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When are permutation invariants
Cohen–Macaulay over all fields?

Ben Blum-Smith and Sophie Marques

We prove that the polynomial invariants of a permutation group are Cohen–Macaulay for any choice of
coefficient field if and only if the group is generated by transpositions, double transpositions, and 3-cycles.
This unites and generalizes several previously known results. The “if” direction of the argument uses
Stanley–Reisner theory and a recent result of Christian Lange in orbifold theory. The “only if” direction
uses a local-global result based on a theorem of Raynaud to reduce the problem to an analysis of inertia
groups, and a combinatorial argument to identify inertia groups that obstruct Cohen–Macaulayness.

1. Introduction

The invariant ring of a graded action by a finite group G on a polynomial ring

k[x] = k[x1, . . . , xn]

over a field k is well behaved when the field characteristic is prime to the group order. For example, it
is generated in degree ≤ |G| (Noether’s bound), and it is a Cohen–Macaulay ring (the Hochster–Eagon
theorem).

When the characteristic divides the group order (the modular case), the situation is much more
mysterious. Both of these statements (and many others) can, but do not always, fail. The question of
when such pathologies arise has attracted research attention over the last few decades.

In this article we focus on Cohen–Macaulayness. Let k[x]G be the invariant ring and let

p = char k

be the field characteristic. We interpret k[x] as the coordinate ring of An
k , so that the action of G on

k[x] is induced from an action on An
k by automorphisms. Because the action on k[x] is graded, the

corresponding action on An
k is linear, i.e., it arises from a linear representation of G on a k-vector space.

Here is a sampling of known results:

• Ellingsrud and Skjelbred [1980] showed that if G is cyclic of order pm , then k[x]G is not Cohen–
Macaulay unless G fixes a subspace of An

k of codimension ≤ 2.
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• Larry Smith [1996] showed that if n = 3, then k[x]G is Cohen–Macaulay. (This was known to hold
for n ≤ 2.)

• Campbell et al. [1999] showed that if G is a p-group, and if the action of G on An
k is the sum of

three copies of the same linear representation, then k[x]G is not Cohen–Macaulay.

• Gregor Kemper [1999] showed that if G is a p-group and k[x]G is Cohen–Macaulay, then G is
necessarily generated by elements g whose fixed-point sets in An

k have codimension ≤ 2, generalizing
[Ellingsrud and Skjelbred 1980] beyond cyclic groups and [Campbell et al. 1999] beyond three-copies
representations.

See [Kemper 2012] for a more detailed overview.
A theme uniting these results is that generation of G by elements fixing codimension ≤ 2 subspaces is

related to good behavior of k[x]G . Further variations on this theme are found in [Dufresne et al. 2009;
Gordeev and Kemper 2003; Kac and Watanabe 1982; Lorenz and Pathak 2001]. The main goal of this
paper is a result of this kind for permutation groups G ⊂ Sn , acting on k[x] by permuting the xi . The
result characterizes permutation groups generated in this way, and is not restricted to p-groups.

Permutation groups have the feature that the definition of the action is insensitive to the choice of a
ground field k. Thus it is natural to ask:

Question 1.1. For which G ⊂ Sn is k[x]G Cohen–Macaulay regardless of k?

An additional motivation for this question is that k[x]G is Cohen–Macaulay for every choice of k if
and only if Z[x]G is free as a module over the subring Z[x]Sn of symmetric polynomials, and also if
and only if A[x]G is Cohen–Macaulay for every Cohen–Macaulay ring A. (We will not develop these
equivalences here, but see [Blum-Smith 2017, §2.4.1] where the first is worked out in detail, and [Bruns
and Herzog 1993, Exercise 5.1.25] for a sketch of the second in a slightly different setting.)

Kemper [2001] gave an if-and-only if criterion that determines Cohen–Macaulayness of a permutation in-
variant ring when p divides |G| exactly once. This criterion allows one to determine Cohen–Macaulayness
for many specific groups and primes, but does not in general answer Question 1.1 because few permutation
groups have squarefree order. Some special cases of Question 1.1 are known:

• If G is a Young subgroup (i.e., a product of symmetric groups acting on disjoint sets), then k[x]G is
a polynomial algebra over k, so it is Cohen–Macaulay regardless of k.

• It follows from the result of Kemper [1999] quoted above that if G is a p-group, then k[x]G cannot
be Cohen–Macaulay over all fields unless G is generated by transpositions and double transpositions,
or 3-cycles (and p = 2 or 3).

• Kemper [1999] also showed that if G ⊂ Sn is regular (i.e., its action on

[n] = {1, . . . , n}
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is free and transitive), then k[x]G is Cohen–Macaulay over every k if it is isomorphic to C2, C3, or
C2×C2, but not otherwise. (In fact, in other cases, it is not Cohen–Macaulay for any k with char k
dividing |G|.)

• Victor Reiner [1992; 2003] has shown that An , and the diagonally embedded Sn ↪→ Sn × Sn ⊂ S2n ,
have invariant rings that are Cohen–Macaulay regardless of the field. (These are the Sn-cases of
results he found for all finite Coxeter groups.) Patricia Hersh [2003a; 2003b] has shown the same
for the wreath product S2 o Sn ⊂ S2n .

Our main objective in this article is to answer Question 1.1 completely. We will prove the following
theorem, which unites all of these cases and ties them into the theme mentioned above.

Theorem 1.2. Let G ⊂ Sn . The ring k[x]G is Cohen–Macaulay for all choices of k if and only if G is
generated by transpositions, double transpositions, and 3-cycles.

