification of (4.20) and (4.22), we have

L j i (z)Fk,l = Fk,l+1L(l)
j i (k, z) for k > l + 1. (4.23)

For k ∈ Z>0 and z ∈ C let 4(c; k, z) be the set of entire functions F(c) of c ∈ C with the following
double periodicity:

F(c+ h̄−1)= (−1)k F(c) and F(c+ τ h̄−1)= (−1)ke−kiπτ−2kiπch̄−2iπ z F(c).

A typical example is θ(ch̄)k−1θ(ch̄+z). Such a function is called homogeneous. If f (c), g(c)∈4(c; k, z),
then we write f (c)≈ g(c).

Note that 4(c; k, z)4(c; k ′, z′)⊆4(c; k+ k ′, z+ z′).

Lemma 4.8. Let b ∈ Bl be of weight γ + l$r and b′ ∈ Bl+1. For j > r the matrix entry [L(l)
j i ]b′b(c, z; λ)

is independent of c. For j ≤ r as entire functions of c

[L(l)
j i ]b′b(c, z; λ)≈ θ(z+ ch̄)

N∏
q=r+1

θ(λ jq + (c+ γ jq + δi j − δiq)h̄).

Moreover, θ(z)[L(l)
j i ]b′b(c, z; λ) is an entire function of (c, z) for generic λ.

Proof. In the case j > r , Corollary 2.2 is applied to W (r)
l,a
∼= Sl$r ,0, the matrix entry is of the form

θ(z+ (γ j + δi j − 1)h̄+ λ j i )g1(λ)/θ(z) for g1(λ) ∈M. Assume j ≤ r . By Corollary 4.6 the matrix entry
is of the form E(c, z; λ)g2(λ)/(θ(z)θ(z+ lh̄)), where g2(λ) ∈M and E(c, z; λ) is an entire function of
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(c, z, λ) ∈ C×C× h. As functions of z and c, respectively, we have

E(c, zh̄; λ) ∈4(z; 2, (c+ l + γ j + δi j − 1)h̄+ λ j i ),

E(c, z; λ) ∈4(c; N − r + 1,
N∑

q=r+1

(λ jq + (γ jq + δi j − δiq)h̄)+ z).

On the other hand, for k > l + 1 we have by Corollary 2.2 and (4.23),

Fk,l+1L(l)
j i (k, z)b = L j i (z)Fk,lv =

θ(z+ λ j i + (k+ γ j + δi j − 1)h̄)
θ(z)

ti j Fk,lb.

The right-hand side as a function of z is regular at z =−lh̄, so are any of the coefficients of the left-hand
side E(k, z; λ)g2(λ)/(θ(z)θ(z+ lh̄)). This forces E(k,−lh̄; λ)= 0 and

E(c, z; λ)= θ(z+ lh̄)θ(z+ (c+ γ j + δi j − 1)h̄+ λ j i )D(c; λ)g3(λ),

where g3(λ) ∈M and D(c; λ) is an entire function of (c, λ). Applying the double periodicity with respect
to c once more, we obtain the desired result. �

Lemma 4.9. Let f (c) be a homogeneous entire function. If f (k)= 0 for infinitely many integers k, then
f (c) is identically zero.

Proof. By definition the homogeneous entire function f (c), if nonzero, can be written as a product of
theta functions θ(ch̄+ z). Since h̄ /∈Q+Qτ , each of these theta functions of c can not have zeroes at
infinitely many integers. �

Let W∞ be the inductive limit of the inductive system (W (r)
l,a , Fk,l) of vector spaces (over M), with the

Fl :W
(r)
l,a →W∞ for l > 0 being the structural maps.

From now on fix d ∈ C. A vector 0 6= w ∈ W∞ is of weight d$r + γ if there exist l > 0 and
w′ ∈W (r)

l,a [l$r + γ ] such that w = Fl(w
′). The weight grading is independent of the choice of l because

Fk,l sends W (r)
l,a [l$r + γ ] to W (r)

k,a[k$r + γ ]. Let W d
∞

denote the resulting object of V . By construction
wt(W d

∞
)⊆ d$r + Q−, and Fl :W

(r)
l,a →W d

∞
is a difference map of bidegree ((l − d)$r , 0).

Let γ ∈ Q−. The injective maps Fk,l together with Theorems 1.15 and 2.3 imply that

dim(W (r)
k,a[k$r + γ ])= dk$r [k$r + γ ],

as k→∞, converges to an integer which is exactly dim(W d
∞
[d$r + γ ]). So W d

∞
is an object of Vft. Our

goal is to make W d
∞

into an E-module in category O with favorable q-character.11

11In the affine case, the matrix entries of analogs of L
(l)
j i (k, z) are Laurent polynomials of ekh̄ . Hernandez and Jimbo [2012]

proved this by using elimination theorems of q-characters, and then took the limit ekh̄
→ 0 as k→∞ to obtain modules over

Borel subalgebras of affine quantum groups. Later in [Zhang 2017; 2018] an elementary proof of polynomiality was given based
on sl2-representation theory, which by taking limit ekh̄

→ edh̄ as k→∞ (with d ∈ C a new parameter) resulted in modules over
affine quantum groups. Here we adapt the second approach to the elliptic case.
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For 1≤ i, j ≤ N and z ∈ C with θ(z) 6= 0, the L(l)
j i (d, z) constitute a morphism of inductive system of

C-vector spaces:

W (r)
l,a

L(l)
j i (d,z)

//

Fl′,l
��

W (r)
l+1,a

Fl′+1,l+1
��

W (r)
l ′,a

L(l′)
j i (d,z)

// W (r)
l ′+1,a

for l ′ > l.

Indeed, the matrix entries of Fl ′+1,l+1L(l)
j i (c, z) and L(l ′)

j i (c, z)Fl ′,l , as difference maps W (r)
l,a → W (r)

l ′+1,a ,
are homogeneous entire functions of c with the same double periodicity by Lemma 4.8 and are equal at
all integers c larger than l ′+ 1 by (4.23). By Lemma 4.9 these two maps coincide for all c ∈ C. Define

Ld
ji (z) := lim

→
L(l)

j i (d, z) ∈ HomC(W d
∞
,W d
∞
).

For x ∈W d
∞
[d$r + γ ] with x = Fl(x ′) and x ′ ∈W (r)

l,a [l$r + γ ], we have

Ld
ji (z)x = Fl+1L(l)

j i (d, z)x ′. (4.24)

The difference maps L(l)
j i (d, z) and Fl+1 are of bidegree (ε j −$r , εi ) and ((l+1−d)$r , 0) respectively.

So Ld
ji (z) is a difference operator of bidegree (ε j , εi ).

Proposition 4.10. (W d
∞
,Ld

ji (z)) is an E-module in category O. Moreover,

χq(W d
∞
,Ld

ji (z))= w
(r)
d,a × lim

k→∞
(w

(r)
k,a)
−1χq(W

(r)
k,a). (4.25)

Proof. We need to prove conditions (M1)–(M3) of Section 1C. First (M1) follows from (4.24) and from
the comments before (4.23). To prove (M2), let x ∈ W d

∞
[d$r + γ ] and x ′ ∈ W (r)

l,a [l$r + γ ] such that
x = Fl(x ′). We assume l so large that W d

∞
[d$r + γ ] and W (r)

l,a [l$r + γ ] have the same dimension.

Step I: Proof of (M2) We need to show that for 1≤ i, j,m, n ≤ N∑
p,q

R pq
mn(z−w; λ+ (εi + ε j + d$r + γ )h̄)Ld

pi (z)L
d
q j (w)x =

∑
s,t

Ri j
st (z−w; λ)L

d
nt(w)L

d
ms(z)x ∈W d

∞
.

Here at the right-hand side we have used R pq
mn(z; λ)= R pq

mn(z; λ+ h̄εp + h̄εq) to move R to the left. By
(4.24) it is enough to prove the equation∑
p,q

R pq
mn(z−w; λ+ (εi + ε j + c$r + γ )h̄)L

(l+1)
pi (c, z)L(l)

q j (c, w)x
′

=

∑
s,t

Ri j
st (z−w; λ)L

(l+1)
nt (c, w)L(l)

ms(c, z)x ′ ∈W (r)
l+2,a. (4.26)

Let A1(c, z, w) and A2(c, z, w) denote the left-hand side and the right-hand side of this equation without x ′.
These are difference maps W (r)

l,a → W (r)
l+2,a of bidegree (εm + εn − 2$r , εi + ε j ), as R pq

mn 6= 0 implies
εm + εn = εp + εq .
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Claim 1. For b ∈ Bl of weight l$r + γ and b′ ∈ Bl+2, as entire functions of c,

[A1]b′b(c, z, w; λ)≈ [A2]b′b(c, z, w; λ).

This is divided into four cases. For simplicity let us drop b′, b, z, w and λ from A1 and A2.

Case 1.1: m, n > r . A1(c) and A2(c) are independent of c by Lemma 4.8.

Case 1.2: m, n ≤ r . At the left-hand side of (4.26) we have {p, q} = {m, n} and so R pq
mn is independent

of c. At the right-hand side {s, t} = {i, j}. Therefore

A1(c)≈ θ(ch̄+ z)
∏
u>r

θ(λpu + (c+ γpu + δi p − δiu + δ j p − δ ju − δqp + δqu)h̄)

× θ(ch̄+w)
∏
v>r

θ(λqv + (c+ γqv + δ jq − δ jv + δiq − δiv)h̄),

A2(c)≈ θ(ch̄+w)
∏
u>r

θ(λnu + (c+ γnu + δtn − δtu + δsn − δsu − δmn + δmu)h̄)

× θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δsm − δsv + δtm − δtv)h̄).

These formulas are deduced from Lemma 4.8. One needs to take into account the shifts of γ and λ.
For example at the left-hand side of (4.26), the terms Lq j and Lpi shift γ and λ by ε j − εq and h̄εi ,
respectively. The right-hand sides of these two formulas lie in4(c; 2+2N−2r, e) with e∈C independent
of the choices of p, q , s and t .

Case 1.3: m ≤ r < n. At the right-hand side {s, t} = {i, j} and

A2(c)≈ θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δsm − δsv + δtm − δtv)h̄)

≈ θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δim − δiv + δ jm − δ jv)h̄).

The last term is independent of s and t . On the other hand A1(c)= E(c)+F(c) where E and F correspond
to (p, q)= (m, n) and (p, q)= (n,m) respectively and so

E(c)≈
θ( f − h̄)
θ( f )

θ(ch̄+ z)
∏
u>r

θ(λmu + (c+ γmu + δim − δiu + δ jm − δ ju + δnu)h̄),

F(c)≈
θ( f + z−w)

θ( f )
θ(ch̄+w)

∏
v>r

θ(λmv + (c+ γmv + δ jm − δ jv + δim − δiv)h̄).

Here f := ch̄+λmn + (γmn + δim − δin + δ jm − δ jn)h̄. We observe easily that A2(c)≈ E(c)≈ F(c) and
so A1(c)≈ A2(c) are homogeneous.

Case 1.4: n ≤ r < m. This is parallel to the third case.

Claim 2. In Claim 1 equality holds for c = k ∈ Z>l+2.

Let us apply Fk,l+2 to (4.26) with c = k and x ′ = b. By (4.23)

Fk,l+2L(l+1)
pi (k, z)L(l)

q j (k, w)= L pi (z)Fk,l+1L(l)
q j (k, w)x

′
= L pi (z)Lq j (w)Fk,l,
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and similarly Fk,l+2L(l+1)
nt (d, w)L(l)

ms(d, z)b = Lnt(w)Lms(z)Fk,lb. We obtain the defining relation
RL L = L L R of the E-module W (r)

k,a applied to the vector Fk,l(b). Since Fk,l+2 is injective, (4.26)
holds for c = k and x ′ = b. This proves Claim 2.

Together with Lemma 4.9, we obtain equality in Claim 1 for all c ∈ C. This proves (4.26).

Step II: Let 1≤ i ≤ N . We have by (1.6) and (4.26)

Di (z)x =
2i (λ)

2i (λ+ (d$r + γ )h̄)
Fl+i D

(l)
i (d, z)x ′. (4.27)

Here D(l)
i (c, z)=

∑
σ∈Si Tσ (c, z) and Tσ (c, z) :W (i)

l,a →W (i)
l+i,a , for σ ∈Si , is given by

sign(σ )L(l+i−1)
σ (N ),N (c, z)L(l+i−2)

σ (N−1),N−1(c, z+ h̄) · · ·L(l)
σ (N−i+1),N−i+1(c, z+ (i − 1)h̄).

Each Tσ (c, z) is a difference map of bidegree (−$N−i− i$r ,−$N−i ). Define the meromorphic function
of (c, z) ∈ C2 (note that l is fixed)

g(c, z)= 1 if i < N + 1− r and g(c, z)=
r∏

p=N−i+1

θ(z+ (N − p+ c)h̄)
θ(z+ (N − p+ l)h̄)

otherwise.

Claim 3. For b ∈ Bl of weight l$r + γ and b′ ∈ Bl+i , as entire functions of c ∈ C,

[Tσ ]b′b(c, z; λ)≈ gi (c, z)2i (λ+ (c$r + γ )h̄).

The idea is the same as Claim 1, based on Lemma 4.8. If N − i + 1 > r , then T b
σ (c, z; λ) and

2i (λ+ (c$r + γ )h̄) are independent of c, and we are done.
Assume N − i + 1≤ r . By (1.5) and Lemma 4.8,

2i (λ+ (c$r + γ )h̄)≈
r∏

p=N−i+1

N∏
u=r+1

θ(λpu + (c+ γpu)h̄),

[TId]b,b′(c, z; λ)≈
r∏

p=N−i+1

θ(z+ (c+ N − p)h̄)
N∏

u=r+1

θ(λ(p)pu + (c+ γpu + 1)h̄).

Here λ(p) = λ+ h̄
∑N

v=p+1 εv and so λ(p)pu = λpu − h̄ for p ≤ r < u. The case σ = Id in Claim 3 is
now obvious. It remains to show [Tσ ]b′b(c, z; λ)≈ [Tσ ′]b′b(c, z; λ) for all σ, σ ′ ∈Si . One can assume
σ ′ = σ s j where s j = ( j, j + 1) is a simple transposition with N − i + 1≤ j < N − 1. Let us define

p := σ( j + 1), q := σ( j), l ′ := l + i + j − 1− N , w := z+ (N − j)h̄.

Then we have the decomposition of difference maps

Tσ (c, z)= sign(σ )A(c, z)Upq(c, w)B(c, z) and Tσ ′(c, z)= sign(σ )A(c, z)Uqp(c, w)B(c, z).
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The difference maps A, B,U are defined by (descending order in the products)

A(c, z)=
j+2∏

u=N

L(l+i−1−N+u)
σ (u),u (c, z+ (N − u)h̄) :W (r)

l ′+2,a→W (r)
l+i−1,a,

B(c, z)=
N−i+1∏
u= j−1

L(l+i−1−N+u)
σ (u),u (c, z+ (N − u)h̄) :W (r)

l,a →W (r)
j−1,a,

Upq(c, w)= L(l ′+1)
p, j+1(c, w− h̄)L(l ′)

q j (c, w) :W
(r)
l ′,a→W (r)

l ′+2,a.

Flipping p and q one gets Uqp. Now [Tσ ]b′b(c, z; λ)≈ [Tσ ′]b′b(c, z; λ) is a consequence of the following
claim.

Claim 4. For y ∈ Bl ′ of weight l ′$r + η and y′ ∈ Bl ′+2, as entire functions of c,

[Upq ]y′y(c, w; λ)≈ [Uqp]y′y(c, w; λ).

If p, q ≤ r , then by Lemma 4.8 (setting η′ = η+ ε j − εq and λ′ = λ+ h̄ε j+1)

[Upq ]y′y(c, w; λ)≈ θ(w+ (c− 1)h̄)
N∏

u=r+1

θ(λpu + (c+ η′pu + δp, j+1− δu, j+1)h̄)

× θ(w+ ch̄)
N∏

v=r+1

θ(λ′qv + (c+ ηqv + δ jq − δ jv)h̄).

We have U b′
pq(c, w; λ)∈4(c; 2N−2r+2, e) with e= e(p, q) symmetric on p, q . So [Upq ]y′y(c, w; λ)≈

[Uqp]y′y(c, w; λ).
The other cases of p and q are proved in the same way as in Claim 1.

Step III: Proof of (M3) Let k > l + i . Notice that Di (z)ωkl = gi (k, z)ωkl . From the proof of Lemma 4.3
and from (4.23) and (4.27) we get

gi (k, z)Fk,lDi (z)x ′ = Di (z)Fk,l(x ′)= Fk,l+i
2i (λ)

2i (λ+ (k$r + γ )h̄)
D(l)

i (k, z)x ′.

Applying Fk to this identity and multiplying by 2i (λ+ (k$r + γ )h̄) we have

2i (λ+ (k$r + γ )h̄)gi (k, z)FlDi (z)x ′ =2i (λ)Fl+i D
(l)
i (k, z)x ′ for k > l + i.

Both sides after taking coefficients with respect to a basis of W d
∞
[d$r + γ ] can be viewed as entire

functions of k ∈ C, and they satisfy the same double periodicity by Claim 3. By Lemma 4.9, the above
identity holds for all k ∈ C. Taking k = d , by (4.27), we obtain Di (z)x = gi (d, z)FlDi (z)x ′.

Let B be a basis of W (r)
l,a [l$r + γ ] satisfying the upper triangular property of (M3). Then the basis

Fl(B) of W d
∞
[d$r + γ ] satisfies the same property. The E-module W d

∞
is in category O. The diagonal

entry of Di (z) associated to Fl(x ′) ∈ W d
∞

for x ′ ∈ B is equal to that of Di (z) associated to x ′ ∈ W (r)
l,a

multiplied by gi (d, z). The q-character formula in (4.25) follows from the explicit formula of gi (d, z). �
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Question 4.11. Let F(c) be a finite sum of homogeneous entire functions. If F(k) = 0 for infinitely
many integers k, then is F(c) identically zero?

If the answer to this question is affirmative, then the proof of Proposition 4.10 can be largely simplified,
Claims 1, 3 and 4 are not necessary.12

Remark 4.12. By Lemma 4.8, W d
∞
∼=W(0) with W an e-module of character lim

k→∞
e(d−k)$rχ(W (r)

k,a), so
it is in the image of the functor [Etingof and Moura 2002, Proposition 4.1]. By Lemma 4.2 and its
proof, W contains a unique highest weight vector up to scalar. Let Q be the quotient of standard Verma
module Md$r ,1 in [Tarasov and Varchenko 2001, Proposition 4.7] by ta+1,avd$r ,1 for a 6= r . Then W is
the contragradient module to Q in [Tarasov and Varchenko 2001, §6]. It is interesting to have a direct
proof of W(0) being in category O.

For x ∈ C let W(r)
d,x be the pullback of W d

∞
by 8x−a in (1.4); it is called an asymptotic module. Set

W(N )
d,x := S(w(N )

d,x ) and Ws,x :=W(s)
x,0 for 1≤ s ≤ N .

Corollary 4.13. (i) R is the set of rational e-weigths.

(ii) For any E-module M in category O, we have wte(M)⊂R.

(iii) For d, x ∈ C and 1≤ r ≤ N we have in Mt and K0(O) respectively

χq(W
(r)
d,x)= w

(r)
d,x ×χq(W

(r)
0,x) and [W(r)

d,0][W
(r)
0,x ] = [W

(r)
d−x,x ][W

(r)
x,0]. (4.28)

Proof. Conclusion (iii) comes from (4.25), as in the proof of [Felder and Zhang 2017, Theorem 3.11].
As a highest weight of W(r)

d,x , w
(r)
d,x belongs to R. Together with Lemma 1.13 we obtain (i). In (ii)

one may assume M irreducible. Then M is a subquotient of a tensor product of asymptotic modules.
Since e-weigths of an asymptotic module are rational, we conclude from the multiplicative structure of
q-characters in Proposition 1.10. �

In Section 2B the evaluation module Vµ(x) is an irreducible highest weight module in category Õ. Its
highest weight is easily shown to be rational.

Corollary 4.14. Vµ(x) is in category O for µ ∈ h and x ∈ C.

Finite-dimensional modules in category O are related to the asymptotic modules by generalized Baxter
relations in the sense of Frenkel and Hernandez [2015, Theorem 4.8]; see [Felder and Zhang 2017,
Corollary 4.7] and [Zhang 2017, Theorem 5.11] for a closer situation.

Theorem 4.15. Let V be a finite-dimensional E-module in category O. Then

[V ] =
dim V∑

j=1

[S(d j )]×m j (4.29)

12In the affine case, by footnote 11 the situation is much easier; a Laurent polynomial vanishing at infinitely many integers
must be zero, see [Zhang 2017, §2].
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in a fraction ring of the Grothendieck ring of O. Here d j ∈R0 and m j is a product of the [Wr,x ]/[Wr,y]

with x, y ∈ C and 1≤ r < N.

Proof. The idea is the same as [Frenkel and Hernandez 2015]. Since the q-character map is in-
jective, one can replace isomorphism classes with q-characters. χq(V ) is the sum of its e-weigths,
the number of which is dim V . By Corollary 4.13, any e-weigth e is of the form d

∏
9r,x/9r,y =

χq(S(d))
∏
χq(Wr,x)/χq(Wr,y), where d ∈ R0 and the product is over 1 ≤ r < N and x, y ∈ C. This

proves (4.29) in terms of q-characters. �

To compare with [Frenkel and Hernandez 2015, Theorem 4.8], one imagines that for 1≤ r < N and
x ∈ C there existed a positive prefundamental module L+r,x in category O with q-character χq(L+r,x) =
9r,x ×χ(L+r,0) as in [Frenkel and Hernandez 2015, Theorem 4.1]. Then [Wr,x ]/[Wr,y] = [L+r,x ]/[L

+
r,y].

Note that the q-character of W(r)
0,x in (4.28) is different from its character.

Example 4.16. Let N = 3. Consider the vector representation V of Section 1D:

1 0 =
91, 3

2

91, 1
2

, 2 0 =
91,− 1

2

91, 1
2

92,1

92,0
, 3 0 =

θ(z+ h̄)
θ(z)

92,−1

92,0
,

[V ] =
[W1, 3

2
]

[W1, 1
2
]
+

[W1,− 1
2
]

[W1, 1
2
]

[W2,1]

[W2,0]
+

[W3, 1
2
]

[W3,− 1
2
]

[W2,−1]

[W2,0]
.

Example 4.17. Let us construct the Eτ,h̄(sl2)-module W1,3 from [Felder and Varchenko 1996b, The-
orem 3]. As in [loc. cit.] set η = − 1

2 h̄, λ = λ12 and (a, b, c, d) = (L11, L12, L21, L22). For 3 ∈ Z>0,
consider the evaluation module L3((3− 1)η) with basis (ek)0≤k≤3. Note that k indicates the basis
vectors, while 3 the integer parameter of a KR module. Let us make a change of basis (the second
product is empty if k = 0)

vk := ek

3∏
i=1

θ(λ+ (i − k)h̄)
θ(h̄)

×

k∏
j=1

θ(λ− j h̄)
θ((3− k+ j)h̄)

for 0≤ k ≤3.

Tensoring L3((3−1)η) with the one-dimensional module of highest weight θ(w+3h̄)/θ(w), we obtain
another irreducible module V3 with basis (vk = vk⊗1)0≤k≤3; here to follow [loc. cit.] w denotes z. We
have wt(vk)= (3− k)ε1+ kε2 and

a(w)vk =
θ(w+ (3− k)h̄)

θ(w)

θ(λ+ (3− k+ 1)h̄)
θ(λ+ (1− k)h̄)

vk,

b(w)vk =
θ(w+ λ+ (3− k− 1)h̄)

θ(w)

θ((3− k)h̄)θ(h̄)
θ(λ− h̄)θ(λ)

vk+1,

c(w)vk =−
θ(w− λ+ (k− 1)h̄)

θ(w)

θ(kh̄)
θ(h̄)

vk−1,

d(w)vk =
θ(w+ kh̄)
θ(w)

θ(λ− (k+ 1)h̄)θ(λ− kh̄)
θ(λ− h̄)θ(λ)

vk .
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We have t12vk = −vk−1θ(kh̄)/θ(h̄) and v0 is of highest weight w
(1)
3,0, so V3 ∼= W (1)

3,0. The bases (vk)

trivialize the inductive system (V3) because the inductive maps commute with t12 by (4.20). For 3 ∈ C,
the above formulas define an Eτ,h̄(sl2)-module structure on ⊕∞k=0Mvk , with wt(vk) = (3− k)ε1+ kε2.
This is the desired W1,3.

General formulas for the Eτ,h̄(slN )-module W1,3 can be found in [Cavalli 2001, §3.4].

5. Baxter TQ relations

We derive three-term relations in the Grothendieck ring K0(O) for the asymptotic modules. For 1≤ r < N
and k, x, t ∈ C, by Corollary 4.13, d(r,t)k,x ∈R and is the highest weight of an irreducible module D(r,t)

k,x in
category O.

Call a complex number c ∈ C generic if c /∈ 1
2 Z + 1

h̄ (Z + Zτ). This condition is equivalent to
Qa ∩Qa+c = {1} for all a ∈ C.

Theorem 5.1. Let 1≤ r < N , t ∈ Z>0 and k, a, b ∈ C with k generic. Then

χq(D
(r,t)
k,a )= d(r,t)k,a

(
1+

t∑
l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1

) ∏
s=r±1

χq(W
(s)
0,a−k− 1

2
) (5.30)

and D(r,0)
k,a
∼=⊗s=r±1W(s)

k,a−k− 1
2
.

Proof. Set x := a− k− 1
2 . Define d := d(r,t)k,a and for 1≤ l ≤ t ,

ml := m0 A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1 and m0 := d

t∏
j=1

w
(r)
k+ j− 1

2 ,x
.

By (1.9) and (3.14)–(3.15), we have for 0≤ l ≤ t

ml =

t∏
j=l+1

9r,a+ j

9r,x
×

l∏
j=1

9r,a+ j−2

9r,x
×

∏
s=r±1

9s,a+l− 1
2

9s,x
.

Let us introduce the tensor products for 0≤ l ≤ t ,

Sl
:= (⊗t

j=l+1W(r)
k+ j+ 1

2 ,x
)⊗(⊗l

j=1W(r)
k+ j− 3

2 ,x
)⊗(⊗s=r±1W(s)

k+l,x),

T := D(r,t)
k,a ⊗(⊗

t
j=1W(r)

k+ j− 1
2 ,x
).

Equation (5.30) is equivalent to χq(T )=
∑t

l=0 χq(Sl) in view of (4.28).
Given two elements χ =

∑
f c f f and χ ′ :=

∑
f c′f f of Mt, we say that χ is bounded above by χ ′ if

c f ≤ c′f for all f ∈Mw. When this is the case, χ ′ is bounded below by χ . If χ is bounded below and
above by χ ′, then χ = χ ′.

Claim 1. The Sl are irreducible. In particular, D(r,0)
k,a
∼=⊗s=r±1W(s)

k,x .
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Fix 0≤ l ≤ t . Let S′ := S(ml). For n ∈ Z>0, set

S′n := (W
(r)
n,x)
⊗t
⊗(⊗s=r±1W (s)

n,x) and s′n := (w
(r)
n,x)

t
∏

s=r±1

w(s)
n,x .

By Lemma 3.2, any e-weigth s′ne ∈ Px of S′n different from s′n is right-negative. So S′n is irreducible.
Viewing S′n as an irreducible subquotient of

S′⊗(⊗t
j=l+1W(r)

n−k− j− 1
2 ,a+ j

)⊗(⊗l
j=1W(r)

n−k− j+ 3
2 ,a+ j−2

)⊗(⊗s=r±1W(s)
n−k−l,a+l− 1

2
),

we have e = e′
∏t

j=1 e j
∏

s=r±1 e(s) where ml e′,w
(r)
n−k− j− 1

2 ,a+ j
e j for l < j ≤ t , w

(r)
n−k− j+ 3

2 ,a+ j−2
e j for

1≤ j ≤ l, and w
(s)
n−k−l,a+l− 1

2
e(s) are e-weigths of the corresponding tensor factors. By Lemma 3.2 and

Proposition 4.10,
e, e′ ∈Q−x and e j , e(s) ∈Q−a .

Since a−x = k+ 1
2 is generic, Q−a ∩Q−x = {1} and so e= e′. The normalized q-character of S′ is bounded

below by that of S′n for all n ∈ Z>0. On the other hand, viewing S′ as an irreducible subquotient of Sl and
applying (4.25) to Sl , we see that the normalized q-character of S′ is bounded above by the limit of that
of S′n as n→∞. Therefore Sl ∼= S′ is irreducible.

Claim 2. For 1≤ l ≤ t , we have d A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1 ∈ wte(D

(r,t)
k,a ). It follows that ml ∈ wte(T ).

Let us view the KR module W (r)
t,a as an irreducible subquotient of

D(r,t)
k,a ⊗(⊗s=r±1W(s)

−k,a− 1
2
).

By Lemma 3.2, w
(r)
t,a A−1

r,a A−1
r,a+1 · · · A

−1
r,a+l−1 ∈ wte(W

(r)
t,a ). The A−1

r,a+ j must arise from wte(D
(r,t)
k,a ) instead

of any of the wte(W
(s)
−k,a− 1

2
) with s 6= r .

For 0 ≤ j, l ≤ t , since wte(Sl) ⊂ mlQ−x and m j ∈ mlQa , we have m j ∈ wte(Sl) if and only if l = j .
Therefore, all the Sl appear as irreducible subquotients of T , and they are mutually nonisomorphic. So
χq(T ) is bounded below by

∑t
l=0 χq(Sl).

Claim 3. χq(D
(r,t)
k,a ) is bounded above by

d
(

1+
t∑

l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1

) ∏
s=r±1

χq(W
(s)
0,x).

Fix d f ∈ wte(D
(r,t)
k,a ). For n ∈ Z>0, viewing D(r,t)

k,a as a subquotient of

D(r,t)
n,a ⊗(⊗s=r±1W(s)

k−n,x)

gives f = fn
∏

s=r±1 f (s) where by Lemma 3.2 and Corollary 3.5

fn d(r,t)n,a ∈ wte(D(r,t)
n,a ) and f (s)w(s)

k−n,x ∈ wte(W
(s)
k−n,x)= w

(s)
k−n,x wte(W

(s)
0,x).

It follows that fn ∈Q−a , f s
∈Q−x and f ∈Q−a Q−x .
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Let n ∈ Z>0 be large enough so that f ∈Q−a;nQ
−
x where Q−a;n is the submonoid of Q−a generated by the

A−1
i,a+m for 1≤ i < N and m ∈ 1

2 Z with m >−n. Since a− x = k+ 1
2 is generic, Corollary 3.5 implies that

fn ∈ {1, A−1
r,a , A−1

r,a A−1
r,a+1, . . . , A−1

r,a A−1
r,a+1 · · · A

−1
r+a+t−1}

is uniquely determined by f . The coefficient of d f in χq(M
(r)
k,a) is bounded above by that of

∏
s=r±1 f (s)

in
∏

s=r±1 χq(W
(s)
0,x). This proves the claim.

It follows from Claim 3 that χq(T ) is bounded above by

m0

(
1+

t∑
l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1

) ∏
s=r±1

χq(W
(s)
0,x)×

t∏
j=1

χq(W
(r)
0,x)=

t∑
l=0

χq(Sl).

Since “bounded below” also holds, we obtain the exact formula for χq(T ), which implies (5.30). This
completes the proof of the theorem. �

Claim 1 is in the spirit of [Frenkel and Hernandez 2015, Theorem 4.11], and Claim 3 [Hernandez and
Leclerc 2016, (6.14)], [Frenkel and Hernandez 2016, §4.3] and [Zhang 2018, Theorem 3.3], the main
difference being the nonexistence of prefundamental modules. If both k and t are generic, then χq(D

(r,t)
k,a )

is obtained from the right-hand side of (5.30) by replacing
∑t

l=1 therein with
∑
∞

l=1.

Corollary 5.2. Let k ∈ C be generic and 1≤ r < N. In K0(O) holds

[D(r,1)
k,k+ 1

2
][Wr,k+ 1

2
] = [Wr,k− 1

2
]

∏
s=r±1

[Ws,k+1] + [Wr,k+ 3
2
]

∏
s=r±1

[Ws,k]. (5.31)

Proof. From (5.30) and the injectivity of the q-character map we obtain

[D(r,t)
k,a ][W

(r)
a−b+t−1,b] = [D

(r,0)
k+t,a+t ][W

(r)
a−b−1,b] + [D

(r,t−1)
k,a ][W(r)

a−b+t,b] (5.32)

for a, b ∈ C and t ∈ Z>0. (5.31) is the special case (t, a, b)=
(
1, k+ 1

2 , 0
)

of this identity in view of the
tensor product decomposition of D(r,0)

k,a in Theorem 5.1. �

Equation (5.32) can be viewed as a generic version of (3.17).

6. Transfer matrices and Baxter operators

We have obtained three types of identities (4.28), (4.29), and (5.31) in the Grothendieck ring K0(O).
These are viewed as universal functional relations [Bazhanov et al. 1997; 1999; Bazhanov and Tsuboi
2008] in the sense that when specialized to quantum integrable systems they imply functional relations of
transfer matrices. In this section, we study one such example, with the quantum space being a tensor
product of vector representations [Hou et al. 2003].

Fix ` := Nκ with κ ∈ Z>0 and a1, a2, . . . , a` ∈ C \0. Set I := {1, 2, . . . , N }. Let I `0 be the subset
of I ` formed of i such that εi1 + εi2 + · · ·+ εi` = 0 ∈ h. Upon identification i := vi1⊗vi2⊗ · · ·⊗vi` , the
weight space V⊗`[0] has basis I `0 .
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Let Dp be the set of formal sums
∑

α∈h pαTα fα(z; λ) such that: The fα(z; λ) are meromorphic
functions of (z, λ) ∈C×h. The set {α : fα 6= 0} is contained in a finite union of cones ν+ Q− with ν ∈ h.
Make Dp into a ring: Addition is the usual one of formal sums. Multiplication is induced from

pαTα f (z; λ)× pβTβg(z; λ)= pα+βTα+β f (z; λ+ h̄β)g(z; λ). (6.33)

As in [Felder and Varchenko 1996a; Felder and Zhang 2017], we construct a ring morphism [X ] 7→ tX (z)
from K0(O) to the ring M(I `0 ;Dp) of I `0 × I `0 matrices with coefficients in Dp. (We think of M(I `0 ;Dp)

as a ring of formal difference operators on V⊗`[0].)
Let X be an object of category O. To i, j ∈ I `0 we associate

L X
i j (z) := L X

i1 j1(z+ a1)L X
i2 j2(z+ a2) · · · L X

i` j`(z+ a`) ∈ (DX )0,0.

Since (DX )0,0 ⊆ EndM(X), one can take trace of L X
i j (z) over weight spaces of X .

Definition 6.1. The transfer matrix associated to an object X in category O is the matrix tX (z)∈M(I `0 ;Dp)

whose (i, j)-th entry for i, j ∈ I `0 is∑
α∈wt(X)

pαTα ×TrX [α](L X
i j (z)|X [α]) ∈ Dp.

Almost all of the results and comments in [Felder and Zhang 2017, §5] hold true after slight modification
in our present situation. In the following, we focus on the modification of these results, referring to
[Felder and Zhang 2017] for their proofs.

We remark that tV (z)|p=1 can be identified with the transfer matrix T (z) in [Hou et al. 2003, (2.22)]
where the Eτ,η(sln)-module W is V31(a1)⊗ V31(a2)⊗ · · ·⊗ V31(a`).

The transfer matrix associated to the one-dimensional module of highest weight g(z) ∈ M×
C

is the
scalar matrix

∏`
i=1 g(z+ ai ).

For 1 ≤ r ≤ N and x ∈ C, consider the E-module W′r,x :=Wr,x⊗S(θ(z − `r h̄)) in category O. By
Lemma 4.8, the matrix entries of the difference operators L i j (z) for 1 ≤ i, j ≤ N , with respect to any
basis of W′r,x , are entire functions of z ∈ C.

Definition 6.2. The r -th Baxter Q-operator for 1≤ r ≤ N is defined to be

Qr (u) := tW′
r,uh̄−1

(z)|z=0 for u ∈ C. (6.34)

Since W′N ,x = S
(
θ
(
z+

(
x + 1

2

)
h̄
))

is one-dimensional, QN (z)=
∏`

i=1 θ
(
z+ ai +

1
2 h̄
)
.

