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Arithmetic functions in short intervals
and the symmetric group

Brad Rodgers

We consider the variance of sums of arithmetic functions over random short intervals in the function
field setting. Based on the analogy between factorizations of random elements of Fq [T ] into primes and
the factorizations of random permutations into cycles, we give a simple but general formula for these
variances in the large q limit for arithmetic functions that depend only upon factorization structure. From
this we derive new estimates, quickly recover some that are already known, and make new conjectures in
the setting of the integers.

In particular we make the combinatorial observation that any function of this sort can be explicitly
decomposed into a sum of functions u and v, depending on the size of the short interval, with u making a
negligible contribution to the variance, and v asymptotically contributing diagonal terms only.

This variance evaluation is closely related to the appearance of random matrix statistics in the zeros of
families of L-functions and sheds light on the arithmetic meaning of this phenomenon.

1. Historical background and motivation

The purpose of this paper is to explore a connection between two well-known phenomena in number
theory: that the zeros of a family of L-functions distribute like the eigenvalues of a random matrix and
that the prime factors of a random integer distribute like the cycles of a random permutation. We use
this connection to give a general yet simple description for the statistical behavior of sums of arithmetic
functions over short intervals. The results that we ultimately prove will make use of a function field
analogy: they concern arithmetic functions defined on Fq [T ] rather than the integers and we will require
that q→∞. We begin this section however with a discussion of some historical conjectures and heuristics
from the integers that motivate what follows. A statement of the most important results we prove may be
found at the beginning of Section 3 — our main results are Theorems 3.1 and 3.2 along with Corollary 3.5.
Key use is made of a combinatorial variant of the explicit formula of Weil, Theorem 7.1, which may be
of independent interest.

We recall the following conjectures:

Conjecture 1.1 [Good and Churchhouse 1968]. As X→∞, for H = X δ with δ ∈ (0, 1),

1
X

∫ 2X

X

( ∑
x≤n≤n+H

µ(n)
)2

dx ∼
6
π2 H.
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Conjecture 1.2 [Goldston and Montgomery 1987]. As X→∞ for H = X δ with δ ∈ (0, 1),

1
X

∫ 2X

X

( ∑
x≤n≤x+H

3(n)− H
)2

dx ∼ H(log X − log H).

In both conjectures, we consider random x ∈ [X, 2X ] and seek to compute the variance of the sum of
an arithmetic function, µ(n) or 3(n), over the random short interval [x, x+H ]. Here µ(n) is the Möbius
functions, which oscillates around the value 0, and 3(n) is the von Mangoldt function which has an
average value of 1, by the prime number theorem. Similar conjectures can be made for, for instance, the
higher order von Mangoldt functions 3 j (n) [Rodgers 2015] or the k-fold divisor function dk(n) [Keating
et al. 2018], the latter of which is conjectured to display a very curious series of “phase changes” as the
parameter δ varies. These conjectures are known to be closely related to the conjectural phenomenon that
the zeros of families of L-functions tends to distribute like the eigenvalues of certain random matrices
(see [Katz and Sarnak 1999] for an exposition on the latter phenomenon).

In the past few years, beginning with the work of Keating and Rudnick [2014], function field variants
of these conjectures have been proved. (In some cases the function field theorems have in fact motivated
new conjectures.) In order to state these function field results, we make use of a well-known dictionary
between the integers Z and the ring of polynomials over a finite field, that is Fq [T ]. To review this
dictionary and fix some of our notation:

• The collection of monic polynomials, M, takes the place of positive integers.

• The degree, deg( f ), of f ∈M takes the place of log n for n ∈ N.

• The collection of degree n monic polynomials, Mn , takes the place of integers lying in a dyadic
interval [X, 2X ].

• Irreducible polynomials take the role of primes.

• For f ∈M and h< deg( f ), the set I ( f ; h) := {g ∈M : deg( f −g)≤ h} is a short interval around the
polynomial f , playing the role of [x, x+H ]. (Here h may be thought of as corresponding to log H .)

The reader should verify that |Mn| = qn , while |I ( f ; h)| = qh+1. (Note that in the notation above, we
have suppressed a dependence on the parameter q.)

This set up is explained more extensively in, for instance, the ICM address of Rudnick [2014] or the
book of Rosen [2015]. We have the following analogues of Conjectures 1.1 and 1.2:

Theorem 1.3 [Rudnick 2014; Bae et al. 2015]. For fixed 0≤ h ≤ n− 5, as q→∞,

1
qn

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

µ(g)
∣∣∣∣2 ∼ qh+1. (1)

Theorem 1.4 [Keating and Rudnick 2014]. For fixed 0≤ h ≤ n− 5, as q→∞,

1
qn

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

3(g)− qh+1
∣∣∣∣2 ∼ qh+1(n− h− 2). (2)



Arithmetic functions in short intervals and the symmetric group 1245

For g ∈M, the Möbius function µ(g) is defined in analogy with the integers by µ(g)= (−1)` if g is
squarefree (that is g has no repeated factors) and g = P1 · · · P` in its prime factorization, and µ(g)= 0
if g is squareful1 (that is g is not squarefree). Likewise 3(g)= deg(P) if g = Pk for a prime P and a
power k ≥ 1, and 3(g)= 0 otherwise.

We introduce a notation to write these results more succinctly. For a function η :Mn→ C, we define
its mean value by

E f ∈Mnη( f ) :=
1

qn

∑
f ∈Mn

η( f ), (3)

and its variance by

Var f ∈Mn (η( f )) :=
1

qn

∑
f ∈Mn

∣∣η( f )− EMnη
∣∣2. (4)

Note that both the mean value and variance typically depend on the size of the field q. As a test of
notation, the reader may easily verify that

Var f ∈Mn

( ∑
g∈I ( f ;h)

1
)
= 0. (5)

Likewise we see that (1) may be rewritten

Var f ∈Mn

( ∑
g∈I ( f ;h)

µ(g)
)
∼ qh+1, (6)

and (2)

Var f ∈Mn

( ∑
g∈I ( f ;h)

3(g)
)
∼ qh+1(n− h− 2), (7)

as q→∞.
We may add another recent result to this list, due to Keating, the author, Roditty-Gershon, and Rudnick

[Keating et al. 2018], for the k-fold divisor function, which is defined in analogy with the integers by
dk( f ) := |{(a1, . . . , ak) ∈Mk

: f = a1 · · · ak}|.

Theorem 1.5. For fixed positive integer k, and fixed 0≤ h ≤ n− 5, as q→∞,

Var f ∈Mn

( ∑
g∈I ( f ;h)

dk(g)
)
= qh+1Ik(n, n− h− 2)+ O(qh+1/2), (8)

where Ik(m, N ) is the count of lattice points (xi j ) ∈ (Z)
k2

satisfying each of the following conditions:

(i) 0≤ xi j ≤ N for all 1≤ i, j ≤ k.

(ii) x11+ · · ·+ xkk = m.

1There is a closely related terminology “square-full”, which means something quite different — namely that for prime P , if
P | g, we have P2

| g also. The distinction is important to keep in mind. Square-full numbers will not play a role in this paper.
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(iii) The array xi j is weakly decreasing across columns and down rows. That is,

x11 ≥ x12 ≥ · · · ≥ x1k

≥ ≥ ≥

x21 ≥ x22 ≥ · · · ≥ x2k

≥ ≥ ≥

...
...

. . .
...

≥ ≥ ≥
xk1 ≥ xk2 ≥ · · · ≥ xkk .

Of the evaluations (5)–(8), only (5) may proved easily (in fact trivially). Nonetheless, the estimate
in (6), while deep, at least has a heuristic meaning that is easy to understand; it is just the claim that in
expanding the variance into a sum over two indices, the Möbius function is so oscillatory that off-diagonal
terms make no contribution. That is, (6) may be understood heuristically in the following way:

Var f ∈Mn

( ∑
g∈I ( f ;h)

µ(g)
)
=

qh+1

qn

∑
g1,g2

deg(g1−g2)≤h

µ(g1)µ(g2)≈
qh+1

qn

∑
g1,g2∈Mn

g1=g2

µ(g1)µ(g2).

See for instance [Ng 2008] for a broader application of this heuristic in the setting of the integers, and see
[Carmon and Rudnick 2014; Carmon 2015] for estimates of off-diagonal sums of the Möbius function in
the function field setting.

The evaluation of the k-fold divisor function in (8) is obviously of a more complicated sort, even
heuristically. In particular it may be seen that Ik(n; n− h− 2) is a piecewise polynomial, and for k ≥ 3
as h ranges from 0 to n− 5, it exhibits several phase changes in its behavior in various ranges of h (see
[Keating et al. 2018, §4]). The arithmetic reason for these phase changes in particular is rather mysterious.

Nonetheless, we make the following claim: (8) may be understood arithmetically as nothing more
complicated than a combination of the phenomena that give rise to (5) and (6). For any degree n and
short interval size h, we will observe that we may decompose

dk( f )= u( f )+ v( f ),

where u and v are arithmetic functions, with u( f ) regular enough within the specified short intervals that
(in analogy with (5)),

Var f ∈Mn

( ∑
g∈I ( f ;h)

u(g)
)
= o(qh+1), (9)

while v( f ) is oscillatory and

Var f ∈Mn

( ∑
g∈I ( f ;h)

v(g)
)
∼ qh+1

·
1

qn+1

∑
g∈Mn

|v(g)|2. (10)

That is, as with the Möbius function, only diagonal terms contribute to its variance, in analogy with (6).
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From Cauchy–Schwarz, it follows that

Var f ∈Mn

( ∑
g∈I ( f ;h)

dk(g)
)
∼ qh+1

·
1

qn

∑
g∈Mn

|v(g)|2.

This decomposition is explicit, based on symmetric function theory, and is given below — the quantity
Ik(n; n− h− 2) may be recovered from it. That (9) holds for our function u will be a relatively shallow
fact (having to do with the number of zeros of a certain family of L-functions), and one may think of u
as being the largest piece of dk with enough regularity that (9) holds for this reason. The intricacies of
the variance estimate in (8) may thus be thought of as resulting from the fact that this decomposition
changes for various values of n and h.

Such a decomposition is not limited to the k-fold divisor function. Any arithmetic functions whose
value depends only upon the factorization type of its argument may be decomposed in this way and the
variance of its sum over short intervals may thus be evaluated. What we mean by factorization type is
defined formally below; roughly this is the size of all prime factors, listed with multiplicity. The functions
µ( f ), 3( f ), 3 j ( f ), and dk( f ) are all examples to which the result may be applied.

