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Let G be a p-adic reductive group. We determine the extensions between admissible smooth mod p
representations of G parabolically induced from supersingular representations of Levi subgroups of G,
in terms of extensions between representations of Levi subgroups of G and parabolic induction. This
proves for the most part a conjecture formulated by the author in a previous article and gives some strong
evidence for the remaining part. In order to do so, we use the derived functors of the left and right adjoints
of the parabolic induction functor, both related to Emerton’s δ-functor of derived ordinary parts. We
compute the latter on parabolically induced representations of G by pushing to their limits the methods
initiated and expanded by the author in previous articles.

1. Introduction 780

2. Generalised Bruhat filtrations 787
2.1. Double cosets 787
2.2. Definition of filtrations 789
2.3. Computation of the associated graded representations 791

3. Derived ordinary parts 794
3.1. Cohomology, Hecke action and dévissage 794
3.2. Computations on the associated graded representations 799
3.3. Computations on parabolically induced representations 804

4. Derived Jacquet functors 810
4.1. Pro-categories 810
4.2. A second exact sequence 810
4.3. Adaptation of the computations 812

5. Application to extensions 816
5.1. Preliminaries 816
5.2. Extensions between parabolically induced representations 821
5.3. Results for unitary continuous p-adic representations 825

Acknowledgements 830

References 830

This research was partly supported by EPSRC grant EP/L025302/1.
MSC2010: 22E50.
Keywords: p-adic reductive groups, mod p representations, parabolic induction, extensions, derived ordinary parts, Bruhat

filtration.

779

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2018.12-4
http://dx.doi.org/10.2140/ant.2018.12.779


780 Julien Hauseux

1. Introduction

The study of representations of a p-adic reductive group G over a field of characteristic p has a strong
motivation in the search for a possible mod p Langlands correspondence for G. Recently, Abe, Henniart,
Herzig and Vignéras [Abe et al. 2017a] gave a complete classification of the irreducible admissible
smooth representations of G over an algebraically closed field of characteristic p in terms of supersingular
representations of the Levi subgroups of G and parabolic induction, generalising the results of Barthel
and Livné [1994] for GL2, Herzig [2011] for GLn and Abe [2013] for a split G.

Two major difficulties come into play when trying to extend the mod p Langlands correspondence
beyond GL2(Qp). First, the supersingular representations of G remain completely unknown, except for
some reductive groups of relative semisimple rank 1 over Qp [Abdellatif 2014; Cheng 2013; Kozioł 2016]
using the classification of Breuil [2003] for GL2(Qp). Second, it is expected that such a correspondence
would involve representations of G with many irreducible constituents; see, e.g., [Breuil and Herzig 2015].
This phenomenon already appears for GL2(Qp) when the Galois representation is an extension between
two characters, in which case the corresponding representation of GL2(Qp) is an extension between two
principal series [Colmez 2010]. This raises the question of the extensions between representations of G.

In this article, we intend to compute the extensions between admissible smooth mod p representations
of G parabolically induced from supersingular representations of Levi subgroups of G, in terms of
extensions between representations of Levi subgroups of G and parabolic induction.

In order to do so, we use the derived functors of the left and right adjoints of the parabolic induction
functor, namely the Jacquet functor and the ordinary parts functor [Emerton 2010a], both related to
Emerton’s δ-functor of derived ordinary parts [Emerton 2010b]. We compute the latter on parabolically
induced representations of G by pushing to their limits the methods initiated in [Hauseux 2016a] and
expanded in [Hauseux 2016b].

These computations have also been used to study the deformations of parabolically induced admissible
smooth mod p representations of G in a joint work with T. Schmidt and C. Sorensen [Hauseux et al.
2016].

Presentation of the main results. We let F/Qp and k/Fp be finite extensions. We fix a connected
reductive algebraic F-group G, a minimal parabolic subgroup B ⊆ G and a maximal split torus S⊆ B.
We write the corresponding groups of F-points G, B, S, etc. We let 1 denote the set of simple roots of
S in B. To each α ∈1 there corresponds a simple reflection sα and a root subgroup Uα ⊂ B. We put
11
:= {α ∈1 | dimF Uα = 1}.

Let P = L N be a standard parabolic subgroup. We write 1L ⊆1 for the corresponding subset and
we put 1⊥L := {α ∈ 1 | 〈α, β

∨
〉 = 0 ∀β ∈ 1L} and 1⊥,1L := 1⊥L ∩1

1. For α ∈ 1⊥,1L , conjugation by
(any representative of) sα stabilises L and α extends to an algebraic character of L; see the proof of
Lemma 5.1.4.

We let P− denote the opposite parabolic subgroup. Recall the parabolic induction functor IndG
P− from

the category of admissible smooth representations of L over k to the category of admissible smooth
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representations of G over k, which is k-linear, fully faithful and exact [Emerton 2010a]. In particular, it
induces a k-linear injection Ext1L ↪→ Ext1G .

Let σ be an admissible smooth representation of L over k. For α ∈1⊥,1L , we consider the admissible
smooth representation σ α⊗(ω−1

◦α) of L over k where σ α is the sα-conjugate of σ and ω : F×→F×p ⊆ k×

is the mod p cyclotomic character. We say that σ is supersingular if it is absolutely irreducible and
Fp⊗k σ is supersingular [Abe et al. 2017a].

In cases (iii) and (iv) of the following conjecture, “otherwise” means that the conditions of case (ii) are
not all satisfied.

Conjecture 1.1 [Hauseux 2016b, Conjecture 3.17]. Assume G split with connected centre and simply
connected derived subgroup. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups and σ, σ ′ be
supersingular representations of L , L ′ over k, respectively. Assume IndG

P− σ and IndG
P ′− σ

′ irreducible or
p 6= 2.

(i) If P ′ 6⊆ P and P 6⊆ P ′, then Ext1G
(
IndG

P ′− σ
′, IndG

P− σ
)
= 0.

(ii) If F =Qp, P ′ = P and σ ′ ∼= σ α ⊗
(
ω−1
◦α
)
6∼= σ for some α ∈1⊥L , then

dimk Ext1G
(
IndG

P− σ
′, IndG

P− σ
)
= 1.

(iii) Otherwise if P ′ ⊆ P , then the functor IndG
P− induces a k-linear isomorphism

Ext1L
(
IndL

L∩P ′− σ
′, σ

)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

(iv) Otherwise if P ⊆ P ′, then the functor IndG
P ′− induces a k-linear isomorphism

Ext1L ′
(
σ ′, IndL ′

L ′∩P− σ
)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

We prove cases (ii), (iii), and (iv) of this conjecture and give some strong evidence for case (i). We
actually work without any assumption on G and our results hold true for broader classes of representations;
see Section 5.2 for more precise statements. We also prove similar results for unitary continuous p-adic
representations; see Section 5.3.

We treat the cases F =Qp and F 6=Qp separately. They are in fact the degree 1 case of a more general
(but conditional to a conjecture of Emerton) result on the k-linear morphism ExtnL → ExtnG induced by
IndG

P− in all degrees n ≤ [F :Qp]; see Remark 5.2.6.

Theorem 1.2 (Theorem 5.2.2). Assume F = Qp. Let P = L N, P ′ = L′N ′ be standard parabolic
subgroups and σ, σ ′ be supersingular representations of L , L ′ over k, respectively.

(i) If P ′ = P and σ ′ 6∼= σ α ⊗ (ω−1
◦ α) for all α ∈ 1⊥,1L , then the functor IndG

P− induces a k-linear
isomorphism

Ext1L
(
σ ′, σ

)
−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)
.

(ii) If P ′ $ P , then the functor IndG
P− induces a k-linear isomorphism

Ext1L
(
IndL

L∩P ′− σ
′, σ

)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.
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(iii) If P $ P ′, then the functor IndG
P ′− induces a k-linear isomorphism

Ext1L ′
(
σ ′, IndL ′

L ′∩P− σ
)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

If P ′= P , we do not know the exact dimension of the cokernel of the k-linear injection Ext1L(σ
′, σ ) ↪→

Ext1G(IndG
P− σ

′, IndG
P− σ) induced by IndG

P− in general, but we prove that it is at most card{α ∈ 1⊥,1L |

σ ′ ∼= σ α ⊗ (ω−1
◦α)}; see Remark 5.2.3 for more details. Further, we compute it when G is split with

connected centre; see Theorem 1.4 below. Note that in cases (ii) and (iii), the source of the isomorphism
can be nonzero [Hu 2017].

Theorem 1.3 (Theorem 5.2.4). Assume F 6=Qp. Let P = L N be a standard parabolic subgroup. The
functor IndG

P− induces a k-linear isomorphism

Ext1L
(
σ ′, σ

)
−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)

for all admissible smooth representations σ , σ ′ of L over k.

In particular, Theorem 1.2(ii) and (iii) hold true for any admissible smooth representations σ, σ ′ of
L , L ′ respectively over k when F 6=Qp; see Corollary 5.2.5.

We complete Theorem 1.2(i) when G is split with connected centre (see also Remark 5.2.8 for a more
general, but conditional to a conjecture of Emerton, result on the k-linear morphism Ext[F :Qp]

L →Ext[F :Qp]
G

induced by IndG
P−).

Theorem 1.4 (Theorem 5.2.7). Assume F =Qp and G split with connected centre. Let P = L N be a
standard parabolic subgroup and σ, σ ′ be supersingular representations of L over k.

(i) If σ ′ ∼= σ α ⊗ (ω−1
◦α) 6∼= σ for some α ∈1⊥L , then Ext1L(σ

′, σ )= 0 and

dimk Ext1G
(
IndG

P− σ
′, IndG

P− σ
)
= 1.

(ii) If either σ ′ ∼= σ and p 6= 2, or σ ′ 6∼= σ α ⊗ (ω−1
◦α) for any α ∈1⊥L , then the functor IndG

P− induces
a k-linear isomorphism

Ext1L
(
σ ′, σ

)
−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)
.

(iii) If p = 2, then the functor IndG
P− induces a k-linear injection

Ext1L
(
σ ′, σ

)
↪→ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)

whose cokernel is of dimension card{α ∈1⊥L | σ
′ ∼= σ α}.

Finally, we treat the case where there is no inclusion between the two parabolic subgroups, assuming a
special case of Conjecture 1.7 below; see also Remark 3.3.6.

Proposition 1.5 (Proposition 5.2.1). Let P = L N, P ′ = L′N ′ be standard parabolic subgroups and σ, σ ′

be supersingular representations of L , L ′ over k, respectively. Assume Conjecture 1.7 is true for A = k,
n = 1 and Iw J

= 1. If P ′ 6⊆ P and P 6⊆ P ′, then

Ext1G
(
IndG

P ′− σ
′, IndG

P− σ
)
= 0.
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As a consequence, Conjecture 1.1 is true under the same assumption when G is split with connected
centre (without assuming the derived subgroup of G simply connected).

Corollary 1.6 (Corollary 5.2.9). Assume G split with connected centre. If Conjecture 1.7 is true for
A = k, n = 1 and Iw J

= 1, then Conjecture 1.1 is true.

Strategy of proof and methods used. Let E/Qp be a finite extension with ring of integers O and residue
field k. We work more generally with smooth representations over an Artinian local O-algebra A with
residue field k.

The main tools to compute extensions between parabolically induced representations are two exact
sequences related to Emerton’s δ-functor of derived ordinary parts (see below (1) which is due to Emerton
and (2) which is a new feature of this article).

Using these, most of the previous results reduce to computing the derived ordinary parts of parabolically
induced representations. We formulate a conjecture on these computations (see Conjecture 1.7 below).
We prove it in low degree (see Theorem 1.8 below) and give some strong evidence for it in general.

We proceed in two steps: first we construct filtrations of parabolically induced representations related
to the Bruhat decomposition; second we partially compute the derived ordinary parts of the associated
graded representations using some dévissages.

Derived ordinary parts and extensions. Let P ⊆ G be a parabolic subgroup and L ⊆ P be a Levi factor.
We let P− ⊆ G denote the parabolic subgroup opposed to P with respect to L. Emerton [2010a; 2010b]
constructed a cohomological δ-functor H•OrdP from the category of admissible smooth representations
of G over A to the category of admissible smooth representations of L over A, which is the right adjoint
functor OrdP of IndG

P− in degree 0. From this, he derived a natural exact sequence of A-modules

0→ Ext1L (σ,OrdP π)→ Ext1G
(
IndG

P− σ, π
)
→ HomL

(
σ,H1OrdP π

)
(1)

for all admissible smooth representations σ and π of L and G respectively over A.
In Section 4.2, we construct a second exact sequence in which parabolic induction is on the right. The

construction is somewhat dual to that of (1) but not exactly (see Remark 4.2.1(ii)). We let d denote the
integer dimF N and δ denote the algebraic character of the adjoint representation of L on detF (Lie N).
The key fact is that the A-linear functors

H• (N ,−) := H[F :Qp]d−•OrdP ⊗ (ω ◦ δ) .

form a homological δ-functor from the category of admissible smooth representations of G over A to the
category of admissible smooth representations of L over A, which is isomorphic to the left adjoint functor
(−)N of IndG

P in degree 0 (hence the notation). From this and using a result of Oort [1964] to compute
extensions using pro-categories (see Section 4.1), we derive a natural exact sequence of A-modules

0→ Ext1L (πN , σ )→ Ext1G
(
π, IndG

P σ
)
→ HomL (H1 (N , π) , σ ) (2)

for all admissible smooth representations π and σ of G and L respectively over A.
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Computation of derived ordinary parts. We let W be the Weyl group of (G, S). For I ⊆ 1, we write
PI = L I NI for the corresponding standard parabolic subgroup, BI ⊆ L I for the minimal parabolic
subgroup B ∩ L I and WI ⊆W for the subgroup generated by (sα)α∈I .

Let I, J ⊆1, σ be a locally admissible smooth representation of L I over A and n ∈ N. We intend to
compute the smooth representation of LJ over A

HnOrdPJ

(
IndG

P−I
σ
)
.

In Section 2.2, we use the generalised Bruhat decomposition

G =
⊔

Iw J∈IW J

P−I
Iw J PJ

where IW J is the system of representatives of minimal length of the double cosets WI\W/WJ (see
Section 2.1) to define a natural filtration Fil•PJ

(IndG
P−I
σ) of IndG

P−I
σ by A[PJ ]-submodules indexed by

IW J (with the Bruhat order). We also adapt the notion of graded representation associated with such a
filtration (in particular, the grading has values in IW J ) and we prove that for all Iw J

∈
IW J , there is a

natural A[PJ ]-linear isomorphism

Gr
Iw J

PJ

(
IndG

P−I
σ
)
∼= c-indP−I

Iw J PJ

P−I
σ.

We prove that Fil•PJ
(IndG

P−I
σ) induces a filtration of HnOrdPJ (IndG

P−I
σ) by A[LJ ]-submodules indexed by

IW J (see Proposition 3.3.1).
Finally, we attach to each Iw J

∈
IW J an integer dIw J and an algebraic character δIw J of LJ∩ Iw J−1(I )

(see Notation 2.3.3 and Remark 2.3.4), and we formulate the following conjecture.

Conjecture 1.7 (Conjecture 3.3.4). Let σ be a locally admissible smooth representation of L I over A,
Iw J
∈

IW J and n ∈ N. There is a natural A[LJ ]-linear isomorphism

HnOrdPJ

(
c-indP−I

Iw J PJ
P−I

σ
)
∼= IndLJ

LJ∩P−J∩ IwJ−1(I )

(
(Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ)
Iw J
⊗ (ω−1

◦ δIw J )
)
.

We give some strong evidence for this conjecture (see Theorem 3.3.3): we prove that these two
representations have natural filtrations by A[BJ ]-submodules indexed by J∩Iw J−1(I )WJ (the system of
representatives of minimal length of the right cosets WJ∩ Iw J−1(I )\WJ ) such that the associated graded
representations are naturally isomorphic; see the subsection below.

We prove this conjecture in several cases (see Proposition 3.3.5): whenever the right-hand side is either
zero or a trivially induced representation, in which cases the aforementioned filtrations of both sides are
trivial; when n = 0, in which case we deduce the result from the computation of OrdPJ (IndG

P−I
σ) in [Abe

et al. 2017b]. This allows us to compute H•OrdPJ (IndG
P−I
σ) in low degree when there is an inclusion

between I and J ; see Proposition 3.3.7. In particular, we obtain the following result in the case I = J .

Theorem 1.8 (Corollary 3.3.8). Let P = L N be a standard parabolic subgroup and σ be a locally
admissible smooth representation of L over A.

(i) For all n ∈ N such that 0< n < [F :Qp], we have HnOrdP(IndG
P− σ)= 0.
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(ii) If OrdL∩sαPs−1
α
σ = 0 for all α ∈11

\ (1L ∪1
⊥

L ), then there is a natural A[L]-linear isomorphism

H[F :Qp]OrdP
(
IndG

P− σ
)
∼=

⊕
α∈1⊥,1L

σ α ⊗
(
ω−1
◦α
)
.

Note that for all α ∈1 \1L , L ∩ sα Ps−1
α is the standard parabolic subgroup of L corresponding to

1L ∩ sα(1L) and it is proper if and only if α 6∈1⊥L . In particular, the condition in (ii) is satisfied when σ
is supersingular.

In Section 4.3, we adapt the previous results in order to partially compute Hn(NJ , IndG
PI
σ). We obtain

an analogue of Theorem 1.8; see Corollary 4.3.4.

Filtrations and dévissages. Let Iw J
∈

IW J. We explain the partial computation of the smooth representa-
tion of LJ over A

HnOrdPJ

(
c-indP−I

Iw J PJ
P−I

σ
)
.

In Section 2.2, we use again the Bruhat decomposition to construct a natural filtration Fil•B
(
c-indP−I

Iw J PJ
P−I

σ
)

by A[B]-submodules indexed by J∩Iw J−1(I )WJ , and we prove that for all wJ ∈
J∩Iw J−1(I )WJ there is a

natural A[B]-linear isomorphism

GrwJ
B

(
c-indP−I

Iw J PJ
P−I

σ
)
∼= c-indP−I

Iw JwJ B
P−I

σ.

We prove that Fil•B
(
c-indP−I

Iw J PJ
P−I

σ
)

induces a filtration of HnOrdPJ

(
c-indP−I

Iw J PJ
P−I

σ
)

by A[BJ ]-submodules
indexed by J∩Iw J−1(I )WJ (see Proposition 3.3.2). Likewise, we construct a natural filtration

Fil•BJ

(
IndLJ

LJ∩P−J∩ IwJ−1(I )
σ̃
)

by A[BJ ]-submodules indexed by J∩Iw J−1(I )WJ for any smooth representation σ̃ of L J∩ Iw J−1(I ) over A.
Let wJ ∈

J∩Iw J−1(I )WJ and set Iw := Iw JwJ and πIw := c-indP−I
IwB

P−I
σ . We want to compute the A-

module Hn(NJ,0, πIw) endowed with the Hecke action of B+J (see Section 3.1), where NJ,0 ⊆ NJ is a
compact open subgroup and B+J ⊆ BJ is the open submonoid stabilising N0 by conjugation (we use
similar notation for subgroups of NJ and BJ by taking intersections with NJ,0 and B+J respectively).

In Section 2.3, we define closed subgroups NJ,Iw ⊆ NJ and BJ,wJ ⊆ BJ such that there is a semidirect
product BJ,wJ n NJ,Iw and we give an explicit description of the actions of NJ,Iw and BJ,wJ on πIw for all
wJ ∈

J∩Iw J−1(I )WJ . Then, we compute the A-module Hn(NJ,Iw,0, πIw) with the Hecke action of B+J,wJ

(see Proposition 3.2.6).
The idea is to use a semidirect product NJ,Iw = N ′′J,Iw n N ′J,Iw (also defined in Section 2.3) where

N ′J,Iw ⊆ NJ,Iw is a closed subgroup stable under conjugation by BJ,wJ such that πIw is N ′J,Iw,0-acyclic
and there is an A[B+J,wJ

]-linear surjection with a locally nilpotent kernel from π N ′J,Iw,0
Iw

onto

GrwJ
BJ

(
IndLJ

LJ∩P−J∩ IwJ−1(I )
(σ|L I∩ IwJ (J )

)
Iw J )

.

Then, taking the N ′′J,Iw,0-cohomology changes σ|L I∩IwJ (J )
into HnOrdL I∩PI∩ IwJ (J )

σ in the target and the
inflation map is an A[B+J,wJ

]-linear isomorphism between the source and Hn(NJ,Iw,0, πIw).
Finally, by a technical result on dévissages (see Proposition 3.1.2) and a finiteness property of the

A-modules H•(NJ,Iw,0, πIw), we can compute the A-module Hn(NJ,0, πIw) with the Hecke action of
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B+J,wJ
from Hn(NJ,Iw,0, πIw). It is this dévissage that introduces the degree shift and the twist (i.e., dIw J

and δIw J ) in the formulas.

Notation and terminology. Let F/Qp be a finite extension. A linear algebraic F-group will be denoted
by a boldface letter like H and the group of its F-points H(F) will be denoted by the corresponding
ordinary letter H . We will also write Hder for its derived subgroup and H◦ for its identity component.
The group of algebraic characters of H will be denoted by X∗(H), the group of algebraic cocharacters of
H will be denoted by X∗(H), and we will write 〈− ,−〉 : X∗(H)×X∗(H)→ Z for the natural pairing.
We now turn to reductive groups. The main reference for these is [Borel and Tits 1965].

Let G be a connected reductive algebraic F-group. We write Z for the centre of G. Let S⊆ G be a
maximal split torus. We write Z (resp. N ) for the centraliser (resp. normaliser) of S in G and W for
the Weyl group N /Z =N/Z. We write 8⊆ X∗(S) for the set of roots of S in G and 80 ⊆8 for the
subset of reduced roots. To each α ∈8 correspond a coroot α∨ ∈ X∗(S), a reflection sα ∈W and a root
subgroup Uα ⊂ G (which is denoted by U(α) in [loc. cit.]). For α, β ∈8, we write α ⊥ β if and only if
〈α, β∨〉 = 0. For I ⊆1, we put

I⊥ := {α ∈1 | α ⊥ β ∀β ∈ I }.

Let B ⊆ G be a minimal parabolic subgroup containing S. We write U for the unipotent radical of B (so
that B =ZU), 8+ ⊆8 for the subset of roots of S in U and 1⊆8+ for the subset of simple roots. We
set 8+0 :=80 ∩8

+. A simple reflection is a reflection sα ∈W with α ∈1. A reduced decomposition of
w ∈W is any decomposition into simple reflections w = s1 . . . sn with n ∈ N minimal, which is called
the length of w and denoted by `(w). We write w0 for the element of maximal length in W .

