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We examine the set of Jb(F)-orbits in the set of irreducible components of affine Deligne–Lusztig varieties
for a hyperspecial subgroup and minuscule coweight µ. Our description implies in particular that its
number of elements is bounded by the dimension of a suitable weight space in the Weyl module associated
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1. Introduction

Let F be a finite extension of Qp or Fp((t)) and 0 its absolute Galois group. We denote by OF and kF ∼= Fq

its ring of integers and its residue field, and by ε a fixed uniformizer. Let L denote the completion of the
maximal unramified extension of F , and OL its ring of integers. Its residue field is an algebraic closure k
of kF . We denote by σ the Frobenius of L over F and of k over kF .

Let G be a reductive group scheme over OF , and denote K = G(OL). Then G F is automatically
unramified. We fix S ⊂ T ⊂ B ⊂ G, where S is a maximal split torus, T a maximal torus, and B a
Borel subgroup of G. Let W be the absolute Weyl group of G. There exist kF -ind schemes called the
loop group LG, the positive loop group L+G, and the affine Grassmannian GrG := LG/L+G of G
whose k-valued points are canonically identified with G(L), K = G(OL), and G(L)/G(OL), respectively
(compare [Pappas and Rapoport 2008; Zhu 2017; Bhatt and Scholze 2017]).
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Jb(F)-orbits of irreducible components in terms of Vµ(λ).
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Let µ ∈ X∗(T )dom, and let b ∈ G(L). Then the affine Deligne–Lusztig variety associated with b and µ
is the reduced subscheme Xµ(b) of GrG whose k-valued points are

Xµ(b)(k)= {g ∈ G(L)/K | g−1bσ(g) ∈ Kµ(ε)K }.

Let X�µ(b) =
⋃
µ′�µ Xµ′(b) where µ′ � µ if µ− µ′ is a nonnegative integral linear combination of

positive coroots. It is closed in the affine Grassmannian and called the closed affine Deligne–Lusztig
variety. For minuscule µ (the case we are mainly interested in for this paper) it agrees with Xµ(b).

Notice that up to isomorphism, both affine Deligne–Lusztig varieties depend only on the G(L)-σ -
conjugacy class [b] ∈ B(G) of b. An affine Deligne–Lusztig variety Xµ(b) or X�µ(b) is nonempty if and
only if [b] ∈ B(G, µ), a finite subset of B(G). The following basic assertion seems to be well known,
but we could not find a reference in the literature.

Lemma 1.1. The scheme Xµ(b) is locally of finite type in the equal characteristic case and locally of
perfectly finite type in the case of unequal characteristic.

Proof. The proof of this is the same as the corresponding part of the analogous statement for moduli
spaces of local G-shtukas; compare the proof of Theorem 6.3 in [Hartl and Viehmann 2011] (where
only the first half of page 113 is needed). In that proof, the case of equal characteristic and split G is
considered. However, the general statement follows from the same proof. �

Notice that in general Xµ(b) is not quasicompact since it may have infinitely many irreducible
components. It is conjectured to be equidimensional, but this has not been proven in full generality yet.
In Section 3 we give an overview of the cases where equidimensionality has been proven. In the case of
µ minuscule, which we are primarily interested in here, there are only a few exceptional cases where this
is not yet known.

Definition 1.2. For a finite-dimensional k-scheme X we denote by6(X) the set of irreducible components
of X and by 6top(X)⊂6(X) the subset of those irreducible components which are top-dimensional.

The affine Deligne–Lusztig varieties Xµ(b) and X�µ(b) carry a natural action (by left multiplication)
by the group

Jb(F)= {g ∈ G(L) | g−1bσ(g)= b}.

This action induces an action of Jb(F) on the set of irreducible components.
A complete description of the set of orbits was previously only known for the groups GLn and GSp2n

and minuscule µ where the action is transitive [Viehmann 2008a; 2008b], and for some other particular
cases; see for example [Vollaard and Wedhorn 2011] for a particular family of unitary groups and
minuscule µ.

To describe the (conjectured) number of orbits, denote by Ĝ the dual group of G in the sense of
Deligne and Lusztig. That is, Ĝ is the reductive group scheme over OF that contains a Borel subgroup B̂
with maximal torus T̂ and maximal split torus Ŝ such that there exists a Galois equivariant isomorphism
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X∗(T̂ )∼= X∗(T ) identifying simple coroots of T̂ with simple roots of T . For anyµ∈ X∗(T )dom= X∗(T̂ )dom

we denote by Vµ the associated Weyl module of ĜOL .
In the following we use an element λG(b) ∈ X∗(T̂ 0) that we define in Section 2. Its restriction λ to Ŝ

can be seen as a “best integral approximation” of the Newton point νb of [b], while its precise value in
X∗(T̂ 0) will depend on the Kottwitz point κG(b). We choose a lift λ̃ ∈ X∗(T ).

Conjecture 1.3 (Chen and Zhu). There exists a canonical bijection between Jb(F) \ 6(Xµ(b)) and
the basis of Vµ(λG(b)) constructed by Mirković and Vilonen [2007], where Vµ(λG(b)) denotes the
λG(b)-weight space (for the action of T̂ 0) of Vµ.

In this paper, we describe the set Jb(F)\6top(Xµ(b)) for minuscule µ. Our main result, Theorem 5.12,
implies in particular the following theorem.

Theorem 1.4. Let µ ∈ X∗(T )dom be minuscule, b ∈ [b] ∈ B(G, µ), and λ̃ ∈ X∗(T ) be an associated
element as in Section 2. There exists a canonical surjective map

φ :W.µ∩ [λ̃+ (1− σ)X∗(T )]� Jb(F) \6top(Xµ(b)).

Moreover, this map is a bijection in the following cases:

(1) G is split and

(2) [b] ∩CentG(νb) is a union of superbasic σ -conjugacy classes in CentG(νb).

Remark 1.5. (a) Let us explain how the theorem is a special case of the conjecture. Since µ is minuscule,
we have for any µ̃ ∈ X∗(T )

dim Vµ(µ̃)=
{

1 if µ̃ ∈W.µ,
0 otherwise,

where now Vµ(µ̃) denotes the µ̃-weight space for the action of T̂ . Thus, indeed we obtain a bijection
between the Mirković–Vilonen basis of Vµ(λ) and W.µ∩ [λ̃+ (1− σ)X∗(T )].

(b) We can replace the weight space Vµ(λG(b)) by the weight space Vµ(λ) for the action of Ŝ in
Conjecture 1.3. A priori one might expect the second space to be bigger; the equality is a consequence
of the relation between λ and the Kottwitz point κG(b) (see Remark 2.6 for details).

(c) An analogous formula has first been shown by Xiao and Zhu [2017] for [b] such that the F-ranks of
Jb and G coincide. In this case one can simply choose λ= νb, the Newton point of [b]. It was then
observed by Chen and Zhu (in oral communication) that an expression similar to the above should
give |Jb(F) \6(Xµ(b))| also for general [b], and all µ.

(d) In particular, Theorems 1.4 and 5.12 apply to all cases that correspond to Newton strata in Shimura
varieties of Hodge type.

In the case where b is superbasic, we prove the following stronger result, which was conjectured in
[Hamacher 2015a]. For the ordering ≤ compare the definition at the top of page 1615.
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Proposition 1.6. Assume b ∈G(L) is superbasic. There exists a decomposition into disjoint Jb(F)-stable
locally closed subschemes

Xµ(b)=
⋃

µ̃∈W.µ
µ̃|Ŝ≤νb

Cµ̃

such that Cµ̃ intersected with any connected component of GrG is universally homeomorphic to an affine
space. These affine spaces are of dimension d(µ̃) :=

∑
b〈µ̃−µadom, ω̂F 〉c where we take the sum over all

relative fundamental coweights ω̂F of Ĝ and where µadom denotes the antidominant representative in the
Weyl group orbit of µ.

Note that varying b within [b] only changes Xµ(b) by an isomorphism. For suitably chosen b ∈ [b],
the connected components of Cµ̃ are precisely the intersections of Xµ(b) with some Iwahori-orbit on GrG

[Chen and Viehmann 2018, §3]. Since the latter form a stratification on GrG , we can apply the localization
long exact sequence to calculate the cohomology of Xµ(b). For example for the constant sheaf one
obtains the following result.

