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Difference modules and difference cohomology
Marcin Chałupnik and Piotr Kowalski

We give some basics about homological algebra of difference representations. We consider both the
difference discrete and the difference rational case. We define the corresponding cohomology theories
and show the existence of spectral sequences relating these cohomology theories with the standard ones.

1. Introduction

In this article, we initiate a systematic study of module categories in the context of difference algebra.
Our set-up is as follows. We call an object, such as a ring, a group or an affine group scheme, difference
when it is additionally equipped with an endomorphism. Hence a difference ring is just a ring with the
additional structure of a ring endomorphism. Difference algebra (that is, the theory of difference rings)
was initiated by Ritt and developed further by Cohn [1965]. This general theory was motivated by the
theory of difference equations (they may be considered as a discrete version of differential equations).

We introduce and investigate a suitable category of representations of difference (algebraic) groups
which takes into account the extra difference structure. As far as we know, this quite natural field of
research was explored only in [Kamensky 2013; Wibmer 2014]. We discuss the relation between their
approach and ours in Section 5A.

We start by discussing the most general case of the category of difference modules over a difference
ring in some detail (see Section 2). However, in the further part of the paper we concentrate on the theory
of difference representations of a difference group and the parallel (yet more complicated) theory of
difference representations of difference affine group schemes. The emphasis is put on developing the
rudiments of homological algebra in these contexts, since our main motivation for studying difference
representations is our idea of using difference language for comparing cohomology of affine group
schemes and discrete groups. Let us now outline our program (further details can be found in Section 5B).

The basic idea is quite general. The Frobenius morphism extends to a self-transformation of the
identity functor on the category of schemes over Fp. Thus schemes over Fp can be naturally regarded
as difference objects. We shall apply this approach to the classical problem of comparing rational and
discrete cohomology of affine group schemes defined over Fp. The main result in this area [Cline et al.
1977] establishes for a reductive algebraic group G defined over Fp an isomorphism between a certain
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limit of its rational cohomology groups (called the stable rational cohomology of G) and the discrete
cohomology of the group of its Fp-rational points (for details, see Section 5B). The main results of our
paper (Theorems 3.8 and 4.12) provide an interpretation of stable cohomology in terms of difference
cohomology. Thus, the stable cohomology which was defined ad hoc as a limit is interpreted here as a
genuine right derived functor in the difference framework. We hope to use this interpretation in a future
work which aims to generalize the main theorem of [Cline et al. 1977] to the case of nonreductive group
schemes. We also hope that this point of view together with Hrushovski’s theory of generic Frobenius
[2012] may lead to an independent and more conceptual proof of the main theorem of [Cline et al. 1977].
We provide more details of our program in Section 5B.

To summarize, the aim of our article is twofold. Firstly, we develop some basics of module theory and
homological algebra in the difference setting. We believe that some interesting phenomena already can be
observed at this stage. For example, in Remark 3.9 we point out a striking asymmetry between left and
right difference modules, and in Section 5B we discuss the role of the process of inverting endomorphism.
Thus we hope that our work will encourage further research in this subject. Secondly, we provide a formal
framework for applying difference algebra to homological problems in algebraic geometry in the case of
positive characteristic. We hope to use the tools we have worked out in the present paper in our future
work exploring the relation between homological invariants of schematic and discrete objects.

The paper is organized as follows. In Section 2, we collect necessary facts about (noncommutative)
difference rings. In Section 3, we deal with the difference discrete cohomology and in Section 4, we
consider the difference rational cohomology. In Section 5, we compare our theory with the existing ones
and with the theory of spectra from [Chałupnik 2015], and we also briefly describe another version of the
notion of a difference rational representation (see Definition 5.1).

We would like to thank the referee for a careful reading of our paper and many useful suggestions.

2. Difference rings and modules

In this section, we introduce a suitable module category for difference rings. The theory of difference
modules over commutative difference rings has been already considered (see, e.g., [Levin 2008, Chapter 3]),
however our approach is different than the one from [Levin 2008] (we summarize the differences in
Remark 2.2). We recall that a difference ring is a pair (R, σ ), where R is a ring with a unit (not necessarily
commutative), and σ : R→ R is a ring homomorphism preserving the unit. A homomorphism of difference
rings is a ring homomorphism commuting with the distinguished endomorphisms.

Let (R, σ ) be a difference ring. We call a pair (M, σM) a left difference (R, σ )-module if it consists of
a left R-module M with an additive map σM : M→ M satisfying the condition

σM(σ (r) ·m)= r · σM(m), (†)

for any r ∈ R and m ∈ M (we explain why we choose such a condition in Remark 3.9). The condition (†)
can be concisely rephrased as saying that the map

σM : M (1)
→ M
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is a homomorphism of R-modules, where M (1) stands for M with the R-module structure twisted by σ ,
i.e., r ·m := σ(r) ·m, where r ∈ R and m ∈ M . The left difference (R, σ )-modules form a category
with the morphisms being the R-homomorphisms commuting with the fixed additive endomorphisms
satisfying (†).

We have a parallel notion of a right difference (R, σ )-module. This time it is a right R-module M with
an additive map σM : M→ M satisfying the condition

σM(m · r)= σM(m) · σ(r), (†′)

which, in terms of the induced R-modules, means that the map

σM : M→ M (1)

is R-linear.
These categories can be interpreted as genuine module categories, which we explain below. We define

the ring of twisted polynomial R[σ ] as follows. The underlying Abelian group is the same as in the usual
polynomial ring R[t]. However, the multiplication is given by the formula(∑

t iri

)
·

(∑
t jr ′j

)
:=

∑
n

tn
( ∑

i+ j=n

σ j (ri )r ′j

)
.

Then we have the following.

Proposition 2.1. The category of left and right difference (R, σ )-modules are equivalent (even isomor-
phic) to the category of left and right R[σ ]-modules, respectively.

Proof. Let M be a left difference R-module. Then we equip M with a structure of a left R[σ ]-module by
putting (∑

t iri

)
·m :=

∑
σ i

M(ri ·m).