The evaluation of variance for such a general class of function is closely related to the known phenomena
that the zeros of L-functions distribute like the eigenvalues of a random matrix. Indeed, the result we prove
may be seen to be an equivalent restatement of an equidistribution result of Katz, Theorem 4.2 below. (We
make use of Katz’s theorem in our proof, and so we do not arrive at an independent proof of it however.)

We will use this general variance evaluation to recover several of the results that have been mentioned
above with relatively little extra work and to derive new results that seem difficult by other means. New
conjectures in the setting of the integers are put forward based on these results. Perhaps of particular
interest, we consider sums of the function ω(n), counting prime factors; based on a function field model,
we conjecture that the variance of sums of this function is somewhat smaller than a naive heuristic would
lead one to believe.

In addition to yielding a pleasant general formula, the decomposition results of this paper help elucidate
why random matrix universality should make an appearance in number theory. A complementary
perspective as to the arithmetic reasons for the appearance of random matrix theory in number theory,
dealing with the integers themselves, has appeared in the work of Bogomolny and Keating [1995; 1996]
and in work of Conrey and Keating [2015a; 2015b; 2015c; 2016]. It would be very interesting to see if
the combinatorial decompositions in the present paper can be extended to the setting of the integers in a
way consistent with various conjectures that have been made there.

We finally note a recent application of our main results to algebraic geometry proper; by combining
Theorem 3.1 with other work of their own, Hast and Matei [2016] have given a geometric interpretation
of this result. Indeed, it may be possible and it would be interesting to prove Theorem 3.1 of this paper
directly through algebro-geometric means.
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2. The symmetric group and factorization type

2A. The decomposition described in Section 1 and the corresponding estimates for variance hinge upon
a well-known analogy between the prime factors of a random integer or element of Fq [T ] and the cycles
of a random permutation. (Later an application of symmetric function theory to the zeros of L-functions
will play an equally important and dual role.)

We begin by recalling how it is that factorizations over Fq [T ] resemble the cycles of permutations.
Recall that Mn , the collection of monic polynomials of degree n, consists of qn elements. Recall also

that a partition λ of a positive integer n is defined to be a sequence of nonincreasing positive integers
(λ1, λ2, . . . , λk) such that for |λ| := λ1+ · · ·+ λk we have |λ| = n. We will also use the notation λ ` n
to indicate that λ is a partition of n.

Definition 2.1. For an element f of Mn that is squarefree, if f has prime factorization f = P1 P2 · · · Pk

with deg P1 ≥ deg P2 ≥ · · · , we define the factorization type to be the partition of n given by

τ f = (deg P1, . . . , deg Pk).

For f that is not squarefree (i.e., squareful) we adopt the convention that τ f =∅ (the empty partition).

In the above definition we have fixed our attention on the squarefrees because as q→∞ nearly all
elements of Mn are squarefree [Carlitz 1932, §6]; see also [Rosen 2002, Proposition 2.3] or [Weiss 2013,
Theorem 4.1]:

1
qn #{ f ∈Mn : f squarefree} = 1− O

(
1
q

)
. (11)

Note that likewise any element σ of the symmetric group Sn on n elements can be written uniquely
as a product of disjoint cycles: σ = σ1σ2 · · · σk . Denote the lengths of the cycles by |σi |. For instance
|(245)| = 3, where we have used cycle notation to represent the permutation.

Definition 2.2. For an element σ ∈Sn , with σ = σ1σ2 · · · σk and |σ1| ≥ |σ2| ≥ · · · we define the cycle
type to be the partition of n given by

τσ = (|σ1|, . . . , |σk |).

It is well known that as q→∞ the distribution over Mn of factorization types tends to the distribution
of cycle types in Sn [Andrade et al. 2015]:

Proposition 2.3. For a partition λ ` n,

lim
q→∞

P f ∈Mn (τ f = λ)= Pσ∈Sn (τσ = λ).

Here and in what follows we have used elementary probabilistic notation, for instance

P f ∈Mn (τ f = λ) :=
1

qn #{ f ∈Mn : τ f = λ}.
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There is a well-known expression for the probability that a random permutation has a cycle structure λ,
due to Cauchy. We use the standard partition frequency notation λ = 〈1m12m2 · · · jm j 〉; this means for
λ= (λ1, λ2, . . .), that m1 of the parts of λ are equal to 1, m2 are equal to 2, etc. So if τσ =〈1m12m2 · · · jm j 〉,
σ has m1 1-cycles, m2 2-cycles, etc. With this notation, Cauchy’s result is that

Pσ∈Sn (τσ = λ)= p(λ), where p(λ) :=
j∏

i=1

1
imi mi !

. (12)

It is worth mentioning a recent result of Andrade, Bary-Soroker, and Rudnick [Andrade et al. 2015]
that has generalized this picture. They show that the factorization types of a random polynomial f and a
shift f +α become independent as q→∞:

Theorem 2.4 (Andrade, Bary-Soroker, and Rudnick). For partitions λ and ν`n, uniformly for deg(α)<n,

P f ∈Mn (τ f = λ, τ f+α = ν)= p(λ) p(ν)+ O(q−1/2).

In fact they demonstrate this independence even for multiple shifts: the factorization types of f +α1,
f +α2, . . . , f +αk become independent as well.

2B. In this paper we will be concerned with the distribution of arithmetic functions a :M 7→ C such that
a( f ) depends only upon the size and exponents of the prime factors of f . To make a more formal definition,
if f has prime factorization Pe1

1 · · · P
ek
k , with P1, . . . , Pk monic primes, we call the data (deg P1, e1; · · · ;

deg Pk, ek), the extended factorization type of f . We will be concerned with functions a such that a( f )
is defined for all monic f ∈ Fq [T ] for all q and such that the value a( f ) depends only on the extended
factorization type of f ; we call such functions factorization functions. The class of factorization functions
includes, for instance, the Möbius function µ( f ), the von Mangoldt function 3( f ), the count-of-divisors
function d( f ), the indicator function of degree n polynomials 1[deg( f )= n], the indicator function of
squarefree polynomials µ(n)2, etc. It does not include Dirichlet characters, for instance.

It is evident that for each n, the linear space of factorization functions supported on degree n polynomials
is of finite dimension. The space of factorization functions supported on degree n squarefree polynomials is
likewise of (smaller) finite dimension. In invoking the symmetric group, Proposition 2.3 and Theorem 2.4
suggest that the space of factorization functions has an important basis that may provide useful information:
namely the irreducible characters of Sn .

In describing how such characters may be applied to elements of Fq [T ], we suppose the reader is
familiar with the most basic outlines of representation theory over Sn , along the lines of, for instance,
Chapter 4 of [Fulton and Harris 1991]. We recall that the space of class functions of Sn are those functions
a(σ ) with a value depending only on the cycle type the permutation σ and that a basis for such functions
is given by the irreducible characters, for which we use the notation2

Xλ(σ ).

2We use the letter X rather than the more traditional χ to distinguish these characters from Dirichlet characters which will
make an appearance later on.
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If σ has cycle type τ , sometimes instead of Xλ(σ ) we write Xλ(τ ), since Xλ depends only on cycle
type. Such characters are indexed by partitions λ ` n, and there is a one-to-one correspondence between
irreducible characters of Sn and partitions of n. These characters satisfy the orthogonality relation:

Eσ∈Sn Xλ1(σ )Xλ2(σ )= δλ1=λ2 . (13)

For an element f ∈ Fq [T ], for λ ` n, we define

Xλ( f ) :=
{

Xλ(τ f ) if deg( f )= n and f is squarefree,
0 otherwise.

It is easy to see from this definition that for any factorization function a, there exists a unique
decomposition

a( f )=
∑
λ

âλXλ( f )+ b( f ), (14)

where b( f ) is a function supported on the squarefuls, âλ are constants that depend on the function a and
are defined by this relation, and the sum is over all partitions. (Note that for any particular f of degree n,
the sum in (14) will be a finite sum over λ ` n, all other terms in the summand being 0.)

Note that from Proposition 2.3 and the orthogonality relation (13) we may equivalently define the
coefficients âλ for λ ` n by

âλ := lim
q→∞

1
qn

∑
f ∈Mn

a( f )Xλ( f ).

For instance, since X (n) is the trivial character, we have E f ∈Mn a( f )→ â(n), as q→∞.3

Hast and Matei [2016, Theorem 4.4] have considered a class of functions called arithmetic functions
of von Mangoldt type, which is similar to the class of factorization functions defined here (see [Hast and
Matei 2016] for details of the definition). For this class of functions, Hast and Matei prove what may
be thought of as a first-order short interval analogue of Andrade, Bary-Soroker, and Rudnick’s result in
Theorem 2.4. Rewritten in the notation used above:

Theorem 2.5. For a fixed arithmetic function of von Mangoldt type a( f ), and fixed n ≥ 4, 1≤ h ≤ n−3,

E f ∈Mn

( ∑
g∈I ( f ;h)

a(g)
)2

= q2(h+1)(E f ∈Mn a( f ))2+ O(q(h+1)), (15)

as q→∞.

This is sufficient to recover the upper bound of O(qh+1) for the variance computed by Theorem 1.4 of
Keating and Rudnick, though not the constant n− h− 2.

This result of Hast and Matei is of interest perhaps especially because their methods are rather different
than ours — in particular they do not require any of the facts about L-functions that we will make use of
in what follows. Other related recent papers with a perspective similar to Hast and Matei’s, making use of

3Alternatively, if λ ` n, and A : Sn→ C is the function induced by a, then âλ is also equal to the Fourier coefficient of A.
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the connection between polynomials over a finite field and the symmetric group to investigate arithmetic
functions defined on M, include [Church et al. 2014; Gadish 2017].

3. A statement of main results

3A. We are now in a position to state our main results.

Theorem 3.1. For a( f ) a fixed factorization function, and fixed h and n with 0≤ h ≤ n− 5,

Var f ∈Mn

( ∑
g∈I ( f ;h)

a(g)
)
= qh+1

∑
λ`n

λ1≤n−h−2

|âλ|2+ O(qh+1/2). (16)

Here the coefficients âλ are defined by the expansion (14), and the sum in (16) is over all partitions
(λ1, λ2, . . .) of n such that λ1 (and therefore every λi ) is no more than n− h− 2.

In (16), the implied constant of the error term depends on h, n and the factorization function itself, so
the result is only of interest as q→∞.

