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Sums of two cubes as
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Michael A. Bennett, Carmen Bruni and Nuno Freitas

We sharpen earlier work (2011) of the first author, Luca and Mulholland, showing that the Diophantine
equation

A3
+ B3

= qαC p, ABC 6= 0, gcd(A, B)= 1,

has, for “most” primes q and suitably large prime exponents p, no solutions. We handle a number of
(presumably infinite) families where no such conclusion was hitherto known. Through further application
of certain symplectic criteria, we are able to make some conditional statements about still more values
of q; a sample such result is that, for all but O(

√
x/ log x) primes q up to x , the equation

A3
+ B3

= qC p.

has no solutions in coprime, nonzero integers A, B and C , for a positive proportion of prime exponents p.

1. Introduction

The problem of classifying perfect powers that are representable as a sum of two coprime integer cubes
has a long history. The nonexistence of cubes C3 > 1 with this property, a special case of Fermat’s last
theorem, was essentially proven by Euler. For higher powers, we have a substantial amount of recent
work; at the time of writing, this can be summarized in the following theorem.

Theorem 1.1 [Bruin 2000; Chen and Siksek 2009; Dahmen 2008; Freitas 2016; Kraus 1998]. There are
no solutions in relatively prime nonzero integers A, B and C to the equation

A3
+ B3

= Cn (1-1)

with exponent n satisfying one of 3 ≤ n ≤ 109, n ≡ 2 (mod 3), n ≡ 2, 3 (mod 5), n ≡ 61 (mod 78),
n ≡ 51, 103, 105 (mod 106), or

n ≡ 43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295, 313, 367, 373, 385, 403, 421, 475, 481,

493, 511, 529, 583, 601, 619, 637, 691, 697, 709, 727, 745, 799, 805, 817, 835, 853, 907, 913, 925, 943, 961,

1015, 1021, 1033, 1051, 1069, 1123, 1129, 1141, 1159, 1177, 1231, 1237, 1249, 1267, 1285 (mod 1296).
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Underlying each of these results is an appeal to a particular Frey–Hellegouarch elliptic curve, defined
over Q. Just as in the case of Fermat’s last theorem, with analogous equation An

+ Bn
= Cn , this curve

corresponds to a particular weight 2, cuspidal newform f . In the latter case, Wiles [1995] showed that f
necessarily has level 2 (whereby the absence of such newforms implies an immediate contradiction). In
the case of (1-1), however, one finds a corresponding f at one of levels 18, 36 or 72. The first two of
these are readily handled, but the last is not. The obstruction to completely resolving (1-1) is the existence
of a particular elliptic curve over Q with conductor 72 which, on some level, “mimics” a solution to (1-1)
(the curve in question is labeled 72A1 in Cremona’s tables [1997]).

In an earlier paper [Bennett et al. 2011], the first author, jointly with Luca and Mulholland, considered
a modification of (1-1), where the right-hand side is replaced by a “twisted” version of the shape qαC p,
for q prime (the replacement of the exponent n by a prime one, p, loses no generality). The question we
wished to answer there was whether or not a similar obstruction exists in this new situation. Here and
henceforth, let us assume that we have a solution in nonzero integers (A, B,C) to the equation

A3
+ B3

= qαC p, (1-2)

where α is a positive integer. To avoid, trivialities, we will always without comment assume further that
A, B and C are pairwise relatively prime. Write S for the set of primes q ≥ 5 for which there exists an
elliptic curve E/Q with conductor N (E) ∈ {18q, 36q, 72q} and at least one nontrivial rational 2-torsion
point. The two main results of Bennett, Luca and Mulholland [2011] are the following:

Theorem 1.2. If p and q ≥ 5 are primes with p ≥ q2q such that there exist coprime, nonzero integers A,
B and C , and a positive integer α, satisfying equation (1-2), then q ∈ S.

Theorem 1.3. Let πS(x)= #{q ≤ x : q ∈ S}. Then

πS(x)�
√

x log2(x). (1-3)

This latter result may be reasonably easily sharpened, through sieve methods, but, even as stated, demon-
strates that πS(x) = o(π(x)) and hence that we may “solve” (1-2) for “almost all” primes q (i.e., for
almost all primes, there is no analogous obstruction to that provided by the curve 72A1 for (1-1)).

Our goal in the paper at hand is to improve this result by treating (1-2) for a significant number of the
primes in S. We begin by defining S0 to be the subset of S consisting of those primes q ≥ 5 for which
there exist an elliptic curve E/Q with conductor N (E) ∈ {18q, 36q, 72q}, nontrivial rational 2-torsion
and the additional property that discriminant 1(E)= T 2 or 1(E)=−3T 2 for some integer T . The first
main result of this paper is the following sharpening of Theorem 1.2.

Theorem 1.4. If p and q ≥ 5 are primes with p ≥ q2q such that there exist coprime, nonzero integers A,
B and C , and a positive integer α, satisfying equation (1-2), then q ∈ S0.

It is by no means clear that the set S0 is appreciably “smaller” than S. In fact, our expectation is that
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their counting functions satisfy

πS(x)∼ c1
√

x log x and πS0(x)∼ c2
√

x log x,

for positive constants c1 and c2, where c2 < c1. A cursory check of Cremona’s elliptic curve database
[1997] reveals that the primes 5≤ q < 1000 lying outside S are precisely

q = 197, 317, 439, 557, 653, 677, 701, 773, 797 and 821,

while, in the same range, the primes in S but not S0 are

q = 53, 83, 149, 167, 173, 199, 223, 227, 233, 263, 281, 293, 311, 347, 353, 359, 389, 401, 419, 443, 449, 461,

467, 479, 487, 491, 563, 569, 571, 587, 599, 617, 641, 643, 659, 719, 727, 739, 743, 751, 809, 811, 823,

827, 829, 839, 859, 881, 887, 907, 911, 929, 941, 947, 953, 977 and 983.

It is, in fact, possible to give a much more concrete characterization of S0. Let us define sets

S1 =
{
q prime : q = 2a3b

± 1, a ∈ {2, 3} or a ≥ 5, b ≥ 0
}
,

S2 =
{
q prime : q = |2a

± 3b
|, a ∈ {2, 3} or a ≥ 5, b ≥ 1

}
,

S3 =
{
q prime : q = 1

3(2
a
+ 1), a ≥ 5 odd

}
,

S4 =
{
q prime : q = d2

+ 2a3b, a ∈ {2, 4} or a ≥ 8 even, b odd
}
,

S5 =
{
q prime : q = 3d2

+ 2a, a ∈ {2, 4} or a ≥ 8 even, d odd
}
,

S6 =
{
q prime : q = 1

4(d
2
+ 3b), d and b odd

}
,

S7 =
{
q prime : q = 1

4(3d2
+ 1), d odd

}
, and

S8 =
{
q prime : q = 1

2(3v
2
− 1), u2

− 3v2
=−2

}
.

Here, a, b, u, v and d are integers.

Proposition 1.5. We have

S0 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8.

An advantage of this characterization is that it makes it a routine matter to check if a given prime is in
S0 (something that is far from being true for S). It also allows one to rather easily find, via local conditions,
sets of primes outside S0; simply checking that S0 contains no primes which are simultaneously 5 mod 8,
2 mod 3 and 3 mod 5, yields that if q ≡ 53 mod 120, then q 6∈ S0. More generally, from Theorem 1.4,
we deduce the following.

Corollary 1.6. If p and q are primes with either q ≡ 53 mod D1 for D1 ∈ {96, 120, 144} or q ≡
65 mod D2 for D2 ∈ {81, 84}, and p ≥ q2q , then there are no coprime, nonzero integers A, B and C , and
positive integer α, satisfying equation (1-2).
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For primes in S0, we are often still able to say something about solutions to (1-2), in many cases
eliminating a positive proportion of the possible prime exponents p. Indeed, let us define

T = S7 ∪ {q prime : q = 3d2
+ 16, d ∈ Z},

and, to simplify matters, suppose that α = 1 in (1-2), focusing our attention on the equation

A3
+ B3

= qC p. (1-4)

We have the following.

Theorem 1.7. If q is a prime with q 6∈ T , then, for a positive proportion of primes p, there are no solutions
to (1-4) in coprime nonzero integers A, B and C.

We note that, defining πT (x) to be the counting function for primes in T , it is not difficult to show that

πT (x)�
√

x
log x

,

whereby standard heuristics suggest that the set T is genuinely of smaller order than S0 (though, in point
of fact, it would be remarkably difficult to prove that either set is even infinite).

As a sampling of more explicit work along these lines, we mention the following results for certain
primes in S0 (see also Theorem 7.2).

Theorem 1.8. Suppose that q = 2a3b
−1 is prime, where a≥ 5 and b≥ 1 integers. If p> q2q is prime and

there exist a positive integer α and coprime, nonzero integers A, B and C satisfying equation (1-2), then(
α

p

)
=

(
4− a

p

)
=

(
−6b

p

)
.

Theorem 1.9. If p is prime with p ≡ 13, 19 or 23 mod 24, then there are no coprime, nonzero integers
A, B and C satisfying

A3
+ B3

= 5C p. (1-5)

These results all follow from applying the modular method, together with a somewhat elaborate blend
of techniques from algebraic and analytic number theory, and Diophantine approximation, with a variety of
symplectic criteria (see Section 6) to (1-2). This last approach was developed initially by Halberstadt and
Kraus [2002] and has recently been refined and generalized by the third author together with Naskręcki,
Stoll, and Kraus [Freitas 2016; Freitas et al. 2017; Freitas and Kraus 2016]. One of the justifications for
the current paper is to provide a number of examples which, on some level, utilize the full power of these
recently developed symplectic tools.

As a final comment, we note that it should be possible to apply techniques based upon quadratic
reciprocity, as in, say, [Chen and Siksek 2009], to say something further about (1-2) for certain primes q
and certain exponents. We will not undertake this here.

The outline of this paper is as follows. In Section 2, we restate a number of results from [Bennett et al.
2011] pertaining to Frey–Hellegouarch curves that we require in the sequel. In Section 3, we characterize
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isomorphism classes of elliptic curves over Q with nontrivial rational 2-torsion and conductor 18q, 36q
or 72q, for q prime. Section 4 contains the proof of Theorem 1.4. In Section 5, we make a number
of remarks about the sets Si comprising S0. In Section 6, we apply several symplectic criteria to the
Frey–Hellegouarch curve and the elliptic curves corresponding to the primes in S0. In Section 7, we prove
Theorems 1.7, 1.8 and 1.9 (and somewhat more besides). The tables in the Appendix contains information
on the invariants c4(E) and c6(E) for elliptic curves of conductor 18q, 36q and 72q, corresponding to
the primes in S.

2. Frey–Hellegouarch curves

Let us suppose that q ≥ 5 is prime, α is a positive integer, and that we have a solution to (1-2) in coprime
nonzero integers A, B and C where, without loss of generality, AC is even and B ≡ (−1)C+1 mod 4.
Following Darmon and Granville [1995, p. 530], we associate to such a solution a Frey–Hellegouarch
elliptic curve F = F (i)A,B given by

F (0)A,B : y
2
+ xy = x3

+
3(B− A)+ 2

8
x2
+

3(A+ B)2

64
x +

9(B− A)(A+ B)2

512
or

F (1)A,B : y
2
= x3
+ 3ABx + B3

− A3,

depending on whether C is even or odd, respectively (the first of these is just a minimal model of the
curve given by Darmon and Granville; indeed both F (0)A,B and F (1)A,B are minimal). The standard invariants
c4(F), c6(F) and 1(F) attached to F = F (i)A,B are

c4(F)=−24i 32 AB, c6(F)= 26i−133(A3
− B3), 1(F)=−212i−833q2αC2p. (2-1)

Let R denote the product of the primes ` satisfying ` |C and `-6q. A standard application of Tate’s
algorithm leads to the following.

Lemma 2.1. If F = F (i)A,B , then the conductor NF satisfies

NF =


18qR if C even, B ≡−1 (mod 4), or
36qR if C odd, v2(A)≥ 2 and B ≡ 1 (mod 4), or
72qR if C odd, v2(A)= 1 and B ≡ 1 (mod 4).

In particular, F has multiplicative reduction at the prime q.

Arguing as in [Bennett et al. 2011] and [Kraus 1998] we find that, for p ≥ 17, there necessarily exists
a newform f in S+2 (NF/R) (the space of weight 2 cuspidal newforms for the congruence subgroup
00(NF/R)), whose Taylor expansion is

f = q +
∑
m≥2

am( f )qm,

and a place p of Q lying above p, such that

ρF,p ∼ ρ f,p, (2-2)
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where ρF,p and ρ f,p denote, respectively, the mod p Galois representations attached to F and f . In
particular, for all prime numbers ` - pNF , we have

a`( f )≡ a`(F) (mod p),

where a`(F) denotes the trace of Frobenius of F at the prime `. Therefore,

p | NormK f /Q(a`( f )− a`(F)), (2-3)

for K f the field of definition of the coefficients of f . Furthermore, the level lowering condition implies

p | NormK f /Q(a`( f )± (`+ 1)), (2-4)

for each prime ` 6= p dividing R.
From the arguments of [Bennett et al. 2011], under the assumption that p > q2p, we may conclude

that the form f has rational integer Fourier coefficients am( f ) for all m ≥ 1, whereby f corresponds
to an isogeny class of elliptic curves over Q with conductor N = 18q, 36q or 72q, and further that
the corresponding elliptic curve E has a rational 2-torsion point. This, in essence, is Theorem 1.2. To
complete the proof of Theorem 1.4, it remains to eliminate the possibility of the Frey–Hellegouarch curve
F “arising mod p” from an elliptic curve E that fails to be isogenous to a curve with discriminant of
the shape T 2 or −3T 2. To do this, we first require a very precise characterization of elliptic curves of
conductor N = 18q , 36q or 72q, with nontrivial rational 2-torsion.

