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For a dominant rational self-map on a smooth projective variety defined over a number field, Kawaguchi
and Silverman conjectured that the (first) dynamical degree is equal to the arithmetic degree at a rational
point whose forward orbit is well-defined and Zariski dense. We prove this conjecture for surjective
endomorphisms on smooth projective surfaces. For surjective endomorphisms on any smooth projective
varieties, we show the existence of rational points whose arithmetic degrees are equal to the dynamical
degree. Moreover, if the map is an automorphism, there exists a Zariski dense set of such points with
pairwise disjoint orbits.
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1. Introduction

Let k be a number field, X a smooth projective variety over k, and f : X 99K X a dominant rational
self-map on X over k. Let I f ⊂ X be the indeterminacy locus of f . Let X f (k) be the set of k-rational
points P on X such that f n(P) /∈ I f for every n ≥ 0. For P ∈ X f (k), its forward f -orbit is defined as
O f (P) := { f n(P) : n ≥ 0}.

Let H be an ample divisor on X defined over k. The (first) dynamical degree of f is defined by

δ f := lim
n→∞

(( f n)∗H · H dim X−1)1/n.
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The first dynamical degree of a dominant rational self-map on a smooth complex projective variety was
first defined by Dinh and Sibony [2004; 2005]. Dang [2017] and Truong [2015] gave algebraic definitions
of dynamical degrees.

The arithmetic degree, introduced by Silverman [2014], of f at a k-rational point P ∈ X f (k) is
defined by

α f (P) := lim
n→∞

h+H ( f n(P))1/n

if the limit on the right-hand side exists. Here, hH : X (k)→ [0,∞) is the (absolute logarithmic) Weil
height function associated with H , and we put h+H :=max{hH , 1}.

Then we have two types of quantity concerned with the iteration of the action of f . It is natural to
consider the relation between dynamical degrees and arithmetic degrees. In this direction, Kawaguchi
and Silverman formulated the following conjecture.

Conjecture 1.1 (The Kawaguchi–Silverman conjecture [2016b, Conjecture 6]). For every k-rational
point P ∈ X f (k), the arithmetic degree α f (P) exists. Moreover, if the forward f -orbit O f (P) is Zariski
dense in X , the arithmetic degree α f (P) is equal to the dynamical degree δ f , i.e., we have

α f (P)= δ f .

Remark 1.2. Let X be a complex smooth projective variety with κ(X)>0,8 : X 99KW the Iitaka fibration
of X , and f : X 99K X a dominant rational self-map on X . Nakayama and Zhang [2009, Theorem A]
proved that there exists an automorphism g : W→W of finite order such that 8◦ f = g ◦8. This implies
that any dominant rational self-map on a smooth projective variety of positive Kodaira dimension does not
have a Zariski dense orbit. So the latter half of Conjecture 1.1 is meaningful only for smooth projective
varieties of nonpositive Kodaira dimension. However, we do not use their result in this paper.

When f is a dominant endomorphism (i.e., f is defined everywhere), the existence of the limit defining
the arithmetic degree was proved in [Kawaguchi and Silverman 2016a]. But in general, the convergence
is not known. It seems difficult at the moment to prove Conjecture 1.1 in full generality.

In this paper, we prove Conjecture 1.1 for any endomorphism on any smooth projective surface.

Theorem 1.3. Let k be a number field, X a smooth projective surface over k, and f : X→ X a surjective
endomorphism on X. Then Conjecture 1.1 holds for f .

As by-products of our arguments, we also obtain the following two cases for which Conjecture 1.1 holds:

Theorem 1.4 (Theorem 3.6). Let k be a number field, X a smooth projective irrational surface over k,
and f : X 99K X a birational automorphism on X. Then Conjecture 1.1 holds for f .

Theorem 1.5 (Theorem 3.7). Let k be a number field, X a smooth projective toric variety over k, and
f : X→ X a toric surjective endomorphism on X. Then Conjecture 1.1 holds for f .

Lin [2018] gives a precise description of the arithmetic degrees of toric self-maps on toric varieties.
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As we will see in the proof of Theorem 1.3, there does not always exist a Zariski dense orbit for a
given self-map. For instance, a self-map cannot have a Zariski dense orbit if it is a self-map over a variety
of positive Kodaira dimension. So it is also important to consider whether a self-map has a k-rational
point whose orbit has full arithmetic complexity, that is, whose arithmetic degree coincides with the
dynamical degree. We prove that such a point always exists for any surjective endomorphism on any
smooth projective variety.

Theorem 1.6. Let k be a number field, X a smooth projective variety over k, and f : X→ X a surjective
endomorphism on X. Then there exists a k-rational point P ∈ X (k) such that α f (P)= δ f .

If f is an automorphism, we can construct a “large” collection of points whose orbits have full
arithmetic complexity.

Theorem 1.7. Let k be a number field, X a smooth projective variety over k, and f : X → X an
automorphism. Then there exists a subset S ⊂ X (k) which satisfies all of the following conditions:

(1) For every P ∈ S, α f (P)= δ f .

(2) For P, Q ∈ S with P 6= Q, O f (P)∩O f (Q)=∅.

(3) S is Zariski dense in X.

Remark 1.8. Kawaguchi, Silverman, and the second author proved Conjecture 1.1 in the following cases:

(1) f is an endomorphism and the Néron–Severi group of X has rank one [Kawaguchi and Silverman
2014, Theorem 2(a)].

(2) f is the extension to PN of a regular affine automorphism on AN [Kawaguchi and Silverman 2014,
Theorem 2(b)].

(3) X is a smooth projective surface and f is an automorphism on X [Kawaguchi 2008, Theorem A;
Kawaguchi and Silverman 2014, Theorem 2(c)].

(4) f is the extension to PN of a monomial endomorphism on GN
m and P ∈ GN

m (k) [Silverman 2014,
Proposition 19] .

(5) X is an abelian variety. Note that any rational map between abelian varieties is automatically a
morphism [Kawaguchi and Silverman 2016a, Corollary 31; Silverman 2017, Theorem 2].

(6) f is an endomorphism and X is the product
∏n

i=1 X i of smooth projective varieties, with the
assumption that each variety X i satisfies one of the following conditions [Sano 2016, Theorem 1.3]:

• The first Betti number of (X i )C is zero and the Néron–Severi group of X i has rank one.
• X i is an abelian variety.
• X i is an Enriques surface.
• X i is a K 3 surface.



1638 Yohsuke Matsuzawa, Kaoru Sano and Takahiro Shibata

(7) f is an endomorphism and X is the product X1× X2 of positive dimensional varieties such that one
of X1 or X2 is of general type. (In fact, there do not exist Zariski dense forward f -orbits on such
X1× X2.) [Sano 2016, Theorem 1.4]

Notation. Throughout this paper:

• We fix a number field k.

• A variety always means an integral separated scheme of finite type over k.

• A divisor on a variety X means a divisor on X defined over k.

• An endomorphism on a variety X means a morphism from X to itself defined over k. A noninvertible
endomorphism is a surjective endomorphism which is not an automorphism.

• A curve or surface simply means a smooth projective variety of dimension 1 or 2, respectively,
unless otherwise stated.

• For any curve C , the genus of C is denoted by g(C).

• When we say that P is a point of X or write as P ∈ X , it means that P is a k-rational point of X .

• The Néron–Severi group of a smooth projective variety X is denoted by NS(X). It is well-known
that NS(X) is a finitely generated abelian group. We put NS(X)R := NS(X)⊗Z R.

• The symbols≡,∼,∼Q and∼R mean algebraic equivalence, linear equivalence, Q-linear equivalence,
and R-linear equivalence, respectively.

