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Density theorems for exceptional eigenvalues
for congruence subgroups

Peter Humphries

Using the Kuznetsov formula, we prove several density theorems for exceptional Hecke and Laplacian
eigenvalues of Maaß cusp forms of weight 0 or 1 for the congruence subgroups 00(q), 01(q), and 0(q).
These improve and extend upon results of Sarnak and Huxley, who prove similar but slightly weaker
results via the Selberg trace formula.

1. Introduction

Let κ ∈ {0, 1}, let 0 be a congruence subgroup of SL2(Z), and let χ be a congruence character of 0
satisfying χ(−I ) = (−1)κ should −I be a member of 0. Denote by Aκ(0, χ) the space spanned by
Maaß cusp forms of weight κ , level 0, and nebentypus χ , namely the L2-closure of the space of smooth
functions f : H→ C satisfying

• f (γ z)= χ(γ ) jγ (z)κ f (z) for all γ ∈ 0 and z ∈ H, where for γ =
(

a b
c d

)
∈ 0,

jγ (z) ··=
cz+ d
|cz+ d|

,

• f is an eigenfunction of the weight κ Laplacian

1κ ··= −y2
(
∂2

∂x2 +
∂2

∂y2

)
+ iκy

∂

∂x
,

• f is of moderate growth, and

• the constant term is zero in the Fourier expansion of f at every cusp a of 0\H that is singular with
respect to χ .

We may choose a basis Bκ(0, χ) of the complex vector space Aκ(0, χ) consisting of Hecke eigenforms.
For f ∈ Bκ(0, χ), we let λ f =

1
4 + t2

f denote the eigenvalue of the weight κ Laplacian, where either
t f ∈ [0,∞) or i t f ∈

(
0, 1

2

)
. Similarly, we let λ f (p) denote the eigenvalue of the Hecke operator Tp at a

prime p, so that |λ f (p)|< p
1
2 + p−

1
2 . The generalised Ramanujan conjecture states that t f is real and

that |λ f (p)| ≤ 2 for every prime p. Exceptions to this conjecture are called exceptional eigenvalues. It
is known that exceptional Laplacian eigenvalues cannot occur if κ = 1, while for κ = 0 there are no
exceptional Laplacian eigenvalues for Maaß cusp forms of squarefree conductor less than 857 [Booker
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and Strömbergsson 2007, Theorem 1]. The best current bounds towards the generalised Ramanujan
conjecture are due to Kim and Sarnak [2003]; they show that

λ f ≥
1
4 −

( 7
64

)2
, |λ f (p)| ≤ p

7
64 + p−

7
64 .

Results. In this paper, we use the Kuznetsov formula to prove density results for exceptional eigenvalues
for the congruence subgroups

00(q) ··=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
,

01(q) ··=
{(

a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod q), c ≡ 0 (mod q)

}
,

0(q) ··=
{(

a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod q), b, c ≡ 0 (mod q)

}
,

with χ equal to the trivial character for the latter two congruence subgroups. Recall that

vol(0\H)=
π

3
[SL2(Z) : 0] =


π
3 q
∏

p|q

(
1+ 1

p

)
if 0 = 00(q),

π
3 q2∏

p|q

(
1− 1

p2

)
if 0 = 01(q),

π
3 q3∏

p|q

(
1− 1

p2

)
if 0 = 0(q).

When χ is the trivial character, we write Bκ(0) in place of Bκ(0, χ), while when 0=00(q), we write this
as Bκ(q, χ). Given positive integers q and qχ with qχ | q , we factorise q=

∏
pα‖q pα and qχ =

∏
pγ ‖qχ pγ ,

and define

Q̇ = Q̇(q, qχ )=
∏
pα‖q

pγ ‖qχ

Q̇(pα, pγ ), Q̈ = Q̈(q, qχ )=
∏
pα‖q

pγ ‖qχ

Q̈(pα, pγ ),

with

Q̇(pα, pγ ) ··=


pb(3α+1)/4c−α/2 if p is odd and α = γ ≥ 3,
2b(3α+1)/4c−α/2 if p = 2 and γ + 1≥ α ≥ 3,
1 otherwise,

Q̈(pα, pγ ) ··=


p if p is odd and α = γ ≥ 3,
4 if p = 2 and α = γ ≥ 3,
2 if p = 2 and α = γ + 1≥ 3,
1 otherwise.

Theorem 1.1. For any fixed finite collection of primes P not dividing q, any αp ∈ (2, p
1
2 + p−

1
2 ) and

0≤ µp ≤ 1 for all p ∈ P with
∑

p∈P µp = 1, we have that

#
{

f ∈ Bκ(01(q)) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε vol(01(q)\H)1−3
∑

p∈P µp(logαp/2)/ log p+ε(T 2)1−4
∑

p∈P µp(logαp/2)/ log p+ε, (1.2)
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#
{

f ∈ Bκ(0(q)) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε vol(0(q)\H)1−
8
3
∑

p∈P µp(logαp/2)/ log p+ε(T 2)1−4
∑

p∈P µp(logαp/2)/ log p+ε, (1.3)

#
{

f ∈ Bκ(q, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε vol(00(q)\H)1−4
∑

p∈P µp(logαp/2)/ log p+ε(T 2)1−4
∑

p∈P µp(logαp/2)/ log p+ε

×min
{

Q̇4
∑

p∈P µp(logαp/2)/ log p, Q̈1−4
∑

p∈P µp(logαp/2)/ log p}. (1.4)

Theorem 1.1 should be compared to the Weyl law, which states that

#
{

f ∈ Bκ(0, χ) : t f ∈ [0, T ]
}
∼

vol(0\H)
4π

T 2.

For 0=SL2(Z), so that χ is the trivial character, and P consisting of a single prime p, Theorem 1.1 is a
result of Blomer, Buttcane, and Raulf [Blomer et al. 2014, Proposition 1], improving on a slightly weaker
result of Sarnak [1987, Theorem 1.1], who uses the Selberg trace formula in place of the Kuznetsov
formula and obtains instead (see [Blomer et al. 2014, Footnote 1])

#
{

f ∈ B0(SL2(Z)) : t f ∈ [0, T ], |λ f (p)| ≥ α
}
� (T 2)1−2(logα/2)/ log p.

Theorem 1.5. For any fixed finite (possibly empty) collection of primes P not dividing q , any α0 ∈
(
0, 1

2

)
,

αp ∈ (2, p
1
2 + p−

1
2 ), and 0≤ µ0, µp ≤ 1 for all p ∈ P with µ0+

∑
p∈P µp = 1, we have that

#
{

f ∈ B0(01(q)) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε vol(01(q)\H)1−3(µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε, (1.6)

#
{

f ∈ B0(0(q)) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε vol(0(q)\H)1−

8
3(µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε. (1.7)

#
{

f ∈ B0(q, χ) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε vol(00(q)\H)1−4(µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε

×min
{

Q̇4(µ0α0+
∑

p∈P µp(logαp/2)/ log p), Q̈1−4(µ0α0+
∑

p∈P µp(logαp/2)/ log p)}. (1.8)

When P is empty and χ is the trivial congruence character, Theorem 1.5 improves upon a result
of Huxley [1986], who uses the Selberg trace formula in place of the Kuznetsov formula and obtains
instead this result with the exponent 2 for each of the three congruence subgroups instead of 3, 8

3 , and
4 respectively. When P is empty and χ is the trivial congruence character, (1.8) is a result of Iwaniec
[2002, Theorem 11.7] ; see also [Iwaniec and Kowalski 2004, (16.61)].

Since ⌊3α+1
4

⌋
−
α

2
≤

3α
10
,

so that Q̇� vol(00(q)\H)
3
10 , the right-hand side of (1.4) is bounded by

vol(00(q)\H)1−
14
5
∑

p∈P µp(logαp/2)/ log p+ε(T 2)1−4
∑

p∈P µp(logαp/2)/ log p+ε,
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while the right-hand side of (1.8) is bounded by

vol(00(q)\H)1−
14
5 (µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε.

On the other hand, taking P to consist of a single prime in (1.4) recovers the Selberg bound λ f (p)�ε p
1
4+ε

for an individual element f ∈ Bκ(q, χ) by taking T sufficiently large, while taking P to be empty in (1.8)
recovers the Selberg bound λ f ≥

3
16 by embedding f in Bκ(q Q, χ) and taking Q sufficiently large.

Finally, we also prove the following improvements of Theorems 1.1 and 1.5 for 01(q) with q squarefree
via a twisting argument.

Theorem 1.9. When q is squarefree, (1.2) and (1.6) hold with the exponent 3 replaced by 4.

Idea of Proof. By Rankin’s trick (which is to say Chebyshev’s inequality), it suffices to find bounds for∑
f ∈Bκ (0,χ)
t f ∈[0,T ]

∏
p∈P

|λ f (p)|2`p ,
∑

f ∈B0(0,χ)

i t f ∈(0, 1
2)

X2i t f
∏
p∈P

|λ f (p)|2`p

for nonnegative integers `p and a positive real number X ≥ 1 to be chosen. To bound these quantities,
we begin with the Kuznetsov formula for Bκ(q, χ); we then use the Atkin–Lehner decomposition to
turn this into a Kuznetsov formula for Bκ(0, χ). We take a test function in the Kuznetsov formula that
localises the spectral sum to cusp forms with t f ∈ [0, T ] in the case of Theorem 1.1 and to cusp forms
with i t f ∈

(
0, 1

2

)
in the case of Theorem 1.5. We use the Hecke relations to introduce powers of the Hecke

eigenvalues into the Kuznetsov formula. By positivity, we discard the contribution of the continuous
spectrum, and we are left with bounding the right-hand side of the Kuznetsov formula.

