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Homogeneous length functions on groups
D. H. J. Polymath

A pseudolength function defined on an arbitrary group G = (G, · , e, ( )−1) is a map ` : G→ [0,+∞)
obeying `(e)= 0, the symmetry property `(x−1)= `(x), and the triangle inequality `(xy)≤ `(x)+ `(y)
for all x, y ∈ G. We consider pseudolength functions which saturate the triangle inequality whenever
x = y, or equivalently those that are homogeneous in the sense that `(xn)= n`(x) for all n ∈N. We show
that this implies that `([x, y]) = 0 for all x, y ∈ G. This leads to a classification of such pseudolength
functions as pullbacks from embeddings into a Banach space. We also obtain a quantitative version of our
main result which allows for defects in the triangle inequality or the homogeneity property.

1. Introduction

Let G = (G, · , e, ( )−1) be a group (written multiplicatively, with identity element e). A pseudolength
function on G is a map ` : G→ [0,+∞) that obeys the properties

• `(e)= 0,

• `(x−1)= `(x),

• `(xy)≤ `(x)+ `(y)

for all x, y ∈ G. If in addition we have `(x) > 0 for all x ∈ G \ {e}, we say that ` is a length function. By
setting d(x, y) := `(x−1 y), it is easy to see that pseudolength and length functions are in bijection with
left-invariant pseudometrics and metrics on G, respectively.

From the above properties it is clear that one has the upper bound

`(xn)≤ |n|`(x)

for all x ∈ G and n ∈ Z. Let us say that a pseudolength function ` : G→ [0,+∞) is homogeneous if
equality is always attained here, in that one has

`(xn)= |n|`(x) (1.1)

for all x ∈ G and any n ∈ Z. Using the axioms of a pseudolength function, it is not difficult to show that
the homogeneity condition (1.1) is equivalent to the triangle inequality holding with equality whenever
x = y (i.e., that (1.1) holds for n = 2); see [Gajda and Kominek 1991, Lemma 1].
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If one has a real or complex Banach space B= (B, ‖ ‖), and φ : G→ B is any homomorphism from
G to B (viewing the latter as a group in additive notation), then the function ` : G→[0,+∞) defined by
`(x) :=‖φ(x)‖ is easily verified to be a homogeneous pseudolength function. Furthermore, if φ is injective,
then ` is in fact a homogeneous length function. For instance, the function `((n,m)) := |n+

√
2m| is a

length function on Z2, where in this case B := R and φ((n,m)) := n+
√

2m. On the other hand, one can
easily locate many length functions that are not homogeneous, for instance by taking the square root of
the length function just constructed.

The main result of this paper is that such Banach space constructions are in fact the only way to
generate homogeneous (pseudo-)length functions.

Theorem 1.2 (classification of homogeneous length functions). Given a group G, let ` : G→ [0,+∞)
be a homogeneous pseudolength function. Then there exist a real Banach space B= (B, ‖ ‖) and a group
homomorphism φ : G→ B such that `(x)= ‖φ(x)‖ for all x ∈ G. Furthermore, if ` is a length function,
one can take φ to be injective, i.e., an isometric embedding.

We derive Theorem 1.2 from a more quantitative result bounding the pseudolength of a commutator

[x, y] := xyx−1 y−1
; (1.3)

see Proposition 2.1 below. Our arguments are elementary, relying on directly applying the axioms of a
homogeneous length function to various carefully chosen words in x and y, and repeatedly taking an
asymptotic limit n→∞ to dispose of error terms that arise in the estimates obtained in this fashion.

An additional advantage of quantifying Theorem 1.2 in Proposition 2.1 is that one can derive from the
latter proposition a “quasified” version of Theorem 1.2. See Theorem 4.4 below.1

Finally, as one quick corollary of Theorem 1.2, we obtain the following characterization of the groups
that admit homogeneous length functions.

Corollary 1.4. A group admits a homogeneous length function if and only if it is abelian and torsion-free.

Examples and approaches. We now make some remarks to indicate the nontriviality of Theorem 1.2.
Corollary 1.4 implies that there are no nonabelian groups with homogeneous length functions. Whether or
not such a striking geometric rigidity phenomenon holds was previously unknown to experts. Moreover,
the corollary fails to hold if one or more of the precise conditions in the theorem are weakened. For
instance, such length functions indeed exist (i) on nonabelian monoids, and (ii) on balls of finite radius in
free groups. We explain these two cases further in Section 4.

Given these cases, one could a priori ask if every nonabelian group admits a homogeneous length
function. This is not hard to disprove; here are two examples.

1A different variant of Theorem 1.2 involves replacing homogeneity by the assumption that ` is a pseudolength function on G
whose homogenization is positive:

`hom(g) := lim
n→∞

`(gn)

n
> 0, ∀g 6= e.

(This was studied in [Niemiec 2013, Theorem 2.10(III)] in the special case of abelian (G, `).) In this case we work with
(G, `hom) instead of `, to conclude that G maps into a Banach space.
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Example 1.5 (nilpotent groups). If G is nilpotent of nilpotency class two (e.g., the Heisenberg group),
then [x, y]n

2
= [xn, yn

] for all x, y ∈ G and integers n ≥ 0 since the map (g, h) 7→ [g, h] is now a
bihomomorphism G×G→[G,G] ⊂ Z(G). If [x, y] is nontrivial, then any homogeneous length function
on G would assign a linearly growing quantity to the right-hand side and a quadratically growing quantity
to the left-hand side, which is absurd; thus such groups cannot admit homogeneous length functions. The
claim then also follows for nilpotent groups of higher nilpotency class, since they contain subgroups of
nilpotency class two.2

Example 1.6 (connected Lie groups). As we explain in Remark 2.9, a homogeneous length function `
induces a biinvariant metric on G. Now if (G, `) is furthermore a connected Lie group, then by [Milnor
1976, Lemma 7.5], G ∼= K ×Rn for some compact Lie group K and integer n ≥ 0. By (1.1), K cannot
have torsion elements, hence must be trivial. But then G is abelian.

