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Blocks of the category of smooth ¢-modular
representations of GL(n, F) and its inner forms:
reduction to level O

Gianmarco Chinello

Let G be an inner form of a general linear group over a nonarchimedean locally compact field of residue
characteristic p, let R be an algebraically closed field of characteristic different from p and let Zr (G) be
the category of smooth representations of G over R. In this paper, we prove that a block (indecomposable
summand) of Z(G) is equivalent to a level-0 block (a block in which every simple object has nonzero
invariant vectors for the pro-p-radical of a maximal compact open subgroup) of Zg(G’), where G’ is a
direct product of groups of the same type of G.

Introduction

Let F be a nonarchimedean locally compact field of residue characteristic p and let D be a central division
algebra of finite dimension over F whose reduced degree is denoted by d. Given m € N*, we consider
the group G = GL,,,(D) which is an inner form of GL,,;s(F). Let R be an algebraically closed field of
characteristic £ # p and let Zg (G) be the category of smooth representations of G over R, that are called
£-modular when £ is positive. In this paper, we are interested in the Bernstein decomposition of Zg(G)
(see [Sécherre and Stevens 2016] or [Vignéras 1998] for d = 1) that is its decomposition as a direct sum
of full indecomposable subcategories, called blocks. Actually a full understanding of blocks of Zr(G) is
equivalent to a full understanding of the whole category.

The main purpose of this paper is to find an equivalence of categories between any block of Zz(G) and
a level-0 block of Zg(G’) where G’ is a suitable direct product of inner forms of general linear groups
over finite extensions of F. We recall that a level-0 block of 2z (G’) is a block in which every object has
nonzero invariant vectors for the pro-p-radical of a maximal compact open subgroup of G’. This result
is an important step in the attempt to describe blocks of Zx(G) because it reduces the problem to the
description of level-0 blocks.

In the case of complex representations, Bernstein [1984] found a block decomposition of Z¢(G)
indexed by pairs (M, o) where M is a Levi subgroup of G and o is an irreducible cuspidal representation
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of M, up to a certain equivalence relation called inertial equivalence. In particular an irreducible
representation 7t of G is in the block associated to the inertial class of (M, o) if its cuspidal support is in
this class. Bushnell and Kutzko [1998] introduced a method to describe the blocks of Z¢(G): the theory
of types. This method consists in associating to every block of Z¢(G) a pair (J, A), called a type, where J
is a compact open subgroup of G and X is an irreducible representation of J, such that the simple objects
of the block are the irreducible subquotients of the compactly induced representation ind? (A). In this case
the block is equivalent to the category of modules over the C-algebra ¢ (G, 1) of G-endomorphisms of
ind? (A). Sécherre and Stevens [2012] (see [Bushnell and Kutzko 1999] for d = 1) described explicitly
this algebra as a tensor product of algebras of type A.

In the case of £-modular representations, Sécherre and Stevens [2016] (see [Vignéras 1998] for d = 1)
found a block decomposition of Zg(G) indexed by inertial classes of pairs (M, o) where M is a Levi
subgroup of G and ¢ is an irreducible supercuspidal representation of M. In particular an irreducible
representation 7w of G is in the block associated to the inertial class of (M, o) if its supercuspidal support
is in this class. We recall that the notions of cuspidal and supercuspidal representations are not equivalent
as in complex case; however, Minguez and Sécherre [2014a] proved the uniqueness of supercuspidal
support, up to conjugation, for every irreducible representation of G. We remark that to obtain the block
decomposition of Zx(G), Sécherre and Stevens do not use the same method as Bernstein, but they rely,
like us in this paper, on the theory of semisimple types developed in [Sécherre and Stevens 2012] (see
[Bushnell and Kutzko 1999] for d = 1). Actually, they associate to every block of Zg(G) a pair (J, A),
called a semisimple supertype. Unfortunately the construction of the equivalence, as in the complex case,
between the block and the category of modules over 7% (G, L) does not hold and one of the problems that
occurs is that the pro-order of J can be divisible by £. Some partial results on descriptions of algebras
which are Morita equivalent to blocks of Zg (GL,, (F)) are given in [Dat 2012; Helm 2016; Guiraud 2013].

The idea of this paper is the following. We fix a block Z(J, L) of Zg(G) associated to the semisimple
supertype (J, A) and, as in [Sécherre and Stevens 2016], we can associate to it a compact open subgroup

Jimax of G, its pro-p-radical J! and an irreducible representation n,,,, of J.... We remark that we can

max*

extend, not uniquely, to an irreducible representation kmax Of Jmax. Thus, we denote Z(G, Nax)

"max

the direct sum of blocks of Z(G) associated to (Jnl]ax, Nmax) and we consider the functor

M, =Homg (indi}m Nmaxs —) - Z(G, Npax) —> Mod- 5% (G, Nax)

Mmax

where % (G, ) = Endg (indilm (Mmax))- Using the fact that p,,,,, is a projective representation, since
JL . is a pro-p-group, we prove that M,__ is an equivalence of categories (Theorem 5.10). This result
generalizes Corollary 3.3 of [Chinello 2017] where 5., is a trivial character. We can also associate to
(J, L) aLevi subgroup L of G and a group B;‘, which is a direct product of inner forms of general linear
groups over finite extensions of F and which we have denoted G’ above. If K is a maximal compact open
subgroup of B;* and K i is its pro-p-radical then K /K i = Jinax/JL. = 9 is a direct product of finite
general linear groups. Actually, in [Chinello 2017] it is proved that the K i -invariants functor inv 1 is an
equivalence of categories between the level-0 subcategory Z(B;, K i) of Zr(B]'), which is the direct
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sum of its level-0 blocks, and the category of modules over the algebra 5#% (B;, K i) =End B (ind?z 1x ! ).
Now, thanks to the explicit presentation by generators and relations of 7% (B, , K i) presented in [Chinello
2017], in this paper we construct a homomorphism ®, . : #z(B;, K i) —> JR(G, Nay) finding
elements in #% (G, 1,,,,,) satisfying all relations defining 7% (B;, K i). This homomorphism depends on
the choice of the extension kmax Of 9.« 10 Jmax and on the choice of an intertwining element y of 9.
Moreover, using some properties of 1,,,,,, we prove that this homomorphism is actually an isomorphism.
We remark that finding this isomorphism is one of the most difficult results obtained in this article and the
proof in the case L = G takes about half of the paper (Section 3). In this way we obtain an equivalence

of categories F, R (G, Npax) —> Z(B), K i) such that the following diagram commutes:

K max

FV-'Cmax

Z (G, Ninax) #(B, K})

M’Imax [ 2 l iani
@*

V,Kmax

Mod- #%(G, ) ———— Mod- #% (B}, K}).

Then we obtain
. B
FV’Kmax (JT, V)=M max (7, V) ®<%/JR(BI>‘<7K1{) lndKi (lKi)

for every (7, V) in Z(G, 1,,,4)> Where the action of (B, KD on M, (m,V) depends on © ...
Hence, F, ... induces an equivalence of categories between the block #(J, A) and a level-0 block of
Zr(B ,f). To understand this correspondence we need to use the functor

Kiepa : Z(G, Niax) —> Zr(Jmax/ J)) = ZR (D),

where Jnax acts on K, (7) = Hom Tl (Mimax> ) BY x. =7 (X) 0 0 0 ke rpax (x)~! for every representation
m of G, ¢ € Hom; i ax(”max’ ) and x € Jmax. This functor is strongly used in [Sécherre and Stevens 2016]
to define Z(J, L) and to prove the Bernstein decomposition of Zg(G). We also consider the functor
Kk, : Z(B}, Ki) — L@R(KL/KD = Zr(¥) given by Kg, (Z) = ZKL for every representation (o, Z)

of B, where x € K; acts on z € A3 by x.z = ¢(x)z. Then the functors Kg, o F,, .. and K, are

Kmax
naturally isomorphic (Proposition 5.14) and so Z(J, L) is equivalent to the level-0 block % of Zg (B LX)
such that K, (Z(J, L)) = Kk, (#). More precisely, if J 1'is the pro-p-radical of J, then J/J Y= #is

a Levi subgroup of ¢ and the choice of k.« defines a decomposition A = k ® & where Kk is an irreducible

K max

representation of J and o is a cuspidal representation of .# viewed as an irreducible representation of .J
trivial on J'. If we can consider the pair (.#, o) up to the equivalence relation given in Definition 1.14 of
[Sécherre and Stevens 2016], then a representation (o, Z) of B/ is in 4 if it is generated by the maximal
subspace of ZK L such that every irreducible subquotient has supercuspidal support in the class of (.#, o).

One question we do not address in this paper is the structure of level-0 blocks of %z (B;‘) when the
characteristic of R is positive. Thanks to results of [Chinello 2017] we know that there is a correspondence
between these blocks and the set & of primitive central idempotents of /%% (B, K i), which are described
in Sections 2.5 and 2.6 of [Chinello 2015]. Hence, one possibility for understanding level-0 blocks of
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ZR(B]) is to describe the algebras e #% (B, K} ) with e € &. On the other hand, we recall that Dat
[2018] proved that every level-0 block of Zg(GL, (F)) is equivalent to the unipotent block of Zz(G"),
where G” is a suitable product of general linear groups over nonarchimedean locally compact fields.
Hence, putting together the result of Dat and results of this article, we obtain a method to reduce the
description of any block of Zg(GL, (F)) to that of a unipotent block. Unfortunately the description of
the unipotent block of Z(GL,(F)), or of Zr(G), is nowadays a hard question and it has no answer yet.

We now summarize the contents of each section of this paper. In Section 1 we present general results
on the convolution Hecke algebras 7% (G, o) where G is an arbitrary locally profinite group and o a
representation of an open subgroup H of G. We see that if o is finitely generated then #%(G, o) is
isomorphic to the endomorphism algebra of ind§ o. We define two subcategories of % (G) and prove
that, when they coincide, they are equivalent to the category of modules over .#%(G, o). In Section 2
we introduce the theory of maximal simple types; we consider the Heisenberg representation n associated
to a simple character (see Section 2A) and define the groups B* = B} and K =K g; In Section 3
we prove that the algebras 7% (G, n) and #%(B*, K') are isomorphic. In Section 4 we introduce
the theory of semisimple types, define the representation 3,,,, and the group B;‘, and prove that the
algebras #x (B}, K} ) and (G, ,,,) are isomorphic. In Section 5 we prove that M, andF,, .
are equivalences of categories; we describe the correspondence between blocks of Z(G, 3,,,,) and of
Z(B/, K i) and investigate the dependence of these results on the choice of the extension of 5,,,, t0 Jmax-

1. Preliminaries

This section is written in much more generality than the remainder of the paper. We present general
results for an arbitrary locally profinite group.

Let G be a locally profinite group (i.e., a locally compact and totally disconnected topological group)
and let R be a unitary commutative ring. We recall that a representation (7, V') of G over R is smooth if for
every v € V the stabilizer {g € G| 7 (g)v = v} is an open subgroup of G. We denote by % (G) the (abelian)
category of smooth representations of G over R. From now on all representations considered are smooth.

1A. Hecke algebras for a locally profinite group. In this section we introduce an algebra associated to
a representation o of a subgroup of G and we prove that it is isomorphic to the endomorphism algebra
of the compact induction of o. This definition generalizes those in Section 1 of [Chinello 2017] that
corresponds to the case in which o is trivial.

Let H be an open subgroup of G such that every H-double coset is a finite union of left H-cosets (or

—1

equivalently HN gHg ™" is of finite index in H for every g € G) and let (o, V,;) be a smooth representation

of H over R.

Definition 1.1. Let 2#%(G, o) be the R-algebra of functions ® : G — Endg(V,) such that ®(hgh’) =
o(h)o®(g)oo (W) forevery h, i’ € Hand g € G and whose supports are a finite union of H-double cosets,
endowed with convolution product

(@1%P)(g) =) P1(x)P2(x'g), )
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where x runs over a system of representatives of G/H in G. This algebra is unitary and the identity element
is o seen as a function on G with support equal to H. To simplify the notation, from now on we denote
PP, =P xD)y for all o, P, € %R(G, O’).

We observe that the sum in (1) is finite since the support of @, is a finite union of H-double cosets and
by hypothesis, every H-double coset is a finite union of left H-cosets. Furthermore, the formula (1) is well
defined because for every 7 € H and x, g € G we have

D1 (xh) P2 ((xh) ' g) = @1(x) oo (W) oo (h™ ") o Pa(x ' g) = D1 (x) 0 Do (x'g).

For every g € G we denote by (G, 0)uen the submodule of 7% (G, o) of functions with support
inHgH. If g1, g2 € G, ®| € H#R(G, 0)ugu and O3 € HR(G, 0 )yg,u then the support of &P, is in Hg1HgoH
and the support of x > &1 (x)P,(x~'g) is in Hg;HN gHg;lH.

Remark 1.2. If g; or g, normalizes H then the support of ®;®; is in Hg;g,H and the support of x
@1 (x)P2(x"g182) is in g1H. Hence, we obtain (®1P2)(g182) = P1(g1) 0 P2(g2).

For every g € G we denote by H¢ = g~ 'Hg and (08, V,,) the representation of HS given by o8 (x) =
o (gxg™") for every x € H¢. We denote by / ¢(0) the R-module Homgnge (0, 0¢) and Ig(o) the set, called
the intertwining of o in G, of g € G such that I, (o) # 0. For every g € (o) the map ® — ®(g) is an
isomorphism of R-modules between 7% (G, 0 )yen and I, (o) and so g € G intertwines o if and only if
there exists an element ® € J#% (G, o) such that ®(g) # 0.

Let ind$(0) be the compactly induced representation of o to G. It is the R-module of functions
f : G — V,, compactly supported modulo H, such that f(hg) =o(h)f(g) forevery h € Hand g € G
endowed with the action of G defined by x. f : g+— f(gx) forevery x, g€ Gand f € indg (o). We remark
that, since H is open, by 1.5.2(b) of [Vignéras 1996] it is a smooth representation of G. For every v € V,; let
i, € indg (o) be the function with support in H defined by i, (k) = o (h)v for every h € H. Then for every
x € G the function x~!.i,, has support Hx and takes the value v on x. Hence, for every f €ind§(o) we have

f=> xligw 2)
x€H\G

with the sum finite since the support of f is compact modulo H, and so the image iy, of v — i, generates
indg(a) as representation of G.

Frobenius reciprocity (1.5.7 of [Vignéras 1996]) states that the map Homg(o, V) — HomG(indﬁ(G), V)
given by ¢ — ¢ where ¢ (v) = ¥ (i,) for every v € V, is an isomorphism of R-modules.

Lemma 1.3. If V, is a finitely generated R-module, the map & : #%(G, o) — Endg(ind5(c)) given by
E@)(N))=(@x )= Y. P@)Fr"g)

xeG/H
forevery ® € 5%(G,0), f € indg (0) and g € G is an R-algebra isomorphism whose inverse is given by
1) (g)(v) =V (iy)(g) for every ¥ € Endg(indg (o)), g € Gand v € V.

Proof. See 1.8.5-6 of [Vignéras 1996]. O
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1B. The categories %, (G) and % (G, o). In this section we associate to an irreducible projective repre-
sentation of a compact open subgroup of G two subcategories of Z(G).

Let K be a compact open subgroup of G and (o, V,;) be an irreducible projective representation of K
such that V, is a finitely generated R-module. Then p = ind$ (o) is a projective representation of G by
1.5.9(d) of [Vignéras 1996] and so the functor

M, = Homg(p, —) : Zr(G) — Mod- 5% (G, o)

is exact. We remark that for every representation (7, V) of G the right-action of ® € J#%(G, o) on
¢ € Homg(p, V) is given by ¢.® = ¢ o §(P) where & is the isomorphism of Lemma 1.3. Moreover,
if Vi and V, are representations of G and € € Homg(Vy, V») then M, (¢) maps ¢ to ¢ o ¢ for every
¢ € Homg(p, V7).

Definition 1.4. Let %, (G) be the full subcategory of Zg(G) whose objects are representations V such
that M, (V') # 0 for every irreducible subquotient V' of V.

For every representation V of G we denote by V7 =) $eHomy (o, v) @ (0) Which is a subrepresentation
of the restriction of V to K. We denote by V[o] the representation of G generated by V. If o is the trivial
character of K then V° = V€ ={v € V | w(k)v = v for all k € K} is the set of K-invariant vectors of V.

Proposition 1.5. For every representation V of G we have V]o] = Zz//eMg(V) Y(p) and so M, (V) =
M, (V]o]). Moreover, if W is a subrepresentation of V then M; (W) =M, (V) ifand only if W[o]=V[o].

Proof. By Frobenius reciprocity we have Homg (o, V) = M, (V) and so using (2) we obtain
Viel=Y m(@ Y ¥iv)= )Y, w(Zg.m) = > v,
8€G YeM, (V) YeMs (V) 8€G veM, (V)
which implies M, (V) = M, (V[o]). Furthermore, if W[o] = V[o] then M,(W) = M, (V) and if
M, (W)= M,(V) then
Wioel= Y v(@= )Y () =Viol O
YeM, (W) YeMy (V)

Definition 1.6. Let Z(G, o) be the full subcategory of Zx(G) whose objects are representations V such
that V = V[o]. If o is the trivial character of K we denote by Z(G, K) the subcategory of representations
V generated by VX,

Proposition 1.7. Let V be a representation of G. The following conditions are equivalent:
(i) For every irreducible subquotient U of V we have M, (U) # 0.

(ii) For every nonzero subquotient W of V we have M, (W) # Q.