Let N be the subgroup of G generated by transpositions, double transpositions, and 3-cycles. The
“if” direction of Theorem 1.2, together with the Hochster–Eagon theorem [Hochster and Eagon 1971,
Proposition 13], imply that the characteristics p in which k[x]G fails to be Cohen–Macaulay must be
among those that divide [G : N ]. This implication will be discussed in more detail in the conclusion
(Section 5). The “only if” direction implies that if [G :N ]>1, then there is at least one such characteristic p.
This p is explicitly constructed in the course of the proof.

The proof of this theorem is methodologically eclectic. The “if” direction uses Stanley–Reisner theory,
which relates Cohen–Macaulayness of k[x]G to the topology of the quotient of a ball by G, and a recent
result in orbifold theory by Christian Lange [2016] that characterizes the groups G such that this quotient
is a piecewise-linear ball. The “only if” direction is much more algebraic. It is based on a local-global
result (Theorem 3.1) reducing the Cohen–Macaulayness of a noetherian invariant ring to that of the
invariant rings of its inertia groups acting on strict localizations.

Though Theorem 1.2 is specific to the situation of a polynomial ring k[x] and a permutation group G,
a substantial portion of our method for the “only if” direction applies in considerably more generality.
Section 2C concerns arbitrary commutative, unital rings, and the local-global result just mentioned only
assumes that the invariant ring is noetherian. (Other work on Cohen–Macaulayness of invariants at
the generality of noetherian rings includes [Gordeev and Kemper 2003; Lorenz and Pathak 2001].) A
secondary goal of this paper is to develop these general tools, which we expect have broader applicability.
The fact that Cohen–Macaulayness depends fully on the local action of the inertia groups yields information
about Cohen–Macaulayness whenever inertia groups can be accessed directly and are simpler than the
whole group, as in the present case.

The method of the “if” direction is similar to the methods used by Reiner [1992; 2003] and Hersh
[2003a; 2003b] to prove the results mentioned above. The novelty is the application of Lange’s orbifold
result [2016] in place of an explicit shelling of a cell complex. The main novelties in the “only if” direction
are: the local-global Theorem 3.1, its application to show that certain kinds of inertia p-groups obstruct
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Cohen–Macaulayness (Proposition 3.11), and a combinatorial argument that exhibits such an inertia
p-group explicitly in the case at hand (Lemma 4.5).

The organization of the paper is as follows. Section 2 collects together the needed background from
commutative algebra, Stanley–Reisner theory, and piecewise-linear topology, and introduces notation that
is used throughout the article. Section 3 contains the general results on Cohen–Macaulayness and inertia
groups that are needed for the “only if” direction of Theorem 1.2, including the local-global Theorem 3.1
and the p-group obstruction Proposition 3.11. Section 4 proves the “if” direction of Theorem 1.2, and
then using this, proves the “only if” direction. Finally, Section 5 draws out some implications and poses
questions for further inquiry.

2. Background

Throughout this paper, A denotes an arbitrary commutative, unital ring, k denotes a field, p denotes the
characteristic of k, k[x] denotes the polynomial ring k[x1, . . . , xn], [n] denotes the set {1, . . . , n}, and
G denotes a finite group with a faithful action on k[x] by permutations of the xi ’s, or on A by arbitrary
automorphisms. In Section 4B, the prime number p will be conceptually prior to k, and k will be chosen
to satisfy char k = p.

2A. Cohen–Macaulayness. Recall that the depth of a local noetherian ring is the length of the longest
regular sequence contained in the maximal ideal. The depth is always bounded above by the dimension.
When equality is achieved, the ring is said to be Cohen–Macaulay. A general noetherian ring is defined
to be Cohen–Macaulay if its localization at every maximal, or equivalently at every prime, is Cohen–
Macaulay [Bruns and Herzog 1993, Definition 2.1.1 and Theorem 2.1.3(b)].

Although there has been work on extending the theory of Cohen–Macaulayness to the nonnoetherian
setting [Hamilton and Marley 2007], in this paper we will follow tradition by regarding noetherianity as a
requirement of Cohen–Macaulayness.

Cohen–Macaulayness is automatic for artinian rings, since if the dimension is zero, the depth of a
localization cannot be strictly lower than this. For example, fields are Cohen–Macaulay. Noetherian
regular rings, for example polynomial rings over fields, are also Cohen–Macaulay [Bruns and Herzog
1993, Corollary 2.2.6].

For our purposes it will be necessary to know how the Cohen–Macaulayness of a ring relates to that
of a flat extension. The needed fact [Bruns and Herzog 1993, Theorem 2.1.7] is that if A→ B is a flat
extension of noetherian rings, then B is Cohen–Macaulay if and only if, for each prime ideal q of B and
its contraction p in A, both Ap and Bq/pBq are Cohen–Macaulay. It is enough to quantify this statement
over maximal ideals q of B. We will use this fact repeatedly in Section 3.

When a noetherian ring is finite over a regular subring, Cohen–Macaulayness is related to flatness
as a module over the subring. In the traditional situation of invariant theory, this fact has a particularly
nice formulation. For if k[x] is a polynomial ring over a field, and G acts by graded automorphisms,
then k[x]G is finitely generated and graded, and the Noether normalization lemma guarantees a graded
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polynomial subring (generated by a homogeneous system of parameters) over which k[x]G is finite. In
this situation, k[x]G is Cohen–Macaulay if and only if it is a free module over this subring (the Hironaka
criterion). We will not build on this fact directly, but we mention it both because it motivates interest in
Cohen–Macaulayness, and because we do use a result [Reiner 2003, Theorem A.1] that depends on it,
whose proof we outline in the next section.