We say that P = L N is a standard parabolic subgroup if P ⊆ G is a parabolic subgroup containing B
with unipotent radical N and L ⊆ P is the Levi factor containing S (we say that L is a standard Levi
subgroup). In this case, we write P− for the parabolic subgroup of G opposed to P with respect to L
(i.e., P ∩ P− = L) and N− for the unipotent radical of P−. We write ZL for the centre of L, BL ⊆ L
for the minimal parabolic subgroup B∩ L, UL ⊆ BL for the unipotent radical U ∩ L (so that BL =ZUL

and U = UL n N) and 1L ⊆1 for the subset of simple roots of S in UL .
Each parabolic subgroup of G is conjugate to exactly one standard parabolic subgroup and the map

P = L N 7→ 1L yields a bijection between standard parabolic subgroups of G and subsets of 1. For
I ⊆ 1, we write PI = L I NI for the corresponding standard parabolic subgroup (i.e., 1L I = I ), ZI ,
BI , UI instead of ZL I , BL I , UL I respectively, WI ⊆W for the subgroup generated by (sα)α∈I (so that
PI = BWI B), wI,0 for the element of maximal length in WI , 8I ⊆8 for the subset of roots of S in L I

and 8+I ⊆8
+ for the subset of roots of S in UI .

Let E/Qp be a finite extension with ring of integers O and residue field k. We let A be an Artinian
local O-algebra with residue field k. We write ε : F×→ Z×p ⊆O× for the p-adic cyclotomic character
(defined by

ε(x)= NrmF/Qp(x)|NrmF/Qp(x)|p

for all x ∈ F×) and ω : F×→ A× for its image in A×.
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We use the terminology and notation of [Emerton 2010a, §2] for representations of a p-adic Lie group
H over A. An H -representation is a smooth representation of H over A and a morphism between H -
representations is A-linear. We write Modsm

H (A) for the category of H -representations and H -equivariant
morphisms, and Modadm

H (A) (resp. Modl.adm
H (A), Modsm

H (A)
Z H−l.fin) for the full subcategory of admissible

(resp. locally admissible, locally Z H -finite) H -representations (here Z H denotes the centre of H ).
Assume H ⊆ G is closed and π is an H -representation. For g ∈ G, we write π g for the g−1 Hg-

representation with the same underlying A-module as π on which g−1hg acts as h for all h ∈ H . If g ∈ H ,
then g−1 Hg = H and the action of g on π induces a natural H -equivariant isomorphism π −→∼ π g.

Assume furthermore Z ⊆ H . For w ∈W , we write πw for the n−1 Hn-representation πn where n ∈N
is any representative of w (neither n−1 Hn nor πn depend on the choice of n up to isomorphism). For
α ∈1, we simply write πα instead of π sα .

For a topological space X and an A-module V , we write Csm(X, V ) for the A-module of locally
constant functions f : X → V and Csm

c (X, V ) for the A-submodule consisting of those functions with
compact support (the support of f is the open and closed subset supp f := f −1(V \{0})⊆ X ).

2. Generalised Bruhat filtrations

The aim of this section is to define filtrations of parabolically induced representations and describe the
associated graded representations. In Section 2.1, we review some properties of the representatives
of minimal length of certain double cosets in W and some variants of the Bruhat decomposition. In
Section 2.2, we define the notion of filtration indexed by a poset and we construct filtrations of induced
representations indexed by subsets of W with the Bruhat order using the previous decompositions. In
Section 2.3, we define several subgroups of U that we use to describe the graded representations associated
with the previous filtrations as spaces of locally constant functions with compact support.

2.1. Double cosets. We recall some facts about certain right cosets in W ; see [Borel and Tits 1972,
Proposition 3.9]. For any I ⊆ 1, we define a system of representatives of the right cosets WI\W by
setting

IW :=
{
w ∈W

∣∣ w is of minimal length in WIw
}
.

For all w ∈ W , there exists a unique decomposition w = wI
Iw with wI ∈ WI and Iw ∈ IW . This

decomposition is characterised by the equality

8+I ∩w(8
+)=8+I ∩wI (8

+

I ).

In particular, we have Iw−1(8+I )⊆8
+. Furthermore, we have `(w)= `(wI )+ `(

Iw).
We now recall some properties of certain double cosets in W ; see, for example, [Digne and Michel 1991,

Lemma 5.4]. For any I, J ⊆1, we define a system of representatives of the double cosets WI\W/WJ by
setting

IW J
:=

IW ∩ (J W )−1.
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For all Iw ∈ IW , there exists a unique decomposition Iw = Iw JwJ with Iw J
∈

IW J and wJ ∈WJ . In fact
wJ ∈

J∩Iw J−1(I )WJ . This decomposition is characterised by the equality

8+J ∩
Iw−1(8+)=8+J ∩w

−1
J (8+J ). (3)

In particular, we have Iw J (8+J )⊆8
+. Furthermore, we have `(Iw)= `(Iw J )+`(wJ ). Conversely, for all

Iw J
∈

IW J and wJ ∈WJ , we have Iw JwJ ∈
IW if and only if wJ ∈

J∩Iw J−1(I )WJ . Note that the projections
W � IW and IW � IW J respect the Bruhat order;1 see [Björner and Brenti 2005, Proposition 2.5.1].

Lemma 2.1.1. We have the following equalities in G.

(i) L I ∩
Iw J UJ

Iw J−1
= UI∩ Iw J (J )

(ii) L I ∩
Iw J LJ

Iw J−1
= LI∩ Iw J (J )

(iii) L I ∩
Iw J NJ

Iw J−1
= L I ∩ NI∩ Iw J (J )

(iv) L I ∩
Iw J PJ

Iw J−1
= L I ∩ PI∩ Iw J (J )

Proof. First, we prove the following equalities in 8:

8I ∩
Iw J (J )= I ∩ Iw J (J ), (4)

8I ∩
Iw J (8+J )=8+I∩ Iw J (J ). (5)

We prove the nontrivial inclusion of (4). Assume 8I ∩
Iw J (J ) 6= ∅ and let α ∈ 8I ∩

Iw J (J ). Since
Iw J (J ) ⊆ 8+, α ∈ 8+I so that there exists (rβ)β∈I ∈ NI such that α =

∑
β∈I rββ. Then Iw J−1(α) =∑

β∈I rβ Iw J−1(β) ∈1. Since Iw J−1(β) ∈8+ for all β ∈ I , rβ = 0 for all β ∈ I\{α} and rα = 1. Thus
α ∈ I . We prove the nontrivial inclusion of (5). Assume 8I ∩

Iw J (8+J ) 6=∅ and let α ∈8I ∩
Iw J (8+J ).

There exists (rβ)β∈J ∈NJ such that α=
∑

β∈J rβ Iw J (β). Since Iw J (β)∈8+ for all β ∈ J , Iw J (β)∈8+I
so that Iw J (β) ∈ I by (4) for all β ∈ J such that rβ > 0. Thus α ∈8+I∩ Iw J (J ).

Now, by considering the Lie algebras, (5) yields (i), (5) and its opposite yield (ii), the equality
8I ∩

Iw J (8+\8+J ) = 8
+

I \8
+

I∩ Iw J (J ) (which follows from (5) and the fact that 8I ∩
Iw J (8+) = 8+I

since Iw J
∈

IW ) yields (iii), and we deduce (iv) from (ii) and (iii). �

Finally, we give certain decompositions in double cosets (for the notion of “lower set”, see foonote 2
on p. 789).

Lemma 2.1.2. (i) We have G =
⊔

Iw J∈IW J P−I
Iw J PJ and for any lower set IW J

1 ⊆
IW J , the subset

P−I
IW J

1 PJ ⊆ G is open.

(ii) We have P−I
Iw J PJ =

⊔
wJ∈J∩IwJ−1(I )WJ

P−I
Iw JwJ B and for any lower set W ′J ⊆

J∩Iw J−1(I )WJ , the
subset P−I

Iw J W ′J B ⊆ P−I
Iw J PJ is open.

(iii) We have LJ =
⊔
wJ∈J∩IwJ−1(I )WJ

LJ ∩ P−J∩Iw J−1(I )wJ BJ and for any lower set W ′J ⊆
J∩Iw J−1(I )WJ , the

subset LJ ∩ P−J∩ Iw J−1(I )W
′

J BJ ⊆ LJ is open.

1The Bruhat order on W is defined by w ≤ w′ if and only if there exist a reduced decomposition w′ = s1 . . . s`(w′) and
integers 1≤ i1 < · · ·< i`(w) ≤ `(w′) such that w = si1 . . . si`(w) .
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Proof. We have G=
⊔

Iw∈IW P−I
IwB and for any Iw∈ IW , the closure of P−I

IwB in G is
⊔

Iw′≥Iw P−I
Iw′B.

(This can be deduced from the Bruhat decomposition, see, e.g., [Hauseux 2016a, §2.3].) Furthermore, for
any Iw J

∈
IW J , we have

P−I
Iw J PJ =

⋃
wJ∈WJ

P−I w0 Bw0
Iw JwJ,0 BwJ B =

⋃
wJ∈WJ

P−I w0 Bw0
Iw JwJ,0wJ B =

⋃
wJ∈WJ

P−I
Iw JwJ B.

(The first and third equalities follow from the inclusion w0 Bw0 = B− ⊆ P−I and the decomposition
PJ = BWJ B, and the second equality follows from [Borel and Tits 1972, Lemme 3.4(iv); Björner and
Brenti 2005, Proposition 2.5.4].) From this we deduce (ii), and also (i) using the fact that the projection
IW � IW J is order-preserving. Finally, (iii) is (i) for the double cosets LJ ∩ P−J∩Iw J−1(I )\LJ/BJ instead
of P−I \G/PJ . �

Remark 2.1.3 (case wJ = 1). Note that P−I
Iw J B is PJ∩ Iw J−1(I )-invariant by right translation. In general,

the stabiliser of P−I
IwB in G for the action by right translation is the (nonstandard) parabolic subgroup

B Iw−1WI
IwB. Likewise, LJ ∩ P−J∩ Iw J−1(I )BJ is LJ ∩ PJ∩ Iw J−1(I )-invariant by right translation.

2.2. Definition of filtrations.

Filtration indexed by a poset. Let H be a p-adic Lie group, π be an H -representation and (W̃ ,≤) be a
poset. A filtration of π indexed by W̃ is a morphism of complete lattices Fil•H π from the complete lattice
of lower sets2 of W̃ to the complete lattice of H -subrepresentations of π , i.e., an H -subrepresentation
FilW̃ ′

H π ⊆ π for each lower set W̃ ′ ⊆ W̃ such that for any family (W̃i )i∈I of lower sets of W̃ , we have the
following equalities in π :

Fil
⋂

i∈I W̃i
H π =

⋂
i∈I

FilW̃i
H π, Fil

⋃
i∈I W̃i

H π =
∑
i∈I

FilW̃i
H π.

When W̃ is finite, these two equalities are equivalent (by induction) to the following conditions: Fil•H π is
inclusion-preserving with Fil∅H π = 0 and FilW̃

H π = π (i.e., the empty family case), and for any lower
sets W̃1, W̃2 ⊆ W̃ the short sequence of H -representations

0→ FilW̃1∩W̃2
H π→ FilW̃1

H π ⊕FilW̃2
H π→ FilW̃1∪W̃2

H π→ 0,

defined by v 7→ (v,−v) and (v1, v2) 7→ v1+ v2, is exact.
Each w̃ ∈ W̃ defines a principal lower set {w̃′ ∈ W̃ | w̃′ ≤ w̃} and we write Filw̃H π for the corresponding

H -subrepresentation of π . Note that for any lower set W̃ ′ ⊆ W̃ , we have the following equality in π :

FilW̃ ′
H π =

∑
w̃′∈W̃ ′

Filw̃
′

H π.

Thus, we can recover the whole filtration from the H -subrepresentations of π corresponding to the
elements of W̃ ; hence the terminology. We define the graded representation Gr•H π associated with the
filtration Fil•H π by setting

Grw̃H π := Filw̃H π
/ ∑
w̃′<w̃

Filw̃
′

H π for each w̃ ∈ W̃ .

2A lower set of W̃ is a subset W̃ ′ such that w̃ ≤ w̃′⇒ w̃ ∈ W̃ ′ for any w̃ ∈ W̃ and w̃′ ∈ W̃ ′.
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Let ˜̀ : W̃→ Z be a monotonic map (i.e., w̃ ≤ w̃′⇒ ˜̀(w̃)≤ ˜̀(w̃′) for any w̃, w̃′ ∈ W̃ ). For each n ∈ Z,
we set

Fil
˜̀,n
H π :=

∑
˜̀(w̃)≤n

Filw̃H π.

We obtain a filtration of π indexed by Z (in the usual sense).

Lemma 2.2.1. Assume ˜̀ : W̃→Z is strictly monotonic (i.e., w̃ < w̃′⇒ ˜̀(w̃) < ˜̀(w̃′) for any w̃, w̃′ ∈ W̃ ).
For all n ∈ Z, there is a natural H-equivariant isomorphism

Gr
˜̀,n
H π ∼=

⊕
˜̀(w̃)=n

Grw̃H π.

Proof. Let n ∈ Z. By definition of Fil
˜̀,n
H π and Gr

˜̀,n
H π , there are natural H -equivariant surjections⊕

˜̀(w̃)≤n

Filw̃H π � Fil
˜̀,n
H π � Gr

˜̀,n
H π. (6)

The kernel of (6) contains
⊕
˜̀(w̃)≤n Filw̃H π ∩Fil

˜̀,n−1
H π , and Filw̃H π ∩Fil

˜̀,n−1
H π = Filw̃H π for all w̃ ∈ W̃

such that ˜̀(w̃) < n. Now, for any w̃0 ∈ W̃ such that ˜̀(w̃0)= n, we have the following equality in π :

Filw̃0
H π ∩

∑
˜̀(w̃)≤n
w̃ 6=w̃0

Filw̃H π =
∑
w̃<w̃0

Filw̃H π,

which results from the following equality in W̃ :{
w̃′ ∈ W̃

∣∣ w̃′ ≤ w̃0
}
∩

⋃
˜̀(w̃)≤n
w̃ 6=w̃0

{
w̃′ ∈ W̃

∣∣ w̃′ ≤ w̃}= ⋃
w̃<w̃0

{
w̃′ ∈ W̃

∣∣ w̃′ ≤ w̃} ,
which in turn follows from the fact that w̃0 6≤ w̃ for all w̃ ∈ W̃\{w̃0} such that ˜̀(w̃) ≤ n by strict
monotonicity of ˜̀. We deduce that the kernel of (6) is

⊕
˜̀(w̃)≤n Filw̃H π ∩ Fil

˜̀,n−1
H π , and that Filw̃H π ∩

Fil
˜̀,n−1
H π=

∑
w̃′<w̃ Filw̃

′

H π for all w̃∈ W̃ such that ˜̀(w̃)=n. We conclude that (6) induces an isomorphism
as in the statement. �

Filtrations of induced representations. Let I, J ⊆1 and σ be an L I -representation. Recall that for any
locally closed subset X ⊆ G and for any open subset Y ⊆ X , both P−I -invariant by left translation, there
is a natural short exact sequence of A-modules

0→ c-indY
P−I
σ → c-indX

P−I
σ → c-indX\Y

P−I
σ → 0.

(See [Bernšteı̆n and Zelevinskiı̆ 1976, Proposition 1.8]; see also the proof of [Hauseux 2016a, Propo-
sition 2.1.3].) Note that there is a natural A-linear isomorphism c-indG

P−I
σ −→∼ IndG

P−I
σ since P−I \G is

compact.
For each lower set IW J

1 ⊆
IW J , we define a PJ -subrepresentation of IndG

P−I
σ by setting

Fil
IW J

1
PJ

(
IndG

P−I
σ
)
:= c-ind

P−I
IW J

1 PJ

P−I
σ.
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Using Lemma 2.1.2(i), we obtain a filtration of IndG
P−I
σ indexed by IW J such that for all Iw J

∈
IW J ,

there is a natural PJ -equivariant isomorphism

Gr
Iw J

PJ

(
IndG

P−I
σ
)
∼= c-indP−I

Iw J PJ

P−I
σ. (7)

Let Iw J
∈

IW J . For each lower set W ′J ⊆
J∩Iw J−1(I )WJ , we define a B-subrepresentation of c-indP−I

Iw J PJ

P−I
σ

by setting

Fil
W ′J
B

(
c-indP−I

Iw J PJ

P−I
σ
)
:= c-ind

P−I
Iw J W ′J B

P−I
σ.

Using Lemma 2.1.2(ii), we obtain a filtration of c-indP−I
Iw J PJ

P−I
σ indexed by J∩Iw J−1(I )WJ such that for all

wJ ∈
J∩Iw J−1(I )WJ , there is a natural B-equivariant isomorphism

GrwJ
B

(
c-indP−I

Iw J PJ

P−I
σ
)
∼= c-indP−I

Iw JwJ B
P−I

σ. (8)

Likewise, for any L J∩ Iw J−1(I )-representation σ̃ and using Lemma 2.1.2(iii), we define for each lower
set W ′J ⊆

J∩Iw J−1(I )WJ a BJ -subrepresentation of IndLJ

LJ∩P−
J∩IwJ−1(I )

σ̃ by setting

Fil
W ′J
BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I )

σ̃
)
:= c-ind

LJ∩P−
J∩ IwJ−1(I )

W ′J BJ

LJ∩P−
J∩ IwJ−1(I )

σ̃

and we obtain a filtration of IndLJ

LJ∩P−
J∩IwJ−1(I )

σ̃ indexed by J∩Iw J−1(I )WJ such that for allwJ ∈
J∩Iw J−1(I )WJ ,

there is a natural BJ -equivariant isomorphism

GrwJ
BJ

(
IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃
)
∼= c-ind

LJ∩P−
J∩ IwJ−1(I )

wJ BJ

LJ∩P−
J∩ IwJ−1(I )

σ̃ . (9)

Remark 2.2.2 (case wJ = 1). Note that

Gr1
B(c-indP−I

Iw J PJ

P−I
σ)∼= c-indP−I

Iw J B
P−I

σ

is a PJ∩Iw J−1(I )-subrepresentation of c-indP−I
Iw J PJ

P−I
σ and likewise

Gr1
BJ
(IndLJ

LJ∩P−
J∩IwJ−1(I )

σ̃ )∼= c-ind
LJ∩P−

J∩ IwJ−1(I )
BJ

LJ∩P−
J∩ IwJ−1(I )

σ̃

is an LJ ∩ PJ∩ Iw J−1(I )-subrepresentation of IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃ (see Remark 2.1.3).

2.3. Computation of the associated graded representations. For each w ∈ W , we define a closed sub-
group of U stable under conjugation by Z by setting

Uw := U ∩w−1Uw

and we let Bw ⊆ B be the closed subgroup ZUw. For any order on 8+ ∩w−1(8+0 ), the product induces
an isomorphism of F-varieties ∏

α∈8+∩w−1(8+0 )

Uα −→∼ Uw. (10)
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Let I ⊆1 and Iw ∈ IW . We define closed subgroups of UIw stable under conjugation by Z by setting

U ′Iw := U ∩ Iw−1 NI
Iw, U ′′Iw := U ∩ Iw−1UI

Iw,

and we let B′′Iw ⊆ BIw be the closed subgroup ZU ′′Iw. We have semidirect products UIw = U ′′Iw nU ′Iw and
BIw = B′′Iw nU ′Iw.

Let σ be an L I -representation. The product induces an isomorphism of F-varieties

P−I ×
{Iw

}
×U ′Iw −→

∼ P−I
IwB,

hence an A-linear isomorphism

c-indP−I
IwB

P−I
σ ∼= Csm

c
(
U ′Iw, σ

Iw
)

(11)

via which U ′Iw acts on Csm
c (U ′Iw, σ

Iw) by right translation and the action of b′′ ∈ B ′′Iw on f ∈ Csm
c (U ′Iw, σ

Iw)

is given by
(b′′ · f )(u′)= b′′ · f (b′′−1u′b′′)

for all u′ ∈U ′Iw.

Let J ⊆1. We write Iw = Iw JwJ with Iw J
∈

IW J and wJ ∈WJ . We define closed subgroups of NJ

and UJ stable under conjugation by Z by setting

NJ,Iw := NJ ∩UIw = NJ ∩
Iw−1U Iw, UJ,wJ := UJ ∩UIw = UJ ∩

Iw−1U Iw = UJ ∩w
−1
J UJwJ ,

the last equality resulting from (3), and we let BJ,wJ ⊆ BJ be the closed subgroup ZUJ,wJ . We have
semidirect products UIw = UJ,wJ n NJ,Iw and BIw = BJ,wJ n NJ,Iw. We define closed subgroups of NJ,Iw

and UJ,wJ stable under conjugation by Z by setting

N ′J,Iw := NJ ∩U ′Iw = NJ ∩
Iw−1 NI

Iw,

N ′′J,Iw := NJ ∩U ′′Iw = NJ ∩
Iw−1UI

Iw,

U ′J,wJ
:= UJ ∩U ′Iw = UJ ∩

Iw−1 NI
Iw,

U ′′J,wJ
:= UJ ∩U ′′Iw = UJ ∩

Iw−1UI
Iw,

and we let B′′J,wJ
⊆ BJ be the closed subgroup ZU ′′J,wJ

. We have semidirect products NJ,Iw=N ′′J,IwnN ′J,Iw,
UJ,wJ = U ′′J,wJ

n U ′J,wJ
and BJ,wJ = B′′J,wJ

n U ′J,wJ
. Note that U ′J,wJ

and U ′′J,wJ
actually depend on Iw

(not only on wJ ).
Likewise, for any L J∩ Iw J−1(I )-representation σ̃ and using Lemma 2.1.1 with I and J swapped and Iw J

inverted, the product induces an isomorphism of F-varieties

LJ ∩ P−J∩ Iw J−1(I )×{wJ }×U ′J,wJ
−→∼ LJ ∩ P−J∩ Iw J−1(I )wJ BJ ,

hence an A-linear isomorphism

c-ind
LJ∩P−

J∩IwJ−1(I )
wJ BJ

LJ∩P−
J∩ IwJ−1(I )

σ̃ ∼= Csm
c
(
U ′J,wJ

, σ̃wJ
)

(12)
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via which U ′J,wJ
acts on Csm

c (U ′J,wJ
, σ̃wJ ) by right translation and the action of b′′ ∈ B ′′J,wJ

on f ∈
Csm

c (U ′J,wJ
, σ̃wJ ) is given by

(b′′ · f )(u′)= b′′ · f (b′′−1u′b′′)

for all u′ ∈U ′J,wJ
. In particular with σ̃ = σ

Iw J
, we have defined a natural smooth A-linear action of BJ,wJ

on Csm
c (U ′J,wJ

, σ
Iw).