The chief novelty of the proof is the bounds for sums of Kloosterman sums in the Kuznetsov formula
for each congruence subgroup. As well as the usual Weil bound, we use character orthogonality for 01(q)
and 0(q), at which point we only use the trivial bound for the resulting sum of Kloosterman sums. For
00(q) and χ the principal character, we may also use the Weil bound, but for χ nonprincipal, additional
difficulties arise in bounding the Kloosterman sum, with the bound possibly depending on the conductor
of χ ; it is for this reason that the bounds (1.4) and (1.8) involve Q̇, for Q̇ arises when only weaker bounds
than the Weil bound are possible for the Kloosterman sums involved.

We also highlight the key trick to proving Theorem 1.9, namely that the Laplacian eigenvalue and
absolute value of a Hecke eigenvalue of a Maaß form remain unchanged under twisting by a Dirichlet
character. Twisting may alter the level of a Maaß form, yet Theorem 1.9 involves a favourable situation
in which the resulting family of twisted Maaß forms are sufficiently well-behaved that we are able to
improve the exponent in the density theorem.

It is worth mentioning that the results in this paper ought to generalise naturally to cusp forms on GL2

over arbitrary number fields F . Bruggeman and Miatello [2009] prove a form of the Kuznetsov formula
for GL2 over a totally real field and use this to prove weighted Weyl law for cusp forms. Similarly, Maga
[2013] proves a semiadèlic version of the Kuznetsov formula for GL2 over an arbitrary number field. In
the former case, this formula is valid for congruence subgroups of the form 00(q) for a nonzero integral
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ideal q of the ring of integers OF of F and arbitrary congruence characters χ modulo q, while the latter
only treats the case of trivial congruence character but should easily be able to be generalised to arbitrary
congruence character; this is precisely what is required for density theorems for the congruence subgroups
00(q), 01(q), and 0(q).

2. The Kuznetsov formula

The background on automorphic forms and notation in this section largely follows [Duke et al. 2002]; see
[Duke et al. 2002, Section 4] for more details. Let κ ∈ {0, 1}, and let χ be a primitive Dirichlet character
modulo qχ , where qχ divides q , satisfying χ(−1)= (−1)κ ; this defines a congruence character of 00(q)
via χ(γ ) ··= χ(d) for γ =

(
a b
c d

)
∈ 00(q). We denote by L2(00(q)\H, κ, χ) the L2-completion of the

space of all smooth functions f :H→C that are of moderate growth and satisfy f (γ z)=χ(γ ) jγ (z)κ f (z).
This space has the spectral decomposition

L2(00(q)\H, κ, χ)=Aκ(q, χ)⊕ Eκ(q, χ)

with respect to the weight κ Laplacian, where Aκ(q, χ) ··=Aκ(00(q), χ) is the space spanned by Maaß
cusp forms of weight κ , level q, and nebentypus χ , and Eκ(q, χ) is the space spanned by incomplete
Eisenstein series parametrised by the cusps a of 00(q)\H that are singular with respect to χ .

We denote by Bκ(q, χ) an orthonormal basis of Maaß cusp forms f ∈Aκ(q, χ) normalised to have
L2-norm 1:

〈 f, f 〉q ··=
∫
00(q)\H

| f (z)|2 dµ(z)= 1,

where dµ(z) = dx dy/y2 is the SL2(R)-invariant measure on H. Later we will use the Atkin–Lehner
decomposition of Aκ(q, χ) in order to specify that Bκ(q, χ) can be chosen to consist of linear combinations
of Hecke eigenforms. The Fourier expansion of f ∈ Bκ(q, χ) is

f (z)=
∞∑

n=−∞
n 6=0

ρ f (n)Wsgn(n)κ/2,i t f (4π |n|y)e(nx),

where Wα,β is the Whittaker function and

ρ f (n)Wsgn(n)κ/2,i t f (4π |n|y)=
∫ 1

0
f (z)e(−nx) dx .

For a singular cusp a, we define the Eisenstein series

Ea(z, s, χ) ··=
∑

γ∈0a\00(q)

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s,

which is absolutely convergent for<(s)> 1 and extends meromorphically to C, with the Fourier expansion

δa,∞y
1
2+i t
+ϕa,∞

(1
2 + i t, χ

)
y

1
2−i t
+

∞∑
n=−∞

n 6=0

ρa(n, t, χ)Wsgn(n)κ/2,i t(4π |n|y)e(nx)
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for s = 1
2 + i t with t ∈ R \ {0}, where

δa,∞y
1
2+i t
+ϕa,∞

( 1
2 + i t, χ

)
y

1
2−i t ··=

∫ 1

0
Ea

(
z, 1

2 + i t, χ
)

dx,

ρa(n, t, χ)Wsgn(n)κ/2,i t(4π |n|y) ··=
∫ 1

0
Ea

(
z, 1

2 + i t, χ
)
e(−nx) dx .

The subspace Eκ(q, χ) consists of functions g ∈ L2(00(q)\H, κ, χ) that are orthogonal to every Maaß
cusp form f ∈Aκ(q, χ); it is the L2-closure of the space spanned by incomplete Eisenstein series, which
are functions of the form

Ea(z, ψ, χ) ··=
1

2π i

∫ σ+i∞

σ−i∞
Ea(z, s, χ)ψ̂(s) ds (2.1)

for some singular cusp a and some smooth function of compact support ψ : R+→ C, where σ > 1 and

ψ̂(s) ··=
∫
∞

0
ψ(x)x−s dx

x
.

Theorem 2.2 [Duke et al. 2002, Proposition 5.2]. For m, n ≥ 1 and r ∈ R,∑
f ∈Bκ (q,χ)

4π
√

mnρ f (m)ρ f (n)
coshπ(r − t f ) coshπ(r + t f )

+

∑
a

∫
∞

−∞

√
mnρa(m, t, χ)ρa(n, t, χ)

coshπ(r − t) coshπ(r + t)
dt

=
|0(1− κ/2− ir)|2

π2

(
δm,n +

∞∑
c=1

c≡0 (mod q)

Sχ (m, n; c)
c

Iκ

(
4π
√

mn
c

, r
))
,

where

Sχ (m, n; c) ··=
∑

d∈(Z/cZ)×

χ(d)e
(md+nd̄

c

)
,

Iκ(t, r) ··= −2t
∫ i

−i
(−iζ )κ−1K2ir (ζ t) dζ,

with the latter integral being over the semicircle |z| = 1, <(z) > 0.

By the reflection formula for the gamma function, we have that for r ∈ R,∣∣∣0(1− κ
2
− ir

)∣∣∣2 = {πr/sinhπr if κ = 0,
π/coshπr if κ = 1.

Given a sufficiently well-behaved function h, we may multiply both sides of the pre-Kuznetsov formula
for κ = 0 by

1
2

(
h
(

r + i
2

)
+ h

(
r − i

2

))
coshπr

and then integrate both sides from −∞ to ∞ with respect to r . This yields the following Kuznetsov
formula (see [Blomer et al. 2007, Section 2.1.4; Iwaniec and Kowalski 2004, Theorem 16.3; Knightly
and Li 2013, Equation (7.32)]):
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Theorem 2.3. Let δ > 0, and let h be a function that is even, holomorphic in the horizontal strip
|=(t)| ≤ 1

2 + δ, and satisfies h(t)� (|t | + 1)−2−δ. Then∑
f ∈B0(q,χ)

4π
√

mnρ f (m)ρ f (n)
h(t f )

coshπ t f
+

∑
a

∫
∞

−∞

√
mnρa(m, t, χ)ρa(n, t, χ)

h(t)
coshπ t

dt

= δmng0 +

∞∑
c=1

c≡0 (mod q)

Sχ (m, n; c)
c

g0

(4π
√

mn
c

)
,

where

g0 ··=
1
π

∫
∞

−∞

rh(r) tanhπr dr, g0(x) ··= 2i
∫
∞

−∞

J2ir (x)
rh(r)

coshπr
dr.

The left-hand side of the Kuznetsov formula is called the spectral side; the first term is the contribution
from the discrete spectrum, while the second term is the contribution from the continuous spectrum. The
right-hand side of the Kuznetsov formula is called the geometric side; the first term is the delta term and
the second term is the Kloosterman term.

