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Big Cohen–Macaulay algebras and the vanishing
conjecture for maps of Tor in mixed characteristic

Raymond Heitmann and Linquan Ma

We prove a version of weakly functorial big Cohen–Macaulay algebras that suffices to establish Hochster
and Huneke’s vanishing conjecture for maps of Tor in mixed characteristic. As a corollary, we prove an
analog of Boutot’s theorem that direct summands of regular rings are pseudorational in mixed characteristic.
Our proof uses perfectoid spaces and is inspired by the recent breakthroughs on the direct summand
conjecture by André and Bhatt.

1. Introduction and preliminaries

In a recent breakthrough, Y. André [2018a] settled Hochster’s direct summand conjecture which dates
back to 1969.

Theorem 1.1 (André). Let A→ R be a finite extension of Noetherian rings. If A is regular, then the map
is split as a map of A-modules.

This was previously only known for rings containing a field [Hochster 1975b] and for rings of dimension
less than or equal to three [Heitmann 2002]; what is new and striking is the general mixed characteristic
case. A simplified and shorter proof of Theorem 1.1 was later found by Bhatt [2018]. But André’s
argument [2018a] also proved the stronger conjecture that balanced big Cohen–Macaulay algebras exist in
mixed characteristic.1 Recall that B is called a balanced big Cohen–Macaulay algebra for the local ring
(R,m) if mB 6= B and every system of parameters for R is a regular sequence on B. It is a conjecture of
Hochster [1975a; 1975b] that such algebras exist in general and he proved this for rings that contain a
field. André’s solution in mixed characteristic depends on his deep result in [André 2018b] that gives a
generalization of the almost purity theorem: the perfectoid Abhyankar lemma.

The purpose of this paper is to prove that weakly functorial balanced big Cohen–Macaulay algebras exist
for certain surjective ring homomorphisms in mixed characteristic, a result that has many applications.

MSC2010: primary 13D22; secondary 13H05.
Keywords: big Cohen–Macaulay algebras, direct summand conjecture, perfectoid space, vanishing conjecture for maps of Tor,

pseudorational singularities.
1André [2018a, Théorème 0.7.1] stated the existence of big Cohen–Macaulay algebras for complete local domains, but the

general case follows by killing a minimal prime and taking the completion.
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Theorem 3.1. Let (R,m, k) be a complete local domain with k algebraically closed, and let Q ⊆ R
be a height one prime ideal. Suppose both R and R/Q have mixed characteristic. Then there exists a
commutative diagram:

R //

��

R/Q

��

B // C

where B, C are balanced big Cohen–Macaulay algebras for R and R/Q respectively.

Our method of proving avoids the perfectoid Abhyankar lemma in [André 2018b] and thus is much
shorter than André’s argument. More importantly, the weakly functorial property we prove is new.2 We
should note that, in equal characteristic, the existence of weakly functorial balanced big Cohen–Macaulay
algebras was known in general [Hochster and Huneke 1995]. Nonetheless, the version we prove is strong
enough to settle Hochster and Huneke’s [1995] vanishing conjecture for maps of Tor in mixed characteristic.

Theorem 4.1. Let A→ R→ S be maps of Noetherian rings such that A→ S is a local homomorphism
of mixed characteristic regular local rings and R is a module-finite torsion-free extension of A. Then for
all A-modules M, the map TorA

i (M, R)→ TorA
i (M, S) vanishes for all i ≥ 1.

As a consequence of Theorem 4.1, we prove the following, which is the mixed characteristic analog of
Boutot’s theorem [1987].3

Corollary 4.3. If R → S is a ring extension such that S is regular and the map is split as a map of
R-modules, then R is pseudorational (in particular Cohen–Macaulay).

It is well known that Theorem 4.1 implies Theorem 1.1 (for example, see [Ranganathan 2000] or
[Ma 2018, Remark 4.6]). Recently, Bhatt [2018] gave an alternative and shorter proof of Theorem 1.1:
instead of using the perfectoid Abhyankar lemma, Bhatt established a quantitative form of Scholze’s
Hebbarkeitssatz (the Riemann extension theorem) for perfectoid spaces, and the same idea leads to a proof
of a derived variant, i.e., the derived direct summand conjecture. We point out that Theorem 4.1 formally
implies such derived variant by [Ma 2018, Remark 5.12] and hence we recover, and in fact generalize,
Bhatt’s result (see Remark 4.5). Furthermore, although the idea is inspired by [Bhatt 2018], our argument
is independent of that work in exposition. We avoid the use of Scholze’s Hebbarkeitssatz and the vanishing
theorems of perfectoid spaces; instead we study the colon ideals of A∞〈pn/g〉 in Lemma 3.4.

Remark 1.2. We should point out that, to the best of our knowledge, Hochster and Huneke’s vanishing con-
jecture for maps of Tor is still open if A and R have mixed characteristic but S has equal characteristic p>0.
This case also implies Theorem 1.1 by [Hochster and Huneke 1995, (4.4)]. However, the discussion above
shows that the mixed characteristic case we proved (i.e., Theorem 4.1) is enough for almost all applications.

2In fact, our version of the existence of weakly functorial big Cohen–Macaulay algebras does not even seem to follow from
the perfectoid Abhyankar lemma [André 2018b].

3This corollary can be also proved by combining [André 2018a, Remarque 4.2.1] and [Bhatt 2018, Theorem 1.2] (and an
extra small argument), see Remark 4.4. However, to the best of our knowledge, the results of [André 2018a; 2018b; Bhatt 2018]
are not enough to establish Theorem 4.1.
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This paper is organized as follows. In Section 2 we demonstrate a weakly functorial construction of
integral perfectoid algebras in Lemma 2.3. Then, in Section 3, we prove Theorem 3.1, and in Section 4,
we prove Theorem 4.1 and Corollary 4.3.