The condition (†) ensures that the commutativity relation in R[σ ] is respected. Conversely, for a left
R[σ ]-module N , we define σN by the formula

σN (n) := t · n.

Then σN : N → N is clearly additive and satisfies (†). The proof for the right modules is similar. �

Remark 2.2. We summarize here how our definition of a difference module differs from the one in
[Levin 2008].

(1) Our base ring of twisted polynomials (defined above) corresponds to the opposite ring to the ring of
difference operators D considered in [Chapter 3.1]. Hence the left difference modules considered in
[loc. cit.] correspond to our right difference modules.

(2) A possible notion of a right difference modules (which would correspond to our left difference
modules, the choice on which we focus in this paper) is not considered in [loc. cit.].
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We should warn the reader that the categories of left and right difference modules behave quite
differently. For example, since σ : R→ R(1) may be thought of as a map of R-modules, R with σR := σ

is a right difference (R, σ )-module. If σ is an automorphism, then obviously R with σR := σ
−1 is a

left difference (R, σ )-module. However, in the general case we do not have any natural structure of
a left difference (R, σ )-module on R. Since in this paper we are mainly interested in left difference
(R, σ )-modules (a technical explanation is provided in Remark 3.9), we would like to construct a left
difference (R, σ )-module possibly closest to R. We achieve this goal by formally inverting the action of
σ on R.

Definition 2.3. Let

R1−t : R[σ ] → R[σ ]

be the right multiplication by (1− t). This is clearly a map of left R[σ ]-modules and we define the
following left R[σ ]-module:

R̃ := coker(R1−t).

Our construction has the following properties.

Proposition 2.4. Let σR̃ be the map provided by Proposition 2.1. Then we have the following:

(1) The map σR̃ is invertible.

(2) If σ is an automorphism, then

(R̃, σR̃)' (R, σ
−1).

Proof. Since we have the following relation in R̃:

n∑
i=0

t iri =

n∑
i=0

t i+1σ(ri ),

we see that the map
∑

t iri 7→
∑

t iσ(ri ) is the inverse of σR̃ .
For the second part, we observe first that the map

α : (R, σ−1)→ R̃,

given by the formula α(r) := r , is a homomorphism of left R[σ ]-modules, since the relation σ−1(r)= tr
holds in R̃. Also, the map

β : R̃→ (R, σ−1)

given by

β

(∑
t iri

)
:=

∑
σ−i (ri )

is a homomorphism of left R[σ ]-modules. We see now that α and β are mutually inverse. �
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From now on, we focus exclusively on left (difference) modules, hence we denote by ModσR the
category of left difference (R, σ )-modules (or the equivalent category of left R[σ ]-modules). Also, if it
causes no confusion we will not refer to endomorphisms in our notation, i.e., we will usually say “M is a
left difference R-module” (or even “M is a difference R-module”) instead of saying “(M, σM) is a left
difference (R, σ )-module”.

We finish this section with an elementary homological computation, which explains (roughly speaking)
the effect of adding a difference structure on homology. We will make this point more precise in the next
section.

For a difference R-module M , let MσM and MσM stand for the Abelian groups of invariants and
coinvariants of the action of σM , respectively. Explicitly, we have

MσM = {m ∈ M | σM(m)= m} and MσM = M/〈σM(m)−m | m ∈ M〉.

Then we have the following.

Proposition 2.5. For a difference R-module M , we have

HomModσR (R̃,M)= MσM ,

Ext1ModσR
(R̃,M)= MσM ,

Ext>1
ModσR

(R̃,M)= 0.

Proof. Since the map R1−t is injective, the complex

0→ R[σ ] R1−t
−−−→ R[σ ] → 0

is a free resolution of R̃. Then the complex of Abelian groups

0→ HomModσR (R[σ ],M) (R1−t )
∗

−−−→HomModσR (R[σ ],M)→ 0,

which computes our Ext-groups, may be identified with the complex

0→ M L1−t
−−−→M→ 0

where L1−t stands for the left multiplication by the element (1− t). Thus, the proposition follows. �

3. Difference representations and cohomology

Let (A, σA) be a difference commutative ring and G be a group with an endomorphism σG . In this section,
we apply the results of Section 2 to the ring R := A[G], the group ring of G with coefficients in A. The
ring R with the map

σ

(∑
ai gi

)
:=

∑
σA(ai )σG(gi )

is clearly a difference ring. We will often say “difference representation of G (over A)” for “difference
A[G]-module”. We observe now that the augmentation map ε : A[G] → A is a homomorphism of
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difference rings (by this we mean a ring homomorphism commuting with σ and σA). Hence, we can
endow the left difference A-module Ã (see Definition 2.3) with the “trivial” structure of a left difference
A[G]-module, i.e., we put (∑

ai gi

)
· a :=

∑
ai · a.

Remark 3.1. We would like to warn the reader that in contrast to the classical representation theory,
difference representations (M, σM) correspond to homomorphisms into the group GLA(M) only if σM

is an automorphism. More precisely, if (M, σM) is a difference A-module and σM is an automorphism,
then we have the automorphism σ̃M on GLA(M) given by the conjugation:

σ̃M(α) := σ
−1
M ◦α ◦ σM .

It is easy to see then that endowing (M, σM) with the structure of a difference A[G]-module is the same
as constructing a homomorphism of difference groups

8 : (G, σG)→ (GLA(M), σ̃M).

We are ready now to define the notion of a difference group cohomology.

Definition 3.2. Let M be a difference A[G]-module. We define:

H j
σ (G,M) := Ext j

ModσR
( Ã,M).

We show below that the zeroth difference cohomology can be described in terms of invariants.

Proposition 3.3. For any difference A[G]-module M , we have

H 0
σ (G,M)= MG

∩MσM .

Proof. We observe first that by the (†)-condition from Section 2, the A-module MG is preserved by σM .
Indeed, for any m ∈ MG we have:

g · (σM(m))= σM(σG(g) ·m)= σM(m).

Thus MG is a difference A-module and, since G acts on Ã trivially, we have

HomModσA[G]( Ã,M)= HomModσA( Ã,MG).

