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A blowup algebra for hyperplane arrangements
Mehdi Garrousian, Aron Simis and Ştefan O. Tohăneanu

It is shown that the Orlik–Terao algebra is graded isomorphic to the special fiber of the ideal I generated by
the (n−1)-fold products of the members of a central arrangement of size n. This momentum is carried over
to the Rees algebra (blowup) of I and it is shown that this algebra is of fiber-type and Cohen–Macaulay.
It follows by a result of Simis and Vasconcelos that the special fiber of I is Cohen–Macaulay, thus giving
another proof of a result of Proudfoot and Speyer about the Cohen–Macaulayness of the Orlik–Terao algebra.

Introduction

The central theme of this paper is to study the ideal-theoretic aspects of the blowup of a projective space
along a certain scheme of codimension 2. To be more precise, let A = {ker(`1), . . . , ker(`n)} be an
arrangement of hyperplanes in Pk−1 with coordinate ring R = k[x1, . . . , xk], and consider the closure of
the graph of the following rational map

Pk−1 99K Pn−1, x 7→ (1/`1(x) : · · · : 1/`n(x)).

Rewriting the coordinates of the map as forms of the same positive degree in the source Pk−1
= Proj(R),

we are led to consider the corresponding graded R-algebra, namely, the Rees algebra of the ideal of R
generated by the (n− 1)-fold products of `1, . . . , `n .

This construction is significant in the theory of hyperplane arrangements as it provides a method of
compactifying the complement of an arrangement complement. In [Huh and Katz 2012] and under a
slightly different setup, it is shown that the cohomology class of the blowup (in the Chow ring of a product
of projective spaces) is determined by the underlying combinatorics of A. (See Remark 2.1(v) for details).

It is our view that bringing into the related combinatorics a limited universe of gadgets and numerical
invariants from commutative algebra may be of help, especially regarding the typical operations with ideals
and algebras. This point of view favors at the outset a second look at the celebrated Orlik–Terao algebra
k[1/`1, . . . , 1/`n] which is regarded as a commutative counterpart to the combinatorial Orlik–Solomon
algebra. The fact that the former, as observed by some authors, has a model as a finitely generated graded
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k-subalgebra of a finitely generated purely transcendental extension of the field k, makes it possible to
recover it as the homogeneous coordinate ring of the image of a certain rational map.

This is our departing step to naturally introduce other commutative algebras into the picture. As shown
in Theorem 2.4, the Orlik–Terao algebra now becomes isomorphic, as a graded k-algebra, to the special
fiber algebra (also called fiber cone algebra or central algebra) of the ideal I generated by the (n−1)-fold
products of the members of the arrangement A. This algebra is in turn defined as a residue algebra of the
Rees algebra of I, so it is only natural to look at this and related constructions. One of these constructions
takes us to the symmetric algebra of I, and hence to the syzygies of I. Since I turns out to be a perfect
ideal of codimension 2, its syzygies are rather simple and allow us to further understand these algebras.

As a second result along this line of approach, we show that a presentation ideal of the Rees algebra of I
can be generated by the syzygetic relations and the Orlik–Terao ideal (see Theorem 4.2). This property
has been coined the fiber type property in the recent literature; see, e.g., [Herzog et al. 2005, page 808].

A very recent development in this area is the main theorem of Fink, Speyer and Woo in [Fink et al.
2018] who independently recover a variant of this result by obtaining a Gröbner basis under a certain
term order. Their result is utilized to compute the initial ideal and consequently the Hilbert series of the
presentation ideal which is the general form of our Proposition 4.1(d).

The third main result of this work, as an eventual outcome of these methods, is a proof of the
Cohen–Macaulay property of the Rees algebra of I (see Theorem 4.9).

The typical argument in the proofs is induction on the size or rank of the arrangements. Here we draw
heavily on the operations of deletion and contraction of an arrangement. In particular, we introduce a
variant of a multiarrangement that allows repeated linear forms to be tagged with arbitrarily different
coefficients. Then the main breakthrough consists in getting a precise relation between the various ideals
or algebras attached to the original arrangement and those attached to the minors.

One of the important facts about the Orlik–Terao algebra is that it is Cohen–Macaulay, as proven by
Proudfoot and Speyer [2006]. Using a recent result of W. Vasconcelos and one of us, we recover this
result as a consequence of the Cohen–Macaulay property of the Rees algebra.

The structure of this paper is as follows. The first section is an account of the needed preliminaries
from commutative algebra. The second section expands on highlights of the settled literature about the
Orlik–Terao ideal as well as a tangential discussion on the so-called nonlinear invariants of our ideals such
as the reduction number and analytic spread. The third section focuses on the ideal of (n−1)-fold products
and the associated algebraic constructions. The last section is devoted to the statements and proofs of
the main theorems where we draw various results from the previous sections to establish the arguments.

1. Ideal theoretic notions and blowup algebras

The blow up algebra of an ideal I in a ring R is the R-algebra

R(I ) :=
⊕
i≥0

I i .
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This is a standard R-graded algebra with R(I )0 = R, where multiplication is induced by the internal
multiplication rule I r I s

⊂ I r+s. One can see that there is a graded isomorphism R[I t] 'R(I ), where
R[I t] is the homogeneous R-subalgebra of the standard graded algebra of polynomials R[t] in one variable
over R, generated by the elements at, a ∈ I, of degree 1. The algebra R[I t] is known as the Rees algebra of
the ideal I. Because of the mentioned isomorphism between them, we will often identify these two algebras.

Quite generally, fixing a set of generators of I determines a surjective homomorphism of R-algebras
from a polynomial ring over R to R[I t]. The kernel of such a map is called a presentation ideal of R[I t].
In this generality, even if R is Noetherian (so I is finitely generated) the notion of a presentation ideal is
quite loose.

In this work we deal with a special case in which R = k[x1, . . . , xk] is a standard graded polynomial
ring over a field k and I = 〈g1, . . . , gn〉 is an ideal generated by forms g1, . . . , gn of the same degree.
Let T = R[y1, . . . , yn] = k[x1, . . . , xk; y1, . . . , yn], a standard bigraded k-algebra with deg xi = (1, 0)
and deg y j = (0, 1). Using the given generators to obtain an R-algebra homomorphism

ϕ : T = R[y1, . . . , yn] → R[I t], yi 7→ gi t,

yields a presentation ideal I which is bihomogeneous in the bigrading of T. Therefore, R[I t] acquires
the corresponding bigrading.

Changing k-linearly independent sets of generators in the same degree amounts to effecting an
invertible k-linear map, so the resulting effect on the corresponding presentation ideal is pretty much
under control. For this reason, we will by abuse talk about the presentation ideal of I by fixing a particular
set of homogeneous generators of I of the same degree. Occasionally, we may need to bring in a few
superfluous generators into a set of minimal generators.

Since the given generators have the same degree, they span a linear system defining a rational map

8 : Pk−1 99K Pn−1, (1)

by the assignment x 7→ (g1(x) : · · · : gn(x)), when some gi (x) 6= 0.
The ideal I is often called the base ideal (to agree with the base scheme) of 8. Asking when 8 is

birational onto its image is of interest and we will briefly deal with it as well. Again note that changing to
another set of generators in the same degree will not change the linear system thereof, defining the same
rational map up to a coordinate change at the target.

The Rees algebra brings along other algebras of interest. In the present setup, one of them is the special
fiber F(I ) := R[I t]⊗R R/m'

⊕
s≥0 I s/mI s, where m= 〈x1, . . . , xk〉 ⊂ R. The Krull dimension of the

special fiber `(I ) := dimF(I ) is called the analytic spread of I.
The analytic spread is a significant notion in the theory of reductions of ideals. An ideal J ⊂ I is said

to be a reduction of I if I r+1
= J I r for some r . Most notably, this is equivalent to the condition that

the natural inclusion R[J t] ↪→ R[I t] is a finite morphism. The smallest such r is the reduction number
rJ (I ) with respect to J . The reduction number of I is the infimum of all rJ (I ) for all minimal reductions
J of I ; this number is denoted by r(I ).
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Geometrically, the relevance of the special fiber lies in the following result, which we isolate for easy
reference:

Lemma 1.1. Let 8 be as in (1) and I its base ideal. Then the homogeneous coordinate ring of the image
of 8 is isomorphic to the special fiber F(I ) as graded k-algebras.

To see this, note that the Rees algebra defines a biprojective subvariety of Pk−1
×Pn−1, namely the

closure of the graph of 8. Projecting down to the second coordinate recovers the image of 8. At the level
of coordinate rings this projection corresponds to the inclusion k[Id t] = k[g1t, . . . , gnt] ⊂ R[I t], where
g1, . . . , gn are forms of the degree d; this inclusion is a split k[Id t]-module homomorphism with mR[I t]
as direct complement. Therefore, one has an isomorphism of k-graded algebras k[Id ] ' k[Id t] ' F(I ).

As noted before, the presentation ideal of R[I t]

I =
⊕

(a,b)∈N×N

I(a,b),

is a bihomogeneous ideal in the standard bigrading of T. Two basic subideals of I are 〈I(0,−)〉 and 〈I(−,1)〉,
and they come in as follows.

Consider the natural surjections

T

ψ

44
ϕ // R[I t]

⊗R R/m// F(I ) ,

where the kernel of the leftmost map is the presentation ideal I of R[I t]. Then we have

F(I )'
T

kerψ
'

T
〈kerϕ|(0,−),m〉

'
k[y1, . . . , yn]

〈I(0,−)〉
.

Thus, 〈I(0,−)〉 is the homogeneous defining ideal of the special fiber (or, as explained in Lemma 1.1, of
the image of the rational map 8).

As for the second ideal 〈I(−,1)〉, one can see that it coincides with the ideal of T generated by the biforms
s1 y1+· · ·+sn yn ∈T, whenever (s1, . . . , sn) is a syzygy of g1, . . . , gn of certain degree in R. Thinking about
the one-sided grading in the y’s, there is no essential harm in denoting this ideal simply by I1. Thus, T/I1

is a presentation of the symmetric algebra S(I ) of I. It yields a natural surjective map of R-graded algebras

S(I )' T/I1� T/I 'R(I ).