Prior to Corollary 1.4, the above examples left open the question of whether any nonabelian group
admits a homogeneous length function. One may as well consider groups generated by two noncommuting
elements. As a prototypical example, let F2 be the free group on two generators a and b. The word
length function on F2 is a length function, but it is not homogeneous, since for instance the word length
of (bab−1)n = banb−1 is n+ 2, which is not a linear function of n. It is however the case that the word
length of xn has linear growth in n for any nontrivial x . Similarly for the Levenshtein distance (edit
distance) on F2.

Our initial attempts to construct homogeneous length functions on F2 all failed. Of course, this failure
is explained by our main result. However, many of these methods apply under minor weakening of the
hypotheses, such as working with monoids rather than groups, or weakening homogeneity. Results in
these cases are discussed further in Section 4.

Further motivations. We next mention some motivations from functional analysis and probability, or
more precisely the study of Banach space embeddings. If G is an additive subgroup of a Banach space B,
then clearly the norm on B restricts to a homogeneous length function on G. In [Cabello Sánchez and
Castillo 2002; Gajda and Kominek 1991] one can find several equivalent conditions for a given length
function on a given group to arise in this way (studied in the broader context of additive mappings and
separation theorems in functional analysis); see also [Niemiec 2013, Theorem 2.10(II)] for an alternative
proof. These conditions are summarized in [Khare and Rajaratnam 2016]. For instance, given a group G
with a length function `, there exists an isometric embedding from G to a Banach space B with ` induced
from the metric on B, if and only if G is amenable and `(x2)= 2`(x) for all x .

In view of such equivalences, it is natural to try to characterize the groups possessing a homogeneous
length function. This characterization is given in Corollary 1.4, which shows these are precisely the
abelian torsion-free groups.

2One can also show by relatively simple means that solvable nonabelian groups cannot admit homogeneous length functions
either; see the discussion on lamplighter groups in the comments to terrytao.wordpress.com/2017/12/16/.
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Groups and semigroups with translation-invariant metrics also naturally arise in probability theory, with
the most important “normed” (i.e., homogeneous) examples being Banach spaces [Ledoux and Talagrand
1991]. Notice however that in certain fundamental stochastic settings, formulating and proving results
does not require the full Banach space structure. In this vein, a general variant of the Hoffmann-Jørgensen
inequality was shown in [Khare and Rajaratnam 2017] in arbitrary metric semigroups — including Banach
spaces as well as (nonabelian) compact Lie groups. Similarly in [Khare and Rajaratnam 2016], the authors
transferred the (sharp) Khinchin–Kahane inequality from Banach spaces to abelian groups G equipped
with a homogeneous length function. To explore extensions of these results to the nonabelian setting (e.g.,
Lie groups with left-invariant metrics), we need to first understand if such objects exist. As explained
above, this question was not answered in the literature; but it is now settled by our main result.

Finally, there may also be a relation to the Ribe program [Naor 2012], which aims to reformulate
aspects of Banach space theory in purely metric terms. Indeed, from Corollary 1.4 we see that a metric
space X is isometric to an additive subgroup of a Banach space if and only if there is a group structure on
X which makes the metric left-invariant and the length function `(x) := d(1, x) homogeneous.

2. Key proposition

The key proposition used to prove Theorem 1.2 is the following estimate, which can treat a somewhat more
general class of functions than homogeneous pseudolength functions, in which the symmetry hypothesis is
dropped and one allows for an error in the homogeneity property, which is now also only claimed for n= 2.

Proposition 2.1. Let G = (G, ·) be a group, let c ∈ R, and let ` : G → R be a function obeying the
following axioms:

(i) For any x, y ∈ G, one has

`(xy)≤ `(x)+ `(y). (2.2)

(ii) For any x ∈ G, one has

`(x2)≥ 2`(x)− c. (2.3)

Then for any x, y ∈ G, one has

`([x, y])≤ 5c, (2.4)

where the commutator [x, y] was defined in (1.3).

Notably, we neither assume symmetry `(x−1)= `(x), not even up to a constant, nor `(e)= 0 (although
0 ≤ `(e) ≤ c follows from the axioms); we also allow ` to take on negative values. The reader may
however wish to restrict attention to homogeneous length functions, and set c = 0 and `≥ 0 for a first
reading of the arguments below. The factor of 5 is probably not optimal here, but the crucial feature of
the bound (2.4) for our main application is that the right-hand side vanishes when c = 0 (the right-hand
side is also independent of x and y, which we use in other applications).
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We define a semilength function to be a function ` :G→R such that for all x, y∈G, `(xy)≤`(x)+`(y),
i.e., ` satisfies (2.2). Every pseudolength function is a semilength function. A semilength function that
satisfies (2.3) for some c ∈ R is called quasihomogeneous.