By Proposition 2.5, we obtain

HomModσA( Ã,MG)= (MG)σM = MG
∩MσM ,

which completes the proof. �

This description shows possibility of factoring the difference cohomology functor as the composite of
two left exact functors. To make this precise, let us consider the chain of left exact functors

ModσA[G]
K
−→ModσA

L
−→ModA,
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where
K (M) := HomModA[G](A,M)= MG and L(N ) := HomModσA( Ã, N )= NσN .

We recall here the fact observed in the proof of Proposition 3.3 that the target category of K is indeed the
category ModσA. Now, Proposition 3.3 can be understood as the following factorization

H 0
σ (G,−)= L ◦ K .

We would like now to associate the Grothendieck spectral sequence to the above factorization. To achieve
this, we need the following fact.

Lemma 3.4. The functor ε∗ : ModσA→ModσA[G] is left adjoint to K . Consequently, the functor K
preserves injectives.

Proof. The desired adjunction is a natural isomorphism

HomModσA[G](ε
∗(N ),M)' HomModσA(N ,MG),

which immediately follows from the fact that G acts trivially on ε∗(N ). Thus K has an exact left adjoint
functor, hence it preserves injectives. �

The description of the functor K above also shows that for any difference A[G]-module M , each
H j (G,M) has a natural structure of a difference A-module. The endomorphism of H j (G,M) can be
explicitly described as the composite of the following two arrows:

H j (G,M) σ ∗G−−−→ H j (G,M (1))
(σM )∗
−−−→ H j (G,M),

where the first one is the restriction map along σG [Weibel 1994, Chapter 6.8], and the second one is the
map induced by the G-invariant map σM : M (1)

→ M .
Then we have the following result, where the invariants and the coinvariants are taken with respect to

the difference structure which was just described.

Theorem 3.5. For any difference A[G]-module M and j > 0, there is a short exact sequence (setting
H−1(G,M) := 0)

0→ H j−1(G,M)σ → H j
σ (G,M)→ H j (G,M)σ → 0.

Proof. Since L , K are left exact functors and K takes injective objects to L-acyclic ones by Lemma 3.4,
we can construct the Grothendieck spectral sequence (see e.g., [Weibel 1994, Chapter 5.8]) associated to
the composite functor L ◦ K . This spectral sequence converges to H p+q

σ (G,M), and its second page has
the following form:

E pq
2 = Extp

ModσA
( Ã, Hq(G,M)).

By Proposition 2.5, there are only two nontrivial columns in this page where we have

E0 j
2 = H j (G,M)σ and E1 j

2 = H j (G,M)σ .

Thus all the differentials vanish and we get the result. �
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The above theorem is an efficient tool for computations of difference cohomology groups. Let us look
at some simple examples.

Example 3.6. Let G = Z/p be the cyclic group of prime order p> 2 with an automorphism σG given by
the formula σG(a) := ta for some integer t such that 0< t < p. Let r be the order of t in the multiplicative
group of the field Fp and let further A = k be a field of characteristic p.

(1) Let us take σA = id. We would like to compute

H∗σ (Z/p, k) :=
∞⊕

n=0

H n
σ (Z/p, k)

for (k, id) regarded as the trivial difference k[G]-module. In order to apply Theorem 3.5, we need to
explicitly describe the endomorphism of H∗(Z/p, k), let us call it σH∗ , which comes from the difference
structure. When M is a trivial G-module, we have H 1(G,M)= HomAb(G,M) and we obtain

σH1(φ)= σM ◦φ ◦ σG .

Coming back to our example, let us fix a nonzero y ∈ H 1(Z/p, k) and let x ∈ H 2(Z/p, k) be the image
of y by the Bockstein homomorphism. It is well known (see e.g., [Weibel 1994, Exercise 6.7.5]) that we
have a ring isomorphism

H∗(Z/p, k)= S(kx)⊗3(ky),

where S(M) is the symmetric power and 3(M) is the exterior power of a k-module M . Thus we see that
σH1(y)= t y and, by the naturality of the Bockstein homomorphism, also σH2(x)= t x . Therefore, by the
naturality of the multiplicative structure on group cohomology, for all j > 0 we obtain

σH2 j (x j )= t j x j , σH2 j−1(x j−1
⊗ y)= t j (x j−1

⊗ y). (?)

Hence we see that H 2 j (Z/p, k)σ = kx j if and only if r | j (recall that r is the multiplicative order of t),
and H 2 j (Z/p, k)σ = 0 otherwise. A similar conclusion holds for H 2 j−1(Z/p, k)σ , H 2 j (Z/p, k)σ and
H 2 j−1(Z/p, k)σ . Applying Theorem 3.5, we get that H 0

σ (Z/p, k) = k and, for n > 0, we obtain the
following

H n
σ (Z/p, k)=


k⊕ k for 2r | n,
k for 2r | n− 1,
k for 2r | n+ 1,
0 otherwise.

(2) Let us now elaborate on the above example by adding an automorphism of scalars to the picture.
Hence, let F be an automorphism of k. Then (k, F−1) is a difference (k, F)[G]-module and we are
interested in its difference cohomology. We recall that H 1(Z/p, k)=HomAb(Z/p, k), which is naturally
identified with k. After choosing y ∈ Fp, we get the same formulas as in (?) from the item (1) above.
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Since each H n(Z/p, k) is a difference (k, F)-module, for c ∈ k we obtain the following

σH2 j (cx j )= F−1(c)t j x j ,

σH2 j−1(cx j−1
⊗ y)= F−1(c)t j (x j−1

⊗ y).

For a ∈ Fp \ {0}, let ka stand for the eigenspace of F regarded as an Fp-linear automorphism of k for the
eigenvalue a. Dually, let ka be the corresponding “coeigenspace”, i.e., the quotient Fp-linear space

ka = k/〈F(c)− ca | c ∈ k〉.

Therefore, for any nonnegative integer j , we get by Theorem 3.5

H 2 j
σ (Z/p, k)= kt j

⊕ kt j , H 2 j+1
σ (Z/p, k)= kt j+1

⊕ kt j .