• Let X be a smooth projective variety and f : X 99K X a dominant rational self-map. A point
P ∈ X f (k) is called preperiodic if the forward f -orbit O f (P) of P is a finite set. This is equivalent
to the condition that f n(P)= f m(P) for some n,m ≥ 0 with n 6= m.

• Let f , g and h be real-valued functions on a domain S. The equality f = g + O(h) means that
there is a positive constant C such that | f (x)− g(x)| ≤ C |h(x)| for every x ∈ S. The equality
f = g+O(1) means that there is a positive constant C ′ such that | f (x)−g(x)| ≤C ′ for every x ∈ S.

Outline of this paper. In Section 2, we recall the definitions and some properties of dynamical and
arithmetic degrees. In Section 3, at first we recall some lemmata about reduction for Conjecture 1.1, which
were proved in [Sano 2016; Silverman 2017]. Then, we prove the birational invariance of arithmetic
degree. As its corollary, we prove Theorem 1.4 by reducing to the automorphism case, using minimal
models. We also prove Theorem 1.5. In Section 4, by using the Enriques classification of smooth projective
surfaces, we reduce Theorem 1.3 to three cases, i.e., the case of P1-bundles, hyperelliptic surfaces, and
surfaces of Kodaira dimension one. In Section 5 we recall fundamental properties of P1-bundles over
curves. In Sections 6, 7, and 8, we prove Theorem 1.3 in each case explained in Section 4. Finally, in
Section 9, we prove Theorems 1.6 and 1.7. In the proof of Theorem 1.6, we use a nef R-divisor D that
satisfies f ∗D ≡ δ f D.
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2. Dynamical degree and arithmetic degree

Let H be an ample divisor on a smooth projective variety X . The (first) dynamical degree of a dominant
rational self-map f : X 99K X is defined by

δ f := lim
n→∞

(( f n)∗H · H dim X−1)1/n.

The limit defining δ f exists, and δ f does not depend on the choice of H [Dinh and Sibony 2005,
Corollary 7; Guedj 2005, Proposition 1.2]. Note that if f is an endomorphism, we have ( f n)∗ = ( f ∗)n as
a linear self-map on NS(X). But if f is merely a rational self-map, then ( f n)∗ 6= ( f ∗)n in general.

Remark 2.1 [Dinh and Sibony 2005, Proposition 1.2(iii); Kawaguchi and Silverman 2016b, Remark 7].
Let ρ(( f n)∗) be the spectral radius of the linear self-map ( f n)∗ : NS(X)R→ NS(X)R. The dynamical
degree δ f is equal to the limit limn→∞(ρ(( f n)∗))1/n . Thus we have δ f n = δn

f for every n ≥ 1.

Let X f (k) be the set of points P on X such that f is defined at f n(P) for every n ≥ 0. The arithmetic
degree of f at a point P ∈ X f (k) is defined as follows. Let

hH : X (k)→ [0,∞)

be the (absolute logarithmic) Weil height function associated with H [Hindry and Silverman 2000,
Theorem B3.2]. We put

h+H (P) :=max{hH (P), 1}.

We call

α f (P) := lim sup
n→∞

h+H ( f n(P))1/n and α f (P) := lim inf
n→∞

h+H ( f n(P))1/n

the upper arithmetic degree and the lower arithmetic degree of f at P , respectively. It is known that
α f (P) and α f (P) do not depend on the choice of H [Kawaguchi and Silverman 2016b, Proposition 12].
If α f (P)= α f (P), the limit

α f (P) := lim
n→∞

h+H ( f n(P))1/n

is called the arithmetic degree of f at P .

Remark 2.2. Let D be a divisor on X and f a dominant rational self-map on X . Take P ∈ X f (k). Then
we can easily check that

α f (P)≥ lim sup
n→∞

h+D( f n(P))1/n and α f (P)≥ lim inf
n→∞

h+D( f n(P))1/n.

So when these limits exist, we have

α f (P)≥ lim
n→∞

h+D( f n(P))1/n.

Remark 2.3. When f is an endomorphism, the existence of the limit defining the arithmetic degree
α f (P) was proved by Kawaguchi and Silverman [2016a, Theorem 3]. But it is not known in general.
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Remark 2.4. The inequality α f (P)≤ δ f was proved by Kawaguchi and Silverman, and the third author
[Kawaguchi and Silverman 2016b, Theorem 4; Matsuzawa 2016, Theorem 1.4]. Hence, in order to prove
Conjecture 1.1, it is enough to prove the opposite inequality α f (P)≥ δ f .

3. Some reductions for Conjecture 1.1

Reductions. We recall some lemmata which are useful to reduce the proof of some cases of Conjecture 1.1
to easier cases.

Lemma 3.1. Let X be a smooth projective variety and f : X → X a surjective endomorphism. Then
Conjecture 1.1 holds for f if and only if Conjecture 1.1 holds for f t for some t ≥ 1.

Proof. See [Sano 2016, Lemma 3.3]. �

Lemma 3.2 [Silverman 2017, Lemma 6]. Let ψ : X→ Y be a finite morphism between smooth projective
varieties. Let fX : X → X and fY : Y → Y be surjective endomorphisms on X and Y , respectively.
Assume that ψ ◦ fX = fY ◦ψ .

(i) For any P ∈ X (k), we have α fX (P)= α fY (ψ(P)).

(ii) Assume that ψ is surjective. Then Conjecture 1.1 holds for fX if and only if Conjecture 1.1 holds
for fY .

Proof. (i) Take any point P ∈ X (k). Let H be an ample divisor on Y . Then ψ∗H is an ample divisor
on X . Hence we have

α fX (P)= lim
n→∞

h+ψ∗H ( f n
X (P))

1/n

= lim
n→∞

h+H (ψ ◦ f n
X (P))

1/n

= lim
n→∞

h+H ( f n
Y ◦ψ(P))

1/n

= α fY (ψ(P)).

(ii) For a point P ∈ X (k), the forward fX -orbit O fX (P) is Zariski dense in X if and only if the forward
fY -orbit O fY (ψ(P)) is Zariski dense in Y since ψ is a finite surjective morphism. Moreover we have
dim X = dim Y . So we obtain

δ fX = lim
n→∞

(( f n
X )
∗ψ∗H · (ψ∗H)dim X−1)1/n

= lim
n→∞

(ψ∗( f n
Y )
∗H · (ψ∗H)dim Y−1)1/n

= lim
n→∞

(deg(ψ)(( f n
Y )
∗H · H dim Y−1))1/n

= δ fY .

Therefore the assertion follows. �
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Birational invariance of the arithmetic degree. We show that the arithmetic degree is invariant under
birational conjugacy.

Lemma 3.3. Let µ : X 99K Y be a birational map of smooth projective varieties. Take Weil height
functions h X and hY associated with ample divisors HX and HY on X and Y , respectively. Then there are
constants M ∈ R>0 and M ′ ∈ R such that

h X (P)≥ MhY (µ(P))+M ′

for any P ∈ X (k) \ Iµ(k).

Proof. Replacing HY by a positive multiple, we may assume that HY is very ample. Take a smooth
projective variety Z and a birational morphism p : Z → X such that p is isomorphic over X \ Iµ and
q =µ◦ p : Z→ Y is a morphism. Let {Fi }

r
i=1 be the collection of prime p-exceptional divisors. We take

HY as not containing q(Fi ) for any i , so q∗HY does not contain Fi for any i . Then E = p∗ p∗q∗HY−q∗HY

is an effective divisor contained in the exceptional locus of p. Take a sufficiently large integer N such
that N HX − p∗q∗HY is very ample. Then, for P ∈ X (k) \ Iµ, we have

h X (P)= 1
N (hN HX−p∗q∗HY (P)+ h p∗q∗HY (P))+ O(1)

≥
1
N h p∗q∗HY (P)+ O(1)

=
1
N h p∗ p∗q∗HY (p

−1(P))+ O(1)

=
1
N hq∗HY (p

−1(P))+ hE(p−1(P))+ O(1)

=
1
N hY (µ(P))+ hE(p−1(P))+ O(1).