Let 1 ≤ r < N . Then Qr (z) = pzh̄−1$r Tzh̄−1$r
Q̃(z) and Q̃(z) is a power series in the p−αi T−αi

for 1 ≤ i < N . The leading term Q̃0(z) of Q̃(z) is invertible. Indeed Q̃0(0) is the scalar matrix∏`
j=1 θ(a j )∈M(I`;C), which is invertible because θ(a j ) 6= 0 by assumption. (One can prove furthermore

that with respect to certain order on I `0 , the matrix Q̃0(z) is upper triangular, whose entries are meromorphic
functions of (z; λ) ∈ C× h and entire on z.) Therefore Qr (z) ∈ GL(I `0 ;Dp).

Similarly one can show that tW′r,x (z) is invertible for x ∈ C.
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Proposition 6.3. Let X and Y be in category O and let x, u ∈ C.

(i) t9∗u X (z)= tX (z+ uh̄).

(ii) tX (z)tY (z)= tX⊗Y (z).

(iii) tWr,x (z)tWr,0(z+ uh̄)= tWr,x−u (z+ uh̄)tWr,u (z).

(iv) tX (z)tY (w)= tY (w)tX (z).

In (iv), we replace one of the z in (6.33) with w to define the multiplication. It is proved as in [Frenkel
and Hernandez 2015, Theorem 5.3]; the commutativity of transfer matrices is a consequence of the
commutativity of the Grothendieck ring K0(O). The standard proof by using the Yang–Baxter equation
[Baxter 1972] would require braiding in category O, whose existence is not clear.

Conclusion (ii) and the fact that tX (z) only depends on the isomorphism class [X ] of X imply that
[X ] 7→ tX (z) is a ring homomorphism trp : K0(O)→M(I `0 ;Dp). Applying trp to (4.28) we obtain (iii).
Replace (W, x, u, z) with (W′, zh̄−1

+ x, zh̄−1, 0) in (iii) and take the inverse of Qr (z) and tW′r,0(z). We
have

tWr,x (z)
tWr,0(z)

=
tW′r,x (z)

tW′r,0(z)
=

Qr (z+ xh̄)
Qr (z)

, (6.35)

as in [Felder and Zhang 2017, Theorem 5.6(i)]. Now applying trp to (4.29), we obtain

Corollary 6.4. Let V be a finite-dimensional E-module in category O. Then in (4.29) replacing V, S(d j )

and the [Wr,a]/[Wr,b] with tV (z), tS(d j )(z) and Qr (z+ah̄)/Qr (z+ bh̄) respectively, we obtain an identity
in M(I `0 ;Dp).

This forms the generalized Baxter relations for transfer matrices. If the prefundamental modules L+r,a
before Example 4.16 existed, then we would have defined alternatively the r -th Baxter operator QFH

r (z)=
tL+r,0

(z) as a real transfer matrix [Frenkel and Hernandez 2015, §5.5] and so Qr (z+ ah̄)/Qr (z+ bh̄)=
QFH

r (z+ ah̄)/QFH
r (z+ bh̄) based on [Wr,a]/[Wr,b] = [L+r,a]/[L

+

r,b].
As an illustration of the corollary, let us be in the situation of Example 4.16:

tV (z)=
Q1
(
z+ 3

2 h̄
)

Q1
(
z+ 1

2 h̄
) + Q1

(
z− 1

2 h̄
)

Q1
(
z+ 1

2 h̄
) Q2(z+ h̄)

Q2(z)
+

Q2(z− h̄)
Q2(z)

∏̀
j=1

θ(z+ a j + h̄)
θ(z+ a j )

.

Apply trp to (5.31), divide both sides by the second term, and then perform the change of variable
z+

(
k+ 1

2

)
h̄ 7→ w. By (6.35) and Proposition 6.3(i)

X (r)
k (w)

Qr (w)

Qr (w− h̄)
= 1+

Qr (w+ h̄)
Qr (w− h̄)

∏
s=r±1

Qs
(
w− 1

2 h̄
)

Qs
(
w+ 1

2 h̄
) . (6.36)

This forms three-term Baxter TQ relations for transfer matrices, where

X (r)
k (w)= tD(r,1)

k,0
(w)

∏
s=r±1

t−1
Ws,k+1

(
w−

(
k+ 1

2

)
h̄
)
.

By (6.36), X (r)
k (z) ∈M(I `0 ;Dp) is independent of the choice of generic k ∈ C.
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In the homogeneous case a1 = a2 = · · · = a` = a, the entries of the matrix Q̃r (z), as entire functions
of z, in general do not satisfy the uniform double periodicity of [Felder and Zhang 2017, Theorem 5.6(ii)].
By “uniform” we mean the multipliers with respect to z + 1 and z + τ only depend on (a, z, `). This
is because the transfer matrix construction in [Felder and Zhang 2017] is based on a slightly different
elliptic quantum group; see footnote 9.

We follow [Frenkel and Hernandez 2016, §5] to derive the Bethe Ansatz equations from (6.36). Let u
be a zero of Qr (z). Suppose X (r)

k (z), Qr (z− h̄) and Qs
(
z+ 1

2 h̄
)

for s 6= r ± 1 have no poles at z = u.
(This is a genericity condition.) Then as in [Frenkel and Hernandez 2016, (5.16)]

Qr (u+ h̄)
Qr (u− h̄)

∏
s=r±1

Qs
(
u− 1

2 h̄
)

Qs
(
u+ 1

2 h̄
) =−1. (6.37)

To compare with [Frenkel and Hernandez 2016], we can assume furthermore that eigenvalues of Qr (z)
are of the form pzh̄−1$r

∏dr
i=1 θ(z− ur;i ) based on [Felder and Zhang 2017, Remark 5.8]. Then

pαr

dr∏
i=1

θ(ur;k + h̄− ur;i )

θ(ur;k − h̄− ur;i )

∏
s=r±1

ds∏
j=1

θ
(
ur;k +

1
2 h̄− us; j

)
θ
(
ur;k +

1
2 h̄− us; j

) =−1 for 1≤ k ≤ dr .

We remark that similar Bethe Ansatz equations for E appeared in [Hou et al. 2003, (3.45)].
For affine quantum groups and toroidal gl1, the genericity condition of Bethe Ansatz equations has

been dropped in [Feigin et al. 2017a; 2017b].
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Differential forms in positive characteristic, II:
cdh-descent via functorial Riemann–Zariski spaces

Annette Huber and Shane Kelly

This paper continues our study of the sheaf associated to Kähler differentials in the cdh-topology and
its cousins, in positive characteristic, without assuming resolution of singularities. The picture for the
sheaves themselves is now fairly complete. We give a calculation Ocdh.X/ Š O.X sn/ in terms of the
seminormalisation. We observe that the category of representable cdh-sheaves is equivalent to the category
of seminormal varieties. We conclude by proposing some possible connections to Berkovich spaces and
F -singularities in the last section. The tools developed for the case of differential forms also apply in
other contexts and should be of independent interest.

1. Introduction

This paper continues the programme started in [Huber and Jörder 2014] (characteristic 0) and [Huber,
Kebekus and Kelly 2017] (positive characteristic). For a survey see also [Huber 2016].

Programme. Let us quickly summarise the main idea. Sheaves of differential forms are very rich sources
of invariants in the study of algebraic invariants of smooth algebraic varieties. However, they are much
less well-behaved for singular varieties. In characteristic 0, the use of the h-topology — replacing Kähler
differentials with their sheafification in this Grothendieck topology — is very successful. It unifies several
ad hoc notions and simplifies arguments. In positive characteristic, resolution of singularities would
imply that the cdh-sheafification could be used in a very similar way. Together with the results of [Huber,
Kebekus and Kelly 2017], we now have a fairly complete unconditional picture, at least for the sheaves
themselves. We refer to the follow-up [Huber and Kelly � 2018] for results on cohomological descent,
where, however, many questions remain open.

Results. There are a number of weaker cousins of the h-topology in the literature. They exclude the
Frobenius morphism but still allow abstract blowups. The cdh-topology (see Section 2B) is the most
well-established, appearing prominently in work on motives and K-theory, and having connections to
rigid geometry; see [Friedlander and Voevodsky 2000; Voevodsky 2000; Suslin and Voevodsky 2000a;
Cisinski and Déglise 2015; Cortiñas et al. 2008; Geisser and Hesselholt 2010; Cisinski 2013; Kerz et al.
2018; Morrow 2016], for example. We write �n� for the sheafification of the presheaf X 7! �.X;�n

X=k
/

with respect to the topology � .

MSC2010: primary 14G17; secondary 14F20.
Keywords: differential forms, cdh-topology, valuation rings, seminormalization, singularities.
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Theorem 1.1. Suppose k is a perfect field.

(1) ([Huber, Kebekus and Kelly 2017], also Theorem 4.12) For a smooth k-scheme X and n� 0,

�.X;�nX=k/D�
n
cdh.X/:

(2) (Theorem 5.4, Proposition 5.9) For any finite type separated k-scheme X, the restrictions �ncdhjXZar

and �ncdhjXet to the small Zariski and étale sites are coherent OX -modules.

(3) (Proposition 6.2) For functions, we have isomorphisms, functorial in X,

Ocdh.X/DO.X sn/;

where X sn is the seminormalisation of the variety X ; see Section 2C.

(4) (Proposition 6.9) For top degree differentials, we have

�dcdh.X/ Š lim
��!
X 0!X

proper birational

�.X 0; �dX 0=k/; dimX D d:

By combining (1) and (4) we deduce a corollary that involves only Kähler differentials. To our
knowledge the formula is new:

Corollary 1.2 (Corollary 6.11). Let k be a perfect field and X a smooth k-scheme. We have

�.X;�dX=k/ Š lim
��!
X 0!X

proper birational

�.X 0; �dX 0=k/; dimX D d:

Note that it could also be deduced directly from [Huber, Kebekus and Kelly 2017, Theorem 5.8].
In contrast to the case of characteristic 0, the sheaves �ncdh are not torsion free (this was shown in

[Huber, Kebekus and Kelly 2017, Example 3.6] by “pinching” along the Frobenius of a closed subscheme).
So not only does lacking access to resolution of singularities cause proofs to become harder, the existence
of inseparable field extensions actually changes some of the results.

Main tool. Our main tool, taking the role of a desingularisation of a variety X, is the category

val.X/;

a functorial variant of the Riemann–Zariski space, which we now discuss. Recall that the Riemann–Zariski
space of an integral variety X is (as a set) given by the set of (all, not necessarily discrete) X-valuation
rings of k.X/. The Riemann–Zariski space is only functorial for dominant morphisms of integral varieties.
We replace it by the category val.X/ (see Definition 2.21) of X-schemes of the form Spec.R/ with R
either a field of finite transcendence degree over k or a valuation ring of such a field. In [Huber, Kebekus
and Kelly 2017], we were focussing on the discrete valuation rings — this turned out to be useful, but
allowing nonnoetherian valuation rings yields a much better tool.
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We define �nval.X/ as the set of global sections of the presheaf Spec.R/ 7!�n
R=k

on val.X/; that is,

�nval.X/D lim
 ��

R2val.X/

�nR=k :

A global section admits the following very explicit description (Lemma 3.7). It is uniquely determined by
specifying an element !x 2�n�.x/=k for every point x 2X subject to two compatibility conditions: If R is
an X-valuation ring of a residue field �.x/, then !x has to be integral, i.e., contained in �n

R=k
��n

�.x/=k
.

If � is the image of its special point in X, then !RjSpec.R=m/ has to agree with !� jSpec.R=m/ in �n
.R=m/=k

.
The above mentioned results are deduced by establishing eh-descent (and therefore cdh- and rh-descent)
for �nval. This is used to show the following:

Theorem 1.3 (Theorem 4.12). �nrh D�
n
cdh D�

n
eh D�

n
val.

This gives a very useful characterisation of �ncdh, and answers the open question [Huber, Kebekus
and Kelly 2017, Proposition 5.13]. We also show that using other classes of valuation rings (e.g., rank
one or strictly henselian or removing the transcendence degree bound) produces the same sheaf (see
Proposition 3.11).

Special cases and the sdh-topology. There are two special cases, both of particular importance and with
better properties: the case of 0-forms (i.e., functions) and the case of the “canonical sheaf” (i.e., d -forms
on the category of k-schemes of dimension at most d ). In both cases, the resulting sheaves even have
descent for the sdh-topology introduced in [Huber, Kebekus and Kelly 2017]:

Ocdh DOsdh; �dcdh D�
d
sdh

(see Remark 6.7 and Proposition 6.12). Recall that every variety is locally smooth in the sdh-topology by
de Jong’s theorem on alterations, and the hope was that requiring morphisms to be separably decomposed
would prohibit pathologies caused by purely inseparable extensions. Unfortunately, �n.X/¤�nsdh.X/

for general n and X smooth; see [Huber, Kebekus and Kelly 2017].

Seminormalisation. For functions, we have the explicit computation

Ocdh.X/DO.X sn/; (1)

where X sn is the seminormalisation of the variety X (see Proposition 6.2). Here, the seminormalisation
X sn ! X is the universal morphism, which induces isomorphisms of topological spaces and residue
fields; see Section 2C. In fact, we have this result for all representable presheaves.

Theorem 1.4 (Proposition 6.14). Suppose S is a noetherian scheme and the normalisation of every finite
type S -scheme is also finite type (i.e., that S is Nagata, as defined in Remark 2.7). For instance, S might
be the spectrum of a perfect field. Then for all separated finite type S-schemes X and Y , the canonical
morphisms

hYrh.X/D h
Y .X sn/ (2)
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are isomorphisms, where hY. – /D homS . – ; Y /. The natural maps

hYrh! hYcdh! hYeh! hYsdh! hYval (3)

are isomorphisms of presheaves on SchftS .

In characteristic 0, equation (2) is already formulated for the h-topology by Voevodsky [1996, Sec-
tion 3.2], and generalised to algebraic spaces by Rydh [2010]. The theorem confirms that we have
identified the correct analogy in positive characteristic.

As (2) confirms, the cdh-topology is not subcanonical. In fact, the full subcategory spanned by those
cdh-sheaves which are sheafifications of representable sheaves is equivalent to the category of seminormal
schemes (Corollary 6.17). In particular, the subcategory of smooth or even normal varieties remains
unchanged; however, we lose information about certain singularities, e.g., cuspidal singularities are
smoothened out. Depending on the question, this might be considered an advantage or a disadvantage.
We strongly argue that it is an advantage for the natural questions of birational algebraic geometry, where
differential forms are a main tool.

Recall that if X is integral, the ring of global sections of the structure sheaf of the normalisation zX is
the intersection of all X-valuation rings of the function field:

�. zX;O zX / D
\

valuation ringsR of k.X/

R:

In light of Ocdh ŠOval, equation (1) has the following neat interpretation:

Scholium 1.5. If X is reduced, the ring of global sections of the structure sheaf of the seminormalisation
X sn is the “intersection” of all X-valuation rings:

�.X sn;OX sn/ D lim
 ��

Spec.R/!X
withR a valuation ring

R:

The seminormalisation was introduced and studied quite some time ago; see for example [Traverso
1970; Swan 1980], and for a historical survey see [Vitulli 2011]. The original motivation for considering
the seminormalisation (or rather, the closely related and equivalent in characteristic 0 concept of weak
normalisation) was to make the moduli space of positive analytic d -cycles on a projective variety “more
normal” without changing its topology, i.e., without damaging too much the way that it solved its moduli
problem [Andreotti and Norguet 1967]. Clearly, the cdh- and eh-topology are relevant to these moduli
questions. Indeed, the cdh-topology already appears in the study of moduli of cycles in [Suslin and
Voevodsky 2000a, Theorem 4.2.11]. In relation to this, let us point out that basically all of the present
paper works for arbitrary unramified étale sheaves commuting with filtered limits of schemes, and in
particular applying . – /val to various Hilbert presheaves provides alternative constructions for Suslin
and Voevodsky’s relative cycle presheaves z.X=S; r/; zeff.X=S; r/; c.X=S; r/; ceff.X=S; r/ introduced
in [Suslin and Voevodsky 2000a], and heavily used in their work on motivic cohomology. Such matters,
however, go beyond the scope of this current paper.
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Outline of the paper. We start in Section 2 by collecting basic notation and facts on the Grothendieck
topologies that we use, seminormality and valuation rings. In Section 2E we introduce our main tool,
different categories of local rings above a given X, and discuss the relation to the Riemann–Zariski space.

In Section 3 we discuss and compare the presheaves on schemes of finite type over the base induced from
presheaves on our categories of local rings. Everything is then applied to the case of differential forms.

In Section 4 we verify sheaf conditions on these presheaves. In Theorem 4.12, this culminates in our
main comparison theorem on differential forms.

Section 5 establishes coherence of �nrh locally on the Zariski or even small étale site of any X. In
Section 6 we turn to the special examples of O, the canonical sheaf, and more generally the category
of representable sheaves. Finally, in Section 7 we outline interesting open connections to the theory of
Berkovich spaces and to F -singularities.

2. Commutative algebra and general definitions

2A. Notation. Throughout, k is assumed to be a perfect field. The case of interest is the case of
positive characteristic. Sometimes we use a separated noetherian base scheme S . This includes the case
S D Spec.k/ of course.

The valuation rings we use are not assumed to be noetherian!
We denote by SchftS the category of separated schemes of finite type over S , and write Schft

k
when

considering the case S D Spec.k/.
We write �n.X/ for the vector space of k-linear n-differential forms on a k-scheme X, often denoted

elsewhere by �.X;�n
X=S

/. Note the assignment X 7!�n.X/ is functorial in X.
Following [Stacks project, Tag 01RN], we call a morphism of schemes with finitely many irreducible

components f WX ! Y birational if it induces a bijection between the sets of irreducible components
and an isomorphism on the residue fields of generic points. In the case of varieties (or more generally, if
f is of finite presentation and X; Y are generically reduced [EGA IV3 1966, Théorème 8.10.5(i)]) this is
equivalent to the existence of dense open subsets U �X and V � Y such that f induces an isomorphism
U ! V .

2B. Topologies.

Definition 2.1 (cdp-morphism). A morphism f W Y ! X is called a cdp-morphism if it is proper and
completely decomposed, where by “completely decomposed” we mean that for every (not necessarily
closed) point x 2X there is a point y 2 Y with f .y/D x and Œk.y/ W k.x/�D 1.

These morphisms are also referred to as proper cdh-covers (e.g., by Suslin and Voevodsky [2000a]), or
envelopes (e.g., by Fulton [1998]).

Remark 2.2 (rh, cdh and eh-topologies).

(1) Recall that the rh-topology on SchftS is generated by the Zariski topology and cdp-morphisms
[Goodwillie and Lichtenbaum 2001]. In a similar vein, the cdh-topology is generated by the
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Nisnevich topology and cdp-morphisms [Suslin and Voevodsky 2000a, §5]. The eh-topology is
generated by the étale topology and cdp-morphisms [Geisser 2006].

(2) We have an even stronger statement: every rh-, cdh- or eh- covering U ! X in SchftS admits a
refinement of the form W ! V !X , where V !X is a cdp-morphism and W ! V is a Zariski,
Nisnevich or étale covering, respectively [Suslin and Voevodsky 2000a, proof of Proposition 5.9].

2C. Seminormality. A special case of a cdp-morphism is the seminormalisation.

Definition 2.3 [Swan 1980]. A reduced ring A is seminormal if for all b; c 2 A satisfying b3 D c2, there
is an a 2 A with a2 D b; a3 D c. Equivalently, every morphism Spec.A/! Spec.ZŒt2; t3�/ factors
through Spec.ZŒt �/! Spec.ZŒt2; t3�/.

Definition 2.4. Recall that an inclusion of rings A� B is called subintegral if Spec.B/! Spec.A/ is a
completely decomposed homeomorphism [Swan 1980, §2]. In other words, an inclusion is subintegral if
it induces an isomorphism on topological spaces, and residue fields.

Remark 2.5. Any (not necessarily injective) ring map � W A! B inducing a completely decomposed
homeomorphism is integral in the sense that for every b 2B there is a monic f .x/ 2AŒx� such that b is a
solution to the image of f .x/ in BŒx� [Stacks project, Tag 04DF]. Consequently, a posteriori, subintegral
inclusions are contained in the normalisation.

We have the following nice properties.

Lemma 2.6. Let A be a reduced ring and .Ai /I a (not necessarily filtered) diagram of reduced rings.

(1) If A is normal, it is seminormal.

(2) [Swan 1980, Corollary 3.3] If all Ai are seminormal, then so is lim
 ��i2I

Ai .

(3) [Swan 1980, Corollary 3.4] If the total ring of fractions Q.A/ is a product of fields, then A is
seminormal if and only if for every subintegral extension A � B � Q.A/ we have A D B . In
particular, this holds if A is noetherian or A is a valuation ring.

(4) [Swan 1980, §2, Theorem 4.1] There exists a universal morphism A!Asn with target a seminormal
reduced ring. The morphism Spec.Asn/! Spec.A/ is subintegral.

(5) [Swan 1980, Corollary 4.6] For any multiplicative set S � A we have AsnŒS�1�DAŒS�1�sn; in
particular, if A is seminormal, so is AŒS�1�.

Remark 2.7. Recall that a scheme S is called Nagata if it is locally noetherian, and if for every X 2 SchftS ,
the normalisation Xn!X [Stacks project, Tag 035E] is finite. Well-known examples are fields or the
ring of integers Z; more generally, quasi-excellent rings are Nagata [Stacks project, Tag 07QV].

Actually, the definition of Nagata [Stacks project, Tag 033S] is: for every point x 2X, there is an open
U 3 x such that RDOX .U / is a Nagata ring [Stacks project, Tag 032R], i.e., noetherian and for every
prime p of R the quotient R=p is N-2 [Stacks project, Tag 032F], i.e., for every finite field extension
L=Frac.R=p/, the integral closure of R=p in L is finite over R=p. However, Nagata proved [Stacks
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project, Tag 0334] that Nagata rings are characterised by being noetherian and universally Japanese
[Stacks project, Tag 032R], but being universally Japanese is the same as having the property that every
finite type ring morphism R! R0 with R0 a domain, the integral closure of R0 in its fraction field is
finite over R0 [Stacks project, Tag 032F, Tag 0351]. Since we can assume the U from above is affine, and
finiteness of the normalisation is detected locally, one sees that our definition above is equivalent to the
standard one.

Proposition 2.8. Let X be a scheme. There exists a universal morphism

X sn
!X

from a scheme whose structure sheaf is a sheaf of seminormal reduced rings, called the seminormalisation
of X.

(1) It is a homeomorphism of topological spaces.

(2) If X D Spec.A/ then X sn D Spec.Asn/.

(3) If the normalisation Xn! X is finite (e.g., if X 2 Schft
k

, or more generally, if X 2 SchftS with S a
Nagata scheme), then X sn!X is a finite cdp-morphism.

Proof. Replacing X with its associated reduced scheme Xred we can assume that X is reduced. Define
X sn to be the ringed space with the same underlying topological space as X, and structure sheaf the sheaf
obtained from U 7!O.U /sn. It satisfies the appropriate universality by the universal property of . – /sn

for rings.
Since . – /sn commutes with inverse limits and localisation by Lemma 2.6 parts (2) and (5), for any

reduced ring A the structure sheaf of Spec.Asn/ is a sheaf of seminormal rings, and we obtain a canonical
morphism Spec.Asn/! Spec.A/sn of ringed spaces. By the universal properties, . – /sn commutes with
colimits, so for any point x 2X we have OX sn;x DOsn

X;x , and consequently, Spec.Asn/! Spec.A/sn is
an isomorphism of ringed spaces. From this we deduce that in general X sn is a scheme, and X sn!X is
a completely decomposed morphism of schemes (see Lemma 2.6(4)).

Finally, by the universal property, there is a factorisation Xn!X sn!X. So if the normalisation is
finite, then so is the seminormalisation. �

The following well-known property explains the significance of the seminormalisation in our context.

Lemma 2.9. Let F be an rh-sheaf on SchftS . Take X 2 SchftS and X 0 ! X a completely decomposed
homeomorphism. Then

F.X/! F.X red/! F.X 0/

are isomorphisms. In particular,
F.X/Š F.X sn/

if X sn 2 SchftS (for example, if S is Nagata).
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Proof. The map X red ! X is cdp and we have .X red �X X
red/ D X red. The isomorphism for X red

follows from the sheaf sequence. The same argument applies to X 0: Since F is an rh-sheaf we can
assume X 0 is reduced. Then since X 0!X is a finite [Stacks project, Tag 04DF] completely decomposed
homeomorphism, so are the projections X 0�XX 0 ! X 0, and it follows that the diagonal induces an
isomorphism X 0

�
�! .X 0�XX

0/red. �

Lemma 2.10. Suppose that
E

j
//

q
��

X 0

p
��

Z
i
// X

is a commutative square in SchftS , with i; j closed immersions, p; q finite surjective, and p an isomorphism
outside i.Z/.

Then the pushout Z tE X 0 exists in SchftS , is reduced if both Z and X 0 are reduced, and the canonical
morphism Z tE X

0!X is a finite completely decomposed homeomorphism. In particular,

Z tE X
0
ŠX

if Z;X 0 are reduced and X is seminormal.

Proof. First consider the case where X is affine (so all four schemes are affine). The pushout exists by
[Ferrand 2003, Scolie 4.3, Théorème 5.1] and is given explicitly by the spectrum of the pullback of the
underlying rings. By construction it is reduced as Z and X 0 are. The underlying set of the pushout is
the pushout of the underlying sets [Ferrand 2003, Scolie 4.3]. As p is an isomorphism outside i.Z/
and q is surjective, it follows that Z tE X 0! X is a bijection on the underlying sets. The existence
of the (continuous) map (of topological spaces) Z tE X 0! X shows that every open set of X is an
open set of Z tE X 0. Conversely, if W is a closed set of Z tE X 0 then its preimage in X 0 is closed.
As p is proper, this implies that W is also closed in X. In other words, every open set of Z tE X 0 is
an open set of X. Hence Z tE X 0!X is a homeomorphism with reduced source. Now Z tX 0!X

is finite and completely decomposed, so Z tE X 0! X is also finite and completely decomposed. To
summarise, Z tE X 0 ! X is a finite completely decomposed homeomorphism. That is, if both are
reduced it comes from a subintegral extension of rings. If in addition X is seminormal, this implies that it
is an isomorphism (Lemma 2.6(3)).

For a general X 2 SchftS , the pushout exists by [Ferrand 2003, Théorème 7.1] (one checks the condition
(ii) easily by pulling back an open affine of X to X 0). Then the properties of Z tE X 0!X claimed in
the statement can be verified on an open affine cover of X. As long as

U �X .Z tE X
0/Š .U �X Z/tU�XE .U �X X

0/

for every open affine U � X, it follows from the case where X is affine. This latter isomorphism can
be checked in the category of locally ringed spaces using the explicit description of [Ferrand 2003,
Scolie 4.3]; it is also a special case of [Ferrand 2003, Lemme 4.4]. �
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2D. Valuation rings. Recall that an integral domainR is called a valuation ring if for all x2KDFrac.R/,
at least one of x or x�1 is in R �K. If R contains a field k, we say that R is a k-valuation ring. We say
R is a valuation ring of K to emphasise that K D Frac.R/.

The name valuation ring comes from the fact that the abelian group �R D K�=R� equipped with
the relation “a � b if and only if b=a 2 .R�f0g/=R�” is a totally ordered group, and the canonical
homomorphism v W K�! K�=R� is a valuation, in the sense that v.aC b/ � min.v.a/; v.b// for all
a; b 2 K�. Conversely, for any valuation on a field, the set of elements with nonnegative value are a
valuation ring in the above sense. If �RDK�=R� is isomorphic to Z we say that R is a discrete valuation
ring. Every noetherian valuation ring is either a discrete valuation ring or a field.

One of the many, varied characterisations of valuation rings is the following.

Proposition 2.11 [Bourbaki 1964, Chapitre VI, §1.2, Théorème 1]. Let R �K be a subring of a field.
Then R is a valuation ring if and only if its set of ideals is totally ordered.

In particular, this implies that the maximal ideal is unique, that is, every valuation ring is a local ring.
The cardinality of the set of nonzero prime ideals of a valuation ring is called its rank. As the set of
primes is totally ordered, the rank agrees with the Krull dimension.

Corollary 2.12. Let R be a valuation ring. If p�R is a prime ideal, then both the quotient R=p and the
localisation Rp are again valuation rings.

Corollary 2.13. Let R be a valuation ring and S � R�f0g a multiplicative set. Then RŒS�1� is a
valuation ring. In fact, pD

S
S\qD¿ q is a prime and RŒS�1�DRp.

Proof. By Corollary 2.12 it suffices to show the second claim. Clearly p is prime. Recall that the
canonical inclusionR!RŒS�1� induces an isomorphism of locally ringed spaces between Spec.RŒS�1�/
and fq W q \ SD¿g � Spec.R/. Since this set has a maximal element, namely p, the morphism
Spec.Rp/ ! Spec.RŒS�1�/ is an isomorphism of locally ringed spaces. Applying �. – ;O�/ gives
the desired ring isomorphism. �

Given a prime p of a valuation ring R, we can of course reconstruct R from the valuation rings Rp

and R=p and their canonical maps to the residue field �.p/:

Lemma 2.14. Let R be a valuation ring and p a prime ideal. Then the diagram

R
� � //

��

Rp

��

R=p �
�

// Rp=pRpŠ Frac.R=p/

(4)

is cartesian and the canonical R-module morphism p! pRp is an isomorphism.

Proof. We have to check that an element a=s of Rp is in R if its reduction modulo pRp is in R=p. This
amounts to showing that pD pRp: if there is b 2R which agrees with a=s mod pRp, then b�a=s 2 pRp.
But if pD pRp, then b� a=s 2 p�R, i.e., a=s 2R �Rp.
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Let x D a=s 2 pRp with a 2 p and s 2R� p. Let v be the valuation of R. We compare v.a/ and v.s/.
If we had v.s/� v.a/, then x�1 2R and hence sD x�1a 2 p because p is an ideal. This is a contradiction.
Hence v.s/ < v.a/ and x 2 R. Now we have the equation sx D a in R; hence sx 2 p. As p is a prime
ideal and s … p, this implies x 2 p. �

Another one of the many characterisations of valuation rings is the following.

Proposition 2.15 [Stacks project, Tag 092S; Olivier 1983]. A local ring R is a valuation ring if and only
if every submodule of every flat R-module is again a flat R-module.

From this we immediately deduce the following, which is crucial for Corollary 2.18.

Corollary 2.16. Let R be a valuation ring. If R! A is a flat R-algebra with A˝RA! A also flat, then
for every prime ideal p� A the localisation Ap is again a valuation ring.

Proof. If A satisfies the hypotheses, then so does Ap, so we can assume A is local, and it suffices to show
that every sub-A-module of a flat A-module is a flat A-module. Recall that flatness of R!A implies the
forgetful functor U WA-mod!R-mod preserves flatness, because – ˝AA˝R – Š .U – /˝R – . Recall
also that flatness of A˝R A! A implies that U detects flatness, because we have isomorphisms

– ˝A – Š . – ˝A .A˝R A/˝A – /˝.A˝RA/A and . – ˝A .A˝R A/˝A – /Š .U – /˝R .U – /:

Since U preserves and detects flatness, and preserves monomorphisms, the claim now follows from
Proposition 2.15. �

As one might expect, the rank is bounded by the transcendence degree.

Proposition 2.17 [Bourbaki 1964, Chapitre VI, §10.3, Corollaire 1; Gabber and Ramero 2003, 6.1.24;
Engler and Prestel 2005, Corollary 3.4.2]. Suppose that R0 is a valuation ring and K 0 D Frac.R0/. Let
K 0=K be a field extension. Note that R DK \R0 is again a valuation ring, and the inclusion R � R0

induces a field extension of residue fields � � �0, and a morphism �R! �R0 of totally ordered groups.
With this notation, we have

tr:d.K 0=K/C rkR � tr:d.�0=�/C rkR0:

In particular, if R0 is a k-valuation ring for some field k, we have

tr:d.K 0=k/� tr:d.�0=k/C rkR0;

and finiteness of tr:d.K 0=k/ implies finiteness of rkR0.

Recall that a local ring R is called strictly henselian if every faithfully flat étale morphism R! A

admits a retraction. Every local ring R admits a “smallest” local morphism towards a strictly henselian
local ring, which is unique up to nonunique isomorphism. The target of any such morphism is called
the strict henselisation and is denoted by Rsh. There are various ways to construct this. One standard
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construction is to choose a separable closure �s of the residue field � and take the colimit

Rsh
D lim

��!
R!A!�s

A (5)

over factorisations such that R! A is étale.
From Corollary 2.16 we deduce the following.

Corollary 2.18. For any valuation ring R, the strict henselisation is again a valuation ring. If R is of
finite rank, then the following hold:

(1) If R! A is an étale algebra, R! Ap is also an étale algebra for all p� A.

(2) In the colimit (5), it suffices to consider those étale R-algebras A which are valuation rings.

(3) Every étale covering U ! Spec.R/ admits a Zariski covering V !U such that V is a disjoint union
of spectra of valuation rings.

This corollary actually holds whenever the primes ofR are well-ordered by [Bourbaki 1964, Chapitre VI,
§8.3, Théorème 1], and might very well be true in general, but finite rank suffices for our purposes.

Proof. Recall that the diagonal is open immersion in the case of an unramified morphism. Hence the
assumptions of Corollary 2.16 are satisfied for all étale R-algebras and their cofiltered limits. In particular,
Rsh is a valuation ring.

(1) It suffices to show that A!Ap is of finite type. First note that since Spec.A/! Spec.R/ is étale, it
is quasifinite, and so since R has finite rank, A has finitely many primes. For every prime q � A

such that q 6� p, choose one �q 2 qn.q\ p/. Then Ap D AŒ�
�1
q1
; : : : ; ��1qn

� (see Corollary 2.13).

(2) We can replace each A with Ap without affecting the colimit (see part (1)).

(3) Part (1) also implies that Spec.Ap/! Spec.A/ is an open immersion. Each of the finitely many Ap

is a valuation ring by Corollary 2.16 �

Just as strictly henselian rings are “local rings” for the étale topology, strictly henselian valuation rings
are the “local rings” for the eh-topology.

Proposition 2.19 [Gabber and Kelly 2015, Theorem 2.6]. A k-ring R is a valuation ring (resp. henselian
valuation ring, strictly henselian valuation ring) if and only if for every rh-covering (resp. cdh-covering,
eh-covering) fUi !Xg in Schft

k
, the morphism of sets of k-scheme morphismsa

i2I

hom.Spec.R/; Ui /! hom.Spec.R/;X/

is surjective.

The key input into the present paper is the same as for [Huber, Kebekus and Kelly 2017].

Theorem 2.20. For every finitely generated extension K=k and every k-valuation ring R of K the map

�n.R/!�n.K/

is injective for all n� 0, i.e., �n is torsion free on val.k/.
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This is due to Gabber and Ramero [2003, Corollary 6.5.21] for nD 1. The general case is deduced in
[Huber, Kebekus and Kelly 2017, Lemma A.4].

2E. Presheaves on categories of local rings. We fix a base scheme S . The case of main interest for the
present paper is S D Spec.k/ with k a field.

Definition 2.21. Let X=S be a scheme of finite type. We use the following notation:

valbig.X/ is the category of X-schemes Spec.R/ with R either a field extension of k or a k-valuation
ring of such a field.

val.X/ is the full subcategory of valbig.X/ of those � W Spec.R/! X such that the transcendence
degree tr:d.k.�/=k.�.�/// is finite (but we do not demand the field extension to be finitely
generated), where � is the generic point of Spec.R/.

val�r.X/ is the full subcategory of val.X/ of those Spec.R/!X such that rank of the valuation ring
R is � r .

dvr.X/ is the full subcategory of val.X/ of those Spec.R/ ! X such that R D OY;y for some
Y 2 SchftX and some point y 2 Y of codimension � 1 which is regular.

shval.X/ is the full subcategory of val.X/ of those Spec.R/!X such that R is strictly henselian.

rval.X/ is the full subcategory of val.X/ of those Spec.R/!X such that R is a valuation ring of a
residue field of X.

We generically denote one of the above categories of local rings by loc.X/. We also write loc for loc.S/.

Note that the morphisms in the above categories are not required to be induced by local homomorphisms
of local rings. All X-morphisms are allowed.

Definition 2.22. Let F be a presheaf on loc. We say that F is torsion free if

F.R/! F.Frac.R//

is injective for all valuation rings R in loc and their field of fractions Frac.R/.

We could have also called this property separated, since when F is representable, it is the valuative
criterion for separatedness.