3. Classification results for primes of conductor 18q, 36q and 72q

In this section, we will state theorems that provide an explicit classification for primes q of the corre-
sponding isomorphism classes of elliptic curves E/Q with conductor 18q, 36q or 72q and nontrivial
rational 2-torsion. The following results are mild sharpenings and simplifications of special cases of
Theorems 3.13, 3.14 and 3.15 of Mulholland [2006] (see also Theorems 4.0.8, 4.0.10 and 4.0.12 of [Bruni
2015]), where analogous results are derived more generally for elliptic curves with nontrivial rational
2-torsion and conductor of the shape 2α3βqγ . In each case, all elliptic curves which we label as, say,
18q.i.α for a positive integer i and a letter α belong to a fixed isogeny class (similarly for 36q.i.α and
72q.i.α). By way of example, each of 18q.1.a1, 18q.1.a2, 18q.1.a3 and 18q.1.a4 are isogenous.

In the next statement we use the notation from [Cremona 2006].

Theorem 3.1. If q > 3 is prime, then there exists an elliptic curve E/Q of conductor 18q with at least
one rational 2-torsion point precisely when either E is isogenous to one of

90a, 90b, 90c, 126a, 126b, 198b, 198c, 198d, 198e, 306a, 306b, 306c, 342c, 342 f, 414a, 1314a or 1314 f,

or E is Q-isomorphic to
Ẽ : y2

+ xy = x3
+ a2x2

+ a4x + a6

and at least one of the following occurs:
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(1) There exist integers a ≥ 5 and b ≥ 0 such that

q = 2a3b
+ (−1)δ, for δ ∈ {0, 1},

and Ẽ is one of the following:

curve a2 a4 a6 1

18q.1.a1 (−1)δ+12a−13b+1
− 1 2a−43b+2q 0 22a−832b+6q2

18q.1.a2 (−1)δ+12a−13b+1
− 1 −2a−23b+2q (−1)δ2a−43b+3(2q − (−1)δ)q 2a−43b+6q

18q.1.a3 (−1)δ+12a−33b+1
− 1 22a−832b+2 0 (−1)δ24a−1634b+6q

18q.1.a4 (−1)δ2a−23b+1
− 1 (−1)δ2a−23b+2 2a−43b+3(q − 2(−1)δ) (−1)δ+12a−43b+6q4

(2) There exists an odd integer a ≥ 5 such that

q = 1
3(2

a
+ 1)

and Ẽ is one of the following:

curve a2 a4 a6 1

18q.2.a1 −3 · 2a−1
− 1 2a−433q 0 22a−838q2

18q.2.a2 −3 · 2a−1
− 1 −2a−233q 2a−434(2a+1

+ 1)q 2a−437q
18q.2.a3 −3 · 2a−3

− 1 22a−832 0 24a−1637q
18q.2.a4 3 · 2a−2

− 1 2a−232 2a−433(2a
− 1) −2a−4310q4

(3) There exist integers a ≥ 5 and b ≥ 1, and δ1, δ2 ∈ {0, 1} such that

q = (−1)δ12a
+ (−1)δ23b

and, writing δ = b+ δ1+ δ2+ 1, Ẽ is one of the following:

curve a2 a4

18q.3.a1 −
1
4 + (−1)δ

(
3 · 2a−2

+ (−1)δ1 3q
4

)
(−1)δ12a−432q

18q.3.a2 −
1
4 + (−1)δ

(
3 · 2a−2

+ (−1)δ1 3q
4

)
(−1)δ1+12a−232q

18q.3.a3 −
1
4 + (−1)δ3 · 2a−3

− (−1)b 3b+1

4 22a−832

18q.3.a4 −
1
4 + (−1)δ+1

(
3 · 2a−1

+ (−1)δ1+1 3q
4

)
(−1)δ1+δ22a−23b+2

curve a6 1

18q.3.a1 0 22a−832b+6q2

18q.3.a2 (−1)δ+δ1+133
· 2a−4(2a+1

+ (−1)δ1+δ23b)q 2a−434b+6q

18q.3.a3 0 (−1)δ224a−163b+6q

18q.3.a4 (−1)δ3b+3
· 2a−4(3b

+ (−1)1+δ1+δ22a) (−1)b+δ2a−43b+6q4

(4) There exist integers a ≥ 7, b ≥ 0, δ1, δ2 ∈ {0, 1} and d ≡ 1 (mod 4), such that (δ1, δ2) 6= (1, 1) and,
if we have a ≡ b ≡ 0 (mod 2), then (δ1, δ2)= (0, 0), with

q = (−1)δ1d2
+ (−1)δ22a3b,
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and Ẽ is one of the following:

curve a2 a4 a6 1

18q.4.a1 −
( 3d+1

4

)
(−1)δ1+δ2+12a−63b+2 0 (−1)δ122a−1232b+6q

18q.4.a2 −
( 3d+1

4

)
(−1)δ1+δ22a−43b+2 (−1)δ1+δ2+12a−63b+3d (−1)δ1+δ2+12a−63b+6q2

(5) There exist integers a ≥ 7, δ1, δ2 ∈ {0, 1} and d ≡ 1 (mod 4), such that (δ1, δ2) 6= (1, 1),

q = (−1)δ13d2
+ (−1)δ22a,

and Ẽ is one of the following:

curve a2 a4 a6 1

18q.5.a1 −
( 3d+1

4

)
(−1)δ1+δ2+12a−63 0 (−1)δ122a−1233q

18q.5.a2 −
( 3d+1

4

)
(−1)δ1+δ22a−43 (−1)δ1+δ2+12a−632d (−1)δ1+δ2+12a−633q2

18q.5.b1 9d−1
4 (−1)δ1+δ2+12a−633 0 (−1)δ122a−1239q

18q.5.b2 9d−1
4 (−1)δ1+δ22a−433 (−1)δ1+δ22a−635d (−1)δ1+δ2+12a−639q2

(6) There exist integers a ≥ 7, b ≥ 1 and d ≡ 1 (mod 4), with a odd, such that

q =
d2
+ 2a

3b ,

and Ẽ is one of the following:

curve a2 a4 a6 1

18q.6.a1 −
( 3d+1

4

)
−2a−632 0 22a−123b+6q

18q.6.a2 −
( 3d+1

4

)
2a−432

−2a−633d −2a−632b+6q2

Theorem 3.2. If q > 3 is prime, then there exists an elliptic curve E/Q of conductor 36q with at least
one rational 2-torsion point precisely when either E is isogenous to one of (in Cremona’s notation)

180a, 252a or 468d,

or E is Q-isomorphic to

Ẽ : y2
= x3
+ a2x2

+ a4x

and at least one of the following occurs:

(1) There exist integers u and v with u ≡ v ≡ 1 (mod 4) and u2
− 3v2

=−2, such that

q = 1
2(3v

2
− 1)
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and Ẽ is one of the following:

curve a2 a4 1

36q.1.a1 −3uv 3q2
−2433q4

36q.1.a2 6uv −3 2833q2

36q.1.b1 9uv 33q2
−2439q4

36q.1.b2 −18uv −33 2839q2

(2) There exists an integer d ≡ 1 mod 8, such that

q = 1
4(3d2

+ 1)

and Ẽ is one of the following:

curve a2 a4 1

36q.2.a1 −3d 3q −2433q2

36q.2.a2 6d −3 2833q

36q.2.b1 9d 33q −2439q2

36q.2.b2 −18d −33 2839q

(3) There exists an odd integer b ≥ 1 and an integer d ≡ 1 (mod 4) such that

q = 1
4(d

2
+ 3b)≡ 3 (mod 4)

and Ẽ is one of the following:

curve a2 a4 1

36q.3.a1 −3d 32q −243b+6q2

36q.3.a2 6d −3b+2 2832b+6q

(4) There exist integers b ≥ 1, δ ∈ {0, 1} and d ≡ 1 (mod 4), such that b is odd, d ≡ 1 mod 4,

q = (−1)δ(d2
− 4 · 3b)

and Ẽ is one of the following:

curve a2 a4 1

36q.4.a1 −3d 3b+2 (−1)δ2432b+6q
36q.4.a2 6d (−1)δ32q 283b+6q2

(5) There exist integers b≥ 1, δ ∈ {0, 1}, n ≥ 7 and d ≡ 1 (mod 4), such that b is odd, every prime factor
of n is at least 7,

qn
= (−1)δ(d2

− 4 · 3b)
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and Ẽ is one of the following:

curve a2 a4 1

36q.5.a1 −3d 3b+2 (−1)δ2432b+6qn

36q.5.a2 6d (−1)δ32qn 283b+6q2n

(6) There exists an integer d ≡ 1 mod 4, such that

q = 3d2
− 4

and Ẽ is one of the following:

curve a2 a4 1

36q.6.a1 −3d 3 2433q
36q.6.a2 6d 3q 2833q2

36q.6.b1 9d 33 2439q
36q.6.b2 −18d 33q 2839q2

(7) There exists an integer d ≡ 1 mod 4, and an even integer b ≥ 0 such that

q = d2
+ 4 · 3b,

and Ẽ is one of the following:

curve a2 a4 1

36q.7.a1 −3d −3b+2 2432b+6q
36q.7.a2 6d 32q −283b+6q2

Theorem 3.3. If q > 3 is prime, then there exists an elliptic curve E/Q of conductor 72q with at least
one rational 2-torsion point precisely when either E is isogenous to one of (in Cremona’s notation)

360a, 360b, 360c, 360d, 936a, 936d, 936 f, 2088b, 2088h, 3384a, 5256e, 13896 f or 83016c,

or E is Q-isomorphic to

Ẽ : y2
= x3
+ a2x2

+ a4x

and at least one of the following occurs:

(1) There exists an odd integer b ≥ 1 such that

q = 1
4(3

b
+ 1)
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and Ẽ is one of the following:

curve a2 a4 1

72q.1.a1 24q − 3 223b+2q 2832b+6q2

72q.1.a2 −48q + 6 32 2103b+6q
72q.1.a3 24q + 6 32b+2 21034b+6q
72q.1.a4 6q − 3 32q2

−243b+6q4

(2) There exist integers a ∈ {2, 3}, b ≥ 0 and δ ∈ {0, 1} such that

q = 2a
· 3b
+ (−1)δ

and Ẽ is one of the following:

curve a2 a4 1

72q.2.a1 (−1)δ+12a+13b+1
− 3 2a3b+2q 22a+432b+6q2

72q.2.a2 (−1)δ2a+23b+1
+ 6 32 2a+83b+6q

72q.2.a3 (−1)δ+12a−13b+1
− 3 22a−432b+2 (−1)δ24a−434b+6q

72q.2.a4 (−1)δ+12a+13b+1
+ 6 32q2 (−1)δ+12a+83b+6q4

(3) There exist integers a ∈ {2, 3}, b ≥ 0 and δ ∈ {0, 1} such that

q = 3b
+ (−1)δ2a

and Ẽ is one of the following:

curve a2 a4 1

72q.3.a1 (−1)b+13(3b
− (−1)δ2a) (−1)δ+12a3b+2 22a+432b+6q2

72q.3.a2 (−1)b6(3b
− (−1)δ2a) 32q2 (−1)δ+12a+83b+6q4

72q.3.a3 (−1)b6(3b
+ (−1)δ2a+1) 32b+2 (−1)δ2a+834b+6q

72q.3.a4 (−1)b+13(3b
+ (−1)δ2a−1) 22a−432 24a−43b+6q

(4) There exists an integer d ≡ 1 (mod 4) such that

q = 3d2
+ 4

and Ẽ is one of the following:

curve a2 a4 1

72q.4.a1 3d −3 2433q
72q.4.a2 −6d 3q −2833q2

72q.4.b1 −9d −33 2439q
72q.4.b2 18d 33q −2839q2

(5) There exist integers a ∈ {4, 5}, δ ∈ {0, 1} and d ≡ 1 (mod 4), such that

q = 3d2
+ (−1)δ2a
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and Ẽ is one of the following:

curve a2 a4 1

72q.5.a1 −3d (−1)δ+12a−23 22a33q
72q.5.a2 6d 3q (−1)δ+12a+633q2

72q.5.b1 9d (−1)δ+12a−233 22a39q
72q.5.b2 −18d 33q (−1)δ+12a+639q2

(6) There exists an integer d ≡ 5 mod 8 such that

q =
3d2
+ 1

4

and Ẽ is one of the following:

curve a2 a4 1

72q.6.a1 3d 3q −2433q2

72q.6.a2 −6d −3 2833q

72q.6.b1 −9d 33q −2439q2

72q.6.b2 18d −33 2839q

(7) There exist odd integers b ≥ 1 and d ≡ 1 mod 4 such that

q =
d2
+ 3b

4
≡ 1 mod 4

and Ẽ is one of the following:

curve a2 a4 1

72q.7.a1 3d 32q −243b+6q2

72q.7.a2 −6d −3b+2 2832b+6q

(8) There exist odd integers b ≥ 1 and d ≡ 1 (mod 4) such that

q = d2
+ 4 · 3b

and Ẽ is one of the following:

curve a2 a4 1

72q.8.a1 3d −3b+2 2432b+6q
72q.8.a2 −6d 32q −283b+6q2

(9) There exist integers a ∈ {4, 5}, b ≥ 0, δ1, δ2 ∈ {0, 1} and d ≡ 1 (mod 4), such that (δ1, δ2) 6= (1, 1), b
is odd if a = 4 and δ1 6= δ2,

q = (−1)δ1d2
+ (−1)δ22a3b,
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and Ẽ is one of the following:

curve a2 a4 1

72q.9.a1 −3d (−1)δ1+δ2+12a−23b+2 (−1)δ122a32b+6q
72q.9.a2 6d (−1)δ132q (−1)δ1+δ2+12a+63b+6q2

