
Algebra &
Number
Theory

msp

Volume 12

2018
No. 7

Algebraic dynamics of the lifts of Frobenius
Junyi Xie



msp
ALGEBRA AND NUMBER THEORY 12:7 (2018)

dx.doi.org/10.2140/ant.2018.12.1715

Algebraic dynamics of the lifts of Frobenius
Junyi Xie

We study the algebraic dynamics of endomorphisms of projective spaces with coefficients in a p-adic
field whose reduction in positive characteristic is the Frobenius. In particular, we prove a version of the
dynamical Manin–Mumford conjecture and the dynamical Mordell–Lang conjecture for the coherent
backward orbits of such endomorphisms. We also give a new proof of a dynamical version of the
Tate–Voloch conjecture in this case. Our method is based on the theory of perfectoid spaces introduced
by P. Scholze. In the appendix, we prove that under some technical condition on the field of definition,
a dynamical system for a polarized lift of Frobenius on a projective variety can be embedded into a
dynamical system for some endomorphism of a projective space.
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1. Introduction

In this paper, we write Cp for the completion of the algebraically closure of Qp with the induced norm.
Denote by C◦p its valuation ring and C◦◦p the maximal ideal of C◦p. Let F :PN

Cp
→PN

Cp
be an endomorphism

taking form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xN ) : · · · : x

q
N + p′PN (x0, . . . , xN )]

where q is a power of p, p′ ∈ C◦◦p , and P0, . . . , PN are homogeneous polynomials of degree q in
C◦p[x0, . . . , xN ]. We say that F is a lift of Frobenius on PN

Cp
.

In this paper we present a new argument for studying the algebraic dynamics for such maps, which is
based on the theory of perfectoid spaces introduced by Scholze. In particular, we study some dynamical
analogues of diophantine geometry for such maps.

The author is supported by the labex CIMI.
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Dynamical Manin–Mumford conjecture. At first, we recall the dynamical Manin–Mumford conjecture
proposed by Zhang [1995].

Dynamical Manin–Mumford Conjecture. Let F : XC→ XC be an endomorphism of a quasiprojective
variety defined over C. Let V be a subvariety of X . If the Zariski closure of the set of preperiodic points1

of F contained in V is Zariski dense in V , then V itself is preperiodic, and likewise for periodic points.2

This conjecture is a dynamical analogue of the Manin–Mumford conjecture on subvarieties of abelian
varieties. More precisely, let V be an irreducible subvariety inside an abelian variety A over C such that
the intersection of the set of torsion points of A and V is Zariski dense in V . Then the Manin–Mumford
conjecture asserts that there exists an abelian subvariety V0 of A and a torsion point a ∈ A(C) such that
V = V0+ a.

The Manin–Mumford conjecture was first proved by Raynaud [1983a; 1983b]. Various versions of this
conjecture were proved by Ullmo [1998], Zhang [1998], Buium [1996b], Hrushovski [2001] and Pink
and Roessler[2002]. Observe that the dynamical Manin–Mumford conjecture for the map x 7→ 2x on A
implies the classical Manin–Mumford conjecture.

The dynamical Manin–Mumford conjecture does not hold in full generality, as we have some coun-
terexamples [Ghioca et al. 2011; Pazuki 2010; Pazuki 2013]. In particular, Pazuki [2013] shows that
counterexamples can come from a lift of Frobenius crossed with a lift of its Verschiebung. This motivated
the proposal of several modified versions of the conjecture [Ghioca et al. 2011; Yuan and Zhang 2017].

However, this conjecture is now known to hold in some special cases [Baker and Hsia 2005; Fakhruddin
2014; Medvedev and Scanlon 2014; Ghioca and Tucker 2010; Dujardin and Favre 2017; Ghioca et al.
2011; 2015; 2018]. It seems that the dynamical Manin–Mumford conjecture may be true except a few
families of counterexamples.

In this paper, we prove the dynamical Manin–Mumford conjecture for periodic points of lifts of
Frobenius on PN .

Theorem 1.1. Let F : PN
Cp
→ PN

Cp
be a lift of Frobenius on PN

Cp
. Denote by Per the set of periodic closed

points in PN
Cp

. Let V be any irreducible subvariety of PN
Cp

such that V ∩Per is Zariski dense in V . Then
V is periodic i.e., there exists `≥ 1 such that F`(V )= V .

We note that Medvedev and Scanlon [2014] have proved Theorem 1.1 in the case

F : [x0 : · · · : xN ] 7→ [x
q
0 + pP(x0, xN ) : · · · : x

q
N−1+ pP(xN−1, xN ) : x

q
N ],

where q is a power of p and P ∈ Zp[x, y] is a homogenous polynomial of degree q. Pazuki [2013]
studied the lifts of Frobenius on abelian varieties.

We should mention that, recently Scanlon gave a new proof of this theorem without using perfectoid
spaces. Since this proof is unpublished and it is completely different from ours, we will discuss it briefly
in Section 4 of this paper.

1A preperiodic point x is a point satisfying Fm(x)= Fn(x) for some m > n ≥ 0.
2A periodic point x is a point satisfying Fn(x)= x for some n > 0.
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Dynamical Tate–Voloch conjecture. Let V be an irreducible subvariety of PN
Cp

. There are homogenous
polynomials Hi ∈ Cp[x0, . . . , xN ], i = 1, . . . ,m satisfying ‖Hi‖ = 1 which define V . For any point
y ∈ PN

Cp
(Cp), we may write y = [y0 : · · · : yN ], max{|yi |}0≤i≤N = 1. Then we denote by d(y, V ) :=

max{|Hi (y0, . . . , yN )|}1≤i≤m . Observe that d(y, V ) does not depend on the choice of {Hi }1≤i≤m or the
coordinates [y0 : · · · : yN ] of y. It can be viewed as the distance between y and V . Moreover for any
quasiprojective variety X and subvariety V of X , by choosing an embedding X ↪→ PN

Cp
, d(•, V ) defines

a distance between V and a point in X .
Tate and Voloch [1996] made the following conjecture:

Tate–Voloch Conjecture. Let A be a semiabelian variety over Cp and V a subvariety of A. Then there
exists c > 0 such that for any torsion point x ∈ A, we have either x ∈ V or d(x, V ) > c.

This conjecture was proved by Scanlon [1999] when A is defined over a finite extension of Qp. Buium
[1996a] proved a dynamical version of this conjecture for periodic points of lifts of Frobenius on any
algebraic variety. Here we state it only for the lifts of Frobenius on PN

Cp
.

Theorem 1.2. Let F : PN
Cp
→ PN

Cp
be a lift of Frobenius on PN

Cp
. Let V be any irreducible subvariety

of PN
Cp

. Then there exists δ > 0 such that for any point x ∈ Per, either d(x, V ) > δ or x ∈ V .

In this paper, we give a new proof of this theorem by using the theory of perfectoid spaces.

Dynamical Mordell–Lang conjecture. The Mordell–Lang conjecture on subvarieties of semiabelian
varieties (now a theorem of Faltings [1994] and Vojta [1996]) says that if V is a subvariety of a semiabelian
variety G defined over C and 0 is a finitely generated subgroup of G(C), then V (C)

⋂
0 is a union of at

most finitely many translates of subgroups of 0.
Inspired by this, Ghioca and Tucker proposed the following dynamical analogue of the Mordell–Lang

conjecture.

Dynamical Mordell–Lang Conjecture [Ghioca and Tucker 2009]. Let X be a quasiprojective variety
defined over C, let f : X → X be an endomorphism, and V be any subvariety of X . For any point
x ∈ X (C) the set {n ∈ N | f n(x) ∈ V (C)} is a union of at most finitely many arithmetic progressions.3

Observe that the dynamical Mordell–Lang conjecture implies the classical Mordell–Lang conjecture in
the case 0 ' (Z,+).

The dynamical Mordell–Lang conjecture has been proved in many cases. For example, Bell, Ghioca
and Tucker [2010] proved this conjecture for étale maps, and the author proved it for endomorphisms of
A2

Q
[Xie 2017]. We refer to the book [Bell et al. 2016] for a good survey of this conjecture.

We note that the dynamical Mordell–Lang conjecture is not a full generalization of the Mordell–Lang
conjecture. In particular, it considers only the forward orbit but not the backward orbit. In an informal
seminar, Zhang asked me the following question:

3An arithmetic progression is a set of the form {an+ b | n ∈ N} with a, b ∈ N. In particular, when a = 0, it contains only
one point.
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Question 1.3. Let X be a quasiprojective variety over C and F : X→ X be a finite endomorphism. Let
x be a point in X (C). Denote by O−(x) :=

⋃
∞

i=0 F−i (x) the backward orbit of x . Let V be a positive
dimensional irreducible subvariety of X . If V ∩ O−(x) is Zariski dense in V , what can we say about V ?

We note that if V is preperiodic, then V ∩ O−(x) is Zariski dense in V . As with the dynamical
Manin–Mumford conjecture, the converse is not true. Indeed, we have the following example. Let
X =A1

C
×A1

C
and f : X→ X be the endomorphism defined by (x, y) 7→ (x4, y6). Let V be the diagonal

and x = (1, 1). Then V ∩O−(x) is Zariski dense in V , but V is not preperiodic. We have counterexamples
even when F is a polarized endomorphism.4 The following example is given by Ghioca, which is similar
to [Ghioca et al. 2011, Theorem 1.2].

Example 1.4. Let E be the elliptic curve over C defined by the lattice Z[i] ⊆ C. Let F1 be the endo-
morphism on E defined by the multiplication by 10 and F2 be the endomorphism on E defined by the
multiplication by 6+ 8i . Set X := E × E , F := (F1, F2) on X . Since |10| = |6+ 8i |, F is a polarized
endomorphism on X . Let V be the diagonal in X and x be the origin. We may check that V ∩ O−(x) is
Zariski dense in V , but V is not preperiodic.

As a special case of Question 1.3, we propose the following conjecture.

Conjecture 1.5. Let X be a quasiprojective variety over C and F : X → X be a finite endomorphism.
Let {bi }i≥0 be a sequence of points in X (C) satisfying f (bi ) = bi−1 for all i ≥ 1. Let V be a positive
dimensional irreducible subvariety of X . If the {bi }i≥0 ∩ V is Zariski dense in V , then V is periodic
under F .

Remark 1.6. This conjecture can be viewed as the dynamical Mordell–Lang conjecture for the coherent
backward orbits. In fact, it is easy to see that Conjecture 1.5 is equivalent to the following:

Conjecture 1.5*. Let X be a quasiprojective variety over C and F : X→ X be a finite endomorphism.
Let {bi }i≥0 be a sequence of points in X (C) satisfying f (bi )= bi−1 for all i ≥ 1. Let V be a subvariety
of X . Then the set {n ≥ 0 | bn ∈ V } is a union of at most finitely many arithmetic progressions.

Conjecture 1.5⇒ Conjecture 1.5*. If {bi }i≥0 is finite, then the bi are contained in a periodic circle. Then
Conjecture 1.5* trivially holds. Now we assume that {bi }i≥0 is infinite. Set W :=

⋂
n≥0 {bi | bi ∈ V, i ≥ n}.

Then there exists N ≥ 0 such that W = {bi | bi ∈ V, i ≥ N }. We note that {n ≥ 0 | bn ∈ V } \ {n ≥ 0 | bn ∈

W } ⊆ {0, . . . , N } is finite. After replacing b0 by bN , we may assume that N = 0. If W is empty, then
{n ≥ 0 | bn ∈ V } = {n ≥ 0 | bn ∈ W } = ∅. If W is not empty, then every irreducible component of W
has positive dimension and {bi }i≥N ∩W is Zariski dense in W . Conjecture 1.5 implies that there exists
r ≥ 1 such that Fr (W )=W . If for some index i ∈ {0, . . . , r − 1}, there exists s ≥ 0 such that bi+sr 6∈ V ,
then bi+nr 6∈ V for all n ≥ s. Denote by Ti , i = 0, . . . , r − 1, the set of j ≥ 0 satisfying b j ∈ V and

4An endomorphism F : X → X on a projective variety is said to be polarized if there exists an ample line bundle L on X
satisfying F∗L = L⊗d , d ≥ 2.
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j = i mod r . Then Ti is either finite or equal to {i + rn | n ∈ N}. It follows that

{n ≥ 0 | bn ∈ V } = {n ≥ 0 | bn ∈W } =
r−1⋃
i=0

Ti

is a union of at most finitely many arithmetic progressions. �

Conjecture 1.5*⇒Conjecture 1.5. Assume that V is a positive dimensional irreducible subvariety of X
such that {bi }i≥0 ∩ V is Zariski dense in V . Then {n ≥ 0 | bn ∈ V } is infinite. Conjecture 1.5 shows that
{n ≥ 0 | bn ∈ V } takes the form {n ≥ 0 | bn ∈ V } = F ∪

(⋃s
j=1 T j

)
where F is finite and T j , j = 1, . . . , s,

are infinite arithmetic progressions. There exists j ∈ {1, . . . , s} such that {bi | i ∈ T j } is Zariski dense in V .
Write T j = a+rN where a ≥ 0, r ≥ 1. Since F({bi | i ∈ T j })\{bi | i ∈ T j } = {a}, we have Fr (V )= V . �

In this paper, we prove Conjecture 1.5 for the lifts of Frobenius of PN
Cp

.

Theorem 1.7. Let F : PN
Cp
→ PN

Cp
be a lift of Frobenius on PN

Cp
. Let {bi }i≥0 be a sequence of points in

PN
Cp
(Cp) satisfying f (bi ) = bi−1 for all i ≥ 1. Let V be a positive dimensional irreducible subvariety

of PN
Cp

. If {bi }i≥0 ∩ V is Zariski dense in V , then V is periodic under F.

In fact, we prove a stronger statement.

Theorem 1.8. Let F : PN
Cp
→ PN

Cp
be a lift of Frobenius on PN

Cp
. Let {bi }i≥0 be a sequence of points in

PN
Cp
(Cp) satisfying f (bi )= bi−1 for all i ≥ 1. Let V be a subvariety of PN

Cp
. If there exists a subsequence

{bni }i≥0 such that |d(bni , V )| → 0 when n→∞, then bni ∈ V for i large enough and there exists r ≥ 0,
such that {bi }i≥0 ⊆

⋃r
i=0 F i (V ).

It implies the following Tate–Voloch type statement.

Corollary 1.9. Let F : PN
Cp
→ PN

Cp
be a lift of Frobenius on PN

Cp
. Let {bi }i≥0 be a sequence of points in

PN
Cp
(Cp) satisfying f (bi )= bi−1 for all i ≥ 1. Let V be a subvariety of PN

Cp
. Then there exists c > 0 such

that for all i ≥ 0, either bi ∈ V or d(bi , V ) > c.

Overview of the proofs. Let us now see in more detail how our arguments work.

Denote by K := Cp and K [
:= F̂p((t)) the completion of the algebraic closure of Fp. We denote by

K ◦ and K [◦ the valuation rings of K and K [, respectively, and by K ◦◦ and K [◦◦ the maximal ideal of
K ◦ and K [◦, respectively. Denote by k := Fp. We have k = K ◦/K ◦◦ = K [◦/K [◦◦. Moreover, we have an
embedding k ↪→ K [.