We have a semidirect product U ′Iw =U ′J,wJ
n N ′J,Iw, so that (11) composed with the A-linear morphism

defined by f 7→ (n′ 7→ (u′ 7→ f (u′n′))) is an A-linear isomorphism

c-indP−I
IwB

P−I
σ ∼= Csm

c
(
N ′J,Iw, C

sm
c
(
U ′J,wJ

, σ
Iw
))

(13)

via which N ′J,Iw acts on Csm
c (N ′J,Iw, C

sm
c (U ′J,wJ

, σ
Iw)) by right translation, the action of b ∈ BJ,wJ on

f ∈ Csm
c (N ′J,Iw, C

sm
c (U ′J,wJ

, σ
Iw)) is given by

(b · f )(n′)= b · f (b−1n′b)

for all n′ ∈ N ′J,Iw and the action of N ′′J,Iw on Csm
c (N ′J,Iw, C

sm
c (U ′J,wJ

, σ
Iw)) is given by the following result.

Lemma 2.3.1. Let f ∈ Csm
c (N ′J,Iw, C

sm
c (U ′J,wJ

, σ
Iw)) and n′′ ∈ N ′′J,Iw. Via (13), the action of n′′ on f is

given by

(n′′ · f )(n′)(u′)= n′′ · f (u′−1n′′−1u′n′n′′)(u′)

for all n′ ∈ N ′J,Iw and u′ ∈U ′J,wJ
.

Proof. Let n′ ∈ N ′J,Iw and u′ ∈U ′J,wJ
. We have

Iwu′n′n′′ = (Iwn′′ Iw−1)Iwu′(u′−1n′′−1u′n′n′′).

Thus, it is enough to check that u′−1n′′−1u′n′n′′ ∈ N ′J,Iw. Since u′ ∈ UJ and n′, n′′ ∈ NJ , we have
(u′−1n′′−1u′)n′n′′ ∈ NJ . Since n′′ ∈ Iw−1UI

Iw and n′, u′ ∈ Iw−1 NI
Iw, we have u′−1(n′′−1(u′n′)n′′) ∈

Iw−1 NI
Iw. Hence the result. �

Remark 2.3.2 (case wJ = 1). We can also give the action of L J∩ Iw J−1(I ) (which normalises U ′J,1, N ′J,Iw J ,

N ′′J,Iw J , and thus U ′Iw J , NJ,Iw J ) on c-indP−I
Iw J B

P−I
σ and c-ind

LJ∩P−
J∩ IwJ−1(I )

BJ

LJ∩P−
J∩ IwJ−1(I )

σ̃ (see Remark 2.2.2) via (13)

and (12) respectively, by replacing BJ,wJ = B ′′J,wJ
nU ′J,wJ

by LJ ∩ PJ∩Iw J−1(I ) = L J∩ Iw J−1(I )nU ′J,1.

We end this subsection with some more notation.

Notation 2.3.3. For each w ∈W , we let dw be the integer dimF (U/Uw) and δw ∈X∗(S) be the algebraic
character of the adjoint representation of S on detF ((Lie U)/(Lie Uw)). Note that dw ≥ `(w) and δw
extends to an algebraic character of Z . For α ∈1, we have dsα = dimF Uα and δsα = dsαα. We define a
subset of 1 by setting

11
:=
{
α ∈1

∣∣ dimF Uα = 1
}
.

For I ⊆1, we put I 1
:= I ∩11.
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Remark 2.3.4. For Iw J
∈

IW J , we have UJ ⊆ UIw J and LJ∩ Iw J−1(I ) normalises NJ,Iw J . Thus, the
inclusion NJ ↪→ U induces an isomorphism of F-varieties

NJ/NJ,Iw J −→∼ U/UIw J

and there is an adjoint action of LJ∩ Iw J−1(I ) on (Lie NJ )/(Lie NJ,Iw J ). Therefore, we have dIw J =

dimF (NJ/NJ,Iw J ) and δIw J extends to an algebraic character of LJ∩Iw J−1(I ).

3. Derived ordinary parts

The aim of this section is to compute the derived ordinary parts of a parabolically induced representation.
In Section 3.1, we show how to compute the cohomology of certain groups with a Hecke action from
the cohomology of certain subgroups with the induced Hecke action, provided the latter satisfy some
finiteness condition. In Section 3.2, we make a computation of cohomology and Hecke action on a
compactly induced representation. In Section 3.3, we use the previous results to partially compute the
derived ordinary parts of the graded representations associated with the Bruhat filtrations, we formulate a
conjecture on the complete result and we prove it in many cases in low degree.

3.1. Cohomology, Hecke action and dévissage. Let L̃ be a linear algebraic F-group and Ñ be a unipotent
algebraic F-group endowed with an action of L̃ that we identify with the conjugation in L̃ n Ñ . We let d̃
denote the integer dimF Ñ and δ̃ ∈ X∗(L̃) denote the algebraic character of the adjoint representation of
L̃ on detF (Lie Ñ).

Let L̃+ ⊆ L̃ be an open submonoid and Ñ0 ⊆ Ñ be a standard3 compact open subgroup stable under
conjugation by L̃+. If π is an L̃+n Ñ0-representation,4 then the A-modules of Ñ0-cohomology H•(Ñ0, π)

computed using locally constant cochains (or equivalently an N0-injective resolution of π ; see [Emerton
2010b, Proposition 2.2.6]) are naturally endowed with the Hecke action of L̃+ (denoted

H
· ), defined for

every l̃ ∈ L̃+ as the composite

H•(Ñ0, π)→ H•(l̃ Ñ0l̃−1, π)→ H•(Ñ0, π)

where the first morphism is induced by the action of l̃ on π and the second morphism is the corestriction
from l̃ Ñ0l̃−1 to Ñ0 (this defines a natural smooth A-linear action of L̃+ in degree 0 [Emerton 2010a,
Lemma 3.1.4] that extends in higher degrees by universality of H•(Ñ0,−)). We obtain a universal
δ-functor

H•(Ñ0,−) :Modsm
L̃+nÑ0

(A)→Modsm
L̃+(A),

since an injective L̃+n Ñ0-representation is Ñ0-acyclic [Emerton 2010b, Proposition 2.1.11; Hauseux
2016a, Lemme 3.1.1].

3The exponential map exp : Lie Ñ → Ñ is an isomorphism of F-varieties [Demazure and Gabriel 1970, Chapitre IV, §2,
Proposition 4.1] and we say that Ñ0 is standard if Lie Ñ0 := exp−1(Ñ0) ⊆ Lie Ñ is a Zp-Lie subalgebra. The identity of Ñ
admits a basis of neighbourhoods consisting of standard compact open subgroups [Emerton 2010b, Lemma 3.5.2]

4Given a p-adic Lie group H and an open submonoid H+ ⊆ H , a representation of H+ over A is smooth if its restriction to
an open subgroup of H contained in H+ is smooth.
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Let Z̃ ⊆ L̃ be a central split torus and Z̃+ ⊆ Z̃ be the open submonoid Z̃ ∩ L̃+. Since Z̃ is split, its
adjoint representation on Lie Ñ is a direct sum of weights. We assume that there exists λ̃ ∈ X∗(Z̃) such
that 〈µ̃, λ̃〉 > 0 for any weight µ̃ of Z̃ in Lie Ñ . We fix an element z̃ := λ̃(p j ) ∈ Z̃ with j ∈ N large
enough so that z̃ is strictly contracting Ñ0, i.e., (z̃i Ñ0 z̃−i )i∈N is a basis of neighbourhoods of the identity
in Ñ0; see [Emerton 2010b, Lemma 3.1.3] using the fact that ordp(µ̃(z̃))= 〈µ̃, λ̃〉 j for any weight µ̃ of
Z̃ in Lie Ñ). In particular z̃ ∈ Z̃+.

If π is a Z̃+-representation, we say that π is locally z̃-finite if for every v ∈π , the A-submodule A[z̃] ·v
is of finite type, and we say that the action of z̃ on π is locally nilpotent if for every v ∈ π , there exists
i ∈ N such that z̃i

· v = 0.

Lemma 3.1.1. Let π be a locally z̃-finite L̃+n Ñ0-representation and n ∈ N.

(i) If n = [F : Qp]d̃, then the action of z̃ on the kernel of the natural L̃+-equivariant surjection
π ⊗ (ω−1

◦ δ̃)� Hn(Ñ0, π) is locally nilpotent.

(ii) If n < [F :Qp]d̃ , then the Hecke action of z̃ on Hn(Ñ0, π) is locally nilpotent.

Proof. We prove (i). The natural L̃+-equivariant surjection in the statement is the composite

π ⊗ (ω−1
◦ δ̃)� πÑ0

⊗ (ω−1
◦ δ̃)∼= H[F :Qp]d̃(Ñ0, π)

where the first morphism is the natural projection onto the Ñ0-coinvariants of π and the second morphism
is the natural isomorphism [Hauseux 2016b, (2.2)] which is due to Emerton (in loc. cit. α̃∈X∗(ResF/Qp L̃)
is the algebraic character of the adjoint representation of ResF/Qp L̃ on detQp(Lie(ResF/Qp Ñ)) so that
α̃ = NrmF/Qp ◦δ̃ as Q×p -valued characters of L̃ , hence α̃−1

|α̃|−1
p = ω

−1
◦ δ̃ as Q×p -valued characters of

L̃). For every v ∈ π , there exists i ∈N such that z̃i Ñ0 z̃−i fixes A[z̃] ·v (since π is locally z̃-finite and z̃ is
strictly contracting Ñ0), so that for all ñ ∈ Ñ0 we have

z̃i
· (ñ · v− v)= (z̃i ñz̃−i ) · (z̃i

· v)− (z̃i
· v)= 0.

Thus the action of z̃ on the kernel of the above surjection is locally nilpotent.
We prove (ii). Let (µ̃r )r∈[[0,m−1]] be an enumeration of the weights of Z̃ in Lie Ñ such that the

sequence (〈µ̃r , λ̃〉)r∈[[0,m−1]] is increasing. If µ̃i + µ̃ j = µ̃r with i, j, r ∈ [[0,m− 1]], then r >max{i, j}
(since 〈µ̃r , λ̃〉 > max{〈µ̃i , λ̃〉, 〈µ̃ j , λ̃〉}). Thus for all r ∈ [[0,m]], the direct sum of the weight spaces
corresponding to µ̃r , . . . , µ̃m−1 is an ideal of Lie Ñ stable under the adjoint action of Z̃ and we let
Ñ (r)
⊆ Ñ be the corresponding closed normal subgroup stable under conjugation by Z̃, d̃r denote

the integer dimF Ñ (r), δ̃r ∈ X∗(L̃) denote the algebraic character of the adjoint representation of L̃ on
detF (Lie Ñ (r)) and Ñ (r)

0 ⊆ Ñ (r) be the standard compact open subgroup Ñ (r)
∩ Ñ0 stable under conjugation

by Z̃+.
Let r ∈ [[0,m]]. We assume that n< [F :Qp]d̃r and we prove that the Hecke action of z̃ on Hn(Ñ (r)

0 , π)

is locally nilpotent by induction on r . The result is trivial for r =m. We assume r <m and the result true
for r + 1. We have a short exact sequence of topological groups

1→ Ñ (r+1)
0 → Ñ (r)

0 → Ñ (r)
0 /Ñ (r+1)

0 → 1.
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The Lyndon–Hochschild–Serre spectral sequence corresponding to this dévissage is naturally a spectral
sequence of L̃+-representations (see [Hauseux 2016b, (2.3)])

Hi(Ñ (r)
0 /Ñ (r+1)

0 ,H j(Ñ (r+1)
0 , π

))
⇒ Hi+ j(Ñ (r)

0 , π
)
. (14)

Let i, j ∈N be such that i+ j = n. If j < [F :Qp]d̃r+1, the Hecke action of z̃ on H j (Ñ (r+1)
0 , π) is locally

nilpotent by the induction hypothesis; thus the Hecke action of z̃ on Hi (Ñ (r)
0 /Ñ (r+1)

0 ,H j (Ñ (r+1)
0 , π))

is also locally nilpotent (since the image of a locally constant cochain is finite by compactness). If
j = [F : Qp]d̃r+1, then i < [F : Qp](d̃r − d̃r+1) and we deduce from (i) with Ñ (r+1) and j in-
stead of Ñ and n respectively that H j (Ñ (r+1)

0 , π) is locally z̃-finite; thus the Hecke action of z̃ on
Hi (Ñ (r)

0 /Ñ (r+1)
0 ,H j (Ñ (r+1)

0 , π)) is locally nilpotent by the sublemma below with µ̃= µ̃r and Ñ (r)/Ñ (r+1),
H j (Ñ (r+1)

0 , π), i instead of Ñ , π , n respectively. If j > [F :Qp]d̃r+1, then H j (Ñ (r+1)
0 , π)=0 by [Emerton

2010b, Lemma 3.5.4]; thus Hi (Ñ (r)
0 /Ñ (r+1)

0 ,H j (Ñ (r+1)
0 , π))= 0. Using (14), we conclude that the action

of z̃ on Hn(Ñ (r)
0 , π) is locally nilpotent. �

Sublemma. Let π be a locally z̃-finite Z̃+n Ñ0-representation, µ̃ ∈ X∗(Z̃) and n ∈ N. Assume that the
adjoint action of Z̃ on Lie Ñ factors through µ̃. If n< [F :Qp]d̃ , then the Hecke action of z̃ on Hn(Ñ0, π)

is locally nilpotent.

Proof. Let S̃ ⊆ ResF/Qp Z̃ be the maximal split subtorus, S̃ ⊆ Z̃ be the closed subgroup S̃(Qp) and
S̃+ ⊆ S̃ be the open submonoid S̃ ∩ Z̃+. Every algebraic (co)character of Z̃ induces by restriction of
scalars a (co)character of S̃ (since the image of a split torus by a morphism of algebraic groups is a split
torus [Borel and Tits 1965, §1.4]). In particular, the restriction of λ̃ : F×→ Z̃ to Q×p takes values in S̃
and the restriction of µ̃ : Z̃→ F× to S̃ takes values in Q×p .

We deduce on the one hand that z̃ ∈ S̃+, and on the other hand that the adjoint action of S̃ on
Lie(ResF/Qp Ñ) factors through an algebraic character so that any closed subgroup of ResF/Qp Ñ is stable
under conjugation by S̃. Since ResF/Qp Ñ is unipotent, there exists a composition series

ResF/Qp Ñ = Ñ (0) B Ñ (1) B · · ·B Ñ ([F :Qp]d̃) = 1

whose successive quotients are isomorphic to the additive group over Qp and for all r ∈ [[0, [F :Qp]d̃]],
we let Ñ (r)

⊆ Ñ be the closed subgroup Ñ (r)(Qp) and Ñ (r)
0 ⊆ Ñ (r) be the standard compact open subgroup

Ñ (r)
∩ Ñ0 stable under conjugation by S̃+.

Let r ∈ [[0, [F : Qp]d̃]]. We assume that n < [F : Qp]d̃ − r and we prove by induction on r that
the Hecke action of z̃ on Hn(Ñ (r)

0 , π) is locally nilpotent. The result is trivial for r = [F : Qp]d̃. We
assume r < [F :Qp]d̃ and the result true for r+1. Since dimQp(Ñ (r)/Ñ (r+1))= 1, we have a short exact
sequence of S̃+-representations (see [Hauseux 2016b, (2.4)])

0→ H1(Ñ (r)
0 /Ñ (r+1)

0 ,Hn−1(Ñ (r+1)
0 , π

))
→ Hn(Ñ (r)

0 , π
)
→ Hn(Ñ (r+1)

0 , π
)Ñ (r)

0 /Ñ (r+1)
0 → 0. (15)

The Hecke action of z̃ on Hn−1(Ñ (r+1)
0 , π) is locally nilpotent by the induction hypothesis; thus the Hecke

action of z̃ on H1(Ñ (r)
0 /Ñ (r+1)

0 ,Hn−1(Ñ (r+1)
0 , π)) is also locally nilpotent. If n < [F : Qp]d̃ − (r + 1),

then the Hecke action of z̃ on Hn(Ñ (r+1)
0 , π) is locally nilpotent by induction; thus the Hecke action

of z̃ on Hn(Ñ (r+1)
0 , π)Ñ (r)

0 /Ñ (r+1)
0 is also locally nilpotent. If n = [F : Qp]d̃ − (r + 1), then we have a
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natural S̃+-equivariant surjection π ⊗ µ̃−n
|µ̃|−n

p � Hn(Ñ (r+1)
0 , π) [op. cit., (2.2)] and we deduce that

Hn(Ñ (r+1)
0 , π) is locally z̃-finite. In this case, we put Ñ ′′0 := Ñ (r)

0 /Ñ (r+1)
0 . For every v ∈ Hn(Ñ (r+1)

0 , π),
there exists i ∈ N such that z̃i Ñ ′′0 z̃−i fixes A[z̃] · v, so that for all j ∈ N we have

z̃i+ j H
· v =

∑
ñ′′∈Ñ ′′0 /z̃

i+ j Ñ ′′0 z̃−(i+ j)

ñ′′ · (z̃i+ j
· v)

= (z̃i Ñ ′′0 z̃−i
: z̃i+ j Ñ ′′0 z̃−(i+ j))

∑
ñ′′∈Ñ ′′0 /z̃

i Ñ ′′0 z̃−i

ñ′′ · (z̃i+ j
· v)

= (Ñ ′′0 : z̃
j Ñ ′′0 z̃− j )

∑
ñ′′∈Ñ ′′0 /z̃

i Ñ ′′0 z̃−i

ñ′′ · (z̃i+ j
· v).

Now Ñ ′′0 is an infinite pro-p group, z̃ is strictly contracting Ñ ′′0 and A is Artinian. Thus (Ñ ′′0 : z̃
j Ñ ′′0 z̃− j ) is

zero in A for j ∈ N large enough. Therefore, the Hecke action of z̃ on Hn(Ñ (r+1)
0 , π)Ñ (r)

0 /Ñ (r+1)
0 is locally

nilpotent. Using (15), we conclude that the Hecke action of z̃ on Hn(Ñ (r)
0 , π) is locally nilpotent. �

Let Ñ ′ ⊆ Ñ be a closed subgroup such that Lie Ñ ′ ⊆ Lie Ñ is a direct sum of weight spaces of Z̃.
We stress that Ñ ′ need not be normal. Since Z̃ is central in L̃, Lie Ñ ′ is stable under the adjoint action
of L̃; thus Ñ ′ is stable under conjugation by L̃. We let d̃ ′ denote the integer dimF Ñ ′ and δ̃′ ∈ X∗(L̃)
denote the algebraic character of the adjoint representation of L̃ on detF (Lie Ñ ′). We let Ñ ′0 ⊆ Ñ ′ be the
standard compact open subgroup Ñ ′ ∩ Ñ0 stable under conjugation by L̃+.

Proposition 3.1.2. Let π be an L̃+n Ñ0-representation. For all n ∈N, there is a natural L̃+-equivariant
morphism

Hn−[F :Qp](d̃−d̃ ′)(Ñ ′0, π)⊗ (ω
−1
◦ (δ̃− δ̃′))→ Hn(Ñ0, π).

Furthermore, the Hecke action of z̃ on its kernel and cokernel is locally nilpotent if the L̃+-representations
H•(Ñ ′0, π) are locally z̃-finite.

Proof. Let (µ̃r )r∈[[0,m−m′−1]] be an enumeration of the weights of Z̃ in (Lie Ñ)/(Lie Ñ ′) such that the
sequence (〈µ̃r , λ̃〉)r∈[[0,m−m′−1]] is increasing and (µ̃r )r∈[[m−m′,m−1]] be an enumeration of the weights of
Z̃ in Lie Ñ ′ such that the sequence (〈µ̃r , λ̃〉)r∈[[m−m′,m−1]] is increasing. If µ̃i + µ̃ j = µ̃r with i, j, r ∈
[[0,m− 1]], then r >min{i, j} (since 〈µ̃r , λ̃〉>max{〈µ̃i , λ̃〉, 〈µ̃ j , λ̃〉}). Thus for all r ∈ [[0,m−m′]], the
direct sum of the weight spaces corresponding to µ̃r , . . . , µ̃m−1 is a Lie subalgebra of Lie Ñ stable under
the adjoint action of Z̃ and we use the notations Ñ (r), d̃r , δ̃r and Ñ (r)

0 as in the proof of Lemma 3.1.1(ii).
Moreover for all r ∈ [[0,m − m′ − 1]], Lie Ñ (r+1) is an ideal of Lie Ñ (r) so that Ñ (r+1) is a normal
subgroup of Ñ (r).

