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Continuity of the Green function in
meromorphic families of polynomials

Charles Favre and Thomas Gauthier

We prove that along any marked point the Green function of a meromorphic family of polynomials
parametrized by the punctured unit disk is the sum of a logarithmic term and a continuous function.

Introduction

Our aim is to analyze in detail the degeneration of the Green function of a meromorphic family of
polynomials. Our main result is somewhat technical but is the key for applications in the study of
algebraic curves in the parameter space of polynomials using techniques from arithmetic geometry. In
particular it applies to the dynamical André–Oort conjecture for algebraic curves in the moduli space of
polynomials [Baker and De Marco 2013; Ghioca and Ye 2017; Favre and Gauthier 2018] and to the problem
of unlikely intersection [Baker and DeMarco 2011]. We postpone to another paper these applications.

Let us describe our setup. We fix any algebraically closed complete metrized field (k, |·|). In the
applications we have in mind, the field k is either the field of complex numbers, or the p-adic field Cp.
In particular, the norm |·| may be either Archimedean or non-Archimedean.

Let P be any polynomial of degree d ≥ 2 with coefficients in k. Recall that the sequence of functions
1

dn log max{1, |Pn
|} converges uniformly on k to a continuous function gP which satisfies the invariance

property gP ◦ P = dgP . The function gP is also continuous as a function of P when the polynomial ranges
over the set of polynomials of degree d. Our analysis gives precise information on the behavior of gP

when P degenerates.
More precisely, denote by D= {|z|< 1} the open unit disk in the affine line over k, and let O(D) be

the set of analytic functions on D. A function f belongs to O(D) if it can be expanded as a power series
f (t) =

∑
i≥0 ai t i with the condition that

∑
i≥0|ai |ρ

i <∞ when k is Archimedean and |ai |ρ
i
→ 0 as

i→∞ when k is non-Archimedean, for all ρ < 1. Observe that a function f belongs to O(D)[t−1
] if

and only if it is a meromorphic function on D with (at worst) a single pole at 0.
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Given any meromorphic family Pt ∈O(D)[t−1
][z] of polynomials of degree d≥2, and any marked point

a(t) ∈O(D)[t−1
], it follows from [DeMarco 2016, §3] that gPt (a(t))∼ α log|t |−1 for some nonnegative

constant α (see also [Favre 2016] for a generalization of this fact to higher dimension).

Main Theorem. For any meromorphic family P ∈O(D)[t−1
][z] of polynomials of degree d ≥ 2 and for

any function a(t) ∈O(D)[t−1
], there exists a nonnegative rational number α ∈Q+ such that the function

h(t) := gPt (a(t))−α log|t |−1

on D∗ extends continuously across the origin. Moreover, one of the following occurs:

(1) There exists an affine change of coordinates depending analytically on t conjugating Pt to Qt such
that the family Q is analytic and deg(Q0)= d, and the constant α vanishes.

(2) The constant α is strictly positive and h is harmonic in a neighborhood of 0.

(3) The constant α vanishes and h(0)= 0.

This result was previously known only for polynomials of degree 3 with a marked critical point, see
[Ghioca and Ye 2017, Theorem 3.3]. Indeed the core of the proof is the continuity of h(t) when the
constant α is zero and we follow their line of arguments at this crucial step.

Observe that our main theorem fails for meromorphic families of rational maps. DeMarco and Okuyama
have recently constructed a meromorphic family of rational maps of degree 2 with a critical marked point
for which the continuity statement does not hold. The rationality of the coefficient α also fails for rational
maps, as shown by DeMarco and Ghioca [2016].

Suppose that k is of characteristic zero. Recall that the equilibrium measure µP of a polynomial P
of degree d ≥ 2 is the limit of the sequence of averaged pull-backs µP := limn→∞ d−n Pn∗δx on the
Berkovich projective line over k for all x but at most two exceptions, see [Favre and Rivera-Letelier 2010]
in the non-Archimedean case and [Brolin 1965] in the complex case. It is a P-invariant probability measure
whose support is the Julia set, and it integrates the logarithm of the modulus of any nonzero polynomial.
In particular, one can define the Lyapunov exponent L(P) as the integral L(P) =

∫
log|P ′| dµP . By

the Manning–Przytycki’s formula (obtained by Okuyama [2015, §2] in the non-Archimedean case), the
Lyapunov exponent satisfies the formula

L(Pt)= log|d| +
d−1∑
i=1

gPt (ci (t)),

where c1(t), . . . , cd−1(t) denote the critical points of Pt in k counted with multiplicity.
Our Main Theorem then implies:

Corollary 1. For any meromorphic family Pt ∈ O(D)[t−1
][z] of polynomials of degree d ≥ 2 defined

over a field of characteristic zero, there exists a nonnegative rational number λ such that the function
t 7→ L(Pt)− λ log|t |−1 extends continuously through the origin.
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Moreover we have λ > 0 unless there exists an affine change of coordinates depending on t conjugating
Pt to an analytic family of polynomials.

Let C be a smooth connected affine curve defined over a number field K. An algebraic family P
parametrized by C is determined by (d+1)-regular maps αi ∈ K[C] where α0 is invertible (i.e., has no
zero on C) so that Pt(z)= α0(t)zd

+ · · ·+αd(t).
A pair (P, a) with a ∈K[C] is said to be isotrivial if there exists a finite field extension L/K, a finite

branched cover p :C ′→C defined over L and a map φ :C ′×A1
→C ′×A1 of the form φ(t, z)= (t, φt(z))

where φt is an affine map for all t such that both φt ◦ Pt ◦φ
−1
t and φt(a(t)) are independent of t . Finally

a is persistently preperiodic on C if there exist two integers n > m ≥ 0 such that Pn(a) = Pm(a) (as
regular functions on C).