Let F : PN
K → PN

K be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xn) : · · · : x

q
N + p′PN (x0, . . . , xN )],

where p′ ∈ K ◦◦, q is a power of p, and P0, . . . , PN are homogeneous polynomials of degree q in
K ◦[x0, . . . , xN ].

We associate to PN
K and PN

K [ nonarchimedean analytic spaces P
N ,ad
K and P

N ,ad
K [ , respectively, with natural

embeddings PN
K (K )⊆ P

N ,ad
K and PN

K [(K [)⊆ P
N ,ad
K [ . The endomorphism F extends to an endomorphism

Fad on P
N ,ad
K .
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Denote by lim
←−−Fad P

N ,ad
K the inverse limit of the P

N ,ad
K where the transition maps are Fad. Then we may

construct a perfectoid space P
N ,perf
K with an endomorphism Fperf for which the topological dynamical

system (P
N ,perf
K , Fperf) is isomorphic to (lim

←−−Fad P
N ,ad
K , T ) where T : (x0, x1, . . .)→ (Fad(x0), x0, . . .) is

the shift map on lim
←−−Fad P

N ,ad
K . Moreover, we have a natural morphism π : P

N ,perf
K → P

N ,ad
K defined by

projection to the first coordinate. This construction has been stated by Scholze [2014, §7].
Similarly, we construct a perfectoid space P

N ,perf
K [ which is isomorphic to the inverse limit lim

←−−8s P
N ,ad
K [

where 8 is the Frobenius endomorphism on P
N ,ad
K [ , and q = ps . Denote by π [ : PN ,perf

K [ → P
N ,ad
K [ the

morphism defined by the projection to the first coordinate. Since8 is a homeomorphism on the underlying
topological space, π [ induces an isomorphism from the topological dynamical system (P

N ,perf
K [ ,8s,perf)

to (PN ,ad
K [ ,8

s,ad), where 8perf is the Frobenius on P
N ,perf
K [ .

By the theory of perfectoid spaces, there is a natural homeomorphism of topological space

ρ : P
N ,perf
K → P

N ,perf
K [

satisfying 8s,perf
◦ ρ = ρ ◦ Fperf.

As an example, we explain the proof of Theorem 1.1. Let V be any subvariety of PN
Cp

such that V ∩Per
is Zariski dense in V .

It is easy to see that the map π ◦ ρ−1
◦ (π [)−1 induces a bijection from the set Per[ of periodic points

of 8s in PN
K [(K [) to the set Per of periodic points of F in PN

K (K ). We note that the set of periodic points
of 8s in PN

K [(K [) is exactly the set of points defined over k, i.e., the image of η : PN
k (k) ↪→ PN

K [(K [).
We have a reduction map red : PN

K (K )→ PN
k (k). The map η ◦ red : Per→ Per[ is bijective. Moreover,

we have that (η ◦ red) ◦ (π ◦ ρ−1
◦ (π [)−1) is the identity on Per[.

Denote by S[ the Zariski closure of η ◦ red(V ∩ Per). Since S[ is defined over k, it is periodic under
8s . The main ingredient of our proof is to show that S[ is a subset of π [(ρ(π−1(V ))). If π [(ρ(π−1(V )))
is algebraic, this is obvious. But, a priori, π [(ρ(π−1(V ))) is not algebraic, since the map ρ is very
transcendental. Our strategy is to approximate π [(ρ(π−1(V ))) by algebraic subvarieties of PN

K [ . For
simplicity, assume that V is an hypersurface of PN

K . Applying the approximation lemma of Scholze
[2012, Corollary 6.7], for any ε > 0, there exists an algebraic hypersurface Hε of PN

K [ which is ε-close to
π [(ρ(π−1(V ))). Then η◦red(V ∩Per) is ε-close to Hε . Since S[ is the Zariski closure of η◦red(V ∩Per)
in PN

K [ , we can show that it is ε-close to Hε . Then we can show that S[ is contained in π [(ρ(π−1(V )))
by letting ε tends to 0. Then we have S := π(ρ−1((π [)−1(S[))) ⊆ V . Since S is periodic and Zariski
dense in V , it follows that V is periodic.

In this paper, we mainly consider the lifts of Frobenius on PN
Cp

for simplicity, since the aim of this
paper is to present a new method in dynamics. We suspect that our method can be applied to the more
general case where F is a lift of Frobenius on any projective variety over Cp. On the other hand, a lift of
Frobenius on a projective variety X can often be extended to some lift of Frobenius on PN

Cp
for some

embedding τ : X ↪→ PN
Cp

. In the Appendix, we prove the existence of such embedding for polarized lifts
of Frobenius on some projective varieties under some technical condition on the field of definition. Once
this happens, many questions can be reduced to the special case where X = PN

Cp
.
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The plan of the paper. The paper is organized as follows. In Section 2, we gather a number of results on
the perfectoid spaces in Scholze’s papers Scholze 2012; Scholze 2014. In Section 3, we construct the
inverse limit and make it a perfectoid space with an automorphism. We also construct its tilt and give
the isomorphism between these two topological dynamical systems. In Section 4, we study the periodic
points of F . In particular, we prove Theorems 1.1 and 1.2. In Section 5, we study the coherent backward
orbits of a point. In particular, we prove Theorems 1.7 and 1.8 and Corollary 1.9. In the Appendix, we
study the polarized lift of Frobenius on projective varieties over Cp.

2. Preliminary: perfectoid spaces

In this section, we introduce some necessary background in perfectoid spaces. All the results in this
section can be found in Scholze’s papers [2012; 2014]. The perfectoid spaces are some nonarchimedean
analytic spaces. Following the technique of Scholze [2012], we work with Huber’s adic spaces [1993;
1994; 1996].

Adic spaces. In this section, we denote by k a complete nonarchimedean field i.e., a complete topological
field whose topology is induced by a nontrivial norm |·| : k→[0,∞). Denote by R a topological k-algebra.
Moreover we suppose that R is a Tate k-algebra i.e., there exists a subring R0 ⊆ R, such that a R0, a ∈ k×,
forms a basis of open neighborhoods of 0.

A subset M⊆ R is call bounded if M⊆a R0, for some a∈k×. An element x ∈ R is called power-bounded
if {xn

| n ≥ 0} ⊆ R is bounded. Let R◦ ⊆ R be the subring of power-bounded elements.

Definition 2.1 [Scholze 2012]. An affinoid k-algebra is a pair (R, R+), where R is a Tate k-algebra and
R+ is an open and integrally closed subring of R◦.

A valuation on R is a map |·| : R→ 0 ∪ {0}, where 0 is a totally ordered abelian group, such that,
|0| = 0, |1| = 1, |xy| = |x ||y| and |x + y| ≤max{|x |, |y|}. We say that |·| is continuous, if for all γ ∈ 0,
the subset {x ∈ R : |x |< γ } ⊆ R is open.

To a pair (R, R+), Huber associates a space Spa(R, R+) of equivalence classes of continuous valuations
|·| on R such that |R+| ≤ 1, and calls it an affinoid space.

For a point x ∈ Spa(R, R+), we denote by f → | f (x)| the associated valuation. It is a fact [Scholze
2012, Proposition 2.12.(iii)] that

R+ = { f ∈ R : | f (x)| ≤ 1 for all x ∈ Spa(R, R+)}.

We equip Spa(R, R+) with the topology generated by rational subsets:

U ( f1, . . . , fn; g)= {x ∈ Spa(R, R+) : | fi (x)| ≤ |g(x)|} ⊆ Spa(R, R+),

where f1, . . . , fn ∈ R generate R as an ideal and g ∈ R.
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The completion (R̂, R̂+) of an affinoid algebra (R, R+) is also an affinoid algebra. Then we recall
[Huber 1993, Proposition 3.9].

Proposition 2.2. We have Spa(R̂, R̂+)' Spa(R, R+), identifying rational subsets.

We say a point x ∈ Spa(R, R+) is a k-point, if the valuation x is induced by a morphism from R to k
i.e., there exists a morphism φ : R→ k such that for any f ∈ R, | f (x)| = |φ( f )|.

Roughly speaking, adic spaces over K are the objects obtained by gluing affinoid spaces. The
morphisms between the adic spaces are the morphisms glued by the morphisms between affinoid spaces.
Because in this paper we only consider some very concrete adic spaces, we give only a very brief definition
of the adic spaces. One may find a detailed definition in [Huber 1994].

On an affinoid space X = Spa(R, R+), one may define presheaves OX and O+X on X . Since we do not
use these presheaves in this paper, we omit their definition. We do not know whether OX is a sheaf in
general. We note that once OX is a sheaf, O+X is a sheaf also. However, if (R, R+) is of topological finite
type then OX is a sheaf.5 Assume that OX is a sheaf on X . For any x ∈ X , the valuation f 7→ | f (x)|
extends to the stalk OX,x , and we have O+X,x = { f ∈ OX,x : | f (x)| ≤ 1}. The affinoid spaces X defines a
triple (X, OX , |·(x)| : x ∈ X).

An adic space over k is a triple (Y, OY , |·(x)| : x ∈ Y ), consisting of a locally ringed topological space
(Y, OY ) where OY is a sheaf of complete topological k-algebras, and a continuous valuation |·(x)| on
OX,x for every x ∈ X , which is locally on Y an affinoid adic space.

Let X be an affinoid space. We say a point x ∈ X is a k-point if it is a k-point in any (and thus all)
affinoid neighborhood of X .

Perfectoid fields. Denote by K a complete nonarchimedean field of residue characteristic p > 0 with
norm |·| : K → R≥0. Denote by K ◦ := {x ∈ K : |x | ≤ 1} its valuation ring.

Definition 2.3. We say K is a perfectoid field if |K | ⊆ R≥0 is dense in R≥0 and the Frobenius map
8 : K ◦/p→ K ◦/p is surjective.

Observe that Cp and F̂p((t)) are perfectoid fields. Set

Qp(p1/p∞) :=
⋃
i≥0

Qp(p1/pi
) and Fp((t))(t1/p∞) :=

⋃
i≥0

Fp((t))(t1/pi
).

Then their completions ̂Qp(p1/p∞) and ̂Fp((t))(t1/p∞) are perfectoid fields. Note that Qp is not a
perfectoid field, since |Qp| = {0} ∪ {pi

| i ∈ Z} ⊆ R≥0 is not dense.
For any perfectoid field K , we choose some element ω ∈ K× such that |p| ≤ |ω|< 1. We define

K [◦
:= lim

←−−
x 7→8(x)

K ◦/ω.

Recall [Scholze 2012, Lemma 3.2].

5An affinoid k-algebra (R, R+) is said to be of topological finite type if R is a quotient of k{T1, . . . , Tn} for some n, and
R+ = R◦.
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Lemma 2.4. (i) There exists a multiplicative homeomorphism

lim
←−−

x 7→x p
K ◦ −→∼ lim

←−−
x 7→8(x)

K ◦/ω = K [◦

given by projection. Moreover, we have a map

K [◦
= lim
←−−

x 7→x p
K ◦ = {(x (0), x (1), . . .) | x (i) ∈ K ◦, (x (i+1))p

= x i
} → K ◦

defined by

x = (x (0), x (1), . . .)→ x#
:= x (0).

We may define a norm on K [◦ by |x#
| = |x | for all x ∈ K [◦.

(ii) The addition on

K [◦
= {x := (x (0), x (1), . . .) | x (i) ∈ K ◦, (x (i+1))p

= x i
}

is given by (x + y)i = limn→∞(x (i+n)
+ y(i+n))pn

.

(iii) There exists an element ω[ ∈ lim
←−−x 7→x p K ◦, satisfying (ω[)# = ω. Define

K [
:= K [◦

[(ω[)−1
].

Then norm |·| on K [◦ extends to a norm on K [ which makes K [◦ the valuation ring of K [.

(iv) There exists a multiplicative homeomorphism

K [
−→∼ lim

←−−
x 7→x p

K .

Then K [ is a perfectoid field of characteristic p. We have |K b×
| = |K×|, K [◦/ω[' K ◦/ω, and K [◦/m['

K ◦/m, where m and m[ are the maximal ideals of K ◦ and K [◦, respectively.

(v) If K is of characteristic p, then K [
= K .

We note that (i) and (ii) of Lemma 2.4 implies that the definition of K [◦ is independent of ω.
We call K [ the tilt of K .

Example 2.5. The tilt of Cp is C
[
p = F̂p((t)).

Then we have the following theorem, which was known by the classical work of Fontaine and
Wintenberger [1979]

Theorem 2.6. (i) Let L be a finite extension of K . Then L with its natural topology induced by K is a
perfectoid field.

(ii) The tilt functor L 7→ L[ induces an equivalence of categories between the category of finite extensions
of K and the category of finite extensions of K [. This equivalence preserves degrees.
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Almost mathematics. Let K be a perfectoid field and m be the maximal ideal of K ◦.
A K ◦-module M is said to be almost zero if mM = 0. Define the category of almost K ◦-modules as

K ◦a−mod K ◦a− mod := K ◦−mod (m-torsion).

We have a localization functor M 7→Ma from K ◦-mod to K ◦a-mod, whose kernel is the thick subcategory
of almost zero modules.

For two K ◦a-modules X and Y , we define alHom(X, Y )= Hom(X, Y )a .

Proposition 2.7 [Gabber and Ramero 2003]. The category K ◦a−mod is an abelian tensor category,
where we define kernels, cokernels and tensor products in the unique way compatible with their definition
in K ◦−mod , that is

Ma
⊗ N a

= (M ⊗ N )a

for any two K ◦-modules M and N. For any L ,M, N ∈ K ◦a−mod there is a functorial isomorphism

Hom(L , alHom(M, N ))= Hom(L ⊗M, N ).

This means that K ◦a-mod has all properties of the category of modules over a ring and thus one can
define the notion of K ◦a-algebra. Any K ◦-algebra R defines a K ◦a-algebra Ra as the tensor products are
compatible. Moreover, localization also gives a functor from R-modules to Ra-modules.

Proposition 2.8 [Gabber and Ramero 2003]. There exists a right adjoint functor

K ◦a−mod → K ◦−mod : M 7→ M∗ := HomK ◦a (K ◦a,M)

to the localization functor M 7→ Ma . The adjunction morphism (M∗)a→ M is an isomorphism. If M is a
K ◦-module, then (Ma)∗ = Hom(m,M).

If A is a K ◦a-algebra, then A∗ has a natural structure as K ◦-algebra and (Aa)∗ = A. In particular, any
K ◦a-algebra comes via localization from a K ◦-algebra. Furthermore the functor M 7→ M∗ induces a
functor from A-modules to A∗-modules, and one can see also that all A-modules come via localization
from A∗-modules. The category of A-modules is again an abelian tensor category, and all properties
about the category of K ◦a-modules stay true for the category of A-modules.

Let A be any K ◦a-algebra. As in [Scholze 2012], an A-module M is said to be flat if the functor
X 7→ M ⊗A X on A-modules is exact.