In Section 9 we compute the coefficients in the expansion (14) for the factorization functions µ( f ),
3( f ), 3 j ( f ) and dk( f ). These expansions, applied in Theorem 3.1 are sufficient to recover estimates
for the variance of sums of these arithmetic functions over short intervals which we have cited in
Theorems 1.3, 1.4, and 1.5.

Likewise we consider the arithmetic functions ω( f ), counting the number of prime factors of f , and
likewise the function µ( f )ω( f ). The short interval variance of these functions is computed in Section 9
by using Theorem 3.1, and this leads us to make a conjecture in the setting of the integers which seems
perhaps somewhat surprising.

Note also that Theorem 3.1 gives us a nontrivial upper bound for the variance of arithmetic functions
supported on the squarefrees, though the upper bound is one which may be far from optimal. Work of
Keating and Rudnick [2016] and Roditty-Gershon [2017] considers some related questions about the
squarefrees (and indeed square-fulls) more carefully to get asymptotics, not only upper bounds.

The variance evaluation in Theorem 3.1 comes in part from a combinatorial analysis of random matrix
integrals. In particular the already mentioned function field equidistribution theorem of Katz plays an
important role in the proof.

A likewise central role is played by a combinatorial analogue of the explicit formula of Weil, relating
the zeros of an L-function to certain arithmetic functions. In particular, in Section 7 and especially
Theorem 7.1 we show that Schur functions of zeros of L-functions are closely related to the characters
Xλ( f ) defined above.

We note the conjectural appearance of the symmetric group in other closely related contexts, for
example in Dehaye’s work [≥ 2018] on moments of the Riemann zeta function. It would be of interest to
pursue this connection further.

3B. The same result may be stated perhaps more strikingly along the lines advertised in Section 1. Let
Fn be the linear space of factorization functions supported on Mn , and define Uh

n to be the subspace of
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factorization functions for which variance is negligible; that is,

Uh
n :=

{
u ∈ Fn : lim

q→∞
Var f ∈Mn

( ∑
g∈I ( f ;h)

u(g)
)
= o(qh+1)

}
. (17)

We may endow Fn with an inner product: for a1, a2 ∈ Fn , we define

〈a1, a2〉 := lim
q→∞

1
qn

∑
f ∈Mn

a1( f )a2( f ). (18)

This inner product is degenerate, but only on factorization functions supported on the squarefuls. If
we decompose Fn = Gn ⊕Bn , where Gn is the space of factorization functions supported on squarefree
monic polynomials of degree n, and Bn is the space supported on squarefuls, then the equidistribution of
factorization types imply that this is a proper inner product when restricted to Gn .

We will show that Bn ⊆ Uh
n , and so if we define Vh

n to be the orthogonal complement to Uh
n inside Gn ,

we have
Fn = Uh

n ⊕Vh
n .

We will observe the following restatement of Theorem 3.1,

Theorem 3.2. Let 0 ≤ h ≤ n− 5 be fixed and v be a fixed factorization function from the subspace Vh
n .

Then

Var f ∈Mn

( ∑
g∈I ( f ;h)

v(g)
)
= qh+1

〈v, v〉+ O(qh+1/2).

That is, for Vh
n , only diagonal terms contribute to the variance, while by definition for Uh

n the variance
is of lower order.

Thus, this theorem implies an estimate for the variance of an arbitrary factorization function a ∈ Fn ,
since there is a unique decomposition a = u+ v with u ∈ Uh

n and v ∈ Vh
n . Indeed,

Var f ∈Mn

( ∑
g∈I ( f ;h)

u(g)
)
= o(qh+1),

so (using Cauchy–Schwarz to bound covariance),

Var f ∈Mn

( ∑
g∈I ( f ;h)

a(g)
)
= qh+1

〈v, v〉+ o(qh+1). (19)

The spaces Uh
n and Vh

n can be characterized explicitly.

Proposition 3.3. We have
Uh

n =Ah
n ⊕Bn,

where
Ah

n : = span{Xλ( f ) : λ ` n, λ1 ≥ n− h− 1},

Bn: = {b( f ) : b ∈ Fn is supported on squareful elements}.
Furthermore

Vh
n = span{Xλ( f ) : λ ` n, λ1 ≤ n− h− 2}.
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This explicit decomposition is what connects Theorems 3.1 and 3.2. It is worthwhile to emphasize
once again an interpretation of this result; the determination that the variance of short interval sums of
functions lying in Uh

n is negligible will be a relatively simple fact to verify — we will see that functions
lying in this space are forced to be regular across short intervals owing in the end to a paucity of zeros
of L-functions. The theorem tells us that outside this first obstruction, factorization functions otherwise
behave in an oscillatory fashion, akin to the Möbius function, when summed in a short interval.

There is another appealing way to write this decomposition, based on a suggestion by J. Ellenberg:

Proposition 3.4. Define the space Uh
n as in the start of this subsection. Then Uh

n consists of functions
u( f ) that can be written in the form

u( f )=
∑
δ | f

deg(δ)≤h+1

α(δ)+ b( f ), for all f ∈Mn, (20)

where α(δ) is a factorization function and b( f ) is a factorization function supported on the squarefuls.

Here the sum is over all monic polynomials δ dividing f with degree no more than h+ 1.
Indeed, it will again follow quite easily that for all factorization functions that can be represented

as truncated divisor sums in this way, the value of their sums over short intervals will remain basically
constant no matter the choice of short interval, so that these sums have negligible variance. The space Vh

n

remains defined as the complement of Uh
n , and so an interpretation of this decomposition remains the

same — outside an “easy-to-find” obstruction, functions otherwise behave in an oscillatory fashion when
summed in a short interval.

As a corollary of Theorem 3.2 and Proposition 3.4, we have

Corollary 3.5. For a( f ) a fixed factorization function and fixed h and n with 0≤ h ≤ n− 5,

Var f ∈Mn

( ∑
g∈I ( f ;h)

a(g)
)
= qh+1 inf

α∈F

∥∥∥∥a( f )−
∑
δ | f

deg(δ)≤h+1

α(δ)

∥∥∥∥2

+ O(qh+1/2), (21)

where F is the space of all factorization functions and ‖·‖ is the norm induced by the inner product (18).

Rather curiously, the minimization problem arising in the computing the right-hand side of (21) has
some similarity to those which arise in connection to the Selberg sieve.

We turn to a proof of these decompositions and Theorem 3.2 in Section 11.

3C. Because Theorem 3.1 allows us to compute variances for general factorization functions, it is also
straightforward to use it to compute covariance. We record a general formula for covariance in Section 10
and draw out some interesting consequences that appear to be new in the literature.

3D. A similar set of results could be developed for factorization functions in arithmetic progressions
rather than short intervals, though we don’t do so here.
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3E. In the next two sections we recall some background material regarding Dirichlet characters, L-
functions, and symmetric function theory. We turn to the substantial portion of the proof of Theorem 3.1
in Section 8.

4. Background on Dirichlet characters and zeros of L-functions

4A. We recall a few of the basic facts about Dirichlet characters defined over Fq [T ] that we will use. Our
notation is the same as that from [Rosen 2002; Keating and Rudnick 2014; Rudnick 2014; Rodgers 2015;
Keating et al. 2018] and a reader familiar with the facts from any one of those may skip this section and
refer back to it as it is referenced.

In Fq [T ], we will make use of the family of primitive even characters modulo the element T M for
powers M ≥ 1. We call a character χ even if for all c ∈ Fq and all f ∈ Fq [T ], we have χ(c f )= χ( f ).
Recall that the number of Dirichlet characters modulo T M is

8(T M)= q M
(

1−
1
q

)
, (22)

the number of primitive Dirichlet characters is

8prim(T M)= q M
(

1+ O
(

1
q

))
, (23)

the number of even Dirichlet characters is

8ev(T M)= q M−1, (24)

and the number of even primitive characters is

8ev
prim(T

M)= q M−1
(

1+ O
(

1
q

))
. (25)

We recall that the L-function of a Dirichlet character χ is defined for |u|< 1/q by

L(u, χ) :=
∑

f monic

χ( f )udeg( f )
=

∏
P monic,

irreducible

1
1−χ(P)udeg(P) ,

and that for χ nontrivial that L(u, χ) is a polynomial in u, defined for |u| ≥ 1/q by analytic continuation.
The Riemann hypothesis, in this context a theorem of Weil [1967], states that all roots of L(u, χ) lie on
the circles |u| = q−1/2 or |u| = 1. If χ is a nontrivial character modulo a polynomial Q of degree M ,
then L(u, χ) has no more than M − 1 roots, and as a well-known consequence of this and the Riemann
hypothesis, ∑

f ∈Mn

3( f )χ( f )= OM(qn/2). (26)

4B. In the case that χ is a primitive character we can succinctly say more. In this case for χ modulo T M ,
the polynomial L(u, χ) has exactly M − 1 roots. Define the function λχ to be 1 if χ is even, and 0
otherwise. When χ is even, L(u, χ) has a simple zero at u = 1, otherwise all zeros of this polynomial
lie on the circle |u| = q−1/2. We can record this information in a single equation; we have for primitive
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characters χ and N := deg Q− 1− λχ ,

L(u, χ)= (1− λχu)
N∏

j=1

(1− q1/2ei2πϑ j u)= (1− λχu) det(1− q1/2u2χ ), (27)

where ei2πϑ1, . . . , ei2πϑN lie on the unit circle and are determined by the character χ and

2χ := diag(ei2πϑ1, . . . , ei2πϑN )

is known as the unitarized Frobenius matrix. From logarithmic differentiation we also have the explicit for-
mula, ∑

f ∈Mn

3( f )χ( f )=−qn/2 Tr2n
χ − λχ . (28)

To control the distribution of zeros, a theorem of Katz will be important for us, as it has been in all
investigations of this sort since Keating and Rudnick’s [2014]. We let PU(m) be the projective unitary
group, the quotient of the unitary group U (m) by unit modulus scalars, endowed with Haar measure, and
PU(m)# be the space of conjugacy classes of PU(m), with inherited measure.

Theorem 4.1 [Katz 2013, Theorem 8.1]. Fix M ≥ 5. Over the family of even primitive characters
χ (mod T M), the conjugacy classes of the unitarized Frobenii 2χ become equidistributed in PU(M−2)#

as q→∞.

More computationally the meaning of the theorem is as follows: for any continuous class function
φ :U (M − 2)→ C such that φ(ei2πθg)= φ(g) for all unit scalars ei2πθ and unitary matrices g, we have

lim
q→∞

Eχ(T M )
prim,ev

φ(2χ )=

∫
U (M−2)

φ(g) dg,

as q→∞, where for typographical reasons we have written

Eχ(T M )
prim,ev

φ(2χ ) :=
1

8ev
prim(T

M)

∑
χ(T M )
prim,ev

φ(2χ ).