Lemma 2.23. For any X 2 SchftS , let X 0 ! X be any completely decomposed homeomorphism (in
particular, if X sn 2 SchftS , for example if S is Nagata, we can take X 0 DX sn). Then

loc.X/D loc.X 0/

for all of the above categories of local rings.

Proof. This follows from the universal property of . – /sn since valuation rings are normal. �

The category val should be seen as a fully functorial version of the Riemann–Zariski space.
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Definition 2.24. LetX be an integral S -scheme of finite type with generic point �. As a set, the Riemann–
Zariski space RZ.X/, called the “Riemann surface” in [Zariski and Samuel 1960, §17, p. 110], is the set
of (not necessarily discrete) valuation rings over X of the function field k.X/; see also [Temkin 2011,
before Remark 2.1.1, after Remark 2.1.2, before Proposition 2.2.1, Proposition 2.2.1, Corollary 3.4.7].
We turn it into a topological space by using as a basis the sets of the form

E.A0/D fR 2 RZ.X/jA0 �Rg;

where Spec.A/ is an affine open of X, and A0 is a finitely generated sub-A-algebra of k.X/; see [Temkin
2011, before Lemma 3.1.1, before Lemma 3.1.8]. It has a canonical structure of locally ringed space
induced by the assignment U 7!

T
R2U R for open subsets U � RZ.X/. One can equivalently define

RZ.X/ as the inverse limit of all proper birational morphisms Y ! X, taking the inverse limit in the
category of locally ringed spaces. In particular, as a set it is the inverse limit of the underlying sets
of the Y , equipped with the coarsest topology making the projections lim

 ��
Y ! Y continuous, and the

structure sheaf is the colimit of the inverse images of the OY along the projections lim
 ��

Y ! Y .

This topological space is quasicompact, in the sense that every open cover admits a finite subcover; see
[Zariski and Samuel 1960, Theorem 40] for the case S D Spec.k/, and [Temkin 2011, Proposition 3.1.10]
for general S .

Note that the Riemann–Zariski space is functorial only for dominant morphisms. Our category loc.X/
above is the functorial version: it is the union of the Riemann–Zariski-spaces of all integral X-schemes
of finite type.

3. Presheaves on categories of valuation rings

3A. Generalities. We now introduce our main player. We fix a base scheme S .

Definition 3.1. Let X=S be of finite type. Let F be a presheaf on one of the categories of local rings
loc.X/ of Definition 2.21 over X.

We define Floc.X/ as a global section of the presheaf Spec.R/ 7! F.Spec.R// on loc.X/, i.e., as the
projective limit

Floc.X/D lim
 ��

loc.X/

F.Spec.R//

over the respective categories.

Remark 3.2. This means that an element of Floc.X/ is defined as a system of elements sR 2F.Spec.R//
indexed by objects Spec.R/!X 2 loc.X/ which are compatible in the sense that for every morphism
Spec.R/! Spec.R0/ in loc.X/, we have sR0 jR D sR. Note that this is an abuse of notation, since the
element sR does not only depend on R but also on the structure map Spec.R/!X. Most of the time the
structure map will be clear from the context.

Remark 3.3. We have the following equivalent definitions of Floc.X/.
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(1) Floc.X/ is the equaliser of the canonical maps

F.X/D eq

 Y
Spec.R/!X2loc.X/

F.R/
d0

�
d1

Y
Spec.R/!Spec.R0/!X2loc.X/

F.R/

!
:

In particular, since valuation rings are the “local rings” for the rh-site [Gabber and Kelly 2015], the
construction Fval can be thought of as a naïve Godement sheafification (it differs in general from the
Godement sheafification because colimits do not commute with infinite products).

(2) Floc is the (restriction to SchftS of the) right Kan extension along the inclusion � W loc� SchS :

Fval D .�
ŠF/jSchftS :

(3) Floc.X/ is the set of natural transformations

Floc.X/D homPreShv.loc/.h
X;F/;

where hX D homSchS . – ; X/.

Lemma 3.4. Let F be a presheaf on loc. Then the assignment X 7! Floc.X/ defines a presheaf Floc

on SchftS .

Proof. Composition of Spec.R/! X with a morphism f W X ! Y of schemes of finite type over k
defines a functor loc.X/! loc.Y / and hence a homomorphism of limits f � W Floc.Y /! Floc.X/. �

Remark 3.5. We show in Proposition 3.11 that for S D Spec.k/ with k a perfect field, we have

�nval D�
n
valbig D�

n
val�1
D�nshval

as presheaves on Schft
k

. In [Huber, Kebekus and Kelly 2017], we systematically studied the case of the
category dvr. If every X 2 Schft

k
admits a proper birational morphism from a smooth k-scheme, we also

have
�nval D�

n
dvr

because both are equal to �ncdh in this case. In positive characteristic, the only cases that we know
�nval.X/D�

n
dvr.X/ unconditionally are if either nD0 (see Remark 6.7), nDdimX (see Proposition 6.12),

dimX < n (in which case both are zero) or dimX � 3.

Lemma 3.6. Let F be a presheaf on valbig. Then Fval D Fvalbig as presheaves on SchftS . A section over X
is uniquely determined by the value on the residue fields of X and their valuation rings, that is, the maps
Floc.X/!

Q
rval.X/ F.R/ are injective for locD val; valbig and all X 2 SchftS .

Proof. We begin with the second statement. Suppose s; t 2Floc.X/ are sections such that sjRD t jR for all
R 2 rval.X/. If R�K is a valuation ring, then by Proposition 2.17, the intersection R0 DR\�.x/�K
is a valuation ring. Then the sections sR; tR for Spec.R/!X (see Remark 3.2) agree by the compatibility
condition sR D sR0 jR D tR0 jR D tR.
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Now the first statement. Since we have a factorisation

Fvalbig.X/! Fval.X/!
Y

rval.X/

F.R/;

it follows that the first map is injective, and we only need to show it is surjective.
Let s 2 Fval.X/ be a global section. Defining tR WD sR0 jR, with R and R0 as above, we get a candidate

element t D .tR/ 2
Q

valbig.X/ F.R/ which is potentially in Fvalbig.X/. Let Spec.R1/! Spec.R2/ be
a morphism in valbig.X/. Let R01; R

0
2 be the valuation rings of residue fields of X corresponding to

R1; R2 as above, but since there is not necessarily a morphism Spec.R01/ ! Spec.R02/, we also set
p02 D ker.R02!R1/ and S D �.p02/\R1, to obtain the commutative diagram

Spec.R01/

Spec.S/
33

++

Spec.R1/
33

++

Spec.R02/

Spec.R2/
33

(6)

in valbig.X/, with R01; R
0
2; S 2 val.X/ by Proposition 2.17. Now the result follows from a diagram chase:

we have
tR1 D sR01

jR1 D sR01
jS jR1 D sS jR1 D sR02

jS jR1 D sR02
jR2 jR1 D tR2 jR1 : �

Recall that a presheaf on loc is torsion free if it sends dominant morphisms to monomorphisms (see
Definition 2.22).

Lemma 3.7. Let loc2 fval; valbig; val�1; rvalg. Let F be a torsion free presheaf on loc.X/. Then Floc.X/

is canonically isomorphic to(
.sx/ 2

Y
x2X

F.x/
ˇ̌̌̌

for every T !X 2 loc.X/ there exists
sT 2 F.T / such that .sx/jQt2T F.t/ D sRjQt2T F.t/

)
: (7)

It is perhaps worth noting that the description in (7) is basically the presheaf rsF from the proof of
[Kelly 2012, Proposition 3.6.12].

Proof. By torsion freeness, the projection Floc.X/! Fval�0.X/ is injective. By functoriality the map
Fval�0.X/!

Q
x2X F.x/ is injective.

Assume conversely we are given a system of sx as in (7). As in the proof of the previous lemma, this
gives us a candidate section tR 2F.Spec.R// for all Spec.R/2 loc.X/. It remains to check compatibility
of these sections. Let Spec.R1/! Spec.R2/ be a morphism in loc.X/. The generic point of Spec.R1/
maps to a point of Spec.R2/ corresponding to a prime ideal p2�R2. By torsion freeness, we may replace
R1 by its field of fractions and R2 by .R2/p2 . In other words, R1 is a field containing the residue field
of R2. Now the same diagram chase as for (6) works. Since S DR02=m and x D Spec.R01/ is the image
of Spec.R1/ in X , keeping in mind the condition of (7) above, we have

tR1 D sxjR1 D sxjR02=m
jR1 D sFrac.R02/

jR02=m
jR1 D sFrac.R02/

jR2 jR1 D tR2 jR1 : �
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3B. Reduction to strictly henselian valuation rings. The aim of this section is to establish that using
strictly henselian local rings gives the same result.

Proposition 3.8. Let F be a presheaf on val that commutes with filtered colimits and satisfies the sheaf
condition for the étale topology. Then the canonical projection morphism

Fval.X/! Fshval.X/

is an isomorphism.

Proof. Let s; t 2 Fval.X/ be sections such that the induced elements of Fshval.X/ agree. Let x 2X be a
point with residue field �. The separable closure �s of � is in the category shval. By assumption,

F.�s/D lim
��!
�=�

F.�/;

where � runs through the finite extensions of � contained in �s . The vanishing of s�s implies that there is
one such � with s�D 0. As �� �s , the morphism Spec.�/! Spec.�/ is étale. As a consequence of étale
descent, we know that the map F.�/!F.�/ is injective, hence s� D t� . The same argument also applies
to a valuation ring R of � and its strict henselisation, viewed as the colimit of (5); see Corollary 2.18(2).
Hence the morphism in the statement is injective.

Now let t 2 Fshval.X/. For any morphism Spec.R/! X in val.X/ with strict henselisation Rsh, let
GDGal.Frac.Rsh/=Frac.R//. Since Frac.R/DFrac.Rsh/G , andRDRsh\Frac.R/, we haveRD .Rsh/G.
In particular, the element tRsh lifts to F.R/� F.Rsh/, as tRsh must be compatible with every morphism
Spec.Rsh/! Spec.Rsh/ in shval.X/. In this way, we obtain an element tR for every Spec.R/! X

in val.X/. We want to know that these form a section of Fval.X/. But compatibility with morphisms
Spec.R/! Spec.R0/ of val.X/ follows from the definition of the tR, the fact that strict henselisations
are functorial [Stacks project, Tag 08HR], and the morphisms F.R/! F.Rsh/ being injective, which we
just proved. �

3C. Reduction to rank one. The aim of this section is to establish that using rank one valuation rings
gives the same result:

Proposition 3.9. Let F be a torsion free presheaf on val. Assume that for every valuation ring R in val
and prime ideal p the diagram

F.R/ �
�

//

��

F.Rp/

��

F.R=p/ �
�

// F.Frac.R=p//

is cartesian. Then the natural restriction

Fval! Fval�1

is an isomorphism.
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Proof. Recall that val�r is defined to be the subcategory of val using only valuations of rank at most r ,
and Fval�r denotes the presheaf obtained using only val�r . There are canonical morphisms

Fval! Fval�r ! Fval�r�1

for all r � 1. By torsion freeness these are all subpresheafs of Fval�0 , and so the two morphisms above
are monomorphisms. Moreover, Fval D

T
r Fval�r because by definition, all fields in val are of finite

transcendence degree over k and hence all valuation rings have finite rank (see Proposition 2.17). Hence
it suffices to show that F�r ! F�r�1 is an epimorphism for all r � 2.

Let p be a prime ideal of a valuation ring R. By Corollary 2.12 both Rp and R=p are valuation rings and
if p is not maximal or zero, then Rp and R=p are of rank smaller than R. Indeed, rkRD rkRpC rkR=p
since the rank is equal to the Krull dimension and the set of ideals, and in particular prime ideals, of a
valuation ring is totally ordered (see Proposition 2.11).

Let t 2Fval�r�1.X/ be a section. If r � 2, we choose a canonical candidate s 2
Q
R2val�r F.Spec.R//

for an element of Fval�r .X/ in the preimage of t : for every valuation ring of rank r , take p to be any
prime ideal with Rp; R=p 2 val�r�1 and construct a section over R using the cartesian square of the
assumption. Since the morphisms F.Spec.R//! F.Spec.Rp// are monomorphisms, the choice of p
does not matter.

It remains to check that this candidate section s 2
Q

val�r F.R/ is actually a section of Fval�r .X/, i.e.,
for any X-morphism of valuation rings Spec.R0/! Spec.R/ with R or R0 (or both) of rank r , we want to
know that the element sR restricts to sR0 . The morphism F.R0/! F.Frac.R0// is injective, so it suffices
to consider the case when R0 is some field L. Then R! L factors as

R!R=p! Frac.R=p/! L;

where p is the prime pD ker.R!L/. That sR is sent to sR=p comes from the independence of the choice
of p that we used to construct s. For the same reason, sR=p is sent to sFrac.R=p/. Finally, both Frac.R=p/

and L, being fields, are of rank zero, and so sFrac.R=p/ D tFrac.R=p/ is sent to sL D tL since t is already a
section of Fval�r�1 . �

Corollary 3.10. For any scheme Y , writing hY for the presheaf homSchk . – ; Y /, the canonical maps are
isomorphisms

hYvalbig Š h
Y
val Š h

Y
val�1
Š hYshval:

Proof. The first isomorphism is Lemma 3.6. The second one follows from Proposition 3.9 — note that

Spec.R/D Spec.R=p/qSpec.Frac.R=p// Spec.Rp/

by [Ferrand 2003, Théorème 5.1]. The last one follows from Proposition 3.8. �

3D. The case of differential forms. Now we show that the previous material applies to the case of
differential forms:
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Proposition 3.11. Let S D Spec.k/ with k a perfect field. The canonical morphisms

�nshval

�n
valbig

..

00

Š

Lemma 3.6
// �nval

Š

Proposition 3.8

99

Š

Proposition 3.9

$$

�n
val�1

are isomorphisms of presheaves on Schft
k

.

Proof. The presheaf �n on valbig is an étale sheaf and commutes with direct limits. Hence we may apply
Proposition 3.8 in order to show the comparison to �nshval. For the final isomorphism we want to apply
Proposition 3.9. The rest of this section is devoted to checking the necessary cartesian diagram. �

Lemma 3.12. Let R be a k-valuation ring and p a prime ideal. Then the diagram

�1.R/
� � //

����

�1.Rp/

����

�1.R=p/ �
�

// �1.Frac.R=p//

is cartesian.

Proof. The R-module �1.R/ is flat because it is torsion free over a valuation ring. We tensor the
diagram (4) of Lemma 2.14 with the flat R-module �1.R/ and obtain the cartesian diagram

�1.R/
� � //

��

�1.Rp/

��

�1.R/˝R R=p
� � // �1.Rp/˝Rp Rp=pRp

In the next step we use the fundamental exact sequence for differentials of a quotient [Matsumura 1970,
Theorem 58, p. 187] and obtain the following diagram with exact columns:

p=p2
epi

//

��

pRp=p
2Rp

��

�1.R/˝R R=p
� � monic

//

epi
����

�1.Rp/˝Rp Rp=pRp

��

�1.R=p/ �
�

//

��

�1.Rp=pRp/

��

0 0

(8)
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The top horizontal arrow is an isomorphism, and in particular a surjection, because pD pRp. A small
diagram chase now shows that the second square is cartesian. Putting the two diagrams together, we get
the claim. �

Lemma 3.13. Let R be a k-valuation ring and p a prime ideal. Then the diagram

�n.R/ //

��

�n.Rp/

��

�n.R=p/ // �n.Frac.R=p//

is cartesian for all n� 0.

Proof. We have already done the cases nD 0; 1. We want to go from nD 1 to general n by taking exterior
powers. We write �1.R/ as the union of its finitely generated sub-R-modules

�1.R/D
[
N:

We write N for the image of N in �1.R=p/. Note that

�1.R=p/D
[
N;

�1.Rp/D�
1.R/p D

[
Np;

�1.Rp=p/D�
1.R=p/p D

[
N p:

The module N is a torsion free finitely generated module over the valuation ring R, hence free. The
Rp; R=p; Rp=p modules Np; N=p; Np=p are therefore also free, and the same is true for all the exterior
powers. So for all n� 0 we get the following cartesian diagram:Vn

N

��

//
Vn

Np

��Vn
.N=p/ //

Vn
.Np=p/

Note that if the rank of N is one, and nD 0, this is just the cartesian diagram from Lemma 2.14. Note
also that at this stage we are working with N=p and Np=p, instead of N and N p.

Passing to the direct limit, we have established as a first step that the diagram

�n.R/

��

// �n.Rp/

��

�n.R/=p // �n.Rp/=p

is cartesian.
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Let � W�n.R/=p!�n.R=p/ and � W�n.Rp/=p!�n.Rp=pRp/ be the natural maps. We want to
show that

�n.R/=p

��

// �n.Rp/=p

��

�n.R=p/ // �n.Rp=p/

is also cartesian. Let ��1N ��1.R/=p be the preimage of N . Similarly, let ��1N p ��
1.Rp/=p be

the preimage of N p by � W�1.Rp/=p!�1.Rp=p/. In particular, we have the following cube, for which
the two side squares are cartesian by definition, the front square is the cartesian square from diagram (8)
on page 666, and a diagram chase then shows that the back square is also cartesian. Note that the lower
and upper faces are probably not cartesian, but this does not affect the argument.

��1N
� � //

�

����

� o

��

��1N p

�

����

� o

��

�1.R/=p �
�
//

����

�1.Rp/=p

����

N
� � //
� o

��

N p � o

��

�1.R=p/ �
�
// �1.Rp=p/

We claim that the back square stays cartesian when passing to higher exterior powers. We show this
by comparing the kernels of

Vn
� and

Vn
� , cf. the diagram chase of diagram (8) on page 666. More

precisely, to show that the higher exterior powers of the back square are cartesian, it suffices to show that
ker

Vn
�! ker

Vn
� is a surjection. We will show that it is an isomorphism.

Note that since the back face is cartesian, and the horizontal morphism is a monomorphism, we have
ker.�/Š ker.�/. Let X be this common kernel. The module N ��1.R=p/ is torsion free and finitely
generated over the valuation ring R=p, and therefore it is free, and in particular, projective. Hence �
admits a splitting � .

The map �D �˝R=pRp=p is then a splitting of � compatible with � . In particular, we have compatible
decompositions

��1N DX ˚N; ��1N p DX ˚N p:

The X ’s are the same due to the square being cartesian. Hence

n̂

R=p

��1N D

nM
iD0

î

R=p

X ˝
R=p

n�î

R=p

N;

n̂

Rp=p

��1N p D

nM
iD0

î

Rp=p

X ˝
Rp=p

n�î

Rp=p

N p:
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The kernels of
Vn

� and
Vn

�F are given by the analogous sums but indexed by i D 1; : : : ; n. Note that
X is an Rp=pD Frac.R=p/-vector space. Since Rp=pD Frac.R=p/, if A;B are Rp=p-vector spaces, then

A˝R=pB D A˝Rp=pB:

Hence
î

R=p

X D

î

Rp=p

X

and finally � î

S

X

�
˝S N D

� î

S

X

�
˝F F ˝S N D

� î

F

X

�
˝F N p;

where S DR=p and F D Frac.R=p/DRp=p. There are similar formulas for higher exterior powers of
N p and N. So we have shown that ker

Vn
�! ker

Vn
� is an isomorphism as claimed. �

Remark 3.14. This finishes the proof of Proposition 3.11.

4. Descent properties of �n
val

Our presheaf of interest, the presheaf �n, is a sheaf for the étale topology. This has far reaching
consequences.

Remark 4.1. Let us point out that we have written �n everywhere because this is our main object of
study, but everything in this section is valid for any presheaf F on hval.S/; SchftS i, the full subcategory of
S -schemes whose objects are those of val.S/ and SchftS , satisfying:

(Co) F commutes with filtered colimits,

(Et) F satisfies the sheaf condition for the étale topology,

(TF) F is torsion free in the sense that F.R/! F.Frac.R// is injective for every valuation ring R.

For example, if Y is any scheme, then F. – /D hY . – /D hom. – ; Y / satisfies these conditions.

Proposition 4.2. Suppose that F is a presheaf on shval.X/. Then Fshval is an eh-sheaf. Similarly, Fval is
an rh-sheaf for any presheaf F on val.X/.

Remark 4.3. If we had defined a category hval of henselian valuation rings, we could also have said that
Fhval is a cdh-sheaf for any presheaf F on hval.X/.

Proof. We only give the proof for the shval.X/;Fshval; eh case, as the same proof works for val.X/;Fval; rh.
Let U ! X be an eh-cover. The map Fshval.X/! Fshval.U / is injective because by Proposition 2.19
every morphism Spec.R/!X from a strictly henselian valuation ring factors through U .

Now suppose s 2Fshval.U / satisfies the sheaf condition for the cover U !X. Let f W Spec.R/!X be
in shval.X/. By choosing a lift g WSpec.R/!U!X, we obtain a candidate section sg 2F.Spec.R//. We
claim that it is independent of the choice of lift. Let g0 be a second lift. The pair .g; g0/ defines a morphism
Spec.R/!U�XU . By assumption, s is in the kernel of Fshval.U /

pr1�pr2
������!Fshval.U�XU/. In particular,
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sg D sg 0 2 F.Spec.R// in the .g; g0/-component. Let f1 W Spec.R1/!X and f2 W Spec.R2/!X be in
loc.X/ and Spec.R1/! Spec.R2/ an X-morphism. The choice of a lift g2 W Spec.R2/!U also induces
a lift g1. The section sg2 restricts to sg1 , hence sf2 restricts to sf1 . Our candidate components define an
element of Fval.X/. �

Corollary 4.4. Let k be a perfect field. The presheaf �nval is an eh-sheaf on Schft
k

. More generally, Fval is
an eh-sheaf on SchftS for any presheaf F on val.S/ which commutes with filtered colimits and satisfies the
sheaf condition for the étale topology.

Proof. The proof follows from �nval D�
n
shval (see Proposition 3.8). �

This immediately implies the following:

Corollary 4.5. The map of presheaves �n!�nval on Schft
k

induces maps of presheaves

�nrh!�ncdh!�neh!�nval: (9)

More generally, this is true for any presheaf F satisfying (Co) and (Et) from Remark 4.1.

We find it worthwhile to restate the following theorem from [Huber, Kebekus and Kelly 2017]. The
original statement is for �n and S D Spec.k/, but one may check directly that the proof works for any
Zariski sheaf and the relative Riemann–Zariski space (Definition 2.24) of [Temkin 2011].

Theorem 4.6 [Huber, Kebekus and Kelly 2017, Theorem A.3]. For any presheaf F on SchftS the following
are equivalent:

(1) cf. [Huber, Kebekus and Kelly 2017, Hypothesis H] For every integral X 2 SchftS and s; t 2 F.X/
such that sjU D t jU for some dense open U �X, there exists a proper birational morphism X 0!X

with sjX 0 D t jX 0 .

(2) cf. [Huber, Kebekus and Kelly 2017, Hypothesis V] For any R 2 val.S/ with fraction field K the
morphism F 0.R/! F 0.K/ is injective. That is, F 0 is torsion free (Definition 2.22).

Here F 0 is the presheaf sending R 2 val.S/ to the colimit F 0.R/D lim
��!.R#SchftS /

F.Y / over factorisations
Spec.R/! Y ! S through Y 2 SchftS . Clearly, .�n/0 D�n.

More generally, for any presheaf F satisfying (Co) and (Et) from Remark 4.1, one has F 0 D F , and (2)
is exactly the condition (TF).

Corollary 4.7. The maps �nrh!�ncdh!�neh!�nval are injective. More generally, the same is true for
any presheaf F satisfying (Co), (Et) and (TF) from Remark 4.1.

Proof. See [Huber, Kebekus and Kelly 2017, Corollary 5.10, Proposition 5.12]. It suffices to show that
for any X 2 SchftS and any !;!0 2�n.X/ with !jQ

x2X �
n.x/ D !

0jQ
x2X �

n.x/ there is a cdp-morphism
X 0!X with !jX 0 D !0jX 0 . By noetherian induction, it suffices to show that Theorem 4.6(1) is satisfied.
But by Theorem 4.6, this is equivalent to being torsion free. �

In order to prove surjectivity, we need a strong compactness property.
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Lemma 4.8. Let .Yi /i2I be a filtered system of nonempty noetherian topological spaces, with transition
morphisms �ij W Yi ! Yj . Then there is a system of nonempty irreducible closed subsets Zi � Yi such
that �ij .Zi /DZj .

Proof. To every i we attach a finite set Fi as follows: Let V1; : : : ; Vn be the irreducible components
of Yi . Let Fi be the set of the irreducible components of all multiple intersections Vm1 \ � � � \ Vmk
for all 1 � k � n and all choices of mj . We define a transition map Fi ! Fj by mapping an element
W 2 Fi to the smallest element of Fj containing �ij .W /. This defines a filtered system of nonempty
finite sets .Fi /i2I . Its projective limit is nonempty by [Stacks project, Tag 086J]. Let .Wi /i2I be an
element of the limit.

Now for each j 2 I , consider the partially ordered set of closures of images f�ij .Wi /� Yj W i � j g.
We claim that there is an ij such that �i 0j .Wi 0/ D �ij j .Wij / for all i 0 � ij . Indeed, if not, then we
can construct a strictly decreasing sequence of closed subsets of Yj , contradicting the fact that it is a
noetherian topological space. Define Zj D �ij j .Wij /� Yj for such an ij . It follows from our definitions
of the Zj that for every i; j 2 I with i � j , we have �ij .Zi /DZj . �

Let X be integral and Y !X proper birational. Fix !;!0 2�nval.X/ (or in Fval.X/ if we are using an
F as in Remark 4.1) and define Y !¤!

0

� Y to be the subset of points y 2 Y for which !y ¤ !0y . We
view it as a topological space with the induced topology.

Lemma 4.9. The topological space Y !¤!
0

is noetherian. In addition, every irreducible closed subset of
Y !¤!

0

has a unique generic point.

Proof. The topological space of Y is noetherian. Subspaces of noetherian topological spaces with the
induced topology are noetherian (easy exercise), and hence Y !¤!

0

is noetherian. Let Z!¤!
0

� Y !¤!
0

be irreducible. Note its closure Z � Y is also irreducible. Let � be the generic point of Z in the
scheme Y . Assume � … Z!¤!

0

. By definition this means !� D !0�. Hence, since �n commutes with
filtered colimits, ! D !0 also on some open dense U � Z of the reduction of Z. As Z!¤!

0

is dense
in Z, the intersection U \Z!¤!

0

is nonempty, implying the existence of a point y 2 Y !¤!
0

for which
!y D !

0
y , and contradicting the definition of Y !¤!

0

. Hence � 2 Z!¤!
0

and we have found a generic
point. Uniqueness follows easily from uniqueness of generic points in Y . �

We are implicitly using the Riemann–Zariski space of X (see Definition 2.24) in the following proof.

Lemma 4.10. Let X be integral and !;!0 2 �nval.X/ such that !k.X/ D !0
k.X/

. Then there exists a
proper birational Y !X such that !jY D !0jY 2�nval.Y /. More generally, this is true for a presheaf F
satisfying (Co), (Et) and (TF) from Remark 4.1.

Proof. Suppose the contrary — that Y !¤!
0

is nonempty for all proper birational maps Y ! X. The
Y ’s and hence also their subspaces Y !¤!

0

form a filtered system of noetherian topological spaces. By
Lemma 4.8, if all Y !¤!

0

are nonempty, then there exists a system ZY � Y
!¤!0 of irreducible subspaces

of the Y !¤!
0

, such that the map ZY 0 !ZY induced by any birational Y 0! Y !X is dominant. Their
generic points (which exist and are unique by Lemma 4.9) define a point y D .yi / 2 lim

 ��
Y for which
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!k.yi / ¤ !
0
k.yi /

for all yi . But �n commutes with cofiltered limits of rings, so !jk.y/ ¤ !0jk.y/, where
k.y/ is the residue field of the valuation ring RD lim

��!
OYi ;yi in the locally ringed space lim

 ��
Y . But R is

an X-valuation ring of k.X/, so by torsion freeness we must also have !jk.X/ ¤ !0jk.X/, contradicting
our assumption that !jk.X/ D !0jk.X/. �

Proposition 4.11. The map �nrh!�nval is surjective. More generally, Frh! Fval is surjective for any
presheaf F satisfying (Co), (Et) and (TF) from Remark 4.1.

Proof. As both are rh-sheaves, we may work rh-locally. In particular, without loss of generality X is
integral with function field K. Choose ! D .!R/R 2�nval.X/.

We start with an X-valuation ring R �K, i.e., R 2 RZ.X/. The form !R is already defined on some
ring AR of finite type over X. Let z!R be this class. For all R0 in the Zariski-open subset of RZ.X/

defined by AR (i.e., AR �R0), we have !R0 D z!R because �n.R0/ is torsion free and the equality holds
in �n.K/.

As RZ.X/ is quasicompact, we may cover it by finitely many of these and obtain a finite set of
rings Ai � K which are of finite type over X. On each of these we are given a differential form
!Ai 2�

n.Ai / inducing all !R for R 2RZ.X/ containing Ai . The forms !jAi and !Ai in�nval.Spec.Ai //
agree in �nval.K/. By Lemma 4.10 there exists a blowup Wi ! Spec.Ai / such that !Ai jWi D !jWi .
Hence, !jWi is represented by a class !Wi in �nrh.Wi /��

n
val.Wi /.

By Nagata compactification, there is a factorisation

Wi !W i !X;

where the first map is a dense open immersion and the second is proper and birational. Let V be the
closure of Spec.K/ inW1�X � � ��XWn. The canonical morphism V !X is proper and birational. Every
point of V is dominated by a valuation ring of K [EGA II 1961, Proposition 7.1.7]. There is necessarily
at least one of the Ai contained in it, and so the base changes Vi DWi �W i V form an open cover of V .
Let !Vi 2�

n
rh.Vi / be the restriction of !Wi .

We have !Vi D !Vj in �nval.Vi \Vj / (and hence �nrh.Vi \Vj / by Corollary 4.7) because both agree
with the restriction of !. By Zariski-descent, the !Vi glue to a global differential form !V 2 �

n
rh.V /

representing !jV in �nrh.V /��
n
val.V /.

Now let Z �X be the exceptional locus of V !X and let E � V be its preimage. By induction on
the dimension there is a class !Z in �nrh.Z/ mapping to !jZ 2�nval.Z/. We know that !Z and !Y agree
on E because �nrh.E/!�nval.E/ is injective and both represent !jE . By rh-descent this gives a class
!X 2�

n
val.X/ mapping to !. �

Theorem 4.12. The canonical morphisms of presheaves on Schft
k

�nrh!�ncdh!�neh!�nval

are isomorphisms. More generally, these are isomorphisms for any presheaf F satisfying (Co), (Et) and
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(TF) from Remark 4.1. Moreover,
�n.X/D�nval.X/

when S D Spec.k/ for X smooth.

Proof. Corollary 4.7 says that the maps are injective. As the composition is surjective, they are all
isomorphisms. The smooth case is then a consequence of [Huber, Kebekus and Kelly 2017, Theorem 5.11],
which says that �.X/Š�nrh.X/ for smooth X. �

Remark 4.13. This still leaves open whether �neh ! �ndvr is an isomorphism. Weak resolution of
singularities would imply that this is an isomorphism in general; see [Huber, Kebekus and Kelly 2017,
Proposition 5.13].

5. Quasicoherence

The sheaves �nehjX are obviously sheaves of OX -modules. We want to show that they are coherent. The
main step is actually quasicoherence.

5A. Quasicoherence.

Lemma 5.1. LetA be a finite type k-algebra, f 2A not nilpotent, and ! 2�nval.A/ be such that !jAf D 0.
Then f! D 0. Moreover, the map

�nval.A/f !�nval.Af /

is injective.

Note this would follow directly from quasicoherence of �nvaljSpec.A/. We want to prove it directly in
order to show quasicoherence down the line.

Proof. By torsion freeness it suffices to show that f!xD0 for all residue fields �.x/ of points x 2Spec.A/
(Lemma 3.7). It suffices to consider the case f j�.x/ ¤ 0. But then A! �.x/ factors through Af , and the
claim follows from the assumption !jAf D 0.

We now turn to injectivity. Let !=f N be in the kernel of

�nval.A/f !�nval.SpecAf /:

This means that !R=f N D 0 for every R 2 val.Af /. As f is invertible in this ring, this implies !R D 0.
That is, ! satisfies the assumption of the first assertion. Hence f! D 0 in �nval.A/ and this implies
!=f N D 0 in the localization. �

In order to proceed, we need a lemma from algebraic geometry.

Lemma 5.2. Let U �X be an open immersion of integral schemes, and let V ! U be a cdp-morphism
with integral connected components. Then there is a cartesian diagram

V
j
//

��

Y
p
��

U // X

with p a cdp-morphism and j an open immersion.
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Proof. Let V 0 be an irreducible component of V . We factor V 0! U !X as a (dense) open immersion
V 0! Y 0 followed by a proper map. It is easy to see that V 0 D Y 0�X U because the map V 0! U �X Y

0

is both proper and a (dense) open immersion. We define Y as the disjoint union of all Y 0 and X nU . �

Proposition 5.3. Let X be an integral k-scheme of finite type. Then the restriction to the small Zariski
site �nrhjXZar is quasicoherent.

Proof. It is sufficient to show that for every integral ring A and f 2 A, the canonical morphism
�nrh.A/f !�nrh.Af / is an isomorphism. By the last lemma and because �nrhD�

n
val, the map is injective.

To show that it is surjective, it suffices to check that for every

! 2�nrh.Af /

there is N such that f N! lifts to �nrh.A/. We put X D Spec.A/, U D Spec.Af /. There is an rh-cover
fVi ! U gmiD1 such that ! is represented by an algebraic differential form on

`
Vi . The strategy is to

show that, up to multiplication by f , the form ! is actually representable on a cdp-morphism of U, and
then descend it to U. Lemma 5.2 is key.

We can choose the cover in the form

Vi ! V ! U (10)

with � W V ! U a cdp-morphism, V reduced and Vi ! V open immersions. Moreover, we may assume
that V is the disjoint union of its irreducible components and that they are birational over their image in
U (because we will want to apply Lemma 5.2).

We now construct the following cartesian squares whose vertical morphisms are proper envelopes, and
horizontal ones are open immersions:

eW i \ eW j
//

��

eW i

��

// eW
��

Wij
!i�!jD02�n.Wij /

//

��

//

��

eW ij

pij

��

Vi \Vj // Vi
!i 2�n.Vi /

// V

Let !i 2�n.Vi / be the representing form. Since !i came from an element ! 2�nrh.U /, the differences
!i �!j vanish in �nrh.Vi �U Vj / by the exact sequence

0!�nrh.U /!
M

�nrh.Vi /!
M

�nrh.Vi �U Vj /;

and hence vanish in �nrh.Vi �V Vj /D �
n
rh.Vi \ Vj /. Consequently, there is an rh-cover of Vi \ Vj on

which !i �!j vanishes as a section of the presheaf �n. We can assume that this cover is again of the
form (10). Since �n is Zariski separated, we find that there is a cdp-morphism Wij ! Vi \Vj such that
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!i �!j vanishes on Wij . By Lemma 5.2 there is a commutative diagram

Wij
j
//

��

eW ij

pij
��

Vi \Vj // V

with an open immersion j and a proper envelope pij . Let eW DQV
eW ij be the fibre product of all eW ij

over V . Hence eW ! V is a proper envelope which factors through all pij . Let eW i be the preimage of
Vi in eW . Now consider the above big diagram. The differences of the restrictions !i � !j vanish in
�n.eW i \ eWj /, and feW i ! eW g, being the pullback of the Zariski cover fVi ! V g is also a Zariski cover.
Hence, we can lift the restrictions z!i 2�n.eW i / to a section

!eW 2�n.eW /:
We find that ! 2�nrh.U / and !eW 2�n.eW / agree in �nrh.eW / since feW i ! eW g is a Zariski cover, and
they agree on eW i . In other words, at this point, we have shown that !jeW is in the image of �n!�nrh.

Again by Lemma 5.2 there is a cartesian diagram

eW j
//

��

Y

p
��

U // X

with j an open immersion and p a proper envelope. The open subset U in X is by definition the
complement of V.f /, hence the same is true for eW in Y . As �nY is coherent, this implies that there is N
such that f N!eW extends to Y .