3. Decomposition of spaces of modular forms

Eisenstein series and Hecke operators. The space Eκ(q, χ) is spanned by incomplete Eisenstein series
of the form (2.1), which are obtained by integrating test functions against Eisenstein series indexed by
singular cusps a; in this sense, the Eisenstein series Ea(z, s, χ) are a spanning set for Eκ(q, χ). We may
instead choose a different spanning set of Eisenstein series for Eκ(q, χ); in place of the set of Eisenstein
series Ea(z, s, χ) with a a singular cusp, we may instead choose a spanning set of Eisenstein series of
the form E(z, s, f ) with Fourier expansion

c1, f (t)y
1
2+i t
+ c2, f (t)y

1
2−i t
+

∞∑
n=−∞

n 6=0

ρ f (n, t, χ)Wsgn(n)κ/2,i t(4π |n|y)e(nx)

for s = 1
2 + i t with t ∈ R \ {0}, where B(χ1, χ2) 3 f with χ1χ2 = χ is some finite set depending on

χ1, χ2 corresponding to an orthonormal basis in the space of the induced representation constructed out
of the pair (χ1, χ2); see [Blomer et al. 2007, Section 2.1.1] or [Knightly and Li 2013, Chapter 5]. For our
purposes, we need not be more specific about B(χ1, χ2), other than noting that for each f ∈ B(χ1, χ2),
the Eisenstein series E

(
z, 1

2 + i t, f
)

is an eigenfunction of the Hecke operators Tn for (n, q)= 1 with
Hecke eigenvalues

λ f (n, t)=
∑
ab=n

χ1(a)ai tχ2(b)b−i t ,

where for g : H→ C a periodic function of period one,

(Tng)(z) ··=
1
√

n

∑
ad=n

χ(a)
∑

b (mod d)

g
(

az+ b
d

)
.
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So for f ∈ B(χ1, χ2),

λ f (m, t)λ f (n, t)=
∑

d|(m,n)

χ(d)λ f

(mn
d2 , t

)
, (3.1)

λ f (n, t)= χ(n)λ f (n, t), (3.2)

ρ f (1, t)λ f (n)=
√

nρ f (n, t), (3.3)

whenever m, n ≥ 1 with (mn, q)= 1 and s = 1
2 + i t .

Lemma 3.4 (cf. [Conrey et al. 1997, Lemma 3; Hughes and Miller 2007, Lemma 2.8; Petrow and Young
2018, Section 6]). For any prime p -q and positive integer `, we have that

|λ f (p, t)|2` =
∑̀
j=0

α2 j,2`χ(p) jλ f (p2 j , t) (3.5)

for any f ∈ B(χ1, χ2) and s = 1
2 + i t , where

α2 j,2` =
2 j+1
`+ j+1

( 2`
`+ j

)
=

{( 2`
`− j

)
−
( 2`
`− j−1

)
if 0≤ j ≤ `− 1,

1 if j = `,
(3.6)

so that each α2 j,2` is positive and satisfies

∑̀
j=0

α2 j,2` =

(2`
`

)
≤ 22`. (3.7)

Proof. That (3.7) follows from (3.6) is clear. For (3.5), we have that

χ(p) j/2λ f (p j , t)=Uj

(
χ(p)

1
2λ f (p, t)

2

)
,

where Uj is the j-th Chebyshev polynomial of the second kind, because Uj satisfies U0(x/2) = 1,
U1(x/2)= x , and the recurrence relation

Uj+1

( x
2

)
= xUj

( x
2

)
−Uj−1

( x
2

)
for all j ≥ 1, and χ(p) j/2λ f (p j , t) satisfies the same recurrence relation from (3.1). Since

2
π

∫ 1

−1
Uj (x)Uk(x)

√
1− x2 dx = δ j,k,

we have that

x2`
=

2∑̀
j=0

α j,2`Uj

( x
2

)
,

where

α j,2` =
22`+1

π

∫ 1

−1
x2`Uj (x)

√
1− x2 dx .
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This vanishes if j is odd as Uj (−x) = (−1) jUj (x), while for j even we have the identity (3.6) from
[Gradshteyn and Ryzhik 2007, 7.311.2]. Combined with (3.2), this proves (3.5). �

Atkin–Lehner decomposition for 00(q). Similarly, we may choose a basis of Aκ(q, χ) consisting of
linear combinations of Hecke eigenforms. Let B∗κ(q, χ) denote the set of newforms of weight κ , level q ,
and nebentypus χ , and let A∗κ(q, χ) denote the subspace of Aκ(q, χ) spanned by such newforms. Recall
that a newform f ∈ B∗κ(q, χ) is an eigenfunction of the weight κ Laplacian 1κ with eigenvalue 1

4 + t2
f

and of every Hecke operator Tn , n ≥ 1, with eigenvalue λ f (n), as well as the operator Q 1
2+i t f ,κ

as defined
in [Duke et al. 2002, Section 4], with eigenvalue ε f ∈ {−1, 1}; we say that f is even if ε f = 1 and f is
odd if ε f =−1. In particular,

λ f (m)λ f (n)=
∑

d|(m,n)
(d,q)=1

χ(d)λ f

(mn
d2

)
, (3.8)

ρ f (1)λ f (n)=
√

nρ f (n) (3.9)

whenever m, n ≥ 1, and
λ f (n)= χ(n)λ f (n) (3.10)

for n ≥ 1 with (n, q)= 1. Using (3.8) and (3.10), we have the following:

Lemma 3.11. For any prime p -q and positive integer `, we have that

|λ f (p)|2` =
∑̀
j=0

α2 j,2`χ(p) jλ f (p2 j ) (3.12)

for any f ∈ B∗κ(q, χ), where once again α2 j,2` is given by (3.6).

The Atkin–Lehner decomposition states that

Aκ(q, χ)=
⊕

q1q2=q
q1≡0 (mod qχ )

⊕
f ∈B∗κ (q1,χ)

⊕
d|q2

C · ιd,q1,q f,

where ιd,q1,q : Aκ(q1, χ)→ Aκ(q, χ) is the map ιd,q1,q f (z) = f (dz). The map ιd,q1,q commutes with
the weight k Laplacian 1κ and the Hecke operators Tn whenever n ≥ 1 and (n, q)= 1. It follows that
if g = ιd,q1,q f for some f ∈ B∗κ(q1, χ), then tg = t f and λg(n)= λ f (n) whenever n ≥ 1 and (n, q)= 1.
Note, however, that ρg(1)= 0 unless d = 1, in which case ρg(1)= ρ f (1).

Unfortunately, the inner Atkin–Lehner decomposition⊕
d|q2

C · ιd,q1,q f

is not an orthogonal decomposition. Nonetheless, one may make use of this decomposition in determining
an orthonormal basis of Aκ(q, χ). For squarefree q and principal nebentypus, this is a result of Iwaniec,
Luo, and Sarnak [Iwaniec et al. 2000, Lemma 2.4], while Blomer and Milićević [2015, Lemma 9] have
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generalised this to nonsquarefree q . Here we generalise this further to nonprincipal nebentypus; this has
also independently been derived by Schulze-Pillot and Yenirce [2018] via a different method.

Lemma 3.13 (cf. [Iwaniec et al. 2000, Lemma 2.4; Blomer and Milićević 2015, Lemma 9]). Suppose
that χ has conductor qχ | q, and suppose that q1q2 = q with q1 ≡ 0 (mod qχ ). For f ∈ B∗κ(q1, χ) and
`1, `2 | q2, we have that

〈ι`1,q1,q f, ι`2,q1,q f 〉q
〈ι1,q1,q f, ι1,q1,q f 〉q

= A f

(
`2

(`1, `2)

)
A f

(
`1

(`1, `2)

)
,

where A f (n) is the multiplicative function defined on prime powers by

A f (pt)=


λ f (p)

√
p(1+χ0(q1)(p)p−1)

if t = 1,

λ f (pt )−χ(q1)(p)λ f (pt−2)p−1

pt/2(1+χ0(q1)(p)p−1)
if t ≥ 2,

where χ0(q1) denotes the principal character modulo q1 and χ(q1)
··=χχ0(q1) denotes the Dirichlet character

modulo q1 induced from χ .

Proof. For <(s) > 1, consider the integral

F(s) ··=
∫
00(q)\H

f (`1z) f̄ (`2z)E(z, s) dµ(z), where E(z, s) ··=
∑

γ∈0∞\00(q)

=(γ z)s .

Unfolding the integral and using Parseval’s identity,

F(s)=
∫
∞

0
ys−1

∞∑
n1=−∞

n1 6=0

∞∑
n2=−∞

n2 6=0
`1n1=`2n2

ρ f (n1)ρ f (n2)Wsgn(n1)κ/2,i t f (4π`1|n1|y)2
dy
y
.

From (3.9) and the fact from [Duke et al. 2002, Equation (4.70)] that

ρ f (−n)= ε f
0((1+ κ)/2+ i t f )

0((1− κ)/2+ i t f )
ρ f (n)

for n ≥ 1, where ε f ∈ {−1, 1}, we find that

F(s)=
|ρ f (1)|2

(4π [`1, `2])s−1
√
`′`′′

∞∑
n=1

λ f (`
′′n)λ f (`

′n)
ns

×

∫
∞

0
ys−1

(
Wκ/2,i t f (y)

2
+

∣∣∣∣0((1+ κ)/2+ i t f )

0((1− κ)/2+ i t f )

∣∣∣∣2W−κ/2,i t f (y)
2
)

dy
y
,

where we have written n1 = `
′′n, n2 = `

′n, with `′ = `1/(`1, `2) and `′′ = `2/(`1, `2).
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Next, by the multiplicativity of the Hecke eigenvalues of f together with the fact that (`′, `′′)= 1, the
sum over n is equal to

∞∑
n=1

(n,`′`′′)=1

|λ f (n)|2

ns

∏
pt‖`′′

∞∑
r=0

λ f (pr+t)λ f (pr )

prs

∏
pt‖`′

∞∑
r=0

λ f (pr )λ f (pr+t)

prs .