(10) There exist integers a ∈ {4, 5}, b ≥ 0, δ ∈ {0, 1}, d ≡ 1 mod 4 and n, such that the least prime divisor
of n is at least 7, b is odd if a = 4,

qn
= (−1)δ(d2

− 2a3b),

and Ẽ is one of the following:

curve a2 a4 1

72q.10.a1 −3d 2a−23b+2 (−1)δ22a32b+6qn

72q.10.a2 6d (−1)δ32qn 2a+63b+6q2n

(11) There exist integers b ≥ 0 and d ≡ 1 mod 4 such that

q =
d2
+ 32
3b

and Ẽ is one of the following:

curve a2 a4 1

72q.11.a1 −3d −2332 2103b+6q
72q.11.a2 6d 3b+2q −21132b+6q2

(12) There exist integers b ≥ 0, d ≡ 1 mod 4 and n, such that the least prime divisor of n is at least 7,

qn
=

d2
+ 32
3b

and Ẽ is one of the following:

curve a2 a4 1

72q.12.a1 −3d −2332 2103b+6qn

72q.12.a2 6d 3b+2qn
−21132b+6q2n

We should mention that while we are currently unable to rule out the existence of primes in families
(10) and (12) in Theorem 3.3, we strongly suspect that there are no such primes. Further, we must confess
that our notation can admit a certain amount of ambiguity as, for a given prime q , we could have multiple
representations of q giving rise to nonisogenous curves with the same labels. By way of example,

q = 10369= 12
+ 27
· 34
= 652

+ 211
· 3 (3-1)

and the curves denoted 18q.4.a corresponding to these two representations are nonisogenous. For q ∈ Si

for a fixed 1 ≤ i ≤ 8, however, it is straightforward to show that there are at most finitely many such
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distinct representations — for all except i = 2, the parametrizations are monotonically increasing in the
variables a, b, v and d . For q ∈ S2, the same is easily seen to be true except, possibly, for the cases with
q = |2a

− 3b
|. In this last situation, via a result of Tijdeman [1973], we have

|2a
− 3b
| ≥ 3bb−κ ,

for some effectively computable absolute positive constant κ , at least provided b> 2, and hence, again, q
has only finitely many such representations (at most 3, in fact, by a result of the first author [Bennett 2003]).

Combining Theorems 3.1, 3.2 and 3.3, together with the definition of S0, yields the following.

Corollary 3.4. An elliptic curve E/Q corresponds to a prime in S0 precisely if E is either in one of the
isogeny classes (in Cremona’s notation)

90c, 126b, 252a, 306c, 342 f, 360a, 360d, 936d or 5256e,

or E is one of the curves in the isogeny classes

18q.1.a, 18q.2.a, 18q.3.a, 18q.4.a (with δ1 = δ2 = 0, a even, b odd),
18q.5.a and 18q.5.b (with, in both cases, δ1 = δ2 = 0 and a even),

36q.1.a, 36q.1.b, 36q.2.a, 36q.2.b, 36q.3.a,

72q.1.a, 72q.2.a, 72q.3.a, 72q.4.a, 72q.4.b,

72q.5.a and 72q.5.b (with, in both cases, δ = 0 and a = 4),

72q.6.a, 72q.6.b, 72q.7.a, 72q.8.a and 72q.9.a (with δ1 = δ2 = 0, a = 4, b odd).

4. Finishing the proof of Theorem 1.4

From the classification results of the preceding section, we need to show only that, for suitably large
primes p, (1-2) has no solutions in coprime nonzero integers, with Frey–Hellegouarch curve F corre-
sponding (in the sense of Section 2) to an elliptic curve E in one of the isogeny classes

90a, 90b, 126a, 180a, 198b, 198c, 198d, 198e, 306a, 306b, 342b, 342c, 360b, 360c,

414a, 468d, 936a, 936 f, 1314a, 1314 f, 2088b, 2088h, 3384a, 13896 f or 83016c, (4-1)

or

18q.4.a (with δ1 6= δ2, or δ1 = δ2 = 0 and either a odd, or b even),
18q.5.a and 18q.5.b (with, in both cases, δ1 6= δ2, or δ1 = δ2 = 0 and a odd),
18q.6.a,

36q.4.a, 36q.5.a, 36q.6.a, 36q.6.b, 36q.7.a,

72q.5.aand 72q.5.b (with, in both cases, δ = 1 or a = 5),

72q.9.a (with δ1 6= δ2, or δ1 = δ2 = 0 and either a = 5, or a = 4 and b even),
72q.10.a, 72q.11.a or 72q.12.a. (4-2)
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Our key observation to start is that, from (2-1), the Frey–Hellegouarch curve F = F (i)A,B has minimal
discriminant of the shape−3T 2 for T =26i−43qαC p. It follows that F(F`) contains a subgroup isomorphic
to Z/2Z×Z2Z for every prime ` -6q for which

(
−3
`

)
= 1; i.e., for `≡ 1 mod 6. We thus have that

a`(F)≡ `+ 1 mod 4 (4-3)

for every such prime `. If, for each curve E in the isogeny classes (4-1) and (4-2), we are able to find a
prime `≡ 1 mod 6 with ` -6q , for which a`(E) 6≡ `+ 1 mod 4, it follows from (2-3), (2-4), (4-3) and the
Hasse bounds that

p ≤ `+ 1+ 2
√
`. (4-4)

For curves E in the isogeny classes (4-1), we may check that it suffices to choose, in all cases,

` ∈ {7, 13, 19, 31, 37}.

We will now show that we can always find a suitable prime ` for E in the isogeny classes (4-2). We prove

Lemma 4.1. Let E/Q be an elliptic curve with a nontrivial rational 2-torsion point, say, (0, 0), given by
the model

E : y2
= f (x)= x3

+ ux2
+ vx, (4-5)

where u, v ∈ Z, and let ` ≥ 5 be a prime of good reduction for E. Then the Fourier coefficient a`(E)
satisfies a`(E)≡ `+ 1 mod 4 precisely when either(

1(E)
`

)
=

(
u2
− 4v
`

)
= 1 or

(
v

`

)
= 1.

Proof. If `≥ 5 is a prime of good reduction for E , it follows that the Fourier coefficient a`(E) satisfies
a`(E)≡ `+ 1 mod 4 exactly when E(F`) contains a subgroup isomorphic to either Z/2Z×Z/2Z or to
Z/4Z. The first case occurs if and only if the cubic x3

+ ux2
+ vx splits completely modulo `, i.e., when(

1(E)
`

)
=

(
u2
− 4v
`

)
= 1.

Indeed, if we have u2
−4v ≡ t2 mod `, then necessarily t 6≡ ±u mod ` and t 6≡ 0 mod ` (since otherwise

v ≡ 0 mod ` or 1(E)≡ 0 mod `, respectively, contradicting the fact that E has good reduction at `) and

f (x)= x3
+ ux2

+ vx ≡ x(x − 2−1(u− t))(x − 2−1(u+ t)) mod `,

whence (0, 0), (2−1(u− t), 0) and (2−1(u+ t), 0) are distinct 2-torsion points in F`.
Suppose next that E(F`) contains a subgroup isomorphic to Z/4Z, but that (u2

− 4v)/` = −1. It
follows that there must exist a point P in E(F`) with the property that P 6= (0, 0) but 2P = (0, 0). From
the standard duplication formula, if P = (x, y) lies on a curve E with a model as given in (4-5), the
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x-coordinate of the point 2P on E is just

x4
− 2vx2

+ v2

4y2 =
(x2
− v)2

4y2

and hence there can exist a point P on E for which this coordinate is zero only when v is a square
modulo `. Conversely, if v ≡ t2 mod ` for some integer t , then we claim that either f (t) or f (−t) is a
square modulo `. Indeed, if this fails to be the case, then we would have

1=
(

f (t)
`

)(
f (−t)
`

)
=

(
u+ 2t
`

)(
u− 2t
`

)
=

(
u2
− 4v
`

)
=−1,

a contradiction. �

For the curves of conductor 36q and 72q (36q.4.a, 36q.5.a, 36q.6.a, 36q.6.b, 72q.4.a, 72q.4.b,
72q.8.a, 72q.9.a, 72q.10.a and 72q.11.a.), our given models are already of the form y2

= x3
+ux2

+vx ,
with u = a2(E) and v = a4(E). For our families of conductor 18q (18q.4.a, 18q.5.a, 18q.5.b and
18q.6.a), we need to move our nontrivial rational 2-torsion point to (0, 0) to obtain a (nonminimal) model
of the shape (4-5) (the discriminant remaining invariant modulo squares). We summarize our results in
the following table.

E additional conditions
{(

v
`

)
,
(
1(E)
`

)}
18q.4.a unless δ1 = δ2 = 0, a even and b odd

{(
(−1)δ1 q

`

)
,
(
(−1)δ1+δ2+12a3b

`

)}
18q.5.a and b unless δ1 = δ2 = 0, a even

{(
(−1)δ1 3q

`

)
,
(
(−1)δ1+δ2+12a3

`

)}
18q.6.a none

{( 3bq
`

)
,
(
−2
`

)}
36q.4.a and 5.a none

{( 3
`

)
,
(
(−1)δq
`

)}
36q.6.a and b none

{( 3q
`

)
,
( 3
`

)}
36q.7.a none

{(
−1
`

)
,
( q
`

)}
72q.5.a and b (δ, a)= (0, 5), (1, 4) or (1, 5)

{( 3q
`

)
,
(
(−1)δ+12a3

`

)}
72q.9.a unless δ1 = δ2 = 0, a = 4 and b odd

{(
(−1)δ1 q

`

)
,
(
(−1)δ1+δ2+12a3b

`

)}
72q.10.a none

{(
(−1)δq
`

)
,
( 2a3b

`

)}
72q.11.a and 12.a none

{( 3bq
`

)
,
(
−2
`

)}
For example, in case E = 72q.12.a1, we have, for ` -6q ,(

1(E)
`

)
=

(
3bq
`

)
and

(
v

`

)
=

(
a4(E)
`

)
=

(
−2
`

)
.

In particular, if we assume, say, that b is odd, for any prime `≡ 7 mod 24 such that q is a quadratic
residue modulo `, or prime `≡ 13 mod 24 with q a quadratic nonresidue modulo `, we have(

1(E)
`

)
=

(
v

`

)
=−1 (4-6)
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and hence for such a prime `, both `≡ 1 mod 6 and

a`(E) 6≡ `+ 1 mod 4. (4-7)

In both cases, we therefore obtain inequality (4-4). For the other isogeny classes in the above table, in
each case there exists at least one pair of integers (`0, t), with `0 ∈ {7, 13, 19} and t ∈ {0, 1}, such that if

`≡ `0 mod 24 and
(

q
`

)
= (−1)t , (4-8)

then (4-6) and (4-7) hold. Specifically, we have

E (`0, t)

18q.4.a (7, 0), (7, 1), (13, 1), (19, 0) or (19, 1)
18q.5.a and b (7, 0), (7, 1), (13, 1), (19, 0) or (19, 1)

18q.6.a (7, 0), (7, 1) or (13, 1)
36q.4.a and 5.a (7, 0), (7, 1), (19, 0) or (19, 1)
36q.6.a and b (7, 0) or (19, 0)

36q.7.a (7, 1) or (19, 1)
72q.5.a and b (7, 0), (13, 1) or (19, 0)

72q.9.a (7, 0), (7, 1), (13, 1), (19, 0) or (19, 1)
72q.10.a (7, 0), (7, 1), (13, 1), (19, 0) or (19, 1)

72q.11.a and 12.a (7, 0), (7, 1) or (13, 1)

To complete the proof of Theorem 1.4, from (4-4), we require a suitably strong upper bound for
the smallest ` satisfying (4-8). Such a bound would follow from either a modified version of the
arguments traditionally used to find smallest nonresidues modulo q (though the additional constraint
that `≡ `0 mod 24 causes some complications), or from an explicit version of Linnik’s theorem on the
smallest prime in a given arithmetic progression (see, e.g., [Heath-Brown 1990] for an effective but
inexplicit result along these lines). For our purposes (and since we require something completely explicit),
we will instead appeal to a recent result of the first author, Martin, O’Bryant and Rechnitzer, which we
now state, with θ(x; k, a) denoting the sum of the logarithms of the primes p ≡ a mod k with p ≤ x .

Theorem 4.2 [Bennett et al. 2018]. Let k and a be integers with k ≥ 3 and gcd(a, k)= 1. Then∣∣∣∣θ(x; k, a)−
x

φ(k)

∣∣∣∣< 1
180

x
log x

,

for all x ≥ x0(k), where φ(k) is the Euler phi function and

x0(q)=


4.1× 109 if 3≤ q ≤ 16,
6.7× 1010/q if 17≤ q ≤ 105,

exp(0.03
√

q log3 q) if q > 105.

(4-9)

Proposition 4.3. Let q ≥ 5 be prime and suppose that `0 ∈ {7, 13, 19} and t ∈ {0, 1}. Then there exists a
prime ` 6= q satisfying (4-8) with ` < eq .
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Proof. Given `0 ∈ {7, 13, 19} and t ∈ {0, 1}, conditions (4-8) are equivalent, via the Chinese remainder
theorem, to a congruence of the shape `≡ a mod 24q for some integer 7≤ a< 24q with gcd(a, 24q)= 1.
For 5≤ q ≤ 23 and each of the 6 pairs (`0, t), we verify by direct computation that we can always find an
` < eq with (4-8). If q > 23, then eq > x0(24q) and hence we may apply Theorem 4.2 to conclude that∣∣∣∣θ(eq

; 24q, a)−
eq

8(q − 1)

∣∣∣∣< eq

180q
,

whereby

θ(eq
; 24q, a) >

0.11eq

q − 1
> log q.