Let !Y be an extension of f N!eW to �n.Y /. Let Z D V.f /�X and E its preimage in Y . Consider
the exact sequence

0!�nrh.X/!�nrh.Y /˚�
n
rh.Z/!�nrh.E/:

The class .f!Y ; 0/ maps to f!Y jE . As f D 0 in all of E, this equals zero. Hence there is a class
!0X 2�

n
rh.X/ such that !0X jeW D f NC1!eW in �nrh.eW /. Recall that two paragraphs ago we mentioned

that !jeW D !eW in �nrh.eW /. So in fact, we know that !0X jeW D f NC1!jeW in �nrh.eW /. But eW ! U is a
cdp-morphism, so it follows that !0X jU D f

NC1! in �nrh.U /. �

5B. Coherence.

Theorem 5.4. Let X be of finite type over k. Then �nrhjXZar is coherent.

Proof. We write �nrhjX D �nrhjXZar for briefness. Let i W Xred ! X be the reduction. We have
i�.�

n
rhjXred/ D �nrhjX . Hence we may assume that X is reduced. Let X D X1 [ � � � [ XN be the

decomposition into reduced irreducible components. Let ij W Xj ! X and ijl W Xj \Xl ! X be the
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closed immersions. By rh-descent, we have an exact sequence of sheaves of OX -modules

0!�nrhjX !

NM
jD1

ij�.�
n
rhjXj /!

NM
j;lD1

ijl�.�
n
rhjXj\Xl /:

By induction on the dimension it suffices to consider the irreducible case.
Let X be integral with function field K. Let zX be its normalisation. The map � W zX ! X is an

isomorphism outside some closed proper subset Z �X. Let E be its preimage in zX . From the blowup
sequence we obtain

0!�nrhjX ! ��.�
n
rhj zX /˚ iZ�.�

n
rhjZ/! ��iE�.�

n
rhjE /:

Hence by induction on the dimension, we may assume thatX is normal. We have shown in Proposition 5.3
that the sheaf �nrhjX is quasicoherent in the integral case. Let j W X sm ! X be the inclusion of the
smooth locus with closed complement Z. It is of codimension at least 2. Hence j��nX sm is coherent. By
Theorem 4.12, �nX sm Š�

n
rhjX sm so we have a map �nrhjX ! j��

n
X sm . Its image is coherent because it is a

quasicoherent subsheaf of a coherent sheaf. Its kernel K is also quasicoherent. We claim that it is a subsheaf
of iZ�.�nrhjZ/. It suffices to prove that the canonical composition K.U /!�nrhjX .U /! iZ�.�

n
rhjZ/.U /

is a monomorphism for all open U � X. Replacing X with U, it suffices to consider the case U D X.
Then this morphism is canonically identified with the morphism ker.�nval.X/!�nval.X

sm//!�nval.Z/,
which is injective because �nval.X/!�nval.X

sm/��nval.Z/ is injective (Lemma 3.7). By induction on
the dimension we can assume that iZ��nrhjZ is also coherent, so the kernel K is coherent as well. As a
quasicoherent extension of two coherent sheaves the sheaf �nrhjX is coherent. �

5C. Torsion. We return to the question of torsion forms. As in [Huber, Kebekus and Kelly 2017], we
denote by tor�neh.X/ the submodule of torsion sections, i.e., those vanishing on some dense open subset.
There is an obvious source of torsion classes: Let f W Y ! X be proper birational with centre Z � X
and preimage E � Y . Any ! 2 ker.�neh.Z/!�neh.E// gives rise to a torsion class on X by the blowup
sequence. By [Huber, Kebekus and Kelly 2017, Example 5.15] this kernel can indeed be nonzero. We
have established in Lemma 4.10 that all torsion classes arise in this way.

Proposition 5.5. Let X be of finite type over k.

(1) The presheaf TX W U 7! tor�nrh.U / is a coherent sheaf of OX -modules on XZar.

(2) There is a proper birational morphism f W Y !X such that

TX D ker.�nrhjXZar ! f��
n
rhjYZar/:

Proof. By reductions similar to those in the first paragraph of the proof of Theorem 5.4 it suffices to show
coherence for X integral, and since quasicoherent subsheaves of coherent sheaves are coherent, it suffices
to show quasicoherence for X integral.
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Let X D Spec.A/, U D Spec.Af /. We have to show that TX .U /D TX .X/f . Let

! 2 TX .U /��nrhjXZar.U /D .�
n
rh.X//f :

Then ! is of the form z!=f N with z! 2�nrh.X/. By assumption, ! vanishes at the generic point of U ,
which is equal to the generic point of X. Hence the same is true for z!. This finishes the proof of
coherence.

Any form vanishing on a blowup is torsion, i.e., ker.�nrhjXZar ! f��
n
rhjYZar/ � TX for any proper

birational f W Y !X, and so our job is to find a Y for which this inclusion is surjective. By Theorem 4.12,
�nrh D�

n
val, and so by Lemma 4.10, for any ! 2 TX .X/, there is a proper birational morphism Y!!X

for which ! 2 ker.�nrh.X/!�nrh.Y //.
If X is affine, the O.X/-module TX .X/ is finitely generated. We can find a proper birational Y !X

killing the generators and hence all of TX .X/, and by coherence even all of TX . If X is not affine, let
X D U1[ � � � [Um be an affine cover, and Yi ! Ui proper birational morphisms killing all of TUi . By
Nagata compactification, there is a proper birational morphism Yi !X such that Yi D Ui �X Yi . Let V
be the closure of Spec.k.X// in Y1 �X � � � �X Ym. It is equipped with the open cover fUi �X V ! V g.
Moreover, each Ui �X V !V !X factors through Yi , so TX D

Sm
iD1 ker.�nrhjXZar! f��

n
rhj.Ui�XV /Zar/.

Then by Zariski descent we deduce that TX D ker.�nrhjXZar ! f��
n
rhj.V /Zar/. �

It now becomes an interesting question to understand whether a given X admits such a blowup Y !X

such that there is a point � in the centre over which all residue fields of Y� are inseparable over �.�/.
This does not happen in the smooth case: any blowup of a regular scheme is completely decomposed
(unconditionally) [Huber, Kebekus and Kelly 2017, Proposition 2.12]. In the example in [Huber, Kebekus
and Kelly 2017, Example 3.6] the point � had codimension 1 and Y was the normalisation. It induced a
purely inseparable field extension of k.�/.

One might wonder if assuming X is normal is enough to avoid this pathology. Let us show that it is not.

Example 5.6. Here we give an example of a normal variety X over a perfect field k of positive charac-
teristic p, a point � 2X and a blowup Y !X such that for every point in the fibre Y� ! � the residue
field extension is inseparable.

In particular, for every X-valuation ring R of k.X/ sending its special point to �, the field extension
k.�/�R=m is inseparable.

Our variety is

X D Spec
�
kŒs; t; x; y; z�

zp � sxp � typ

�
;

from [Suslin and Voevodsky 2000b, Example 3.5.10]. Let Y be the blowup of this variety at the
ideal .x; y; z/. The blowup Y admits an open affine covering by affine schemes with rings

k
�
s; t; x

z
; y
z
; z
�

1� s
�
x
z

�p
� t
�y
z

�p ; k
�
s; t; x

y
; y; z

y

��
z
y

�p
� s
�
x
y

�p
� t
;

k
�
s; t; x; y

x
; z
x

��
z
x

�p
� s� t

�y
x

�p ;
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and the intersections of these open affines with the exceptional fibre E are

k
�
s; t; x

z
; y
z

�
1� s

�
x
z

�p
� t
�y
z

�p ; k
�
s; t; x

y
; z
y

��
z
y

�p
� s
�
x
y

�p
� t
;

k
�
s; t; y

x
; z
x

��
z
x

�p
� s� t

�y
x

�p ;
respectively, all lying over the singular locus V.x; y; z/D Spec.kŒs; t �/�X. Our point � is the generic
point � D Spec.k.s; t//. Every point of the fibre E� has residue field an inseparable extension of k.�/:
Consider for example the fibre of the rightmost affine for concreteness (all three fibres are isomorphic up
to an automorphism of k.s; t/). It factors as

Spec
�

k.s; t/
�y
x
; z
x

��
z
x

�p
� s� t

�y
x

�p�! Spec
�
k.s; t/

�y
x

��
! Spec.k.s; t//:

Any residue field k.�/ of a point � of the leftmost affine scheme is a finite field extension of the residue
field k.�/ of a point � 2 A1

k.s;t/
in the middle. This latter k.�/ is generated over k.s; t/ by the image

of y
x

. This finite field extension k.�/=k.�/ is purely inseparable so long as sC t
�y
x

�p is nonzero in k.�/.
If k.�/ D k

�
s; t; y

x

�
, then clearly this is the case. If k.�/ D k.s; t/

�y
x

�
=f
�y
x

�
for some irreducible

polynomial f
�y
x

�
2 k.s; t/

�y
x

�
, then sC t

�y
x

�p is nonzero if and only if
�y
x

�p
D�

s
t

mod f
�y
x

�
. But since�y

x

�p
C
s
t

is irreducible in k.s; t/
�y
x

�
, this would imply f

�y
x

�
D
�y
x

�p
C
s
t
, in which case the subextension

k.�/=k.�/=k.s; t/ is already purely inseparable.
Now the blowup Y !X is birational and proper, and so any X-valuation ring R of k.X/ is uniquely a

Y-valuation ring of k.Y /, and if the special point of R is sent to � , then the lift sends this special point to
some point � 2E� . But any field extension which contains an inseparable field extension is inseparable,
and k.�/!R=m contains k.�/! k.�/, hence, k.�/!R=m is inseparable.

Remark 5.7. Let us also observe that the rightmost open affine contains the point � 0 D V
�y
x

�
of E� with

residue field k.s; t/
�
z
x

�
=
��
z
x

�p
� s
�
Š k.s1=p; t /. In particular, we have produced a blowup Y ! X, a

point � 2X, and a point � 0 2 Y over it for which �1.k.�//!�1.k.� 0// is neither injective nor zero.

5D. The étale case. We recall:

Definition 5.8. Let X 2 Schft
k

. A presheaf F of O-modules on the small étale site Xet is called coherent
if for all X 0 étale over X, the sheaf F jX 0Zar

is a coherent sheaf for the Zariski-topology and, in addition,
for all � WX1!X2 étale, the natural map�

��F jX2;Zar

�
˝��OX2 OX1 ! F jX1;Zar

is an isomorphism.

The left-hand side is nothing but the pullback in the category of quasicoherent sheaves. We reserve the
notation �� for the pullback of abelian sheaves.

Proposition 5.9. For all X 2 Schft
k

, the sheaf �nehjXet is coherent.

Proof. We already know coherence for the Zariski-topology. By replacing X2 by X, it suffices to check
the condition for all étale morphisms X 0!X. Both sides are sheaves for the Zariski-topology; hence it
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suffices to consider the case where X and X 0 are both affine and � WX 0!X is surjective. (Indeed, first
assume X and X 0 affine, then cover the image of X 0 by affines Ui and replace X by Ui and X 0 by the
preimage of Ui .) We fix such a � .

We need to show that
�neh.X/˝O.X/O.X 0/!�neh.X

0/ (11)

is an isomorphism. Note that the �n analogue of this assertion holds.

Step 1: Consider the morphism of presheaves on the category of separated schemes of finite type over X

Y 7!
�
�n.Y /˝O.X/O.X 0/!�n.Y �X X

0/
�
: (12)

We claim that it is an isomorphism. Indeed, both sides are sheaves for the Zariski-topology (the left-hand
side because O.X/ ! O.X 0/ is flat). Hence it suffices to consider the case where Y is affine. Let
Y 0 D Y �X X

0. It is also affine. Then the map (12) identifies as

�n.Y /˝O.X/O.X 0/D�n.Y /˝O.Y /O.Y 0/!�n.Y 0/;

and hence it is an isomorphism.

Step 2: We now sheafify the morphism of presheaves with respect to the eh-topology. As O.X/!O.X 0/
is flat, it commutes with sheafification, and we get an isomorphism of eh-sheaves

�neh˝O.X/O.X 0/! .�n. – �X X 0//eh: (13)

Step 3: We claim that
.�n. – �X X 0//eh.Y /D�

n
eh.Y �X X

0/: (14)

It suffices to show that every eh-cover of Y 0 D Y �X X 0 can be refined by the pullback of an eh-cover
of Y . Let Z ! Y 0 be an eh-cover. The composition Z ! Y 0! Y is also an eh-cover. The pullback
Z �Y Z!Z! Y 0 is the required refinement.

Combining the isomorphisms (13) and (14) in the case Y DX gives the desired isomorphism (11). �

6. Special cases

The cases of forms of degree zero or top degree are easier to handle than the general case. In this section
we study these special cases.

6A. 0-differentials. This section is about the sheafification of the presheaf �0 D O. For expositional
reasons we work over a field. For more general bases, and more general representable presheaves, see
Section 6C.

In contrast to the general case, Oval is torsion free.

Lemma 6.1. For every X 2 Schft
k

, every dense open immersion U � X in Schft
k

induces an inclusion
Oval.X/�Oval.U /.
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Proof. First suppose it is true for irreducible schemes, and let X1; : : : ; Xn be the irreducible components
of X. Let U1; : : : ; Un be their intersections with U. Each Ui is dense in Xi . Let f; g 2Oval.X/ such that
f jU D gjU . Then f jUi D gjUi . By the irreducible case, f jXi D gjXi . By cdh-descent

Oval.X/�Oval.Xi /

and hence f D g.
Now consider X irreducible. Since Oval.X/DOval.Xred/ we can assume X is integral. Consider the

description of Lemma 3.7. If two sections .sx/; .tx/ 2Oval.X/ are equal on a dense open, then s� D t�
where � is the generic point of X. Consequently, for any valuation ring R of the form �! Spec.R/!X,
the lifts sSpec.R/; tSpec.R/ are also equal, as well as their images in R=m, and from there we deduce that
sx D tx where x is the image of Spec.R=m/! X. But for every point x 2 X there is a valuation ring
Rx � k.X/ such that the special point of Spec.R/ maps to x [EGA II 1961, Proposition 7.1.7]. �

Recall the notion of the seminormalisation of a variety (Definition 2.3).

Proposition 6.2. Let Y 2 Schft
k

. Then the canonical morphism

Oval.Y /ŠO.Y sn/

is an isomorphism. The same is true for Orh, Ocdh and Oeh in place of Oval.

Remark 6.3. The proof below works for a general noetherian base scheme S . We (the authors) do not
know if the seminormalisation Asn is always noetherian in this setting, but the definition of Oval.A

sn/ is,
clearly, still valid, and the careful reader will note that the proof below still works, regardless.

Proof. Both Oval.–/ and O..–/sn/ are invariant under .–/red, and are Zariski sheaves, so it suffices to con-
sider the case where Y is reduced and affine. Let Y D Spec.A/. As Spec.Asn/! Spec.A/ is a completely
decomposed homeomorphism, val.Asn/! val.A/ is an equivalence of categories, so Oval.A/!Oval.A

sn/

is an isomorphism. Hence, it suffices to show that if A is a seminormal ring, then O.A/DOval.A/. Define
Aval DOval.Spec.A//. By Lemma 2.6(3) it suffices to show that A! Aval is subintegral.

First we show that it is integral. By the argument in Lemma 6.1, or by its statement and the comparison
of Theorem 4.12, both of the canonical morphisms A! Aval!

Q
p minimalAp is an embedding into a

product of fields [Stacks project, Tag 00EW]. Since Spec.A/ is a noetherian topological space, there
are finitely many of them. Now by the definition of Aval, the image of Aval in each Ap is contained in
any valuation ring of Ap containing the image of A. Since the normalisation is the intersection of these
valuation rings [Stacks project, Tag 090P], it follows that the extension A� Aval is integral.

To show that Spec.Aval/! Spec.A/ is a completely decomposed homeomorphism, it suffices to show
that for all fields � which are residue fields of A or Aval,

homk.Aval; �/! homk.A; �/ (15)
is an isomorphism.

Surjectivity: We construct a section of the map of sets (15). For every morphism � W A! � in val.A/
to a residue field � of A, there is a canonical extension � W A �

�! Aval
��
��! � making the triangle commute:
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just take �� W lim
 ���0WA!R02val.A/R

0! � to be the projection to the �-th component of the limit. For �
a general field, take �� to be the map associated to the residue field corresponding to �.

Injectivity: We show that the section � 7! �� we have just constructed is surjective. That is, for an
arbitrary residue field  W Aval ! �, we claim that  D �A!Aval!� . If  ı � is the canonical map
A! Ap to one of the fractions fields of an irreducible component of Spec.A/, then there is a unique
lift because A � Aval �

Q
p minimalAp, as we observed above. For a general residue field of Aval, there

is an Aval-valuation ring R � Ap of the fraction field Ap of any irreducible component containing
Spec.�/ 2 Spec.Aval/ whose special point maps to Spec.�/ [EGA II 1961, Proposition 7.1.7] (for the
nonnoetherian version, cf. [Stacks project, Tag 00IA]). So we have the commutative diagram

R=m Roo // Ap

�

OO

Aval
 

oo

OO

As we have just discussed, the map Aval!Ap must be the unique extension �A!Aval!Ap of the canonical
A!Ap. As R!Ap is injective, the map Aval!R must also be the canonical �A!Aval!R, and therefore
Aval!R=m is �A!Aval!R!R=m, and by injectivity of �!R=m, we conclude  D �A!Aval!� .

The claim about Orh;Ocdh;Oeh follows from Theorem 4.12. �

Recall the sdh-topology introduced in [Huber, Kebekus and Kelly 2017, Section 6.2]. It is generated
by étale covers and those proper surjective maps that are separably decomposed, i.e., any point has a
preimage such that the residue field extension is finite and separable. By de Jong’s theorem on alterations
[1996], every X 2 Schft

k
is sdh-locally smooth. However, sdh-descent fails for differential forms [Huber,

Kebekus and Kelly 2017, Proposition 6.6]. The situation is better in degree zero.

Proposition 6.4. Let k be perfect. Then Oval DOsdh.

Proof. The sdh-topology is stronger than the eh-topology, and we know Oval D Oeh (Theorem 4.12).
Hence, we have a canonical morphism Oval! Osdh, and an isomorphism .Oval/sdh Š Osdh. If we can
show that Oval is already an sdh sheaf, we are done. The topology is generated by proper separably
decomposed morphisms and étale covers. We already know that Oval is an étale sheaf. Hence it suffices
to show that if Y !X is a proper sdh-cover, which generically is finite and separable, then

0!Oval.X/!Oval.Y /!Oval.Y �X Y /

is exact.
Recall that since O is torsion free on valuation rings, Oval.X/!

Q
x2X �.x/ is injective (Lemma 3.7).

For y 2 Y with image x 2X, the induced map �.x/! �.y/ is injective as a map of fields. As Y !X is
surjective, this implies that Oval.X/!Oval.Y / is injective.

Let f 2Oval.Y / be in the kernel of the second map. We want to define an element g 2Oval.X/ and
start with the component gx 2 �.x/ for x 2X. Let y 2 Y be a preimage of X such that the residue field
extension �.y/=�.x/ is finite and separable. Let �=�.x/ be a finite Galois extension containing �.y/. We
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have a canonical map l W Spec.�/! Y , and any �.x/-automorphism � of � gives us a second map l ı � ,
and this pair of maps define some .l; l ı �/ W Spec.�/! Y �X Y . By the assumption that f is a cocycle,
fl D .�

�
1 f /.l;l�/ D .�

�
2 f /.l;l�/ D fl� in �. That is, fl 2 � is Gal.�=�.x//-invariant, and therefore,

actually lies in �.x/� �. We define g�.x/ WD f�.
Note that another consequence of the cocycle condition is that g�.x/ is independent of the choice of y,

even without assuming separability or finiteness. For any other y0 over x, we can choose an extension
K=�.x/ containing both �.y/ and �.y0/, leading to a map Spec.K/! Y �X Y , to which we can apply
the cocycle condition to find that fy D fy0 in K via the chosen embeddings, and therefore they also agree
in �.x/.

It remains to show that the tuple .g�.x//x2X defines a section of Oval.X/. We continue with the criterion
of Lemma 3.7. Let R � �.x/ be a valuation ring over X. Let y 2 Y again be a preimage of x. There is a
valuation ring S � �.y/ such that RDS\�.x/ [Bourbaki 1964, Chapitre VI, §3.3, Proposition 5]. By the
valuative criterion for properness, S is a Y-valuation on �.y/. As f 2Oval.Y /, the element g�.x/D f�.y/
is in S � �.y/, but it is also in �.x/, so g�.x/ is in R � �.x/. Therefore, let us write it as gR. Let x0
be the image of Spec.R=mR/!X , and y0 the image of Spec.S=mS /! Y /. To finish, we must show
that gR agrees with gx0 in R=m. But gRjR=mR jS=mS D gRjS jS=mS D fS jS=mS D fS=mS D fy0 jS=mS D
gx0 jy0 jS=mS D gx0 jR=mR jS=mS and R=mR! S=mS is injective, so gRjR=mR D gx0 jR=mR . �

Remark 6.5. Let us point out where the above proof breaks for �n. The argument for injectivity is
actually valid because we can choose the preimage y of x to be separable. The construction of each
g�.x/ is fine, as well as independence of the choice of y used in the construction. However, for y over x
which are not separable, we cannot necessarily check that gxjy D fy . Choosing y=x separable in the last
paragraph, we can show that each g�.x/ lifts to any X-valuation ring of �.x/, but we cannot ensure that
R=mR! S=mS is separable, nor its image x0! y0, so we cannot check that we have a well-defined
section.

In fact, not being able to control this kind of ramification is precisely why the sdh-topology is not
suitable for working with differential forms; cf. [Huber, Kebekus and Kelly 2017, Example 6.5].

On the other hand, Proposition 6.4 is valid for any representable presheaf hY for any scheme Y .
Moreover, using the same proof, we can show that �nval.X/D�

n
sdh.X/ whenever dimX � n.

Proposition 6.6. Osdh DOdvr .

Proof. The same arguments as in the last proof show that Odvr has sdh-descent. (In the above notation: if
R is a discrete valuation ring, then S can also be chosen as a discrete valuation ring.) As pointed out
before, any X 2 Schft

k
is smooth locally for the sdh-topology. Hence it suffices to compare the values on

smooth varieties. In this case we have on the one hand Osdh.X/DOval.X/DO.X/, on the other hand
Odvr.X/DO.X/ by [Huber, Kebekus and Kelly 2017, Remark 4.3.3]. �

Remark 6.7. Hence we have

Orh DOcdh DOeh DOval DOdvr DOsdh:



Differential forms in positive characteristic, II 683

However, in positive characteristic Oh ¤Oval because Oval does not have descent for Frobenius covers.
See Proposition 6.2 and Remark 6.15(1).

The following property is well-known for the ordinary structure sheaf under the assumption that Y is
normal. It will be useful in connection with cohomological descent questions [Huber and Kelly � 2018].

Proposition 6.8. Let Y 0! Y be a cdp-morphism in Schft
k

with geometrically connected fibres. Then

Oeh.Y /!Oeh.Y
0/

is an isomorphism.

Proof. We use induction on the dimension of Y . Note the hypotheses are preserved by all base changes
along Y . Without loss of generality, all schemes are assumed to be reduced. If dimY D�1 (i.e., Y D¿),
then Y 0 D ¿ and the proposition follows from Oeh.¿/ D 0. In dimension � 0, let � W zY ! Y be the
normalisation of Y . Let Z � Y be the locus where � fails to be an isomorphism and E D ��1Z the
preimage. Let zY 0, Z0 and E 0 be the base changes to Y 0. We have a commutative diagram of blowup
sequences

0 // Oeh.Y
0/ // Oeh. zY

0/˚Oeh.Z
0/ // Oeh.E

0/

0 // Oeh.Y / //

OO

Oeh. zY /˚Oeh.Z/ //

OO

Oeh.E/

OO

By the induction hypothesis, it now suffices to prove Oeh. zY /ŠOeh. zY
0/. Since Oeh.. – /sn/DO.. – /sn/

by Proposition 6.2, so it suffices, in fact, to show that O. zY 0sn/!O. zY / is an isomorphism.
Since zY 0sn ! zY 0 is a proper homeomorphism, we are dealing with a proper surjective morphism
zY 0sn! zY to a normal scheme. In this situation, Stein factorisation [EGA III1 1961, Théorème 4.3.1]
gives us a factorisation zY 0sn!W ! zY such that O. zY 0sn/ŠO.W / and such that W ! zY is finite. Since
zY 0sn! zY has connected fibres, so does W ! zY [EGA III1 1961, Corollaire 4.3.3]. We also deduce that
because zY 0sn is reduced so is W, and because zY 0 is completely decomposed, so is zY 0sn! zY and therefore
W ! zY also. In particular, since W ! zY is completely decomposed and W reduced, the fibre over the
generic point of zY must be an isomorphism. Replacing W with its normalisation, eW ! zY , we have a
finite birational morphism between normal schemes. This can only be an isomorphism, so W ! zY was
an isomorphism, and O.W /DO. zY /.

To summarise, Oeh. zY
0/ŠOeh. zY

0sn/ŠO. zY 0sn/ŠO.W /ŠO. zY /. �

6B. Top degree differentials. Recall the notion of a birational morphism of schemes in the nonreduced
case from Section 2A.

Proposition 6.9. Let X=k 2 Schft
k

be of dimension at most d .

(1) �dcdh.X/ is a birational invariant, i.e., it remains unchanged under proper surjective birational
morphisms.
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(2) We have
�dcdh.X/D lim

��!
X 0!X

�d .X 0/;

where the colimit is over proper surjective birational morphisms X 0!X.

(3) Elements of �dcdh.X/D�
d
val.X/ are determined by their value on the total ring of fractions Q.X/,

and the integrality condition only needs to be tested on valuations of the function fields. In particular,
it is torsion free.

(4) More precisely, if X is irreducible of dimension d , then by Lemma 3.7,

�dval.X/ D
\

Spec.k.X//!Spec.R/!X2rval.X/

�d .R/: (16)

In general, if X DX1[ � � � [XN is the decomposition into irreducible component, then

�dval.X/D

NM
iD1

�dval.Xi / and �dval.X/D�
d
val.
zX/:

Proof. Note that �dcdh D�
d
val vanishes on schemes of dimension less that d . Hence the first statement is

immediate from the sequence for abstract blowup squares.
The third statement follows from Lemma 3.7, the fact that �n.K/D 0 for n > trdeg.K=k/ and the

valuative criterion for properness. The explicit formula is immediate from this.
For the second statement consider

X 7! e�d .X/ WD lim
��!

X 0!X

�d .X 0/:

By definition this is a birational invariant. We claim that e�d is torsion free. Note that X 0 can always
be refined by the disjoint union of its irreducible components with their reduced structure. Let ! be a
torsion element of e�d .X/. It is represented by a differential form on some X1!X. After restriction to
some further X2!X1 it vanishes on a dense open subset. Then there is a proper birational morphism
X3!X2 such that !jX3 D 0. This was shown in [Huber, Kebekus and Kelly 2017, Theorem A.3] (for a
recap see Theorem 4.6 combined with Theorem 2.20). Hence ! D 0 in the direct limit.

By torsion freeness, we have e�d .X/D 0 if the dimension of X is less than d . Hence e�d is a presheaf
on the category of k-schemes of dimension at most d . It is a Zariski sheaf because �d is. It has descent
for abstract blowup squares by birational invariance and vanishing in smaller dimensions. Hence it is an
rh-sheaf. By the universal property, there is a natural map

�drh!
e�d :

The map e�d .X/D lim
��!

X 0!X

�d .X 0/! lim
��!

X 0!X

�drh.X
0/D�drh.X/

induces a natural map in the other direction. We check that they are inverse to each other. Both sheaves
are torsion free; hence it suffices to consider generic points where it is true. �
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Remark 6.10. Note that the description in (16) can also be interpreted as the global sections on the
Riemann–Zariski space �.RZ.X/;�d

RZ.X/=k
/.

In the smooth case, this gives a formula involving only ordinary differential forms.

Corollary 6.11. Let X be a smooth k-scheme of dimension d . Then

�d .X/D lim
��!

X 0!X

�d .X 0/;

where the colimit is over proper birational morphisms X 0!X.

Proposition 6.12. On the category of k-schemes of dimension at most d , we have

�dval D�
d
eh D�

d
sdh D�

d
dvr:

Proof. The first isomorphism is Theorem 4.12. For the other two, the same proofs as for Proposition 6.4
and Proposition 6.6 work. �

6C. Representable sheaves. Note that �0 DOD hom. – ;A1/. In this section we extend our results to
all representable sheaves over a general noetherian base S . We use the following notation for representable
presheaves on SchftS :

hY . – /D homSchS . – ; Y /; Y 2 SchftS :

Note that this presheaf satisfies the properties of Remark 4.1. Notice also that the hY are torsion free in
the sense of Definition 2.22 — this is exactly the valuative criterion for separatedness.

Lemma 6.13. Suppose that the noetherian base scheme S is Nagata. Let X 0!X be a finite completely
decomposed surjective morphism in SchS , and suppose that X 0 is seminormal. Then the coequalisers

coeq.X 0 �X X 0�X 0/D C; coeq..X 0 �X X 0/sn�X 0/DD

exist in SchS , we have D D X sn and the canonical morphisms D ! C ! X are finite completely
decomposed homeomorphisms.

Proof. Using the description [Ferrand 2003, Scolie 4.3], one easily constructs the coequaliser in the
category of locally ringed spaces by taking the coequaliser in the category of sets, equipping it with the
quotient topology, and the equaliser of the direct images of the structure sheaves. Using this description,
one readily deduces from X 0 ! X being finite that D ! C ! X are homeomorphisms. Note that
X sn!X is also a homeomorphism. Now since X 0!X is an rh-cover, it follows from Proposition 6.2
and Remark 6.3 that O.X sn/ D eq.O.X 0/� O..X 0�XX 0/sn/. The same holds for any open U � X.
That is, the canonical morphism D! X sn of locally ringed spaces is an isomorphism on topological
spaces and structure sheaves. In other words, it is an isomorphism. Finally, note that we have a
canonical inclusion of sheaves OX � OC � OX sn . For any open affine U � X of X, it follows that
Spec.OX sn.U //! Spec.OC .U //! Spec.OX .U // are homeomorphisms on topological spaces. Hence,
C is a scheme. �
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Proposition 6.14. Suppose that the noetherian base scheme S is Nagata. Then for every X; Y 2 SchftS
the canonical morphisms

hYrh.X/D h
Y .X sn/ (17)

are isomorphisms. The natural maps

hYrh! hYcdh! hYeh! hYsdh! hYval (18)

are isomorphisms of presheaves on SchftS .

Proof. We claim that hYred is rh-separated, where

hYred. – /D hY .. – /red/:

Let f; g 2 hYred.X/ with f D g in hYrh.X/. In particular, f� D g� at all generic points of X. But as Xred

is reduced and Y ! S is separated, this implies f D g. Since hYred is a Zariski sheaf, in light of the
factorisation of Remark 2.2(2), we have

hYrh.X/D h
Y
cdp.X/

when X is reduced (see [Kelly 2017, Proposition 2.1.16]), and hence, in general, as both hYrh and hYcdp are
unchanged by reducing the structure sheaf.

By cdp-separatedness of hYred we have

hYcdp.X/D lim
��!
cdp

LH 0.X 0=X; hYred/; (19)

where the colimit is over all cdp-covers p WX 0!X. We claim that

lim
��!

comp. dec. homeo.

LH 0.X 0=X; hYred/! lim
��!
cdp

LH 0.X 0=X; hYred/ (20)

is an isomorphism, where the first colimit is over completely decomposed homeomorphisms. Let
p W X 0! X be a cdp-cover. For such a cover, define X 00 D Specp�OX 0 . Since q W X 0! X 00 is proper,
the topological space of X 00 is the quotient of the topological space X 0 via this morphism. Hence, any
morphism f 0 2 eq.hYred.X

0/� hYred.X
0�Y X

0// factors through X 00 as a morphism of topological spaces.
But we have q�OX 0DOX 00 by construction, and therefore f comes from some f 002hYred.X

00/. Then, since
.X 0�XX

0/red! .X 00�XX
00/red is dominant with reduced source, we actually have f 00 2 LH 0.X 00=X; hYred/.

Replacing X 00 by .X 00/sn (this is where we use the assumption that S is Nagata), we are in the situation
of Lemma 6.13, and find that f 00j.X 00/sn comes from some g 2 hYred.D/ for some completely decomposed
homeomorphism D!X. As .D�XD/red DDred, we have g 2 LH 0.D=X; hYred/, so we have shown that
(20) is surjective. It is clearly injective, as any refinement X 00!X 0!X of a completely decomposed
homeomorphism by a cdp-morphism is dominant. Hence, (20) is an isomorphism.

Finally, it follows from Lemma 2.6(3) that X sn!X is an initial object in the category of completely
decomposed homeomorphisms to X. So

hYcdp.X/ D lim
��!

comp. dec. homeo.

LH 0.X 0=X; hYred/D
LH 0.X sn=X; hYred/D h

Y .X sn/:
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The isomorphisms (18), except for hYsdh, are Theorem 4.12. Injectivity of hYsdh! hYval has the same
proof as injectivity of hYeh! hYval; see the proof of Corollary 4.7. �

Remark 6.15. (1) This is analogous to the comparison hYh .X/D h
Y .X sn/ in characteristic zero; see

[Huber and Jörder 2014, Proposition 4.5; Voevodsky 1996, Section 3.2].

(2) In fact, in general we have hYh .X/D h
Y .Xwn/, where Y wn is the absolute weak normalisation [Rydh

2010, Definition B.1]. For noetherian reduced schemes in pure positive characteristic, Y wn is the
perfect closure of Y in

Qn
iD1K

a
i , the product of the algebraic closures of the function fields of its

irreducible components. This holds much more generally: it is true for any algebraic space Y locally
of finite presentation [Rydh 2010, Theorem 8.16].

In particular, the categories of representable rh-, cdh-, and eh-sheaves on SchftS agree.

Corollary 6.16 (cf. [Voevodsky 1996, Theorem 3.2.9]). Suppose the noetherian scheme S is Nagata.
The category of representable rh-sheaves on SchftS is a localisation of the category SchftS with respect to
completely decomposed homeomorphisms. In other words, it is obtained by formally inverting morphisms
of the form Xred!X, then formally inverting subintegral extensions.

Proof. Certainly, the functor X 7! hXrh factors through the localisation functor . – /red W Sch
ft
S ! .SchftS /red.

Now, it is straightforward to check that the class S of subintegral extensions of reduced schemes are a
multiplicative system:

(1) S is closed under composition.

(2) For every t WZ! Y in S and g WX ! Y in .SchftS /red there is an s WW !X in S and f WW !Z

in .SchftS /red with gs D tf .

(3) If f; g WX� Y are parallel morphisms in .SchftS /red, then the following are equivalent:

(a) sf D sg for some s 2 S with source Y .
(b) f t D gt for some t 2 S with target X.

(In fact, the latter two conditions are equivalent to f D g in this case.)
Since S is a multiplicative system, the hom sets in the localisation S�1.SchftS /red are calculated by the

formula
homS�1.SchftS /red

.X; Y /D lim
��!

X 0!X2S
hom.X 0; Y /D hom.X sn; Y /I

see [Gabriel and Zisman 1967; Weibel 1994, Theorem 10.3.7]. But, by Proposition 6.14, this is equal to
homShvrh.Sch

ft
S /
.hXrh ; h

Y
rh/. �

Corollary 6.17 (cf. [Voevodsky 1996, Theorem 3.2.10]). Suppose our noetherian base scheme S is
Nagata. Let Shvrep

rh .Sch
ft
S / � Shvrh.Sch

ft
S / denote the full subcategory of representable rh-sheaves. The

Yoneda functor h�rh W Sch
ft
S ! Shv

rep
rh .Sch

ft
S / admits a left adjoint. The counit of the adjunction is the

seminormalisation X sn!X. In particular, for any schemes X; Y 2 SchftS with X seminormal, one has

hom.hXrh ; h
Y
rh/D homSchftS

.X; Y /:
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Proof. We have homShvrh.h
X
rh ; h

Y
rh/D h

Y
rh.X/D h

Y .X sn/D hom.X sn; Y /. �

7. Future directions

7A. Relation to Berkovich spaces. Berkovich [1990] introduced a generalisation of rigid geometry in
terms of seminorms. The sheaves �n

val�1
seem to be connected to Berkovich spaces. We review a very

small part of the theory.
Recall that a multiplicative nonarchimedean norm on a fieldK is a group homomorphism j�j WK�!R>0

(the latter equipped with multiplication) such that jf Cgj �max.jf j; jgj/. This is usually extended to a
map of sets j � j WK! R�0 by setting j0j D 0.