Indeed, Katz also considers the rate of convergence in this result, at least for a sufficiently simple
function φ.

Theorem 4.2 [Katz 2013, Theorem 8.2]. Fix M ≥ 5. For a fixed class function φ : U (M − 2)→ C

as described above such that the map induced by φ from PU(M − 2) to C is a linear combination of
irreducible characters of PU(M − 2):

Eχ(T M )
prim,ev

φ(2χ )=

∫
U (M−2)

φ(g) dg+ O(q−1/2).

4C. The reason we will be interested in characters modulo T M is the following involution used by
Keating and Rudnick.

We let Pn be the collection of degree n polynomials in Fq [T ] and P\n := { f ∈ Pn : ( f, T ) = 1}.
Equivalently P\n is the collection of degree n polynomials with a constant coefficient that is nonzero. Our
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involution is the mapping f 7→ f ∗ from P\n to itself defined by

(a0+ a1T 1
+ · · ·+ anT n)∗ = an + an−1T + · · ·+ a0T n. (29)

It is straightforward to check that for f with nonzero constant coefficient,

( f ∗)∗ = f,

and for f and g with nonzero constant coefficient,

( f g)∗ = f ∗g∗.

If we extend the definition of factorization type to Pn , so that for f ∈Pn and for that scalar c∈ Fq such that
c f ∈Mn , the factorization type of f is defined to be the factorization type of c f , it follows that for f ∈P\n ,

τ f = τ f ∗ . (30)

This involution is useful for us because for g1, g2 ∈ P
\
n ,

deg(g1− g2)≤ h

if any only if

g∗1 − g∗2 ≡ 0 (mod T n−h).

This equivalence is easily checked. It is because of this that we may use Dirichlet characters and their
L-functions to study short interval sums.

5. Background on symmetric function theory

5A. We recall some notation and well-known facts from symmetric function theory that we will use in what
follows. A standard reference and introduction to the material we recall here is [Stanley 1999, Chapter 7].

We have already defined partitions and discussed their basic notation in Section 2A. One additional
way to represent partitions is as a Young diagram. This is an array of left-justified boxes, with the number
of boxes in each row weakly decreasing. For a partition λ, the Young diagram corresponding to λ has
λ1 boxes in its first row, λ2 boxes in its second row, etc. For instance, the Young diagram with shape
(5, 3, 3, 1) is as follows:
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The dual partition λ′ is defined to be (λ′1, λ
′

2, . . .) where λ′i is the number of boxes in the i-th column
of the Young diagram corresponding to λ. So in our example above (5, 3, 3, 1)′ = (4, 3, 3, 1, 1).

The length of a partition, `(λ), is defined to be k, where λ= (λ1, . . . , λk). For instance `(5, 3, 3, 1)= 4.
Young diagrams may be used to write down a relatively simple expression for characters of the

symmetric group in the form of the famous Murnaghan–Nakayama rule. We quickly recall it here, taking
from the presentation in [Stanley 1999, §7.17], which is recommended for those who have not seen this
result before. As a prerequisite, we define Young tableaux of shape λ to be arrays of numbers, weakly
increasing across rows and down columns, written in the squares of a Young diagram of λ. A border
strip tableau of shape λ and type τ is a Young tableau such that among the entries the number i occurs
exactly τi times, and for each i the set of squares in which i has been written form a border strip — that
is, a connected collection of squares with no square upward and to the left of any others. The height of
a border strip is one less than the number of rows that contain it, and the height h(T ) of a tableau T
composed of border strips is the sum of the heights of the border strips.

Theorem 5.1 (Murnaghan–Nakayama rule). For λ a partition of n and τ the type of a permutation
from Sn

Xλ(τ )=
∑

T

(−1)h(T ), (31)

where the sum is over all border strip tableaux T of shape λ and type τ .

Remark. A reader unfamiliar with characters of the symmetric group but nonetheless comfortable with
the statement of the Murnaghan–Nakayama rule may take (31) as their definition the symmetric group’s
characters.

5B. We will need to work with symmetric polynomials in m variables. Two bases for these polynomials
that will be important for us are the power sum symmetric functions and Schur functions. Both bases are
indexed by partitions.

For power sum symmetric functions in the variables ω1, . . . , ωm we recall the definition that for an
integer n,

pn = pn(ω1, . . . , ωm) := ω
n
1 + · · ·+ω

n
m,

and for a partition λ= (λ1, . . . , λk), we define

pλ := pλ1 · · · pλk .

It is an elementary fact [Stanley 1999, Corollary 7.7.2] that any symmetric polynomial in the variables
ω1, . . . , ωm can be expressed uniquely as a linear combination of the functions pλ.

Schur functions in the variables ω1, . . . , ωm have the following as their classical definition. For a
partition λ with `(λ)≤ m, set

sλ = sλ(ω1, . . . , ωm) :=
det(ωλ j+m− j

i )mi, j=1

det(ωn− j
i )mi, j=1

.
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If `(λ) < m, we extend λ with 0’s in the extra places so that the above definition still makes sense —
i.e., λ= (λ1, . . . , λk, 0, . . . , 0). If `(λ) > m, we set sλ = 0.

It is well-known (though not completely obvious at first glance) that sλ defined as above is a symmetric
polynomial with integer coefficients. As with power sums, any symmetric polynomial in the variables
ω1, . . . , ωm can be expressed uniquely as a linear combination of the functions sλ. Proofs of these facts
may be found in [Stanley 1999, Chapter 7].

For these symmetric polynomials we have the following important identities:

Theorem 5.2 (Frobenius). For λ ` n,

sλ =
1
n!

∑
σ∈Sn

Xλ(σ )pσ =
∑
ν`n

p(ν)Xλ(ν)pν . (32)

Likewise,

pν =
∑
λ`n

Xλ(ν)sλ. (33)

Proof. Equation (32) is Theorem 7.17.3 of [Stanley 1999], while (33) is Corollary 7.17.4. �

We can also express sλ in terms of the elementary symmetric functions, defined by

en = en(ω1, . . . , ωm) :=
∑

i1<···<in

ωi1 · · ·ωin ,

with the conventions e0 = 1 and en(ω1, . . . , ωm)= 0 for n > m.

Theorem 5.3 (Jacobi–Trudi). For λ1 ≤ k,

sλ = det(eλ′i−i+ j )
k
i, j=1.

Proof. This is a special case of Corollary 7.16.2 of [Stanley 1999]. �

Remark. This is often known as the dual Jacobi–Trudi identity because there is an equivalent formula in
terms of the complete homogeneous symmetric functions; see [Stanley 1999, Theorem 7.16.1].

5C. One of the many results that is derived in the literature from Theorem 5.2 is an identity for characters
of the symmetric group indexed by partitions that are dual to each other. We cite it here because we will
use it later.

Proposition 5.4. For σ ∈Sn and λ ` n,

Xλ′(σ )= (−1)n−`(σ )Xλ(σ ).

Here `(σ ) := `(τσ ).

Proof. This is example 2 of section I.7 in [Macdonald 1995]. �
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5D. One of the reasons we are interested in Schur functions is their appearance in random matrix theory.
It is well known that they satisfy the following orthogonality relation.

Theorem 5.5. For partitions λ and ν,∫
U (m)

sλ(g)sν(g) dg = δλν · δ`(λ),`(ν)≤m .

Moreover, if λ and ν are partitions of the same number (that is |λ| = |ν|)∫
PU(m)

sλ(g)sν(g) dg = δλν · δ`(λ),`(ν)≤m .

Here sλ(g) and sν(g) are Schur functions whose entries are the m eigenvalues of the matrix g. A
more or less self-contained proof may be found in [Gamburd 2007] as well as in more standard texts on
representation theory.

6. A basis for factorization functions, and a bound for character sums

6A. We turn in this section to a proof of Theorem 3.1. Out strategy will be a familiar one, similar in its
broad outlines to the original proof of Keating and Rudnick. By making use of the involution described
in Section 4, we transfer a short interval sum to an average over sums of Dirichlet characters against
factorization functions. These are in turn evaluated by using an equidistribution result of Katz and the
combinatorial analysis of Section 7. This combinatorial analysis is perhaps the most important observation
of the paper. In terms of technique, some new issues arise that have not appeared in the past just because
we work with factorization functions in general.

6B. We begin by noting some ways to build factorization functions out of simpler functions. For two
arithmetic functions φ1 and φ2 we define the convolution in the usual way,

φ1 ? φ2( f ) :=
∑

f1 f2= f
f1, f2∈M

φ1( f )φ2( f ).

It is clear that if φ1 and φ2 are factorization functions, then φ1 ?φ2 will be a factorization function as well.
For integers m, e ≥ 1 we define the factorization function

ιm,e( f )=
{

1 if f = Pe with deg(P)= m,
0 otherwise.

Thus ιm,e is the indicator function of e-th powers of m-th degree primes and is supported on Mme. We
generalize it in the following way: for an array (m, e)= (m1, e1;m2, e2; . . . ;m`, e`) we define

ι(m,e) = ιm1,e1 ? ιm2,e2 ? · · · ? ιm`,e` . (34)

Proposition 6.1. Any factorization function supported on Mn is a linear combination of the func-
tions ι(m,e). (Necessarily m1e1+ · · ·+m`e` = n).
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Proof. Let Mn,L be the collection of elements of Mn with extended factorization type (m1, e1; · · · ;m`, e`)
for ` ≤ L and Fn,L be the collection of factorization function supported on Mn,L . We suppose the
proposition is true for all factorization functions supported on Mr,L with r ≤ n and show that it is true
for Mn,L+1. Since it is obviously true (check) for Mn,1 for all n, this will verify the claim by induction.