As a matter of calculation, one can easily show that I = I1 : I∞, the saturation of I1 with respect to I.
The ideal I is said to be of linear type provided I = I1, i.e., when the above surjection is injective. It

is said to be of fiber type if I = I1+〈I(0,−)〉 = 〈I1, I(0,−)〉.
A basic homological obstruction for an ideal to be of linear type is the so-called G∞ condition of Artin

and Nagata [1972], also known as the F1 condition [Herzog et al. 1983]. A weaker condition is the so-
called Gs condition, for a suitable integer s. All these conditions can be stated in terms of the Fitting ideals
of the given ideal or, equivalently, in terms of the various ideals of minors of a syzygy matrix of the ideal.
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In this work we will have a chance to use condition Gk , where k = dim R <∞. Given a free presentation

Rm ϕ
→ Rn

→ I → 0

of an ideal I ⊂ R, the Gk condition for I means that

ht(Ip(ϕ))≥ n− p+ 1, for p ≥ n− k+ 1, (2)

where It(ϕ) denotes the ideal generated by the t-minors of ϕ. Note that nothing is required about the
values of p strictly smaller than n− k+ 1, since for such values one has n− p+ 1> k = dim R, which
makes the same bound impossible.

A useful method to obtain new generators of I from old generators (starting from generators of I1) is via
Sylvester forms (see [Hong et al. 2012, Proposition 2.1]), which has classical roots as the name indicates. It
can be defined quite generally as follows: Let R :=k[x1,...,xk], and let T := R[y1,...,yn] as above. Given
F1,...,Fs ∈ I, let J be the ideal of R generated by all the coefficients of the Fi , the so-called R-content
ideal. Suppose J = 〈a1,...,aq〉, where ai are forms of the same degree. Then we have the matrix equation

F1

F2
...

Fs

= A ·


a1

a2
...

aq

 ,
where A is an s× q matrix with entries in T.

If q ≥ s and if the syzygies on F ′i s are in mT, then the determinant of any s × s minor of A is an
element of I. These determinants are called Sylvester forms. The main use in this work is to show that
the Orlik–Terao ideal is generated by such forms (Proposition 3.5).

The last invariant we wish to comment on is the reduction number r(I ). For convenience, we state the
following result:

Proposition 1.2. With the above notation, suppose that the special fiber F(I ) is Cohen–Macaulay. Then
the reduction number r(I ) of I coincides with the Castelnuovo–Mumford regularity reg(F(I )) of F(I ).

Proof. By [Vasconcelos 2005, Proposition 1.85], when the special fiber is Cohen–Macaulay, one can read
r(I ) off the Hilbert series. Write

HS(F(I ), s)=
1+ h1s+ h2s2

+ · · ·+ hr sr

(1− s)d
,

with hr 6= 0 and d = `(I ), the dimension of the fiber (analytic spread). Then, r(I )= r .
Since F(I )' S/〈I(0,−)〉, where S := k[y1, . . . , yn], we have that F(I ) has a minimal graded S-free

resolution of length equal to m := ht〈I(0,−)〉, and reg(F(I ))= α−m, where α is the largest shift in the
minimal graded free resolution, occurring also at the end of this resolution. These last two statements
mentioned here come from the Cohen–Macaulayness of F(I ).

The additivity of Hilbert series under short exact sequences of modules, together with the fact that
HS(Su(−v), s)= usv/(1− s)n gives that r +m = α = m+ reg(F(I )), so r(I )= reg(F(I )). �
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2. Hyperplane arrangements

Let A = {H1, . . . , Hn} ⊂ Pk−1 be a central hyperplane arrangement of size n and rank k. Here Hi =

ker(`i ), i = 1, . . . , n, where each `i is a linear form in R := k[x1, . . . , xk] and 〈`1, . . . , `n〉 = m :=

〈x1, . . . , xk〉. From the algebraic viewpoint, there is a natural emphasis on the linear forms `i and the
associated ideal theoretic notions.

Deletion and contraction are useful operations on A. Fixing an index 1≤ i ≤ n, one introduces two
new minor arrangements:

A′ =A \ {Hi } (deletion), A′′ =A′ ∩ Hi := {H j ∩ Hi | 1≤ j ≤ n , j 6= i} (contraction).

Clearly, A′ is a subarrangement of A of size n−1 and rank at most k, while A′′ is an arrangement of size
≤ n− 1 and rank k− 1. Contraction comes with a natural multiplicity given by counting the number of
hyperplanes of A′ that give the same intersection. A modified version of such a notion will be thoroughly
used in this work.

The following notion will play a substantial role in some inductive arguments throughout the paper: `i

is called a coloop if the rank of the deletion A′ with respect to `i is k− 1, i.e., drops by one. This simply
means that

⋂
j 6=i H j is a line rather than the origin in Ak. Otherwise, we say that `i is a noncoloop.

2A. The Orlik–Terao algebra. One of our motivations is to clarify the connections between the Rees
algebra and the Orlik–Terao algebra which is an important object in the theory of hyperplane arrangements.
We state the definition and review some of its basic properties below.

Let A ⊂ Pk−1 be a hyperplane arrangement as above. Suppose ci1`i1 + · · · + cim`im = 0 is a linear
dependency among m of the linear forms defining A, denoted D. Consider the following homogeneous
polynomial in S := k[y1, . . . , yn]:

∂D :=
m∑

j=1

ci j

m∏
j 6=k=1

yik . (3)

Note that deg(∂D)= m− 1.
The Orlik–Terao algebra of A is the standard graded k-algebra

OT(A) := S/∂(A),

where ∂(A) is the ideal of S generated by {∂D | D a dependency of A}, with ∂D as in (3), called the
Orlik–Terao ideal. This algebra was introduced in [Orlik and Terao 1994] as a commutative analog of the
classical combinatorial Orlik–Solomon algebra, in order to answer a question of Aomoto. The following
remark states a few important properties of this algebra and related constructions.

Remark 2.1. (i) Recalling that a circuit is a minimally dependent set, one has that ∂(A) is generated
by ∂C, where C runs over the circuits of A [Orlik and Terao 1994]. In addition, these generators
form an universal Gröbner basis for ∂(A) [Proudfoot and Speyer 2006].

(ii) OT(A) is Cohen–Macaulay [Proudfoot and Speyer 2006].
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(iii) OT(A) ' k[1/`1, . . . , 1/`n], a k-dimensional k-subalgebra of the field of fractions k(x1, . . . , xk)

[Schenck and Tohǎneanu 2009; Terao 2002]. The corresponding projective variety is called the
reciprocal plane and it is denoted by L−1

A .

(iv) Although the Orlik–Terao algebra is sensitive to the linear forms defining A, its Hilbert series only
depends on the underlying combinatorics [Terao 2002]. Let

π(A, s)=
∑

F∈L(A)

µA(F)(−s)r(F)

be the Poincaré polynomial where µA denotes the Möbius function, r is the rank function and F
runs over the flats of A. Then we have

HS(OT(A), s)= π
(
A,

s
1− s

)
.

See [Orlik and Terao 1994] for details and [Terao 2002; Berget 2010] for proofs of the above
statement.

(v) Let V ⊂ Pn−1 be a (k− 1)-dimensional projective subspace that realizes A, in the sense that Hi ∈A
is identified with the intersection of the i-th coordinate hyperplane in Pn−1 with V.

Consider the Cremona map Crem :Pn−1 99KPn−1, (z1, . . . , zn) 7→ (z−1
1 , . . . , z−1

n ) and let U (A)=
V \

⋃n
i=1 Hi be the complement of A in V. Under this setup, one obtains a related formulation of

the blowup, here denoted by Ṽ, as the closure of the graph of the restriction of the Cremona map
to U (A). Huh and Katz [2012] give a formula for the cohomology class of Ṽ as an element of the
Chow ring C H(Pn−1

×Pn−1)= Z[a, b]/〈an, bn
〉, where the coefficients come from the Poincaré

polynomial after a change of variables:

skπ(A,−1/s)
s− 1

=

k−1∑
i=0

(−1)iµi sk−1−i , [Ṽ ] =
k∑

i=0

µi
[Pk−1−i

×Pi
].

2B. Ideals of products from arrangements. Let A= {`1, . . . , `n} denote a central arrangement in Pk−1,
n≥ k, and let (as always throughout this paper) R := k[x1, . . . , xk]. Denoting [n] := {1, . . . , n}, if S⊂ [n],
then we set `S :=

∏
i∈S `i , `∅ := 1. Also set Sc

:= [n] \ S.
Let S := {S1, . . . , Sm}, where S j ⊆ [n] are subsets of the same size e. We are interested in studying

the Rees algebras of ideals of the form

IS := 〈`S1, . . . , `Sm 〉 ⊂ R. (4)

Example 2.2. (i) (The Boolean case) Let n= k and `i = xi , i = 1, . . . , k. Then the ideal IS is monomial
for any S. In the simplest case where e = n− 1, it is the ideal of the partial derivatives of the monomial
x1 · · · xk — also the base ideal of the classical Möbius involution. For e = 2 the ideal becomes the edge
ideal of a simple graph with k vertices. In general, it gives a subideal of the ideal of paths of a given
length on the complete graph and, as such, it has a known combinatorial nature.
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(ii) ((n− 1)-fold products) Here one takes S1 := [n] \ {1}, . . . , Sn := [n] \ {n}. We will designate the
corresponding ideal by In−1(A). This case will be the main concern of the paper and will be fully
examined in the following sections.

(iii) (a-fold products) This is a natural extension of (ii), where Ia(A) is the ideal generated by all distinct
a-products of the linear forms defining A. The commutative algebraic properties of these ideals connect
strongly to properties of the linear code built on the defining linear forms; see [Anzis et al. 2017]. In
addition, the dimensions of the vector spaces generated by a-fold products give a new interpretation to
the Tutte polynomial of the matroid of A; see [Berget 2010].

We can naturally introduce the following algebra

OT (S,A) := k

[
1
`Sc

1

, . . . ,
1
`Sc

m

]
(5)

as a generalized version of the notion mentioned in Remark 2.1(iii).