From (3.8) and (3.10), we find that

∞∑
r=0

λ f (pr+t)λ f (pr )

prs = B f (pt
; s)

∞∑
r=0

|λ f (pr )|2

prs ,

∞∑
r=0

λ f (pr )λ f (pr+t)

prs = B f (pt
; s̄)

∞∑
r=0

|λ f (pr )|2

prs ,

where B f (n; s) is defined to be the multiplicative function

B f (pt
; s)=


λ f (p)

1+χ0(q1)(p)p−s if t = 1,

λ f (pt)−χ(q1)(p)λ f (pt−2)p−s

1+χ0(q1)(p)p−s if t ≥ 2,

so that A f (n)= n−
1
2 B f (n; 1). We surmise that F(s) is equal to

|ρ f (1)|2

(4π [`1, `2])s−1
√
`′`′′

B f (`
′′
; s)B f (`

′
; s̄)

∞∑
n=1

|λ f (n)|2

ns

×

∫
∞

0
ys−1

(
Wκ/2,i t f (y)

2
+

∣∣∣∣0((1+ κ)/2+ i t f )

0((1− κ)/2+ i t f )

∣∣∣∣2W−κ/2,i t f (y)
2
)

dy
y
. (3.14)

The result follows by taking the residue at s = 1, noting that E(z, s) has residue equal to 1/ vol(00(q)\H)
at s = 1 independently of z ∈ 00(q)\H, and comparing to the case `1 = `2 = 1. �

Lemma 3.15 (cf. [Blomer and Milićević 2015, Lemma 9]). An orthonormal basis of Aκ(q, χ) is given
by

Bκ(q, χ)=
⊔

q1q2=q
q1≡0 (mod qχ )

⊔
f ∈B∗κ (q1,χ)

⊔
d|q2

{
fd =

∑
`|d

ξ f (`, d)ι`,q1,q f
}
, (3.16)
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where each f ∈ B∗κ(q1, χ) is normalised such that 〈ι1,q1,q f, ι1,q1,q f 〉q = 1, and the function ξ f (`, d) is
jointly multiplicative.

For 0≤ r ≤ t , ξ f (pr , pt)=



1 if r = t = 0,

−
A f (p)√

1−|A f (p)|2
if r = 0 and t = 1,

1√
1−|A f (p)|2

if r = t = 1,

χ (q1)(p)
p

1√
(1−χ0(q1)(p)p−2)(1−|A f (p)|2)

if r = t − 2 and t ≥ 2,

−
λ f (p)
√

p
1√

(1−χ0(q1)(p)p−2)(1−|A f (p)|2)
if r = t − 1 and t ≥ 2,

1√
(1−χ0(q1)(p)p−2)(1−|A f (p)|2)

if r = t and t ≥ 2,

0 if 0≤ r ≤ t − 3 and t ≥ 3.

The key point is that the coefficients ξ f (`, d) are chosen such that the ratio of inner products

δ f (d1, d2) ··=
〈 fd1, fd2〉q

〈ι1,q1,q f, ι1,q1,q f 〉q
=

∑
`1|d1

∑
`2|d2

ξ f (`1, d1)ξ f (`2, d2)
〈ι`1,q1,q f, ι`2,q1,q f 〉q
〈ι1,q1,q f, ι1,q1,q f 〉q

is equal to 1 if d1 = d2 and 0 otherwise.

Proof. The proof follows the same lines as [Blomer and Milićević 2015, Proof of Lemma 9]; we omit the
details. �

Explicit Kuznetsov formula. We may use the explicit basis (3.16) together with (3.10) and (3.9) to rewrite
the discrete part of the Kuznetsov formula, noting that for f ∈ B∗κ(q1, χ), d | q2, and n ≥ 1 coprime to q ,

ρ fd (n)= ξ f (1, d)ρ f (1)
λ f (n)
√

n
.

Similarly, the continuous part can be rewritten in terms of the Eisenstein spanning set B(χ1, χ2) with
χ1χ2 = χ together with (3.2) and (3.3). This yields the following explicit versions of the pre-Kuznetsov
and Kuznetsov formulæ.

Proposition 3.17. When m, n ≥ 1 with (mn, q)= 1, the pre-Kuznetsov formula has the form∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗κ (q1,χ)

4πξ f |ρ f (1)|2
χ(m)λ f (m)λ f (n)

coshπ(r − t f ) coshπ(r + t f )

+

∑
χ1,χ2 (mod q)
χ1χ2=χ

∑
f ∈B(χ1,χ2)

∫
∞

−∞

|ρ f (1, t)|2
χ(m)λ f (m, t)λ f (n, t)

coshπ(r − t) coshπ(r + t)
dt

=
|0(1− κ/2− ir)|2

π2

(
δmn +

∞∑
c=1

c≡0 (mod q)

Sχ (m, n; c)
c

Iκ

(
4π
√

mn
c

, r
))

(3.18)
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for κ ∈ {0, 1}, where we define

ξ f ··=
∑
d|q2

|ξ f (1, d)|2,

while the Kuznetsov formula for κ = 0 has the form

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗0(q1,χ)

4πξ f |ρ f (1)|2

coshπ t f
χ(m)λ f (m)λ f (n)h(t f )

+

∑
χ1,χ2 (mod q)
χ1χ2=χ

∑
f ∈B(χ1,χ2)

∫
∞

−∞

|ρ f (1, t)|2

coshπ t
χ(m)λ f (m, t)λ f (n, t)h(t) dt

= δmng0 +

∞∑
c=1

c≡0 (mod q)

Sχ (m, n; c)
c

g0

(
4π
√

mn
c

)
. (3.19)

In both formulæ, each f ∈ B∗κ(q1, χ) is normalised such that 〈ι1,q1,q f, ι1,q1,q f 〉q = 1.

Atkin–Lehner decomposition for 01(q). We recall the decomposition

Aκ(01(q))=
⊕

χ (mod q)
χ(−1)=(−1)κ

Aκ(q, χ),

which follows from the fact that 01(q) is a normal subgroup of 00(q) with quotient group isomorphic
to (Z/qZ)×, noting that Aκ(q, χ) = {0} if χ(−1) 6= (−1)κ . From this, we obtain the natural basis of
Aκ(01(q)) given by

Bκ(01(q))=
⊔

χ (mod q)
χ(−1)=(−1)κ

⊔
q1q2=q

q1≡0 (mod qχ )

⊔
f ∈B∗κ (q1,χ)

⊔
d|q2

{
fd =

∑
`|d

ξ f (`, d)ι`,q1,q f
}
. (3.20)

This allows us to use the pre-Kuznetsov and Kuznetsov formulæ (3.18) and (3.19) for Bκ(01(q)) and
B0(01(q)), even though ostensibly these two formulæ are only set up for Bκ(q, χ) and B0(q, χ).

Atkin–Lehner decomposition for 0(q). A similar decomposition also holds for Aκ(0(q)). In this case,
the fact that

00(q2)∩01(q)=
{(

a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod q), c ≡ 0 (mod q2)

}
=

(
q−1 0

0 1

)
0(q)

(
q 0
0 1

)
implies that

Aκ(0(q))= ιq−1Aκ
(
00(q2)∩01(q)

)
,
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where ιq−1 : Aκ
(
00(q2)∩01(q)

)
→ Aκ(0(q)) is the map ιq−1 f (z) = f (q−1z). As 00(q2)∩01(q) is a

normal subgroup of 00(q2) with quotient group isomorphic to (Z/qZ)×, we obtain the decomposition

Aκ(0(q))=
⊕

χ (mod q)
χ(−1)=(−1)κ

ιq−1Aκ(q2, χ),

thereby allowing us to choose an explicit basis Bκ(0(q)) of Aκ(0(q)) of the form⊔
χ (mod q)

χ(−1)=(−1)κ

⊔
q1q2=q2

q1≡0 (mod qχ )

⊔
f ∈B∗κ (q1,χ)

⊔
d|q2

{
ιq−1 fd =

∑
`|d

ξ f (`, d)ιq−1 ι`,q1,q f
}
. (3.21)

Once again, this allows us to make use of the pre-Kuznetsov and Kuznetsov formulæ (3.18) and (3.19)
for Bκ(0(q)) and B0(0(q)).

4. Bounds for Fourier coefficients of newforms

In the Kuznetsov formula (3.19), the Fourier coefficients |ρ f (1)|2 and the normalisation factor ξ f both
appear naturally. To remove these weights, we obtain lower bounds for |ρ f (1)|2 and ξ f . For the former,
such bounds are well-known, appearing in some generality in [Duke et al. 2002, Equation (7.16)];
nevertheless, we take this opportunity to correct some of the minor numerical errors in this proof, as well
as greatly streamline the proof via the recent work of Li [2010] on obtaining upper bounds for L-functions
at the edge of the critical strip.

Lemma 4.1. For f ∈ B∗κ(q1, χ), we have that

ξ f =
∑
n|q∞2

|λ f (n)|2

n

∏
p‖q2

(
1−

χ0(q1)(p)
p2

)
.

In particular, ξ f � 1.

Proof. By multiplicativity,

ξ f ··=
∑
d|q2

|ξ f (1, d)|2 =
∏
pt‖q2

t∑
r=0

|ξ f (1, pr )|2.

We have that

t∑
r=0

|ξ f (1, pr )|2 =


1 if t = 0,

1
1−|A f (p)|2

if t = 1,

1
(1−χ0(q1)(p)p−2)(1−|A f (p)|2)

if t ≥ 2.

The result then follows from the fact that

1
1− |A f (p)|2

=

(
1−

χ0(q1)(p)
p2

) ∞∑
k=0

|λ f (pk)|2

pk . �
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For f ∈ Bκ(q, χ), we define

ν f ··= 0

(
1+ κ

2
+ i t f

)
0

(
1+ κ

2
− i t f

)
|ρ f (1)|2.