2B. Combinatorial commutative algebra and PL topology. The proof of the “if” direction of Theorem 1.2
relies on results in combinatorial commutative algebra and some basic facts about PL topology. For
motivation, we describe the plan of the proof before recalling these results.

By work of Adriano Garsia and Dennis Stanton [1984], refined by Victor Reiner [2003], Cohen–
Macaulayness of the polynomial invariant ring k[x]G can be deduced from the Cohen–Macaulayness of
the Stanley–Reisner ring of a certain cell complex (specifically a boolean complex) that depends on G.
The Cohen–Macaulayness of this Stanley–Reisner ring can in turn be deduced from information about
the complex that depends only on the homeomorphism class of its total space. For G generated as in
Theorem 1.2, a recent result of Christian Lange [2016] hands us this topological information. This is the
structure of the proof, which will be assembled in Section 4A. Here, we recall the needed results and
definitions regarding boolean complexes and Stanley–Reisner rings.

Let P be a finite poset and k a field.

Definition 2.1. The Stanley–Reisner ring of P over k, written k[P], is the quotient of the polynomial
ring k[{yα}α∈P ], with indeterminates indexed by the elements of P , by the ideal generated by products
yα yβ indexed by incomparable pairs α, β ∈ P .

Remark 2.2. This is a special case of a more general definition, which we will not use directly: the
Stanley–Reisner ring of a simplicial complex. (We will use a further generalization — see Definition 2.5
below.) The Stanley–Reisner ring of a poset is nothing but the Stanley–Reisner ring of the chain complex
of the poset, i.e., the simplicial complex with vertex set the elements of the poset, whose simplices are the
chains in the poset. It is helpful to keep in mind that the Stanley–Reisner ring of a poset has an underlying
simplicial complex as well.

Write [n] = {1, . . . , n}. Let Bn be the boolean algebra on the set [n], i.e., the set of subsets of [n],
ordered by inclusion. Then the Stanley–Reisner ring k[Bn \ {∅}] is, in a sense that can be made precise, a
coarse approximation of the polynomial ring k[x]. In particular, it carries a natural action of Sn via the
latter’s action on the set [n], and if G ⊂ Sn , then k[x]G is Cohen–Macaulay whenever k[Bn \ {∅}]G is
Cohen–Macaulay. This is the content of [Reiner 2003, Theorem A.1].

The proof is given in full there, and also in great detail in [Blum-Smith 2017, Section 2.5.3], and
in any case is essentially a characteristic-neutral reformulation of an argument of Adriano Garsia and
Dennis Stanton [1984], building on Garsia’s earlier work [1980]. However, we would like this result to
be better-known, so we indicate the line of proof.

As mentioned in Section 2A, a finitely generated graded k-algebra is Cohen–Macaulay if and only
if it is free as a module over the subring generated by any homogeneous system of parameters. Thus,
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Cohen–Macaulayness can be established by showing the existence of a module basis over such a subring.
For any G ⊂ Sn , k[x]Sn and k[Bn \{∅}]Sn are such subrings, respectively, of k[x]G and k[Bn \{∅}]G , and
they are isomorphic. Thus, Cohen–Macaulayness may be passed from k[Bn \ {∅}]G to k[x]G by showing
that the existence of a module basis for the former over the common subring k[Bn \ {∅}]Sn ∼= k[x]Sn

implies the existence of a basis for the latter. Garsia [1980] introduced a k-linear, Sn-equivariant map
G : k[Bn \ {∅}] → k[x] sending

yU 7→
∏
i∈U

xi ,

where U ∈ Bn \ {∅} is any nonempty subset of [n]. The map G is first extended multiplicatively to
all monomials of k[Bn \ {∅}], and then k-linearly to the whole ring. This map is an isomorphism of
k-vector spaces, and also, in a sense made precise in [Blum-Smith 2017, Proposition 2.5.66], a coarse
approximation of a ring homomorphism. In particular, for any G⊂ Sn , if k[Bn\{∅}]G is Cohen–Macaulay,
it maps an appropriately chosen k[Bn \ {∅}]Sn -basis of k[Bn \ {∅}]G to a k[x]Sn -basis of k[x]G . This
statement about bases was proven by Garsia and Stanton [1984] with k =Q, in which case both rings
are automatically Cohen–Macaulay — Garsia and Stanton’s interest was in the explicit construction of
bases — but it was observed in [Reiner 2003, Theorem A.1] that the argument is characteristic-neutral
and so allows one to deduce Cohen–Macaulayness of k[x]G from that of k[Bn \ {∅}]G in the modular
situation.

Remark 2.3. The map G is referred to as the transfer map in [Garsia 1980; Garsia and Stanton 1984;
Reiner 2003]. Other authors in invariant theory [Neusel and Smith 2002; Smith 1995] use the same phrase
to denote the AG-linear map

Tr : A→ AG

x 7→
∑
g∈G

g(x).

While this latter map is also called the trace, there are well-established usages of transfer to describe
maps analogous to Tr in both topology and group theory, so we prefer to call G the Garsia map to avoid
competition for the term and to honor Garsia’s introduction of it [1980]. The present paper makes no use
of the Garsia map except implicitly in quoting [Reiner 2003, Theorem A.1].