We introduce indicator functions I(m,e) of the extended factorization type (m, e); that is for f ∈M,
we set I(m1,e1;...;m`,e`)( f ) = 1 if f has extended factorization type (m1, e1; . . . ;m`; e`) and we set
I(m1,e1;...;m`,e`)( f )= 0 otherwise. Clearly

Fn,L+1 = span{I(m1,e1;...;m`,e`) : m1e1+ · · ·+m`e` = n, `≤ L + 1},

so to prove our claim we need only show that each

I(m1,e1;··· ;mL+1,eL+1) (35)

is a linear combination of functions ι(m,e). Suppose ν of the terms (m1, e1), . . . , (mL , eL) in (35) are
equal to (mL+1, eL+1). (We allow ν to be 0.) By inspection of elements of Mn,L+1 we see that

I(m1,e1;...;mL ,eL ) ? ιmL+1,eL+1 − (ν+ 1)I(m1,e1;...;mL+1,eL+1) (36)

is supported on Mn,L . By inductive hypothesis then (36) is a linear combination of terms ι(m,e). Likewise
by inductive hypothesis, I(m1,e1;...;mL ,eL ) is a linear combination of such terms, so I(m1,e1;...;mL ,eL )?ιmL+1,eL+1

will be as well. Returning to (36), since ν + 1 6= 0, this shows that I(m1,e1;...;mL+1,eL+1) is therefore a
linear combination of such terms, so that as claimed all factorization functions on Mn,L+1 are linear
combinations of such terms also. �

6C. We have indicated that we must work with Dirichlet characters modulo T M for some power M . Note
that for any nontrivial Dirichlet character χ modulo T M , we have, by excluding powers of primes from
the sum in the first line below and using the Riemann hypothesis in the form (26) in the second,∑

f ∈Mn

ιn,1( f )χ( f )= 1
n

∑
f ∈Mn

3( f )χ( f )+ O(qn/2)= OM(qn/2).

Thus for any e ≥ 2, as long as χ e
6= χ0,∑

f ∈Mme

ιm,e( f )χ( f )=
∑

f ∈Mm

ιm,1( f )χ e( f )= OM(qm/2).

For e ≥ 3, trivially ∑
f ∈Mme

ιm,e( f )χ( f )= O(qm).

Note that for m ≥ 1, e ≥ 2, we have m
2 ≤

me
2 −

1
2 , and for m ≥ 1, e ≥ 3, we have likewise m ≤ me

2 −
1
2 .

Thus combining the two estimates above, we see that unless χ2
= χ0, we have for e ≥ 2,∑

f ∈Mme

ιm,e( f )χ( f )= O(qme/2−1/2).
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Hence recalling the definition (34), unless χ2
= χ0, if some ei ≥ 2,∑

f ∈Mn

ιm,e( f )χ( f )= OM,n(qn/2−1/2), (37)

where n = m1e1+ · · ·+mkek .
We have thus obtained

Lemma 6.2. If b is a fixed factorization function supported on the squarefuls, for χ a Dirichlet character
modulo T M , as long as χ2

6= χ0, ∑
f ∈Mn

b( f )χ( f )= OM,n(qn/2−1/2).

Proof. For such b, the function b( f )1Mn ( f ) is necessarily a linear combination of functions ιm,e, where
in each case some ei ≥ 2. �

In the case that χ2
= χ0, we may genuinely have a worse bound, but it is easy to see in the same

way that as long as χ 6= χ0 for χ (mod T M), the bound in Lemma 6.2 may be replaced by OM,n(qn/2).
Indeed, for such an estimate, it is easy to see that we have no need that our factorization function be
supported on the squarefuls as it was in Lemma 6.2.

Lemma 6.3. If a is a fixed factorization function, for χ a nontrivial Dirichlet character modulo T M ,∑
f ∈Mn

a( f )χ( f )= On,M(qn/2).

Note that a character satisfies χ2
= χ0 only if it is real. Fortunately there are not many real characters

modulo T M .

Lemma 6.4. Over Fq [T ], the number of nontrivial real characters modulo T M is O(1) if 2 -q, and
O(qbM/2c) if 2 | q.

Proof. Let Ĝ be the group of characters. Real characters χ are characterized by having χ2
= χ0. As

Ĝ ∼= (Fq [T ]/(T M))∗, the number of real characters is equal to the number of f ∈ Fq [T ] with ( f, T M)= 1
and deg( f ) < M such that

f 2
≡ 1 (mod T M). (38)

Yet if 2-q , we have ( f −1, f +1)= 1 and so (38) implies f ≡±1 (mod T M), which is satisfied by only
two such f . Hence in this case there are at most two real characters modulo T M , and thus at most one
nontrivial real character.

If 2 | q , the situation is more complicated. If f = a0+ · · ·+ aM−1T M−1, we have

f 2
= a2

0 + a2
1 T 2
+ · · ·+ a2

M−1T 2(M−1),

so that each solution f 2
≡ 1 (mod T M) entails b(M − 1)/2c+ 1 linear equations,

a2
0 = 1, a2

1 = 0, · · · , a2
b(M−1)/2c = 0
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of which there is only one solution. The remaining M − 1 − b(M − 1)/2c = bM/2c coefficients
ab(M−1)/2c+1, . . . , aM−1 may vary freely, but this leads to only qbM/2c different solutions. �

Remark. I thank Ofir Gorodetsky for suggesting this proof of Lemma 6.4 to me.

7. Schur functions of zeros

7A. We have noted the explicit formula (28), which establishes a correspondence between the von Man-
goldt function 3( f ) and the traces of powers of unitarized Frobenius matrices. Written another way, let
χ be a primitive character modulo T m . For pn(2χ ) the symmetric power sum of the unitarized zeros
{ei2πϑ1, . . . , ei2πϑm−2} of L(u, χ), the explicit formula is just the statement that

pn(2χ )=
−1
qn/2

∑
f ∈Mn

3( f )χ( f )+ O(1/qn/2)=
−n
qn/2

∑
P∈Mn
prime

χ(P)+ O(q−1/2) (39)

for χ2
6= χ0. (We require χ2

6= χ in order to absorb higher prime powers into the error term.) By
multiplying these power sums together, from unique factorization and a simple counting argument, it
follows that for the partition ν = 〈1m12m2 · · · jm j 〉, with ν ` n,

pν(2χ )=
1

qn/2

j∏
i=1

imi mi !
∑

f ∈Mn

1ν(τ f )µ( f )χ( f )+ O(q−1/2).

We have used the Riemann hypothesis bound (26) to retain this error term from (39). Note that the
coefficient

∏
imi mi ! here is 1/ p(ν), defined in (12) from our introductory remarks about the symmetric

group. By applying the Frobenius formula, Theorem 5.2, we see that for the Schur function with arguments
{ei2πϑ1, . . . , ei2πϑm−2},

sλ(2χ )=
1

qn/2

∑
f ∈Mn

µ( f )Xλ( f )χ( f )+ O(q−1/2).

Because µ( f )Xλ( f )= (−1)`(τ f )Xλ(τ f )= (−1)n Xλ′(τ f ) by Proposition 5.4, we have thus shown:

Theorem 7.1. For χ a primitive character modulo T m with χ2
6= χ0,

sλ(2χ )=
(−1)n

qn/2

∑
f ∈Mn

Xλ′( f )χ( f )+ On,m(q−1/2).

7B. Note that in the above theorem, there is no explicit reference to the degree m of the polynomial T m .
Nonetheless, if χ is primitive and even, sλ(2χ ) is a polynomial in m− 2 variables, and so we must have
sλ(2χ )= 0 for `(λ) > m− 2. We have thus observed

Corollary 7.2. If `(λ′)= λ1 > m− 2,∑
f ∈Mn

Xλ′( f )χ( f )= O(q(n−1)/2),

uniformly for χ a primitive even character modulo T m .
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Remark. A similar statement to the above can of course be written down for odd primitive characters.

As another consequence of Theorem 7.1,

Corollary 7.3. For partitions λ, ν ` n and m ≥ 5,

Eχ(T m)
prim,ev

(
1

qn/2

∑
f ∈Mn

Xλ( f )χ( f )
)(

1
qn/2

∑
f ∈Mn

Xν( f )χ( f )
)
= δλν · δ`(λ′),`(ν′)≤m−2+ O(q−1/2). (40)

Proof. By Theorem 7.1, the left-hand side of (40) can be written

1
8ev

prim(T
m)

∑
χ(T m)
prim,ev

(sλ′(2χ )+ O(q−1/2))(sν′(2χ )+ O(q−1/2))+ O
(

qbm/2c

8ev
prim(T

m)

)
, (41)

using Lemmas 6.3 and 6.4 to bound the contribution of characters with χ2
= χ0. For m ≥ 5, recalling the

value of 8ev
prim(T

m) given in (25), we certainly have

qbm/2c

8ev
prim(T

m)
= O(q−1/2),

and using the equidistribution Theorem 4.2 to treat the main term, we see that (41) reduces to∫
U (m−2)

sλ′sν′ dg+ O(q−1/2).

(Note that the symmetric polynomial sλ′sν′ , homogeneous under unimodular multiplication, is a linear
combination of characters of PU(M−2).) This agrees with the right-hand side of (40) by the orthonormality
of Schur functions (Theorem 5.5). �

7C. We will later need the following result, which is essentially the “easy” case of Corollary 7.3.

Lemma 7.4. For a1 and a2, factorization functions supported on Mn , and m sufficiently large (depending
on n),

lim
q→∞

Eχ(T m)
prim,ev

(
1

qn/2

∑
f ∈Mn

a1( f )χ( f )
)(

1
qn/2

∑
f ∈Mn

a2( f )χ( f )
)
= 〈a1, a2〉, (42)

with the inner product defined by (18).

Proof. This is not a deep result, following from nothing more sophisticated than orthogonality relations
for characters averaged in this way.

Nonetheless, it is less work for us at this point to make use of Corollary 7.3 and note the following,
for m ≥min(5, n+ 2): if a1 or a2 is supported on the squarefuls, then (42) is true (with the right-hand
side obviously equal to 0), owing to Lemmas 6.2 and 6.3 (with contributions of characters χ2

= χ0 in
the average dealt with as in the proof of Corollary 7.3). Moreover, if these functions are characters of
the symmetric group, a1( f )= Xλ( f ) and a2( f )= Xν( f ), then (42) is true by Corollary 7.3. Since any
factorization function can be written as a linear combination of characters and some function supported
on the squarefuls, this verifies (42) in general. �
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8. A proof of Theorem 3.1

8A. Because we will be using characters modulo powers of T , we must work with polynomials f that
are coprime to T . We recall our definition P\n and make a similar definition for monic polynomials

P\n := { f ∈ Pn : f (0) 6= 0} and M\
n := { f ∈Mn : f (0) 6= 0}.

In addition we define for f ∈Mn ,

ã( f ) := a( f )− E(a; n), with E(a; n) :=
1
|Mn|

∑
g∈Mn

a(g)

and for f ∈M\
n ,

ã\( f ) := a( f )− E\(a; n), with E\(a; n) :=
1

|M\
n|

∑
g∈M\

n

a(g).

With these conventions, our proof of Theorem 3.1 may be broken into five pieces.