Corollary 1.7. Assume b ∈ G(L) is superbasic, and denote by Jb(F)0 the (unique) parahoric subgroup
of Jb(F). Then the Jb(F)-equivariant cohomology of Xµ(b) (for ` 6= p) is given by

H 2i+1
c (Xµ(b),Q`)= 0,

H 2i
c (Xµ(b),Q`)= c-indJb(F)

Jb(F)0
Vi ,

where Vi is a diagonalizable Jb(F)0-representation with coefficients in Q` and of dimension

#{µ̃ ∈W.µ | d(µ̃)= i}.

2. Definition of λ

We associate with every σ -conjugacy class [b] a not necessarily dominant coinvariant λG(b) ∈ X∗(T̂ )0
which lifts the Kottwitz point of b and at the same time is a “best approximation” of the Newton point (in
a sense to be made precise below). In the split case it is closely connected to the notion of σ -straight
elements in the extended affine Weyl group of G.

Invariants of σ -conjugacy classes. By work of Kottwitz [1985], a σ -conjugacy class [b] ∈ B(G) is
uniquely determined by two invariants: the Newton point νG(b) ∈ X∗(S)Q,dom and the Kottwitz point
κG(b) ∈ π1(G)0. Here π1(G) denotes Borovoi’s fundamental group, i.e., the quotient of X∗(T ) by its
coroot lattice. We also consider the Kottwitz homomorphism wG as in [Kottwitz 1985]. Let w : X∗(T )�
π1(G) denote the canonical projection. By the Cartan decomposition G(L)=

∐
µ∈X∗(T )dom

Kµ(ε)K , and
we extend w to a map wG : G(L)→ π1(G) mapping Kµ(ε)K to w(µ). Then for every b ∈ G(L) the
projection of wG(b) to π1(G)0 coincides with κG(b).

We define a partial order � on X∗(T̂ ) such that µ′ � µ holds if and only if µ − µ′ is a linear
combination of positive roots with nonnegative, integral coefficients. Since the set of positive roots is
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preserved by the Galois action, this descends to a partial order on X∗(T̂ )0. Similarly, we define its
rational analogue ≤ on X∗(T )Q such that µ≤ µ′ holds if and only if µ−µ′ is a linear combination of
positive roots with nonnegative, rational coefficients. By the same argument as above this order descends
to X∗(T̂ )Q,0 = X∗(Ŝ).

Lemma/Definition 2.1. Let b ∈ G(L). Then the set

{λ̃ ∈ X∗(T̂ )0 | w(λ̃)= κG(b), λ̃|Ŝ ≤ νG(b)}

has a unique maximum λG(b) characterized by the property that w(λG(b))= κG(b) and that for every
relative fundamental coweight ω∨

Ĝ,F
of Ĝ, one has

〈λG(b)− νG(b), ω∨Ĝ,F 〉 ∈ (−1, 0]. (2.2)

Proof. Denote by Q̂ ⊂ X∗(T̂ ) the root lattice. Then the restriction X∗(T̂ )� X∗(Ŝ) canonically identifies
the relative root lattice with Q̂0. Note that the preimage w−1(κG(b))0 in X∗(T̂ )0 is a Q̂0-coset. Thus,
one has λ′ � λ for two elements in w−1(κG(b))0 if and only if

〈λ′, ω∨Ĝ,F 〉− 〈λ, ω
∨

Ĝ,F 〉 ≥ 0

for all relative fundamental coweights ω∨
Ĝ,F

of Ĝ and moreover the left-hand side always has integral
value. Thus, if a λG(b) as in (2.2) exists, it is the unique maximum. One easily constructs such a λG(b)
by choosing some λ′ ∈ w−1(κG(b))0 and defining

λG(b) := λ′−
∑
β̂

d〈λ′− νG(b), ω∨β̂ 〉e · β̂,

where the sum runs over all positive simple roots β̂ ∈ Q̂0 and ω∨
β̂

denotes the corresponding fundamental
coweight. �

Example 2.3. Assume that G = GLn , B is the upper-triangular Borel subgroup, and that S = T is the
diagonal torus. Then λG(b) has the following geometric interpretation. To an element ν ∈Qn ∼= X∗(Ŝ)Q,
we associate a polygon P(ν) which is defined over [0, n] with starting point (0, 0) and slope νi over
(i − 1, i). We denote by fν the corresponding piecewise linear function. Then P(νG(b)) is the (concave)
Newton polygon of b and P(λG(b)) is the largest polygon below P(νG(b)) with integral slopes and
break points. Indeed, the fundamental coweights of GLn are given by ωi = (1, . . . , 1︸ ︷︷ ︸

i times

, 0, . . . , 0︸ ︷︷ ︸
n− i times

); thus,

〈λG(b)− νG(b), ωi 〉 = fλG(b)(i)− fνG(b)(i),

which implies fλG(b)(i)= b fνG(b)(i)c by (2.2). An example is illustrated in Figure 1.

Lemma 2.4. Let f : H → G be a morphism of reductive groups over OF . Then we have λG( f (b)) =
f (λH (b)) in the following cases:

(1) f is a central isogeny and

(2) f is the embedding of a standard Levi subgroup, such that νH (b) is G-dominant.
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Figure 1. The polygons associated to νG(b) and λG(b) for [b] ∈ B(GL7) given by
νG(b)= (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
3 ,

1
3 ,

1
3).

Proof. If f is a central isogeny, we have X∗(T̂H )= X∗(T̂G)×π1(G) π1(H) compatibly with the obvious
Galois action and partial order on the right-hand side. Thus, f and λ commute.

Now assume that H is a standard Levi subgroup of G and νH (b) is dominant, i.e., νH (b)= νG(b). By
(2.2) we have −1< 〈 f (λH (b))− νG(b), ω∨Ĥ ,F 〉 ≤ 0 for every relative fundamental coweight of H . Let
ω∨

Ĝ,F
be a relative fundamental coweight of G, but not of H . Then ω∨

Ĝ,F
factorizes through the center

of H ; thus, for every quasicharacter ν ′ ∈ X∗(T̂ )Q the value of 〈ν ′, ω∨
Ĝ,F
〉 is determined by the image of ν ′

in π1(H)0,Q. In π1(H)0,Q we have equalities

(image of νH (b))= (image of κH (b))= (image of λH (b));

thus, 〈νH (b)− λH (b), ω∨Ĝ,F 〉 = 0. �

Notation 2.5. For fixed b ∈ G(L) we denote by λ̃ ∈ X∗(T̂ ) an arbitrary but fixed lift of λG(b) and by λ
its image in X∗(Ŝ).

Remark 2.6. Since G is quasisplit, the maximal torus of the derived group T der is induced and hence
T̂ der0⊆ Ŝ. Thus, any two elements in X∗(T̂ 0)with the same image in X∗(Ŝ) differ by a central cocharacter
and thus have a different image in π1(G)0. In particular

{µ̃ ∈ X∗(T̂ ) | µ̃|T̂ 0 = λG(b), wG(µ̃)= wG(µ)} = {µ̃ ∈ X∗(T̂ ) | µ̃|Ŝ = λ, wG(µ̃)= wG(µ)}.

Since Vµ(µ̃)= 0 unless µ̃≤ µ, this implies Vµ(λG(b))= Vµ(λ).

A group-theoretic definition of λG in the split case. We denote by W̃ = W̃G := (NormG(T ))(L)/T (OL)

the extended affine Weyl group of G. Recall that we have canonical isomorphisms W̃G ∼= X∗(T )o W ∼=
Wa o�G where Wa denotes the affine Weyl group of G and �G ⊂ W̃G the set of elements stabilizing
the base alcove, which we choose as the unique alcove in the dominant Weyl chamber whose closure
contains 0. In particular, we can lift the length function ` on Wa to W̃G .

The embedding NormG(T ) ↪→ G induces a natural map B(W̃G)→ B(G), where B(W̃G) denotes the
set of W̃G-σ -conjugacy classes in W̃G . In general the notion of W̃G-conjugacy is finer than the notion of
G(L)-conjugacy. Hence, we consider only a certain subset of B(W̃G).

Definition 2.7. (1) We call x ∈ W̃G basic if it is contained in �G . A σ -conjugacy class O ∈ B(W̃G) is
called basic if it contains a basic element.
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(2) An element x ∈ W̃G is called σ -straight if it satisfies

`(xσ(x) · · · σ n−1(x))= `(x)+ `(σ (x))+ · · ·+ `(σ n−1(x)).

for any nonnegative integer n. Note that the right-hand side might also be written as n · `(x). A
σ -conjugacy class O ∈ B(W̃G) is called straight if it contains a σ -straight element.