Remark 2.5. Suppose ` : G → R and there is a constant k such that `(xy) ≤ `(x)+ `(y)+ k for all
x, y ∈ G. Then the function `′(x) := `(x)+ k is a semilength function. Further, `′ satisfies (2.3) with c
replaced by c′ := k+ c, whenever ` satisfies (2.3) on the nose. Thus Proposition 2.1 continues to hold
if (2.2) is replaced by the condition `(xy) ≤ `(x)+ `(y)+ k for all x, y ∈ G, with the bound in the
conclusion (2.4) becoming 5c+ 4k.

We now turn to the proof. For the remainder of this section, let G, c, and ` satisfy the hypotheses of
the proposition. Our task is to establish the bound (2.4). We shall now use (2.2) and (2.3) repeatedly
to establish a number of further inequalities relating the semilengths `(x) of various elements x of G,
culminating in (2.4). Many of our inequalities will involve terms that depend on an auxiliary parameter n,
but we will be able to eliminate several of them by the device of passing to the limit n→∞. It is because of
this device that we are able to obtain a bound (2.4) whose right-hand side is completely uniform in x and y.

From (2.2) and induction we have the upper homogeneity bound

`(xn)≤ n`(x) (2.6)

for any natural number n ≥ 1. Similarly, from (2.3) and induction one has the lower homogeneity bound

`(xn)≥ n`(x)− log2(n)c ≥ n`(x)− nc

whenever n is a power of two. It is convenient to rearrange this latter inequality as

`(x)≤
`(xn)

n
+ c. (2.7)

This inequality, particularly in the asymptotic limit n→∞, will be the principal means by which the
hypothesis (2.3) is employed.

We remark that by further use of (2.6) one can also obtain a similar estimate to (2.7) for natural numbers
n that are not powers of two, but the powers of two will suffice for the arguments that follow.

Lemma 2.8 (approximate conjugation invariance). For any x, y ∈ G, one has

`(yxy−1)≤ `(x)+ c.

Remark 2.9. Setting c = 0, we conclude that any homogeneous pseudolength function is conjugation
invariant, and thus determines a biinvariant metric on G. It should not be surprising that this observation
is used in the proof of Theorem 1.2, since it is a simple consequence of that theorem.

Proof of Lemma 2.8. From (2.7) with x replaced by yxy−1, one has

`(yxy−1)≤
`(yxn y−1)

n
+ c
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whenever n is a power of two. On the other hand, from (2.6) and (2.2) one has

`(yxn y−1)≤ `(y)+ n`(x)+ `(y−1)

and thus

`(yxy−1)≤ `(x)+ c+
`(y)+ `(y−1)−c

n
.

Sending n→∞, we obtain the claim. �

Lemma 2.10 (splitting lemma). Let x, y, z, w ∈ G be such that x is conjugate to both wy and zw−1.
Then one has

`(x)≤ 1
2(`(y)+ `(z))+

3
2 c. (2.11)

Proof. If we write x = swys−1
= t zw−1t−1 for some s, t ∈ G, then from (2.7) we have

`(x)≤
`(xnxn)

2n
+ c =

`(s(wy)ns−1t (zw−1)nt−1)

2n
+ c

whenever n is a power of two. From Lemma 2.8 and (2.2) one has

`((wy)k+1s−1t (zw−1)k+1)= `(wy(wy)ks−1t (zw−1)kzw−1)

≤ `(y(wy)ks−1t (zw−1)kz)+ c

≤ `((wy)ks−1t (zw−1)k)+ `(y)+ `(z)+ c

for any k ≥ 0, and hence by induction

`((wy)ns−1t (zw−1)n)≤ `(s−1t)+ n(`(y)+ `(z)+ c).

Inserting this into the previous bound for `(x) via two applications of (2.2), we conclude that

`(x)≤
`(y)+ `(z)+ c

2
+
`(s)+ `(s−1t)+ `(t−1)

2n
+ c;

sending n→∞, we obtain the claim. �

Corollary 2.12. If x, y ∈ G, let f = fx,y : Z
2
→ R denote the function

f (m, k) := `(xm
[x, y]k).

Then for any m, k ∈ Z, we have

f (m, k)≤
f (m− 1, k)+ f (m+ 1, k− 1)

2
+ 2c. (2.13)

Proof. Observe that xm
[x, y]k is conjugate to both x(xm−1

[x, y]k) and to (y−1xm
[x, y]k−1xy)x−1, hence

by (2.11) one has

`(xm
[x, y]k)≤ 1

2

[
`(xm−1

[x, y]k)+ `(y−1xm
[x, y]k−1xy)

]
+

3
2 c.

Since y−1xm
[x, y]k−1xy is conjugate to xm+1

[x, y]k−1, the claim now follows from Lemma 2.8. �
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We now prove Proposition 2.1. Let x, y ∈G. We can write the inequality (2.13) in probabilistic form as

f (m, k)≤ E f
((

m, k− 1
2

)
+ Y

(
1,− 1

2

))
+ 2c

where Y =±1 is a Bernoulli random variable that equals 1 or −1 with equal probability. The key point
here is the drift of

(
0,− 1

2

)
in the right-hand side. Iterating this inequality, we see that

f (0, n)≤ E f
(
(Y1+ · · ·+ Y2n)

(
1,− 1

2

))
+ 4cn,

where n≥ 0 and Y1, . . . , Y2n are independent copies of Y (so in particular Y1+· · ·+Y2n is an even integer).
From (2.2) and (2.6) one has the inequality

f (m, k)≤ |m|(max(`(x), `(x−1)))+ |k|(max(`([x, y]), `([x, y]−1)))+ `(e)

for all integers m and k, where the final term `(e) is used when m = k = 0, but can also be added in the
remaining cases since it is nonnegative. We conclude that

f
(
(Y1+ · · ·+ Y2n)

(
1,− 1

2

))
≤ A|Y1+ · · ·+ Y2n| + `(e)

where A is a quantity independent of n; more explicitly, one can take

A :=max(`(x), `(x−1))+ 1
2 max(`([x, y]), `([x, y]−1)).