Step 1: In the first place, we reduce the variance of short interval sums, restricted to M\
n , to a sum over

Dirichlet characters.

Lemma 8.1. For any factorization function a,∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

g∈M\
n

ã\(g)
∣∣∣∣2 = qh+1(q − 1)

8(T n−h)

∑
χ 6=χ0(T n−h)

even

∣∣∣∣ ∑
g∈Mn

a(g)χ(g)
∣∣∣∣2.

for 0≤ h ≤ n− 1.

The proof is a straightforward modification of Steps 1 and 2 in [Rodgers 2015], and we refer the
reader to that paper for details. In summary: one transfers the short interval sum to a sum over Dirichlet
characters by making use of the involution described in Section 4 of this paper.

Step 2: We next bound the sums in Lemma 8.1 for all factorization functions that are supported on the
squarefuls.

Lemma 8.2. For a fixed factorization b function supported on the squarefuls,∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

g∈M\
n

b̃\(g)
∣∣∣∣2 = On,h(qhqn). (43)

for 0≤ h ≤ n− 4.

Proof. Clearly by Lemma 8.1 we need only show that

q − 1
8(T n−h)

∑
χ 6=χ0(T n−h)

even

∣∣∣∣ ∑
g∈Mn

b(g)χ(g)
∣∣∣∣2 = On,h(qn−1). (44)
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From Lemma 6.2, we note that for nonreal characters χ modulo T n−h , uniformly∣∣∣∣ ∑
g∈Mn

b( f )χ( f )
∣∣∣∣= On,h(qn/2−1/2),

while from Lemma 6.4 there are at most O(q(n−h)/2) real nontrivial characters, and for such a character
by Lemma 6.3 this sum is On,h(qn/2). Hence the left-hand side of (44) is at most

q − 1
8(T n−h)

(
8ev(T n−h) · On,h(qn−1)+ On,h(qnq(n−h)/2)

)
= On,h(qn−1). �

In a similar same manner, we obtain a more general bound for factorization functions that needn’t be
supported on the squarefuls.

Lemma 8.3. For a fixed factorization function a,∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

f ∈M\
n

ã\(g)
∣∣∣∣2 = On,h(qh+1qn),

for 0≤ h ≤ n.

Proof. This follows from Lemmas 8.1 and 6.3. �

Step 3: We show that the variances of sums over M\
n we have computed in Lemma 8.1 are not far from

those of sums over Mn , which we are ultimately after.

Lemma 8.4. For a fixed factorization function a,∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

ã(g)
∣∣∣∣2 = ∑

f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

g∈M\
n

ã\(g)
∣∣∣∣2+ Oh,n(qh+1/2qn),

for 0≤ h ≤ n.

Note, in comparison with the error term, that we expect the left-hand side to usually be of order qnqh+1.

Proof. We make use of a mapping of polynomials f 7→ f [i] defined by

(a0+ a1T + · · · anT n)[i] = ai + ai+1T + · · ·+ anT n−i ,

so that if T i
| f ,

f = T i f [i].

For f ∈Mn , we may partition I ( f ; h) into the disjoint union

I ( f ; h)=
( h⋃

i=0

{T i g ∈ I ( f ; h) : g ∈M\
n−i }

)
∪ {T h+1 f [h+1]

}. (45)
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For g ∈M\
n−i , we define the function

a[i](g) := a(T i g),

with

ã[i](g) := a[i](g)− E\(a[i]; n− i), with E\(a[i]; n− i)=
1

|M\
n−i |

∑
g∈M\

n−i

a[i](g).

From the partitioning (45), it is easy to see that for f ∈Mn ,∑
g∈I ( f ;h)

a( f )=
∑

g∈I ( f ;h)
g∈M\

n

a(g)+
∑

g∈I ( f [1];h−1)
g∈M\

n−1

a[1](g)+ · · ·+
∑

g∈I ( f [h];0)
g∈M\

n−h

a[h](g)+ a(T h+1 f [h+1])︸ ︷︷ ︸
=On,h(1)

. (46)

Using that

|M\
n| = qn−1(q − 1), and |{g ∈ I ( f ; h) : g ∈M\

n}| = qh(q − 1),

one may verify (with a little work, but straightforwardly) that

∑
g∈I ( f ;h)

E(a; n)=
qh+1

qn

∑
g∈Mn

a(g)=
h∑

k=0

∑
g∈I ( f [k];h−k)

g∈M\
n−k

E\(a[k]; n− k)+
qh+1

qn

∑
g∈Mn−h−1

a(T h+1g)︸ ︷︷ ︸
=On,h(1)

. (47)

Thus combining (46) and (47), we have uniformly for f ∈Mn ,∑
g∈I ( f ;h)

ã(g)=
∑

g∈I ( f ;h)
g∈M\

n

ã\(g)+
∑

g∈I ( f [1];h−1)
g∈M\

n−1

ã\
[1](g)+ · · ·+

∑
g∈I ( f [h];0)

g∈M\
n−h

ã\
[h](g)+ On,h(1). (48)

For each i , the function a[i] defined on Mn−i extends uniquely to a factorization function defined on all
of Mn−i . Hence, using Lemma 8.3 to pass to the second line below,

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f [i];h−i)

g∈M\
n−i

ã\
[i](g)

∣∣∣∣2 = q i
∑

f ∈Mn−i

∣∣∣∣ ∑
g∈I ( f ;h−i)

g∈M\
n−i

ã\
[i](g)

∣∣∣∣2�n,h q i qh−i+1qn−i .

This quantity is no more than qhqn for i ≥ 1, and for i = 0 it is of course equal to qh+1qn .
Therefore, squaring the identity (48) and summing over g ∈Mn , then using Cauchy–Schwarz and (49)

to bound all terms but one on the right,

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

ã(g)
∣∣∣∣2 = ∑

f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

g∈M\
n

ã\(g)
∣∣∣∣2+ On,h(qnqh+1/2),

as claimed. �
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Step 4: Recall the “factorization Fourier expansion” (14):

a( f )= A( f )+ b( f ), (49)

with

A( f ) :=
∑
λ

âλXλ( f ),

where b( f ) is a function supported on the squarefuls. We use this to reduce variance for the function
a( f ) to finding the covariance of characters Xλ( f ).

We introduce the shorthand, for partitions λ, ν ` n,

1λ,ν(m) := Eχ(T m)
prim,ev

( ∑
f ∈Mn

Xλ( f )χ( f )
)( ∑

g∈Mn

Xν(g)χ(g)
)
. (50)

Note that by Corollary 7.3, for m ≥ 5,

1λ,ν(m)= δλνδ`(λ′),`(ν′)≤m−2+ O(q−1/2)= δλνδλ1,ν1≤m−2+ O(q−1/2). (51)

Lemma 8.5. For a fixed factorization function a, with 0≤ h ≤ n− 4,

Var f ∈Mn

( ∑
g∈I ( f ;h)

a(g)
)
= qh+1

∑
µ,ν`n

1λ,ν(n− h)âλâν + On,h(qh+1/2). (52)

Proof. The variance in (52) is given by

1
qn

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

ã(g)
∣∣∣∣2 = 1

qn

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

g∈M\
n

Ã\(g)
∣∣∣∣2+ On,h(qh+1/2),

where we have reduced to a sum of terms Ã\(g) by using Lemma 8.4 and then Lemmas 8.2 and 8.3 to
absorb a sum of terms b\(g) into the error term.

In turn from Lemma 8.1,

1
qn

∑
f ∈Mn

∣∣∣∣ ∑
g∈I ( f ;h)

Ã\(g)
∣∣∣∣2 = qh+1(q − 1)

qn8(T n−h)

∑
χ 6=χ0(T n−h)

even

∣∣∣∣ ∑
g∈Mn

A(g)χ(g)
∣∣∣∣2

=
qh+2

qnqn−h

( ∑
χ(T n−h)
prim,ev

∣∣∣∣ ∑
g∈Mn

A(g)χ(g)
∣∣∣∣2+ On,h(qn

· qn−h−2)

)
.

The second line has followed by taking nonprimitive even characters from the sum and bounding their
contribution by Lemma 6.3. The above quantity simplifies to

qh+1Eχ(T n−h)
prim,ev

∣∣∣∣ ∑
g∈Mn

A(g)χ(g)
∣∣∣∣2+ On,h(qh),
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and Lemma 8.5 follows by expanding A(g) into a linear combination of characters Xλ (recall A is defined
by (49)) and then expanding the square above. �

With this lemma in place, Theorem 3.1 now follows by applying (51).

9. Factorization Fourier expansions

9A. We list some examples of the expansion (14) for the arithmetic functions we considered in Section 1.
In this way we recover Theorems 1.3, 1.4, and 1.5, estimating variance over short intervals of the Möbius
function, the von Mangoldt function, and the k-fold divisor function. We also consider the function ω,
which as usual counts distinct prime factors, and this leads to a new result for the variance of ω( f ) and
µ( f )ω( f ) summed over short intervals.

Proposition 9.1. For f ∈Mn ,
µ( f )= (−1)n X (1n)( f ).

Remark. Applied to Theorem 3.1 this recovers Theorem 1.3, for µ( f ).

Proof. Both µ( f ) and X (1n)( f ) will be zero unless f is squarefree. But for f = p1 · · · p`, with all
factors distinct, µ( f )= (−1)`, while it may be checked X (1n)( f )= (−1)deg(p1)−1

· · · (−1)deg(p`)−1. As
(−1)deg(p1) · · · (−1)deg(p`) = (−1)n , this verifies the claim. �

Proposition 9.2. For f ∈Mn ,
µ( f )2 = X (n)( f ).

Proof. As X (n) is the trivial character, this is clear. �

Proposition 9.3. For f ∈Mn ,

3( f )=
n∑

r=1

(−1)n−r X (r,1n−r )( f )+ b( f ),

for a function b( f ) that is supported on the squarefuls.

Remark. This recovers Theorem 1.4, for 3( f ).

If we define the function,
3 j ( f ) :=

∑
g | f

g monic

µ(g) deg( f/g) j , (53)

the proposition above is special case of:

Proposition 9.4. For f ∈Mn ,

3 j ( f )=
n∑

r=1

(−1)n−r (r j
− (r − 1) j )X (r,1n−r )( f )+ b( f ),

for a function b( f ) that is supported on the squarefuls.



Arithmetic functions in short intervals and the symmetric group 1269

Remark. This recovers an estimate for the covariance of almost-primes in short intervals, proved in
[Rodgers 2015].

