Vol. 12, No. 5, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 5, 1001–1309
Issue 4, 751–999
Issue 3, 493–750
Issue 2, 227–492
Issue 1, 1–225

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors' Addresses
Editors' Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Représentations de réduction unipotente pour $\mathrm{SO}(2n+1)$, III: Exemples de fronts d'onde

Jean-Loup Waldspurger

Vol. 12 (2018), No. 5, 1107–1171
Abstract

Soit G un groupe SO(2n + 1) défini sur un corps p-adique. Nous calculons le front d’onde des représentations irréductibles anti-tempérées de G(F) qui sont de réduction unipotente. Le front d’onde d’une telle représentation est l’orbite orthogonale duale à l’orbite symplectique qui intervient dans le paramètre d’Arthur de cette représentation.

Let G be a group SO(2n + 1) defined over a p-adic field. We compute the wave front set of the antitempered irreducible representations of G(F) which are of unipotent reduction. The wave front set of such representations is the orthogonal orbit dual to the symplectic orbit appearing in the Arthur’s parametrization of the representation.

Keywords
representation of unipotent reduction, dual orbit, wave front set, unipotent orbit
Mathematical Subject Classification 2010
Primary: 22E50
Milestones
Received: 17 February 2017
Revised: 22 January 2018
Accepted: 23 February 2018
Published: 31 July 2018
Authors
Jean-Loup Waldspurger
CNRS IMJ-PRG
Paris
France