Taking expectations, since the random variable Y1+ · · · + Y2n has mean zero and variance 2n, we see
from the Cauchy–Schwarz inequality or Jensen’s inequality that

E|Y1+ · · ·+ Y2n| ≤ (E|Y1+ · · ·+ Y2n|
2)1/2 =

√
2n

and hence

f (0, n)≤ A
√

2n+ `(e)+ 4cn.

But from (2.7), if n is a power of 2 then we have

`([x, y])≤
f (0, n)

n
+ c.

Combining these two bounds and sending n→∞, we obtain Proposition 2.1. �

Remark 2.14. One can deduce a “local” version of Proposition 2.1 as follows: notice that the constant c
can be described in terms of ` from (2.3), to yield

`([x, y])≤ 5 sup
z∈G
(2`(z)− `(z2)) (2.15)

for any group G and function ` : G→ R for which this supremum exists, and any x, y ∈ G. (Both sides
are zero when G is a Banach space and ` is the norm, so equality is obtained in that case.) It is also
enough to consider the supremum over the subgroup of G generated by x and y without loss of generality,
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which may lead to a better bound on `([x, y]) than taking the supremum over all of G. Notice also that
the constant c must be nonnegative, from (2.3) and (2.2) with x = y = e:

c ≥ 2`(e)− `(e2)= `(e)≥ `(e2)− `(e)= 0. (2.16)

In fact, this reasoning and our results imply that the only way to get c = 0 on the right-hand side of (2.4)
is when ` arises from pulling back the norm of a Banach space B along a group homomorphism G→ B,
or equivalently along a group homomorphism from the torsion-free abelianization of G to B.

3. Completing the proof of Theorem 1.2

With Proposition 2.1 in hand, it is not difficult to conclude the proof of Theorem 1.2. Suppose that G
is a group with a homogeneous semilength function ` : G→ [0,+∞). Applying Proposition 2.1 with
c = 0, we conclude that `([x, y])= 0 for all x, y ∈ G, thus by the triangle inequality ` vanishes on the
commutator subgroup [G,G], and therefore factors through the abelianization Gab := G/[G,G] of G.
Observe that this already establishes part of one implication of Corollary 1.4. Factoring out by [G,G]
like this, we may now assume without loss of generality that G is abelian. To reflect this, we now use
additive notation for G, thus for instance `(nx) = |n|`(x) for each x ∈ G and n ∈ Z, and one can also
view G as a module over the integers Z.

At this point we repeat the arguments in [Khare and Rajaratnam 2016, Theorem B], which treated the
case when G was separable, though it turns out that this separability hypothesis is unnecessary.

If x is a torsion element of G, i.e., nx = 0 for some n, then the homogeneity condition forces `(x)= 0.
Thus ` vanishes on the torsion subgroup of G; factoring out by this subgroup, we may thus assume
without loss of generality that G is not only abelian, but is also torsion-free.

We can view G as a subgroup of the Q-vector space G⊗Z Q, the elements of which can be formally
expressed as 1

n x for natural numbers n and elements x ∈ G
(
with two such expressions 1

n x, 1
m y identified

if and only if mx = ny, and the Q-vector space operations defined in the obvious fashion
)
; the fact that

this is well defined as a Q-vector space follows from the hypotheses that G is abelian and torsion-free.
We can then define the map ‖ ‖Q : G⊗Z Q→ [0,+∞) by setting∥∥ 1

n x
∥∥

Q
:=

1
n `(x)

for any x ∈ G and natural number n; the linear growth condition ensures that ‖ ‖Q is well defined. It is
not difficult to verify that ‖ ‖Q is indeed a seminorm over the Q-vector space G⊗Z Q.

The norm ‖ ‖Q on G ⊗Z Q gives a metric d(x, y) = ‖x − y‖Q. Consider the metric completion B

of G ⊗Z Q with this metric. It is easy to see that the Q-vector space structure on G ⊗Z Q extends to
an R-vector space structure on B, and the norm ‖ ‖Q on G⊗Z Q extends to a norm ‖ ‖R on B. As B is
complete by construction, it is a Banach space. The inclusion of G in G⊗Z Q gives a homomorphism
φ : G→ B as required.

This concludes the proof of Theorem 1.2. Since the homomorphism φ : G→ B can only be injective
for abelian torsion-free G, we obtain the “only if” portion of Corollary 1.4. Conversely, if a group G is
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abelian and torsion-free, by the above constructions it embeds into a real vector space B := G⊗Z R; now
by Zorn’s lemma B has a norm (e.g., consider the `1 norm with respect to a Hamel basis of B), which
restricts to the desired homogeneous length function on G. We remark that G⊗Z R is the construction of
the smallest, “enveloping” vector space containing a copy of the abelian, torsion-free group G.

Remark 3.1. The above arguments also show that homogeneous pseudolength functions on G are in
bijection with seminorms on the real vector space Gab,0 ⊗Z R, where Gab,0 denotes the torsion-free
abelianization of G.