Key Lemma 7.1. The set of multiplicative nonarchimedean norms on a field K is the same as the set
of pairs .R; j � j/ where R is a valuation ring of K, and j � j W K�=R� ! R>0 is an injective group
homomorphism. Under this bijection, the ring R corresponds to j � j�1Œ0; 1�. Since R>0 has no convex
subgroups, such valuation rings R necessarily have rank 1 (or rank 0 if RDK).

Proof. Obvious. �

Let K be a field equipped with a multiplicative nonarchimedean norm k � k W K�! R>0. If X is a
K-variety, the Berkovich space X an of X, as a set, consists of pairs .x; j � j/ where x is a point of X, and
j � j W �.x/! R>0 is a multiplicative nonarchimedean norm extending k � k. This set is equipped with a
structure of locally ringed space such that the projection � W X an! X I .x; j � j/ 7! x is a morphism of
locally ringed spaces.

On the other hand, recall that Lemma 3.7 described �nval.X/ as(
.sx/ 2

Y
x2X

�n.x/

ˇ̌̌̌
for every k-valuation ring R � k.x/ of rank � 1 we have

sx 2�
n.R/ and sxjR=m D sy jR=m where y D Image.Spec.R=m//

)
: (21)

In particular, every section s 2�nval.X/ gives a function X an!
`
.x;j�j/�

n.H .x// such that the image
of .x; j � j/ lands in the corresponding component. Here, H .x/ is the completion b�.x/ of the normed
field �.x/. Similarly, we could apply �n to the structure sheaf of the locally ringed space X an, and obtain
a ring morphism �n

X an=K
.X an/!

`
.x;j�j/�

n.H .x//.

Question 7.2. Is the image of one of

�nX an=K.X
an/!

a
.x;j�j/

�n.H .x// and �nval.X/!
a
.x;j�j/

�n.H .x//

contained in the image of the other? Does �nval.X/D�
n
cdh.X/ have an intrinsic description in terms of

analytic spaces?

7B. F -singularities and reflexive differentials. Recall that reflexive differentials are defined as the
double dual �Œn�X D .�

n
X /
��. One of the results of [Huber and Jörder 2014] is that on a klt base space X,
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cdh-differentials recover reflexive differential forms:

�
Œn�
X .X/D�ncdh.X/:

One can ask when such a formula is possible in positive characteristic. For example, what is an appropriate
replacement for the klt base space hypothesis?

There is an active area of research in positive characteristic birational geometry studying singularities
defined via the Frobenius which are analogues of singularities arising in the minimal model program.
These former are called F -singularities; log terminal, log canonical, rational and du Bois correspond to
F -regular, F -pure /F -split, F -rational and F -injective, respectively; see [Schwede 2010, Remark 17.11].
Under this dictionary, Kawamata log terminal (i.e., klt) corresponds to strongly F -regular [Schwede 2010,
Corollary 17.10].

Consequently, we arrive at the following question.

Question 7.3 (Blickle). If a normal scheme X is strongly F -regular, do we have �Œn�X .X/Š�ncdh.X/?

In the special case nD dX D dimX, we have

�
dX
cdh.X/D�

dX
val .X/D lim

 ��
R2val.X/

�dX .R/D lim
 ��

R2val.X/;R�k.X/

�dX .R/D�
dX
RZ.X/

.RZ.X//;

and so the question becomes:

Question 7.4. If a normal scheme X of dimension dX is strongly F -regular, do we have �ŒdX �X .X/Š

lim
��!X 0!X

�
dX
X 0 .X

0/? Here the colimit is over proper birational morphisms X 0!X.

Remark 7.5. Under the assumption of resolution of singularities, Question 7.4 is true: being strongly F -
regular implies being pseudorational, which means (by definition) that for any proper birational morphism
� W X 0! X the direct image ��!X 0 of the canonical dualizing sheaf !X 0 of X 0 is !X , the canonical
dualizing sheaf of X. If X 0 is smooth over the base, we have !X 0 D�

dX
X=k

. On the other hand, we also

have �ŒdX �X D !X . So if we restrict the colimit to those X 0 which are smooth, we have

�
ŒdX �
X D !X D lim

��!
X 0!X
X 0smooth

!X 0.X
0/D lim

��!
X 0!X
X 0smooth

�
dX
X 0 .X

0/:

Under the assumption of resolution of singularities, the colimit over X 0 smooth is the same as the colimit
over all X 0.

We remark that an alternative description of reflexive differentials when X is klt of characteristic zero
is given in [Greb et al. 2011] by �Œp�X Š ���

p
X 0 , where � W X 0! X is a log resolution, and that this

implies an isomorphism �
ŒdX �
X .X/Š�

dX
val .X/ (in characteristic zero), where dX D dimX. That is, the

characteristic zero version of Question 7.3 is true.
Let us list some facts about strongly F -regular schemes that allow us to replace the F -regular hypothesis

in Question 7.3 with an equivalent more explicit hypothesis, which may help develop a strategy for a
proof.
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To begin with, a ring R is strongly F -regular if and only if its test ideal is equal to R [Schwede 2010,
Proposition 16.9]. This implies that R is Cohen–Macaulay, and in particular, that the sheaf !R is a
dualising object in the derived category.

As for test ideals, it is shown in [Blickle et al. 2015] that in positive characteristic, the test ideal of
a normal variety X over a perfect field can be defined as the intersection of the images of certain trace
maps, with the intersection taken over all generically finite proper separable maps � W Y ! X with Y
regular. Here, the trace map comes from the trace morphism �Š�

Š!�X ! !�X . Moreover, there exists a
Y !X in the indexing set whose image agrees with this intersection.

So in the affine case, with our replacement hypothesis which is equivalent to “strongly F -regular”,
Question 7.3 becomes:

Question 7.6. Let X be a normal affine variety over a perfect field of positive characteristic, with Q-
Cartier canonical divisor. Suppose that for every generically finite proper separable morphism � W Y !X

with regular source, the trace morphism

��OY .dKY ���KXe/
trace
���!OX :

is surjective; cf. [Blickle et al. 2015, Main Theorem]. Let � W Xreg! X be the inclusion of the regular
locus. Is the canonical morphism

�nval.X/!�nval.Xreg/

an isomorphism?

In this formulation, we have used that for any normal scheme X with regular locus � WXreg!X one
has �Œn�X D ���

n
Xreg

. Since we know that �n D�nval on regular schemes, we obtain the description

�
Œn�
X .X/D .���

n
Xreg
/.X/D�nXreg

.Xreg/D�
n
val.Xreg/:
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Nilpotence order growth of
recursion operators in characteristic p

Anna Medvedovsky

We prove that the killing rate of certain degree-lowering “recursion operators” on a polynomial algebra
over a finite field grows slower than linearly in the degree of the polynomial attacked. We also explain the
motivating application: obtaining a lower bound for the Krull dimension of a local component of a big
mod p Hecke algebra in the genus-zero case. We sketch the application for p D 2 and p D 3 in level one.
The case p D 2 was first established in by Nicolas and Serre in 2012 using different methods.
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1. Introduction

The main goal of this document is to prove the following nilpotence growth theorem, about the killing
rate of a recursion operator on a polynomial algebra over a finite field under repeated application:

Theorem A (nilpotence growth theorem; see also Theorem 1). Let F be a finite field of characteristic p,
and suppose that T W FŒy�! FŒy� is a degree-lowering F-linear operator satisfying the following condition:

The sequence fT .yn/gn of polynomials in FŒy� satisfies a linear recursion over FŒy� whose com-
panion polynomial X dCa1X d�1C� � �Cad 2FŒy�ŒX � has both total degree d and y-degree d ..i/

Then there exists a constant ˛ < 1 so that the minimum power of T that kills yn is O.n˛/.

MSC2010: primary 11T55; secondary 11B85, 11F03, 11F33.
Keywords: linear recurrences in characteristic p, modular forms modulo p, congruences between modular forms, mod p Hecke

algebras, p-regular sequences, base representation of numbers.
.i/The companion polynomial of a linear recurrence sn D a1sn�1C� � �Cad sn�d satisfied by a sequence fsngn for all n� d

is X d � a1X d�1 � � � � � ad . See Section 2D.
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To prove this theorem, we reduce to the case where the companion polynomial of the recursion has
an “empty middle” in its degree-d homogeneous part: that is, when for some a 2 F it has the form
X d C ayd C .terms of total degree< d/. Then we prove this empty-middle case (see Theorem 4 below)
by constructing a function c W FŒy�!N[f�1g that grows like .degf /˛ and whose value is lowered by
every application of T . In the special case where d is a power of p, the function c takes yn to the integer
obtained by writing n in base d and then reading the expansion in some smaller base, so that the sequence
fc.yn/gn is p-regular in the sense of Allouche and Shallit [1992]. The proof that c.T .yn// < c.yn/, by
strong induction, uses higher-order recurrences depending on n, so that n is compared to numbers whose
base-d expansion is not too different.

It is the author’s hope that ideas from p-automata theory can eventually be used to sharpen and
generalize the nilpotence growth theorem.

Motivating application of the nilpotence growth theorem. The motivating application for the nilpotence
growth theorem (Theorem A above) is the nilpotence method for establishing lower bounds on dimensions
of local components of Hecke algebras acting on mod p modular forms of tame level N . These Hecke
algebra components were first studied by Jochnowitz [1982] in the 1970s, but the first full structure
theorem did not appear until over thirty years later. In 2012 Nicolas and Serre used recurrences satisfied by
Hecke operators (see (5-1)) to describe the Hecke action on modular forms modulo 2 completely explicitly
[Nicolas and Serre 2012a], leading to a Hecke algebra structure result for p D 2 and N D 1 [Nicolas and
Serre 2012b]. Unfortunately their explicit formulas appear not to generalize beyond p D 2. The structure
of mod p Hecke algebras for p� 5 was subsequently established by very different techniques by Bellaïche
and Khare [2015] for N D 1 and later generalized by Deo [2017] to all N . The Bellaïche–Khare method
deduces information about mod p Hecke algebra components from corresponding characteristic-zero
Hecke algebra components, which are known to be big by the Gouvêa–Mazur “infinite fern” construction
([Gouvêa and Mazur 1998]; see also [Emerton 2011, Corollary 2.28]). The nilpotence method is yet a
third technique, coming out of an idea of Bellaïche for tackling the case p D 3 and N D 1 as outlined in
[Bellaïche and Khare 2015, Appendix], and implemented and developed in level one for pD 2; 3; 5; 7; 13

in the present author’s Ph.D. dissertation [Medvedovsky 2015]. Like the Nicolas–Serre approach, the
nilpotence method stays entirely in characteristic p and makes use of Hecke recurrences; but instead of
explicit Hecke action formulas, the nilpotence growth theorem now plays the crucial dimension-bounding
role. See Section 5 below for a taste of this method for p D 2; 3, which completes the determination
of the structure of the Hecke algebra for p D 3 begun in [Bellaïche and Khare 2015, Appendix] and
recovers the Nicolas–Serre result for p D 2. In fact, the nilpotence method via the nilpotence growth
theorem in its current form gives lower bounds on dimensions of mod p Hecke algebras of level N so
long as the genus of the modular curve X0.Np/ is zero; see [Medvedovsky 2015] and the forthcoming
[Medvedovsky � 2018] for details.

Structure of this document. After a few preliminary definitions in Section 2, we state and discuss a more
general version of the nilpotence growth theorem (NGT); see Theorem 1 in Section 3. In Section 4, we
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prove a toy version of the NGT (Theorem 2). In Section 5, we use the toy version of NGT to prove
that the mod p level-one Hecke algebra for p D 2; 3 has the form Fp ŒŒx;y��. This section illustrates the
motivating application of the nilpotence growth theorem and is not required for the rest of the document.
This is a reasonable stopping point for a first reading.

In Section 6 the proof of the NGT begins in earnest. There is a short overview of the structure of the
proof in Section 6A. In Section 6B, we reduce to working over a finite field. In Section 6C, we reduce to
the empty-middle NGT (Theorem 4). In Section 6D, we give the inductive argument that reduces the
proof of the empty-middle NGT to finding a nilgrowth witness function satisfying certain properties. The
next three sections are combinatorial in nature, as we construct a nilgrowth witness. In Section 7, we
discuss base-b representation of numbers and introduce the content function. In Section 8, we prove a
number of technical inequalities about the content function. In Section 9 we finally construct a nilgrowth
witness out of the content function, finishing the proof of the empty-middle NGT, and hence of the NGT
in full. Finally in Section 10, we state a more precise version of the toy NGT and speculate on the
optimality of some bounds.

2. Preliminaries

This section contains a brief review of a few unconnected algebraic notions. All rings and algebras are
assumed to be commutative, with unity. We use the convention that the set of natural numbers starts with
zero: ND f0; 1; 2; : : :g. Below, R is always a ring.

2A. Structure of finite rings. If R is finite, then R is artinian, hence a finite product of finite local
rings. If R is a finite local ring with maximal ideal m, then the residue field R=m is a finite field of
characteristic p. Moreover, the graded pieces mn=mnC1 are finite R=m-vector spaces, so that R has
cardinality a power of p. Basic examples of finite local rings include Fp Œt �=.t

k/ and Z=pkZ.

2B. Degree filtration on a polynomial algebra. If 0¤ f D
P

n�0 cnyn is a polynomial in RŒy�, then its
y-degree, or just degree, is as usual defined to be degf WDmaxfn W cn¤ 0g. For f D 0, set degf WD�1.

The degree function gives RŒy� the structure of a filtered algebra. Let RŒy�n WD ff 2RŒy� W degf � ng,
and then RŒy�D

S
n�0 RŒy�n and multiplication preserves the filtration as required.

2C. Local nilpotence and the nilpotence index. Let M be any R-module and T 2EndR.M / an R-linear
endomorphism. (In applications to Hecke algebras, R will be a finite field, M an infinite-dimensional
R-algebra of modular forms, and T a Hecke operator.)

The operator T WM !M is locally nilpotent on M if every element of M is annihilated by some
power of T . If T is locally nilpotent and f in M is nonzero, we define the nilpotence index of f with
respect to T as

NT .f / WDmaxfk � 0 W T kf ¤ 0g:

Also set NT .0/ WD �1.



696 Anna Medvedovsky

Suppose R D K is a field, M D KŒy�, and T W M ! M preserves the degree filtration; that is,
T .KŒy�n/�KŒy�n. Then T is locally nilpotent if and only if T strictly lowers degrees, in which case
we also have NT .f /� degf .

For example, T D d
dy

is locally nilpotent on KŒy�. If K has characteristic zero, then NT .f /D degf ;
otherwise NT .f /� char K� 1.

2D. Linear recurrences and companion polynomials. Now suppose that M is an R-algebra, and M 0

is an M -module (we will usually take M 0 DM ). A sequence s D fsng 2M 0N satisfies an M -linear
recurrence of order d if there exist elements a0; a1; : : : ; ad 2M so that

a0sn D a1sn�1C � � �C adsn�d for all n� d : (2-1)

Unlike some authors, we do not assume that ad is nonzero or not a zero divisor, but we do insist
that the recursion already hold for n D d . The companion polynomial of this linear recurrence is
P .X /D a0X d �a1X d�1�� � ��ad 2M ŒX �. If a0D 1, then the recurrence is said to be monic; we will
always assume below that our linear recurrences are monic unless stated otherwise.

Example. The sequence s D f0; 1;y;y2;y3;y4; : : :g 2RŒy�N satisfies an RŒy�-linear recursion of min-
imal order 2; we have sn D ysn�1 for all n � 2, but not for nD 1. The companion polynomial of the
recurrence is therefore X 2�yX .

Given any sequence s in M 0N, the set of companion polynomials of (not necessarily monic) M -linear
recurrences satisfied by s forms an ideal of M ŒX �. We record this observation in the following form:

Fact. If a sequence s 2M 0N satisfies the recurrence defined by some monic P 2M ŒX �, then it also
satisfies the recurrence defined by PQ for any other monic Q 2M ŒX �.

In characteristic p we get the following corollary, of which we will make crucial use:

Corollary 2.1. If R has characteristic p and s 2M 0N satisfies the order-d recurrence

sn D a1sn�1C a2sn�2C � � �C adsn�d for all n� d;

then for every k � 0 the sequence s also satisfies the order-dpk deeper recurrence

sn D a
pk

1
sn�pk C a

pk

2
sn�2pk C � � �C a

pk

d
sn�dpk for all n� dpk : (2-2)

Proof. Let P DX d � a1X d�1� � � � � ad be the companion polynomial of a recursion satisfied by s. By
the fact above, the sequence s also satisfies the recurrence whose companion polynomial is

Ppk

DX dpk

� a
pk

1
X dpk�pk

� a
pk

2
X dpk�2pk

� � � � � a
pk

d
;

which is exactly what is expressed in (2-2). �

If M is a domain embedded into a field K, we have the following well-known characterization of
power sequences in KN satisfying a fixed M -linear recurrence:
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Fact. An element ˛ in K is a root of monic P 2M ŒX � if and only if the sequence f˛ngnDf1; ˛; ˛
2; : : :g

satisfies the linear recurrence with companion polynomial P .

If the companion polynomial of such an M -linear recurrence has no repeated roots in K, it follows
from the proposition that every solution to the recurrence is a linear combination of such power sequences
on the roots of the companion polynomial. One can further describe all K-sequences satisfying a general
M -linear recursion — see, for example, [Conrad 2016], particularly the historical references on page 2 —
but we will not need this below.

3. The nilpotence growth theorem (NGT)

3A. Statement of the NGT. We are now ready to state the most general version of the nilpotence growth
theorem (NGT). From now on, we will assume R to be a finite ring, and M DRŒy�.

Theorem 1 (nilpotence growth theorem). Let R be a finite ring, and suppose that T WRŒy�!RŒy� is an
R-linear operator satisfying the following two conditions:

(1) T lowers degrees: deg T .f / < degf for every nonzero f in RŒy�.

(2) The sequence fT .yn/gn satisfies a filtered linear recursion over RŒy�: there exist a1; : : : ; ad 2RŒy�,
with deg ai � i for each i , so that for all n� d ,

T .yn/D a1T .yn�1/C � � �C adT .yn�d /:

Suppose further that

(3) the coefficient of yd in ad is invertible in R.

Then there exists a constant ˛ < 1 so that NT .y
n/� n˛.

In other words, Theorem 1 implies that, under a mild technical assumption (condition (3)), the nilpotence
index of a degree-lowering operator defined by a filtered linear recursion grows slower than linearly in
the degree. The mild technical assumption is necessary in the theorem as stated; see the discussion in (4)
in Section 3B below.

3B. Discussion of the NGT. (1) Connection with Theorem A: If T WRŒy�!RŒy� satisfies the conditions
of Theorem 1, then the companion polynomial of the recursion satisfied by the sequence fT .yn/gn is

PT DX d
� a1X d�1

� � � � � ad 2RŒy;X �:

The condition deg ai � i from (2) guarantees that the total degree of PT is exactly d . In particular, in
the case where RD F is a finite field, condition (3) implies that degy PT D deg ad D d . In other words,
Theorem 1 over a finite field reduces to Theorem A.

(2) Condition (1) guarantees that T is locally nilpotent: Moreover, NT .y
n/ � n, so that the function

n 7!NT .y
n/ a priori grows no faster than linearly.
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(3) Condition (2) and connection to recursion operators: The condition that the sequence fT .yn/gn

satisfies a linear recurrence is the definition of a recursion operator, a notion that will be explored in a
future paper. A natural source of filtered recursion operators (that is, satisfying additional degree bounds
as in condition (2) above) comes from the action of Hecke operators on algebras of modular forms of a
fixed level. Namely, if f is a modular form of weight k and level N and T is a Hecke operator acting
on the algebra M of forms of level N , then the sequence fT .f n/gn satisfies an M -linear recursion with
companion polynomial X d C a1X d�1C � � �C ad , where ai comes from weight ki .

See (5-1) and (5-2) below for examples over Fp, [Medvedovsky 2015, chapter 6] for a proof in level
one when T is a prime Hecke operator, or [Medvedovsky � 2018] for more details.

The history of Hecke recurrences appears to be relatively brief. Hecke recurrences over F2 were
crucially used by Nicolas and Serre to obtain the structure of the mod 2 Hecke algebra in level one
[Nicolas and Serre 2012a; 2012b]. Earlier, Al Hajj Shehadeh, Jaafar, and Khuri-Makdisi [2009] had
investigated two-dimensional Hecke recurrences over Q satisfied by the array fT`.En

4
Em

6
/gn;m; Buzzard

and Calegari [2005, p. 594] had used Hecke recurrences for U2 acting on a power basis of overconvergent
2-adic modular functions in their study of slopes.

(4) Condition (3) is necessary as stated: Consider the operator T WRŒy�!RŒy� defined by T .yn/D sn,
where fsng is the sequence f0; 1;y;y2; : : :g with companion polynomial X 2�yX from the example on
page 696. All conditions except (3) are satisfied, and it is easy to see that NT .y

n/D n in this case.
For an example with ad ¤ 0, consider the operator T with the defining companion polynomial

PT DX 2CyX Cy and initial values ŒT .1/;T .y/�D Œ0; 1�. By induction, deg T .yn/D n�1. Therefore
NT .y

n/D n.
Computationally, it appears that if RD Fp and deg ad < d but there exists an i with 0< i < d so that

deg ai D i , then either NT grows logarithmically or else it grows linearly. In that sense, it appears that
“fullness” of degree at the end of PT (that is, the presence of a yd term) appears to be, at least generically,
necessary to compensate for “fullness” of degree in the middle (that is, the presence of a yiX d�i term for
some 0< i < d ), if one wants the growth of NT to be sublinear but not degenerate. But the phenomenon
is not well understood.

(5) The constant ˛: The power ˛ depends on R and d only, and tends to 1 as d !1. More precisely,
the dependence on R is only through its maximal residue characteristic; the length of R as a module over
itself affects only the implicit constant of the growth condition NT .y

n/� n˛ . If the inequality deg ai < i

is strict for every i < d (“empty middle” case) we can take ˛ to be logpk .pk�1/ for k satisfying d � pk .
See Theorems 2 or 4 below.

(6) Finite characteristic is necessary — a counterexample in characteristic zero: Consider the operator T

on QŒy� with PT DX 2�yX �y2 and degree-lowering initial terms ŒT .1/;T .y/�D Œ0; 1�. This satisfies
all three conditions of the NGT. It is easy to see that T .yn/D Fnyn�1, where Fn is the n-th Fibonacci
number; the recursion is sn D ysn�1Cy2sn�2. Therefore

T k.yn/D FnFn�1 � � �Fn�kC1yn�k ;
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so that NT .y
n/D n. (Compare to characteristic p, where the operator defined by T .yn/D Fnyn�1 on

Fp Œy� satisfies T pC1 � 0.) See also Proposition 10.1 for a family of examples in any degree.
Computationally, it appears that generic characteristic-zero examples that do not degenerate (to

log n growth) all exhibit linear growth. In contrast, over a finite field, one observes O.n˛/ growth for
various ˛ < 1.

(7) Finiteness of R is necessary as stated — a counterexample over Fp.t/, due to Paul Monsky: Let
PT DX 2� tyX �y2 and start with Œ0; 1� again. Then T .yn/D Fn.t/y

n�1 with Fn.t/ 2 Fp Œt � monic of
degree n� 1, so that NT .y

n/D n again. However, see the empty-middle case (Theorem 4) for a special
case that does hold for infinite rings of characteristic p.

4. A toy case of the NGT

Fix a prime p and take R D Fp for simplicity (in fact any ring of characteristic p works here). We
prove the following special case of the NGT for recurrences with empty middle (i.e., whose companion
polynomials have no maximal-degree cross terms) and whose order is a power of p.

Theorem 2 (toy case of NGT). Let q D pk for some k � 1. Suppose T W Fp Œy�! Fp Œy� is a degree-
lowering linear operator so that the sequence fT .yn/gn satisfies an Fp Œy�-linear recursion with companion
polynomial

P DX q
C .terms of total degree< q/C ayq

2 Fp Œy�ŒX �

for some a 2 Fp. Then NT .y
n/� nlog.q�1/= log q .

Most of the main features of the proof of the NGT (Theorem 1) are already present in the proof of this
toy case. We include the toy case here because the proof is technically much simpler; understanding it
may suffice for all but the most curious readers.

4A. The content function. For q D 3, following Bellaïche (see the appendix of [Bellaïche and Khare
2015]), we define a function c W N! N depending on q as follows. Given an integer n, we write it in
base q as nD

P
i niq

i with 0� ni < q, only finitely many of which are nonzero, and define the q-content
of n as c.n/ WD cq.n/ WD

P
i ni.q� 1/i . For example, since 71D Œ2 4 1�5 in base 5, the 5-content of 71 is

2 � 42C 4 � 4C 1D 49.
The following properties of the content function are easy to check. See also Section 7A, where the

content function and variations are discussed in detail.

Proposition 4.1. (1) c.n/� nlogq.q�1/.

(2) c.qkn/D .q� 1/kc.n/ for all k � 0.

(3) If 0� n< q, then c.n/D n.

(4) If i is a digit base q and n � i has no more than 2 digits base q, then c.n/� c.n� i/ is either i

or i � 1.

(5) If q � n< q2, then c.n� q/D c.n/� qC 1.
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4B. Setup of the proof. We now define the q-content of a polynomial f 2 Fp Œy� through the q-content
of its degree. More precisely, if 0¤ f D

P
anyn, let Qc.f / WDmaxfc.n/ W an¤ 0g. Also set Qc.0/ WD �1.

For example, the 3-content of 2y9Cy7Cy2 is maxfc.9/; c.7/; c.2/g D 5.
Now let T W Fp Œy�! Fp Œy� be a degree-lowering recursion operator whose companion polynomial

P DX q
C a1.y/X

q�1
C � � �C aq.y/ 2 Fp Œy�ŒX �

satisfies deg ai.y/ < i for 1� i < q and deg aq.y/� q.
To prove Theorem 2, we will show that T lowers the q-content of any f 2 Fp Œy�; that is, that
Qc.Tf /< Qc.f /. Since Qc.f /< 0 only if f D 0, the fact that T lowers q-content implies that NT .f /� c.f /.
Proposition 4.1(1) will then imply NT .f /� .degf /log.q�1/= log q , as desired.

It suffices to prove that Qc.Tf /< Qc.f / for f D yn. We will proceed by strong induction on n, each time
using a deeper recursion of order qkC1 corresponding to Pqk

, with k chosen so that qkC1 � n< qkC2.
We learned this technique from Gerbelli-Gauthier’s proof [2016] of the key technical lemmas of Nicolas
and Serre [2012a]. Using deeper recurrences with induction allows us to compare n to n� iqk , which
has the same last k digits base q, rather than to n� i , whose base-q expansion may look very different.

4C. The induction. The base case is n< q, in which case being q-content-lowering is the same thing as
being degree-lowering (Proposition 4.1(3)).

For n � q, we must show that Qc.T .yn// < c.n/ assuming that Qc.T .ym// < c.m/ for all m < n. As
above, choose k � 0 with qkC1 � n < qkC2. By Corollary 2.1, the sequence fT .yn/g satisfies the
order-qkC1 recurrence

T .yn/D a1.y/
qk

T .yn�qk

/C a2.y/
qk

T .yn�2qk

/C � � �C aq.y/
qk

T .yn�qkC1

/:

Pick a term ym appearing in T .yn/ with nonzero coefficient; we want to show that c.m/ < c.n/. From
the recursion, ym appears with nonzero coefficient in ai.y/

qk

T .yn�iqk

/ for some i . More precisely,
ym appears in yjqk

T .yn�iqk

/ for some yj appearing in ai.y/, so that either j < i or i D j D q. Then
ym�jqk

appears in T .yn�iqk

/, and by induction we know that c.m� j qk/ < c.n� iqk/. To conclude
that c.m/ < c.n/, it would suffice to show that

c.n/� c.m/� c.n� iqk/� c.m� j qk/;

or, equivalently, that

c.n/� c.n� iqk/� c.m/� c.m� j qk/:

Since subtracting multiples of qk leaves the last k digits of n base q untouched, we may replace n

and m by qk
�

n
qk

˘
and qk

�
m
qk

˘
, respectively, and then use Proposition 4.1(2) to cancel out a factor of

.q� 1/k . In other words, we must show that

c.n/� c.n� i/� c.m/� c.m� j /
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for n, m, i and j satisfying i � n < q2 and j � m < n and either j < i or i D j D q. But this is an
easy consequence of Proposition 4.1(4)–(5): For j < i , we know that c.n/� c.n� i/ is at least i � 1 and
c.m/� c.m� j / is at most j � i � 1. And for i D j D q both sides equal q� 1.

This completes the proof of Theorem 2.

4D. Toy case versus general case. The proof of the full NGT (Theorem 1) proceeds by first reducing
to the empty-middle case over a finite field (Theorem 4 below), of which Theorem 2 is a special case
where the order of the recursion is a power of p. Apart from the reduction step, most of the difficulty
in generalizing from Theorem 2 to Theorem 4 comes from working with more general versions of the
content function to accommodate any recursion order. Namely, we will extend the content function to
rational numbers and prove sufficiently strong analogues of Proposition 4.1 for the induction to proceed,
see Sections 7–9.

5. Applications to mod p Hecke algebras

This section gives an indication of how the NGT can give information about lower bounds of mod p

Hecke algebras, the author’s main motivation for proving the theorem. More precisely, in this section
we will use Theorem 2 to complete the proof of Theorem 24 of [Bellaïche and Khare 2015, Appendix],
which establishes the structure of the mod 3 Hecke algebra of level one..ii/ Simultaneously and using
the same methods, we will give an alternate proof of the main result of Nicolas and Serre [2012b], the
structure of the mod 2 Hecke algebra in level one. See Theorem 3 below.

More generally, the NGT can be used to obtain lower bounds on Krull dimensions of local components
of big mod p Hecke algebras acting on forms of level N in the case where X0.Np/ has genus zero, for
this is precisely the condition for the algebra of modular forms of level N mod p to be a polynomial
algebra over Fp. For more details, see [Medvedovsky 2015] (for level one) or [Medvedovsky � 2018].
To generalize the nilpotence method to all .p;N /, one must generalize the NGT to all rings of S -integers
in characteristic-p global fields, with the max-pole-order filtration generalizing degree.

We work in level one with p 2 f2; 3g. Let M DM.1; Fp/� Fp ŒŒq�� be the space of modular forms of
level one modulo p in the sense of Swinnerton-Dyer and Serre (that is, reductions of integral q-expansions).
For p D 2; 3 Swinnerton-Dyer observes [1973] that M D Fp Œ��, where �D

Qn
iD1.1� qn/24 2 Fp ŒŒq��.

Standard dimension formulas show that Mk WD Fp Œ��k , the polynomials in � of degree bounded by k,
coincides with the space of mod p reductions of q-expansions of forms of weight 12k, and hence is
Hecke invariant. Further, one can show that K WD h�n W p − niFp

�M is the kernel of the operator Up,
which implies that K and the finite-dimensional subspaces Kk WDMk \K are all Hecke invariant.

Let Ak � EndFp
.Kk/ be the algebra generated by the action of the Hecke operators T` with ` prime

and `¤ p. Since Kk ,!KkC1, we have AkC1� Ak . Let A WD lim
 ��k

Ak . Then A is a profinite ring

.ii/More precisely, we prove a weaker version of [Bellaïche and Khare 2015, Proposition 35]. In the notation of Section 7B
here, we show for f 2 F3Œ�� that c3;2.T2f /� c3;2.f /�1 and c9;6.T

0
7
f /� c9;6.f /�3. This suffices to complete the proof of

[loc. cit., Theorem 24], but we do not prove the stronger claim that c3;2.T
0
7
f /� c3;2.f /� 2.
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embedding into End.K/; it is the shallow Hecke algebra acting on forms of level one mod p. The standard
pairing A�K! Fp given by hT; f i 7! a1.Tf / is nondegenerate on both sides and continuous in the
profinite topology on A. Therefore A is in continuous duality with K. By work of Tate [1994] and Serre
[1986, p. 710, Note 229.2] we know that � is the only Hecke eigenform in K˝ Fp..iii/ This implies
that A is a local Fp-algebra with maximal ideal m and residue field Fp generated by the modified Hecke
operators T 0

`
WD T` � a`.�/, acting locally nilpotently on M D Fp Œ��. Using deformation theory of

Chenevier pseudorepresentations, one can deduce:

Proposition 5.1. There is a surjection Fp ŒŒx;y���A given by
�

x 7! T3; y 7! T5 if p D 2,
x 7! T2; y 7! T 0

7
if p D 3.

For p D 2, the fact that A is generated by T3 and T5 was first proved without deformation theory
in [Nicolas and Serre 2012a]. For p D 3, Proposition 5.1 is stated [Bellaïche and Khare 2015, Appendix],
using deformation theory of reducible Rouquier pseudocharacters developed in [Bellaïche 2012]. See
[Medvedovsky 2015, Chapter 7] for detailed computations of tangent spaces to reducible local components
of mod p Hecke algebras in level one.

The main result of this section is the following:

Theorem 3. The surjection Fp ŒŒx;y���A of Proposition 5.1 is an isomorphism.

The key input will be Theorem 2, as well as the following observation: if T is any Hecke operator and f
is a modular form in a Hecke invariant algebra M , then the sequence fT .f n/gn satisfies an M -linear re-
cursion. For more details on the Hecke recursion, see [Medvedovsky 2015, Chapter 6] or [Medvedovsky�
2018], but here we will only need some special cases for f D� already given in [Nicolas and Serre 2012a;
Bellaïche and Khare 2015, Appendix]. For p D 2, we have, as in [Nicolas and Serre 2012a, (13)–(14)],

T3.�
n/D�T3.�

n�3/C�4 T3.�
n�4/; n� 3;

T5.�
n/D�2 T5.�

n�2/C�4 T5.�
n�4/C�T5.�

n�5/C�6 T5.�
n�6/; n� 6;

(5-1)

with companion polynomials P3 DX 4C�X C�4 and P5 DX 6C�2X 4C�4X 2C�X C�6. Note
that fT5.�

n/gn also satisfies the recursion defined by P�
5
D P5.X

2C�2/DX 8C�X 3C�3X C�8.
And for p D 3, the recursions satisfied by fT2.�

n/g and fT 0
7
.�n/g have companion polynomials

P2 DX 3
��X C�3 and P 07 DX 9

��X 5
��2X 4

C .�4
��/X 2

C .�5
C�2/X ��9: (5-2)

See Lemma 33 in [Bellaïche and Khare 2015, Appendix]..iv/

Proof of Theorem 3. Let T and S be the generators of A from Proposition 5.1. Then T;S are filtered
and degree-lowering recursion operators on Fp Œ��, each satisfying the conditions of Theorem 2. In other
words, there exists an ˛ < 1 so that N.�n/ WDNT .�

n/CNS .�
n/� n˛.

.iii/Alternatively, one can use an observation of Serre to conclude that any Hecke eigenform in K˝ Fp is in fact defined over
Fp , reducing the eigenform search to a finite computation. See [Bellaïche and Khare 2015, Section 1.2 footnote].

.iv/Lemma 33 in [Bellaïche and Khare 2015, Appendix] gives the degree-8 recurrence satisfied by fT7.�
n/gn; the recurrence

satisfied by f�nCT7.�
n/gn has an extra factor of X ��.
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We now claim that the Hilbert–Samuel function of A grows faster than linearly, so that the Krull
dimension of A is at least 2. Indeed, the Hilbert–Samuel function of A sends a positive integer k to

dimFp
A=mk

D dimFp
KŒmk �� #fn W�n

2K; mk�n
D 0g D #fn prime to p WN.�n/� kg � k1=˛;

which is certainly faster than linear, since 1
˛
> 1. Therefore it grows at least quadratically, and the Krull

dimension of A is at least 2. By the Hauptidealsatz, the kernel of the surjection Fp ŒŒx;y��� A from
Proposition 5.1 is trivial. �

Using the more precise bounds on ˛ from Theorem 4, we can conclude that, for p D 2 we have
˛Dmaxflog4 2; log8 4gD 2

3
and for pD 3 we have ˛Dmaxflog3 2; log9 6g� 0:815. Compare to ˛D 1

2

obtained for p D 2 by Nicolas and Serre [2012a, §4.1]. Computations suggest that ˛ D 1
2

also holds for
p D 3, but we have not been able to prove this.

6. The proof of the NGT begins

We now begin the proof of Theorem 1.

6A. Overview of the proof. The proof proceeds as follows.

(1) Reduce the NGT to the case where R is a finite field: See Section 6B below.