We know that hE ≥ O(1) on Z(k) \ Supp E [Hindry and Silverman 2000, Theorem B.3.2(e)]. Since
Supp E ⊂ p−1(Iµ), hE(p−1(P))≥ O(1) for P ∈ X (k) \ Iµ. Finally, we obtain that

h X (P)≥ (1/N )hY (µ(P))+ O(1) for P ∈ X (k) \ Iµ. �

Theorem 3.4. Let f : X 99K X and g : Y 99K Y be dominant rational self-maps on smooth projective
varieties and µ : X 99K Y a birational map such that g ◦µ= µ ◦ f .

(i) Let U ⊂ X be a Zariski open subset such that µ|U : U → µ(U ) is an isomorphism. Then α f (P)=
αg(µ(P)) and α f (P)= αg(µ(P)) for P ∈ X f (k)∩µ−1(Yg(k)) such that O f (P)⊂U (k).

(ii) Take P ∈ X f (k) ∩ µ−1(Yg(k)). Assume that O f (P) is Zariski dense in X and both α f (P) and
αg(µ(P)) exist. Then α f (P)= αg(µ(P)).

Proof. (i) Using Lemma 3.3 for both µ and µ−1, there are constants M1, L1 ∈ R>0 and M2, L2 ∈ R

such that

M1hY (µ(P))+M2 ≤ h X (P)≤ L1hY (µ(P))+ L2 (∗)

for P ∈U (k). The claimed equalities follow from (∗).
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(ii) Since O f (P) is Zariski dense in X , we can take a subsequence { f nk (P)}k of { f n(P)}n contained
in U . Using (∗) again, it follows that

α f (P)= lim
k→∞

h+X ( f nk (P))1/nk = lim
k→∞

h+Y (g
nk (µ(P)))1/nk = αg(µ(P)). �

Remark 3.5. Silverman [2014] dealt with a height function on Gn
m induced by an open immersion

Gn
m ↪→Pn and proved Conjecture 1.1 for monomial maps on Gn

m . It seems that it has not been checked in
the literature that the arithmetic degrees of endomorphisms on quasiprojective varieties does not depend
on the choice of open immersions to projective varieties. Now by Theorem 3.4, the arithmetic degree
of a rational self-map on a quasiprojective variety at a point does not depend on the choice of an open
immersion of the quasiprojective variety to a projective variety. Furthermore, by the birational invariance
of dynamical degrees, we can state Conjecture 1.1 for rational self-maps on quasiprojective varieties,
such as semiabelian varieties.

Applications of the birational invariance. In this subsection, we prove Theorems 1.4 and 1.5 as applica-
tions of Theorem 3.4.

Theorem 3.6 (Theorem 1.4). Let X be an irrational surface and f : X 99K X a birational automorphism
on X. Then Conjecture 1.1 holds for f .

Proof. Take a point P ∈ X f (k). If O f (P) is finite, the limit α f (P) exists and is equal to 1. Next, assume
that the closure O f (P) of O f (P) has dimension 1. Let Z be the normalization of O f (P) and ν : Z→ X
the induced morphism. Then an endomorphism g : Z → Z satisfying ν ◦ g = f ◦ ν is induced. Take a
point P ′ ∈ Z such that ν(P ′)= P . Then αg(P ′)= α f (P) since ν is finite by Lemma 3.2 (i). It follows
from [Kawaguchi and Silverman 2016a, Theorem 2] that αg(P ′) exists (note that their theorem holds for
possibly nonsurjective endomorphisms on possibly reducible normal varieties). Therefore α f (P) exists.

Finally, assume that O f (P) is Zariski dense. If δ f =1, then 1≤α f (P)≤α f (P)≤δ f =1 by Remark 2.4,
so α f (P) exists and α f (P)= δ f = 1. So we may assume that δ f > 1. Since X is irrational and δ f > 1,
κ(X) must be nonnegative [Diller and Favre 2001, Theorem 0.4, Proposition 7.1 and Theorem 7.2]. Take
a birational morphism µ : X → Y to the minimal model Y of X and let g : Y 99K Y be the birational
automorphism on Y defined as g = µ ◦ f ◦ µ−1. Then g is in fact an automorphism since, if g has
indeterminacy, Y must have a KY -negative curve. It is obvious that Og(µ(P)) is also Zariski dense in Y .
Since µ(Exc(µ)) is a finite set, there is a positive integer n0 such that µ( f n(P))= gn(µ(P)) 6∈µ(Exc(µ))
for n ≥ n0. So we have f n(P) 6∈ Exc(µ) for n ≥ n0. Replacing P by f n0(P), we may assume that
O f (P) ⊂ X \ Exc(µ). Applying Theorem 3.4 (i) to P , it follows that α f (P) = αg(µ(P)). We know
that αg(µ(P)) exists since g is a morphism. So α f (P) also exists. The equality αg(µ(P)) = δg holds
as a consequence of Conjecture 1.1 for automorphisms on surfaces (see Remark 1.8(3)). Since the
dynamical degree is invariant under birational conjugacy, it follows that δg = δ f . So we obtain the equality
α f (P)= δ f . �

Theorem 3.7 (Theorem 1.5). Let X be a smooth projective toric variety and f : X→ X a toric surjective
endomorphism on X. Then Conjecture 1.1 holds for f .
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Proof. Let Gd
m ⊂ X be the torus embedded as an open dense subset in X . Then f |Gd

m
: Gd

m → Gd
m is a

homomorphism of algebraic groups by assumption. Let Gd
m ⊂ Pd be the natural embedding of Gd

m to the
projective space Pd and g : Pd 99K Pd be the induced rational self-map. Then g is a monomial map.

Take P ∈ X (k) such that O f (P) is Zariski dense. Note that α f (P) exists since f is a morphism. Since
O f (P) is Zariski dense and f (Gd

m)⊂Gd
m , there is a positive integer n0 such that f n(P) ∈Gd

m for n ≥ n0.
By replacing P by f n0(P), we may assume that O f (P)⊂Gd

m . Applying Theorem 3.4 (i) to P , it follows
that α f (P)= αg(P).

The equalityαg(P)=δg holds as a consequence of Conjecture 1.1 for monomial maps (see Remark 1.8(4)).
Since the dynamical degree is invariant under birational conjugacy, it follows that δg = δ f . So we obtain
the equality α f (P)= δ f . �

4. Endomorphisms on surfaces

We start to prove Theorem 1.3. Since Conjecture 1.1 for automorphisms on surfaces is already proved by
Kawaguchi (see Remark 1.8(3)), it is sufficient to prove Theorem 1.3 for noninvertible endomorphisms,
that is, surjective endomorphisms which are not automorphisms.

Let f : X→ X be a noninvertible endomorphism on a surface. We divide the proof of Theorem 1.3
according to the Kodaira dimension of X :

(I) κ(X)=−∞; we need the following result due to Nakayama.

Lemma 4.1 [Nakayama 2002, Proposition 10]. Let f : X→ X be a noninvertible endomorphism on a
surface X with κ(X)=−∞. Then there is a positive integer m such that f m(E)= E for any irreducible
curve E on X with negative self-intersection.

Let µ : X→ X ′ be the contraction of a (−1)-curve E on X . By Lemma 4.1, there is a positive integer m
such that f m(E)= E . Then f m induces an endomorphism f ′ : X ′→ X ′ such that µ◦ f m

= f ′◦µ. Using
Lemma 3.1 and Theorem 3.4, the assertion of Theorem 1.3 for f follows from that for f ′. Continuing
this process, we may assume that X is relatively minimal.