(3) If we consider a special case of the situation considered in the item (2) above, where A = k = F
alg
p

and σA = Frk is the Frobenius map, then by the results of [Kowalski and Pillay 2007, §3], the difference
module H∗(Z/p, k) is σ -isotrivial, i.e., we have the following isomorphism of difference modules

H∗(Z/p, k)' (k,Fr−1
k )⊗(Fp,id) (H

∗(Z/p, k)σ , id).

(To apply [Kowalski and Pillay 2007, Fact 3.4(ii)], we need to know that σH∗ is a bijection, but it is
the case since both σG and F are automorphisms.) Since kFr

= Fp, kFr = 0 and each H n(Z/p, k)σ is
a 1-dimensional vector space over Fp, we immediately (i.e., using neither the item (1) nor the item (2)
above) get (by Theorem 3.5) the following isomorphism of Fp-linear spaces:

H∗σ (Z/p, k)' S(Fpx)⊗3(Fp y)= H∗(Z/p, Fp),

which coincides with the computations made in the item (2).

For a left A[G]-module M , let us denote by M∞ the induced difference A[G]-module, i.e.,

M∞ := A[G][σ ]⊗A[G] M.

In order to describe M∞ more explicitly, we slightly extend the notation introduced in Section 2, by
setting M (i) to be the A[G]-module M with the structure twisted by σ i . Then, we have an isomorphism
of A[G]-modules

M∞ '
⊕
i>0

M (i).

Under this identification, the difference structure on M∞ is given by the following shift:

σM∞(m0, . . . ,mi , 0, . . .)= (0,m0, . . . ,mi , 0, . . .).

Let us now investigate the exact sequence from Theorem 3.5 for the difference module M∞. For this, we
introduce the “stable cohomology groups” as

H j
st(G,M) := colim

i
H j (G,M (i)),

where the maps in the direct system are the restriction maps along σG .



1568 Marcin Chałupnik and Piotr Kowalski

Remark 3.7. We give an interpretation of the stable cohomology in small dimensions.

(1) The zeroth stable cohomology group

H 0
st(G, N )=

∞⋃
n=1

N Im(σ n
G)

may be thought of as the group of “weak invariants” of the action of G on N .

(2) Suppose that N is a trivial G-module. Then we have

H 1
st(G, N ) := colim(Hom(G, N )→ Hom(G, N )→ · · · ),

where the map producing the direct system is induced by σG . Hence H 1
st(G, N ) can be considered

as the effect of inverting formally the above endomorphism on Hom(G, N ).

These stable cohomology groups play an important role in the comparison between rational and discrete
cohomology in [Cline et al. 1977]. The fact that, as we will see in a moment, they appear as difference
cohomology groups is one of the main motivations for the present work. Namely, when we explicitly
describe the action of σ on

H∗(G,M∞)' H∗
(

G,
⊕
i>0

M (i)
)
'

⊕
i>0

H∗(G,M (i)),

we obtain that (after restricting to the summand H∗(G,M (i))) this action is given by the map

σ∗ : H∗(G,M (i))→ H∗(G,M (i+1))

induced by σ on the cohomology. Thus we see that H∗(G,M∞)σ = 0, and using Theorem 3.5 we get
the following.

Theorem 3.8. For any A[G]-module M and j > 0, there is an isomorphism

H j
σ (G,M∞)' H j−1

st (G,M).

Remark 3.9. Apparently, there is no similar description of the stable cohomology in terms of cohomology
of right difference modules. The technical obstacle for this is the fact that for a right difference A[G]-
module M , the module of invariants MG are not preserved by σM . Therefore, there is no Grothendieck
spectral sequence analogous to the one which we used in the proof of Theorem 3.5. This is the main
reason we have chosen to work with left difference modules in this paper, despite the fact that condition
(†′) looks more natural than condition (†) (both of which can be found before Proposition 2.1).

4. Difference rational representations and cohomology

In this section, we introduce difference rational modules and difference rational cohomology. As rational
representations and rational cohomology concern representations of algebraic groups, we will consider
here representations of difference algebraic groups, so we recall this notion first. Let k be our ground field.
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4A. Difference algebraic groups. We take the categorical definition of a difference algebraic group
appearing in [Wibmer 2014]. When we say “algebraic group”, we mean “affine group scheme”. We
do not care here about the finite-generation (or finite type) issues: neither in the schematic nor in the
difference-schematic meaning. We comment about other possible approaches in Section 5C.

Let σ : k→ k be a field homomorphism. The category of difference (k, σ )-algebras (denoted here
by Alg(k,σ )) consists of commutative k-algebras A equipped with ring endomorphisms σA such that
(σA)|k = σ . A morphism between two (k, σ )-algebras (A1, σ1) and (A2, σ2) is a k-algebra morphism
f : A1→ A2 such that

σ2 ◦ f = f ◦ σ1.

An affine difference algebraic group is defined as a representable functor from the category Alg(k,σ ) to
the category of groups. Note that it is in an exact analogy with the pure algebraic case. Such a functor is
represented by a difference Hopf algebra which may be defined as (H, σH ), where H is a Hopf algebra
over k, σ ∗(H) is obtained from H using the base extension σ : k→ k (i.e., σ ∗(H)= H ⊗k (k, σ )) and
σH : σ

∗(H)→ H is a Hopf algebra morphism [Wibmer 2014, Definition 2.2]. Dualizing, we see that a
difference algebraic group G is the same as a pair (G, σG) where G is an affine group scheme over k and
σG : G→ σ ∗(G) is a group scheme morphism, where σ ∗(G) is again obtained from G using the base
extension σ : k→ k.

Difference algebraic groups appeared first in the context of model theory (of difference fields) and
yielded important applications to number theory (related to the Manin–Mumford conjecture) and algebraic
dynamics, see e.g., [Chatzidakis and Hrushovski 2008a; 2008b; Hrushovski 2001; Medvedev and Scanlon
2014; Kowalski and Pillay 2007]. Difference algebraic groups also appear as the Galois groups of certain
linear differential equations [Di Vizio et al. 2014] and linear difference equations [Ovchinnikov and
Wibmer 2015].