(2) Reduce to the empty-middle case: The NGT over a finite field is implied by a special empty-middle
case (Theorem 4), where the companion polynomial has no terms of maximal total degree except for X d

and yd (i.e., the highest-degree homogeneous part has an empty middle). Note that Theorem 4 holds over
any ring of characteristic p. See Section 6C below for the statement of Theorem 4 and the reduction step.

(3) Prove Theorem 4: The main idea of the proof is as follows. Given an operator T satisfying the
conditions of Theorem 4, we define a function cT WN!N that grows like n˛ for some ˛ < 1. We extend
this function to polynomials in RŒy� via the degree. Finally, we use strong induction to prove that applying
T strictly lowers the cT -value of any polynomial in RŒy�. Therefore, NT .y

n/ is bounded by cT .n/� n˛ .
The key features of this kind of proof are already present in the proof of Theorem 2 in Section 4.

6B. Reduction to the case where R is a finite field.

Proposition 6.1. If Theorem 1 is true whenever R is a finite field, then Theorem 1 is true.

Proof. First, suppose R is a finite artinian local ring with maximal ideal m and finite residue field F. Let `
be the least positive integer so that m` D 0.

Let T WRŒy�!RŒy� be the operator in the statement of the theorem, and write T W FŒy�! FŒy� for
the operator obtained by tensoring with the quotient map R� F. Theorem 1 for F guarantees that
NT .y

n/� n˛ for some ˛ < 1. Let

g.n/ WDmax
n0�n
fNT .y

n0

/C 1g � n˛;
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so that g is nondecreasing, integer-valued, and satisfies T
g.degf /

f D 0 for every f in FŒy�. Lifting
back to R, we get that T g.degf /f is in mŒy� for all f 2RŒy�..v/ More generally, if f is in mi Œy�, then
T g.degf / sends f to miC1Œy�. Since m` D 0, we have T `g.degf /f D 0 for every f 2 RŒy�, so that
NT .y

n/� `g.n/� 1� n˛.
In the general case, R is a finite product of finite artinian local rings Ri , and an R-linear operator

T WRŒy�!RŒy� decomposes as
P

Ti where Ti WRi Œy�!Ri Œy� is the Ri-linear restriction of T to Ri .
From the paragraph above, we can choose ˛i < 1 so that NTi

.yn/� n˛i for all n. Then ˛ Dmaxif˛ig

works for T . �

6C. Reduction to the empty-middle NGT. From now on we fix a prime p. Theorem 1 over a finite field
of characteristic p is implied by the following special case in which the shape of the recursion satisfied
by T is restricted. Note that the statement below has no finiteness restrictions on the base ring, and no
restriction on the coefficient of yd .

Theorem 4 (empty-middle NGT). Let R be a ring of characteristic p, and suppose that T is a degree-
lowering linear operator on RŒy� so that the sequence fT .yn/gn satisfies a linear recursion whose
companion polynomial has the shape

X d
C ayd

C .terms of total degree� d �D/

for some D � 1 and some constant a 2R. Let b � d be a power of p, and suppose that either b� d � 1

or that D � b
2

. Then

NT .y
n/� n˛ for ˛ D

log.b�D/

log b
:

The case d D b and DD 1 has already been established in Theorem 2; an analogous argument extends
to d D b and any D with 1�D � b� 1.

Proposition 6.2 (empty-middle NGT implies NGT). Theorem 4 implies Theorem 1.

Proof. By Proposition 6.1, we may assume that we are working over a finite field F. Let

P DX d
C a1X d�1

C � � �C ad 2 FŒy�ŒX �

be the filtered recursion satisfied by the sequence fT .yn/gn as in the setup of Theorem 1; recall that we
insist that deg ad D d . We will show that P divides a polynomial of the form

X e
�ye

C .terms of total degree< e/

for eD qm.q�1/, where q is a power of p and m� 0. Then the sequence fT .yn/gn will also satisfy the
recursion associated to a polynomial whose shape fits the requirements of Theorem 4.

Let H be the degree-d homogeneous part of P , so that P D H C .terms of total degree < d/. We
claim that there exists a homogeneous polynomial S 2 FŒy;X � so that H �S DX e�ye for some positive

.v/If a�R is an ideal, write aŒy��RŒy� for the ideal of polynomials all of whose coefficients are in a.
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integer e of required form. Once we find such an S , we know that P � S will have the desired shape
X e �yeC .terms of total degree< e/.

To find S , we dehomogenize the problem by setting y D 1. Let h.X / WDH.1;X / 2 FŒX �, a monic
polynomial of degree d and nonzero constant coefficient. Let F0 be the splitting field of h.X /; under
our assumptions on ad , all the roots of h.X / are nonzero. Let q be the cardinality of F0. Every nonzero
element ˛ 2 F0, and hence every root of h.X /, satisfies ˛q�1 D 1.

Finally, let qm be a power of q not less than any multiplicity of any root of h.X /. Since every root
of h satisfies the polynomial X q�1 � 1, we know that h.X / divides the polynomial .X q�1 � 1/q

m

D

X qm.q�1/�1. Set eD qm.q�1/, and let s.X / be the polynomial in FŒX � satisfying h.X /s.X /DX e�1.
Now we finally “rehomogenize” again; if S 2 FŒy;X � is the homogenization of s.X /, then Q �S D

X e �ye, so that S is the homogeneous scaling factor for P that we seek. �

6D. The main induction for the proof the empty-middle NGT. From now on, having already fixed p,
we will always assume that R is a ring of characteristic p, not necessarily finite.

Definition. If T WRŒy�!RŒy� an R-linear operator, we will call T a .d;D/-NRO, for nilpotent recursion
operator, if T satisfies the conditions of Theorem 4; that is, T lowers degrees, and fT .yn/g satisfies an
RŒy�-linear recursion with companion polynomial

X d
C ayd

C (terms of total degree � d �D)

for some d � 1 and some D � 1. Note that any .d;D/-NRO is a .d;D0/-NRO for any 1�D0 �D.

The proof of Proposition 6.2 shows that, if R is a finite field, then any T satisfying the conditions of
Theorem 1 is in fact a .d;D/-NRO for some d and D.

On the other hand, we make the following definition, for any triple .b; d;D/ with b � d �D � 1:

Definition. A function c W Q�0 ! Q�0 is a .b; d;D/-nilgrowth witness if it satisfies the following
properties:

(1) Discreteness: c.N/ is contained in a lattice of Q (that is, 9M 2 N with Mc.N/� N).

(2) Growth property: c.n/� nlog.b�D/=log b as n!1.

(3) Base property: 0D c.0/ < c.1/ < � � �< c.d � 1/ and c.d �D/ < c.d/.

(4) Step property: For any k � 0, and any pair .i; j / 2 f0; 1; : : : ; dg2 with either .i; j / D .d; d/ or
i � j �D, and any integers n;m satisfying dbk � n< dbkC1 and jbk �m we have

c.n/� c.n� ibk/� c.m/� c.m� jbk/:

In this section, we prove, using strong induction, that if b is a power of p, then the growth of the
nilpotence index of a .d;D/-NRO is bounded by the growth of a .b; d;D/-nilgrowth witness.

Proposition 6.3. Let T be a .d;D/-NRO, and b � d a power of p. If c is a .b; d;D/-witness, then
NT .y

n/� c.n/.
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Before proving Proposition 6.3, we record a corollary using the growth property above.

Corollary 6.4. Suppose that T is a .d;D/-NRO, and let b D pdlogp de. If there exists a .b; d;D/-witness,
then NT .y

n/� nlog.b�D/=log b .

In other words, in this section we reduce the proof of Theorem 4 to establishing the existence of a
.pdlogp de; d;D/-witness for the .d;D/-NRO T , provided that D is not too big.

Proof of Proposition 6.3. Given a .b; d;D/-witness c, we define a new function Qc WRŒy�!N[f�1g via

Qc
�X

anyn
�
WDmaxfc.n/ W an ¤ 0g and Qc.0/ WD �1:

We will show that T lowers the Qc-value of polynomials in RŒy�: that is, that for any nonzero f 2RŒy�,
we have Qc.T .f // < Qc.f /.

It suffices to show this for f D yn.
Write xn for T .yn/. We will use strong induction to show that Qc.xn/ < c.n/.
The base case is all n with 0 � n < d . Since deg xn < n, the statement Qc.xn/ < c.n/ for n < d is

implied by the statement that c is strictly increasing on f0; 1; : : : ; d � 1g. This is the base property above.
For n> d , let k � 0 be the integer so that d �bk � n< d �bkC1. Let P .X /2 FŒy�ŒX � be the companion

polynomial of the given recursion satisfied by the sequence fxng. Let

I WD f.i; j / W 0� j < j CD � i � dg[ f.d; d/g:

By assumption, P has the form

P DX d
C

X
.i;j/2I

ai;j yj X d�i

for some ai;j 2R. By Corollary 2.1, the sequence fxng also satisfies the order-dbk recursion corresponding
to Pbk

: namely, for all n� dbk , we have

xn D�

X
.i;j/2I

ai;j yjbk

xn�ibk :

We will show that, if ym appears with nonzero coefficient in one of the terms on the right-hand side
above, then c.m/ < c.n/. Since Qc.xn/ is equal to one of these c.m/s, this will imply our claim. So
suppose that ym appears with nonzero coefficient in the .i; j /-term on the right-hand side. That is, ym

appears in yjbk

xn�ibk for some .i; j / 2 I. That means that ym�jbk

appears in xn�ibk . Note that i �D,
so that n� ibk < n, and the induction assumption applies; since ym�jbk

appears in xn�ibk , we can
assume that c.m� jbk/ < c.n� ibk/.

To show that c.m/ < c.n/, it therefore suffices to show that

c.n/� c.m/� c.n� ibk/� c.m� jbk/;

since the latter is assumed to be strictly positive. But this, slightly rearranged, is just the step property
from the definition of a .b; d;D/-witness above. �
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We now aim to construct a .b; d;D/-witness if b�d � 1 or if D � b
2

. This will occupy the next three
sections. In Section 7 we investigate the properties of a content function, which writes numbers in one
base and reads them in another. In Section 8, we establish some inequalities about the content of rational
numbers. In Section 9, we use the content function to construct a .b; d;D/-nilgrowth witness, completing
the proof of Theorem 4.

7. The content function and its properties

In this section we will introduce a function c WQ�0!Q�0 that will serve as a nilgrowth witness in the
proof of Theorem 4. This type of function was first introduced in the appendix to [Bellaïche and Khare
2015], loosely inspired by the “code” of [Nicolas and Serre 2012a].

7A. Base-b representation of numbers. We fix an integer b � 2 to be the base.
Let D.b/D f0; : : : ; b� 1g be the alphabet of digits base b, and D.b/� the set of finite words on D.b/,

including the empty word �. The number-of-letters function for a word x 2 D.b/� will be denoted by
`.x/, for length.

Let R.b/ be the set of all bi-infinite pointed words

x D : : :x2x1x0:x�1x�2 : : :

on D.b/ that start with 10 (the digit 0 repeated infinitely to the left). The set of finite words D.b/�

naturally embeds into R.b/ via x 7! .10/x:.01/, where 01 is the digit 0 repeated infinitely to the right.
More generally, any pointed right-infinite word will be viewed as an element of R.b/ by appending 10

on the left. For x 2 R.b/, we can define the real number �b.x/ 2 R�0 by reading it as a sequence of
digits base b, via �b.x/ WD

P
i xib

i . Since xi D 0 for i � 0, this sum converges. The map �b is not
injective; indeed,

P
i<k.b� 1/bi D bk , so that for any finite word w and digit x ¤ b� 1, and any radix

point placement, we have �b.wx.b� 1/1/D �b.w.xC 1/01/. But we can choose a section of �b by
restricting the domain: Let R0.b/�R.b/ the subset of those that do not end with .b� 1/1. Then the
reading-base-b function �b WR0.b/! R�0 is a bijection, and the inverse map �b W R�0!R0.b/ takes a
nonnegative real number q to its normal (that is, not ending in .b�1/1) base-b representation xD �b.q/

satisfying �b.x/D q.
The base-b representation �b.q/ is eventually periodic (that is, ends with z1 for some finite word z)

if and only if q 2Q�0. For q 2Q�0, then, we know that

�b.q/D x:yz1;

where x;y; z are in D.b/. If we insist that x does not start with 0 and that first y and then z have minimal
length among such representations, then x, y, and z are defined uniquely. We will assume this minimality
from now on. Note that by construction x and y may be empty words, but z has length at least 1.
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We define, then, three constants associated to q 2Q�0:

`.q/D `b.q/ WD `.x/Dmaxf0; blogb qcC 1g;

s.q/D sb.q/ WD `.y/Dminfk � 0 W denominator of bkq is prime to bg;

t.q/D tb.q/ WD `.z/ Dminfk � 1 W denominator of bs.q/q divides bk
� 1g:

In particular, we know that, for q 2Q�0, we have

q D nC
u

bs.q/
C

m

bs.q/.bt.q/� 1/
; (7-1)

where n, u, and m are all integers with nD bqc D �b.x/, uD �b.y/, and mD �b.z/.
We will need the following very simple lemma.

Lemma 7.1. Given q 2Q�0 and a base b, if q0 2 qN, then

(1) sb.q
0/� sb.q/,

(2) tb.q
0/ divides tb.q/.

The proof follows from the fact that the denominator of q0 is a divisor of the denominator of q.
Alternatively, one can consider the effect of multiplication by integers on base-b expansions.

7B. The content function. Now let b; ˇ � 2 be bases. Define the .b; ˇ/-content of any q in R�0 to be
the result of reading the normal base-b representation of q in base ˇ,

cb;ˇ.q/ WD �ˇ.�b.q//:

Note that �ˇ makes sense as a function R.b/! R�0; the series
P

i�k xib
i always converges if the

xi are bounded.

Examples. (1) Since �5.196/D 1241, we have c5;3.196/D 1 � 33C 2 � 32C 4 � 3C 1D 58.

(2) We have �7

�
1
3

�
D 0:.2/1. Therefore c7;5.n/D 2

P
i�1 5�i D

1
2

.

(3) c8;3

�
1
6

�
D �3.0:1.25/1/D 1

3
C
�

2
32 C

5
33

�P
i�0 3�2i D

1
3
C

11
27
�

9
8
D

19
24

.

The following lemma, which will be used frequently, is an easy computation.

Lemma 7.2. For q 2 Q�0, let s D sb.q/ and t D tb.q/. Then if q D nC
u

bs
C

m

bs.bt�1/
as in (7-1)

above, we have

cb;ˇ.q/D cb;ˇ.n/C
cb;ˇ.u/

ˇs
C

cb;ˇ.m/

ˇs.ˇt � 1/
:

We will also use the following growth estimate:

Lemma 7.3. We have cb;ˇ.n/� nlogb ˇ. More precisely, for n� 1, we have

ˇ�1nlogb ˇ < cb;ˇ.n/ <
ˇ.b� 1/

ˇ� 1
nlogb ˇ:
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Proof. Let `D `b.n/, so that for n� 1 we have `D 1Cblogb nc, or logb n< `� 1C logb n. Then, on
one hand, the .b; ˇ/-content of n is bounded above by �ˇ of the infinite pointed word .b� 1/`:.b� 1/1:

cb;ˇ.n/ <
X
k<`

.b� 1/ˇk
D

b� 1

ˇ� 1
ˇ` �

ˇ.b� 1/

ˇ� 1
ˇlogb n

D
ˇ.b� 1/

ˇ� 1
nlogb ˇ:

On the other hand, the .b; ˇ/-content of n is at least �ˇ of the pointed word 1.0`�1/:01:

cb;ˇ.n/� ˇ
`�1 > ˇ�1nlogb ˇ: �

In particular, if ˇ < b, then cb;ˇ grows slower than linearly in n.

Remarks. (1) If ˇ < b, then cb;ˇ is never monotonically increasing, even on the integers. Indeed,

cb;ˇ.b
k
� 1/D

b� 1

ˇ� 1
.ˇk
� 1/;

which is greater than cb;ˇ.b
k/D ˇk as soon as ˇk > ˇ�1

b�2
.

(2) The sequence fcb;ˇ.n/gn2N is b-regular in the sense of Allouche and Shallit [1992]. A sequence
fsng 2QN is said to be b-regular if there exists a Q-vector space V , endomorphisms M0; : : : ;Mb�1 of
V , a vector v 2 V , and a functional � W V !Q so that s�b.n`:::n0/ D �.Mn`

� � �Mn0
v/. For the sequence

fcb;ˇ.n/g, we can take V DQ2, Mi D
�

1
0

i
ˇ

�
, v D

�
0
1

�
and �D

�
1
0

�
. Indeed, b-regularity appears to be

lurking in many places in this theory, but we have not yet been able to make use of it..vi/

Finally, we record a trivial scaling property of cb;ˇ:

Lemma 7.4. For n 2 R�0, and any k 2 Z, we have cb;ˇ.b
kn/D ˇkcb;ˇ.n/.

7C. Content and the carry-digit word. Even though the content function is not monotonic, it behaves
well under addition. For m; n 2 R�0, we define rb.m; n/ 2R.2/ to be the word of carry digits when the
sum s DmC n is computed in base b. More precisely, let �b.m/Dm, �b.n/D n, and �b.s/D s, and
let rb.m; n/ WD r satisfying

mi C ni C ri�1 D si C bri for all i in Z. (7-2)

Since mi , ni , and si are all 0 for i > `b.s/, and since ri 2 f0; 1g, the set of equations above defines ri

uniquely, inductively down from i D `b.s/.

Examples. (1) We compute r3.77; 11/ starting with �3.77/D2212 and �3.11/D102. When the addends
have finite base-b expansions, the carry digits appear as a byproduct of the base-b addition algorithm.
Below, we read off that r3.77; 5/D 1101:

11

2
0

2
1

12

C102

10021.
.vi/For example, the Nicolas–Serre code sequence h.n/ defined in [Nicolas and Serre 2012a, §4.1] is 2-regular, as are its

constituent parts n3.n/ and n5.n/.
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Note the shift one space to the right in our indexing the conventional carry digit notation.

(2) We compute r5

�
53
60
; 23

100

�
. We have �5

�
53
60

�
D 0:4.20/1 and �5

�
23

100

�
D 0:10.3/1. Their sum is

167
150
D �5.1:02.40/1/. Comparing the base-5 expansions of the two addends with the expansion of the

sum allows us to compute the carry digits left to right.

1

0:
0

4
0

2
1

0
0

2
1

0
0

2
1

0
0

2
:::

: : :

C0:10333333 : : :

1:02404040 : : :

Therefore r5

�
53
60
; 23

100

�
D 0:10.01/1. In this case, we will get the same infinite carry-digit word if we take

the “limit” of the finite carry-digit words obtained by truncating the expansions of the two addends.

(3) Note that r10

�
1
3
; 2

3

�
D 0:11, even though any finite truncation of the decimal expansions of 1

3
and 2

3

would yield no carry digits in the sum. If the addends are not in Z
�

1
b

�
but the sum is, one computes the

expansion of the sum before computing the carry-digit word.

The carry digit word exactly keeps track of the difference between values of cb;ˇ:

Lemma 7.5. For m; n in R�0, we have

cb;ˇ.m/C cb;ˇ.n/D cb;ˇ.mC n/C .b�ˇ/�ˇ.rb.m; n//:

Proof. Let s DmC n, and let m, n, s be the corresponding base-b expansions and r the carry-digit word.
Scaling (7-2) by ˇi and summing up over all i gives usX

miˇ
i
C

X
niˇ

i
C

X
ri�1ˇ

i
D

X
siˇ

i
C b

X
riˇ

i

or, equivalently,

cb;ˇ.m/C cb;ˇ.n/Cˇ�ˇ.r/D cb;ˇ.mC n/C b�ˇ.r/: �

We will typically use Lemma 7.5 when comparing cb;ˇ.m/ and cb;ˇ.n/ by analyzing cb;ˇ.m� n/ and
rb.m� n; n/.

Examples. (1) We have c3;2.77/D �2.2212/D 28, and c3;2.88/D �2.10021/D 21. The difference is
accounted for by

c3;2.88� 77/D �2.102/D 6 and �2.r3.77; 11//D �2.1101/D 13:

Since 28C 6D 21C 13, we are consistent with Lemma 7.5.
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(2) Let .b; ˇ/D .5; 3/, and consider the 53
60
C

23
100

example from above. Using Lemma 7.2, we find that

c5;3

�
53
60

�
D �3.0:4.20/1/D

�3.4/

3
C

�3.20/

3.32� 1/
D

19

12

c5;3

�
23

100

�
D �3.0:10.3/1/D

�3.10/

32
C

�3.3/

32.3� 1/
D

1

2

c5;3

�
167
150

�
D �3.1:02.40/1/D �3.1/C

�3.02/

32
C

�3.40/

32.32� 1/
D

25

18

�3

�
r5

�
53
60
; 23

100

��
D �3.0:10.01/1/D

�3.10/

32
C

�3.01/

32.32� 1/
D

25

72
:

As expected from Lemma 7.5, we have 19
12
C

1
2
D

25
12
D

25
18
C 2 � 25

72
.

(3) Finally, let b D 10 and return to the addition equation 1
3
C

2
3
D 1. For a 2 D.9/, we have

�ˇ.0:a
1/D a

ˇ�1
. Therefore the two sides of the Lemma 7.5 equation agree:

(LHS) c10;ˇ

�
1
3

�
C c10;ˇ

�
2
3

�
D �ˇ.0:3

1/C�ˇ.0:6
1/D 9

ˇ�1

(RHS) c10;ˇ.1/C .10�ˇ/�ˇ
�
r10

�
1
3
; 2

3

��
D 1C .10�ˇ/�ˇ.0:1

1/D 9
ˇ�1

:

8. Content of some proper fractions

In this section, we will prove inequalities about .b; b�D/-content of some proper fractions that we will
use in Section 9 to produce a .b; d;D/-nilgrowth witness.

8A. Unit fractions in base b. Let b � 2 be a base, and fix a denominator d with 1< d � b. To motivate
the discussion, we note that

1

d
D

1
b

1� b�d
b

D

X
k�1

.b� d/k�1b�k :

Therefore, the base-b expansion of 1
d

“wants” to be 0:1.b� d/.b� d/2.b� d/3 : : :. Of course, unless
b � d � 1, this is not possible; .b � d/k is not a digit base b for k large enough. However, letting
�b

�
1
d

�
D 0:a1a2a3 : : :, we can say the following:

Lemma 8.1. For k � 1, we have ai D .b� d/i�1 for i D 1; : : : ; k if and only if .b� d/k < d .

Proof. We will establish this claim by induction on k. The ak can be defined recursively via

ak D

�
bk

d
�

k�1X
iD1

aib
k�i

�
D

�
bk

d

�
�

k�1X
iD1

aib
k�i : (8-1)

For k D 1, we have a1 D
�

b
d

˘
� 1. Therefore a1 D 1 if and only if b

d
< 2, which is equivalent to

.b� d/1 < d . So the claim for k D 1 is true.
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Now suppose we already know that ai D .b� d/i�1 for i < k. Then ak D .b� d/k�1 if and only if

1>

�
bk

d
�

k�1X
iD1

aib
k�i

�
� .b� d/k�1

D
bk

d
� .bk�1

C .b� d/bk�2
C � � �C .b� d/k�2bC .b� d/k�1/

D
bk

d
�

bk � .b� d/k

b� .b� d/
D
.b� d/k

d
;

as desired. �

The same argument also implies the immediate:

Corollary 8.2. If ai D .b� d/i�1 for i < k, then ak D .b� d/k�1C
�

1
d
.b� d/k

˘
.

We can now delineate what 1
d

must look like in base b.

Lemma 8.3. For d � b, the base-b expansion of 1
d

falls into one of five mutually exclusive cases.

(1) �b

�
1
d

�
D 0:2C : : : (in other words, a1 � 2) if and only if d � b

2
.

(2) �b

�
1
d

�
D 0:13C : : : (i.e., a1 D 1 and a2 � 3) if and only if b

2
< d � b2

bC3
D b� 3C 9

bC3
.

(3) �b

�
1
d

�
D 0:124C : : : (i.e., a1 D 1, a2 D 2, and a3 � 4) if and only if b > 6 and d D b� 2.

(4) �b

�
1
d

�
D 0:11 if and only if d D b� 1.

(5) �b

�
1
d

�
D 0:101 if and only if d D b.

Proof. If b � d D 0 or b � d D 1, then ai D .b � d/i�1 for all i (Lemma 8.1). Assume b � d � 2. If
d � b

2
, then 1

d
�

2
b

, so that a1 � 2, as claimed. Otherwise, we must have .b� d/1 < d , so that a1 D 1

and a2 � b�d . This means that a2 � 3 unless both b�d D 2 and .b�d/2 < d , in which case we have
d > 4 (and hence b > 6), and a2 � .b� d/2 D 4. �

8B. The carry-digit word for a proper fraction in base b. Keeping the notation b and d , we additionally
fix a D with 1�D < d and investigate �b

�
D
d

�
DW 0:e1e2e3 : : :. The ek satisfy the same type of recursion

as the ak , namely,

ek D

�
bkD

d

�
�

k�1X
iD1

eib
k�i :

In particular, e1 D
�

Db
d

˘
, and the following generalization of Lemma 8.1 and Corollary 8.2 holds:

Lemma 8.4. For k � 0, we have ei D D.b � d/i�1 for i D 1; : : : ; k if and only if D.b � d/k < d .
Moreover, if D.b� d/k < d , then ekC1 DD.b� d/k C

�
1
d

D.b� d/kC1
˘

.

In order to understand the relationship between the ak and the ek we define the carry-digit word
r D 0:r1r2r3 : : : for the addition problem

PD
iD1

1
d
D

D
d

. (See Section 7C for definitions.) In other words,
set r .i/ WD 0:r

.i/
1

r
.i/
2

r
.i/
3
� � � WD rb

�
i
d
; 1

d

�
for 1� i �D� 1, and then set rj WD

Pd�1
iD1 r

.i/
j .
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Then 0� rj �D�1 for every i ; since D
d
< 1, we have r1D 0. Putting together equations (7-2) applied

to i
d
C

1
d

for 1� i <D gives us the precise relationship between the ak , ek , and rk :

ek DDak C rkC1� brk : (8-2)

In fact, we have a closed formula for rk :

Lemma 8.5. For k � 1 we have

rk D

�
Dbk�1

d

�
�D

�
bk�1

d

�
D

�
D.b� d/k�1

d

�
�D

�
.b� d/k�1

d

�
:

Proof. The formula is true for k D 1 (in our case, all quantities are 0). For k � 1, we will establish the
formula for kC 1, starting with (8-2):

rkC1 D ek �Dak C brk D

�
Dbk

d

�
�

k�1X
iD1

eib
k�i
�D

�
bk

d

�
CD

k�1X
iD1

aib
k�i
C brk

D

�
Dbk

d

�
�D

�
bk

d

�
C

k�1X
iD1

bk�i.bri � riC1/C brk D

�
Dbk

d

�
�D

�
bk

d

�
:

Here we used (8-2) in the form �ei CDai D bri � riC1 for 1� i < k to pass from the first line to the
second, and cancellation of a telescoping sum for the final equality. Finally, we note that�

Dbk

d

�
�D

�
bk

d

�
D

�
D.b� d/k

d

�
�D

�
.b� d/k

d

�
because the intervening terms 1

d

�
D
Pk

iD1

�
k
i

�
bk�i.�d/i

�
are integers, and hence can pass through the

greatest-integer function to cancel. �

Corollary 8.6. (1) If .b�d/k<d for some k�0, then for every i �kC1, we have riD
�

1
d

D.b�d/i�1
˘

.

(2) If D.b� d/k < d for some k � 0, then for every i � kC 1, we have ri D 0.

8C. .b; ˇ/-Content of proper fractions. We fix a triple .b; d;D/ with 1 � D � d � b subject to the
conditions that b � 2, and further impose the condition that ˇ WD b�D � 2. Recall the content function
cb;ˇ from Section 7B, and let cd

b;ˇ
WQ�0!Q�0 be the function defined by

cd
b;ˇ.n/ WD cb;ˇ

�
n
d

�
:

Whenever the triple .b; d;D/ is understood, we write c D cd
b;ˇ

, and let r D 0:r1r2 : : : be the carry-digit
word for 1

d
C � � �C

1
d
D

D
d

as in Section 8B. Lemma 7.5 implies that

c.D/DDc.1/�D�ˇ.r/: (8-3)

In this section, we will establish some lower bounds on c.1/ and c.D/. First, we dispatch the cases
d D b and d D b� 1, which yield easy explicit formulas.

Lemma 8.7. Suppose that d D b or d D b� 1, and 0� i < d . Then c.i/D i
d�D

.
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Proof. Computation, see Lemma 8.3. Note that D�minfd; b�2g precludes the possibility that d DD. �

Proposition 8.8. If d � b� 2 and b > 6, then c.1/� ˇC1
ˇ.ˇ�1/

.

Remark. It is a simple exercise to check that the only exceptions for b� 6 are in fact .b; d;D/D .4; 2; 2/,
.5; 3; 3/, or .6; 4; 4/ by exhausting all cases.

Proof. We go through the first three cases of Lemma 8.3. Note that ˇD 2 implies that all of the inequalities
in 2� b�d � b�D D ˇ are equalities, so that d DD and d D b� 2. In particular, if ˇ D 2 and b > 6,
then we must be in the third case.

(1) If �b

�
1
d

�
starts with 0:2C, then c.1/ � �ˇ.0:2/ D

2
ˇ

. Since ˇ � 3, we have 2 � ˇC1
ˇ�1

, so that
c.1/� ˇC1

ˇ.ˇ�1/
, as desired.

(2) If �b

�
1
d

�
starts with 0:13C, then we have c.1/� �ˇ.0:13/D ˇC3

ˇ2 . This last is no less than ˇC1
ˇ.ˇ�1/

if
and only if ˇ2C 2ˇ � 3D .ˇC 3/.ˇ � 1/ � .ˇC 1/ˇ D ˇ2C ˇ. Therefore ˇ � 3 again implies
c.1/� ˇC1

ˇ.ˇ�1/
, as desired.

(3) If �b

�
1
d

�
starts with 0:124C, then

c.1/� �ˇ.0:124/D
ˇ2C 2ˇC 4

ˇ3
D

ˇC 1

ˇ.ˇ� 1/
C

2ˇ� 4

ˇ4�ˇ3
:

Since ˇ � 2, our claim is established. �

Corollary 8.9. If d � b� 2 and D � b
2

, then c.1/� D
ˇ.ˇ�1/

.

Proof. For D � b
2

, we have ˇ D b �D � b � b
2
D

b
2
� D. Therefore Proposition 8.8 establishes the

desired inequality, the exceptional cases .b; d;D/D .4; 2; 2/, .5; 3; 3/, or .6; 4; 4/ being easy to check
explicitly. �

In the next proposition we will show that c.D/ is not too small, provided that d is not too big relative
to b, or, failing that, that D is not too big relative to b and d .

Proposition 8.10. Suppose D < d � b� 2 and at least one of the following conditions is satisfied:

(1) d � b
2

.

(2) D < d
�
1� 1

b�d

�
.

Then c.D/� D.ˇC1/
ˇ.ˇ�1/

.

Remark. Computationally, it appears that the optimal statement is as follows. If D < d � b� 2, then
c.D/� D.ˇC1/

ˇ.ˇ�1/
if and only if at least one of the following is true: (10) .b�d/2>b�1 or (2) D<d

�
1� 1

b�d

�
.

Note that Condition (1) above implies condition (10), but this latter is strictly weaker. Here we only prove
Proposition 8.10 as stated.

Before proving Proposition 8.10, some preparatory lemmas.

Lemma 8.11. Under the assumption d > b
2

, condition (2) from Proposition 8.10 is equivalent to the
inequality r2 < b� d � 1.
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Proof. Apply Corollary 8.6 for k D 0 to deduce that r2 D
�

1
d

D.b�d/
˘

. Then r2 < b�d �1 if and only
if D.b�d/

d
< b� d � 1 if and only if D < d.b�d�1/

b�d
, which is condition (2), as desired. �

As before, let �b

�
1
d

�
D 0:a1a2 : : : and �b

�
D
d

�
D 0:e1e2 : : :, and let r D 0:r1r2 : : : be the carry digits

as in Section 8B. Using (8-2) and the partial-sum cutoffs c.D/� �ˇ.0:e1 : : : ek/D
Pk

iD1 eiˇ
�i , we get

the following partial-sum versions of (8-3):

Lemma 8.12. For any k � 1, the quantity c.D/ satisfies the following inequality:

c.D/�
D
Pk

iD1.ai � ri/ˇ
k�i C rkC1

ˇk
:

Corollary 8.13. Any of the following conditions are sufficient to guarantee c.D/� D.ˇC1/
ˇ.ˇ�1/

:

(1) ˇ � 3 and a1 � 2;

(2) r2 �
2D
ˇ�1

;

(3) ˇ � 3 and a2� r2 � 3;

(4) a2� r2 D 2 and r3 �
2D
ˇ�1

;

(5) ˇ � 3 and a2� r2 D 2 and a3� r3 � 3.

Proof. We use Lemma 8.12 for each specified k. Recall that r1 D 0.

(1) k D 1, use estimate r2 � 0. We have c.D/� 2D
ˇ
�

D.ˇC1/
ˇ.ˇ�1/

, since 2� ˇC1
ˇ�1

for ˇ � 3.

(2) k D 1, use estimate a1 � 1:

c.D/�
DC r2

ˇ
�

DC 2D
ˇ�1

ˇ
D

D.ˇC 1/

ˇ.ˇ� 1/
:

(3) k D 2, use estimate a1 � 1 and r3 � 0:

c.D/�
ˇ.DC r2/C .Da2� br2/

ˇ2
D

D.ˇC a2� r2/

ˇ2
:

This last being greater than D.ˇC1/
ˇ.ˇ�1/

is equivalent to .ˇCa2�r2/.ˇ�1/�ˇ.ˇC1/, or a2�r2�
2ˇ
ˇ�1

.
For ˇ � 3, this is guaranteed by a2� r2 � 3.

(4) k D 2, use estimate a1 � 1:

c.D/

D
�
ˇC .a2� r2/C

r3

D

ˇ2
�
ˇC 2C 2

ˇ�1

ˇ2
D

ˇC 1

ˇ.ˇ� 1/
:

(5) k D 3, use estimate a1 � 1 and r4 � 0:

c.D/

D
�
ˇ2C .a2� r2/ˇC .a3� r3/

ˇ3
�
ˇ2C 2ˇC 3

ˇ3
D

ˇC 1

ˇ.ˇ� 1/
C

ˇ� 3

ˇ3.ˇ� 1/
: �

Proof of Proposition 8.10. Note that the assumptions D < d � b� 2 guarantee that ˇ � 3.
If condition (1) holds, then a1 � 2 (Lemma 8.3(1)) so that Corollary 8.13(1) gives what we want. If

condition (1) fails, but condition (2) holds, then by Lemma 8.11, we have r2 � b�d �2. Moreover, from
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Lemma 8.4 for DD 1 and k D 1, we know that a2 � b�d . If either inequality is strict, Corollary 8.13(3)
gives us the desired inequality. Therefore it remains to consider the case r2 D b � d � 2

�
so that

d.b�d�2/
b�d

�D < d.b�d�1/
b�d

�
and a2 D b� d (so that .b� d/2 < d .vii/).

We now estimate the third digits. By Corollary 8.6 and Lemma 8.4, we have r3 D
�

1
d

D.b� d/2
˘

and
a3 � .b� d/2. Condition (2) implies that r3 �

1
d

D.b� d/2 < .b� d/.b� d � 1/, so that

a3� r3 > .b� d/2� .b� d/.b� d � 1/D b� d � 3;

so that the desired inequality holds by Corollary 8.13(5). �

9. The nilgrowth witness: finishing the proof

Let b � d �D � 1 be integers subject to the conditions b � 2 and ˇ WD b �D � 2, as before. In this
section we exhibit a .b; d;D/-nilgrowth witness and complete the proof of Theorem 4.

Recall from Section 8C that cd
b;ˇ
WQ�0!Q�0 is the function defined by

cd
b;ˇ.n/ WD cb;ˇ

�
n
d

�
:

Also define the integer constant M d
b;ˇ
WD ˇsb.1=d/.ˇtb.1=d/� 1/. Here cb;ˇ is the .b; ˇ/-content function,

first defined in Section 7B, and sb and tb count the number of digits after the decimal point of the preperiod
and the period, respectively, of base-b expansions; see definition before (7-1).

The following theorem, combined with Corollary 6.4, will prove Theorem 4, completing in turn the
proof of Theorem 1.

Theorem 5. If b� d � 1, or if D � b
2

, then the function cd
b;b�D

is a .b; d;D/-nilgrowth witness.