Proposition 2.3. In the above setup there is a graded isomorphism of k-algebras

k[`S1, . . . , `Sm ] ' k

[
1
`Sc

1

, . . . ,
1
`Sc

m

]
.

Proof. Consider both algebras as homogeneous k-subalgebras of the homogeneous total quotient ring of
the standard polynomial ring R, generated in degrees e and −(d − e), respectively. Then multiplication
by the total product `[d] gives the required isomorphism:

k

[
1
`Sc

1

, . . . ,
1
`Sc

m

]
·`[d]−→ k[`S1, . . . , `Sm ] �

A neat consequence is the following result:

Theorem 2.4. Let A denote a central arrangement of size n, let S := {S1, . . . , Sm} be a collection of
subsets of [n] of the same size and let IS be as in (4). Then the algebra OT (S,A) is isomorphic to
the special fiber of the ideal IS as graded k-algebras. In particular, the Orlik–Terao algebra OT(A) is
graded isomorphic to the special fiber F(I ) of the ideal I = In−1(A) of (n− 1)-fold products of A.

Proof. It follows immediately from Proposition 2.3 and Lemma 1.1. �

Remark 2.5. In the case of the Orlik–Terao algebra, the above result gives an answer to the third
question at the end of [Schenck 2011]. Namely, let k ≥ 3 and consider the rational map 8 as in (1).
Then Theorem 2.4 says that the projection of the graph of 8 onto the second factor coincides with the
reciprocal plane L−1

A (see Remark 2.1(iii)). In addition, the ideal I := In−1(A) has a similar primary
decomposition as obtained in [Schenck 2011, Lemmas 3.1 and 3.2], for arbitrary k ≥ 3. By [Anzis et al.
2017, Proposition 2.2], one gets

I =
⋂

Y∈L2(A)

I (Y )µA(Y ).
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Theorem 2.4 contributes additional information on certain numerical invariants and properties in the
strict realm of commutative algebra and algebraic geometry.

Corollary 2.6. Let I := In−1(A) denote the ideal generated by the (n− 1)-fold products coming from a
central arrangement of size n and rank k.

(a) The special fiber F(I ) of I is Cohen–Macaulay.

(b) The analytic spread is `(I )= k.

(c) The map 8 is birational onto its image.

(d) The reduction number is r(I )≤ k− 1.

Proof. (a) It follows from Theorem 2.4 via Remark 2.1(ii).
(b) It follows by the same token from Remark 2.1(iii).
(c) This follows from [Doria et al. 2012, Theorem 3.2] since the ideal I is linearly presented (see proof

of Lemma 3.1), and `(I )= k, the maximum possible.
(d) Follows from part (a), Proposition 1.2, and [Schenck 2011, Theorem 3.7]. �

The next result is a refinement of part (d) in the corollary above.

Proposition 2.7. Let A be a hyperplane arrangement of rank k and n hyperplanes. Let I := In−1(A).
Then the reduction number of I is r(I )= k− u, where u ≥ 1 is the number of components of A.

Proof. Let r := r(I ), and recall that the Hilbert series of the Orlik–Terao algebra is determined by the
Poincaré polynomial:

HS(OT(A), s)= π
(
A,

s
1− s

)
=

H(s)︷ ︸︸ ︷
1+ h1s+ · · ·+ hr sr

(1− s)k
.

As with any central arrangement, the Poincaré polynomial has the trivial factor (1+ t) and we write
π(A, t) = (1+ t)π(A, t), where bar denotes the reduced Poincaré polynomial. Moreover, if A has a
decomposition as a product of two smaller arrangements, then the Poincaré polynomial splits and we get a
(1+ t) factor for each component, and by a result of Crapo, this is the only way for more (1+ t) factors to
occur. Here, we need the notion of the beta invariant1 of an arrangement: β(A) := |π(A,−1)|. Theorem II
in [Crapo 1967] states that an arrangement is decomposable if and only if its beta invariant is zero.

We have
π
(
A,

s
1− s

)
= π

(
A,

s
1− s

)
/(1− s),

which indicates that only π can contribute to the numerator H(s). If deg H(s) < k− 1, then by undoing
the substitution, we find another (1+ t) factor in the reduced Poincaré polynomial and hence β(A)= 0,
indicating that this happens exactly when A is decomposable. So, when A is indecomposable, the
argument is complete and if it does decompose, then we can apply this argument to each component and
hence the formula. �

1In the case of complex arrangements, this gives the Euler characteristic of the projective complement.
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3. Ideals of (n − 1)-fold products and their blowup algebras

As mentioned in Example 2.2, a special case of the ideal IS, extending the case of the ideal generated
by the (n− 1)-fold products, is obtained by fixing a ∈ {1, . . . , n} and considering the collection of all
subsets of [n] of cardinality a. Then the corresponding ideal is

Ia(A) := 〈`i1 · · · `ia | 1≤ i1 < · · ·< ia ≤ n〉 ⊂ R

and is called the ideal generated by the a-fold products of linear forms of A. The projective schemes
defined by these ideals are known as generalized star configuration schemes. Unfortunately, very few
facts are known about these ideals: if d is the minimum distance of the linear code built from the linear
forms defining A and if 1≤ a ≤ d , then Ia(A)=ma (see [Tohǎneanu 2010, Theorem 3.1]); and the case
when a = n is trivial.

In the case where a = n − 1, some immediate properties are known already, yet the more difficult
questions in regard to the blowup and related algebras have not been studied before. These facets, to be
thoroughly examined in the subsequent sections, are our main endeavor in this work. Henceforth, we will
be working with the following data: A is an arrangement with n ≥ k and for every 1≤ i ≤ n, we consider
the (n− 1)-fold products of the n linear forms defining the hyperplanes of A

fi := `1 · · · ˆ̀i · · · `n ∈ R,

and write

I := In−1(A) := 〈 f1, . . . , fn〉.

Let T = k[x1, . . . , xk, y1, . . . , yn] = R[y1, . . . , yn] as before and denote by I(A, n− 1)⊂ T the presen-
tation ideal of the Rees algebra R[I t] corresponding to the generators f1, . . . , fn .

3A. The symmetric algebra. Let I1(A, n− 1)⊂ T stand for the subideal of I(A, n− 1) presenting the
symmetric algebra S(I ) of I = In−1(A).

Lemma 3.1. With the above notation, one has:

(a) The ideal I = In−1(A) is a perfect ideal of codimension 2.

(b) I1(A, n− 1)= 〈`i yi − `i+1 yi+1 | 1≤ i ≤ n− 1〉.

(c) I1(A, n − 1) is an ideal of codimension k; in particular, it is a complete intersection if and only
if n = k.

Proof. (a) This is well known, but we give the argument for completeness. Clearly, I has codimension 2.
The following reduced Koszul like relations are syzygies of I : `i yi −`i+1 yi+1, 1≤ i ≤ n−1. They alone
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form the following matrix of syzygies of I :

ϕ =


`1
−`2 `2

−`3
. . .

. . . `n−1
−`n

 .
Since the rank of this matrix is n− 1, it is indeed a full syzygy matrix of I ; in particular, I has a linear

resolution
0→ R(−n)n−1 ϕ

→ R(−(n− 1))n→ I → 0.

(b) This is an expression of the details of (a).
(c) Clearly, I1(A, n − 1) ⊂ mT, hence its codimension is at most k. Assuming, as we may, that
{`1, . . . , `k} is k-linearly independent, we contend that the elements s := {`i yi − `i+1 yi+1, 1 ≤ i ≤ k}
form a regular sequence. To see this, we first apply a k-linear automorphism of R to assume that
`i = xi , for 1≤ i ≤ k — this will not affect the basic ideal theoretic invariants associated to I. Then note
that in the set of generators of I1(A, n− 1), the elements of s can be replaced by the following ones:
{xi yi − `k+1 yk+1, 1≤ i ≤ k}. Clearly, this is a regular sequence — for example, because 〈xi yi , 1≤ i ≤ k〉
is the initial ideal of the ideal generated by this sequence, in the revlex order. �

There are two basic ideals that play a distinguished role at the outset. In order to capture both in one
single blow, we consider the Jacobian matrix of the generators of I1(A, n− 1) given in Lemma 3.1(b).
Its transpose turns out to be the stack of two matrices, the first is the Jacobian matrix with respect to
the variables y1, . . . , yn — which coincides with the syzygy matrix φ of I as described in the proof
of Lemma 3.1(a) — while the second is the Jacobian matrix B = B(φ) with respect to the variables
x1, . . . , xk — the so-called Jacobian dual matrix of [Simis et al. 1993]. The offspring are the respective
ideals of maximal minors of these stacked matrices, the first retrieves I, while the second gives an ideal
Ik(B)⊂ S = k[y1, . . . , yn] that will play a significant role below (see also Proposition 4.1) as a first crude
approximation to the Orlik–Terao ideal.

Proposition 3.2. Let S(I )' T/I1(A, n−1) stand for the symmetric algebra of the ideal I of (n−1)-fold
products. Then:

(i) depth(S(I ))≤ k+ 1.

(ii) As an ideal in T, every minimal prime of S(I ) is either mT, the Rees ideal I(A, n− 1) or else has
the form (`i1, . . . , `is , y j1, . . . , y jt ), where 2≤ s ≤ k− 1, t ≥ 1, {i1, . . . , is} ∩ { j1, . . . , jt } =∅, and
`i1, . . . , `is are k-linearly independent.

(iii) The primary components relative to the minimal primes m= (x)T and I(A, n− 1) are radical; in
addition, with the exception of mT, every minimal prime of S(I ) contains the ideal Ik(B).

Proof. (i) Since I(A, n − 1) is a prime ideal which is a saturation of I1(A, n − 1), it is an associated
prime of S(I ). Therefore, depth(S(I ))≤ dimR(I )= k+ 1.
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(ii) Since I(A, n− 1) is a saturation of I1(A, n− 1) by I, one has I(A, n− 1)I t
⊂ I1(A, n− 1), for

some t ≥ 1. This implies that any (minimal) prime of S(I ) in T contains either I or I(A, n− 1). By the
proof of (i), I(A, n− 1) is an associated prime of S(I ), hence it must be a minimal prime thereof since a
minimal prime of S(I ) properly contained in it would have to contain I, which is absurd.