Perfectoid algebras. We will freely use the language of perfectoid spaces [Scholze 2012] and almost
mathematics [Gabber and Ramero 2003]. In this paper we will always work in the following situation:
for a perfect field k of characteristic p > 0, we let W (k) be the ring of Witt vectors with coefficients in k.
Let K ◦ be the p-adic completion of W (k)[p1/p∞

] and K = K ◦[1/p]. Then K is a perfectoid field in the
sense of [Scholze 2012] with K ◦ ⊆ K its ring of integers.

A perfectoid K -algebra is a Banach K -algebra R such that the set of power-bounded elements R◦ ⊆ R
is bounded and the Frobenius is surjective on R◦/p. A K ◦-algebra S is called integral perfectoid if
it is p-adically complete, p-torsion free, satisfies S = S∗4 and the Frobenius induces an isomorphism
S/p1/p

→ S/p. These two categories are equivalent to each other [Scholze 2012, Theorem 5.2] via the
functors R→ R◦ and S→ S[1/p].

Unless otherwise stated, almost mathematics in this paper will always be measured with respect to the
ideal (p1/p∞) in K ◦.

Partial algebra modifications. We briefly recall Hochster’s partial algebra modifications that play a
crucial rule in the construction of balanced big Cohen–Macaulay algebras. Our definition and usage of
these modifications is basically the same as that in [Hochster 2002, Sections 3 and 4].

Let (R,m) be a local ring and let M be an R-module. We define a partial algebra modification of M
with respect to a system of parameters x1, . . . , xd of R to be a map M→ M ′ obtained as follows: for
some integer s ≥ 0 and relation xs+1us+1=

∑s
j=1 x j u j , where u j ∈ M, choose indeterminates X1, . . . , Xs

and an integer N ≥ 1, let F = us+1−
∑s

j=1 x j X j and let

M ′ = M[X1, . . . , Xs]≤N/F · R[X1, . . . , Xs]≤N−1,

where M[X1, . . . , Xs]=M⊗R R[X1, . . . , Xs] and thus M[X1, . . . , Xs]≤N refers to polynomials of degree
at most N (with coefficients in M). The definition of M ′ makes sense since F has degree one in X j . It is
readily seen that in M ′, the relation xs+1us+1=

∑s
j=1 x j u j is trivialized in the sense that us+1 is contained

in (x1, . . . , xs)M ′ by construction. We shall refer to the integer N as the degree bound of the partial algebra
modification. We can then recursively define a sequence of partial algebra modifications of an R-module M.

Now given a local map of local rings (R,m)→ (S, n) we can define a double sequence of partial
algebra modifications of an R-module M with respect to R→ S, a system of parameters x1,...,xd of R and
a system of parameters y1,...,yd ′ of S as follows: we first form a sequence of partial algebra modifications
of M over R with respect to x1,...,xd , say M = M0,M1,...,Mr , and then we form a sequence of partial
algebra modifications N0 = S⊗R Mr ,N1,...,Ns of N0 over S with respect to y1,...,yd ′ . When M is an
R-algebra, we call this double sequence bad if the image of 1 ∈ M in Ns is in nNs .

4S∗ = {x ∈ S[1/p] | p1/pk
· x ∈ S for all k}. Hence S is almost isomorphic to S∗ with respect to (p1/p∞); thus in practice

we will often ignore this distinction since one can always pass to S∗ without affecting the issue.
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The following was essentially taken from [Hochster 2002, Theorem 4.2], and is one of the main
ingredients in our construction.

Theorem 1.3. Let (R,m)→ (S, n) be a local homomorphism of local rings. Then there exists a commu-
tative diagram

R //

��

S

��

B // C

such that B is a balanced big Cohen–Macaulay algebra for R and C is a balanced big Cohen–Macaulay
algebra for S if and only if there is no bad double sequence of partial algebra modifications of R over
R→ S with respect to x1, . . . , xd of R and y1, . . . , yd ′ of S.

This theorem is actually a bit stronger than [Hochster 2002, Theorem 4.2]. Whereas Hochster allows
the system of parameters to vary throughout the double sequence, we fix a system of parameters of R
and S. But the idea of the proof is the same: one first constructs B ′ as a direct limit of finite sequences of
modifications of R and then constructs C ′ as a direct limit of finite sequences of modifications of S⊗R B
over S. It is readily seen that x1, . . . , xd and y1, . . . , yd ′ are improper-regular sequences on B ′ and C ′

respectively. To guarantee that mB ′ 6= B ′ and nC ′ 6= C ′ one needs precisely that there is no bad double
sequence of partial algebra modifications over R→ S. Now B ′ and C ′ are not balanced, but that problem
is easily remedied. We invoke [Bruns and Herzog 1993, Corollary 8.5.3] to note that B ′→ C ′ induces
B = B̂ ′m→ C = Ĉ ′n, a map of balanced big Cohen–Macaulay algebras of R→ S.

2. Weakly functorial construction of integral perfectoid algebras

Notation. Throughout this section, (A,m, k) will always be a complete and unramified regular local ring
of mixed characteristic with k perfect, i.e., A ∼= W (k)[[x1, . . . , xd−1]], where W (k) is the ring of Witt
vectors with coefficients in k. Let K ◦ be the p-adic completion of W (k)[p1/p∞

] and K = K ◦[1/p]. Let
A∞,0 be the p-adic completion of A[p1/p∞, x1/p∞

1 , . . . , x1/p∞

d−1 ], which is an integral perfectoid K ◦-algebra.