4. Further remarks and results

If we weaken any of several conditions in Corollary 1.4, then examples of nonabelian structures with
generalized length functions do, in fact, often exist. However, the generality of Proposition 2.1 allows us
to obtain nontrivial information in some of these cases. Here we mention several such cases and discuss
other related problems.

Monoids and embeddings. Our first weakening is to replace “groups” by the more primitive structures
“monoids” or “semigroups”. In this case, Robert Young (private communication) described to us nonabelian
monoids with homogeneous, biinvariant length functions: consider the free monoid FMon(X) on any
alphabet X of size at least 2, with the edit distance d(v,w) between strings v,w ∈ FMon(X) being the
least number of single generator insertions and deletions to get from v to w. The triangle inequality and
positivity are easily verified, while homogeneity of the corresponding length function `(x) := d(e, x) is
trivial. Moreover, the metric d( · , · ) turns out to be biinvariant:

d(gxh, gyh)= d(x, y) for all g, h, x, y ∈ FMon(X).

This specializes to left- and right-invariance upon taking g ∈ X and h= e, or h ∈ X and g= e, respectively.
Note moreover that FMon(X) embeds into the free group FGp(X) generated by X and X−1, where X−1

is the collection of symbols defined to be inverses of elements of X . In particular, FMon(X) is cancellative.
While this trivially addresses the embeddability issue, notice that a more refined version of embeddability
fails. Namely, by our main theorem, FMon(X) does not embed into any group in the category Cbiinv,hom

with cancellative semigroups with homogeneous biinvariant metrics as objects and isometric semigroup
maps as morphisms. Thus, one may reasonably ask what is a sufficiently small category in which the
embeddability works. The following proposition shows that we just need to drop homogeneity.

Proposition 4.1. Let Cbiinv denote the category whose objects are cancellative semigroups with biinvariant
metrics, and morphisms are isometric semigroup maps. Then FMon(X) embeds isometrically into FGp(X)
in Cbiinv.

Proof. From above, FMon(X) is an object of Cbiinv; denote the metric by dF M . One can check that
dF M(w,w

′) equals the difference between `(w)+ `(w′) and twice the length of the longest common
(possibly noncontiguous) substring in w and w′; here, ` denotes the length of a word in the alphabet X .
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We next claim FGp(X) is also an object of Cbiinv. Namely, for a word w = x1x2 · · · xm in the free
group, we consider noncrossing matchings in w, i.e., sets M of pairs of letters in {1, 2, . . .m} such that
the following hold:

• If (i, j) ∈ M , then i < j and x j = x−1
i .

• If (i, j), (k, l) ∈ M , then either (i, j)= (k, l) or i, j, k, l are distinct.

• If i < k < j < l and (i, j) ∈ M , then (k, l) /∈ M .

Given a matching M as above, consider the set U = U (M) of indices k, 1 ≤ k ≤ m, which are not
part of a pair in M . Define the deficiency of the matching M as the cardinality of the set U (M), and
define the length `wc(w) of the word w as the infimum of the deficiency over all noncrossing matchings
in w (the subscript in `wc stands for Watson–Crick). This length was previously studied in [Gadgil 2009],
including checking that it is well defined on all of FGp(X); moreover, `wc(w) equals the smallest number
of conjugates of elements in X t X−1 whose product is w. Now define dFG(w,w

′) := `wc(w
−1w′). It is

easy to see that `wc is a conjugacy invariant length function.
We claim that dFG ≡ dF M on FMon(X), which proves the result. It is easy to show that if two words in

FMon(X) differ by a single insertion or deletion, then their distance in FGp(X) is at most one, hence exactly
one. In the other direction, we claim that a noncrossing matching on w−1w′, with w and w′ containing
only positive generators (in X ), is just a “rainbow”, i.e., nested arches with one end in w−1 and the other
in w′. But then dFG(w,w

′) equals `(w)+ `(w′) minus twice the length of a common substring, which is
maximal by the minimality of the deficiency. Hence dFG(w,w

′)= dF M(w,w
′), completing the proof. �

Note that given weights `(a) and `(b), there is a natural weighted version `wc;a,b where the letters
of U as above are taken with these weights (symmetrically under inversion). This corresponds to the
weighted edit distance, with different costs for editing different letters.

Quasimorphisms and commutator lengths. We now investigate potential applications of Proposition 2.1
with c > 0. A quasimorphism on a group G is a map f : G→ R whose defect is bounded,

D( f ) := sup
x,y∈G
| f (xy)− f (x)− f (y)|<+∞.

Every quasimorphism induces a pseudolength function (in particular a semilength function) by setting

`(x) := | f (x)|+D( f ), (4.2)

where we can take c = 2D( f ) as a bound on the homogeneity defect. In this case, Proposition 2.1 makes
a rather trivial statement: a homogeneous quasimorphism is bounded on commutators,

| f ([x, y])| ≤ 10D( f ).

In fact, as observed in [Bavard 1991, Lemme 1.1], for homogeneous quasimorphisms one can im-
prove the constant from 10 to 3, and a quasimorphism can always be homogenized by replacing it by
limn→∞ f (xn)/n [Bavard 1991, p.135], which differs from the original f by at most D( f ).
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Nevertheless, quasimorphisms can be utilized to construct interesting pseudolength functions, for
example satisfying homogeneity on specific commutators. The following quasimorphism is due to Brooks
[Fujiwara 2009, §2]. For a given word w in the free group F2, written in reduced form, let fw : F2→ R

be the function which assigns to every other g ∈ F2, also written in reduced form, the maximum number
of times that w occurs in g without overlaps, minus the analogous maximal number of times that w−1 can
occur in g. Since fw(wn)= n fw(w), using (4.2) results in a pseudolength function that grows linearly on
the powers of w. For example with w being the commutator of the generators of F2, we see that although
the pseudolength function must be bounded on commutators by Proposition 2.1, it can nevertheless grow
linearly on the powers of a fixed commutator.