Recall from [Silverman 2007] that for any t in the algebraic closure K of K, one can build a canonical
height function ĥ Pt : K→ R+ such that ĥ Pt ◦ Pt = dĥ Pt and ĥ Pt (b)= 0 if and only if b is preperiodic.

Let us define the height function h P,a on C(K) by setting

h P,a(t) := ĥ Pt (a(t)), for all t ∈ C(K).

Note that h P,a(t)= 0 if and only if a(t) is preperiodic under iteration of Pt .
Our next result shows that this height function is in fact determined by nice geometric data in the sense

of Arakelov theory. We refer to, e.g., the survey [Chambert-Loir 2011] for basics on metrizations on line
bundles and their associated height function.

Denote by C the (unique up to marked isomorphism) smooth projective curve containing C as an open
Zariski dense subset.

Corollary 2. Let C be an irreducible affine curve defined over a number field K. Let P be an algebraic
family parametrized by C and pick any marked point a ∈ K[C]. Assume that the pair (P, a) is not
isotrivial and that a is not persistently preperiodic on C.

Then there exists an integer q ≥ 1 such that the height function q · h P,a is induced by an adelic
semipositive continuous metrization on some ample line bundle L→ C.

Moreover, the global height of the curve C is zero, i.e., h P,a(C)= 0.

Let us explain how we prove our Main Theorem. Basic estimates using the Nullstellensatz imply the
existence of a constant C > 0 such that∣∣ 1

d log max{1, |Pt(z)|} − log max{1, |z|}
∣∣≤ C log|t |−1, (1)

for all 0< |t |< 1
2 and for all z∈k. Using (1), it is not difficult to see that gPt (a(t))=α log|t |−1

+o(log|t |−1)

for some α ∈ R+ [DeMarco 2016, §3]. To get further, we shall interpret the constant α in terms of the
dynamics of the polynomial with coefficients in k((t)) naturally induced by the family Pt .

We endow the ring O(D)[t−1
] with the t-adic norm |·| whose restriction to k is trivial and normalized

by |t | = e−1. Observe that the completion of its field of fraction is the field of Laurent series (k((t)), |·|).
We may then view the family Pt as a polynomial P with coefficients in the complete metrized (k((t)), |·|)
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and consider its dynamical Green function gP : k((t)))→ R+. The marked point a gives rise to a point
a ∈ k((t)), and it follows from the analysis developed in [Favre 2016] that α = gP(a).

Let us first consider the case α > 0. The point a then belongs to the basin of attraction at infinity of P
which implies a(t) to also belong to the basin of attraction at infinity of Pt for all t small enough. To
conclude one then uses the fact that the Green function is the logarithm of the modulus of the Böttcher
coordinate and expand this coordinate as an analytic function in the two parameters z and t . This strategy
was made precise in degree 3 in [Favre and Gauthier 2018; Ghioca and Ye 2017], and we write the details
here in arbitrary degree for the convenience of the reader.

When α = 0 the point a lies in the filled-in Julia set of P. Since k((t)) is discretely valued, results of
Trucco [2014] give strong restrictions on the orbit of a. In Section 1, we give a direct argument showing
that either a lies in the Fatou set of P and belongs to a preperiodic ball under iteration of P; or a lies in
the Julia set of P and the closure of its orbit under P is compact in k((t)).

In the former case, one can make a change of coordinates (depending on t) and assume that Pt(z)=
Q(z) + t Rt(z) where δ = deg(Q) ≤ d. When δ = d the family of polynomial Pt degenerates to a
polynomial of degree d and the Green function gPt (z) is continuous both in z and t . Otherwise δ < d,
and direct estimates show that gPt (a(t))= o(1) as required.

In the latter case, the estimates are more delicate and we follow the arguments of Ghioca and Ye
[2017, Theorem 3.1]. The key observation is the following. Since the closure of the orbit of a is compact,
for any integer l there exists a finite collection of polynomials Q1, . . . , QN such that for all n, one has
Pn

t (a(t)) = Qin (t)+ o(t l+1) for some in ∈ {1, . . . , N }. The proof of gPt (a(t)) = o(1) uses in a subtle
way this approximation result together with (1).

1. Compact orbits of polynomials

In this section we fix a discrete valued complete field (L , |·|). In our applications we shall take L = k((t))
endowed with the t-adic norm normalized by |t | = e−1 < 1 where k is an arbitrary field.

1.1. A criterion for the compactness of polynomial orbits. Let P be any polynomial of degree d ≥ 2
with coefficients in L . Recall that one can find a positive constant C ′ > 0 such that

1
C ′
≤

max{1, |P(z)|}
max{1, |z|}d

≤ C ′, (2)

for all z ∈ L . It follows that the sequence 1
dn log max{1, |Pn

|} converges uniformly on L to a continuous
function gP : L→ R+ such that gP ◦ P = dgP and gP(z)= log|z| + O(1).

Theorem 3. Suppose P ∈ L[z] is a polynomial of degree d ≥ 2, and a is a point in L. Then gP(a) ∈Q+

and one of the following holds:

(1) The iterates of a tend to infinity in L , and gP(a) > 0.

(2) The point a lies in a preperiodic ball B under iteration of P whose radius lies in |L∗|, and gP(a)= 0.
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(3) The closure of the orbit of a in L is compact in (L , |·|), and gP(a)= 0.

Remark. This fact is a direct consequence of the results of Trucco [2014, Proposition 6.7] when the
characteristic of k is zero. We present here a simple proof which does not rely on the delicate combinatorial
analysis done by Trucco in his paper and does not use any assumption on k.