We are mostly interested in the case when G is defined over the field of constants of σ (see Section 5B).
In such a case, one can replace the difference field (k, σ ) with the difference field (Fix(σ ), id). Therefore,
in the rest of Section 4, we assume that σ = idk. In Section 5C, we discuss our attempts to define a
more general notion of a difference rational representation, which covers the case of an arbitrary base
difference field (k, σ ) (see also Remark 4.4).

4B. Difference rational representations. Let G be a k-affine group scheme with an endomorphism σG .
Its representing ring k[G] is a Hopf algebra over k with a k-Hopf algebra endomorphism, denoted here
by the same symbol σG . We would like to introduce the notion of a difference rational G-module. We
recall from classical algebraic geometry [Jantzen 2003] that for a k-affine group scheme G, a left rational
G-module (or a rational representation of G) is a functor

M : Algk→Modk

such that for any k-algebra A, we have M(A)= M(k)⊗ A, and each M(A) is equipped with a natural (in
A ∈ Algk) left action of the group G(A) through A-linear transformations. The left rational G-modules
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with the morphisms being the natural transformations form the Abelian category ModG . Given M ∈ModG ,
one can construct a natural structure of a right k[G]-comodule on M(k). The assignment M 7→ M(k)
gives an equivalence between the category ModG and the category of right k[G]-comodules [Jantzen
2003, §I.2.8]. The inverse is explicitly given by the following construction. An element

g ∈ G(A)= HomAlgk(k[G], A)

acts on M(A)= M(k)⊗ A by the composite

(id⊗m) ◦ (id⊗g⊗ id) ◦ (1M ⊗ id),

where

1M : M(k)→ M(k)⊗ k[G]

is the comodule map on M(k), and m is the multiplication on A. From now on, if no confusion can arise,
we will identify M with M(k).

Let us come back to the situation when G is additionally equipped with an endomorphism σG . A
natural adaptation of the concept of a difference representation to the context of difference algebraic
groups is the following.

Definition 4.1. A difference rational representation of a difference group (G, σG) is a pair (M, σM)

consisting of a left rational G-module M and a natural transformation σM : M→ M such that for each
A ∈Algk, the A-module M(A) becomes a left difference A[G(A)]-module with σM(A) being σM(A), and
σA[G(A)] is given by the following formula:

σA[G(A)]

(∑
ai gi

)
:=

∑
aiσG(A)(gi ).

Let (M, σM) and (N , σN ) be rational difference (G, σG)-modules. We call a transformation of functors
f : M→ N a difference G-homomorphism, if for any k-algebra A,

f (A) : M(A)→ N (A)

is a homomorphism of difference A[G(A)]-modules.

Similarly as in Section 3, we will often skip the endomorphisms from the notation and simply say
that M is a difference rational representation of G. The difference rational representations of G with
difference G-homomorphisms obviously form a category, which we denote by ModσG .

Remark 4.2. We can find a similar interpretation of our difference rational representations as the one
in Remark 3.1. We consider GL(M) as a k-group functor, see [Jantzen 2003, §I.2.2]. In the case when
σM : M→ M is a k-linear automorphism, it induces the inner automorphism of this k-group functor:

σGL(M) : GL(M)→ GL(M).
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Then enhancing (M, σM) with the structure of a (G, σG)-module is the same as giving a morphism of
difference k-group functors as below:

(G, σG)→ (GL(M), σGL(M)).

Keeping in mind the results of Section 3 and the case of rational representations, we obtain two
equivalent descriptions of the category ModσG . Analogously as in Section 2, for a rational G-module M ,
we denote by M (1) the G-module structure on M twisted by σG . If we take the comodule point of view,
then the comodule map on M (1) is given by the following composite:

(id⊗σG) ◦1M : M (1)
→ M (1)

⊗ k[G].

Then we have the following.

Proposition 4.3. Let G be an affine difference group scheme. Then the following categories are equivalent:

(1) The category ModσG .

(2) The category of pairs (M, σM), where M is a rational G-module and σM : M (1)
→ M is a G-

homomorphism.

(3) The category of pairs (M, σM), where M is a right k[G]-comodule and σM : M→ M is a k-linear
map satisfying the following identity:

1M ◦ σM = (σM ⊗ σG) ◦1M . (∗)

Remark 4.4. A difference rational representation is a natural (in A ∈ Algk) collection of difference
A[G(A)]-modules. Hence we see that we work in a less general context than the one in Section 3,
since we have no endomorphism on A and neither on k. It would be tempting to introduce difference
rational representations as functors on the category of difference algebras over k or even over a difference
field (k, σ ). The resulting category is much more complicated, e.g., we have not even succeeded yet
in showing that it is Abelian. Since the simpler approach in this section is sufficient for homological
applications we have in mind, we decided to stick to it in this paper. We discuss possible generalizations
of difference representation theory and its relations with the other approaches in Section 5.

Example 4.5. We point out here three important examples of difference rational G-modules:

(1) The trivial difference G-module. Clearly, the k-algebra unit map k→ k[G] endows (k, id) with the
structure of a difference rational G-module.

(2) The regular difference G-module is defined as follows. We put

M := k[G], σM := σG.

Then the condition (∗) in Proposition 4.3(3) is satisfied, since σG is a homomorphism of coalgebras.
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(3) The last example corresponds to the induced module k[G][σ ]⊗k[G] M from Section 3. It could be
described in terms of cotensor product, but we prefer the following explicit description. For a rational
G-module M , we set

M∞ :=
∞⊕

i=0

M (i)

as a rational G-module. Since (M∞)(1) =
⊕
∞

i=1 M (i), the inclusion map

∞⊕
i=1

M (i)
⊂

∞⊕
i=0

M (i)

defines the structure of a difference rational G-module on M∞. Note that this inclusion map is the same
as the “right-shift” map appearing before Remark 3.7.

In certain simple cases, the category ModσG can be fully described. The following example should be
thought of as the first step towards understanding difference rational representations of reductive groups
with the Frobenius endomorphism.