For any nonzero element g ∈ A, we let A∞,0→ A∞ be André’s construction of integral perfectoid K ◦-
algebras (for example see [Bhatt 2018, Theorem 2.3]): A∞ is almost faithfully flat over A∞,0 modulo p
such that g admits a compatible system of pk-th roots in A∞. We will denote by A∞〈pn/g〉 the integral
perfectoid K ◦-algebra which is the ring of bounded functions on the rational subset {x ∈ X | |pn

| ≤ |g(x)|},
where X = Spa(A∞[1/p], A∞) is the perfectoid space associated to A∞. Since g admits a compatible
system of pk-th roots in A∞, A∞〈pn/g〉 can be described almost explicitly as the p-adic completion of
A∞[(pn/g)1/p∞

] [Scholze 2012, Lemma 6.4].
We begin by observing the following:

Lemma 2.1. Suppose g 6= 0 in A/x1 A. Then we have a natural map A∞→ (A/x1 A)∞ sending g1/pk

to g1/pk
.
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Proof. We first note that there are natural maps

A∞,0→ (A/x1 A)∞,0→ (A/x1 A)∞,

where the first map is simply obtained by killing x1/p∞

1 . Thus we have a map

A∞,0〈T 1/p∞
〉 → (A/x1 A)∞

of integral perfectoid K ◦-algebras sending T 1/pk
to g1/pk

. Since A∞ is the ring of functions on
the Zariski closed subset of Y = Spa(A∞,0〈T 1/p∞

〉[1/p], A∞,0〈T 1/p∞
〉) defined by T − g, the map

A∞,0〈T 1/p∞
〉 → (A/x1 A)∞ induces a map A∞→ (A/x1 A)∞ sending g1/pk

to g1/pk
. �

Lemma 2.2. Let (R,m, k) be a complete normal local domain with k perfect, and let Q ⊆ R be a height
one prime ideal. Suppose both R and R/Q have mixed characteristic. Then we can find a complete and
unramified regular local ring A ∼=W (k)[[x1, . . . , xd−1]] with A→ R a module-finite extension such that

(1) Q ∩ A = (x1);

(2) A(x1)→ RQ is essentially étale.

Proof. Let {Pi } be all the minimal primes of (p); they all have height one. Since R/Q has mixed
characteristic, p /∈ Q. Thus Q is not contained in any of the Pi . By prime avoidance we can choose x ∈ Q
that is not in

(⋃
i Pi

)
∪ Q(2). Thus the image of x in RQ generates Q RQ since R is normal, and p, x is

part of a system of parameters of R.
Cohen’s structure theorem implies the existence of a complete and unramified regular local ring

A ∼=W (k)[[x1, . . . , xd−1]] and a module-finite extension A→ R such that the image of x1 in R is x . It is
clear that Q ∩ A = (x1) because Q ∩ A is a height one prime of A that contains (x1), so it must be (x1).
To see A(x1)→ RQ is essentially étale, note that the image of x1, x , generates the maximal ideal Q RQ

of RQ and the extension of residue fields A(x1)/(x1)A(x1)→ RQ/Q RQ is finite separable since both fields
have characteristic 0 (p is inverted when we localize). Thus A(x1)→ RQ is unramified. But it is clearly
flat because RQ is x1-torsion free. Therefore A(x1)→ RQ is essentially étale. �

The following is the main result of this section. It is crucial in proving the version of weakly functorial
balanced big Cohen–Macaulay algebras that we need.

Lemma 2.3. Let (R,m, k) be a complete normal local domain with k perfect, and let Q ⊆ R be a height
one prime ideal. Suppose both R and R/Q have mixed characteristic. We pick A ∼=W (k)[[x1, . . . , xd−1]]

such that A→ R is a module-finite extension satisfying the conclusion of Lemma 2.2. Then there exists
an element g ∈ A, whose image is nonzero in A/x1 A, such that Ag→ Rg and (A/x1 A)g→ (R/Q)g are
both finite étale. Furthermore, for every n > 0, we have a commutative diagram:

R //

��

R/Q

��

R∞,n // (R/Q)∞,n



1664 Raymond Heitmann and Linquan Ma

where R∞,n (resp. (R/Q)∞,n) is an integral perfectoid K ◦-algebra that is almost finite étale over
A∞〈pn/g〉 (resp. (A/x1 A)∞〈pn/g〉).

Proof. Let g ∈ A be the discriminant of the map A → R; i.e., it defines the locus of Spec A such
that the map A→ R is not essentially étale when localizing. Since A(x1)→ RQ is essentially étale, g
is nonzero in A/x1 A. Since x1 generates Q when localizing at Q and we know that Ag → Rg and
hence (A/x1 A)g → (R/x1 R)g are finite étale, replacing g by a multiple we have Ag → Rg and
(A/x1 A)g→ (R/Q)g are both finite étale. By Lemma 2.2 we have a commutative diagram:

A //

��

R

��

A/x1 A // R/Q.

By Lemma 2.1 we also have a commutative diagram:

A //

��

A∞ //

��

A∞
〈 pn

g

〉
��

A/x1 A // (A/x1 A)∞ // (A/x1 A)∞
〈 pn

g

〉
.

Tensoring over A we get a natural commutative diagram:

R //

��

R⊗ A∞
〈 pn

g

〉
��

R/Q // (R/Q)⊗ (A/x1 A)∞
〈 pn

g

〉
.