When X is irrational and relatively minimal, X is a P1-bundle over a curve C with g(C)≥ 1.
When X is rational and relatively minimal, X is isomorphic to P2 or the Hirzebruch surface Fn =

P(OP1⊕OP1(−n)) for some n≥0 with n 6=1. Note that Conjecture 1.1 holds for surjective endomorphisms
on projective spaces (see Remark 1.8(1)).

(II) κ(X) = 0; for surfaces with nonnegative Kodaira dimension, we use the following result due to
Fujimoto.

Lemma 4.2 [Fujimoto 2002, Lemma 2.3 and Proposition 3.1]. Let f : X → X be a noninvertible
endomorphism on a surface X with κ(X)≥ 0. Then X is minimal and f is étale.

So X is either an abelian surface, a hyperelliptic surface, a K3 surface, or an Enriques surface. Since
f is étale, we have χ(X,OX ) = deg( f )χ(X,OX ). Now deg( f ) ≥ 2 by assumption, so χ(X,OX ) = 0
[Fujimoto 2002, Corollary 2.4]. Hence X must be either an abelian surface or a hyperelliptic surface
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because K3 surfaces and Enriques surfaces have nonzero Euler characteristics. Note that Conjecture 1.1
is valid for endomorphisms on abelian varieties (see Remark 1.8(5)).

(III) κ(X)= 1; this case will be treated in Section 8.

(IV) κ(X)= 2; the following fact is well known.

Lemma 4.3. Let X be a smooth projective variety of general type. Then any surjective endomorphism on
X is an automorphism. Furthermore, the group of automorphisms Aut(X) on X has finite order.

Proof. See [Fujimoto 2002, Proposition 2.6], [Iitaka 1982, Theorem 11.12], or [Matsumura 1963,
Corollary 2]. �

So there is no noninvertible endomorphism on X . As a summary, the remaining cases for the proof of
Theorem 1.3 are the following:

• Noninvertible endomorphisms on P1-bundles over a curve.

• Noninvertible endomorphisms on hyperelliptic surfaces.

• Noninvertible endomorphisms on surfaces of Kodaira dimension 1.

These three cases are studied in Sections 5–8 below.

Remark 4.4. Fujimoto and Nakayama gave a complete classification of surfaces which admit noninvertible
endomorphisms (see [Fujimoto 2002, Proposition 3.3], [Fujimoto and Nakayama 2008, Theorem 1.1],
[Fujimoto and Nakayama 2005, Appendix to Section 4], and [Nakayama 2002, Theorem 3]).

5. Some properties of P1-bundles over curves

In this section, we recall and prove some properties of P1-bundles (see [Hartshorne 1977, Chapter V.2] or
[Homma 1992; 1999] for details). In this section, let X be a P1-bundle over a curve C . Let π : X→ C
be the projection.

Proposition 5.1. We can represent X as X ∼=P(E), where E is a locally free sheaf of rank 2 on C such that
H 0(E) 6= 0 but H 0(E⊗L)= 0 for all invertible sheaves L on C with degL< 0. The integer e := − deg E
does not depend on the choice of such E . Furthermore, there is a section σ : C→ X with image C0 such
that OX (C0)∼=OX (1).

Proof. See [Hartshorne 1977, Proposition 2.8]. �

Lemma 5.2. The Picard group and the Néron–Severi group of X have the following structure:

Pic(X)∼= Z⊕π∗ Pic(C) and NS(X)∼= Z⊕π∗NS(C)∼= Z⊕Z.

Furthermore, the image C0 of the section σ : C→ X in Proposition 5.1 generates the first direct factor of
Pic(X) and NS(X).

Proof. See [Hartshorne 1977, V, Proposition 2.3]. �
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Lemma 5.3. Let F ∈ NS(X) be a fiber π−1(p)= π∗ p over a point p ∈ C(k), and e the integer defined
in Proposition 5.1. Then the intersection numbers of generators of NS(X) are as follows:

F · F = 0, F ·C0 = 1, C0 ·C0 =−e.

Proof. It is easy to see that the equalities F · F = 0 and F · C0 = 1 hold. For the last equality, see
[Hartshorne 1977, V, Proposition 2.9]. �

We say that f preserves fibers if there is an endomorphism fC on C such that π ◦ f = fC ◦π . In our
situation, since there is a section σ : C→ X , f preserves fibers if and only if, for any point p ∈ C , there
is a point q ∈ C such that f (π−1(p))⊂ π−1(q).

The following lemma appears in [Amerik 2003, p.18] in a more general form. But we need it only in
the case of P1-bundles on a curve, and the proof in the general case is similar to our case. So we deal
only with the case of P1- bundles on a curve.

Lemma 5.4. For any surjective endomorphism f on X , the iterate f 2 preserves fibers.

Proof. By the projection formula, the fibers of π : X → C can be characterized as connected curves
having intersection number zero with any fiber Fp = π

∗ p, p ∈ C . Hence, to check that the iterate f 2

sends fibers to fibers, it suffices to show that ( f 2)∗(π∗NS(C)R)= π∗NS(C)R. Now dim NS(X)R = 2
and the set of the numerical classes in X with self-intersection zero forms two lines, one of which is
π∗NS(C)R, and f ∗ fixes or interchanges them. So ( f 2)∗ fixes π∗NS(C)R. �

The following might be well-known, but we give a proof for the reader’s convenience.

Lemma 5.5. A surjective endomorphism f preserves fibers if and only if there exists a nonzero integer a
such that f ∗F ≡ aF. Here, F is the numerical class of a fiber.

Proof. Assume f ∗F ≡ aF . For any point p ∈ C , we set Fp := π
−1(p)= π∗ p. If f does not preserve

fibers, there is a point p ∈ C such that f (Fp) · F > 0. Now we can calculate the intersection number as
follows:

0= F · aF = F · ( f ∗F)= Fp · ( f ∗F)= ( f∗Fp) · F = deg( f |Fp) · ( f (Fp) · F) > 0.

This is a contradiction. Hence f preserves fibers.
Next, assume that f preserves fibers. Write f ∗F = aF + bC0. Then we can also calculate the

intersection number as follows:

b = F · (aF + bC0)= F · f ∗F = ( f∗F) · F = deg( f |F ) · (F · F)= 0.

Further, by the injectivity of f ∗, we have a 6= 0. The proof is complete. �

Lemma 5.6. If E splits, i.e., if there is an invertible sheaf L on C such that E ∼=OC ⊕L, the invariant e
of X = P(E) is nonnegative.

Proof. See [Hartshorne 1977, V, Example 2.11.3]. �
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Lemma 5.7. Assume that e≥ 0. Then for a divisor D = aF+bC0 ∈NS(X), the following properties are
equivalent:

• D is ample.

• a > be and b > 0.

In other words, the nef cone of X is generated by F and eF +C0.

Proof. See [Hartshorne 1977, V, Proposition 2.20]. �

We can prove a result stronger than Lemma 5.4 as follows.

Lemma 5.8. Assume that e > 0. Then any surjective endomorphism f : X→ X preserves fibers.

Proof. By Lemma 5.5, it is enough to prove f ∗F ≡ aF for some integer a > 0. We can write
f ∗F ≡ aF + bC0 for some integers a, b ≥ 0.

Since we have
aF + bC0 = (a− be)F + b(eF +C0)

and f preserves the nef cone and the ample cone, either of the equalities a− be = 0 or b = 0 holds.
We have

0= deg( f )(F ·F)= ( f∗ f ∗F) ·F = ( f ∗F) ·( f ∗F)= (aF+bC0) ·(aF+bC0)= 2ab−b2e= b(2a−be).

