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Guillaume Rond

We prove that any complex or real analytic set or function germ is topologically equivalent to a germ
defined by polynomial equations whose coefficients are algebraic numbers.

The problem of the algebraicity of analytic sets or mappings is an old subject of study. It is known that
the germ of a coherent analytic set with an isolated singularity is analytically equivalent to the germ of an
algebraic set [Kucharz 1986; Tougeron 1976]. But in the general case the germ of an analytic set is not
even locally diffeomorphic to the germ of an algebraic set [Whitney 1965]. On the other hand, considering
a weaker equivalence relation, T. Mostowski [1984] proved that the germ of an analytic set is always
homeomorphic to the germ of an algebraic set and this has been generalized to analytic function germs
[Bilski et al. 2017]. For practical, effective and sometimes even theoretical purposes (for instance see
[Budur and Wang 2017]) it is often not possible to handle coefficients that are transcendental numbers and
so it is important to work with polynomial equations whose coefficients are rational or algebraic numbers.
But it is well known that a small perturbation of the coefficients of polynomial equations defining an
algebraic set germ or an algebraic function germ can drastically change the topology of the germ.

The goal of this paper is to extend the results of [Bilski et al. 2017] by proving that any complex or real
analytic set or function germ is homeomorphic to an algebraic germ defined over the algebraic numbers.
Our main result is the following one:

Theorem 1. Let K = R or C. Let (V, 0)⊂ (Kn, 0) be an analytic set germ and g : (V, 0)→ (K, 0) be an
analytic function germ. Then there is a homeomorphism

h : (Kn, 0)→ (Kn, 0)

such that

(i) (h(V ), 0) is the germ of an algebraic subset of Kn defined over Q∩K,

(ii) g ◦ h−1 is the germ of a polynomial function defined over Q∩K.

Moreover when we consider the particular case where there is no function germ g but only the set
germ (V, 0) we can be more precise about the nature of the homeomorphism:
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Theorem 2. Let K=R or C. Let (V, 0)⊂ (Kn, 0) be an analytic set germ. Then there is a homeomorphism
h : (Kn, 0)→ (Kn, 0) such that

(i) h(V ) is the germ of an algebraic subset of Kn defined over Q∩K,

(ii) (V, 0) is Whitney equisingular with (h(V ), 0),

(iii) h is subanalytic and arcanalytic.

The proof of our main result is based on the approach introduced in [Mostowski 1984] and extended in
[Bilski et al. 2017]. For instance the idea to prove Theorem 2 in the case where (V, 0) is a hypersurface
germ is to use a version of the nested Artin–Płoski–Popescu approximation theorem, which we prove in
this paper (see Theorem 12), in order to construct a regular Zariski equisingular deformation of (V, 0)
such that one of the fibers is the germ of a Nash hypersurface defined over Q. By a refinement of a
theorem of Varčenko [1972] due to A. Parusiński and L. Păunescu [2017] such a deformation is a Whitney
equisingular deformation so it is topologically trivial and the trivialization is subanalytic and arcanalytic.
Then we use the Artin–Mazur theorem to transform our germ of a Nash set into the germ of an algebraic
set (still defined over Q) by a local diffeomorphism. For Theorem 1 the idea is to apply essentially the
same procedure to the graph of g, and the main difference concerns the part where we transform a Nash
function germ into an algebraic function germ since the Artin–Mazur theorem is not sufficient to do this
transformation. This part requires the construction of a particular deformation of the Nash set germ which
is topologically trivial thanks to the Thom–Mather isotopy lemma. The paper is organized as follows: The
first and main part is devoted to giving an algebraic statement concerning complex-coefficient algebraic
power series that are solutions of algebraic equations with coefficients in Q. It shows that such solutions
are C-points of a family of algebraic solutions defined over Q (see Theorem 7). In the next parts we apply
this statement to prove Theorem 2 and then Theorem 1, essentially by proving that the approach used in
[Bilski et al. 2017] remains valid in our situation.

Remark 3. Let us mention that B. Teissier [1990] provided an example of the germ of a complex algebraic
surface in (C3, 0) defined by a polynomial equation with coefficients in Q[

√
5] which is not Whitney

equisingular to the germ of an algebraic set defined over Q. So we cannot replace Q by Q in the statement
of Theorem 2.

Remark 4. It is known that the germ of an analytic set is not always diffeomorphic to the germ of an
algebraic set (see [Whitney 1965]). Let us mention that in general the germ of an algebraic set is neither
diffeomorphic to the germ of an algebraic set defined over Q. For instance let us consider the germ of the
curve (V, 0)⊂ (R2, 0) defined by the equation

xy(x − y)(x − ξ y),

where ξ ∈ R is a transcendental number. Indeed (V, 0) is the union of four lines whose cross-ratio is ξ .
If (V, 0) were diffeomorphic to the germ of an algebraic set (W, 0) defined over Q, the differential of the
diffeomorphism germ would induce a bijective linear map between the tangent spaces at 0 of V and W .
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Such a linear map preserves the cross-ratio, so the tangent space of (W, 0) at 0 would be the union of
four lines whose cross-ratio is equal to ξ and this would not be possible since (W, 0) would be defined by
algebraic equations with coefficients in Q. This example extends to the case where K = C much as was
done in [Bilski et al. 2017, Example 6.2].