He and Nie gave a characterization of the set of straight σ -conjugacy classes which is analogous to
Kottwitz’s description of B(G) [1985, §6].

Proposition 2.8 [He and Nie 2014, Proposition 3.2]. A σ -conjugacy class O ∈ B(W̃G) is straight if and
only if it contains a basic σ -conjugacy class O ′ ∈ B(W̃M) for some standard Levi subgroup M ⊂ G.

Finally, by [He and Nie 2014, Theorem 3.3] each [b] ∈ B(G) contains a unique straight O[b] ∈ B(W̃G).
We obtain the following description of λG in the split case.

Proposition 2.9. Let G be a split group over OF , let b ∈ G(L), and let x ∈ O[b] be a σ -straight element.
Denote by λ′ its image under the canonical projection W̃G→ X∗(T ). Then λ′dom = λG(b)dom.

Proof. By Proposition 2.8 there exists a standard Levi subgroup M ⊂G and an M-basic element xM ∈�M

such that x and xM are W̃G-conjugate. By [He and Nie 2015, Proposition 4.5] any two such elements are
even W -conjugate and thus correspond to the same element in X∗(T )dom. Since the same holds true for
λG(b)dom by Lemma 2.4, it suffices to prove the proposition in the basic case, i.e., when νG(b) is central.

If [b] is basic, then x is basic; thus, λ′ is the (unique) dominant minuscule character withw(λ′)= κG(b);
compare [Bourbaki 1968, §2, Proposition 6]. Hence, it suffices to show that λG(b) is minuscule. By
Lemma 2.4(2) we may assume that G is of adjoint type. This leaves finitely many cases, which can easily
be checked using the explicit description of root systems in [Bourbaki 1968]. �

3. Equidimensionality

While it is conjectured that Xµ(b) is equidimensional [Rapoport 2005, Conjecture 5.10], this has not yet
been proven in all cases. We give a partial result after reviewing the necessary geometry of Xµ(b) first.

Connected components. Let wG : G(L)→ π1(G) be the Kottwitz homomorphism, as considered in
[Kottwitz 1985]; compare the bottom of page 1614. It induces a map GrG(k)→ π1(G). After base
change to Spec k, this induces isomorphisms π0(LGk) ∼= π0(GrG,k) ∼= π1(G); compare [Pappas and
Rapoport 2008, Theorem 0.1] in the equal characteristic case and [Zhu 2017, Proposition 1.21] in the
mixed characteristic case. Here we used that as G is unramified, the action of the inertia subgroup of the
absolute Galois group of F on π1(G) is trivial.

For ω ∈ π1(G), we let LGω and GrωG be the corresponding connected components. Denote for any
subgroup H ⊂ LGk and subscheme X ⊂ GrG,k the intersection Hω

:= H ∩ LGω and Xω
:= X ∩GrωG .

In particular, Xµ(b)ω is a union of connected components, and the Jb(F)-orbit of Xµ(b)ω equals
Xµ(b) by [Nie 2015, Theorem 1.2] (see also [Chen et al. 2015, Theorem 1.2]) whenever Xµ(b)ω is
nonempty. One can even show that under some mild condition on the triple (G, [b], µ) every connected
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component of Xµ(b) is of the form Xµ(b)ω (see [Nie 2015, Theorem 1.1] and also [Chen et al. 2015,
Theorem 1.1]), but we will not need this result.

The following general result on affine flag varieties is formulated in greater generality than needed in
this paper. We will only apply it in the case where H = G is a reductive group scheme. For consistency
we denote affine flag varieties by the same symbol Gr as affine Grassmannians.

Proposition 3.1. Let f : H ′ → H be a morphism of parahoric group schemes over OF such that the
induced homomorphism on their adjoint groups is an isomorphism. Then the induced morphism on
connected components of affine flag varieties

f ωGr : GrωH ′→ Gr f (ω)
H

is a universal homeomorphism.

Proof. This is proven in [Pappas and Rapoport 2008, §6] if char F = p and p does not divide the order of
π1(H ′der) or π1(Hder) (see also [He and Zhou 2016, Proposition 4.3] for the statement if char F = 0). We
briefly recall the proof in [Pappas and Rapoport 2008] and explain how to generalize it.

Note that it suffices to show that f ωGr is bijective on geometric points. Indeed, it is a morphism of
ind-proper ind-schemes (see [Richarz 2016, Corollary 2.3] if char F = p and [Zhu 2017, §1.5.2] if
char F = 0) and thus universally closed.

By homogeneity under the actions of H ′(L) and H(L), respectively, we may assume ω= 0. Denote by
Hder the derived group of H and by H̃ the simply connected cover of Hder. Since we have a commutative
diagram

H ′ H ′der H̃ ′ = H̃ Hder H

f

it suffices to prove the theorem in the following two special cases.

Case 1: H ′ = Hder. One can show that f 0
Gr is universally bijective using the argument in [Pappas and

Rapoport 2008, p. 144].

Case 2: H is semisimple and H ′ = H̃ . The following argument can be found in [Pappas and Rapoport
2008, p. 140–141]. Fix an algebraically closed field l ⊃ k, and let M ⊃ L be the corresponding field
extension of ramification index 1. We denote by Z the kernel of H̃→ H and let T and T̃ denote the Néron
models of fixed maximal tori in HF and H̃F satisfying T̃F = f −1(TF ). Since H̃F is simply connected,
T̃F is an induced torus, i.e., there exist finite field extensions Fi/F such that

T̃ 0 ∼=
∏

i

ResOFi /OF Gm;

thus, there exists an n ∈ N such that

Z F ⊂
∏

i

ResFi/F µn.
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In particular, we have Z(M) ⊂ T̃ 0(OM). Since T̃ 0
⊂ H̃ , f 0

Gr is injective on geometric points. The
surjectivity is a direct consequence of [Pappas and Rapoport 2008, Appendix, Lemma 14]. �

Remark 3.2. If char F = p and p does not divide the order of π1(H ′der) or π1(Hder), it is shown in [Pappas
and Rapoport 2008, §6] that f ωGr even induces an isomorphism of the underlying reduced ind-schemes.
However, Pappas and Rapoport [2008, Example 6.4] show that this is not necessarily the case when
we drop the condition on p. On the other hand f ωGr is always an isomorphism in the case char F = 0,
since universal homeomorphisms of perfect schemes are isomorphisms by [Bhatt and Scholze 2017,
Lemma 3.8].

Let Gad be the adjoint group of G. We denote by a subscript “ad” the image of an element of G(L),
X∗(T ), or π1(G) in Gad(L), X∗(T ad), or π1(Gad), respectively. By [Chen et al. 2015, Corollary 2.4.2],
the homeomorphism of Proposition 3.1 induces a universal homeomorphism

Xµ(b)ω→ Xµad(bad)
ωad (3.3)

whenever Xµ(b)ω is nonempty.

Equidimensionality for some affine Deligne–Lusztig varieties. Equidimensionality is known to hold in
the following cases.

Theorem 3.4. Let G, b, and µ be as above.

(1) If char F = p, then Xµ(b) and X�µ(b) are equidimensional. Furthermore, X�µ(b) is the closure
of Xµ(b).

(2) Let F be an unramified extension of Qp, and let G be classical, µ be minuscule, and either p 6= 2 or
all simple factors of Gad be of type A or C. Then Xµ(b) is equidimensional.

Proof. Assume first that char F = p. In the case where G is split the assertion is proven in [Hartl and
Viehmann 2012, Corollary 6.8] by identifying the formal neighborhood of a closed point in the affine
Deligne–Lusztig variety with a certain closed subscheme in the deformation space of a local G-shtuka. We
briefly explain how to generalize the arguments in the proof of [Hartl and Viehmann 2012, Corollary 6.8]
to arbitrary reductive group schemes over OF .