We begin the proof of Theorem 5. Recall from Section 6D that a .b; d;D/-nilgrowth witness must
satisfy four properties: discreteness, growth, base, and step. We establish the first two immediately.

Lemma 9.1 (discreteness property). For any n 2 N, we have M d
b;ˇ

cd
b;ˇ
.n/ 2 N.

Proof. It suffices to see that ˇsb.1=d/.ˇtb.1=d/ � 1/cb;ˇ.n/ is an integer for n 2 1
d

N. For n D 1
d

this
follows from Lemma 7.2, and for general n 2 1

d
N from Lemmas 7.2 and 7.1. �

Lemma 9.2 (growth property). We have cd
b;ˇ
.n/� nlogb ˇ.

Proof. Lemma 7.3. �

It remains to establish the base property and the step property.
For m; n 2Q�0 with m� n, set

R.m; n/ WDRd
b;ˇ.m; n/ WDD�ˇrb

�
m�n

d
; n

d

�
:

.vii/Incidentally this implies the failure of condition (10), which should conjecturally replace condition (1) as noted in the
remark after the statement of Proposition 8.10.
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Here rb is the carry-digit word, as in Section 7C. We then have, for m; n as above

c.n/� c.n�m/D c.m/�R.n;m/: (9-1)

This is just a restatement of Lemma 7.5, in the form in which we will use it below.
We now use the technical results of Section 8 to prove that our candidate nilgrowth witness satisfies

the base property and the step property.

Lemma 9.3 (base property). Suppose that d D b or d D b� 1 or D � b
2

. Then we have:

(1) c.d �D/� c.d/;

(2) 0D c.0/ < c.1/ < � � �< c.d � 1/.

Remark. Part (1) is in fact true without the assumption D � b
2

, but we do not need this greater gen-
erality. Part (2) above is not generally true if D > b

2
. For example, for .b; d;D/ D .7; 5; 5/, we have

c.2/ D c.3/ D 3; and for .b; d;D/ D .11; 9; 7/ we have c.4/ D 334
195

> 316
195
D c.5/. The condition

delineated here is certainly not optimal, however.

Proof. If d D b or d D b� 1, then both statements are immediate from the formula in Lemma 8.7. (Note
that c.d/ is always 1.) Assume therefore that d � b� 2.

(1) If d DD, then the inequality is trivial; so assume D < d . By (9-1), we have

c.d/� c.d �D/D c.D/�R.d;D/:

Certainly rb

�
D
d
; d�D

d

�
can be no greater than 0:11. Therefore

R.d;D/DD�ˇrb

�
D
d
; d�D

d

�
�D�ˇ.0:1

1/D D
ˇ�1

:

On the other hand, by Proposition 8.10, we know that c.D/� D.ˇC1/
ˇ.ˇ�1/

> D
ˇ�1

. Therefore c.d/ > c.d�D/

(and in fact the inequality is strict).

(2) It suffices to show that, for 0 < i < d , we have c.i/ > c.i � 1/. By (9-1) this is equivalent to the
inequality c.1/ >R.i; 1/. Since i < d , we know that

R.i; 1/DD�ˇrb

�
i�1
d
; 1

d

�
�D�ˇ.0:011/D D

ˇ.ˇ�1/
:

Now Corollary 8.9 completes the claim. �

Lemma 9.4 (step property). Suppose d D b or d D b� 1 or D � b
2

. If .i; j / 2 I, and n;m are integers
with dbk � n< dbkC1 and jbk �m, then

c.n/� c.n� ibk/� c.m/� c.m� jbk/:

Here as before I Df.i; j / W 0� j < j CD � i � dg[f.d; d/g is the set of pairs .i; j / so that yj X d�i

can appear in the companion polynomial of the recursion in question; see proof of Proposition 6.3.
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Proof. We use Lemma 7.4 to divide each equation by ˇk , and replace n and m by n
bk and m

bk , respectively.
We therefore seek to show that for n;m 2 Z

�
1
b

�
�0

satisfying d � n< db and m� j , we have

c.n/� c.n� i/� c.m/� c.m� j /:

Using (9-1) twice and rearranging terms, the desired statement is equivalent to

c.i/� c.j /�R.n; i/�R.m; j /:

Since R.m; j / is nonnegative, it suffices to show that

c.i/� c.j /�R.n; i/:

We now take two cases. If i D d , then R.n; i/ D 0, so that it suffices to show that c.d/ � c.j / for
.d; j / 2 I. For j D d , this is clear; and for j � i �D, this follows from both parts of Lemma 9.3 above.

If, on the other hand, i < d , then (9-1) gives us c.i/� c.j /D c.i � j /�R.i; j /, which reduces the
desired statement to

c.i � j /�R.n; i/CR.i; j /: (9-2)

If d D b or d D b � 1, then R.i; j /D 0; since c.i � j /D i�j
d�D

�
D

d�D
(Lemma 8.7), it remains to

show that R.n; i/� D
d�D

. If d D b, then at most one digit is carried, so that R.n; i/�D�ˇ.0:1/D
D
ˇ

.
And if d D b� 1, then every digit may be carried, so that R.n; i/�D�ˇ.0:1

1/D D
ˇ�1

. In both cases,
the desired inequality holds.

On the other hand if d � b � 2
�
and so D � b

2

�
, then we reason as follows. The left-hand side of

desired inequality (9-2) is bounded below by c.D/, and the right-hand side is bounded above by

D�ˇ.0:1
1/CD�ˇ.0:011/D

D.ˇC 1/

ˇ.ˇ� 1/
:

Therefore it suffices to show that c.D/� D.ˇC1/
ˇ.ˇ�1/

which is established in Proposition 8.10. �
Lemmas 9.3 and 9.4 complete the proof of Theorem 5, which in turn completes the proof of Theorem 4,

and hence of Theorem 1.

10. Complements

10A. Refinement of Theorem 2. We state a refinement of the toy version of the NGT. One can also
obtain similar refinements of Theorem 4.

Theorem 6 (refined toy NGT). Let F be a field of characteristic p and let q D pk . Suppose that
T W FŒy�! FŒy� is an F-linear operator satisfying the following two conditions:

(1) For f 2 FŒy�, we have deg T .f /� degf �E for some E � 1.

(2) The sequence fT .yn/gn satisfies a linear recursion whose companion polynomial has the shape

P D .X C cy/d C .terms of total degree� d �D/ 2 FŒy�ŒX �

for some d � q, D � 1, and c 2 F.
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Then
NT .f /�

.q�D/.q� 1/

E.q�D� 1/
.degf /log.q�D/=log q:

Remark. Since the total degree of the companion polynomial of the recursion is the same as the order, it
suffices to check the condition that deg T .f /� degf �E on f D 1;y; : : : ;yd�1 only.

Proof. The sequence fT .yn/gn also satisfies the linear recursion with companion polynomial

P 0 D .X C cy/q�dP DX q
C cyq

C .terms of total degree� q�D/:

Let c D cq;q�D , define Qc W FŒy� ! N [ f�1g from c as in the proof of Theorem 2, and follow the
same inductive argument mutatis mutandis to show that Qc.Tf /� Qc.f /�E. (The main adjustment is in
Proposition 4.1(4); if i is a digit base q and n� i has no more than 2 digits base q, then c.n/� c.n� i/

is either i or i �D; see Lemma 7.5 for a conceptual explanation.)
We have therefore shown that NT .y

n/� c.n/
E

. Lemma 7.3 completes the proof. �

10B. Comments on ˛ in Theorem 4. How optimal is the order of growth of the nilpotence index ˛ from
the empty-middle NGT?

To this end, if K is a field, and T WKŒy�!KŒy� a degree-lowering linear operator, let

˛.T / WD lim sup
n!1

log NT .y
n/

log n
;

and let
˛K .d;D/D sup

T2LK .d;D/

f˛.T /g;

where LK .d;D/ is the set of degree-lowering operators T WKŒy�!KŒy� with fT .yn/gn satisfying a
recurrence with companion polynomial X d C cyd C .terms of total degree � d �D/ for some c 2K.
Since NT .y

n/ � n, we know that ˛K .d;D/ � 1. The following proposition clarifies that studying
˛K .d;D/ is only interesting in characteristic p.

Proposition 10.1. If K has characteristic zero and D < d , then ˛K .d;D/D 1.

Proof. Fix d , and consider the recursion operator T WKŒy�!KŒy� defined by the companion polynomial
P D X d � yd � y, corresponding to the recurrence T .yn/ D .yd C y/T .yn�d /, and initial values
fT .yn/gd�1

nD0
D f0; : : : ; 0; 1g. We will show that NT .y

kdCd�1/D
�

k
d�1

˘
C 1, which will establish that

˛T D 1.
Indeed, from the recurrence, we have T .yn/D 0 if n 6� �1mod d , and T .ykdCd�1/D .yd C y/k .

For f D
P

anyn 2KŒy�, write e.f / for the set fn W an ¤ 0g of exponents appearing in f . From above,
we see that

e.T .ykdCd�1//D fk; kC .d � 1/; kC 2.d � 1/; : : : ; kdg:

More generally, we can show by induction that the set Sm;k WD e.T m.ykdCd�1// is an arithmetic progres-
sion of common difference d �1, greatest term d.k� .m�1/.d �1//, and length k� .m�1/.d �1/C1,
so long as k� .m�1/.d�1/; otherwise the set is empty and T m.ykdCd�1/D0. Indeed, from the explicit
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formulation of T .yn/, we see that if Sm;k is as claimed, then the greatest element of SmC1;kDN�.d�1/,
where N is the greatest element of Sm;k congruent to d � 1 modulo d . Since the maximum element of
Sm;k is congruent to 0 modulo d , and every successive smaller element is d � 1 less, we see that N is
the d -th greatest element of Sm;k . In other words,

N D d.k � .m� 1/.d � 1//� .d � 1/2;

so that the greatest element of SmC1;k is N � .d � 1/ D d.k � m.d � 1//, as desired. Since the
relevant coefficients are positive and we are in infinite characteristic, no cancellation of intermediate
terms is possible. Finally, since T m.ykdCd�1/ ¤ 0 if and only if k � .m � 1/.d � 1/, we have
NT .y

kdCd�1/D
�

k
d�1

˘
C 1, as claimed. �

For F a field of characteristic p, let us confine our inquiry to the case where d can be taken to be a
power of p, as in Theorem 6 above. Theorem 6 tells us that ˛F.p

k ;D/ � log.pk �D/=log pk . How
optimal is this estimate? Computationally, it appears that for k D 1 this inequality is optimal. A few
examples for D D 1:

Examples. (1) p D 3: The recursion operator T with companion polynomial X 3CyX �y3 and initial
values f0; 1;yg appears to achieve NT .y

n/D c3;2.n/ infinitely often.

(2) p D 5: The recursion operator T with companion polynomial

X 5
C 3yX 3

Cy2X 2
C 3y3X C 4y5

and initial values Œ0; 1;y;y2;y3� appears to achieve NT .y
n/Dc5;4.n/ for “most” n; every counterexample

n has 0s in its base-5 expansion.

(3) p D 7: The recursion operator T with companion polynomial

X 7
C 3y2X 4

C 6y3X 3
C 5y4X 2

C 3y5X C 6y7

appears to achieve NT .y
n/D c7;6.n/ for most n. For n< 1000, there are only 36 counterexamples, and

c7;6.n/�NT .y
n/� 3 for each one.

(4) p D 11. The recursion operator T with companion polynomial

PT DX 11
C 6yX 9

C 2y2X 8
C 3y3X 7

C 6y4X 6
C 8y6X 4

Cy8X 2
C 9y9X C 10y11

appears to achieve NT .y
n/D c11;10.n/ for most n. For n< 1000, there are only 8 counterexamples, and

NT .y
n/D c11;10.n/� 1 for each one.

The estimate appears not to be optimal as soon as k � 2.
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Algebraic de Rham theory for
weakly holomorphic modular forms of level one

Francis Brown and Richard Hain

We establish an Eichler–Shimura isomorphism for weakly modular forms of level one. We do this by
relating weakly modular forms with rational Fourier coefficients to the algebraic de Rham cohomology of
the modular curve with twisted coefficients. This leads to formulae for the periods and quasiperiods of
modular forms.

1. Introduction

Let Mn denote the Q-vector space of modular forms of weight n and level one with rational Fourier
coefficients. Let Sn ⊂ Mn denote the subspace of cusp forms. The Eichler–Shimura isomorphism [Eichler
1957; Shimura 1959] is usually expressed as a pair of isomorphisms

Mn+2⊗Q C−→∼ H 1(SL2(Z); V B
n )
+
⊗Q C,

Sn+2⊗Q C−→∼ H 1(SL2(Z); V B
n )
−
⊗Q C,

(1-1)

where the right-hand side denotes group cohomology with coefficients in V B
n = SymnV B, where V B

denotes the standard two-dimensional representation of SL2 over Q with basis a, b, and ± denote
eigenspaces with respect to the real Frobenius (complex conjugation). One wants to think of this theorem
as a special case of the comparison isomorphism between algebraic de Rham cohomology and Betti
cohomology, each of which has a natural Q-structure. The rational structures on these groups then enables
one to define periods. Each cuspidal Hecke eigenspace, like an elliptic curve, should have four periods
(two periods and two quasiperiods) corresponding to the entries of a 2× 2 period matrix. However, the
isomorphisms (1-1) do not generate enough periods since each one only produces a single period for
every modular form. To obtain a full set of periods, one needs to consider “modular forms of the second
kind.”

In this note, we compute the algebraic de Rham cohomology of the moduli stack M1,1 of elliptic
curves and relate it to weakly holomorphic modular forms (modular forms which are holomorphic on
the upper half plane but with poles at the cusp). From this, we deduce a Q-de Rham–Eichler–Shimura
isomorphism, and a definition of the period matrix of a Hecke eigenspace.

Brown was partially supported by ERC grant 724638. Hain was partially supported by National Science Foundation through
grant DMS-1406420. He was also supported by ERC grant 724638 during a visit to Oxford during which this paper was written.
MSC2010: primary 11F11; secondary 11F23, 11F25, 11F67.
Keywords: weakly holomorphic modular form, algebraic de Rham cohomology.
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Before stating the main results, it may be instructive to review the familiar case of an elliptic curve E
over Q with equation y2

= 4x3
− ux − v. The de Rham cohomology H 1

dR(E,Q) is a two-dimensional
vector space over Q, as is the Betti (singular) cohomology H 1(E(C);Q). The comparison isomorphism
is a canonical isomorphism

H 1
dR(E;Q)⊗Q C−→∼ H 1(E(C);Q)⊗Q C. (1-2)

On the other hand, the space F1 H 1
dR(E;Q) := H 0(E;�1

E/Q) is one-dimensional and spanned by the
holomorphic differential dx/y. The Betti cohomology H 1(E(C);Q) splits into two eigenspaces under the
action of complex conjugation, with eigenvalues ±1. The analogue of the Eichler–Shimura isomorphisms,
in this setting, are exactly the formulae

H 0(E;�1
E/Q)⊗Q C−→∼ H 1(E(C);Q)+⊗Q C,

H 0(E;�1
E/Q)⊗Q C−→∼ H 1(E(C);Q)−⊗Q C,

given by integrating the form dx/y over invariant and antiinvariant cycles in E(C) with respect to complex
conjugation, respectively. This is clearly a weaker statement than the comparison isomorphism (1-2).
To obtain all periods of the elliptic curve, one needs to consider, in addition, period integrals of the
differential xdx/y of the second kind, which provides an isomorphism

H 1
dR(E;Q)∼=Q

dx
y
⊕Q

xdx
y
. (1-3)

Remark 1.1. There is also an isomorphism of

H 1(E(C);C)/H 0(E;�1
E/Q)⊗Q C

with the space of antiholomorphic differentials on E(C). Since this isomorphism is only defined over C,
one loses the rational structure, and cannot define periods in this manner. The analogue for modular forms
is the isomorphism

(H 1(SL2(Z); V B
n )⊗Q C)/(Mn+2⊗Q C)

with the space of antiholomorphic cusp forms of weight n+ 2.

1A. Statement of the theorem. Let E denote the universal elliptic curve over the moduli stack M1,1

(over Q) of elliptic curves. It defines a rank two algebraic vector bundle V , equipped with the Gauss–Manin
connection ∇. For all n ≥ 1, set

Vn = SymnV

and denote the induced connection by ∇ also. Grothendieck defined algebraic de Rham cohomology,
which is a finite-dimensional Q-vector space:

H 1
dR(M1,1;Vn).
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In order to describe this space in terms of modular forms, for each n ∈ Z, let M !n denote the Q-vector
space of weakly holomorphic modular forms of weight n that have a Fourier expansion∑

k≥−N

akqk

with ak ∈Q. They can have negative weights. Such a form is called a cusp form if a0 = 0. Let S!n ⊂ M !n
denote the subspace of cusp forms. Now consider the differential operator

D = q d
dq
. (1-4)

It does not in general preserve modularity, but an identity due to Bol [1949] implies that its powers induce
a linear map

Dn+1
: M !
−n→ S!n+2

for every n ≥ 0. Our main theorem was inspired by the recent paper [Guerzhoy 2008]. After writing
this note, we learnt that similar results for modular curves of higher level were implicitly obtained by
Coleman [1996] in the p-adic setting, and independently by Scholl [1985]. As pointed out in the very
recent paper [Kazalicki and Scholl 2016], a description of algebraic de Rham cohomology in terms of
modular forms of the second kind seems not to have been stated explicitly anywhere in the literature up
until that point. An approach using the Cousin resolution was subsequently given in [Candelori 2014].
The following theorem can be indirectly deduced from the results of these papers by viewing a modular
form of level one as an invariant form of levels 3 and 4.

Theorem 1.2. For each n ≥ 0, there is a canonical isomorphism of Q-vector spaces

$ : M !n+2/D
n+1 M !

−n −→
∼ H 1

dR(M1,1;Vn).

The space on the left contains the space of holomorphic modular forms as a subspace:

Mn+2 ⊂ M !n+2/D
n+1 M !

−n.

More precisely, the group H 1
dR(M1,1;Vn) carries a natural Hodge filtration

H 1
dR(M1,1;Vn)= F0

⊃ F1
= · · · = Fn+1

⊃ Fn+2
= 0

and Fn+1 is the image of Mn+2 under $ . That is,

$ : Mn+2 −→
∼ Fn+1 H 1

dR(M1,1;Vn).

A splitting of the Hodge filtration is discussed in Section 6.

1B. Comparison isomorphism. Grothendieck’s algebraic de Rham theorem implies (see Section 3) that
there is a canonical isomorphism of complex vector spaces

H 1
dR(M1,1;Vn)⊗Q C−→∼ H 1(M1,1(C);V

B
n ),
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where the right-hand space is the Betti (singular) cohomology of M1,1(C) with coefficients in the complex
local system VB

n = Symn−1 R1π∗C, where π : E→M1,1 is the universal elliptic curve. Let V B
n denote

its fibre H 0(H,VB
n ) at the tangent vector ∂/∂q . Since M1,1(C) is the orbifold quotient of the upper half

plane by SL2(Z), its cohomology is computed by group cohomology of SL2(Z) and we immediately
deduce the following consequence of Grothendieck’s theorem:

Corollary 1.3. There is a canonical isomorphism

compB,dR : H
1
dR(M1,1;Vn)⊗Q C−→∼ H 1(SL2(Z); V B

n ⊗Q C).

Combined with the previous theorem, we deduce an algebraic de Rham version of the Eichler–Shimura
isomorphism. It is the analogue for modular forms of the isomorphism (1-2).

Corollary 1.4. There is a canonical isomorphism

M !n+2/D
n+1 M !

−n ⊗Q C−→∼ H 1(SL2(Z); V B
n ⊗Q C). (1-5)

The dimension of the space on the left-hand side was computed in [Guerzhoy 2008], the dimension of
the right-hand space by Eichler–Shimura: both are 1+ 2 dim Sn . Restricting the previous isomorphism to
the subspace Mn+2 of holomorphic modular forms, and projecting onto the positive or negative eigenspaces
with respect to complex conjugation on the right-hand space gives back the two isomorphisms (1-1).

For any weakly holomorphic modular form f ∈ M !n+2, its image under the comparison isomorphism is
given explicitly by the cohomology class of the cocycle:

γ 7→ (2π i)n+1
∫ z0

γ−1z0

f (z)(za− b)n dz, (1-6)

where a, b is a basis of V B, which we think of as the first rational Betti cohomology group of the elliptic
curve C/(Z⊕ zZ). Its cohomology class does not depend on the choice of basepoint z0 ∈ H. A different
version of this map (and without the rational structures) was described in [Bringmann et al. 2013]. See
also [Bruggeman et al. 2014, Theorem A].

1C. Periods. The isomorphism (1-5) is compatible with the action of Hecke operators. The action of
Hecke operators on the left-hand side was defined in [Guerzhoy 2008]. The eigenspace of an Eisenstein
series is one-dimensional, that corresponding to a cusp form is two-dimensional. Let f be a cusp Hecke
eigenform and K f ⊂ R the field generated by its Fourier coefficients. Let

V dR
f ⊂

(
M !n+2/Dn+1 M !

−n
)
⊗Q K f

denote the Hecke eigenspace generated by f . It is a two-dimensional K f -vector space. Let

V B
f ⊂ H 1(SL2(Z); V B

n ⊗Q K f
)

denote the corresponding Betti eigenspace. It is also a two-dimensional K f -vector space, and decomposes
into invariant and antiinvariant eigenspaces with respect to the real Frobenius. We deduce from (1-5) a
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canonical isomorphism
compB,dR : V

dR
f ⊗K f C−→∼ V B

f ⊗K f C.

Definition 1.5. Define a period matrix Pf of f to be the matrix of compB,dR written in a K f -basis of
V dR

f and V B
f . We can assume that the basis of V B

f is compatible with decomposition into eigenspaces for
the action of the real Frobenius. It is of the form

Pf =

(
η+f ω+f
iη−f iω−f

)
,

where ω±f , η
±

f ∈ R. It is well-defined up to right multiplication by a lower-triangular matrix with entries
in K f , and entries in K×f on the diagonal. The ω+f , iω−f are the holomorphic periods [Manin 1973].

Remark 1.6. Only the holomorphic periods ω+f , iω−f can be obtained from the classical Eichler–Shimura
isomorphisms (1-1).

Theorem 1.7. If f has weight 2n, then det(Pf ) ∈ (2π i)2n−1K×f .

2. Definitions and background

2A. Weakly holomorphic modular forms.

Definition 2.1. For every n ∈ Z, let M !n denote the Q-algebra of weakly holomorphic modular forms of
level 1 and weight n with rational Fourier coefficients. It is the Q-vector space of holomorphic functions
f : H→ C on the upper half plane H such that

f (γ z)= (cz+ d)n f (z) for all γ =

(
a b
c d

)
∈ SL2(Z) (2-1)

which admit a Fourier expansion of the form

f =
∑

k≥−N

akqk, ak ∈Q.

The space S!n ⊂ M !n of cusp forms is the subspace of functions satisfying a0 = 0.

Proposition 2.2 (Bol’s identity). For all n ≥ 0, there is a linear map

Dn+1
: M !
−n→ M !n+2.

Proof. This result follows automatically from our proof of Theorem 1.2. We provide a more direct proof
for completeness.

For f : H→ C a real analytic modular form of weight n ∈ Z define

dn f =
1

2π i

(
∂ f
∂z
+

n f
z− z̄

)
.

It is well-known by Maass, and easily verified, that this operator respects the transformation property
(2-1), and therefore dn f is a real analytic modular form of weight n+ 2.
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The proposition follows from the following identity, for all n ≥ 0:

Dn+1
= dndn−2 · · · d2−nd−n.

To verify this, write a real analytic function on H as a formal power series in (z− z̄) and z̄. It suffices to
verify the formula for

fa,b = (2π i(z− z̄))a(−2π i z̄)b,

where a, b ≥ 0. We check that dm fa,b = (a+m) fa−1,b, and hence

dndn−2 · · · d2−nd−n
(

fa,b
)
= a(a− 1) · · · (a− n) fa−n−1,b.

On the other hand, log q = 2π i z and log q̄ =−2π i z̄ and hence

fa,b = (log q + log q̄)a(log q̄)b.

Since D = q∂/∂q = ∂/∂(log q), the operator Dn+1 acts on fa,b in an identical manner. �

2B. Moduli of elliptic curves. Let k be a commutative ring with 6 ∈ k×. In much of this paper, k will
be either the universal such ring, k= Z

[ 1
6

]
, or k=Q. The formula

λ · u = λ4u, λ · v = λ6v

defines a left action

µ : Gm ×A2
→ A2 (2-2)

of the multiplicative group Gm on the affine plane A2
:= Spec k[u, v], and defines a grading on k[u, v]

called the weight. The discriminant function

1= u3
− 27v2

has weight 12 under this action, so that Gm also acts on the graded ring k[u, v][1−1
]. Let D be the

vanishing locus of the discriminant 1. Set

X = A2
− D := Spec k[u, v][1−1

].

Then X is the moduli scheme of elliptic curves over k together with a nonzero abelian differential, [Katz
and Mazur 1985, §(2.2.6)]. Its coordinate ring

O(X)= k[u, v][1−1
] =

⊕
m even

grmO(X)

is graded by the Gm action. The sheaf of regular functions on X will be denoted by OX .
The universal elliptic curve E over X is the subvariety of P2

×k X which is the Zariski closure of the
affine scheme defined by the equation

y2
= 4x3

− ux − v ∈O(X)[x, y].
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The universal abelian differential on E is dx/y. The multiplicative group Gm acts on (x, y) by λ · (x, y)=
(λ2x, λ3 y) and on the abelian differential by λ · dx/y = λ−1dx/y.

The moduli stack of elliptic curves over k is the stack quotient

M1,1/k= Gm\\X

of X by Gm . Its Deligne–Mumford compactification is

M1,1/k= Gm\\Y,

where Y = A2
−{0}. In down to earth terms, to work on M1,1/k is to work Gm-equivariantly on X , and

to work on M1,1/k is to work Gm-equivariantly on Y .

2C. Upper half plane description. When k=C, this description of M1,1 relates to the traditional upper
half plane model via Eisenstein series. Denote by G2n the normalised Eisenstein series

G2n(q)=−
B2n

4n
+

∞∑
m=1

σ2n−1(m)qm

of weight 2n where Bk is the k-th Bernoulli number, q = e2π i z , and σk(m)=
∑

d |m dk the divisor function.
Define a map ρ : H→ X (C) by ρ(z)= (u(z), v(z)), where

u = 20G4(z) and v = 7
3G6(z). (2-3)

The map ρ factors through the punctured q-disk and induces a graded ring isomorphism to the space of
holomorphic modular forms

ρ∗ :Q[u, v] −→∼
⊕

n even

Mn.

The pull-back of the discriminant 1 is the Ramanujan τ -function 1(z), which vanishes nowhere on H. It
follows that ρ induces a graded ring isomorphism

ρ∗ :O(X)−→∼
⊕

n even

M !n.

and that the image of ρ is indeed contained in X (C). The ring of weakly modular forms is therefore
nothing other than the affine ring of functions on X .

The elliptic curve C/(Z⊕ zZ) is mapped isomorphically to the elliptic curve

y2
= 4x3

− 20G4(z)− 7
3G6(z)

by w 7→ (℘z(w)/(2π i)2, ℘ ′z(w)/(2π i)3), where ℘z(w) denotes the Weierstrass ℘-function. The abelian
differential dx/y pulls back to 2π i dw. This implies that the map (2-3) induces an isomorphism

SL2(Z)\\H−→∼ (Gm\\X)(C)=M1,1(C)
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of analytic stacks, since ρ(γ z) = ((cz + d)4u(z), (cz + d)6v(z)) for γ ∈ SL2(Z) of the form (2-1), by
modularity of G4 and G6.

The following lemma motivates the choice of the basis of one-forms considered later.

Lemma 2.3. Pulling back along (2-3) we have

2udv−3vdu
1

=
2
3

dq
q
.

Proof. Formulae due to Ramanujan imply that

DE2 = (E2
2 − E4)/12, DE4 = (E2 E4− E6)/3, DE6 = (E2 E6− E2

4)/2,

where E2n=−(4n/B2n)G2n are the Eisenstein series normalised such that their constant Fourier coefficient
is 1. These are easily verified by computing the first few terms in their Fourier expansion [Zagier 2008,
Proposition 15]. It follows that

3E6 DE4− 2E4 DE6 = E3
4 − E2

6 = 17281.

Now substitute E4 = 240G4 = 12u and E6 =−504G6 =−216v. �

Remark 2.4. The functions u, v have the following q-expansions:

u = 20G4 =
1
12 + 20q + 180q2

+ 560q3
+ 1460q4

+ · · ·

v = 7
3 G6 =−

1
216 +

7
3q + 77q2

+
1708

3 q3
+

7399
3 q4
+ · · ·

They have coefficients in Z
[ 1

6

]
. Furthermore,

1−1
=

1
q
+ 24+ 324q + 3200q2

+ 25650q3
+ 176256q4

+ · · ·

has integer coefficients. It follows that
M !n+2

Dn+1 M !−n

has a natural Z
[ 1

6

]
-structure, given by series whose Fourier coefficients lie in Z

[ 1
6

]
. This is because the

operator D acts on the ring Z[[q]].

The Z
[1

6

]
structure on the affine ring of X/Z

[ 1
6

]
coincides, by Remark 2.4, with the Z

[ 1
6

]
structure on

Fourier expansions.

2D. Differential forms. The following one-forms play a special role:

ψ =
1
12

d1
1
, ω =

3
2

(2u dv−3v du
1

)
∈�1(X). (2-4)

They have weights 0 and −2, respectively. By Lemma 2.3, we have

ρ∗ω =
dq
q
.

Both ω and ψ have logarithmic singularities along the discriminant locus D.
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Lemma 2.5. If h ∈ grmO(X), then 1ψ ∧ω = 3
4 du ∧ dv and

dh
h
∧ω = mψ ∧ω, d(hω)= (m− 2)hψ ∧ω. (2-5)

Proof. Since d log(h1h2) = d log(h1)+ d log(h2), it suffices to verify the first equation for h = u and
h =1. For the second equation, use dω =−2ψ ∧ω to write

d(hω)= h
dh
h
∧ω− 2hψ ∧ω

and conclude using the first equation. �

In particular, since ψ and ω are pointwise linearly independent, we have

�1(X)=O(X)du⊕O(X)dv ∼=O(X)ψ ⊕O(X)ω.

Corollary 2.6. For every f ∈ grmO(X) we have

d f = ϑ( f )ω+m f ψ,

where ϑ :O(X)→O(X) is the derivation of weight two defined by

ϑ = 6v ∂
∂u
+

u2

3
∂

∂v
. (2-6)

Proof. There exist unique f0, f1 ∈O(X) such that

d f = f0ω+ f1ψ.

Use (2-5) to deduce that d f ∧ ω = m fψ ∧ ω, which yields f1 = m f . The linear map ϑ : f 7→ f0

is a derivation which necessarily satisfies ϑ(1) = 0. This is certainly true of the formula (2-6). It
therefore suffices to verify that ϑ(u)= 6v. For this, use the fact that d1= 3u2 du− 54v dv to deduce
that du ∧ψ = −9v

2 (du ∧ dv)/1. Comparing with ω∧ψ =−3
4(du ∧ dv)/1 implies that ϑ(u)= 6v as

required. �

Remark 2.7. The derivation ϑ is closely related to the Serre derivative [Zagier 2008, (53)].

Consider the pull-back along (2-2) followed by the natural map

�1
X
µ∗

−→�1
Gm×X →�1

(Gm×X)/X

to relative Kähler differentials. Taking global sections gives a natural O(X)-linear map

π∗ :�1(X)→O(X)⊗k�
1(Gm)=O(X)[λ±] d log λ,

where λ is the coordinate on Gm .
Say that an element of �1(X) is proportional to ω if it lies in the subspace O(X)ω of �1(X) spanned

by ω.

Lemma 2.8. A form η ∈�1(X) is proportional to ω if and only if π∗η = 0. Furthermore, π∗ψ = d log λ.
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Proof. Via the natural isomorphism of O(X)[λ±]-modules,(
�1(Gm)⊗k O(X)

)
⊕
(
�1(X)⊗k k[λ±]

)
→�1(Gm × X),

we can compute
µ∗(ω)= (0, λ−2ω) and µ∗(ψ)= (d log λ,ψ). (2-7)

This follows from calculating

µ∗(2u dv− 3v du)= 2λ4u d(λ6v)− 3λ6v d(λ4u)= λ10ω

and noting that the terms involving dλ cancel. More generally, we verify that for any h ∈ grmO(X), we
have

µ∗ dh = d(λmh)= λm dh+mλm−1h dλ

and therefore µ∗ d log h = (m d log λ, d log h). Setting h = 1 proves (2-7), from which the lemma
immediately follows. �

2E. Alternative description of M1,1/Q. A complementary approach to constructing M1,1 as a stack
over k is as a quotient of the affine subscheme Z of X defined by 1= 1. Its affine ring O(Z) is k[u, v]/I ,
where I is the graded ideal of k[u, v] generated by 1− 1, where k is any commutative ring with 6 ∈ k×.
Since 1 has weight 12, the affine group scheme

µ12 = Spec k[λ]/(λ12
− 1),

with λ group-like, acts on Z .

Remark 2.9. The affine scheme Z is isomorphic, over k, to the Fermat cubic minus its identity element.
In fact, the closure of the locus u3

− 27v2
= 1/4 is isomorphic to the Fermat cubic x3

+ y3
= 1, where

u = 1/(x + y) and v = (x − y)/6(x + y).

The inclusion µ12 ↪→ Gm induces an isomorphism of (the constant group scheme) Z/12Z with the
character group of µ12. Denote the congruence class of n mod 12 by [n]. The µ12 action on Z gives a
Z/12Z-grading of its coordinate ring:

O(Z)=
⊕

n mod 12

O(Z)[n].

If n is odd then O(Z)[n] = 0. Since the inclusion j : Z ↪→ X is µ12 equivariant, the restriction homomor-
phism induces a ring homomorphism

j∗ :O(X)Gm →O(Z)µ12 (2-8)

and, for each m ∈ Z, a homomorphism

j∗ : grmO(X)→O(Z)[m] (2-9)

of modules over (2-8).
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Lemma 2.10. The homomorphism (2-8) is an isomorphism, so that

j : µ12\\Z −→∼ Gm\\X

is an isomorphism of stacks. Moreover, for each m ∈ Z, (2-9) is an isomorphism.

Proof. Since 1− 1 is µ12-invariant, it suffices for the first part to show that

O(X)Gm = k[u, v,1−1
]
Gm −→ k[ū, v̄]µ12/Iµ12 =O(Z)µ12

is an isomorphism, where ū = j∗(u) and v̄ = j∗(v) are the images of u, v. Since ū has weight 4 and v̄
has weight 6, it follows that k[ū, v̄]µ12 = k[ū3, v̄2

]. The inverse is induced by the map

k[ū3, v̄2
] → k[u, v,1−1

]
Gm

which sends ū3 to u31−1 and v̄2 to v21−1. It vanishes on Iµ12 . This proves that (2-8) is an isomorphism.
For all integers k, multiplication by 1k gives an isomorphism

grmO(X)−→∼ grm+12kO(X)

of gr0O(X) = O(X)Gm -modules. It therefore suffices to prove that (2-9) is an isomorphism for m =
0, 4, 6, 8, 10, 14, which form a complete set of representatives for even numbers modulo 12. But O(Z) is
isomorphic to the free Z/12Z-graded O(Z)µ12 ∼= k[ū3, v̄2

]-module generated by monomials in ū and v̄
that are of degree < 3 in ū and degree < 2 in v̄, where ū3

− 27v̄2
= 1. These are

1, ū, v̄, ū2, ūv̄, ū2v̄,

and have weights 0, 4, 6, 8, 10, 14, respectively. Similarly, grmO(X) is isomorphic to the free graded
O(X)Gm ∼= k[u31−1, v21−1

]-module generated by the monomials 1, u, v, u2, uv, u2v. �

2F. Gauss–Manin connection [Katz 1973, §A1]. The vector bundle V over X is defined to be the
restriction of the trivial rank 2 vector bundle

V :=OYS⊕OYT

on Y := A2
−{0} to X . The multiplicative group acts on it by

λ · S= λS, λ ·T= λ−1T.

So V can be regarded as a vector bundle on the moduli stack M1,1 and V as a vector bundle on M1,1.
Set Vn = Symn V for all n ≥ 1.