Remark 5. In general for a given analytic map germ g : (Kn, 0) → (Km, 0) there is no germ of a
homeomorphism h : (Kn, 0) → (Kn, 0) such that g ◦ h is the germ of a polynomial map: just take
g : (K, 0)→ (K2, 0) given by g(x)= (x, ex) (see [Bilski et al. 2017, Example 6.3]). In particular Theorem 1
cannot be extended to analytic map germs (Kn, 0)→ (Km, 0). But in general, even if g : (Kn, 0)→ (Km, 0)
is the germ of a polynomial map there is no germ of a homeomorphism h : (Kn, 0)→ (Kn, 0) such
that g ◦ h is the germ of a polynomial map defined over Q. Indeed let g : (C, 0)→ (C2, 0) be defined
by g(x) = (x, ξ x) where ξ ∈ C is a transcendental number. If there were a homeomorphism germ
h : (C, 0)→ (C, 0) such that g ◦ h is the germ of a polynomial map defined over Q then both h(x)
and ξh(x) would be algebraic over Q[x]. But this would imply that ξ is algebraic over Q which is not
possible.

Remark 6. In Theorem 1 we do not know if the germ of a homeomorphism can be chosen to be arcanalytic
or subanalytic. Indeed the proof of this result goes as follows: First we construct a Zariski equisingular
deformation of the graphs of g and of the function germs defining (V, 0) with the graphs of a Nash
function germ g̃ and of function germs defining the germ of a Nash set (Ṽ , 0). Using the Artin–Mazur
theorem we can reduce the situation to the case where (Ṽ , 0) is the germ of an algebraic set and g̃ is a
unit u times a polynomial function germ P . Then, in [Bilski et al. 2017] a Thom stratification of the
deformation

(t, x)→ (1− t)u(0)P(x)+ tu(x)P(x)

is constructed which shows (by the Thom–Mather isotopy lemma) that the function germ g̃ = u P is
homeomorphic to the function germ P . But the Thom–Mather isotopy lemma does not provide an
arcanalytic or subanalytic homeomorphism in general.

Notation and terminology. We will denote by x and y the vectors of indeterminates (x1, . . . , xn) and
(y1, . . . , ym). The notation x i denotes the vector of indeterminates (x1, . . . , xi ) for any i ≤ n. When
K=R or C, we denote by K{x} the ring of convergent power series with coefficients in K, and by K〈x〉 the
ring of algebraic power series with coefficients in K. This means that K〈x〉 is the subring of K[[x]] whose
elements are algebraic over K[x]. We have K〈x〉 ⊂K{x}; i.e., every algebraic power series is convergent.

Let K = C or R. Let � be an open subset of Kn and let f be an analytic function on �. We say that f
is a Nash function at p ∈� if its Taylor expansion at p is an algebraic power series. An analytic function
on � is a Nash function if it is a Nash function at every point of �. An analytic mapping ϕ :�→ KN is
a Nash mapping if all its components are Nash functions on �. A subset X of � is called a Nash subset
of � if for every p ∈� there exist an open neighborhood U of p in � and Nash functions f1, . . . , fs on
U such that X ∩U = {z ∈U | f1(z)= · · · = fs(z)= 0}. A germ X p of a set X at p ∈� is a Nash germ if
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there exists an open neighborhood U of p in � such that X ∩U is a Nash subset of U . A Nash function
germ is said to be defined over Q∩K if it satisfies a nontrivial polynomial equation with coefficients
in Q∩K. This is equivalent to saying that its Taylor expansion at a Q∩K-point is an algebraic power
series whose coefficients are in Q∩K, i.e., an element of (Q∩K)[[x]]. A Nash set is said to be defined
over Q∩K if it is locally defined by Nash function germs defined over Q∩K.

1. An approximation result

We begin by stating the main result of this part:

Theorem 7. Let f (x, y) ∈Q〈x〉[y]p and let us consider a solution y(x) ∈ C〈x〉m of

f (x, y(x))= 0.

Then there exist a new set of indeterminates t = (t1, . . . , tr ), a vector of algebraic power series

y(t, x)=
∑
α∈Nn

yα(t)xα ∈Q〈t, x〉m

and t = (t1, . . . , tr ) ∈ Cr belonging to the domain of convergence of all the yα(t) such that

y(x)= y(t, x) and f (x, y(t, x))= 0.

Remark 8. This theorem is not true if we replace Q by Q. For instance let x and y be single indeterminates
and set f = y2

− 2x2. Then there is no algebraic power series y(x, t) ∈Q〈x, t〉 such that

y(x, t)2− 2x2
= 0

but we have

f (x,
√

2x)= 0.

Proof of Theorem 7. If y(x) ∈Q〈x〉m then we take r = 0 and there is nothing to prove. Let us assume
that y(x) ∈ C〈x〉m\Q〈x〉m . By Lemma 10 given below we may assume that there exist y′(t, u, v, x) ∈
Q〈t, u, v, x〉m ∩Q[t, u, v][[x]]m , where t = (t1, . . . , tr ) and u and v are single indeterminates, and t ∈Cr ,
u ∈ C, v ∈ C such that

y(x)= y′(t, u, v, x). (1)

Moreover we may assume that t1, . . . , tr are algebraically independent over Q, u = 1/R(t1, . . . , tr ) for
some polynomial R ∈ Q[t1, . . . , tr ] such that R(t1, . . . , tr ) 6= 0, and v is finite over L := Q(t1, . . . , tr ).
Let P(t1, . . . , tr , v) ∈Q(t)[v] be the monic polynomial of minimal degree in v such that

P(t1, . . . , tr , v)= 0.

