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Cohomology for Drinfeld doubles of some infinitesimal
group schemes

Eric M. Friedlander and Cris Negron

Consider a field k of characteristic p> 0, the r -th Frobenius kernel G(r) of a smooth algebraic group G, the
Drinfeld double DG(r) of G(r), and a finite dimensional DG(r)-module M . We prove that the cohomology
algebra H∗(DG(r), k) is finitely generated and that H∗(DG(r),M) is a finitely generated module over this
cohomology algebra. We exhibit a finite map of algebras θr : H∗(G(r), k)⊗ S(g)→ H∗(DG(r), k), which
offers an approach to support varieties for DG(r)-modules. For many examples of interest, θr is injective
and induces an isomorphism of associated reduced schemes. For M an irreducible DG(r)-module, θr en-
ables us to identify the support variety of M in terms of the support variety of M viewed as a G(r)-module.

1. Introduction

For a Hopf algebra A over a field k, we denote by H∗(A, k)= Ext∗A(k, k) the Hopf cohomology and we
denote by H∗(A,M)=Ext∗A(k,M) the cohomology of A with values in a finite dimensional A-module M .
The goal of this paper is to prove the following conjecture for an interesting class of examples.

Conjecture (the finite generation conjecture). For any finite dimensional Hopf algebra A, and finite
dimensional A-module M , the cohomology H∗(A, k) is a finitely generated k-algebra and H∗(A,M) is a
finitely generated module over H∗(A, k).

The conjecture has existed as a question at least since the 1990’s (see e.g., [Friedlander and Suslin 1997]),
and was recently stated explicitly in the work of Etingof and Ostrik [2004]. In the finite characteristic
setting, the conjecture was verified for cocommutative Hopf algebras in the work of Friedlander and
Suslin [1997]. This followed earlier work of Friedlander and Parshall [1986] on the cohomology of
restricted enveloping algebras. More recently, Drupieski [2016] generalized these results to finite super
groups (i.e., cocommutative Hopf algebras in the symmetric category of Z/2Z-graded vector spaces).

For a commutative Hopf algebra A over a field of characteristic p, one can arrive at the desired finite gen-
eration result from the existence of an abstract algebra isomorphism A∼=k[Z/pl1Z]⊗· · ·⊗k[Z/pln Z]when-
ever A is local, and the fact that the cohomology H∗(A,M) only depends on the algebra structure of A.

In characteristic 0 most of the work to date has focused on pointed Hopf algebras. Ginzburg and
Kumar [1993] (see also [Bendel et al. 2014]) showed that small quantum groups have finitely generated
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cohomology. Mastnak, Pevtsova, Schauenburg, and Witherspoon [2010] verified the finite generation
conjecture for most pointed Hopf algebras with abelian group of grouplikes. Such Hopf algebras were
classified by Andruskiewitsch and Schneider [2002], and can be understood broadly as deformations of
small quantum groups. For results concerning pointed Hopf algebras with nonabelian grouplikes one can
see [Ştefan and Vay 2016].

In this work we consider Drinfeld doubles of finite group schemes in characteristic p > 0. We recall
that the Drinfeld double DG of a finite group scheme G is the smash product

DG = O(G)#kG

of the group algebra kG of G acting via the adjoint action on the algebra O(G) = (kG)∗ of functions
on G. The coalgebra structure on DG is the product structure O(G)cop

⊗ kG, where the cop superscript
indicates that we take the opposite comultiplication. The Drinfeld double DG is neither commutative nor
cocommutative (unless G is commutative) and rarely pointed. For some examples of the computational
and theoretical significance of the double one can see [Etingof and Gelaki 2002; Etingof 2002; Kashina
et al. 2006; Ng and Schauenburg 2007; Shimizu 2017].

Our finite generation results for Drinfeld doubles apply to other Hopf algebras thanks to various general
properties of the Drinfeld double construction. For example, rep(DA)∼= rep(D(A∗)) and for any cocycle
twist σ (see [Montgomery 2004]), rep(DA)∼= rep(D(Aσ )) [Majid and Oeckl 1999; Benkart et al. 2010].

Let us now fix k a field of finite characteristic p. We assume additionally that p is odd, although most
of our results will still hold when p = 2 (see Section 4C). Recall that the r -th Frobenius kernel G(r) is the
group scheme theoretic kernel of the r-th Frobenius map Fr

: G→ G(r) (see Section 2). We refer the
reader to [Sullivan 1978; Cline 1987; Jantzen 2003] for some discussion of the important role Frobenius
kernels play in the modular representation theory of algebraic groups.

We prove the following:

Theorem (Theorems 5.3 and 5.6). Consider the r-th Frobenius kernel G(r) of a smooth algebraic group G.
The cohomology of the double H∗(DG(r), k) is a finitely generated k algebra. Moreover, for any finite
dimensional DG(r)-module M , the cohomology H∗(DG(r),M) is a finitely generated H∗(DG(r), k)-
module.

Our approach utilizes associations between deformation theory and Hopf cohomology. We show that
the deformation G(r+1) of G(r) produces a natural map σO : g(r)→ H 2(O(G(r)), k), where g = Lie(G).
The map σO has a natural lift to the cohomology of the double σD : g(r)→ H 2(DG(r), k), which is again
constructed in a deformation theoretic manner. The smoothness hypothesis of G plays an important role
in our proof. Namely, we apply an argument which uses in an essential way the structure of G(r+1) as a
flat extension of G(r+1)/G(r) to obtain cohomology classes via deformation theory.

In proving the above theorem, we construct a finite algebra map

θr : H∗(G(r), k)⊗ S(g(r)[2])→ H∗(DG(r), k)
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(using σD and the inflation H∗(G(r), k)→ H∗(DG(r), k)) with associated map of reduced affine schemes

2r : |DG(r)| → |kG(r)| × (g∗)(r) (1)

(see Theorem 5.3). Here, and elsewhere, we employ the usual notation S(V [n]) for the symmetric algebra
over k of the k-vector space V placed in degree n, and we use the notation |A| = Spec H ev(A, k)red for
the reduced spectrum of the cohomology of a Hopf algebra A.

For many classical algebraic groups G we are able to deduce additional information concerning 2r as
formulated in the following theorem.

Theorem (Corollary 6.11). Let G be a general linear group, simple algebraic group, Borel subgroup in a
simple algebraic group, or a unipotent subgroup in a semisimple algebraic group which is normalized by
a maximal torus. Suppose that p is very good for G, or that p > cl(G) in the unipotent case:

• If p > dim G+ 1 then the map 2r of (1) is an isomorphism for all r .

• For arbitrary p, the map 2r is an isomorphism whenever r is such that pr > 2 dim G.

The key observation we use in proving the above theorem is that the hypotheses guarantee the existence
of a quasilogarithm L : G→ g [Kazhdan and Varshavsky 2006]. This leads to a grading on the Drinfeld
double DG(r) which greatly simplifies the analysis of the Lyndon–Hochschild–Serre spectral sequence we
use to investigate the cohomology of DG(r). The “very good” condition on p is a mild condition which we
review in Section 6. In the unipotent case, the integer cl(G) is the nilpotence class of G, which is always
less than dim(G). The theorem implies an equality of dimensions dim|DG(r)| = dim|kG(r)| + dim G for
such classical groups.

We also consider the support variety |DG(r)|M associated to a DG(r)-module M . The support variety
for M is defined as the closed, reduced, subscheme in |DG(r)| defined by the kernel of the algebra map

−⊗M : H ev(DG(r), k)→ Extev
DG(r)

(M,M).

Theorem (Corollary 7.6). Suppose G is as in the statement of the previous theorem. If p > dim G+ 1 or
pr > 2 dim G, then for any irreducible DG(r)-module M the map 2r of (1) restricts to an isomorphism of
schemes

2r,M : |DG(r)|M −→
∼ |kG(r)|M × (g∗)(r).

We supplement the preceding results by extending many of them to relative Drinfeld doubles (see
Section 5C).

Organization. In Section 3, we discuss associations between deformations and Hopf cohomology, and
produce the aforementioned maps σO and σD. In Section 4 we prove that the algebra map S(g(r)[2])→
H∗(O(G(r)), k)red induced by σO is an isomorphism. We use the lifting σD, in conjunction with the
inflation map H∗(G(r), k)→ H∗(DG(r), k), to establish the finite generation of cohomology for the
double DG(r) in Section 5. Section 6 is dedicated to an analysis of classical groups at large primes.
Section 7 is dedicated to support varieties.
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2. Finite group schemes and the Frobenius

We fix from this point on a field k of finite characteristic p. We assume p 6= 2 (see Section 4C). A
“scheme” is a scheme of finite type over k and ⊗ = ⊗k . All schemes considered in this work will be
affine. Throughout, by an algebraic group we mean an affine group scheme which is reduced, absolutely
irreducible, and of finite type over k.

For an affine group scheme G, a rational (left) G-representation is a (right) comodule over the
coordinate algebra O(G). A G-algebra is an O(G)-comodule algebra (i.e., an algebra R which is a rational
G-representation in such a way that the multiplication R⊗ R→ R is a map of G-representations). We
let H∗(G,M) denote the rational group cohomology of G with coefficients in M . If G is a finite group
scheme with Hopf algebra kG (the “group algebra” of G), then H∗(G,M)= H∗(kG,M).

In this section we review some standard information on Frobenius maps and Frobenius kernels. One
can see Jantzen’s book [2003] for a more detailed presentation.

2A. Frobenius maps and Frobenius kernels. Let φr
: k→ k be the pr -th power map on k, λ 7→ λpr

.
Given an affine group scheme G we let G(r) denote the fiber product of G with Spec(k) along φr ,

G(r) //

��

G

��

Spec(k)
(φr )∗

// Spec(k).