Denote by ω an element in K ◦ satisfying |p| ≤ |ω|< 1. Let A be a K a-algebra, we say A is ω-adically
complete if A ' lim

←−−
A/ωn .

Perfectoid algebras. Fix a perfectoid field K and an element ω ∈ K ◦ satisfying |p| ≤ |ω|< 1.

Definition 2.9. (i) A perfectoid K -algebra is a Banach K -algebra R such that the subset R◦ ⊆ R of
powerbounded elements is open and bounded, and the Frobenius morphism8 : R◦/ω→ R◦/ω is surjective.
Morphisms between perfectoid K -algebras are the continuous morphisms of K -algebras.
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(ii) A perfectoid K ◦a-algebra is a ω-adically complete flat K ◦a-algebra A on which Frobenius induces
an isomorphism

8 : A/ω1/p
' A/ω.

Morphisms between perfectoid K ◦a-algebras are the morphisms of K ◦a-algebras.

(iii) A perfectoid K ◦a/ω-algebra is a flat K ◦a/ω-algebra A on which Frobenius induces an isomorphism

8 : A/ω1/p
' A.

Morphisms are the morphisms of K ◦a/ω-algebras.

Let K - Perf denote the category of perfectoid K -algebras and similarly for K ◦a- Perf and K ◦a/ω- Perf.
Let K [ be the tilt of K and ω[ is an element in K [ satisfying (ωb)# = ω.

We recall [Scholze 2012, Theorem 5.2].

Theorem 2.10. We have the following series of equivalences of categories:

K - Perf' K ◦a- Perf' (K ◦a/ω)- Perf= (K [a/ωb)- Perf' K [a- Perf' K [- Perf .

In other words, a perfectoid K -algebra, which is an object over the generic fiber, has a canonical
extension to the almost integral level as a perfectoid K ◦a-algebra, and perfectoid K ◦a-algebras are
determined by their reduction modulo ω.

Let R be a perfectoid K ◦a-algebra, with A = R◦a . Define

A[ := lim
←−−
8

A/ω,

which we regard as a K [◦a-algebra via

K [◦a
= (lim
←−−
8

K ◦/ω)a = lim
←−−
8

(K ◦/ω)a = lim
←−−
8

K ◦a/ω,

and set R[ = Ab
∗
[(ω[)−1

].

Proposition 2.11. This defines a perfectoid K [-algebra R[ with corresponding perfectoid K [◦a-algebra
A[, and R[ is the tilt of R. Moreover,

R[ = lim
←−−

x 7→x p
R, A[

∗
= lim
←−−

x 7→x p
A∗, and A[

∗
/ω[ ' A∗/ω.

In particular, we have a continuous multiplicative map R[ = lim
←−−x 7→x p R→ R,

x = (x (0), x (1), . . .) 7→ x#
:= x (0).

Then the equivalence K - Perf→ K [- Perf in Theorem 2.10 is given by R 7→ R[.

Proposition 2.12. Let R = K 〈T 1/p∞

1 , . . . , T 1/p∞
n 〉 = K ◦ ̂

[T 1/p∞
1 , . . . , T 1/p∞

n ][ω−1
]. Then R is a perfectoid

K -algebra, and its tilt R[ is given by K [
〈T 1/p∞

1 , . . . , T 1/p∞
n 〉.
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Perfectoid spaces. Fix a perfectoid field K and an element ω ∈ K ◦ satisfying |p| ≤ |ω|< 1. Let K [ be
the tilt of K and ω[ is an element in K [ satisfying (ωb)# = ω.

Definition 2.13. A perfectoid affinoid K -algebra is an affinoid K -algebra (R, R+), where R is a perfectoid
K -algebra, and R+ ⊆ R◦ is an open and integrally closed subring.

Proposition 2.14. The association (R, R+) 7→ (Rb, R[+), where R[+ = lim
←−−(x→x p) R+. defines an equiv-

alence between the category of perfectoid affinoid K -algebras and the category of perfectoid affinoid
K [-algebras.

Theorem 2.15. For any x ∈ Spa(R, R+), one may define a point x[ ∈ Spa(R[, R[+) by setting | f (x[)| :=
| f #(x)| for f ∈ R[. This defines a homeomorphism ρ : Spa(R, R+)−→∼ Spa(R[, R[+) preserving rational
subsets.

Denote by X :=Spa(R, R+) and X [
:=Spa(R[, R[+). We note that in general the map R[→ R : f→ f #

is not surjective. For any f in R, ρ∗ f := f ◦ ρ−1 is a continuous function on X [ but in general is not
contained in R[.

We have the following approximation lemma [Scholze 2012, Corollary 6.7].

Lemma 2.16. For any f ∈ R and any c ≥ 0, ε > 0, there exists gc,ε ∈ R[ such that for all x ∈ X , we have

| f (x)− g#
c,ε(x)| ≤ |ω|

1−ε max(| f (x)|, |ω|c).

Remark 2.17. Note that for ε < 1, the given estimate says in particular that for all x ∈ X , we have

max{| f (x)|, |ω|c} =max{|g#
c,ε(x)|, |ω|

c
}.

Remark 2.18. Let R := K 〈x1, . . . , xN 〉 and R+ := R◦ = K ◦〈x1, . . . , xN 〉. Then R[ = K [
〈x1, . . . , xN 〉

and R[+ = K [◦
〈x1, . . . , xN 〉.

By Lemma 2.16, for any c ∈ Z+, there exists an element gc ∈ K [◦
〈x1/p∞

1 , . . . , x1/p∞
N 〉 such that for all

x ∈U perf
0 , we have

|H ◦π(x)− g#
c (x)| ≤ |p|

1/2 max(|H ◦π(x)|, |p|c).

There exists `∈N and an element Gc ∈K [◦
[x1/p`

1 , . . . , x1/p`
N ] such that gc−Gc ∈ tc+1K [◦

〈x1/p∞

1 , . . . , x1/p∞
N 〉.

It follows that for all x ∈U perf
0 , we have

|H ◦π(x)−G#
c(x)| ≤ |p|

1/2 max(|H(x)|, |p|c)= |p|1/2 max(|G#
c(x)|, |p|

c),

and G p`
∈ K [◦

[x1, . . . , xN ].

Moreover, when K [
= F̂p((t)), we may arrange to have Gc ⊆ E◦[x1/p`

1 , . . . , x1/p`
N ], where E is a finite

extension of Fp((t)).

We next describe the structure sheaf OX on X := Spa(R, R+). Let U = U ( f1, . . . , fn; g)⊆ X be a
rational subset. Equip R[g−1

] with the topology making the image of R+[ f1/g, . . . , fn/g] → R[g−1
]
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open and bounded. Let R〈 f1/g, . . . , fn/g〉 be the completion of R[g−1
] with respect to this topology. It

is equipped with a subring

R〈 f1/g, . . . , fn/g〉+ ⊆ R〈 f1/g, . . . , fn/g〉

which is the completion of the integral closure of R+[ f1/g, . . . , fn/g]. By [Huber 1994, Proposition 1.3],
the pair (OX (U ), O+X (U )) := (R〈 f1/g, . . . , fn/g〉, R〈 f1/g, . . . , fn/g〉+) depends only on the rational
subset U ⊆ X (and not on the choice of f1, . . . , fn, g ∈ R). The map

Spa(OX (U ), O+X (U ))→ Spa(R, R+)

is a homeomorphism onto U , preserving rational subsets. Moreover, (OX (U ), O+X (U )) is initial with
respect to this property.

By [Scholze 2012, Theorem 6.3], we have the following:

Theorem 2.19. For any rational subset U ⊆ X , let U [
:= ρ(U )⊆ X [.

(i) The presheaves OX and OX [ are sheaves.

(ii) For any rational subset U ⊆ X , the pair (OX (U ), O+X (U )) is a perfectoid affinoid K -algebra, which
tilts to (OX [(U [), O+X [(U

[)).

The resulting spaces Spa(R, R+), equipped with the two structure sheaves of topological rings OX

and O+X , are called affinoid perfectoid spaces over K . The morphisms between the affinoid perfectoid
spaces over K are the morphisms induced by the morphisms between affinoid perfectoid K -algebras.

One defines perfectoid spaces over K to be the objects obtained by gluing affinoid perfectoid spaces.
The morphisms between the perfectoid spaces are the morphisms glued by the morphisms between
affinoid perfectoid spaces.

We say that a perfectoid space X [ over K [ is the tilt of a perfectoid space X over K if there exists
a functorial isomorphism Hom(Spa(R[, R[+), X [) = Hom(Spa(R, R+), X) for all perfectoid affinoid
K -algebras (R, R+) with tilts (R[, R[+).

Theorem 2.20. Any perfectoid space X over K admits a tilt X [, unique up to isomorphism. This induces
an equivalence between the category of perfectoid spaces over K and the category of perfectoid spaces
over K [. The underlying topological spaces of X and X [ are naturally identified by ρ. A perfectoid
space X is affinoid perfectoid if and only if its tilt X [ is affinoid perfectoid. Finally, for any affinoid
perfectoid subspace U ⊆ X , the pair (OX (U ), O+X (U )) is a perfectoid affinoid K -algebra with tilt
(OX [(U [), O+X [(U

[)).

For any morphism F : X→Y between perfectoid spaces over K , denote by F[ : X [
→Y [ the morphism

between perfectoid spaces over K [ induced by the equivalence of categories.
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Points in perfectoid spaces. Fix a perfectoid field K and an element ω ∈ K ◦ satisfying |p| ≤ |ω| < 1.
Let X be a perfectoid space over K .

For any point x ∈ X , let K (x) be the residue field of OX,x and K (x)+ ⊆ K (x) be the image of O+X,x .
By [Scholze 2012, Proposition 2.25], the ω-adic completion of O+X,x is equal to the ω-adic completion

K̂ (x)
+

of K̂ (x)
+

. By [Scholze 2012, Corollary 6.7], K̂ (x) is a perfectoid field.

Definition 2.21. An affinoid perfectoid field is a pair (K , K+) consisting of a perfectoid field and an
open valuation subring K+ ⊆ K .

Then (K̂ (x), K̂ (x)
+

) is an affinoid perfectoid field. Also note that affinoid perfectoid fields (L , L+)
for which K ⊆ L are affinoid K -algebras.

Then we have the following description of points [Scholze 2012, Proposition 2.27].

Proposition 2.22. The points of X are in bijection with maps ι :Spa(L , L+)→ X to affinoid fields (L , L+)
such that the quotient field of the image of OX,x in L is dense, where x is the image of Spa(L , L+) in X.

Any point x ∈ X associates to a map ι : Spa(K̂ (x), K̂ (x)
+

)→ X . By the equivalence of categories,
the point x[ ∈ X [ associates to a map

ι[ : Spa(K̂ (x)
[
, K̂ (x)

[+
)→ X.

By [Scholze 2012, Lemma 5.21], Spa(K̂ (x)
[
, K̂ (x)

[+
) is an affinoid perfectoid field. It follows that

K̂ [(x[)= (K̂ (x))[.
In particular, we have the following:

Lemma 2.23. For any point x ∈ X , x is a K -point if and only if x[ is a K [-point in X [.

3. Inverse limit of lifts of Frobenius

In this section, fix a perfectoid field K . Denote by p>0 the characteristic of the residue field K ◦/K ◦◦ of K .
Let F : PN

K → PN
K be a lift of Frobenius i.e., an endomorphism taking the form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xN ) : · · · : x

q
N + p′PN (x0, . . . , xN )],

where p′ ∈ K ◦◦, q = ps is a power of p, and P0, . . . , PN are homogeneous polynomials of degree q in
K ◦[x0, . . . , xN ]. Let ω ∈ K ◦ be an element satisfying max{|p′|, |p|} ≤ |ω|< 1.

Adic projective spaces. At first, we define an adic space P
N ,ad
K which associates to the projective space PN

K .
In fact, by [Scholze 2012, Theorem 2.22], for any projective variety X defined over K with an integral
model X over K ◦, we may associate an adic space X ad. But in this paper, we don’t need the general
theory and we define P

N ,ad
K in the following explicit way:

For any i ∈ {0, . . . , N }, denote by

U ad
i := Spa

(
K 〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉, K 〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉

◦
)
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the unit balls. Then we define P
N ,ad
K by gluing the unit balls U ad

i together in the usual way: For any i 6= j ,
U ad

i ∩U ad
j =U (1, zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N ; zi, j )⊆U ad

i . On U ad
i ∩U ad

j , the transition map φi, j is
defined by

φ∗i, j (z j,k)= zi,k/zi, j for k 6= i, j, and φ∗i, j (z j,i )= 1/zi, j .

Denote by R(PN ,ad
K ) the set of K -points in P

N ,ad
K .

Lemma 3.1. There exists a natural embedding τ : PN
K (K ) ↪→ P

N ,ad
K . Moreover its image τ(PN

K (K ))=
R(PN ,ad

K ).

Proof of Lemma 3.1. For any point q ∈ PN
K (K ), there exists a finite extension L of K , and a point

q ′= [x0 : · · · : xN ] ∈PN
L (L), such that q is the image of that q ′ under the natural morphism π L

K :P
N
L →PN

K

induced by the inclusion K ↪→ L . Indeed, (π L
K )
−1 is exactly the Galois orbit of q ′. We may suppose that

max{|x0|, . . . , |xN |} = 1 for all j = 0, . . . , N . Denote by Iq := {i : |xi | = 1}. Observe that Iq depends
only on q. Pick i ∈ Iq , we define τ(q) ∈Ui to be the point defined by f → | f (x1/xi , . . . , xn/xi )|, for
all f ∈ K 〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉. Here f (x1/xi , . . . , xn/xi ) ∈ L depends on the choice of q ′

in its Galois obit, but the value | f (x1/xi , . . . , xn/xi )| depends only on q. Moreover we may check that
the definition of τ(q) does not depend on the choice of i ∈ Iq . Then τ is well defined. Moreover it is
easy to check that τ is injective and τ(PN

K (K ))⊆ R(PN ,ad
K ). By [Bosch et al. 1984, 6.1.2 Corollary 3],

the map τ : PN
K (K )→ R(PN ,ad

K ) is surjective. �

Lifts of Frobenius on P
N,ad
K . The endomorphism F induces a natural endomorphism Fad on P

N ,ad
K . We

define Fad in the following explicit way. For any i = 0, . . . , N , Fad
|U ad

i
:U ad

i →U ad
i is defined to be

F∗(zi, j )=
zq

i, j + p′Pj (zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N )

1+ p′Pi (zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N )

for all j 6= i . We may write

zq
i, j + p′Pj (zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N )

1+ p′Pi (zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N )
= zq

i, j + p′Qi, j (zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N )

where Qi, j ∈ K ◦〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉. For any i 6= j , we may check that Fad
i (U

ad
i ∩U ad

j )⊆

U ad
i ∩U ad

j and

Fad
i |U ad

i ∩U ad
j
= Fad

j |U ad
i ∩U ad

j
.