Let D ⊂ Cr be the discriminant locus of P(t, v) seen as a polynomial in v (i.e., D is the locus of points
q ∈ Cr such that q is a pole of one of the coefficients of P or such that P(q, v) has at least one multiple
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root). Since P(t1, . . . , tr , v) has no multiple roots in an algebraic closure of L, the point t is not in D.
Then there exist U ⊂ Cr

\D a simply connected open neighborhood of p and analytic functions

wi : U→ C, i = 1, . . . , d,

such that

P(t, v)=
d∏

i=1

(v−wi (t))

and w1(t1, . . . , tr ) = v. Moreover the t 7→ wi (t) are algebraic functions over Q[t]. In particular the
Taylor series of w1 at a point of U ∩Qr is an algebraic power series with algebraic coefficients. Since the
polynomial R is not vanishing at p the function

t ∈ Cr
\{R = 0} 7→

1
R(t)

is also an analytic function which is algebraic over Q[t] and so its Taylor series at a point of Qr
\{R = 0}

is an algebraic power series with algebraic coefficients. Let q := (q1, . . . , qr ) ∈Qr
∩U\{R = 0} such that

t belongs to an open polydisc 1 centered at q and such that 1⊂ U\{R = 0}. We denote by ϕ1(t) and
ϕ2(t) ∈Q〈t〉 the Taylor series of t 7→ 1/R(t) and w1 at q . For simplicity we can make a translation and
assume that q is the origin of Cr . In particular the series ϕ1(t) and ϕ2(t) are convergent at t . We have

f (x, y′(t1, . . . , tr , u, v, x))= 0

or equivalently

f (x, y′(t1, . . . , tr , ϕ1(t1, . . . , tr ), ϕ2(t1, . . . , tr ), x))= 0.

The function

(t, x) 7→ F(t, x) := f (x, y′(t1, . . . , tr , ϕ1(t1, . . . , tr ), ϕ2(t1, . . . , tr ), x))

is an algebraic function over Q[t, x]. So if F(t, x) 6≡ 0 there exists an algebraic function (t, x) 7→ g(t, x)
such that

(t, x) 7→ g(t, x)F(t, x)

is a nonzero polynomial function. Indeed if

a0(t, x)T e
+ a1(t, x)T e−1

+ · · ·+ ae(t, x)

is a polynomial of minimal degree having F(t, x) as a root then ae(t, x) 6≡ 0 and we can choose

g(t, x) := −a0(t, x)F(t, x)e−1
− a1(t, x)F(t, x)e−2

+ · · ·− ae−1(t, x)

so we have

g(t, x)F(t, x)= ae(t, x).
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Since F(t, x)= 0 we have ae(t, x)= 0 but t1, . . . , tr , x being algebraically independent over Q we obtain
that ae(t, x)≡ 0 which is a contradiction. Thus we have

F(t, x)= f
(
x, y′(t1, . . . , tr , ϕ1(t1, . . . , tr ), ϕ2(t1, . . . , tr ), x)

)
= 0.

This proves the theorem if we define

y(t, x)= y′(t, ϕ1(t), ϕ2(t), x).

All the series yα(t) are then convergent at t , since ϕ1(t) and ϕ2(t) are convergent power series at t and
since y′(t, u, v, x) ∈Q〈t, u, v, x〉m ∩Q[t, u, v][[x]]m . �

Remark 9. Let us assume that f (x, y) ∈Q〈x〉[y]p. In the proof of Theorem 7 let us assume that r = 0,
i.e., the coefficients of y(x) belong to a finite field extension of Q. In this case the analytic function w1 is
a constant function whose value is in Q\Q. This is why we need to work with the algebraically closed
field Q and not only with Q.

Lemma 10. Let f ∈ C〈x〉m\Q〈x〉m . Then there exist complex numbers t1, . . . , tr , u and v with r ≥ 1 and
F ∈Q〈t, u, v, x〉m , where t = (t1, . . . , tr ) and u and v are single indeterminates, such that

• F ∈Q[t, u, v][[x]]m ,

• f (x)= F(t1, . . . , tr , u, v, x),

• the extension Q→Q(t1, . . . , tr ) is purely transcendental,

• u = 1/R(t1, . . . , tr ) for some polynomial R ∈Q[t1, . . . , tr ] with R(t1, . . . , tr ) 6= 0,

• v is finite over Q(t1, . . . , tr ).

Proof. Let K be the field extension of Q generated by the coefficients of the minimal polynomials of
the components of f . Then the coefficients of the components of f belong to a finite field extension of
K (see for instance [Cutkosky and Kashcheyeva 2008]). Let us replace K by this finite field extension.
There exists a purely transcendental finitely generated field extension Q→ L such that L→ K is finite.
By enlarging K we may assume that L→ K is normal. By the primitive element theorem K = L(a) for
some a ∈ C algebraic over L. Let us write f (x)= ( f1(x), . . . , fm(x)). We can write

fi (x)=
d−1∑
k=0

ak fi,k(x) for i = 1, . . . ,m,

where d is the degree of a over L and the fi,k(x) are power series with coefficients in L. Let us denote by

a1 = a, a2, . . . , ad

the conjugates of a over L. Since fi (x) is algebraic over K[x] and L→K is an algebraic extension, fi (x)
is algebraic over L[x]. Let Pi (x, y)=

∑
α,l pα,l xα yl

∈ L[x, y] be a nonzero vanishing polynomial of fi (x)
and let σ be a L-automorphism of K such that σ(a)= a j for some j . It induces a L[[x]]-automorphism of
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K[[x]] defined by σ
(∑

α cαxα
)
=
∑

α σ(cα)x
α. Then we have

0= σ(Pi (x, fi (x)))=
∑
α,l

σ(pα,l)xασ( fi (x))l =
∑
α,l

σ(pα,l)xα
( d−1∑

k=0

ak
j fi,k(x)

)l

.