By functoriality of the pullback we see that (−)(r) provides a functor on the category of group schemes
over k. There is a natural map of group schemes Fr

: G → G(r) over k given explicitly as follows:
O(G(r))= O(G)⊗φr k→ O(G) sends f ⊗φr λ to λ · f pr

.

Definition 2.1. (i) The above map Fr
: G→ G(r) is called the r -th Frobenius map.

(ii) The r -th Frobenius kernel G(r) of G is the group scheme theoretic kernel of the r -th Frobenius map,
1→ G(r)→ G Fr

−→G(r).

(iii) We say G is of height ≤ r if G = G(r).

The closed subgroup scheme G(r) in G is the spectrum of the quotient Hopf algebra

O(G(r))= O(G)/( f pr
: f ∈ mG),

where mG is the maximal ideal corresponding to the identity in G. Whence we see that an affine group
scheme G is of height ≤ r if and only if f pr

= 0 for each f ∈ mG .

Example 2.2. For G a height 1 group scheme, we have G = Spec(u(g)∗) where g is the restricted Lie
algebra for G and u(g) is the restricted enveloping algebra. This association gives a natural bijection
between height 1 group schemes and finite dimensional restricted Lie algebras.
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Example 2.3. Consider GLn . This is the spectrum of the Hopf algebra

O(GLn)= k[xi j , det−1
: 1≤ i, j ≤ n]

with comultiplication 1(xi j ) =
∑n

k=1 xik ⊗ xk j , counit ε(xi j ) = δi j , and antipode given by the adjoint
formula for the inverse of a matrix. The Frobenius kernels in this case are given by

O(GLn(r))= k[xi j : 1≤ i, j ≤ n]/(x pr

i j − δi j ).

Note that in the above presentation of the Frobenius kernel the determinant is already invertible.

2B. Frobenius twists of representations. For a rational G-representation V we let V (r) denote the new
G-representation which is the vector space k⊗φr V along with the G-action given by the composite

G Fr
−→G(r)

→ GL(V )(r) = GL(V (r)).

The tensor product k⊗φr here denotes base change along φr . As a comodule, V (r) has right O(G)-coaction
given by

ρ(r)(c⊗ v)=
∑

i

(c⊗ vi0)⊗ v
pr

i1
,

where the initial coaction of O(G) on V is given by ρ(v)=
∑

i vi0⊗vi1 . (In the above equation c ∈ k and
v ∈ V .) We call V (r) the r -th Frobenius twist of V . The proof of the following lemma is immediate from
the observation that the composition O(G(r))→ O(G)→ O(G(r)) factors through the counit for O(G(r)).

Lemma 2.4. For G of height ≤ r and V any rational G-representation, G acts trivially on the r-th
Frobenius twist V (r).

We also employ a natural isomorphism of G-representations (V ∗)(r) −→∼ (V (r))∗ given by the formula
c⊗ f 7→ (c′⊗ v 7→ cc′ f (v)pr

).

3. Deformations of Frobenius kernels and cohomology

We fix a positive integer r and consider the r -th Frobenius kernel G(r) of a smooth linear algebraic group
over k, a field of odd characteristic p > 0. We denote by DG(r) the Drinfeld double of the Hopf algebra
kG(r). This is the smash product DG(r)=O(G(r))#kG(r) of the coordinate algebra O(G(r))with the group al-
gebra kG(r) with respect to the right adjoint action of G(r) on itself [Montgomery 1993, Corollary 10.3.10].

The adjoint action of G(r) on itself corresponds to the O(G(r))-coaction ρ( f ) =
∑

i fi2 ⊗ S( fi1) fi3

specifically, and subsequent kG(r)-action ξ · f =
∑

i fi2ξ(S( fi1) fi3). The Hopf structure on DG(r) is the
unique one so that the two inclusions O(G(r))

cop
→DG(r) and kG(r)→DG(r) are maps of Hopf algebras.

We proceed to construct cohomology classes in H 2(DG(r), k) which will enable our proof of finite gen-
eration in Section 5. Our construction involves deformations of O(G(r)) and DG(r), in particular the embed-
ding G(r)→G(r+1) which we view as a deformation of G(r) parametrized by G(r+1)/G(r). This deformation
leads to classes in the Hochschild cohomology group HH 2(DG(r), k) and thereby classes in H 2(DG(r), k).
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3A. Hochschild cohomology and deformations. We recall that the Hochschild cohomology of an algebra
R with coefficients in an R-bimodule M is defined as

HH∗(R,M)≡ Ext∗R⊗Rop(R,M),

and HH∗(R)=HH∗(R, R). Thus, HH∗(R,M) is functorial with respect to maps M→N of R-bimodules.
Moreover, we have the well-known surjection (see [Ginzburg and Kumar 1993, §5.6] or [Pevtsova and
Witherspoon 2009, §7])

HH∗(R)∼= H∗(R, Rad)� H∗(R, k)≡ Ext∗R(k, k), if R is a Hopf algebra

(using the fact that k→ Rad splits). We further recall that a (infinitesimal) deformation R of an algebra R
parametrized by a scheme Spec(A) is a flat A-algebra, where A is an Artin local (commutative) algebra
with residue field k, equipped with a fixed isomorphism R⊗A k −→∼ R. Given any map A→ A′ of such
Artinian local algebras and a deformation R parametrized by Spec(A), we can extend R along A→ A′

to get a deformation R⊗A A′ parametrized by Spec(A′). Two deformations R and R′ parametrized by
Spec(A) are said to be isomorphic if there is an A-algebra isomorphism l :R→R′ fitting into a diagram

R
l

//

��

R′

~~

R .

A special role is played by deformations parametrized by Spec(k[ε]), where k[ε] ≡ k[t]/t2 is the Artin
local algebra of “dual numbers”.

Theorem 3.1 [Gerstenhaber 1964]. There is a naturally constructed bijection

{deformations of R parametrized by Spec(k[ε])}/∼=−→∼ HH 2(R). (2)

The domain of the above bijection has a natural linear structure under which (2) is a linear isomorphism.
Let us explain some of the details of Gerstenhaber’s result.

Consider a deformation R of R over Spec(k[ε]). By choosing a k[ε]-linear isomorphism R[ε] ≡
R⊗ k[ε] ∼=R the deformation R may be identified with the k[ε]-module R[ε] equipped with a multipli-
cation

a ·R b = ab+ FR(a, b)ε, a, b ∈ R ⊂ R⊗ k[ε].

The function FR : R⊗ R→ R defines a 2-cocycle in the standard Hochschild cochain complex

C∗(R)= 0→ R→ Homk(R, R)→ Homk(R⊗ R, R)→ Homk(R⊗3, R)→ · · · .

This determines a map from deformations to HH 2(R). To define the inverse map, one simply uses a
2-cocycle in the standard Hochschild cochain complex to define a multiplication on R[ε]. The addition
of isoclasses of deformations [R]+ [R′] corresponds to addition of the functions FR+ FR′ and scaling
c[R] corresponds to scaling the function cFR.
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The following lemma should be standard.

Lemma 3.2. Let R be an (infinitesimal) deformation of R parametrized by S = Spec(A). Then there is a
k-linear mapping

6R : Tp S→ HH 2(R)

which sends an element ξ ∈ Tp S = HomAlg(A, k[ε]) to the class corresponding to the deformation
R⊗A k[ε], where we change base via ξ .

In the statement of the above lemma p is the unique point in S.

Proof. Given ξ ∈ Tp S we let Defξ =R⊗A k[ε] denote the corresponding deformation. For the proof we
identify the tangent space Tp S with k-linear maps m A→ k which vanish on m2

A, where m A is the unique
maximal ideal of A. We adopt an A-linear identification R= R⊗ A, and write the multiplication on R

as r ·R r ′ = rr ′+ E(r, r ′), where r, r ′ ∈ R and E is a linear function E : R⊗ R→ R⊗m A.
If we take Fξ = (1⊗ ξ)E , for ξ ∈ Tp S, then the multiplication on the base change Defξ is given by

r ·ξ r ′ = rr ′+ Fξ (r, r ′)ε. Whence we have an equality in Hochschild cohomology

6R(ξ)= [Defξ ] = [Fξ ] ∈ HH 2(R).

By the definition of Fξ we see that Fcξ+c′ξ ′ = cFξ + c′Fξ ′ . It follows that the map 6R : Tp S→ HH 2(R)
is k-linear. �

Definition 3.3. Given a deformation R of a Hopf algebra R parametrized by S, we let

σR : Tp S→ H 2(R, k)

denote the composite Tp S 6R−→ HH 2(R)→ H 2(R, k), where 6R is as in Lemma 3.2.

3B. Cohomology classes for the coordinate algebra via deformations. For the remainder of this section,
we fix G a smooth (affine) algebraic group of dimension n and a positive integer r . We take g= Lie(G)=
Lie(G(s)) for any s ≥ 1; in particular, g= Lie(G(r)). We shall view O(G(r+1)) as a deformation of O(G(r))

parametrized by G(r+1)/G(r). One sees this geometrically using the pullback square

G(r) //

��

G(r+1)

��

Spec(k) // G(r+1)/G(r).

(3)

Proposition 3.4. The extension O(G(r+1)/G(r))→ O(G(r+1)) is a deformation of O(G(r)) parametrized
by G(r+1)/G(r) ∼= G

(r)
(1). We refer to this deformation of O(G(r)) as Onat.