Then we may glue these Fad
i to define Fad

: P
N ,ad
K → P

N ,ad
K . Observe that we have the following

commutative diagram:

PN
K (K )

F |
PN

K (K )

��

τ // PN ,ad
K

Fad

��

PN
K (K )

τ [ // PN ,ad
K



1730 Junyi Xie

Now we identify PN
K (K ) and PN

K [(K [) with the image of τ and τ [ in P
N ,ad
K P

N ,ad
K [ , respectively.

The inverse limit. The inverse limit lim
←−−Fad P

N ,ad
K is the topological space {(x0, x1, . . .) ∈ (P

N ,ad
K )N |

Fad(xi ) = xi−1 for all i ≥ 1} with the product topology. There exists a natural automorphism T on
lim
←−−Fad P

N ,ad
K defined by

T : (x0, x1, . . .)→ (Fad(x0), x0, x1, . . .).

The aim of this section is to construct a perfectoid space (PN
K )

perf with an automorphism Fperf such
that the topological dynamical system ((PN

K )
perf, Fperf) is isomorphic to (lim

←−−Fad P
N ,ad
K , T ).

Since (Fad)−1(U ad
i )⊆U ad

i for all i = 0, . . . , N , we have

lim
←−−

Fad

P
N ,ad
K =

N⋃
i=0

(lim
←−−

Fad

U ad
i ).

Moreover we have T (U ad
i )⊆U ad

i . It follows that we only need to construct a perfectoid affinoid space
U perf

i with an automorphism Fperf
i such that the topological dynamical system (U perf

i , Fperf
i ) is isomorphic

to (lim
←−−Fad U ad

i , T |U ad
i
) and check that they can be glued together.

Denote Rn
i := K 〈z(n)i,0 , . . . , z(n)i,i−1, z(n)i,i+1, . . . , z(n)i,N 〉 for all i = 0, . . . , N and n ≥ 0. We identify z(0)i, j

and zi, j for i 6= j . For every n ≥ 0, we have an embedding Rn
i ↪→ Rn+1

i defined by

z(n)i, j 7→ (z(n+1)
i, j )q + p′Qi, j (z

(n+1)
i,0 , . . . , z(n+1)

i,i−1 , z(n+1)
i,i+1 , . . . , z(n+1)

i,N )

where Qi, j is defined in Section 3. Then we denote by

Ri := K 〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉,

the completion of
⋃
∞

n=0 Rn
i . Denote by ‖·‖ the norm on Ri induced by the norms on Rn

i , n ≥ 0.

Lemma 3.2. For every i = 1, . . . , N , Ri is a perfectoid K -algebra with

R◦i = K ◦〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉.

Its tilt is given by R[i = K [
〈z1/p∞

i,0 , . . . , z1/p∞

i,i−1 , z1/p∞

i,i+1 , . . . , z1/p∞
i,N 〉.

Proof of Lemma 3.2. Observe that K ◦〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉 is the completion of
⋃
∞

n=0(R
n
i )
◦.

It is easy to check that
K ◦〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉 ⊆ R◦i .

For any f ∈ Ri , there exists a sequence fn ∈ Rn
i such that fn→ f as n→∞. There exists M ≥ 0, such

that for all m, n ≥ M , ‖ fn − fm‖ ≤ 1. It follows that fn − fM ∈ (Rn
i )
◦ for all n ≥ M . Then ̂⋃

∞

n=0(R
n
i )
◦.

If ‖ fM‖ ≤ 1, we have fM ∈ (RM
i )
◦ and then ̂⋃

∞

n=0(R
n
i )
◦. If ‖ fM‖> 1, we have ‖ f n

‖ = ‖ f n
M‖→∞ as

n→∞. Then f is not power bounded. It follows that

R◦i ⊆ K ◦〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉.

It follows that R◦i is open and bounded.
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We have R◦i /ω = (K
◦/ω)〈z(∞)i,0 , . . . , z(∞)i,i−1, z(∞)i,i+1, . . . , z(∞)i,N 〉 is the completion of

⋃
∞

n=0 Rn
i /ω. The

embedding Rn
i /ω→ Rn

i /ω is given by

z(n)i, j mod ω 7→ (z(n+1)
i, j )q + p′Qi, j (z

(n+1)
i,0 , . . . , z(n+1)

i,i−1 , z(n+1)
i,i+1 , . . . , z(n+1)

i,N ) mod ω = (z(n+1)
i, j )q mod ω.

It follows that

R◦i /ω = (K
◦/ω)〈z1/p∞

i,0 , . . . , z1/p∞

i,i−1 , z1/p∞

i,i+1 , . . . , z1/p∞
i,N 〉.

Then the Frobenius morphism8 : R◦i /ω→ R◦i /ω is surjective. It follows that Ri is a perfectoid K -algebra.
By Proposition 2.12 and the categorical equivalence in Theorem 2.10, we have

R[i = K [
〈z1/p∞

i,0 , . . . , z1/p∞

i,i−1 , z1/p∞

i,i+1 , . . . , z1/p∞
i,N 〉. �

We define U perf
i := Spa(Ri , R◦i ) and Fperf

i :U perf
i →U perf

i the map induced by the morphism Ri → Ri

defined by

z(n)i, j → z(n−1)
i, j for all n ≥ 1 and z(0)i, j → (z(0)i, j )

q
+ p′Qi, j (z

(0)
i,0 , . . . , z(0)i,i−1, z(0)i,i+1, . . . , z(0)i,N ).

Then we define (PN
K )

perf by gluing U perf
i together in the usual way: For any i 6= j , U perf

i ∩U perf
j =

U (1, z(0)i,0 , . . . , z(0)i,i−1, z(0)i,i+1, . . . , z(0)i,N ; z
(0)
i, j ) ⊆ U perf

i . On U perf
i ∩U perf

j , the transition map φi, j is defined
to be

(φ
perf
i, j )

∗(z(n)j,k)= z(n)i,k /z
(n)
i, j for k 6= i, j and (φ

perf
i, j )

∗(z(n)j,i )= 1/z(n)i, j .

It is easy to check that for all i 6= j ,

Fperf
i (U perf

i ∩U perf
j )⊆U perf

i ∩U perf
j

and Fperf
i = Fperf

j on U perf
i ∩U perf

j . Then we define Fperf by gluing Fperf
i for i = 0, . . . , N .

Then we have the following:

Theorem 3.3. There exists a natural homeomorphism ψ : (PN
K )

perf
→ lim
←−−Fad P

N ,ad
K which makes the

following diagram commutative:

P
N ,perf
K

Fperf

��

ψ // lim
←−−Fad P

N ,ad
K

T
��

P
N ,perf
K

ψ // lim
←−−Fad P

N ,ad
K

In other words, the topological dynamical systems (PN ,perf
K , Fperf) and (lim

←−−Fad P
N ,ad
K , T ) are isomorphic

by ψ .
Moreover a point x ∈ P

N ,perf
K , with image ψ(x) = (x0, x1, . . .), is a K -point if and only if xn is a

K -point for every n ≥ 0.
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Proof of Theorem 3.3. Denote by Bi :=
⋃
∞

n=0 Rn
i . We have B◦i =

⋃
∞

n=0 Rn◦
i . Then Spa(B, B◦) is

an affinoid space and we have Ri = B̂i and R◦i = B̂◦i . By Proposition 2.2, the natural morphism
µi : Spa(Ri , R◦i )→ Spa(Bi , B◦i ) is a homeomorphism.

Denote by ψn
i :U

perf
i →U ad

i the map induced by the morphism

K 〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉 → Rn
i ⊆ Bi ⊆ Ri

by sending zi, j → z(n)i, j . It is easy to check that ψn
i could be glued to a map ψn

: P
N ,perf
K → P

N ,ad
K .

Since Fad
◦ψn+1

= ψn for all n ≥ 0, it induces a map

ψ := lim
←−−

n
ψn
: P

N ,perf
K → lim

←−−

Fad

P
N ,ad
K .

By checking in the affinoid spaces U perf
i , it is easy to check that T ◦ψ = ψ ◦ Fperf.

So we only need to show that ψ is a homeomorphism. We only need to show it in Ui . Denote by

ψi := ψ |U perf
i
= lim
←−−

n
ψn

i .

Now we define a morphism θi : lim←−−Fad U ad
i → Spa(Bi , B◦i ) as the following: Let (x0, x1, . . .) be a point

in lim
←−−Fad U ad

i . For every n≥ 0, we identify Ui→Spa(Rn
i , Rn◦

i ) by zi, j→ z(n)i, j . Then xn defines a valuation
on Rn

i with valuation group 0n := {| f (xn)| : f ∈ Rn
i }. Moreover, for any ` ≥ n, and f ∈ Rn

i , we have
| f (xl)| = | f (xn)|. Then we define θi ((x0, x1, . . .)) to be the natural valuation Bi =

⋃
∞

n=0 Rn
i →

⋃
∞

n=0 0n

by gluing all the valuations xn on Rn
i . Since all the rational subset of Spa(Bi , B◦i ) are defined over

some Rn
i , it is easy to check that θ is continuous. It is easy to check that ψi ◦ (µ

−1
i ◦ θi ) = id and

(µ−1
i ◦ θi ) ◦ψi = id. It follows that ψi is a homeomorphism.
Let x be a K -point in U perf

i and ψi (x)= (x0, x1, . . .). For any n ≥ 0, we have

K ⊆ Rn
i /{| f (xn)| = 0 : f ∈ Rn

i } ⊆ Ri/{| f (x)| = 0 : f ∈ Ri } = K .

It follows that xn is a K -point.
Let x be a point in U perf

i and set ψi (x) = (x0, x1, . . .). We suppose that all xn are K -points. Then
mn

i := {| f (xn)| = 0 : f ∈ Rn
i } is a maximal ideal in Rn

i and Rn
i /mn

i = K . The valuation Rn
i /mn

i → R

induced by xi is the norm on K .
There exists a continuous morphism

⋃
∞

n=0 Rn
i → K obtained by gluing the morphisms Rn

i →

Rn
i /mn

i ↪→ K . We can extend this morphism to a continuous morphism g : Rn
i =

⋃̂
∞

n=0 Rn
i → K .

The valuation f → |g( f )| defines a point y ∈ U perf
i , which is a K -point. Observe that for all f ∈ Rn

i ,
| f (y)| = | f (xi )|. Then we have ψ(y)= (x0, x1, . . .)= ψ(x). Then y = x and so, x is a K -point. �

For every i = 0, . . . , N , the embedding K 〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉 ⊆ Ri induces a map
U perf

i →U ad
i . We define π : PN ,perf

K → P
N ,ad
K by gluing these maps. It is easy to check that

Fad
◦π [ = π [ ◦ Fperf.

For any point x ∈ P
N ,perf
K with ψ(x)= (x0, x1, . . .), we have π(x)= x0.
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Passing to the tilt. Denote by U [,perf
i := Spa(R[i , Rb◦

i ) and 8s,perf
i : U [,perf

i → U [,perf
i the s-th power of

the Frobenius i.e., the map induced by the morphism

R[i → R[i : f → f q .

We define (PN
K [)

perf by gluing U [,perf
i together in the usual way: For any i 6= j , U [,perf

i ∩U [,perf
j =

U (1, zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N ; zi, j )⊆U [,perf
i .

On U [,perf
i ∩U [,perf

j , the transition map φ[i, j is defined to be

(φ
[,perf
i, j )∗(z1/pn

j,k )= z1/pn

i,k /z1/pn

i, j for k 6= i, j and (φ
[,perf
i, j )∗(z1/pn

j,i )= 1/z1/pn

i, j .

By reducing modulo ω and the categorical equivalence in Theorem 2.10, we see that φ[,perf
i, j = (φ

perf
i, j )

[

and 8s,perf
i = (Fperf

i )[. It follows that (PN
K [)

perf
= ((PN

K )
perf)[ and we can define 8s,perf by gluing 8s,perf

i

together. Moreover, we have 8s,perf
= (Fperf)[. Then we have the following:

Theorem 3.4. The following diagram is commutative:

P
N ,perf
K

Fperf

��

ρ // P
N ,perf
K [

8s,perf

��

P
N ,perf
K

ρ // P
N ,perf
K [

In other words, the topological dynamical systems (PN ,perf
K , Fperf) and (PN ,perf

K [ ,8s) are isomorphic by ρ.

For any i ∈ {0, . . . , N }, denote by

U [,ad
i := Spa

(
K [
〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉, K [

〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉
◦
)
.

As in Section 3, we define P
N ,ad
K [ by gluing U [,ad

i , i = 0, . . . , N . Denote by φs,ad
i the s-th power of the

Frobenius on Ui i.e., the map induced by the morphism f → f q on K [
〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉.

By Lemma 3.1, we have a natural embedding τ [ : PN
K [(K [) ↪→ P

N ,ad
K [ . Then τ(PN

K (K )) = R(PN ,ad
K )

and we have the following commutative diagram:

PN
K [(K [)

8s
|
PN

K (K )

��

τ // PN ,ad
K [

8s,ad

��

PN
K [(K [)

τ // PN ,ad
K [

where 8s is the s-th power of the Frobenius on P N
K [ .

For every i = 0, . . . , N , the embedding K [
〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉 ⊆ R[i induces a map

U [,perf
i →U [,ad

i . We define π [ : PN ,perf
K [ → P

N ,ad
K [ by gluing these maps. It is easy to check that

8s,ad
◦π [ = π [ ◦8s,perf. (1)

By [Scholze 2012, Theorem 8.5] π [ is a homeomorphism. Moreover, we have the following:
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Lemma 3.5. The map π [ induces a bijection between R(PN ,perf
K [ ) and R(PN ,ad

K [ ).

Proof of Lemma 3.5. It is clear that if x is a K [-point then π [(x) is a K [-point.
Now we suppose that π [(x) is a K [-point. We suppose that x is contained in U [,perf

i and then
x0 := π

[(x) ∈U [,ad
i . Since x0 is a K [-point, it defines a morphism

g0 : R
[,0
i := K [

〈zi,0, . . . , zi,i−1, zi,i+1, . . . , zi,N 〉 → K [.

It follows that the Frobenius map f → f p on K [ is a field automorphism. For any f ∈ R[,ni :=

K [
〈z1/pn

i,0 , . . . , z1/pn

i,i−1, z1/pn

i,i+1, . . . , z1/pn

i,N 〉, we have f pn
∈ R[,0i . Then the morphism g0 extends to a mor-

phism gn : R[,ni → K [ by sending f to (g0( f pn
))1/pn

. We glue gn to define a continuous morphism⋃
∞

n=0 R[,ni → K [ and then extend it to a continuous morphism

g : R[i =
̂( ∞⋃

n=0

R[,ni

)
→ K [.

Then g induces a K [-point y ∈U [,perf
i . Since π [(y)= x0=π

[(x), we have y= x . Then x is a K [-point. �

4. Periodic points

In this section, we denote by K = Cp. Then K is a perfectoid field and K [ is the completion of the
algebraical closure of Fp((t)). We may suppose that |p| = |t | = p−1.