Thus for every i = 1, . . . ,m and j = 1, . . . , d the power series

d−1∑
k=0

ak
j fi,k(x) ∈ K[[x]]

is algebraic over K[x]. Let M be the (nonsingular) d×d Vandermonde matrix associated to the a j . Then
we have

f̃i (x)= M f i (x),

where f̃i (x) is the vector whose entries are the
∑d−1

k=0 ak
j fi,k(x) for j = 1, . . . , d , and f i (x) is the vector

whose entries are the fi,k(x). Then f i (x)= M−1 f̃i (x); thus the fi,k(x) are algebraic over K[x] and so
over L[x]. This shows that fi,k(x) ∈ L〈x〉 for every i and k.

Let t1, . . . , tr be a transcendence basis of L/Q. Then by Lemma 11 given below we have

fi,k =
∑
α∈Nn

Si,k,α(t1, . . . , tr )
Ri,k(t1, . . . , tr )|α|

xα

for some polynomials Si,k,α and Ri,k ∈Q[t1, . . . , tr ]. By replacing each Ri,k by
∏

j,l R j,l and multiplying
every Si,k,α by

∏d−1
( j,l) 6=(i,k) R|α|j,l we may assume that Ri,k = Ri ′,k′ = R for every (i, k) and (i ′, k ′). The

power series

f ∗i,k(x)= fi,k(R(t1, . . . , tr )x1, . . . , R(t1, . . . , tr )xn)=
∑
α∈Nn

Si,k,α(t1, . . . , tr )xα

belongs to Q(t1, . . . , tr )〈x〉 since fi,k(x) ∈Q(t1, . . . , tr )〈x〉. Thus we have

f ∗i,k = Fi,k(t1, . . . , tr , x)

with, for every i and k,

Fi,k :=
∑
α∈Nn

Sk,α(t1, . . . , tr )xα ∈Q[t1, . . . , tr ][[x]]

where the ti are new indeterminates. Moreover let Pi,k(t1, . . . , tr , x, y) ∈Q[t1, . . . , tr , x, y], where y is a
new indeterminate, be a nonzero polynomial with Pi,k(t, x, f ∗i,k(x))= 0. Since Fi,k ∈Q[t1, . . . , tr ][[x]]
for every k, we can write

Pi,k(t1, . . . , tr , x, Fi,k(t1, . . . , tr , x))=
∑
β∈Nn

Pi,k,l(t1, . . . , tr )xβ
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for some polynomials Pi,k,β ∈Q[t1, . . . , tr ]. Thus Pi,k,β(t1, . . . , tr )= 0 for every i , k and β, but since
t1, . . . , tr are algebraically independent over Q we have

Pi,k,β(t1, . . . , tr )= 0

for every i , k and β so

Pi,k(t1, . . . , tr , x, Fi,k(t1, . . . , tr , x))= 0

and this implies that Fi,k ∈Q〈t1, . . . , tr , x〉. In particular if u denotes a new indeterminate we have

Fi,k(t1, . . . , tr , ux1, . . . , uxn) ∈Q〈t1, . . . , tr , u, x〉 ∩Q[t1, . . . , tr , u][[x]] for all k.

Finally we set t = (t1, . . . , tr ) and

Fi (t, x)=
d−1∑
k=0

vk Fi,k(t1, . . . , tr , ux1, . . . , uxn)

where v denotes a new indeterminate. Thus the result is proven with F the vector whose components are
the Fi and u = 1/R(t1, . . . , tr ) and v = a. �

The following version of Eisenstein lemma is essentially [Tougeron 1990, Lemma 2.2] and the proof
is the same — but we give it here for the convenience of the reader:

Lemma 11 (Eisenstein lemma). Let f ∈Q(t1, . . . , tr )〈x〉 be an algebraic power series where the ti ∈ C

are algebraically independent over Q. Then there exist a polynomial R(t) ∈ Q[t] and polynomials
Sα(t) ∈Q[t] for every α ∈ Nn , where t = (t1, . . . , tr ) is a vector of new indeterminates, such that

f (x)=
∑
α∈Nn

Sα(t1, . . . , tr )
R(t1, . . . , tr )|α|

xα.

Proof of Lemma 11. Let P(x, y) ∈Q(t1, . . . , tr )[x, y] be a minimal polynomial of f , i.e., a generator of
the kernel of the ring morphism:

Q(t1, . . . , tr )[x, y] →Q(t1, . . . , tr )[[x]],

p(x, y) 7−→ p(x, f (x)).

Let us set

e := ordx

(
∂P
∂y
(x, f (x))

)
.

We have e<∞ since P(x, y) is a minimal polynomial of f (x). Let us write f =
∑

α∈Nn fα(t)xα , where
t = (t1, . . . , tr ) and fα(t)∈Q(t). Let b(t)∈Q[t] be a common denominator of the fα(t) for |α| ≤ 2e+1.
Then Lemma 11 is satisfied by f if and only if it is satisfied by b(t) f . Thus we may replace f by b(t) f .
In this case a minimal polynomial of b(t) f is

P ′(x, y) := b(t)degy(P)P
(

x,
y

b(t)

)
.
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Moreover by multiplying P ′(x, y) by an element of Q(t1, . . . , tr ) we may assume that P ′(x, y) ∈
Q[t1, . . . , tr ][x, y]. Then we have

e = ordx

(
∂P ′

∂y
(x, b(t) f (x))

)
.