It follows that there exists a prime `≡ a mod 24q (which necessarily also satisfies (4-8)) with ` 6= q and
` < eq , as desired. �

For q ≥ 5, we apply Proposition 4.3 to (4-4) to conclude that p < eq
+ 1+ 2

√
eq = (eq/2

+ 1)2 < q2q .
This completes the proof of Theorem 1.4.

5. Sets of primes and trivial solutions

5A. Intersections of the Si . We would like to make a few remarks on the sets Si . Firstly, we note that
some of the Si overlap substantially. Obviously, primes of the form (3b

+ 1)/4 belong to both S6 and S7,
while many primes in S1 are also in S4 (taking d = 1). Additionally, every prime q ∈ S5 of the shape
q = 3d2

+ 2a with a = 2 or a ≥ 8, and d =±3k for k an integer, is necessarily also in S2.
For many other i 6= j , the intersection Si ∩ S j is rather small. For future use, it will be helpful for us to

record an explicit statement along these lines.

Proposition 5.1. We have

S1 ∩ S2 = {5, 7, 11, 13, 23, 31, 37, 73}, S1 ∩ S3 = {11}, S1 ∩ S5 = {7, 31},
S1 ∩ S7 = {7, 37, 127}, S1 ∩ S8 = {13}, S2 ∩ S3 = {11},

S3 ∩ S4 =∅, S3 ∩ S5 = {43}, S3 ∩ S7 = S3 ∩ S8 = S4 ∩ S5 = S5 ∩ S8 = S7 ∩ S8 =∅.

To prove this, we will have use of a pair of results on polynomial-exponential Diophantine equations.

Lemma 5.2. If x , y and z are nonnegative integers such that z2
= 2x 3y

+ 1, then

(x, y, z) ∈ {(0, 1, 2), (3, 0, 3), (3, 1, 5), (4, 1, 7), (5, 2, 17)}.

Proof. This follows from straightforward factoring and local arguments. �

Lemma 5.3. If x and y are positive integers such that 2x
= 3y2

+ 5, then

(x, y) ∈ {(3, 1), (5, 3), (9, 13)}.

Proof. Writing x = 3x1 + x0 for x0 ∈ {0, 1, 2}, we have that a solution to the equation 2x
= 3y2

+ 5
necessarily corresponds to an integer point on the (Mordell) elliptic curve Y 2

= X3
− 22x0 · 33

· 5 (with
Y = 2x0 · 32

· y and X = 3 · 2x0+x1). The integer points for each of these curves can be found at
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http://www.math.ubc.ca/ bennett/BeGa-data.html (see [Bennett and Ghadermarzi 2015] for more details),
whereby the stated conclusion obtains. �

Proof of Proposition 5.1. The desired conclusions for S1 ∩ S2, S1 ∩ S3 and S2 ∩ S3 all follow from
combining Theorems 1, 2 and 3 of Tijdeman and Wang [1988] with Theorems 3, 4 and 5 of Wang [1989].
Further, the fact that

S3 ∩ S4 = S3 ∩ S8 = S4 ∩ S5 = S5 ∩ S8 =∅

is immediate from considering the corresponding equations modulo 8.
If q ∈ S1 ∩ S5, then there exist integers a, b, δ, d and a5 with a ∈ {2, 3} or a ≥ 5, b ≥ 0, δ ∈ {0, 1},

d ≥ 1 and a5 ∈ {2, 4} or a5 ≥ 8 even, such that 2a3b
+ (−1)δ = 3d2

+ 2a5 . Modulo 4, we have that δ = 1
and so, modulo 3, b = 0. It follows, modulo 8, that a5 = 2, so that 2a

= 3d2
+ 5. From Lemma 5.3, we

therefore have S1 ∩ S5 = {7, 31}, as desired. If instead q ∈ S1 ∩ S7, then we have integers a, b, δ and
d, with a ∈ {2, 3} or a ≥ 5, b ≥ 0, δ ∈ {0, 1}, d ≥ 1 and 2a3b

+ (−1)δ = (3d2
+ 1)/4. If b = 0, then,

modulo 3, δ = 1, whence 2a+2
= 3d2

+ 5 and so, from Lemma 5.3, a ∈ {1, 3, 7}, giving rise to q = 7 and
q = 127. If b ≥ 1, then, again modulo 3, δ = 0 and hence d2

= 2a+23b−1
+ 1. Lemma 5.2 thus implies

that (a, b, d) = (1, 2, 5), (2, 2, 7) or (3, 3, 17), yielding q = 37 (the first triple fails to have a ∈ {2, 3}
while the third leads to a composite value of q).

Suppose next that we have q ∈ S1 ∩ S8, so that there exist integers a, b, δ, v with a ∈ {2, 3} or a ≥ 5,
b ≥ 0, δ ∈ {0, 1} and 2a3b

+ (−1)δ = (3v2
− 1)/2. Modulo 4, δ = 0 and hence 2a+13b−1

+ 1= v2; again
Lemma 5.2 implies, after a little work, that |v| = 3 and q = 13. If q ∈ S3 ∩ S5, there are integers a, d and
a5 with a ≥ 5 odd, d ≥ 1, a5 ∈ {2, 4} or a5 ≥ 8 even, and (2a

+1)/3= 3d2
+2a5 . Modulo 8, we have that

a5 ≥ 4 and so

9d2
= 2a
− 3 · 2a5 + 1. (5-1)

We thus have a ≥ a5+ 3 and there must exist integers δ ∈ {0, 1} and positive d1 ≡±1 mod 6 such that
3d = 2a5−1d1+ (−1)δ, whence

2a5−2d2
1 + (−1)δd1 = 2a−a5 − 3.

If d1 = 1, then δ = 0 and we have 2a5−4
+1= 2a−a5−2, so that a5 = 4, a = 7, d = 3 and q = 43. If d1 > 1,

then d1 ≥ 5 and so 2a5−252
− 5 ≤ 2a−a5 − 3. It follows that a ≥ 2a5+ 2 and hence 2a5−2

| (−1)δd1+ 3,
say (−1)δd1+ 3= 2a5−2d2, for d2 ∈ Z. We thus have

22a5−4d2
2 − 3 · 2a5−1d2+ 9+ d2 = 2a−2a5+2.

Since a5≥ 4 and a≥ 2a5+2, we have that 9+d2≡ 0 mod 8. If d2=−1, 22a5−7
+3 ·2a5−4

+1= 2a−2a5−1,
contradicting a5 = 4 or a5 ≥ 8. We thus have d2 = 7 or |d2| ≥ 9, so that

2a−2a5+2
≥ 22a5−4

· 72
− 3 · 2a5−1

· 7+ 16> 22a5+1,

http://www.math.ubc.ca/~bennett/BeGa-data.html
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and so a ≥ 4a5+ 4. Applying Corollary 1.7 of [Bauer and Bennett 2002], since a ≥ 4a5+ 4 ≥ 24, we
have from (5-1) that

3 · 2a5 − 1= |9d2
− 2a
|> 20.26a

≥ 21.04a5+1.04,

whereby a5 ≤ 13. A short check confirms that S3 ∩ S5 = {43}, as stated.
For q ∈ S3 ∩ S7, q = (2a

+ 1)/3= (3d2
+ 1)/4 for a ≥ 5 and d odd integers, so that 2a+2

+ 1= 9d2

and yet another elementary argument implies that a = 1, a contradiction. Let us therefore suppose, finally,
that q ∈ S7 ∩ S8. We thus have

4q = 3d2
+ 1= 6v2

− 2= 2u2
+ 2,

for integers d, u and v, and so

(3dv)2 = (2u2
+ 1)(u2

+ 2)= 2u4
+ 5u2

+ 2.

From Magma’s IntegralQuarticPoints routine, we find that the only integer solution to the latter equation
is with |dv| = |u| = 1. This completes the proof of Proposition 5.1. �

It should also be noted that representations within a given set Si are sometimes unique, but not always.
In particular, it is straightforward to show that a given prime q ∈ S1 has a single representation of the form
q = 2a3b

±1, with b≥ 0 and a ∈ {2, 3} or a≥ 5, while a similar conclusion is immediate for primes q ∈ Si

for i ∈ {3, 7, 8}. The situation in S2 is slightly more complicated; combining work of Pillai [1945] with
Stroeker and Tijdeman [1982], the only primes with multiple representations of the form q = |2a

± 3b
|,

with b ≥ 1 and a ∈ {2, 3} or a ≥ 5, are q ∈ {5, 13, 17, 23, 73}, corresponding to the identities

5= 23
− 3= 25

− 33
= 32
− 22, 13= 28

− 35
= 22
+ 32, 17= 34

− 26
= 23
+ 32,

23= 25
− 32
= 33
− 22, and 73= 34

− 23
= 26
+ 32.

5B. Limitations due to trivial solutions. Notice that we have the identity(
d + 1

2

)3

+

(
1− d

2

)3

=
3d2
+ 1

4

and hence, for all exponents n, a coprime integer solution with C = 1 to the equation

A3
+ B3

= qα ·Cn, whenever qα =
3d2
+ 1

4
.

We expect qα to be of this shape infinitely often for α = 1 and α = 2 (these are precisely the primes in S7

and S8, respectively), though both of these results are a long way from provable with current technology.
We will term a solution to (1-2) with C = 1 trivial, whereby, for primes q as above, there exists a trivial

solution for all prime exponents p. In particular, this means that one of the newforms f ∈ S+2 (NF/R)
(see Section 2) will correspond (via modularity) to the Frey curve F evaluated at the trivial solution. This
is a major obstruction to the modular method; the techniques of this paper are unlikely to provide further
information about (1-2) with α = 1 for q ∈ S7 and α = 2 for q ∈ S8.
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A similar relation is the identity

(d + 4)3+ (4− d)3 = 8(3d2
+ 16).

While this does not actually give trivial solutions to (1-2) in case α = 1 and q = 3d2
+ 16 (a subset of

the primes in S5), it does appear to provide an obstruction to solving (1-4) for such primes, leading to
Frey–Hellegouarch curves that play the role of the curve 72A1 for (1-1).

6. Applying the symplectic criteria

Let E and F be elliptic curves over Q and suppose there exists an isomorphism φ : F[p] → E[p] of
Gal(Q/Q)-modules. Here, F[p] and E[p] are the p-torsion modules attached to F and E , respectively.
Write eE,p and eF,p for the Weil pairings on E[p] and F[p], respectively. Then there exists an element
r(φ) ∈ F×p such that

eE,p(φ(P), φ(Q))= eF,p(P, Q)r(φ) for all P, Q ∈ F[p].

If r(φ) is a square in F×p , we call the isomorphism φ symplectic; if r(φ) is a nonsquare, we call it
antisymplectic. We say that E[p] and F[p] are symplectically (antisymplectically) isomorphic if there
exists a symplectic (antisymplectic) isomorphism φ between them. It is possible that E[p] and F[p] are
both symplectically and antisymplectically isomorphic, but this situation will not occur in the applications
of these techniques in this paper (as we shall see in Proposition 6.1 ).

6A. The symplectic argument. To treat (1-2) for certain primes q ∈ S0 and exponents p ≥ q2q we need
to use a number of local symplectic criteria to describe the symplectic type of the isomorphisms between
the p-torsion modules E[p] and F[p], where F is our Frey–Hellegouarch curve and E is one of the
curves in Corollary 3.4 (see Section 2 and Theorem 1.4). The idea is to use local information at different
primes ` to obtain congruence conditions on the exponent p for which E[p] and F[p] are symplectically
and antisymplectically isomorphic. Then, our desired contradictions will arise each time we are able to
prove that these constraints are incompatible. This is, in essence, what is sometimes called the symplectic
argument. One advantage we have here, working with (1-2) as opposed to (1-1), is that we will be able to
apply the (local) criteria at the primes ` ∈ {2, 3, q} rather than just ` ∈ {2, 3}.

6B. Notation. Let ` be a prime and, for a nonzero integer t , define ν`(t) to be the largest nonnegative
integer such that `ν`(t) divides t . Let E/Q` be an elliptic curve and write c4(E), c6(E) and 1(E) for the
usual invariants attached to a minimal model of E . Further, with slight abuse of notation since we define
ν`(t) over Z, we introduce the quantities

c4(E)= `ν`(c4(E))c4(E)`, c6(E)= `ν`(c6(E))c6(E)` and 1(E)= `ν`(1(E))1(E)`.

Fix an algebraic closure of Q` and let Qun
` to be the maximal unramified extension of Q`. For

an elliptic curve E/Q with potentially good reduction at ` we write e(E, `) to denote the order of
Gal(Qun

` (E[p])/Q
un
` ) for p ≥ 3 different from `. It is well known that e(E, `) is independent of p.
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6C. The curves. Except for the few isogeny classes given in Corollary 3.4 by their Cremona label, from
Theorem 1.4, we are primarily interested in applying symplectic criteria to our Frey–Hellegouarch curve
and curves in the following isogeny classes:

18q.1.a, 18q.2.a, 18q.3.a, 18q.4.a (with δ1 = δ2 = 0, a even, b odd),
18q.5.a and 18q.5.b (with, in both cases, δ1 = δ2 = 0 and a even),

36q.1.a, 36q.1.b, 36q.2.a, 36q.2.b, 36q.3.a,

72q.1.a, 72q.2.a, 72q.3.a, 72q.4.a, 72q.4.b,
72q.5.a and 72q.5.b (with, in both cases, δ = 0 and a = 4),
72q.6.a, 72q.6.b, 72q.7.a, 72q.8.a, 72q.9.a (with δ1 = δ2 = 0, a = 4, b odd).