The main ingredient is the following result in [Viehmann and Wu 2018], generalizing [Hartl and
Viehmann 2012, Theorem 6.6]. Let x = gK ∈ X�µ(b)(k), and denote b′ := gbσ(g)−1. Consider the
deformation functor

Def b′,0 : (Art/k)→(Sets),

A 7→{b̃ ∈ (Kµ(ε)K )(A) | b̃k = b′}/∼=

where b̃ ∼= b̃′ if there is an h ∈ G(A[[ε]]) with hk = 1 and h−1b̃σ(h) = b̃′. By [Viehmann and Wu
2018, Proposition 2.6] this functor is prorepresented by the formal completion of K \ Kµ(ε)K at b′.
Moreover, the universal object has a unique algebraization by [Viehmann and Wu 2018, Lemma 2.8].
We denote by Db′,0 the algebraization of (K \ Kµ(ε)K )∧b′ and by b̃ ∈ LG(Db′,0) a lift of the universal
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object. We denote by N[b],0 ⊂ Db′,0 the minimal Newton stratum, that is, the set of all geometric points
s : Spec ks → Db′,0 such that b̃s is G(ks((ε)))-σ -conjugate to b (or b′). Since N[b],0 is closed, we may
equip it with the structure of a reduced subscheme. By [Viehmann and Wu 2018, Theorems 2.9 and 2.11]
there exists a surjective finite morphism

Spec k[[x1, . . . , x2〈ρG ,νG(b)〉]]×̂X�µ(b)∧x → N[b],0

where ρG denotes the half-sum of all absolute positive roots in G and X�µ(b)∧x the algebraization of the
completion of X�µ(b) in x . In particular, we get

dim N[b],0 = 2〈ρG, νG(b)〉+ dim X�µ(b)∧x
≤ 〈ρG, µ+ νG(b)〉− 1

2 defG(b).

Here the last inequality follows from the dimension formula of X�µ(b) in [Hamacher 2015a, Theorem 1.1]
and equality holds if and only if dim X�µ(b)∧x = dim X�µ(b). The Newton stratification on Db′,0 satisfies
strong purity in the sense of [Viehmann 2015, Definition 5.8]. Indeed, this is shown for G = GLn in
[Viehmann 2013, Theorem 7] and the general case follows by [Hamacher 2017, Proposition 2.2]. Thus,
the conditions of [Viehmann 2015, Lemma 5.12] are satisfied and we get the dimension formula and
closure relations of all Newton strata in Db′,0. In particular,

dim N[b],0 = 〈ρG, µ+ νG(b)〉− 1
2 defG(b).

Thus, dim X�µ(b)∧x = dim X�µ(b) and since x was an arbitrary closed geometric point of X�µ(b), this
implies equidimensionality. Since dim X�µ′(b) < dim X�µ(b) for every µ′ ≺ µ by [Hamacher 2015a,
Theorem 1.1] this also implies the equidimensionality of X�µ(b) and that Xµ(b) is dense in X�µ(b).

Now consider F =Qp, p 6= 2, and assume first that there exists a faithful representation ρ : G ↪→GLn

such that the action of Gm via ρ(µ) has weights 0 and 1. Then we can associate a Rapoport–Zink space of
Hodge type MG,µ(b) to the triple (G, µ, b), whose perfection equals Xµ(b) by [Zhu 2017, Theorem 3.10].
Since MG,µ(b) is equidimensional by [Hamacher 2017, Theorem 1.3], so is Xµ(b).

Now the morphism Xµ(b)→ Xµad(bad) induced by the canonical projection G �Gad is an isomorphism
on connected components by (3.3). Thus, all connected components of Xµad(bad) which are contained in
the image of Xµ(b) are equidimensional. Since all connected components are isomorphic to each other
by [Chen et al. 2015, Theorem 1.2], this implies that Xµad(bad) is equidimensional. Thus, any affine
Deligne–Lusztig variety with G classical and adjoint and µ minuscule is equidimensional. Applying (3.3)
once more, the claim follows for p 6= 2. If p = 2, the spaces MG,µ(b) are only defined if (G, µ, b) is of
PEL type, but in this case the rest of the proof is identical.

If F is an unramified field extension of Qp, let G ′ = ResOF/Zp G and µ′ = (µ, 0, . . . , 0) and b′ =
(b, 1, . . . , 1) with respect to the identification G ′L ∼=

∏
F↪→L G. By [Zhu 2017, Lemma 3.6] and the

Cartesian diagram below it, we have Xµ′(b′)∼= Xµ(b). Thus, Xµ(b) is equidimensional. �



Irreducible components of minuscule affine Deligne–Lusztig varieties 1621

4. Irreducible components in the superbasic case

In this section we prove Theorem 1.4 for superbasic σ -conjugacy classes. In [Hamacher 2015a, §8] this
has been reduced to a purely combinatorial statement, which we prove using the bijectivity of sweep
maps on rational Dyck paths.

Superbasic σ -conjugacy classes. An element b ∈ G(L) or the corresponding σ -conjugacy class [b] ∈
B(G) is called superbasic if no element of [b] is contained in a proper Levi subgroup of G defined over F .

Remark 4.1 [Chen et al. 2015, §3.1]. (1) If b is superbasic in G(L), then the simple factors of the
adjoint group Gad are of the form ResFd |F PGLn for unramified extensions Fd of F (of degree d) and
n ≥ 2. In particular, Xµ(b) is equidimensional if char F = p or F is an unramified extension of Qp.

(2) For every [b] ∈ B(G) there is a standard parabolic subgroup P ⊂ G defined over F and with the
following property. Let T be a fixed maximal torus of G and M the Levi factor of P containing T .
Then there is a b ∈ [b] ∩M(L) which is superbasic in M .

We first consider the special case where [b] is superbasic and where G is of the form ResFd |F GLn for
some d and n. In this case we give a proof using EL-charts as in [Hamacher 2015a] (see also [de Jong
and Oort 2000] for the split case). We then reduce the general superbasic case to this particular case.

For G as above L ⊗F Fd ∼=
∏
τ :Fd ↪→L L yields an identification

G(L)=
∏
τ∈I

GLn(L)

mapping g ∈ G(L) to a tuple (gτ )τ∈I where I := Gal(Fd , F) ∼= Z/dZ. Let S ⊂ T ⊂ B ⊂ G be
the split diagonal torus, the diagonal torus, and the upper-triangular Borel, respectively. We have
a canonical identification X∗(T ) ∼= (Zn)|I |. Then the dominant elements in X∗(T ) are precisely the
µ= (µτ )τ∈I ∈ X∗(T ) such that the components of µτ are weakly decreasing for each τ .

We identify X∗(S) with the invariants X∗(T )I
= Zn; thus,

µ|Ŝ =
∑
τ∈I

µτ .

Moreover, this identifies the partial order ≤ on X∗(S)Q with the dominance order on Qn .

A combinatorial identity. An important tool when considering the combinatorics of EL-charts is the
sweep map defined by Armstrong, Loehr, and Warrington [Armstrong et al. 2015]. We need a multiple-
component version of it, which turns out to be easily realized as a special case of the classical sweep map.

Notation 4.2. By a word w we mean a finite sequence of integers w1 · · ·wr . For 1 ≤ k ≤ r we define
the level of w at k by l(w)k :=

∑k
i=1wi . We consider the following sets for fixed sequences of integers

aτ,1, . . . , aτ,n where 1≤ τ ≤ d .

(1) Let A(d)
Z denote the set of wordsw=w1 · · ·wd·n such that the subwordw(τ ) :=wτwτ+d · · ·wτ+(n−1)·d

is a rearrangement of aτ,1, . . . , aτ,n for any τ ∈ {1, . . . , d}.
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(2) Denote by A(d)
N ⊂A(d)

Z the subset of words whose level at multiples of d is nonnegative. Following
[Thomas and Williams 2017; Armstrong et al. 2015], we call its elements (d-component) Dyck
words.

Definition 4.3. The sweep map sw(d)
: A(d)

Z → A(d)
Z is the map that sorts w according to its level by

permuting w(τ ) using the following algorithm. Initialize sw(d)(w)(τ ) =∅ for any 1≤ τ ≤ d . For each a
down from −1 to −∞ and then down from∞ to 0 read w(τ ) from right to left and append to sw(d)(w)(τ )

all letters wk such that l(w)k = a.

We deduce the bijectivity of sw(d) from Williams’ result for the classical sweep map in [Thomas and
Williams 2017].

Proposition 4.4. sw(d) is bijective and preserves A(d)
N .