Thus we may replace f by b(t) f and assume that fα(t) ∈Q[t] for |α| ≤ 2e+ 1.
We define

P∗(u, x, y) := P(ux1, . . . , uxn, y) ∈Q[t1, . . . , tr , x1, . . . , xn][u, y]

and
f ∗(u, x) := f (ux1, . . . , uxn)

where u is a new indeterminate. Then P∗(u, x, f ∗(u, x)) = 0 so f ∗ ∈ Q(t, x)〈u〉. Let us denote by
f ∗(2e+1)(u) the (2e+ 1)-truncation of f ∗(u) (i.e., we remove from f ∗(u) all the monomials which are
divisible by u2e+2). Then

P∗(u, x, f ∗(2e+1)
) ∈ (u)2e+2 and

∂P∗

∂y
(u, x, f ∗(2e+1)

) ∈ (u)e\(u)e+1.

Let us set
y = ue+1 y′+ f ∗(2e+1)

where y′ is a new indeterminate. Then

P∗(u, x, y)= P∗(u, x, f ∗(2e+1)
)+

∂P∗

∂y
(u, x, f ∗(2e+1)

)ue+1 y′+ u2e+2 y′2 Q(u, y′)

for some polynomial Q. Thus the equation P∗(u, x, y)= 0 is equivalent to

P∗(u, x, f ∗(2e+1))

u2e+1 +

∂P∗

∂y
(u, x, f ∗(2e+1))

ue y′+ uy′2 Q(u, y′)= 0. (2)

Since fα(t) ∈ Q[t] for |α| ≤ 2e + 1 we have f ∗(2e+1)
∈ Q[t, x, u]. Since the coefficients in (2) are

polynomials in u, x and the fα(t) for |α| ≤ 2e+ 1, they belong to Q[t, x, u]. Let R(t, x) ∈Q[t, x] be
defined by

R(t, x)=

( ∂P∗

∂y
(u, x, f ∗(2e+1))

ue

)
|u=0

.

Since ordu
(
P∗(u, x, f ∗(2e+1))/u2e+1

)
≥ 1 we see that R(t, x)2 divides

P∗(R(t, x)2u′, x, f ∗(2e+1)(R(t, x)2u′))
(R(t, x)2u′)2e+1

where u′ is a new indeterminate. Thus by replacing y′ by R(t, x)y′′ and u by R(t, x)2u′ in (2), and
dividing by R(t, x)2 we conclude that (2) is equivalent to

A1(t, x, u′)+ (1+ u′A2(t, x, u′))y′′+ u′y′′2 A3(t, x, u′)= 0, (3)
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where the Ai belongs to Q[t, x, u′]. By the implicit function theorem (or Hensel’s lemma) this equation
has a unique solution in Q〈t, x, u′〉 which is necessarily g∗ := f ∗(R(t, x)2u′)/R(t, x). Moreover we
can also apply Hensel’s lemma to this equation to see that it has a unique solution in the completion of
Q[t, x, u′] with respect to the ideal generated by u′, i.e., in the ring Q[t, x][[u′]]. Thus

g∗ ∈Q[t, x][[u′]] ∩Q〈t, x, u′〉.

In particular the coefficients g∗k defined by g∗(u′)=
∑

k≥0 g∗k u′k are polynomials over Q depending on
the ti and the x j . Moreover

f ∗(u)=
∑
k≥0

g∗k (t, x)
R(t, x)2k−1 uk .

On the other hand we have

f ∗(u)=
∑
k≥0

(∑
|α|=k

fα(t)xα
)

uk
;

hence ∑
|α|=k

fα(t)xα =
g∗k (t, x)

R(t, x)2k−1 for all k ∈ N. (4)

For every α ∈Nn , let us write fα(t)= hα(t)/l|α|(t) where hα(t), l|α|(t) ∈Q[t] and l|α|(t) is coprime with∑
|α|=k hα(t)xα. Then l|α|(t) divides R(t, x)2|α|−1. Let r(t) be the greatest divisor of R(t, x) belonging

to Q[t]. Then there exists d|α|(t) ∈Q[t] such that l|α|(t)d|α|(t)= r(t)2|α|−1. Thus

fα(t)=
hα(t)d|α|(t)
r(t)2|α|−1 .

This proves the lemma. �

Theorem 7 allows us to prove the following version of the nested Artin–Płoski–Popescu approximation
theorem:

Theorem 12. Let f (x, y) ∈Q〈x〉[y]p and let us consider a solution y(x) ∈ C{x}m of

f (x, y(x))= 0.