1.2. The tree of closed balls. Let T be the space of closed balls in L; a point in T is a set of the form
B(z0, r) := {z ∈ L , |z− z0| ≤ r} for some z0 ∈ L and some r ∈ |L∗|. The map sending a point z ∈ L to
the ball of center z and radius 0 identifies L with a subset of T . We endow T with the weakest topology
making all evaluation maps Q 7→ |Q(x)| := supx |Q| continuous for all Q ∈ L[T ]. By Tychonov, for any
r ≥ 0 the set {x ∈ T , |T (x)| ≤ r} is compact for this (weak) topology.

Observe that for any closed ball x = B(z, r)∈ T with r ∈ |L∗|, we have diam(x) := supz,z′∈x |z−z′| = r .
Since (L , |·|) is non-Archimedean, any point z′ ∈ x is a center for x so that x = B(z′, diam(x)). Also
any two balls x, x ′ ∈ T are either contained one into the other or disjoint. When x is contained in x ′,
we may write x = B(z, r) and x ′ = B(z, r ′) for some r, r ′ ∈ |L∗|, and one sets d(x ′, x) = |r ′ − r | =
|diam(x ′)− diam(x)|.

Denote by ≤ the partial order relation on T induced by the inclusion, i.e., x ≤ x ′ if and only if the ball
x is included in x ′. For any two balls x = B(z, r) and x ′ = B(z′, r ′) ∈ T , we let x ∨ x ′ be the smallest
closed ball containing both x and x ′, so that

x ∨ x ′ = B(z,max{r, r ′, |z− z′|})= B(z′,max{r, r ′, |z− z′|}).

The distance between any two closed balls x and x ′ is now defined as

d(x, x ′)=max{|diam(x ∨ x ′)− diam(x)|, |diam(x ∨ x ′)− diam(x ′)|} ∈ |L∗|.

The restriction of the distance d to L is the ultradistance induced by the norm |·|.
In the sequel the strong topology refers to the topology on T induced by the ultradistance d . It is not

locally compact unless the residue field L̃ := {|z| ≤ 1}/{|z|< 1} is finite.
Let xn be a sequence of points in L of norm ≤ 1. Its residue classes x̃n are by definition their images

in L̃ under the natural projection {|z| ≤ 1} → L̃ . If the points x̃n are all distinct then for any polynomial
Q =

∑
k≤d ak T k

∈ L[T ] we have |Q(xn)| =max{|ak |} for all n large enough so that xn converges in the
weak topology to the point B(0, 1).

Proposition 4. Let F be any bounded infinite subset of L so that supF |T |<∞. Then

(1) either the weak closure of F is strongly compact,

(2) or one can find a closed ball of positive radius x ∈ T containing infinitely many points xn ∈ F such
that xn→ x.

Proof. Let F be the weak closure of F inside T . Since F is supposed to be bounded, F is weakly compact.
Observe that for any z ∈ L and for any ε > 0, the set BT (z, ε) := {x ∈ T , d(x, z) < ε} is weakly open
since it coincides with BT (z, ε)= {x ∈ T , |(T − z)(x)|< ε}.
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Assume first that F is included in L , and take ε > 0. The previous observation implies that by weak
compactness the covering of F by the family of balls for all z ∈ F admits a finite subcover. It follows
that F is strongly precompact. Since L is complete, F is also complete hence strongly compact.

Assume now that F contains a point x of positive diameter. Up to making an affine change of
coordinates, we may suppose that x = B(0, 1). Since (L , |·|) is discrete, we may find ε > 0 such that
1− ε < |z| < 1+ ε implies |z| = 1. It follows that the set U = {y ∈ T , |T (y)| < 1+ ε} is an open
neighborhood of x , hence it contains infinitely many points of F .

Let us now prove that one can find a sequence of points xn ∈ F ∩U such that xn→ x . We construct
the sequence xn by induction. Choose any x1 ∈ x , and consider the open set

U1 := {y ∈ T , |T (y)|< 1+ ε} ∩ {y ∈ T , |(T − x1)(y)|> 1− ε}.

It is an open neighborhood of x which does not contain x1. We may thus find a point x2 ∈ U1 ∩ F .
Proceeding inductively, we find a sequence of points xn and open neighborhoods Un of x such that

xn ∈Un := {y ∈ T , |T (y)|< 1+ ε}
n−1⋂
i=1

{y ∈ T , |(T − xi )(y)|> 1− ε}.

The choice of ε implies that the residue classes of xn and xm are all distinct which implies xn→ x as
required. �

Let P(T ) = a0T d
+ · · · + ad be any polynomial with coefficients in L . We define the image of

x = B(z, r) ∈ T by the formula
P(x)= B(P(z),max

i≥1
{|ai |r i })

This map is weakly continuous since one has |Q(P(x))|= |(Q◦P)(x)| for all polynomials Q. It coincides
with P on L . Observe that P : T → T preserves the order relation.

Remark. There is a canonical continuous and injective map from T into the (Berkovich) analytification
of A1

L sending a closed ball x ∈ T to the multiplicative seminorm on L[T ] defined by P 7→ |P(x)|. This
map identifies T with the smallest closed subset of A1

L whose intersection with the set of rigid points in
A1

L is equal to L . In the terminology of Berkovich [1990, §1], it consists only of type 1 and type 2 points.

1.3. Proof of Theorem 3. When gP(a) is positive, then log|Pn(a)| ≥
( 1

2 gP(a)
)dn

for n large enough so
that Pn(a) tends to infinity. In that case one can refine (2) since by the non-Archimedean inequality one
has |P(z)| = (r |z|)d for all |z| large enough where rd is the norm of the leading coefficient of P hence
belongs to eZ. If follows that gP(z)= log(r |z|) for |z| large enough, hence

gP(a)= 1
d N gP(P N (a))= 1

d N log(r |a|) ∈Q+.