(iii) For every subquotient Z of V we have Z = Z[o ].

(iv) For every subrepresentation Z of V we have Z = Z|[o].
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Proof. (1)—(ii): Let W be a nonzero subquotient of V and W C W, two subrepresentations of W such that
U = W,/ W is irreducible. By (i) we have M, (U) # 0 which implies M, (W5) # 0 and so M, (W) # 0.

(ii))—(iii): Let Z be a subquotient of V. By Proposition 1.5 we have M,(Z) = M,(Z[o]) and so
M, (Z/Z[o]) =0. Hence, by (i) we obtain Z = Z[o].

(iv)—(1): Let U be an irreducible subquotient of V and Z; C Z, be two subrepresentations of V

such that U = Z,/Z;. By (iv) we have Z|[o] = Z| # Z, = Z;[o] and by Proposition 1.5 we have
M, (Zy) # M, (Z,). Hence, we obtain M, (U) # 0. O

Remark 1.8. Proposition 1.7 implies that %, (G) is a subcategory of Z(G, o).

1C. Egquivalence of categories. In this section we suppose that there exists a compact open subgroup Ko
of G whose pro-order is invertible in R and we consider the Haar measure dg on G with values in R such
that fKO dg =1 (see 1.2 of [Vignéras 1996]). We prove that if the two categories introduced in Section 1B
are equal then they are equivalent to the category of modules over the algebra introduced in Section 1A.

The global Hecke algebra 5#%(G) of G is the R-algebra of locally constant and compactly supported
functions f : G — R endowed with convolution product given by ( f * f2)(x) = fG f1(g) f>(g~'x) dg for
every f1, f» € #%(G) and x € G (see 1.3.1 of [Vignéras 1996]). In general J#%(G) is not unitary but it
has enough idempotents by 1.3.2 of [loc. cit.]. The categories Zg(G) and #%(G) -Mod are equivalent by
1.4.4 of [loc. cit.] and we have indg(t) = HR(G) Qnm V: for every representation (z, V;) of an open
subgroup H of G by 1.5.2 of [loc. cit.].

Let K be a compact open subgroup of G, let (o, V,;) be an irreducible projective representation of K as in
Section 1B and let p = indﬁ(a). Since V, is a simple projective module over the unitary algebra % (K), it
is isomorphic to a direct summand of #% (K) itself because any nonzero map 7% (K) — V,, is surjective and
splits. Then it is isomorphic to a minimal ideal of 7% (K) and so there exists an idempotent e of 7% (K) such
that V, = 7% (K)e. Hence, we obtain p = % (G)e because the map Y, (f; ® hje) > (X_; fih;)e is an iso-
morphism of 7% (G)-modules between 2z (G) ® s ) 7 (K)e and . (G)e whose inverse is fet— fe®e.

The algebra 7% (G, o) is isomorphic to Endg(p) = End 4 ) (#%(G)e) by Lemma 1.3 and the map
e (G)e — (End ) (##%(G)e))° which maps ef e € e#%(G)e to the endomorphism f'e — f’efe of
A% (G)e is an algebra isomorphism whose inverse is ¢ — @(e). Then we have #%(G, 0)° = e #%(G)e
and so the categories e.#%(G)e -Mod and Mod- 7% (G, o) are equivalent.

Theorem 1.9. If %,(G) = % (G, o) then V +— M, (V) is an equivalence of categories between Z(G, o)
and Mod- 7 (G, o) whose quasiinverse is W +— W ® 4 @.0) P-

Proof. We take A = J#%(G) and % (G)e = p as in 1.6.6 of [Vignéras 1996]. Since 5% (G, 0)°P = e % (G)e,
left-actions of e.#%(G)e become right-actions of #%(G, o). The functor V + eV of [loc. cit.] from
7 (G) -Mod to e (G)e -Mod becomes the functor V = Hom s, ) (4% (G)e, V') and so the functor M.
The hypotheses of the theorem “équivalence de catégories” in 1.6.6 of [Vignéras 1996] are satisfied by
the condition %Z,; (G) = #(G, o) and so we obtain the result. O
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2. Maximal simple types

In this section we introduce the theory of simple types of an inner form of a general linear group over a
nonarchimedean locally compact field in the case of modular representations. We refer to Sections 2.1-5
of [Minguez and Sécherre 2014b] for more details.

Let p be a prime number and let F be a nonarchimedean locally compact field of residue characteristic p.
For F’ afinite extension of F, or more generally a division algebra over a finite extension of F, we denote by
Op its ring of integers, by @ r+ a uniformizer of Op-, by g the maximal ideal of O’ and by €5 its residue
field. Let D be a central division algebra of finite dimension over F whose reduced degree is denoted
by d. Given a positive integer m, we consider the ring A = M,,(D) and the group G = GL,,(D) which
is an inner form of GL,,4(F). Let R be an algebraically closed field of characteristic different from p.

Let A be an Op-lattice sequence of V = D™. It defines a hereditary Op-order 2 = A(A) of A
whose radical is denoted by 3, a compact open subgroup U(A) = Up(A) = A(A)* of G and a filtration
Ur(A) =1 +‘I§k with £ > 1 of U(A) (see Section 1 of [Sécherre 2004]). Let [A, n, 0, 8] be a simple
stratum of A (see for instance Section 1.6 of [Sécherre and Stevens 2008]). Then 8 € A and the F-
subalgebra F[B] of A generated by f is a field denoted by E. The centralizer B of E in A is a simple
central E-algebra and B =2(N B is a hereditary Og-order of B whose radical is Q =B N B.

As in Sections 1.2 and 1.3 of [Sécherre 2005b] we can choose a simple right £ ® p D-module N such
that the functor V +— Homgg . p (N, V) defines a Morita equivalence between the category of modules
over E ® D and the category of vector spaces over D' = Endgg, p(N)°P which is a central division
algebra over E. We set A(E) =Endp(N) which is a central simple F-algebra. If d’ is the reduced degree
of D’ over E and m’ is the dimension of V' =Homgg,p(N, V) over D', then we have m'd’=md/[E : F].
Fixing a basis of V'’ over D’ we obtain, via the Morita equivalence above, an isomorphism N = V
of E ® D-modules. If for every i € {1, ..., m'} we denote by V' the image of the i-th copy of N by
this isomorphism, we obtain a decomposition V=V!@--- @ V™ into simple E ® p D-submodules. By
Section 1.5 of [Sécherre 2005b] we can choose a basis % of V' over D’ so that A decomposes as the
direct sum of the A’ = ANV fori e {1,...,m’}. Foreveryi e {1,...,m'},lete; : V. — V' be the
projection on V'’ with kernel P ki VJ. In accordance with [Sécherre 2004, 2.3.1] (see also [Bushnell
and Henniart 1996]) the family of idempotents e = (ey, ..., €,-) is a decomposition which conforms to
A over E.

By 1.4.8 and 1.5.2 of [Sécherre 2005b] there exists a unique hereditary order 2((E) normalized by
E* in A(E) whose radical is denoted by B(E). For every i € {1, ..., m’} we have an isomorphism
Endp (V') = A(E) of F-algebras which induces an isomorphism of Or-algebras between the hereditary
orders 2A(A’) and 2(E). Moreover, to the choice of the basis 2 corresponds the isomorphisms M,, (D) =
B of E-algebras and M, (A(E)) = A of F-algebras.

Remark 2.1. If U(A) N B* is a maximal compact open subgroup of B>, these isomorphisms induce an
isomorphism B = M,,,(Op’) of Og-algebras and, by Lemma 1.6 of [Sécherre 2005a], two isomorphisms
A= M,y (A(E)) and P = M,y (B(E)) of Op-algebras.
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We can associate to [A, n, 0, ] two compact open subgroups J = J(8, A), H = H(B, A) of U(A)
(see 2.4 of [Sécherre and Stevens 2008]). For every integer k > 1 we set Jk= Jk(ﬁ, AN)=J(B, A)NU(AN)
and H* = H*(B, A) = H(B, A) N Ui (A) which are pro-p-groups. In particular J! and H'! are normal
pro-p-subgroups of J and the quotient J'/H! is a finite abelian p-group.

Remark 2.2. We have J = (U(A) N B*)J! and this induce a canonical group isomorphism
J/J'=UM)NB™)/Ui(A)N BY)

(see Section 2.3 of [Minguez and Sécherre 2014b]). It allows us to associate canonically and bijectively a
representation of J trivial on J toa representation of U (A) N B* trivial on U;(A) N B*.

2A. Simple characters, Heisenberg representation and B-extensions. Let [A, n, 0, 8] be a simple stra-
tum of A. We denote by €z (A, 0, B) the set of simple R-characters (see Section 2.2 of [Minguez and
Sécherre 2014b] and [Sécherre 2004]) that is a finite set of R-characters of H' which depends on the
choice of an additive R-character of F which has been fixed once and for all. If m € N* and [/~\, n, 0, B]
is a simple stratum of M,; (D) such that there exists an isomorphism of F-algebras v : F[B] — F [B]
with v(8) = B, then there exists a bijection ¢x(A, 0, 8) — %r (]\, 0, ,3) canonically associated to v,
called the transfer map. There also exists an equivalence relation, called endoequivalence, among simple
characters in € (A, 0, B) (see [Broussous et al. 2012]) such that two of them are endoequivalent if they
have transfers which intertwine. The equivalence classes of this relation are called endoclasses. Let
0 € €r(A, 0, B). By Proposition 2.1 of [Minguez and Sécherre 2014b] there exists a finite dimensional
irreducible representation 1 of J!, unique up to isomorphism, whose restriction to H' contains 6. It is
called the Heisenberg representation associated to 6. The intertwining of n is Ig(n) = J'B*J! = JB*J
and for every y € B* the R-vector space I,(n) = Hom iq;1)y (1, n¥) has dimension 1.

A B-extension of 1 (or of 6) is an irreducible representation « of J extending »n such that I (k) =J B> J.
By Proposition 2.4 of [Minguez and Sécherre 2014b], every simple character 6 € (A, 0, ) admits
a B-extension k and by formula (2.2) of [Minguez and Sécherre 2014b] the set of B-extensions of 0 is
equal to

B(0) ={x ® (x o Np/g) | x is a character of O, trivial on 1+ pg},

where N/ is the reduced norm of B over E and x o N/ is seen as a character of J trivial on J 1
thanks to Remark 2.2. We observe that for every x € B(0) and every y € B*, the R-vector space I, (k)
has dimension 1 because it is nonzero and it is contained in 7, (n).

2B. Maximal simple types. Let [A, n, 0, 8] be a simple stratum of A such that U (A)N B> is a maximal
compact open subgroup of B*. By Remarks 2.1 and 2.2, there exists a group isomorphism J/J!' =
GL, (¢p), which depends on the choice of A.

A maximal simple type of G associated to [A, n, 0, 8] is a pair (J, A) where A is an irreducible
representation of J of the form A = ¥ ® o where « € B(0) with 6 € €r(A, 0, B) and o is a cuspidal
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representation of GL,,/(£p) identified with an irreducible representation of J trivial on J I Ifoisa
supercuspidal representation of GL,,/(¢p/) then (J, A) is called maximal simple supertype.

Remark 2.3. The choice of a B-extension x € B(f) determines the decomposition A = k @ o. If we
choose another B-extension k" =k ® (x o Np/g) € B(f) we obtain the decomposition A = k' ® o’ where
o =0 X (X_l ONB/E)-

2C. Covers. Let M be a Levi subgroup of G, let P be a parabolic subgroup of G with Levi component M
and unipotent radical ¢/ and let /~ be the unipotent subgroup opposite to /. We say that a compact open
subgroup K of G is decomposed with respect to (M, P) if every element k € K decomposes uniquely as
k = kikoks with ky € KNU™, kp € KN M and k3 € K NU. Furthermore, if 77 is a representation of K
we say that the pair (K, 7) is decomposed with respect to (M, P) if K is decomposed with respect to
(M, P) and if K NU and K N~ are in the kernel of 7.

Let M be a Levi subgroup of G. Let K and K4 be two compact open subgroups of G and M
respectively and let o and o be two irreducible representations of K and K respectively. We say
that the pair (K, o) is decomposed above (K rq, or) if (K, 0) is decomposed with respect to (M, P) for
every parabolic subgroup P with Levi component M, if K N M = K¢ and if the restriction of o to K ¢
is equal to o 4. For a parabolic subgroup P of G with Levi component M and unipotent radical U/, let
oy be the Jacquet module of ¢ and r;; be the canonical quotient map ¢ — gy. A pair (K, o) is a cover
of (K, opm) if it is decomposed above (K o, 0rq) and if for every irreducible representations & of G
the map Homg (0, m) — Homg , (0nm, 7u), given by ¢ — 174 0 ¢ for every ¢ € Homg (o, ), is injective
(see Condition (0.5) of [Blondel 2005]). For more details see [Blondel 2005; Vignéras 1998].

3. The isomorphisms 73 (G, ) £ (B>, U1j(A) N BX)

Using the notation of Section 2, let [A, n, 0, 8] be a simple stratum of A such that U(A) N B> is a
maximal compact open subgroup of B*. Let 6 € €r(A, 0, B) and let n be the Heisenberg representation
associated to 0. In this section we want to prove that the algebras 5% (G, n) and & (B>, U1(A) N BX)
are isomorphic (Theorem 3.43).

Henceforth, for a given m € N, we denote by [, the identity matrix of size m. Thanks to Section 2,
from now on we identify A with M, (A(E)), G with GL,y(A(E)), U (A) with GL,,;(R(E)), U1 (A) with
b + My (B(E)), B with GL,,(D"), Kz = U(A) N B* with GL,,,(Op/) and K}, = U;(A) N B* with
U + M, (7). By Section 2.4 of [Chinello 2017] we know a presentation by generators and relations of
the algebra sz (B>, K };) =7(B*, K llg) ®z R. Using this presentation we want to find an isomorphism
between #% (B>, K ) and #%(G, n).

3A. Root system of GL,,. In this section we recall some notation and results on the root system of GL,,/
contained in Section 2.1 of [Chinello 2017].

We denote by ® = {«;; | 1 <i # j <m'} the set of roots of GL,, relative to the torus of diagonal matrices.
Let @t ={ojj |1 <i<j<m},® =—-® " ={o;;|1<j<i<m}and & ={a;;41 |1 <i <m' —1}
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be, respectively, the sets of positive, negative and simple roots relative to the Borel subgroup of upper
triangular matrices. For every o = «; ;41 € £ we write s, or s; for the transposition (i, i 4+ 1). Let W be
the group generated by the s; which is the group of permutations of m’ elements and so the Weyl group
of GL,,/. Let £ : W — N be the length function of W relative to sy, ..., sp/—;. The group W acts on ®
by wa;;j = ayiyw(j) and for every w € W and o € ¥ we have (see (2.2) of [loc. cit.])

o )_{Z(w)+1 if wa € @, 3)
W)=V gy =1 if wa e .

Remark 3.1. By Proposition 2.2 of [loc. cit.] we have £(w) = [®T Nw® | = |®~ NwdT|.

For every P C £ we denote by @7 the set of positive roots generated by P, ®, = —®5, ¥V, =&\ d}
and ¥V, = —\IIIJ;. We denote by Wp the subgroup of W generated by the s, with o € P and by P the
complement of P in ¥. We abbreviate & = {a}.

Example. If « = a1y then @ = {aj j11 € | j #i}, U] ={om € @ |1 <h <i <k <m'} and
o =fae® | 1<h<k<iori+l<h<k=<m'}

Proposition 3.2. Let P C X and let w be an element of minimal length in wWp € W/ Wp. Then wo € ®F
for every a € (I>’; and for every w' € Wp we have L(ww') = £(w) + £(w’).

Proof. Proposition 2.4 and Lemma 2.5 of [Chinello 2017]. Il

Proposition 3.2 implies that in each class of W/ Wp with P C X, there exists a unique element of
minimal length and the same holds in each class of Wp\W.

b o ) withi €{0,...,m'}, defined in Section 2.2

of [loc. cit.], with elements of B> and then of G. For olzn - a1 € X we write 7, = 7;. Let A and A be

If @ is a uniformizer of Op we identify 7; = (

the commutative monoid and group, respectively, generated by 7, with « € X. Then we can write every
element  of A uniquely as 7 =[], tie with iy in N and uniquely as T = diag(1, w®, ..., w-1)
with0<a; <---<ay,_;. Inthis case we set P(t) ={a € X |iy=0}andif P C{0,...,m}orif PC X
we write Tp in place of ]_[xep 7,. We remark that if P C X then P(tp) = P.

3B. The representation np. Let M = A(E)* x --- x A(E)* (m' copies) which is a Levi subgroup of
G and let P be the parabolic subgroup of G of upper triangular matrices with Levi component M and
unipotent radical ¢/. Let P~ be the opposite parabolic subgroup of P and I/~ its unipotent radical.

We write U = KpNU, M = KpN M and Ip = K}gMU. Then U is the group of unipotent upper
triangular matrices with coefficients in Op, M is the group of diagonal matrices with coefficients in O},
and Ip is the standard Iwahori subgroup of Kp.

We denote by W the group W x A of monomial matrices with coefficients in & which is called the
extended affine Weyl group of B*. We recall that B* = [z W I and actually it is the disjoint union of
Ipwlg with b € W.

Remark 3.3. By Proposition 2.16 of [Sécherre 2005a], which works for every decomposition that
conforms to A over E and not necessarily subordinate to 98, the groups J' and H'! are decomposed with



1686 Gianmarco Chinello

respect to (M, P). Moreover, if M'=[]'_, GL,, (A(E)) with Y i_ym.=m’is astandard Levi subgroup
of G containing M and P’ is the upper standard parabolic subgroup of G with Levi component M’, then
J! and H' are decomposed with respect to (M’, P’).