Note that, using (53),

3 j ( f )=
n∑

r=1

(r j
− (r − 1) j )

∑
g | f

deg(g)≤n−r
g monic

µ(g),

so we have that Proposition 9.4 is a corollary of:

Proposition 9.5. For f ∈Mn , with n = r + s and 0≤ s < n,∑
g | f

deg(g)≤s
g monic

µ(g)= (−1)s X (r,1s)( f )+ b( f ),

for a function b( f ) that is supported on the squarefuls.

Proof. We will need to make use of the Murnaghan–Nakayama rule, quoted in Theorem 5.1.
We may suppose that f is squarefree (otherwise the proposition is trivial), and let f = p1 · · · p` with

deg pi = τi , τ1 ≥ τ2 ≥ · · · . We apply the Murnaghan–Nakayama rule to the type τ f = (τ1, . . . , τ`) and
Young diagram of (r, 1s). For any border-strip tableau, let I ⊂ {2, . . . , `} be the collection of numbers
that appear in rows 2 through s of the Young diagram of (r, 1s). Writing

τI :=
∑
i∈I

τi ,

to form a valid border-strip tableau, it is easy to see that we require only that τI ≤ s and τ1+ τI ≥ s+ 1.
Hence, applying the rule,

X (r,1s)( f )=
∑

I⊂{2,...,`}
τI≤s

τ1+τI≥s+1

(−1)τI−|I |(−1)(s+1)−τI−1
= (−1)s

∑
I⊂{2,...,`}

s−τ1<τI≤k

(−1)|I |. (54)

Yet, ∑
g | f

deg(g)≤s
g monic

µ(g)=
∑

J⊂{1,...,`}

(−1)|J | (55)

By breaking the right-hand sum into parts for which 1 is an element of J or not, we see that (55) is equal to∑
I⊂{2,...,`}
τI≤s

(−1)|J |+
∑

I⊂{2,...,`}
τI+τ1≤s

(−1)|J |+1
=

∑
I⊂{2,...,`}

s−τ1<τI≤s

(−1)|J |.

Comparing this with (54) yields the result. �
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Proposition 9.6. For f ∈Mn ,

dk( f )=
∑
λ`n
`(λ)≤k

sλ(1, . . . , 1︸ ︷︷ ︸
k

)Xλ( f )+ b( f ), (56)

for a function b( f ) that is supported on the squarefuls. Moreover, we have the following equivalent
expressions for sλ(1, . . . , 1):

(i) sλ(1, . . . , 1︸ ︷︷ ︸
k

)=
∏

1≤i< j≤k

λi − λ j + j − i
j − i

, (57)

with the convention that λ`(k)+1 = · · · = λk = 0 if `(λ) < k.

(i i) sλ(1, . . . , 1︸ ︷︷ ︸
k

)= GTk(λ), (58)

where GTk(λ) is the number of triangular arrays of nonnegative integers

x (1)1 x (1)2 · · · x (1)k
. . .

. . . . . .

x (k−1)
1 x (k−1)

2

x (k)1

with entries weakly decreasing left-to-right down diagonals and weakly increasing left-to-right up
diagonals (that is, x (i)j ≥ x (i+1)

j ≥ x (i)j+1), and in the top row, x (1)i = λi , with again the convention if
`(λ) < k that λ`(k)+1 = · · · = λk = 0.

(i i i) sλ(1, . . . , 1︸ ︷︷ ︸
k

)=
∏
u∈λ

k+ c(u)
h(u)

, (59)

where the product is over all squares u of the Young diagram of λ, and where if we label the squares u
by the coordinates (i, j) with 1≤ j ≤ λi , the content c(u) is defined by

c(u)= i − j,

and the hook length h(u) is defined by

h(u)= λi + λ
′

j − i − j + 1.

(See [Stanley 1999, p. 373] for a lengthier account of these definitions.)

Remark. Using the representation (ii), this recovers the variance of the k-fold divisor function given in
Theorem 1.5.
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Proof. It will again be sufficient to consider f squarefree. We note that for p prime, dk(p)= k, so for
f = p1 · · · p` with all prime factors distinct,

dk( f )= k` = k`(τ ),

where τ is the factorization type of f . On the other hand,

k`(τ ) = pτ (1, . . . , 1︸ ︷︷ ︸
k

)=
∑
λ`n

sλ(1, . . . , 1︸ ︷︷ ︸
k

)Xλ(τ ), (60)

by Theorem 5.2 of Frobenius. This proves (56).
For the formula given in (i), note that for `(λ) > k, we have sλ(1, . . . , 1)= 0, while for `(λ)≤ k, the

identity (57) is [Fulton 1997, Example 6, Chapter 6].
For the formula given in (ii), note that sλ(1, . . . , 1) is equal to the number of semistandard Young

tableaux of shape λ with entries 1 through k (see [Stanley 1999, §7.10]), and by a well-known bijection
(again, see [Stanley 1999, §7.10]) this is equal to GTk(λ). (For readers familiar with the terminology,
GTk(λ) is a count of Gelfand–Tsetlin patterns.)

For the formula given in (iii), this is Corollary 7.21.4 of [Stanley 1999]. �

Proposition 9.7. Let ω( f ) be the number of distinct primes that divide f . Then for f ∈Mn ,

ω( f )= Hn X (n)( f )+
∑
λ

(−1)ν
(

1
λ2+ ν

−
1

λ1+ ν+ 1

)
X (λ1,λ2,1ν)( f )+ b( f ), (61)

where the sum is over all partitions λ= (λ1, λ2, 1ν) ` n with λ2 ≥ 1 and ν ≥ 0, where b( f ) is a function
supported on the squarefuls, and where

Hn :=
1
1
+

1
2
+ · · ·

1
n
.

Remark. The mean value as q→∞ ofω( f ) for deg( f )=n is Hn . Because X (n)( f )=1 for all squarefree
f , the expression (61) may be thought of as characterizing the oscillation of ω( f ) around this value.

Proof. We use the identity (60) from the last proof, along with the representation (59) for sλ(1, . . . , 1).
Taken together these imply for τ ` n and positive integer k,

k`(τ ) =
∑
λ`n

∏
u∈λ

k+ c(u)
h(u)

Xλ(τ ). (62)

Though we have only demonstrated (62) for an integer k, both the left- and right-hand side of this identity
are polynomials in k, and therefore (62) must hold for all k ∈ C. Differentiating (62) and setting k = 1
requires some slightly tedious book-keeping, but is otherwise straightforward and gives us

`(τ )= Hn X (n)(τ )+
∑
λ

(−1)ν
(

1
λ2+ ν

−
1

λ1+ ν+ 1

)
X (λ1,λ2,1ν)(τ ). (63)

Applying this to the factorization types of f ∈Mn gives the proposition. �
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Proposition 9.8. For f ∈Mn ,

µ( f )ω( f )= (−1)n
[

Hn X (1n)( f )+
∑

(−1)ν
(

1
j+ν+1

−
1

i+ j+ν+2

)
X (ν+2,2 j ,1i )( f )

]
+b( f ), (64)

where the sum is over all partitions (ν+ 2, 2 j , 1i ) ` n, with i, j, ν ≥ 0, and b( f ) is a function supported
on the squarefuls.

Proof. For f squarefree with factorization type τ , note that µ( f )ω( f )= (−1)`(τ )`(τ ). But by applying
Proposition 5.4 to the identity (63), we may decompose (−1)`(τ )`(τ ) into a sum over irreducible characters
associated to dual partitions. This decomposition yields (64). �

9B. By applying Theorem 3.1 to Propositions 9.7 and 9.8 we straightforwardly obtain the following results:

Corollary 9.9. For fixed 0≤ h ≤ n− 5,

Var f ∈Mn

( ∑
g∈I ( f ;h)

ω(g)
)
= qh+1

∑∑
1≤λ2≤λ1≤n−h−2λ1+λ2≤n

(
1

n− λ1
−

1
n− λ2+ 1

)2

+ O(qh+1/2). (65)

Corollary 9.10. For fixed 0≤ h ≤ n− 5,

Var f ∈Mn

( ∑
g∈I ( f ;h)

µ(g)ω(g)
)
=qh+1

[
H 2

n+
∑∑

h+2≤i+2 j≤n−2

(
1

n− i − j − 1
−

1
n− j

)2]
+O(qh+1/2). (66)

9C. Because the double-indexed sum in the asymptotic formula of (66) remains bounded for n→∞ and
h∼ δn with δ > 0, and because Hn ∼ log n= log deg( f ) for f ∈Mn , one may think of Corollary 9.10 as a
function field analogue of the following conjecture over the integers (which is intuitive enough on its own):

Conjecture 9.11. For H = X δ with fixed δ ∈ (0, 1), as X→∞, we have

1
X

∫ 2X

X

( ∑
x≤n≤n+H

µ(n)ω(n)
)2

dx ∼ H(log log X)2.

Corollary 9.9 has a rather more striking interpretation. In (65) the double indexed sum remains bounded
for h ∼ δn with δ ∈ (0, 1) fixed; indeed the reader may check that∑∑

1≤λ2≤λ1≤n−h−2
λ1+λ2≤n

(
1

n− λ1
−

1
n− λ2+ 1

)2

∼ p(δ) <+∞ (67)

as n→∞ for4

p(δ) :=
∫

x+y≥1
δ≤x≤y≤1

(
1
x
−

1
y

)2

dxdy.

4One can further reduce the integral to see

p(δ)=
{

log((1− δ)/δ)+ δ−Li2(1− δ)+Li2(δ)− log(1− δ) log(δ) for δ ≤ 1/2,
(1− δ)/δ− (1− δ)− log(δ)2 for δ > 1/2,

where Li2 is the dilogarithm. Note the phase change at δ = 1
2 .
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Because this is bounded it is reasonable to suppose:

Conjecture 9.12. For H = X δ with fixed δ ∈ (0, 1) as X→∞ we have

1
X

∫ 2X

X

( ∑
x≤n≤x+H

ω(n)
)2

dx −
(

1
X

∫ 2X

X

∑
x≤n≤x+H

ω(n) dx
)2

= Oδ(H). (68)

There is a sense in which an estimate of the sort in Conjecture 9.12 would be surprising, since the
Erdős–Kac theorem [1940] predicts that diagonal terms make a contribution of size H log log X . Clearly
that δ ∈ (0, 1) remain fixed is important for anything like Conjecture 9.12 to be true — the consideration of
diagonal terms shows that we cannot have such an estimate if δ→ 0 as X→∞. Nonetheless the function
field analogy remains, and it would be interesting to study in greater depth whether Conjecture 9.12 is true.5

Rather more ambitiously, one may even guess that the right-hand side of (68) can be replaced by

p(δ)H + oδ(H).