So either of the equalities b = 0 or 2a− be = 0 holds.
If we have b 6= 0, we have a− be = 0 and 2a− be = 0. So we get a = 0. But since e 6= 0, we obtain

b = 0. This is a contradiction. Consequently, we get b = 0 and f ∗F ≡ aF . �

Lemma 5.9. Fix a fiber F = Fp for a point p ∈ C(k). Let f be a surjective endomorphism on X
preserving fibers, fC the endomorphism on C satisfying π ◦ f = fC ◦ π , fF := f |F : F → f (F) the
restriction of f to the fiber F. Set f ∗F ≡ aF and f ∗C0 ≡ cF + dC0. Then we have a = deg( fC),
d = deg( fF ), deg( f )= ad , and δ f =max{a, d}.

Proof. Our assertions follow from the following equalities of divisor classes in NS(X) and of intersection
numbers:

aF = f ∗F = f ∗π∗ p = π∗ f ∗C p = π∗(deg( fC)p)= deg( fC)π
∗ p = deg( fC)F,

deg( f )F = f∗ f ∗F = f∗ f ∗π∗ p = f∗π∗ f ∗C p = f∗π∗(deg( fC)p)
= deg( fC) f∗F = deg( fC) deg( fF ) f (F)= deg( fC) deg( fF )F

deg( f )= deg( f )C0 · F = ( f∗ f ∗C0) · F = ( f ∗C0) · ( f ∗F)= (cF + dC0) · aF = ad.

The last assertion δ f =max{a, d} follows from the equality δ f = limn→∞ ρ(( f n)∗)1/n
= ρ( f ∗) and from

the functoriality of f ∗ (see Remark 2.1). �

Lemma 5.10. Using the notation of Lemma 5.9, assume that e ≥ 0. Then both F and C0 are eigenvectors
of f ∗ : NS(X)R→ NS(X)R. Further, if e is positive, then we have deg( fC)= deg( fF ).
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Proof. Set f ∗F = aF and f ∗C0 = cF + dC0 in NS(X). Then we have

−ead =−e deg f = ( f∗ f ∗C0) ·C0 = ( f ∗C0)
2
= (cF + dC0)

2
= 2cd − ed2.

Hence, we get c = e(d − a)/2. We have the following equalities in NS(X):

f ∗(eF +C0)= aeF + (cF + dC0)= (ae+ c)F + dC0.

By the fact that f ∗D is ample if and only if D is ample, it follows that eF +C0 is an eigenvector of f ∗.
Thus, we have

de = ae+ c = ae+ e(d − a)/2= e(d + a)/2.

Therefore, the equality e(d − a)= 0 holds. So c = e(d − a)/2= 0 holds.
Further, we assume that e>0. Then it follows that d−a=0. So we have deg( fC)=a=d=deg( fF ). �

The following lemma is used on page 1650.

Lemma 5.11. Let L be a nontrivial invertible sheaf of degree 0 on a curve C with g(C)≥ 1, E =OC ⊕L,
and X = P(E). Let C0 and C1 be sections corresponding to the projections E → L and E → OC . If
σ : C→ X is a section such that (σ (C))2 = 0, then σ(C) is equal to C0 or C1.

Proof. Note that e = 0 in this case and thus (C2
0) = 0. Moreover, OX (C0) ∼= OX (1) and OX (C1) ∼=

OX (1)⊗π∗L−1. Set σ(C) ≡ aC0 + bF . Then a = (σ (C) · F) = 1 and 2ab = (σ (C)2) = 0. Thus
σ(C)≡C0. Therefore, OX (σ (C))∼=OX (C0)⊗π

∗N for some invertible sheaf N of degree 0 on C . Then

0 6= H 0(X,OX (σ (C)))= H 0(C, π∗OX (C0)⊗N )= H 0(C, (L⊕OC)⊗N )

and this implies N ∼=OC or N ∼=L−1. Hence OX (σ (C)) is isomorphic to OX (C0) or OX (C0)⊗π
∗L−1

=

OX (C1). Since L is nontrivial, we have H 0(OX (C0))= H 0(OX (C1))= k and we get σ(C)=C0 or C1. �

6. P1-bundles over curves

In this section, we prove Conjecture 1.1 for noninvertible endomorphisms on P1-bundles over curves. We
divide the proof according to the genus of the base curve.

P1-bundles over P1.

Theorem 6.1. Let π : X→P1 be a P1-bundle over P1 and f : X→ X be a noninvertible endomorphism.
Then Conjecture 1.1 holds for f .

Proof. Take a locally free sheaf E of rank 2 on P1 such that X ∼=P(E) and deg E =−e (see Proposition 5.1).
Then E splits [Hartshorne 1977, V, Corollary 2.14]. When X is isomorphic to P1

×P1, i.e., the case of
e = 0, the assertion holds by [Sano 2016, Theorem 1.3]. When X is not isomorphic to P1

×P1, i.e., the
case of e > 0, the endomorphism f preserves fibers and induces an endomorphism fP1 on the base curve
P1. By Lemma 5.10, we have δ f = δ f

P1 . Fix a point p ∈ P1 and set F = π∗ p. Let P ∈ X (k) be a point
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whose forward f -orbit is Zariski dense in X . Then the forward fP1-orbit of π(P) is also Zariski dense
in P1. Now the assertion follows from the following computation.

α f (P)≥ lim
n→∞

hF ( f n(P))1/n
= lim

n→∞
hπ∗ p( f n(P))1/n

= lim
n→∞

h p(π ◦ f n(P))1/n
= lim

n→∞
h p( f n

P1 ◦π(P))1/n
= δ f

P1 = δ f . �

P1-bundles over genus one curves. In this subsection, we prove Conjecture 1.1 for any endomorphisms
on a P1-bundle on a curve C of genus one.

The following result is due to Amerik. Note that Amerik in fact proved it for P1-bundles over varieties
of arbitrary dimension.

Lemma 6.2. Let X = P(E) be a P1-bundle over a curve C. If X has a fiber-preserving surjective
endomorphism whose restriction to a general fiber has degree greater than 1, then E splits into a direct
sum of two line bundles after a finite base change. Furthermore, if E is semistable, then E splits into a
direct sum of two line bundles after an étale base change.

Proof. See [Amerik 2003, Theorem 2 and Proposition 2.4]. �

Lemma 6.3. Let E be a curve of genus one with an endomorphism f : E→ E. If g : E ′→ E is a finite
étale covering of E , there exists a finite étale covering h : E ′′→ E ′ and an endomorphism f ′ : E ′′→ E ′′

such that f ◦ g ◦ h = g ◦ h ◦ f ′. Furthermore, we can take h as satisfying E ′′ = E.

Proof. At first, since E ′ is an étale covering of E , a genus one curve, E ′ is also a genus one curve. By
fixing a rational point p ∈ E ′(k) and g(p) ∈ E(k), these curves E and E ′ can be regarded as elliptic
curves, and g can be regarded as an isogeny between elliptic curves. Let h := ĝ : E→ E ′ be the dual
isogeny of g. The morphism f is decomposed as f = τc ◦ψ for a homomorphism ψ and a translation
map τc by c ∈ E(k). Fix a rational point c′ ∈ E(k) such that [deg(g)](c′)= c and consider the translation
map τc′ , where [deg(g)] is the multiplication by deg(g). We set f ′ = τc′ ◦ψ . Then we have the following
equalities.

f ◦ g ◦ h = τc ◦ψ ◦ g ◦ ĝ = τc ◦ψ ◦ [deg(g)] = τc ◦ [deg(g)] ◦ψ = [deg(g)] ◦ τc′ ◦ψ = g ◦ h ◦ f ′.