Note that

0

(
1+ κ

2
+ i t

)
0

(
1+ κ

2
− i t

)
=


π

coshπ t
if κ = 0,

π t
sinhπ t

if κ = 1.

Lemma 4.2. Suppose that f ∈ B∗κ(q1, χ) for some q1 | q. Then

〈ι1,q1,q f, ι1,q1,q f 〉q
vol(00(q)\H)

= ν f Res
s=1

∞∑
n=1

|λ f (n)|2

ns .

Proof. We let `1 = `2 = 1 in (3.14) and take the residue at s = 1, yielding

〈ι1,q1,q f, ι1,q1,q f 〉q
vol(00(q)\H)

= |ρ f (1)|2 Res
s=1

∞∑
n=1

|λ f (n)|2

ns

∫
∞

0

(
Wκ/2,i t f (y)

2
+

∣∣∣∣0((1+ κ)/2+ i t f )

0((1− κ)/2+ i t f )

∣∣∣∣2W−κ/2,i t f (y)
2
)

dy
y
,

since the residue of E(z, s) at s = 1 is 1/ vol(00(q)\H). We have by [Gradshteyn and Ryzhik 2007,
7.611.4] that for κ ∈ C and − 1

2 < <(i t) <
1
2 ,∫

∞

0
Wκ/2,i t(y)2

dy
y
=

π

sin 2π i t
ψ((1− κ)/2+ i t)−ψ((1− κ)/2− i t)
0((1− κ)/2+ i t)0((1− κ)/2− i t)

,

where ψ is the digamma function; note that a slightly erroneous version of this appears in [Duke et al.
2002, Equation (19.6)]. By the gamma and digamma reflection formulæ, we find that∫

∞

0

(
Wκ/2,i t f (y)

2
+

∣∣∣∣0((1+ κ)/2+ i t f )

0((1− κ)/2+ i t f )

∣∣∣∣2W−κ/2,i t f (y)
2
)

dy
y
= 0

(1+κ
2
+ i t f

)
0
(1+κ

2
− i t f

)
(4.3)

assuming that t f ∈ [0,∞) if κ = 1 and t f ∈ [0,∞) or i t f ∈
(
0, 1

2

)
if κ = 0. �

Corollary 4.4. Suppose that f ∈ B∗κ(q1, χ) for some q1 | q. Then

ν f �ε

〈ι1,q1,q f, ι1,q1,q f 〉q
vol(00(q)\H)

(q(3+ t2
f ))
−ε. (4.5)

Proof. It is known that
∞∑

n=1

|λ f (n)|2

ns =
ζ(s)L(s, ad f )

ζ(2s)

∏
p|q

P f,p(p−s),

where for each prime p dividing q , P f,p(z) is a rational function satisfying p−ε�ε P f,p(p−1)≤ 1. The
work of Li [Li 2010, Theorem 2] then shows that

L(1, ad f )� exp
(

C
log(q(3+ t2

f ))

log log(q(3+ t2
f ))

)
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for some absolute constant C > 0, thereby yielding the result. �

5. Bounds for sums of Kloosterman sums

We denote by

S(m, n; c) ··=
∑

d∈(Z/cZ)×

e
(md+nd̄

c

)
the usual Kloosterman sum with trivial character, for which the Weil bound holds:

|S(m, n; c)| ≤ τ(c)
√
(m, n, c)c. (5.1)

We also require bounds for Kloosterman sums with nontrivial character. For c ≡ 0 (mod q), m, n ≥ 1,
and (a, q)= 1, we have that∑

χ (mod q)
χ(−1)=(−1)κ

χ(a)Sχ (m, n; c)= 1
2

∑
d∈(Z/cZ)×

∑
χ (mod q)

χ(a)
(
χ(d)+ (−1)κχ(−d)

)
e
(md+nd̄

c

)
.

We break this up into two sums. In the second sum, we can replace d with −d and χ with χ and use
character orthogonality to see that∑

χ (mod q)
χ(−1)=(−1)κ

χ(a)Sχ (m, n; c)=
{
ϕ(q)<

(
Sa(q)(m, n; c)

)
if κ = 0,

iϕ(q)=
(
Sa(q)(m, n; c)

)
if κ = 1,

(5.2)

where we set

Sa(q)(m, n; c) ··=
∑

d∈(Z/cZ)×

d≡a (mod q)

e
(md+nd̄

c

)
.

If c=c1c2 with (c1, c2)=1 and c1c2≡0 (mod q), then we let d=c2c2d1+c1c1d2, where d1∈ (Z/c1Z)×,
d2 ∈ (Z/c2Z)×, and c2c2 ≡ 1 (mod c1), c1c1 ≡ 1 (mod c2). By the Chinese remainder theorem,

Sa(q)(m, n; c)= Sa((q,c1))(mc2, nc2; c1)Sa((q,c2))(mc1, nc1; c2).

To bound Sa(q)(m, n; c), it therefore suffices to find bounds for Sa(pα)(m, n; pβ) for any prime p and any
β ≥ α ≥ 1. The trivial bound is merely

|Sa(pα)(m, n; pβ)| ≤ pβ−α. (5.3)

Somewhat surprisingly, this is sufficient for our needs. Indeed, we cannot do better than this when β = α,
and in our applications, this will be the dominant contribution.

We also require bounds for Sχ (m, n; c). Unfortunately, it is not necessarily the case that this is bounded
by τ(c)

√
(m, n, c)c, which can be observed numerically at [LMFDB 2013]; see also [Knightly and Li

2013, Example 9.9].
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Lemma 5.4. Let p be an odd prime, let χpγ be a Dirichlet character of conductor pγ , and suppose that
(mn, p)= 1. Then for β ≥ γ ≥ 0, we have that

|Sχpγ (m, n; pβ)| ≤ 2pβ/2

unless β = γ ≥ 3, in which case we only have that

|Sχpγ (m, n; pβ)| ≤ 2pb(3β+1)/4c.

Similarly, let χ2γ be a Dirichlet character of conductor 2γ , and suppose that (mn, 2) = 1. Then for
β ≥ γ ≥ 0, we have that

|Sχ2γ (m, n; 2β)| ≤ 8 · 2β/2

unless γ + 1≥ β ≥ 3, in which case we only have that

|Sχ2γ (m, n; 2β)| ≤ 4 · 2b(3β+1)/4c.

Proof. This follows from [Knightly and Li 2013, Propositions 9.4, 9.7, 9.8, and Lemmata 9.6]. �

Lemma 5.5. When (m, n)= 1, we have that∑
c≤4π

√
mn

c≡0 (mod q)

|Sa(q)(m, n; c)|

c
3
2

�
(log(mn+ 1))2

q
3
2

∏
p|q

1

1− p−
1
2

, (5.6)

∑
c≤4π

√
mn

c≡0 (mod q2)

|Sa(q)(m, n; c)|

c
3
2

�
(log(mn+ 1))2

q2

∏
p|q

1

1− p−
1
2

. (5.7)

If we additionally assume that (mn, q)= 1, then given a Dirichlet character χ modulo q , we have that∑
c≤4π

√
mn

c≡0 (mod q)

|Sχ (m, n; c)|

c
3
2

� (log(mn+ 1))2
2ω(q) Q̇
ϕ(q)

. (5.8)

Proof. We write q = pα1
1 · · · p

α`
` , so that the left-hand side of (5.6) is

∞∑
β1=α1

· · ·

∞∑
β`=α`

1

(pβ1
1 · · · p

β`
` )

3
2

∑
c≤4π

√
mn p

−β1
1 ···p

−β`
`

(c,q)=1

1

c
3
2

× |S(m pβ1
1 · · · p

β`
` , n pβ1

1 · · · p
β`
` ; c)||Sa(q)(mc̄, nc̄; pβ1

1 · · · p
β`
` )|.

Using the Weil bound (5.1) for the first Kloosterman sum and the trivial bound (5.3) for the second, we
find that this is bounded by

1
q

∞∑
β1=α1

· · ·

∞∑
β`=α`

1√
pβ1

1 · · · p
β`
`

∑
c≤4π

√
mn

(c,q)=1

τ(c)
√
(m, n, c)
c

.
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If (m, n) = 1, the inner sum is bounded by a constant multiple of (log(mn + 1))2, and so the sum is
bounded by a constant multiple of

(log(mn+ 1))2

q

∞∑
β1=α1

· · ·

∞∑
β`=α`

1√
pβ1

1 · · · p
β`
`

,

which yields (5.6) upon evaluating these geometric series. (5.7) follows similarly. Finally, (5.8) follows
via the same method but using Lemma 5.4 to bound the Kloosterman sums, yielding the bound

8 · 2ω(q) Q̇
∞∑

β1=α1

· · ·

∞∑
β`=α`

1

pβ1
1 · · · p

β`
`

∑
c≤4π

√
mn

(c,q)=1

τ(c)
c

for the left-hand side of (5.8), from which the result easily follows. �

Lemma 5.9. When (m, n)= 1, we have that∑
c>4π

√
mn

c≡0 (mod q)

|Sa(q)(m, n; c)|
c2

(
1+ log

c
4π
√

mn

)
�
(log(mn+ 1))2

(mn)
1
4

1

q
3
2

∏
p|q

1

1− p−
1
2

, (5.10)

∑
c>4π

√
mn

c≡0 (mod q2)

|Sa(q)(m, n; c)|
c2

(
1+ log

c
4π
√

mn

)
�
(log(mn+ 1))2

(mn)
1
4

1
q2

∏
p|q

1

1− p−
1
2

. (5.11)

If we additionally assume that (mn, q)= 1, then given a Dirichlet character χ modulo q , we have that∑
c>4π

√
mn

c≡0 (mod q)

|Sχ (m, n; c)|
c2

(
1+ log

c
4π
√

mn

)
�
(log(mn+ 1))2

(mn)
1
4

2ω(q) Q̇
ϕ(q)

. (5.12)

Proof. As before, with q = pα1
1 · · · p

α`
` , the left-hand side of (5.10) is bounded by

1
q

∞∑
β1=α1

· · ·

∞∑
β`=α`

1

pβ1
1 · · · p

β`
`

∑
c>4π

√
mn p

−β1
1 ···p

−β`
`

(c,q)=1

τ(c)
√
(m, n, c) log c

c
3
2

.