Proof. If d = 1, the map sw(1) is precisely the sweep map defined in [Thomas and Williams 2017] and
the proposition is proven in [Thomas and Williams 2017, Theorems 6.1 and 6.3]. In order to reduce to
this case, we need to construct an injection A(d)

Z ↪→A(1)
Z which identifies Dyck words and preserves the

sweep map, i.e., such that the diagram

A(d)
Z A(1)

Z

A(d)
Z A(1)

Z

sw(d) sw(1) (4.5)

commutes. Note that part of this construction is also the choice of a sequence {a′1, . . . , a′n·d} for A(1)
Z .

In preparation, fix an integer N big enough such that for any w ∈ A(d)
Z and 1 ≤ τ ≤ d as above the

inequalities

min{l(w)k + N | k ≡ τ (mod d)}>max{l(w)k | k ≡ τ − 1 (mod d)}, (4.6)

min{l(w)k + τ · N | k ≡ τ (mod d)} ≥ 0 (4.7)

hold. We now construct a map A(d)
Z →A(1)

Z , w 7→ w+N satisfying the conditions above as follows. For
given w, let w+N be the word which one obtains by replacing wτ+(i−1)·d by

w′τ+(i−1)·d :=

{
wτ+(i−1)·d + N if τ 6= d,
wτ+(i−1)·d − N · (d − 1) if τ = d

for 1≤ i ≤ n and 1≤ τ ≤ d . Then w+N
∈A(1)

Z for the choice {a′1, . . . , a′n·d}, where

a′τ+(i−1)·d :=

{
aτ,i + N if τ 6= d,
aτ,i − N · (d − 1) if τ = d.

The map w 7→w+N is obviously injective. Note that for any k we have l(w+N )k = l(w)k+k ·N where
0 ≤ k ≤ d − 1 denotes the residue of k modulo d. Thus, l(w+N )k = l(w)k if k is a multiple of d, and
l(w+n)≥ 0 by (4.7) otherwise. Hence, w+N

∈A(1)
N if any only if w ∈A(d)

N .
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By (4.6), we have mini l(w+N )τ+(i−1)·d >maxi l(w+N )ς+(i−1)·d for all 1≤ τ <ς ≤ d−1 or ς < τ = d .
Thus, the permutation of letters of w+N induced by the classical sweep map decomposes into a product of
permutations of the subsets {τ, τ + d, τ + 2d, . . .}. Since moreover l(w+N )τ+(i−1)·d ≥ l(w+N )τ+( j−1)·d

if and only if l(w)τ+(i−1)·d ≥ l(w)τ+( j−1)·d , the permutations induced by the classical sweep map sw(1)

applied to w+N and sw(d) applied to w coincide. In other words, the diagram (4.5) commutes. �

Characterization of EL-charts. Throughout the section, we fix a positive integer m coprime to n and
denote ν|Ŝ = (m/n, . . . ,m/n) ∈ X∗(Ŝ) = X∗(T )I . Let m1, . . . ,md be arbitrary integers such that
m1 + · · · +md = m. We shall later make convenient choices of them depending on µ. We recall the
notion of EL-charts as they were presented in [Hamacher 2015a, §5].

Let Z(d) :=
∐
τ∈I Z(τ ) be the disjoint union of d copies of Z. We impose the notation that for any

subset A⊂Z(d) we write A(τ ) := A∩Z(τ ). For x ∈Z we denote by x(τ ) the corresponding element of Z(τ )

and write |a(τ )| := a. We equip Z(d) with a partial order ≤ defined by

x(τ ) ≤ y(ς) :⇐⇒ τ = ς and x ≤ y

and a Z-action given by

x(τ )+ z := (x + z)(τ ).

Furthermore, we consider a Z-equivariant function f : Z(d)→ Z(d) with

f (a(τ ))= a(τ+1)+mτ .

In particular, f (Z(τ ))= Z(τ+1) and f d(a)= a+m.

Definition 4.8. (1) An EL-chart is a nonempty subset A ⊂ Z(d) which is bounded from below and
satisfies f (A)⊂ A and A+ n ⊂ A.

(2) Two EL-charts A and A′ are called equivalent if there exists an integer z such that A+ z = A′. We
write A ∼ A′.

Let A be an EL-chart and B = A \ (A+ n). It is easy to see that #B(τ ) = n for all τ ∈ I . We define a
sequence b0, . . . , bd·n as follows. Let b0 = bn·d =min B(0), and for given bi let bi+1 ∈ B be the unique
element of the form

bi+1 = f (bi )−µ
′

i+1 · n

for a nonnegative integer µ′i . These elements are indeed distinct: if bi = b j , then obviously i ≡ j (mod d)
and then bi+k·d ≡ bi + k ·m (mod n) implies that i = j as m and n are coprime.

It will later be helpful to distinguish the bi and µ′i of different components. For this we change the
index set to I ×{1, . . . , n} via

bτ,i := bτ+(i−1)·d ,

µ′τ,i := µ
′

τ+(i−1)·d .

Here we choose the set of representatives {1, . . . , d} ⊂ Z of I .
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Figure 2. The associated Dyck path and (5,−2)-levels for m = 5, n = 7, and A = N0.

Definition 4.9. With the notation above, µ′ is called the type of A.

Remark 4.10. This definition differs slightly from the definition of the type in [Hamacher 2015a, p. 12822].
In this article we choose the indices such that µ′τ,i measures the difference between bτ,i and bτ−1,i while
in [Hamacher 2015a] it yields the difference between bτ,i and bτ+1,i . Since one can alternate between
those two notions by replacing f by f := f −1 and µ by (−µ)dom, we can still use the combinatorial
results of [Hamacher 2015a]. Moreover, we consider the Borel of upper-triangular matrices instead of
lower-triangular matrices in [Hamacher 2015a], thus inverting the order on X∗(S) and X∗(T ).

The type characterizes an EL-chart up to equivalence.

Lemma 4.11 [Hamacher 2015a, Lemma 5.3]. Let

Pm,n,d := {µ
′
∈ (Zn

≥0)
|I |
| µ′|Ŝ ≤ ν|Ŝ}.

Then the type of any EL-chart A lies in Pm,n,d , and the type defines a bijection

{EL-charts}/∼↔ Pm,n,d .

Example 4.12. There are two important special cases of EL-charts.

(a) An EL-chart is called small if A+ n ⊂ f (A), in other words if its type only has entries 0 and 1.
They correspond to the affine Deligne–Lusztig varieties with minuscule Hodge point.

(b) A semimodule is an EL-chart A ⊂ Z. These are the invariants that occur in the split case.

There is a bijection between small semimodules up to equivalence and rational Dyck paths from (0, 0) to
(n−m,m), that is, lattice paths allowing only steps in the north and east directions which stay above the
diagonal. This gives a purely combinatorial motivation for the definitions below.

The bijection is given as follows (see [Gorsky and Mazin 2013] for more details). With a given
equivalence class [A] of small semimodules, we associate the path which goes east at the i-th step if
type(A)i = 0 and north if type(A)i = 1. By the above lemma, this map is well defined and a bijection.
Moreover, if we choose min A = 0, then one can recover A from the Dyck path as the set of (m,m− n)-
levels in the sense of [Armstrong et al. 2015] of points on or above the path, giving the inverse to the
bijection. An example is illustrated in Figure 2.

There is another invariant of EL-charts which is more important for the application of this theory, as it
allows us to calculate the dimension of strata inside the affine Deligne–Lusztig variety.
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Definition 4.13. Let A be an EL-chart of type µ′, and let bτ,i be defined as above. For each τ ∈ I let
b̃τ,1 > · · ·> b̃τ,n be the elements of B(τ ) arranged in decreasing order. Define

µ̃τ,i = µ
′

τ,i ′

where i is the unique number such that b̃τ,i = bτ,i ′ . We call µ̃ the cotype of A.

It is shown in [Hamacher 2015a, p. 12831] that cotype(A) ∈ Pm,n,d . Since the cotype is obviously
invariant under equivalence, we obtain a map

ζ : Pm,n,d → Pm,n,d , type(A) 7→ cotype(A).

We claim that ζ is bijective. For this we note that ζ is the composition of

µ′ 7→ (wk := mk (mod d)−µ
′

k · n)k=1,...,n·d
sw(d)
7→ (w̃k) 7→

(mτ − w̃τ+i ·d

n

)
τ,i
. (4.14)

Thus, its bijectivity follows from Proposition 4.4.