Since Ag → Rg and (A/x1 A)g → (R/Q)g are both finite étale and g divides pn in A∞〈pn/g〉 and
(A/x1 A)∞〈pn/g〉, we know that (R ⊗ A∞〈pn/g〉)[1/p] and ((R/Q) ⊗ (A/x1 A)∞〈pn/g〉)[1/p] are
finite étale over (A∞〈pn/g〉)[1/p] and ((A/x1 A)∞〈pn/g〉)[1/p] respectively. Therefore(

R⊗ A∞
〈 pn

g

〉)[ 1
p

]
→

(
(R/Q)⊗ (A/x1 A)∞

〈 pn

g

〉)[ 1
p

]
is a morphism of perfectoid K -algebras; thus it induces a map on the ring of power-bounded elements

R∞,n :=
(

R⊗ A∞
〈 pn

g

〉)[ 1
p

]◦
→

(
R/Q)∞,n := ((R/Q)⊗ (A/x1 A)∞

〈 pn

g

〉)[ 1
p

]◦
.

The almost purity theorem [Scholze 2012, Theorem 7.9] implies that R∞,n and (R/Q)∞,n are integral
perfectoid K ◦-algebras that are almost finite étale over A∞〈pn/g〉 and (A/x1 A)∞〈pn/g〉 respectively.
Therefore we have the desired commutative diagram:

R //

��

R/Q

��

R∞,n // (R/Q)∞,n

�
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3. The main result

In this section we continue to use the notation from the beginning of Section 2. The main theorem we
want to prove is the following:

Theorem 3.1. Let (R,m, k) be a complete local domain with k algebraically closed, and let Q ⊆ R
be a height one prime ideal. Suppose both R and R/Q have mixed characteristic. Then there exists a
commutative diagram:

R //

��

R/Q

��

B // C

where B, C are balanced big Cohen–Macaulay algebras for R and R/Q respectively.

To prove this we need several lemmas.

Lemma 3.2. Let A∼=W (k)[[x1, . . . , xd−1]] be a complete and unramified regular local ring with k perfect,
and let I = (p, y1, . . . , ys) be an ideal of A that contains p. Fix a nonzero element g = pm g0 ∈ A, where
p - g0, and consider the extension A→ A∞→ A∞〈pn/g〉. Suppose z ∈ I A∞〈pn/g〉 ∩ A∞ for some
n > pa

+m (one should think that n� pa
� 0 here). Then we have (pg)1/pa

z ∈ I A∞.

Proof. Using the almost explicit description of A∞〈pn/g〉 [Scholze 2012, Lemma 6.4], we have

p1/pt
z ∈ I

̂
A∞

[( pn

g

)1/p∞]
for some t > a. This implies that the image of p1/pt

z in A∞[(pn/g)1/p∞
]/p = ̂A∞[(pn/g)1/p∞]/p is

contained in the ideal (y1, . . . , ys). Therefore we can write

p1/pt
z = p f0+ y1 f1+ · · ·+ ys fs,

where f0, f1, . . . , fs ∈ A∞[(pn/g)1/p∞
]. Then there exists integers k and h such that f0, f1, . . . , fs are

elements in A∞[(pn/g)1/pk
] of degree bounded by pkh. Multiplying by gh

0 to clear all the denominators
in fi , one gets:

p1/pt
gh

0 z ∈ (gh−(1/pa)

0 , p(n−m)/pa
) · (p, y1, . . . , ys)A∞.

From this we know:

p1/pt
gh

0 z = gh−(1/pa)

0 (ph0+ y1h1+ · · ·+ yshs) in A∞/p(n−m)/pa
,

where h0, h1, . . . , hs ∈ A∞. Rewriting this we have

gh−(1/pa)

0 (p1/pt
g1/pa

0 z− ph0− y1h1− · · ·− yshs)= 0 in A∞/p(n−m)/pa
.

Since p - g0, g0 is a nonzero divisor on A/p. This implies gh−(1/pa)

0 is an almost nonzero divisor on
A∞/p(n−m)/pa

since A→ A∞,0 is faithfully flat and A∞,0 → A∞ is almost faithfully flat modulo p.
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Hence p1/pt
g1/pa

0 z− ph0− y1h1− · · ·− yshs is killed by (p1/p∞). In particular, since t > a, we know

(pg0)
1/pa

z ∈ (p, y1, . . . , ys) in A∞/p(n−m)/pa
.

Finally, since n > pa
+m and g is a multiple of g0, we have

(pg)1/pa
z ∈ (p, y1, . . . , ys)A∞.

This finishes the proof. �

Lemma 3.3. Let A∼=W (k)[[x1, . . . , xd−1]] be a complete and unramified regular local ring with k perfect.
Fix a nonzero element g= pm g0∈ A where p - g0 and n>m. Suppose z ∈ A∞[(pn/g)1/p∞

] and pDz ∈ A∞
for some D > 0. Then pDz ∈ pD−(1/pt )A∞ for all t .

Proof. There exist k� 0 such that z ∈ A∞[(pn/g)1/pk
]. Choosing a high enough power of g0 to clear

denominators, we get gh
0 z ∈ A∞. So gh

0 (p
Dz) ∈ pD A∞. Since g0 is a nonzerodivisor on A/pD and

A∞/pD is almost faithfully flat over A/pD, p1/pt
pDz ∈ pD A∞ for all t . Since A∞ is p-torsion free,

pDz ∈ pD−(1/pt )A∞ for all t . �

Lemma 3.4. Let A∼=W (k)[[x1, . . . , xd−1]] be a complete and unramified regular local ring with k perfect.
Fix a nonzero element g = pm g0 ∈ A where p - g0, and consider the extension A→ A∞→ A∞〈pn/g〉
for every n. Suppose S is an almost finite projective A∞〈pn/g〉-algebra. If pa

+m < n, then we have
(p1/p∞)(pg)1/pa

annihilates (p, x1, . . . , xs)S : xs+1/(p, x1, . . . , xs)S for all s < d − 1.