Proof. The isomorphism G(r+1)/G(r) ∼= G
(r)
(1) is induced by the Frobenius G(r+1) → G(r), and can be

found in [Jantzen 2003, Proposition I.9.5]. The fact that O(G(r+1)/G(r))→ O(G(r+1)) is a deformation of
O(G(r)) follows easily from the diagram (3). �
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Take O= O(G(r)). Note that g(r) = T1G
(r)
(1). We get from Lemma 3.2 and Onat a canonical linear map

σO = σOnat : g
(r)
→ H 2(O, k) and induced algebra map

σ ′O : S(g
(r)
[2])→ H∗(O, k),

where S(−) denotes the symmetric algebra. From the identification H 1(O, k)= T1G(r)= g, in conjunction
with σ ′O, we get yet another algebra map

∧
∗(g[1])⊗ S(g(r)[2])→ H∗(O, k). (4)

In Section 4 below we will prove the following proposition.

Proposition 3.5. The algebra map (4) is an isomorphism of G(r)-algebras. In particular, σ ′O : S(g
(r)
[2])→

H∗(O(G(r)), k) is an isomorphism modulo nilpotents.

The G(r)-action on the product ∧∗(g[1])⊗ S(g(r)[2]) is induced by the adjoint action on g and the
trivial action on its twist g(r).

Remark 3.6. We can easily establish an abstract algebra isomorphism between ∧∗(g)⊗ S(g(r)[2]) and
the cohomology H∗(O, k) as follows. As verified in [Waterhouse 1979, Theorem 14.4], the fact that
G(r) is connected implies that there is an isomorphism O ∼= k[x1, . . . , xn]/(x

pe1

1 , . . . , x pen

n ) for some
n, e1, . . . , en > 0. The well-known computation of H∗(k[x]/(x pe

), k)' H∗(Z/pe, k) and the Künneth
theorem thus implies the asserted isomorphism. The significance of Proposition 3.5 is that we may use
the deformation map σO to arrive at such an isomorphism. We will see below that σO admits a lift to the
cohomology of the double DG(r). The existence of such a lift is an essential point in the proof that the
cohomology of the double is finitely generated.

3C. Cohomology classes for the double via deformations. Since G(r) acts trivially on the quotient
G(r+1)/G(r) we see that the image of the inclusion

O(G(r+1)/G(r))→ O(G(r+1))= Onat

is in the G(r)-invariants. Hence the induced inclusion into the smash product

O(G(r+1)/G(r))→ Onat#kG(r)

has central image, where G(r) acts via the adjoint action on Onat. Furthermore, the reduction

(Onat#kG(r))⊗O(G(r+1)/G(r)) k

recovers the double DG(r). Whence we have that the above smash product is a deformation of the double
parametrized by G

(r)
(1)
∼= G(r+1)/G(r). We denote this deformation Dnat = Onat#kG(r).

The deformation Dnat induces a map to cohomology

σD ≡ σDnat : g
(r)
→ H 2(DG(r), k)
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and subsequent graded algebra morphism

σ ′D : S(g
(r)
[2])→ H∗(DG(r), k).

Proposition 3.7. The triangle

H 2(DG(r), k)
res
**

g(r)

σD 66

σO
// H 2(O(G(r)), k)

(5)

commutes.

Proof. Take O= O(G(r)) and D= DG(r). The diagram (5) follows from the diagram

Onat
incl

//

��

Dnat

��

O
incl

// D,

where the top map is one of O(G(r+1)/G(r))-algebras and the vertical maps are given by applying
(−)⊗O(G(r+1)/G(r)) k. In particular, the commutative square implies that the maps E D and EO from the
proof of Lemma 3.2 can be chosen in a compatible manner so that E D

|O⊗O = EO. Hence the resulting
Hopf 2-cocycles FD

ξ and FO
ξ , corresponding to an element ξ ∈ g(r), are such that

res(σD(ξ))= res([FD
ξ ])= [F

D
ξ |O⊗O] = [FO

ξ ] = σO(ξ). �

Corollary 3.8. The map σO : g(r) → H 2(O(G(r)), k) from Section 3B has image in the invariants
H 2(O(G(r)), k)G(r) .

Proof. The restriction H∗(D, k)→ H∗(O, k) is induced by the cochain inclusion

Hom∗D(P, k)= Hom∗O(P, k)G(r)→ Hom∗O(P, k),

where P is any resolution of k over D. Hence the lifting of Proposition 3.7 implies that σO has image in
the G(r)-invariants. �

We can consider also the inflation H∗(G(r), k) → H∗(DG(r), k) induced by the Hopf projection
DG(r)→ kG(r). This inflation, in conjunction with the algebra map σ ′D, represents contributions to the
cohomology of the double coming from the two constituent factors kG(r) and O.

Definition 3.9. We let
θr : H∗(G(r), k)⊗ S(g(r)[2])→ H∗(DG(r), k)

denote the product of the inflation from H∗(G(r), k) and σ ′D.

We will find in Section 5 that the map θr is finite. It will follow that the cohomology of the double is
finitely generated.
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4. Proof of Proposition 3.5

For a deformation R of an algebra R parametrized by S = Spec(A), we view the tangent space Tp S as
the first cohomology H 1(A, k). (Both of which are identified with algebra maps to the dual numbers
HomAlg(A, k[ε]).) So σR will appear as

σR : H 1(A, k)→ H 2(R, k).

In the case G= Ga , we will see that the map σO induced by the deformation Onat (which we denote
by Z in this case) behaves like the Bockstein map for the integral cohomology of a cyclic group with
coefficients in Fp. In particular, it picks out an algebra generator in second cohomology. From this
observation we will deduce Proposition 3.5 for general smooth G.

4A. Generalized (higher) Bocksteins for Ga. In this subsection, we consider the special case G= Ga ,
the additive group (whose coordinate algebra is a polynomial algebra on one variable). Consider the defor-
mation O(Ga(r+1))= k[t]/(t pr+1

) of O(Ga(r))= k[t]/(t pr
) parametrized by O(G(r)

a(1))= (k[t]/(t
p))⊗φr k.

To ease notation take Z=O(Ga(r+1)), Z =O(Ga(r)) and Z ′=O(G(r)
a(1)). The deformation Z produces a map

σZ : H 1(Z ′, k)→ H 2(Z , k).

We let α ∈ H 1(Z ′, k)= HomAlg(Z ′, k[ε]) denote the class given by the projection Z ′→ k[ε], t 7→ ε.

Definition 4.1. Take β ≡ σZ(α) ∈ H 2(Z , k). We say that β is the (higher order) Bockstein of the class
α ∈ H 1(Z ′, k).

Recall that for i ≥ 0 and q > 1 the cohomology H i (k[t]/(tq), k) is 1 dimensional. (One can see this
directly from the minimal, periodic, resolution of k.) Hence H 1(Z ′, k) and H 2(Z , k) are 1 dimensional.

Lemma 4.2. The map σZ : H 1(Z ′, k)→ H 2(Z , k) is a linear isomorphism. In particular, β is nonzero.

Proof. It suffices to show that the image β of α ∈ H 1(Z ′, k) is nonzero. Consider the base change
Z⊗Z ′ k[ε] via α, and the k[ε]-linear identification Z⊗Z ′ k[ε] ∼= Z [ε] given by

Z [ε] −→∼ Z⊗Z ′ k[ε], t i
7→ t i

⊗ 1, t iε 7→ t i
⊗ ε.

This induces a multiplication z ·α z′ = zz′+ Fα(z, z′)ε on Z [ε], where Fα is a Hochschild 2-cocycle. We
have then [Z⊗Z ′k[ε]]=[Fα]∈HH 2(Z) and the corresponding Hopf cohomology class is [Fα]∈H 2(Z , k),
where Fα is the composite of Fα with the counit Fα = εFα.

We want to show that β = σZ(α) = [Fα] is nonzero (i.e., that Fα is not a coboundary). One sees
directly that Fα(t l, tm)= δl+m,pr , and in particular Fα(t i , t pr

−i )= 1. One also sees that the differential
of any degree 1 function f ∈ Homk(Z , k) in the Hopf cochain complex for Z is such that

d( f )(t i , t pr
−i )=± f (t pr

)=± f (0)= 0.

Therefore Fα cannot be a coboundary, and the cohomology class β = [Fα] is nonzero. �
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We can consider now the n-th tensor product Z⊗n as a deformation of Z⊗n, parametrized by Spec((Z ′)⊗n).
We let ga denote the Lie algebra of Ga so that

(g(r)a )n = H 1((Z ′)⊗n, k)= HomAlg((Z ′)⊗n, k[ε]),

with each element
∑n

i=1 ciαi ∈ (g
(r)
a )n corresponding to the algebra map∑
i

ciαi : (Z ′)⊗n
→ k[ε], ti 7→ ciε.

Here αi is the basis vector for the i-th copy of g(r)a , defined as above, and ti is the generator of the i-th
factor in (Z ′)⊗n .

Proposition 4.3. The map σZ⊗n : (g(r)a )n→ H 2(Z⊗n, k) induces an injective graded k-algebra map

σ ′Z⊗n : S((g(r)a )n[2])→ H∗(Z⊗n, k)

which is an isomorphism modulo nilpotents.

Proof. We claim that the reduction σred : (g
(r)
a )n→ H 2(Z⊗n, k)red is injective. (Here by H 2(Z⊗n, k)red

we mean the degree 2 portion of the reduced algebra and by σred we mean the composite of σZ⊗n with
the reduction.) It suffices to show that for any nonzero c =

∑
i ciαi there is an index j such that

restriction along the factor Z j → Z⊗n produces a nonzero element in the cohomology H∗(Z j , k)red, via
the composite

(g(r)a )n σ
−→ H∗(Z⊗n, k)red→ H∗(Z j , k)red ∼= k[β j ].

For any such c∈ (g(r)a )n let Defc denote the corresponding deformation Z⊗n
⊗(Z ′)⊗n k[ε], where we change

base along the corresponding map (Z ′)⊗n
→ k[ε], ti 7→ ciε.