The relevant arithmetic data c4(E), c6(E) and 1(E) is available in Tables 1–3 in the Appendix and in
the statements of Theorems 3.1, 3.2 and 3.3. In the remainder of this section we will apply the criteria
to the curves listed above to obtain congruence conditions on p. Then, in Section 7, we complete the
symplectic argument by deriving contradictions from these conditions, allowing us to finish the proofs of
our main Diophantine statements. We start by proving the following proposition which holds for all our
choices of E , independently of whether E has conductor NE = 18q , 36q or 72q .

Proposition 6.1. Let (A, B,C) be a nontrivial primitive solution to (1-2) so that there is a Gal(Q/Q)-
modules isomorphism φ : F[p] → E[p], where F is the Frey–Hellegouarch curve and E is any elliptic
curve in one of the isogeny classes above. Then

φ is symplectic⇐⇒ α is a square mod p.

Proof. We have νq(NF )= νq(NE)= 1, so q is a prime of multiplicative reduction of both curves. We
can always choose E such that νq(1(E))= 2; moreover, we have p -α and νq(1(F))= 2α+ 2pνq(C).
The conclusion now follows from a direct application of [Kraus and Oesterlé 1992, Proposition 2] with
the prime q . �

6D. Curves of conductor 18q. We summarize the necessary information about the invariants of the
relevant elliptic curves.

curve ν2(c4) ν2(c6) ν2(1) ν3(c4) ν3(c6) ν3(1)

F (0)
A,B 0 0 2pν2(C)− 8 2+ ν3(AB) 3+ ν3(A3

− B3) 2pν3(C)+ 3

18q.1.a1 (b = 0) 0 0 2a− 8 3 ≥ 7 6
18q.1.a1 (b ≥ 1) 0 0 2a− 8 2 3 2b+ 6

18q.2.a1 0 0 2a− 8 2 3 8
18q.3.a1 0 0 2a− 8 2 3 2b+ 6
18q.4.a2 0 0 a− 6 2 3 b+ 6
18q.5.a2 0 0 a− 6 2 3+ ν3(d) 3
18q.5.b2 0 0 a− 6 4 6+ ν3(d) 9
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Suppose (A, B,C) is a nontrivial primitive solution to (1-2) and the Frey–Hellegouarch curve F
satisfies isomorphism (2-2) where f is the newform corresponding to one of the isogeny classes

18q.1.a, 18q.2.a, 18q.3.a, 18q.4.a, 18q.5.a or 18q.5.b.

In particular, F = F (0)A,B , C is even and B ≡ −1 mod 4. Moreover, there is a Gal(Q/Q)-modules
isomorphism φ : F[p] → E[p], where E is one of the elliptic curves

18q.1.a1, 18q.2.a1, 18q.3.a1, 18q.4.a2, 18q.5.a2 or 18q.5.b2.

6D1. Applying the criteria at ` = 2. Since ν2(NE) = 1 the prime ` = 2 is of multiplicative reduction
for E . From [Kraus and Oesterlé 1992, Proposition 2] and the valuations given in the preceding table, it
follows that either p -a− 4 and

φ is symplectic⇐⇒ 4− a is a square mod p,

in case E = 18q.1.a1, 18q.2.a1 or 18q.3.a1, or that p -a− 6 and

φ is symplectic⇐⇒ 12− 2a is a square mod p,

in the other cases.

6D2. Applying the criteria at ` = 3. We first consider E one of 18q.1.a1 with b = 0, 18q.5.a2 or
18q.5.b2. We have that the corresponding j-invariant satisfies ν3( jE) > 0, and hence E has potentially
good reduction at 3. Indeed, for E = 18q.1.a1 (with b = 0), we have ν3(1(E))= 6 and ν3(c6(E))≥ 7
so that, from [Kraus 1990, p. 356], we conclude that e(E, 3)= 2.

For E = 18q.5.a2 and E = 18q.5.b2, we have ν3(1(E))∈ {3, 9} and the results of [Kraus 1990, p. 356]
imply that e(E, 3) ∈ {4, 12}. Since ν3(NE) = 2, we are in a case of tame reduction and so the inertia
must be of order coprime to `= 3, whereby e(E, 3)= 4. On the other hand, for our Frey–Hellegouarch
curve F to have potentially good reduction at 3, we require that 3ν3(c4(F))≥ ν3(1(F)), or, equivalently,
ν3(C)= 0. In this situation, ν3(1(F))= 3 and arguing exactly as for the previous curves we also conclude
that e(F, 3) = 4. This contradicts E = 18q.1.a1 (with b = 0). We will now apply [Freitas and Kraus
2016, Theorem 5] with F and E = 18q.5.a2 or 18q.5.b2 (with, in both cases, δ1 = δ2 = 0 and a even).
Let r and t be the quantities defined in the statement of that theorem. We have, since 3 -C ,

ν3(1(F))= ν3(1(18q.5.a2))= 3 and ν3(1(18q.5.b2))= 9,

whereby r = 0 if E = 18q.5.a2 and r = 1 if E = 18q.5.b2. Moreover, since 3 -C and a is even, we may
check that 1(F)3 ≡ 1(E)3 ≡ 2 (mod 3), i.e., t = 0 for both E . Finally, applying [Freitas and Kraus
2016, Theorem 5], we conclude that φ is symplectic when E = 18q.5.a2 and, if E = 18q.5.b2, then φ is
symplectic if and only if (3/p)= 1.

We now consider the remaining curves E of conductor 18q under consideration. We have, in all cases,

ν3(c4(E))= 2, ν3(c6(E))= 3, ν3(1(E))≥ 7 and ν3( jE) < 0,
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and hence E has potentially multiplicative reduction at 3; after a quadratic twist (with corresponding
elliptic curve denoted Et ) the reduction becomes multiplicative and we have

ν3(1(Et))=


2 if E = 18q.2.a1,
b if E = 18q.4.a2 (with b ≥ 1),
2b if E = 18q.1.a1 (and b ≥ 1) or E = 18q.3.a1.

Furthermore, 3 must divide C (since otherwise F would have potentially good reduction) and twisting
the Frey curve F by the same element (to obtain Ft ), we find that ν3(1(Ft))=−3+ 2pν3(C).

If E = 18q.1.a1 with b≥ 1 or E = 18q.3.a1, it follows from [Kraus and Oesterlé 1992, Proposition 2]
applied to Et and Ft that p -b and

φ is symplectic⇐⇒−6b is a square mod p.

Similarly, if E = 18q.4.a2 then p -b and

φ is symplectic⇐⇒−3b is a square mod p.

If E = 18q.2.a1, then

φ is symplectic⇐⇒−6 is a square mod p.

6D3. Conclusions for level 18q. From the calculations above and Proposition 6.1 we can extract the
following relations. If E = 18q.1.a1 or 18q.3.a1 then b ≥ 1 and(

4− a
p

)
=

(
α

p

)
=

(
−6b

p

)
, (6-1)

while if E = 18q.4.a2 or E = 18q.2.a1, then, respectively,(
12− 2a

p

)
=

(
α

p

)
=

(
−3b

p

)
or

(
4− a

p

)
=

(
α

p

)
=

(
−6
p

)
.

If E = 18q.5.a2, we have that (
12− 2a

p

)
=

(
α

p

)
= 1.

Finally, if E = 18q.5.b2, (
12− 2a

p

)
=

(
α

p

)
=

(
3
p

)
.
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6E. Curves of conductor 36q. We next proceed with the case of elliptic curves of conductor 36q. We
encounter the following invariants.

curve ν2(c4) ν2(c6) ν2(1) ν3(c4) ν3(c6) ν3(1)

F (1)
A,B 4+ ν2(A) 5 4 2+ ν3(AB) 3+ ν3(A3

− B3) 2pν3(C)+ 3

36q.1.a2 (3 | s) 4 6 8 2 4+ ν3(v) 3
36q.1.a2 (3 -s) 4 6 8 2 3 3
36q.1.b2 (3 | s) 4 6 8 4 7+ ν3(v) 9
36q.1.b2 (3-s) 4 6 8 4 6 9
36q.2.a1 (3 | d) ≥ 6 5 4 2 4+ ν3(d) 3
36q.2.a1 (3-d) ≥ 6 5 4 ≥ 3 3 3
36q.2.b1 (3 | d) ≥ 6 5 4 4 7+ ν3(d) 9
36q.2.b1 (3 -d) ≥ 6 5 4 ≥ 5 6 9

36q.3.a1 ≥ 6 5 4 2 3 b+ 6

Suppose (A, B,C) is a nontrivial primitive solution to (1-2) and the Frey–Hellegouarch curve F
satisfies isomorphism (2-2) where f is the newform corresponding to one of the isogeny classes

36q.1.a, 36q.1.b, 36q.2.a, 36q.2.b or 36q.3.a.

In particular, F = F (1)A,B , C is odd and B≡ 1 mod 4. Moreover, there is a Gal(Q/Q)-modules isomorphism
φ : F[p] → E[p], where E is one of the elliptic curves

36q.1.a2, 36q.1.b2, 36q.2.a1, 36q.2.b1 or 36q.3.a1.

6E1. Applying the criteria at `= 2. The table shows that ν2( j (E)) > 0 for all E , so that the curves have
potentially good reduction. Since ν2(NE)= 2 the reduction is tame and hence e(E, 2)= 3 for all E .

We will now apply Theorem 1 of [Freitas and Kraus 2016] at ` = 2 with F and E = 36q.1.a2 or
36q.1.b2. Let t and r be as in that theorem. Since ν2(1(F))= 4 and ν2(1(E))= 8, we have r = 1 for
both E . Now, to determine the value of t , we must first appeal to Theorem 2 of the same work. Indeed,
the curve 36q.1.a2 has

c4(E)2 = 3
(

16
(

3v2
− 1

2

)2

− 1
)

and c6(E)2 =−32uv
(

32
(

3v2
− 1

2

)2

+ 1
)
,

while for 36q.1.b2,

c4(E)2 = 33
(

16
(

3v2
− 1

2

)2

− 1
)

and c6(E)2 = 35uv
(

32
(

3v2
− 1

2

)2

+ 1
)
.

We thus have, respectively,

c4(E)2 ≡ 13 mod 32 and c6(E)2 ≡ 7uv mod 16,

and
c4(E)2 ≡ 21 mod 32 and c6(E)2 ≡ 3uv mod 16.
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Since u2
− 3v2

=−2 with u ≡ v ≡ 1 mod 4, the u and v are terms in binary recurrence sequences. To be
specific, the positive integers u = uk and v= vk satisfying this equation also satisfy the binary recurrences

uk+1 = 4uk − uk−1, for k ≥ 1, where u0 = 1, u1 = 5, (6-2)

and

vk+1 = 4vk − vk−1, for k ≥ 1, where v0 = 1, v1 = 3. (6-3)

We may readily prove by induction that uv≡ 1 mod 16 (recall that we are assuming that u≡ v≡ 1 mod 4,
so that we choose u = ±uk and v = ±vk as necessary), whereby it follows from [Freitas and Kraus
2016, Theorem 2] that the curve 36q.1.a2 has a 3-torsion point over Q2, while 36q.1.b2 does not. For
F = F (1)A,B , since ν2(A)≥ 2, we have

ν2(c4(F))≥ 6 and c6(F)2 = 33(A3
− B3)≡−3B mod 8,

whereby, from part (B2) of [Freitas and Kraus 2016, Theorem 2], F has a 3-torsion point over Q2 precisely
when we have B ≡ 1 mod 8. We thus conclude that, if B ≡ 1 mod 8 and E = 36q.1.a2 or B ≡ 5 mod 8
and E = 36q.1.b2, then t = 0 and

φ is symplectic⇐⇒ 2 is a square mod p.

If B ≡ 5 mod 8 and E = 36q.1.a2, or B ≡ 1 mod 8 and E = 36q.1.b2, then t = r = 1 and so

φ is symplectic⇐⇒
(

2
p

)
=

(
3
p

)
.

Next, suppose that E is one of 36q.2.a1, 36q.2.b1 or 36q.3.a1, so that we always have r = 0. Then

c6(E)2 =−33d
(d2
+ 3)
4

≡

{
5 mod 8 if d ≡ 1 mod 16,
1 mod 8 if d ≡ 9 mod 16,

c6(E)2 = 36d
(d2
+ 3)
4

≡

{
5 mod 8 if d ≡ 9 mod 16,
1 mod 8 if d ≡ 1 mod 16,

c6(E)2 =−33d
(d2
+ 3b+2)

4
≡

{
5 mod 8 if q ≡ d + 2 mod 8,
1 mod 8 if q ≡ d − 2 mod 8,

respectively. Thus φ is always symplectic if any of the following conditions hold:

B ≡ 1 mod 8, E = 36q.2.a1 and d ≡ 1 mod 16, or
B ≡ 5 mod 8, E = 36q.2.a1 and d ≡ 9 mod 16, or
B ≡ 1 mod 8, E = 36q.2.b1 and d ≡ 9 mod 16, or
B ≡ 5 mod 8, E = 36q.2.b1 and d ≡ 1 mod 16, or
B ≡ 1 mod 8, E = 36q.3.a1 and q ≡ d + 2 mod 8, or
B ≡ 5 mod 8, E = 36q.3.a1 and q ≡ d − 2 mod 8.
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If, however, we have either

B ≡ 1 mod 8, E = 36q.2.a1 and d ≡ 9 mod 16, or
B ≡ 5 mod 8, E = 36q.2.a1 and d ≡ 1 mod 16, or
B ≡ 1 mod 8, E = 36q.2.b1 and d ≡ 1 mod 16, or
B ≡ 5 mod 8, E = 36q.2.b1 and d ≡ 9 mod 16, or
B ≡ 1 mod 8, E = 36q.3.a1 and q ≡ d − 2 mod 8, or
B ≡ 5 mod 8, E = 36q.3.a1 and q ≡ d + 2 mod 8,

then we may conclude that

φ is symplectic⇐⇒ 3 is a square mod p.