Let 3' =3B, A) and H! = H'(B, A) be the Op-lattices of A such that J' =1+J' and H! =1+ 6!
(see Section 3.3 of [Sécherre 2004] or Chapter 3 of [Bushnell and Kutzko 1993]). Then they are
(B, B)-bimodules and we have wJ' C $H' c J! € M, (B(E)).

Since VI = N for every i € {1, ..., m'}, we can identify every A’ to a lattice sequence Ao of N with
the same period as A, every e’ to an element By € A(E) and (A) to A(E). By Proposition 2.28 of
[Sécherre 2004] the stratum [Ag, n, 0, Bp] of A(E) is simple and the critical exponents ko(8, A) and
ko(Bo, Ag) are equal (for a definition of the critical exponent see Section 2.1 of [Sécherre 2004]). This
implies that 8 is minimal (i.e., —ko(8, A) = n) if and only if By is minimal. We write 3(1) =3 (Bo, Ao),
90 =5"Bo. o). Jg = I (Bo. Ao) =1+ and Hj = H'(Bo, Ag) = 1 + 5.

Proposition 3.4. We have J' = M,y (3}) and $' = M,., (H)).

Proof. We prove the result only for J! since the case of $' is similar. We have to prove that for
every i, j € {1,...,m’} we have e/ J'e/ = J}. We need to recall the definition of J(8, A) = J°(B, A)
and of 1T’“(,B, A) with k > 1. By Proposition 3.42 of [Sécherre 2004] if we set ¢ = —ko(B, A) and
s = [(g +1)/2] (where [x] denotes the integer part of x € Q) we have J(8, A) =*B +*P* if 8 is minimal
and J(B, A) =B +J*(y, A) if [A, n, g, y] is a simple stratum equivalent to [A, n, g, B]. Then, if B is
minimal, Jk(,B, AN)=J(B, N) D‘Bk is equal to 0k + P if0<k <s—1andto ‘Bk if k > 5. Otherwise,
if [A,n, g, y] is a simple stratum equivalent to [A, n, ¢, 8], J5(B, A) is equal to QF + 3 (y, A) if
0<k<s—1andtoJk (y, A) if k > 5. Similarly we obtain that if By is minimal then gk (Bo, Ao) is equal
to pf), +P(E)* if 0 <k <s— 1 and to P(E)* if k > 5. Otherwise, if [Ag, 1, g, yo] is a simple stratum
equivalent to [Ag, 1, g, Bol, I (Bo, Ao) is equal to ¥, +3J* (1o, Ag) if k <s—1and to J¥(y, Ag) if k > .
We prove that ¢! 3¥(8, A)e/ = F*(Bo, Ag) for every k > 0 by induction on ¢. If ¢ = n and so if 8 and By
are minimal, since Q = M, (pp/) and B = M, (B(E)) we have ¢! Qke/ = golz), and e'Pre/ = P(E)K
for every k and so ¢/ JX(8, A)e! = JX(By, Ag) for every k > 0. Now if ¢ < n and so if g and B, are
not minimal, by Proposition 1.20 of [Sécherre and Stevens 2008] (see also the proof of Theorem 2.2
of [Sécherre 2005b]) we can choose a simple stratum [Ag, 1, g, o] equivalent to [Ag, n, g, Bo] such
that if y is the image of yy by the diagonal embedding A(E) — A then [A, n, g, y] is a simple stratum
equivalent to [A, n, g, f]. By the inductive hypothesis we have el gk (y, ANel = Jk(yo, Ay) for every
k > 0 and then we obtain ¢! J*(8, A)e/ = J*(By, Ao). O

Let 6y be the transfer of @ to €& (A, 0, B). Since H' is a pro- p-group, proceeding as in Proposition 2.16
of [Sécherre 2005a], the pair (H', 6) is decomposed with respect to (M, P) and the restriction of 6 to
H'NM= H(} X o X H(} is ng’m/. We remark that in general (J!, n) is not decomposed with respect
to (M, P). We denote by ng the Heisenberg representation of 6y and we can consider the irreducible
representation g = n3™ of JL = J ' NM=J} x---x Jj.
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We put JL=U'nP)H! and H717 = (J'NU)H" which are subgroups of Jh They are normal in J!
because H'! contains the derived group of J'. Moreover, J NP normalizes 1713 because H'! is normal in
J and J' NP is normal in J NP. Then J}, is normal in J'(J N P).

Remark 3.5. Taking into account Remark 5.7 of [Sécherre and Stevens 2008], Proposition 5.3 of
[Sécherre and Stevens 2008] states that 1713 and H713 are decomposed with respect to (M, P) and so we have
Jp=(H'""U) I}, (J'NU) and Hp = (H'0U™)(H'NM)(J' ). Moreover, if M'=]T;_; GL, (A(E))
with ) ;_, m! =m’ is a standard Levi subgroup of G containing M and P’ is the upper standard parabolic
subgroup of G with Levi component M’, then J713 and H}D are decomposed with respect to (M, P’).

Let 6p be the character of H}; defined by Op(uh) =6 (h) for every u € J 'Nif and everyhe H I Since
J! is a pro-p-group, proceeding as in Proposition 5.5 of [Sécherre and Stevens 2008] we can construct
an irreducible representation np of J., unique up to isomorphism, whose restriction to Hp ! contains Op.
Actually it is the natural representation of J7> on the J! N¢f-invariants of 7. Furthermore, ind” P! (777)) 1s
isomorphic to n, Ig(np) = J B* J1 and for every y € B* we have dimg(/,(np)) = 1. We remark that
(J5, np) is decomposed with respect to (M, P) and the restriction of np to J! ‘M 18 A We denote by
Vi the R- Vector space of nnq and np.

Since 1nd (np) is isomorphic to 1, we can identify the R-vector space V, of n with the vector space
of functlons (p J' — Vy such that o(xj) = np(x)e(j) for every x € Jl and j € J'. In this case
n(j)e : x = @(xj). By the Mackey formula, V4 is a direct summand of V, and we can identify it with
the subspace of functions ¢ € V;, with support in 172. This identification is given by ¢ — ¢(1) whose
inverse is v — ¢, where the support of ¢, is J71> and ¢, (1) =v. Let p : V;, — Vj be the canonical
projection, i.e., the restriction of a function in V;, to J. L andlett: Vi — V), be the inclusion.

Remark 3.6. In general we cannot define a representation kp of Jp = (JNP)H I as in Section 2.3 of
[Sécherre 2005a] or in Section 5.5 of [Sécherre and Stevens 2008], because the decomposition e conforms
to A over E but it is not subordinate to 8. In our case (8 maximal) the only decomposition which
conforms to A over E and is subordinate to ‘B is the trivial one.

Lemma 3.7. (1) Forevery j € J71, we have n(j)ot=tonp(j)and pon(j) =np(j)o p.
(2) Forevery j € J' we have
np(j) ifj€Jp,

pon(j)ot= {0 otherwise.

(3) Xjesiyunn(j)otopo n(j~) is the identity of Endg(Va).

Proof. To prove the first point, let ¢, € Vi and ¢ € V,. Then n(j)(t(¢y)(1) = @u(j) = np(j)v

and p(n(j)(¢))(1) = ¢(j) = np(j)e(1). To prove the second point we observe that if j € J}, then

pon(j)ot=poronp(j)=np(j) whileif j ¢ J} the support of n(j)(t(¢,)) is in J5j~! for every

¢y € Vo and so pon(j) o= 0. Finally, to prove the third point we observe that for every ¢ € V, the

function ¢; = (n(j) oo pon(j~'))¢ has supportin J}j =" and ¢; (=1 = (i 71). 0O
We consider the surjective linear map w : Endg(V,) — Endg (V) given by f+— po fou.
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Lemma 3.8. The map ¢ : 7%(G, n) — #%(G, np) defined by ® +— o ® for every ® € 5#3%(G, n) is an
isomorphism of R-algebras. Moreover, if the support of ® € % (G, n) is in J'xJ' with x € B* then the
support of { () is in J};x J713.

Proof. Let ® € #%(G, n). Then the support of i o @ is contained in the support of ® which is compact.
Furthermore, for every xp, x; € J71j and every j € J! we have w(@x1jxz)) =pon(x)o®(j)on(xy)ot
which, by Lemma 3.7, is np(x1) o u(®(j)) o np(x2). Hence, ¢ is well defined and it is R-linear. Let
d, D, € #%(G, n). For every g € G we have

(Lo @) *(no®))(@)= Y podi(x)oropody(x 'g)ot
xeG/J}
Y ) podi(y)oiopodr(zly g ou

1 1
veG/J' zeJl /I,

> pocbl(y)o( > n(z)owpon(z_])>o<I>z(y_1g)0L

yeG/J! zeJ'/J}
Y po®i(y)od(y g o
yeG/J!

(Lemma 3.7) = (o (P % P7))(g)

and so ¢ is a homomorphism of R-algebras. Let ® € % (G, n) such that po ®(g) ot =0 for every g € G.
Then by Lemma 3.7, for every g’ € G we have

o(g)= > n@notopon(iHo®)o D n(j)oropon(i"h

el ik VAN

= Y nGoto(po®(ji g jonoponiiyh
J1ped! 17}
=0

and then { is injective. Now, we know that % (G, ) =Endg (1nd 7 ), #%(G, np) =Endg (1nd I (np))

and 1nd (np) = 1. Then by transitivity of the induction we have %z (G, n) = #%(G, np) and then ¢
must be leGCtIVG Furthermore, if ® € .#%(G, n) has support in J!'xJ! with x € B* then the support of
¢(@)isin J'xJ' NIg(p) = JxJ' NILB*JL = Jhx ). O

Lemma 3.9. Let x1, xo € B* and let f; € #%x(G,n) i,y and f; = ¢(fi) fori € {1,2}.
(1) If x1 or x, normalizes J71, then the support of fl * fz isin J713x1x2J71, and
(fi# ) @ix2) = fi(xn) o fo(x2).
(2) If x1 or x, normalizes J' then the support Off] * fz isin J71)x1sz7l> and

(fi* f)(x1x2) = po fi(x1) o fo(x2) 0.
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Proof. The first point follows from Remark 1.2. If x; or x, normalizes J!, by Remark 1.2 the support of
f] * fg isin Jlx;xyJ! and so the support of fl * fz = g“(f] * f~2) isin Jlx;xoJ N Ic(np) = ]713x1x2J713
and moreover

(fi* f2)(x1x2) = L(fi % H)(x1x2) = po fi(x1) o fr(xa) ot O

Lemma 3.10. For every x € B* N M and every y € Ig(np) which normalizes J/{/l we have I, (np) =
I:(nm) and 1,(np) = I,(naq). Moreover, every nonzero element in I,(np), with z € Ig(np), is invertible.

Proof. For the first assertion, in both cases the R-vector spaces are 1-dimensional and so it suffices to prove
an inclusion. Since 7 is the restriction of np to J/lw for every x’ € I (np) we have I, (np) C Ly ().
For the second assertion, we observe that I (np) = J7IDBX J71j = J71>I B WI B J713. Now Iz normalizes J713
since it is contained in J'(J NP) while W normalizes J},. Take z = 212023 € Ig(np) with z1 € JL 15,
22 € W and z3 € lp 1713 and take a nonzero element y in I,(np). Let y; and y3 be invertible elements in
szl (np) and in 1151 (np) respectively. Then y; o y o y3 is a nonzero element in /., (np) = I, (nr() and so
it is invertible. [

3C. The isomorphism % (J,n) = #x(Kp, K 11, ). We now prove that the subalgebra % (Kp, K 113) of
JR(B™, K}g) is isomorphic to the subalgebra 7% (J, np) of #% (G, np) and so to H#z(J, n).

In accordance with Chapter 2 of [Chinello 2017], we denote by f, € #&(B*, K }9) the characteristic
function of KéxK}; for every x € B and we write &P, = & x D, for every & and &, in S#R(B*, Kll;,),
in % (G, n) or in % (G, np).

We observe that every element in .##% (J, np) has supportin J N J};B X J71> = J71,(J NB X)J}; = J71>K B J71,
and so its image by ¢! has support in J'KzJ!. This implies that ¢ induces an algebra isomorphism
from s (J, n) to H#%(J, np). We also remark that 73 (Kp, K 113) is isomorphic to the group algebra
R[KB/Kllg] = R[J/J"], then we can identify every ® € % (Kp, Kll;) with a function ® € #%(J, J').

From now on we fix a S-extension x of 1. We recall that resj1 k=mn,Ig(n) =Igk)=J'B*J" and
for every y € B* we have I,(n) = I,,(x) which is an R-vector space of dimension 1. Then V;, is also the
R-vector space of « and k(j) € I;(n) for every j € J.

Lemma 3.11. The map ®’ : 5#(K3p, Ké) — H#%(J, n) defined by ® — ®Q« for every ® € #z(Kp, Ké)
is an algebra isomorphism.

Proof. The map is well defined since for every ® € #z(Kp, Ké) we have ® @k : J — Endg(V;) and

(@®K)(j1jj)=P(re(rij) =n(i)o(@()k(j)on(j)) forevery j € J and ji, j; € J'. Itis clearly
R-linear and

O (@ D))= Y PP Nk = D PP e(x) o (x7! )
xelJ/J! xeJ/J!

= Y (@1 @r@) o (B2lx Pre(x! ) = (O (1) ¥ O (@2)())

xelJ/J!
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for every @, ®, € H#%(Kp, K}g) and j € J. Hence, ®' is an R-algebra homomorphism. It is injective
because « (j) € GL(V,) forevery j € J. Let f € #%(J, n) and j € J. Since f(j) € I;(n) =Hom i (n, n/),
which is of dimension 1, we have f(j) € Rk (j) and then we can write f(j) = ®(j)x(j) with & : J — R.
Since f € % (J, n), for every j; € J' we have

® (i) = FGri) =nGoFG) =nGo®Ge() = D)
and so ® € #%(J, J'). We conclude that ®’ is surjective and then it is an algebra isomorphism. U

Composing the restriction of ¢ to #%(J, n) with ® we obtain an algebra isomorphism 7% (K g, K }3) —
H&(J, np). For every x € Kp let f; = O'(fy) € #%(J, n) which is given by fx(y) = k(y) for every
ye JixJ' = J'x and let f, = (fy) € #&(J, np) which is given by fi(z) = p ok (z) o« for every
z€ JhxJp.

3D. Generators and relations of 7#x(B*, K 11;). In this section we introduce some notation and recall
the presentation by generators and relations of the algebra 7% (B>, K }g) presented in [Chinello 2017].
We set 2 = Kg U {1, ro_l} U{ty |a € £} and L = {f,, | € 2} which is a finite set. We now define
some subgroups of G, through its identification with GL,,/(A(E)). For every o = o;; € ® we denote by U,
the subgroup of matrices (anx) € G withay, =1forevery h € {l,...,m'}, a;j € A(E) and ap, =0if h #k
and (h, k) # (i, j). For every P C ¥ we denote by M p the standard Levi subgroup associated to P and by
U;{ and U}, the unipotent radical of, respectively, upper and lower standard parabolic subgroups with Levi
component M p. We remark that M = Mg, U =Ugz and U™ = U, . Thus, we have Ll; = Haew; U, and
Up = Hae\y; Uy. Furthermore, if P; C P, C ¥ then Z/{Ifz is a subgroup of LI;,“I and U} a subgroup of Up, .

Remark 3.12. By Proposition 3.4, if we take & = o;; € ® and (ap) in Uy N J' or Uy N H' then a;; is in
J5 or ], respectively.

Remark 3.13. In accordance with Section 2.2 of [Chinello 2017] we set Mp = MpNKp, U ;f = L{;S NKpg
and U, =U, N Kp forevery P C ¥ and U, =U, N Kp for every o € ®.

As in Section 2.3 of [Chinello 2017], for every ¢ = «; ;11 € £ and w € W we consider the following sets:
Aw, ) ={w() |i+1=<j<m'}, Bw,a)={w(j)—1]i+1<j<m'}, P(w,a) =A(w, )\ B(w, a),
P(w,a)={a;;j11€X|i€e P (w,a)}and Q(w, «)=B(w, o)\ A(w, ). We remark that Tp/(y.a) =Tpw.a)
because 0 ¢ P'(w, o) and 7,y = ,,y. Moreover, if « = ; ;41 € X, w’ € W and w is of minimal length in
w' Wy € W/ Wy then we have

m’ !

m
-1 -1, —1 —1 —1
=wLw - = l_[ WTp-1T, w = l_[ Twm—1Tym) = Tp(w,0) TOW,a)-
h=i+1 h=i+1

w/rl-w’*l

Lemma 3.14. The algebra 7% (B>, K 113) is the R-algebra generated by Q subject to the following

relations:

(1) fi=1foreveryk e K" and Sy Joo = frok, for every ki, ko € K.
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Q) fro Sz =1 and froi fo = [t foo1 for every 0 € Q.
(3) fe fx = fr oot fr, for every a € T and x € M.

4) fufe, = fo, fueUy witha' € \Dg,for every o € X.
(5) frofu=fr, ifu €Uy witha' €V, for every a € X.
(6) fr, fr, = fr, fr, foreverya,a’ € X.

7 (]_[a,eP(w’a) f,a,)fwf,a St = qe(’”(]_[a,,eg(wm f,a,,)(zu fu)for every a € ¥ and w of minimal
length in wWy € W/ Wy and where u runs over a system of representatives of (UﬂwU‘w_l)Ké/Ké
inUNwU w™ L.