Example 4.15. For d=1, n=7, m=5, and A=N0, we can describe (4.14) as follows. In Figure 2 one sees
that µ′ := type(A) = (0, 1, 1, 0, 1, 1, 1). This is mapped to the word w = (5,−2,−2, 5,−2,−2,−2),
whose levels l(w) = (5, 3, 1, 6, 4, 2, 0) are the corresponding elements of B := A \ (A + n). Thus,
applying the sweep map, which sorts the letters of w according to their levels, is nothing else than
permuting the letters such that the corresponding elements of B get arranged in decreasing order. Now
sw(w)= (5, 5,−2,−2,−2,−2,−2), which yields ζ(µ′)= (0, 0, 1, 1, 1, 1, 1).

Altogether, we obtain the following theorem, which generalizes the result of [Thomas and Williams
2017, Corollary 6.4]. It was conjectured in [Hamacher 2015a, Conjecture 8.3] and in the split case by
de Jong and Oort [2000, Remark 6.16].

Theorem 4.16. The cotype induces a bijection

{EL-charts}/∼↔ Pm,n,d .

The superbasic case. Proposition 1.6 is a direct consequence of Theorem 4.16 together with the relation
between orbits of irreducible components and EL-charts in [Hamacher 2015a, §8]. We briefly recall this
relation for the reader’s convenience before proving Proposition 1.6.

When applying the results of the previous subsection to affine Deligne–Lusztig varieties, we consider
EL-charts satisfying certain additional criteria.

Definition 4.17. Let A be an EL-chart.

(1) A is called normalized if
∑

b∈B(0) |b| =
(n

2

)
where B(0) = A(0) \ (A(0)+ n).

(2) The Hodge point of A is defined as type(A)dom.
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Note that every EL-chart is equivalent to a unique normalized EL-chart. Let Pµ := {µ′ ∈ Pm,n,d |

µ′dom = µ}. Then by Lemma 4.11 A 7→ type(A) induces a bijection

{normalized EL-charts with Hodge point µ} ↔ Pµ.

It is easy to see that ζ stabilizes Pµ. Thus, Theorem 4.16 says that A 7→ cotype(A) induces a bijection
between the set of normalized EL-charts with Hodge point µ and Pµ.

For every minuscule µ ∈ X∗(T )dom there exists a unique basic σ -conjugacy class in B(G, µ). We
choose a representative of this σ -conjugacy class as follows. Let mτ = val detµ(ε)τ , and choose
b = ((bτ,i, j )

n
i, j=1)τ∈I with

bτ,i, j =

{
εb(i+mτ )/nc if j − i ≡ mτ (mod n),
0 otherwise.

Then the invariants λ, ν ∈ X∗(Ŝ) = X∗(T̂ )0 ∼= Zn are given by ν = (m/(d · n), . . . ,m/(d · n)) with
m =

∑
τ∈I mτ and λ= (λ1, . . . , λn) with λi = bi ·m/nc− b(i − 1) ·m/nc. The requirement that b is in

fact superbasic corresponds to the assertion that m and n are coprime.
By our choice of b, the variety Xµ(b)0 := Xµ(b)∩Gr0

G is nonempty. In [Hamacher 2015a; 2015b] we
constructed a Jb(F)0-invariant cellular decomposition

Xµ(b)0 =
⋃

A

SA

where the union runs over all normalized EL-charts with Hodge-point µ. We denote

VA := {(i, j) | bi < b j , µ
′

i = µ
′

j + 1}.

In [Hamacher 2015a, Proposition 6.5; 2015b, Proposition 13.9] we show that AVA
∼
−→ SA by constructing

an element gA ∈ LG(AVA) and a corresponding basis (vτ,i ) of the universal G-lattice over SA. In particular
dim SA = #VA.

Following the calculations of the term S1 in [Hamacher 2015a, p. 12831], one obtains #VA from µ̃

using the formula
#VA =

∑
b〈µ̃|Ŝ −µadom, ω̂

∨

F 〉c,

where the sum runs over all relative fundamental coweights ω̂∨F of Ĝ and µadom denotes the antidominant
element in the W -orbit of µ. In particular, SA is top-dimensional if and only if cotype(A)|Ŝ = λ.

Proof of Proposition 1.6. Let G be arbitrary. We assume without loss of generality that b ∈ Kµ(ε)K ;
thus, Xµ(b)0 6= ∅. Since Jb(F) acts transitively on π0(Xµ(b)) by [Chen et al. 2015, Theorem 1.2], it
suffices to construct C0

µ̃
:= Cµ̃ ∩ Xµ(b)0, which have to be Jb(F)0-stable and universally homeomorphic

to affine spaces of the correct dimension. In particular, we may take C0
cotype(A) = SA if G = ResFd/F GLn .

By Remark 4.1 we have Gad ∼=
∏n

i=1 ResFdi /F PGLni . Let G ′ =
∏n

i=1 ResFdi /F GLni and b′ and µ′

be lifts of bad and µad to G ′, such that Xµ′(b′)0 6= ∅. We identify the underlying topological spaces
Xµ(b)0 = Xµad(bad)

0
= Xµ′(b′)0 via the homeomorphism (3.3). Thus, we get a cellular decomposition
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of Xµ(b)0 per transport of structure from Xµ′(b′)0. Since it is Jb′(F)0-stable, we consider the canonical
projections Jb(F)0

p
−→ Jbad(F)

0 q
←− Jb′(F)0. It suffices to show that q is surjective (implying that the

decomposition is Jbad(F)
0-stable) and that the Jb(F)0-action factors through Jbad(F)

0.
To prove the surjectivity, let j ∈ Jbad(F)

0 and choose a preimage g ∈ G(L)0 of j . The element g
satisfies g−1bσ(g)= zb for some z ∈ Z ′(L)∩G(L)0 = Z(OL), where Z ′ denotes the center of G ′. We
choose z′ ∈ Z ′(OL) with (z′)−1σ(z′)= z−1. Then gz′ ∈ Jb′(F)0 maps to j , as claimed.

Now an elementary calculation of the kernel shows that we have an exact sequence

1→ Z(OF )→ Jb(F)0→ Jbad(F)
0,

where Z denotes the center of G. Since Z(OF ) acts trivially on GrG , the Jb(F)0-action factors through
Jbad(F)

0, as claimed. �

Corollary 4.18. Conjecture 1.3 is true if b is superbasic and µ minuscule.

Proof. We have

Jb(F) \6(Xµ(b))∼= {µ̃ ∈ Pµ | Cµ̃ top-dimensional} ∼= {µ̃ ∈W.µ | µ̃|Ŝ = λ}. �

5. Reduction to the superbasic case

In this section we consider the general case of Theorem 1.4; i.e., G is an unramified reductive group
over F , µ is minuscule, and b is an arbitrary element of G(L). The goal is to use a reduction method,
first introduced in [Görtz et al. 2006], to relate to the superbasic case.

Let P ⊂ G be a smallest standard parabolic subgroup of G, defined over F and with the following
property. Let M be the Levi factor of P containing T . Then we want that M(L) contains a σ -conjugate of
b which is superbasic in M . Fix a representative b ∈ M(L) of [b]G = [b]. Then we furthermore want that
the M-dominant Newton point of b is already G-dominant. For existence of such P , M , and b compare
Remark 4.1. We write P = M · N where N denotes the unipotent radical of P . Since b ∈ M(L), this
induces a decomposition

Jb(F)∩ P(L)= (Jb(F)∩M(L)) · (Jb(F)∩ N (L)).

Throughout the section, we may refer to subschemes of the loop group or Grassmannian by their
k-valued points to improve readability, e.g., write K instead of L+G or N (L) instead of L N . We denote
KM = M(OL), KN = N (OL), and K P = P(OL).

We consider the variety

X M⊂G
µ (b)= {gKM ∈ GrM | g−1bσ(g) ∈ KµK }.

Then we have X M⊂G
µ (b)=

∐
µ′∈Iµ,b X M

µ′ (b)where Iµ,b is the set of M-conjugacy classes of cocharacters µ′

in the G-conjugacy class of µ with [b]M ∈ B(M, µ′). As [b]M is basic in M , this latter condition
is equivalent to κM(b) = κM(µ

′) in π1(M)0. We identify an element of Iµ,b with its M-dominant
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representative in X∗(T ). Note that Iµ,b is nonempty and finite, but may have more than one element if G
is not split.

Notation 5.1. Note that X M⊂G
µ (b) is in general not equidimensional, although the individual summands

are conjectured to be. We define

6′(X M⊂G
µ (b)) :=

⋃
µ′∈Iµ,b

6top(X M
µ′ (b)).