The work cited above reduces proving Cohen–Macaulayness of k[x]G to the analogous statement
for k[Bn \ {∅}]G . The Cohen–Macaulayness of this latter ring can be assessed using a topological
criterion, following a general philosophy in Stanley–Reisner theory that the Cohen–Macaulayness of a
Stanley–Reisner ring is equivalent to a condition on the homology of the underlying simplicial complex.
In the present situation, k[Bn \ {∅}]G is not the Stanley–Reisner ring of a poset or simplicial complex,
but it turns out to be the Stanley–Reisner ring of a boolean complex. We recall the needed definitions:

Definition 2.4. A boolean complex is a regular CW complex in which every face has the combinatorial
type of a simplex.
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Figure 1. Left: a boolean complex with total space homeomorphic to a circle. Right: its
face poset.

This is a mild generalization of a simplicial complex, in which it is possible for two faces to intersect
in an arbitrary subcomplex rather than a single subface. (For example, two faces can have all the same
vertices.) See Figure 1. The terminology is due to Garsia and Stanton [1984].

The face poset of a cell complex is the poset whose elements are the cells (faces), and the relation
α ≤ β means that α’s closure is contained in β’s closure. For our purposes it is convenient to modify this
definition to include an additional empty face ∅, with ∅≤α for all faces α. With this convention, a boolean
complex can be characterized as a regular CW complex whose face poset has the property that every
lower interval is a finite boolean algebra; this is the etymology of the name boolean complex. Face posets
of boolean complexes are referred to as simplicial posets, a term introduced by Richard Stanley [1986].

Stanley [1991] generalized the notion of a Stanley–Reisner ring to a boolean complex �, as follows.
Let k be a field and let Q be the face poset of �, including the minimal element ∅. Let k[{zα}α∈Q] be
a polynomial ring with indeterminates indexed by the elements of Q. Let I be the ideal of this ring
generated by:

(1) The element z∅− 1.

(2) All products zαzβ where α, β ∈ Q have no common upper bound.

(3) All elements of the form

zαzβ − zα∧β
∑

γ∈lub(α,β)

zγ

where α and β have at least one common upper bound and lub(α, β) denotes the (consequently
nonempty) set of least upper bounds of α and β.

The greatest (common) lower bound α∧β of α and β exists and is unique in the above formula because,
as remarked above, every lower interval, and in particular the lower interval below any common upper
bound for α and β, is a boolean algebra and therefore a lattice. Thus whenever α and β have any common
upper bound, they have a unique greatest common lower bound in some lower interval containing them
both, and thus in the whole poset.

Definition 2.5. The quotient ring k[{zα}α∈P ]/I is called the Stanley–Reisner ring of � and denoted k[�].
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1(B3 \ {∅})

Figure 2. The poset B3 \ {∅}, and its order complex, which is a 2-ball.

Remark 2.6. Definition 2.5 generalizes Definition 2.1, but in a somewhat subtle way. Given a poset P ,
one can form its chain complex �, regarded as a boolean complex, and then the k[P] of Definition 2.1
will be isomorphic to the k[�] of Definition 2.5; however, the poset Q of the latter definition will not
be P . Instead, its elements will be chains in P , ordered by inclusion. For example, let P = B2 \ {∅}.
Then the elements of P may be abbreviated 1, 2, and 12, and the only incomparable pair consists of 1
and 2. Thus

k[P] = k[y1, y2, y12]/(y1 y2)

according to Definition 2.1. However, Q consists of the six chains in P : the empty chain ∅, three chains
of length 1 (1, 2, and 12), and two chains of length 2 (1⊂ 12 and 2⊂ 12). Thus

k[�] = k[z∅, z1, z2, z12, z1⊂12, z2⊂12]/I

where I is as described above. The isomorphism is given by mapping the z of a given chain to the product
of y’s corresponding to elements of the chain, for example z1⊂12 7→ y1 y12. Indeed, the definition of I
becomes much more transparent after considering why this map is an isomorphism.

The ring of interest to us is the invariant ring k[Bn \ {∅}]G inside the Stanley–Reisner ring of the
poset Bn \ {∅}. This ring can be identified with the Stanley–Reisner ring of a boolean complex using a
result of Victor Reiner, as follows. Let 1 be the order complex of Bn \ {∅}, i.e., the simplicial complex
whose vertices are the elements of Bn \ {∅}, and whose faces are the chains in Bn \ {∅}. As a simplicial
complex, 1 is the barycentric subdivision of an (n− 1)-simplex, thus it is topologically an (n− 1)-ball.
See Figure 2.

The simplicial complex 1 carries a natural simplicial action of Sn , via the latter’s action on [n]. The
quotient cell complex 1/G is usually not simplicial, but it is a boolean complex. This is because 1 is a
balanced complex, and the action of G is a balanced action.

Definition 2.7. A boolean complex of dimension d is balanced if there is a labeling of its vertices by
d + 1 labels such that the vertices of any one face have distinct labels. Given such a labeling, a cellular
action by a group is a balanced action if it preserves the labeling.
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1 1

1

2

2 2
3

Figure 3. The labeling of the order complex of B3 \ {∅}, showing it is balanced.

In the present case, the vertices of 1 are the nonempty subsets of [n], and thus 1 is balanced by
associating a subset to its cardinality. (Here, d = n − 1, so the n possible cardinalities give the right
number of labels.) The action of Sn is clearly balanced with respect to this labeling. See Figure 3.

It is straightforward to check that the quotient of a balanced boolean complex by a balanced action is
again a balanced boolean complex. (Details are given in [Blum-Smith 2017, Lemma 2.5.86].) Thus 1/G
is a balanced boolean complex.