Let us assume that yi (x) depends only on (x1, . . . , xσ(i)) where i 7→ σ(i) is an increasing function. Then
there exist two sets of indeterminates z= (z1, . . . , zs) and t = (t1, . . . , tr ), an increasing function τ , conver-
gent power series zi (x)∈C{x} vanishing at 0 such that z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xσ(i)),
complex numbers t1, . . . , tr ∈ C and an algebraic power series vector solution y(t, x, z) ∈Q〈t, x, z〉m of

f (x, y(t, x, z))= 0

such that

yi (t, x, z) ∈Q〈t, x1, . . . , xσ(i), z1, . . . , zτ(i)〉 for every i,

y(t, x, z) is well defined and y(x)= y(t, x, z(x)).
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Proof. By [Bilski et al. 2017, Thereom 1.2] there exist a new set of indeterminates z = (z1, . . . , zs), an
increasing function τ , convergent power series zi (x) ∈ C{x} vanishing at 0 such that z1(x), . . . , zτ(i)(x)
depend only on (x1, . . . , xσ(i)), and an algebraic power series vector solution y(x, z) ∈ C〈x, z〉m of

f (x, y(x, z))= 0

such that
yi (x, z) ∈ C〈x1, . . . , xσ(i), z1, . . . , zτ(i)〉 for every i

and y(x)= y(x, z(x)). Then we apply Theorem 7 to the vector y(x, z). �

2. Proof of Theorem 2

The proof is similar to the proof of [Bilski et al. 2017, Theorem 1.2] and so we will refer several times
to this paper for details. For convenience xn−1 will denote the vector of indeterminates (x1, . . . , xn−1)

and, more generally, x i will denote the vector of indeterminates (x1, . . . , xi ). Firstly we consider the case
K = C. Let g1, . . . , gk ∈ C{x} be the defining equations of (V, 0). By a linear change of coordinates we
may assume that the gi are Weierstrass polynomials in xn:

gs(x)= xrs
n +

rs∑
j=1

an−1,s, j (xn−1)xrs− j
n for all s = 1, . . . , k

and
mult0(gs)= rs for all s = 1, . . . , k. (5)

Then the an−1,s, j are arranged in a row vector an−1 ∈ C{xn−1
}

pn with pn =
∑

s rs . Let fn denote the
product of the gs . Let 1n,i denote the i-th generalized discriminant of fn seen as a polynomial in xn

(see [Bilski et al. 2017, 4.2]). This is a polynomial depending on an−1. Then let 1n, jn (an−1) be the first
nonvanishing generalized discriminant. After a linear change of coordinates in x1, . . . , xn−1 we may
assume, by the Weierstrass preparation theorem, that

1n, jn (an−1)= un−1(xn−1)

(
x pn−1

n−1 +

pn−1∑
j=1

an−2, j (xn−2)x pn−1− j
n−1

)
,

where un−1(0) 6= 0 and for all j , an−2, j (0)= 0. We carry on with this construction (exactly as in [Bilski
et al. 2017, 4.2]) and define a sequence of Weierstrass polynomials fi (x i ) for i = 1, . . . , n− 1 such that
fi = x pi

i +
∑pi

j=1 ai−1, j (x i−1)x pi− j
i is the Weierstrass polynomial associated to the first nonidentically

zero generalized discriminant 1i+1, ji+1(ai ) of fi+1, where ai denotes the vector (ai,1, . . . , ai,pi+1):

1i+1, ji+1(ai )= ui (x i )

(
x pi

i +

pi∑
j=1

ai−1, j (x i−1)x pi− j
i

)
, i = 0, . . . , n− 1. (6)

Thus the vector of power series ai satisfies

1i+1,k(ai )≡ 0 for k < ji+1 and i = 0, . . . , n− 1. (7)
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In particular 11, j1(a0) is a constant. Then we use Theorem 12 to see that there exist two sets of
indeterminates z = (z1, . . . , zs) and t = (t1, . . . , tr ), an increasing function τ , convergent power series
zi (x) ∈ C{x} vanishing at 0, complex numbers t1, . . . , tr ∈ C, algebraic power series ui (t, x i , z) ∈
Q〈t, x i , z1, . . . , zτ(i)〉 and vectors of algebraic power series

ai (t, x i , z) ∈Q〈t, x i , z1, . . . , zτ(i)〉pi

such that the following hold:

(a) z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xi ).

(b) ai (t, x i , z) and ui (t, x i , z) are solutions of (6) and (7).

(c) ai (x i )= ai (t, x i , z(x i )) and ui (x i )= ui (t, x i , z(x i )).

Let ui be the constant coefficient of ui (x i ). Because z(0)=0 we have ui =ui (t, 0, 0) and ui (t, 0, 0)∈Q〈t〉.
In particular ui (t, 0, 0) 6= 0. Let γ : U→ Cr be the analytic map defined by

γ (λ)= (1− λ)q+ λt

where U is an open connected neighborhood of the closed unit disc in C and q ∈Qr . Because ui (t, 0, 0) 6=0
and Q is dense in C we may choose q close enough to t such that

ui (γ (λ), 0, 0) 6= 0 for all i and λ ∈ U .

Again because Q is dense in C we can find q ∈Q close enough to t such that the following are, for all
λ ∈ U , well defined convergent power series in x :

Fn(λ, x) :=
∏

s

Gs(λ, x), for Gs(λ, x) := xrs
n +

rs∑
j=1

an−1,s, j (γ (λ), xn−1, λz(xn−1))xrs− j
n

and, for i = 1, . . . , n− 1,

Fi (λ, x) := x pi
i +

pi∑
j=1

ai−1, j (γ (λ), x i−1, λz(x i−1))x pi− j
i and ui (γ (λ), x i , z(x i )).