Now, suppose P ⊂ T is a minimal prime of S(I ) containing I. One knows by Lemma 3.1 that m= (x)T
is a minimal prime of S(I ). Therefore, we assume that mT 6⊂ P. Since any minimal prime of I is a complete
intersection of two distinct linear forms of A, P contains at least two, and at most k−1, linearly independent
linear forms of A. On the other hand, since I1(A, n− 1)⊂ P, looking at the generators of I1(A, n− 1)
as in Lemma 3.1(b), by a domino effect principle we finally reach the desired format for P as stated.

(iii) With the notation prior to the statement of the proposition, we claim the following equality:

I1(A, n− 1) : Ik(B)∞ =mT .

It suffices to show for the first quotient as mT is a prime ideal. The inclusion mIk(B)⊂ I1(A, n− 1) is a
consequence of the Cramer rule. The reverse inclusion is obvious because I1(A, n−1)⊂mT implies that
I1(A, n−1) : Ik(B)⊂mT : Ik(B)=mT, as mT is a prime ideal. Note that, as a very crude consequence,
one has Ik(B)⊂I(A, n−1). Now, let P(mT ) denote the primary component of mT in I1(A, n−1). Then

mT = I1(A, n− 1) : Ik(B)∞ ⊂ P(mT ) : Ik(B)∞ = P(mT ).

The same argument goes through for the primary component of I(A, n− 1) using the ideal I instead
of Ik(B).

To see the last statement of the proposition, let P denote the primary component of one of the remaining
minimal primes P of S(I ). Since P : Ik(B)∞ is P-primary and m 6⊂ P, by the same token we get that
Ik(B)⊂ P. �

Remark 3.3. (a) It will be shown in the last section that the estimate in (i) is actually an equality.
As a consequence, every associated prime of S(I ) viewed in T has codimension at most n− 1. This

will give a much better grip on the minimal primes of the form 〈`i1, . . . , `is , y j1, . . . , y jt 〉. Namely, one
must have in addition that s+ t ≤ n− 1 and, moreover, due to the domino effect principle, one must have
s = k− 1, hence t ≤ n− k.

(b) We conjecture that S(I ) is reduced. The property (R0) of Serre’s is easily verified due to the format
of the Jacobian matrix as explained before the above proposition. The problem is, of course, the property
(S1), the known obstruction for the existence of embedded associated primes. The case where n = k+ 1,
is easily determined. Here the minimal primes are seen to be m, 〈x1, . . . , xk−1, yk〉 and the Rees ideal
〈I1(A, k), ∂〉, where ∂ is the relation corresponding to the unique circuit. A calculation will show that the
three primes intersect in I1(A, k). As a side, this fact alone implies that the maximal regular sequence
in the proof of Lemma 3.1(c) generates a radical ideal. For n ≥ k + 2 the calculation becomes sort of
formidable, but we will prove later on that the Rees ideal is of fiber type.

(c) The weaker question as to whether the minimal component of S(I ) is radical seems pliable.
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If the conjectural statement in Remark 3.3(b) is true then, for any linear form ` = `i the following
basic formula holds:

I1(A, n− 1) : `= I(A, n− 1)∩ g
(⋂
`/∈P

P
)
,

where P denotes a minimal prime other that mT and I(A, n−1), as described in Proposition 3.2(i). Thus
one would recover sectors of the Orlik–Terao generators inside this colon ideal. Fortunately, this latter
virtual consequence holds true and has a direct simple proof. For convenience of later use, we state it
explicitly. Let ∂(A|`) denote the subideal of ∂(A) generated by all polynomial relations ∂ corresponding
to minimal dependencies (circuits) involving the linear form ` ∈A.

Lemma 3.4. ∂(A|`)⊂ I1(A, n− 1) : `.

Proof. Say, `= `1. Let D : a1`1+a2`2+· · ·+as`s = 0 be a minimal dependency involving `1, for some
3≤ s ≤ n. In particular, ai 6= 0, i = 1, . . . , s. The corresponding generator of ∂(A|`1) is

∂D := a1 y2 y3 · · · ys + a2 y1 y3 · · · ys + · · ·+ as y1 y2 · · · ys−1.

The following calculation is straightforward:

`1∂D = a1`1 y2 y3 · · · ys + (`1 y1− `2 y2)(a2 y3 · · · ys + · · ·+ as y2 · · · ys−1)

+ `2 y2(a2 y3 · · · ys + · · ·+ as y2 · · · ys−1)

= (a1`1+ a2`2)y2 y3 · · · ys + (`1 y1− `2 y2)(a2 y3 · · · ys + · · ·+ as y2 · · · ys−1)

+ `2 y2(a3 y2 y4 · · · ys + · · ·+ as y2 y3 · · · ys−1)

= (−a3`3− · · ·− as`s)y2 y3 · · · ys + (`1 y1− `2 y2)(a2 y3 · · · ys + · · ·+ as y2 · · · ys−1)

+ `2 y2
2(a3 y4 · · · ys + · · ·+ as y3 · · · ys−1)

= (`1 y1− `2 y2)(a2 y3 · · · ys + · · ·+ as y2 · · · ys−1)+ y2(`2 y2− `3 y3)a3 y4 · · · ys

+ · · ·+ y2(`2 y2− `s ys)as y3 · · · ys−1

= a2 y3 · · · ys(`1 y1− `2 y2)+ a3 y2 y4 · · · ys(`1 y1− `3 y3)+ · · ·+ as y2 · · · ys−1(`1 y1− `s ys).

Hence the result. �

3B. Sylvester forms. The Orlik–Terao ideal ∂(A) has an internal structure of classical flavor, in terms of
Sylvester forms.

Proposition 3.5. The generators ∂(A) of the Orlik–Terao ideal are Sylvester forms obtained from the
generators of the presentation ideal I1(A, n− 1) of the symmetric algebra of I.

Proof. Let D be a dependency ci1`i1 + · · · + cim`im = 0 with all coefficients ci j 6= 0. Let f =
∏n

i=1 `i .
Evaluating the Orlik–Terao element ∂D on the products we have

∂D( f1, . . . , fn)=

m∑
j=1

ci j

f m−1

5m
j 6=k=1`ik

=

m∑
j=1

ci j

f m−1

5m
k=1`ik

`i j =
f m−1

`i1 · · · `im

g(ci1`i1 + · · ·+ cim`im )= 0.
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Therefore, ∂D ∈ I(A, n− 1), and since ∂D ∈ S := k[y1, . . . , yn], then ∂D ∈ 〈I(A, n− 1)(0,−)〉.
For the second part, suppose that the minimal generators of I1(A, n− 1) are

11 := `1 y1− `2 y2, 12 := `2 y2− `3 y3, . . . , 1n−1 := `n−1 yn−1− `n yn.

Without loss of generality suppose ` j = c1`1+· · ·+c j−1` j−1 is some arbitrary dependency D. We have
11

12
...

1 j−1

=


y1 −y2 0 · · · 0 0
0 y2 −y3 · · · 0 0
...

...
...

...
...

0 0 0 · · · y j−2 −y j−1

−c1 y j −c2 y j −c3 y j · · · −c j−2 y j y j−1− c j−1 y j

 ·

`1

`2
...

` j−1

 .
The determinant of the ( j − 1)× ( j − 1) matrix we see above is ±∂D. �

3C. A lemma on deletion. In this and the next parts we build on the main tool of an inductive procedure.
Let A′ =A\ {`1}, and denote n′ := |A′| = n−1. We would like to investigate the relationship between

the Rees ideal I(A′, n′−1) of In′−1(A′) and the Rees ideal I(A, n−1) of In−1(A), both defined in terms
of the naturally given generators.

To wit, we will denote the generators of In′−1(A′) as

f12 := `[n]\{1,2}, . . . , f1n := `[n]\{1,n}.

One can move between the two ideals in a simple manner, which is easy to verify:

In−1(A) : `1 = In′−1(A′).

Note that the presentation ideal I(A′, n′− 1) of the Rees algebra of In′−1(A′) with respect to these
generators lives in the polynomial subring T ′ := R[y2, . . . , yn]⊂T := R[y1, y2, . . . , yn]. From Lemma 3.1,
we know that

I1(A′, n′− 1)T = 〈`2 y2− `3 y3, `3 y3− `4 y4, . . . , `n−1 yn−1− `n yn〉T ⊂ I1(A, n− 1).

Likewise, for the Orlik–Terao ideal (which is an ideal in S′ := k[y2, . . . , yn] ⊂ S := k[y1, y2, . . . , yn]),
one obtains via Theorem 2.4

∂(A′)S = 〈I(A′, n′− 1)(0,−)〉S ⊂ ∂(A)= 〈I(A, n− 1)(0,−)〉.

Lemma 3.6. One has
I(A, n− 1)= 〈`1 y1− `2 y2, I(A′, n′− 1)〉 : `∞1 .

Proof. The inclusion 〈`1 y1− `2 y2, I(A′, n′− 1)〉 : `∞1 ⊂ I (A, n− 1) is clear since we are saturating a
subideal of a prime ideal by an element not belonging to the latter. We note that the codimension of
〈`1 y1− `2 y2, I(A′, n′− 1)〉 exceeds by 1 that of I (A′, n′− 1) since the latter is a prime ideal even after
extending to the ambient ring T. Therefore, by a codimension counting it would suffice to show that the
saturation is itself a prime ideal.
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Instead, we choose a direct approach. Thus, let F ∈ I(A, n− 1) be (homogeneous) of degree d in
variables y1, . . . , yn . We can write

F = yu
1 Gu + yu−1

1 Gu−1+ · · ·+ y1G1+G0, 0≤ u ≤ d,

where G j ∈ k[x1, . . . , xk][y2, . . . , yn], are homogeneous of degree d − j in y2, . . . , yn for j = 0, . . . , u.
Evaluating yi = fi , i = 1, . . . , n we obtain

0= F( f1,..., fn)= `
u
2 f u

12`
d−u
1 Gu( f12,..., f1n)+ ···+ `2 f12`

d−1
1 G1( f12,..., f1n)+ `

d
1 G0( f12,..., f1n).