6E2. Applying the criteria at `= 3. For E = 36q.3.a1, we have ν3( j (E)) < 0 and so E has potentially
multiplicative reduction at 3. After a suitable quadratic twist (denoted Et ) the reduction becomes
multiplicative and ν3(1(Et)) = b. Therefore, the twisted Frey curve Ft must also have multiplicative
reduction at 3 (since p ≥ 5) and it satisfies ν3(1(Ft)) = 2pν3(C)− 3. Since p -ν3(1(Ft)), it follows
from [Kraus and Oesterlé 1992, Proposition 2] that p -b and

φ is symplectic⇐⇒−3b is a square mod p.

For all other cases of E we have ν3( j (E)) ≥ 0 and ν3(1(E)) 6= 6, whence E has potentially good
reduction which does not become good after a quadratic twist. As before, since ν3(NE)= 2 the reduction
is tame, whereby e(E, 3) = 4. A similar argument guarantees that e(F, 3) = 4 when 3 -C , in which
case, ν3(1(F)) = 3 and 1(F)3 ≡ 2 (mod 3). To apply [Freitas and Kraus 2016, Theorem 5] at ` = 3
with F and each of the curves E = 36q.1.a2, 36q.1.b2, 36q.2.a1 or 36q.2.b1, we first compute that
(r, t)= (0, 1), (1, 1), (0, 0) and (1, 0), respectively. We conclude that if E=36q.2.a1 then φ is symplectic,
while, if E = 36q.1.a2,

φ is symplectic⇐⇒ 2 is a square mod p.

If E = 36q.1.b2, then

φ is symplectic⇐⇒
(

2
p

)
=

(
3
p

)
and if E = 36q.2.b1, then

φ is symplectic⇐⇒ 3 is a square mod p.

6E3. Conclusions for level 36q. From the calculations above and Proposition 6.1 we can extract the
following relations. If E = 36q.1.a2 and B ≡ 1 mod 8, we have(

α

p

)
=

(
2
p

)
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while E = 36q.1.a2 and B ≡ 5 mod 8 implies that either(
α

p

)
=

(
2
p

)
=

(
3
p

)
= 1, or

(
α

p

)
=

(
2
p

)
=−1,

(
3
p

)
= 1.

If E = 36q.1.b2 and B ≡ 1 mod 8, we have either(
α

p

)
= 1,

(
2
p

)
=

(
3
p

)
, or

(
α

p

)
=−1,

(
2
p

)
6=

(
3
p

)
.

If E = 36q.1.b2 and B ≡ 5 mod 8, we either have(
α

p

)
=

(
2
p

)
=

(
3
p

)
= 1 or

(
α

p

)
=

(
2
p

)
=−1,

(
3
p

)
= 1.

If E = 36q.2.a1 and either B ≡ 1 mod 8, d ≡ 1 mod 16, or B ≡ 5 mod 8, d ≡ 9 mod 16, we have(
α

p

)
= 1.

If E = 36q.2.a1 and either B ≡ 1 mod 8, d ≡ 9 mod 16, or B ≡ 5 mod 8, d ≡ 1 mod 16, we have(
α

p

)
=

(
3
p

)
= 1.

If E = 36q.2.b1 and either B ≡ 1 mod 8, d ≡ 9 mod 16, or B ≡ 5 mod 8, d ≡ 1 mod 16, we have, again,(
α

p

)
=

(
3
p

)
= 1,

while, if E = 36q.2.b1 and either B ≡ 1 mod 8, d ≡ 1 mod 16, or B ≡ 5 mod 8, d ≡ 9 mod 16, we have(
α

p

)
=

(
3
p

)
= 1.

If E = 36q.3.a1 and either B ≡ 1 mod 8, q ≡ d + 2 mod 8, or B ≡ 5 mod 8, q ≡ d − 2 mod 8, we have(
α

p

)
=

(
−3b

p

)
= 1,

while, if E = 36q.3.a1 and either B ≡ 1 mod 8, q ≡ d − 2 mod 8, or B ≡ 5 mod 8, q ≡ d + 2 mod 8,
we have that (

α

p

)
=

(
3
p

)
=

(
−3b

p

)
.
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6F. Curves of conductor 72q. We have the following data.

curve ν2(c4) ν2(c6) ν2(1) ν3(c4) ν3(c6) ν3(1)

F (1)
A,B 5 5 4 2+ ν3(AB) 3+ ν3(A3

− B3) 2pν3(C)+ 3

72q.1.a1 4 6 8 2 3 2b+ 6
72q.2.a1 4 6 8 or 10 2 3 2b+ 6
72q.3.a1 4 6 8 or 10 2 3 2b+ 6

72q.4.a2 (3 | d) 4 6 8 2 4+ ν3(d) 3
72q.4.a2 (3-d) 4 6 8 ≥ 3 3 3
72q.4.b2 (3 | d) 4 6 8 4 7+ ν3(d) 9
72q.4.b2 (3 -d) 4 6 8 ≥ 5 6 9
72q.5.a2 (3 | d) 4 6 10 2 4+ ν3(d) 3
72q.5.a2 (3-d) 4 6 10 ≥ 3 3 3
72q.5.b2 (3 | d) 4 6 10 4 7+ ν3(d) 9
72q.5.b2 (3 -d) 4 6 10 ≥ 5 6 9
72q.6.a1 (3 | d) 5 5 4 2 4+ ν3(d) 3
72q.6.a1 (3-d) 5 5 4 ≥ 3 3 3
72q.6.b1 (3 | d) 5 5 4 4 7+ ν3(d) 9
72q.6.b1 (3 -d) 5 5 4 ≥ 5 6 9

72q.7.a1 5 5 4 2 3 b+ 6
72q.8.a2 4 6 8 2 3 b+ 6
72q.9.a2 4 6 10 2 3 b+ 6

Suppose (A, B,C) is a nontrivial primitive solution to (1-2) and the Frey–Hellegouarch curve F
satisfies isomorphism (2-2) where f is the newform corresponding to one of the isogeny classes

72q.1.a, 72q.2.a, 72q.3.a, 72q.4.a, 72q.4.b, 72q.5.a, 72q.5.b, 72q.6.a, 72q.6.b, 72q.7.a, 72q.8.a or 72q.9.a.

In particular, for this case we have F = F (1)A,B ,

C is odd, A ≡ 2 mod 4 and B ≡ 1 (mod 4),

and there is a Gal(Q/Q)-module isomorphism

φ : F[p] → E[p],

where E is one of the elliptic curves labeled

72q.1.a1, 72q.2.a1, 72q.3.a1, 72q.4.a2, 72q.4.b2, 72q.5.a2, 72q.5.b2,

72q.6.a1, 72q.6.b1, 72q.7.a1, 72q.8.a2 or 72q.9.a2.

6F1. Applying the criteria at `= 2. Note that all the curves in the preceding table have potentially good
reduction at `= 2 since their j-invariants satisfy ν2( j)≥ 0. We see, from [Kraus 1990, p. 358], that the
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Frey curve F satisfies e(F, 2)= 24; the same is immediately seen to be true also for E satisfying

(ν2(c4(E)), ν2(c6(E)), ν2(1(E))) ∈ {(4, 6, 10), (5, 5, 4)}.

For the curves E in the table with

(ν2(c4(E)), ν2(c6(E)), ν2(1(E)))= (4, 6, 8),

we further check that 1(E)2 ≡ 1 mod 4 and hence we also have e(E, 2)= 24. We may therefore, in all
cases, apply [Freitas 2016, Theorem 4] to find that, if ν2(1(E)) ∈ {4, 10}, then φ is always symplectic,
while, if ν2(1(E))= 8, then

φ is symplectic⇐⇒ 2 is a square mod p.

6F2. Applying the criteria at ` = 3. If E = 72q.1.a1, 72q.2.a1, 72q.3.a1, 72q.7.a1, 72q.8.a2 or
72q.9.a2, then E has potentially multiplicative reduction at 3 and so, after a suitable quadratic twist
(denoted Et ) the reduction becomes multiplicative and ν3(1(Et)) = b or 2b. Therefore, 3 |C and the
twisted Frey curve Ft must also have multiplicative reduction at 3 and satisfy ν3(1(Ft))= 2pν3(C)− 3.
Since p -ν3(1(Ft)), it follows from [Kraus and Oesterlé 1992, Proposition 2] that p -b and

φ is symplectic⇐⇒−3b is a square mod p,

for E = 72q.7.a1, 72q.8.a2 and 72q.9.a2, while

φ is symplectic⇐⇒−6b is a square mod p,

for E = 72q.1.a1, 72q.2.a1, and 72q.3.a1.
For the curves E = 72q.4.a2, 72q.4.b2, 72q.5.a2, 72q.5.b2, 72q.6.a1 or 72q.6.b1, the reduction at

`= 3 is potentially good and tame (because ν3(NE)= 2) and since ν3(1(E)) 6= 6 we have e(E, 3)= 4. As
before, it follows that e(F, 3)= 4 (so that 3 -C), and we may apply [Freitas and Kraus 2016, Theorem 5].
Let r and t be as in that theorem. In all cases we have t = 0; furthermore, we have r = 0 for E = 72q.4.a2,
E = 72q.5.a2 or E = 72q.6.a1, and r = 1 for E = 72q.4.b2, E = 72q.5.b2 or E = 72q.6.b1. It follows
that φ is always symplectic in the first cases, while

φ is symplectic⇐⇒ 3 is a square mod p,

in the latter three.

6F3. Conclusions for level 72q. From the calculations above we extract the following relations. For
E = 72q.1.a1, or either of E = 72q.2.a1 or E = 72q.3.a1 with a = 2, it follows that(

α

p

)
=

( 2
p

)
=

(
−6b

p

)
,

while, for E = 72q.2.a1 or E = 72q.3.a1 with a = 3,(
α

p

)
=

(
−6b

p

)
= 1.
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If E = 72q.4.a2, we have (
α

p

)
=

( 2
p

)
= 1,

while E = 72q.5.a2 or E = 72q.6.a1 give (
α

p

)
= 1.

Taking E = 72q.4.b2 yields (
α

p

)
=

( 2
p

)
=

(
3
p

)
,

while E = 72q.5.b2 or E = 72q.6.b1 give (
α

p

)
=

( 3
p

)
= 1.

If E = 72q.7.a1 or 72q.9.a2, we have (
α

p

)
=

(
−3b

p

)
= 1.

Finally, if E = 72q.8.a2, (
α

p

)
=

( 2
p

)
=

(
−3b

p

)
.

7. Some applications of symplectic criteria

As the preceding section reveals, there are many results we could state now for the various families
of primes Si comprising the set S0. For simplicity, we limit ourselves to the three statements we have
mentioned in our introduction (Theorems 1.7, 1.8 and 1.9) and one result valid for small values of q
(Theorem 7.2).

7A. Proof of Theorem 1.7. If q 6∈ S0, the desired conclusion is immediate from Theorem 1.4. Suppose,
then, that q ∈ S0 \ T and that there exists a solution to (1-4) in coprime nonzero integers A, B and C and
prime p ≥ q2q . In particular, we note, without further mention, that the primes p under consideration all
satisfy gcd(p, 6q)= 1. Also, we have that p -(4− a)b, whenever these parameters appear in the sequel.
From Section 2 and Theorem 1.4, it follows there exists an isomorphism φ : F[p] → E[p], where F
is the Frey–Hellegouarch curve and E is one of the curves in Corollary 3.4. Since α = 1, we see from
Proposition 6.1 that φ is symplectic. Furthermore, the shape of the primes in S7 implies that 7, 19 ∈ S7

and E does not correspond to the isogeny classes 36q.2.a, 36q.2.b, 72q.5.a or 72q.5.b. In conclusion,
we need to consider E in the remaining conjugacy classes; in particular, we can either take E isogenous
to one of

90c, 306c, 360a, 360d, 936d or 5256e,
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whereby q ∈ {5, 13, 17, 73}, or E isomorphic to a curve in the following set:

E1 = {18q.1.a1, 18q.2.a1, 18q.3.a1, 18q.4.a2 (with δ1 = δ2 = 0, a even, b odd),
18q.5.a2 or 18q.5.b2 (with, in both cases, δ1 = δ2 = 0 and a even),

36q.1.a2, 36q.1.b2, 36q.3.a1, 72q.1.a1,

72q.2.a1, 72q.3.a1, 72q.4.a2, 72q.4.b2,

72q.7.a1, 72q.8.a2, 72q.9.a2 (with δ1 = δ2 = 0, a = 4, b odd)}. (7-1)

For q ≤ 73, the desired conclusion will follow immediately from our Theorem 7.2, which we will prove
later in this section. For the remaining possible types for q , we will place a number of conditions upon p
to guarantee that, in each case, φ is antisymplectic, providing the desired contradiction. These conditions
will be of the form

(
κi
p

)
= −1, for, in each case, a finite collection of integers κi , and hence are each

equivalent to p lying in certain residue classes modulo 8|κi |. We remind the reader that a given prime q
has at most finitely many (isogeny classes of) curves E associated to it. This will prove Theorem 1.7
provided we can show that these conditions are compatible, i.e., that we do not have three distinct indices i ,
say i = 1, 2 and 3, with κ1κ2κ3 an integer square. In particular, compatibility is immediate if we have κi

negative for each i . Our goal will be to show that, for a given prime in q ∈ S0 \ T , we can always find a
corresponding set of κi with either

(i) κi negative for all i , or

(ii) κi either positive and κi ≡ 2 mod 4, or κi negative and odd, or

(iii) κi ≡ 2 mod 4 for all i .