When gP(a)= 0, all iterates of a belong to {gP = 0} which is a bounded set of L . We consider the weak
closure � of the orbit of a in the space of balls T . If � consists only of points in L , then it is compact in
(L , |·|) by Proposition 4(1), and we are in case (3).
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Otherwise by Proposition 4(2) there exists a closed ball x with radius in |L∗|, and a strictly increasing
sequence ni →∞ such that Pni (a)→ x , and Pni (a) ∈ x for all i . Observe that there exists a closed ball
containing the orbit of a, hence the orbit of x is also bounded. Replacing x by a suitable iterate we may
assume that diam(x)=max{diam(Pn(x))}n∈N.

Since x contains both Pn0(a) and Pn1(a), the ball Pn1−n0(x) intersects x and thus is included in x .
When Pn1−n0(x)= x , we are in case (2). When Pn1−n0(x) is strictly included in x , then Pn1−n0 admits
an attracting fixed point lying in L ∩ Pn1−n0(x) whose basin of attraction contains x . This is however not
possible because x lies in the closure of the orbit of a.

2. The point a has an unbounded orbit under P

Recall the setting of the statement of the Main Theorem. Let Pt(z)= α0(t)zd
+α1(t)zd−1

+ · · ·+αd(t)
be a meromorphic family of polynomials of degree d with αi ∈O(D)[t−1

] and α0(t) 6= 0 for all t ∈ D∗.
Take also any meromorphic map a ∈O(D)[t−1

].
Recall from, e.g., [DeMarco 2016, Lemma 3.3] or [Favre 2016, Proposition 4.4] that the Nullstellensatz

implies the existence of a constant β > 0 such that

|t |β ≤
max{1, |Pt(z)|}

max{1, |z|d}
≤ |t |−β (3)

for all 0< |t | ≤ 1
2 and for all z ∈ k. Observe that in particular we get∣∣gPt (z)− log max{1, |z|}

∣∣≤ C ′′ log|t |−1 (4)

for all 0< |t | ≤ 1
2 , and all z ∈ k, for some constant C ′′ > 0.

Since the base field k is supposed to be algebraically closed conjugating Pt by a suitable homothety
with coefficient in k, we may write α0(t) = t N (1+ o(1)) for some N ∈ Z. One can then consider the
family of monic polynomials P̃t(z) = φ−1

t ◦ Ptd−1 ◦ φt with φt(z) = α0(td−1)−1/(d−1)z. Observe that
gPtd−1 (a(t

d−1))= gP̃t
(φ−1

t ◦ a(td−1)) so that the proof of the Main Theorem is reduced to the case of a
family of monic polynomials. From now on we shall therefore assume that α0 ≡ 1.

Proof of the Main Theorem in the case |Pn(a)| → ∞. Recall that P denotes the monic polynomial of
degree d with coefficients in k((t)) induced by the family Pt(z) = zd

+ α1(t)zd−1
+ · · · + αd(t), and a

is the point in k((t)) defined by the meromorphic function a(t) ∈O(D)[t−1
]. We endow k((t)) with the

t-adic norm |·| normalized by |t | = e−1.
If a has an unbounded orbit under P, then replacing a by Pn0 ◦ a for n0 sufficiently large we may

suppose that a has a pole of order l which can be taken as large as we wish.
If l is strictly larger than the constant C ′′ appearing in (4), then we get

gPt (a(t))≥ log max{1, |a(t)|} −C ′′ log|t |−1
≥ (l −C ′′) log|t |−1

+ O(1).

In particular gPt (a(t)) is positive for any 0< |t | ≤ ε with ε > 0 small enough. And by (3) the convergence
gPt (a(t))= limn

1
dn log|Pn

t (a(t))| holds uniformly on compact subsets on D∗ε .
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Lemma 5. There exists an integer N ∈N∗ such that for any meromorphic function a(t)= t−l(1+h) with
l ≥ N and h ∈O(D) such that h(0)= 0 and supD|h| ≤

1
2 , then we have

sup
0<|t |≤ 1

2

∣∣ 1
d log|Pt(a(t))| − log|a(t)|

∣∣<+∞.
Now suppose l ≥ N so that we may apply Lemma 5. It follows that the sequence of functions

1
dn log|Pn

◦ a| − log|a| converges uniformly in D∗1/2 to a function ϕ which is necessarily harmonic and
bounded. By [Ransford 1995, Corollary 3.6.2], this function thus extends to the origin and remains
harmonic. We conclude that gPt (a(t)) = ϕ(t) + log|a(t)| which shows that we are in case 2 of the
Main Theorem. �

Proof of Lemma 5. Pick N large enough such that sup1≤i≤d,|t |≤ 1
2
|t |N |αi (t)| ≤ 1. For any l ≥ N , we may

then write

Pt(a(t))= t−ld((1+ h)d +α1t l(1+ h)d−1
+ · · ·+α0t ld)

so that
1
d log|Pt(a(t))| − log|a(t)| = log

∣∣∣∣(1+ h)d +α1tk(1+ h)d−1
+ · · ·+α0tkd

1+ h

∣∣∣∣
is bounded by log((d + 1)2d+1). �

3. The point a has a bounded orbit under P and lies in the Fatou set of P

We suppose now that supm≥0|P
m(a)|<∞ and a belongs to a closed ball B := B(b, ρ) fixed by P with

b ∈ k((t)) and ρ = e−n for some n ∈ Z. Observe that we may take b to be a Laurent polynomial b(t), and
conjugating Pt by φt(z)= tn(z+ b(t)), we may thus suppose that B is the closed unit ball.