Using Corollary 4.18 we can show that X M⊂G
µ (b) has the same number of orbits of irreducible

components as given by the right-hand side of Theorem 1.4.

Lemma 5.2. (Jb(F)∩M(L)) \6′(X M⊂G
µ (b))=W.µ∩ [λ̃+ (1− σ)X∗(T )]

Proof. By Corollary 4.18 we have

(Jb(F)∩M(L)) \
⋃

µ′∈Iµ,b

6top(X M
µ′ (b))=

⋃
µ′∈Iµ,b

(WM .µ
′
∩ [λ̃M + (1− σ)X∗(T )]).

Here the unions on both sides are disjoint, and λ̃M = λ̃M(b) denotes the element associated with [b]∈ B(M)
whereas λ̃= λ̃G(b). By Lemma 2.4, the above union is equal to

⋃
µ′∈Iµ,b(WM .µ

′
∩ [λ̃+ (1− σ)X∗(T )]).

As λ̃ is minuscule, the set WM .µ
′
∩ [λ̃+ (1− σ)X∗(T )] is nonempty for a given µ′ ∈W.µ if and only if

κM(µ
′)= κM(λ̃) (= κM(b)), i.e., if and only if µ′ ∈ Iµ,b. Hence,

⋃
µ′∈Iµ,b(WM .µ

′
∩[λ̃+(1−σ)X∗(T )])=

W.µ∩ [λ̃+ (1− σ)X∗(T )]. �

In order to relate the irreducible components of X M⊂G
µ (b) to those of Xµ(b), we consider the variety

X P⊂G
µ (b) := {gK P ∈ GrP | g−1bσ(g) ∈ Kµ(ε)K }

as an intermediate object. The inclusion P ↪→ G induces a natural map X P⊂G
µ (b)→ Xµ(b). Using the

Iwasawa decomposition G(L)= P(L)K we see that this map is surjective, and in fact X P⊂G
µ (b) is nothing

but a decomposition of X G
µ (b) into locally closed subsets (see, e.g., [Hamacher 2015a, Lemma 2.2]).

Thus, we obtain a natural bijection

6top(X P⊂G
µ (b))→6top(X G

µ (b))

which induces a surjection

α6 : (Jb(F)∩ P(L)) \6top(X P⊂G
µ (b))� Jb(F) \6top(X G

µ (b)). (5.3)

Furthermore, dim X P⊂G
µ (b)= dim X G

µ (b).
On the other hand, the restriction of the canonical projection GrP �GrM induces a surjective morphism

β : X P⊂G
µ (b)→ X M⊂G

µ (b)

by [Hamacher 2015a, Proposition 2.9]. Moreover the fiber dimension for x ∈ X M
µ′ (b) is given by

dimβ−1(x)= dim X P⊂G
µ (b)− dim X M

µ′ (b) (5.4)
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[Hamacher 2015a, Lemma 2.8 and Proposition 2.9(2)], using that for minuscule µ, equality in [Hamacher
2015a, Lemma 2.8] always holds, and using the dimension formula [Hamacher 2015a, Theorem 1.1].
Note that this only depends on µ′ (but indeed depends on the choice of µ′ ∈ Iµ,b), but not on the point x .

Lemma 5.5. β induces a well defined surjective map

β6 :6
top(X P⊂G

µ (b))→6′(X M⊂G
µ (b)).

It is Jb(F)∩ P(L)-equivariant for the natural action on the left-hand side, and the action through the
natural projection Jb(F)∩ P(L)� Jb(F)∩M(L) on the right-hand side.

Recall that a subset of G(L) is called bounded if it is contained in a finite union of K -double cosets.

Proof. Let C be a top-dimensional irreducible component of X P⊂G
µ (b). Then β(C) is irreducible and

thus contained in one of the open and closed subschemes X M
µ′ (b). By (5.4), its dimension is equal

to dim(X M
µ′ (b)); hence, β(C) is a dense subscheme of one of the irreducible components of X M

µ′ (b). In
this way we obtain the claimed map β6 . It is surjective and Jb(F)∩ P(L)-equivariant because the same
holds for β. �

Proposition 5.6. Let Z ⊂ X M⊂G
µ (b) be an irreducible subscheme. Then Jb(F)∩ N (L) acts transitively

on 6(β−1(Z)).

In the proof we need the following remark.

Remark 5.7. For x ∈ W̃ let I x I be the locally closed subscheme of LG whose k-valued points are
I (k)x I (k). Let Y be a scheme and g ∈ (I x I )(Y ). Then we claim that there are elements i1, i2 ∈ I (Y )
with g = i1xi2. In equal characteristic, this is [Hartl and Viehmann 2012, Lemma 2.4] (whose proof
shows the above statement, although the lemma only claims the assertion étale locally on Y ). Let us
explain how to modify the proof to deduce the above statement in general: we consider the morphism
I/(I ∩ x I x−1)→ LG/I to the affine flag variety given by g 7→ gx . By writing down the obvious inverse
one sees that it is an immersion with image I x I/I .

Let g ∈ (I x I )(Y ) and g be its image in the affine flag variety. Then the above shows that g is the image
of some i ∈ I/(I ∩ x I x−1)(Y ). Note that I/(I ∩ x I x−1) = I0/(I0 ∩ x I0x−1) where I0 is the unipotent
radical of I . By [Hartl and Viehmann 2012, Lemma 2.1] we can thus lift i ∈ I0/(I0 ∩ x I0x−1)(Y ) to an
element i1 ∈ I0(Y ) which is as claimed.

Proof of Proposition 5.6. As we have to take an inverse image of an element under σ later in this proof,
we replace all occurring ind-schemes by their perfections. Note that this does not change the underlying
topological spaces of the schemes. Moreover, since we may check the assertion on an open covering of Z ,
we may replace Z by an open subscheme Y ⊂ Z containing one fixed but arbitrary point z ∈ Z(k).

Étale locally there is a lifting of the inclusion Z ↪→ X M
µ′ (b) to L M [Pappas and Rapoport 2008,

Lemma 1.4] (the proof also works for char F = 0; compare [Zhu 2017, Proposition 1.20]). Thus, there
exists Y ′→ Z étale with z ∈ im(Y ′→ Z) such that there exists a lift ι : Y ′→ L M . By replacing Y ′ by
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an irreducible component if necessary, we may assume that Y ′ is again irreducible. We denote by Y the
image of Y ′ in Z , and by y ∈ Y ′ a point mapping to z.

We denote

8= {(m, n) ∈ ι(Y ′)× N (L) | mnK P ∈ X P⊂G
µ (b)}

and bm := m−1bσ(m) for any m ∈ M(L). For g = mn ∈ P(L) we have

g−1bσ(g)= bm · [b−1
m n−1bmσ(n)] (5.8)

where the bracket is in N (L) and where bm ∈ M(L). The condition gK P ∈ β
−1(Y ) is then equivalent to

the condition that we may choose m · n ∈ gK P with m ∈ ι(Y ′) ⊂ L M and n ∈ N (L) such that the last
bracket is in N (L)∩ b−1

m Kµ(ε)K . Thus, we have a morphism

γ :8→ E := {(m, c) | m ∈ ι(Y ′), c ∈ N (L)∩ b−1
m Kµ(ε)K }, (m, n) 7→ (m, b−1

m n−1bmσ(n)).

In order to get an easier description of E, we show that one can assume bm ∈ KM ·µ
′ after further

shrinking Y and replacing ι if necessary. Let x ∈ W̃ such that IM x IM ⊂ KMµ
′(ε)KM is the open cell,

where IM denotes the standard Iwahori subgroup of M . Then Kµ(ε)K =K x K , and we fix k0, k ′0∈K such
that bι(y)= k0xk ′0. We replace Y ′ (and thus Y ) by the open neighborhood of y such that bm ∈ k0 · IM x IM ·k ′0
for all m ∈ ι(Y ′). By Remark 5.7 we have a global decomposition bm = k0i1xi2k ′0 with i j ∈ IM(ι(Y ′)).
As Y ⊆ X M

µ′ (b) we have x = w1µ
′w2 ∈ WMµWM ; thus, bm = k0i1w1µ

′(ε)w2i2k ′0. We now replace m
by mσ−1(w2i2k ′0)

−1
∈ mKM and modify ι accordingly. With respect to this new choice we obtain a

decomposition of bm of the form k1µ
′(ε) with k1 = σ

−1(w2i2k ′0)k0i1w1 ∈ L+M(ι(Y ′)). Now

N (L)∩ b−1
m Kµ(ε)K = N (L)∩µ′(ε)−1Kµ(ε)K

= µ′(ε)−1(N (L) ·µ′(ε)∩ Kµ(ε)K ).