Proof. Suppose y ∈ (p, x1, . . . , xs)A∞〈pn/g〉 : xs+1. Since y is an element of A∞〈pn/g〉, for every
t > 0, p1/pt

y ∈ ̂A∞[(pn/g)1/p∞] and xs+1 p1/pt
y ∈ (p, x1, . . . , xs)

̂A∞[(pn/g)1/p∞] by [Scholze 2012,
Lemma 6.4]. Thus modulo p, p1/pt

y gives an element in ̂A∞[(pn/g)1/p∞]/p= A∞[(pn/g)1/p∞
]/p. We

pick z ∈ A∞[(pn/g)1/p∞
] such that z ≡ p1/pt

y modulo p ̂A∞[(pn/g)1/p∞].
Now the image of xs+1z ∈ A∞[(pn/g)1/p∞

] in A∞[(pn/g)1/p∞
]/p= ̂A∞[(pn/g)1/p∞]/p is contained

in the ideal (x1, . . . , xs)(
̂A∞[(pn/g)1/p∞]/p). Therefore, we know

xs+1z ∈ (p, x1, . . . , xs)A∞
[( pn

g

)1/p∞]
and thus

z ∈ (p, x1, . . . , xs)A∞
[( pn

g

)1/p∞]
: xs+1.

Next we write z = u+ (pn/g)1/pa
u′ such that g1/pa

0 u ∈ A∞, u′ ∈ A∞[(pn/g)1/p∞
], and we also write

xs+1z = v+ (pn/g)1/pa
v′ such that g1/pa

0 v ∈ (p, x1, . . . , xs)A∞, v′ ∈ (p, x1, . . . , xs)A∞[(pn/g)1/p∞
].

We consider two expressions of xs+1g1/pa

0 z:

xs+1g1/pa

0 u+ p(n−m)/pa
xs+1u′ = xs+1g1/pa

0 z = g1/pa

0 v+ p(n−m)/pa
v′.

From this we know that

xs+1(g
1/pa

0 u)= g1/pa

0 v+ p(n−m)/pa
(v′− xs+1u′). (3.4.1)
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It follows from (3.4.1) that p(n−m)/pa
(v′− xs+1u′) ∈ A∞ (since the other two terms are in A∞). Thus by

Lemma 3.3, p(n−m)/pa
(v′− xs+1u′) ∈ p A∞ since n > pa

+m. But now (3.4.1) tells us that

xs+1(g
1/pa

0 u) ∈ (p, x1, . . . , xs)A∞+ p A∞ = (p, x1, . . . , xs)A∞.

Since g1/pa

0 u ∈ A∞ and p, x1, . . . , xs+1 is an almost regular sequence on A∞,

(pg0)
1/pa

u ∈ (p, x1, . . . , xs)A∞.

But now

(pg0)
1/pa

z = (pg0)
1/pa

u+ p1/pa
p(n−m)/pa

u′.

Therefore

(pg0)
1/pa

z ∈ (p, x1, . . . , xs)A∞+ p A∞
[( pn

g

)1/p∞]
⊆ (p, x1, . . . , xs)A∞

[( pn

g

)1/p∞]
.

Because z ≡ p1/pt
y modulo p ̂A∞[(pn/g)1/p∞] and g is a multiple of g0, we have

p1/pt
(pg)1/pa

y ∈ (p, x1, . . . , xs)
̂

A∞
[( pn

g

)1/p∞]
⊆ (p, x1, . . . , xs)A∞

〈 pn

g

〉
.

Since this is true for all t > 0, we have (p1/p∞)(pg)1/pa
annihilates

(p, x1, . . . , xs)A∞
〈 pn

g

〉
: xs+1

(p, x1, . . . , xs)A∞
〈 pn

g

〉 .

Finally, since S is an almost finite projective A∞〈pn/g〉-algebra, by [Gabber and Ramero 2003, Lemma
2.4.31],

(p, x1, . . . , xs)S : xs+1

(p, x1, . . . , xs)S
= HomS(S/xs+1, S/(p, x1, . . . , xs))

is almost isomorphic to

S⊗HomA∞〈pn/g〉

(
A∞

〈 pn

g

〉
/xs+1, A∞

〈 pn

g

〉
/(p, x1, . . . , xs)

)
= S⊗

(p, x1, . . . , xs)A∞
〈 pn

g

〉
: xs+1

(p, x1, . . . , xs)A∞
〈 pn

g

〉 .

Therefore (p1/p∞)(pg)1/pa
annihilates (p, x1, . . . , xs)S : xs+1/(p, x1, . . . , xs)S as well. �

We need the following lemma:

Lemma 3.5 [Hochster 2002, Lemma 5.1]. Let M be an R-module and let T be an R-algebra with a map
α : M→ T [1/c]. Let M→ M ′ be a partial algebra modification of M with respect to part of a system of
parameters p, x1, . . . , xs, xs+1 with degree bound D. Suppose xs+1ts+1= pt0+x1t1+· · ·+xs ts with tj ∈T
implies cts+1 ∈ (p, x1, . . . , xs)T and α(M) ⊆ c−N T. Then there is an R-linear map β : M ′→ T [1/c]
extending α with image contained in c−N ′T where N ′ = N D+ N + D depends only on N and D.
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Proof of Theorem 3.1. Let R′ be the normalization of R and let Q′ be a height one prime of R′ that lies
over Q. Note that the residue field of R′ is still k since we assumed k is algebraically closed. If we can
construct weakly functorial big Cohen–Macaulay algebras for R′→ R′/Q′ then the same follows for
R→ R/Q. Thus without loss of generality we can assume (R,m, k) is normal. Let

R //

��

R/Q

��

R∞,n // (R/Q)∞,n

be the commutative diagram constructed in Lemma 2.3. Moreover, abusing notation slightly, suppose
g = pm1 g0 in A and g = pm2 g0 in A/x1 A such that p - g0 and p - g0.