Let F : PN
K → PN

K be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xN ) : · · · : x

q
N + p′PN (x0, . . . , xN )],

where p′ ∈ K ◦◦, q is a power of p, and P0, . . . , PN are homogeneous polynomials of degree q in
K ◦[x0, . . . , xN ]. The aim of this section is to study the periodic points of F . In particular, we prove
Theorem 1.1 and 1.2.

Recall that Per is the set of periodic closed points in PN
K .

Let V be any irreducible subvariety of PN
K . Suppose that V is defined by the equations H j (x0, . . . , xN )=

0, j = 1, . . . ,m, where H j are homogenous polynomials. We may suppose that ‖H j‖ = 1 for all
j = 1, . . . ,m. For any i = 0, . . . , N , denote by

V ad
i := {x ∈U ad

i : |Hi, j (x)| = 0, j = 1, . . . ,m},

where Hi, j := H(zi,0, . . . , zi,i−1, 1, zi,i+1, . . . , zi,N ). Observe that ‖Hi, j‖ = 1.
Set R(V ad

i ) := R(PN ,ad
K ) ∩ V ad

i , V ad
:=
⋃N

i=0 V ad
i and R(V ad) := R(PN ,ad

K ) ∩ V ad. Then we have
τ(R(V ))= R(V ad).

Observe that for all points x ∈ R(U ad
i ), we have d(x, V )=max{|Hi, j (x)|}.
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Passing to the reduction. Since K is algebraically closed, we have PN
K (K )=PN

K (K ). Denote by k = Fp,
we have k = K ◦/K ◦◦. At first, there exists a reduction map

red : PN
K (K )→ PN

k (k)

defined by the following: For any point x ∈ PN
K (K ), we may write it as x = [x0 : · · · : xN ] where

xi ∈ K ◦, i = 0, . . . , N and max{|xi |, i = 0, . . . , N } = 1. Then we define red(x)= [x1 : · · · : xN ] where xi

is the image of xi in k = K ◦/K ◦◦. Observe that red ◦ F =8s
◦ red, where φ is the Frobenius on PN

k . For
every point y ∈PN

k (k), there exists m> 0 such that8sm(y)= y. Then we have Dy := red−1(y)' (K ◦◦)N

is a polydisc fixed by F . Since Fm
|Dy is attracting, Dy ∩ Per has exactly one point. It follows that red

induces a bijection between Per and PN
k (k).

Similarly, we can define the reduction map red[ : PN
K [(K [)→ PN

k (k). This map induces a bijection
between Per[ and PN

k (k) where Per[ is the set of 8s-periodic closed points of PN
K [ .

Since k is a subfield of K [, there exists an embedding η : PN
k (k) ↪→ PN

K [(K [). Observe that the image
η(PN

k (k)) is exactly Per[. Moreover we have red[ ◦η = id. We may check that the map

φ := η ◦ red : Per→ Per[

is a bijection satisfying 8s
◦φ = φ ◦ F .

Passing to the tilt. Denote by Perad
= τ(Per). It is exactly the set of periodic K -points in P

N ,ad
K . For any

point x ∈ Perad, denote by n > 0 a period of x under Fad. We define a map χ : Perad
→ lim
←−−Fad P

N ,ad
K by

sending x to (x0, x1, . . .) where xi = (Fan)kn−i (x) where kn ≥ i . We note that χ(x) does not depend on
the choice of n and k. Since π ◦χ = id, χ is injective. We have that χ(Perad) is exactly the set of PerT ,
where PerT is the set of points (x0, x1, . . .) ∈ lim

←−−Fad P
N ,ad
K which is periodic under T such that every xn

is a K -point.
Denote by Per[,ad the set of K [-points in P

N ,ad
K [ which are periodic under8s,ad. By applying Lemma 3.1

over K [, there exists a bijection τ [ : PN
K [(K [)→ R(PN ,ad

K [ ) and we have

τ [ ◦8s
=8s,ad

◦ τ [.

It follows that τ [ induces a bijection between Per[,ad and the set Per[ of 8s-periodic points in R(PN
K [)=

PN
K [(K [).
By Theorems 3.3, 3.4, (1) and Lemma 3.5, the map

ι := π [ ◦ ρ ◦ψ−1
◦χ : Perad

→ Per[,ad

is bijective.
Denote by Perad

i := Perad
∩U ad

i and Per[,ad
i := Per[,ad

∩U [,ad
i for every i = 0, . . . , N . Then we have

ι(Perad
i )= Per[,ad

i .
Observe that for every point x ∈ Per, we have red(x)= red[ ◦ι ◦ τ(x). Then on Per we have

φ = η ◦ red= η ◦ red[ ◦ι ◦ τ = ι ◦ τ.
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Proof of Theorem 1.2. We only need to show this theorem for the periodic points in U ad
i for all i =

0, . . . , N . Without the loss of generality, we only need to show that there exists δ > 0 such that for all
x ∈ Per∩U ad

0 , either d(x, V ) > δ or x ∈ V .
At first, we prove our theorem for hypersurfaces.

Lemma 4.1. Let H ∈ K [x1, . . . , xN ] be a polynomial. Then there exists ε > 0, such that for all x ∈
Per∩U ad

0 , either |H(x)|> ε or H(x)= 0.

By this lemma, for any H0, j , j = 1, . . . ,m, we have ε j > 0 such that for all x ∈ Per∩U ad
0 , either

|H0, j (x)|>ε j or H0, j (x)=0. Set δ :=min1≤ j≤m{ε j }. Let x be a point in Per∩U ad
0 satisfying d(x, V )≤ δ.

Then for all j = 1, . . . ,m, we have H0, j (x)= 0. It follows that x ∈ V .
We only need to prove Lemma 4.1. To do this, we need the following lemma:

Lemma 4.2. Let E/Fp((t)) be a finite extension. Then, for some u ∈ E satisfying |u| = |t |1/[E :Fp((t))],
E = Fp((u)).

Proof of Lemma 4.2. Observe that E is a discrete valuation field.
Since Fp is algebraically closed, the extension E/Fp((t)) is totally ramified. It follows that E =

Fp((t))(u) where the minimal polynomial of u over Fp((t)) is an Eisenstein polynomial. It follows that
|u| = |t |1/[E :Fp((t))] and uE◦ is the maximal ideal of E◦. For every f ∈ E◦, f can be written as

∑
i≥0 ai ui

where ai ∈ Fp for all i ≥ 0. This concludes our proof. �

Lemma 4.3. For any polynomial G ∈ K [◦
[x1, . . . , xN ] and ε > 0, there exists a polynomial Gε ∈

K [◦
[x1, . . . , xN ] satisfying deg Gε≤deg G, ‖G−Gε‖<ε (resp. ≤ε) and Gε has the form Gε=

∑m
i≥0 ui gi

where gi ∈ Fp[x1, . . . , xN ], u ∈ Fp((t))
◦

with norm |u| = |t |1/[Fp((t))(u):Fp((t))] and |u|m ≥ ε (resp. > ε).

Proof of Lemma 4.3. By Lemma 4.2, there exists u ∈ Fp((t))
◦

with norm |u| = |t |1/[Fp((t))(u):Fp((t))] and
H ∈ Fp((t))(u)[x1, . . . , xN ] such that deg H ≤ deg G, ‖G − H‖< ε and H takes form H =

∑
∞

i≥0 ui gi

where gi ∈Fp[x1, . . . , xN ]. Let m be the largest integer such that |u|m ≥ ε (resp. >ε). Set Gε=
∑m

i≥0 ui gi

then we conclude our proof. �

Proof of Lemma 4.1. We may suppose that H 6= 0 and ‖H‖ = 1.
By Remark 2.18, for any c ∈ Z+, there exists ` ∈ N and an element Gc ∈ K [◦

[x1/p`

1 , . . . , x1/p`
N ] such

that for all x ∈U perf
0 , we have

|H ◦π(x)−G#
c(x)| ≤ |p|

1/2 max(|H(x)|, |p|c)= |p|1/2 max(|G#
c(x)|, |p|

c),

and G p`
∈ K [◦

[x1, . . . , xN ]. By Lemma 4.3, we may suppose that G p`
c =

∑m
i≥0 ui gc,i where gc, j ∈

Fp[x1, . . . , xN ], u ∈ Fp((t))
◦

with norm |u| = |t |1/[Fp((t))(u):Fp((t))] and |u|m > |t |(c+1/2)p`.
Denote by Ic the ideal of K [

[x1, . . . , xN ] generated by all gc,i .
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If x ∈ R(U [

0) is a point such that for all g ∈ Ic, g(x)= 0, then we have∣∣H(π(ρ−1((πb)−1(x))))
∣∣= ∣∣H(π(ρ−1((πb)−1(x))))−G#

c(ρ
−1((π [)−1(x)))

∣∣
≤max{|p|1/2|G#

c(ρ
−1((π [)−1(x))|, |p|c+1/2

}

= |p|c+1/2.

On the other hand we have the following lemma.

Lemma 4.4. Let x be a point in Per∩U ad
0 satisfying |H(x)| ≤ |p|c+1/2. Then for all g ∈ Ic, we have

g(φ(x))= 0.

Proof of Lemma 4.4. Observe that |(H −G#
c)(χ(x))| ≤ |p|

1/2 max(|H(x)|, |p|c) and |H(x)| ≤ |p|c+1/2.
We have |Gc(φ(x))| = |G#

c(χ(x))| ≤ |p|
c+1/2. For all j ≥ 0, we have gc, j (φ(x)) ∈ k. It follows that

either |gc, j (φ(x))| = 1 or gc, j (φ(x))= 0 for all j ≥ 0. If gc, j (φ(x))= 0 for all j ≥ 0, then for all g ∈ Ic

we have g(φ(x)) = 0. Otherwise, let j0 be the smallest j satisfying |gc, j (φ(x))| = 1. It follows that
|Gc(φ(x))| = |u| j0/p` . Since |Gc(φ(x))| = |G#

c(χ(x))| ≤ |p|
c+1/2, we get a contradiction. �

Set I :=
∑

c≥1 Ic. Since K [
[x1, . . . , xN ] is Noetherian, there exists M ∈ Z+, such that I =

∑M
c=1 Ic.

Set ε := |p|M+1/2. Let x be a point in Per∩U ad
0 satisfying |H(x)| ≤ ε= |p|M+1/2. By Lemma 4.4, for all

g ∈ I =
∑M

c=1 Ic, we have |g(φ(x))| = 0. It follows that for all c ≥ 1 and g ∈ Ic, we have |g(φ(x))| = 0.
Then we have |H(x)| ≤ |p|c+1/2 for all c ≥ 0. Let c tend to infinity, we have H(x)= 0. We conclude our
proof of Lemma 4.1. �

Proof of Theorem 1.1. Suppose that V ∩Per is Zariski dense in V . We claim the following:

Lemma 4.5. There exists a Zariski dense subset S⊆ V with the property that F`(S)= S for some positive
integer `.

Since S is Zariski dense in V and S = F`(S) is Zariski dense in F`(V ). It follows that V = F`(V ).
Then Lemma 4.5 implies Theorem 1.1.

Proof of Lemma 4.5. Since
⋃N

i=0 τ
−1(Perad

i ∩V ad
i )= Per is Zariski dense in V , there exists i = 0, . . . , N ,

such that τ−1(Perad
i ∩V ad

i ) is Zariski dense in V . We may suppose that i = 0.
Let Z be the Zariski closure of φ(τ−1(Perad

0 ∩V ad
0 ))⊆ PN

K [ . Since φ(τ−1(Perad
0 ∩V ad

0 )) is defined over
k and it is Zariski dense in Z , Z is defined over k = Fp. Then Z is defined over a finite extension of Fp.
It follows that there exists `≥ 1, such that 8sl(Z)= Z .

Set S[,ad
:= τ [(Z(K [))∩U [

0 . We have ι(Perad
∩V ad

0 )⊆ S[,ad
∩π [(ρ(π−1(V ad))).

We claim the following:

Lemma 4.6. We have S[,ad
⊆ π [(ρ(π−1(V ad

0 ))).

Remark 4.7. We note that if π [(ρ(π−1(V ad
0 ))) is algebraic, our lemma is easy. Since φ(τ−1(Perad

0 ∩V ad
0 ))

is Zariski dense in Z , and π [(ρ(π−1(V ad
0 ))) is algebraic, we have S[,ad

⊆ π [(ρ(π−1(V ad
0 ))).
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But in general π [(ρ(π−1(V ad
0 ))) is not algebraic since the map ρ is not algebraic. Our proof of

Lemma 4.6 is based on Lemma 2.16, which allows us to approximate π [(ρ(π−1(V ad
0 ))) by algebraic

subvarieties.

By assuming Lemma 4.6, we have π(ρ−1((π [)−1(S[,ad)))⊆V ad
0 . Set S= τ−1(π(ρ−1((π [)−1(S[,ad)))).

We have S ⊆ V is a Zariski dense subset of V . Moreover, we have F`(S)= S. This concludes the proof
of Lemma 4.5. �

Now we only need to prove Lemma 4.6. First, we need the following:

Lemma 4.8. Let H ∈ K b
[z0,1, . . . , z0,N ] be a polynomial with norm 1. Suppose that for every point

x ∈ ι(Perad
∩V ad

0 ), we have |H(x)| ≤ 1/ps , where s ∈ Z+. Then for every point y ∈ S[,ad, we have
|H(y)| ≤ 1/ps .

Proof of Lemma 4.8. Observe that we have a map

R(U ad
0 )= (K

[◦)N
→ (K [◦/(t s))N

= AN
K [◦/(t s)

(K [◦/(t s))

defined by (x1, . . . , xn) 7→ (x1, . . . , xN ) where xi = xi mod t s . Denote by

H := H mod t s .

For every point x ∈ ι(Perad
∩V ad

0 ), we have H(x)= 0. Observe that

ι(Perad
∩V ad

0 )= (φ(τ
−1(Perad

0 ∩V ad
0 )))×Spec k Spec(K [,◦/(t s))

is Zariski dense in Z ×Spec k Spec(K [,◦/(t s)). It follows that

Z ×Spec k Spec(K [,◦/(t s))⊆ {H = 0}.

Then we have

S[,ad = Z(k)×Spec k Spec(K [,◦/(t s))⊆ Z ×Spec k Spec(K [,◦/(t s))⊆ {H = 0}.

It follows that for every x ∈ S[,ad, we have H(x) = 0 mod t s . Then we have |H(x)| ≤ 1/ps , for all
x ∈ S[,ad. �

Proof of Lemma 4.6. Now we apply Lemma 2.16 to H0, j ∈ K 〈z0,1, . . . , z0,N 〉 ⊆ Rperf
0 for every j =

1, . . . ,m. For any s ≥ 2 there exists hs ∈ R[,perf
0 such that for all x ∈U perf

0 , we have

|H0, j (x)− h#
s (x)| ≤ |t |

1/2 max(|H0, j (x)|, |t |s)= |t |1/2 max{|h#
s (x)|, |t |

s
}< 1. (2)

It follows that ‖hs‖ = ‖H0, j‖ = 1.
For every point x[ ∈ (π [)−1(ι(Perad

∩V ad
0 )), we have

x := ρ−1(x[) ∈ π−1(Perad
∩V ad

0 ).