This means that

`d−u
1

[
`u

2 yu
2 Gu(y2, . . . , yn)+ · · ·+ `

u−1
1 `2 y2G1(y2, . . . , yn)+ `

u
1G0(y2, . . . , yn)︸ ︷︷ ︸

F ′

]
∈ I(A′, n′− 1).

By writing `1 y1 = `1 y1− `2 y2+ `2 y2, it is not difficult to see that

`u
1 F ≡ F ′ mod 〈`1 y1− `2 y2〉,

hence the result. �

3D. Stretched arrangements with coefficients. Recall the notion of contraction and the inherent idea
of a multiarrangement, as mentioned in Section 2. Here we wish to consider such multiarrangements,
allowing moreover the repeated individual linear functionals corresponding to repeated hyperplanes to be
tagged with a nonzero element of the ground field. For lack of better terminology, we call such a new
gadget a stretched arrangement with coefficients. Note that, by construction, a stretched arrangement with
coefficients B has a uniquely defined (simple) arrangement A as support. Thus, if A= {`1, . . . , `n} is a
simple arrangement, then a stretched arrangement with coefficients B is of the form

{b1,1`1, . . . , b1,m1`1︸ ︷︷ ︸
H1=ker `1

, b2,1`2, . . . , b2,m2`2︸ ︷︷ ︸
H2=ker `2

, . . . , bn,1`n, . . . , bn,mn`n︸ ︷︷ ︸
Hn=ker `n

},

where 0 6= bi, j ∈ k and Hi = ker(`i ) has multiplicity mi for any 1≤ i ≤ n, and for convenience, we assume
that bi,1 = 1. We set m := m1+ · · ·+mn , and emphasize the ingredients of a stretched arrangement by
writing B = (A, b) where b is the vector of the above coefficients in the same order.

Proceeding as in the situation of a simple arrangement, we introduce the collection of (m−1)-products
of elements of B and denote Im−1(B) the ideal of R generated by them. As in the simple case, we consider
the presentation ideal I(B,m−1) of Im−1(B) with respect to its set of generators consisting of the (m−1)-
products. The next lemma relates this ideal to the previously considered presentation ideal I(A, n− 1)
of In−1(A) obtained by taking the set of generators consisting of the (n− 1)-products of elements of A.

Lemma 3.7. Let A denote an arrangement and let B = (A, b) denote a stretched arrangement supported
on A, as above. Let G ∈ R stand for the gcd of the (m− 1)-products of elements of B. Then:

(i) The vector of the (m−1)-products of elements of B has the form G · PA, where PA denotes the vector
whose coordinates are the (n−1)-products of the corresponding simple A, each such product repeated
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as many times as the stretching in B of the corresponding linear form deleted in the expression of the
product, and further tagged with a certain coefficient;

(ii) I(B,m − 1) = 〈I(A, n − 1),DA〉, where DA denotes the k-linear dependency relations among
elements of PA.

Proof. The first statement follows from the definition of a stretched arrangement vis-à-vis its support
arrangement. Now, by (i), the Rees algebra of Im−1(B) is isomorphic to the Rees algebra of the ideal
with generating set PA. By the nature of the latter, the second statement is now clear. �

4. The main theorems

We keep the previous notation as in Section 3C, where In−1(A) is the ideal of (n − 1)-fold products
of a central arrangement A of size n and rank k. We had T := R[y1, . . . , yn], with R := k[x1, . . . , xk],
S := k[y1, . . . , yn], and I1(A, n− 1)⊂ I(A, n− 1)⊂ T denote, respectively, the presentation ideals of
the symmetric algebra and of the Rees algebra of I. Recall that from Theorem 2.4, the Orlik–Terao ideal
∂(A) coincides with the defining ideal (I(A, n− 1)(0,−))S of the special fiber algebra of I.

4A. The case of a generic arrangement. Simple conceptual proofs can be given in the case where A is
generic (meaning that any k of the defining linear forms are linearly independent), as follows.

Proposition 4.1. If A= {`1, . . . , `n} ⊂ R = k[x1, . . . , xk] is a generic arrangement, one has:

(a) I := In−1(A) is an ideal of fiber type.

(b) The Rees algebra R[I t] is Cohen–Macaulay.

(c) The Orlik–Terao ideal of A is the 0-th Fitting ideal of the Jacobian dual matrix of I (i.e., the ideal
generated by the k× k minors of the Jacobian matrix of the generators of I1(A, n− 1) with respect
to the variables of R).

(d) Let k = n, i.e., the case of Boolean arrangement. Under the standard bigrading deg xi = (1, 0) and
deg y j = (0, 1), the bigraded Hilbert series of R[I t] is

HS(R[I t]; u, v)=
(1− uv)k−1

(1− u)k(1− v)k
.

Proof. As described in the proof of Lemma 3.1, I is a linearly presented codimension 2 perfect ideal with
syzygy matrix of the following shape

ϕ =


`1

−`2 `2

−`3
. . .

. . . `n−1

−`n

 .
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The Boolean case n = k is well known, so we assume that µ(I )= n > k. We claim that I satisfies the
Gk condition. For this purpose we check the requirement in (2). First note that, for p≥ n−k+1, one has

Ip(ϕ)= Ip(A),

where the rightmost ideal is the ideal generated by all p-fold products of the linear forms defining A,
as in our earlier notation. Because A is generic, it is the support of the codimension (n− p+ 1)-star
configuration Vn−p+1; see [Geramita et al. 2013]. By Proposition 2.9(4) there, the defining ideal of
Vn−p+1 is a subset of Ip(A), hence ht(Ip(A))≥ n− p+ 1. By [Tohǎneanu 2010], any minimal prime of
Ip(A) can be generated by n− p+ 1 elements. Therefore, ht(Ip(A))≤ n− p+ 1, and hence equality.

The three statements now follow from [Morey and Ulrich 1996, Theorem 1.3], where (a) and (c) are
collected together by saying that R[I t] has a presentation ideal of the expected type, quite stronger than
being of fiber type. Note that, as a bonus, the same theorem also gives that `(I )= k and r(I )= k− 1,
which are parts (b) and (d) in Corollary 2.6, when A is generic.

Part (d) follows from an immediate application of [Robbiano and Valla 1998, Theorem 5.11] to the
(k− 1)× k matrix

M =


x1 0 . . . 0 xk

0 x2 . . . 0 xk
...

. . .
... xk

0 0 . . . xk−1 xk

 .
One can verify that the codimension of It(M), the ideal of size t minors of M, is k− t + 2. Note that

their setup is different in that they set deg y j = (n − 1, 1), whereas for us deg y j = (0, 1). To get our
formula we make the substitution in their formula: a↔ u, and an−1b↔ v. �

4B. The fiber type property. In this part we prove one of the main assertions of the section and state a
few structural consequences.

Theorem 4.2. Let A be a central arrangement of rank k ≥ 2 and size n ≥ k. The ideal In−1(A) of
(n− 1)-fold products of A is of fiber type:

I(A, n− 1)= 〈I1(A, n− 1)〉+ 〈I(A, n− 1)(0,−)〉,

as ideals in T, where 〈I(A, n− 1)(0,−)〉S = ∂(A) is the Orlik–Terao ideal.

Proof. We first consider the case where n = k. Then In−1(A) is an ideal of linear type by Lemma 3.1, that
is to say, I(A, n−1)= I1(A, n−1). This proves the statement of the theorem since ∂(A)= 0 in this case.

We now prove the statement by induction on the pairs (n, k), where n > k ≥ 2. In the initial induction
step, we deal with the case k = 2 and arbitrary n> 2 (the argument will even be valid for n= 2). Here one
claims that In−1(A)= 〈x1, x2〉

n−1. In fact, since no two forms of the arrangement are proportional, the
generators of In−1(A) are k-linearly independent because, e.g., dehomogenizing in one of the variables
yields the first n powers of the other variable up to elementary transformations. Also, since these forms
have degree n− 1, they forcefully span the power 〈x1, x2〉

n−1.
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Now, any 〈x1, x2〉-primary ideal in k[x1, x2] automatically satisfies the property G2; see (2). Therefore,
the Rees ideal is of fiber type, and in fact it is of the expected type and Cohen–Macaulay by [Morey
and Ulrich 1996, Theorem 1.3]. In any case, the Rees ideal has long been known in this case, with the
defining ideal of the special fiber generated by the 2-minors of the generic 2× (n− 1) Hankel matrix,
i.e., by the homogeneous defining ideal of the rational normal curve in Pn−1; see [Corsini 1967].

For the main induction step, suppose n > k > 2 and let A′ := A \ {`1} stand for the deletion of `1,
a subarrangement of size n′ := n− 1. Applying a change of variables in the base ring R — which, as
already remarked, does not disturb the ideal-theoretic properties in sight — we can assume that `1 = x1

and `2 = x2. The extended ideals I(A′, n′− 1)T, ∂(A′)S, I1(A′, n′− 1)T will be of our concern. The
following equalities of ideals of T are easily seen to hold:

I1(A, n− 1)= 〈x1 y1− x2 y2, I1(A′, n′− 1)〉 as ideals in T,

∂(A)= 〈∂(A|x1), ∂(A
′)〉, as ideals in S.

(6)

Let F ∈I(A, n−1) be bihomogeneous with degy(F)= d . Suppose that M = xa
1 yb

1 N ∈ T is a monomial
that appears in F, where x1, y1 - N. If a ≥ b, we can write

M = xa−b
1 (x1 y1− x2 y2+ x2 y2)

b N ,

and hence

M ≡ xa−b
1 xb

2 yb
2 N mod 〈x1 y1− x2 y2〉.

If a < b, we have

M = (x1 y1− x2 y2+ x2 y2)
a yb−a

1 N ,

and hence

M ≡ xa
2 ya

2 yb−a
1 N mod 〈x1 y1− x2 y2〉.