Finally we set F0 ≡ 1. Because ui (γ (λ), 0, z(0)) 6= 0, the family Fi (λ, x) satisfies the assumptions
of [Parusiński and Păunescu 2017, Theorem 3.3] with |λ| ≤ 1, i.e., the family is Zariski equisingular.
Moreover by (5) we have

mult0(Gs)= rs for all s = 1, . . . , k,

so the family is Zariski equisingular with transverse projections (see [Parusiński and Păunescu 2017,
Definition 4.1]). So by Theorem 4.3 of that work this family is a regular Zariski equisingular family and by
Theorem 7.1 of that work it is Whitney equisingular. Thus {Fn(0, x)=0} and {Fn(1, x)=0}= { fn(x)=0}
are homeomorphic and the homeomorphism between them can be chosen to be subanalytic and arcanalytic.
We have Fn(0, x) ∈Q〈x〉 thus, by [Bilski et al. 2017, Theorem 3.2], we may assume that (V, 0) is the
germ of a Nash set defined over Q. When K = R we may also assume that (V, 0) is the germ of a Nash
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set defined over Q∩K. This follows from the complex case by the same argument used in the proof of
[Bilski et al. 2017, Corollary 4.1]. Then we conclude with the following theorem:

Theorem 13. Let (V, 0)⊂ (Kn, 0) be a Nash set germ defined over Q∩K. Then there exists a local Nash
diffeomorphism h : (Kn, 0)→ (Kn, 0) such that h(V ) is the germ of an algebraic subset of Kn defined
over Q∩K.

Proof. This follows from Proposition 14 given below which is a slight modification of [Bochnak and
Kucharz 1984, Proposition 2]. Indeed let f : U → Km be a Nash function such that f −1(0) = V .
Then by Proposition 14 we have V = s−1(ϕ−1(0)). But s : U → s(U ) is a Nash diffeomorphism by
Proposition 14ii. So we set h = s and h(V ) is an algebraic set equal to ϕ−1(0), again by using the
notations of Proposition 14. �

Proposition 14. Let f :U → Km be a Nash map defined on an open connected set U ⊂ Kn by algebraic
power series with coefficients in Q∩K. Then there exist an algebraic set X ⊂ Kn

×KN , a polynomial
map ϕ : X→ Km and a Nash map s :U → Kn

×KN satisfying the following properties:

(i) s(U ) ⊂ Reg(X) is a connected component of p−1(U )∩ X , where p : Kn
×KN

→ Kn is the first
projection.

(ii) p ◦ s = IdU .

(iii) f = ϕ ◦ s.

(iv) the coefficients of the polynomials defining X and ϕ are in Q∩K.

Proof. The existence of X , ϕ and s satisfying (i), (ii) and (iii) are given by [Bochnak and Kucharz 1984,
Proposition 2] in the general case where f is defined by algebraic power series with coefficients in K.
In fact X is the normalization of the Zariski closure of the graph of f and ϕ is the restriction to X of a
generic linear map Kn+N

→Km . In particular, since f is assumed to be defined over Q∩K, we have that
X is defined by polynomial equations with coefficients in Q∩K. Because ϕ is generic we can choose
such a ϕ with coefficients in Q∩K since this field is dense in K. �

3. Proof of Theorem 1

The proof is similar to the proof of [Bilski et al. 2017, Theorem 1.3] and so once again we will refer
several times to this paper for some details. We begin by considering the case K = C. Let g1, . . . , gp

be power series defining (V, 0). Let us replace n by n − 1 to assume that (V, 0) ⊂ (Cn−1, 0) and let
(x2, . . . , xn) denote the coordinates in Cn−1. Let us set g0 := g. After a linear change of coordinates in
x2, . . . , xn (i.e., preserving x1) we have

p∏
m=0

(x1− gm(x2, . . . , xn))
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is xn-regular. Thus we may write

p∏
m=0

(x1− gm(x2, . . . , xn))= un(x)
(

x pn
n +

pn∑
j=1

an−1, j (xn−1)x pn− j
n

)
,

where un(0) 6= 0 and an−1, j (0)= 0. We set

fn(x)= x pn
n +

pn∑
j=1

an−1, j (xn−1)x pn− j
n

so that

un(x) fn(x)=
p∏

m=0

(
x1−

n∑
k=2

xkbm,k(x2, . . . , xn)

)
, (8)

with gm =
∑n

k=2 xkbm,k for some power series bm,k since gm(0) = 0 for every m. We denote by
b ∈ C{x}p(n−1) and an−1 ∈ C{xn−1

}
pn the vector of the coefficients bm,k and an−1, j , respectively. Again

we denote by 1n,i the generalized discriminants of fn which are polynomials in an−1. Let jn be the
positive integer such that

1n,i (an−1)≡ 0 for i < jn,

and 1n, jn (an−1) 6≡ 0. After a linear change of coordinates (x2, . . . , xn−1) we may write

1n, jn (an−1)= un−1(xn−1)xqn−1
1

(
x pn−1

n−1 +

pn−1∑
j=1

an−2, j (xn−2)x pn−1− j
n−1

)
,

where un−1(0) 6= 0 and an−2, j (0)= 0. We set

fn−1 = x pn−1
n−1 +

pn−1∑
j=1

an−2, j (xn−2)x pn−1− j
n−1

and the vector of its coefficients an−2, j is denoted by an−2 ∈C{xn−2
}

pn−1 . Let jn−1 be the positive integer
such that

1n−1,k(an−2)≡ 0 for all k < jn−1 and 1n−1, jn−1(an−2) 6≡ 0.

Then again we divide 1n−1, jn−1 by the maximal power of x1 and, after a linear change of coordinates
(x2, . . . , xn−2), we denote by fn−2(xn−2) the associated Weierstrass polynomial.