Then we have H0, j (x)= 0. By (2) we have

|hs(x[)| ≤ |t |s+1/2
= |t |1/2 max{|hs(x[)|, |t |s} = 1/ps+1/2.



Algebraic dynamics of the lifts of Frobenius 1739

Since hs ∈ R[,perf
0 = K [

〈z1/p∞

0,1 , . . . , z1/p∞

0,N 〉, there are r ≥ 0 and a function

gs ∈ K [
[z1/pr

0,1 , . . . , z1/pr

0,N ]

such that ‖hs − gs‖< 1/ps . It follows that g pr

s ∈ K [
[z0,1, . . . , z0,N ] and

‖h pr

s − g pr

s ‖ ≤ |p|
spr
.

Then for every point x[ ∈ (π [)−1(ι(Perad
∩V ad

0 )), we have

|g pr

s (π
[(x[))| = |g pr

s (x
[)| = |h pr

s (x
[)+ (g pr

s (x
[)− h pr

s (x
[))| ≤ |p|spr

.

By Lemma 4.8, for all y ∈ S[,ad, we have |g pr

s (y)| ≤ |p|spr
. Then we have |hs((π

[)−1(y)| ≤ 1/ps and

|h#
s (ρ
−1((π [)−1(y))| = |hs((π

[)−1(y)| ≤ 1/ps

for all y ∈ S[,ad.
By (2), we have

|H0, j (x)− h#
s (x)| ≤ |t |

1/2 max{|h#
s (x)|, |t |

s
} = 1/ps+1/2

for all x ∈ ρ−1((π [)−1(S[,ad)). It follows that for all x ∈ ρ−1((π [)−1(S[,ad)), we have |H0, j (x)| ≤ 1/ps .
Let s→∞, we have |H0, j (x)|=0 for all x ∈ρ−1((π [)−1(S[,ad)). Since |H0, j (x)|= |H0, j (π(x))|, we have
|H0, j (y)|=0 for all j=1, . . . ,m and y∈π(ρ−1((π [)−1(S[,ad))). It follows that π(ρ−1((π [)−1(S[,ad)))⊆

V ad
0 . Then we have S[,ad

⊆ π [(ρ(π−1(V ad
0 ))). �

Scanlon’s proof of Theorem 1.1. In this section, we discuss Scanlon’s proof of Theorem 1.1. In this
proof, we don’t need the perfectoid spaces.

Let V be a subvariety of PN such that Per∩V is Zariski dense in V. We want to show that V is periodic.
We first treat the case where F is defined over Qp

◦. Since all points in Per are defined over Qp and
Per∩V is Zariski dense in V , V is defined over Qp. There exists a finite extension K p of Qp such that
F is defined over K p i.e., F takes form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xn) : · · · : x

q
N + p′PN (x0, . . . , xN )],

where p′ ∈ K ◦◦p , q is a power of p, P0, . . . , PN are homogeneous polynomials of degree q = ps in
K ◦p[x0, . . . , xN ]. After replacing F by a suitable iterate, we may assume that the residue field K̃ :=K ◦/K ◦◦

is fixed by the q-power Frobenius.
By the structure of the absolute Galois group of K p, there exists an element σ ∈ Gal(K p/K p) which

lifts the q-power Frobenius. Then we have the following lemma:

Lemma 4.9 [Medvedev and Scanlon 2014]. We have Per= {x ∈ PN (Qp) : F(x)= σ(x)}.

Proof of Lemma 4.9. Recall that the reduction map

red : PN (Qp)→ PN (Fp)

gives a bijection between Per and PN (Fp).
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Let x be any point in Per. We have that F(x) ∈ Per and red(F(x))= red(x)q . On the other hand, we
have that σ(x) ∈ Per and red(σ (x))= red(x)q . Then we have F(x)= σ(x).

Let x be any point in PN (Qp) satisfying F(x)= σ(x). Since x is defined over a finite extension of
K p, there exists n ≥ 1 such that σ n(x)= x . It follows that

Fn(x)= Fn−1(σ (x))= σ(Fn−1(x))= · · · = σ n(x)= x .

Then x is periodic. �

Observe that σ(V ) is a subvariety of PN . Then we have

σ(V ∩Per)= F(V ∩Per)⊆ σ(V )∩ F(V ).

Since V ∩Per is Zariski dense in V , we have σ(V )= F(V ). Since V is defined over a finite extension
of Qp, there exists n ≥ 1 such that σ n(V )= V . It follows that

Fn(V )= Fn−1(σ (V ))= σ(Fn−1(V ))= · · · = σ n(V )= V .

Then V is periodic.
Now we treat the general case.
There exists a subring R ⊆ C◦p which is finitely generated over Z such that F is defined over R.

Let m := R ∩ C◦◦p be a maximal ideal of R. By Lemma A.3, there exists σ ∈ Gal(Cp/Q) such that
σ(R)⊆Qp

◦
⊆ C◦p and σ(m)=Qp

◦◦
∩ R.

Denote by Fσ the Galois conjugate of F by σ i.e., Fσ is obtained by changing every coefficient of F
by its image under σ . Since Fσ mod C◦◦p = F mod C◦◦p , Fσ is a lift of Frobenius on PN

Cp
. Moreover it is

defined over Qp
◦.

Since V ∩ Per is Zariski dense in V , σ(V ) ∩ σ(Per) is Zariski dense in σ(V ). Moreover σ(Per)
is exactly the set of periodic points of Fσ . Then the previous argument shows that σ(V ) is periodic
under Fσ . It follows that V is periodic under F .

5. Coherent backward orbits

In this section, we let K = Cp. Then K is a perfectoid field and K [ is the completion of the algebraic
closure of Fp((t)). We may suppose that |p| = |t | = p−1. Let k = Fp which is a subfield of K [.

Let F : PN
K → PN

K be an endomorphism taking form

F : [x0 : · · · : xN ] 7→ [x
q
0 + p′P0(x0, . . . , xN ) : · · · : x

q
N + p′PN (x0, . . . , xN )],

where p′ ∈ K ◦◦, q is a power of p, and P0, . . . , PN are homogeneous polynomials of degree q in
K ◦[x0, . . . , xN ].

The aim of this section is to prove Theorems 1.7 and 1.8.
Without loss of generality, we may suppose that b0∈ R(U ad

0 ). It follows that bi ∈ R(U ad
0 ) for all i≥0. Set

w :=π [◦ρ◦ψ−1((b0, b1, . . .))∈PN
K [(Kb). Then w ∈ R(U [,ad

0 ) := {[1 : x1 : · · · : xN ] : |xi | ≤ 1}⊆PN
K [(Kb).

It follows that w1/qn
⊆ R(U [,ad

0 ) for all n ≥ 0.
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If {bi }i≥0 is infinite, we may suppose that b1 6= b0 and then the bi , for i ≥ 0, are all different. Let
Z be the reduced subvariety of U [

0 := Spec K [
[x1, . . . , xN ], whose support is the union of all positive

dimensional irreducible components of the Zariski closure of {w1/qni
}i≥0.

There exists A ≥ 0, such that Z is the Zariski closure of {w1/qni
}i≥A in U [

0 . Moreover, for all n ≥ A,
Z is the Zariski closure of {w1/qni

}i≥n in U [

0 .
Denote by I (Z) the ideal in K [

[x1, . . . , xN ] which defines Z .
For every polynomial f =

∑
I aI x I

∈ K [
[x1, . . . .xN ] and i ∈ Z, we denote by f σ

i
:=
∑

I aq i

I x I .
Observe that f (y1/q i

)= ( f σ
i
(y))1/q

i
for all i ≥ 0 and y ∈ R(U [,ad

0 ).
Then we have the following lemma:

Lemma 5.1. Let f ∈ k[x1, . . . , xN ] be a polynomial defined over k. If there exists c ∈ (0, 1) and B ≥ A,
such that for all i ≥ B, | f (w1/qni

)| ≤ c, then f ∈ I (Z).

Proof of Lemma 5.1. There exists L ≥ 1 such that f is defined over Fq L . Then we have f σ
nL
= f for all

n ≥ 0. For t = 0, . . . , L − 1, set Tt := {i ≥ B | ni = t mod L}.
For all t = 0, . . . , L − 1 satisfying #Tt =∞, we have

| f (w1/q t
)|1/q

ni−t
= | f σ

ni−t
(w1/q t

)|1/q
ni−t
= | f (w1/qni

)| ≤ c,

for all i ∈ Tt . It follows that | f (w1/q t
)| ≤ cqni−t

for all i ∈ Tt . Since Tt is infinite, ni can be arbitrary large.
Then we have | f (w1/q t

)| = 0 for all i ∈ Tt . It follows that

| f (w1/qni
)| = | f σ

ni−t
(w1/q t

)|1/q
ni−t
= | f (w1/q t

)|1/q
ni−t
= 0

for all i ∈ Tt . Set

T ′ :=
⊔

0≤t≤L−1
#Tt=∞

Tt .

It follows that f (w1/qni
)= 0 for all i ∈ T ′. Since {i ≥ A} \ T ′ is finite, {w1/qni

}i∈T ′ is Zariski dense in Z .
Then f ∈ I (Z). �

Lemma 5.2. We have that Z is defined over k. In particular, there exists r ≥ 1 such that 8sr (Z)= Z and
{w1/q i

}i∈Z ⊆
⋃r−1

i=0 8
si (Z).

Proof of Lemma 5.2. We only need to show that I (Z) is generated by finitely many polynomials
in k[x1, . . . , xN ] ⊆ K [

[x1, . . . , xN ]. In fact, if I (Z) = (g1, . . . , gl) and gi ∈ k[x1, . . . , xN ] for all
i = 1, . . . , `, then there exists r ≥ 1 such that all the coefficients of gi , i = 1, . . . , `, are defined
over Fqr . Then we have 8sr (Z)= Z . Moreover, there exists j ≥ 0, such that w1/p j

∈ Z . It follows that
{w1/q i

}i∈Z ⊆
⋃

i∈Z8
si (Z)=

⋃r−1
i=0 8

si (Z).
Write I (Z) = ( f1, . . . , fm) where m ≥ 1 and fi ∈ K [

[x1, . . . , xN ] for all i = 1, . . . ,m. Denote by
d :=max0≤i≤m{deg( fi )}.
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By Lemma 4.3, for all i = 1, . . . ,m, there exists a sequence of polynomial { fi,n}n≥1 such that
‖ fi − fi,n‖ ≤ |tn

| and taking form fi,n =
∑mi,n

j=0 u j
i,n fi,n, j where fi,n, j ∈ Fp[x1, . . . , xN ] of degree at

most d , ui,n ∈ Fp((t))
◦

with norm |ui,n| = |t |1/[Fp((t))(ui,n):Fp((t))] and |ui,n|
mi,n > |t |n .

We claim that fi, j,n ∈ I (Z) for all j = 0, . . . ,mi,n .
We prove that claim by induction on j . For j = 0, we have

| fi,0,n(w
1/qnl

)| =

∣∣∣∣ fi,n(w
1/qnl

)−
∑
j≥1

u j
i,n fi, j,n(w

1/qnl
)

∣∣∣∣≤max{|tn
|, |ui,n|}< 1

for all `≥ A. By Lemma 5.2, we have fi,0 ∈ I (Z).
If j ≥ 1 and fi,0,n, . . . , fi, j−1,n ∈ I (Z), then

| fi, j,n(w
1/qnl

)| =

∣∣∣∣u− j
i,n ( fi,n(w

1/qnl
)−

∑
0≤t ′≤ j−1

ut ′
i,n fi,t ′,n(w

1/qnl
))−

∑
t ′≥ j+1

ut ′− j
i,n fi, j,n(w

1/qnl
)

∣∣∣∣
≤max

{
|t |n

|ui,n|
j ,

∣∣∣∣ ∑
t ′≥ j+1

ut ′− j
i,n fi, j,n(w

1/qnl
)

∣∣∣∣}

≤max
{
|t |n

|ui,n|
j , |ui,n|

}
< 1

for all `≥ A. By Lemma 5.2, we have fi, j,n ∈ I (Z). This concludes the proof of the claim. It follows
that fi,n ∈ I .

Set Id := { f ∈ I | deg( f ) ≤ d}. Then Id is a finite-dimensional K [-vector space. For all n ≥ 0 and
j = 0, . . . ,mi,n , denote by Ii, j,n the Kb-vector space spanned by fi,0,0 . . . , fi, j,0, . . . , fi,0,n . . . , fi, j,n .
Then

⋃
n≥0, j=0,...,mi,n

Ii, j,n is a subspace of Id . Since dim Id is finite,
⋃

n≥0, j=0,...,mi,n
Ii, j,n is closed.

Observe that fi is contained in the closure of
⋃

n≥0, j=0,...,mi,n
Ii, j,n , we have fi ∈

⋃
n≥0, j=0,...,mi,n

Ii, j,n .
There exists li ≥ 0, such that fi ∈ Ii,mi,li ,li . It follows that I = ( f1, . . . , fm) ⊆

∑
1≤i≤m(Ii,mi,li ,li ) ⊆ I .

Then we have I = ( fi, j,n)1≤i≤m,0≤n≤li ,0≤ j≤mli
and fi, j ∈ k[x1, . . . , xN ] for all i, j . �

Proof of Theorem 1.8. Let V be a subvariety of PN
Cp

such that there exists a subsequence {bni }i≥0 such
that |d(bni , V )| → 0 when i →∞. We need to show that bni ∈ V for i large enough and there exists
r ≥ 0, such that {bi }i≥0 ⊆

⋃r−1
i=0 F i (V ).

If {bi }i≥0 is finite, Theorem 1.8 is trivial. So we suppose that {bi }i≥0 is infinite.
Let I (V ) denote the ideal in K [x1, . . . , xN ] which defines V ∩U1. Then for any point in R(U ad

0 ), we
have d(y, V )=max{|H(y)| : H ∈ I (V ) and ‖H‖ = 1}.

Let Z denote the union of all positive dimensional irreducible components of the Zariski closure
of {w1/qni

}i≥0. There exists an A ≥ 0, such that Z is that Zariski closure of {w1/qni
}i≥A in U [

0 :=

Spec K [
[x1, . . . , xN ]. Moreover, for all n ≥ A, Z is the Zariski closure of {w1/qni

}i≥n in U [

0 .
Let I (Z) denote the ideal in K [

[x1, . . . , xN ] which defines Z . Let H be a polynomial in I (V ).