Consider such a nonzero c and take j such that the j-th entry c j is nonzero. We claim that the image
of the corresponding class σZ⊗n (c) ∈ H 2(Z⊗n, k) in H 2(Z j , k) is exactly the class c jβ j ∈ H 2(Z j , k).
One way to see this is to note that the Hochschild 2-cocycle corresponding to Defc is a function Fc :

Z⊗n
⊗ Z⊗n

→ Z⊗n with restriction

Fc : Z j ⊗ Z j → Z⊗n, t l
j ⊗ tm

j 7→ c j t
(l+m)−pr

j ,

where a negative power is considered to be 0. (This is just as in Lemma 4.2.) Composing with the counit
produces the function Fc j : t

l
⊗tm
7→ c jδl+m,pr . The function Fc j is equal to c j Fα j , where Fα j is as in the

proof of Lemma 4.2, and we can consult the proof of Lemma 4.2 again to see that [Fc j ] = c j [Fα j ] = c jβ j .
Upon choosing coordinates of Z⊗n to obtain the identification

H∗(Z⊗n, k)red ∼= (⊗
n
i=1 H∗(Zi , k))red ∼= k[β1, . . . , βn],

we easily see that the reduced algebra has dimension n in degree 2. So injectivity of σred implies that
σred is an isomorphism. Consequently, the algebra map σ ′red (the multiplicative extension of σred) is an
isomorphism. As a consequence, σ ′Z⊗n must be injective as well. �
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4B. The proof of Proposition 3.5. We retain our notations Z and Z from above, and take also O=O(G(r)).

Proof of Proposition 3.5. The identification of H 1(O, k) with Homk(mG/m2
G, k) implies that g =

H 1(O, k). Invariance of the image of g(r) follows from Corollary 3.8. Whence the algebra map
∧
∗(g[1]) ⊗ S(g(r)[2]) → H∗(O, k) of (4) is one of G(r)-algebras. It remains to show that the map

is a (linear) isomorphism.
Since G is smooth, we can choose complete local coordinates {xi }i at the identity to get algebra

presentations

Onat = O(G(r+1))= k[x1, . . . , xn]/(x
pr+1

i ) and O= k[x1, . . . , xn]/(x
pr

i ).

Whence we have an algebra isomorphism Z⊗n
−→∼ O, ti 7→ xi , under which the deformations Z⊗n and Onat

can be identified. Thus the maps σZ⊗n and σO are also identified, and we see that σ ′O : S(g
(r)
[2])→H∗(O, k)

is an isomorphism modulo nilpotents by Proposition 4.3.
Since we know abstractly that

H∗(O, k)=∧∗(H 1(O, k))⊗ S(V )=∧∗(g)⊗ S(V ),

for any vector space complement V to ∧2g in H 2(O, k), it suffices to show that σO(g(r)) is a complement
to the second wedge power of g. However, this follows from the facts that σ ′O is an isomorphism modulo
nilpotents and that the kernel of the reduction H 2(O, k)→ H 2(O, k)red is exactly ∧2 H 1(O, k)=∧2g. �

4C. In characteristic 2. Suppose char(k)= 2 and let G be a smooth algebraic group over k. Consider
the r -th Frobenius kernel G(r) with r > 1. In this case we have an algebra identification

O(G(r))= k[x1, . . . , xn]/(x2r

1 , . . . , x2r

n )=⊗
n
i=1k[xi ]/(x2r

i ).

Furthermore, since H∗(k[x]/(x2r
), k)= k[a, b]/(a2), where deg(a)= 1 and deg(b)= 2, we see that all

elements in H 1(O(G(r)), k) are square zero. Hence we can construct an algebra map

∧
∗(g[1])⊗ S(g(r)[2])→ H∗(O(G(r)), k) (6)

via the identification g= H 1(O(G(r)), k) and the deformation map σO, just as before. The above proof of
Proposition 3.5 can now be repeated verbatim to arrive at

Proposition 4.4. When char(k)= 2 and r > 1, the algebra map (6) is an isomorphism of G(r)-algebras.

Under these same hypotheses all proofs in Sections 5–7 also apply verbatim. Hence we are able to
deal with these cases without any deviation in our presentation.

Remark 4.5. When char(k) = 2 and r = 1, the algebra map S(g[1]) → H∗(O, k) induced by the
identification g= H 1(O, k) is an isomorphism. The methods employed in the proof of Proposition 3.5
show that, in this case,

σ ′O : S(g
(1)
[2])→ H∗(O, k)

is the Frobenius.



Cohomology for Drinfeld doubles of some infinitesimal group schemes 1293

Now, in degree 2 we have an exact sequence of G(1)-representations 0→ g(1)→ S2(g)= H 2(O, k)→
M → 0, where M = coker(σO). The possible failure of this sequence to split over G(1) obstructs our
proof of Theorem 5.3 below. In particular, it is not apparent how one can construct the complement 0 to
S(g(1)[2]) employed in the proof of the aforementioned theorem.

5. Finite generation of cohomology

We consider a smooth algebraic group G and an integer r > 0. As always, G is assumed to be affine of
finite type over k. In Theorems 5.3 and 5.6 below, we prove finite generation of cohomology for the
Drinfeld double DG(r) ≡ O(G(r))#kG(r) of the r-th Frobenius kernel G(r). Our technique is to use the
Grothendieck spectral sequence [Grothendieck 1957] as in [Friedlander and Suslin 1997].

5A. A spectral sequence for the cohomology of the double. We begin with a general result.

Proposition 5.1. Let F : A → B and G : B → C be additive, left exact functors between abelian
categories with enough injectives and suppose that F sends injective objects of A to injective objects of B.
Assume further that A, B and C have tensor products and that F and G are equipped with natural maps
F(V )⊗ F(V ′)→ F(V ⊗ V ′) and G(W )⊗G(W ′)→ G(W ⊗W ′). Then for any pairing V ⊗ V ′→ V ′′

there exists a pairing of Grothendieck spectral sequence

{Rs G(Rt(F(V )))⇒ Rs+t(G ◦ F)(V )}⊗ {Rs′G(Rt ′(F(V ′)))⇒ Rs′+t ′(G ◦ F)(V ′)}

→ {Rs′′G(Rt ′′(F(V ′′)))⇒ Rs′′+t ′′(G ◦ F)(V ′′)}.

Proof. The Grothendieck spectral sequence for the composition of left exact functors between abelian
categories with enough injectives, G ◦ F :A→ B→ C, arises from a Massey exact couple. Namely, one
takes an injective resolution V → I ∗ of an object of V of A, and then takes a Cartan–Eilenberg resolution
F(I ∗)→ J ∗,∗ of the cochain complex F(I ∗); J ∗,∗ is a double complex of injective objects of B which
not only gives an injective resolution of each F(I n) but also of each H n(F(I ∗)). Then the Massey exact
couple is given by “triples” (i : D→ D, j : D→ E, k : E→ D),

· · ·
k
−→ D =

⊕
p

H p+q(F p+1(Tot(G(J ∗,∗)))) i
−→

⊕
p

D = H p+q(F p(Tot(G(J ∗,∗))))

j
−→ E =

⊕
p,q

H p+q(F p(Tot(G(J ∗,∗)))/F p+1(Tot(G(J ∗,∗)))) k
−→· · · ,

where F p((Tot(G(J ∗,∗)))= Tot(G(⊕i≥p(J i,∗))).
Assuming that A,B and C have tensor products, a paring of objects in A gives rise to a pairing

of Massey exact couples. Namely, given injective resolutions V → I ∗, V ′ → I ′∗, V ′′ → I ′′∗ and a
pairing V ⊗ V ′ → V ′′, then the usual extension argument for the injective complex I ′′∗ tells us that
there is a map of cochain complexes Tot(I ∗⊗ I ′∗)→ I ′′∗, unique up to chain homotopy, extending this
pairing. This, in turn, determines a pairing of bicomplexes G(J ∗,∗)⊗G(J ′∗,∗)→ G(J ′′∗,∗) and thus of
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filtered total complexes. The pairing on exact couples takes the expected form using the natural map
⊕s+t=n(H s(C∗)⊗ H t(C ′∗))→ H s+t(C∗⊗C ′∗).

Massey [1954] gives sufficient conditions for a pairing of exact couples to determine a pairing of
spectral sequences (see also [Friedlander and Suslin 1997]). The essential condition is Massey’s condition
µn for each n ≥ 0: for z ⊗ z′ bihomogeneous in E ⊗ E ′ and any x ⊗ x ′ bihomogeneous in D ⊗ D′

such that k(z) = in(x), k(z′) = (i ′)n(x ′), there exists x ′′ ∈ D′′ with k ′′(z · z′) = (i ′′)n(x ′′) and j ′′(x ′′) =
j (x)·z′+(−1)deg(z)z · j ′(x ′). In our context, z⊗z′ ∈ H p+q(F p/F p+1)⊗H p′+q ′(F p′/F p′+1) and x⊗x ′ ∈
H p+q+1(F p+n+1)⊗H p′+q ′+1(F p′+n+1). To satisfy condition µn , we take x ′′ ∈ H p+q+p′+q ′(F p+p′+n+1)

to be the image of x ⊗ x ′ given by the pairing map. �

Recall that DG(r)/O(G(r)) is kG(r)-Galois as in [Montgomery 1993]. One can view this property as
the condition that DG(r) is a kG(r) torsor (in the context of Hopf algebras) over O(G(r)): there is a natural
bijection DG(r)⊗O(G(r))DG(r)→DG(r)⊗kG(r). By normality of O(G(r)) in DG(r), for any DG(r)-module
V on which O(G(r)) acts trivially we have V DG(r) = V G(r) . Hence the invariants functor for DG(r) factors

HomDG(r)(k,−)= HomkG(r)(k,−) ◦HomO(G(r))(k,−) : rep(DG(r))→ Vect .