Proof. The only difference between this presentation and that in [Chinello 2017] is relation 3 which
is equivalent to relations 3, 4 and 7 of Definition 2.21 of [Chinello 2017] because M N K, U, with
o’ € ®; and Wy generate M. O

Hence, to define an algebra homomorphism from 7% (B>, K }3) to 7% (G, np), it is sufficient to choose
elements fw € R (G, np) for every w € Q2 such that the fw respect the relations of Lemma 3.14. We
remark thAat we can take fw € AR(G,np), Lwlh for every w € 2 and we recall that in Section 3C we have
defined f; for every k € Kp as the image of f; by 0 ©®'.

3E. Some decompositions of J},-double cosets. In this section we introduce some notation and some
tools that we will use to construct elements in %% (G, np)”ﬂi”) withi € {0,...,m' —1}.

Lemma 3.15. Let t € A and P = P(7).
(1) We have J3 = (J N\UR)(Jp N Mp)(JHNUE) = (JpNUETHNMp)(JpNUE).
(2) We have (JANUE)T C H' NUL C IANUS, (JhNUm)T c (' nUp)" c H' Ny = Jhnu;
and (]713 NMp)t = .1713 N Mp.
(3) We have (JLNU)T C I5NU, (JANUT)T CILNU™ and (JL)T = T L.
Proof. The first point follows from Remark 3.5. To prove the second point we observe that Remark 3.12 im-
plies that (JNUp)" = (J' N[ Tgeys Us)™ is contained in (I,y +a J')NUZ whichisin H' NUE C JHNU.
Similarly we prove (J! ﬁl/l;,)’_I C H'NU, . Moreover, since @ ~!'J} o =J} and o ~'H & = 5], we have
(J};ﬂ/\/lp)r = J},ﬂ/\/lp. To prove the third point, we observe that (J71> NU)* C ((J713ﬁ/\/lp)(171J mu;))f NU
which is in (J71> ﬁ/\/lp)(J71J ﬂl/{lf) NU = .171J NU. Similarly we prove (J71J ﬁL{_)T_I - J71> NU~. Finally,
since zzr_lfj(l)w = 3(1) we obtain (J/{/t)r = J/1\4- O
Lemma 3.16. Lett,7' € Aand w € W.
(1) We have JptJh = (Jp NUp ) TIp = Jpt(Jp NUS L) and Jpt= 0 = (Jp NUS )T Tp =
Tt IR N UL ).
(2) We have (JH)V J5 = (' nU™” NU™) I
(3) We have JJU™JLNU = JANU and JUITLNU™ = ThNU™.



1692 Gianmarco Chinello

(4) We have JhtJht'Ih = Thet I} and (I I50 (Ih)7 1 = I,
Proof. Let P = P(7).
(1) By Lemma 3.15 we have J71> = (J713 N L{;)(Jf; N Mp)(]}; ﬂZ/I;!) and so we obtain J71,IJ713 =
(J}; ﬂu;)t(J}D N ./\/lp)’(]}; OM;)’J}D which is equal to (J7£ ﬁL{;)rJ}; by Lemma 3.15. We prove
the other equalities similarly.
(2) Since (H' nU~H* ¢ J71> and (J}M)w = ‘I./lvl we obtain (171,)“’]713 =J! ﬂZ/[)wJ};. Moreover, we have
(N NU c J} and so (JHVJIL =T NUY NUT)IL.
(3) We have JU™J4 NU = (Jp NU((JH N MU~ (Jp N M) NU)(JH NU) which is contained in
(J713 NU)(P~ ﬂU)(J}; NU) = J}D NU. We prove the second statement similarly.
(4) By point 1, we have Jht J bt/ J) = Jht(Jp ﬂulf(r))r/JJ, which is equal to J1 7 r/(J;ﬂZ/l;f(f))f/J;. By
Lemma 3.15 it is iln Jhtt'(JHNU)T L C Jhtt'J) and so we ha}ve JhtIpt' I = Jhtt' I}, By po%nt 1,
(JR)TIHNIHT I} is contained in (JHNUT)TIHNIHNUT T = ((JpNUT)TIANIHNUT )T
which is contained in (U4~ J71) NY) J71) and so it is equal to J71, by point 3. U
Remark 3.17. We can prove results similar to Lemmas 3.15 and 3.16 with J! in place of J};.

Lemma 3.18. Let o« = o541 € X, w € Wand P = P(w,a). Then \IJ;{ Nwv, = o N wW, and
U NwW =& NwW. Ifin addition w is of minimal length in wWy € W/ Wy then ®T NwW; =
P o o o

et Nw® and @~ Nuw¥; =& Nuwd™.
Proof. This follows from Lemma 2.19 of [Chinello 2017]. O
From now on, we set 5(3(1), 55(1)) = [3(1) :55(1)] and 5(56(1), wﬁé) = [55(1) : wﬁé].
Remark 3.19. By Remark 3.12, for every o € ®, o’ € ®* and a” € &~ we have 5(3(1), 53(1)) =[J'NU,:
-1
H'NUy] and §(H), wH) = [H' NUy : (H' NUy) ™ = [H' NUyr : (H' NUy)%" ]. In particular
8(3(1), Y)(l)) and 8(55(1), wﬁ(l)) are powers of p and so they are invertible in R.

From now on we fix 1 <i <m’ — 1 and we consider @ = «; ;+1, w of minimal length in wW;,
P=P(w,a)and Q = O(w, a).
Remark 3.20. Lemma 3.18 implies that wi/; w™! ﬂL{; = wd~w ' NUT and wiffw™' N U =
wlw~! NU~. Moreover, we have £(w) = |\IJ:6r NwW, | = |\IJ[T’ N wlIJ;| by Remark 3.1.

We define

1

V(w, @) = (Jh Nwtd w™ nuz) )

which is a pro- p-group. We remark that it is equal to (J.5, N wifw ™! ﬂu_)wqflwfl by Remark 3.20 and
P group q P y
to (H'N wugw_l ﬂu;)w’a_l’”_l since J} NU; = H! nUy. Then V(w, «) is equal to

[T e'nwey="= T @0t = ] Gw+o'sHnu

o/ ewWINw a”eWinw-1w; o’ cwWINw
a P aQ P & P
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which is (I + @19 Nwif w™! NU. We remark that V(w, o) N Jp=JpNwidfw! NU, which
is equal to H' N wZ/[;w_l OL{IT) since J}; NU-=H'NnuU~.

Lemma 3.21. The group wU; w™'N Uy isin V(w, &), it normalizes V(w, o) N J and
—1 — 1 —1 - 1
(wU;w ﬂUﬁ)ﬂ(V(w,a)ﬂJp):wU;w ﬂUﬁﬂKB.

Proof. We recall that by Remark 3.13 we have wU w™' N Uy = widy w™! NU; NKp. Since Uy =
ra(Kllg N Uo/)rw_1 for every o’ € \Ilglr (see Lemma 2.9 of [Chinello 2017]), then we have wUé"{'rw_1 N U; =
(K}gﬂwUé’fw_lOU;)“’TJI”’_l which is contained in V(w, ). Moreover, the group ngw_lﬂU; normal-
izes V(w, a)ﬂJf; =V (w, «)NH' because we have wU;w_lﬂU; C K and K g normalizes H'. Finally,
since V(w, a)ﬂJ%:Hlﬂwu;w_lﬂM;, we have wU;w_lﬂU;m/(w, )N J} =wU;w_1ﬂU;ﬂH1
and, since Kz N H' = K};, it is equal to wUé'é'ruF1 N U; NKgNH' = wUé"t'rw_1 ﬂU; N K};. O

By Lemma 3.21 the group V' = (wU;w_1 N U;)(V(w, a)N J713) is a subgroup of V(w, ). We set
dw,a)=[V(w,a):V]eR
which is nonzero because it is a power of p.

Remark 3.22. We have V(w, o) N Jp = H' Nwlifw™' NU, = ecwwzne; H' N, . Hence, by
Remarks 3.19 and 3.20 we have

V(w, @) : V(w, @) NJpl = [@ ' H): 6011 =850, mH)) ™.

On the other hand we have [V(w, ) : V(w, @) N JA] = d(w, @)[V': V(w, @) N J5] which is equal to
dw, )[(wUTw ' NUTD)YWV(w, @)NJL) : V(w, @)NJA] and by Remark 3.20 to d(w, e)[wUw ™' NU™:
wUw™! ﬂU‘ﬂKé] =d(w, a)qaw) where ¢ is the cardinality of £p. So, if we denote 9 =3(33(1), wjﬁ(l))/q €
R* then d(w, @) = 3*™).

Lemma 3.23. We have (J1)™ JA N (J5)P% 7 IL = V(w, ) JA.

Proof. We have (J5)"% " = (H' nw™ 'Y~ w)% »  (JL)*% " (J' Nnw ™ 'Uw)% "', Now we con-
sider the decompositions H'nw U w=H"nw U wn)(H' Nnw U~ wnit~) and J' Nnw~yw =
'nwYwnuU) I Nw'YwN). By Lemma 3.18 we have J'Nw™'vw N~ = J'nw ™ dwnidy;
and so (J' Nw™'Yw NU~)% *" is contained in (J' N« ™" c (H' NU;)™ ' C J and, by
Lemma 3.15, (H' Nw~='s/~wni~)% " is contained in (H' NU~)%& ™ c (H' nU~H*"' ¢ J . Then,
since (J/I\,[)"”Jl"f1 = J, by Lemma 3.15 and since (H' N~ N wdw =P v = Y(w, a), we obtain
(J713)“”a_1w_l CV(w, oz)]};(]1 NUN wuw_l)wft;lwfl. By Lemma 3.16 and by previous calculations we
have
P IH O IR I = (A OUZ)™ OV (w, @) Jh (T NU Qwtdw ™)™ ™ JL) I,

Now, since wr, 'w™! = ‘L'élfp, the group V(w, «) is contained both in (Z/I}T))Tél”’ = (U}g)”’ and in
(Jf; ﬂu_)tél”’ C (J713 NUT)*P C (Jf;)”’ by Lemma 3.15. This implies V(w, o) C (J713 ﬂZ/{;)”’ and so
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(T IAN LY L =V(w, a)((] U™ NJp (I NuUNwUw=yw% @ L) JL. Now we have
(Jp UL NI NUNwWUw™ hywegw™ gL cu NJpUJ that is in J} by point 3 of Lemma 3.16. [

3F. The group W. In this section we use a presentation by generators and relations of W to find a
subgroup of Autg (V) isomorphic to a quotient of W.

Remark 3.24. We know that the Iwahori—-Hecke algebra (see 1.3.14 of [Vignéras 1996]) is a deformation
of the R-algebra R[W] and so it is not difficult to show that W is the group generated by si, ..., Smw_1
and T,/ subject to relations s;s5; = s;s; for every i and j such that |[i — j| > 1, s;5;415; = si115;5;41 for
every i #m' —1, 552 =1 for every i, T,/—18; = SiTyy—1 forevery i #m’ — 1 and T/ — 1S —1 T/ —18m'—1 =

Sm/—1Tm/—18m’—1Tm’—1-

Lemma 3.25. Leti € {l,...,m' — 1}, « = o j+1, w € W be of minimal length in wWy and ® €
IR (G, np)”ﬂi”’. Then the support offwcbfw_n isin J71>w'17,'w_1]71) and

(fu® fr-Dwrw™") =835, 5™ fu(w) o @ (1) 0 frp1(w™).

Proof. Since w and w~! normalize J', by Lemma 3.9 the support of fwcb fw-u is in J;wriw_lJJ,. We
recall that

(fu®fu-)wtiw™) = Y~ (fu®)(wrx) fum 7w,

xeG/Jh

By point 2 of Lemma 3.16, the support of the function x — (f, ®)(w;x) f,,-1 (x~'w™!) is contained
in (JYWEIL N IHVIL = (IHPEIAN I NUY NYT)Jp. Since w is of minimal length in wWj,
by Lemma 3.18 we have JInurnu- =J'nurn U, which is included in (J%)“”" because
U nuy)s T = (I nup)m Ny that by Lemma 3.15 is included in (H' N24;)*” N and
S0 in J71>. Hence, we obtain (J%;)“”" J71> N (J71>)wJ71; = nyv ﬂZ/{_)J%;. Now, since (J' Ny™ ﬂL{_)“’_1
and (J' NU” NU~)% " are contained in J' N and so in the kernel of np and since we have
[T U U Th IS =1 U U~ H U U~ 1=8(3), H5)™ we obtain ( f,, @ f,,- 1) (wriw™!) =
8(3(1), ﬁé)f(w)(fw ®)(wtj)o fwfn (w™1). To conclude we observe that by Lemma 3.9 the support of waD is
contained in Jj, ! wr, Jp ! and by points 1 and 2 of Lemma 3. 16 the support of x — ( fw)(wx)cb(x_ 7;) is in
(Jp)“’Jpﬂ(Jp)T JP J'nurnu~ )JPD(JPHL{ P ))T Jp, which is contained in (Umeu )JP = JP
by point 3 of Lemma 3.16. Hence, (fwcb)(wr,) = fw(w) o d(1;). Il

Lemma 3.26. Let w € W and a € 2. Then

pok(wsy)ot if wa > 0,

pok(wiotopok(sa)ot= {6(3(1),53(1))_1po/c(wsa)ot if wa < 0.

Proof. By Lemma 3.11 we have fwf;a = fwsa and then (fwfsa)(wsa) = p ok (wsy) ot. On the other
hand we have

(Fwfo)wse) = D" (fu)wx) fi, (7 'sa).

xeG/Jh
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Moreover, by point 2 of Lemma 3.16, the support of the function x fw(wx) fsa (xLsy) is contained
in (JOVILNIH) Ty = U Ibn It nussnu=ah = ()P IS NI NU_y) ) which is equal
to J if w(—a) < 0 and to (J' NU_g)J} if w(—a) > 0. Hence, if wa > 0 we obtain (£, fs,) (wse) =
pok(w)oto pok(sy)ot while if wa < 0, since (J! ﬂbl,a)w_] and (J' NU_y)% are contained in J' N/
and so in the kernel of 1 and since we have [(J' ﬂZ/l_a)Jf) : J713] =[J'NU_: H' NU_,] = 8(3(1), 536),
we obtain ( fy, fi, ) (wsy) = 830 HYpok(w)otopok(sy) oL O

From now on we fix a nonzero element y € I; ,  (np), which is invertible by Lemma 3.10, and a square
root 5(3(1), 55(1))1/2 of 8(3(1), 53(1)) in R. We consider the function f,m_l € #3%(G, np)hlﬂm_lj;) defined by
f,m,fl (J1tm—1j2) =np(j1)oy onp(j2) forevery ji, jo € 1713 and the subgroup W of Autg(Vy) generated
by y and by 8(3(1),53(1))1/2p01<(s,~) otwithie{l,...,m —1}.

Lemma 3.27. The function that maps s; to 8(3(1), .6(1))1/21) ok(sj)ot foreveryi € {l,...,m" — 1} and

Ty—1 to y extends to a surjective group homomorphism e : W — W.

Proof. Let § = 8(3(1), 55(1)). To prove that ¢ is a group homomorphism we use the presentation of W
given in Remark 3.24. For every i, j € {1,...,m’ — 1} such that i — j| > 1 we have &(s;)e(s;) =
dpok(si)otopok(sj)ot which, by Lemma 3.26, is equal to Spok (s;s;) ot =8pok(sjsi)ot=e(s;)e(s;).
For every i # m’ — 1 we have &(s;)e(si+1)e(s;) =83 />pok(si)oto pok(siy1) oto pok(s;) ot which,
by Lemma 3.26, is equal to 83/%p o k(sisiy15:)) ot = 87/2p o k(si418iSit1) ot = &(si11)e(s)e(Ssi41).
For every i we have £(s;)> = 8p o k(s;) ot o p o k(s;) o t which, by Lemma 3.26, is equal to p o
Kk (sjs;) ot which is the identity of Autg(Vx). Let 7 = t,y—; and ff = ftm_l. For every i #m’' — 1
we have &(7)e(s;) = 8'/2y o p o k(s;) ot which is equal to 8'/2(f; f,,)(zs;) since the support of x
fr (1) f5,(x71s;) is contained in (JB)T AN (IH) T = (JANUp ) TSN Iy Ny, ) T = T} Hence,
by Lemma 3.9 we have ¢(1)e(s;) = 61/217 o {_1(f,)(t) ok (s;) ot. Since g—l(f,)(r) el.(n) =1;(x)
and s; € J N JT we obtain &(t)e(s;) = 8'/2p o k(s;) o £ (fo) (1) ot = 8V2(f,, fr)(siT), which is
equal to 81/2p ok(sj)otoy = g(sj)e(r) since the support of x — }?s,- (s,-x)f,(x_lt) is contained
in (J5)%J5N (J713)’71J713 = (Jp N Uy, N TN Z/I;(r))flJ%)Jé = J5. It remains to prove the last
relation. Let s = s,y and T = t,y—;. Then tsts = 1,/_p = stst and by Lemma 3.9 we have
(fefs fef)@sts) = p o ¢ (fe fo fo)(xsT) 0 k(s) 0 1. Now, since ¢~ (f; £y fo)(xsT) € Ly () and
s =577 € JNJT, weobtain (fr fy fe ) (Twr—2) = por(s) ot T (fe fu f)(xstyor=(fi fo fs fo) (Tmr—2).