Now R∞,n and (R/Q)∞,n are almost finite étale over A∞〈pn/g〉 and (A/x1 A)∞〈pn/g〉 respectively,
in particular they are almost finite projective over A∞〈pn/g〉 and (A/x1 A)∞〈pn/g〉 respectively (see
[Scholze 2012, Definition 4.3 and Proposition 4.10]). Lemma 3.4 shows that, for every n and pa such that
n> pa

+m1+m2, with c= (pg)2/pa
, if xs+1ts+1= pt0+x1t1+· · ·+xs ts with tj ∈ R∞,n (resp. (R/Q)∞,n),

we have that cts+1 ∈ (p, x1, . . . , xs)R∞,n (resp. (R/Q)∞,n).
By Theorem 1.3, it suffices to show that there is no bad double sequence of partial algebra modifications

of R. Suppose there is one:

R→ M1→ · · · → Mr → (R/Q)⊗Mr → N1→ · · · → Ns .

We claim that there exists a commutative diagram:

R //

��

M1 //

��

··· // Mr

α

��

// (R/Q)⊗Mr //

��

N1 //

��

··· // Ns

β
��

R∞,n
[ 1

c

] =
// R∞,n

[ 1
c

] =
// ···

=
// R∞,n

[ 1
c

]
// (R/Q)∞,n

[ 1
c

] =
// (R/Q)∞,n

[ 1
c

] =
// ···

=
// (R/Q)∞,n

[ 1
c

]
The leftmost vertical map is the natural one; the first half of the diagram exists by Lemma 3.5; the

middle commutative diagram exists because the composite map Mr → R∞,n[1/c] → (R/Q)∞,n[1/c]
induces a map (R/Q)⊗Mr→ (R/Q)∞,n[1/c] since (R/Q)∞,n[1/c] is an R/Q-algebra; the second half
of the diagram exists by Lemma 3.5 again.

Let D > 0 be an integer larger than the degree bounds for all the partial algebra modifications in
this sequence. Applying Lemma 3.5 repeatedly to the first half of the diagram, we know there is
an integer M depending only on D, but not on n and pa, such that the image of α is contained in
c−M R∞,n . The image of the map (R/Q)⊗Mr→ (R/Q)∞,n[1/c] is contained in c−M(R/Q)∞,n because
R∞,n[1/c]→ (R/Q)∞,n[1/c] is induced by R∞,n→ (R/Q)∞,n . But then applying Lemma 3.5 repeatedly
to the second half of the diagram, we know that there exists an integer N depending on M and D (and
hence only on D), but not on n and pa, such that the image of β is contained in c−N (R/Q)∞,n .
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Now we chase the above diagram and we see that on the one hand, the element 1 ∈ R maps to
1 ∈ (R/Q)∞,n[1/c]. But on the other hand, since the sequence is bad, the image of 1 ∈ R in Ns is in mNs

and hence the image of 1 ∈ R is contained in mc−N (R/Q)∞,n in (R/Q)∞,n[1/c]. Therefore we have
1 ∈m((pg)2/pa

)−N (R/Q)∞,n , that is,

(pg)2N/pa
∈m(R/Q)∞,n.

Because m is the maximal ideal of R and A = W (k)[[x1, . . . , xd−1]] → R is module-finite, mN ′
⊆

(p, x1, . . . , xd−1)R for some fixed N ′. We thus have:

(pg)2N N ′/pa
∈ (p, x2, . . . , xd−1)(R/Q)∞,n.

Since (R/Q)∞,n is almost finite étale over (A/x1 A)∞〈pn/g〉, we know that

(pg)(2N N ′+1)/pa
∈ (p, x2, . . . , xd−1)(A/x1 A)∞

〈 pn

g

〉
∩ (A/x1 A)∞.

But now Lemma 3.2 implies (pg)(2N N ′+2)/pa
∈ (p, x2, . . . , xd−1)(A/x1 A)∞ for all pa. Because N , N ′

do not depend on pa, we know that pg ∈ (p, x2, . . . , xd−1)
m(A/x1 A)∞ for all m > 0. Since (A/x1 A)∞

is almost faithfully flat over (A/x1 A)∞,0 mod pm, we know that

p2g ∈ (p, x2, . . . , xd−1)
m(A/x1 A)∞,0 ∩ (A/x1 A)= (p, x2, . . . , xd−1)

m(A/x1 A)

for all m > 0 by faithful flatness of (A/x1 A)∞,0 over A/x1 A. But then

p2g ∈ ∩m(p, x2, . . . , xd−1)
m(A/x1 A)= 0,

which is a contradiction. �

Remark 3.6. We point out that the quantitative form of Scholze’s Hebbarkeitssatz [Bhatt 2018, The-
orem 4.2] implies Lemma 3.2 and the following weaker form of Lemma 3.4: if {Sn}n is a pro-system
such that Sn is an almost finite projective A∞〈pn/g〉-algebra, then for every k ≥ 1 and n ≥ pa

+m,
(p1/p∞)(pg)1/pa

annihilates the image of (p,x1,...,xs)Sk+n : xs+1/(p,x1,...,xs)Sk+n in (p,x1,...,xs)Sk :

xs+1/(p,x1,...,xs)Sk . This weaker form is enough to establish Theorem 3.1, but one needs to modify the
proof of Lemma 3.5 and Theorem 3.1: to extend each partial algebra modification to R∞,n[1/c] one needs
to decrease n roughly by pa in order to trivialize bad relations (and keep control on the denominators).
We leave it to the interested reader to carry out the details.

4. Applications

The results obtained in the preceding section are strong enough to establish the mixed-characteristic case
of Hochster and Huneke’s vanishing conjecture for maps of Tor [1995].