In that case, we can write Pt(z)=Q(z)+t Rt(z) for some polynomial Q∈ k[z]with 1≤ δ :=deg(Q)≤d
and Rt(z) ∈ k((t))[z]. When δ = d then we are in the case 1 of the Main Theorem.

When δ < d, we shall prove that we fall in case 3. To see this, observe first that there exists C1 ≥ 1
such that

max{1, |Pt(z)|} ≤ C1 ·max{1, |z|δ, |t | · |z|d},

for all z ∈ k and all t ∈ D.

Lemma 6. There exists a constant A ≥ 1 independent of n such that

max{1, |Pn
t (a(t))|} ≤ C1+···+δn−1

1 · Aδ
n

(5)

if |t | = (C1+···+δn−2

1 · Aδ
n−1
)δ−d .

We fix some integer N ≥ 2 and suppose |t | = RN := (C1+···+δN−2

1 · Aδ
N−1
)δ−d . Under these assumptions

(4) and (5) imply

0≤ gt(a(t))≤ 1
d N log+|P N

t (a(t))| −C ′′ 1
d N log|t | ≤

(
δ
d

)N (1+ d−δ
δ

C ′′
)

log(C1/(δ−1)
1 A).
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For any m≥ 0, since Pm(a) belongs to the closed unit ball for all m by assumption, the functions Pm(a(t))
are analytic at 0 so that 1

dm log|Pm(a(t))| is subharmonic on D (in the sense of Thuillier when (k, |·|) is
non-Archimedean, see e.g., [Thuillier 2005, §3]). It follows that gt(a(t)) is also subharmonic on D, and
the maximum principle implies

0≤ gt(a(t))≤
(
δ
d

)N
· B,

for all |t | ≤ RN with B := (1+ (d − δ)C ′′/δ) log(C1/(δ−1)
1 A).

Fix ε > 0 and pick N ≥ 1 large enough such that
(
δ
d

)N
· B ≤ ε. We have proved that 0≤ gt(a(t))≤ ε

when |t | ≤ η := RN so that gt(a(t)) is a nonnegative subharmonic function on D and limt→0 gt(a(t))= 0.
In particular, it is continuous at t = 0.

Proof of Lemma 6. We argue by induction on n ≥ 2. Note that since a is analytic as seen above, there
exists A ≥ 2 such that |a(t)| ≤ A for all |t | ≤ 1

2 . Assume that |t | = Aδ−d . Then we have

max{1, |Pt(a(t))|} ≤ C1 ·max{1, Aδ, |t | · Ad
} = C1 · Aδ.

Now let |t | = (C1 · Aδ)δ−d . We obtain

max{1, |P2
t (a(t))|} ≤ C1 ·max{1, (C1 · Aδ)δ, |t | · (C1 · Aδ)d} = C1+δ

1 · Aδ
2
.

Suppose (5) holds for some n ≥ 2. When |t | = (C1+···+δn−1

1 · Aδ
n
)δ−d , we have

max{1, |Pn+1
t (a(t))|} ≤ C1 max{1, |Pn

t (a(t))|
δ, |t | · |Pn

t (a(t))|
d
}

≤ C1 max{1, (C1+···+δn−1

1 · Aδ
n
)δ, |t |(C1+···+δn−1

1 · Aδ
n
)d}

≤ C1+···+δn

1 · Aδ
n+1
,

which concludes the proof. �

4. The point a lies in the Julia set of P

In this section, we complete the proof of the Main Theorem. We apply Theorem 3 and discuss the situation
case by case.

• In case 1 of Theorem 3, the arguments of Section 2 enable us to conclude directly.

• In case 2 of Theorem 3, we replace the marked point by Pm(a) for a suitable m, and P by a suitable
iterate so that a belongs to a ball fixed by P. This case was treated in the previous section.

It thus remains to treat case 3 of Theorem 3: the orbit a is compact in k((t)).
Conjugating the family by linear maps φt(z)= t−M z with M sufficiently large, we may suppose that

the fixed ball (under P) containing a, and thus the orbit of a, is the closed unit ball. It follows that

gm(t) := 1
dm log max{|um(t)|, 1} with um(t) := Pm

t (a(t))

is subharmonic on D and gt(a(t)) also.
Replacing Pt by its second iterate, we may and shall assume that d ≥ 3.
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As (gn(t))n converges locally uniformly to gt(a(t)) on D∗ and as gt(a(t)) is bounded on
{
|t | = 1

2

}
,

there exists a constant M ≥ 1 such that, sup|t |=1/2 gn(t)≤ M for all n ≥ 1. By the maximum principle,
this gives

sup
|t |≤1/2

gn(t)≤ M.

Fix any integer l ≥ C ′′ · d , where C ′′ > 0 is the constant given by (4). Recall that the orbit of a lies in
the unit ball in k((t)), hence Pn

t (a(t)) is analytic at 0 for all n. Observe that the set of balls of radius r−l

centered at polynomials covers the unit ball in k((t)). Since the orbit of a is compact in k, we may thus
find a finite collection of polynomials Q1, . . . , QN such that for any n one can find in ∈ {1, . . . , N } such
that Pn

t (a(t))− Qin (t)= O(t l).
Let

A := max
1≤ j≤N

{sup
|t |<1
|Q j (t)| + 2}.

Fix a very large integer n0 ≥ 1 once and for all. We may thus find r0 > 0 small enough such that

sup
|t |<r0

|un0(t)| ≤ A.

Set r j := r2 j

0 for any j ≥ 0, so that 0< r j+1 < r j and r j → 0 as j→∞.