Let k be a field of positive characteristic p, Gm be the multiplicative group over k and Fr :Gm→Gm

be the (relative) Frobenius morphism. Then the category ModσGm
can be explicitly described. Let ModZ,p

k[x]
denote the category of Z-graded k[x]-modules satisfying the following condition (for each j ∈ Z):

x M j
⊆ M pj .

We set X := (Z \ pZ)∪ {0}, and for j ∈ X , we define ModZ,p
k[x], j as the full subcategory of the category

ModZ,p
k[x] consisting of modules concentrated in the degrees of the form pn j for n ∈ N. Then we have the

following:

Proposition 4.6. The category ModσGm
admits the following description:

(1) There is an equivalence of categories

ModσGm
'ModZ,p

k[x] .

(2) There is a decomposition into infinite product

ModZ,p
k[x] '

∏
j∈X

ModZ,p
k[x], j .

(3) The category ModZ,p
k[x],0 is equivalent to the category of k[x]-modules, while the category ModZ,p

k[x], j

for j 6= 0 is equivalent to the category of N-graded modules over the graded k-algebra k[x], where
|x | = 1.

Proof. Since Gm = Diag(Z), we can use the results from [Jantzen 2003, §I.2.11]. For M ∈ModσGm
, we

take a decomposition of the rational module M '
⊕

M j into isotypical rational representations of Gm, i.e.,
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each M j is a direct sum of equivalent irreducible representations such that for each A ∈Algk, a ∈Gm(A)
and m ∈ M j (A), we have

a ·m = a j m.

Then, since (M j )
(1)
= (M (1))pj , we have σM(M j )⊆ Mpj . This turns M into an object of the category

ModZ,p
k[x]. The rest is straightforward. �

4C. Difference rational cohomology. We would like to develop now some homological algebra in the
category ModσG . Firstly, it is obvious that ModσG is an Abelian category with the kernels and cokernels
inherited from the category ModG . However, the existence of enough injectives is not a priori obvious.
We shall construct injective objects in the category ModσG by using a particular case of induction. Let
(M, σM) be a k-linear vector space with an endomorphism. Then, M ⊗ k[G] with the comodule map
id⊗1G and the endomorphism σM ⊗ σG satisfies the condition (∗) from Proposition 4.3(3), hence this
data defines a difference G-module. This construction is clearly natural, hence it gives rise to a functor

σ indG
1 :Modk[x]→ModσG.

We will show (similarly to the classical context) that this difference induction functor is right adjoint to
the forgetful functor

σ resG
1 :ModσG→Modk[x] .

Proposition 4.7. The functor σ indG
1 is right adjoint to the functor σ resG

1 . Consequently, the functor
σ indG

1 preserves injective objects.

Proof. We take (N , σN )∈ModσG and (M, σM)∈Modk[x]. After forgetting the endomorphisms σN and σM ,
we have (by the classical adjunction) a natural isomorphism

HomModk(N ,M)' HomModG (N ,M ⊗ k[G]).

This isomorphism can be explicitly described as taking a k-linear map f : N → M to the composite
( f ⊗id)◦1N . The inverse is given by postcomposing with the counit in k[G]. Then an explicit calculation
shows that the both assignments preserve morphisms satisfying the condition (∗) from Proposition 4.3(3),
which proves our adjunction. Preserving injectives is a formal consequence of having exact left adjoint. �

Now we construct injective objects in ModσG by a standard argument.

Corollary 4.8. Any object M in the category ModσG embeds into an injective object.

Proof. Let σ resG
1 (M)→ I be an embedding in the category Modk[x], where I is injective. Then we take

the chain of embeddings
M→ σ indG

1 ◦σ resG
1 (M)→ σ indG

1 (I ),

and observe that σ indG
1 (I ) is injective by Proposition 4.7. �

Since we have enough injective objects, we can develop now homological algebra in the category ModσG .
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Definition 4.9. For a difference rational G-module M , we define the difference rational cohomology
groups (see Example 4.5(1)) as follows:

H n
σ (G,M) := ExtnModσG

(k,M).

We would like to obtain a short exact sequence relating difference rational and rational cohomology
groups. We proceed similarly as in Section 3. First, we recall that for a rational G-module M , the k-vector
space HomModσG (k,M) can be identified with

M G
:= {m ∈ M |1M(m)= m⊗ 1}.

By the condition (∗) from Proposition 4.3(3), we immediately get that for a difference rational G-module
M , the k-module of invariants M G is preserved by σM . Therefore, the functor (−)G can be thought of as
a functor from ModσG to Modk[x]. Since we can make the following identification:

HomModσG (k,M)= M G
∩MσM ,

we can factor the above Hom-functor through the category Modk[x] as

HomModσG (k,−)= (−)
σM ◦ (−)G.

Now, we recall from the proof of Corollary 4.8 that for an injective cogenerator I of Modk[x], I ⊗ k[G]
is an injective cogenerator of ModσG . Then we see that

(I ⊗ k[G])G
= I,

hence the functor (−)G preserves injectives. Therefore, we can apply the Grothendieck spectral sequence
to our factorization of the functor HomModσG (k,−) and, similarly as in Theorem 3.5, we get the following.

Theorem 4.10. Let M be a difference rational G-module. Then for any j > 0, there is a short exact
sequence (where H−1(G,M) := 0)

0→ H j−1(G,M)σ → H j
σ (G,M)→ H j (G,M)σ → 0.

Proof. The proof of Theorem 3.5 carries over to this situation replacing the ring A[σA] with the ring k[x]
and the discrete cohomology with the rational cohomology. �

Example 4.11. We compute rational difference cohomology in the following special case. As a dif-
ference rational group, we consider the additive group scheme Ga over Fp (p > 2) with the Frobenius
endomorphism Fr, and we take the trivial difference rational (Ga,Fr)-module (Fp, id).