Proposition 5.2. The above composition of functors leads to a Grothendieck spectral sequence of k-
algebras

E s,t
2 (k)= H s(G(r), H t(O(G(r)), k))⇒ H s+t(DG(r), k). (7)

For any DG(r)-module M , the above composition of functors leads to Grothendieck spectral sequence

E s,t
2 (M)= H s(G(r), H t(O(G(r)),M))⇒ H s+t(DG(r),M), (8)

which is a spectral sequence of modules over (7).

Proof. The equalities

HomO(G(r))(k, (DG(r))
∗)= HomO(G(r))(DG(r), k)= Homk(kG(r), k)= (kG(r))

∗

imply HomO(G(r))(k, (DG(r))
∗) is projective as well as injective as a kG(r)-module (because a kG(r) module

is projective if and only if it is injective [Jantzen 2003; Montgomery 1993]). Since

HomO(G(r))(k, (DG(r))
∗)= (kG(r))

∗,

we conclude that HomO(G(r))(k,−) sends injective DG(r)-modules to injective kG(r)-modules. Conse-
quently, Grothendieck’s construction of the spectral sequence for a composition of left exact functors
applies to the composition HomkG(r)(k,−)◦HomO(G(r))(k,−), and this spectral sequence takes the form (7)
when applied to k and the form (8) when applied to M .

The algebra structure on (7) and the module structure on (8) follow from the multiplicative structure
established in Proposition 5.1 in view of the pairing k⊗ k→ k (multiplication of k) and k⊗M→ M
(pairing with the trivial module) in the category rep(DG(r)). �
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5B. Finite generation. We can now prove that H∗(DG(r), k) is a finitely generated algebra. This will
be followed by Theorem 5.6, establishing our general finite generation theorem. Recall that an algebra
map A→ B is called finite if B is a finite module over A. Recall also the map θr of Definition 3.9.

Theorem 5.3. Let G be a smooth algebraic group over a field k of positive characteristic, let r > 0 be a
positive integer, and let DG(r) ≡ O(G(r))#kG(r) denote the Drinfeld double of the r-th Frobenius kernel
of G.

Then the graded k-algebra map

θr : H∗(G(r), k)⊗ S(g(r)[2])→ H∗(DG(r), k)

is finite.
Consequently:

• H∗(DG(r), k) is a finitely generated k-algebra.

• H∗(DG(r),M) is a finite H∗(G(r), k)⊗ S(g(r)[2])-module and hence a finite H∗(DG(r), k)-module
for any finite dimensional DG(r)-module M whose restriction to O(G(r)) has trivial action.

Proof. Take O = O(G(r)) and C∗ = H∗(G(r), k)⊗ S(g(r)[2]). This proof is an adaption of the proof
of Theorem 1.1 of [Friedlander and Suslin 1997]. Let {E s,t

r , r ≥ 2} denote the spectral sequence
{E s,t

r (k), r ≥ 2} of Proposition 5.2.
Observe that H∗(O, k)= S(g(r)[2])⊗0; here, S(g(r)[2]) has trivial G(r)-action and 0 ≡∧∗(H 1(O, k))

is finite dimensional. Thus, E∗,∗2 = H∗(G(r), H∗(O, k)) equals H∗(G(r), 0)⊗ S(g(r)[2]), since M 7→
H 0(G(r),M ⊗ V ) is the composite of H 0(G(r),−) and the exact functor −⊗ V for any trivial G(r)-
module V . We equip H∗(G(r), H∗(O, k))= H∗(G(r), 0)⊗ S(g(r)[2]) with the “external tensor product
module structure” for the algebra C∗ = H∗(G(r), k)⊗ S(g(r)[2]).

By Theorem 1.1 of [Friedlander and Suslin 1997], H∗(G(r), 0) is a finite H∗(G(r), k)-module. It follows
that H∗(G(r), H∗(O, k)) is a finite C∗-module. We identify this C∗-module structure on H∗(G(r),H∗(O, k))
as that given by the coproduct φ⊗ψ of two maps φ and ψ associated to the spectral sequence: The first
is the map

φ : S(g(r)[2])→ H∗(DG(r), k)= E∗
∞
→ E0,∗

∞
⊂ E0,∗

2 ⊂ E∗,∗2

given by Proposition 3.7. The second is the natural map

H ev(G(r), k)⊂ E∗,02 ⊂ E∗,∗2 .

We have thus verified the hypotheses of Lemma 1.6 of [Friedlander and Suslin 1997], enabling us to
conclude that H∗(DG(r), k) is a finite module over the finitely generated algebra C∗ and thus is itself
finitely generated.

Now, we consider a finite dimensional DG(r)-module M whose restriction to O has trivial action. Then
E∗,∗2 (M) = H∗(G(r), H∗(O,M)) equals H∗(G(r), 0⊗M)⊗ S(g(r)[2]) which is a finite C∗-module by
another application of Theorem 1.1 of [Friedlander and Suslin 1997] (this time, for the finite dimensional
kG(r)-module 0 ⊗ M). Since {E∗,∗r (M)} is a module over {E∗,∗r } by Proposition 5.1, Lemma 1.6 of
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[Friedlander and Suslin 1997] applies once again to imply that H∗(DG(r),M) is finite as a C∗-module
and thus as a H∗(DG(r), k)-module. �

Recall our notation |A| ≡ Spec H ev(A, k)red from the introduction.

Corollary 5.4. We have the inequality

dim|DG(r)| ≤ dim|kG(r)| + dim G.

Proof. Since θr is finite, by Theorem 5.3, the induced map on affine spectra

|DG(r)| → Spec(H ev(G(r), k)red⊗ S(g(r)[2]))∼= |kGr | ×Ad

has finite fibers, where d = dim(G). �

Proposition 5.5. Let G be an infinitesimal group scheme. If V is a simple module for DG, then V
restricts to a trivial O(G)-module.

Proof. The maximal ideal m in O(G) is nilpotent and is normalized by the action of G on O(G).
Hence, the ideal kG ·m ⊂ DG is also nilpotent, and therefore contained in the Jacobson radical of DG.
We conclude that restricting along the projection DG → DG/(kG · m) = kG determines a bijection
Irrep(kG)→ Irrep(DG). �

In the following theorem, we implicitly use the following fact for any Noetherian k-algebra C : a
C-module M is Noetherian if and only if it is finitely generated (as a C-module).

Theorem 5.6. As in Theorem 5.3, let G be a smooth algebraic group over a field k of positive characteris-
tic, let r > 0 be a positive integer, and let DG(r) ≡ O(G(r))#kG(r) denote the Drinfeld double of the r-th
Frobenius kernel of G.

If M is a finite dimensional DG(r)-module, then H∗(DG(r),M) is finitely generated as a H∗(DG(r), k)-
module.

Proof. By Theorem 5.3 and Proposition 5.5, H∗(DG(r),M) is finitely generated over H∗(DG(r), k)
whenever M is an irreducible DG(r)-module. More generally, we proceed by induction on the length of a
composition series for M as a DG(r)-module. Consider a short exact sequence 0→ N → M→ Q→ 1
of finite dimensional DG(r)-modules with N irreducible and assume our induction hypothesis applies
to Q. Let V ⊂ H∗(DG(r),M) denote the image of H∗(DG(r), N ) and let W ⊂ H∗(DG(r), Q) denote the
image of H∗(DG(r),M). Since H∗(DG(r), k) is Noetherian, V is a Noetherian H∗(DG(r), k)-module
since it is a quotient of the Noetherian H∗(DG(r), k)-module H∗(DG(r), N ); moreover, W is a Noetherian
H∗(DG(r), k)-module since it is a submodule of the Noetherian H∗(DG(r), k)-module H∗(DG(r), Q).
Granted the short exact sequence 0→ V → H∗(DG(r),M)→ W → 0 of H∗(DG(r), k)-modules, we
conclude that H∗(DG(r),M) is also Noetherian as a H∗(DG(r), k)-module. �
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5C. Cohomology of relative doubles. Given an inclusion of finite dimensional Hopf algebras A→ B,
we can form the relative double D(B, A), which is the vector space B∗⊗ A along with multiplication
given by the same formula as for the standard double. Rather, we give D(B, A) the unique Hopf structure
so that the vector space inclusion D(B, A)→ D(B) is a map of Hopf algebras. The relative double can
be of technical importance, especially in tensor categorical settings (see for example [Gelaki et al. 2009;
Etingof et al. 2011]).

For a closed subgroup G→ G(r) we write D(G(r),G) for the relative double

D(G(r),G)= D(kG(r), kG)= O(G(r))#kG,

where the smash product is taken relative to the adjoint action of G on O(G(r)).
Dually, for a quotient B→C of finite dimensional Hopf algebras we define the relative double D(C, B)

as the vector space C∗⊗ B along with the unique Hopf structure so that the inclusion D(C, B)→ D(B∗)
is a map of Hopf algebras. For a group scheme quotient G(r)→ G ′ we write

D(G ′,G(r))= O(G ′)#kG(r). (9)

From [Radford 1993, (11)–(12)], we see that D(G ′,G(r)) is identified with the relative double D(kG ′, kG(r)).

Theorem 5.7. Let G be a smooth algebraic group. Consider an arbitrary closed subgroup scheme G
in G(r), and the relative double D(G(r),G). Then:

• The cohomology H∗(D(G(r),G), k) is a finitely generated algebra.

• If M is a finite dimensional D(G(r),G)-module, then H∗(D(G(r),G),M) is a finitely generated
module over H∗(D(G(r),G), k).

The same finite generation results hold for the relative doubles D(G(r)/G(s),G(r)), for s ≤ r .