Victor Reiner [1992, Theorem 2.3.1] showed that if a group G acts cellularly and balancedly on a
balanced boolean complex �, then the invariant ring k[�]G inside the Stanley–Reisner ring of � is
isomorphic to k[�/G], the Stanley–Reisner ring of the quotient boolean complex �/G. In the present
situation, this gives us

k[1/G] ∼= k[Bn \ {∅}]G . (1)

Thus the problem is reduced to showing that k[1/G] is Cohen–Macaulay.
Finally, the Cohen–Macaulayness of k[1/G] can be assessed topologically. In general, the Cohen–

Macaulayness of the Stanley–Reisner ring of a boolean complex � is equivalent (just as for a simplicial
complex) to a condition on |�|, the underlying topological space of �, that depends only on its homeo-
morphism class. Namely, k[�] is Cohen–Macaulay if and only if

H̃i (|�|; k)= 0 and Hi (|�|, |�| − q; k)= 0 (2)

for all points q ∈ |�| and all i < dim�. (Here, Hi (|�|, |�|−q; k) is relative singular homology and
H̃i (|�|; k) is reduced singular homology.) This theorem is the product of work of Gerald Reisner (building
on work of Melvin Hochster), James Munkres, Richard Stanley, and Art Duval. Reisner [1976] proved
that for a simplicial complex �, Cohen–Macaulayness of k[�] is equivalent to a homological vanishing
condition that a priori depends on the simplicial structure and not just the underlying topological space.
Munkres [1984] showed that Reisner’s condition is equivalent to the purely topological condition stated
above. Richard Stanley [1991] showed that the direction

(2) is satisfied for all q ∈ |�| and i < dim�⇒ k[�] is Cohen–Macaulay

generalizes to boolean complexes, and Art Duval [1997] showed that this generalization is bidirectional.
See [Blum-Smith 2017, §2.5.2] for more details.
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x

Figure 4. A compact cone neighborhood of a point in R2. The link K is drawn in bold,
and the star S is the entire set, the union of segments from x to the points of K . Some of
these segments are also drawn. Note each point of S \{x} is on exactly one such segment.

Remark 2.8. Since we only use Stanley–Reisner theory to show the “if” direction of Theorem 1.2 and
thus we only need it to deduce Cohen–Macaulayness, and not the failure of Cohen–Macaulayness, the
proof of Theorem 1.2 only uses Stanley’s and not Duval’s part of the generalization of (2) to boolean
complexes.

Combining the results quoted above, we see that to demonstrate the Cohen–Macaulayness of the ring
k[x]G , it is sufficient to prove that the boolean complex �=1/G satisfies the homological vanishing
condition (2) for all x ∈ |1/G| and all i < n− 1. The proof of the “if” direction of Theorem 1.2 will
consist in showing that this condition holds when G is generated by transpositions, double transpositions,
and 3-cycles.

This will be accomplished by quoting a recent result of Christian Lange (see Section 4A) that is stated
in the language of piecewise-linear (PL) topology, so we also need to recall a few definitions and a basic
fact from this field. We follow [Lange 2016, §3.1] and [Rourke and Sanderson 1972, Chapters 1 and 2]
for these details. A polyhedron is a subset X of Rm in which each point has a compact cone neighborhood,
i.e., given x ∈ X , there is a compact set K ⊂ X such that (i) the union S of line segments from x to points
of K is contained in X , (ii) each point of S \ {x} is on a unique such line segment from x , and (iii) S is a
neighborhood of x in X , i.e., it contains an open subset of X containing x . The set S is called a star of x
in X , and K is called a link of x . See Figure 4.

Remark 2.9. This definition of polyhedron is a technical device, used here to define the concepts
piecewise-linear and polyhedral star. It includes the more conventional meaning of a three-dimensional
polytope as a special case, but is much, much broader. For example, any open subset of Rn , or of any
polytope, is a polyhedron.

More broadly, our use of PL topology in this paper is only to serve a technical need linking Lange’s
result to our setting.

If X ⊂ Rm and Y ⊂ Rn are polyhedra, a continuous map f : X → Y is a piecewise-linear (or PL)
map if its graph {(x, f (x)) : x ∈ X} ⊂ Rm+n is a polyhedron. A piecewise-linear (or PL) space is a
second-countable, Hausdorff topological space equipped with a covering by open sets Ui , each with a
homeomorphism ϕi : X i →Ui from a polyhedron X i in some Rmi , such that the transition maps

ϕ−1
j ◦ϕi |ϕ−1

i (Ui∩U j )
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are PL. A PL space is a PL manifold (with or without boundary) if the charts X i can be taken to be open
subsets of Rn or the half-space Rn−1

×R≥0.
A subset P of a PL space Y is called a polyhedron if for each of the charts ϕi : X i → Ui ⊂ Y , the

preimage ϕ−1
i (P)⊂ X i ⊂ Rmi is a polyhedron.

If X ⊂ Rn is a polyhedron and x ∈ X , one may always find a link and star for x that are polyhedra
[Rourke and Sanderson 1972, p.5]. It then follows from the definitions that if Y is a PL space, any point
y of Y has a neighborhood S contained in some Ui 3 y, such that the preimage ϕ−1

i (S)⊂ X i is both a
polyhedron and a star of ϕ−1

i (y) in X i . We will refer to such an S as a polyhedral star of y.
The key fact we need is that if X is a polyhedron and x ∈ X , then any two polyhedral stars of x in

X are PL-homeomorphic, in other words the star is a PL-homeomorphism invariant of x [Rourke and
Sanderson 1972, pp.20–21]. It follows from the above discussion that the same is true in any PL space.