Let r ∈ [[0,m−m′]]. We prove by induction on r that for all n ∈N, there is a natural L̃+-equivariant
morphism

Hn−[F :Qp](d̃r−d̃ ′)(Ñ ′0, π)⊗ (ω
−1
◦ (δ̃r − δ̃

′))→ Hn(Ñ (r)
0 , π). (16)

The result is trivial for r = m −m′. We assume r < m −m′ and the result true for r + 1. Let n ∈ N.
Since dimF (Ñ (r)/Ñ (r+1))= d̃r − d̃r+1, we deduce from [Emerton 2010b, Lemma 3.5.4] that (14) yields
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a natural L̃+-equivariant morphism

H[F :Qp](d̃r−d̃r+1)
(
Ñ (r)

0 /Ñ (r+1)
0 ,Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)

0 , π)
)
→ Hn(Ñ (r)

0 , π) (17)

whose kernel and cokernel are built out of subquotients of Hi
(
Ñ (r)

0 /Ñ (r+1)
0 ,H j (Ñ (r+1)

0 , π)
)

with i, j ∈N

such that i < [F : Qp](d̃r − d̃r+1). Furthermore, Lemma 3.1.1(i) with Ñ , π , n and δ̃ replaced by
Ñ (r)/Ñ (r+1), Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)

0 , π), [F : Qp](d̃r − d̃r+1) and δ̃r − δ̃r+1 respectively yields a
natural L̃+-equivariant surjection

Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)
0 , π)⊗ (ω−1

◦ (δ̃r − δ̃r+1))

� H[F :Qp](d̃r−d̃r+1)
(
Ñ (r)

0 /Ñ (r+1)
0 ,Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)

0 , π)
)
. (18)

Finally, by the induction hypothesis with n − [F : Qp](d̃r − d̃r+1) instead of n, there is a natural L̃+-
equivariant morphism

Hn−[F :Qp](d̃r−d̃ ′)(Ñ ′0, π)⊗ (ω
−1
◦ (δ̃r − δ̃

′))→Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)
0 , π)⊗ (ω−1

◦ (δ̃r − δ̃r+1)). (19)

The composition of (17), (18) and (19) yields the natural L̃+-equivariant morphism (16).
Now, we assume that the L̃+-representations H•(Ñ ′0, π) are locally z̃-finite and we prove by induction

on r that for all n ∈ N, the Hecke action of z̃ on the kernel and cokernel of (16) is locally nilpotent, or
equivalently that the localisation of (16) with respect to z̃N is an isomorphism. The result is trivial for
r =m−m′. We assume r <m−m′ and the result true for r +1. Let n ∈N. By composition, it is enough
to prove that the Hecke action of z̃ on the kernels and cokernels of (17), (18) and (19) is locally nilpotent.
By the induction hypothesis with j instead of n, the Hecke action of z̃ on the kernel and cokernel of the
natural L̃+-equivariant morphism

H j−[F :Qp](d̃r+1−d̃ ′)(Ñ ′0, π)⊗ (ω
−1
◦ (δ̃r+1− δ̃

′))→ H j (Ñ (r+1)
0 , π)

is locally nilpotent for all j ∈N. With j = n−[F :Qp](d̃r − d̃r+1), we deduce that the Hecke action of z̃
on the kernel and cokernel of (19) is locally nilpotent. Furthermore, we deduce that H j (Ñ (r+1)

0 , π) is
locally z̃-finite for all j ∈ N and we use Lemma 3.1.1 with Ñ (r)/Ñ (r+1), H j (Ñ (r+1)

0 , π) and i instead of
Ñ , π and n respectively: we deduce from (i) with i = [F :Qp](d̃r − d̃r+1) that the Hecke action of z̃ on
the kernel of (18) is locally nilpotent, and we deduce from (ii) that the Hecke action of z̃ on the kernel
and cokernel of (17) is locally nilpotent (since the Hecke action of z̃ on Hi (Ñ (r)

0 /Ñ (r+1)
0 ,H j (Ñ (r+1)

0 , π))

is locally nilpotent for all i, j ∈ N such that i < [F :Qp](d̃r − d̃r+1)). �

We end this subsection by reviewing and generalising the construction of Emerton’s δ-functor of
derived ordinary parts [Emerton 2010b, §3.3]. Let Z̃L̃ denote the centre of L̃. Assume that Z̃◦L̃ is
a torus, that Z̃ L̃ is generated by Z̃+

L̃
:= Z̃ L̃ ∩ L̃+ as a group, and that L̃ is generated by L̃+ and Z̃ L̃

as a monoid. Then, the product induces a group isomorphism L̃+ ×Z̃+
L̃

Z̃ L̃ −→
∼ L̃ [Emerton 2006,

Proposition 3.3.6]. Thus, for any L̃+-representation π , the A-module HomA[Z̃+
L̃
]
(A[Z̃ L̃ ], π)

Z̃ L̃−l.fin is
naturally an L̃-representation [Emerton 2010a, Lemma 3.1.7]. Therefore, we obtain an A-linear left-exact
functor Modsm

L̃+(A)→Modsm
L̃ (A)

Z̃ L̃−l.fin which commutes with inductive limits [op. cit., Lemma 3.2.2].
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Remark 3.1.3. Let z̃ ∈ Z̃+
L̃

. Assume moreover that Z̃ L̃ is generated by Z̃+
L̃

and z̃−1 as a monoid. Then,
for any locally finite Z̃+

L̃
-representation π , there is a natural Z̃ L̃ -equivariant isomorphism

HomA[Z̃+
L̃
]
(A[Z̃ L̃ ], π)

Z̃ L̃−l.fin
−→∼ A[z̃±1

]⊗A[z̃] π

[Emerton 2010b, Lemma 3.2.1]. Thus, the functor HomA[Z̃+
L̃
]
(A[Z̃ L̃ ],−)

Z̃ L̃−l.fin restricted to the category

Modsm
L̃+(A)

Z̃+
L̃
−l.fin is isomorphic to the localisation with respect to z̃N. In particular, it is exact.

Definition 3.1.4. For a connected linear algebraic F-group P̃ with unipotent radical Ñ such that P̃ ∼=
L̃n Ñ , we define A-linear functors Modsm

P̃ (A)→Modsm
L̃ (A)

Z̃ L̃−l.fin which commute with inductive limits
by setting

H•OrdP̃ := HomA[Z̃+
L̃
]

(
A[Z̃ L̃ ],H•(Ñ0,−)

)Z̃ L̃−l.fin
.

If B̃ ⊆ P̃ is a connected closed subgroup containing Ñ and Z̃L̃ , then B̃L̃ := B̃ ∩ L̃ is generated by
B̃+

L̃
:= B̃L̃ ∩ L̃+ and Z̃ L̃ as a monoid, so that H•OrdP̃ naturally extend to A-linear functors Modsm

B̃ (A)→
Modsm

B̃L̃
(A)Z̃ L̃−l.fin which commute with inductive limits.

3.2. Computations on the associated graded representations. Let J ⊆1. We fix a totally decomposed5

standard compact open subgroup NJ,0 ⊆ NJ and we define an open submonoid of LJ by setting

L+J :=
{
l ∈ LJ

∣∣ l NJ,0l−1
⊆ NJ,0

}
.

We let Z+J ⊆ ZJ be the open submonoid ZJ ∩ L+J . Note that ZJ is generated by Z+J as a group and LJ

is generated by L+J and ZJ as a monoid [Emerton 2006, Proposition 3.3.2]. Moreover, any λ ∈ X∗(S)
corresponding to PJ has its image contained in the maximal split subtorus SJ of Z◦J and satisfies 〈α, λ〉> 0
for all α ∈ 8+\8+J ; thus the assumption of Section 3.1 with Ñ = NJ and Z̃ = SJ is satisfied. We fix
z ∈ Z+J strictly contracting NJ,0 (equivalently ZJ is generated by Z+J and z−1 as a monoid).

Let I ⊆ 1 and Iw ∈ IW . We write Iw = Iw JwJ with Iw J
∈

IW J and wJ ∈ WJ . Let σ be an
L I -representation. We set6

πIw := c-indP−I
IwB

P−I
σ.

We use the notation of Section 2.3. The subgroup NJ,Iw⊆ NJ is stable under conjugation by BJ,wJ , and we
have a semidirect product NJ,Iw= N ′′J,IwnN ′J,Iw. The subgroup N ′J,Iw is stable under conjugation by BJ,wJ ,
and we endow N ′′J,Iw (which may not be stable under conjugation by BJ,wJ ) with the quotient action of BJ,wJ

via the isomorphism N ′′J,Iw
∼= NJ,Iw/N ′J,Iw. We let NJ,Iw,0⊆ NJ,Iw (resp. N ′J,Iw,0⊆ N ′J,Iw, N ′′J,Iw,0⊆ N ′′J,Iw)

be the totally decomposed standard compact open subgroup NJ,Iw∩NJ,0 (resp. N ′J,Iw∩NJ,0, N ′′J,Iw∩NJ,0)
and B+J,wJ

⊆ BJ,wJ be the open submonoid BJ,wJ ∩ L+J . Since NJ,Iw,0 is totally decomposed, we have a
short exact sequence of topological groups

1→ N ′J,Iw,0→ NJ,Iw,0→ N ′′J,Iw,0→ 1. (20)

5Given a closed subgroup Ũ ⊆ U stable under conjugation by S, we say that a compact open subgroup Ũ0 ⊆ Ũ is totally
decomposed if the product induces a homeomorphism

∏
α∈8+0

(Uα ∩ Ũ0)−→
∼ Ũ0 for any order on 8+0 (e.g., Ũ0 = Ũ ∩ K where

K ⊆ G is a maximal compact subgroup which is special with respect to Z [Henniart and Vignéras 2015, §6.6, Remark 2]).
6The naturality of a morphism involving πIw will mean its functoriality with respect to σ .
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In particular, N ′′J,Iw,0 is stable under the quotient action of B+J,wJ
on N ′′J,Iw.

Lemma 3.2.1. For all n ∈ N, the inflation map is a natural B+J,wJ
-equivariant isomorphism

Hn(N ′′J,Iw,0, π N ′
J,Iw,0

Iw

)
−→∼ Hn(NJ,Iw,0, πIw).

Proof. The Lyndon–Hochschild–Serre spectral sequence corresponding to (20) is naturally a spectral
sequence of B+J,wJ

-representations [Hauseux 2016b, (2.3)]

Hi(N ′′J,Iw,0,H j (N ′J,Iw,0, πIw)
)
⇒ Hi+ j (NJ,Iw,0, πIw). (21)

The inflation maps are the edge maps of (21) for j = 0; thus they are B+J,wJ
-equivariant and in order to

prove that they are bijective, it is enough to show that (21) degenerates, i.e., that H j (N ′J,Iw,0, πIw)= 0 for
all integers j > 0.

Since the left cosets N ′J,Iw/N ′J,Iw,0 form an open partition of N ′J,Iw, we deduce from (13) a natural
N ′J,Iw,0-equivariant isomorphism

πIw
∼=

⊕
n′∈N ′

J,Iw
/N ′

J,Iw,0

Csm(n′N ′J,Iw,0, Csm
c
(
U ′J,wJ

, σ
Iw
))

where N ′J,Iw,0 acts by right translation on the terms of the direct sum. The latter are N ′J,Iw,0-acyclic
by Shapiro’s lemma (since they are induced discrete A[N ′J,Iw,0]-modules) and the N ′J,Iw,0-cohomology
commutes with direct sums (since the image of a locally constant cochain is finite by compactness); thus
πIw is N ′J,Iw,0-acyclic. �

There is a natural smooth A-linear action of B ′′J,wJ
n (U ′J,wJ

× N ′′J,Iw) on Csm
c (U ′J,wJ

, σ
Iw): we already

defined the action of BJ,wJ = B ′′J,wJ
nU ′J,wJ

in Section 2.3 and we define the action of n′′ ∈ N ′′J,Iw on
f ∈ Csm

c (U ′J,wJ
, σ

Iw) by setting
(n′′ · f )(u′) := n′′ · f (u′)

for all u′ ∈U ′J,wJ
.

Lemma 3.2.2. For all n ∈ N, there is a natural B+J,wJ
-equivariant morphism

Hn(N ′′J,Iw,0, π N ′
J,Iw,0

Iw

)
→ Hn(N ′′J,Iw,0, Csm

c
(
U ′J,wJ

, σ
Iw
))

such that the Hecke action of z on its kernel and cokernel is locally nilpotent.

Proof. We will implicitly make use of the isomorphism (13). For each n′ ∈ N ′J,Iw/N ′J,Iw,0, evaluation at
n′ induces a natural A-linear surjection

evn′ : π
N ′

J,Iw,0
Iw

� Csm
c
(
U ′J,wJ

, σ
Iw
)
.

We define a natural A-linear surjection

Ev :=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

evn′ : π
N ′

J,Iw,0
Iw

� Csm
c
(
U ′J,wJ

, σ
Iw
)
.
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We prove that Ev is B+J,wJ
-equivariant: for any f ∈ π

N ′
J,Iw,0

Iw
and b ∈ B+J,wJ

, we have

Ev(b
H
· f )=

∑
n′∈N ′

J,Iw
/N ′

J,Iw,0

∑
n′0∈N ′

J,Iw,0
/bN ′

J,Iw,0
b−1

(n′0b · f )(n′)

=

∑
n′∈N ′

J,Iw
/N ′

J,Iw,0

∑
n′0∈N ′

J,Iw,0
/bN ′

J,Iw,0
b−1

b · f (b−1n′n′0b)

=

∑
n′∈N ′

J,Iw
/bN ′

J,Iw,0
b−1

b · f (b−1n′b)

= b ·Ev( f )

where the last equality results from the change of variable n′ 7→ bn′b−1. We prove that Ev is also

N ′′J,Iw,0-equivariant: for any f ∈ π
N ′

J,Iw,0
Iw

, n′′ ∈ N ′′J,Iw,0 and u′ ∈U ′J,wJ
, we have

Ev(n′′ · f )(u′)=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

(n′′ · f )(n′)(u′)

=

∑
n′∈N ′

J,Iw
/N ′

J,Iw,0

n′′ · f (u′−1n′′−1u′n′n′′)(u′)

= n′′ ·Ev( f )(u′),

where the last equality results from the fact that when n′ runs among N ′J,Iw/N ′J,Iw,0 we have

u′−1n′′−1u′n′n′′ = (u′−1n′′−1u′n′′)(n′′−1n′n′′)

with on the one hand n′′−1n′n′′ running among N ′J,Iw/N ′J,Iw,0 and on the other hand u′−1n′′−1u′n′′ ∈ N ′J,Iw
being constant. We deduce that Ev induces natural B+J,wJ

-equivariant morphisms in N ′′J,Iw,0-cohomology.

We prove that the Hecke action of z on the kernel of Ev is locally nilpotent: for any f ∈ π N ′J,Iw,0
Iw

there
exists i ∈ N such that supp( f ) ⊆ z−i N ′J,Iw,0zi (since z is strictly contracting N ′J,Iw,0 which is open in
N ′J,Iw), thus for any n′ ∈ N ′J,Iw/N ′J,Iw,0, we have

(zi H
· f )(n′)=

∑
n′0∈N ′

J,Iw,0
/zi N ′

J,Iw,0
z−i

(n′0zi
· f )(n′)

=

∑
n′0∈N ′

J,Iw,0
/zi N ′

J,Iw,0
z−i

zi
· f
(
(z−i n′zi )(z−i n′0zi )

)
=

{
zi
·Ev ( f ) if n′ ∈ N ′J,Iw,0,

0 if n′ 6∈ N ′J,Iw,0.

Using the long exact sequence of N ′′J,Iw,0-cohomology, we deduce that the Hecke action of z on the
kernels and cokernels of the morphisms induced by Ev in N ′′J,Iw,0-cohomology is locally nilpotent. �
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The subgroup B′′J,wJ
⊆ BJ,wJ normalises N ′′J,Iw and the conjugation action coincides with the action

induced by the quotient action of BJ,wJ on N ′′J,Iw. We define an open submonoid B ′′+J,wJ
⊆ B ′′J,wJ

by setting

B ′′+J,wJ
:=
{
b′′ ∈ B ′′J,wJ

∣∣ b′′N ′′J,Iw,0b′′−1
⊆ N ′′J,Iw,0

}
.

Lemma 3.2.3. We have B+J,wJ
⊆ B ′′+J,wJ

nU ′J,wJ
.

Proof. We have a semidirect product BJ,wJ = B′′J,wJ
n U ′J,wJ

. Let b ∈ B+J,wJ
. We write b = b′′u′ with

b′′ ∈ B ′′J,wJ
and u′ ∈ U ′J,wJ

. We prove that b′′ ∈ B ′′+J,wJ
. Let n′′ ∈ N ′′J,Iw,0. Proceeding as in the proof

of Lemma 2.3.1, we see that u′n′′u′−1n′′−1
∈ N ′J,Iw so that u′n′′u′−1

= n′n′′ with n′ ∈ N ′J,Iw. Thus
bn′′b−1

= (b′′n′b′′−1)(b′′n′′b′′−1) ∈ NJ,Iw,0, and since NJ,Iw,0 is totally decomposed, we deduce that
b′′n′′b′′−1

∈ N ′′J,Iw,0. �

Lemma 3.2.4. For all n ∈ N, there is a natural B ′′+J,wJ
nU ′J,wJ

-equivariant isomorphism

Hn(N ′′J,Iw,0, Csm
c (U ′J,wJ

, σ
Iw)
)
∼= Csm

c
(
U ′J,wJ

,Hn(N ′′J,Iw,0, σ
Iw)
)
.

Proof. Let σ̃ be a B ′′+J,wJ
n N ′′J,Iw,0-representation. The A-modules H•

(
N ′′J,Iw,0, C

sm
c (U ′J,wJ

, σ̃ )
)

and
Csm

c
(
U ′J,wJ

,H•(N ′′J,Iw,0, σ̃ )
)

are naturally B ′′+J,wJ
nU ′J,wJ

-representations. The identity of Csm
c (U ′J,wJ

, σ̃ )

induces a natural U ′J,wJ
-equivariant isomorphism

ι : Csm
c
(
U ′J,wJ

, σ̃
)N ′′

J,Iw,0 −→∼ Csm
c
(
U ′J,wJ

, σ̃
N ′′

J,Iw,0
)
.

We prove that ι is also B ′′+J,wJ
-equivariant: for any f ∈ Csm

c (U ′J,wJ
, σ̃ )

N ′′
J,Iw,0 , b′′ ∈ B ′′+J,wJ

and u′ ∈ U ′J,wJ
,

we have

ι(b′′
H
· f )(u′)=

∑
n′′∈N ′′

J,Iw,0
/b′′N ′′

J,Iw,0
b′′−1

ι(n′′b′′ · f )(u′)

=

∑
n′′∈N ′′

J,Iw,0
/b′′N ′′

J,Iw,0
b′′−1

n′′b′′ · ι( f )(b′′−1u′b′′)

= b′′
H
· ι( f )(b′′−1u′b′′)

= (b′′ · ι( f ))(u′).

We will prove that deriving ι yields the desired isomorphisms with σ̃ = σ
Iw.

The functor Csm
c (U ′J,wJ

,−) is A-linear and exact and the δ-functor H•(N ′′J,Iw,0,−) is universal; thus,
denoting by R• the right derived functors on the category Modsm

B ′′+J,wJ
nN ′′

J,Iw,0
(A), we have morphisms of

functors

R•
(
Csm

c
(
U ′J,wJ

, (−)
N ′′

J,Iw,0
))
∼= Csm

c
(
U ′J,wJ

,H•(N ′′J,Iw,0,−)
)
,

R•
(
Csm

c
(
U ′J,wJ

,−
)N ′′

J,Iw,0
)
→ H•

(
N ′′J,Iw,0, C

sm
c
(
U ′J,wJ

,−
))
.

In order to show that the second one is also an isomorphism, it is enough to prove that Csm
c (U ′J,wJ

,−)

takes injective objects of Modsm
B ′′+J,wJ

nN ′′
J,Iw,0

(A) to N ′′J,Iw,0-acyclic objects. If σ̃ is an A-module, then we
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have a natural N ′′J,Iw,0-equivariant isomorphism

Csm
c
(
U ′J,wJ

, Csm(N ′′J,Iw,0, σ̃ ))∼= Csm(N ′′J,Iw,0, Csm
c
(
U ′J,wJ

, σ̃
))
,

so Csm
c
(
U ′J,wJ

, Csm(N ′′J,Iw,0, σ̃ )
)

is N ′′J,Iw,0-acyclic. Now if σ̃ is an injective object of Modsm
B ′′+J,wJ

nN ′′J,Iw,0
(A),

it is also an injective object of Modsm
N ′′J,Iw,0

(A) [Emerton 2010b, Proposition 2.1.11; Hauseux 2016a,
Lemme 3.1.1]; thus the natural N ′′J,Iw,0-equivariant injection σ̃ ↪→ Csm(N ′′J,Iw,0, σ̃ ) defined by v 7→
(n′′ 7→ n′′ · v) admits an N ′′J,Iw,0-equivariant retraction, so that σ̃ is a direct factor of Csm(N ′′J,Iw,0, σ̃ ), and
therefore σ̃ is N ′′J,Iw,0-acyclic. �

We now assume that σ is locally admissible.

Lemma 3.2.5. For all n ∈ N, there is a natural B ′′+J,wJ
nU ′J,wJ

-equivariant morphism

Csm
c
(
U ′J,wJ

,Hn(N ′′J,Iw,0, σ Iw
))
→ c-ind

LJ∩P−
J∩ IwJ−1(I )

wJ BJ

LJ∩P−
J∩ IwJ−1(I )

(
HnOrdL I∩PI∩ IwJ (J )

σ
)Iw J

such that the action of z on its kernel and cokernel is locally nilpotent.

Proof. We have natural B ′′+J,wJ
-equivariant isomorphisms

H•
(
N ′′J,Iw,0, σ

Iw
)
∼= H•

(IwN ′′J,Iw,0
Iw−1, σ

)Iw
. (22)

Since IwN ′′J,Iw
Iw−1
=UI ∩

Iw J NJ
Iw J−1 is the unipotent radical of L I ∩ PI∩ Iw J (J ) (see Lemma 2.1.1(iii)),

we define an open submonoid of L I∩Iw J (J ) by setting

L+I∩ Iw J (J ) :=
{
l ∈ L I∩ Iw J (J )

∣∣ l IwN ′′J,Iw,0
Iw−1l−1

⊆
IwN ′′J,Iw,0

Iw−1}.
We have IwB ′′+J,wJ

Iw−1
=

IwB ′′J,wJ
Iw−1
∩L+I∩ Iw J (J ). We let Z+I∩ Iw J (J )⊆ Z I∩ Iw J (J ) be the open submonoid

Z I∩ Iw J (J ) ∩ L+I∩ Iw J (J ). Since σ is locally admissible, H•(IwN ′′J,Iw,0
Iw−1, σ ) is locally Z+I∩ Iw J (J )-finite

[Emerton 2010b, Theorem 3.4.7(1)], and thus locally Iwz Iw−1-finite. Note that Iwz Iw−1
∈ Z+I∩ Iw J (J )

is strictly contracting IwN ′′J,Iw,0
Iw−1. Therefore, localising with respect to (Iwz Iw−1)N gives rise to

L+I∩ Iw J (J )-equivariant morphisms

H•
(IwN ′′J,Iw,0

Iw−1, σ
)
→ H•OrdL I∩PI∩ IwJ (J )

σ

such that the action of Iwz Iw−1 on their kernels and cokernel is locally nilpotent (see Remark 3.1.3).
Using (22), we deduce B ′′+J,wJ

-equivariant morphisms

H•
(
N ′′J,Iw,0, σ

Iw
)
→
(
H•OrdL I∩PI∩ IwJ (J )

σ
)Iw

such that the action of z on their kernels and cokernels is locally nilpotent. Applying the functor
Csm

c (U ′J,wJ
,−), we obtain B ′′+J,wJ

nU ′J,wJ
-equivariant morphisms

Csm
c
(
U ′J,wJ

,H•
(
N ′′J,Iw,0, σ

Iw
))
→ Csm

c
(
U ′J,wJ

,
(
H•OrdL I∩PI∩ IwJ (J )

σ
)Iw)

such that the action of z on their kernel and cokernel is still locally nilpotent (because the functions in
their sources and targets have finite images). We conclude using the inverse of the BJ,wJ -equivariant
isomorphism (12) with σ̃ = (H•OrdL I∩PI∩ IwJ (J )

σ)
Iw J

. �
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We combine the previous results into the following one.

Proposition 3.2.6. Let σ be a locally admissible L I -representation and Iw ∈ IW . We write Iw = Iw JwJ

with Iw J
∈

IW J and wJ ∈WJ . For all n ∈ N, there is a natural B+J,wJ
-equivariant morphism

Hn(NJ,Iw,0, c-indP−I
IwB

P−I
σ
)
→ c-ind

LJ∩P−
J∩IwJ−1

(I )
wJ BJ

LJ∩P−
J∩IwJ−1

(I )

(
HnOrdL I∩PI∩ IwJ (J )

σ
)Iw J

such that the action of z on its kernel and cokernel is locally nilpotent. Furthermore, this morphism is
even L+J ∩ PJ∩Iw J−1

(I )-equivariant when wJ = 1 (see Remark 2.2.2).