Theorem 4.1. Let A→ R→ S be maps of Noetherian rings such that A→ S is a local homomorphism
of mixed characteristic regular local rings and R is a module-finite torsion-free extension of A. Then for
all A-modules M, the map TorA

i (M, R)→ TorA
i (M, S) vanishes for all i ≥ 1.
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We need the following important reduction. This reduction is known to experts and is proved implicitly
in [Ranganathan 2000, Chapter 5.2] and [Hochster 2017, Section 13]. We will give a sketch of the proof.

Lemma 4.2. To prove Theorem 4.1, we can assume (A,m) is complete, R is a complete local domain,
and S = A/x A where x ∈m−m2.

Sketch of proof. We can assume M is finitely generated. Replacing M by its first module of syzygies over A
repeatedly, we only need to prove the case i = 1. We may further assume M = A/I by [Ranganathan
2000, Lemma 5.2.1] or [Hochster 2017, Page 15].5 Next by [Hochster and Huneke 1995, (4.5)(a)], we
can assume A and S are both complete, R is a complete local domain, and A→ S is surjective; i.e.,
S = A/P where P is generated by part of a regular system of parameters of A (note that p /∈ P since S
has mixed characteristic). It follows that S = R/Q for some prime ideal Q of R lying over P. After all
these reductions, we note that by [Hochster 2017, Lemma 13.6], TorA

1 (A/I, R)→ TorA
1 (A/I, S) vanishes

if and only if I Q ∩ P = I P.
We next want to reduce to the case that P is generated by one element. The trick is to replace A

by its extended Rees ring Ã = A[Pt, t−1
], R by R̃ = R[Pt, t−1

] and S by S̃ = Ã/t−1 Ã. Since P is
generated by part of a regular system of parameters, Ã and S̃ are still regular. The point is that there is a
homogeneous prime ideal Q̃ ⊆ R̃ that contains Q and contracts to t−1 Ã ⊆ Ã (see [Ranganathan 2000,
Proof of Theorem 5.2.6] or [Hochster 2017, Page 16]), thus we have Ã→ R̃→ S̃. Therefore if we can
prove Theorem 4.1 for Ã→ R̃→ S̃ and M = Ã/I Ã, then [Hochster 2017, Lemma 13.6] implies that
I Q̃ ∩ t−1 Ã = I t−1 Ã. Comparing the degree 0 part, we see that I Q ∩ P = I P.

Finally, we can localize Ã and S̃ and complete, and reduce to the case R̃ is a complete local domain
as in [Hochster and Huneke 1995, (4.5)(a)]. Note that S̃ is obtained from Ã by killing one element
(and we may assume S̃ still has mixed characteristic after localization). We thus obtain all the desired
reductions. �

Proof of Theorem 4.1. By Lemma 4.2, we may assume R is a complete local domain and S = A/x A.
It follows that S = R/Q for a height one prime Q of R. Since A→ S and R→ S are both surjective,
A, R, S have the same residue field k. We fix a coefficient ring W (k) of A, then the images of W (k)
in R and S are also coefficient rings of R and S. Replacing A, R, S by their faithfully flat extensions
A⊗̂W (k)W (k), R⊗̂W (k)W (k), S⊗̂W (k)W (k) does not affect whether the map on Tor vanishes or not. Thus
without loss of generality we may assume k is algebraically closed.

By Theorem 3.1, we have a commutative diagram:

R //

��

S = R/Q

��

B // C

5In this process we may lose A and S being local, but we can always localize A and S again to assume they are local (and
have mixed characteristic, since otherwise Theorem 4.1 is known).
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where B and C are balanced big Cohen–Macaulay algebras for R and S respectively. This induces a
commutative diagram:

TorA
i (M, R) //

��

TorA
i (M, S)

��

TorA
i (M, B) // TorA

i (M,C)

Since B is a balanced big Cohen–Macaulay algebra over R (and hence also over A), it is faithfully flat
over A so TorA

i (M, B)= 0 for all i ≥ 1. Moreover, C is faithfully flat over S since it is a balanced big
Cohen–Macaulay algebra over S and S is regular, thus TorA

i (M, S)→ TorA
i (M,C) is injective. Chasing

the diagram above we know that the map TorA
i (M, R)→ TorA

i (M, S) vanishes for all i ≥ 1. �

A local ring (R,m) of dimension d is called pseudorational if it is normal, Cohen–Macaulay, ana-
lytically unramified (i.e., the completion R̂ is reduced), and if for every projective and birational map
π : W → Spec R, the canonical map H d

m(R)→ H d
E(W, OW ) is injective where E = π−1(m) denotes the

closed fiber. In characteristic 0, pseudorational singularities are the same as rational singularities. Very
recently, Kovács [2017] has proved a remarkable result that, in all characteristics, if π : X→ Spec R is
projective and birational, where X is Cohen–Macaulay and R is pseudorational, then Rπ∗OX = R.

In equal characteristic, direct summands of regular rings are pseudorational [Boutot 1987; Hochster and
Huneke 1990]. This is usually called Boutot’s theorem. It is well known that the vanishing conjecture for
maps of Tor in a given characteristic implies that direct summands of regular rings are Cohen–Macaulay
[Hochster and Huneke 1995, (4.3)]. What we want to prove next is the analog of Boutot’s theorem that
direct summands of regular rings are pseudorational in mixed characteristic. This in fact also follows
formally from the vanishing conjecture for maps of Tor [Ma 2018]. Since the full details were not written
down explicitly there, we give a complete argument here. We first recall the following Sancho de Salas
exact sequence [1987].

Let T = R[J t] = R⊕ J t⊕ J 2t2
⊕· · · and let W = Proj T → Spec R be the blow up with E = π−1(m).