Lemma 5.3. For any point x ∈ Z ∩ R(U [,ad
0 ), we have H(π(ρ−1((π [)−1(x))))= 0.
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Proof of Lemma 5.3. By Remark 2.18, for any c ∈ Z+, there exists ` ∈ N and an element Gc ∈

K [◦
[x1/p`

1 , . . . , x1/p`
N ] such that for all x ∈U perf

0 , we have

|H ◦π(x)−G#
c(x)| ≤ |p|

1/2 max(|H(x)|, |p|c)= |p|1/2 max(|G#
c(x)|, |p|

c),

and G p`
c ∈ K [◦

[x1, . . . , xN ]. By Lemma 4.3, we may suppose that G p`
c =

∑m
i≥0 ui gi where gi ∈

Fp[x1, . . . , xN ], u ∈ Fp((t))
◦

with norm |u| = |t |1/[Fp((t))(u):Fp((t))] and |u|m > |t |(c+1/2)p` .
There exists A1 ≥ 0, such that |H(bni )| ≤ |p|

c+1, for all i ≥ A1.
For all i ≥ A1, we have

|Gc(w
1/qni

)| ≤max{|H(bni )|, |H(bni )−G#
c(ρ
−1(w1/qni

))|} ≤ |p|c+1/2.

Then we have

|Gc(w
1/qni

)p`
| ≤ |t |p

`(c+1/2).

We claim that for all j = 0, . . . ,m, we have g j ∈ I (Z).
We prove this claim by induction on j . Suppose that for all 0≤ t ′ < j ≤ m, we have gt ′ ∈ I (Z). For

all i ≥max{A, A1}, we have∣∣∣∣u j g j (w
1/qni

)+
∑

t ′≥ j+1

ut ′gt ′(w
1/qni

)

∣∣∣∣= |Gc(w
1/qni

)p`
| ≤ |t |p

`(c+1/2).

It follows that |g j (w
1/qni

)| ≤ max{|t |p
`(c+1/2)/|u| j , |u|} < 1 for all i ≥ max{A, A1}. Then Lemma 5.1

implies that g j ∈ I (Z) for j = 0, . . . ,m. This proves the claim.
Then for any x ∈ Z ∩ R(U [,ad

0 ), we have

|H(π(ρ−1((πb)−1(x))))| = |H(π(ρ−1((πb)−1(x))))−G#
c(ρ
−1((π [)−1(x)))|

≤max{|p|1/2|G#
c(ρ
−1((π [)−1(x))|, |p|c+1/2

}

= |p|c+1/2.

Let c tend to infinity, then we have |H(π(ρ−1((πb)−1(x))))|= 0. We complete the proof of our lemma. �

This lemma shows that S := π(ρ−1((πb)−1(Z ∩ R(U [,ad
0 )))) ⊆ V . Then bni ∈ V for i ≥ A. By

Lemma 5.2, there exists r ≥ 1 such that 8sr (Z) = Z and {w1/pi
}i∈Z ⊆

⋃r
i=08

si (Z). It follows that
{bi }i≥0 ⊆

⋃r−1
i=0 F i (S)⊆

⋃r−1
i=0 F i (V ).

Proof of Corollary 1.9. Let V be a subvariety of PN
Cp

of positive dimension. We need to show there
exists c > 0 such that for all i ≥ 0 either bi ∈ V or d(bi , V ) > c.

Otherwise, there exists a subsequence {bni }i≥0 ⊆ {bi }i≥0 \ V such that d(bni , V ) tends to 0. By
Theorem 1.8, we have bni ∈ V for sufficiently large i , which is a contradiction. �
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Proof of Theorem 1.7. Let V be a positive subvariety of PN
Cp

such that {bi }i≥0∩V is Zariski dense in V .
Let {n1 < n2 < · · · } be the set of n ≥ 0 such that bn ∈ V . We need to show that V is periodic under F .

If {bi }i≥0 is finite, then all points in {bi }i≥0 are periodic. Moreover V is a union of finitely many
periodic points. So V is periodic.

Now we may suppose that {bi }i≥0 is infinite. Denote by I (V ) the ideal in K [x1, . . . , xN ] which
defines V ∩U1. Let H be a polynomial I (V ). By Lemma 5.3, for any point x ∈ Z ∩ R(U [,ad

0 ), we have
H(π(ρ−1((πb)−1(x))))= 0.

It follows that S := π(ρ−1((πb)−1(Z ∩ R(U [,ad
0 ))))⊆ V . Since bni ∈ S for all i ≥ A, S is Zariski dense

in V . Since 8rs(Z ∩ R(U [,ad
0 )) = Z ∩ R(U [,ad

0 ), we have Fr (S) = S. It follows that Fr (V ) = V . This
concludes the proof. �

Appendix

Let X be any projective variety over Cp and F : X → X be an endomorphism. Let X→ Spec C◦p be
a finitely presented projective scheme which is flat over Spec C◦p whose generic fiber is X and L an
ample line bundle on X. If there exists an endomorphism F̃ of X over C◦p such that F̃∗L= L⊗q where
q = ps, s ≥ 1, the restriction of F̃ on the generic fiber is F and the restriction F of F̃ on the special fiber
X is a power of the Frobenius, then we say that F is a polarized lift of Frobenius on X with respect to
(X, F̃,L). In particular, a lift of Frobenius on PN

Cp
in the previous sections is a lift of Frobenius on X

with respect to a pair (PN
C◦p
, F̃, OPN

C◦p
(1)).

Now assume that F is a polarized lift of Frobenius on X with respect to the pair (X, F̃,L) and we
identify X with the generic fiber of X.

In this appendix, we show that under a technical condition, the dynamical system (X, F) can be
embedded in a lift of Frobenius on PN

Cp
(with respect to some (PN

C◦p
, F̃, OPN

C◦p
(1))).

Theorem A.1. Assume that X and F̃ are defined over Qp
◦
⊆ C◦p. Then there exists N ≥ 1, a lift of

Frobenius G on PN
Cp

and an embedding τ : X ↪→ PN
Cp

such that τ ◦ F l
= G ◦ τ for some l ≥ 1.

This theorem can be viewed as a version of [Fakhruddin 2003, Proposition 2.1] for the lifts of Frobenius.
As an application, it implies the dynamical Manin–Mumford Conjecture and Conjecture 1.5, for any

polarized lift of Frobenius on X with respect to some (X, F̃,L).

Corollary A.2. Let V be any positive dimensional irreducible subvariety of X. Denote by PerF the set of
periodic closed points in X. Let {bi }i≥0 be a sequence of closed points in X satisfying f (bi )= bi−1 for
all i ≥ 1. Then we have that:

(i) If V ∩PerF is Zariski dense in V , then V is periodic.

(ii) If the {bi }i≥0 ∩ V is Zariski dense in V , then V is periodic under F.
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Proof of Corollary A.2. There exists subring R ⊆ C◦p which is finitely generated over Z such that X, F̃
and L are defined over R, i.e., there exists a projective scheme XR over Spec R with an endomorphism F̃R

and an ample line bundle LR such that X=XR⊗R C◦p, L=LR⊗R C◦p, F̃ = F̃R⊗R C◦p and F̃∗RLR =L⊗q
R .

If R ⊆Qp
◦, Theorem A.1 reduces it to the case where X = PN

Cp
and F is a lift of Frobenius on PN

Cp
.

We conclude the proof by applying Theorems 1.1 and 1.8.
Now we assume that R 6⊆Qp

◦. Set m := R ∩C◦◦p . It is a maximal ideal of R.

Lemma A.3. Let R be a subring of C◦p which is finitely generated over Z. Let m := R∩C◦◦p be a maximal
ideal of R. Then there exists σ ∈ Gal(Cp/Q) such that σ(R)⊆Qp

◦
⊆ C◦p and σ(m)=Qp

◦◦
∩ R.

Now considerXσ :=XR⊗
σ
RC◦p, Lσ :=LR⊗

σ
RC◦p, F̃σ := F̃⊗σRC◦p, Xσ

:= X R⊗
σ
RCp and Fσ := X R⊗

σ
RCp.

In the tensor product •⊗σR Cp, we use the embedding σ |R . We note that if we view Cp as an abstract
field, (X, F) and (Xσ , Fσ ) are Galois conjugate. Since the statements of (i) and (ii) are purely algebraic,
we only need to show it for (Xσ , Fσ ). Observe that the special fiber Xσ of Xσ is

Xσ
= XR ⊗

σ
R (C

◦

p/C
◦◦

p )= XR ⊗R (R/m)⊗σR/m (C
◦

p/C
◦◦

p )= XR ⊗
σ
R (C

◦

p/C
◦◦

p )' X .

Moreover the restriction of Fσ on Xσ is exactly F under this identification. So Fσ is some power of
Frobenius and F is a lift of the Frobenius with respect to (Xσ , F̃σ ,Lσ ). Since (Xσ , F̃σ ,Lσ ) is defined
over σ(R)⊆Qp

◦, Theorem A.1 reduces it to the case where X =PN
Cp

and F is a lift of Frobenius on PN
Cp

.
We conclude the proof by applying Theorems 1.1 and 1.8. �

Proof of Lemma A.3. Since Cp is algebraically closed, any embedding R ↪→ Cp extends to an automor-
phism in Gal(Cp/Q). We only need to find an embedding σ : R ↪→ C◦p ⊆ Cp satisfying σ(m) ⊆ C◦◦p .
Indeed since σ−1(C◦◦p ∩ σ(R)) is a maximal ideal of R which contains m, we have σ(m)= σ(R)∩C◦◦p .

Let t1, . . . , tl ∈ R be a set of generators of R over Z. Let u1, . . . , us be a set of generators of m. Set
Y := Spec R and YCp := Spec R⊗Z Cp. We endow YCp(Cp) with the p-adic topology induced by the
topology on Cp. An element f ∈ R can be viewed as an analytic function on YCp(Cp).

Denote by i : R ↪→ Cp the inclusion. It defines a point o ∈ YCp(Cp). Set U := {x ∈ YCp(Cp) : |ti | ≤ 1,
i = 1, . . . , l, and |ui |< 1, i = 1, . . . , s}. Then U is an open neighborhood of o.

For any nonzero element P of R, denote by VP the subscheme of YCp defined by {P = 0}. Since the
set of nonzero prime ideals is countable, and YCp(Cp) has a complete metric, YCp(Cp) \

(⋃
R\{0} VP

)
is

dense in YCp(Cp). Then there exists a point y ∈U \
(⋃

R\{0} VP
)
. It defines a morphism σ : R→ Cp by

f 7→ f (y). Because y ∈U , we have σ(ti ) ∈ C◦, i = 1, . . . , l, and σ(ui ) ∈ C◦◦p , i = 1, . . . , s. It follows
that σ(R)⊆ C◦p and σ(m)⊆ C◦◦p . Since y 6∈

(⋃
R\{0} VP

)
, σ : R→ Cp is an embedding. This concludes

the proof. �

Proof of Theorem A.1. In this section, we assume that X, F̃ and L are defined over Qp
◦
⊆ C◦p. Since X

is finitely presented, there exists a finite extension K of Qp such that X, F̃ and L are defined over K ◦. We
note that R := K ◦ is a discrete valuation ring. Set m := K ◦◦ the maximal ideal of R and π a generator of m.

There exists a flat and geometrically irreducible projective scheme XR over Spec R an ample line
bundle LR and an endomorphism F̃R such that X= XR ⊗R C◦p L= LR ⊗R C◦p and F̃ = F̃R ⊗R C◦p. We
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may assume that F̃∗RLR = L⊗q
R . We denote by Xs the special fiber of XR and Fs the restriction of F̃R

on Xs . Let X K be the generic fiber of XR and FK the restriction of F̃R on X K . Write L K := LR|X K and
Ls := LR|Xs . Since LR is ample, after replacing LR by a suitable power, we may assume that L is very
ample and the morphisms

9R := H 0(X R,LR)
⊗q
→ H 0(X R,L

⊗q
R ) and 9s := H 0(Xs,Ls)

⊗q
→ H 0(Xs,L

⊗q
R )

are surjective. Moreover, we may assume that

H i (X R,LR)= H i (X R,L
⊗q
R )= 0

for all i ≥ 1. It follows that the natural morphisms

r1 : H 0(X R,LR)⊗R R/m→ H 0(Xs,Ls) and rq : H 0(X R,L
⊗q
R )⊗R R/m→ H 0(Xs,L⊗q

s )

are isomorphisms.
Since F̃∗RLR = L⊗q

R , it induces morphisms

F̃∗R : H
0(X R,LR)→ H 0(X R,L

⊗q
R ) and F̃∗s : H

0(Xs,Ls)→ H 0(Xs,L⊗q
s ).

We have rq ◦ F̃∗R = F∗s ◦ r1.
Since R is a discrete valuation ring, and H 0(X R,LR) has no torsions, H 0(X R,LR) is a free R-module.

Let s0, . . . sN a basis of H 0(X R,LR). We note that

rq(F̃∗(si ))= r1(si )
q

for i = 0, . . . , N . It follows that

F̃∗(si )−9R(s
q
i ) ∈ m H 0(X R,L

⊗q
R )= πH 0(X R,L

⊗q
R )

for i = 0, . . . , N . In other words, there exists gi ∈ H 0(X R,L
⊗q
R ) such that

F̃∗(si )= sq
i +πgi , i = 1, . . . , N .

Since 9R is surjective, there exists Gi ∈ R[x0, . . . , xN ] homogenous of degree q such that gi =

Gi (s0, . . . , sN ), i = 1, . . . , N . It follows that

F̃∗(si )= sq
i +πGi (s0, . . . , sN ), i = 1, . . . , N .

Let G K : P
N
K → PN

K be the morphism

[x0, . . . , xN ] 7→ [x
q
0 +πG0(x0, . . . , xN ) : · · · : x

q
N +πG N (x0, . . . , xN )].

Set G := G K ⊗K Cp : P
N
Cp
→ PN

Cp
. It is a lift of Frobenius on PN

Cp
. Let τK : X→ PN

K be the morphism

x 7→ [s0(x) : · · · : sN (x)].

Since L K is very ample, τ is an embedding. We may check that G K ◦ τK = τK ◦ FK . We conclude the
proof by setting τ := τK ⊗K Cp. �



Algebraic dynamics of the lifts of Frobenius 1747

Acknowledgement

I would like to thank Charles Favre, Serge Cantat, Stéphane Lamy, Jean Gillibert, Dragos Ghioca, Thomas
Tucker and Peter Scholze for useful discussions. I thank Fabien Mehdi Pazuki and Umberto Zannier
for their comments on the first version of this paper. I thank Thomas Scanlon, who told me about his
new proof of Theorem 1.1 and let me know of the Tate–Voloch conjecture. We thank the referees for
numerous insightful remarks. I especially thank Shou-Wu Zhang, who introduced me to the theory of
perfectoid spaces and posed Question 1.3.