If (m, n)= 1, then the inner sum is bounded by a constant multiple of

(log(mn+ 1))2

(mn)
1
4

√
pβ1

1 · · · p
β`
` .

It follows that the sum is bounded by a constant multiple of

(log(mn+ 1))2

(mn)
1
4

1
q

∞∑
β1=α1

· · ·

∞∑
β`=α`

1√
pβ1

1 · · · p
β`
`

,

which gives (5.10). The proof of (5.11) is analogous, while (5.12) again follows upon using Lemma 5.4
to bound the Kloosterman sums. �
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Lemma 5.13 (cf. [Iwaniec and Kowalski 2004, Equation (16.50)]). For all 1
2 < σ < 1,

∞∑
c=1

c≡0 (mod q)

|Sa(q)(m, n; c)|
c1+σ ≤

18τ((m, n))
(2σ − 1)2

1
q1+σ

∏
p|q

1
1− p−σ

, (5.14)

∞∑
c=1

c≡0 (mod q2)

|Sa(q)(m, n; c)|
c1+σ ≤

18τ((m, n))
(2σ − 1)2

1
q1+2σ

∏
p|q

1
1− p−σ

. (5.15)

If we additionally assume that (m, n)= (mn, q)= 1, then given a Dirichlet character χ modulo q, we
have that

∞∑
c=1

c≡0 (mod q)

|Sχ (m, n; c)|
c1+σ ≤

72
(2σ − 1)2

2ω(q) Q̇

ϕ(q)qσ−
1
2

. (5.16)

Proof. Once again writing q = pα1
1 · · · p

α`
` and bounding the Kloosterman sums, we have that

∞∑
c=1

c≡0 (mod q)

|Sa(q)(m, n; c)|
c1+σ ≤

∞∑
c=1

(c,q)=1

τ(c)
√
(m, n, c)

c
1
2+σ

1
q

∞∑
β1=α1

· · ·

∞∑
β`=α`

1

(pβ1
1 · · · p

β`
` )

σ

=

∞∑
c=1

(c,q)=1

τ(c)
√
(m, n, c)

c
1
2+σ

1
q1+σ

∏
p|q

1
1− p−σ

≤ ζ
(
σ + 1

2

)2 ∑
d|(m,n)

τ(d)
dσ

1
q1+σ

∏
p|q

1
1− p−σ

≤
18τ((m, n))
(2σ − 1)2

1
q1+σ

∏
p|q

1
1− p−σ

.

This proves (5.14). The inequality (5.15) follows by a similar argument, as does (5.16) once the
Kloosterman sums are bounded via Lemma 5.4. �

6. Bounds for test functions

We require bounds for the test function that we will obtain by multiplying the pre-Kuznetsov formula
(3.18) by a function dependent on r and then integrating both sides over r ∈ [0, T ].

Lemma 6.1. For T ≥ 1, let

hκ,T (t) ··=
π2

0((1+ κ)/2+ i t)0((1+ κ)/2− i t)

∫ T

0

r |0(1− κ/2+ ir)|−2

coshπ(r − t) coshπ(r + t)
dr

=


coshπ t

∫ T

0

sinhπr
coshπ(r−t) coshπ(r+t)

dr if κ = 0,

sinhπ t
t

∫ T

0

r coshπr
coshπ(r−t) coshπ(r+t)

dr if κ = 1.
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Then hκ,T (t) is positive for all t ∈ R and additionally, should κ be equal to 0, for i t ∈
(
−

1
2 ,

1
2

)
. Further-

more, hκ,T (t)� 1 for t ∈ [0, T ].

Proof. Using the fact that

coshπ(r − t) coshπ(r + t)= cosh2 π t + sinh2 πr = sinh2 π t + cosh2 πr,

it is clear that hκ,T (t) is positive for all t ∈ R and additionally, should κ be equal to 0, if i t ∈
(
−

1
2 ,

1
2

)
.

For κ = 0, we have that

h0,T (t)=
coshπ t
π

∫ coshπT

1

1
x2+sinh2 π t

dx

=
cothπ t
π

arctan sinhπ t (coshπT−1)
sinh2 π t+coshπT

,

where the second line follows from the arctangent subtraction formula. The first expression shows that
h0,T (t)� 1 when t is small, while when t is large, the argument of arctan is essentially

eπ(T+t)
−eπ t

e2π t+eπT ,

and this is bounded from below provided that t ≤ T , so that again h0,T (t)� 1.
For κ = 1, we can similarly show via integration by parts that

h1,T (t)=
sinhπ t
π2t

∫ sinhπT

0

arsinh x
x2+cosh2 π t

dx

=
tanhπ t
π2t

∫ sinhπT

0

arctan(sinhπT/ coshπ t)−arctan(x/ coshπ t)
√

x2+1
dx .

The first expression shows that h1,T (t)� 1 when t is small, while when t is large, we break up the second
expression into two integrals: one from 0 to sinh π t

2 and one from sinh π t
2 to sinhπT . Trivially bounding

the numerator in each integral, we find that

h1,T (t)≥
tanhπ t

2π
(
arctan(sinhπT/ coshπ t)− arctan(sinh(π t/2)/ coshπ t)

)
=

tanhπ t
2π

arctan
coshπ t

(
sinhπT − sinh(π t/2)

)
cosh2 π t + sinhπT sinh(π t/2)

.

The argument of arctan is essentially
eπ(T+t)

−e3π t/2

e2π t+eπ(T+t/2) ,

and this is bounded from below provided that t ≤ T , while tanhπ t is bounded from below provided that
t is larger than some fixed constant. It follows again that h1,T (t)� 1. �

We also require the following bound, which arises from the Kloosterman term in the pre-Kuznetsov
formula (3.18).
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Lemma 6.2. For κ ∈ {0, 1} and T > 0, we have the bound∫ T

0
r Iκ(a, r) dr �

{√
a if a ≥ 1,

a(1+ log(1/a)) if 0< a < 1
(6.3)

uniformly in T .

Proof. From [Kuznetsov 1980, Equation (5.13)], we have that∫ T

0
r I0(a, r) dr = a

∫
∞

0

tanh ξ
ξ

(1− cos 2T ξ) sin(a cosh ξ) dξ.

Similarly, using the fact that

K2ir (ζ )=

∫
∞

0
e−ζ cosh ξ cos 2rξ dξ

for r ∈ R and <(ζ ) > 0 from [Gradshteyn and Ryzhik 2007, 8.432.1], we have that∫ T

0
r I1(a, r) dr =−2a

∫
∞

0

∫ T

0
r cos 2rξ dr

∫ i

−i
e−ζa cosh ξ dζ dξ.

Evaluating each of the inner integrals and then integrating by parts, we find that∫ T

0
r I1(a, r) dr

= ia
∫
∞

0

tanh ξ
ξ

(1− cos 2T ξ) cos(a cosh ξ) dξ − i
∫
∞

0

tanh ξ
ξ

(1− cos 2T ξ)sin(a cosh ξ)
cosh ξ

dξ.

From here, one can show via stationary phase on subintervals of (0,∞) that
∫ T

0 r I0(a, r) dr and the first
term in the above expression for

∫ T
0 r I1(a, r) dr both are bounded by a constant multiple of{√

a if a ≥ 1,
a(1+ log(1/a)) if 0< a < 1;

see [Kuznetsov 1980, Equation (5.14)]. The second term in the expression for
∫ T

0 r I1(a, r) dr is uniformly
bounded for a≥ 1, so we need only consider when 0<a< 1. In this case, the fact that |sin x |≤min{1, |x |}
for x ∈ R implies that this is bounded by

2a
∫ log(1/a)

0

tanh ξ
ξ

dξ + 2
∫
∞

log(1/a)

tanh ξ
ξ

1
cosh ξ

dξ � a(1+ log(1/a)). �

7. Sarnak’s density theorem for exceptional Hecke eigenvalues

We are now in a position to prove Theorem 1.1.

Proof of (1.2). By Rankin’s trick,

#
{

f ∈ Bκ(01(q)) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}
≤

∏
p∈P

α
−2`p
p

∑
f ∈Bκ (01(q))

t f ∈[0,T ]

∏
p∈P

|λ f (p)|2`p
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for any nonnegative integers `p to be chosen. Using the explicit basis (3.20) of Aκ(01(q)) together with
the lower bound (4.5) for ν f ,∑

f ∈Bκ (01(q))
t f ∈[0,T ]

∏
p∈P

|λ f (p)|2`p =

∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗κ (q1,χ)

t f ∈[0,T ]

τ(q2)
∏
p∈P

|λ f (p)|2`p

�ε q1+εT ε
∑

χ (mod q)
χ(−1)=(−1)κ

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗κ (q1,χ)

t f ∈[0,T ]

ξ f ν f

∏
p∈P

|λ f (p)|2`p .