On the other hand we have

(fefs Fe ) @w—2) = (fe fs fe f)asTs) = D fr@0)(fsfe fi) @ s1s).
xeG/Jk
The support of x — f,(tx)(ﬁ.ﬁfs)(xflsrs) isin (H! ﬂl/{ar)’J}; with o' = @y ,—1 by Lemma 3.23.
For every x € (H' N,)7 the elements x7 ' and (x~ 1% are in H' N/ and so in the kernel of . Then

(fefs fo £9) @w—2) = (fo fe fs fo) (twr—2) is equal to 8(98, w$H)y o (f, fr f)(sTs) and by Lemma 3.25
it is also equal to 8(53(1), wﬁ(l))s(r)s(s)e(r)e(s). Now, if &” = o2 py—1 then &’ ¢ \IIO% W and so we
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AAAAA

£5(8) o (fe fs fr ) (twr—2) = 8(84, wﬁé)mé, 55)*“28(s)e(r)s(s)s(r)s(s)
and also to
fsfe s o) @mr—2) 0 fi(s) = (95, @ HHEFh, 950~ e(0)e(s)e(r)e(s)?
= 8(H0, mHYSFY. HY) " *e()e(s)e(r).

This implies &(1)e(s)e(t)e(s) = e(s)e()e(s)e(r) since both §(5)), @ $H) and §7!/2 are invertible in R.
We conclude that ¢ is a group homomorphism and it is clearly surjective. (|

Remark 3.28. For every w € W we have e(w) = §(J}, H) @2 pok(w) ot
Lemma 3.29. For every i € W we have (0) € Iy (np).

Proof. Since 1, is the restriction of np to the group J/IW we have e(w) = 8(3(1), 55(1))£<w)/2fw(w) e l,(Mam)
for every w € W and y € I , ,(nam). Then, since every w € W and 7,/ normalize J ', we have
e(w) € I;(naq) for every w € W and so e(@) € I3(np) by Lemma 3.10. O

Lemma 3.30. Foreveryt',t" € A,y' € I(np) and y" € I.»(np) we have y' oy”" =y" oy’.

Proof. We recall that for every T € A the vector space I;(np) is 1-dimensional and so there exist elements

///

¢/, ¢” € Rsuchthat y' =c’e(t’) and y” = ¢"e(t”). We obtain y' oy” =c'¢"e(t))oe(t”) =c'"e(z't") =

/ //S(T//‘L'/) _ )/ "o )/ 0
3G. The isomorphisms #%(G,np) = #r(B*, K}g). In this section we define the elements f,l. €
4% (G, T}']))J?l)n‘/;) for every i € {0, ..., m’ — 1} and we prove that fw with o € Q2 respect the relations of
Lemma 3.14 obtaining an algebra homomorphism from J#z (B>, K 119) to (G, np).

—iY(m'—i—1)/2

For every i € {0,...,m' — 1} we put y; = g &(t;) where 9 is the power of p defined in

Remark 3.22. Then y; is an invertible element in I, (np) and y,y—1 = y.

Lemma 3.31. We have, for everyi € {1,...,m' — 1},

m’

Vicroy ' =" et and = 1_[ " Me(y).
h=i+1
Proof. Since (m' — (i — 1))m' — (i —1)—1)— (m' —i)(m' —i — 1))/2 = m’ — i we have that
Yi_10 yl._l = 8m/_i8(‘t,'_1)8(‘5i)_1 = Bm/_is(ti_l ri_l). The second statement is true because

m'—i—1

im/_h: > j:<m’—i)<n21’—i—1>‘ -

h=i+1 j=0

For every i € {0, ..., m"— 1} we consider the function fz, e R (G, )’]73) Ihuh defined by fr, (Jitijo) =
np(j1) o ¥i o np( ]2) for every ji, j2» € J We remark that in general f, is not invertible but since 7y
normalizes Jp ! the function frO is invertible in S (G, np) with inverse f -1 7, 1J1 — Endr (V)
defined by f -1(Ty L= Yo O)]’p(]) for every j € J1
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Lemma 3.32. The map ©" : @ — #%(G, np) given by f., — fo for every f., € R is well defined.

Proof. The map is well defined on f; with k € Kp because ®' is a homomorphism and it is well defined
on 7; withi € {0, ..., m’ — 1} because K};r,-K}g = K}jthIl; implies i = j. O
Lemma 3.33. The function fri ffj is in #%(G, np)hl?mi”) and (ﬁi ﬁj)(ri Tj) =y oyj,foreveryi, j €
{0,...,m' —1}
Proof. If i or j is O then the result follows from Lemma 3.9 since 7y normalizes J713. Otherwise,
by point 4 of Lemma 3.16 the support of f,l. ﬁj is contained in J713r,- .171;‘17]' J713 = J713‘Ei‘fj J}; and the
support of x +— f,i (r,-x)ﬂj (x_ltj) is contained in (J713)Tf J71> N (Jf;)’f J71> = J71>. Hence, we obtain
(fr, fr)(Tit)) = erG/J;J fo(Tix) fr, 67 115) = fr(m) o fr, (1)) = vioy;j. U
By Lemmas 3.33 and 3.30 we obtain ﬁif;j = f;jf;l. for every i, j € {0,...,m' — 1}. So, if P C
{0, ..., m' — 1} we denote by yp the composition of y; with i € P, which is well defined by Lemma 3.30,
and by fr}, the product of f,l. with i € P, which is well defined because the f;i commute. Furthermore,
by point 4 of Lemma 3.16 we obtain that the support of ftl, is .]7131'1) J713 and by Lemma 3.33 we have

sz(TP) =yp.

Lemma 3.34. We have f,l.fx = ftl_”.—l f,,. foreveryie€{0,...,m'—1}andeveryx € Mg —=KpNMg
ifi #00rx € Kp ifi =0.

Proof. Since x normalizes J!, by Lemma 3.9 the supports of f,i fx and of ff[ o ffi are contained in
J};qx]f; and (ffi fx)(rix) = pog'_1 (fri)(‘fi) ok (x)ot, which is equal to poK(TixTi_l)o§_1 (f,l.)(rl-) oL=
(fyve1 ) (Tix) because £ 1 (fr) (1)) € I, (k) and x € J N J™. O
Lemma 3.35. Leti €{l,...,m' — 1} and a € \I!ai? Then for every u € Uy and u’ € U_, we have

J[Auft,- = fr,- and ft,-fu’ = fr,--
Proof. The elements tlfluri and tju't;”
the supports of fu ﬁi and of f,l. fu/ are in J713ur,~ J71, = J71)r,~ J713 = J713r,~u/ J713. Now since {‘1( f,l.)(r,') €
I.()) = I, (k) and u € JNJ% ', by Lemma 3.9 we have (f, f+)(ut;) = pox() o ¢~ (f:)(xi) ot =
pol ' (fi)(@)on(z 'ut;)or. By Lemma 3.7 we obtain ( f, fr,) (uti) = pol ' (fu) (i) otonp(r, 'ut) =
fo@)onp(r, ' ut)) = fr (ur). Similarly we have fy, (riu') = pot = (fo) (w) ok (') ot = pon(ziu't; o
¢~ (fx,) () ov which is equal to np (r;u't, Yo po g~ (fr) (t) ot = np(riu't, ) o fr (1) = fr, (rar'). O
We introduce some subgroups of G, through its identification with GL,,»(A(E)), in order to find the
support of f,P fw ﬁa fw_l. We recall that 2((E) is the unique hereditary order normalized by E* in A(E)
and P(E) is its radical.

Varein K}g C Jé and so, since u and u’ normalize J !, by Lemma 3.9

o Let Z be the set of matrices (z;;) such that z;; =1, z;; € @ 'B(E)ifi < j and zij=0if i > j.
e Let V be the group (J'N u)Z/l&_w_1 mug)ww" =[lwecww-rwtUm +o 3Ny C Z. We remark
@ T p
that it is different from V(w, ) defined by (4).

o Let /! be the group of matrices (m;;) such that m;; € 1 +*B(E), m;; € A(E) if i < j and m;; € P(E)
ifi > j.
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s Let W =W x M be the subgroup of B* of monomial matrices with coefficients in OF,. Then B* is
the disjoint union of Ig(1)wilp(1) with w € W, where I5(1) = K'U is the standard pro-p-Iwahori
subgroup of K g, i.e., the pro- p-radical of Ip.

Lemma 3.36. We have J)tpJhwro,w™ 0} = ThroV ).

Proof. We proceed in a similar way to the beginning of the proof of Lemma 3.23: we can prove
that J713wto[w_1J7]D = (J713 N wu&_w_l)wraw_ljfj. Now we consider the decomposition of the group
(J71> N wu&_w_l) into the product (171J Nwldy, w! ﬂZ/{_)(J}D N wZ/l&_w_1 NU). By Lemma 3.15 we have
(JhNwldy w='NU~) C I} and by Lemma 3.18 we have JA Nwtdy w™! Nl = JA Nty w™' Ut O

Lemma 3.37. Let 1 € A. If z € Z is such that I'tzI' NW # & then ['tzI' NW = {t}.

Proof. For every r € {1, ..., m'} we denote by A, Z(), i(]m and W, the subsets of GL,(A(E)) similar
to those defined for GL,, (A(E)). We prove the statement of the lemma by induction on r. If » =1 we have
Ay =L, Zq)={1}, i(ll) = 1+B(E) and W(;) = @ and we have (1 +B(E) (1 +B(E)) N’ =
o(1+B(E)N w? = {w?} for every a € Z. Now we suppose the statement true for every r < m’. Let
X,y € I such that xtzy € W. We proceed by steps.

First step: 'We consider the decomposition I' = (I' NU~)(I' NU)(I' N M) and we write x = x1x2x3
with x; € I! NU, xr € I'NY and X3 € I' N M. Then we have

xtzy = x17((r  0n)(r T )z g ) (e s T) .

We observe that 7~!x37 is a diagonal matrix with coefficients in 1 4+ B(E) and the conjugate of z by this
element is in Z. Moreover, T~ 'x,7 is in /' N/ and if we multiply it by an element of Z we obtain another
element of Z. If wesetz1 =7 'xox3tzr "%y 't e Zthen 'tz =1tz I and (I'NU )T I'NW # 2.
Hence, we can suppose x € I'nu-.

Second step: Leta; < --- < a, € N such that 7 = diag(ww®) and let s € N* such that ¢ = - - - = a; and
a) < agy1. We want to prove z;; € U(E) for every i € {1, ..., s} so we assume the opposite and we look
for a contradiction. Let v be the valuation on A(E) associated to (E) and let

b=min{v(mz;) |1 <i<s,1<j< m'},

k =min{l < j <m’ | there exists z;; with 1 <i < such that v(w“'z;;) = b}.

Let 1 <h < s be such that v(zw?' z;,4) = b. By hypothesis the element zj; is not in 24(E) and so & < k and

(a1 — DV(z) < b < av(w). (5)

We observe that for every i € {1,...,m'} and j > i we have v(w“z;;) > b: if i <s by definition of b and
if i > s because v(w“z;;) =a;v(w) +Vv(zij) > (a; — )v(w) > a;v(w) > b. We consider the coefficient
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at position (#, k) of xtzy which is equal to

/

m' m h !

m
DD e ey =) D Xne®  Zep Yk
e=1 f=1 e=1 f=e

since xp, =01if e > h and z,y =0 if f < e. Now,
o if e=h and f =k then v(xppao“ zpi yrr) = b because x, = 1, and yir € 1 +B(E);
o ife=hand f <k then v(xp,“ 2,7y r1) > b by definition of k;
e ife=hand f >k then v(xp,o“ 21y r1) > b because y € P(E);
o if e < h then v(xp. ™ zery ri) > b because xp, € P(E).

We obtain an element of valuation . Then b must be a multiple of v(z) because xtzy € W but this
in contradiction with (5). Hence, z;; € (E) for every i € {1, ..., s}. Now, we can write z = z'z" with
z;; =1 for all i, z;j =zjifie{s+1,...,m'}and j > i and zgj = 0 otherwise and z/; = 1 for all i,
Zf// =zjifie{l,...,s}and j >i and z;’J = 0 otherwise. Then z” € I' and so I'tzl' = I't7/I! and
(I'NU )t I'N'W # @. Then we can suppose z of the form (“6 (Z)) with 2 € Z(—g).

/
ij R
wise and x/; =1 foralli, x/; =x;; ifi € {1, ..., s} and j <i and x]; =0 otherwise. Then t~'x"z € I' and it

Third step: We write x =x'x" withx/, =1foralli, x|, =x;;ifi e{s+1,...,m'} and j <i andxi’j =0 other-

commutes with z. Then we can suppose x is of the form ()Ef,/ 2) with x”" € M —syxs(B(E)) and x € I(lm,_s).
@l 0

Fourth step: Let T = (7 ")) with £ € Agy_y) and y = (i; yyz) with y; € f(ls), V2 € My n—s)(RU(E)),
V3 € My—s)xs(P(E)) and y € I~(lm,_s). Then the product xtzy is

s 0\ (m®ly O\ (Is O\ (y1 y2\ _ [(@“Wn @y
X" % 0 #J\0z)\y; 5)7\ ¢t x'wuy,+i55

where r = x""@wy; + x7Zy;. Since xtzy is in W and since y; € f(ls) is invertible then % y; must
be in W, and so y; = [;. This also implies w®' y, =t = 0 since xtzy is a monomial matrix and so
@l 0

XTZy = ( 0 ﬁzy) with 72y € W, _s). Now, since f(%,_s)féf(lm,_s) N Wi —s) # &, by the inductive
hypothesis we have X7Zy = 7 and so xtzy = 7. O
Lemma 3.38. We have J5tp Jhwraw ' I NILB*JL = Jhto(U NwU w1 J].

Proof. By Lemma 3.36 we have J%tp J}Dwraw*IJ}; = J71,‘L'QVJ713. Now, since J' C M, (B(E)) we have
YV C Z and J71> c I' and so we obtain

ThtpIhwtew™ LN BX C I'tpZI' NKYyUWUK) = KLU 1o ZI' N W)UK,
(Lemma 337) = K yUtpUK j = K y1oUK j.

This implies J5tp Jhwt,w ' JANB* = T toVILNK pToUK ). Let now v € V be such that JhtovJ N
KitoUKp #@. Thenv e 1, INKproUKRIENY C 1, JhtoU IR NU. Now U = KgNUC I NP
normalizes J}; and so v € télJf)rQJ}JU N U which is in (‘L'§1(1713 ﬂZ/{é)tQJ}j NU)U by point 1 of
Lemma 3.16. Hence, by point 3 of Lemma 3.16 we obtain v € UJ713 NY cUJ'NVY. By Lemma 3.18 we
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have U NwU - w™!'=U 1’; NwU, w~! and proceeding in a way similar to the proof of Lemma 3.21 we
can prove U;{ N wU&_w_1 C V. We obtain

UJ'ny=UnwU - w HUunwuwHis'ny
=UNwU w HJ' U nwuwHny)
=UNwU w HJ ' w lvwnU) ﬂVw)wil-

By the definition of V we have V¥ = (J}; N wZ/I&_w_1 ﬂug)“”” C (U )™ CU™ and then uJj'ny c
(UNwU~-w HY(J'Unu~)*"" which, by Remark 3.17, is equal to (U N wU~w~1)J!. Hence v is in
UNwU w HI'NUIL=UNwUw™ ) (J'NU)J} which is contained in (UNwU w YK} =
wn wU‘w_l)JfD and so Jlth%wtaw_llfy N J7IJBXJ71j = J7131'Q(U N wU‘w‘l)J}D. O

Lemma 3.39. Foreveryu € UNwU~w™! we have
(fep fuo fry 1) (Tout) = ¢“®d(w, 0)8(F}, H) @ yp o pok(w)otoy;opok(w Yotopok(u)ot.