The ring H∗(Ga, Fp) was computed in [Cline et al. 1977, Theorem 4.1] together with a description of
the rational action of Gm. In particular, H 1(Ga, Fp) is an infinite dimensional vector space over Fp with
a basis {ai }i>0, which can be chosen in such a way that in the action of Fp[σ ] (' Fp[x]) on

H 1(Ga, Fp)= Hom(Ga,Ga),

we have σ(ai )= ai+1.
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Thus we see that H 1(Ga, Fp)
σ
= 0 and dim(H 1(Ga, Fp)σ )= 1. Since σ acts trivially on H 0(Ga, Fp),

we get dim(H 0(Ga, Fp)σ )= 1, and we obtain by Theorem 4.10 that

dim(H 1
σ (Ga, Fp))= 1.

In order to extend our computation, we will use the following description of the graded ring H∗(Ga, Fp)

from [Cline et al. 1977, Theorem 4.1]:

H∗(Ga, Fp)'3(H 1(Ga, Fp))⊗ S(H̃ 1(Ga, Fp)),

where 3 and S stand respectively for the exterior and symmetric algebra over Fp, H̃ 1(Ga, Fp) is a
space with a basis {ai }i>1 and its nonzero elements have degree 2. Since Fr commutes with algebraic
group homomorphisms, the action of σ on H∗(Ga, Fp) is multiplicative. Hence σ acts on decomposable
elements of H∗(Ga, Fp) diagonally. Therefore, we have that H j (Ga, Fp)

σ
= 0 for all j > 0, and we

obtain by Theorem 4.10 that

H j
σ (Ga, Fp)' H j−1(Ga, Fp)σ

for all j > 0. Taking these facts into account, we can summarize our computations as follows:

dim(H j
σ (Ga, Fp))=

{
1 for j = 0, 1, 2,
∞ for j > 2.

This final outcome may look a bit bizarre, but it coincides with the general philosophy that “invariants
reduce the infinite part of the difference dimension by 1” (this can be made precise using the notion of an
SU-rank, see [Chatzidakis and Hrushovski 1999, §2.2]).

Continuing the analogy with the discrete situation, we can apply Theorem 4.10 to the induced difference
rational module M∞ (see Example 4.5(3)). We define, analogously to the discrete case, the “stable rational
cohomology groups” as

H j
st(G,M) := colim

i
H j (G,M (i)).

Similarly as in Theorem 3.8, we obtain the following.

Theorem 4.12. For any rational G-module M and j > 0, there is an isomorphism

H j
σ (G,M∞)' H j−1

st (G,M).

5. Applications, alternative approaches and possible generalizations

In this section, we discuss applications of our results to the problem of comparing rational and discrete
group cohomology. We also compare our approach with the theories of difference representations in
[Kamensky 2013; Wibmer 2014], and sketch another (in a way more ambitious) approach to difference
representations.
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5A. Comparison with earlier approach to difference representations. Let us compare our construction
of difference representations with the existing theories of representations of difference groups in [Wibmer
2014; Kamensky 2013]. One sees that Lemma 5.2 in [Wibmer 2014] amounts to saying that the category
of difference rational representations of (G, σG) considered in [Wibmer 2014] is equivalent to the category
of rational representations of G. In fact, in the approach in [Wibmer 2014; Kamensky 2013], the difference
structure on G is not encoded in a single representation but rather in some extra structure on the whole
category of representations, namely in the functor M 7→ M (1) which twists the G-action by σG . For
example, when the difference group is reconstructed from its representation category through the Tannakian
formalism [Kamensky 2013], this extra structure is used in an essential way. Hence our approach is, in a
sense, more direct. In particular, it allows us to introduce the difference group cohomology which differs
from the cohomology of the underlying algebraic group. Actually, both of the approaches build on the
same structure. Abstractly speaking, we have a category C with endofunctor F . Then one can consider
just the category C and investigate the effect of the action of F on it; this is, essentially, the approach
initiated in [Wibmer 2014; Kamensky 2013]. On the other hand, one can introduce, like in our approach,
the category CF , whose objects are the arrows

σM : F(M)→ M

for M ∈ C. This approach generalizes the first one, since the construction M∞ (which can be performed
in any category with countable coproducts) produces a faithful functor

C→ CF .

On the other hand, our functor σ indG produces important objects like injective cogenerators which do
not come from C, hence this approach is potentially more flexible and rich.

5B. Comparing cohomology, inverting Frobenius and spectra. As we mentioned in Section 1, the main
motivation for the present work was its possible application to the problem of comparing rational and
discrete cohomology. More specifically, let G be an affine group scheme defined over Fp and let M be a
rational G-module. Then, it is natural to compare the rational cohomology groups H j (G,M) and the
discrete cohomology groups H j (G(Fpn ),M). For G reductive and split over Fp, the comparison is given
by the celebrated Cline–van der Kallen–Parshall–Scott theorem [Cline et al. 1977] saying that

H j
st(G,M) := colim

i
H j (G,M (i))' lim

n
H j (G(Fpn ),M),

and that the both limits stabilize for any fixed j > 0. Then it was observed [Parshall 1987, Theorem 4(d)]
that the right-hand side above (called sometimes generic cohomology) coincides with the discrete group
cohomology H j (G(Fp),M). Our work allows one to interpret the left-hand side as a right derived functor
as well (see Theorem 4.12). We hope to use this description in a future work aiming to generalize the main
theorem from [Cline et al. 1977] to nonreductive algebraic groups. We expect a theorem on difference
cohomology expressing generic cohomology as a sort of completion of rational cohomology. We hope
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that the comparison on difference level should be easier because the limit with respect to the twists is
built into the difference theory. Then, one could obtain the theorem on algebraic groups by taking the
M∞-construction (we recall that there is no need for taking “stable discrete cohomology” because the
Frobenius morphism on a perfect field is an automorphism). This is a subject of our future work.

We would like to point out certain unexpected similarities between Hrushovski’s work [2012] and
the homological results from [Cline et al. 1977]. In both cases, the situation somehow “smooths out”
after taking higher and higher powers of Frobenius. It is visible in the twisted Lang–Weil estimates from
[Hrushovski 2012, Theorem 1.1] and in the main theorem of [Cline et al. 1977] above.