Denote R′ := k[x2, . . . , xk] ⊂ R, T ′′ := R′[y2, . . . , yn] ⊂ T ′ := R[y2, . . . , yn] ⊂ T. In any case, one
can write

F = (x1 y1− x2 y2)Q+ xm1
1 P1+ xm2

1 P2+ · · ·+ xmu
1 Pu + Pu+1,m1 > · · ·> mu ≥ 1,

for certain forms Q ∈ T, P1, . . . , Pu ∈ T ′′, and Pu+1 ∈ R′[y1, . . . , yn]= T ′′[y1] of degree d in the variables
y1, . . . , yn . Also

Pu+1 = yv1 Gv + yv−1
1 Gv−1+ · · ·+ y1G1+G0,

where G j ∈ T ′′ and deg(G j )= d− j, j = 0, . . . , v. Let us use the elements we have seen at the beginning
of Section 3C, as generators for In′−1(A′):

f12 := `[n]\{1,2}, . . . , f1n := `[n]\{1,n}.

Since evaluating F ∈ I(A, n− 1) at

y1 7→ f1 = x2`3 · · · `n, y2 7→ f2 = x1 f12, . . . , yn 7→ fn = x1 f1n
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vanishes, upon pulling out the appropriate powers of x1, it yields

0= xm1+d
1 P1( f12, . . . , f1n)+ · · ·+ xmu+d

1 Pu( f12, . . . , f1n)

+ f v1 xd−v
1 Gv( f12, . . . , f1n)+ · · ·+ f1xd−1

1 G1( f12, . . . , f1n)+ xd
1 G0( f12, . . . , f1n).

Suppose first that the rank of A′ is k− 1, i.e., x1 is a coloop. This means that x2 = `2, `3, . . . , `n are
actually forms in the subring R′ = k[x2, . . . .xk]. Since m1+ d > · · ·> mu + d > d > · · ·> d − v,

Pi ( f12, . . . , f1n)= 0, i = 1, . . . , u, G j ( f12, . . . , f1n)= 0, j = 0, . . . , v.

Therefore, Pi ,G j ∈ I(A′, n′− 1), and hence F ∈ 〈x1 y1− x2 y2, I(A′, n′− 1)〉. This shows that

I(A, n− 1)= 〈x1 y1− x2 y2, I(A′, n′− 1)〉

and the required result follows by the inductive hypothesis as applied to I(A′, n′− 1). Suppose now that
the rank of A′ does not drop, i.e., x1 is a noncoloop.

Case 1: v = 0. In this case, after canceling xd
1, we obtain

0= xm1
1 P1( f12, . . . , f1n)+ · · ·+ xmu

1 Pu( f12, . . . , f1n)+G0( f12, . . . , f1n).

Thus,

xm1
1 P1+ xm2

1 P2+ · · ·+ xmu
1 Pu + Pu+1 ∈ I(A′, n′− 1).

Case 2: v ≥ 1. In this case we cancel the factor xd−v
1 in the above equation. This will give

x1 |Gv( f12, . . . , f1n).

At this point we resort to the idea of stretched arrangements with coefficients as developed in Section 3D.
Namely, we take the restriction (contraction) of A to the hyperplane x1 = 0. Precisely, say

`i = ai x1+ `i , where `i ∈ R′, ai ∈ k,

for i = 2, . . . , n. Note that a2 = 0 since `2 = x2. Write

A= {`2, . . . , `n} ⊂ R′,

a stretched arrangement of total multiplicity n = n− 1 with support A′′ of size n′′ ≤ n. Likewise, let

f 12 := `3 · · · `n, . . . , f 1n := `2 · · · `n−1

denote the (n−1)-products of this stretched arrangement. Then, Gv vanishes on the tuple ( f 12, . . . , f 1n)

and since its is homogeneous it necessarily belong to I(A, n− 1). From Lemma 3.7, we have

I(A, n− 1)= 〈I(A′′, n′′− 1),DA〉,

where DA is a linear ideal of the form 〈yi − bi, j y j 〉2≤i, j≤n . Let us analyze the generators of I(A, n− 1).
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• A generator yi − bi, j y j , i, j ≥ 2 of DA comes from the relation ` j = bi, j`i , bi, j ∈ k. Thus, back
in A we have the minimal dependency

` j − a j x1 = bi, j (`i − ai x1),

yielding an element of ∂(A|`1):

y1(yi − bi, j y j )+ (bi, j ai − a j )︸ ︷︷ ︸
ci, j

yi y j .

• Since gcd(`i , ` j )= 1, for 2≤ i < j ≤ n′′+ 1, a typical generator of I1(A′′, n′′− 1) is `i yi − ` j y j ,
that we will rewrite as

`i yi − ` j y j = (`i yi − ` j y j )− x1(ai yi − a j y j ).

• A typical generator of ∂(A′′) is of the form b1 yi2 · · · yis +· · ·+bs yi1 · · · yis−1 coming from a minimal
dependency

b1`i1 + · · ·+ bs`is = 0, i j ∈ {2, . . . , n′′+ 1}.

Since `i j = `i j − ai j x1, we obtain a dependency

b1`i1 + · · ·+ bs`is − (b1ai1 + · · ·+ bsais︸ ︷︷ ︸
α

)x1 = 0.

If α = 0, then
b1 yi2 · · · yis + · · ·+ bs yi1 · · · yis−1 ∈ ∂(A

′),

whereas if α 6= 0, then

−αyi2 · · · yis + y1(b1 yi2 · · · yis + · · ·+ bs yi1 · · · yis−1) ∈ ∂(A|`1).

We have that

Gv =

∑
Es,t(ys − bs,t yt)+

∑
Ai, j (`i yi − ` j y j )+

∑
Bi1,...,is (b1 yi2 · · · yis + · · ·+ bs yi1 · · · yis−1),

where Es,t , Ai, j , Bi1,...,is ∈ T ′′ and s, t, i, j, ik ≥ 2. Then, by using the expressions in the three bullets
above and splicing according to the equality x1 y1 = (x1 y1− x2 y2)+ x2 y2, we get

yv1 Gv = yv−1
1

(∑
Es,t(y1(ys − bs,t yt)+ cs,t ys yt)︸ ︷︷ ︸

∈∂(A|`1 )

−

∑
Es,t cs,t ys yt︸ ︷︷ ︸
∈T ′′

+

∑
Ai, j y1(`i yi − ` j y j )︸ ︷︷ ︸
∈I(A′,n′−1)

−

∑
Ai, j (x1 y1− x2 y2)(ai yi − a j y j )︸ ︷︷ ︸

∈〈x1 y1−x2 y2〉

−

∑
Ai, j x2 y2(ai yi − a j y j )︸ ︷︷ ︸

∈T ′′

+

∑
Bi1,...,is (y1(b1 yi2 · · · yis + · · ·+ bs yi1 · · · yis−1)−αyi2 · · · yis )︸ ︷︷ ︸

∈∂(A|`1 )

+

∑
Bi1,...,isαyi2 · · · yis︸ ︷︷ ︸

∈T ′′

)
.
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Thus, yv1 Gv = yv−1
1 G ′v−1+W, where

G ′v−1 ∈ T ′′, W ∈ 〈x1 y1− x2 y2, ∂(A|`1), I(A
′, n′− 1)〉.

Then returning to our original F, one obtains

F =1+ xm1
1 P1+ · · ·+ xmu

1 Pu + yv−1
1 (G ′v−1+Gv−1︸ ︷︷ ︸

G ′′v−1∈S′′

)+ yv−2
1 Gv−2+ · · ·+G0,

where 1 ∈ 〈x1 y1 − x2 y2, ∂(A|`1), I(A′, n′ − 1)〉 ⊂ I(A, n − 1). The key is that modulo the ideal
〈x1 y1− x2 y2, ∂(A|`1), I(A′, n′− 1)〉, the power of y1 dropped from v to v− 1 in the expression of F.
Iterating, with F( f1, . . . , fn)= 0=1( f1, . . . , fn), will eventually drop further the power of y1 to v− 2.
Recursively we end up with v = 0, which is Case 1 above. This way, we eventually get

I(A, n− 1)= 〈x1 y1− x2 y2, ∂(A|`1), I(A
′, n′− 1)〉.

By the inductive hypothesis as applied to I(A′, n′− 1) and from the two equalities in (6), one gets
the stated result. �

Corollary 4.3. I(A′, n′− 1)= I(A, n− 1)∩ T ′ as ideals in T ′ = R[y2, . . . , yn].

Proof. Recall the notation T ′ := R[y2, . . . , yn] ⊂ T := R[y1, . . . , yn] = T ′[y1] as in the proof of the
previous theorem. Denote J := I(A, n− 1)∩ T ′. We show that J ⊆ I(A′, n′− 1), the other inclusion
being obvious. Let F ∈ J. Then F ∈ T ′ and F ∈ I(A, n− 1). By Theorem 4.2, we can write

F = (`1 y1− `2 y2)P + Q+G, where P ∈ T, Q ∈ ∂(A|`1)T, G ∈ I(A′, n′− 1)T .

By Lemma 3.4,

`1 Q ∈ I1(A, n− 1)= 〈`1 y1− `2 y2, I1(A′, n′− 1)〉.

Therefore,

`1 F = (`1 y1− `2 y2)P ′+G ′, (7)

for suitable P ′ ∈ T, G ′ ∈ I(A′, n′ − 1)T. We write P ′ = yu
1 Pu + · · · + y1 P1 + P0, Pi ∈ T ′, and G ′ =

yv1 Gv + · · ·+ y1G1+G0,G j ∈ T ′. Since G ′ ∈ I(A′, n′− 1)⊂ T ′, setting y1 = 0 in the expression of G ′

gives that G0 ∈ I(A′, n′− 1). Therefore, G−G0 = y1(yv−1
1 Gv + · · ·+G1) ∈ I(A′, n′− 1), and hence

yv−1
1 Gv + · · ·+G1 ∈ I(A′, n′− 1) since I(A′, n′− 1) is prime. Setting again y1 = 0 in this expression

we obtain that G1 ∈ I(A′, n′− 1), and so on, eventually obtaining

G j ∈ I(A′, n′− 1), j = 0, . . . , v.