Proof. By Lemma 3.38 the support of f,P fwf,u fw—l is contained in J71>rQ(U N wU‘w‘l)Jf,. Let
ueUNwU w™". By Lemma 3.18 we have U NwU " w™! = U;{ NwU; w™!, by Lemma 3.35 we have
Sz, = fr, fw-1uw and by Lemma 3.11 we have f,,-1,,, fu,-1 = fu-1 fu. Since uisin U = KpNU C J NP,
it normalizes J, and then by Lemma 3.9 we obtain (fr, fu fr, fu-1)(Tou) = (fep fur fro fu1 fu) (Tou) =
(ffp fwfra fw—l)(rQ) o p ok (u)ot. It remains to calculate

(frpfwfrafw—l)(fQ): Z frp(TPx)(fwfrqfw—l)(x_lwrotw_l)-
xeG/Jh

By Lemma 3.23 the support of the function x +— fr,, (rpx)(fwﬁa fw-l)(x_lwraw_l) is in V(w, a)]717.
Now, since for every x € V(w, a) = (J71D N u)Z/lé"l'rw_1 ﬂU;)Wa_lw_l we have (x~)w@v ™' ¢ J}, NU~ and
X% e (JhNwllfw! mu;)fé‘ C (JLNU™)" which is in JL N2/~ by Lemma 3.15, then (x~)wmw”
and x™ are in the kernel of np. We obtain
(fep fo fru fur) (10) = V(w, @) : V(w, @) NH"1 fr, (tp) 0 (fu fr, fur ) wTaw ™)

Remark 3.22) = d(w, @)q"™ f1, (tp) o (fu fr, fr-1) (WTew™")

(Lemma 3.25) = d(w, @)q“ ™8 (33, 95) @ ypopor(w)otoyiopok(w ) ou.
The result follows. O
Lemma 3.40. We have yp =d(w, a)8(3(1), ,ﬁ(l))e(w)yp opok(w)otoy;opor(w ot

Proof. By the definition of P = P(w, o) and Q = Q(w, «) (see Section 3D) we have

m/
—1 _ =1 —1
Tp To =WTHW = Tw(h)fw(h)—l
h=i+1
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and so
o
vi'vo= 1 VauYwmw-1
h=i+1
'
(Lemma 3.31) = l_[ 8m/_w(h)8(‘l,'1;(lh)‘[w(h)_1)
h=i+1
w
:< l_[ amlw(h))g(wtiwl)
h=i+1
m’ m’
(Lemma 3.31) = ( l_[ 8’"/’”(}’))( l_[ 8hm’>g(w) oyioe(w™h)
h=i+1 h=i+1
m’ m’
(Remark 3.28) = ( ] a"’/w@))( I1 ahm’>5(3}), A W por(w)otoyiopok(w ot
h=i+1 h=i+1

= ( l_[ ahw<h>)5(35, ~?)é)““”p ok(w)otoy;op oK(w*I) olL.
h=i+1

It remains to prove that d(w, o) = ]_[f:i+1 3w Since by Remark 3.22 we have d(w, o) = 3t it is
sufficient to prove ZZ; 41 h—w(h) =£(w). We prove this statement by induction on £(w). If £(w) =1,
since w is of minimal length in w Wy, we have w = s, = (i,i 4+ 1) and

m' m’

Y h—why=i+l-wi+D+ Y h—wh)=i+l—i+0=1

h=i+1 h=i+2

Let now w be of length £(w) =n > 1. By Lemma 2.12 of [Chinello 2017] there exists «; ;41 € P and
w’ € W of length n — 1 such that w = s;w’. Then w’ is of minimal length in w’Wj and so we can use the
inductive hypothesis. Moreover, by definition of P, there exist i € {i+1,...,m'} such that j = w(h) and
j+1#w(h) foreveryhe{i+1,...,m'} and then w(h) = w'(h) forevery h € {i + 1, ..., m’'} different
from /. We obtain >3, | h —w(h) = ¥, _;(h — w(h)) +h — w'(h) + w' () — w(h) which is equal to

’

D th—w ) +h—wE)+ ;N —j= Y h—wh)+j+1—j=t@)+1=tw). O
h+#h h=i+1

Lemma 3.41. We have f,P fw ffa fw—l = qz(w)ﬁQ > fu where u runs over a system of representatives
of UNwU w HKY/K'inUNwU w™.

Proof. By Lemma 3.38 the support of ftP fw fr‘, qu is contained in J7131'Q(U NwU _w_l)J713. For every
u' € UNwU~w™!, by Lemmas 3.39 and 3.40, (ﬁpfwfrafw-l)(rgu/) is equal to

£(w)

¢"dw, @)8(F}, H0) ™ ypopok(w)otoy;opok(w Notopok)or=g""ygopor)or.
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To conclude we observe that (ﬁQ > fu)(rQu/) = (ﬁQ ﬁ,/)(rQu/) =ygopok(u')ot O
Proposition 3.42. The map ®" of Lemma 3.32 respect the relations of Lemma 3.14.

Proof. By Lemma 3.11 the map ®” respects relation 1. By Lemma 3.34 it respects relation 3 and
f_L_O—l fk = f;o_l ko fro—l for every k € Kp and by Lemmas 3.33 and 3.30 it respects relations 2 and 6.
Moreover, it respects relations 4 and 5 by Lemma 3.35 and relation 7 by Lemma 3.41. O

Theorem 3.43. For every nonzero y € I, (1) and every B-extension k of n there exists an algebra
isomorphism ©,, . : AR(B*, Ké) — (G, n).

Proof. By Proposition 3.42 and by Lemma 3.8 there exists an algebra homomorphism from #z (B>, K };)
to 7 (G, ) which depends on the choice of a B-extension of 1 and of an element in I ,  (np), which
is isomorphic to I; , () by Lemma 3.8. Let E be a set of representatives of K llg—double cosets of B*.
Then {f; | x € E} is a basis of (B>, K}g) as an R-vector space and, since Ig(n) = J'B*J! and
dimg(1,(n)) =1 for every y € I5(n), the set {®, (fx) | x € E} is a set of generators of #% (G, n) as an
R-vector space and so ©,, , is surjective. Moreover, the set {®,, ,(f,) | x € E} is linearly independent
and so ®,, , is also injective. g

Remark 3.44. Let « and «’ be two S-extensions of 7. By Section 2A there exists a character x of O
trivial on 14 gF such that k" =k @ (x o Np, ). If we consider x trivial on &g and we write ¥ = x oNp/E,
which is a character of B*, then ®;’}( 0®,  maps fr to x fx = x (x) f, for every x € B*.

4. Semisimple types

Using the notation of Section 2, in this section we present the construction of semisimple types of G with
coefficients in R. We refer to Sections 2.8-9 of [Minguez and Sécherre 2014b] for more details.

Let r € N* and let (my, ..., m,) be a family of strictly positive integers such that ) :_, m; = m. For
everyi € {1, ..., r} we fix a maximal simple type (J;, A;) of GL,,, (D) and a simple stratum [A;, n;, 0, §;]
of A; = M, (D) such that J; = J(B;, A;). Then, the centralizer B; of E; = F[f;] in A; is isomorphic to
M,y (D;) for a suitable E;-division algebra D; of reduced degree d; and a suitable m; € N*. Moreover,
U(A;)N B/ is a maximal compact open subgroup of B, which we identify with GL,, (Op)).

Let M be the standard Levi subgroup of G of block diagonal matrices of sizes my, ..., m,. The pair
(Jp, Am) with Jy =T, Ji and Ay = @);_, A; is called a maximal simple type of M.
Foreveryi e {1, ..., r} we fix a simple character 6; € ¥ (A, 0, B;) contained in A; and we observe that

this choice does not depend on the choices of the 8-extensions implicit in A;. Grouping 6; according their

endoclasses, we obtain a partition {1, ..., r} = |_|l I; with [ € N*. Up to renumbering the (J;, A;) we can

j=1
suppose that there exist integers 0 =ag <a; <--- <a;=r such that we have I; ={i e N|a;_; <i <a;}.
For every j € {1, ...,1} we denote ml = Ziel,- m; and m'J = Zielj m; and we consider the standard
Levi subgroup L of G containing M of block diagonal matrices of sizes m!, ..., m'.

Let j € {1,...,1}. We choose a simple stratum [A/, n/, 0, 8/] of M,,;(D) as in Section 2.8 of
[Minguez and Sécherre 2014b] (see also Section 6.2 of [Sécherre and Stevens 2016]); in particular we
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can assume that for every i € I; there exist an embedding ¢; : F[B/] — A; such that 8; = (;(8/) and
that the characters 6; with i € I; are related by the transfer maps. If we denote by B/ the centralizer of
EJ = F[B/]in M,,; (D), there exist an E/-division algebra D’/ and an isomorphism that identifies B/ to
M,,; (D7) and U (A7) N B> to the standard parabolic subgroup of GL,,; (O;) associated to m; with
i € I;. We denote by 6/ the transfer of 6; withi € I; to Gg(A’, 0, B/), which does not depend on i, and
we fix a B-extension «/ of 6/. In Section 2.8 of [Minguez and Sécherre 2014b] the authors define two
compact open subgroups J; C J(B/, AJ) and le c JY(B/, AJ) of G such that Jj/Jj1 =11 Jl-/Jl.l,

iEIj
and representations k ; of J; and 5; of J ].1 such that

VBN o~ JBIA)Y G TR~ _ Jj _
1ndle nj:rele(ﬂj’Aj)KJ, 1nde Kj=k’, JjﬂM_l_[Ji, resJ;licj_®Ki,

l'GI_/' iGI_,'
where «; € B(6;) for every i € I;. We denote by n; the restriction of «; to J L(Bi, A;) for every i € I;.
We obtain a decomposition A; = k; ® o; for every i € I; where o; is a representation of J; trivial on Jl.l.
We denote by o ; the representation ), 1; 0i viewed as a representation of J; trivial on J jl and we
setA; =k; ®0 ;. Then (J;, ;) is a cover of (]_[ielj Ji, ®i€,j Ai) by Proposition 2.26 of [Minguez
and Sécherre 2014b], (J;, ;) is decomposed above (]_[ielj Ji, ®i€1j /c,-) and (le, nj) is a cover of
(ITics, /' s, mi) by Proposition 2.27 of the same reference.
We set

r r r ! !
J,bzl_[]il, KM:®Ki, 7]M:®ni’ JL:HJJ" JL]ZHJ!’
i=1 i=1 i=1 Jj=l1 j=1
I I I I
XL=®XJ', KL:®Kj’ ’7L=®’7j7 ‘TL=®“J"
j=1 j=1 Jj=1 J=1

By construction (Jr,Ar) and (JLI, n;) are covers of (Jy, Ay) and JL, N ) respectively and (Jr, k)
is decomposed above (Jyy, kar)-

Proposition 2.28 of [loc. cit.] defines a cover (J, L) of (Jr, Ar) and so of (Jy, Apr), that we call a
semisimple type of G. If the (J;, A;) are maximal simple supertypes, we call (J, L) a semisimple supertype
of G. The semisimple type (J, A) is associated to a stratum [A, n, 0, 8] of A, which is not necessarily
simple (Section 2.9 of [loc. cit.]). We denote by B the centralizer of § in A, BLX =B*NL= ]_[ljzl BJ*
and J! = J NU;(A). By Propositions 2.30 and 2.31 of [loc. cit.] there exists a unique pair (J!, 5)
decomposed above (J Ll, ;) and so above (J Y ). Its intertwining set is Ig(y) = J B Z J and for every
y € B] the R-vector space I,(n) is 1-dimensional. We also have the isomorphisms

I3 =003 =1 14/9 =] Gl o).
i=1 i=1

We can identify o ; with an irreducible representation o of J trivial on J!. By Proposition 2.33 of [loc. cit.]
there exists a unique pair (J, «) decomposed above (Jr, k) and so above (Jy, k7). Moreover, we have
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5, K, A=k ®o0o and Ig(k) = JBLXJ. We denote by .# the finite group ]_[;:1 GLm; (ED;). Then

we can identify o to a cuspidal (supercuspidal if (J, A) is a semisimple supertype) representation of ..

n =res

Remark 4.1. The choice of S-extensions k/ € B(0/) for every j € {1, ...,1} determines k; € B(6;)
foreveryi € {1,...,r}, k/ forevery j € {1,...,1}, k; and k and so the decompositions A; = k; ® o},
Ai=k;jQ@ocjand A=k R®o.

4A. The representation max. In this section we associate to every semisimple supertype (J, L) of G an
irreducible projective representation 1,,,, of a compact open subgroup of G and we prove that the algebra
HR(G, Nmay) 18 isomorphic to #%(B;, K i) where K i is the pro- p-radical of the maximal compact open
subgroup of B .

For every j € {1,...,[} we choose a simple stratum [Apax, j, max, j» 0, B/1 of M,,; (D) such that
U(Amax, ;)N B/* is a maximal compact open subgroup of B/* containing U (A/) N B/ as in Section 6.2
of [Sécherre and Stevens 2016]. Then we can identify U (Apyax,j) N B/* to GL,,i (Opi). Let Jmax,j =
J(B/, Amax,j) and Jnllax,j =J! (,Bj, Amax,j). We can also choose Omayx,j € Cr(Amax,j, 0, B7) such that
its transfer to €r(A’, 0, B/) is 6/. We fix a B-extension Kmay, j Of Omax,j and we denote by npay,; its

restriction to J . By (5.2) of [Sécherre and Stevens 2016], there exists a unique x/ € B(6/) such that

max, j*

. SUAHNBIYUNAT) i . (UA)NBI) U (AY) '
lndj(ﬂ.f,A.f) = d(U(Aj)ﬁB'/X)JrilaX,j max, j (6)

and so by Remark 4.1 the choice of kyax,; determines k ;. We set

1 l 1
1 1
Jmax = 1_[ Jmax,jv Jmax = 1_[ Jmaxij Kmax = ®Kmax,ja
Jj=1 Jj=1 Jj=1

l ! l
Mo = @) Mmaxjs Ko = [ UAmax ) N B7*, Kp = [ [ Ut(Amax.j) N B
j=1 j=1 j=1
If we denote by ¢ the finite group ]_[lj:1 GL,,; (£p), we obtain Jmax/J L = K /K] =9 and (A, o)
is a supercuspidal pair of ¥.

As before in this section, by Propositions 2.30, 2.31 and 2.33 of [Minguez and Sécherre 2014b] we
can define two compact open subgroups Jmax and Jnlnax of G such that Jix/ Jr}m = Jmax/ Jnl1aX =9
and pairs (Jmax, Kmax) and (J1., a) decomposed above (Jimax, Kmax) and (J1 ., nmax) respectively.
Then we have 16 (kKmax) = I6 (N max) = Jmax B} Jmax and the R-vector spaces I, (1,,,) and Iy (Kmax) have
dimension 1 for every y € B;.

Remark 4.2. Since for every j € {1, ..., 1} the choice of kyax,j € B(Omax, j) determines k ;, the choice of
Kmax determines k and &, and so the decomposition A = k ® o. On the other hand »,,,,, the group ¢
and the conjugacy class of .# are uniquely determined by the semisimple supertype (J, A), independently
by the choice of xpy,x or of k.

Proposition 4.3. The algebras 73(G, N,) and ®lj:1 HR(GL,,i (D), Nmax, j) are isomorphic.
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Proof. By Lemma 1.3 and by Lemma 2.4 and Proposition 2.5 of [Guiraud 2013] there exists an algebra
isomorphism ®lj:1 HR(GL,,i (D), max, j) —> H#R(L, max). Now, since IG(Rpnax) C JmaxL Jmax the
subalgebra % (Jmax L Jmaxs Mmax) Of & (G, N.¢) Of functions with support in Jmax L Jmax 1S equal
to SR (G, N.) and so by Sections I1.6-8 of [Vignéras 1998] there exists an algebra isomorphism
HR(L, Nmax) = HR(G, Nna) Which preserves the support. Il

Corollary 4.4. The R-algebras s#%(B;, K i) and #R (G, Nyh.y) are isomorphic.

Proof. By Remark 1.5 of [Chinello 2017] (see also Theorem 6.3 of [Krieg 1990]) the algebra 7% (B, K i)
is isomorphic to ®lj:1 Hr(BI*, U, (Amax,j) N B/*) and then by Theorem 3.43 we obtain, for every
jell, ... 1},

HR(B7, Ut (Amax, j) N B7*) Z AR (GLyi (D), Nimax, j)- O

Remark 4.5. By Theorem 3.43 the isomorphism of Corollary 4.4 depends on the choice of a 8-extension
Kmax, j Of Nmax,j and of an intertwining element of nmayx, ; for every j € {1, ..., [}. Using Proposition 4.3,
the tensor product of these intertwining elements becomes an intertwining element of 7.

Remark 4.6. The procedure that associates 1,,,, to (J, A) depends on several noncanonical choices, for
example the choice of the isomorphism B, — [] GL,,, (D'/). To obtain a canonical correspondence, we

denote by ©; the endoclass of 6; withi € {1, ..., r} and we canonically associate to (J, A) the formal sum
r
m;d
O, A\)=0= ;-
Z;wa]‘

Furthermore, the group ¢ and the ¢-conjugacy class of .# depend only on (J, A) and actually the
group ¢ depends only on © because m'/ ¢y, : ¢gil =m/d/[E/ : F] = Y icr;mid/[E; : F] which is the
coefficient of @; in ®@. We refer to Section 6.3 of [Sécherre and Stevens 2016] for more details.

5. The category equivalence Z(G, N),ay) = Z(B[, K,{)

Using the notation of Section 4, in this section we prove that there exists an equivalence of categories
between Z(G, 1),,,¢) and Z(B}, K i). This allows to reduce the description of a positive-level block of
ZR(G) to the description of a level-0 block of Zg (B Z).

SA. The category #(J, L). In this section we associate to a semisimple supertype (J, A) of G a subcat-
egory of Zr(G). We refer to [Sécherre and Stevens 2016] for more details.

From now on we fix an extension kmax 0f 7.« 10 Jmax, as in Section 4A. This uniquely determines
a decomposition A = k ® o where k is an irreducible representation of J and o is a supercuspidal
representation of .# viewed as an irreducible representation of J trivial on J 1 We consider the functor
Kipo 1 Zr(G) — %’(Jmax/Jélax) =Zr(9Y) givenby K, ()= Hoer}mx (M max» 7) for every representation
m of G, with Jax acting on K, () by

X0 =T(X) 00 Kmax(x)”" (7)
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for every x € Jmax. We denote by 1 (knax) this representation of &. We remark that if V| and V, are repre-
sentations of G and ¢ e Homg (V7, V») then K, (¢) maps ¢ to ¢pog forevery ¢ € Homg (p, V1). For more
details on this functor see Section 5 of [Minguez and Sécherre 2014b] and [Sécherre and Stevens 2016].

We recall that we have o = Q);_, 0; where o; is a supercuspidal representation of GL,; (¢p;). We put
r,= ]_[lj:1 Gal(tp, /€)1l The equivalence class of (.#, ) (see Definition 1.14 of [Sécherre and
Stevens 2016]) is the set, denoted by [.#, o], of supercuspidal pairs (.#’, 6’) of ¢4 such that there exists
€ € I' 4 such that (%', 0’) is 4-conjugate to (4, 0€).