10. Covariance

10A. In analogy with the definition of variance, (4), we define the covariance of two arithmetic functions
η1 and η2 by

Covar f ∈Mn (η1( f ), η2( f )) :=
1

qn

∑
f ∈Mn

(η1( f )− EMnη1)(η2( f )− EMnη2).

Because Theorem 3.1 holds for a general factorization function a, it implies by a standard argument a
corresponding result for covariance.

Theorem 10.1. For a( f ) and b( f ) fixed factorization functions and for fixed 0≤ h ≤ n− 5,

Covar f ∈Mn

( ∑
g∈I ( f ;h)

a(g),
∑

g∈I ( f ;h)

b(g)
)
= qh+1

∑
λ`n

λ1≤n−h−2

âλb̂λ+ O(qh+1/2).

One consequence of this is worthwhile to draw out. Since µ(g)= X (1n)(g), we see directly that:

Corollary 10.2. For a( f ) a fixed factorization function and for fixed 0≤ h ≤ n− 5,

Covar f ∈Mn

( ∑
g∈I ( f ;h)

a(g),
∑

g∈I ( f ;h)

µ(g)
)
=qh+1â(1n)+O(qh+1/2)=qh+1

·
1

qn

∑
f ∈Mn

µ(g)a(g)+o(qh+1).

That is to say, the Möbius function oscillates to such an extent that in estimating its short-interval-sum
covariance against any factorization function, only diagonal terms contribute. It is easy to see that (up to
values on the squarefuls) the Möbius function is unique among factorization functions in this regard.

5Andrew Granville (personal communication) has shown a variant of this conjecture is true for a restricted range of δ, when
ω(n) is replaced by ωy(n), a count of prime factors of n less than y = X1/2−ε .
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For example, Corollary 10.2 implies

Covar f ∈Mn

( ∑
g∈I ( f ;h)

3(g),
∑

g∈I ( f ;h)

µ(g)
)
∼−qh+1,

as q→∞. Over the integers we have the following analogy:

Conjecture 10.3. For H = X δ with δ ∈ (0, 1),

1
X

∫ 2X

X

( ∑
x≤n≤x+H

3(n)− H
)( ∑

x≤n≤n+H

µ(n)
)

dx ∼−H,

as X→∞.

11. Decompositions: proofs of Theorem 3.2 and Corollary 3.5

11A. We now turn to the decomposition of the space of factorization functions F into Uh
n and Vh

n and
the corresponding evaluation of variance described in Theorem 3.2. Recall that Uh

n is the linear space of
functions defined by (17) and Vh

n is orthogonal complement supported on squarefuls. We first demonstrate
the explicit characterization of the spaces Uh

n and Vh
n given by Proposition 3.3.

Proof of Proposition 3.3. Let Ah
n and Bh

n be as in the proposition and

Ch
n := span{Xλ( f ) : λ ` n, λ1 ≤ n− h− 2}.

Note that Ch
n is supported on the squarefrees, and

F = (Ah
n ⊕Bn)⊕ Ch

n .

Moreover, by the equidistribution of factorization types and cycles types and the orthogonality of
characters Xλ, Ah

n is orthogonal to Ch
n .

Theorem 3.1 implies that Ah
n ⊕Bn ⊂ Uh

n , and likewise that Ch
n ∩Uh

n = {0}, so that no function outside
of Ah

n ⊕Bn lies in Uh
n ; that is, Ah

n ⊕Bn = Uh
n . Vh

n , defined to be the orthogonal complement supported on
squarefuls, is thus identical with Ch

n , which proves the proposition. �

Proof of Theorem 3.2. Note that for v ∈ Vh
n with

v( f )=
∑

λ1≤n−h−2

v̂λXλ( f ),

we have

〈v, v〉 = lim
q→∞

1
qn

∑
f ∈Mn

v( f )v( f )=
∑

λ1≤n−h−2

|v̂λ|
2,

by again making use of the equidistribution of factorization types and cycle types (Proposition 2.3).
Combined with Theorem 3.1, this gives the result. �
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11B. We now turn to Proposition 3.4 and Corollary 3.5.

Proof of Proposition 3.4. We note first that for any factorization function α, it is simple to see that

w( f ) :=
∑
δ | f

deg(δ)≤h+1

α(δ), (defined for f ∈Mn)

lies in Uh
n . (Recall that Uh

n is defined by (17).) For in this case, for any f ∈Mn ,∑
g∈I ( f ;h)

q(g)=
∑

deg(δ)≤h+1

α(δ)
∑

g∈I ( f ;h)
δ | g

1=
∑

deg(δ)≤h+1

α(δ)qh+1−deg(δ).

This does not depend on f , so that

Var f ∈Mn

( ∑
g∈I ( f ;h)

w(g)
)
= 0,

implying w ∈ Uh
n . Since we already know any factorization function b ∈ Fn supported on the squarefuls

lies in the linear space Uh
n , and function of the form w( f )+ b( f ) must therefore lie in Uh

n .
Hence to complete the proof of the proposition, we need only show that all functions in Uh

n are of this
form. Having already characterized Uh

n in terms of characters of the symmetric group in Proposition 3.3,
we will have done so if we show that for λ ` n with λ1 ≥ n− h− 1, there exists a factorization function
α and a factorization function b supported on the squarefuls such that

Xλ( f )=
∑
δ | f

deg(δ)≤h+1

α(δ)+ b( f ), (for all f ∈Mn).

The remainder of this proof is devoted to a demonstration in four steps of this claim.

Step 1: Let m be arbitrary. For an even primitive character χ modulo T m , from the identity(
1−

u
√

q

) m−2∏
j=1

(1− uei2πϑ j )= L
(

u
√

q
, χ

)
=

∑
n≥0

un 1
qn/2

∑
f ∈Mn

χ( f ),

we have the following expression for elementary symmetric functions in the normalized roots of the
L-function:

en(2χ )=
(−1)n

qn/2

∑
f ∈Mn

χ( f )+ On,m(q−1/2). (69)

Step 2: We note for n1+ · · ·+ nk = n,

en1(2χ ) · · · enk (2χ )=
(−1)n

qn/2

( ∑
f1∈Mn1

χ( f1)+ On,m(q−1/2)

)
· · ·

( ∑
f1k∈Mnk

χ( fk)+ On,m(q−1/2)

)

=
(−1)n

qn/2

∑
f1∈Mn1

g∈Mn2+···+nk

χ( f1g)α(g)+ On,m(q−1/2),
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where

α(g) :=
∑

f2··· fk=g
f2∈M2,..., fk∈Mk

1

is a factorization function supported on Mn2+···+nk . In particular, we have that if n1 ≥ n − h − 1 (so
n2+ · · ·+ nk ≤ h+ 1) then

en1 · · · enk =
(−1)n

qn/2

∑
f ∈Mn

χ( f )
∑
δ | f

α(δ)+ On,m(q−1/2), (70)

for a factorization function α(δ) supported on the set of δ with deg(δ)≤ h+ 1.

Step 3: From an expansion of the determinant in the Jacobi–Trudi identity, we see for λ ` n that sλ′ is a
linear combination of terms en1 · · · enk with n1+ · · · nk = n and (from the top row of the determinant)
n1 ≥ λ1 always. Hence via step 2, if λ1 ≥ n− h− 1,

sλ′(2χ )=
(−1)n

qn/2

∑
f ∈Mn

χ( f )
∑
δ | f

α(δ)+ On,m(q−1/2), (71)

for a factorization function α(δ) supported on δ with deg(δ)≤ h+ 1, since linear combinations of terms
of the form

∑
δ | f α(δ) remain of this form.

Yet from Theorem 7.1

sλ′(2χ )=
(−1)n

qn/2

∑
f ∈Mn

Xλ( f )χ( f )+ O(q−1/2). (72)

Hence pairing (71) and (72) we have

1
qn/2

∑
f ∈Mn

χ( f )
(

Xλ( f )−
∑
δ | f

deg(δ)≤h+1

α(δ)

)
= On,m(q−1/2). (73)

Step 4: In (73), m is arbitrary; take m sufficiently large depending on n, with the intention of using
Lemma 7.4. We have upon squaring and averaging,

Eχ(T m)
prim,ev

∣∣∣∣ 1
qn/2

∑
f ∈Mn

χ( f )
(

Xλ( f )−
∑
δ | f

deg(δ)≤h+1

α(δ)

)∣∣∣∣2→ 0,

as q→∞. But then from Lemma 7.4,∥∥∥∥Xλ( f )−
∑
δ | f

deg(δ)≤h+1

α(δ)

∥∥∥∥= 0,
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for ‖·‖ the norm induced by our inner product. Since this inner product is nondegenerate on functions
supported on the squarefrees, we must have

Xλ( f )=
∑
δ | f

deg(δ)≤h+1

α(δ)+ b( f ),

for some function b( f ) supported on the squarefuls, as claimed. �

Proof of Corollary 3.5. This follows immediately from Theorem 3.2 and Proposition 3.4. For in the
identity (19), the function v( f ) is a projection of the function a( f ) to the subspace Vh

n , but then

〈v, v〉 = ‖ProjVh
n
(a)‖2 = inf

u∈Uh
n

‖a− u‖2 = inf
α∈F

∥∥∥∥a( f )−
∑
δ | f

deg(δ)≤h+1

α(δ)

∥∥∥∥2

.

�

11C. It is worthwhile to reflect one last time on the dichotomy between Uh
n and Vh

n . Theorem 7.1 gives
us another way to characterize them. Uh

n is just the collection of those factorization functions u for which∑
f ∈Mn

u( f )χ( f )= O(qn/2−1/2), (74)

uniformly for all even primitive characters modulo T n−h . The reason that Theorem 7.1 implies (74)
is very simply that L(u, χ) always has n − h − 2 nontrivial zeros. Contrariwise, Theorem 3.2 and
Proposition 3.3 tell us that for those factorization functions which do not have enough structure to belong
to Uh

n their variance may be computed according to the most naive heuristic of randomness. Indeed, one
last reformulation of Theorem 3.2 may be seen to be the following: for v1, v2 ∈ Vn

n ,

Eχ(T n−h)
prim,ev

∑
f,g∈Mn

f 6=g

v1( f )χ( f )v2(g)χ(g)= o(qn). (75)

It would be interesting to see whether a modification of this picture is consistent with conjectures that
have been made in other settings (e.g., in the fixed q large n limit, or over number fields), or indeed with
statistics in orthogonal and symplectic families.
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