We take m = 1 and n =
∏

p∈P p2 jp in the pre-Kuznetsov formula (3.18), multiply both sides by∏
p∈P α2 jp,2`pχ(p)

jp , and sum over all 0 ≤ jp ≤ `p, over all p ∈ P , and over all Dirichlet characters
χ modulo q satisfying χ(−1) = (−1)κ . We then multiply both sides by π2r |0(1− κ/2+ ir)|−2 and
integrate both sides with respect to r from 0 to T .

On the spectral side, (3.1), (3.5), and Lemma 6.1 allow us to use positivity to discard the contribution
from the continuous spectrum, while we may discard the contribution of the discrete spectrum with
t /∈ [0, T ] via (3.8), (3.12), and Lemma 6.1, so that the spectral side is bounded from below by a constant
multiple of ∑

χ (mod q)
χ(−1)=(−1)κ

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗κ (q1,χ)

t f ∈[0,T ]

ξ f ν f

∏
p∈P

|λ f (p)|2`p .

On the geometric side, we only pick up the delta term when jp = 0 for all p ∈ P , in which case the term
is bounded by a constant multiple of qT 2∏

p∈P α0,2`p . For κ = 0, we use (5.2) to write the Kloosterman
term in the form

ϕ(q)
π

`p∑
jp=0
p∈P

∏
p∈P

α2 jp,2`p

∞∑
c=1

c≡0 (mod q)

<
(
S∏

p∈P p jp (q)
(
1,
∏

p∈P p2 jp ; c
))

c

∫ T

0
r I0

(
4π
∏

p∈P p jp

c
, r
)

dr.

For κ = 1, the Kloosterman term is the same except with i= in place of < and I1 in place of I0. In either
case, we bound the integral via (6.3), which allows us to use (5.6) and (5.10) to bound the summation
over c, so that the Kloosterman term is bounded by a constant multiple of

1
√

q

∏
p′|q

1

1− p′−
1
2

`p∑
jp=0
p∈P

∏
p∈P

α2 jp,2`p p jp/2
(

log
(∏

p∈P

p2 jp + 1
))2

.

We bound the summation over jp and over p ∈ P via (3.7), thereby obtaining

#
{

f ∈ Bκ(01(q)) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε q1+εT ε
∏
p∈P

(
αp

2

)−2`p
(

qT 2
+

∏
p∈P p`p/2

(
log

∏
p∈P p`p/2

)2

√
q

∏
p′|q

1

1− p′−
1
2

)
.
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It remains to take

`p =

⌊
µp log(vol(01(q)\H)

3
2 T 4)

log p

⌋
. �

Proof of (1.3). We use (3.21), (5.7), and (5.11) in place of (3.20), (5.6), and (5.10), thereby finding that

#
{

f ∈ Bκ(0(q)) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}
≤

∏
p∈P

α
−2`p
p

∑
f ∈Bκ (0(q))

t f ∈[0,T ]

∏
p∈P

|λ f (p)|2`p ,

with∑
f ∈Bκ (0(q))

t f ∈[0,T ]

∏
p∈P

|λ f (p)|2`p =

∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q2

q1≡0 (mod qχ )

∑
f ∈B∗κ (q1,χ)

t f ∈[0,T ]

τ(q2)
∏
p∈P

|λ f (p)|2`p

�ε q2+εT ε
∏
p∈P

22`p

(
qT 2
+

∏
p∈P p`p/2

(
log

∏
p∈P p`p/2

)2

q

∏
p′|q

1

1− p′−
1
2

)
.

Taking

`p =

⌊
µp log(vol(0(q)\H)

4
3 T 4)

log p

⌋
completes the proof. �

Proof of (1.4). Using (3.16), (5.8), and (5.12) in place of (3.20), (5.6), and (5.10),

#
{

f ∈ Bκ(q, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε q1+εT ε
∏
p∈P

(
αp

2

)−2`p
(

T 2
+

∏
p∈P

p`p/2
(

log
∏
p∈P

p`p/2
)2 2ω(q) Q̇

ϕ(q)

)
.

Upon taking

`p =

⌊
µp log(vol(00(q)\H)2T 4 Q̇−2)

log p

⌋
,

we conclude that

#
{

f ∈ Bκ(q, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

�ε

(
vol(00(q)\H)T 2)1−4

∑
p∈P µp(logαp/2)/ log p+ε Q̇4

∑
p∈P µp(logαp/2)/ log p. (7.1)

On the other hand, by the inclusion Aκ(q, χ)⊂Aκ(q Q̈, χ),

#
{

f ∈ Bκ(q, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}

≤ #
{

f ∈ Bκ(q Q̈, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P
}
.
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Since qχψ2 | qχ , we have that Q̇(q Q̈, qχψ2)= 1. Consequently, (7.1) yields the bound

#{ f ∈ Bκ(q, χ) : t f ∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P}

�ε

(
vol(00(q Q̈)\H)T 2)1−4

∑
p∈P µp(logαp/2)/ log p+ε

�ε

(
vol(00(q)\H)T 2)1−4

∑
p∈P µp(logαp/2)/ log p+ε Q̈1−4

∑
p∈P µp(logαp/2)/ log p. �

Remark 7.2. Should we wish to improve (1.4) to be uniform in P , then one needs to take into account
the fact that∏
p∈P

(
αp

2

)−2`p

=
(
vol(00(q)\H)T 2)−4

∑
p∈P µp(logαp/2)/ log p+ε Q̇4

∑
p∈P µp(logαp/2)/ log p

×

∏
p∈P

(
αp

2

)2(µp log(vol(00(q)\H)2T 4 Q̇−2))/ log p

,

where {x} denotes the fractional part of x , and the last term need not necessarily be�ε (vol(00(q)\H)T 2)ε.
For this reason, [Blomer et al. 2014, Proposition 1] is not correct in the generality in which it is stated,
namely the claim that the result is uniform for T > p. Instead, one requires that p�ε T ε.

8. Huxley’s density theorem for exceptional laplacian eigenvalues

Theorem 1.5 is proved similarly to Theorem 1.1, though we use the Kuznetsov formula (3.19) with a
carefully chosen test function in place of the pre-Kuznetsov formula (3.18), and we require different
methods to bound the Kloosterman term.

Proof of (1.6). We again use Rankin’s trick with nonnegative integers `p and a positive real number X ≥ 1
to be chosen:

#
{

f ∈ B0(01(q)) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
≤ X−2α0

∏
p∈P

α
−2`p
p

∑
f ∈B0(01(q))

i t f ∈(0, 1
2 )

X2i t f
∏
p∈P

|λ f (p)|2`p .

Again using (3.20) and (4.5),∑
f ∈B0(01(q))

i t f ∈(0, 1
2 )

X2i t f
∏
p∈P

|λ f (p)|2`p =

∑
χ (mod q)
χ(−1)=1

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗0(q1,χ)

i t f ∈(0, 1
2 )

τ(q2)X2i t f
∏
p∈P

|λ f (p)|2`p

�ε q1+ε
∑

χ (mod q)
χ(−1)=1

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗0(q1,χ)

i t f ∈(0, 1
2 )

ξ f ν f X2i t f
∏
p∈P

|λ f (p)|2`p

We take m = 1, n =
∏

p∈P p2 jp , and

h(t)= hX (t)=
(

X i t
+ X−i t

t2+ 1

)2
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in the Kuznetsov formula (3.19), multiply both sides by
∏

p∈P α2 jp,2`pχ(p)
jp , and sum over all 0≤ jp≤`p,

over all p ∈ P , and over all even Dirichlet characters modulo q . On the spectral side, we discard all but
the discrete spectrum for which i t f ∈

(
0, 1

2

)
via positivity, so that the spectral side is bounded from below

by a constant multiple of ∑
χ (mod q)
χ(−1)=1

∑
q1q2=q

q1≡0 (mod qχ )

∑
f ∈B∗0(q1,χ)

i t f ∈(0, 1
2 )

ξ f ν f X2i t f
∏
p∈P

|λ f (p)|2`p .

We only pick up the delta term on the geometric side when jp = 0 for all p ∈ P , in which case the term
is bounded by a constant multiple of q

∏
p∈P 22`p . We write the Kloosterman term in the form

ϕ(q)
2π i

`p∑
jp=0
p∈P

∏
p∈P

α2 jp,2`p

∫ σ+i∞

σ−i∞

∞∑
c=1

c≡0 (mod q)

<
(
S∏

p∈P p jp (q)
(
1,
∏

p∈P p2 jp ; c
))

c
Js

(4π
∏

p∈P p jp

c

)
shX (is/2)
cos(πs/2)

ds

for any 1
2 < σ < 1. We have, via [Gradshteyn and Ryzhik 2007, 8.411.4], the bound

Js(x)�
xσ∣∣0(s+ 1

2

)∣∣ � eπ |s|/2
(

x
|s|

)σ
,

and so the integral in the Kloosterman term is bounded by a constant multiple of

∏
p∈P

p jpσ

∞∑
c=1

c≡0 (mod q)

∣∣S∏
p∈P p jp (q)

(
1,
∏

p∈P p2 jp ; c
)∣∣

c1+σ

∫ σ/2+i∞

σ/2−i∞
|r

3
4 hX (ir)| dr.