Combining the conclusions of subsections 6D3, 6E3 and 6F3, we can choose κi for which we require(
κi
p

)
=−1, to contradict the fact that φ is symplectic, as follows.

E κi E κi

18q.1.a1 4− a or − 6b 72q.1.a1 2 or − 6b
18q.2.a1 4− a or − 6 72q.2.a1 −6b
18q.3.a1 4− a or − 6b 72q.3.a1 −6b
18q.4.a2 12− 2a or − 3b 72q.4.a2 2
18q.5.a2 12− 2a 72q.4.b2 2 or 3
18q.5.b2 12− 2a 72q.7.a1 −3b
36q.1.a2 2 72q.8.a2 2 or − 3b
36q.1.b2 6 72q.9.a2 −3b
36q.3.a1 −3b

Here, the integers a and b are as given in the definitions of the curves E in Section 3. It is important to
remember that, for a given q and corresponding type of curve E , we have not ruled out the possibility of
there being more than one nonisogenous curve involved. As example (3-1) illustrates, there can certainly
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be nonisogenous curves associated to a fixed pair (q, E); in the case of (3-1), neither curve of the shape
E = 18q.4.a satisfies a ≡ 0 mod 2, b ≡ 1 mod 2.

From the preceding table, the only cases where we cannot choose κi to be negative are the primes q
corresponding to E = 36q.1.a2, 36q.1.b2, 72q.4.a2 or 72q.4.b2. The first two of these require q ∈ S8,
while the latter two arise from q ∈ S5 of the form q = 3d2

+ 4 for integer d. In each of these cases, we
can choose κi ≡ 2 mod 4 positive (see the table above).

Noting that representations of a prime q as q = (3v2
− 1)/2 or q = 3d2

+ 4 are unique (and that,
modulo 4, we cannot have both simultaneously), to conclude the proof of Theorem 1.7, it remains, then, to
treat those primes q ∈ S0 \T for which we have a solution to (1-4), which correspond to a curve in the set

E2 = {36q.1.a2, 36q.1.b2, 72q.4.a2, 72q.4.b2}, (7-2)

and which, further, are associated with at least one curve in the set E1 \ E2. We will show that, in each
situation, we are in case (ii), i.e., we can find a set of κi with either κi positive and κi ≡ 2 mod 4, or κi

negative and odd.

7A1. The case q ∈ S8. In this subsection, we will show that if q ∈ Si ∩ S8 for some 1≤ i ≤ 7 corresponds
to some E ∈ E1 \ E2, then necessarily

E ∈ {18q.3.a1, 18q.4.a2, 72q.3.a1, 72q.7.a1, 72q.9.a2}, (7-3)

with q correspondingly represented in one or more of the following ways.

q = 3b1 − 2a1, with a1 ≡ 3 mod 6, b1 ≡ 2 mod 12, if E = 18q.3.a1 or 72q.3.a1,

q = d2
2 + 2a23b2, with a2 ≥ 4 even, and b2 odd, if E = 18q.4.a2 or 72q.9.a2, or

q = (d2
3 + 3b3)/4, with b3 odd, if E = 72q.7.a1.

Note that here, there might possibly exist more than one representation of a given prime q, with, say,
distinct d2, a2 and b2. From this and applying the preceding table, our set of κi (modulo squares) can
thus be chosen to be contained in

{2, 6} ∪ {−3b1/2} ∪ {−3b2} ∪ {−3b3},

where, as desired, each integer is either positive and ≡ 2 mod 4, or negative and odd.
Suppose that q ∈ S8. It follows that there exist integers u and v such that q = (3v2

− 1)/2 where
u2
− 3v2

= −2 (and hence q ≡ 1 mod 4). As noted earlier, the positive integers v = vk satisfying this
latter equation also satisfy the binary recurrence (6-3). In particular, we have that vk ≡ 0 mod 3 precisely
when k ≡ 1 mod 4. For such k, we may readily show via induction that vk ≡±3 mod 13 and hence that
3v2

k − 1 ≡ 0 mod 13. It follows that, in order to have q = (3v2
− 1)/2 prime with u2

− 3v2
= −2 for

some integer u, we require that either q = 13, or that v ≡±1 mod 3 (whereby q ≡ 1 mod 9).
Next suppose that q ∈ Si for some 1 ≤ i ≤ 7. From Proposition 5.1, necessarily i ∈ {2, 4, 6}. In

particular, if our prime q is associated to some elliptic curve E in E1 \ E2, then, since q ≡ 1 mod 36, we
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have (7-3). To complete the proof of Theorem 1.7 in case q ∈ S8, it remains to show that if we write
q = (−1)δ12a

+ (−1)δ23b with a ≥ 5, then δ1 = 1, δ2 = 0 and we have a ≡ 3 mod 6, b ≡ 2 mod 12.
If, for our q ∈ S8 with q 6= 13, we have q = 2a

+ 3b for integers a ≥ 2 and b ≥ 1, then, modulo 4, b is
necessarily even, so that we require 2a

≡ 1 mod 9, whence a ≡ 0 mod 6. It follows that 2a
+ 3b
≡ 2, 3 or

5 mod 7. On the other hand, again from considering the recursion (6-3), we find that q ≡±1 mod 7, a
contradiction. If, instead, we have q = 2a

− 3b, for a ≥ 2 and b ≥ 1, then, modulo 12, a is even and b is
odd. If b= 1, then we have 2a+1

= 3v2
+5 and so, from Lemma 5.3, since q > 73, a contradiction. If we

suppose that b ≥ 2, then, modulo 9, we again require that a ≡ 0 mod 6, so that 2a
− 3b
≡ 0, 3, 5, 9 or

11 mod 13. On the other hand, from (6-3), we have that q ≡±1 mod 13, a contradiction.
It follows that, if q ∈ S2 ∩ S8 with q 6= 13, then there exist integers a ≥ 2 and b ≥ 1, with q = 3b

− 2a .
Arguing as previously, modulo 22

· 33
· 7, necessarily a ≡ 3 mod 6 and b≡ 2 mod 6. Working modulo 73,

we find from (6-3) that q ≡±1,±34,±35 mod 73 which shows that, in fact, b ≡ 2 mod 12, as desired.

7A2. The case q = 3d2
+4 in S5. In this subsection, we will show that if a prime q which can be written

as q = 3d2
+ 4 for d ∈ Z corresponds to some E ∈ E1 \ E2, then

E ∈ {36q.3.a1, 72q.3.a1}, (7-4)

with q correspondingly represented in one or more of the following ways.

q =
d2

1 + 3b1

4
, with b1 odd, if E = 36q.3.a1, (7-5)

or

q = 3b2 + (−1)δ2a2, with a2 ∈ {2, 3}, b2 odd, if E = 72q.3.a1. (7-6)

To see this, begin by supposing that q = 3d2
+ 4 for an (odd) integer d. Modulo 8, we cannot have

q = 3d2
1 + 2α for integer d1 and α ≥ 4. Further, applying Proposition 5.1, q 6∈ Si for each i ∈ {1, 3, 4, 8},

while the assumption that q ∈ S0 \ T implies q 6∈ S7. It follows that if q ∈ Si for some i 6= 5, then
we must have i ∈ {2, 6} and hence that if q corresponds to some E ∈ E1 \ E2, then E is one of
18q.3.a1, 36q.3.a1, 72q.3.a1 or 72q.7.a1. The last of these possibilities is eliminated modulo 4.

If we can write q= (−1)δ12a
+(−1)δ23b, for a∈{2, 3} or a≥5, and b≥1, then, modulo 3, δ1≡a mod 2,

while, modulo 8, either a = 2, δ1 = δ2 = 0, b≡ 1 mod 2 and d = 3(b−1)/2, or we have a ≥ 3, b≡ 0 mod 2
and δ2 = 1. In this latter case, we also have δ1 = 0, a ≡ 0 mod 2 and hence

2a/2
− 3b/2

= 1 and 2a/2
+ 3b/2

= q.

If a = 4, we find that q = 7. Otherwise, we have a ≥ 6 and hence the first equation here has no solutions
modulo 8, eliminating the possibility that E = 18q.3.a1. We therefore conclude that E satisfies (7-4)
(and, additionally, that if q = 3d2

+ 4 ∈ S2, then d = 3(b−1)/2 for some odd integer b).
A priori, at this point, all we can conclude is that our set of κi is contained in

{2} ∪ {−3b1} ∪ {−6b2},



Sums of two cubes as twisted perfect powers, revisited 993

where the exponents b1 and b2 are as in (7-5) and (7-6). Since both b1 and b2 are odd, we cannot
immediately conclude that our set of κi satisfies any of (i), (ii) or (iii). To show that it is indeed compatible,
we will appeal to the following result:

Lemma 7.1. If d is an integer such that q = 3d2
+ 4 is prime with, additionally, q ∈ S2 ∩ S6, then

q ∈ {7, 31}.

Proof of Lemma 7.1. Let us suppose that q = 3d2
+ 4 is prime with q ∈ S2 ∩ S6. Then, from our prior

work, we can write

q = 3b2 + 4=
d2

6 + 3b6

4
,

for odd positive integers b2, d6 and b6, so that

d2
6 = 4 · 3b2 − 3b6 + 16. (7-7)

In general, this equation has precisely the solutions

(d6, b2, b6)= (1, 1, 3), (5, 1, 1), (11, 3, 1) and (31, 5, 3)

in odd positive integers; none of these correspond to a prime values of q > 73. To prove this, note that an
elementary argument easily yields that b2 > b6 unless |d6| ≤ 5. We may thus write d6 = 3b6 · k1+ (−1)δ4,
for some δ ∈ {0, 1} and k1 ≡±1 mod 6 a positive integer. Substituting into (7-7), we have

3b6k2
1 + (−1)δ8 · k1 = 4 · 3b2−b6 − 1.

If k1 = 1, then, modulo 3, we have 3b6−1
+ 3= 4 · 3b2−b6−1, corresponding to (d6, b2, b6)= (31, 5, 3). If

k1 > 1 then k1 ≥ 5 and necessarily b2 > 2b6. It follows that we can write (−1)δ8 · k1+ 1= 3b6 · k2 for a
(nonzero) integer k2 ≡ 3 mod 8, so that

(3b6k2− 1)2+ 64k2 = 256 · 3b2−2b6 . (7-8)

We check that the only solution to this equation with k2 ∈ {−13,−5, 3, 11} corresponds to (d6, b2, b6)=

(11, 3, 1); otherwise, after a little work, we may suppose that b2 > 4b6 and hence that −2k23b6+64k2+1
is divisible by 32b6 (and hence |2k23b6 − 64k2− 1| ≥ 32b6). It follows that either b6 ≤ 3, or that we have
|k2|> 3b6−1. From (7-8), after a little more work, we may thus conclude that either b6 ∈ {1, 3}, or that
b2 ≥ 6b6− 7.

On the other hand, applying Theorem 1.5 of [Bauer and Bennett 2002], with (in the notation of that
theorem)

(a, y, x0,m0,1, α, s)= (1, 3, 3788, 15,−37, 3.1, 2),

we find that ∣∣∣∣√3−
p

2 · 3k

∣∣∣∣> e−1703−1.64281k,
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for p and k positive integers with k ≥ 4775. It follows that

|p2
− 4 · 32k+1

|> 4 · e−17030.35719k,

provided k ≥ 4775. Applying this with p = d6 and b2 = 2k+ 1, (7-7) thus implies that either b6 ∈ {1, 3}
or we have

3(b2+7)/6
≥ 3b6 > 4 · e−17030.35719(b2−1)/2,

whence b2 ≤ 12979. A brute-force search confirms that (7-7) has only the listed solutions.
We thus have q = 3b2 + 4 for b2 ∈ {1, 3, 5}, whereby, since we assume that q is prime, q ∈ {7, 31}. �

Applying Lemma 7.1 and assuming that q > 73, we can therefore conclude that if q = 3d2
+ 4, then

our set of κi is contained in either

{2} ∪ {−3b1} or {2} ∪ {−6b2},

where, again, the exponents b1 and b2 are as in (7-5) and (7-6). Since both b1 and b2 are odd, it follows
that our set of κi is compatible of type either (ii) or (iii), respectively. This completes the proof of
Theorem 1.7.

7B. Proof of Theorem 1.8. Let q = 2a3b
− 1 with a ≥ 5 and b ≥ 1 be a prime. Then q ∈ S1 and

hence, from Proposition 5.1, q 6∈ Si for i ∈ {2, 3, 5, 7, 8}. On the other hand, q 6∈ Si for i ∈ {4, 6}, since
q ≡ 2 mod 3. It follows that, in this case, a solution to (1-2) with p ≥ q2q necessarily corresponds to an
elliptic curve in the isogeny class 18q.1.a. The result now follows from the equalities in (6-1).

7C. Proof of Theorem 1.9. Suppose that A, B and C are coprime, nonzero integers satisfying (1-5) with
p ≥ 17, and write F for the corresponding Frey–Hellegouarch curve. Note that, for q = 5, we are led to
consider levels 90, 180 and 360. For these levels, each weight 2, cuspidal newform f corresponds to one
of the 9 isogeny classes of elliptic curves E/Q given in Cremona’s notation by

90a, 90b, 90c, 180a, 360a, 360b, 360c, 360d and 360e.

For E in the isogeny classes 90a, 90b, 180a, 360b and 360c, we find that a7(E)= 2 and hence, it follows
from (4-3), the Hasse bound and the level lowering condition that

2≡ 0,±4,±8 mod p.