Sketch proof. Consider a closed subgroup G→G(r). We have the sequence O(G(r))→ D(G(r),G)→ kG,
from which we derive Grothendieck spectral sequences as in (7) and (8). We need to exhibit a finitely
generated algebra of permanent cocycles in the E2-page of the spectral sequence

E s,t
2 (k)= H s(G, H t(O(G(r)), k))⇒ H s+t(D(G(r),G), k)

over which E∗,∗2 is a finite module. Just as in the proof of Theorem 5.3, it suffices to show that the image
of the embedding σO : g(r)→ H 2(O(G(r)), k) from Section 3B consists entirely of permanent cocycles
in E∗,∗2 . The deformation Dnat = D(G(r+1),G) provides a lifting σD : g(r)→ H 2(D(G(r),G), k) of σO,
which verifies permanence of the cocycles g(r) ⊂ H 2(O(G(r)), k). We can now argue as in the proof of
Theorem 5.3 to establish finite generation.

In the case of a quotient G(r)/G(s) ∼= G
(s)
(r−s), we have the deformation Onat = O(G(r+1)/G(s)) of

O(G(r)/G(s)) and the deformation Dnat = Onat#kG(r) of the relative double D(G(r)/G(s),G(r)). These
deformations provide an inclusion

σO : g(r)→ H 2(O(G(r)/G(s)), k)
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and a lifting σD : g(r)→ H 2(D(G(r)/G(s),G(r)), k) of σO. We employ σO and σD, and again argue as in
Theorem 5.3, to establish finite generation. �

Remark 5.8. For a general quotient p : G(r)→ G ′, we expect that finite generation of cohomology for
the relative double D(G ′,G(r)) can be proved via the same deformation theoretic approach as above. If
we take K = ker(p), the necessary deformation in this case should be provided by the quotient scheme
G(r+1)/K . Some care needs to be taken, however, in dealing with the arbitrary nature of the subgroup K .

Remark 5.9. In the notation of [Gelaki et al. 2009, §2B], the relative double D(G(r),G) has representation
category isomorphic to the relative center ZC(M) where C = rep(G(r)), M= rep(G), and the C-action
on M is given by the restriction functor rep(G(r))→ rep(G). Similarly, for a quotient G(r)→ G ′, we
have D(G ′,G(r))∼= ZD(N ) where D = corep(kG(r)) and N = corep(kG ′).

In the final two sections of this paper we provide analyses of the spectrum of cohomology and support
for the (usual) double DG(r). These analyses are valid for the relative doubles D(G(r),G) as well. In
particular, one replaces kG(r) with kG and repeats the arguments verbatim. As we would like to emphasize
the double DG(r), we choose not to make explicit reference to the relative settings therein.

6. Spectrum of cohomology for classical groups

By Theorem 5.3, the cohomology of the double DG(r) is finite over the image of H∗(G(r), k)⊗ S(g(r)[2]),
under the map θr of Definition 3.9. The map θr then induces a finite scheme map

2r : |DG(r)| → |kG(r)| × (g∗)(r), (10)

where |A| = Spec H ev(A)red.
In this section we show that 2r is an isomorphism when G is one of many classical algebraic groups

with either p sufficiently large for p or r sufficiently large relative to the dimension of G. Our results
follow from an analysis of algebraic groups which admit a quasilogarithm.

Remark 6.1. The schemes |kG(r)| have been extensively studied and, in conjunction with support varieties
of G(r)-representations, provide one means of approaching modular representation theory. One can see
the survey [Pevtsova 2013] for example.

6A. Quasilogarithms. Let G be an algebraic group with Lie algebra g= Lie(G). We let G act on itself
and its Lie algebra g via the adjoint action. The following definition is adapted from [Kazhdan and
Varshavsky 2006].

Definition 6.2. A quasilogarithm for G is a G-equivariant map L :G→ g of k-schemes such that L(1)= 0
and the differential d1L : T1G→ T0g is the identity on g.

The information of a quasilogarithm for G is exactly the information of a G-linear splitting g∗→ mG

of the projection mG→mG/m2
G
= g∗, where mG is the maximal ideal corresponding to the identity of G.

Let us give some examples.
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Proposition 6.3. The general linear group GLn admits a quasilogarithm.

Proof. The augmentation ideal mGL is generated by the functions xi j − δi j . Take V to be the span of
these functions k{xi j − δi j : 1≤ i, j ≤ n}. The sequence V → mGL→ gl∗n provides a linear isomorphism
between V and gl∗n .

For the comultiplication on O(GLn) we have 1(xi j )=
∑

k xik ⊗ xk j . Thus for the adjoint coaction ρ
restricted to V we will have ρ(V )⊂ (k1O⊕V )⊗O(GLn). Since mGL is preserved by the adjoint coaction,
and V ⊂ mGL, we will also have ρ(V )⊂ mGL⊗O(GLn). Taking the intersection of these two subspaces
gives ρ(V )⊂ V ⊗O(GLn). Thus we see that V is a subcomodule of O(GLn) under the adjoint coaction.
The aforementioned sequence then provides a GLn-linear isomorphism V → gl∗n . Taking the inverse
gl∗n→ V ⊂ mGL provides the desired quasilogarithm. �

We can also address many simple algebraic groups. An odd prime p is very good for a simple algebraic
group G if p does not divide n for G of type An−1, if p 6= 3 for G of type E6, E7, F4,G2, and p 6= 3, 5
for G of type E8. For convenience we extend the notion of a very good prime to GLn , in which case all
primes will be considered very good.

Corollary 6.4 (cf. [Bezrukavnikov et al. 2016, Lemma C3]). If G is a simple algebraic group for which
p is very good, then G admits a quasilogarithm. Furthermore, any Borel subgroup B in such a G also
admits a quasilogarithm.

Proof. In this case there exists an integer n and an embedding i : G→ GLn such that the differential
d1i : g→ gln admits a G-equivariant splitting τ : gln→ g, by a result of Garibaldi [2009, Proposition 8.1].
Composing with a quasilogarithm L for GLn produces a quasilogarithm L ′ for G,

G−→ GLn
L
−→ gln

τ
−→g.

By [Kazhdan and Varshavsky 2006, Lemma 1.8.3], the restriction of L ′ to any Borel subgroup B will
provide a quasilogarithm for B. �

Consider a semisimple algebraic group G and a unipotent subgroup U in G which is normalized by a
maximal torus. We let cl(U) denote the nilpotence class of a Q-form of U in a Q-form of G (see [Seitz
2000]). For example, if we consider G= SLn and U the unipotent subgroup of upper triangular matrices,
then cl(U)= n− 1. The following result is covered in work of Seitz [2000, Proposition 5.2].

Proposition 6.5. Let G be semisimple and U be a unipotent subgroup in G which is normalized by a
maximal torus. If p > cl(U) then U admits a quasilogarithm.

The main principle here is quite simple. Under this restriction on p, the usual exponent on the Q-form
expQ : uQ→ UQ is an isomorphism defined over Z(p), and hence induces an isomorphism expk : u→ U

over k. We define L as the inverse L = exp−1
k . Equivariance of L under the adjoint U-action follows from

UQ-invariance of expQ.
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6B. Induced gradings on the double. Consider an algebraic group G with a fixed quasilogarithm L .
From L we get a map of G(r)-algebras S(g∗)→ O(G(r)) via the composition S(g∗) L∗

−→O(G)→ O(G(r)),
for each r . Since each x ∈ g∗ maps into the augmentation ideal in O(G), there is furthermore an induced
G(r)-algebra map lr : S(g∗)/Ir→ O(G(r)), where Ir is the ideal generated by the pr -th powers of elements
in g∗. In other words, Ir is the ideal generated by the image of the augmentation ideal under the r-th
Frobenius. We can now take a smash product to arrive at an algebra map

Lr : (S(g∗)/Ir )#kG(r)→ DG(r). (11)

We note that the algebra S(g∗)/Ir is graded, since the ideal Ir is generated by the homogenous elements
x pr

, x ∈ g∗. Furthermore, under this grading kG(r) acts by graded endomorphisms. Hence the smash
product (S(g∗)/Ir )#kG(r) is graded with g∗ in degree 1 and kG(r) in degree 0. This point will be of some
significance below.

Lemma 6.6. Suppose G is smooth and admits a quasilogarithm L. Then for any r > 0 the above map
Lr : (S(g∗)/Ir )#kG(r)→ DG(r) is an isomorphism of algebras.

Proof. Recall that dim(G)=dim(g)whenever G is smooth (see [Jantzen 2003, I.7.17(1)]). The localization
at the distinguished maximal ideals of S(g∗) and O(G), S(g∗)0→ O(G)1, is a local map of regular, local
k-algebras of dimension dim g which induces an isomorphism on corresponding maximal ideals modulo
their squares. Thus, L induces an isomorphism of complete local rings L̂1 : Ŝ(g∗) −→∼ ÔG,1 (see e.g.,
[Matsumura 1989, proof of Lemma 10.28.1]). We mod out by the images of the maximal ideals under the
r -th Frobenius to arrive at an isomorphism

S(g∗)/Ir = Ŝ(g∗)/ Îr −→
∼ ÔG,1/( f pr

: f ∈ m̂G)= O(G)/( f pr
: f ∈ mG)= O(G(r)).

One can check on elements to see that the above isomorphism is exactly lr . Thus, lr : S(g∗)/Ir→ O(G(r))

and hence Lr : (S(g∗)/Ir )#kG(r)→ DG(r) are isomorphisms. �

As a consequence of Lemma 6.6, we see that when G is smooth and admits a quasilogarithm the double
DG(r) inherits a grading induced by Lr . This grading is such that kG(r) lies in degree 0 and Lr (g∗) lies
in degree 1. The coordinate algebra O(G(r)) will be a graded subalgebra in the double, with O(G(r))0 = k
and O(G(r))1 = lr (g∗).