This is what we want. �

Proposition 6.4. Let E be a locally free sheaf of rank 2 on a genus one curve C and X = P(E). Suppose
Conjecture 1.1 holds for any noninvertible endomorphism on X with E =OC ⊕L where L is a line bundle
of degree zero on C. Then Conjecture 1.1 holds for any noninvertible endomorphism on X = P(E) for
any E .

Proof. By Lemmas 5.4 and 3.1, we may assume that f preserves fibers. We can prove Conjecture 1.1
in the case of deg( f |F )= 1 in the same way as in the case of g(C)= 0 since deg( f |F )= 1≤ deg( fC).
Since we are considering the case of g(C)= 1, if E is indecomposable, then E is semistable (see [Mukai
2003, 10.2(c), 10.49] or [Hartshorne 1977, V, Exercise 2.8(c)]). By Lemma 6.2, if deg( f |F ) > 1 and E
is indecomposable, there is a finite étale covering g : E→ C satisfying that E ×C X ∼= P(OE ⊕L) for
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an invertible sheaf L over E . Furthermore, by Lemma 6.3, we can take E equal to C and there is an
endomorphism f ′C : C → C satisfying fC ◦ g = g ◦ f ′C . Then by the universality of cartesian product
X ×C,g C , we have an induced endomorphism f ′ : X ×C,g C→ X ×C,g C . By Lemma 3.2, it is enough
to prove Conjecture 1.1 for the endomorphism f ′. Thus, we may assume that E is decomposable, i.e.,
X ∼= P(OC ⊕L). Then the invariant e is nonnegative by Lemma 5.6. When e is positive, by the same
method as the proof of Theorem 1.3 in the case of g(C)= 0, the proof is complete. When e= 0, we have
degL= 0 and the assertion holds by the assumption. �

In the rest of this subsection, we keep the following notation. Let C be a genus one curve and L an
invertible sheaf on C with degree 0. Let X = P(OC ⊕ L) = Proj(Sym(OC ⊕ L)) and π : X → C the
projection. When L is trivial, we have X ∼= C ×P1, and by [Sano 2016, Theorem 1.3], Conjecture 1.1
is true for X . Thus we may assume L is nontrivial. In this case, we have two sections of π : X → C
corresponding to the projections OC ⊕L→ L and OC ⊕L→OC . Let C0 and C1 denote the images of
these sections. Then we have OX (C0)=OX (1) and OX (C1)=OX (1)⊗π∗L−1. Since L is nontrivial, we
have C0 6= C1. But since degL= 0, C0 and C1 are numerically equivalent. Thus (C0 ·C1)= (C2

0)= 0
and therefore C0 ∩C1 =∅.

Let f be a noninvertible endomorphism on X such that there is a surjective endomorphism fC : C→C
with π ◦ f = fC ◦π .

Lemma 6.5. When L is a torsion element of Pic C , Conjecture 1.1 holds for f .

Proof. We fix an algebraic group structure on C . Since L is torsion, there exists a positive integer n > 0
such that [n]∗L ∼= OC . Then the base change of π : X → C by [n] : C → C is the trivial P1-bundle
P1
×C→ C . Applying Lemma 6.3 to g = [n], we get a finite morphism h : C→ C such that the base

change of π : X→ C by h : C→ C is P1
×C→ C and there exists a finite morphism f ′C : C→ C with

fC ◦ h = h ◦ f ′C . Then f induces a noninvertible endomorphism f ′ : P1
×C→ P1

×C . By [Sano 2016,
Theorem 1.3], Conjecture 1.1 holds for f ′. By Lemma 3.2, Conjecture 1.1 holds also for f . �

Now, let F be the numerical class of a fiber of π . By Lemma 5.10, we have

f ∗F ≡ aF and f ∗C0 ≡ bC0

for some integers a, b ≥ 1. Note that a = deg fC , b = deg f |F and ab = deg f (see Lemma 5.9).

Lemma 6.6. (1) One of the equalities f (C0)=C0, f (C0)=C1 or f (C0)∩C0= f (C0)∩C1=∅ holds.
The same is true for f (C1).

(2) If f (C0)∩Ci =∅ for i = 0, 1, then the base change of π : X→ C by fC : C→ C is isomorphic to
P1
×C. In particular, f ∗CL∼=OC and L is a torsion element of Pic C. The same conclusion holds

under the assumption that f (C1)∩Ci =∅ for i = 0, 1.

Proof. (1) Since f ∗Ci ≡ bCi , C0 ≡ C1 and (C2
0)= 0, we have ( f∗Ci ·C j )= 0 for every i and j . Thus

the assertion follows.
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(2) Assume f (C0)∩Ci =∅ for i = 0, 1. Consider the following Cartesian diagram:

Y
g
//

π ′

��

X

π

��

C
fC
// C

Then Y is a P1-bundle over C associated with the vector bundle OC ⊕ f ∗CL. The pull-backs Ci =

g−1(Ci ), i = 0, 1 are sections of π ′. By the projection formula, we have (C ′2i )= 0. Let σ : C→ X be
the section with σ(C)= C0. Since π ◦ f ◦ σ = fC , we get a section s : C→ Y of π ′.

C

s

��

σ

��

id

��

X

f
��

Y

π ′

��

g
// X

π

��

C
fC

// C

Note that g(s(C))= f (C0) 6=C0,C1. Thus s(C), C ′0 and C ′1 are distinct sections of π ′. Moreover, by the
projection formula, we have (s(C)·C ′0)= 0. Thus we have three sections which are numerically equivalent
to each other. Then Lemma 5.11 implies f ∗CL∼=OC and Y ∼= P1

×C . Since f ∗C : Pic0 C→ Pic0 C is an
isogeny, the kernel of f ∗C is finite and thus L is a torsion element of Pic C . �

Lemma 6.7. (1) Suppose that

• L is nontorsion in Pic C ,
• f (C0)= C0 or C1, and
• f (C1)= C0 or C1.

Then f (C0)= C0 and f (C1)= C1, or f (C0)= C1 and f (C1)= C0.

(2) If the equalities f (C0)= C0 and f (C1)= C1 hold, then f ∗Ci ∼Q bCi for i = 0 and 1.

Proof. (1) Assume that f (C0)=C0 and f (C1)=C0. Then f∗C0= aC0 and f∗C1= aC0 as cycles. Since
f ∗C : Pic0 C→ Pic0 C is surjective, there exists a degree zero divisor M on C such that f ∗COC(M)∼= L.
Then C1 ∼ C0−π

∗ f ∗C M . Hence

aC0 = f∗C1 ∼ ( f∗C0− f∗π∗ f ∗C M)= (aC0− f∗π∗ f ∗C M)

and

0∼ f∗π∗ f ∗C M ∼ f∗ f ∗π∗M ∼ (deg f )π∗M.

Thus π∗M is torsion and so is M . This implies that L is torsion, which contradicts the assumption.
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The same argument shows that the case when f (C0)= C1 and f (C1)= C1 does not occur.

(2) In this case, we have f∗C0 ∼ aC0. We can write f ∗C0 ∼ bC0+π
∗D for some degree zero divisor D

on C . Thus

(deg f )C0 ∼ f∗ f ∗C0 ∼ abC0+ f∗π∗D = (deg f )C0+ f∗π∗D

and f∗π∗D ∼ 0. Since f ∗C : Pic0 C → Pic0 C is surjective, there exists a degree zero divisor D′ on C
such that f ∗C D′ ∼ D. Then

0∼ f∗π∗D ∼ f∗π∗ f ∗C D′ ∼ f∗ f ∗π∗D′ ∼ (deg f )π∗D′.