Suppose u ≥ v. Then, by grouping the powers of y1 we have

`1 F = (−`2 y2 P0+G0)+ (`1 P0− `2 y2 P1+G1)y1+ · · ·+ (`1 Pv−1− `2 y2 Pv +Gv)yv1
+ (`1 Pv − `2 y2 Pv+1)yv+1

1 + · · ·+ (`1 Pu−1− `2 y2 Pu)yu
1 + `1 Pu yu+1

1 .
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Since F ∈ T ′, then `1 F ∈ T ′. Thus, the “coefficients” of y1, y2
1 , . . . , yu+1

1 must vanish. It follows that

Pu = · · · = Pv = 0 and `1 Pv−1 =−Gv ∈ I(A′, n′− 1).

Since I(A′, n′− 1) is a prime ideal, we have Pv−1 ∈ I(A′, n′− 1), and therefore

`1 Pv−2 = `2 y2 Pv−1−Gv−1 ∈ I(A′, n′− 1).

Recursively we get that

Pv−1, Pv−2, . . . , P1, P0 ∈ I(A′, n′− 1).

If u < v, a similar analysis will give the same conclusion that P ′ ∈ I(A′, n′ − 1)T. Therefore, (7)
gives `1 F ∈ I(A′, n′− 1)T, and hence F ∈ I(A′, n′− 1)T by primality of the extended ideal. But then
F ∈ I (A′, n′− 1)T ∩ T ′ = I (A′, n′− 1), as required. �

The next two corollaries help compute the Rees ideal from the symmetric ideal via a simple colon of
ideals.

Corollary 4.4. Let `i ∈A and yi be the corresponding external variable. Then

I(A, n− 1)= I1(A, n− 1) : `i yi .

Proof. Without loss of generality, assume i = 1. The inclusion ⊇ is immediate, since I1(A, n− 1) ⊂
I(A, n− 1), and the Rees ideal I(A, n− 1) is a prime ideal not containing `1 nor y1. For the reverse
inclusion, let F ∈ I(A, n− 1). Then, from Theorem 4.2,

F = G+
∑

D

PD∂D,

where the sum is taken over all minimal dependencies D, and G ∈ I1(A, n− 1).
Obviously, `1 y1G ∈ I1(A, n−1). Also, if ∂D ∈ ∂(A|`1), then, from Lemma 3.4, `1∂D ∈ I1(A, n−1),

hence `1 y1∂D belongs to I1(A, n−1) as well. Suppose ∂D /∈ ∂(A|`1). Since D is a minimal dependency
among the hyperplanes of A, there exists j ∈ {1, . . . , n} such that ∂D ∈ ∂(A|` j ). Thus, `1 y1∂D =
(`1 y1−` j y j )∂D+` j y j∂D belongs to the ideal I1(A, n−1) since each summand belongs to I1(A, n−1),
the first trivially and the second due to Lemma 3.4. �

Since the rank of A is k, after a reordering of the linear forms `1, . . . , `n that define A, we can assume
that the last k linear forms `n−k+1, . . . , `n are linearly independent. With this proviso, one has:

Corollary 4.5. I(A, n− 1)= I1(A, n− 1) :
n−k∏
i=1

`i .

Proof. Since `n−k+1, . . . , `n are k linearly independent linear forms, any minimal dependency that
involves at least one of them, must involve also a linear form ` j , where j ∈ {1, . . . , n− k}. So

∂(A)= ∂(A|`1)+ · · ·+ ∂(A|`n−k ).
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We obviously have I1(A, n− 1)⊆ I1(A, n− 1) :
∏n−k

i=1 `i , and from Lemma 3.4,

∂(A|` j )⊂ I1(A, n− 1) :
n−k∏
i=1

`i , for all j = 1, . . . , n− k.

Then, from Theorem 4.2, one has

I(A, n− 1)⊆ I1(A, n− 1) :
n−k∏
i=1

`i .

The reverse inclusion comes from the fact that I1(A, n−1)⊆ I(A, n−1), and from I(A, n−1) being
a prime ideal with `i /∈ I(A, n− 1). �

In the next statement we denote the extended ideal (I1(A′, n′− 1))T by 〈I1(A′, n′− 1)〉.

Lemma 4.6. Let A′ =A \ {`1} and n′ = |A′| = n− 1. We have

〈I1(A′, n′− 1)〉 : (`1 y1− `2 y2)= 〈I1(A′, n′− 1)〉 : `1.

In particular, when `1 is a coloop, the biform `1 y1− `2 y2 is a nonzero divisor on 〈I1(A′, n′− 1)〉.

Proof. For convenience, let us change coordinates to have `1 = x1 and `2 = x2. Let f ∈ 〈I1(A′, n′− 1)〉 :
(x1 y1− x2 y2). Then f (x1 y1− x2 y2) ∈ 〈I1(A′, n′−1)〉 ⊂ 〈I(A′, n′−1)〉. Since 〈I(A′, n′−1)〉 is a prime
ideal not containing x1 y1− x2 y2, we obtain f ∈ 〈I(A′, n′− 1)〉, and by Theorem 4.2, we have

f = g+ h, g ∈ 〈I1(A′, n′− 1)〉, h ∈ 〈∂(A′)〉.

By multiplying this by x1 y1− x2 y2, we get that

(x1 y1− x2 y2)h ∈ 〈I1(A′, n′− 1)〉.

By Corollary 4.4, since h ∈ 〈∂(A′)〉 ⊂ 〈I(A′, n′− 1)〉, and x2 ∈A′, we have x2 y2h ∈ 〈I1(A′, n′− 1)〉. So
h ∈ 〈I1(A′, n′−1)〉 : x1 y1, and together with f = g+h with g ∈ 〈I1(A′, n′−1)〉 ⊂ 〈I1(A′, n′−1)〉 : x1 y1,
gives

f ∈ 〈I1(A′, n′− 1)〉 : x1 y1.

Conversely, let 1 ∈ 〈I1(A′, n′−1)〉 : x1 y1. Then x1 y11 ∈ 〈I1(A′, n′−1)〉 ⊆ 〈I(A′, n′−1)〉. The ideal
〈I(A′, n′− 1)〉 is a prime ideal, and x1 y1 /∈ 〈I(A′, n′− 1)〉, so 1 ∈ 〈I(A′, n′− 1)〉. So, by Corollary 4.4,
x2 y21 ∈ 〈I1(A′, n′− 1)〉. Therefore

(x1 y1− x2 y2)1= x1 y11− x2 y21 ∈ 〈I1(A′, n′− 1)〉.

Thus far, we have shown that 〈I1(A′, n′− 1)〉 : (`1 y1− `2 y2)= 〈I1(A′, n′− 1)〉 : x1 y1. Clearly, the right
hand side is the same as 〈I1(A′, n′− 1)〉 : x1 since y1 is a nonzero divisor on 〈I1(A′, n′− 1)〉. �
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4C. The Cohen–Macaulay property. In this part the goal is to prove that the Rees algebra is Cohen–
Macaulay. Since we are in a graded setting, this is equivalent to showing that its depth with respect to the
maximal graded ideal 〈m, y1, . . . , yn〉 is (at least) k+ 1= dim R[I t].

This will be accomplished by looking at a suitable short exact sequence, where two of the modules
will be examined next. We state the results in terms of depth since this notion is inherent to the Cohen–
Macaulay property, yet the proofs will take the approach via projective (i.e., homological) dimension. By
the Auslander–Buchsbaum equality, we are home anyway. Throughout, pdimT will denote projective
dimension over the polynomial ring T. Since we are in a graded situation, this is the same as the projective
dimension over the local ring T(m,y1,...,yn), so we may harmlessly proceed.

The first module is obtained by cutting the binomial generators of I1(A, n − 1) into its individual
terms. The result may be of interest on its own.

Lemma 4.7. Let `1, . . . , `n ∈ k[x1, . . . , xk] be linear forms, allowing some of them to be mutually
proportional. Let T := k[x1, . . . , xk; y1, . . . , yn]. Then

depth
( T
〈`1 y1, `2 y2, . . . , `n yn〉

)
≥ k.

Proof. If k = 1, the claim is clearly satisfied, since 〈x1 y1, . . . , x1 yn〉 = x1〈y1, . . . , yn〉, and {y1, . . . , yn}

is a T -regular sequence. Assume k ≥ 2.
We will use induction on n ≥ 1 to show that the projective dimension is at most n + k − k = n. If

n = 1, the ideal 〈`1 y1〉 is a principal ideal, hence the claim is true. Suppose n > 1. We may apply a
k-linear automorphism on the ground variables, which will not disturb the projective dimension. Thus,
say, `1 = x1 and this form is repeated s times. Since nonzero coefficients from k tagged to x1 will not
change the ideal in question, we assume that `i = x1, for 1≤ i ≤ s, and gcd(x1, ` j )= 1, for s+1≤ j ≤ n.
Write ` j = c j x1+ ` j , for s+ 1≤ j ≤ n, with c j ∈ k, and 0 6= ` j ∈ k[x2, . . . , xk].

Denoting J := 〈x1 y1, . . . , x1 ys, `s+1 ys+1, . . . , `n yn〉, we claim that

J : x1 = 〈y1, . . . , ys, `s+1 ys+1, . . . , `n yn〉. (8)

This is certainly the expression of a more general result, but we give a direct proof here. One inclusion
is obvious. For the reverse inclusion, let F ∈ 〈x1 y1, . . . , x1 ys, `s+1 ys+1, . . . , `n yn〉 : x1. Then, say,

x1 F = x1

s∑
i=1

Pi yi +

n∑
j=s+1

Pj` j y j ,

for certain Pi , Pj ∈ T. Rearranging we have

x1

(
F −

s∑
i=1

Pi yi −

n∑
j=s+1

c j Pj y j

)
=

n∑
j=s+1

Pj` j y j . (9)
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Since x1 is a nonzero divisor in T/〈`s+1 ys+1, . . . , `n yn〉, the second factor of the left hand side in (9)
must be of the form

n∑
j=s+1

Q j` j y j , Q j ∈ T .