Proof. Combining Lemmas 3.2.1, 3.2.2, 3.2.4, 3.2.5, and using Lemma 3.2.3, we obtain the desired
morphism. If wJ = 1, then the previous lemmas and their proofs are true verbatim with LJ ∩ PJ∩Iw J−1

(I )
and LJ∩Iw J−1

(I ) instead of BJ,wJ and B′′J,wJ
respectively (see Remark 2.3.2); thus the morphism is

L+J ∩ PJ∩Iw J−1
(I )-equivariant. �

3.3. Computations on parabolically induced representations. Let I, J ⊆1, σ be a locally admissible
L I -representation and n ∈ N. For any lower set IW J

1 ⊆
IW J , the natural PJ -equivariant injection

Fil
IW J

1
PJ
(IndG

P−I
σ) ↪→ IndG

P−I
σ induces an LJ -equivariant morphism

HnOrdPJ

(
Fil

IW J
1

PJ
(IndG

P−I
σ)
)
→ HnOrdPJ (IndG

P−I
σ), (23)

and by taking its image we define an LJ -subrepresentation

Fil
IW J

1
PJ

(
HnOrdPJ (IndG

P−I
σ)
)
⊆ HnOrdPJ (IndG

P−I
σ).

Proposition 3.3.1. The LJ -subrepresentations Fil•PJ

(
HnOrdPJ (IndG

P−I
σ)
)

form a natural filtration of
HnOrdPJ (IndG

P−I
σ) indexed by IW J . Furthermore, for all Iw J

∈
IW J there is a natural LJ -equivariant

isomorphism

Gr
Iw J

PJ

(
HnOrdPJ (IndG

P−I
σ)
)
∼= HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
.

Proof. First, we prove for any lower sets IW J
2 ⊆

IW J
1 ⊆

IW J , the short exact sequence of PJ -representations

0→ Fil
IW J

2
PJ
(IndG

P−I
σ)→ Fil

IW J
1

PJ
(IndG

P−I
σ)→ Fil

IW J
1

PJ
(IndG

P−I
σ)/Fil

IW J
2

PJ
(IndG

P−I
σ)→ 0 (24)

induces a short exact sequence of LJ -representations

0→ HnOrdPJ

(
Fil

IW J
2

PJ
(IndG

P−I
σ)
)
→ HnOrdPJ

(
Fil

IW J
1

PJ
(IndG

P−I
σ)
)

→ HnOrdPJ

(
Fil

IW J
1

PJ
(IndG

P−I
σ)/Fil

IW J
2

PJ
(IndG

P−I
σ)
)
→ 0. (25)

In particular, (23) is injective and (7) induces the isomorphism in the statement.
Let NJ,0 ⊆ NJ , L+J ⊆ LJ , Z+J ⊆ ZJ and z ∈ Z+J be as in Section 3.2. Proceeding as in the proof of

[Hauseux 2016a, Proposition 2.2.3], we see that the first nontrivial morphism of (24) induces an injection
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in NJ,0-cohomology. Using the long exact sequence of NJ,0-cohomology, we deduce that (24) induces a
short exact sequence of L+J -representations

0→ Hn(NJ,0,Fil
IW J

2
PJ
(IndG

P−I
σ)
)
→ Hn(NJ,0,Fil

IW J
1

PJ
(IndG

P−I
σ)
)

→ Hn(NJ,0,Fil
IW J

1
PJ
(IndG

P−I
σ)/Fil

IW J
2

PJ
(IndG

P−I
σ)
)
→ 0. (26)

Since σ is locally admissible, IndG
P−I
σ is locally admissible [Emerton 2010a, Proposition 4.1.7]; thus

H•(NJ,0, IndG
P−I
σ) is locally Z+J -finite [Emerton 2010b, Theorem 3.4.7(1)]. We deduce that each term of

(26) is locally Z+J -finite (as a subquotient). We conclude that localising (26) with respect to zN yields
(25) (see Remark 3.1.3).

We now prove that Fil•PJ
(HnOrdPJ (IndG

P−I
σ)) is a filtration of HnOrdPJ (IndG

P−I
σ) indexed by IW J . Since

IW J is finite and Fil•PJ
(HnOrdPJ (IndG

P−I
σ)) is inclusion-preserving with Fil∅PJ

(HnOrdPJ (IndG
P−I
σ)) = 0

and Fil
IW J

PJ
(HnOrdPJ (IndG

P−I
σ)) = HnOrdPJ (IndG

P−I
σ) by construction, it remains to prove that for any

lower sets IW J
1 ,

IW J
2 ⊆

IW J , the natural short exact sequence of PJ -representations

0→ Fil
IW J

1 ∩
IW J

2
PJ

(IndG
P−I
σ)→ Fil

IW J
1

PJ
(IndG

P−I
σ)⊕Fil

IW J
2

PJ
(IndG

P−I
σ)→ Fil

IW J
1 ∪

IW J
2

PJ
(IndG

P−I
σ)→ 0

induces a short exact sequence of LJ -representations

0→ Fil
IW J

1 ∩
IW J

2
PJ

(
HnOrdPJ (IndG

P−I
σ)
)
→ Fil

IW J
1

PJ

(
HnOrdPJ (IndG

P−I
σ)
)
⊕Fil

IW J
2

PJ

(
HnOrdPJ (IndG

P−I
σ)
)

→ Fil
IW J

1 ∪
IW J

2
PJ

(
HnOrdPJ (IndG

P−I
σ)
)
→ 0.

This follows from the same arguments as above. �

Let Iw J
∈

IW J . For any lower set W ′J ⊆
J∩Iw J−1(I )WJ , the natural B-equivariant (resp. PJ∩ Iw J−1(I )-

equivariant when W ′J ={1}; see Remark 2.2.2) injection Fil
W ′J
B (c-indP−I

Iw J PJ

P−I
σ) ↪→ c-indP−I

Iw J PJ

P−I
σ induces

a BJ -equivariant (resp. LJ ∩ PJ∩ Iw J−1(I )-equivariant when W ′J = {1}) morphism

HnOrdPJ

(
Fil

W ′J
B

(
c-indP−I

Iw J PJ

P−I
σ
))
→ HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
, (27)

and by taking its image we define a BJ -subrepresentation (resp. LJ ∩ PJ∩ Iw J−1(I )-subrepresentation when
W ′J = {1})

Fil
W ′J
B

(
HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
))
⊆ HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
.

Proceeding as in the proof of Proposition 3.3.1 and using (8), we prove that (27) is injective and the
following result.

Proposition 3.3.2. The BJ -subrepresentations Fil•B
(
HnOrdPJ (c-indP−I

Iw J PJ

P−I
σ)
)

form a natural filtration
of HnOrdPJ (c-indP−I

Iw J PJ

P−I
σ) indexed by J∩Iw J−1(I )WJ . Furthermore, for all wJ ∈

J∩Iw J−1(I )WJ there is a
natural BJ -equivariant isomorphism

GrwJ
B

(
HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
))
∼= HnOrdPJ

(
c-indP−I

Iw JwJ B
P−I

σ
)

which is even LJ ∩ PJ∩ Iw J−1(I )-equivariant when wJ = 1 (see Remark 2.2.2).
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We now state the main result of this section using Notation 2.3.3 and Remark 2.3.4.

Theorem 3.3.3. Let σ be a locally admissible L I -representation, Iw J
∈

IW J and n ∈ N. For all
wJ ∈

J∩Iw J−1(I )WJ , there is a natural BJ,wJ -equivariant isomorphism

GrwJ
B

(
HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
))

∼= GrwJ
BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I )

((
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J

⊗ (ω−1
◦ δIw J )

))
which is even LJ ∩ PJ∩ Iw J−1(I )-equivariant when wJ = 1 (see Remark 2.2.2).

Proof. We use the notation of Section 2.3. We let wJ ∈
J∩Iw J−1(I )WJ and we put Iw := Iw JwJ . We let

NJ,0 ⊆ NJ , L+J ⊆ LJ , Z+J ⊆ ZJ , z ∈ Z+J and πIw be as in Section 3.2. In the course of the proof of
Proposition 3.3.2, we see that Hn(NJ,0, πIw) is locally Z+J -finite (as we saw it for Hn(NJ,0, c-indP−I

Iw J PJ

P−I
σ)

in the course of the proof of Proposition 3.3.1).
Since σ is locally admissible, the L I∩Iw J (J )-representations H•OrdL I∩PI∩ IwJ (J )

σ are locally admissible
by [Emerton 2010b, Theorem 3.4.7(2)]; thus locally Z I∩ Iw J (J )-finite by [Emerton 2010a, Lemma 2.3.4].
Therefore, the BJ -representations

c-ind
LJ∩P−

J∩IwJ−1
(I )
wJ BJ

LJ∩P−
J∩IwJ−1

(I )

(
H•OrdL I∩PI∩ IwJ (J )

σ
)Iw J

are locally ZJ -finite; thus locally z-finite. We deduce from Proposition 3.2.6 that the B+J,wJ
-representations

H•(NJ,Iw,0, πIw) are locally z-finite and that there is a natural B+J,wJ
-equivariant (resp. L+J ∩ PJ∩Iw J−1

(I )-
equivariant when wJ = 1) morphism

Hn−[F :Qp]dIwJ (NJ,Iw,0, πIw)⊗ (ω
−1
◦ δIw J )wJ

→

(
c-ind

LJ∩P−
J∩IwJ−1

(I )
wJ BJ

LJ∩P−
J∩IwJ−1

(I )

(
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J)

⊗ (ω−1
◦ δIw J )wJ (28)

such that the action of z on its kernel and cokernel is locally nilpotent.
Using Proposition 3.1.2 with L̃ = BJ,wJ (resp. L̃ = LJ ∩ PJ∩ Iw J−1(I ) when wJ = 1), Ñ = NJ ,

Ñ ′= NJ,Iw (so that d̃− d̃ ′= dIw J and δ̃− δ̃′=w−1
J (δIw J ) since conjugation by wJ induces an isomorphism

of F-varieties NJ/NJ,Iw −→
∼ NJ/NJ,Iw J ), z̃ = z and π = πIw, we deduce a natural B+J,wJ

-equivariant
(resp. L+J ∩ PJ∩Iw J−1(I )-equivariant when wJ = 1) morphism

Hn−[F :Qp]dIwJ (NJ,Iw,0, πIw)⊗ (ω
−1
◦ δIw J )wJ → Hn(NJ,0, πIw) (29)

and the Hecke action of z on its kernel and cokernel is locally nilpotent.
Using Proposition 3.3.2, (9) with σ̃ = (Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ)
Iw J
⊗(ω−1

◦δIw J ) and the natural
BJ -equivariant (resp. LJ ∩ PJ∩ Iw J−1(I )-equivariant when wJ = 1) isomorphism(
c-ind

LJ∩P−
J∩IwJ−1

(I )
wJ BJ

LJ∩P−
J∩IwJ−1

(I )

(
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J)

⊗ (ω−1
◦ δIw J )wJ

−→∼ c-ind
LJ∩P−

J∩IwJ−1
(I )
wJ BJ

LJ∩P−
J∩IwJ−1

(I )

((
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J

⊗ (ω−1
◦ δIw J )

)
,



Parabolic induction and extensions 807

the localisation of (28) with respect to zN and the inverse of the localisation of (29) with respect to zN

yield the desired isomorphism (see Remark 3.1.3). �

In particular with wJ = 1 and σ̃ :=
(
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J

⊗(ω−1
◦δIw J ), there is a natural

LJ ∩ PJ∩ Iw J−1(I )-equivariant injection

Gr1
BJ

(
IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃
)
↪→ HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
,

hence a natural LJ -equivariant morphism

A[LJ ]⊗A[LJ∩PJ∩ IwJ−1(I )]
Gr1

BJ

(
IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃
)
→ HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
.

In the proof of [Emerton 2010a, Theorem 4.4.6], it is shown that such a morphism factors uniquely
through the natural LJ -equivariant surjection

A[LJ ]⊗A[LJ∩PJ∩ IwJ−1(I )]
Gr1

BJ

(
IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃
)
� IndLJ

LJ∩P−
J∩ IwJ−1(I )

σ̃ .

Thus, the previous injection naturally extends to an LJ -equivariant morphism

IndLJ

LJ∩P−
J∩ IwJ−1(I )

((
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J

⊗(ω−1
◦δIw J )

)
→HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
. (30)

Conjecture 3.3.4. The natural morphism (30) is an isomorphism.

We prove Conjecture 3.3.4 in some special cases.

Proposition 3.3.5. (i) If Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )
σ = 0, then

HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
= 0.

(ii) If Iw J (J )⊆ I , then (30) is a natural LJ -equivariant isomorphism(
Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )

σ
)Iw J

⊗ (ω−1
◦ δIw J )−→∼ HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
.

(iii) If n = 0 and Iw J
= 1, then (30) is a natural LJ -equivariant isomorphism

IndLJ

LJ∩P−I

(
OrdL I∩PJ σ

)
−→∼ OrdPJ

(
c-indP−I PJ

P−I
σ
)
.

Proof. We first use Theorem 3.3.3.

If Hn−[F :Qp]dIwJ OrdL I∩PI∩ IwJ (J )
σ = 0, we deduce that Gr•B

(
HnOrdPJ (c-indP−I

Iw J PJ

P−I
σ)
)
= 0, hence (i).

If Iw J (J )⊆ I , we deduce from [Emerton 2010b, Proposition 3.6.1] that Gr•B
(
HnOrdPJ (c-indP−I

Iw J PJ

P−I
σ)
)

is concentrated in degree 1; thus (30) is an isomorphism, hence (ii).
We now prove (iii). Since all the functors involved commute with inductive limits, we reduce to the case

where σ is admissible. By [Abe et al. 2017b, Corollaries 4.13 and 5.9], there is a natural LJ -equivariant
isomorphism

IndLJ

LJ∩P−I

(
OrdL I∩PJ σ

)
−→∼ OrdPJ

(
IndG

P−I
σ
)
. (31)



808 Julien Hauseux

Using (i), we deduce from Proposition 3.3.1 with n = 0 that Gr•PJ
(OrdPJ (IndG

P−I
σ)) is concentrated in

degree 1, hence a natural LJ -equivariant isomorphism

OrdPJ

(
c-indP−I PJ

P−I
σ
)
−→∼ OrdPJ

(
IndG

P−I
σ
)
. (32)

The composition of (30) with n = 0 and Iw J
= 1, (32) and the inverse of (31) yields an LJ -equivariant en-

domorphism ϕ of IndLJ

LJ∩P−I
(OrdL I∩PJ σ) which is injective in restriction to Fil1BJ

(
IndLJ

LJ∩P−I
(OrdL I∩PJ σ)

)
.

From [Emerton 2010a, Lemma 4.3.1 and Proposition 4.3.4] and the left-exactness of OrdL I∩PJ , we
deduce that OrdLJ∩PI ϕ is an injective L I∩J -equivariant endomorphism of OrdL I∩PJ σ . Since the latter is
admissible by [op. cit., Theorem 3.3.3], it is Artinian (see Section 4.1 below), and thus co-Hopfian so that
OrdL I∩PJ ϕ is an isomorphism. We deduce that ϕ is an isomorphism using [op. cit., Proposition 4.3.4 and
Theorem 4.4.6]. We conclude that (30) with n = 0 and Iw J

= 1 is an isomorphism as in the statement. �

Remark 3.3.6. Let R•OrdL I∩PJ denote the derived functors of OrdL I∩PJ on Modl.adm
L I

(A). By universality
of derived functors, the isomorphism in (iii) extends uniquely to a morphism of δ-functors

IndLJ

LJ∩P−I
◦R•OrdL I∩PJ → H•OrdPJ ◦ c-indP−I PJ

P−I
(33)

(the left-hand side is the derived functor of IndLJ

LJ∩P−I
◦OrdL I∩PJ by exactness of IndLJ

LJ∩P−I
, and the

right-hand side is a δ-functor by the same arguments as in the proof of Proposition 3.3.1). Now, assume
that [Emerton 2010b, Conjecture 3.7.2] is true for L I ∩ PJ , i.e., R•OrdL I∩PJ −→

∼ H•OrdL I∩PJ . Then
Conjecture 3.3.4 for Iw J

= 1 is equivalent to (33) being an isomorphism. We could prove this if we knew
that the isomorphism of Theorem 3.3.3 with Iw J

= 1 were BJ -equivariant for all wJ ∈
J∩I WJ .

Finally, we compute the derived ordinary parts of a parabolically induced representation in low degree
when there is an inclusion between I and J .

Proposition 3.3.7. (i) If I ⊆ J and 0< n < [F :Qp], then HnOrdPJ (IndG
P−I
σ)= 0.

(ii) If J ⊆ I and n < [F :Qp], then there is a natural LJ -equivariant isomorphism

HnOrdL I∩PJ σ −→
∼ HnOrdPJ (IndG

P−I
σ).

(iii) If J ⊆ I and OrdL I∩PI∩sα(J )
σ = 0 for all α ∈ 11

\ (I ∪ J⊥), then there is a natural short exact
sequence of LJ -representations

0→ H[F :Qp]OrdL I∩PJ σ → H[F :Qp]OrdPJ (IndG
P−I
σ)→

⊕
α∈J⊥,1\I

(OrdL I∩PJ σ)
α
⊗ (ω−1

◦α)→ 0.

Proof. We use Proposition 3.3.1 and Lemma 2.2.1 with ` : IW J
→ N to obtain a filtration

Fil`,•PJ

(
HnOrdPJ (IndG

P−I
σ)
)

indexed by N such that for all i ∈ N, there is a natural LJ -equivariant isomorphism

Gr`,iPJ

(
HnOrdPJ (IndG

P−I
σ)
)
∼=

⊕
`(Iw J )=i

HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
. (34)
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Assume n < [F :Qp]. If Iw J
6= 1 (i.e., dIw J > 0), then HnOrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
= 0 by Proposition

3.3.5(i) since n− [F :Qp]dIw J < 0; thus we deduce from (34) that Gr`,•PJ

(
HnOrdPJ (IndG

P−I
σ)
)

is concen-
trated in degree 0, so that assuming Conjecture 3.3.4 for Iw J

= 1, we obtain a natural LJ -equivariant
isomorphism

IndLJ

LJ∩P−I

(
HnOrdL I∩PJ σ

)
−→∼ HnOrdPJ (IndG

P−I
σ). (35)

Now, Conjecture 3.3.4 is true for Iw J
= 1 in the following cases: n > 0 and I ⊆ J by Proposition 3.3.5(i)

since HnOrdL I∩PJ = HnOrdL I = 0 [Emerton 2010b, Proposition 3.6.1], in which case the source of (35)
is zero, hence (i); J ⊆ I by Proposition 3.3.5(ii), in which case the source of (35) is HnOrdL I∩PJ σ ,
hence (ii).

Likewise, if Iw J
6= 1 and Iw J

6= sα for all α ∈11
\ (I ∪ J ) (i.e., dIw J > 1), then

H[F :Qp]OrdPJ

(
c-indP−I

Iw J PJ

P−I
σ
)
= 0

by Proposition 3.3.5(i) since [F :Qp] − [F :Qp]dIw J < 0; thus we deduce from (34) that

Gr`,•PJ

(
H[F :Qp]OrdPJ (IndG

P−I
σ)
)

is concentrated in degrees 0 and 1, so that assuming Conjecture 3.3.4 for n = [F :Qp] and Iw J
= 1 or

Iw J
= sα for all α ∈11

\ (I ∪ J ), we obtain a short exact sequence of LJ -representations

0→ IndLJ

LJ∩P−I

(
H[F :Qp]OrdL I∩PJ σ

)
→ H[F :Qp]OrdPJ (IndG

P−I
σ)

→

⊕
α∈11\(I∪J )

IndLJ

LJ∩P−J∩sα(I )

((
OrdL I∩PI∩sα(J )

σ
)α
⊗ (ω−1

◦α)
)
→ 0. (36)

Assume J ⊆ I and OrdL I∩PI∩sα(J )
σ = 0 for all α ∈11

\ (I ∪ J⊥). Then Conjecture 3.3.4 is indeed true
for n = [F :Qp] in the following cases: Iw J

= 1 by Proposition 3.3.5(ii), and the first nontrivial term of
(36) is H[F :Qp]OrdL I∩PJ σ ; Iw J

= sα with α ∈11
\ (I ∪ J⊥) by Proposition 3.3.5(i) and the hypothesis on

σ , and the corresponding summand of the last nontrivial term of (36) is zero; Iw J
= sα with α ∈ J⊥,1\I

by Proposition 3.3.5(ii) since sα(J )= J ⊆ I , and the corresponding summand of the last nontrivial term
of (36) is (OrdL I∩PJ σ)

α
⊗ (ω−1

◦α). Hence (iii). �

We reformulate Proposition 3.3.7 in the case I = J , using the fact that in this case HnOrdL I∩PJ = 0 if
n > 0 [Emerton 2010b, Proposition 3.6.1]. Note that if P = L N is a standard parabolic subgroup, then
for all α ∈1 \1L the standard parabolic subgroup of L corresponding to 1L ∩ sα(1L) is L ∩ sα Ps−1

α

and it is proper if and only if α 6∈1⊥L .

Corollary 3.3.8. Let P = L N be a standard parabolic subgroup and σ be a locally admissible L-
representation.

(i) For all n ∈ N such that 0< n < [F :Qp], we have HnOrdP(IndG
P− σ)= 0.

(ii) If OrdL∩sαPs−1
α
σ = 0 for all α ∈11

\ (1L ∪1
⊥

L ), then there is a natural L-equivariant isomorphism

H[F :Qp]OrdP(IndG
P− σ)

∼=

⊕
α∈1⊥,1L

σ α ⊗ (ω−1
◦α).
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4. Derived Jacquet functors

The aim of this section is to study the derived functors of the Jacquet functor. In Section 4.1, we review
some results on pro-categories. In Section 4.2, we relate the left derived functors of the Jacquet functor in
a pro-category with the derived ordinary parts functors and we construct a new exact sequence to compute
extensions by a parabolically induced representation. In Section 4.3, we adapt the results of Section 3.3
in order to partially compute the derived Jacquet functors on a parabolically induced representation.

4.1. Pro-categories. Let H be a p-adic Lie group. Let C be the category whose objects are the A[H ]-
modules such that for some (equivalently any) compact open subgroup H0⊆ H , the A[H0]-action extends
to a structure of A[[H0]]-module of finite type, and whose morphisms are the A[H ]-linear maps. Since
the completed group rings are Noetherian [Emerton 2010a, Theorem 2.1.2], the category C is A-abelian
and Noetherian, i.e., it is essentially small7 and its objects are Noetherian. Let C∧ be the category of
contravariant functors C→ Set and Ind-C be the full subcategory of C∧ whose objects are the functors
isomorphic to a small inductive limit in C∧ of objects of C (using the Yoneda embedding C→ C∧).
By [Kashiwara and Schapira 2006, Theorem 8.6.5], the category Ind-C is a Grothendieck category8 (in
particular it has enough injectives; see [Kashiwara and Schapira 2006, Theorem 9.6.2]) and the natural
A-linear functor C→ Ind-C is fully faithful and exact.

Now, Pontryagin duality induces an equivalence of categories [Emerton 2010a, (2.2.12)]

Modadm
H (A)∼= Cop.