Hence π∗D′ ∼Q 0 and D′ ∼Q 0. Therefore D ∼Q 0 and f ∗C0 ∼Q bC0.
Similarly, we have f ∗C1 ∼Q bC1. �

Lemma 6.8. Suppose a < b. If f ∗Ci ∼Q bCi for i = 0, 1, the line bundle L is a torsion element of Pic C.

Proof. Let L be a divisor on C such that OC(L)∼= L. Note that C1 ∼ C0−π
∗L . Thus

f ∗π∗L ∼ f ∗(C0−C1)∼Q bC0− bC1 ∼ bπ∗L

and f ∗C L ∼Q bL hold.
Thus, from the following lemma, L is a torsion element. �

Lemma 6.9. Let a and b be integers such that 1≤ a < b. Let C be a curve of genus one defined over an
algebraically closed field k. Let fC : C→ C be an endomorphism of deg fC = a. If L is a divisor on C of
degree 0 satisfying

f ∗C L ∼Q bL ,

the divisor L is a torsion element of Pic0(C)

Proof. By the definition of Q-linear equivalence, we have f ∗Cr L ∼ br L for some positive integer r . Since
the curve C is of genus one, the group Pic0(C) is an elliptic curve. Assume the (group) endomorphism

f ∗C − [b] : Pic0(C)→ Pic0(C)

is the 0 map. Then we have the equalities a = deg fC = deg f ∗C = deg[b] = b2. But this contradicts to
the inequality 1≤ a < b. Hence the map f ∗C − [b] is an isogeny, and Ker( f ∗C − [b])⊂ Pic0(C) is a finite
group scheme. In particular, the order of r L ∈Ker( f ∗C −[b])(k) is finite. Thus, L is a torsion element. �

Remark 6.10. We can actually prove the following. Let X be a smooth projective variety over Q and
f : X → X be a surjective morphism over Q with first dynamical degree δ. If an R-divisor D on X
satisfies

f ∗D ∼R λD

for some λ > δ, then one has D ∼R 0.
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Sketch of the proof. Consider the canonical height

ĥD(P)= lim
n→∞

hD( f n(P))/λn

where hD is a height associated with D [Call and Silverman 1993]. If ĥD(P) 6= 0 for some P , then we can
prove α f (P)≥λ. This contradicts the fact δ≥α f (P) and the assumption λ>δ. Thus one has ĥD = 0 and
therefore hD = ĥD+O(1)= O(1). By a theorem of Serre, we get D∼R 0 [Serre 1997, 2.9, Theorem]. �

Proposition 6.11. Let L be an invertible sheaf of degree zero on a genus one curve C and X =P(OC⊕L).
For any noninvertible endomorphism f : X→ X , Conjecture 1.1 holds.

Proof. By Lemmas 6.5 and 6.9 we may assume a ≥ b. In this case, δ f = a and Conjecture 1.1 can be
proved as in the proof of Theorem 6.1. �

Proof of Theorem 1.3 for P1-bundles over genus one curves. As we argued at the first of Section 4, we
may assume that the endomorphism f : X→ X is not an automorphism. Then the assertion follows from
Propositions 6.4 and 6.11. �

Remark 6.12. In the above setting, the line bundle L is actually an eigenvector for f ∗C up to linear
equivalence. More precisely, for a P1-bundle π : X = P(OC ⊕L)→ C over a curve C with degL= 0
and an endomorphism f : X→ X that induces an endomorphism fC : C→ C , there exists an integer t
such that f ∗CL∼=Lt . Indeed, let C0 and C1 be the sections defined above. Since ( f ∗(C0) ·C0)= 0, we can
write OX ( f −1(C0))∼=OX (mC0)⊗π

∗N for some integer m and degree zero line bundle N on C . Since

0 6= H 0(OX ( f −1(C0)))= H 0(OX (mC0)⊗π
∗N )= H 0(Symm(OC ⊕L)⊗N )=

m⊕
i=0

H 0(Li
⊗N ),

we have N ∼= Lr for some −m ≤ r ≤ 0. Thus f ∗OX (C0) ∼= OX (mC0)⊗π
∗Lr . The key is the

calculation of global sections using projection formula. Since OX (C1) ∼= OX (C0)⊗π
∗L−1, we have

π∗OX (mC1) ∼= π∗OX (mC0)⊗L−m . Moreover, since C0 and C1 are numerically equivalent, we can
similarly get f ∗OX (C1) ∼= OX (mC0)⊗π

∗Ls for some integer s. Thus, f ∗π∗L ∼= π∗Lr−s . Therefore,
π∗ f ∗CL∼= π

∗Lr−s . Since π∗ : Pic C→ Pic X is injective, we get f ∗CL∼= Lr−s .

P1-bundles over curves of genus ≥ 2. By the following proposition, Conjecture 1.1 trivially holds in
this case.

Proposition 6.13. Let C be a curve with g(C)≥ 2 and π : X→C be a P1-bundle over C. Let f : X→ X
be a surjective endomorphism. Then there exists an integer t > 0 such that f t is a morphism over C , that
is, f t satisfies π ◦ f t

= π . In particular, f admits no Zariski dense orbit.

Proof. By Lemma 5.4, we may assume that f induces a surjective endomorphism fC : C → C with
π ◦ f = fC ◦ π . Since C is of general type, fC is an automorphism of finite order and the assertion
follows. �

Remark 6.14. One can also show that any surjective endomorphism over a curve of genus at least two
admits no dense orbit by using the Mordell conjecture (Faltings’s theorem).
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7. Hyperelliptic surfaces

Theorem 7.1. Let X be a hyperelliptic surface and f : X → X a noninvertible endomorphism on X.
Then Conjecture 1.1 holds for f .

Proof. Let π : X→ E be the Albanese map of X . By the universality of π , there is a morphism g : E→ E
satisfying π ◦ f = g ◦π . It is well-known that E is a genus one curve, π is a surjective morphism with
connected fibers, and there is an étale cover φ : E ′→ E such that X ′ = X ×E E ′ ∼= F × E ′, where F is
a genus one curve [Bădescu 2001, Chapter 10]. In particular, X ′ is an abelian surface. By Lemma 6.3,
taking a further étale base change, we may assume that there is an endomorphism h : E ′→ E ′ such that
φ ◦ h = g ◦φ. Let π ′ : X ′→ E ′ and ψ : X ′→ X be the induced morphisms. Then, by the universality of
fiber products, there is a morphism f ′ : X ′→ X ′ satisfying π ′ ◦ f ′ = π ′ ◦h and ψ ◦ f ′ = f ◦ψ . Applying
Lemma 3.2, it is enough to prove Conjecture 1.1 for the endomorphism f ′. Since X ′ is an abelian variety,
this holds by [Kawaguchi and Silverman 2016a, Corollary 31] and [Silverman 2017, Theorem 2]. �

8. Surfaces with κ(X)= 1

Let f : X→ X be a noninvertible endomorphism on a surface X with κ(X)= 1. In this section we shall
prove that f does not admit any Zariski dense forward f -orbit. Although this result is a special case of
[Nakayama and Zhang 2009, Theorem A] (see Remark 1.2), we will give a simpler proof of it.

By Lemma 4.2, X is minimal and f is étale. Since deg( f )≥ 2, we have χ(X,OX )= 0.
Let φ = φ|mK X | : X→ PN

= PH 0(X,mK X ) be the Iitaka fibration of X and set C0 = φ(X). Since f
is étale, it induces an automorphism g : PN

→PN such that φ ◦ f = g ◦φ [Fujimoto and Nakayama 2008,
Lemma 3.1]. The restriction of g to C0 gives an automorphism fC0 : C0→ C0 such that φ ◦ f = fC0 ◦φ.
Take the normalization ν : C→C0 of C0. Then φ factors as X π

−→C ν
−→C0 and π is an elliptic fibration.