Thus, there exist examples of quasihomogeneous semilength functions on free groups that are not
induced by norms. Nevertheless, we will now see that for a large class of groups, including amenable
groups and G = SL(n,Z) for n ≥ 3, even all quasihomogeneous semilength functions are induced by
norms on Banach spaces. Further, the bound from Proposition 2.1 even in the case of free groups is
sharper than that obtained without using homogeneity.

Recall that the commutator length cl(g) of a word in [G,G] is the length k of the shortest expression
g = [a1, b1] · [a2, b2] · · · [ak, bk] of g as a product of commutators. The stable commutator length is
defined as limn→∞ cl(gn)/n, where the limit exists by subadditivity of the function n 7→ cl(gn).

Then Proposition 2.1, together with `(e)≤ c and (2.7) for n a power of two,

`(x)≤
`(xn)

n
+ log2(n)c,

easily imply the following estimates:

Proposition 4.3. Let ` and c be as in Proposition 2.1. Then for x ∈ [G,G], `(x) ≤ (5 cl(x)+ 1)c and
`(x)≤ (5 scl(x)+ 1)c.

We say two semilength functions `1, `2 : G→ R are equivalent if |`1(x)− `2(x)| is bounded in x ∈ G.
For a perfect group G on which the stable commutator length vanishes (such as SL(n,Z) for n ≥ 3), it

is immediate that any homogeneous semilength function is bounded, and hence equivalent to the trivial
semilength function `(g)≡ 0.

More generally, for groups G for which the stable commutator length vanishes on [G,G], we can
deduce an analogue of Theorem 1.2. Note that there are several interesting examples of such groups,
including solvable groups, and more generally, amenable groups.

Theorem 4.4. Let G be a group such that the stable commutator length vanishes on [G,G] and assume
` : G → R satisfies (2.2) and (2.3). Then there exist a real Banach space B = (B, ‖ ‖) and a group
homomorphism φ : G→ B such that ` is equivalent to x 7→ ‖φ(x)‖.

Remark 4.5. As in Remark 2.5, we can replace (2.2) by the a priori weaker condition that `(xy) ≤
`(x)+ `(y)+ k for all x, y ∈ G with k fixed.
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Proof. Let ab : G → Gab = G/[G,G] be the abelianization homomorphism. We first construct a
homogeneous semilength function ` on Gab so that ` is equivalent to `◦ ab. Let η : Gab→ G be a section
of ab and let `0(x) := `(η(x))+ c. We show that `0 is a semilength function. The required ` will be
obtained by homogenizing `0.

By Proposition 4.3, as the stable commutator length vanishes on [G,G], it follows that for x, y ∈ G, if
ab(x)= ab(y), then |`(x)− `(y)| ≤ c. Now, for α, β ∈ Gab, ab(η(αβ))= ab(η(α)η(β)), hence

|`(η(αβ))− `(η(α)η(β)))| ≤ c.

This together with the triangle inequality (2.2) gives

`0(αβ)≤ `0(α)+ `0(β)+ c,

while using (2.3) instead gives the required lower bound for `0(α
2).

Next, for x ∈G, as ab(η(ab(x)))=ab(x), we have |`(x)−(`0◦ab)(x)|≤c. Thus ` is equivalent to `0◦ab.
Since (αβ)n = αnβn in Gab, we also have `0((αβ)

n) ≤ `0(α
n)+ `0(β

n)+ c. We deduce that the
homogenization ` of `0 is a semilength function on Gab, which is equivalent to `0 due to the bounds (2.6)
and (2.7), applied to `0. Therefore also ` is equivalent to ` ◦ ab on G.

The claim now follows upon applying Theorem 1.2 to (Gab, `) and taking φ to be the composition
G→ Gab→ B. �

The following examples of length functions on the free group show that some hypotheses are needed
to get bounds as strong as those of the theorem (naturally the stable commutator length does not vanish in
the free group). For example, consider the word [ak, bm

] in the free group F2, generated by a and b, for
some integers k and m:

• The norm of such an element with respect to the word metric is 2(|k| + |m|).

• If we have a length function ` which is symmetric and conjugation-invariant, but not necessarily ho-
mogeneous, then we have the bound `([ak, bm

])≤ 2 min(|k|`(a), |m|`(b)). Furthermore, the `wc;a,b

from above are conjugation-invariant length functions for which these inequalities hold with equality.
Further, `([ak, bm

])≥ 2 min(|k|`(a), |m|`(b)) as, for any matching M for w = [ak, bm
], if some

pair (i, j) corresponds to letters a and a−1, then no pair corresponds to letters b and b−1 and conversely.
Further, it is easy to find a matching for w for which the deficiency is min(|k|`(a), |m|`(b)). On the
other hand, `wc;a,b is not homogeneous; for instance, `([a, b])= 2 and `([a, b]3)= 4. Similarly, we
have `([ak, bk

])= 2|k| and `([ak, bk
]
3)≤ 4|k|, which demonstrates that 2`(x)−`(x2) is unbounded

(as must be the case, according to (2.15)).

• On the other hand, the function `cyc associating to each word the length of its cyclically reduced
form is homogeneous, but not a semilength function. For this we have `cyc([ak, bm

])= 2(|k| + |m|).