Pick f1, . . . , fn ∈ J t = [T ]1 such that U = {Ui = Spec[T fi ]0} is an affine open cover of W. We have an
exact sequence of chain complexes:

0→ Č •(U, OW )[−1] → [C •( f1, . . . , fn, T )]0→ R→ 0.

Since Č •(U, OW ) ∼= Rπ∗OW and C •( f1, . . . , fn, T ) = [R0T>0 T ]0, the above sequence gives us (after
rotating) an exact triangle:

[R0T>0 T ]0→ R→ Rπ∗OW
+1
−→

Applying R0m, we get:

[R0m+T>0 T ]0→ R0mR→ R0mRπ∗OW
+1
−→ .
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Taking cohomology we get the Sancho de Salas exact sequence:

// hd([R0m+T>0 T ]0) //

=

��

hd(R0mR) //

=

��

hd(R0mRπ∗OW )

=

��

//

// [H d
m+T>0

(T )]0 // H d
m(R) // H d

E(W, OW ) //

(4.2.1)

We also recall that R→ S is pure if R ⊗ M → S⊗ M is injective for every R-module M. This is
slightly weaker than saying that R→ S splits as a map of R-modules. If R is an A-algebra and R→ S is
pure, then TorA

i (M, R)→ TorA
i (M, S) is injective for every i [Hochster and Huneke 1995, (2.1)(h)], in

particular, H i
m(R)→ H i

m(S) is injective for every i .
We are ready to prove the following corollary. We state the result in the local setting, but the general

case reduces immediately to the local case.

Corollary 4.3. Let (R,m)→ (S, n) be a pure map of local rings such that (S, n) is regular of mixed char-
acteristic. Then R is pseudorational. In particular, direct summands of regular rings are pseudorational.

Proof. We can complete R and S at m and n respectively to assume both R and S are complete; R is
normal since pure subrings of normal domains are normal. By Cohen’s structure theorem, we have a
module-finite extension A→ R such that A is a complete regular local ring. Let x1, . . . , xd be a regular
system of parameters of A. We apply Theorem 4.1 to M = A/(x1, . . . , xd). We have

TorA
i (A/(x1, . . . , xd), R)→ TorA

i (A/(x1, . . . , xd), S)

vanishes for all i ≥ 1. However, we also know that this map is injective because R→ S is pure. Thus we
have TorA

i (A/(x1, . . . , xd), R)= Hi (x1, . . . , xd , R)= 0 for all i ≥ 1. This implies x1, . . . , xd is a regular
sequence on R and hence R is Cohen–Macaulay. Obviously, the complete local domain R is analytically
unramified.

We now check the last condition of pseudorationality. Let W → Spec R be a projective birational map,
thus W ∼= Proj T = Proj R⊕ J t ⊕ J 2t2

⊕ · · · for some ideal J ⊆ R. We now apply the Sancho de Salas
exact sequence (4.2.1) to get:

[H d
m+T>0

(T )]0 //
� _

��

H d
m(R) //

=

��

H d
E(W, OW )

H d
m+T>0

(T ) // H d
m(R).

Thus in order to show H d
m(R)→ H d

E(W, OW ) is injective, it suffices to show H d
m+T>0

(T )→ H d
m(R)

vanishes. We can localize T at the maximal ideal m+ T>0, complete, and kill a minimal prime without
affecting whether the map vanishes or not. Hence it is enough to show that if (T,m)� (R,m) is a
surjection such that T is a complete local domain of dimension d + 1, then H d

m(T )→ H d
m(R) vanishes.

By Cohen’s structure theorem there exists (A,m0)→ (T,m) a module-finite extension such that A is a
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complete regular local ring. We consider the chain of maps

A→ T → R→ S

Applying Theorem 4.1 to A→ T → S and M = H d+1
m0

(A), we know that the composite map

TorA
1 (H

d+1
m0

(A), T )→ TorA
1 (H

d+1
m0

(A), R)→ TorA
1 (H

d+1
m0

(A), S)

vanishes. Since the Čech complex on a regular system of parameters gives a flat resolution of H d+1
m0

(A)
over A, we know that TorA

1 (H
d+1
m0

(A), N )∼= H d
m0
(N ) for every A-module N. Thus the composite map

H d
m(T )→ H d

m(R)→ H d
m(S)

vanishes. But then H d
m(T )→ H d

m(R) vanishes because H d
m(R)→ H d

m(S) is injective since R→ S is
pure. �

Remark 4.4. Corollary 4.3 can be also obtained by combining the main results of [André 2018a; Bhatt
2018] and using the following argument: the existence of weakly functorial big Cohen–Macaulay algebras
for injective ring homomorphisms [André 2018a, Remarque 4.2.1] implies that direct summands of regular
rings are Cohen–Macaulay, but we also know they are derived splinters (because this is true for regular
rings by [Bhatt 2018, Theorem 1.2] and it is easy to see that direct summand of derived splinters are
still derived splinters). Now the argument of [Kovács 2017, Lemma 7.5] implies that Cohen–Macaulay
derived splinters are pseudorational.

Remark 4.5. Last we point out that by [Ma 2018, Remark 5.12], Theorem 4.1 gives a new proof of the
derived direct summand conjecture [Bhatt 2018, Theorem 6.1], that is, if R is a complete regular local
ring of mixed characteristic and π : X→ Spec R is a proper surjective map, then R→ Rπ∗OX splits in
the derived category of R-modules. Our proof is different from Bhatt’s in that it does not use Scholze’s
vanishing theorem [2012, Proposition 6.14]. In fact, tracing the arguments of [Ma 2018, Theorem 5.11 and
Remark 5.13], one can show that our Theorem 3.1 leads to a stronger result that complete local rings that are
pure inside all their big Cohen–Macaulay algebras (e.g., complete regular local rings) are derived splinters.
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