We now consider the algebras O(G(r)) and DG(r) as graded (Noetherian, locally finite) algebras. As
with any Noetherian graded algebra, the cohomologies Ext∗O(G(r))

(M, N ) and Ext∗DG(r)
(M, N ) of finitely

generated graded modules inherit natural gradings, in addition to the cohomological gradings. In particular,
the cohomologies H∗(O(G(r)), k) and H∗(DG(r), k) will be graded. (See e.g., [Artin et al. 1990].) We
call this extra grading on cohomology the internal grading.

Lemma 6.7. Let G be smooth with a fixed quasilogarithm. Consider H∗(O(G(r)), k) with its induced
internal grading. Under the isomorphism ∧∗(g)⊗ S(g(r)[2])∼= H∗(O(G(r)), k) of Proposition 3.5, g is
identified with a subspace of internal degree 1 and g(r) is identified with a subspace of internal degree pr .
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Proof. The algebra O= O(G(r)) is connected graded and generated in degree 1. Hence g∼= H 1(O, k) is
concentrated in degree 1 (see [Artin et al. 1990]).

Under the gradings induced by the quasilogarithm, the reduction

Onat = O(G(r+1))→ O

is a homogeneous map, and each deformation Defξ = Onat⊗O(G(r+1)/G(r)) k[ε] associated to an element
ξ ∈ g(r) is graded, where we take deg(ε) = pr . By choosing any graded k[ε]-linear identification
O[ε] ∼= Defξ we see that the associated function Fξ : O⊗ O→ O, which is defined by the equation
a ·ξ b = ab + F(a, b)ε, is such that deg(F(a, b)) = deg(a ⊗ b) − pr . So the Hochschild 2-cocycle
Fξ ∈ Homk(O⊗O,O) is degree pr , as is its image Fξ ∈ Homk(O⊗O, k). It follows that σO(ξ)= [Fξ ] ∈
H 2(O, k) is a homogeneous element of degree pr . �

6C. Spectra of cohomology. Recall the map 2r from (10) and the definition |A| = Spec H ev(A, k)red.

Theorem 6.8. Suppose G is a smooth algebraic group which admits a quasilogarithm. If r is such that
pr > dim(G), then

θr : H∗(G(r), k)⊗ S(g(r)[2])→ H∗(DG(r), k)

is finite and injective. Consequently, the scheme map

2r : |DG(r)| → |kG(r)| × (g∗)(r)

is finite and surjective, and furthermore dim|DG(r)| = dim|kG(r)| + dim G.

Proof. We freely use the notation of the proof of Theorem 5.3, and omit the shift [2] in the symmetric
algebra to ease notation. According to Lemma 6.6, DG(r) inherits a natural algebra grading via the
isomorphism Lr of (11), O is a graded subalgebra, and the exact sequence 1→ O→ DG(r)→ kG(r)→ 1
is a sequence of graded algebra maps, where kG(r) is taken to be entirely in degree 0. In this case the
spectral sequence of Proposition 5.2 inherits an internal grading so that all differentials are homogeneous
of degree 0.

The internal grading at the E2-page is such that the degree on each E i j
2 = H i (G(r), H j (O)) is induced

by the degree on H j (O). In particular, each summand ∧ j1g⊗ S j2(g)⊂ H j1+ j2(O) is of internal degree
j1+ pr j2, by Lemma 6.7, and the corresponding summands in the decomposition

H i (G(r), H j (O, k))= H i
(

G(r),
⊕

j1+2 j2= j

∧
j1(g)⊗ S j2(g(r))

)
=

⊕
j1+2 j2= j

H i (G(r),∧
j1(g))⊗ S j2(g(r))

are of respective degrees j1+ j2 pr .
Since dim g< pr , the index j1 is such that 0≤ j1 < pr . Hence the degree pr Z portion of the E2-page

is exactly the prescribed subalgebra of permanent cocycles

(E i, j
2 )pr Z = H i (G(r), k)⊗ S j/2(g(r))⇒ (H∗(DG(r), k))pr Z, (12)

where S j/2(g(r)) is taken to be 0 when j is odd.
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By homogeneity of the differentials, and the fact that all of the elements of degrees pr Z in E∗,∗2 are
cocycles by (12), we see that no elements of degrees pr Z are coboundaries. One can make the same
argument at each subsequent page of the spectral sequence to find that the map H i (G(r), k)⊗ St(g(r))→
E i,2t

s is injective for all i, t , and s. It follows that gr θr : H∗(G(r), k)⊗ S(g(r))→ E∗,∗
∞

is injective.
Injectivity of the associated graded map gr θr implies that θr : H∗(G(r), k)⊗ S(g(r))→ H∗(DG(r), k)

is injective. By Theorem 5.3, θr is also finite. After taking even degrees and reducing,

θ ev
red : H

ev(G(r), k)red⊗ S(g(r))→ H∗(DG(r), k)red

remains injective and finite. In particular, θ ev
red is an integral extension. Thus, the map on spectra induced

by θ ev is finite and surjective [Matsumura 1989, Theorem 9.3]. The asserted computation of dimension
follows. �

Note that the dimension of |O(G(r))| is equal to dim G, by Proposition 3.5 (and [Jantzen 2003, I.7.17(1)]).
Hence the equality of dimensions of Theorem 6.8 can also be written as

dim|DG(r)| = dim|kG(r)| + dim|O(G(r))|.

Under stronger assumptions on p or r we can significantly strengthen the conclusion of Theorem 6.8.
Indeed one can leverage the internal grading on the given spectral sequence, as in the proof of Theorem 6.8,
to show that 2r is an isomorphism in such circumstances.

Theorem 6.9. Suppose G is a smooth algebraic group which admits a quasilogarithm. Suppose addition-
ally that r is such that pr > 2 dim G. Then the image of the injective algebra map

θr : H∗(G(r), k)⊗ S(g(r)[2])→ H∗(DG(r), k)

admits an H∗(G(r), k)⊗ S(g(r)[2])-module complement J which consists entirely of nilpotent elements in
H∗(DG(r), k). Furthermore, the induced map on reduced spectra

2r : |DG(r)| → |kG(r)| × (g∗)(r)

is an isomorphism.

Proof. Fix a quasilogarithm on G, and consider the induced gradings on cohomology. Note that we
can consider all of our Z-graded spaces as Z/pr Z-graded spaces, via the projection Z→ Z/pr Z. For
convenience, we employ Z/pr Z-gradings in this proof. For an element a ∈ Z/pr Z we let ã denote the
unique representative of a in {0, . . . , pr

− 1}.
Just as in Lemma 6.7, one can check that the natural map σD : g(r) → H 2(DG(r), k) has image

in degree pr
= 0 with respect to the Z/pr Z-grading on cohomology. We also have that the inflation

H∗(G(r), k)→ H∗(DG(r), k) has image entirely in degree 0, since the projection DG(r)→ kG(r) is graded
with kG(r) entirely in degree 0. By the same spectral sequence calculation as was given in the proof of
Theorem 6.8, we find that

θr : H∗(G(r), k)⊗ S(g(r))→ H∗(DG(r), k)

is an isomorphism onto the degree 0 portion of the cohomology of DG(r).
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Under the induced Z/pr Z-grading on the spectral sequence {E∗,∗s } of the proof of Theorem 6.8 we have

(E i, j
2 )0 = H i (G(r), k)⊗ S j/2(g(r)) and (E i, j

2 )a = 0 for each a = dim G+ 1, . . . , pr
− 1.

This implies that (H∗(DG(r), k))a=0 for each such a. Hence, any homogenous element ξ ∈ H∗(DG(r), k)
of nonzero internal degree deg(ξ) satisfies ξm

= 0, where

m =

{⌊
pr/ d̃eg(ξ)

⌋
if d̃eg(ξ)- pr ,

pr/ d̃eg(ξ)− 1 if d̃eg(ξ) | pr ,

since ˜deg(ξm) will be among dim G+ 1, . . . , pr
− 1. Said another way, the subspace J spanned by

elements of nonzero degree is contained in the nilradical, and the inclusion

(H ev(DG(r), k)0)red→ H ev(DG(r))red

is therefore an isomorphism. Since θr is an isomorphism onto the degree 0 portion of cohomology, it
follows that

θ ev
red : H

ev(G(r), k)red⊗ S(g(r))→ H ev(DG(r), k)red

is an isomorphism. We take spectra to find that 2r is an isomorphism. �

Theorem 6.10. Suppose G is a smooth algebraic group which admits a quasilogarithm, and that
p > dim G + 1. Then the image of θr in H∗(DG(r), k) has a complement J which consists entirely
of nilpotents, just as in Theorem 6.9. Furthermore, the map

2r : |DG(r)| → |kG(r)| × (g∗)(r)

is an isomorphism for all r .

Proof. Our argument will be similar to that of Theorem 6.9. Via the projection Z→ Z/pZ we get
Z/pZ-gradings on the spectral sequence {E∗,∗r } and the cohomology H∗(DG(r), k). We have, under these
Z/pZ-gradings, that

(E i, j
2 )0 = H i (G(r), k)⊗ S j/2(g(r)), (E i, j

2 )p−1 = (E
i, j
2 )−1 = 0,

and that θr is an isomorphism onto the degree 0 portion of cohomology H∗(DG(r), k)0. Consider now any
homogeneous element ξ ∈ H∗(DG(r), k) of degree d 6= 0. Since Z/pZ= Fp is a field there is a positive
integer d ′ ∈ Z which reduces to −d−1 mod p. We then find that ξ d ′

= 0, since

deg(ξ d ′)=−d−1d =−1 and H∗(DG(r), k)−1 = 0.

Hence the subspace J of element of nonzero degree is contained in the nilradical. Just as before, this
implies that θr induces an isomorphism

θ ev
red : H

ev(G(r), k)red⊗ S(g(r))→ H ev(DG(r), k)red,

and that 2r is an isomorphism as well. �
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One considers the examples of Section 6A to arrive at

Corollary 6.11. Let G be a general linear group, simple algebraic group, Borel subgroup in a simple
algebraic group, or a unipotent subgroup in a semisimple algebraic group which is normalized by a
maximal torus. Suppose that p is very good for G, or that p > cl(G) in the unipotent case:

• If p > dim G+ 1 then 2r is an isomorphism for all r .