References

[Baker and Hsia 2005] M. H. Baker and L.-C. Hsia, “Canonical heights, transfinite diameters, and polynomial dynamics”, J.
Reine Angew. Math. 585 (2005), 61–92. MR Zbl

[Bell et al. 2010] J. P. Bell, D. Ghioca, and T. J. Tucker, “The dynamical Mordell–Lang problem for étale maps”, Amer. J. Math.
132:6 (2010), 1655–1675. MR Zbl

[Bell et al. 2016] J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell–Lang conjecture, Mathematical Surveys and
Monographs 210, American Mathematical Society, Providence, RI, 2016. MR Zbl

[Bosch et al. 1984] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences] 261, Springer, 1984. MR Zbl

[Buium 1996a] A. Buium, “An approximation property for Teichmüller points”, Math. Res. Lett. 3:4 (1996), 453–457. MR Zbl

[Buium 1996b] A. Buium, “Geometry of p-jets”, Duke Math. J. 82:2 (1996), 349–367. MR Zbl

[Dujardin and Favre 2017] R. Dujardin and C. Favre, “The dynamical Manin–Mumford problem for plane polynomial automor-
phisms”, J. Eur. Math. Soc. (JEMS) 19:11 (2017), 3421–3465. MR Zbl

[Fakhruddin 2003] N. Fakhruddin, “Questions on self maps of algebraic varieties”, J. Ramanujan Math. Soc. 18:2 (2003),
109–122. MR Zbl

[Fakhruddin 2014] N. Fakhruddin, “The algebraic dynamics of generic endomorphisms of Pn”, Algebra Number Theory 8:3
(2014), 587–608. MR Zbl

[Faltings 1994] G. Faltings, “The general case of S. Lang’s conjecture”, pp. 175–182 in Barsotti Symposium in Algebraic
Geometry (Abano Terme, 1991), edited by V. Cristante and W. Messing, Perspect. Math. 15, Academic Press, San Diego, CA,
1994. MR Zbl

[Fontaine and Wintenberger 1979] J.-M. Fontaine and J.-P. Wintenberger, “Extensions algébrique et corps des normes des
extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288:8 (1979), A441–A444. MR Zbl

[Gabber and Ramero 2003] O. Gabber and L. Ramero, Almost ring theory, Lecture Notes in Mathematics 1800, Springer, 2003.
MR Zbl

[Ghioca and Tucker 2009] D. Ghioca and T. J. Tucker, “Periodic points, linearizing maps, and the dynamical Mordell–Lang
problem”, J. Number Theory 129:6 (2009), 1392–1403. MR Zbl

[Ghioca and Tucker 2010] D. Ghioca and T. J. Tucker, “Proof of a dynamical Bogomolov conjecture for lines under polynomial
actions”, Proc. Amer. Math. Soc. 138:3 (2010), 937–942. MR Zbl

[Ghioca et al. 2011] D. Ghioca, T. J. Tucker, and S. Zhang, “Towards a dynamical Manin–Mumford conjecture”, Int. Math. Res.
Not. 2011:22 (2011), 5109–5122. MR Zbl

[Ghioca et al. 2015] D. Ghioca, K. D. Nguyen, and H. Ye, “The Dynamical Manin–Mumford Conjecture and the Dynamical
Bogomolov Conjecture for split rational maps”, 2015. arXiv

[Ghioca et al. 2018] D. Ghioca, K. D. Nguyen, and H. Ye, “The dynamical Manin–Mumford conjecture and the dynamical
Bogomolov conjecture for endomorphisms of (P1)n”, Compos. Math. 154:7 (2018), 1441–1472. MR

[Hrushovski 2001] E. Hrushovski, “The Manin–Mumford conjecture and the model theory of difference fields”, Ann. Pure Appl.
Logic 112:1 (2001), 43–115. MR Zbl

http://dx.doi.org/10.1515/crll.2005.2005.585.61
http://msp.org/idx/mr/2164622
http://msp.org/idx/zbl/1071.11040
http://msp.org/idx/mr/2766180
http://msp.org/idx/zbl/1230.37112
http://msp.org/idx/mr/3468757
http://msp.org/idx/zbl/1362.11001
http://dx.doi.org/10.1007/978-3-642-52229-1
http://msp.org/idx/mr/746961
http://msp.org/idx/zbl/0539.14017
http://dx.doi.org/10.4310/MRL.1996.v3.n4.a3
http://msp.org/idx/mr/1406010
http://msp.org/idx/zbl/0902.14015
http://dx.doi.org/10.1215/S0012-7094-96-08216-2
http://msp.org/idx/mr/1387233
http://msp.org/idx/zbl/0882.14007
http://dx.doi.org/10.4171/JEMS/743
http://dx.doi.org/10.4171/JEMS/743
http://msp.org/idx/mr/3713045
http://msp.org/idx/zbl/1392.37111
http://msp.org/idx/mr/1995861
http://msp.org/idx/zbl/1053.14025
http://dx.doi.org/10.2140/ant.2014.8.587
http://msp.org/idx/mr/3218803
http://msp.org/idx/zbl/1317.37116
http://msp.org/idx/mr/1307396
http://msp.org/idx/zbl/0823.14009
http://msp.org/idx/mr/527692
http://msp.org/idx/zbl/0403.12018
http://dx.doi.org/10.1007/b10047
http://msp.org/idx/mr/2004652
http://msp.org/idx/zbl/1045.13002
http://dx.doi.org/10.1016/j.jnt.2008.09.014
http://dx.doi.org/10.1016/j.jnt.2008.09.014
http://msp.org/idx/mr/2521481
http://msp.org/idx/zbl/1186.14047
http://dx.doi.org/10.1090/S0002-9939-09-10182-X
http://dx.doi.org/10.1090/S0002-9939-09-10182-X
http://msp.org/idx/mr/2566560
http://msp.org/idx/zbl/1187.37134
http://dx.doi.org/10.1093/imrn/rnq283
http://msp.org/idx/mr/2854724
http://msp.org/idx/zbl/1267.37110
http://msp.org/idx/arx/1511.06081
http://dx.doi.org/10.1112/s0010437x18007157
http://dx.doi.org/10.1112/s0010437x18007157
http://msp.org/idx/mr/3826461
http://dx.doi.org/10.1016/S0168-0072(01)00096-3
http://msp.org/idx/mr/1854232
http://msp.org/idx/zbl/0987.03036


1748 Junyi Xie

[Huber 1993] R. Huber, “Continuous valuations”, Math. Z. 212:3 (1993), 455–477. MR Zbl

[Huber 1994] R. Huber, “A generalization of formal schemes and rigid analytic varieties”, Math. Z. 217:4 (1994), 513–551. MR
Zbl

[Huber 1996] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Friedr. Vieweg & Sohn, Braunschweig,
1996. MR Zbl

[Medvedev and Scanlon 2014] A. Medvedev and T. Scanlon, “Invariant varieties for polynomial dynamical systems”, Ann. of
Math. (2) 179:1 (2014), 81–177. MR Zbl

[Pazuki 2010] F. Pazuki, “Zhang’s conjecture and squares of abelian surfaces”, C. R. Math. Acad. Sci. Paris 348:9-10 (2010),
483–486. MR Zbl

[Pazuki 2013] F. Pazuki, “Polarized morphisms between abelian varieties”, Int. J. Number Theory 9:2 (2013), 405–411. MR
Zbl

[Pink and Roessler 2002] R. Pink and D. Roessler, “On Hrushovski’s proof of the Manin–Mumford conjecture”, pp. 539–546 in
Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), edited by T. Li, Higher Ed. Press, Beijing,
2002. MR Zbl

[Raynaud 1983a] M. Raynaud, “Courbes sur une variété abélienne et points de torsion”, Invent. Math. 71:1 (1983), 207–233.
MR Zbl

[Raynaud 1983b] M. Raynaud, “Sous-variétés d’une variété abélienne et points de torsion”, pp. 327–352 in Arithmetic and
geometry, Vol. I, edited by M. Artin and J. Tate, Progr. Math. 35, Birkhäuser, Boston, 1983. MR Zbl

[Scanlon 1999] T. Scanlon, “The conjecture of Tate and Voloch on p-adic proximity to torsion”, Internat. Math. Res. Notices 17
(1999), 909–914. MR Zbl

[Scholze 2012] P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR Zbl

[Scholze 2014] P. Scholze, “Perfectoid spaces and their applications”, pp. 461–486 in Proceedings of the International Congress
of Mathematicians—Seoul 2014. Vol. II, edited by S. Y. Jang et al., Kyung Moon Sa, Seoul, 2014. MR Zbl

[Tate and Voloch 1996] J. Tate and J. F. Voloch, “Linear forms in p-adic roots of unity”, Internat. Math. Res. Notices 12 (1996),
589–601. MR Zbl

[Ullmo 1998] E. Ullmo, “Positivité et discrétion des points algébriques des courbes”, Ann. of Math. (2) 147:1 (1998), 167–179.
MR Zbl

[Vojta 1996] P. Vojta, “Integral points on subvarieties of semiabelian varieties. I”, Invent. Math. 126:1 (1996), 133–181. MR
Zbl

[Xie 2017] J. Xie, “The dynamical Mordell–Lang conjecture for polynomial endomorphisms of the affine plane”, pp. vi+110 in
Journées de Géométrie Algébrique d’Orsay, Astérisque 394, Société Mathématique de France, Paris, 2017. MR Zbl

[Yuan and Zhang 2017] X. Yuan and S.-W. Zhang, “The arithmetic Hodge index theorem for adelic line bundles”, Math. Ann.
367:3-4 (2017), 1123–1171. MR Zbl

[Zhang 1995] S. Zhang, “Small points and adelic metrics”, J. Algebraic Geom. 4:2 (1995), 281–300. MR Zbl

[Zhang 1998] S.-W. Zhang, “Equidistribution of small points on abelian varieties”, Ann. of Math. (2) 147:1 (1998), 159–165.
MR Zbl

Communicated by Shou-Wu Zhang
Received 2017-10-02 Revised 2018-06-15 Accepted 2018-07-17

junyi.xie@univ-rennes1.fr Institut de Recherche Mathématique de Rennes, CNRS - Université de Rennes 1,
Bâtiment 22-23 du campus de Beaulieu, Rennes, France

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF02571668
http://msp.org/idx/mr/1207303
http://msp.org/idx/zbl/0788.13010
http://dx.doi.org/10.1007/BF02571959
http://msp.org/idx/mr/1306024
http://msp.org/idx/zbl/0814.14024
http://dx.doi.org/10.1007/978-3-663-09991-8
http://msp.org/idx/mr/1734903
http://msp.org/idx/zbl/0868.14010
http://dx.doi.org/10.4007/annals.2014.179.1.2
http://msp.org/idx/mr/3126567
http://msp.org/idx/zbl/1347.37145
http://dx.doi.org/10.1016/j.crma.2010.03.014
http://msp.org/idx/mr/2645156
http://msp.org/idx/zbl/1208.37055
http://dx.doi.org/10.1142/S1793042112501394
http://msp.org/idx/mr/3005555
http://msp.org/idx/zbl/1302.37073
http://msp.org/idx/mr/1989204
http://msp.org/idx/zbl/1026.14012
http://dx.doi.org/10.1007/BF01393342
http://msp.org/idx/mr/688265
http://msp.org/idx/zbl/0564.14020
http://msp.org/idx/mr/717600
http://msp.org/idx/zbl/0581.14031
http://dx.doi.org/10.1155/S1073792899000471
http://msp.org/idx/mr/1717649
http://msp.org/idx/zbl/0986.11038
http://dx.doi.org/10.1007/s10240-012-0042-x
http://msp.org/idx/mr/3090258
http://msp.org/idx/zbl/1263.14022
http://msp.org/idx/mr/3728623
http://msp.org/idx/zbl/1373.14025
http://dx.doi.org/10.1155/S1073792896000396
http://msp.org/idx/mr/1405976
http://msp.org/idx/zbl/0893.11015
http://dx.doi.org/10.2307/120987
http://msp.org/idx/mr/1609514
http://msp.org/idx/zbl/0934.14013
http://dx.doi.org/10.1007/s002220050092
http://msp.org/idx/mr/1408559
http://msp.org/idx/zbl/1011.11040
http://msp.org/idx/mr/3758955
http://msp.org/idx/zbl/06832236
http://dx.doi.org/10.1007/s00208-016-1414-1
http://msp.org/idx/mr/3623221
http://msp.org/idx/zbl/1372.14017
http://msp.org/idx/mr/1311351
http://msp.org/idx/zbl/0861.14019
http://dx.doi.org/10.2307/120986
http://msp.org/idx/mr/1609518
http://msp.org/idx/zbl/0991.11034
mailto:junyi.xie@univ-rennes1.fr
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US $340/year for the electronic version, and $535/year (+$55, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 12 No. 7 2018

1559Difference modules and difference cohomology
MARCIN CHAŁUPNIK and PIOTR KOWALSKI

1581Density theorems for exceptional eigenvalues for congruence subgroups
PETER HUMPHRIES

1611Irreducible components of minuscule affine Deligne–Lusztig varieties
PAUL HAMACHER and EVA VIEHMANN

1635Arithmetic degrees and dynamical degrees of endomorphisms on surfaces
YOHSUKE MATSUZAWA, KAORU SANO and TAKAHIRO SHIBATA

1659Big Cohen–Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic
RAYMOND HEITMANN and LINQUAN MA

1675Blocks of the category of smooth `-modular representations of GL(n, F) and its inner forms: reduction to
level 0

GIANMARCO CHINELLO

1715Algebraic dynamics of the lifts of Frobenius
JUNYI XIE

1749A dynamical variant of the Pink–Zilber conjecture
DRAGOS GHIOCA and KHOA DANG NGUYEN

1773Homogeneous length functions on groups
TOBIAS FRITZ, SIDDHARTHA GADGIL, APOORVA KHARE, PACE P. NIELSEN, LIOR SILBERMAN and

TERENCE TAO

1787When are permutation invariants Cohen–Macaulay over all fields?
BEN BLUM-SMITH and SOPHIE MARQUES

A
lgebra

&
N

um
ber

Theory
2018

Vol.12,
N

o.7

http://dx.doi.org/10.2140/ant.2018.12.1559
http://dx.doi.org/10.2140/ant.2018.12.1581
http://dx.doi.org/10.2140/ant.2018.12.1611
http://dx.doi.org/10.2140/ant.2018.12.1635
http://dx.doi.org/10.2140/ant.2018.12.1659
http://dx.doi.org/10.2140/ant.2018.12.1675
http://dx.doi.org/10.2140/ant.2018.12.1675
http://dx.doi.org/10.2140/ant.2018.12.1715
http://dx.doi.org/10.2140/ant.2018.12.1749
http://dx.doi.org/10.2140/ant.2018.12.1773
http://dx.doi.org/10.2140/ant.2018.12.1787

	1. Introduction
	2. Preliminary: perfectoid spaces
	Adic spaces
	Perfectoid fields
	Almost mathematics
	Perfectoid algebras
	Perfectoid spaces
	Points in perfectoid spaces

	3. Inverse limit of lifts of Frobenius
	Adic projective spaces
	Lifts of Frobenius on ¶N,adK
	The inverse limit 
	Passing to the tilt

	4. Periodic points
	Passing to the reduction
	Passing to the tilt
	Proof of 0=thm.101=Theorem 1.2
	Proof of 0=thm.71=Theorem 1.1
	Scanlon's proof of 0=thm.71=Theorem 1.1

	5. Coherent backward orbits
	Proof of 0=thm.211=Theorem 1.8
	Proof of 0=thm.221=Corollary 1.9
	Proof of 0=thm.201=Theorem 1.7

	Appendix
	Proof of 0=thm.1031=Theorem A.1

	Acknowledgement
	References
	
	