Lemma 7. For all j ≥ 0, one has

sup
|t |<r j

gn0+ j (t)≤
C1

dn0
,

with C1 = d log(3A)/(d − 1).

Using (3), an easy induction gives a constant C ′′ > 0 such that

0≤ gn+`(t)≤ gn(t)+
C ′′

dn log|t |−1

for all t ∈ D∗1/2 and all n, `≥ 1. For |t | = r j and n = n0+ j , this reads as

0≤ gn0+ j+`(t)≤ sup
|τ |=r j

gn0+ j (τ )−
C ′′

dn0+ j log r j .

By the maximum principle applied to gn0+ j+` and gn0+ j and by Lemma 7, we find

0≤ gn0+ j+`(t)≤ sup
|τ |<r j

gn0+ j (τ )−
C ′′

dn0+ j log r j ≤
C2

dn0

(
1−

(
2
d

) j

log r0

)
,

for any |t |< r j and any `≥ 1, where C2 :=max(C ′′,C1).
Pick now ε > 0. We may choose n0 be large enough such that C2/dn0 ≤ ε/2. We then fix j ≥ 0 large

enough (depending on r0, hence on n0) so that
(
1−

( 2
d

) j log r0
)
≤ 2. The previous estimate implies

0≤ gn(t)≤ ε
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for all |t |< r j and all n ≥ n0+ j . Letting n tend to infinity we finally obtain

0≤ gt(a(t))≤ ε,

for all |t |< r j which concludes the proof.

Proof of Lemma 7. It is sufficient to show by induction on j ≥ 0 that

sup
|t |<r j+1

gn0+ j+1(t)≤
log(3A)
dn0+ j+1 + sup

|s|<r j

gn0+ j (s).

By assumption, for all j ≥ 1, there exists 1≤ i j ≤ N such that the function

un0+ j (t)− Qi j (t)
t l

is analytic on D. The maximum principle applied for the analytic function (un0+ j (t)− Qi j (t))/t l on
D(0, r) for 0< r < 1 gives∣∣∣∣un0+ j (t)− Qi j (t)

t l

∣∣∣∣≤ (A+ sup
|s|<r

∣∣un0+ j (s)
∣∣) · 1

r l , for all |t |< r.

This implies for any 0< r < 1 the estimate∣∣un0+ j (t)− Qi j (t)
∣∣≤ (A+ sup

|s|<r

∣∣un0+ j (s)
∣∣) ·( |t |

r

)l

, for all |t |< r.

In particular, we find

sup
|t |<r j+1

∣∣un0+ j+1(t)
∣∣≤ A+

(
A+ sup

|s|<r j

∣∣un0+ j+1(s)
∣∣) ·(r j+1

r j

)l

≤ 2A+
(

sup
|s|<r j

∣∣un0+ j+1(s)
∣∣)r l

j ,

hence
sup
|t |<r j+1

max
{
1,
∣∣un0+ j+1(t)

∣∣}≤ (3A) sup
|s|<r j

max
{
1,
∣∣un0+ j+1(s)

∣∣r l
j
}
.

When sup|s|<r j

∣∣un0+ j+1(s)
∣∣r l

j ≤ 1, we get

sup
|t |<r j+1

gn0+ j+1(t)≤
log(3A)
dn0+ j+1 ≤

log(3A)
dn0+ j+1 + sup

|s|<r j

gn0+ j (s),

as required. Otherwise, we have

sup
|t |<r j+1

gn0+ j+1(t)≤
log(3A)
dn0+ j+1 +

l
dn0+ j+1 log r j + sup

|s|<r j

gn0+ j+1(s)

≤
log(3A)
dn0+ j+1 +

(
l

dn0+ j+1 −
C ′′

dn0+ j

)
log r j + sup

|s|<r j

gn0+ j (s)

≤
log(3A)
dn0+ j+1 + sup

|s|<r j

gn0+ j (s),

since r j < 1 and l ≥ C ′′d , where the middle inequality follows from (1). The lemma follows. �
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Remark. We claim that
gPt (a(t))= gP(a) log|t |−1

+ h(t), (6)

with h continuous.
When |Pn(a)| is bounded, then gP(a)= 0 and the equation follows from the arguments in Section 3

and Section 4. When |Pn(a)| →∞ by the invariance of the Green function under iteration it is sufficient
to prove (6) when a(t) = t−lh with h(0) 6= 0, l ≥ C ′′ as in the proof of the Main Theorem in the case
|Pn(a)| →∞ on page 1477.

In that case we have

1
dn log|Pn

t (a(t))| = log|a(t)| +ϕn(t)= log|a| log|t |−1
+ log|h(t)| +ϕn(t)

where ϕn is a sequence of harmonic functions converging uniformly on D1/2. We also have

1
dn log|Pn

t (a(t))| =
1

dn log|Pn(a)| log|t |−1
+ψ(t),

where ψ is harmonic, hence 1
dn log|Pn(a)| = log|a| for all n and gP(a)= log|a| which implies (6).

5. Degeneration of the Lyapunov exponent

In this section we prove Corollary 1. Assume (k, |·|) is an algebraically closed complete metrized field of
characteristic zero. Fix a meromorphic family Pt(z)= ad(t)zd

+ · · · + a0(t) ∈ O(D)[t−1
][z] of degree

d ≥ 2 polynomials defined over k. Recall that the Lyapunov exponent of Pt is equal to

L(Pt)= log|d| +
d−1∑
i=1

gPt (ci ), (7)

where c1, . . . , cd−1 denote the critical points of Pt in k counted with multiplicity.
To control these critical points when t varies, we observe that the polynomial P ′t (z) is a polynomial of de-

gree d−1 with coefficients in O(D)[t−1
] and dominant term dad(t)zd−1. It splits over the field of Puiseux

series so that one can find Puiseux series c1(t), . . . , cd−1(t) such that P ′t (z) = dad(t)
∏d−1

i=1 (z− ci (t)).
Pick any sufficiently divisible integer N such that all series ci (t N ) become formal power series. By
Artin’s approximation theorem [1968], they are necessarily analytic in a neighborhood of 0.