We take

σ =
1
2
+

1
log
(
X
∏

p∈P p`p
) ,

so that the integral is bounded by a constant multiple of
√

X , and use (5.14) to bound the summation
over c and (3.7) to bound the summation over jp and p ∈ P in order to find that

#
{

f ∈ B0(01(q)) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε q1+εX−2α0

∏
p∈P

(
αp

2

)−2`p
(

q +
√

X
∏
p∈P

p`p/2
(

log
(

X
∏
p∈P

p`p

))2 1
√

q

∏
p′|q

1

1− p′−
1
2

)
.

The result follows upon taking

X = vol(01(q)\H)3µ0/2, `p =

⌊
µp log vol(01(q)\H)

3
2

log p

⌋
. �
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Proof of (1.7). By using (3.21) and (5.15) in place of (3.20) and (5.14), we obtain

#
{

f ∈ B0(0(q)) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε q2+εX−2α0

∏
p∈P

(
αp

2

)−2`p
(

q +
√

X
∏
p∈P

p`p/2
(

log
(

X
∏
p∈P

p`p

))2 1
q

∏
p′|q

1

1− p′−
1
2

)
,

and it remains to take

X = vol(0(q)\H)4µ0/3, `p =

⌊
µp log vol(0(q)\H)

4
3

log p

⌋
. �

Proof of (1.8). We use (3.16) and (5.16) in place of (3.20) and (5.14), so that

#
{

f ∈ B0(q, χ) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε q1+εX−2α0

∏
p∈P

(
αp

2

)−2`p
(

1+
√

X
∏
p∈P

p`p/2
(

log
(

X
∏
p∈P

p`p

))2 2ω(q) Q̇
ϕ(q)

)
.

We find that

#
{

f ∈ B0(q, χ) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
�ε vol(00(q)\H)1−4(µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε Q̇4(µ0α0+

∑
p∈P µp(logαp/2)/ log p).

by taking

X = vol(00(q)\H)2µ0 Q̇−2µ0, `p =

⌊
µp log(vol(00(q)\H)2 Q̇−2)

log p

⌋
.

Again, we also have that

#
{

f ∈ B0(q, χ) : i t f ∈
(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
≤ #

{
f ∈ B0(q Q̈, χψ2) : i t f ∈

(
α0,

1
2

)
, |λ f (p)| ≥ αp for all p ∈ P

}
for any primitive character ψ modulo Q̈, which implies that

#
{

f ∈ B0(q, χ) : i t f ∈
(
α0,

1
2

)
∈ [0, T ], |λ f (p)| ≥ αp for all p ∈ P

}
�ε vol(00(q)\H)1−4(µ0α0+

∑
p∈P µp(logαp/2)/ log p)+ε Q̈1−4(µ0α0+

∑
p∈P µp(logαp/2)/ log p). �

9. Improving Theorems 1.1 and 1.5 for 01(q) via twisting

In this section, we prove Theorem 1.9 Let f ∈ B∗κ(q, χ) be a newform, and for a primitive character
ψ modulo qψ with qψ | q, we let f ⊗ψ denote the twist of f by ψ ; this is the newform whose Hecke
eigenvalues λ f⊗ψ(n) are equal to λ f (n)ψ(n)whenever (n, q)=1. By [Atkin and Li 1978, Proposition 3.1],
the weight of f ⊗ψ is κ , the level of f ⊗ψ divides q2, and the nebentypus is the primitive character
that induces χψ2. We make crucial use of the fact that twisting by a Dirichlet character preserves the
Laplacian eigenvalue λ f =

1
4 + t2

f and the absolute value |λ f (n)| of the Hecke eigenvalues of f for all
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(n, q) = 1. Moreover, if f1 ∈ B∗κ(q1, χ1), f2 ∈ B∗κ(q2, χ2) are such that there exist primitive Dirichlet
characters ψ1 modulo qψ1 and ψ2 modulo qψ2 with qψ1, qψ2 | q such that

f1⊗ψ1 = f2⊗ψ2,

then f2 = f1⊗ψ1ψ2.

Lemma 9.1. If q is squarefree, ψ is a primitive Dirichlet modulo qψ , where qψ | q, and f ∈ B∗κ(q, χ),
then the level of f ⊗ψ divides q if and only if ψ divides χ , in the sense that ψχ has conductor dividing qχ .

Proof. This follows via the methods of [Humphries 2017]. For p | q, let πp be the local component of
the cuspidal automorphic representation π of GL2(AQ) associated to the newform f , so that the central
character ωp of πp is the local component of the Hecke character ω that is the idèlic lift of χ . As q is
squarefree, πp is either a principal series representation or a special representation.

In the former case, πp = ωp,1 � ωp,2 with central character ωp = ωp,1ωp,2, where ωp,1, ωp,2 are
characters of Q×p with conductor exponents c(ωp,1), c(ωp,2) ∈ {0, 1} such that the conductor exponent
c(πp) of πp is c(ωp,1)+ c(ωp,2) = 1. The twist πp ⊗ω

′
p of πp by a character ω′p of Q×p of conductor

exponent c(ω′p) ∈ {0, 1} is ωp,1ω
′
p � ωp,2ω

′
p with corresponding conductor exponent c(πp ⊗ ω

′
p) =

c(ωp,1ω
′
p)+c(ωp,2ω

′
p). For this to be at most 1, either ω′p is unramified, or one of c(ωp,1ω

′
p), c(ωp,2ω

′
p)

must be equal to 0, so that ω′p is equal to ωp,1 or ωp,2 up to multiplication by an unramified character.
In the latter case, πp = ωp,1 St with central character ωp = ω

2
p,1 such that c(ωp,1) = 0, so that

c(πp)= 1. The twist of πp by ω′p is ωp,1ω
′
p St, with corresponding conductor exponent c(πp⊗ω

′
p)=

max{1, 2c(ωp,1ω
′
p)}. For this to be at most 1, ω′p must be unramified.

It follows that if the Hecke character ω′ is the idèlic lift of ψ , then the conductor of π⊗ω′ divides q if
and only if the conductor of ω′ω divides the conductor of ω. �

From this, we have the following.

Corollary 9.2. Let q be squarefree. Given a newform g of level dividing q2, there exist at most τ(q)
newforms f of level dividing q that can be twisted by a Dirichlet character of conductor dividing q to
give g.

Proof. Suppose that f1 ∈ B∗κ(q1, χ1) and f2 ∈ B∗κ(q2, χ2) with q1 and q2 dividing q are such that there
exist Dirichlet characters ψ1 and ψ2 of conductors dividing q for which f1⊗ψ1 = f2⊗ψ2 = g. Then
f2 = f1⊗ψ1ψ2, and Lemma 9.1 implies that ψ1ψ2 divides χ1. Since the conductor of χ1 divides q1,
the level of f1, the proof is complete by noting that the number of Dirichlet characters ψ2 modulo q for
which this may occur is bounded by the number of divisors of q . �

Lemma 9.3. Let q be squarefree, let P be a finite collection of primes not dividing q, let E0 be a
measurable subset of [0,∞)∪ i

(
0, 1

2

)
, and let E p be a measurable subset of [0,∞) for each p ∈ P . Then

#
{

f ∈ Bκ(01(q)) : t f ∈ E0, |λ f (p)| ∈ E p for all p ∈ P
}

≤
τ(q)2

ϕ(q)
#
{

f ∈ Bκ(0(q)) : t f ∈ E0, |λ f (p)| ∈ E p for all p ∈ P
}
.
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Proof. From (3.20),

#
{

f ∈ Bκ(01(q)) : t f ∈ E0, |λ f (p)| ∈ E p for all p ∈ P
}

is equal to ∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q

q1≡0 (mod qχ )

τ(q2)#
{

f ∈ B∗κ(q1, χ) : t f ∈ E0, |λ f (p)| ∈ E p for all p ∈ P
}
,

which, in turn, is equal to

1
ϕ(q)

∑
ψ (mod q)

∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q

q1≡0 (mod qχ )

τ(q2)

× #
{

f ⊗ψ : f ∈ B∗κ(q1, χ), t f ∈ E0, |λ f (p)| ∈ E p for all p ∈ P
}
,

as twisting preserves Laplacian eigenvalues and the absolute value of Hecke eigenvalues. Each twist
g = f ⊗ ψ of some f ∈ B∗κ(q1, χ) is a newform of weight κ , level dividing q2, and nebentypus of
conductor dividing q , and Corollary 9.2 implies that there are at most τ(q) newforms of level dividing q
that can be twisted by a Dirichlet character of conductor dividing q to yield g. Since τ(q2)≤ τ(q), the
above quantity is bounded by

τ(q)2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q2

q1≡0 (mod qχ )

#
{
g ∈ B∗κ(q1, χ) : tg ∈ E0, |λg(p)| ∈ E p for all p ∈ P

}
,

while the explicit basis (3.21) of Bκ(0(q)) implies that

#{g ∈ Bκ(0(q)) : tg ∈ E0, |λg(p)| ∈ E p for all p ∈ P}

is equal to ∑
χ (mod q)

χ(−1)=(−1)κ

∑
q1q2=q2

q1≡0 (mod qχ )

τ(q2)#{g ∈ B∗κ(q1, χ) : tg ∈ E0, |λg(p)| ∈ E p for all p ∈ P}.

This yields the result. �

Combining this with the fact that vol(0(q)\H)= q vol(01(q)\H), we deduce Theorem 1.9. It is likely
that a more careful analysis could obtain this same result even when q is not squarefree via the methods
in [Humphries 2017].
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