Let @ =0©O(J, ). For every representation V of G let V[@®, o] be the subrepresentation of V generated
by the maximal subspace of K,_. (V) such that every irreducible subquotient has supercuspidal support in

(V) (see Section 9.1 of [Sécherre

K max

[.#, ] and let V[O] be the subrepresentation of V generated by K
and Stevens 2016]).

K max

Definition 5.1. Let Z(J, L) be the full subcategory of Z (G) of representations V such that V =V [0, o ].
This does not depend on the choice of kyax (see Section 10.1 of [loc. cit.]).

Remark 5.2. For every representation V of G we have V[0, 0][®, 0] = V[O, o] (see Lemma 9.2 of
[loc. cit.]) and so V[®, a] is an object of Z(J, ).

We define the equivalence class of (J, ) to be the set [J, A] of semisimple supertypes (J, 1) of G
such that ind(Ji (0) =ind§ A).

Theorem 5.3. The category Z(J, L) depends only on the class [J, \] and it is a block of Zg(G).
Proof. This follows from Propositions 10.2 and 10.5 and Theorem 10.4 of [Sécherre and Stevens 2016]. [

Remark 5.4. The proof in [loc. cit.] of Theorem 5.3 uses the notions of inertial class of a supercuspidal
pair of G and of supercuspidal support (see 1.1.3, 2.1.2 and 2.1.3 of [Minguez and Sécherre 2014a]).
These notions are very important in the study of representations of GL,, (D) but in this article they are

not used explicitly.

5B. The category equivalence. Let (J, L) be a semisimple supertype of G and let @ = @(J, 1) be the
formal sum of endoclasses associated to it. In general there exist several semisimple supertypes of G
associated to @. We put X = Xg = {[J/,A]| ©(J', 1)) = O}. In this section we prove that the sum
Dy ajex Z(J', 1) is equivalent to the level-O subcategory of Zg(B;).

Let Y = Ygp be the set of equivalence classes of supercuspidal pairs of ¢, that is uniquely determined
by ® by Remark 4.6. Let knyax be a fixed extension of 9, to Jmax as in Section 4A and let K=K, .

By Proposition 10.7 of [Sécherre and Stevens 2016] there exists a bijection
G - X =Y ®)

given by ¢, ([J',A']) = [.#, o] if the supercuspidal supports of irreducible subquotients of K(V) are
in [/, o] for every (or equivalently for one) object V of 2(J’, 1"). This is equivalent to saying that
there exists k as in Section 4 (which depends on k,x) such that A’ = k ® ¢’ with (#, ¢') € [ 4, 7].
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Proposition 5.5 [Sécherre and Stevens 2016, Corollary 9.4]. For every representation V of G we have

viel= @ vie.d'l. )
A ,0'leY
Proposition 5.6 [loc. cit., Lemma 10.3]. If [J/,A'] € X and W is a simple object of #(J’, \') then
K(W) # 0.

Since J!

nax has invertible pro-order in R, the representation n,,,,, is projective and so we can use the

notation and results of Section 1B. We have defined the functor

M, :%r(G) — Mod- #%(G, N,.)

M max

by M, (V) =Homg (indih ax(nmx), V)and M, (¢): @+ @o¢ for all representations V and V; of G,
¢ € Homg(V, V}) and ¢ € Homg (ind%ax(nmax), V).

M max

Remark 5.7. Frobenius reciprocity induces a natural isomorphism between the functor M, composed
with the forgetful functor Mod- %% (G, 1,,.c) — Mod- R and the functor K
functor Zr(¢) — Mod- R. This implies that for every representation V of G the subrepresentation V[®]

composed with the forgetful

K max

of V is the subrepresentation V[n,,,,] defined in Section 1B.

We have also defined the full subcategories %, (G) and Z(G, N,,,x) of Zr(G). We recall that
K (G, Nmyy) 1s the category of V such that V = V[®] and #,__ (G) is the category of V such that
M, (V') #0 for every irreducible subquotient V" of V.

Lemma 5.8. We have Z(G, Nyax) = %, (G).

Proof. Thanks to Remark 1.8 it is sufficient to prove Z(G, N,,x) C %y, (G). Let V be a representation
in Z(G, ). By Proposition 5.5 we have V = Py V[0, '] and by Remark 5.2 the representation
V[©, o'] is an object of Z(J', ") where [J', 1] = ¢K_mlax([///, 0']) € X. Hence, we obtain the inclusion
R(G, Nmax) COyx Z(J', X'). Letnow W be an object of @y 2(J’, 1’) and W’ an irreducible subquotient
of W. Then W’ is an irreducible object of Z(J’, 1) for a [J’, '] € X and so by Proposition 5.6 we have
Kiepae (W) #0. Therefore, by Remark 5.7 we have M, (W) #0 which implies Dy %(J. N)C %, (G).

g

ﬂmax

Remark 5.9. We have proved that Z(G, 1),,) = %y, (G) = @[ JAleX Z(J, L). Moreover, by Proposi-
tion 1.7, a representation V of G is in this category if and only if it satisfies one of the following equivalent
conditions:

« V=VI[0O].
« For every subquotient Z of V we have Z = Z[O].
» For every irreducible subquotient U of V we have M, (U) # 0.

» For every nonzero subquotient W of V' we have M, (W) # 0.
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Theorem 5.10. The functor My__ is an equivalence of categories between
B(G, yny) and  Mod- AR (G, Nyay)-
Proof. We apply Theorem 1.9 with G = G and 0 = 4. g

Remark 5.11. We recall that a level-0 representation of B; is a representation generated by its K i—
invariant vectors. It is equivalent to say that all irreducible subquotients have nonzero K i—invariant
vectors (see Section 3 of [Chinello 2017]). The category Z(B;, K i) is called the level-0 subcategory of
Zr(B[). By Section 3 of [Chinello 2017] and Theorem 1.9, the K i-invariant functor inv k! induces an
equivalence of categories between Z(B;, K i) and Mod- %z (B;, K i) whose quasiinverse is

. B
W W ® (B K} 1ndKL£(1).

We recall that if (g, Z) is a representation of B LX then the action of ® € % (B}, K i) onzeZ Kl is given
by z.& = ZXGKDBLX ®(x)o(x"Nz.

Corollary 5.12. There exists an equivalence of categories between % (G, 1 ,x) and Z(B;, K i).

Proof. By Corollary 4.4 the algebras #% (B, , K i) and .#% (G, 1,,,,) are isomorphic. We obtain an equiv-
alence of categories between Mod- 7% (G, 1,,,,) and Mod- #% (B}, K i) and so between Z(G, Npax)
and Z(B/, Ki) by Theorem 5.10 and Remark 5.11. O

Now we want to describe the functor that induces this equivalence of categories. We recall that we
have fixed an isomorphism B, = [ GL,,,;(D"/) and an extension kmax of 5,,c. We also fix a nonzero
intertwining element y of 5, as in Remark 4.5. By Corollary 4.4 we have an isomorphism ®,, ,
HRr(B), K i) — HR(G, Npay) Which induces an equivalence of categories ©F = Mod- #z(G, Nax) =
Mod- 54 (B}, K i). We obtain the diagram

Corollary 5.12

Z(G, Npax) Z(B/. K})
J{Mﬂmax TRemark 5.11 (10)
O*
Mod- #% (G, Nmay) —————— Mod- #z (B}, K}).

The functor My, : Z(G, Nax) — Mod- # (G, 1,,) is an equivalence of categories by Theorem 5.10.
By Lemma 1.3 the right action of J#z (G, 9,,x) On M,,max(V) is given by (m.W)(f) = m(W % f) for
everyme My (V), W € HR(G, Ny, and [ € 1nd (nmax) The right-action of ® € J#z(B/, L)
on a % (G, nmdx) -module N is given by N.® = N. ®y e (P). By Remark 5.11 the functor W +—
W&, (BX.K)) 1ndB (1) is an equivalence of categories between Mod- %”R(BX, ) and Z(B/, L)
where, by Lemma 1 3, the left-action of ® € /& (B/, L) on f € de, (1) is given by &.f = O % f.
Moreover, the left-action of x € B>< onwe® f € W®}{R(B K )1nd (1) isgiven by x.(w® f) =w(x.f).
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Composing these three functors we obtain the equivalence of categories of Corollary 5.12 which we

denote by F, and is given by

> K max

. BX
Fy it (T, V) =My, (7, V) ® (B2 K deLi(lKg) (11)

for every (, V) in Z(G, N,,,«)> Where the right-action of ® € 7% (B/", Kz) onmeM, (w, V)isgiven
by (m.®)(f) = m(®, .. (P) *x f) for every f € ind?l (Mmax)- We remark that if V| and V, are in
Z(G, nmax) and ¢ € Homg (V1, V2) then F, . (¢) maps m ® f to (pom)® f forevery m € My_ (V1)
and f € de] (1K1)

5C. Correspondence between blocks. In this section we discuss the correspondence among blocks of
#(B), K i) and those of Z(G, 1,,,,) induced by the equivalence of categories F), ;.  defined in (11).

We consider the functor K, : (B}, K}) — Zr(KL/K}) = %r(%) given by Kg, (Z) = ZX1 and
Kk, (@) = ¢ K} for all representations (o, Z) and (o1, Z;) of BX and every ¢ € HomB (Z, Zy), where
x € Ky acts on ze zKi by x.z = o(x)z. It is the functor presented in Section SA when we replace G by
B Z and K y,x by the trivial representation of K. We also consider the functor H : Mod- .4 (B}, L) —
Zr(K1/K]) given by H(W) = (o', W) and H(¢) = ¢ for all #% (B, K})-modules W and W, and
every ¢ € Hom , = g1, (W, Wy), where o' (kyw =w. fi-1 forevery k € K; and w e W.

Remark 5.13. The functor Kk, is the composition of inv K! (see Remark 5.11) and the functor H.
Actually if (o, Z) is an object of Z(B;, K}) then H(invg1 (2)) = H(ZKL) = (o', ZKL) where o/ (k)z =
Z fr-1 = erKL\Bx fiet (0o (x ™1z = o(k)z for every z € ZKi and k € K;.

We obtain the diagram

F,

V,Kmax

(G, Nnax) Z(B[,K])

()* .
W}ax oMiyax 1nV
L

Mod- #% (B}, K})

lH

Zr(9)

(12)

kmax

Proposition 5.14. There exists a natural isomorphism between Kk, o F, . . and K,

Kmax*

and by (10) we have a natural

> K max

Proof. By Remark 5.13 we have Kg, o F, . = H oinVKi oF,
isomorphism between inv g1 oFy ., and ©) oMy so itis sufficient to find a natural isomorphism
3: HO@;,xmaXOM — K For every object (1, V) of Z(G, Nyax)> let 3v : My (V) — K, (V) be
the isomorphism of R-modules given by Remark 5.7. The action of x € K /K i =donmeM, (m,V)

Nmax Kmax * M max K max

is given by x.m = m.0, . . (fy-1) = m.fo1 where fo1 € #&(G, Ny has support x~'J! and
fet(x™1) = kemax (x 1) while the action of x € Jiax/J Loy =% on ¢ € Ky, (V) is given by (7). We have

to prove that 3y (x.m) = x.3y (m) for every m € M, (, V) and x € 4. We recall that in Section 1A

Nmax
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we defined elements i, : Jnl]aX — Vy... Withv eV, such that m(i,) = 3v(m)(v), which generate
indiTll N (Mmax) as a representation of G. Then for every v € V;,  we have

3y (e.m)(v) = (x.m) (i) = (m. fr-1)(iy) = m(fr-1 *iy).

The support of f1 % i, is JL x71 and (fi1 *i,)(x™") = fior(x™)v = Kmax(x~")v. We obtain
3y m)(v) = Mg, oo10) = TE e, (1) = TGy ) Emaxx ™) = (6.3v () (V).
Now, let V| and V; be two objects of Z(G, 1,,,,) and let ¢ € Homg (Vy, V2). Then foreveryme M, (V1)
and every v € V,  we have 3y, (H(® (M (#)))(m))(v) = 3v,(¢ o m)(v) which is equal to

YK max
(¢ om)(iy). On the other hand we have K, (¢)(3v,(m))(v) = ¢(3v, (m)(v)) which is equal to ¢ (m(iy)).
This shows that 3 is a natural isomorphism. (|

Now we look for a block decomposition of Z(B;, Ki). Let [#,0] € Y. Then .# = ]_[ljzl M
and 0 = (X)lj:1 o ; where ./#; = J]-/Jj1 and [.#;, o ;] is a class of supercuspidal pairs of GL,,;(¢p).
For every j € {1, ...,1}, replacing G by B/* and kn,x by the trivial character of U(Apax, ;) N B/ in
Definition 5.1, we obtain an abelian full subcategory % (U (Amax, j) N Bi*, o i) of Zg (B/*) whose objects

are representations V; of B/* generated by the maximal subspace of V; Ur(Amax, )BT

for which every
irreducible subquotient has supercuspidal support in [.#;, o ;]. We obtain a full subcategory #Z(K, o)
of Zr(B;) (and of Z(B/, K i)) whose objects are representations V of B, generated by the maximal
subspace of VK ¢ such that every irreducible subquotient has supercuspidal support in [.#, o ]. Theorem 5.3
and Remark 5.9 give a block decomposition of Z(BI*, U, (Amax,j) N B for every je{l,...,l} and

so we obtain a block decomposition
#(B] . K))= € #K..0).
[.#,01eY
We recall that we have a block decomposition Z(G, Ny.x) = @[ Jajex Z(J, 1) by Remark 5.9 and a

bijection ¢y, : X — Y defined in (8) which depends on the choice of K pax.

Theorem 5.15. Let [J, Al € X and [#, 0] = ¢y, ([J,A]) €Y. Then F, ;. induces an equivalence of
categories between the block %(J , L) of %#r(G) and the block Z(K 1, 0) of Zr(B]).

Proof. If V is an object of %Z(J, L), by Proposition 5.14 there exists an isomorphism of representations
of 4 between Kg, (Fy «,...(V)) and K, (V). Then irreducible subquotients of (F),,KmaX(V))Ki have
supercuspidal supportin [.#, o] and so F), ;. (V) isin Z(Ky, o). O

K max K max
Kmax

We remark that the matching of the blocks of Z(G, 3,,,«) and of Z(B;, K i) does not depend on the
choice of the intertwining element y of 5,,,, while the equivalence of categories between these blocks,

induced by F, . (V), depends on this choice.

K max

5D. Dependence on the choice of kmax- In this section we discuss the dependence of results of Sections
5A, 5B and 5C on the choice of the extension of 7., t0 Jmax.

Let (J, A) be a semisimple supertype of G. We have just seen in Remark 4.6 that the group ¢ depends
only on ®(J, A) and by Remark 4.6 and Theorem 5.3 the ¢¥-conjugacy class of .# and the category
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Z%(J, L) do not depend on the choice of the extension of 5., t0 Jmax. Moreover, the sum (9) does not
depend on this choice because a different one permutes the terms V[®, ¢'] in V[@®]. Then V[®], the
equalities Z(G, Nypax) = %y (G) = @[],x]ex Z(J, L) and the equivalence of Theorem 5.10 do not
depend on the choice of the extension of 5,,,,.

”max

Let y be a fixed nonzero intertwining element of #,,,, as in Remark 4.5. Using notation of Section 4A

/ . _ I r 1 /
let K max and k.. be two extensions of 3, t0 Jmax and let kpax = Q) j=1 Kmax,j and Ky, = X =1 Kmax. j

max
1
max, j

are B-extensions of 6y« ; and so by Section 2A there exists a character x; of (92,. trivial on 1 + gpg;

/
such that Kmax, j

characters of Jmay trivial on JL

be the restrictions to Jmax of kmax and k. respectively. Then, for every j € {1, ..., [}, kmax. jand k

= Kmax,j ® (Xj o Npj/gi). Let x and x be the character ®1]':1(Xj o Npj i) viewed as
and of ¢ respectively and, if we consider x; trivial on w g, for every
jel{l,..., I}, let x = ®1j:1(x]~ o Npj i) viewed as a character of Bz.

We consider the functors X : Z(BY, K})— %(B}, Ki) and X : ZR(9) — Zr(¥) given by .’%(Q) =
o®x7, %(&) =@, X(1)=1®x " and X(¢) = ¢ forevery o, 0| in Z(B, Ki), every ¢ € HomBLx (0, 01),
all representations t and 71 of ¢ and every ¢ € Homg (7, 71). We consider the following diagram.

X 1 KKL

Z(Br, Kyp) ZR(Y)
X R(G, Ninax) S (13)
X 1 KKL

Z(Bp, Kyp) HR(Y).

Lemma 5.16. We have K, = X o Ky and so for every representation (1, V) in Z(G, 1) ,,,) We have

K max
JT(IC;naX) = 7T (Kmax) ® )_(_1-

Proof. The space of Ky, (V) and X(K
Let Q be the standard parabolic subgroup of G with Levi component L, let N be the unipotent radical of
QO such that Q = LN and let N~ be the unipotent radical opposite to N. We choose x| € Jpax "N,

/
max?’

(V))isHomji (0., V). Let ¢ be in this space and x € Jmax.