Thus, the category Modadm
H (A) is Artinian, the pro-category

Pro-Modadm
H (A) := (Ind-C)op

has enough projectives, and the natural A-linear functor

Modadm
H (A)→ Pro-Modadm

H (A) (37)

is fully faithful and exact. We let Ext•H and Ext•Pro-H denote the bifunctors of Yoneda extensions in the
categories Modadm

H (A) and Pro-Modadm
H (A) respectively. By [Oort 1964, Theorem 3.5], (37) induces

A-linear isomorphisms
Ext•H (π

′, π)−→∼ Ext•Pro-H (π
′, π) (38)

for all objects π, π ′ of Modadm
H (A).

4.2. A second exact sequence. Let P ⊆ G be a parabolic subgroup and L ⊆ P be a Levi factor. We let
P− ⊆ G denote the parabolic subgroup opposed to P with respect to L. There is a natural exact sequence
of A-modules [Emerton 2010b, (3.7.6)]

0→ Ext1L(σ,OrdP π)→ Ext1G(IndG
P− σ, π)→ HomL(σ,H1OrdP π) (39)

7A category is essentially small if it is equivalent to a small category, i.e., if the isomorphism classes of its objects form a set.
8A Grothendieck category is an abelian category that admits a generator and small direct sums, and in which inductive limits

are exact.
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for all objects σ and π of Modadm
L (A) and Modadm

G (A) respectively. We construct a second exact sequence,
in which parabolic induction is on the right.

By [Emerton 2010a, Proposition 4.1.5 and Proposition 4.1.7], parabolic induction induces an A-linear
exact functor

IndG
P :Modadm

L (A)→Modadm
G (A).

By [Emerton 2010b, Corollary 3.6.7], taking N -coinvariants induces an A-linear right-exact functor (the
so-called Jacquet functor)

(−)N :Modadm
G (A)→Modadm

L (A).

By Frobenius reciprocity and the universal property of coinvariants, there is a natural A-linear isomorphism

HomG(π, IndG
P σ)
∼= HomL(πN , σ ). (40)

for all objects π and σ of Modadm
G (A) and Modadm

L (A) respectively.
We deduce from [Kashiwara and Schapira 2006, Proposition 6.1.9] that these functors and the adjunction

relation extend to the corresponding pro-categories. By [op. cit., Corollary 8.6.8], IndG
P is still exact so

that (−)N still preserves projectives. Thus, denoting by L•(N ,−) the left derived functors of (−)N in
Pro-Modadm

G (A), there is a Grothendieck spectral sequence of A-modules

ExtiPro-L(L j (N , π), σ )⇒ Exti+ j
Pro-G(π, IndG

P σ)

whose low degree terms form a natural exact sequence of A-modules

0→ Ext1Pro-L(πN , σ )→ Ext1Pro-G(π, IndG
P σ)→ HomPro-L(L1(N , π), σ )

→ Ext2Pro-L(πN , σ )→ Ext2Pro-G(π, IndG
P σ) (41)

for all objects π and σ of Pro-Modadm
G (A) and Pro-Modadm

L (A) respectively.

We let d denote the integer dimF N and δ ∈ X∗(L) denote the algebraic character of the adjoint
representation of L on detF (Lie N). We define A-linear functors by setting

H• (N ,−) := H[F :Qp]d−•OrdP ⊗ (ω ◦ δ) .

We deduce from [Emerton 2010b, Corollary 3.4.8 and Proposition 3.6.1] that we obtain a homological
δ-functor

H• (N ,−) :Modadm
G (A)→Modadm

L (A)

and proceeding as in the proof of [Kashiwara and Schapira 2006, Corollary 8.6.8], we see that it extends
to a homological δ-functor between the corresponding pro-categories.

By [Emerton 2010b, Proposition 3.6.2], there is an isomorphism of functors (hence the notation)

H0 (N ,−)∼= (−)N

which, by universality of derived functors, extends uniquely to a morphism of δ-functors

H• (N ,−)→ L• (N ,−) (42)
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which is bijective in degree 0, and thus surjective in degree 1 (by a dimension-shifting argument). Using
(38), we deduce from (41) a natural exact sequence of A-modules

0→ Ext1L(πN , σ )→ Ext1G(π, IndG
P σ)→ HomL(H1(N , π), σ ) (43)

for all objects π and σ of Modadm
G (A) and Modadm

L (A) respectively.

Remark 4.2.1. (i) Nothing is known (to the author at least) regarding the nature of the morphism (42)
in degree greater than 1.

(ii) Let H be a p-adic Lie group. Taking inductive limits induces an A-linear exact functor

lim
−−→
: Ind-Modadm

H (A)→Modl.adm
H (A)

which is essentially surjective, but not faithful nor full in general. Thus the situation here (i.e.,
deriving in Pro-Modadm

H (A)) is not exactly dual to that of [Emerton 2010b, §3.7] (i.e., deriving in
Modl.adm

H (A)).

4.3. Adaptation of the computations. Let I, J ⊆ 1, σ be an L I -representation and n ∈ N. We let
Iw0 = wI,0w0 (resp. J∩Iw J−1(I )wJ,0 = wJ∩Iw J−1(I ),0wJ,0) denote the image of w0 (resp. wJ,0) in IW
(resp. J∩Iw J−1(I )WJ ) and we define an auxiliary subset of 1 by setting I ′ := Iw−1

0 (I ). We have L I =
Iw0 LI ′

Iw−1
0 and PI =

Iw0 P−I ′ Iw−1
0 , hence a natural G-equivariant isomorphism

IndG
PI
σ ∼= IndG

P−I ′
σ

Iw0 (44)

defined by f 7→ (g 7→ f (Iw0g)).

Lemma 4.3.1. The map IW J
→

I ′W J defined by Iw J
7→

Iw−1
0

Iw J J∩Iw J−1(I )wJ,0 is an order-reversing
bijection.

Proof. First, note that WI = w0WI ′w0, so that left translation by w0 induces a bijection

WI\W/WJ −→
∼ WI ′\W/WJ .

In particular, card IW J
= card I ′W J . Thus, it is enough to prove that the order-reversing composite

IW J ↪→W −→∼ W

where the first arrow is defined by Iw J
7→ wI,0

Iw J J∩Iw J−1(I )wJ,0 (it is injective since IW J is a system of
representatives of the double cosets WI\W/WJ , and order-preserving since the projection W � IW J is
order-preserving) and the second arrow is the left multiplication by w0 (it is an order-reversing bijection;
see [Björner and Brenti 2005, Proposition 2.3.4(i)]), takes values in I ′W J .

Now, let Iw J
∈

IW J . For all Iw ∈ IW and wI ′ ∈WI ′ (using [op. cit., Proposition 2.3.2(ii)]),

`
(
wI ′

Iw−1
0

Iw
)
= `

(
w0(w0wI ′w0)wI,0

Iw
)

= `(w0)−
((
`(wI,0)− `(w0wI ′w0)

)
+ `(Iw)

)
= `(wI ′)+ `(w0wI,0

Iw).
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Since Iw J J∩Iw J−1(I )wJ,0 ∈
IW , we deduce that Iw−1

0
Iw J J∩Iw J−1(I )wJ,0 ∈

I ′W . Likewise, for all w J
∈W J ,

we have w0w
JwJ,0 ∈W J . Since

Iw−1
0

Iw J J∩Iw J−1(I )wJ,0 = w0wI,0
Iw JwJ∩Iw J−1(I ),0wJ,0

= w0wI,0wI∩ Iw J (J ),0
Iw JwJ,0

= w0w
I∩ Iw J (J )
I,0

Iw JwJ,0

and w I∩ Iw J (J )
I,0

Iw J
∈W J , we deduce that Iw−1

0
Iw J J∩Iw J−1(I )wJ,0 ∈W J . We conclude that

Iw−1
0

Iw J J∩Iw J−1(I )wJ,0 ∈
I ′W J . �

We see from Lemma 4.3.1 that the left translate by Iw0 of the decomposition G=
⊔

I ′w J∈I ′W J P−I ′
I ′w J PJ

is the decomposition G =
⊔

Iw J∈IW J PI
Iw J PJ with the opposite closure relations. Proceeding as in

Section 2.2, we can construct a natural filtration Fil•PJ
(IndG

PI
σ) by PJ -subrepresentations indexed by IW J

with the opposite Bruhat order, and there is a natural PJ -equivariant isomorphism

Gr
Iw J

PJ
(IndG

PI
σ)∼= c-indPI

Iw J PJ
PI

σ

for all Iw J
∈

IW J . Furthermore, (44) identifies this filtration with Fil•PJ
(IndG

P−I ′
σ

Iw0), using Lemma 4.3.1
to identifiy the indexing posets, and induces a natural PJ -equivariant isomorphism

c-indPI
Iw J PJ

PI
σ ∼= c-ind

P−I ′
I ′w J PJ

P−I ′
σ

Iw0 (45)

for all Iw J
∈

IW J with I ′w J
=

Iw−1
0

Iw J J∩Iw J−1(I )wJ,0. Therefore, by Proposition 3.3.1, Fil•PJ
(IndG

PI
σ)

induces a filtration Fil•PJ
(Hn(NJ , IndG

PI
σ)) by LJ -subrepresentations indexed by IW J with the opposite

Bruhat order and there is a natural LJ -equivariant isomorphism

Gr
Iw J

PJ

(
Hn(NJ , IndG

PI
σ)
)
∼= Hn

(
NJ , c-indPI

Iw J PJ
PI

σ
)

for all Iw J
∈

IW J .
Let Iw J

∈
IW J and set I ′w J

:=
Iw−1

0
Iw J J∩Iw J−1(I )wJ,0. We let σ̃ be an L J∩ Iw J−1(I )-representation.

Note that J ∩ Iw J−1(I )= J∩Iw J−1(I )wJ,0(J ∩ I ′w J−1(I ′)). We have

LJ∩ Iw J−1(I ) =
J∩Iw J−1(I )wJ,0 LJ∩I ′w J−1(I ′)

J∩Iw J−1(I )w−1
J,0

and
LJ ∩ PJ∩ Iw J−1(I ) =

J∩Iw J−1(I )wJ,0 LJ ∩ P−
J∩I ′w J−1(I ′)

J∩Iw J−1(I )w−1
J,0,

hence a natural LJ -equivariant isomorphism

IndLJ
LJ∩PJ∩ IwJ−1(I )

σ̃ ∼= IndLJ

LJ∩P−
J∩I ′wJ−1(I ′)

σ̃
J∩IwJ−1(I )wJ,0 (46)

defined by f 7→ (l 7→ f (J∩Iw J−1(I )wJ,0l)). Proceeding as in the proof of Lemma 4.3.1, we obtain the
following result.

Lemma 4.3.2. The map J∩Iw J−1(I )WJ →
J∩I ′w J−1(I ′)WJ defined by wJ 7→

J∩Iw J−1(I )w−1
J,0wJ is an order-

reversing bijection.
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We deduce from Lemma 4.3.2 that the left translate by Iw0 (resp. J∩Iw J−1(I )wJ,0) of the decomposition

P−I ′
I ′w J PJ =

⊔
w′J∈

J∩I ′wJ−1(I ′)WJ

P−I ′
I ′w Jw′J B (resp. LJ =

⊔
w′J∈

J∩I ′wJ−1(I ′)WJ

LJ ∩ P−
J∩I ′w J−1(I ′)

w′J BJ )

is the decomposition

PI
Iw J PJ =

⊔
wJ∈J∩IwJ−1(I )WJ

PI
Iw JwJ B (resp. LJ =

⊔
wJ∈J∩IwJ−1(I )WJ

LJ ∩ PJ∩Iw J−1(I )wJ BJ )

with the opposite closure relations. Proceeding as in Section 2.2, we can construct a natural filtration
Fil•B(c-indPI

Iw J PJ
PI

σ) (resp. Fil•BJ
(IndLJ

LJ∩PJ∩IwJ−1(I )
σ̃ )) by B- (resp. BJ -)subrepresentations indexed by

J∩Iw J−1(I )WJ with the opposite Bruhat order, and there is a natural B- (resp. BJ -)equivariant isomorphism

GrwJ
B

(
c-indPI

Iw J PJ
PI

σ
)
∼= c-indPI

Iw JwJ B
PI

σ (resp. GrwJ
BJ

(
IndLJ

LJ∩PJ∩IwJ−1(I )
σ̃
)
∼= c-ind

LJ∩PJ∩ IwJ−1(I )wJ BJ

LJ∩PJ∩ IwJ−1(I )
σ̃ )

for all wJ ∈
J∩Iw J−1(I )WJ . Further, (45) (resp. (46)) identifies this filtration with

Fil•B
(
c-ind

P−I ′
I ′w J PJ

P−I ′
σ

Iw0
) (

resp. Fil•BJ

(
IndLJ

LJ∩P−
J∩I ′wJ−1(I ′)

σ̃
J∩IwJ−1(I )wJ,0

))
,

using Lemma 4.3.2 to identifiy the indexing posets, and induces a natural B- (resp. BJ -)equivariant
isomorphism

c-indPI
Iw JwJ B

PI
σ ∼= c-ind

P−I ′
I ′w Jw′J B

P−I ′
σ

Iw0

(resp. c-ind
LJ∩PJ∩ IwJ−1(I )wJ BJ

LJ∩PJ∩ IwJ−1(I )
σ̃ ∼= c-ind

LJ∩P−
J∩I ′wJ−1(I ′)

w′J BJ

LJ∩P−
J∩I ′wJ−1(I ′)

σ̃
J∩IwJ−1(I )wJ,0)

for allwJ ∈
J∩Iw J−1(I )WJ withw′J =

J∩Iw J−1(I )w−1
J,0wJ . Therefore, by Proposition 3.3.2, Fil•B(c-indPI

Iw J PJ
PI

σ)

induces a filtration Fil•B(Hn(NJ , c-indPI
Iw J PJ

PI
σ)) by BJ -subrepresentations indexed by J∩Iw J−1(I )WJ with

the opposite Bruhat order and there is a natural BJ -equivariant isomorphism

GrwJ
B

(
Hn
(
NJ , c-indPI

Iw J PJ
PI

σ
))
∼= Hn

(
NJ , c-indPI

Iw JwJ B
PI

σ
)

for all wJ ∈
J∩Iw J−1(I )WJ .

Theorem 4.3.3. Let σ be a locally admissible L I -representation, Iw J
∈

IW J and n ∈ N. For all
wJ ∈

J∩Iw J−1(I )WJ , there is a natural BJ,J∩IwJ−1(I )w−1
J,0wJ

-equivariant isomorphism

GrwJ
B

(
Hn
(
NJ , c-indPI

Iw J PJ
PI

σ
))
∼= GrwJ

BJ

(
IndLJ

LJ∩PJ∩IwJ−1(I )

(
Hn−[F :Qp]dIwJ

(
L I ∩ NI∩ Iw J (J ), σ

)Iw J

⊗ (ω ◦ δIw J )
))

which is even LJ ∩ PJ∩J∩IwJ−1(I )w−1
J,0

Iw J−1(I )-equivariant when wJ =
J∩Iw J−1(I )wJ,0.

Proof. We set I ′w J
:=

Iw−1
0

Iw J J∩Iw J−1(I )wJ,0 and we define an L J∩ Iw J−1(I )-representation by setting

σ̃ :=
((

H[F :Qp](dJ−dI ′wJ )−nOrdL I ′∩P
I ′∩I ′wJ (J )

σ
Iw0
)I ′w J

⊗ (ω ◦ (δJ − δI ′w J ))
)J∩IwJ−1(I )w−1

J,0,
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where dJ denotes the integer dimF NJ and δJ ∈X∗(LJ ) denotes the algebraic character of the adjoint rep-
resentation of LJ on detF (Lie NJ ). We prove that there is a natural L J∩ Iw J−1(I )-equivariant isomorphism

σ̃ ∼= Hn−[F :Qp]dIwJ

(
L I ∩ NI∩ Iw J (J ), σ

)Iw J

⊗ (ω ◦ δIw J ) . (47)

We have LI∩ Iw J (J ) =
Iw0 LI ′∩I ′w J (J )

Iw−1
0 and L I ∩ PI∩ Iw J (J ) =

Iw0 LI ′ ∩ PI ′∩I ′w J (J )
Iw−1

0 , hence natural
L I ′∩I ′w J (J )-equivariant isomorphisms

H•OrdL I ′∩P
I ′∩I ′wJ (J )

σ
Iw0 ∼=

(
H•OrdL I∩PI∩ IwJ (J )

σ
)Iw0

.

Using Lemma 2.1.1(iii), we have (with notations analogous to dJ and δJ )

H•OrdL I∩PI∩ IwJ (J )
= H[F :Qp](dI∩ IwJ (J )−dI )−•(L I ∩ NI∩ Iw J (J ),−)⊗ (ω

−1
◦ (δI∩ Iw J (J )− δI )).

Thus in order to prove (47), it remains to check that

dJ = (dI∩ Iw J (J )− dI )+ dIw J + dI ′w J , δJ =
Iw J−1(δI∩ Iw J (J )− δI )+ δIw J +

J∩Iw J−1(I )wJ,0(δI ′w J ).

We do these computations on the corresponding Lie algebras: dJ and δJ correspond to 8+\8+J ,
(dI∩ Iw J (J ) − dI ) and Iw J−1(δI∩ Iw J (J ) − δI ) correspond to (8+\8+J ) ∩

Iw J−1(8+I ), dIw J and δIw J cor-
respond to (8+\8+J ) ∩

Iw J−1(−8+), and dI ′w J and J∩Iw J−1(I )wJ,0(δI ′w J ) correspond to (8+\8+J ) ∩
Iw J−1(8+\8+I ) (noting that Iw0(−8

+) = (−8+I ) t (8
+
\8+I ) and (8+\8+J ) ∩

Iw J−1(−8+I ) = ∅).
Thus, the two equalities above follow from the partition

8+\8+J =
(
(8+\8+J )∩

Iw J−1(8+I )
)
t
(
(8+\8+J )∩

Iw J−1(−8+)
)
t
(
(8+\8+J )∩

Iw J−1(8+\8+I )
)
,

which is obtained from the partition 8 = 8+I t (−8
+)t (8+\8+I ) by applying Iw J−1 and taking the

intersection with 8+\8+J .
Let wJ ∈

J∩Iw J−1(I )WJ and set w′J :=
J∩Iw J−1(I )w−1

J,0wJ . By construction, (45) induces a natural
BJ -equivariant isomorphism

GrwJ
B

(
Hn
(
NJ , c-indPI

Iw J PJ
PI

σ
))
∼= Gr

w′J
B

(
H[F :Qp]dJ−nOrdPJ

(
c-ind

P−I ′
I ′w J PJ

P−I ′
σ

Iw0
)
⊗ (ω ◦ δJ )

)
.

By Theorem 3.3.3, there is a natural BJ,w′J -equivariant isomorphism

Gr
w′J
B

(
H[F :Qp]dJ−nOrdPJ

(
c-ind

P−I ′
I ′w J PJ

P−I ′
σ

Iw0
)
⊗ (ω ◦ δJ )

)
∼= Gr

w′J
BJ

(
IndLJ

LJ∩P−
J∩I ′wJ−1(I ′)

σ̃
J∩IwJ−1(I )wJ,0

)
which is even LJ ∩ PJ∩I ′w J−1(I ′)-equivariant when w′J = 1. By construction, (46) and (47) induce a natural
BJ -equivariant isomorphism

Gr
w′J
BJ

(
IndLJ

LJ∩P−
J∩I ′wJ−1(I ′)

σ̃
J∩IwJ−1(I )wJ,0

)
∼= GrwJ

BJ

(
IndLJ

LJ∩PJ∩IwJ−1(I )

(
Hn−[F :Qp]dIwJ (L I ∩ NI∩ Iw J (J ), σ )

Iw J
⊗ (ω ◦ δIw J )

))
.

Composing these three isomorphisms yields the result. �
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Theorem 4.3.3 with wJ =
J∩Iw J−1(I )wJ,0 yields a natural LJ -equivariant morphism analogous to (30),

IndLJ
LJ∩PJ∩ IwJ−1(I )

(
Hn−[F :Qp]dIwJ

(
L I ∩ NI∩ Iw J (J ), σ

)Iw J

⊗ (ω ◦ δIw J )
)
→ Hn

(
NJ , c-indPI

Iw J PJ
PI

σ
)
, (48)

and Conjecture 3.3.4 is equivalent to (48) being an isomorphism. We also have analogues of Propositions
3.3.5 and 3.3.7. In the case I = J , we obtain the following analogue of Corollary 3.3.8.

Corollary 4.3.4. Let P = L N be a standard parabolic subgroup and σ be a locally admissible L-
representation.

(i) For all n ∈ N such that 0< n < [F :Qp], we have Hn(N , IndG
P π)= 0.

(ii) If σL∩sαNs−1
α
= 0 for all α ∈11

\ (11
L ∪1

⊥,1
L ), then there is a natural L-equivariant isomorphism

H[F :Qp]

(
N , IndG

P σ
)
∼=

⊕
α∈1⊥,1L

σ α ⊗ (ω ◦α) .

Remark 4.3.5. The results hold true with P−, N− and ω−1 instead of P , N and ω respectively.

5. Application to extensions

The aim of this section is to compute the extensions between parabolically induced representations of
G. In Section 5.1, we review some cuspidality and genericity properties and we prove some preliminary
results on extensions which will be used in the case where G is split and Z is connected. Then, the main
results are proved in Section 5.2. Finally, some of these results are lifted to characteristic 0 in Section 5.3.

5.1. Preliminaries. We fix a standard parabolic subgroup P = L N . We first define some cuspidality
properties and discuss the relations between them.

Definition 5.1.1. We say that an admissible smooth representation σ of L over k is:

• supersingular if Fp⊗k σ is supersingular (in the sense of [Abe et al. 2017a]),

• supercuspidal if it is irreducible and not a subquotient of IndL
Q τ for any proper parabolic subgroup

Q ⊂ L with Levi quotient L Q and any irreducible admissible smooth representation τ of L Q over k,

• right (resp. left) cuspidal if OrdQ σ = 0 (resp. σNQ = 0) for any proper parabolic subgroup Q ⊂ L
with unipotent radical NQ .

Remark 5.1.2. In [Abe et al. 2017b, Definition 6.3], left and right cuspidality are defined for smooth
representations using the left and right adjoint functors of IndG

Q, namely LL
Q and RL

Q . Since LL
Q = (−)NQ

and the restriction of RL
Q to admissible representations is OrdQ− [op. cit., Corollary 4.13]), these definitions

coincide for admissible representations.

Lemma 5.1.3. Let σ be an irreducible admissible smooth representation of L over k. The following
conditions are equivalent.

(i) σ is supercuspidal.

(ii) σ is left and right cuspidal.
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(iii) Fp⊗k σ is a (finite) direct sum of supersingular representations.

In particular, σ is supersingular if and only if it is absolutely irreducible and supercuspidal.