We carry on with this construction and define a sequence of Weierstrass polynomials fi (x i ), for
i = 1, . . . , n−1, such that fi = x pi

i +
∑pi

j=1 ai−1, j (x i−1)x pi− j
i is the Weierstrass polynomial associated to

the first nonidentically zero generalized discriminant 1i, ji (ai+1) of fi+1, divided by the maximal power
of x1, where ai = (ai,1, . . . , ai,pi ):

1i+1, ji+1(ai )= ui (x i )xqi
1

(
x pi

i +

pi∑
j=1

ai−1, j (x i−1)x pi− j
i

)
for i = 0, . . . , n− 1. (9)
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Thus the vector of power series ai satisfies

1i+1,k(ai−1)≡ 0 for k < ji+1 and i = 0, . . . , n− 1. (10)

Then we use Theorem 12 to see that there exist two sets of indeterminates z = (z1, . . . , zs) and
t = (t1, . . . , tr ), an increasing function τ , convergent power series zi (x) ∈ C{x} vanishing at 0, complex
numbers t1, . . . , tr ∈C, algebraic power series ui (t, x i , z)∈Q〈t, x i , z1, . . . , zτ(i)〉 and vectors of algebraic
power series

b(t, x, z) ∈Q〈t, x, z〉p(n−1) and ai (t, x i , z) ∈Q〈t, x (i), z1, . . . , zτ(i)〉pi ,

such that the following hold:

(a) z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xi ).

(b) ai (t, x i , z), ui (t, x i , z) and b(t, x, z) are solutions of (8), (9) and (10).

(c) ai (x i )= ai (t, x i , z(x i )), ui (x i )= ui (t, x i , z(x i )) and b(x)= b(t, x, z(x)).

Then we repeat what we did in the proof of Theorem 2. Let ui be the constant coefficient of ui (x i ).
Because z(0) = 0 we have ui = ui (t, 0, 0) and ui (t, 0, 0) ∈ Q〈t〉. In particular ui (t, 0, 0) 6= 0. Let
γ : U→ Cr be the analytic map defined by

γ (λ)= (1− λ)q+ λt

where U is an open connected neighborhood of the closed unit disc in C and q ∈Qr . Because ui (t, 0, 0) 6=0
and Q is dense in C we may choose q close enough to t such that

ui (γ (λ), 0, 0) 6= 0 for all i and λ ∈ U .

Again because Q is dense in C we can find q ∈Q close enough to t such that the following are, for all
λ ∈ U , well defined convergent power series in x :

Fi (λ, x) := x pi
i +

pi∑
j=1

ai−1, j (γ (λ), x i−1, λz(x i−1))x pi− j
i for i = 0, . . . , n,

ui (γ (λ), x i , z(x i )) for i = 1, . . . , n− 1.

We have

un(γ (λ), x, λz(x))Fn(λ, x)=
p∏

m=0

(
x1−

n∑
k=2

xkbm,k(γ (λ), x, λz(x))
)
.

By the implicit function theorem or the Weierstrass preparation theorem we have

x1−

n∑
k=2

xkbm,k(γ (λ), x, λz(x))= vm(λ, x)(x1−Gm(λ, x2, . . . , xn)),

where vm(λ, x) ∈ C{λ, x}, Gm(λ, x2, . . . , xn) ∈ C{λ, x2, . . . , xn} and vm(0, 0) 6= 0. Because

x1−

n∑
k=2

xkbm,k(γ (0), x, 0) ∈Q〈x〉
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we have

vm(0, x),Gm(0, x2, . . . , xn) ∈Q〈x〉

by unicity in the Weierstrass preparation theorem. We set

ĝm(y) := Gm(0, y) for m = 0, . . . , p

where y = (y1, . . . , yn−1) is a new vector of indeterminates. Then, for both cases K = C or R, we
conclude exactly as in [Bilski et al. 2017] (see the end of 5.4 and Proposition 5.3 in that work) to show
that there is a homeomorphism h : (Kn, 0)→ (Kn, 0) such that (h(V ), 0) is a germ of a Nash subset of
Kn defined over Q∩K and g ◦ h is the germ of a Nash function defined over Q∩K.

Then we deduce from Proposition 14 the following analogue of [Bilski et al. 2017, Theorem 5.4]:

Corollary 15. Let gi be algebraic powers series with coefficients in Q∩K defining Nash function germs
gi : (K

n, 0)→ (K, 0). Then there exist a Nash diffeomorphism h : (Kn, 0)→ (Kn, 0) and Nash units
ui : (K

n, 0)→ K, ui (0) 6= 0, such that, for every i , ui (x)gi (h(x)) are polynomial function germs defined
over Q∩K.

Proof. We have the following fact: let (Y, 0)⊂ (Kn, 0) be a Nash set germ defined by algebraic power
series with coefficients in Q∩K. Then there exists a Nash diffeomorphism h : (Kn, 0)→ (K,0) such
that for every irreducible analytic component W of (Y, 0), the ideal of functions vanishing on h(W ) is
generated by polynomials with coefficients in Q∩K. This follows from Proposition 14 by applying word
for word the proof of “(i) =⇒ (iv)” in [Bochnak and Kucharz 1984, Theorem 5]. Thus when K = C this
fact applied to the germ (Y, 0) defined by the products of the gi proves the theorem. When K = R we
conclude as done for this case in the proof of [Bilski et al. 2017, Theorem 5.4]. �

Let us recall that we have shown that there is a homeomorphism h : (Kn, 0)→ (Kn, 0) such that
(h(V ), 0) is the germ of a Nash subset of Kn defined over Q∩K and g ◦h is the germ of a Nash function
defined over Q∩K. So we conclude the proof of Theorem 1 by using Theorem 13 and [Bilski et al. 2017,
Theorem 5.5].
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