Note that this only depends on the constant element µ′. Hence,

E= ι(Y ′)× (N (L)∩µ′(ε)−1Kµ(ε)K ).

Claim 1: E is irreducible. As ι(Y ′) is irreducible, we have to show that N (L) ∩ µ′(ε)−1Kµ(ε)K is
irreducible. For this we consider the morphism prµ′ : N (L)→ N (L)µ′(ε)K ⊂ GrG , n 7→ µ′(ε)n. Then
N (L)∩µ′(ε)−1Kµ(ε)K is the preimage of N (L)µ′(ε)K ∩ Kµ(ε)K , which is irreducible by [Mirković
and Vilonen 2007, Corollary 13.2]. On the other hand prµ′ is a KN -torsor, since it is surjective and
factorizes as

N (L)→ GrN ↪→ GrG
µ′(ε)·
−−−→ GrG .

Here the first map is the projection, a KN -torsor. The second is the natural closed embedding, and the
third the isomorphism obtained by left multiplication by µ′(ε). As KN is also irreducible, this completes
the proof of Claim 1.
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Claim 2: Let F⊆8 be a nonempty open subscheme with F=FKN where KN acts by right multiplication
on the second component. Then its image under γ contains an open subscheme of E. In particular, it is
dense by Claim 1.

Fix an irreducible component C of 8 such that its intersection with F is nonempty. We may replace
F by an open and dense subscheme of points only contained in the one irreducible component C . As
F is invariant under right multiplication by KN and m is contained in a bounded subscheme of L M , its
image under γ is invariant under right multiplication by some (sufficiently small) open subgroup K ′N
of KN (this follows from the same proof as [Görtz et al. 2006, Proposition 5.3.1], which carries over
literally to the unramified case and the case char F = 0). Thus, it is enough to show that the image
of γ (F) in ι(Y ′)× (N (L)∩µ′(ε)−1KµK )/K ′N is open. Let g0 ∈ F, and let U = Spec R be an affine
open neighborhood of γ (g0) in E. After possibly replacing K ′N by a smaller open subgroup we may
assume that U is K ′N -invariant. Let (mU , nU ) be the universal element. Then mU and nU are contained
in bounded subsets of L M and L N , respectively. By Corollary 5.11 there is an étale covering R′ of R
and a morphism Spec R′→8 such that the composite with γ and the quotient modulo K ′N maps Spec R′

surjectively to U/K ′N . Intersecting Spec R′ with the inverse image of the open subscheme F of 8 and
using that R→ R′ is finite étale, we obtain an open subscheme of Spec R′, or of F mapping surjectively
to an open neighborhood of g0K ′N . This implies the claim.

Finally, we show that all irreducible components of β−1(Y ) are contained in one Jb(F)∩ N (L)-orbit
of irreducible components of X P⊂G

µ (b). Let D and D′ be irreducible components of β−1(Y ). We have to
show that all dense open subsets D and D′ of the two components contain points p and p′ which are in
the same Jb(F)-orbit. Consider the KN -torsor

φ :8→ β−1(Y ), (m, n) 7→ mnK P .

Then it is enough to show that for all nonempty open subsets C1 and C2 of 8 with Ci KN = Ci there
are points qi ∈ Ci and a j ∈ J with φ(q1)= jφ(q2). This latter condition follows if we can show that
γ (q1) = γ (q2). But by Claim 2, γ (C1) and γ (C2) are both open and dense in E, which implies the
existence of such q1 and q2. �

Corollary 5.9. β6 induces a bijection

(Jb(F)∩ P(L)) \6(X P⊂G
µ (b))

1:1
−→ (Jb(F)∩M(L)) \6(X M⊂G

µ (b))

which restricts to

(Jb(F)∩ P(L)) \6top(X P⊂G
µ (b))

1:1
−→ (Jb(F)∩M(L)) \6′(X M⊂G

µ (b)).

In particular X P⊂G
µ (b) is equidimensional if and only if the X M

µ′ (b) are for all µ′ ∈ Iµ,b.

We use the following notation. Let R be an integral k-algebra. In the arithmetic case we assume R to
be perfect and let R=WOF (R). In the function field case, let R= R[[ε]]. In both cases let RL =R[1/ε].
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For m ∈ M(RL) consider the map

fm : L NR→ L NR, n 7→ (m−1n−1m)σ (n).

Lemma 5.10 (Chen, Kisin, and Viehmann). Let b ∈ [b] ∩M(L) with bσ(b) · · · σ l0−1(b)= εl0νb for some
l0 > 0 such that l0νb ∈ X∗(T ). Let R be an integral k-algebra, R and RL as above, and y ∈ N (RL)

contained in a bounded subscheme. Further let x1 ∈ Spec R(k) and z1 ∈ N (L) with fb(z1)= y(x1). Then
for any bounded open subgroup K ′ ⊂ N (L) there exists a finite étale covering R→ R′ with associated
R→R′ and z ∈ N (R′L) such that

(1) for every k-valued point x of R′ we have fb(z(x))K ′ = y(x)K ′ and

(2) there exists a point x ′1 ∈ Spec R′(k) over x1 such that z(x ′1)= z1.

Proof. This is [Chen et al. 2015, Lemma 3.4.4], except for the fact that there R is assumed to be smooth,
and only the case of mixed characteristic is considered. But actually, none of these assumptions is needed
in the proof given there. �

Corollary 5.11. Let b ∈ [b] ∩ M(L) and R and R be as in the previous lemma. Let m ∈ M(RL), and
y ∈ N (RL), each contained in a bounded subscheme. Further let x1 ∈ Spec R(k) and z1 ∈ N (L) with
fb(z1)= y(x1). Let bm = m−1bσ(m) ∈ M(RL). Then for any bounded open subgroup K ′ ⊂ N (L) there
exists a finite étale covering R→ R′ with associated extension R→R′ and z ∈ N (R′L) such that

(1) for every k-valued point x of R′ we have fbm (z(x))K
′
= y(x)K ′ and

(2) there exists a point x ′1 ∈ Spec R′(k) over x1 such that z(x ′1)= z1.

Proof. For n ∈ N (L) we have

fbm (n)= (σ (m)
−1b−1m)n−1(m−1bσ(m))σ (n)

= σ(m)−1b−1(mn−1m−1)bσ(mnm−1)σ (m)

= σ(m)−1 fb(mnm−1)σ (m).

By the boundedness assumption on m, there is a bounded open subgroup K ′′ such that

σ(m(x))−1K ′′σ(m(x)) ∈ K ′

for all k-valued points x of Spec R. Applying Lemma 5.10 to σ(m)yσ(m)−1 and K ′′, and conjugating
the result by m, we obtain the desired lifting with respect to fbm . �

Theorem 5.12. Let µ ∈ X∗(T )dom be minuscule, b ∈ [b] ∈ B(G, µ), and λ̃ ∈ X∗(T ) be an associated
element. Then the map

φ = α6 ◦β
−1
6 :W.µ∩ [λ̃+ (1− σ)X∗(T )] → Jb(F) \6top(Xµ(b))

constructed above is surjective and it is bijective if and only if Jb(F) acts trivially on

(Jb(F)∩ P(L)) \6top(Xµ(b)).
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Proof. From Lemma 5.2, Corollary 5.9, and (5.3) we obtain the claimed maps

W.µ∩ [λ̃+ (1− σ)X∗(T )] = (Jb(F)∩M(L)) \6(X M⊂G
µ (b))

β−1
6
→ (Jb(F)∩ P(L)) \6top(X P⊂G

µ (b))
α6
� Jb(F) \6top(Xµ(b)).

As 6top(Xµ(b))∼=6top(X P⊂G
µ (b)), this description also implies the assertion about bijectivity. �

Proof of Theorem 1.4. The first assertion is a direct consequence of the previous theorem.
If G is split, then W.µ ∩ [λ̃+ (1− σ)X∗(T )] = {λ̃} has only one element; hence, the map is also

injective.
If the second condition holds, then Jb(F)⊂ P(L); hence, α6 and also φ are bijective. �
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