Proof. Over Fp, the equivalence between (i) and (ii) is [op. cit., Corollary 6.9], and the equivalence
between “supercuspidal” and “supersingular” is [Abe et al. 2017a, Theorem 5]. By [Emerton 2010b,
Lemma 4.1.2], Fp⊗k σ is a finite direct sum of irreducible admissible smooth representations of L over
Fp. Since IndL

Q , (−)NQ and OrdQ commute with Fp⊗k −, we deduce the equivalences over k. �

We now study some genericity property for smooth representations of L over k with central character.
We assume that 1⊥,1L 6=∅.

Lemma 5.1.4. Let σ be a smooth representation of L over k with central character ζ : ZL → k× and
α ∈1⊥,1L . If ζ ◦α∨ = ω−1, then σ α ⊗ (ω−1

◦α)∼= σ .

Proof. For convenience, we recall the construction of the representation σ α ⊗ (ω−1
◦α). Let Gα ⊆ G be

the standard Levi subgroup corresponding to α. We fix a representative nα ∈N of sα . For every β ∈1L

and for all integers i, j > 0, iα+ jβ 6∈ 8 (since α ⊥ β), thus Uα and Uβ commute for every β ∈ 1L

[Borel and Tits 1965, Proposition 2.5], or more directly using the Baker–Campbell–Hausdorff formula.
We deduce that Gα and L normalise each other (since Gα and L are generated by Z and respectively
U±α and (Uβ)β∈±1L ). In particular, nα normalises L (since nα ∈ Gα) and the nα-conjugate σ α does not
depend on the choice of nα in nαZ up to isomorphism (since Z ⊆ L). Furthermore, L normalises Uα and
α extends (uniquely) to an algebraic character of L (since α ∈11).

We let Iα ⊆ L be the kernel of α : L→ F×. Note that L = SIα . We may and will assume that nα lies
in the subgroup of Gα generated by U±α [Abe et al. 2017a, §II.4] so that nα commutes with Iα. Thus,
the action of Iα on σ α ⊗ (ω−1

◦α) and σ is the same.
Now, assume ζ ◦α∨ = ω−1. For any λ ∈ X∗(S) we have λ− sα(λ)= 〈α, λ〉α∨, so that

λ− sα(λ) ∈ X∗(S∩ ZL) and ζ ◦ (λ− sα(λ))= (ζ ◦α∨)〈α,λ〉 = ω−〈α,λ〉 = (ω−1
◦α) ◦ λ.

We deduce that for any s ∈ S, s(nαsn−1
α )
−1
∈ S ∩ ZL and ζ(s(nαsn−1

α )
−1) = (ω−1

◦ α)(s). Thus, the
action of S on σ α ⊗ (ω−1

◦α) and σ is the same. �

The following result yields a converse to Lemma 5.1.4 when G is split and Z is connected [Breuil and
Herzig 2015, Proposition 2.1.1].

Lemma 5.1.5. Let σ be a smooth representation of L over k with central character ζ : ZL → k× and
α ∈1⊥,1L . Assume that there exists λ ∈ X∗(ZL) such that 〈α, λ〉 = 1 and 〈β, λ〉 = 0 for all β ∈1⊥,1L \{α}.
If ζ ◦α∨ 6= ω−1, then sα(ζ )(ω−1

◦α) 6= ζ and sα(ζ )(ω−1
◦α) 6= sβ(ζ )(ω−1

◦β) for all β ∈1⊥,1L \{α}.

Proof. We have (sα(ζ )(ω−1
◦ α)) ◦ λ = (ζ ◦ λ)((ζ ◦ α∨)ω)−1 and (sβ(ζ )(ω−1

◦ β)) ◦ λ = (ζ ◦ λ) for all
β ∈1⊥,1L \{α}. Thus, if sα(ζ )(ω−1

◦α)= ζ or sα(ζ )(ω−1
◦α)= sβ(ζ )(ω−1

◦β) for some β ∈1⊥,1L \{α},
then precomposing each side of the equality with λ yields the equality (ζ ◦α∨)ω = 1. �
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We now give some preliminary results on extensions. Let H be a p-adic Lie group. For locally
admissible smooth representations π, π ′ of L over A, we let Ext•H (π

′, π) denote the A-modules of
extensions computed in Modl.adm

H (A) à la Yoneda or using an injective resolution of π . If π, π ′ are
admissible, then in degree 1 it is equivalent to compute Ext•H (π

′, π) in Modadm
H (A) à la Yoneda, but this

is not known in higher degree [Emerton 2010b, Remark 3.7.8], except when H = GL2(Qp) [Paškūnas
2013, Corollary 5.17]. Let Z̃ ⊆ H be a central closed subgroup and ζ : Z̃→ A× be a smooth character.
We write Modl.adm

H,ζ (A) for the full subcategory of Modl.adm
H (A) whose objects are the representations

on which Z̃ acts via ζ . If Z̃ acts on π, π ′ via ζ , then we let Ext•H,ζ (π
′, π) denote the A-modules of

extensions computed in Modl.adm
H,ζ (A) à la Yoneda, or equivalently using an injective resolution of π .

We now assume that G is split and we write T for the maximal split torus S=Z . Using Notation 2.3.3,
we have dw = `(w) for all w ∈W , so that in particular 11

=1. Let L′ ⊆ G be a standard Levi subgroup
such that 1L ⊥1L′ . Note that LL′ is the standard Levi subgroup corresponding to 1L t1L′ . Let σ be a
locally admissible smooth representation of L over k with central character ζ : ZL → k×. The following
construction was communicated to me by N. Abe.

First, we assume that Gder is simply connected and we let Z̃⊆ Z be a closed subgroup. Recall that this
is equivalent to the existence of fundamental weights (µα)α∈1 [Breuil and Herzig 2015, Proposition 2.1.1].
We set χ := ζ ◦

∑
α∈1L′

(α∨ ◦µα). Thus χ ◦α∨ = 1 for all α ∈1L and χ ◦α∨ = ζ ◦α∨ for all α ∈1L′ ,
so that χ extends uniquely to L and σ0 := σ ⊗ χ

−1 extends uniquely to a locally admissible smooth
representation of L L ′ over k [Abe 2013, Lemma 3.2]. We let χ ′ : T → k× be a smooth character such
that χ ′

|ZL′
= χ|ZL′

, so that χ ′ extends uniquely to L , and we set σ ′ := σ0⊗χ
′. There is a commutative

diagram of k-vector spaces

Ext•T,χ|ZL′

(
χ ′, χ

)
Ext•L ′,χ|ZL′

(
IndL ′

B−L′
χ ′, IndL ′

B−L′
χ
)

Ext•L ,χ
|Z̃

(
χ ′, χ

)
Ext•L L ′,χ

|Z̃

(
IndL L ′

L B−L′
χ ′, IndL L ′

L B−L′
χ
)

Ext•L ,ζ
|Z̃

(
σ ′, σ

)
Ext•L L ′,ζ

|Z̃

(
IndL L ′

L B−L′
σ ′, IndL L ′

L B−L′
σ
)

(49)

where the horizontal arrows are induced by the functors IndL ′
B−L′

and IndL L ′
L B−L′

, the upper vertical arrows
are induced by extending representations to L and L L ′, and the lower vertical arrows are induced by
tensoring representations with σ0. Furthermore, the lower horizontal arrow of (49) composed with the
k-linear morphism induced by the functor IndG

P−L ′ :

Ext•L L ′,ζ
|Z̃

(
IndL L ′

L B−L′
σ ′, IndL L ′

L B−L′
σ
)
→ Ext•G,ζ

|Z̃
(IndG

P− σ
′, IndG

P− σ), (50)

is the k-linear morphism induced by the functor IndG
P− :

Ext•L ,ζ
|Z̃
(σ ′, σ )→ Ext•G,ζ

|Z̃
(IndG

P− σ
′, IndG

P− σ). (51)
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Lemma 5.1.6. (i) In degree 1, there is a k-linear injection from the cokernel of the upper horizontal
arrow of (49) into the cokernel of (51).

(ii) Assume Z connected. In all degrees, there is a k-linear injection from the kernel of the upper
horizontal arrow of (49) into the kernel of (51).

Proof. We prove (i). The map in question is induced by the composite right-hand side vertical arrow of
(49) composed with (50). Let E be an extension of IndL ′

B−L′
χ ′ by IndL ′

B−L′
χ with central character χ|ZL′

(so

that E extends to L L ′). Then IndG
P−L ′(σ0⊗ E) is an extension of IndG

P− σ
′ by IndG

P− σ on which Z̃ acts
via ζ . There are L-equivariant isomorphisms

OrdP
(
IndG

P−L ′ (σ0⊗ E)
)
∼= OrdL BL′ (σ0⊗ E)∼= σ0⊗OrdBL′

E .

The first one results from [Emerton 2010a, Proposition 4.3.4] and the second one from the fact that UL ′

acts trivially on σ0 (note that OrdBL′
E extends to L). If the class of E is not in the image of the upper

horizontal arrow of (49), then there is a T -equivariant isomorphism OrdBL′
E ∼= χ , hence an L-equivariant

isomorphism OrdP(IndG
P−L ′(σ0⊗ E))∼= σ ; thus the class of IndG

P−L ′(σ0⊗ E) is not in the image of (51).
We prove (ii). The map in question is induced by the left-hand side composite vertical arrow of

(49). Thus, it is enough to prove that the latter is injective. We assume Z connected. Recall that this is
equivalent to the existence of fundamental coweights (λα)α∈1 [Breuil and Herzig 2015, Proposition 2.1.1].
We let T ′ ⊆ T be the closed subgroup generated by the images of (λα)α∈1L′ , so that T ′ ⊆ ZL and the
product induces an isomorphism T ′× ZL′ −→∼ T . There is a commutative diagram of k-vector spaces

Ext•T,χ|ZL′
(χ ′, χ) Ext•T ′

(
χ ′
|T ′, χ|T ′

)

Ext•L ,χ
|Z̃
(χ ′, χ) Ext•T ′

(
χ ′
|T ′, χ|T ′

)

Ext•L ,ζ
|Z̃
(σ ′, σ ) Ext•T ′

(
σ ′
|T ′, σ|T ′

)

∼

where the horizontal arrows are induced by restricting representations to T ′ (the upper one is bijective
with inverse induced by tensoring representations with χ|ZL′

, and the middle and lower ones are well-
defined since a locally admissible smooth representation of L over k is locally ZL -finite [Emerton 2010a,
Lemma 2.3.4], the left-hand side vertical arrows are the same as in (49) and the lower right-hand side
vertical arrow is induced by tensoring representations with σ0|T ′ (it is injective since T ′ acts on σ0 via
ζχ−1). �

Now, we do not assume Gder simply connected. Instead we take a z-extension of G, i.e., an exact
sequence of linear algebraic F-groups

1→ Z̃→ G̃→ G→ 1
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such that G̃ is reductive with simply connected derived subgroup and Z̃ is a central torus [Colliot-Thélène
2008, §3.1]. The projection G̃ � G identifies the corresponding root systems. We let P̃ ⊆ G̃ be the
standard parabolic subgroups corresponding to P and L̃⊆ P̃ be the standard Levi subgroup corresponding
to L. Note that L̃ is a z-extensions of L. We let σ ′ be a locally admissible smooth representation of L
over k with central character ζ . By inflation, we obtain locally admissible smooth representations σ̃ and
σ̃ ′ of L̃ over k. There is a commutative diagram of k-vector spaces

Ext•L(σ
′, σ ) Ext•G

(
IndG

P− σ
′, IndG

P− σ
)

Ext•L̃,ζ
|Z̃
(σ̃ ′, σ̃ ) Ext•G̃,ζ

|Z̃

(
IndG̃

P̃− σ̃
′, IndG̃

P̃− σ̃
)∼ ∼ (52)

where the horizontal arrows are induced by the functors IndG
P− and IndG̃

P̃− and the vertical arrows are
induced by inflating representations to L̃ and G̃ (they are well defined and bijective since ζ

|Z̃ is trivial).

Proposition 5.1.7. Assume F =Qp and G split. Let σ be a locally admissible smooth representation of
L over k with central character ζ : ZL → k×.

(i) Assume 1⊥L 6=∅ and let α ∈1⊥L . If ζ ◦α∨ 6= ω−1, then the k-linear injection

Ext1L
(
σ α ⊗ (ω−1

◦α), σ
)
↪→ Ext1G

(
IndG

P− σ
α
⊗ (ω−1

◦α), IndG
P− σ

)
induced by the functor IndG

P− is not surjective.

(ii) If p = 2, then the functor IndG
P− induces a k-linear injection

Ext1L (σ, σ ) ↪→ Ext1G
(
IndG

P− σ, IndG
P− σ

)
whose cokernel is of dimension at least card{α ∈1⊥L | ζ ◦α

∨
= 1}.

Remark 5.1.8. We expect the results to hold true for a nonsplit reductive group with 1⊥,1L instead of 1⊥L .

Proof. By taking a z-extension of G and using (52), we can and do assume that Gder is simply connected
and prove analogous results for the morphism (51).

Assume1⊥L 6=∅ and let α ∈1⊥L . We use Lemma 5.1.6(i) with L′ defined by1L′ ={α}, χ = ζ ◦α∨◦µα ,
and χ ′ = sα(χ)(ω−1

◦ α), so that σ ′ = σ α ⊗ (ω−1
◦ α) (since σ α0 = σ0 by Lemma 5.1.4 with 1 instead

of ω). If ζ ◦α∨ 6= ω−1, then the upper horizontal arrow of (49) in degree 1 is not surjective by the mod
p analogue of [Hauseux 2017, Lemme 3.1.4] (since χ ◦α∨ = ζ ◦α∨ = 1); thus (51) in degree 1 is not
surjective, hence (i).

We use Lemma 5.1.6(i) with L′ defined by 1L′ = {α ∈1
⊥

L | ζ ◦α
∨
= 1}, χ = ζ ◦

∑
α∈1L′

(α∨ ◦µα),
and χ ′ = χ , so that σ ′ = σ . If p = 2, then the cokernel of the upper horizontal arrow of (49) in degree 1
is of dimension at least card1L′ [Hauseux 2017, Théorème 3.2.4(ii) and Remarque 3.2.5(ii)] (since
χ ◦α∨ = ζ ◦α∨ = 1 so that sα(χ)= χ by Lemma 5.1.4 for all α ∈1L′), noting that all the extensions
constructed there have a central character [op. cit., Lemme 3.1.5]; thus the cokernel of (51) in degree 1 is
of dimension at least card1L′ , hence (ii). �
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Proposition 5.1.9. Assume F = Qp, G split and Z connected. Let σ be a locally admissible smooth
representation of L over k with central character ζ : ZL→ k×. If p 6= 2, then the functor IndG

P− induces a
k-linear morphism

Ext2L (σ, σ )→ Ext2G
(
IndG

P− σ, IndG
P− σ

)
whose kernel is of dimension at least card{α ∈1⊥L | ζ ◦α

∨
= ω−1

}.

Proof. By taking a z-extension of G (noting that the centre of G̃ is also connected because Z̃ is connected)
and using (52), we can and do assume that Gder is simply connected and prove an analogous result for
the morphism (51).

We use Lemma 5.1.6(ii) with L′ defined by 1L′ = {α ∈1
⊥

L | ζ ◦α
∨
=ω−1

} and χ ′= χ , so that σ ′= σ .
If p 6= 2, then we see in the proof of [Hauseux 2017, Théorème 3.2.4(i)] that the kernel of the upper
horizontal arrow of (49) in degree 2 is of dimension at least card1L′ (since χ ◦α∨ = ζ ◦α∨ =ω−1 for all
α ∈1L′); thus the kernel of (49) in degree 2 is also of dimension at least card1L′ , hence the result. �

5.2. Extensions between parabolically induced representations. We begin with a result when there is
no inclusion between the two parabolic subgroups, assuming a special case of Conjecture 3.3.4 (see also
Remark 3.3.6).

Proposition 5.2.1. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups and σ, σ ′ be admissible
smooth representations of L , L ′ respectively over k. Assume Conjecture 3.3.4 is true for A= k, n = 1 and
Iw J
= 1. If P ′ 6⊆ P , P 6⊆ P ′, and σ, σ ′ are right, left cuspidal respectively, then

Ext1G
(
IndG

P ′− σ
′, IndG

P− σ
)
= 0.

Proof. We put I :=1L and J :=1L′ . Using (31), (39) with π = IndG
P−I
σ and PJ , LJ , σ ′ instead of P ,

L, σ respectively yields an exact sequence of k-vector spaces

0→ Ext1LJ

(
σ ′, IndLJ

LJ∩P−I

(
OrdL I∩PJ σ

))
→ Ext1G

(
IndG

P−J
σ ′, IndG

P−I
σ
)
→HomLJ

(
σ ′,H1OrdPJ

(
IndG

P−I
σ
))
.

(53)
Assume I 6⊆ J and σ right cuspidal. Then OrdL I∩PJ σ = 0 (since L I ∩ PJ is a proper parabolic

subgroup of L I ) and there is a natural LJ -equivariant isomorphism

IndLJ

LJ∩P−I

(
H1OrdL I∩PJ σ

)
−→∼ H1OrdPJ

(
IndG

P−I
σ
)
. (54)

Indeed, by assumption (30) is a natural LJ -equivariant isomorphism

IndLJ

LJ∩P−I

(
H1OrdL I∩PJ σ

)
−→∼ H1OrdPJ

(
c-indP−I PJ

PI−
σ
)

and by Proposition 3.3.5(i) with n = 1, we have H1OrdPJ (c-indP−I
Iw J PJ

PI−
σ) = 0 for all Iw J

∈
IW J such

that Iw J
6= 1 (since either dIw J = 1 and OrdL I∩PI∩ IwJ (J )

σ = 0, or dIw J > 1 and 1− [F : Qp]dIw J < 0).
Thus, we deduce (54) from Proposition 3.3.1.

Assume J 6⊆ I and σ ′ left cuspidal. Then σ ′
LJ∩N−I

= 0 (since LJ ∩ P−I is a proper parabolic subgroup
of LJ ) and using (40) with π = σ ′ and LJ , LJ ∩ P−I , LJ∩I , LJ ∩ N−I , H1OrdL I∩PJ σ instead of G, P , L,
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N , σ respectively, we obtain

HomLJ

(
σ ′, IndLJ

LJ∩P−I

(
H1OrdL I∩PJ σ

))
= 0.

We conclude using (53). �

Now, we prove unconditional results whenever there is an inclusion between the two parabolic subgroups.
We treat the cases F =Qp and F 6=Qp separately.

Theorem 5.2.2. Assume F =Qp. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups and σ, σ ′

be admissible smooth representations of L , L ′ respectively over k.

(i) If P ′ = P , σ, σ ′ are supercuspidal and σ ′ 6∼= σ α⊗ (ω−1
◦α) for all α ∈1⊥,1L , then the functor IndG

P−

induces a k-linear isomorphism

Ext1L(σ
′, σ )−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)
.

(ii) If P ′ $ P and σ is right cuspidal, then the functor IndG
P− induces a k-linear isomorphism

Ext1L
(
IndL

L∩P ′− σ
′, σ

)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

(iii) If P $ P ′ and σ ′ is left cuspidal, then the functor IndG
P ′− induces a k-linear isomorphism

Ext1L ′
(
σ ′, IndL ′

L ′∩P− σ
)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

Remark 5.2.3. Assume P ′ = P and σ, σ ′ irreducible. In general, we do not know the dimension of
the cokernel of the k-linear injection Ext1L(σ

′, σ ) ↪→ Ext1G(IndG
P− σ

′, IndG
P− σ) induced by IndG

P−, but we
prove that it is at most card{α ∈1⊥,1L | σ

′ ∼= σ α ⊗ (ω−1
◦ α)} whenever σ is right cuspidal or σ ′ is left

cuspidal (see the proof). If σ, σ ′ are supersingular, then letting ζ : ZL → k× denote the central character
of σ [Emerton 2010b, Lemma 4.1.7], we expect this dimension to be equal to

card
{
α ∈1⊥,1L

∣∣ σ ′ ∼= σ α ⊗ (ω−1
◦α
)

and ζ ◦α∨ 6= ω−1}
except when p = 2 and in some exceptional cases [Hauseux 2017, Remarque 3.2.5] when G is split
and P = B. We prove this when G is split and Z is connected (see Theorem 5.2.7 below), in which
case the cardinal above is equal to 1 if σ ′ ∼= σ α ⊗ (ω−1

◦α) 6∼= σ for some α ∈1⊥,1L and 0 otherwise by
Lemma 5.1.5. When G is split but Z is not connected, one could prove that the cardinal above is a lower
bound using Proposition 5.1.7(i) and some generalisation of [Hauseux 2017, §2.2] for P 6= B.

Proof. We prove slightly more general results.
Assume P ′ ⊆ P and σ satisfies the condition in Corollary 3.3.8(ii), e.g., σ is right cuspidal. Using

[Emerton 2010a, Proposition 4.3.4] and Corollary 3.3.8(ii), (39) with π = IndG
P− σ and IndL

L∩P ′− σ
′ instead

of σ yields an exact sequence of k-vector spaces

0→ Ext1L
(
IndL

L∩P ′− σ
′, σ

)
→ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
→

⊕
α∈1⊥,1L

HomL
(
IndL

L∩P ′− σ
′, σ α ⊗ (ω−1

◦α)
)
.

(55)
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If P ′ = P and σ, σ ′ are irreducible, then σ α⊗ (ω−1
◦α) is also irreducible for all α ∈1⊥,1L , and thus the

last term of (55) has dimension equal to card{α ∈1⊥,1L | σ
′ ∼= σ α ⊗ (ω−1

◦α)}, hence (i). If P ′ $ P and
σ is right cuspidal, then L ∩ P ′ is a proper parabolic subgroup of L and

OrdL∩P ′
(
σ α ⊗

(
ω−1
◦α
))
∼= (OrdL∩P ′ σ)

α
⊗
(
ω−1
◦α
)
= 0

for all α ∈1⊥,1L ; thus the last term of (55) is zero by [Emerton 2010a, Theorem 4.4.6], hence (ii).
Assume P ⊆ P ′ and σ ′ satisfies the condition in Corollary 4.3.4(ii) for P ′− = L′N ′−, e.g., σ ′ is

left cuspidal. Using [Vignéras 2016, Theorem 5.3, 3] and Corollary 4.3.4(ii) for P ′− = L′N ′− (see
Remark 4.3.5), (43) with π = IndG

P ′− σ
′ and P ′−, L′, N ′−, IndL ′

L ′∩P− σ instead of P , L, N , σ respectively
yields an exact sequence of k-vector spaces

0→ Ext1L ′
(
σ ′, IndL ′

L ′∩P− σ
)
→ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
→

⊕
α∈1

⊥,1
L′

HomL ′
(
σ ′α⊗ (ω−1

◦α), IndL ′
L ′∩P− σ

)
.