K max

X2 € Jmax and x3 € Jmax NN such that x = x1xpx3. Since (Kmax, Jmax) and (k Jmax) are decomposed

/

! o Jmax) Tespectively, we obtain 7 (k) )(x)(9) = w(x) 0 ¢ 0kl (x7h)

above (Kmax, Jmax) and («
which is equal to 77(x) 0 ¢ 0 kel (X3 ) = T (x) 0 9 0 kemax (X3 ) x (x5 1) = 7 (e max) (X) (@) x (x2) "' Since
Jnax "N = JL NN and Jpox NN~ = J L NN~ we obtain x (x2)~! = x(x)~'. Now, let V; and V; be
two objects of Z(G, 0,,,x) and let ¢ € Homg(Vy, V,). Then for every ¢ € Hoer}m(nmaX, V1) we have
Ko @) (@) = $ 090 = X(Ky, (6))(9). O
Lemma 5.17. We have Kk, o X = X o K, .

Proof. Let (o, Z) be in Z(B}, Ki). The space of Kg, (.’%(Z)) and f(KKL (2)) is ZKL Letx e K; and
let X be the projection of x in K; /K} =%. Forevery z € ZX1 we have Kk, (%(Q))()E)(z) =3 (x " Ho)v
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while f(KKL (0)(X)(z) = x(x Ho(x)v. Now, let Z; and Z, be two objects of Z(B), Ki) and let
¢ € HomBLx (Z1, Z»). Then we have Kk, (X(¢)) = d"zki = ?(KKL (0)). O
1

We remark that by Proposition 5.14 and Lemmas 5.16 and 5.17, the functor Kk, o F), ,/ is naturally

isomorphic to K, which is equal to X oKy, which is naturally isomorphic to X o Kg, o F, ,, . which

K max

is equal to Kg, o Xo Fy i
Proposition 5.18. There exists a natural isomorphism between F, . —and Xo Fy i

Proof. For every object (7, V) in Z(G, N,y), the space of Fy, . (V) and %(F}, (V) is

K max

. .Bf
My, (V) ® x k) deLl (g1

IfmeM, (V)and f € ind”t Kl (1 1) in the first case the right-action of ® € #% (B, i) on m and
the left- actlon of x € B/ onm®f are givenby m* ® =m.0®, , (P)andx o' (Mm@ f) =mx.f
while in the second case they are given by m x ® = m. ®y e (@) and x o (m® f) = x(x~ Dmex.f.
Let 3y be the automorphlsm of My (V) ® . (B K] )mdBl (Ig 1) that maps m ® f to m ® x f for every
meM, (V)and e 1ndK1 (1K1) By Remark 3. 44 we have mx' ® = m* y® and then

Ivm* ®® f)=(m+ ®)® (X f)

=(mxxP)® (x f)

=m ((xP)*(xf))

=m® x(®x* f)

=3v(m @ (®x* [)).
This implies that 3y is well defined as an R-linear automorphism. Moreover, for every x € B Z we have
3y Mm@ ) =mRF(x.f)=xxHm@x.(¥ f) =x03y(m® f) and so 3y is an isomorphism of
representations of B>< Now, let V; and V2 be two objects of Z(G, 9,,c) and let ¢ € Homg (Vy, V2). Then

foreverym e My (V1) and f € 1ndK1 (g 1) we have 3V2(Fy . (DM@ f))=3v,(pom)® f) =
(¢ om) ® % f which is equal to X(F, ¢, (¢))(m ®Ff) = X(Fy s (@) By, (m ® f)). U

By Remark 4.2, the representations km,x and k|, determine two decompositions A = k¥ @ o and
A =k’ ® 0o’ where o and o’ are supercuspidal representations of .# viewed as irreducible representations
of J; trivial on J LI Hence, the bijection ¢ o ¢K_mlax permutes the elements of Y and it maps [.Z, o]
to [.#,0’']. Let k; and k', be the restrictions to J;, of k and k' respectively. By (6) and by (2.20) of

[Minguez and Sécherre 2014b] we have ¥, =k, ® x andso ¢’ =0 @ ¥ .

References

[Bernstein 1984] J. N. Bernstein, “Le ‘centre’ de Bernstein”, pp. 1-32 in Représentations des groupes réductifs sur un corps
local, edited by P. Deligne, Hermann, Paris, 1984. MR Zbl

[Blondel 2005] C. Blondel, “Quelques propriétés des paires couvrantes”, Math. Ann. 331:2 (2005), 243-257. MR Zbl


http://www.math.tau.ac.il/~bernstei/Publication_list/Publication_list.html
http://msp.org/idx/mr/771671
http://msp.org/idx/zbl/0599.22016
http://dx.doi.org/10.1007/s00208-004-0579-1
http://msp.org/idx/mr/2115455
http://msp.org/idx/zbl/1062.22035

Blocks of the category of smooth ¢-modular representations of GL(n, F) 1713

[Broussous et al. 2012] P. Broussous, V. Sécherre, and S. Stevens, “Smooth representations of GL,;, (D), V: Endo-classes”, Doc.
Math. 17 (2012), 23-77. MR Zbl

[Bushnell and Henniart 1996] C. J. Bushnell and G. Henniart, “Local tame lifting for GL(N), I: Simple characters”, Inst. Hautes
Etudes Sci. Publ. Math. 83 (1996), 105-233. MR Zbl

[Bushnell and Kutzko 1993] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups,
Annals of Math. Studies 129, Princeton Univ. Press, 1993. MR Zbl

[Bushnell and Kutzko 1998] C. J. Bushnell and P. C. Kutzko, “Smooth representations of reductive p-adic groups: structure
theory via types”, Proc. London Math. Soc. (3) 77:3 (1998), 582-634. MR Zbl

[Bushnell and Kutzko 1999] C.J. Bushnell and P. C. Kutzko, “Semisimple types in GL,,”, Compos. Math. 119:1 (1999), 53-97.
MR Zbl

[Chinello 2015] G. Chinello, Représentations £-modulaires des groupes p-adiques: décomposition en blocs de la catégorie
des représentations lisses de GL(m, D), groupe métaplectique et représentation de Weil, Ph.D. thesis, Université de Versailles
St-Quentin-en-Yvelines, 2015, Available at https:/tinyurl.com/phdchiphd.

[Chinello 2017] G. Chinello, “Hecke algebra with respect to the pro-p-radical of a maximal compact open subgroup for
GL(n, F) and its inner forms”, J. Algebra 478 (2017), 296-317. MR Zbl

[Dat 2012] J.-F. Dat, “Théorie de Lubin—Tate non Abélienne ¢-entiere”, Duke Math. J. 161:6 (2012), 951-1010. MR Zbl
[Dat 2018] J.-F. Dat, “Equivalences of tame blocks for p-adic linear groups”, Math. Ann. 371:1-2 (2018), 565-613. MR Zbl

[Guiraud 2013] D.-A. Guiraud, “On semisimple ¢£-modular Bernstein-blocks of a p-adic general linear group”, J. Number
Theory 133:10 (2013), 3524-3548. MR Zbl

[Helm 2016] D. Helm, “The Bernstein center of the category of smooth W (k)[GL,, (F')]-modules”, Forum Math. Sigma 4 (2016),
art. id. el1. MR Zbl

[Krieg 1990] A. Krieg, Hecke algebras, Mem. Amer. Math. Soc. 435, Amer. Math. Soc., Providence, RI, 1990. MR Zbl

[Minguez and Sécherre 2014a] A. Minguez and V. Sécherre, “Représentations lisses modulo ¢ de GL;; (D), Duke Math. J.
163:4 (2014), 795-887. MR Zbl

[Minguez and Sécherre 2014b] A. Minguez and V. Sécherre, “Types modulo € pour les formes intérieures de GL;; sur un corps
local non archimédien”, Proc. Lond. Math. Soc. (3) 109:4 (2014), 823-891. MR Zbl

[Sécherre 2004] V. Sécherre, “Représentations lisses de GL(m, D), I: Caracteres simples”, Bull. Soc. Math. France 132:3 (2004),
327-396. MR Zbl

[Sécherre 2005a] V. Sécherre, “Représentations lisses de GL(m, D), II: B-extensions”’, Compos. Math. 141:6 (2005), 1531-1550.
MR Zbl

[Sécherre 2005b] V. Sécherre, “Représentations lisses de GL,, (D), III: Types simples™, Ann. Sci. Ecole Norm. Sup. (4) 38:6
(2005), 951-977. MR Zbl

[Sécherre and Stevens 2008] V. Sécherre and S. Stevens, “Représentations lisses de GL,; (D), IV: Représentations supercuspi-
dales”, J. Inst. Math. Jussieu 7:3 (2008), 527-574. MR Zbl

[Sécherre and Stevens 2012] V. Sécherre and S. Stevens, “Smooth representations of GL,, (D), VI: Semisimple types”, Int.
Math. Res. Not. 2012:13 (2012), 2994-3039. MR Zbl

[Sécherre and Stevens 2016] V. Sécherre and S. Stevens, “Block decomposition of the category of £-modular smooth representa-
tions of GL,, (F) and its inner forms”, Ann. Sci. Ec. Norm. Supér. (4) 49:3 (2016), 669-709. MR Zbl

[Vignéras 1996] M.-F. Vignéras, Représentations [-modulaires d’un groupe réductif p-adique avec | # p, Progress in Math.
137, Birkhiuser, Boston, 1996. MR Zbl

[Vignéras 1998] M.-F. Vignéras, “Induced R-representations of p-adic reductive groups”, Selecta Math. (N.S.) 4:4 (1998),
549-623. MR Zbl

Communicated by Marie-France Vignéras
Received 2017-07-31 Revised 2018-05-08 Accepted 2018-06-12

gianmarco.chinello@unimib.it Dipartimento di Matematica e Applicazioni,
Universita degli Studi di Milano-Bicocca, Milano, Italy

mathematical sciences publishers :'msp


https://www.math.uni-bielefeld.de/documenta/vol-17/02.pdf
http://msp.org/idx/mr/2889743
http://msp.org/idx/zbl/1280.22018
http://dx.doi.org/10.1007/BF02698646
http://msp.org/idx/mr/1423022
http://msp.org/idx/zbl/0878.11042
http://dx.doi.org/10.1515/9781400882496
http://msp.org/idx/mr/1204652
http://msp.org/idx/zbl/0787.22016
http://dx.doi.org/10.1112/S0024611598000574
http://dx.doi.org/10.1112/S0024611598000574
http://msp.org/idx/mr/1643417
http://msp.org/idx/zbl/0911.22014
http://dx.doi.org/10.1023/A:1001773929735
http://msp.org/idx/mr/1711578
http://msp.org/idx/zbl/0933.22027
https://tinyurl.com/phdchiphd
https://tinyurl.com/phdchiphd
http://dx.doi.org/10.1016/j.jalgebra.2017.01.022
http://dx.doi.org/10.1016/j.jalgebra.2017.01.022
http://msp.org/idx/mr/3621675
http://msp.org/idx/zbl/06695604
http://dx.doi.org/10.1215/00127094-1548425
http://msp.org/idx/mr/2913099
http://msp.org/idx/zbl/1260.11070
http://dx.doi.org/10.1007/s00208-018-1648-1
http://msp.org/idx/mr/3788858
http://msp.org/idx/zbl/06871962
http://dx.doi.org/10.1016/j.jnt.2013.04.012
http://msp.org/idx/mr/3071827
http://msp.org/idx/zbl/1295.22021
http://dx.doi.org/10.1017/fms.2016.10
http://msp.org/idx/mr/3508741
http://msp.org/idx/zbl/1364.11097
http://dx.doi.org/10.1090/memo/0435
http://msp.org/idx/mr/1027069
http://msp.org/idx/zbl/0706.11029
http://dx.doi.org/10.1215/00127094-2430025
http://msp.org/idx/mr/3178433
http://msp.org/idx/zbl/1293.22005
http://dx.doi.org/10.1112/plms/pdu020
http://dx.doi.org/10.1112/plms/pdu020
http://msp.org/idx/mr/3273486
http://msp.org/idx/zbl/1302.22013
http://dx.doi.org/10.24033/bsmf.2468
http://msp.org/idx/mr/2081220
http://msp.org/idx/zbl/1079.22016
http://dx.doi.org/10.1112/S0010437X05001429
http://msp.org/idx/mr/2188448
http://msp.org/idx/zbl/1082.22011
http://dx.doi.org/10.1016/j.ansens.2005.10.003
http://msp.org/idx/mr/2216835
http://msp.org/idx/zbl/1106.22014
http://dx.doi.org/10.1017/S1474748008000078
http://dx.doi.org/10.1017/S1474748008000078
http://msp.org/idx/mr/2427423
http://msp.org/idx/zbl/1140.22014
http://dx.doi.org/10.1093/imrn/rnr122
http://msp.org/idx/mr/2946230
http://msp.org/idx/zbl/1246.22023
https://doi.org/10.24033/asens.2293
https://doi.org/10.24033/asens.2293
http://msp.org/idx/mr/3503829
http://msp.org/idx/zbl/1346.22009
http://msp.org/idx/mr/1395151
http://msp.org/idx/zbl/0859.22001
http://dx.doi.org/10.1007/s000290050040
http://msp.org/idx/mr/1668044
http://msp.org/idx/zbl/0943.22017
mailto:gianmarco.chinello@unimib.it
http://msp.org




Richard E. Borcherds
Antoine Chambert-Loir
J-L. Colliot-Thélene
Brian D. Conrad
Samit Dasgupta
Hélene Esnault
Gavril Farkas

Hubert Flenner
Sergey Fomin
Edward Frenkel
Andrew Granville
Joseph Gubeladze
Roger Heath-Brown
Craig Huneke

Kiran S. Kedlaya
Janos Kollar

Philippe Michel
Susan Montgomery

Shigefumi Mori

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California
Berkeley, USA

BOARD OF EDITORS

University of California, Berkeley, USA
Université Paris-Diderot, France

CNRS, Université Paris-Sud, France
Stanford University, USA

University of California, Santa Cruz, USA
Freie Universitit Berlin, Germany
Humboldt Universitit zu Berlin, Germany
Ruhr-Universitit, Germany

University of Michigan, USA

University of California, Berkeley, USA
Université de Montréal, Canada

San Francisco State University, USA
Oxford University, UK

University of Virginia, USA

Univ. of California, San Diego, USA
Princeton University, USA

Ecole Polytechnique Fédérale de Lausanne

University of Southern California, USA

RIMS, Kyoto University, Japan

Martin Olsson
Raman Parimala
Jonathan Pila

Anand Pillay

Michael Rapoport
Victor Reiner

Peter Sarnak

Joseph H. Silverman
Michael Singer
Christopher Skinner
Vasudevan Srinivas

J. Toby Stafford
Pham Huu Tiep

Ravi Vakil

Michel van den Bergh
Marie-France Vignéras
Kei-Ichi Watanabe
Shou-Wu Zhang

University of California, Berkeley, USA
Emory University, USA

University of Oxford, UK

University of Notre Dame, USA
Universitdt Bonn, Germany
University of Minnesota, USA
Princeton University, USA

Brown University, USA

North Carolina State University, USA
Princeton University, USA

Tata Inst. of Fund. Research, India
University of Michigan, USA
University of Arizona, USA

Stanford University, USA

Hasselt University, Belgium
Université Paris VII, France

Nihon University, Japan

Princeton University, USA

PRODUCTION
production @msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US $340/year for the electronic version, and $535/year (4$55, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLow® from MSP.

PUBLISHED BY
:l mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/

Algebra & Number Theory

Volume 12 No. 7 2018

Difference modules and difference cohomology
MARCIN CHALUPNIK and PIOTR KOWALSKI

Density theorems for exceptional eigenvalues for congruence subgroups
PETER HUMPHRIES

Irreducible components of minuscule affine Deligne—Lusztig varieties
PAUL HAMACHER and EVA VIEHMANN

Arithmetic degrees and dynamical degrees of endomorphisms on surfaces
YOHSUKE MATSUZAWA, KAORU SANO and TAKAHIRO SHIBATA

Big Cohen—Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic
RAYMOND HEITMANN and LINQUAN MA
Blocks of the category of smooth ¢-modular representations of GL(n, F') and its inner forms: reduction to
level 0
GIANMARCO CHINELLO

Algebraic dynamics of the lifts of Frobenius
JUNYI XIE

A dynamical variant of the Pink—Zilber conjecture
DRAGOS GHIOCA and KHOA DANG NGUYEN

Homogeneous length functions on groups
TOBIAS FRITZ, SIDDHARTHA GADGIL, APOORVA KHARE, PACE P. NIELSEN, LIOR SILBERMAN and
TERENCE TAO

When are permutation invariants Cohen—Macaulay over all fields?
BEN BLUM-SMITH and SOPHIE MARQUES

0652(2018)12:

1937- 8)1

1559
1581
1611
1635
1659

1675

1715
1749

1773

1787

1-A

7;



	Introduction
	1. Preliminaries
	1A. Hecke algebras for a locally profinite group
	1B. The categories R(G) and R(G,)
	1C. Equivalence of categories

	2. Maximal simple types
	2A. Simple characters, Heisenberg representation and -extensions
	2B. Maximal simple types
	2C. Covers

	3. The isomorphisms HR(G,).5-.5.5-.5.5-.5.5-.5HR(B,U1()B)
	3A. Root system of GLm'
	3B. The representation ¶
	3C. The isomorphism HR(J,).5-.5.5-.5.5-.5.5-.5HR(KB,K1B)
	3D. Generators and relations of HR(B,K1B)
	3E. Some decompositions of J1¶-double cosets
	3F. The group 
	3G. The isomorphisms HR(G,P).5-.5.5-.5.5-.5.5-.5HR(B,K1B)

	4. Semisimple types
	4A. The representation max

	5. The category equivalence R(G,bold0mu mumu The representation maxmax)R(BL,KL1)
	5A. The category R(J,)
	5B. The category equivalence
	5C. Correspondence between blocks
	5D. Dependence on the choice of max

	References
	
	