The connection on V , and its symmetric powers

V n := Symn V =
⊕

j+k=n

OYS
jTk
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is defined by

∇ = d +
(
S T

)( ψ ω

−
u
12
ω −ψ

)(
∂
∂S
∂
∂T

)
. (2-10)

It is Gm-invariant, and thus defines a rational connection on V n with regular singularities and nilpotent
residue along the discriminant divisor D.

Set V = R1π∗kX where π : E → X is the universal elliptic curve. It is proved in [Hain 2013,
Proposition 19.6] that when k⊂ C there is a natural isomorphism

VB
⊗k Oan

X
∼= V an

⊗k C

of bundles with connection over X (C), where the left hand bundle is endowed with the Gauss–Manin
connection. Under this isomorphism T corresponds to the section dx/y of (R1π∗CX )⊗C OX and S to
the section xdx/y. For later use, we set

VB
n = Symn VB. (2-11)

When pulled back to the upper half plane (and q-disk), the connection can also be written down in
terms of the frame A and T, where A is the section corresponding to the Poincaré dual of the element a of
H1(Z/(Z+ zZ)) corresponding to the curve from 0 to 1. The two framings are related by1

S= A+ 2G2(q)T. (2-12)

In this frame, the Gauss–Manin connection is given by

∇ = d +A
∂

∂T
⊗

dq
q
= 2π i

(
D+A

∂

∂T

)
⊗ dz, (2-13)

where, as above, D is the differential operator q∂/∂q = (2π i)−1∂/∂z.

Lemma 2.11. If f =
∑

j+k=n f j,kA jTk is a real analytic section of Vn , then

∇ f = 2π i
∑

j+k=n

(
D f j,k

+ (k+ 1) f j−1,k+1) dz⊗A jTk,

where we define f n+1,−1
= f −1,n+1

= 0.

Proof. Apply the connection (2-13) to the section f . �

Pulling back via the map π∗ defines a relative connection on Gm over OX , which by (2-7) is of the
form

π∗(∇)= d +
(
S T

)(dλ
λ

0
0 − dλ

λ

)( ∂
∂S
∂
∂T

)
(2-14)

A section of this relative connection is flat if and only if it is Gm-equivariant.

1 This follows from the formulas in [Hain 2013, §19.3]: T and S are obtained from T̂ and Ŝ there by setting ξ = (2π i)−1 and
taking A to be a.
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3. De Rham cohomology

In this section, we take k=Q. Since X is affine, it follows from the version of Grothendieck’s algebraic
de Rham theorem with coefficients in a connection [Deligne 1970, Corollary 6.3] that for each n ≥ 0,
H 1

dR(X,Vn) is computed by the complex

�•(X,Vn) :=
[
0(X,Vn)

∇
−→ 0(X, �1

X ⊗OX Vn)
∇
−→ 0(X, �2

X ⊗OX Vn)
]
.

Since ∇ is equivariant with respect to the action of Gm , we obtain the subcomplex

�•(X,Vn)
Gm =

[
0(X,Vn)

Gm ∇−→ 0(X, �1
X ⊗OX Vn)

Gm ∇−→ 0(X, �2
X ⊗OX Vn)

Gm
]

(3-1)

of invariant forms. Since Gm is connected, this also computes the de Rham cohomology of X with
coefficients in Vn . The Leray spectral sequence for the Gm-bundle p : X→M1,1

H j (M1,1, Rk p∗Vn)→ H j+k(X,Vn)

has only two nonvanishing rows, which implies that there is an exact sequence

0→ H j
dR(M1,1,Vn)

p∗
−→ H j

dR(X,Vn)→ H j−1
dR (M1,1, R1 p∗Vn)→ 0 (3-2)

for all j ≥ 0, where we recall that Vn denotes both the bundle p∗Vn on M1,1 and Vn on X . Since Vn is
trivial on the Gm orbits on X ,

H j−1
dR (M1,1, R1 p∗Vn)∼= H 1

dR(Gm;Q)⊗Q H j−1
dR (M1,1,Vn).

If n > 0, then H j (M1,1,Vn) vanishes when j 6= 1. We deduce natural isomorphisms

p∗ : H 1
dR(M1,1,Vn)−→

∼ H 1
dR(X,Vn)

for all n > 0 and

π∗ : H 1
dR(X;V0)−→

∼ H 1
dR(Gm;Q).

By computations in Section 2D, the left-hand side is generated by [ψ].

Remark 3.1. Since M1,1 = µ12\\Z , the homology of the complex �•(Z , j∗Vn)
µ12 is H •

dR(M1,1,Vn).
Below (see Proposition 3.8) we show that there is a canonical isomorphism

�•(X,Vn)
Gm ∼=�

•(Z , j∗Vn)
µ12 ⊕�•(Z , j∗Vn)

µ12[−1],

where the shift is given by multiplication by ψ . This gives a natural splitting of (3-2), where the shift
[−1] is given by cup product with [ψ]:

H •

dR(X,Vn)∼= H •

dR(M1,1,Vn)⊕ H •

dR(M1,1,Vn)[−1]. (3-3)
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3A. The subcomplex �•(X,Vn)
ω. Recall that we can identify grnO(X) with M !n via the isomorphism

ρ∗ : grnO(X)= grnQ[u, v][1−1
] −→∼ M !n

since every holomorphic modular form can be uniquely written as a polynomial in the Eisenstein series u
and v.

Definition 3.2. For each n ≥ 0, define

$ : M !n+2→ 0(X, �1
X ⊗OX Vn)

Gm (3-4)

to be the Q-linear map that takes f to ω f := f ωTn , where ω and T were defined in (2-4) and Section 2F.

The first task in proving Theorem 1.2 is to show that $ induces a linear map

$ : M !n+2/Dn+1 M !
−n→ H 1

dR(M1,1;Vn). (3-5)

Here we take the first steps in this direction. The following lemma implies that ω f is ∇-closed.

Lemma 3.3. For all j, k ≥ 0 and f ∈ M !k− j+2, the one-form

η = f ω S jTk
∈ 0(X, ω⊗V j+k)

is Gm-invariant and satisfies ∇η = 0. Consequently,

0(X, ω⊗V j+k)
Gm ⊂ ker∇. (3-6)

Proof. We have f ∈ grk− j+2O(X). By the Leibniz rule

∇η = d( f ω)S jTk
− f ω∧∇S jTk . (3-7)

From the connection formula (2-10), we have

∇S jTk
≡ ( j − k)ψ S jTk (mod ωO(X))

and therefore
f ω∧∇S jTk

= (k− j) fψ ∧ωS jTk .

By the second equation of (2-5), we find that

d( f ω)= (k− j + 2− 2) f ψ ∧ω = (k− j) f ψ ∧ω.

Substituting the two previous expressions into (3-7) implies that ∇η = 0. �

Lemma 3.4. The image of ∇ : 0(X,Vn)
Gm → 0(X, �1

X ⊗Vn)
Gm lies in the subspace 0(X, ω⊗Vn)

Gm of
forms proportional to ω.

Proof. It suffices, by Lemma 2.8, to show that if

f =
∑

j+k=n

f j,kS jTk
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is Gm-equivariant, then π∗(∇ f )= 0. It follows from (2-14) that

π∗(∇ f )=
∑

j+k=n

(
π∗d f j,k

+ ( j − k)λk− j f j,k dλ
λ

)
S jTk .

Each term in brackets vanishes, since it expresses the fact that λ · f j,k
= λk− j f j,k , i.e., f j,k

∈ grk− jO,
which is equivalent to the Gm-equivariance of f since S has weight +1 and T has weight −1. �

This lemma implies that ∇ acts on 0(X,Vn)
Gm via the connection

∇
ω
= ωϑ +

(
S T

)( 0 ω

−
u
12
ω 0

)(
∂
∂S
∂
∂T

)
, (3-8)

where ϑ is the operator (2-6).
The following is an immediate consequence of Lemmas 3.3 and 3.4.

Corollary 3.5. For all n ≥ 0,

�•(X,Vn)
ω
:=
[
0(X,Vn)

Gm ∇
ω

−→ 0(X, ω⊗Vn)
Gm −→ 0

]
(3-9)

is a subcomplex of �•(X,Vn)
Gm .

The kernel of the restriction mapping

j∗ :�•(X,Vn)
Gm →�•(Z , j∗Vn)

µ12

contains the ideal generated by ψ . It therefore induces a homomorphism

j∗ :�•(X,Vn)
ω
→�•(Z , j∗Vn)

µ12 . (3-10)

Lemma 3.6. For all n ≥ 0, the restriction map (3-10) is an isomorphism.

Proof. Both complexes have length 2. That j∗ is an isomorphism in degree 0 follows directly from
Lemma 2.10. To prove the assertion in degree 1, note that elements of 0(X, ω⊗Vn)

Gm are of the form∑
k+l=n

f k,lωSkTl where f k,l
∈ grl−k+2O(X)

and elements of 0(Z , j∗Vn)
µ12 are of the form∑

k+l=n

gk,l j∗(ω)SkTl where gk,l
∈ gr[l−k+2]O(Z),

since j∗(ω) generates �1(Z), which follows from the fact that ω ∧ ψ 6= 0 and therefore j∗(ω) 6= 0.
Injectivity follows from Lemma 2.10: if j∗( f k,l) vanishes in gr[l−k+2]O(Z), it follows that f k,l

= 0. For
the surjectivity, observe that

j∗
( ∑

k+l=n

Gk,lωSkTl
)
=

∑
k+l=n

gk,l j∗(ω)SkTl,

where Gk,l
∈ grl−k+2O(X) is the unique preimage of gk,l

∈ gr[l−k+2]O(Z). �
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Since the map Z→ µ12\\Z =M1,1 is an étale map of stacks over Q, the complex

0(Z , �•Z ⊗ j∗Vn)
µ12 (3-11)

computes H •

dR(M1,1,Vn) for all n ≥ 0. Thus we have:

Corollary 3.7. The complex
(
�•(X,Vn)

ω,∇ω
)

computes H •

dR(M1,1,Vn) for all n ≥ 0.

We conclude this section by showing that the isomorphism (3-3) lifts to the level of de Rham complexes.

Proposition 3.8. There is a canonical isomorphism

�•(X,Vn)
Gm ∼=�

•(Z , j∗Vn)
µ12 ⊕�•(Z , j∗Vn)

µ12[−1]

of complexes.

Proof. The quotient of �•(X,Vn)
Gm by �•(X,Vn)

ω is ψ ⊗�•(X,Vn)
ω:

0 // 0(X,Vn)
Gm ∇

ω
// 0(X, ω⊗Vn)

Gm //

��

0

��

0 // 0(X,Vn)
Gm ∇

//

��

0(X, �1
X ⊗Vn)

Gm ∇
//

��

0(X, �2
X ⊗Vn)

Gm // 0

0 // 0 // ψ ⊗0(X,Vn)
Gm ∇

ω
// ψ ⊗0(X, ω⊗Vn)

Gm // 0

This exact sequence of complexes is naturally split since the third row defines a subcomplex of the second.
The result follows from Lemma 3.6 since ψ ⊗�•(X,Vn)

ω ∼=�•(X,Vn)
ω
[−1]. �

4. Proof of Theorem 1.2

In this section, we work over k=Q.

4A. Heads and tails. We show that the “head” of an element f of 0(X, ω⊗Vn)
Gm is related to the “tail”

of ∇ f by the Bol operator.

Lemma 4.1. For all n ≥ 0 there exists a unique Q-linear map

φ : M !
−n→ 0(X,Vn)

Gm

such that if we write
φ =

∑
j+k=n

φ j,kS jTk,

where φ j,k
∈ Hom(M !

−n, grk− jO(X)), then we have

φn,0( f )= f and ∇φ( f ) ∈ ωO(X)Tn. (4-1)

In other words, given a weakly holomorphic modular form f of weight −n, there is a unique section of Vn

which coincides with f in the first component, and whose image under ∇ vanishes in all components save
the last.
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Proof. Suppose that f ∈ M !
−n . We shall construct the components f j,k

:= φ j,k( f ) inductively in k. For
k = 0, we have f n,0

= f . The connection acts via (3-8) which we write

∇
ω
= ω

(
ϑ + S

∂

∂T
−

u
12

T
∂

∂S

)
.

Suppose that f a,b is defined for b ≤ k < n. The coefficient of S jTk in ∇ωφ( f ) is

ω
(
ϑ( f j,k)+ (k+ 1) f j−1,k+1

− ( j + 1) u
12

f j+1,k−1
)
.

There is a unique f j−1,k+1
∈ grk− j+2O(X) that makes this vanish; namely

f j−1,k+1
=

1
k+1

( j+1
12

u f j+1,k−1
−ϑ( f j,k)

)
.

By induction, these equations determine φ( f ) uniquely. �

Note that the inductive definition of φ involves dividing by k+ 1 for 1≤ k < n.

Lemma 4.2 (heads and tails). The diagram

M !
−n

φ
//

Dn+1/n!
��

0(X,Vn)
Gm

∇

��

M !n+2
$
// 0(X, ω⊗Vn)

Gm

commutes for all n ≥ 0, where Dn+1 is the Bol operator.

Proof. Let f ∈ M !
−n , and let φ( f ) be the unique section constructed in Lemma 4.1, whose coefficient of

Sn is f . Perform the change of gauge (2-12). In this gauge, the coefficient of An in φ( f ) is f :

φ( f )=
∑

j+k=n

F j,kA jTk, where Fn,0
= f.

The defining property of φ is that ∇φ( f ) is a multiple of ωTn. Let r( f ) ∈ O(X) be the coefficient.
That is,

∇φ( f )= r( f )ωTn.

This condition is preserved under the change of gauge (2-12), so that

∇φ( f )= r( f )ωTn
= r( f )

dq
q
Tn
= 2π ir( f ) dzTn.

By Lemma 2.11, we obtain the system of equations

Fn,0
= f, DF j,k

+ (k+ 1)F j−1,k+1
= 0, DF0,n

= r( f ).

It follows that r( f )= (−1)nDn+1 f/n!. This proves the result since if f is nonzero n must be even and
(−1)n = 1. �

Remark 4.3. The previous two lemmas imply a relation between the Bol operator, multiplication by u,
and the Serre derivative ϑ. Compare [Swinnerton-Dyer 1973, (25)].
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We have therefore proved the existence of (3-5). It remains to prove that it is an isomorphism.

4B. Proof of injectivity of (3-5). Suppose that ωg ∈ 0(X, ω⊗ Vn)
Gm is exact. Write ωg = ∇ f , where

f ∈ 0(X,Vn)
Gm . Consider the linear map

0(X,Vn)
Gm → M !

−n,
∑

j+k=n

f j,kS jTk
7→ f n,0.

Since ωg has the property that all coefficients S jTk except for j = 0, k = n vanish, it follows from
the uniqueness in Lemma 4.1 that f = φ( f n,0). By Lemma 4.2, it follows that ωg is in the image of
Dn+1 M !

−n .

4C. Proof of surjectivity (3-5). To complete the proof, we must show that the map (3-5) is surjective.
By the algebraic de Rham Theorem (Section 3), every class in H 1

dR(M1,1;Vn) is represented by a section
of the form

η =
∑

j+k=n

f j,kω S jTk,

where f j,k
∈ grk− j+2O(X). We show by induction that such a form is equivalent, modulo the image

of ∇, to one in which f j,k vanishes for all j > 0. Suppose that 0 ≤ j ≤ n is largest such that f j,k is
nonzero. If j is zero then there is nothing to prove, so assume j > 0. It follows from the connection
formula (2-10) that

∇(gS j−1Tk+1)≡ (k+ 1)gωS jTk mod Tk+1

for any g ∈O(X) of weight k− j + 2. Therefore, by replacing η by

η−
1

(k+1)
∇( f j,k S j−1Tk+1),

we can assume that f j,k vanishes, since the second term lies in 0(X, ω⊗Vn)
Gm by Lemma 3.4. Proceeding

in this manner, we deduce that every cohomology class in H 1
dR(M1,1;Vn) is represented by a form in the

image of (3-4).

Remark 4.4. The above argument works in characteristic 0 or >max{3, n}.

5. Periods of Cusp Forms

Let f ∈ Sn and g ∈ S!n . Write f =
∑

m>0 amqm and g =
∑

m bmqm. In [Guerzhoy 2008, Theorem 1], a
Hecke-equivariant pairing is defined, up to a sign, by

{ f, g} =
∑
m∈Z

amb−m

mn−1 . (5-1)

In this section we show it extends to all f ∈ S!n and that it corresponds to the image of ω f ⊗ωg under the
de Rham incarnation of the cup product

H 1
cusp(M1,1,VB

n )⊗ H 1
cusp(M1,1,VB

n )→ H 2
cusp(M1,1,Q)−→∼ Q
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induced by the natural pairing VB
n ⊗VB

n →Q, where VB
n is the local system (2-11).

5A. Inner products. Let V dR
=QA⊕QT be the fibre of the vector bundle V over the cusp. At q = 0,

S= A+ 2G2(0)T= A− 1
12T

so V dR is also spanned by S and T. Define a skew symmetric inner product

〈 , 〉dR : V dR
⊗ V dR

→Q

by declaring that 〈T,A〉 = 1. This is the natural inner product on V dR and corresponds to the cup product
pairing on the first de Rham cohomology group of an elliptic curve (see [Hain 2013, Proposition 19.1]).
It extends to a (−1)n symmetric inner product on V dR

n := Symn V dR by

〈v1v2 · · · vn, w1w2 · · ·wn〉 =
∑
σ∈6n

n∏
j=1

〈v j , wσ( j)〉 v j , wk ∈ V dR.

In particular,

〈An,Tn
〉 = 〈Sn,Tn

〉 = (−1)nn! (5-2)

This inner product induces an inner product 〈 , 〉dR : V n ⊗V n→OX which is flat with respect to the
connection ∇.

There is also a Betti version. As in the introduction, we set

V B
=Qa⊕Qb

and V B
n = Symn VB. The unique skew symmetric inner product 〈 , 〉B on VB satisfying 〈a, b〉B = 1

induces a (−1)n symmetric inner product

〈 , 〉 : V B
n ⊗ V B

n →Q

satisfying 〈an, bn
〉 = n! as above.

For each tangent vector Ev = eλ∂/∂q of the origin of the q-disk there is a comparison isomorphism

compB,dR : V
dR
⊗C→ V B

⊗C,

which is defined by

compB,dR(A)= a, compB,dR(T)=−2π i b+ λa.

It corresponds to the limit mixed Hodge structure on the first cohomology of the first order smoothing of
the nodal cubic in the direction of Ev. Observe that, for all λ, two inner products are related by

comp∗B,dR〈 , 〉dR = (2π i)−n
〈 , 〉B (5-3)

via the comparison map compB,dR : V
dR
n ⊗C→ V B

n ⊗C.



742 Francis Brown and Richard Hain

5B. Residue maps. The pullback of (Vn,∇) to a formal neighbourhood of the origin of the q-disk D∗

along the map

ρ : D∗→ X (C)

defined in Section 2C is the free Q[[q]]-module with basis {An,An−1T, . . . ,Tn
} endowed with the

connection (2-13). It can also be expressed in the frame {S jTk
} using the formal change of gauge (2-12).

The fraction field of Q[[q]] is the ring Q((q)) :=Q[[q]][q−1
] of Laurent series. Set

�1(D∗,Vn) :=Q((q))dq ⊗ V dR
n .

Define the local residue map �1(D∗,Vn)→Q to be the composite

Res :�1(D∗,Vn)→ V dR
n → V dR

n /AV dR
n−1 −→

∼ Q (5-4)

of the usual residue map with the map that sends A to 0 and T to 1. That is,

Res
( ∑

j+k=n

∑
m∈Z

a j,k
m qm dq

q
A jTk

)
= a0,n

0 .

Observe that if f ∈Q((q))⊗ Vn , then Res(∇ f )= 0, since by Equation (2-13), an exact section satisfies
∇ f ≡ 0 mod A.

The residue map

Res : 0(X, ω⊗Vn)
Gm →Q

is defined to be the composite of the restriction map

ρ∗ : 0(X, ω⊗Vn)
Gm →�1(D∗,Vn).

followed by the residue map (5-4).

5C. Cuspidal de Rham cohomology. Define the local cuspidal de Rham complex �•(D∗,Vn) by

�0
cusp(D

∗,Vn) :=

{ ∑
j+k=n

a j,k
m qmA jTk

: an,0
0 = 0

}

�1
cusp(D

∗,Vn) := ker
(

Res :Q((q))
dq
q
⊗ V dR

n →Q

)
.

It is closed under the differential∇. Since H 0(�•(D∗,Vn)) is spanned by An, we see that H 0(�•cusp(D
∗,Vn))

vanishes. The following lemma implies that this complex is acyclic. It is a local version of Lemma 4.2.
Its proof is similar.

Lemma 5.1 (local heads and tails). For all n≥0, every element of �1
cusp(D

∗,Vn) is exact in�•cusp(D
∗,Vn).

If

f =
∑

j+k=n

f j,kA jTk
∈Q((q))V dR

n and ∇( f )=
∑
k 6=0

akqk dq
q
Tn,
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then

(−1)nn!
(

q
d

dq

)n+1

f n,0
=

∑
k 6=0

akqk.

Consequently, the head f n,0 of f is

f n,0
=
(−1)n

n!

∑
k 6=0

akqk

kn+1 . �

The restriction mapping ρ :�•(X,Vn)
ω
→�•(D∗,Vn) commutes with ∇. Consequently,

�•cusp(X,Vn)
ω
:= ρ−1(�•cusp(D

∗,Vn)
)

is a subcomplex of �•(X,Vn)
ω.

Lemma 5.2. The complex �•cusp(X,Vn)
ω computes the cuspidal de Rham cohomology of M1,1/Q. That

is, the comparison isomorphism

compB,dR : H
•

dR(M1,1,Vn)⊗C−→∼ H •(SL2(Z), V B
n )⊗C

restricts to an isomorphism

compB,dR : H
•

cusp,dR(M1,1,Vn)⊗C−→∼ H •

cusp(SL2(Z), V B
n )⊗C.

Proof. This follows directly from the exactness of the sequence

0→�•cusp(X,Vn)
ω
→�•(X,Vn)

ω
→

[
QAn 0
−→Q

dq
q
Tn
]
→ 0.

Alternatively, it can be deduced directly from Theorem 1.2. �

5D. The residue pairing. By Lemma 5.1, the first homology of �•cusp(D
∗,Vn) vanishes. Define the local

residue pairing

{ , } :�1
cusp(D

∗,Vn)⊗�
1(D∗,Vn)→Q

as follows. Lemma 5.1 implies that each ξ ∈ �1
cusp(D

∗,Vn) can be uniquely written ξ = ∇F, where
F ∈�0

cusp(D
∗,Vn). We set

{ξ, η} := {∇F, η} = Resq=0〈F, η〉.

Lemma 5.3. This pairing is well-defined. We have{∑
j 6=0

a j q j dq
q
Tn,

∑
k∈Z

bkqk dq
q
Tn
}
=

∑
k+l=0

akbl

kn+1 .

It is (−1)n+1 symmetric when restricted to �1
cusp(D

∗,Vn)
⊗2.
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Proof. That it is well-defined follows from the uniqueness of F. To see that it is (−1)n+1 symmetric on
�1

cusp(D
∗,Vn), write ξ =∇F and η=∇G, where F,G ∈�0

cusp(D
∗,Vn). By flatness of the inner product,

d〈F,G〉 = 〈∇F,G〉− (−1)n〈∇G, F〉.

The symmetry property follows as the left-hand side has vanishing residue.
The formula is an immediate consequence of Lemma 5.1 as{

∇

( ∑
j+k=n

f j,kA jTk
)
, g dq Tn

}
=

∑
j+k=n

Resq=0 f j,k g〈A jTk,Tn
〉

= (−1)nn!Resq=0 f n,0g. �

By composing with the restriction maps

�1
cusp(X,Vn)

ω
→�1

cusp(D
∗,Vn) and �1(M1,1,Vn)→�1(D∗,Vn)

we obtain a well defined pairing

{ , } :�1
cusp(X,Vn)

ω
⊗�1(M1,1,Vn)→Q. (5-5)

Lemma 5.4. The pairing (5-5) has the property that {∇ f, ξ} = 0 for all f ∈ �0(X,Vn)
ω and ξ ∈

�1(X,Vn)
ω. Consequently, it induces a well-defined pairing∫ dR

: H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)→Q

such that the diagram

S!n ⊗M !n
{ , }

//

$⊗$

��

Q

H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)

∫ dR

55

commutes.

Proof. The one-form 〈 f, ξ〉 is an element of 0(X, ω ⊗ V0)
Gm , and therefore defines a class in the

cohomology of the complex (3-9). We showed that the latter computes H 1
dR(M1,1;V0)= 0, and so 〈 f, ξ〉

is exact. Its residue therefore vanishes.
Since the pairing (5-5) is (−1)n+1 symmetric on �1

cusp(M1,1,Vn), and since ∇ f ∈ �1
cusp(M1,1,Vn)

for all f ∈ �0(X,Vn), this implies that {ξ,∇ f } = 0 for all ξ ∈ �1
cusp(M1,1,Vn) and that the pairing is

well-defined on cohomology.
The formula for the pairing is a direct consequence of Lemma 5.3. �

5E. Relation to cup product. Our final task is to determine how
∫ dR is related to the cup product. For

this we need to discuss relative cohomology and its relation to cuspidal cohomology. Let 0∞ be the
subgroup of SL2(Z) generated by

(
1 1
0 1

)
. Throughout this section, we assume that n > 0.
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We have the exact sequence

0→ H 0(0∞; V B
n )→ H 1(SL2(Z), 0∞; V B

n )→ H 1
cusp(SL2(Z); V B

n )→ 0, (5-6)

which is dual to the exact sequence

0→ H 1
cusp(SL2(Z); V B

n )→ H 1(SL2(Z); V B
n )→ H 1(0∞; V B

n )→ 0

under the cup product pairing∫ B
: H 1(SL2(Z), 0∞; V B

n )⊗ H 1(SL2(Z); V B
n )→ H 2(SL2(Z), 0∞;Q)∼=Q

induced by 〈 , 〉B.

Remark 5.5. It is helpful to note that H 0(0∞, V B
n )=Qan and H 1(0∞, V B

n )= V B
n /aV B

n−1
∼=Qbn.

The algebraic analogue of the relative cohomology group above is the de Rham cohomology

H •

dR(M1,1,D∗;Vn),

which is defined to be the cohomology of the complex

�•(X,D∗;Vn)
ω
:= cone

[
�•(X,Vn)

ω
→�•(D∗,Vn)

]
[−1].

There is a comparison isomorphism

compB,dR : H
1
dR(M1,1,D∗;Vn)⊗C→ H 1(SL2(Z), 0∞; V B

n )⊗C.

There is a short exact sequence

0→QAn
→ H 1

dR(M1,1,D∗;Vn)→ H 1
cusp,dR(M1,1,Vn)→ 0 (5-7)

which maps to (5-6) after tensoring both sequences with C.
In order to use the cup product to construct a pairing between H 1

cusp,dR(M1,1,Vn) and H 1
dR(M1,1,Vn),

we need to choose a splitting of (5-7). Here we use the splitting

s : H 1
cusp,dR(M1,1,Vn)→ H 1

dR(M1,1,D∗;Vn)

that is defined by taking the class of ξ ∈ �1
cusp(X,Vn)

ω to the class of (ξ, F), where F is the unique
element of �0

cusp(D
∗,Vn) whose derivative is the restriction of ξ to D∗.

Proposition 5.6. The diagram

H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)⊗C

comp⊗2
B,dR ◦(s⊗1)

��

∫ dR

// C edR

��

H 1(SL2(Z), 0∞; Vn)⊗ H 1(Man
1,1;Vn)⊗C

∫ B

// C eB
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commutes, where edR
= (2π i)n+1eB and where

∫ B denotes the cup product induced by 〈 , 〉B evaluated
on the fundamental class of M1,1(C).

Proof. Suppose that ξ ∈�1
cusp(X;Vn) is cuspidal and η∈�1(X,Vn)

ω. They represent cohomology classes.
Let U be the analytic q-disk {q ∈ C : |q|< e−2π

} and U ′ =U −{0}. Since ξ is cuspidal, its restriction
to U ′ is exact. Choose a meromorphic section F̃ ∈ 0(U ′,V an

n ) such that ∇F̃ = ξ on U ′ and the image
F of F̃ in �0(D∗,Vn) is the unique element of F ∈�0

cusp(D
∗,Vn) such that ∇F is the q-expansion of ξ .

Choose r, R ∈ R such that 0< r < R < e−2π. Choose a smooth function ρ :U→ R≥0 which vanishes
outside the annulus

A := {q ∈U : r ≤ |q| ≤ R}

and is equal to 1 identically when |q| ≤ r . Then ξ̃ := ξ −∇(ρF̃) extends by 0 to a smooth 1-form on the
orbifold Man

1,1 with values in Vn⊗C, which vanishes in a neighbourhood of the cusp and equals ξ on |q|> R.
Since ρF̃ is a smooth section of Vn⊗C over Man

1,1, ξ̃ is a smooth form that represents the same class in
H 1

cusp(M1,1,Vn) as ξ . Since ∇(ρF̃) is supported in the annulus A and since ξ ∧η= 0, ξ̃ ∧η is supported
in A. Using (5-3), we have∫ B

(ξ ⊗ η)=
∫
Man

1,1
〈ξ̃ , η〉B = (2π i)n

∫
Man

1,1

〈ξ̃ , η〉dR =−(2π i)n
∫

A
d〈ρF̃, η〉dR

=
(Stokes)

(2π i)n
∫
|q|=r
〈F̃, η〉dR = (2π i)n+1 Resq=0 F̃η

= (2π i)n+1
{ξ, η} = (2π i)n+1∫ dR

(ξ ⊗ η). �

Remark 5.7. The Hecke invariance of Guerzhoy’s inner product (5-1) on cusp forms follows directly
from this description of the inner product using the projection formula.2

Remark 5.8. The section s defined above cannot be Hecke invariant. If it were, the Eisenstein series
Gn+2 would be orthogonal to S!n+2 under the inner product { , }. However, this is not the case, since it
would contradict the discussion in Section 6: orthogonality with respect to Gn+2 and cuspidality are two
distinct linear conditions on the space of weakly holomorphic modular forms.

Consider, by way of example, the case n = 10. There is a unique Q-linear combination f−1 ∈ S!12 of
the weakly holomorphic modular forms G241

−1, G12 and 1 such that f−1 = q−1
+ O(q2). It is given

explicitly by

f−1 = q−1
+ 47709536 q2

+ 39862705122 q3
+ 7552626810624 q4

+ · · · .

Its class in S!12/D
11 M !

−10 is a Hecke eigenform, with the same eigenvalues as 1. Since the leading
coefficient of 1 is q, we have

{1, f−1} = 1.

2This states that if f : X → Y is a smooth proper morphism, then ( f∗a) · b = f∗(a · f ∗b), where a ∈ H •(X; f ∗V) and
b ∈ H •(Y,V).
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On the other hand, from the Fourier expansion

G12 =
691

65520 + q + 2049q2
+ 177148q3

+ · · · ,

we find that a naive application of the formula (5-1) to f−1 and G12 would give {G12, f−1} = 1, and hence
S!12 is not orthogonal to G12Q.

5F. Proof of Theorem 1.7. Suppose that f is a Hecke eigen cusp form of weight 2n. Denote the
associated 2-dimensional subspace of H 1(M1,1,V2n−2)⊗K f by Vf . It has Betti and de Rham realisations
V B

f and V dR
f related by the comparison isomorphism compB,dR : V dR

f ⊗K f C→ V B
f ⊗K f C. The cup

product induces a nondegenerate, skew-symmetric pairing

〈 , 〉 : Vf ⊗ Vf → K f (−2n+ 1).

It has Betti and de Rham realisations

〈 , 〉B =
∫ B
⊗ eB and 〈 , 〉dR =

∫ dR
⊗ edR.

Let α f , β f be a K f -de Rham basis of V dR
f . There is a K f basis r+f , r

−

f of V B
f with 〈r+f , r

−

f 〉B = eB. Then

(
α f β f

)
=

(
r+f r−f

)( η+f ω+f
iη−f iω−f

)
=

(
r+f r−f

)
Pf ,

where η±f and ω±f are real numbers. By Proposition 5.6,〈
compB,dR(ω f ), compB,dR(η f )

〉
B =

〈
η+f r+f + iη−f r−f , ω

+

f r+f + iω−f r−f
〉
B

= det(Pf )eB

= (2π i)−2n+1 det(Pf )edR.

Since 〈ω f , η f 〉dR ∈ K×f edR, this implies that det(Pf ) ∈ (2π i)2n−1K×f .

6. A Q-de Rham splitting of the Hodge filtration

Let `= dim Sn , so that

dim M !n/D
n−1 M !2−n = dim H 1

dR(M1,1,Vn−2)= 2`+ 1.

Let ord∞ denote the order of vanishing at the cusp. It follows from the Riemann–Roch formula, as noted
in [Duke and Jenkins 2008], that

ord∞ f ≤ `

for all f ∈ M !n . Furthermore, it was shown in [Guerzhoy 2008] that for any f ∈ M !n , there exists a unique
representative of f modulo Dn−1 M !2−n such that

ord∞ f ≥−`.
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Since the dimension of M !n/Dn−1 M !2−n is exactly 2`+1, it follows that such an f is uniquely determined
by its 2`+ 1 Fourier coefficients (a−`, . . . , a`) ∈Q2`+1, where

f =
∑

n≥−`

anqn,

and, conversely, any vector (a−`, . . . , a`) ∈Q2`+1 uniquely determines an element in M !n/Dn−1 M !2−n . It
follows that the functions f ∈ M !n of the form

fm = qm
+ O(q`+1)

for every −`≤ m ≤ `, are a Q-basis for H 1
dR(M1,1;Vn), by Theorem 1.2. These functions satisfy some

remarkable properties, studied in [Duke and Jenkins 2008].
This basis simultaneously gives a Q-de Rham splitting of the Hodge filtration

H 1
dR(M1,1,Vn−2)= F0

⊃ F1
= · · · = Fn−2

⊃ Fn−1
= Mn ⊃ Fn

= 0

and of the weight filtration

0=Wn−2 ⊂ H 1
cusp,dR(M1,1,Vn−2)=Wn−1 ⊂Wn = · · · =W2n−3 ⊂W2n−2 = H 1

dR(M1,1,Vn−2).

The splitting of

0→ Fn−1 H 1
cusp,dR(M1,1,Vn−2)→ H 1

cusp,dR(M1,1,Vn−2)→ grn−1
F H 1

cusp,dR(M1,1,Vn−2)→ 0

is given by lifting gr0
F H 1

cusp,dR(M1,1,Vn−2) to the subspace of M !n/Dn−1 M1
2−n consisting of those f

whose Fourier coefficients a j vanish when 0≤ j ≤ `. The splitting of the weight filtration is given by the
Eisenstein series.

Appendix: Framings

The aim of this appendix is to explain the choice of the power of 2π i in the cocycle formula (1-6). Here
we take k=Q.

Recall that π : E → X denotes the universal elliptic curve and that VB
n denotes the n-th symmetric

power of R1π∗Q. It underlies a variation of Hodge structure of weight n. To give a framing of VB
n , it

suffices to give a framing of VB
:= VB

1 .
The pullback of VB to H along ρ :H→ X is the trivial local system whose fibre over z ∈H is H 1(Ez),

where Ez := C/(Z⊕ zZ). We identify H 1(Ez) with its dual H1(Ez) ∼= Hom(H1(Ez),Z) by Poincaré
duality

P : H1(Ez)→ H 1(Ez), P(c) := 〈c, 〉,

where 〈 , 〉 denotes the intersection pairing. On the level of Hodge structures, Poincaré duality is an
isomorphism

P : H1(Ez,Q)→ H 1(Ez,Q(1)).
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Denote the standard basis of H1(Ez;Z) by a, b. These classes correspond to the lattice points 1 and z,
respectively. Denote the dual basis of H 1(Ez)∼= Hom(H1(Ez),Z) by ǎ, b̌. Then b̌= P(a) and ǎ = P(b).
We identify the (Betti) components of H1(E) and H 1(E) via P. With this identification

dw =−b+ za,

where w is the coordinate in the universal covering C of Ez . The abelian differential dx/y on the elliptic
curve corresponding to ρ(z) is 2π i dw. This is the section T of Vn . So T corresponds to the section

T= 2π i dw = 2π i(za− b)

of V an
:= V⊗O(H).

Each f ∈ M !n+2 corresponds to an element h(u, v)∈O(X). The corresponding 1-form ω f is hTnω. So

ρ∗ω f = (2π i)n f (z)(za− b)n
dq
q
= (2π i)n+1 f (z)(za− b)n dz.
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