Vol. 12, No. 5, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 2, 309–567
Issue 1, 1–308

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
Représentations de réduction unipotente pour $\mathrm{SO}(2n+1)$, III: Exemples de fronts d'onde

Jean-Loup Waldspurger

Vol. 12 (2018), No. 5, 1107–1171

Soit G un groupe SO(2n + 1) défini sur un corps p-adique. Nous calculons le front d’onde des représentations irréductibles anti-tempérées de G(F) qui sont de réduction unipotente. Le front d’onde d’une telle représentation est l’orbite orthogonale duale à l’orbite symplectique qui intervient dans le paramètre d’Arthur de cette représentation.

Let G be a group SO(2n + 1) defined over a p-adic field. We compute the wave front set of the antitempered irreducible representations of G(F) which are of unipotent reduction. The wave front set of such representations is the orthogonal orbit dual to the symplectic orbit appearing in the Arthur’s parametrization of the representation.

representation of unipotent reduction, dual orbit, wave front set, unipotent orbit
Mathematical Subject Classification 2010
Primary: 22E50
Received: 17 February 2017
Revised: 22 January 2018
Accepted: 23 February 2018
Published: 31 July 2018
Jean-Loup Waldspurger