Observe that all of the bounds on `([ak, bm
]) here become unbounded as k,m→∞. This should be

compared with Proposition 2.1, which establishes a bound `([ak, bm
])≤ 5c that is uniform in k and m

for any function ` satisfying the hypotheses of that proposition.
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Finite balls in free groups. From Proposition 2.1 and a standard compactness argument, we can establish
the following local version of the theorem.

Theorem 4.6. For any ε > 0 there exists R ≥ 4 with the following property: if a, b are two elements of a
group G, Ba,b(R)⊂ G is the collection of all words in a, b, a−1, b−1 of length at most R (so in particular
Ba,b(R) contains [a, b]), and the map ` : Ba,b(R)→ [0,+∞) is a “local semilength function” which
obeys the triangle inequality

`(xy)≤ `(x)+ `(y) (4.7)

whenever x, y, xy ∈ Ba,b(R), with equality when x = y, then one has

`([a, b])≤ ε(`(a)+ `(b)).

Proof. By pulling back to the free group F2 generated by a and b, we may assume without loss of
generality that G = F2. Without loss of generality we may also normalize `(a)+ `(b)= 1. If the claim
failed, then one could find a sequence Rn→∞ and local pseudolength functions `n : Ba,b(Rn)→[0,+∞)
such that `n(a)+ `n(b) = 1, but that `n([a, b]) ≥ ε. By the Arzela–Ascoli theorem, we can pass to a
subsequence that converges pointwise to a homogeneous pseudolength function ` : G→ [0,+∞) such
that `([a, b])≥ ε, which contradicts Proposition 2.1. �

Remark 4.8. By carefully refining the arguments in the previous section, choosing n to be various small
powers of R instead of sending n to infinity, one can extract an explicit value of R of the form R =Cε−A

for some absolute constants C, A > 0; we leave the details to the interested reader.

On the other hand, for any finite R one can construct local length functions ` : B(0, R)→[0,+∞) such
that `(x) > 0 for all x ∈ B(0, R) \ {e}. One construction is as follows. Any two matrices Ua,Ub ∈ SO(3)
define a representation x 7→Ux of the free group F2 in the obvious fashion. Every Ux is then a rotation
around some axis in R3 by some angle 0≤ θx ≤π in one of the two directions around that axis; if Ua and Ub

are sufficiently close to the identity, then the angle θx is at most π/2 for all x ∈ B(0, R). We set `(x) := θx

for x ∈ B(0, R). Also, if Ua and Ub are chosen generically, the representation is faithful, as follows from
the dominance of word maps on simple Lie groups such as SO(3), see [Borel 1983]. Hence `(x) > 0 for
any nonidentity x . From the triangle inequality for angles we thus have (4.7) whenever x, y, xy ∈ B(0, R),
with equality when x = y. Note that as one sends R→∞, the local length functions constructed here
converge to zero pointwise, so in the limit we do not get any counterexample to the main theorem.

About this project

This project is an online collaboration that originated from a blog post at

https://terrytao.wordpress.com/2017/12/16,

following the model of the “Polymath” projects [Gowers and Nielsen 2009]. A full list of participants
and their grant acknowledgments may be found at

http://michaelnielsen.org/polymath1/index.php?title=linear_norm_grant_acknowledgments.

http://michaelnielsen.org/polymath1/index.php?title=linear_norm_grant_acknowledgments


1786 D. H. J. Polymath

Acknowledgements

We thank Michal Doucha for useful references and comments, in particular in bringing the paper [Niemiec
2013] to our attention, and the anonymous referee for helpful suggestions.

References

[Bavard 1991] C. Bavard, “Longueur stable des commutateurs”, Enseign. Math. (2) 37:1-2 (1991), 109–150. MR Zbl

[Borel 1983] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math. (2) 29:1-2 (1983), 151–164. MR Zbl

[Cabello Sánchez and Castillo 2002] F. Cabello Sánchez and J. M. F. Castillo, “Banach space techniques underpinning a theory
for nearly additive mappings”, Dissertationes Math. (Rozprawy Mat.) 404 (2002), 73. MR Zbl

[Fujiwara 2009] K. Fujiwara, “Quasi-homomorphisms on mapping class groups”, pp. 241–269 in Handbook of Teichmüller
theory, vol. 2, edited by A. Papadopoulos, IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc., Zürich, 2009. MR Zbl

[Gadgil 2009] S. Gadgil, “Watson–Crick pairing, the Heisenberg group and Milnor invariants”, J. Math. Biol. 59:1 (2009),
123–142. MR Zbl

[Gajda and Kominek 1991] Z. Gajda and Z. Kominek, “On separation theorems for subadditive and superadditive functionals”,
Studia Math. 100:1 (1991), 25–38. MR Zbl

[Gowers and Nielsen 2009] T. Gowers and M. Nielsen, “Massively collaborative mathematics”, Nature 461 (2009), 879–881.