Our Main Theorem applied to the meromorphic family Pt N and the marked points ci (t N ) shows that
we can write gPt N (ci (t N ))= λi log|t |−1

+ hi (t) where hi is a continuous function and λi ∈Q+. By (7),
we infer

L(Pt N )= log|d| +
( d−1∑

i=1

λi

)
log|t |−1

+

d−1∑
i=1

hi (t).

Now observe that by definition h̃(t) =
∑d−1

i=1 hi (t) is a continuous function on the unit disk which is
invariant by the multiplication by any N -th root of unity. It follows that one may find a continuous
function h on the unit disk such that h(t N )= h̃(t), and we get L(Pt)= λ log|t |−1

+ log|d| + h(t) with
λ := 1

N

∑d−1
i=1 λi ∈Q+ as required.
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Suppose now that λ= 0. Denote by P the polynomial with coefficients in k((t)) defined by the family Pt ,
and by ci the point in k((t1/N )) defined by the Puiseux series ci (t). By [Favre 2016, Theorem C] and
[Okuyama 2015, §5], it follows that gP(ci ) = 0 for all i so that all critical points of P belongs to the
filled-in Julia set.

We claim that there exists an affine transformation φ with coefficients in k((t)) such that Q :=φ−1
◦P◦φ

leaves the closed unit ball totally invariant.
Granting this claim we conclude the proof of the corollary. We write φ(z) = b0(t)z + b1(t) with

bi (t)= t−ni (bi0+
∑

i≥1 bi j t j ), bi0 6= 0 and bi j ∈ k, and we define for all M ≥ 1 the affine transformation

φM = bM
0 (t)z+ bM

1 (t),

where bM
i = t−ni (bi0+

∑
M≥i≥1 bi j t j ). For M large enough the difference Q−QM is a polynomial with co-

efficients in tk[[t]] so that the polynomial QM :=φ
−1
M ◦P◦φM leaves the closed unit ball totally invariant too.

In particular QM is a polynomial of degree d with coefficients in k[[t]] and dominant term bzd with b

invertible (in k[[t]]). Together with the fact that the family Pt is meromorphic and the coefficients of φM are
Laurent polynomials, we conclude that b determines an analytic function b(t) with b(0) 6= 0, and QM deter-
mines an analytic family of polynomials of the form Qt(z)= b(t)zd

+ l.o.t. conjugated to Pt , as required.
It remains to prove our claim. Denote by L the completion of the field of Puiseux series (i.e., of the

algebraic closure of k((t))).
By [Kiwi 2006, Corollary 2.11] the fact that all critical points of P belong to the filled-in Julia set

implies that P is simple over L. This means that the filled-in Julia set of P in A1
L is equal to a closed

ball B. This ball B contains all fixed points, and this set of fixed points is defined by a polynomial
equation of the form a0zl

+ a1zl−1
+ · · ·+ al = 0 of degree l with ai ∈ k((t)) hence B contains the point

−a1/(la0) ∈ k((t)). The radius of B also belongs to |k((t))∗| because B is fixed by P, so that we can find
an affine transformation with coefficients in k((t)) sending B to the closed unit ball.

6. The adelic metric associated to a pair (P, a)

In this section, we prove Corollary 2. Let us first recall the setting. Let C be any smooth connected
affine curve C defined over a number field K. Assume P is an algebraic family parametrized by C and
a ∈ K[C] is a marked point such that (P, a) is not isotrivial, and a is not persistently preperiodic.

Denote by MK be the set of places of K.

Step 1: construction of a suitable line bundle L on C the (smooth) projective compactification of C .
To any branch at infinity c ∈ C \C we associate a nonnegative rational number α(c) as follows.
We fix a projective embedding of C into the projective space P3

K such that c is the homogeneous point
[0 : 0 : 0 : 1]. By, e.g., [Favre and Gauthier 2018, Proposition 3.1] there exist a number field L ⊃ K, a
finite set of places S of L and adelic series β1, β2, β3 ∈ tOL,S[[t]] such that the following holds.

For each place v∈ML the series β j (t) are convergent in some neighborhood {|t |< cv} of the origin. The
map β(t)= [β1(t) : β2(t) : β3(t)) : 1] induces an analytic isomorphism from {|t |< cv} to a neighborhood
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of c in C(Cv). And the constants cv equal 1 for all but finitely many places. In the sequel we refer to an
adelic parametrization of C near c for such a data.

Our family of polynomials is determined by d + 1 rational functions on C

P(z)= α0zd
+α1zd−1

+ · · ·+αd

with αi ∈K(C), so that Pc := (α0◦β)zd
+(α1◦β)zd−1

+· · ·+(αd ◦β) belongs to OL,S((t))[z] ⊂ L((t))[z].
Write ac = a ◦β ∈ L((t)).

Working over the non-Archimedean field L = L((t)) endowed with the t-adic norm, we may define
α(c) := gPc(ac) which is a nonnegative rational number by Theorem 3.

We finally define the effective divisor with rational coefficients

D :=
∑
C\C

α(c)[c]

and set L := OC(qD) for a sufficiently divisible q ∈ N∗. Observe that since C is defined over K, its
projective compactification C is also defined over K and the divisor D too since it is invariant by the
absolute Galois group of K.