Substituting in (9) we find Pj = x1 Q j , s + 1 ≤ j ≤ n, and hence F =
∑s

i=1 Pi yi +
∑n

j=s+1 Q j` j y j ,
as claimed. Computing projective dimensions with respect to T and T ′ = k[x1, . . . , ys+1, . . . , yn] and
applying the inductive hypothesis, one has

pdimT

( T
J : x1

)
= s+ pdimT ′

( T ′

〈`s+1 ys+1, . . . , `n yn〉

)
≤ s+ (n− s)= n.

At the other end, we have 〈x1, J 〉 = 〈x1, `s+1 ys+1, . . . , `n yn〉. Applying the inductive hypothesis this
time around gives

pdimT

( T
〈x1, J 〉

)
≤ 1+ (n− s)≤ n.

From the short exact sequence of T -modules

0→ T/(J : x1)
·x1
→ T/J → T/〈x1, J 〉 → 0,

knowingly the projective dimension of the middle term does not exceed the maximum of the projective
dimensions of the two extreme terms. Therefore, pdimT (T/J )≤ n, as was to be shown. �

The difficult result of this section is the following exact invariant of the symmetric algebra S(I ) '
T/〈I1(A, n− 1)〉:

Proposition 4.8. Let I = In−1(A) as before. Then depth(S(I ))= k+ 1.

Proof. By Proposition 3.2(i), it suffices to prove the lower bound depth(S(I ))≥ k+ 1. As in the proof of
Theorem 4.2, we argue by induction on all pairs n, k, with n ≥ k ≥ 2, where n and k are, respectively, the
size and the rank of A. If k = 2 and n > 2, let R = k[x, y]. As seen in that proof, one has I = 〈x, y〉n−1,
and hence

I1(A, n− 1)= 〈xy1− yy2, xy2− yy3, . . . , xyn−1− yyn〉.

A direct calculation shows that {y1, x + yn, y + yn−1} is a regular sequence modulo I1(A, n − 1). If
n = k, the ideal I1(A, n − 1) is a complete intersection by Lemma 3.1. Thus, for the main inductive
step suppose n > k > 2. We will equivalently show that pdimT (S(I )) ≤ n − 1. First apply a change
of ground variables so as to have `1 = x1 and `2 = x2; let A′ := A \ {x1} denote the deletion. Since
I1(A, n− 1)= 〈I1(A′, n′− 1), x1 y1− x2 y2〉, we have the following short exact sequence of T -modules

0→
T

〈I1(A′, n′− 1)〉 : (x1 y1− x2 y2)

·(x1 y1−x2 y2)
−−−−−−−→

T
〈I1(A′, n′− 1)〉

→
T

I1(A, n− 1)
→ 0. (10)

We consider separately the cases where `1 is a coloop or a noncoloop.
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x1 is a coloop: Here the rank of A′ is k − 1 and x1 is altogether absent in the linear forms of the
deletion. Thus, the natural ambient ring of I1(A′, n′− 1) is T ′ := k[x2, . . . , xk; y2, . . . , yn]. In this case,
by Lemma 4.6, the left most nonzero term of (10) becomes

T/〈I1(A′, n′− 1)〉 =
T ′

I1(A′, n′− 1)
[x1, y1],

hence

pdimT (T/〈I1(A′, n′− 1)〉)= pdimT ′(T
′/I1(A′, n′− 1))≤ n′− 1,

by the inductive hypothesis applied to S(In′−1(A′))' T ′/I1(A′, n′− 1). Then, from (10) we have

pdimT (T/I1(A, n− 1))≤max{pdimT (T/〈I1(A′, n′− 1)〉)+ 1, pdimT (T/〈I1(A′, n′− 1)〉)}

≤ (n′− 1)+ 1= n′ = n− 1.

x1 is a noncoloop: This case will occupy us for the rest of the proof. Here T ′ :=k[x1, . . . , xk; y2, . . . , yn]

is the natural ambient ring of the deletion symmetric ideal. By Lemma 4.6, the left most nonzero term of
(10) is T/(〈I1(A′, n′− 1)〉 : x1). Thus, multiplication by x1 gives a similar exact sequence to (10):

0→
T

〈I1(A′, n′− 1)〉 : x1
→

T
〈I1(A′, n′− 1)〉

→
T

〈x1, I1(A′, n′− 1)〉
→ 0. (11)

Suppose for a minute that one has

pdimT

( T
〈x1, I1(A′, n′− 1)〉

)
≤ n′. (12)

Then (11) implies

pdimT

( T
I1(A′, n′− 1) : x1

)
≤max{n′− 1, n′− 1} = n′− 1.

Back to (10) would finally give

pdimT

( T
I1(A, n− 1)

)
≤max{(n′− 1)+ 1, n′− 1} = n′ = n− 1,

proving the required statement of the theorem. Thus, it suffices to prove (12). For this, one sets
〈x1, I1(A′, n′ − 1)〉 = 〈x1, x2 y2 − `3 y3, . . . , `n−1 yn−1 − `n yn〉, where we have written ` j = c j x1 + ` j ,
with c j ∈ k, ` j ∈ k[x2, . . . , xk], for 3≤ j ≤ n. Then,

pdimT

( T
〈x1, I1(A′, n′− 1)〉

)
= 1+ pdimT ′

( T ′

〈x2 y2− `3 y3, . . . , `n−1 yn−1− `n yn〉

)
. (13)

Let A= {x2, `3, . . . , `n} denote the corresponding stretched arrangement and set

J := 〈x2 y2− `3 y3, . . . , `n−1 yn−1− `n yn〉 ⊂ T ′ := k[x2, . . . , xk; y2, . . . , yn].

Claim: pdimT ′(T
′/J )≤ n′− 1.
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If the size of A is = n−1= n′ (i.e., no two linear forms of A are proportional), then J = I1(A, n′−1),
and by the inductive hypotheses pdimT ′(T

′/I1(A, n′− 1))≤ n′− 1. Otherwise, suppose s− 1≥ 2 of the
linear forms of A are mutually proportional. Without loss of generality, say

`3 = d3x2, . . . , `s = ds x2, di ∈ k \ {0}, 3≤ i ≤ s

and
` j = d j x2+ L j , d j ∈ k, 0 6= L j ∈ k[x3, . . . , xk], 4≤ j ≤ n.

Then
J = 〈x2(y2− d3 y3), . . . , x2(y2− ds ys), x2 y2− `s+1 ys+1, . . . , x2 y2− `n yn〉.

We now provide the following estimates:

(a) pdimT ′(T
′/〈x2, J 〉)≤ 1+ (n− s).

(b) pdimT ′(T
′/〈J : x2〉)≤ n′− 1.

For (a), note that 〈x2, J 〉 = 〈x2, Ls+1 ys+1, . . . , Ln yn〉, while from the proof of Lemma 4.7 we have

pdimT ′(T
′/〈x2, J 〉)≤ 1+ (n− s),

since x2 is a nonzero divisor in T ′/〈Ls+1 ys+1, . . . , Ln yn〉. As for (b), we first claim that J : x2 =

〈y2− d3 y3, . . . , y2− ds ys, x2 y2− `s+1 ys+1, . . . , x2 y2− `n yn〉. The proof is pretty much the same as that
of the equality in (8), hence will be omitted. This equality implies that

pdimT ′ g
( T ′

J : x2

)
= s− 2+ pdimT ′′ g

( T ′′

〈x2 y2− `s+1 ys+1, . . . , x2 y2− `n yn〉

)
,

where T ′′ := k[x2, . . . , xk; y2, ys+1, . . . , yn].
Let B := {x2, `s+1, . . . , `n}. With same reasoning for B as for A (i.e., removing proportional linear

forms), we obtain

pdimT ′′ g
( T ′′

〈x2 y2− `s+1 ys+1, . . . , x2 y2− `n yn〉

)
≤ (n− s+ 1)− 1= n− s,

and therefore

pdimT ′ g
( T ′

J : x2

)
≤ s− 2+ n− s = n− 2= n′− 1.

Drawing on the estimates (a) and (b) above, the exact sequence of T ′-modules

0→ T ′/(J : x2)→ T ′/J → T ′/〈x2, J 〉 → 0,

gives that
pdimT ′(T

′/J )≤max{n′− 1, 2+ n′− s} ≤ n′− 1,

since s ≥ 3. Rolling all the way back to (13), we have proved that

pdimT g
( T
〈x1, I1(A′, n′− 1)〉

)
≤ 1+ (n′− 1)= n′,

as required. �
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The main result now follows quite smoothly.

Theorem 4.9. The Rees algebra of In−1(A) is Cohen–Macaulay.

Proof. From Corollary4.4 we have the following short exact sequence of T -modules

0→
T

I(A, n− 1)
→

T
I1(A, n− 1)

→
T

〈I1(A, n− 1), `1 y1〉
→ 0.

By Proposition 4.8, the depth of the middle module is k+1, while by Lemma 4.7 that of the right most
module is at least k — in fact, by the domino effect one has 〈I1(A,n−1),`1 y1〉= 〈`1 y1,`2 y2,...,`n yn〉. By
standard knowledge, the depth of the left most module is at least that of the middle module, namely, k+1. �

A consequence is an alternative proof of a result of Proudfoot and Speyer [2006]:

Corollary 4.10. Let A be any central arrangement. Then the associated Orlik–Terao algebra is Cohen–
Macaulay.

Proof. As we have seen, the Orlik–Terao algebra is the special fiber of the ideal I = In−1(A). Since I is a
homogeneous ideal generated in one single degree, then its special fiber is identified with the k-subalgebra
k[I t] of the Rees algebra R[I t] of I and, as such, it is a direct summand as a k[I t]-module. In this
situation W. Vasconcelos and one of us have shown that the Cohen–Macaulay property of R[I t] transfers
to k[I t]. A proof of the latter result is given in [Ramos and Simis 2017, Proposition 3.10] for the case
where k = 3. The proof for arbitrary k is the same. �
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