• For arbitrary p satisfying the hypothesis, the map 2r is an isomorphism whenever r is such that
pr > 2 dim G.

7. Results for support varieties

For a Hopf algebra A and finite dimensional A-module M we let |A|M denote the support variety for M .
This is the closed, reduced, subscheme in |A| defined by the kernel of the algebra map

−⊗M : H ev(A, k)→ Extev
A (M,M). (13)

In this section we consider the support |DG(r)|M associated to a finite dimensional DG(r)-module M . We
show that there is a finite scheme map

2M
r : |DG(r)|M → |kG(r)|M × (g∗)(r)

for any M with trivial restriction to O(G(r)), and that 2M
r is an isomorphism whenever M is irreducible

and G is a classical group at a large prime or large r .

7A. Generalities for support varieties. Let A be a Hopf algebra and M be a finite dimensional A-module.
Under the natural identification

Ext∗A(M,M)= Ext∗A(k,M ⊗M∗)= H∗(A,M ⊗M∗),

(13) corresponds to the mapping

coevM
∗
: H ev(A, k)→ H ev(A,M ⊗M∗)

induced by the coevaluation coevM
: k→ M ⊗M∗ [Etingof et al. 2015, Proposition 2.10.8]. The algebra

structure on H ev(A,M ⊗ M∗) is induced by the algebra structure on M ⊗ M∗ ∼= Endk(M,M). By
[Mac Lane 1963, Theorem VII.4.1] (see also [Suarez-Alvarez 2004]) the image of H ev(A, k) lies in the
center of H ev(A,M ⊗M∗).

For G smooth and M any finite dimensional DG(r)-module, θr produces an algebra map

fr,M : H ev(G(r), k)⊗ S(g(r)[2])→ H ev(DG(r),M ⊗M∗). (14)

Explicitly, fr,M is the composite

H ev(G(r), k)⊗ S(g(r)[2]) θr−→ H ev(DG(r), k) coevM
∗−−→ H ev(DG(r),M ⊗M∗).
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By the definition of fr,M , one sees that the reduced subscheme in |kG(r)| × (g∗)(r) defined by the kernel
of fr,M is exactly the image of |DG(r)|M under 2r : |DG(r)| → |kG(r)| × (g∗)(r).

By the material of Section 6 we understand that 2r is often an isomorphism. However, by finiteness
of 2r in general, we can adapt an argument of [Friedlander and Parshall 1987, Proposition 1.5] in all
circumstances to arrive at:

Proposition 7.1. A finite dimensional DG(r)-module M is projective (or, equivalently, injective) as a
DG(r)-module if and only if 2r (|DG(r)|M)= {0}.

Proof. One simply repeats the proof of [Friedlander and Parshall 1987, Proposition 1.5], using the fact
that rep(DG(r)) is a Frobenius category [Larson and Sweedler 1969]. �

For the remainder of the section we seek to give a more precise description of the support |DG(r)|M for a
finite dimensional DG(r)-module M whose restriction to O(G(r)) is trivial (and thus arises as the restriction
along the quotient DG(r) � kG(r) of a kG(r)module which we also denote by M). By Proposition 5.5,
this condition is satisfied by any irreducible DG(r)-module. Whenever M satisfies this condition, there is
a natural inflation map H∗(G(r),M)→ H∗(DG(r),M).

In the statement of the following lemma, we consider the algebra map

θr,M : H ev(G(r),M ⊗M∗)⊗ S(g(r)[2])→ H ev(DG(r),M ⊗M∗)

induced by the inflation H ev(G(r),M⊗M∗)→ H ev(DG(r),M⊗M∗) and the map from S(g(r)[2]) defined
via σ ′D as above.

Lemma 7.2. For any finite dimensional DG(r)-module M whose restriction to O(G(r)) is trivial, the
following diagram commutes

H ev(G(r), k)⊗ S(g(r)[2])

θr

��

fr,M

++

coevM
∗ ⊗ idS

// H ev(G(r),M ⊗M∗)⊗ S(g(r)[2])

θr,M

��

H ev(DG(r), k)
coevM

∗

// H ev(DG(r),M ⊗M∗).

Proof. It suffices to prove that the two maps

H ev(G(r), k)⊗ S(g(r)[2])⇒ H ev(DG(r),M ⊗M∗)

agree on the factors H ev(G(r), k) and S(g(r)[2]) independently. The two restrictions to S(g(r)[2]) are
equal, since they are both defined as the composition

S(g(r)[2]) σ ′D−→ H∗(DG(r), k) coevM
∗−−→ H∗(DG(r),M ⊗M∗).
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So we need only establish commutativity of the diagram

H ev(G(r), k)

inf
��

coevM
∗
// H ev(G(r),M ⊗M∗)

inf
��

H ev(DG(r), k)
coevM

∗
// H ev(DG(r),M ⊗M∗),

which follows by functoriality of the inflation map. �

Proposition 7.3. For any finite dimensional DG(r)-module M whose restriction to O(G(r)) is trivial (for
example, if M is irreducible), the restriction of 2r : |DG(r)|M → |kG(r)| × (g∗)(r) to |DG(r)|M factors
through the closed subscheme |kG(r)|M × (g∗)(r), determining a finite map of schemes

2r,M : |DG(r)|M → |kG(r)|M × (g∗)(r).

Proof. The image of 2r ||DG(r)|M is the closed subscheme defined by the kernel of fr,M . By Lemma 7.2,
fr,M factors through the product map

coevM
∗
⊗ idS : H ev(G(r), k)⊗ S(g(r)[2])→ H ev(G(r),M ⊗M∗)⊗ S(g(r)[2]),

and hence

ker(coevM
∗
)⊗ S(g(r)[2])⊂ ker( fr,M).

It follows that 2r ||DG(r)|M factors through |kG(r)|M × (g∗)(r). �

7B. Support varieties for classical groups. We now consider irreducible modules and classical groups.
We fix G a smooth algebraic group.

Lemma 7.4. Suppose G admits a quasilogarithm and that V is an irreducible DG(r)-module. Suppose
additionally that pr > dim G. Then the map

θr,V : H ev(G(r), V ⊗ V ∗)⊗ S(g(r)[2])→ H ev(DG(r), V ⊗ V ∗)

is injective.

Proof. Take O = O(G(r)). It suffices to show that the associated graded map gr θr,V is injective, under
some filtration.

We consider the Grothendieck spectral sequence

E i, j
2 = H i (G(r), H j (O, V ⊗ V ∗))⇒ H i+ j (DG(r), V ⊗ V ∗)

induced by the sequence 1→ O→DG(r)→ kG(r)→ 1. Recall, from Proposition 5.5, that O acts trivially
on V and V ∗. Whence we may rewrite the above spectral sequence as

E i, j
2 = H i (G(r), (∧

j1g)⊗ V ⊗ V ∗)⊗ S j2(g(r)[2])⇒ H i+ j (DG(r), V ⊗ V ∗).
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Since O acts trivially on V and V ∗, the DG(r)-module V ⊗ V ∗ is graded and concentrated in degree 0,
under the Z-grading on DG(r) induced by any quasilogarithm on G. Now one can argue just as in the
proof of Theorem 6.8, using the grading on the above spectral sequence induced by the quasilogarithm,
to conclude that θr,V is injective. �

Theorem 7.5. Suppose G admits a quasilogarithm and that V is an irreducible DG(r)-module. Then the
scheme map

2r,V : |DG(r)|V → |kG(r)|V × (g∗)(r)

is finite and surjective. Furthermore, when p>dim G+1 or pr >2 dim G the map2r,V is an isomorphism.

Proof. Finiteness follows by finiteness of 2r . So we need only check surjectivity to establish the first
claim. We omit the shift [2] in the symmetric algebra to ease notation. As discussed above, the image of
2r,V is the subscheme associated to the kernel of the algebra map

fr,V : H ev(G(r), k)⊗ S(g(r))→ H ev(DG(r), V ⊗ V ∗),

which was defined at (14). Now, by Lemma 7.2, we have that fr,V factors as the composite of

coevV
∗
⊗ idS : H ev(G(r), k)⊗ S(g(r))→ H ev(G(r), V ⊗ V ∗)⊗ S(g(r))

with
θr,V : H ev(G(r), V ⊗ V ∗)⊗ S(g(r))→ H ev(DG(r), V ⊗ V ∗).

By Lemma 7.4, θr,V is injective. Hence it follows that ker( fr,V )= ker(coevV
∗
)⊗ S(g(r)) and subsequently

2r,V (|DG(r)|V )= |kG(r)|V × (g∗)(r).

The fact that 2r,V is an isomorphism when p > dim G+ 1 or pr > 2 dim G follows from the fact that 2r

is an isomorphism in these cases, by Theorems 6.9 and 6.10. �

We apply the theorem in the classical settings to find

Corollary 7.6. Let G be a general linear group, simple algebraic group, Borel subgroup in an simple
algebraic group, or a unipotent subgroup in a semisimple algebraic group which is normalized by a
maximal torus. Suppose that p is very good for G, or that p > cl(G) in the unipotent case:

• If p > dim G+ 1 then 2r,V is an isomorphism for every r and irreducible DG(r)-module V .

• For arbitrary p satisfying the hypothesis, and r such that pr > 2 dim G, the map 2r,V is an isomor-
phism for every irreducible DG(r)-module V .

Proof. By Propositions 6.3 and 6.5, and Corollary 6.4, the group G admits a quasilogarithm. Hence we
may apply Theorem 7.5. �
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