Moreover, fC0 lifts to an automorphism fC : C→ C such that π ◦ f = fC ◦π .
So we obtain an elliptic fibration π : X→ C and an automorphism fC on C such that π ◦ f = fC ◦π .

In this situation, the following holds.

Theorem 8.1. Let X be a surface with κ(X) = 1, π : X → C an elliptic fibration, f : X → X a
noninvertible endomorphism, and fC : C→C an automorphism such that π ◦ f = fC ◦π . Then f t

C = idC

for a positive integer t .

Proof. Let {P1, . . . , Pr } be the points over which the fibers of π are multiple fibers (possibly r = 0, i.e.,
π does not have any multiple fibers). We denote by mi denotes the multiplicity of the fiber π∗Pi for
every i . Then we have the canonical bundle formula:

K X = π
∗(KC + L)+

r∑
i=1

mi − 1
mi

π∗Pi ,

where L is a divisor on C such that deg(L) = χ(X,OX ). Then deg(L) = 0 because f is étale and
deg( f ) ≥ 2 (see Lemma 4.2). Since κ(X) = 1, the divisor KC + L +

∑r
i=1(mi − 1)/mi Pi must have
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positive degree. So we have

2(g(C)− 1)+
r∑

i=1

mi − 1
mi

> 0. (∗∗)

For any i , set Qi = f −1
C (Pi ). Then π∗Qi = π

∗ f ∗C Pi = f ∗π∗Pi is a multiple fiber. So ( fC)|{P1,...,Pr } is
a permutation of {P1, . . . , Pr } since fC is an automorphism.

We divide the proof into three cases according to the genus g(C) of C :
(1) g(C)≥ 2; then the automorphism group of C is finite. So f t

C = idC for a positive integer t .
(2) g(C)= 1; by (∗∗), it follows that r ≥ 1. For a suitable t , all Pi are fixed points of f t

C . We put the
algebraic group structure on C such that P1 is the identity element. Then f t

C is a group automorphism on
C . So f ts

C = idC for a suitable s since the group of group automorphisms on C is finite.
(3) g(C)= 0; again by (∗∗), it follows that r ≥ 3. For a suitable t , all Pi are fixed points of f t

C . Then
f t
C fixes at least three points, which implies that f t

C is in fact the identity map. �

Immediately we obtain the following corollary.

Corollary 8.2. Let f : X → X be a noninvertible endomorphism on a surface X with κ(X) = 1. Then
there does not exist any Zariski dense f -orbit.

Therefore Conjecture 1.1 trivially holds for noninvertible endomorphisms on surfaces of Kodaira
dimension 1.

9. Existence of a rational point P satisfying α f (P)= δ f

In this section, we prove Theorems 1.6 and 1.7. Theorem 1.6 follows from the following lemma. A subset
6 ⊂ V (k) is called a set of bounded height if for some (or, equivalently, any) ample divisor A on V , the
height function h A associated with A is a bounded function on 6.

Lemma 9.1. Let X be a smooth projective variety and f : X → X a surjective endomorphism with
δ f > 1. Let D 6≡ 0 be a nef R-divisor such that f ∗D ≡ δ f D. Let V ⊂ X be a closed subvariety of
positive dimension such that (Ddim V

· V ) > 0. Then there exists a nonempty open subset U ⊂ V and a set
6 ⊂U (k) of bounded height such that for every P ∈U (k) \6 we have α f (P)= δ f .

Remark 9.2. By a Perron–Frobenius type result of [Birkhoff 1967, Theorem], there is a nef R-divisor
D 6≡ 0 satisfying the condition f ∗D ≡ δ f D since f ∗ preserves the nef cone.

Proof. Fix a height function hD associated with D. For every P ∈ X (k), the following limit exists
[Kawaguchi and Silverman 2016b, Theorem 5]:

ĥ(P)= lim
n→∞

hD( f n(P))
δn

f
.
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The function ĥ has the following properties [Kawaguchi and Silverman 2016b, Theorem 5]:

(i) ĥ = hD + O(
√

hH ) where H is any ample divisor on X and hH ≥ 1 is a height function associated
with H .

(ii) If ĥ(P) > 0, then α f (P)= δ f .

Since (Ddim V
· V ) > 0, we have (D|V dim V ) > 0 and D|V is big. Thus we can write D|V ∼R A+ E

with an ample R-divisor A and an effective R-divisor E on V . Therefore we have

ĥ|V (k) = h A+ hE + O(
√

h A)

where h A and hE are height functions associated with A and E and h A is taken to be h A ≥ 1. In particular,
there exists a positive real number B> 0 such that h A+hE− ĥ|V (k)≤ B

√
h A. Then we have the following

inclusions:
{P ∈ V (k) | ĥ(P)≤ 0} ⊂ {P ∈ V (k) | h A(P)+ hE(P)≤ B

√
h A(P)}

⊂ Supp E ∪ {P ∈ V (k) | h A(P)≤ B
√

h A(P)}

= Supp E ∪ {P ∈ V (k) | h A(P)≤ B2
}.

Hence we can take U = V \Supp E and 6 = {P ∈U (k) | ĥ(P)≤ 0}. �

Corollary 9.3. Let X be a smooth projective variety of dimension N and f : X → X a surjective
endomorphism. Let C be a irreducible curve which is a complete intersection of ample effective divisors
H1, . . . , HN−1 on X. Then for infinitely many points P on C , we have α f (P)= δ f .

Proof. We may assume δ f > 1. Let D be as in Lemma 9.1. Then (D · C) = (D · H1 · · · HN−1) > 0
[Kawaguchi and Silverman 2016b, Lemma 20]. Since C(k) is not a set of bounded height, the assertion
follows from Lemma 9.1. �

To prove Theorem 1.7, we need the following theorem which is a corollary of the dynamical Mordell–
Lang conjecture for étale finite morphisms.

Theorem 9.4 (Bell, Ghioca and Tucker [2010, Corollary 1.4]). Let f : X→ X be an étale finite morphism
of smooth projective variety X. Let P ∈ X (k). If the orbit O f (P) is Zariski dense in X , then any proper
closed subvariety of X intersects O f (P) in at most finitely many points.

Proof of Theorem 1.7. We may assume dim X ≥ 2. Since we are working over k, we can write the set of
all proper subvarieties of X as

{Vi ( X | i = 0, 1, 2, . . .}.

By Corollary 9.3, we can take a point P0 ∈ X \ V0 such that α f (P) = δ f . Assume we can construct
P0, . . . , Pn satisfying the following conditions:

(1) α f (Pi )= δ f for i = 0, . . . , n.

(2) O f (Pi )∩O f (Pj )=∅ for i 6= j .

(3) Pi /∈ Vi for i = 0, . . . , n.
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Now, take a complete intersection curve C ⊂ X satisfying the following conditions:

• For i = 0, . . . , n, C 6⊂O f (Pi ) if O f (Pi ) 6= X .

• For i = 0, . . . , n, C 6⊂O f −1(Pi ) if O f −1(Pi ) 6= X .

• C 6⊂ Vn+1.

By Theorem 9.4, if O f ±(Pi ) is Zariski dense in X , then O f ±(Pi )∩C is a finite set. By Corollary 9.3,
there exists a point

Pn+1 ∈ C \
( ⋃

0≤i≤n

O f (Pi )∪
⋃

0≤i≤n

O f −1(Pi )∪ Vn+1

)
such that α f (Pn+1) = δ f . Then P0, . . . , Pn+1 satisfy the same conditions. Therefore we get a subset
S = {Pi | i = 0, 1, 2, . . .} of X which satisfies the desired conditions. �
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