At the time being, we can offer another heuristic reasoning supporting our belief that the difference
formalism is an adequate tool for the problem of comparing rational and discrete cohomology. Namely,
the principal reason why one should not hope for the existence of an isomorphism between rational and
generic group cohomology in general is the fact that the Frobenius morphism becomes an automorphism
after restricting to the group of rational points over a perfect field. Hence we have

H∗(G(Fq),M)' H∗(G(Fq),M (1)),

while, in general, there is no reason for the map

σ∗ : H∗(G,M)→ H∗(G,M (1))

to be an isomorphism. However, the colimit defining H∗st(G,M) can be thought of as the result of making
the map σ∗ invertible (see an example of this phenomenon in Remark 3.7(2)). On the other hand, the
process of inverting the endomorphism σ is built into the homological algebra of left difference modules
through the construction of the module R̃ defined in Section 2. This supports our belief that the category
of left difference modules is a relevant tool in this context.

Actually, the first author succeeded in making the connection between the stable cohomology and the
process of inverting Frobenius morphism more precise in an important special case [Chałupnik 2015]. To
explain this idea better, let us come back for a moment to a general categorical context of Section 5A.
We assume that we have a category C with an endofunctor F and a family {C j } j∈Z of full orthogonal
subcategories such that any object in C is a direct sum of objects from {C j } j∈Z. Thus we have an
equivalence of categories

C'
∏
j∈Z

C j .

Moreover, we assume that F takes C j into Cpj . This situation is quite common in representation theory
over Fp. For example, any central element of infinite order in G produces such a decomposition of the
category of rational representations of G with F being the functor of twisting by the Frobenius morphism
(see e.g., Proposition 4.6). Then we can grade the category

C∗ :=
∏
j 6=0

C j
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by positive integers, putting
C∗i :=

∏
d∈Y

Cpi d

for i > 0, where Y := Z \ pZ. Let us take now M =
⊕

i>0 Mi , where Mi ∈ C∗i . Then we see that an
object in (C∗)F is just a sequence of maps

F(Mi )→ Mi+1,

hence it produces a “spectrum of objects of C∗” [Hovey 2001]. The formalism of spectra is a classical
tool which is used to formally invert an endofunctor, hence it fits well into our context. In [Chałupnik
2015], the first author considered C as the category P̂ of “completed” strict polynomial functors in the
sense of [Friedlander and Suslin 1997], which is closely related to the category of representations of GLn .
The category P̂ has an orthogonal decomposition

P̂'
∏
j>0

P j

into the subcategories of strict polynomial functors homogeneous of degree j , and F is the “precomposition
with the Frobenius twist functor”.

The first author managed to find [Chałupnik 2015, Corollary 4.7] an interpretation of “stable Ext-groups”
in P in terms of Ext-groups in the corresponding category of spectra. He also obtained a version of the
main theorem of [Cline et al. 1977] in P as an analogue of the Freudenthal theorem [Chałupnik 2015,
Theorem 5.3(3)].

Let us now try to compare spectra and difference modules in general. Although the starting categories
are very close, one introduces homological structures in each case in a different way. Namely, in the
case of the category of spectra, the formalism of Quillen model categories is used, while in the case
of the category of difference modules, we just use its obvious structure of an Abelian category. The
important point here is that the resulting Ext-groups are not the same, since in the interpretation of stable
cohomology in terms of difference cohomology there is a shift of degree (see Theorem 4.12). Hence, the
relation between these two constructions remains quite mysterious.

5C. Functors on the category of difference algebras. We finish our paper with discussing another
version of the notion of a difference rational representation. In fact, there is a certain ambiguity at the
very core of difference algebraic geometry. Namely, there are two natural choices for the kind of functors
which could be considered as difference schemes:

(1) Functors from the category of rings to the category of difference sets.

(2) Functors from the category of difference rings to the category of sets.

In the case of representable functors (i.e., affine difference schemes) both of the choices above are
equivalent by the Yoneda lemma. Thanks to this, a difference group scheme can be unambiguously
defined as (the dual of) a difference Hopf algebra. Unfortunately, this “several choices” problem reappears
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when one tries to introduce the appropriate notion of a difference representation. In fact, we made in
Section 4 the “first choice” which is simpler and sufficient for the main objectives of our article. The
drawback of this approach is that the difference structure on the module M(A) from Section 4B does
not depend on a possible difference structure on A. In other words: there is no natural way of turning
the functor M into a functor on the category of difference k-algebras. For this reason, the framework of
Section 4 is less general than the one in Section 3. Thus, it would be tempting to introduce the notion of
a difference rational representation corresponding to the “second choice” above.

We will outline now an alternative approach, which is potentially richer but is also much more involved
technically. We fix a difference field (k, σ ) and consider the category Alg(k,σ ) of difference commutative
algebras over k as in Section 4A. Then, undoubtedly, we want our difference representation to be some
sort of a functor

M : Alg(k,σ )→Modk[σ ],

such that M(A) is naturally a difference (A, σA)-module. Now we need an analogue of the fact that an
ordinary rational representation sends a k-algebra A to A⊗M(k). A reasonable choice here seems to be
the following:

M(A)= A[σ ]⊗k[σ ] M(k),

since in that case the structure of an A[σ ]-module on M(A) depends both on (A, σA) and on (M, σM).
When we add to this framework a group action, we obtain the following definition.

Definition 5.1. Let (G, σG) be a difference algebraic group. We call a functor

M : Alg(k,σ )→Modk[σ ],

such that

M(A)= A[σ ]⊗k[σ ] M(k)

a G-difference representation (or a G-difference module), if there is a natural (in A ∈ Alg(k,σ )) structure
of a difference A[G(A)]-module on M(A).

With the above definition, we achieve the level of generality we had in the discrete case of Section 3.
However, in order to make the category of such difference representations usable, one would like to obtain
its algebraic description in terms of comodules over coalgebras etc. Unfortunately, the formulae we have
obtained so far are quite complicated and do not fit easily into known patterns. For example, it is not
clear how to use them even to show that the category under consideration has enough injective objects.
For this reason, in this paper, we decided to adopt the approach corresponding to the “first choice”.
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