If Y is a PL manifold, one may take each chart X i to be an open subset in Rn or Rn−1
×R≥0. In any open

subset of Rn , the star of a point (x1, . . . , xn)may be taken to be the cube [x1−ε, x1+ε]×· · ·×[xn−ε, xn+ε]

for sufficiently small ε > 0; and in Rn−1
×R≥0 it can be taken to be the intersection of this cube with the

closed half-space {xn ≥ 0}. In all cases, this is topologically a closed ball. It then follows from the fact
quoted in the previous paragraph that every polyhedral star in a PL manifold is topologically a ball.

The “if” direction of Theorem 1.2 will be proven by quoting the result of Lange mentioned above
to show that if G is generated by transpositions, double transpositions, and 3-cycles, then 1/G is a
polyhedral star of a point in a PL manifold, and therefore a ball. Thus it meets the homological vanishing
criterion described above, regardless of the field k.

2C. Generalities about group actions on a ring. The purpose of this section is to develop the commu-
tative algebra needed to prove the general results in Section 3, which are then used in section Section 4B
to prove the “only if” direction of Theorem 1.2.

Let 1 denote the group identity. (In commutative diagrams, let it also denote a trivial group.) Let AG

denote the ring of invariants, and similarly for any subgroup of G. It is well known that A is always
integral over AG [Bourbaki 1964, Chapitre V §1.9, Proposition 22].

Let P G A be a prime ideal.
Recall that the decomposition group DG(P) of P is the stabilizer of P in G:

DG(P)= {g ∈ G : gP=P}.

The decomposition group acts on the integral domain A/P. The inertia group IG(P) of P is the kernel
of this action:

IG(P)= {g ∈ G : (g− 1)A ⊂P},

where
(g− 1)A = {ga− a : a ∈ A}.

The notations IG(P) and DG(P) implicitly specify the ring A being acted on by G, since P belongs
to A.
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We recall some basic facts in this setup [Bourbaki 1964, Chapitre V §2.2, Théorème 2], which we use
freely in what follows: (i) G acts transitively on the prime ideals of A lying over P?

=P∩ AG and (ii) the
extension of residue fields κ(P)/κ(P?) is a normal field extension, and the canonical map from DG(P)

to the group of κ(P?)-automorphisms of κ(P) is a surjection with kernel IG(P), i.e., the sequence

1→ IG(P)→ DG(P)→ Autκ(P?)(κ(P))→ 1

is exact.
If N GG is a normal subgroup, then the quotient group G/N acts on the invariant ring AN , and the

decomposition and inertia groups in G and G/N relate straightforwardly. Note that, by their definitions,

IN (P)= IG(P)∩ N and DN (P)= DG(P)∩ N .

Lemma 2.10. We have

DG/N (P∩ AN )∼= DG(P)/DN (P)

and

IG/N (P∩ AN )∼= IG(P)/IN (P).

We believe this and the next lemma may be well known; however, as we were unable to locate
references, we include full proofs.

Proof. The sequences

1→ DN (P)→ DG(P)
ϕ
−→ DG/N (P∩ AN )→ 1

and

1→ IN (P)→ IG(P)
ψ
−→ IG/N (P∩ AN )→ 1

are exact in the first and second positions by the definitions; we have to prove surjectivity of ϕ and ψ .
Consider ϕ first. Suppose g ∈ G is such that its image g in G/N lies in DG/N (P∩ AN ). Then, setting

Q= gP, we have

Q∩ AN
=P∩ AN .

All primes of A that intersect AN in P∩ AN lie in the same orbit of N . Thus there exists n ∈ N with
nQ=P. Therefore ngP=P, i.e., ng ∈ DG(P), and we have ϕ(ng)= g. So ϕ is surjective.

We establish the surjectivity of ψ with a diagram chase. Let P′ =P∩ AN and let P?
=P∩ AG . We

have the following commutative diagram:
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1 1 1y y y
1 −−−→ IN (P) −−−→ IG(P)

ψ
−−−→ IG/N (P

′)y yiG

yiG/N

1 −−−→ DN (P)
ıD
−−−→ DG(P)

ϕ
−−−→ DG/N (P

′) −−−→ 1

pN

y ypG

ypG/N

1 −−−→ Autκ(P′)(κ(P)) −−−→
ıκ

Autκ(P?)(κ(P)) −−−→
ξ

Autκ(P?)(κ(P
′)) −−−→ 1y y y

1 1 1

where κ(P), κ(P′), and κ(P?) are the residue fields. The first and second row are exact by what we
have just done. The third row is exact by consideration of the definitions and the fact that κ(P) is
normal over κ(P′) (by [Bourbaki 1964, Chapitre V §2.2, Théorème 2(ii)], as recalled above), since field
automorphisms always extend to normal extensions. The columns are also exact by the same theorem.

Let g ∈ IG/N (P
′) be arbitrary and consider iG/N (g). Since ϕ is surjective, there is a y ∈ DG(P) with

ϕ(y)= iG/N (g). Then

1= pG/N ◦ iG/N (g)= pG/N ◦ϕ(y)= ξ ◦ pG(y),

so that pG(y) ∈ ker ξ = im ıκ . Thus there is a z ∈ Autκ(P′)(κ(P)) with ıκ(z) = pG(y). Since pN is
surjective, we have a z′ ∈ DN (P) with pN (z′)= z. Now consider

y? = ıD(z′)−1 y ∈ DG(P).