Step 2: we build a semipositive and continuous metrization |·|L,v on the line bundle induced by L on
CKv

for any place v ∈ MK.
Fix a place v ∈ MK. We let Cv be the completion of the algebraic closure Kv of the completion Kv of

(K, |·|v), and define

gPt ,v(z) := lim
n→∞

1
dn log+|Pn

t (z)|v, z ∈ Cv.

Pick a branch at infinity c ∈ C \C and choose a local adelic parametrization β of C centered at c as in the
previous step. It is given by formal power series with coefficients in a number field L.

According to the Main Theorem, there exists αv(c) ∈Q+ such that

ga,v(t) := gPβ(t),v(a(t))= αv(c) · log|t |−1
+ hc,v(t), (8)

where hc,v extends continuously across 0. Moreover by (6) the constant αv(c) is equal to gPc(ac)= α(c).
In particular, αv(c) is independent of v.

Pick an open subset U of the Berkovich analytification Cv,an of C over the field Kv and a section σ of
the line bundle L over U . By definition, σ is a meromorphic function on U whose divisor of poles and
zeroes satisfies div(σ )+ qD≥ 0. We set

|σ |a,v := |σ |ve−q·ga,v .

According to (8), the function |σ |a,v is continuous. Moreover, since ga,v is subharmonic on Cv,an and
since the function − log|σ |a,v extends continuously to U , [Favre and Gauthier 2018, Lemma 3.7] implies
that − log|σ |a,v is subharmonic on U . This implies the metrization |·|a,v is continuous and semipositive in
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the sense of Zhang (by definition in the Archimedean case and by [Favre and Gauthier 2018, Lemma 3.11]
in the non-Archimedean case).

Step 3: the line bundle L is (very) ample (if q is large enough).
Since L is determined by the effective divisor D=

∑
C\C α(c) · [c] it is sufficient to show that α(c) > 0

for at least one branch at infinity. Suppose to the contrary that D= 0, and choose any Archimedean place
v0 ∈ MK. Observe first that the function ga,v0 extends continuously to C(C) as a subharmonic function
which is thus constant since C(C) is compact.

By [Dujardin and Favre 2008] the family of analytic maps t 7→ Pn
t (a(t)) is hence normal locally near

any point t ∈ C . Since (P, a) not isotrivial, [DeMarco 2016, Theorem 1.1] implies a is persistently
preperiodic, which is a contradiction.

Step 4: the collection of metrizations |·|L,v equips L with an adelic semipositive continuous metrization
whose induced height function hL̂ satisfies

hL̂(t)= q · h P,a(t), for all t ∈ C(K). (9)

Let us prove the first assertion. Since for any place v the metrization |·|L,v is semipositive and
continuous, one only needs to show that the collection {|·|a,v}v∈MK

is adelic. Following exactly the proof
of [Ghioca and Ye 2017, Lemma 4.2], we get the existence of g ∈K(C) such that q · ga,v(z)= log|g(z)|v
for all but finitely many places v ∈ MK and the conclusion follows.

To get (9), we follow closely [Favre and Gauthier 2018, §4.1]. If t is a point in C that is defined over
a finite extension K, denote by O(t) its orbit under the absolute Galois group of K, and let deg(t) :=
Card(O(t)). Fix a rational function φ on C with div(φ)+qD≥ 0 that is not vanishing at t . By [Chambert-
Loir 2011, §3.1.3], since φ(t) 6= 0 we have

hL̂(t)=
1

deg(t)

∑
t ′∈O(t)

∑
v∈MK

− log|φ|a,v(t ′)

=
1

deg(t)

∑
t ′∈O(t)

∑
v∈MK

(q · ga,v(t ′)− log|φ|v(t ′))

=
1

deg(t)

∑
t ′∈O(t)

∑
v∈MK

q · gPt ′ ,v
(a(t ′))= q · ĥ Pt (a(t))≥ 0,

where the last line follows from the product formula and the definition of ĥ Pt .

Step 5: the total height of C is hL̂(C)= 0.
We use [Chambert-Loir 2011, (1.2.6) and (1.3.10)]. Choose any two meromorphic functions φ0 and φ1

such that div(φ0)+ qD and div(φ1)+ qD are both effective with disjoint support included in C . Let σ0

and σ1 be the associated sections of OC(qD). Let
∑

ni [ti ] be the divisor of zeroes of σ0 and
∑

n′j [t
′

j ] be
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the divisor of zeroes of σ1. Then

hL̂(C)=
∑
v∈MK

(d̂iv(σ0) · d̂iv(σ1)|C)v

=

∑
i

ni · q · ĥ Pti
(a(ti ))−

∑
v∈MK

∫
C

log σ0|a,v1(q · ga,v)

=

∑
v∈MK

∫
C

q · ga,v1(q · ga,v)≥ 0,

where the third equality follows from Poincaré–Lelong formula and writing log |σ0|a,v= log |φ0|v−q ·ga,v .
Pick any Archimedean place v0. The total mass on C of the positive measure 1ga,v0 is the degree

of L, hence is nonzero. It follows from, e.g., [Dujardin and Favre 2008, Lemma 2.3] that any point t0
in the support of 1ga,v0 is accumulated by parameters t∗ ∈ C(K) such that Pn

t∗(a(t∗)) = Pm
t∗ (a(t∗)) for

some n > m ≥ 0. For any such point (9) implies hL̂(t∗)= 0. In particular, the essential minimum of hL̂ is
nonpositive. By the arithmetic Hilbert–Samuel theorem (see [Thuillier 2005, Théorème 4.3.6], [Autissier
2001, Proposition 3.3.3], or [Zhang 1995, Theorem 5.2]), we get hL̂(C)= 0, ending the proof.
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