This gives a contradiction with p ≥ 17.
Next, we treat the isogeny class 360e. Taking E = 360e2, we find that e(E, 3)= 2. In the beginning

of Section 6D2, it is explained that either F has potentially multiplicative reduction at `= 3 or potentially
good reduction with e(F, 3)= 4, a contradiction in either cases.

Finally, suppose that E is in one of the isogeny classes 90c, 360a and 360d, say, E = 90c2, 360a2
or 360d2. We will apply [Freitas 2016, Theorem 4] and [Kraus and Oesterlé 1992, Proposition 2] with
` ∈ {2, 3, q}. In all cases, from [Kraus and Oesterlé 1992, Proposition 2] with `= q, we have that our
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isomorphism between F[p] and E[p] is necessarily symplectic. If E = 90c2, we may thus further appeal
to [Kraus and Oesterlé 1992, Proposition 2] with `= 2 and `= 3 (after suitable twist) to conclude that(

−1
p

)
=

(
−2
p

)
= 1. (7-9)

For E = 360a2, we apply [Freitas 2016, Theorem 4] and [Kraus and Oesterlé 1992, Proposition 2] with
`= 3, whereby (

2
p

)
=

(
−3
p

)
= 1. (7-10)

If E = 360d2, we apply [Kraus and Oesterlé 1992, Proposition 2] with `= 3 to conclude that(
−6
p

)
= 1. (7-11)

We reach our desired conclusion upon observing that, if p ≡ 13, 19 or 23 mod 24, then each of (7-9),
(7-10) and (7-11) fails to hold.

7D. Further results for small primes q. To conclude this paper, we will provide some more explicit
results for small values of q . We obtain these by proceeding in a similar fashion to the proof of Theorem 1.9.
Making the further assumption that p ≥ q2q , we reduce the calculation to consideration of elliptic curves
E with nontrivial rational 2-torsion, conductor in the set {18q, 36q, 72q} and such that 1(E) is of the
shape T 2 or −3T 2 for some integer T (i.e., those corresponding to primes in S0). We summarize our
results as follows.

Theorem 7.2. If p and q are primes with p ≥ q2q , then there are no coprime, nonzero integers A, B
and C satisfying equation (1-4) with q in the following table and p satisfying the listed conditions.

q p q p
5 13, 19, 23 mod 24 47 5, 11, 13, 17, 19, 23 mod 24
11 13, 17, 19, 23 mod 24 59 5, 7, 11, 13, 19, 23 mod 24
13 11 mod 12 67 7, 11, 13, 29, 37, 41, 43, 59, 67, 71, 89, 101, 103 mod 120
17 5, 17, 23 mod 24 71 5 mod 6
23 19, 23 mod 24 73 41, 71, 89 mod 120
29 7, 11, 13, 17, 19, 23 mod 24 79 5, 7, 11, 13, 19, 23 mod 24
31 5, 11 mod 24 89 13, 17, 19, 23 mod 24
41 5, 7, 11, 17, 19, 23 mod 24 97 11 mod 12

Here, we have omitted both primes for which Theorem 1.4 applies directly (i.e., q = 53 and 83,
according to Corollary 1.6) and also primes for which the symplectic method fails to eliminate exponents,
i.e., q ∈ {7, 19, 37, 43, 61}. For these latter primes, observe that, in each case, q is of the shape (3d2

+1)/4
or 3d2

+ 16 for an integer d; as explained in Section 5B, these are those primes for which there exists a
solution to (1-4) (with C = 1) for every exponent p (whereby we expect our techniques to fail), together
with those for which we have a “trivial” solution to the related equation A3

+ B3
= 8qC p, again for

every p.
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Appendix: c-invariants

curve c4 c6

18q.1.a1 32(22a32b
+ (−1)δ2a3b

+ 1) (−1)δ+133(2a+13b
+ (−1)δ)(2a3b

+ (−1)δ+1)(2a−13b
+ (−1)δ)

18q.1.a2 32(22a+432b
+ (−1)δ2a+43b

+ 1) 33(2a+13b
+ (−1)δ)(22a+532b

+ (−1)δ2a+53b
− 1)

18q.1.a3 32(22a−432b
+ (−1)δ2a3b

+ 1) (−1)δ+133(2a−13b
+ (−1)δ)(22a−532b

+ (−1)δ+12a3b
− 1)

18q.1.a4 32(22a32b
+ (−1)δ+17 · 2a+13b

+ 1) (−1)δ+133(2a3b
+ (−1)δ+1)(22a32b

+ (−1)δ17 · 2a+13b
+ 1)

18q.2.a1 32(22a
+ 2a
+ 1) −33(2a+1

+ 1)(2a
− 1)(2a−1

+ 1)
18q.2.a2 32(22a+4

+ 2a+4
+ 1) −33(2a+1

+ 1)(22a+5
+ 2a+5

− 1)
18q.2.a3 32(22a−4

+ 2a
+ 1) −33(2a−1

+ 1)(22a−5
− 2a
− 1)

18q.2.a4 32(22a
− 7 · 2a+1

+ 1) −33(2a
− 1)(22a

+ 17 · 2a+1
+ 1)

18q.3.a1 32(22a
+(−1)δ1+δ22a3b

+32b) (−1)δ33(2a+1
+(−1)δ1+δ23b)(2a

−(−1)δ1+δ2 3b)(2a−1
+(−1)δ1+δ23b)

18q.3.a2 32(22a+4
+(−1)δ1+δ22a+43b

+32b) (−1)δ33(2a+1
+ (−1)δ1+δ23b)(22a+5

+ (−1)δ1+δ22a+53b
− 32b)

18q.3.a3 32(22a−4
+ (−1)δ1+δ22a3b

+ 32b) (−1)b+133((−1)δ1+δ22a−1
+ 3b)(22a−5

− (−1)δ1+δ22a3b
− 32b)

18q.3.a4 32(22a
+(−1)1+δ1+δ27·2a+13b

+32b) (−1)b33(3b
+ (−1)b+δ2a)(22a

+ (−1)δ1+δ217 · 2a+13b
+ 32b)

18q.4.a1 (−1)δ132(q − (−1)δ22a−23b) 33d(d2
+ (−1)δ1+δ22a−33b+2)

18q.4.a2 (−1)δ132(q − (−1)δ22a+23b) 33d(d2
+ (−1)δ1+δ22a3b+2)

18q.5.a1 32(d2
+ (−1)δ1+δ22a−2) 33d(d2

+ (−1)δ1+δ22a−33)
18q.5.a2 32(d2

− (−1)δ1+δ22a) 33d(d2
+ (−1)δ1+δ22a3)

18q.5.b1 34(d2
+ (−1)δ1+δ2 2a−2) −36d(d2

+ (−1)δ1+δ22a−33)
18q.5.b2 34(d2

− (−1)δ1+δ22a) −36d(d2
+ (−1)δ1+δ22a3)

18q.6.a1 32(d2
+ 3 · 2a−2) 33d(d2

+ 2a−332)

18q.6.a2 32(d2
− 3 · 2a) 33d(d2

+ 2a32)

Table 1. Data for curves with conductor 18q .

curve c4 c6 curve c4 c6

36q.1.a1 243(q2
− 1) −2532rs(q2

+ 2) 36q.4.a1 2432(d2
− 3b+1) 2533d(2d2

− 3b+2)

36q.1.a2 243(16q2
− 1) −2632rs(32q2

+ 1) 36q.4.a2 2432(d2
+ 4 · 3b+1) 2633d(d2

− 4 · 3b+2)

36q.1.b1 2433(q2
− 1) 2535rs(q2

+ 2) 36q.5.a1 2432(d2
− 3b+1) 2533d(2d2

− 3b+2)

36q.1.b2 2433(16q2
− 1) 2635rs(32q2

+ 1) 36q.5.a2 2432(d2
+ 4 · 3b+1) 2633d(d2

− 4 · 3b+2)

36q.2.a1 2232(d2
− 1) −2333d(d2

+ 3) 36q.6.a1 2432(d2
− 1) 2533d(2d2

− 3)
36q.2.a2 2432(4d2

+ 1) −2633d(8d2
+ 3) 36q.6.a2 2432(d2

+ 4) 2633d(d2
− 12)

36q.2.b1 2234(d2
− 1) 2336d(d2

+ 3) 36q.6.b1 2434(d2
− 1) −2536d(2d2

− 3)
36q.2.b2 2434(4d2

+ 1) 2636d(8d2
+ 3) 36q.6.b2 2434(d2

+ 4) −2636d(d2
− 12)

36q.3.a1 2232(d2
− 3b+1) −2333d(d2

+ 3b+2) 36q.7.a1 2432(d2
+ 3b+1) 2533d(2d2

+ 3b+2)

36q.3.a2 2432(4d2
+ 3b+1) −2633d(8d2

+ 3b+2) 36q.7.a2 2432(d2
− 4 · 3b+1) 2633d(d2

+ 4 · 3b+2)

Table 2. Data for curves with conductor 36q .
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curve c4 c6

72q.1.a1 2432(32b
+ 3b
+ 1) 2533(3b

− 1)(3b
+ 2)(2 · 3b

+ 1)

72q.1.a2 2432(16 · 32b
+ 16 · 3b

+ 1) 2633(2 · 3b
+ 1)(32 · 32b

+ 32 · 3b
− 1)

72q.1.a3 2432(16 · 32b
+ 16 · 3b

+ 1) 2633(2 · 3b
+ 1)(32 · 32b

+ 32 · 3b
− 1)

72q.1.a4 2432(16 · 32b
+ 16 · 3b

+ 1) 2633(2 · 3b
+ 1)(32 · 32b

+ 32 · 3b
− 1)

72q.2.a1 2432(22a32b
+ (−1)δ2a3b

+ 1) −2633((−1)δ2a+13b
+ 1)(22a−132b

+ (−1)δ2a−13b
− 1)

72q.2.a2 2432(22a+432b
+ (−1)δ2a+43b

+ 1) −2633((−1)δ2a+13b
+ 1)(22a+532b

+ (−1)δ2a+53b
− 1)

72q.2.a3 2432(22a−432b
+ (−1)δ2a3b

+ 1) 2533((−1)δ2a−13b
+ 1)(−22a−432b

+ (−1)δ2a+13b
+ 2)

72q.2.a4 2432(22a32b
+ (−1)δ7 · 2a+13b

+ 1) −2633((−1)δ2a3b
− 1)(22a32b

+ (−1)δ17 · 2a+13b
+ 1)

72q.3.a1 2432(32b
+ (−1)δ2a3b

+ 22a) 2633(−1)b(3b
− (−1)δ2a)(22a

+ (−1)δ5 · 2a−13b
+ 32b)

72q.3.a2 2432(32b
− (−1)δ7 · 2a+13b

+ 22a) 2633(−1)b(3b
− (−1)δ2a)(22a

+ (−1)δ17 · 2a+13b
+ 32b)

72q.3.a3 2432(32b
+ (−1)δ2a+43b

+ 22a+4) −2633(−1)b(3b
+ (−1)δ2a+1)(22a+5

+ (−1)δ2a+53b
− 32b)

72q.3.a4 2432(32b
+ (−1)δ2a3b

+ 22a−4) 2533(−1)b(3b
+ (−1)δ2a−1)(−22a−4

+ (−1)δ2a+13b
+ 2 · 32b)

72q.4.a1 2432(d2
+ 1) −2533d(2d2

+ 3)

72q.4.a2 2432(d2
− 4) −2633d(d2

+ 12)

72q.4.b1 2434(d2
+ 1) 2536d(2d2

+ 3)

72q.4.b2 2434(d2
− 4) 2636d(d2

+ 12)

72q.5.a1 2432(d2
+ (−1)δ2a−2) −2533d((−1)δ2d2

+ 3 · 2a−2)

72q.5.a2 2432(d2
− (−1)δ2a) −2633d((−1)δd2

+ 3 · 2a)

72q.5.b1 2434(d2
+ (−1)δ2a−2) 2536d((−1)δ2d2

+ 3 · 2a−2)

72q.5.b2 2434(d2
− (−1)δ2a) 2636d((−1)δd2

+ 3 · 2a)

72q.6.a1 2232(d2
− 1) 2333d(d2

+ 3)

72q.6.a2 2432(4d2
+ 1) 2633d(8d2

+ 3)

72q.6.b1 2234(d2
− 1) −2336d(d2

+ 3)

72q.6.b2 2434(4d2
+ 1) −2636d(8d2

+ 3)

72q.7.a1 2232(d2
− 3b+1) 2333d(d2

+ 3b+2)

72q.7.a2 2432(4d2
− 3b+1) 2633d(8d2

+ 3b+2)

72q.8.a1 2432(d2
+ 3b+1) −2533d(2d2

+ 3b+2)

72q.8.a2 2432(d2
− 4 · 3b+1) −2633d(d2

+ 4 · 3b+2)

72q.9.a1 2432(d2
+ (−1)δ1+δ22a−23b+1) 2633d(d2

+ (−1)δ1+δ22a−33b+2)

72q.9.a2 2432(d2
+ (−1)δ1+δ2+12a

· 3b+1) 2633d(d2
+ (−1)δ1+δ22a

· 3b+2)

72q.10.a1 2432(d2
− 2a−23b+1) 2633d(d2

− 2a−33b+2)

72q.10.a2 2432(d2
+ 2a
· 3b+1) 2633d(d2

− 2a
· 3b+2)

72q.11.a1 2432(d2
+ 24) 2633d(d2

+ 36)

72q.11.a2 2432(d2
− 96) 2633d(d2

+ 288)

72q.12.a1 2432(d2
+ 24) 2633d(d2

+ 36)

72q.12.a2 2432(d2
− 96) 2633d(d2

+ 288)

Table 3. Data for curves with conductor 72q .
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