We have

pG(y?)= pG ◦ ıD(z′)−1 pG(y)= ıκ ◦ pN (z′)−1 pG(y)= ıκ(z)−1 pG(y)= pG(y)−1 pG(y)= 1.

Thus y? ∈ ker pG = im iG , so there exists g′ ∈ IG(P) with iG(g′)= y?. Then

iG/N ◦ψ(g′)= ϕ ◦ iG(g′)= ϕ(y?)= ϕ(ıD(z′)−1 y)= ϕ ◦ ıD(z′)−1ϕ(y)= 1−1iG/N (g)= iG/N (g).

Since iG/N is injective, we can conclude ψ(g′)= g. Thus ψ is surjective. �

The inertia group of a prime that survives a base change remains stable under that base change, and
the decomposition group can only shrink:

Lemma 2.11. Let C be an arbitrary AG-algebra, and let B := A⊗AG C. Let G act on B through its action
on A and trivial action on C. If there is a prime Q of B pulling back to P in A, then DG(Q)⊂ DG(P),
and IG(Q)= IG(P).
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Proof. Let τ : A→ B be the canonical map. By construction, τ is G-equivariant. Thus if g ∈ G stabilizes
Q G B setwise, it also stabilizes the preimage P G A setwise, and it follows that DG(Q)⊂ DG(P).

When g ∈ DG(Q) and therefore ∈ DG(P), it has an induced action on both B/Q and A/P, and the
G-equivariance of τ then implies that the induced map

τ : A/P→ B/Q

is 〈g〉-equivariant. If also g ∈ IG(Q), then its action on B/Q is trivial. Since P is the full preimage of
Q, τ is an injective map, and it follows that g’s action on A/P is also trivial, i.e., g ∈ IG(P). Thus
IG(Q)⊂ IG(P).

In the other direction, suppose g ∈ IG(P). By [Liu 2002, Chapter 1, Corollary 1.13], we have a
canonical isomorphism

B/τ(P)B ∼= A/P⊗AG C. (3)

Using only the fact that g ∈ DG(P) and the G-equivariance of τ , we already know that g fixes P and
τ(P) setwise, and thus has well-defined actions on A/P and B/τ(P)B that coincide via (3). But because
g is actually in IG(P), the action on A/P is trivial, and therefore, by (3), the action of g on B/τ(P)B is
also trivial.

In other words, g fixes the cosets of the additive subgroup τ(P)B of B setwise. Since Q pulls back
to P, it contains the image of P, thus we have Q⊃ τ(P)B. Then the cosets of Q are unions of cosets
of τ(P)B, and therefore g fixes these setwise as well. In other words, g acts trivially on B/Q, i.e.,
g ∈ IG(Q). Thus IG(P)⊂ IG(Q), and we conclude IG(P)= IG(Q). �

Remark 2.12. Examining the proof of Lemma 2.11, we see why the analogous equality to IG(P)= IG(Q)

may fail for decomposition groups. If g ∈ DG(P), then we do have the 〈g〉-equivariant isomorphism
(3), and therefore g does act on the cosets of τ(P)B in B, but the only one we know it fixes is τ(P)B
itself. In particular, Q, which may be the union of many of these cosets, need not be fixed setwise, so that
g /∈ DG(Q).

Henceforth, let p be a prime of AG . Our goal is to show that, in a suitable sense, the local structure
of AG at p is determined by the inertia group of a prime of A lying over p. The precise statement is
Lemma 2.14 below. It is stated by Michel Raynaud [1970, Chapitre X §1, Corollaire 1], with lines of
proof indicated. Because it is central to our results, we develop in detail the notation and tools that will
be required to state and prove this lemma.

Let Chs
p be the strict henselization (see [Raynaud 1970, Chapitre VIII, Definition 4] or [EGA I 1960,

Definition 18.8.7]) of AG at p, with respect to some embedding of κ(p) in its separable closure. Then
Chs
p is faithfully flat over (AG)p, and of relative dimension zero [EGA I 1960, Proposition 18.8.8(iii)].

Furthermore, Chs
p and (AG)p are simultaneously noetherian [EGA I 1960, Proposition 18.8.8(iv)], and

Ahs
p := A⊗AG Chs

p
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is integral over Chs
p (as it is a base change of the integral morphism AG

→ A). Moreover, G acts on Ahs
p

via the first component of the tensor product, so that the map A→ Ahs
p is G-equivariant, and

(Ahs
p )

G
= Chs

p

since AG
→ (AG)p→ Chs

p is flat and the functor of invariants commutes with flat base change.
Let P be a prime ideal of A lying over p, and let Q be a prime ideal of Ahs

p lying over the maximal
ideal of Chs

p corresponding to p, and pulling back to P in A.
From Lemma 2.11, we have that

IG(Q)= IG(P).

The action of G on Ahs
p induces an action on its ideals. Since Ahs

p is integral over Chs
p , all of its maximal

ideals lie over the one maximal of Chs
p . Because Chs

p is the invariant ring under the action of G, this
implies [Bourbaki 1964, Chapitre V §2.2, Théorème 2(i)] that the maximal ideals of Ahs

p comprise a
single orbit for the action on ideals. The maximals are therefore finite in number. We denote them by
M1(=Q), . . . ,Ms .

The product of canonical localization homomorphisms

φ : Ahs
p →

s∏
j=1

(Ahs
p )M j (4)

is an isomorphism. Indeed, Ahs
p is the inductive limit of Chs

p -finite subalgebras (since it is integral over
Chs
p ). Since Ahs

p has only s maximals, there exists a finite subalgebra containing s maximals. Now
view Ahs

p as the inductive limit just of the finite subalgebras that contain this one. For each of them,
the analogous product of canonical localization morphisms is an isomorphism because Chs

p is henselian
[Raynaud 1970, Chapitre I, §1 Définition 1 and Proposition 3]; then the statement about (4) follows
because inductive limits commute with finite products.