[Khare and Rajaratnam 2016] A. Khare and B. Rajaratnam, “The Khinchin–Kahane inequality and Banach space embeddings
for metric groups”, preprint, 2016. arXiv

[Khare and Rajaratnam 2017] A. Khare and B. Rajaratnam, “The Hoffmann-Jørgensen inequality in metric semigroups”, Ann.
Probab. 45:6A (2017), 4101–4111. MR Zbl

[Ledoux and Talagrand 1991] M. Ledoux and M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) 23, Springer, 1991. MR Zbl

[Milnor 1976] J. Milnor, “Curvatures of left invariant metrics on Lie groups”, Advances in Math. 21:3 (1976), 293–329. MR
Zbl

[Naor 2012] A. Naor, “An introduction to the Ribe program”, Jpn. J. Math. 7:2 (2012), 167–233. MR Zbl

[Niemiec 2013] P. Niemiec, “Universal valued Abelian groups”, Adv. Math. 235 (2013), 398–449. MR Zbl

Communicated by Pham Huu Tiep
Received 2018-01-11 Revised 2018-04-20 Accepted 2018-06-12

fritz@mis.mpg.de Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

gadgil@math.iisc.ernet.in Department of Mathematics, Indian Institute of Science, Bangalore, India

khare@iisc.ac.in Department of Mathematics, Indian Institute of Science, Bangalore, India

Analysis and Probability Research Group, Indian Institute of Science,
Bangalore, India

pace@math.byu.edu Department of Mathematics, Brigham Young University, Provo, UT,
United States

lior@math.ubc.ca University of British Columbia, Vancouver BC, Canada

tao@math.ucla.edu Department of Mathematics, University of California Los Angeles,
Los Angeles, CA, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/1115747
http://msp.org/idx/zbl/0810.20026
http://msp.org/idx/mr/702738
http://msp.org/idx/zbl/0533.22009
http://msp.org/idx/mr/1926936
http://msp.org/idx/zbl/1035.39018
http://msp.org/idx/mr/2497785
http://msp.org/idx/zbl/1196.57003
http://dx.doi.org/10.1007/s00285-008-0223-x
http://msp.org/idx/mr/2501475
http://msp.org/idx/zbl/1204.92033
http://dx.doi.org/10.4064/sm-100-1-25-38
http://msp.org/idx/mr/1130135
http://msp.org/idx/zbl/0739.39014
http://dx.doi.org/10.1038/461879a
http://msp.org/idx/arx/1610.03037
http://dx.doi.org/10.1214/16-AOP1160
http://msp.org/idx/mr/3729624
http://msp.org/idx/zbl/06838116
http://dx.doi.org/10.1007/978-3-642-20212-4
http://msp.org/idx/mr/1102015
http://msp.org/idx/zbl/0748.60004
http://dx.doi.org/10.1016/S0001-8708(76)80002-3
http://msp.org/idx/mr/0425012
http://msp.org/idx/zbl/0341.53030
http://dx.doi.org/10.1007/s11537-012-1222-7
http://msp.org/idx/mr/2995229
http://msp.org/idx/zbl/1261.46013
http://dx.doi.org/10.1016/j.aim.2012.12.005
http://msp.org/idx/mr/3010064
http://msp.org/idx/zbl/1273.54034
mailto:fritz@mis.mpg.de
mailto:gadgil@math.iisc.ernet.in
mailto:khare@iisc.ac.in
mailto:pace@math.byu.edu
mailto:lior@math.ubc.ca
mailto:tao@math.ucla.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US $340/year for the electronic version, and $535/year (+$55, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 12 No. 7 2018

1559Difference modules and difference cohomology
MARCIN CHAŁUPNIK and PIOTR KOWALSKI

1581Density theorems for exceptional eigenvalues for congruence subgroups
PETER HUMPHRIES

1611Irreducible components of minuscule affine Deligne–Lusztig varieties
PAUL HAMACHER and EVA VIEHMANN

1635Arithmetic degrees and dynamical degrees of endomorphisms on surfaces
YOHSUKE MATSUZAWA, KAORU SANO and TAKAHIRO SHIBATA

1659Big Cohen–Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic
RAYMOND HEITMANN and LINQUAN MA

1675Blocks of the category of smooth `-modular representations of GL(n, F) and its inner forms: reduction to
level 0

GIANMARCO CHINELLO

1715Algebraic dynamics of the lifts of Frobenius
JUNYI XIE

1749A dynamical variant of the Pink–Zilber conjecture
DRAGOS GHIOCA and KHOA DANG NGUYEN

1773Homogeneous length functions on groups
TOBIAS FRITZ, SIDDHARTHA GADGIL, APOORVA KHARE, PACE P. NIELSEN, LIOR SILBERMAN and

TERENCE TAO

1787When are permutation invariants Cohen–Macaulay over all fields?
BEN BLUM-SMITH and SOPHIE MARQUES

A
lgebra

&
N

um
ber

Theory
2018

Vol.12,
N

o.7

http://dx.doi.org/10.2140/ant.2018.12.1559
http://dx.doi.org/10.2140/ant.2018.12.1581
http://dx.doi.org/10.2140/ant.2018.12.1611
http://dx.doi.org/10.2140/ant.2018.12.1635
http://dx.doi.org/10.2140/ant.2018.12.1659
http://dx.doi.org/10.2140/ant.2018.12.1675
http://dx.doi.org/10.2140/ant.2018.12.1675
http://dx.doi.org/10.2140/ant.2018.12.1715
http://dx.doi.org/10.2140/ant.2018.12.1749
http://dx.doi.org/10.2140/ant.2018.12.1773
http://dx.doi.org/10.2140/ant.2018.12.1787

	1. Introduction
	Examples and approaches
	Further motivations

	2. Key proposition
	3. Completing the proof of 0=equation.31=Theorem 1.2
	4. Further remarks and results
	Monoids and embeddings
	Quasimorphisms and commutator lengths
	Finite balls in free groups

	About this project
	Acknowledgements
	References
	
	