(56)

If P ′ = P and σ, σ ′ are irreducible, then σ ′α⊗ (ω−1
◦α) is also irreducible for all α ∈1⊥,1L , and thus the

last term of (56) has dimension equal to card{α ∈1⊥,1L′ | σ
′ ∼= σ α ⊗ (ω−1

◦α)}, hence (i). If P $ P ′ and
σ ′ is left cuspidal, then L′ ∩ P− is a proper parabolic subgroup of L′ and

(σ ′α ⊗ (ω−1
◦α))L ′∩N− ∼= (σ

′

L ′∩N−)
α
⊗ (ω−1

◦α)= 0

for all α ∈1⊥,1L ; thus the last term of (56) is zero using (40) with π = σ ′α ⊗ (ω−1
◦α) and L′, L′ ∩ P−,

L′ ∩ L, L′ ∩ N− instead of G, P , L, N respectively, hence (iii). �

Theorem 5.2.4. Assume F 6= Qp. Let P = L N be a standard parabolic subgroup. The functor IndG
P−

induces an A-linear isomorphism

Ext1L(σ
′, σ )−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)

for all locally admissible smooth representations σ, σ ′ of L over A.

Proof. Let σ, σ ′ be locally admissible smooth representations of L over A. Using [Emerton 2010a,
Proposition 4.3.4] and Corollary 3.3.8(i), (39) with π= IndG

P− σ and σ ′ instead of σ yields the isomorphism
in the statement. �

Corollary 5.2.5. Assume F 6=Qp. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups and σ, σ ′

be admissible smooth representations of L , L ′ respectively over k.

(i) If P ′ ⊆ P , then the functor IndG
P− induces a k-linear isomorphism

Ext1L
(
IndL

L∩P ′− σ
′, σ

)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

(ii) If P ⊆ P ′, then the functor IndG
P ′− induces a k-linear isomorphism

Ext1L ′
(
σ ′, IndL ′

L ′∩P− σ
)
−→∼ Ext1G

(
IndG

P ′− σ
′, IndG

P− σ
)
.

Remark 5.2.6. Theorem 5.2.2(i) and Theorem 5.2.4 are encompassed in a more general (but conditional
to a conjecture of Emerton) result. Let P = L N be a standard parabolic subgroup, σ, σ ′ be locally
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admissible smooth representations of L over A and n ∈ N. The functor IndG
P− induces an A-linear

morphism
ExtnL(σ

′, σ )→ ExtnG
(
IndG

P− σ
′, IndG

P− σ
)

(57)

and there is a spectral sequence of A-modules [Emerton 2010b, (3.7.4)]

ExtiL
(
σ ′,R j OrdP

(
IndG

P− σ
))
⇒ Exti+ j

G

(
IndG

P− σ
′, IndG

P− σ
)

(58)

where R•OrdP denotes the right derived functors of OrdP :Modl.adm
G (A)→Modl.adm

L (A). Now assume
that [op. cit., Conjecture 3.7.2] is true, i.e., R•OrdP −→

∼ H•OrdP . Using Corollary 3.3.8, one can deduce
from (58) that:

• if n < [F :Qp], then (57) is an isomorphism;

• if n = [F :Qp], then (57) is injective and if furthermore σ, σ ′ are supercuspidal, then the dimension
of its cokernel is at most card

{
α ∈1⊥,1L | σ

′ ∼= σ α ⊗ (ω−1
◦α)

}
.

One can also generalise Proposition 5.2.1 and Theorem 5.2.2 (ii) and (iii) in all degrees n ≤ [F :Qp].

Finally, we complete Theorem 5.2.2(i) when G is split and Z is connected.

Theorem 5.2.7. Assume F = Qp, G split and Z connected. Let P = L N be a standard parabolic
subgroup and σ, σ ′ be supersingular representations of L over k.

(i) If σ ′ ∼= σ α ⊗ (ω−1
◦α) 6∼= σ for some α ∈1⊥L , then Ext1L(σ

′, σ )= 0 and

dimk Ext1G
(
IndG

P− σ
′, IndG

P− σ
)
= 1.

(ii) If either σ ′ ∼= σ and p 6= 2, or σ ′ 6∼= σ α ⊗ (ω−1
◦α) for any α ∈1⊥L , then the functor IndG

P− induces
a k-linear isomorphism

Ext1L(σ
′, σ )−→∼ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)
.

(iii) If p = 2, then the functor IndG
P− induces a k-linear injection

Ext1L(σ
′, σ ) ↪→ Ext1G

(
IndG

P− σ
′, IndG

P− σ
)

whose cokernel is of dimension card
{
α ∈1⊥L | σ

′ ∼= σ α
}
.

Proof. Since σ is absolutely irreducible, it has a central character ζ : ZL → k× [Emerton 2010b,
Lemma 4.1.7].

We first assume that σ ′∼= σ α⊗(ω−1
◦α) 6∼= σ for some α ∈1⊥L . We have ζ ◦α∨ 6=ω−1 by Lemma 5.1.4,

so that σ and σ ′ have distinct central characters by Lemma 5.1.5; thus Ext1L(σ
′, σ )= 0 [Paškūnas 2010,

Proposition 8.1]. Furthermore, σ ′ 6∼= σ β ⊗ (ω−1
◦β) for any β ∈1⊥L \ {α} (since the central characters

are distinct by Lemma 5.1.5). Using (55) with P ′ = P and L′ = L, we deduce that

dimk Ext1G
(
IndG

P− σ
′, IndG

P− σ
)
≤ 1.

Since the left-hand side is nonzero by Proposition 5.1.7(i), this proves (i).
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We now prove (ii). If σ ′ 6∼=σ α⊗(ω−1
◦α) for any α ∈1⊥L , then the result follows from Theorem 5.2.2(i).

Assume that σ ′ ∼= σ and p 6= 2. The terms of low degree of (58) form an exact sequence of k-vector
spaces

0→ Ext1L(σ, σ )→ Ext1G
(
IndG

P− σ, IndG
P− σ

)
→ HomL

(
σ,R1OrdP

(
IndG

P− σ
))

→ Ext2L
(
σ, σ

)
→ Ext2G

(
IndG

P− σ, IndG
P− σ

)
. (59)

Since there is an injection of functors R1OrdP ↪→ H1OrdP [Emerton 2010b, Remark 3.7.3], we deduce
from Corollary 3.3.8(ii) and Lemma 5.1.5 that

dimk HomL
(
σ,R1OrdP

(
IndG

P− σ
))
≤ card

{
α ∈1⊥L

∣∣ ζ ◦α∨ = ω−1}.
Thus, we deduce from Proposition 5.1.9 that the third arrow of (59) is zero, hence the result.

Finally, we assume p= 2 and we prove (iii). By Proposition 5.1.7(ii) we have a lower bound and using
(55) with P ′ = P and L′ = L we obtain an upper bound. Using Lemmas 5.1.4 and 5.1.5 together with
the fact that ω = 1, we see that both are equal to card{α ∈1⊥L | σ

′ ∼= σ α}. �

Remark 5.2.8. Theorem 5.2.7(i) can also be generalised in the context of Remark 5.2.6. Let P = L N
be a standard parabolic subgroup and σ, σ ′ be supersingular representations of L over k such that
σ ′ ∼= σ α ⊗ (ω−1

◦ α) 6∼= σ for some α ∈ 1⊥L . Assume G split, Z connected and [Emerton 2010b,
Conjecture 3.7.2] is true. Using Corollary 3.3.8 and Lemma 5.1.5, one can deduce from (58) that
Ext[F :Qp]

L (σ ′, σ )= 0 and
dimk Ext[F :Qp]

G

(
IndG

P− σ
′, IndG

P− σ
)
= 1.

Corollary 5.2.9. Assume G split and Z connected. If Conjecture 3.3.4 is true for A = k, n = 1 and
Iw J
= 1, then [Hauseux 2016b, Conjecture 3.17] is true.

Proof. Even though [Hauseux 2016b, Conjecture 3.17] is formulated under the hypotheses G split, Z
connected and Gder simply connected, we do not need the last one to prove it: (i) is Proposition 5.2.1,
which is conditional to Conjecture 3.3.4 for A = k, n = 1 and Iw J

= 1; (ii) is Theorem 5.2.7(i); (iii)
and (iv) are Corollary 5.2.5(i) and (ii) respectively when F 6=Qp, Theorem 5.2.2(ii) and (iii) respectively
when F =Qp and P ′ 6= P , Theorem 5.2.7(ii) when F =Qp, P ′ = P and p 6= 2, and Theorem 5.2.7(iii)
when F =Qp, P ′ = P and p = 2 (noting that if p = 2, then ω= 1 and IndG

P− σ is irreducible if and only
if σ α 6∼= σ for all α ∈1⊥L ; see [Abe 2013, Lemma 5.8] and Lemma 5.1.5). �

5.3. Results for unitary continuous p-adic representations. Let H be a p-adic Lie group. A continuous
representation of H over E is an E-Banach space 5 endowed with an E-linear action of H such that
the map H ×5→5 is continuous. It is admissible if the continuous dual 5∗ := Homcont

H (5, E) is of
finite type over the Iwasawa algebra E ⊗O O[[H0]] for some (equivalently any) compact open subgroup
H0⊆ H [Schneider and Teitelbaum 2002]. It is unitary if there exists an H -stable bounded open O-lattice
50
⊆5. We write Banadm,u

H (E) for the category of admissible unitary continuous representations of H
over E and H -equivariant E-linear continuous morphisms. It is an E-abelian category.

We fix a uniformiser$ of O. Following [Emerton 2010a, §2.4], we let Mod$−adm
H (O)fl be the category

of $ -torsion-free $ -adically complete and separated O-modules 50 such that 50/$50 is admissible as
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a smooth representation of H over k and H -equivariant O-linear morphisms. It is an O-abelian category
and the localised category E ⊗O Mod$−adm

H (O)fl is equivalent to Banadm,u
H (E).

The E-vector spaces Ext1H (5
′,5) of Yoneda extensions between admissible unitary continuous

representations 5,5′ of H over E are computed in Banadm,u
H (E). For all n ≥ 1, the O/$ nO-modules

Ext1H (π
′, π) of Yoneda extensions between admissible smooth representations π, π ′ of H over O/$ nO

are computed in Modadm
H (O/$ nO). The following result is a slight generalisation of [Hauseux 2016a,

Proposition B.2].

Proposition 5.3.1. Let H be a p-adic Lie group, 5,5′ be admissible unitary continuous representa-
tions of H and π, π ′ be the reductions mod $ of H-stable bounded open O-lattices 50,5′0 of 5,5′

respectively. Assume that dimk HomH (π
′, π) <∞. There is an E-linear isomorphism

Ext1H (5
′,5)∼= E ⊗O lim

←−−
n≥1

(
Ext1H (5

′0/$ n5′0,50/$ n50)
)
.

Furthermore, dimE Ext1H (5
′,5)≤ dimk Ext1H (π

′, π).

Proof. In the proof of [Hauseux 2016a, Proposition B.2], the hypothesis that π ′ is of finite length is only
used to prove that HomH (5

′0/$ n5′0,50/$ n50) is of finite type over O/$ nO for all n ≥ 1. But this
can be proved by induction using that dimk HomH (π

′, π) <∞. �

Let P = L N be a parabolic subgroup. We recall that the continuous parabolic induction functor is
defined for any continuous representation 6 of L over E by

IndG
P− 6 :=

{
f : G→6 continuous

∣∣ f (pg)= p · f (g) ∀p ∈ P−,∀g ∈ G
}
.

We obtain an E-linear exact functor IndG
P− : Banadm,u

L (E)→ Banadm,u
G (E) [Emerton 2010a, §4.1]. Fur-

thermore, there is a natural G-equivariant E-linear continuous isomorphism [op. cit., Lemma 4.1.3]

IndG
P− 6

∼= E ⊗O lim
←−−
n≥1

(
IndG

P−(6
0/$ n60)

)
.

We extend the definition of the ordinary parts functor to any admissible unitary continuous representation
5 of G over E by setting

OrdP 5 := E ⊗O lim
←−−
n≥1

(
OrdP(5

0/$ n50)
)

for some (equivalently any) G-stable bounded open O-lattice 50
⊆5. We obtain an E-linear left-exact

functor OrdP : Banadm,u
G (E)→ Banadm,u

L (E) which is a left quasi-inverse and the right adjoint of IndG
P−

[Emerton 2010a, Theorem 3.4.8, Corollary 4.3.5 and Theorem 4.4.6].

Definition 5.3.2. We say that an admissible unitary continuous representation 6 of L over E is right
cuspidal if OrdQ 6 = 0 for any proper parabolic subgroup Q ⊂ L.

Remark 5.3.3. We also extend the Jacquet functor to continuous representations of G over E by taking the
Hausdorff completion of the N -coinvariants. We obtain the left adjoint of IndG

P by Frobenius reciprocity
and the universal property of coinvariants. However, we do not know whether it preserves admissibility.
For unitary representations, it does not behave well with respect to reduction mod$ n (n≥1). Nevertheless,
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we say that an admissible unitary continuous representation 6 of L over E is left cuspidal if 6NQ = 0 for
any proper parabolic subgroup Q ⊂ L with unipotent radical NQ .

We now turn to extensions computations. Our main tool is the following result, which gives a weak
p-adic analogue of the exact sequence (39).

Proposition 5.3.4. Let P = L N be a standard parabolic subgroup, 6,6′ be admissible unitary contin-
uous representations of L respectively over E and σ, σ ′ be the reductions mod $ of L-stable bounded
open O-lattices 60, 6′0 of 6,6′ respectively. Assume that dimk HomL(σ

′, σ ) <∞. There is a natural
exact sequence of E-vector spaces

0→Ext1L(6
′, 6)→Ext1G

(
IndG

P− 6
′, IndG

P− 6
)
→HomL

(
6′, E⊗O lim

←−−
n≥1

(
H1OrdP

(
IndG

P−(6
0/$ n60)

)))
.

Proof. For all n ≥ 1, (39) with A = O/$ nO, π = IndG
P−(6

0/$ n60) and using [Emerton 2010a,
Proposition 4.3.4] σ =6′0/$ n6′0 yields an exact sequence of O/$ nO-modules

0→ Ext1L(6
′0/$ n6′0, 60/$ n60)→ Ext1G

(
IndG

P−(6
′0/$ n6′0), IndG

P−(6
0/$ n60)

)
→ HomL

(
6′0/$ n6′0,H1OrdP

(
IndG

P−(6
0/$ n60)

))
. (60)

The composite H1OrdP ◦ IndG
P− :Modadm

L (O/$ nO)→Modadm
L (O/$ nO) is left-exact for all n ≥ 1 by

[Emerton 2010a, Proposition 4.3.4; Emerton 2010b, Corollary 3.4.8]. Thus

lim
←−−
n≥1

(
H1OrdP(IndG

P−(6
0/$ n60))

)
is a $ -adically admissible representation of L over O by [Emerton 2010a, Corollary 3.4.5]. Further-
more, it is $ -torsion-free and the projective limit topology coincide with the $ -adic topology [op. cit.,
Proposition 3.4.3(1) and (3)]. Thus

E ⊗O lim
←−−
n≥1

(
H1OrdP

(
IndG

P−(6
0/$ n60)

))
is an admissible unitary continuous representation of L over E . Taking the projective limit over n ≥ 1 of
(60) and inverting $ and using Proposition 5.3.1 yields the desired exact sequence. �

Remark 5.3.5. In order to obtain an analogue of (39) for any admissible unitary continuous representations
6,5 of L ,G respectively over E , one has to prove that the $ -torsion of lim

←−−n≥1(H
1OrdP(5

0/$ n50))

is of bounded exponent (i.e., annihilated by a power of $ ) for some (equivalently any) G-stable bounded
open O-lattice 50

⊆5.

We now use Proposition 5.3.4 to compute extensions between parabolically induced representations.

Theorem 5.3.6. Assume F = Qp. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups, 6,6′

be admissible unitary continuous representations of L , L ′ over E and σ, σ ′ be the reductions mod $ of
L , L ′-stable bounded open O-lattices of 6,6′. Assume that dimk HomG(IndG

P ′− σ
′, IndG

P− σ) <∞ and
6 is right cuspidal.



828 Julien Hauseux

(i) If P ′ = P , 6,6′ are topologically irreducible and 6′ 6∼=6α ⊗ (ε−1
◦α) for all α ∈1⊥,1L , then the

functor IndG
P− induces an E-linear isomorphism

Ext1L(6
′, 6)−→∼ Ext1G

(
IndG

P− 6
′, IndG

P− 6
)
.

(ii) If P ′ $ P , then the functor IndG
P− induces an E-linear isomorphism

Ext1L
(
IndL

L∩P ′− 6
′, 6

)
−→∼ Ext1G

(
IndG

P ′− 6
′, IndG

P− 6
)
.

Remark 5.3.7. Assume P ′ = P and 6,6′ topologically irreducible. We do not know the dimension of
the cokernel of the E-linear injection Ext1L(6

′, 6) ↪→ Ext1G(IndG
P− 6

′, IndG
P− 6) induced by IndG

P−, but
we prove that it is at most card{α ∈1⊥,1L |6

′ ∼=6α ⊗ (ε−1
◦α)} (see the proof). If 6,6′ are absolutely

topologically irreducible and supercuspidal, then letting ζ : ZL →O× ⊂ E× be the central character of
6 [Dospinescu and Schraen 2013, Theorem 1.1(2)], we expect this dimension to be equal to

card
{
α ∈1⊥,1L

∣∣6′ ∼=6α ⊗ (ε−1
◦α
)

and ζ ◦α∨ 6= ε−1} .
Proof. Let60

⊆6 be an L-stable bounded open O-lattice. For all n≥1, we deduce from Propositions 3.3.1
and 3.3.5(i) that there is a natural L-equivariant O/$ nO-linear isomorphism

H1OrdP
(
IndG

P−(6
0/$ n60)

)
∼=

⊕
α∈11\1L

H1OrdP
(
c-indP−sαP

P− (60/$ n60)
)
. (61)

Furthermore, if α ∈1⊥,1L , then there is a natural L-equivariant O/$ nO-linear isomorphism

H1OrdP
(
c-indP−sαP

P− (60/$ n60)
)
∼= (6

0/$ n60)α ⊗ (ω−1
◦α)

hence a natural L-equivariant E-linear continuous isomorphism

E ⊗O lim
←−−
n≥1

(
H1OrdP

(
c-indP−sαP

P− (60/$ n60)
))
∼=6

α
⊗ (ε−1

◦α),

whereas if α 6∈1⊥L , there is natural filtration of H1OrdP(c-indP−sαP
P− (60/$ n60)) by BL -subrepresentations

such that each term of the associated graded representation is isomorphic as an O/$ nO-modules to

Csm
c
(
U ′L ,OrdL∩sαPs−1

α
(60/$ n60)

)
for some closed subgroup U ′L ⊆ UL , and since OrdL∩sαPs−1

α
6 = 0 we deduce that

E ⊗O lim
←−−
n≥1

(
H1OrdP

(
c-indP−sαP

P− (60/$ n60)
))
= 0.

Thus, taking the projective limit of (61) over n≥ 1 and inverting$ yields a natural L-equivariant E-linear
continuous isomorphism

E ⊗O lim
←−−
n≥1

(
H1OrdP

(
IndG

P−(6
0/$ n60)

))
∼=

⊕
α∈1⊥,1L

6α ⊗ (ε−1
◦α). (62)
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Now Proposition 5.3.4 with IndL
L∩P ′− 6

′ instead of 6′ yields, using (62), an exact sequence of E-vector
spaces

0→ Ext1L
(
IndL

L∩P ′− 6
′, 6

)
→ Ext1G

(
IndG

P ′− 6
′, IndG

P− 6
)

→

⊕
α∈1⊥,1L

HomL
(
IndL

L∩P ′− 6
′, 6α ⊗ (ε−1

◦α)
)
. (63)

If P ′= P and 6,6′ are topologically irreducible, then 6α⊗(ε−1
◦α) is also topologically irreducible for

all α ∈1⊥,1L , and thus the last term of (63) has dimension equal to card{α ∈1⊥,1L |6
′ ∼=6α⊗ (ε−1

◦α)},
hence (i). If P ′ $ P , then L ∩ P ′ is a proper parabolic subgroup of L so that

OrdL∩P ′(6
α
⊗ (ε−1

◦α))= (OrdL∩P ′ 6)
α
⊗ (ε−1

◦α)= 0

for all α ∈1⊥,1L ; thus the last term of (63) is zero, hence (ii). �

Remark 5.3.8. Theorem 5.2.2(iii) cannot be directly lifted to characteristic 0 because we do not have a
weak p-adic analogue of the exact sequence (43) (since it uses the Jacquet functor, see Remark 5.3.3).
However, assuming Conjecture 3.3.4 true for A=O/$ rO (r ≥ 1), n= 1, I $ J and Iw J

= sα (α ∈11
\ J ),

one can recover this case: with notation and assumptions as in Theorem 5.3.6, if P $ P ′ and 6′ is left
cuspidal, then the functor IndG

P ′− induces an E-linear isomorphism

Ext1L ′
(
6′, IndL

L ′∩P− 6
)
−→∼ Ext1G

(
IndG

P ′− 6
′, IndG

P− 6
)
.

Theorem 5.3.9. Assume F 6=Qp. Let P = L N be a standard parabolic subgroup, 6,6′ be admissible
unitary continuous representations of L over E and σ, σ ′ be the reductions mod $ of L-stable bounded
open O-lattices of 6,6′ respectively. Assume that dimk HomL(σ

′, σ ) <∞. Then, the functor IndG
P−

induces an E-linear isomorphism

Ext1L(6
′, 6)−→∼ Ext1G

(
IndG

P− 6
′, IndG

P− 6
)
.

Proof. Let 60
⊆6 be an L-stable bounded open O-lattice. Then H1OrdP

(
IndG

P−(6
0/$ n60)

)
= 0 for

all n ≥ 1, by Corollary 3.3.8(i). Thus, the result follows from Proposition 5.3.4. �

We end with a remark on the case where there is no inclusion between the two parabolic subgroups.

Remark 5.3.10. Let P = L N, P ′ = L′N ′ be standard parabolic subgroups, 6,6′ be admissible unitary
continuous representations of L , L ′ respectively over E and σ, σ ′ be the reductions mod $ of L , L ′-
stable bounded open O-lattices of 6,6′ respectively. Assume Conjecture 3.3.4 is true for A =O/$ rO
(r ≥ 1), n = 1 and Iw J

= 1. Assume further dimk HomG(IndG
P ′− σ

′, IndG
P− σ) <∞ and the $ -torsion of

lim
←−−n≥1(H

1OrdL∩P(6
0/$ n60)) is of bounded exponent (see Remark 5.3.5). Then, one can prove the

following p-adic analogue of Proposition 5.2.1: if P ′ 6⊆ P , P 6⊆ P ′, and 6,6′ are right,left cuspidal
respectively, then

Ext1G
(
IndG

P ′− 6
′, IndG

P− 6
)
= 0.
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