Lemma 2.13. If A is a noetherian ring, then Ahs
p is noetherian too.

Proof. Because of the isomorphism (4), it suffices to show that the localizations of Ahs
p at its maximal

ideals M j are noetherian rings, and because the action of G on Ahs
p by automorphisms is transitive on

these maximals, it suffices to show this for a single maximal. We will do this by showing that there is a
maximal ideal M j of Ahs

p such that
(Ahs

p )M j

is isomorphic to the strict henselization of the noetherian local ring AP, whereupon the result will follow
because strict henselization preserves noetherianity [EGA I 1960, Proposition 18.8.8(iv)].

Consider the local ring (AG)p. By slight abuse of notation, let us call its maximal ideal p. Note that
the residue field κ(p) is the same whether p refers to the prime in AG or in (AG)p, so we can write κ(p)
without ambiguity. Then the maximal ideals in the ring

B := A⊗AG (AG)p
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are in bijection with the prime ideals of A lying over p G AG . There are finitely many of these since they
are subject to a transitive action by G, so B is semilocal. It is also integral as an extension of (AG)p since
this is a base change of the integral extension AG

⊂ A. One of the prime ideals over p in A is P. By the
same abuse of notation, let P also refer to the corresponding ideal in B; again, this does not introduce
ambiguity when writing κ(P). Note that BP = AP because B is obtained from A by inverting some but
not all of the elements in the complement of P.

Because B is semilocal and integral over (AG)p (and P and p are maximal ideals of these rings
respectively), if we can show that the extension of residue fields κ(P)/κ(p) has finite separable degree,
then it will follow from [EGA I 1960, Proposition 18.8.10 and its proof, and Remarque 18.8.11] that the
strict henselization

(BP)
hs

of the localization BP (with respect to some embedding of its residue field in a separable closure) is
isomorphic to the localization of

B⊗(AG)p Chs
p

at some maximal ideal, since Chs
p is a strict henselization of (AG)p. But we also have

B⊗(AG)p Chs
p = A⊗AG (AG)p⊗(AG)p Chs

p = A⊗AG Chs
p = Ahs

p .

Thus the conclusion from [EGA I 1960, 18.8.10 and 18.8.11] will actually be that

(AP)
hs
= (BP)

hs ∼= (Ahs
p )M j

for some maximal ideal M j of Ahs
p . This is the desired conclusion, so it remains to show that κ(P)/κ(p)

has finite separable degree.
Now return p and P to the setting of AG and A, recalling that the residue fields κ(p) and κ(P) do not

change. From [Bourbaki 1964, Chapitre V, §2.2(ii)] we have that κ(P)/κ(p) is a normal field extension,
and the group of κ(p)-automorphisms of κ(P) is isomorphic to

DG(P)/IG(P).

This is a subquotient of the finite group G and is therefore finite. For a normal field extension, infinite
separable degree would imply infinitely many automorphisms. Thus κ(P)/κ(p) is an extension of finite
separable degree, and the proof is complete. �

The action of G on Ahs
p induces, via the isomorphism φ of (4), an action on

∏s
1(A

hs
p )M j : it is the unique

action on this ring such that φ is G-equivariant. Because φ is the product of the canonical localization
maps

φ j : Ahs
p → (Ahs

p )M j ,
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it is possible to write down this action explicitly. Via the isomorphism φ of (4) we associate uniquely to
a ∈ Ahs

p the s-tuple

φ(a)= (aM1, . . . , aMs ) ∈

s∏
j=1

(Ahs
p )M j (5)

where each aM j is the image in (Ahs
p )M j of a under φ j . If g ∈ G maps Mi to M j , then it also induces an

isomorphism
(Ahs

p )Mi
g
→ (Ahs

p )M j

a/s 7→ ga/gs

of the localizations that makes the following square commutative:

Ahs
p

g
−−−→ Ahs

p

φi

y yφ j

(Ahs
p )Mi −−−→g

(Ahs
p )M j

By such isomorphisms, G acts on the disjoint union of the localizations (Ahs
p )M j . Given an α ∈ (Ahs

p )Mi ,
if one chooses a ∈ Ahs

p with φi (a)= α, then the commutativity of this square can be rewritten as

gα = φ j (ga).

Note that this statement is true regardless of the choice of a. For any such choice, writing α = aMi and
φ j (ga)= (ga)M j = (ga)g(Mi ), this becomes

g(aMi )= (ga)g(Mi ),

or equivalently,
g(ag−1(M j ))= (ga)M j . (6)

Thus, for any a ∈ Ahs
p , the i-th coordinate of φ(a) determines the j-th coordinate of φ(ga), without

requiring additional information about a. Then the action of G on
∏s

1(A
hs
p )M j induced by φ may be

written
g(aM1, . . . , aMs )= (g(ag−1(M1)), . . . , g(ag−1(Ms))). (7)

Indeed, if a ∈ Ahs
p , then the left side of this formula is gφ(a), and the right side is φ(ga) by (6).

Because IG(Q) stabilizes Q=M1, it acts on (Ahs
p )Q. In this setting, we have the following lemma.

As mentioned above, this lemma was stated by Michel Raynaud [1970, Chapitre X §1, Corollaire 1], with
the proof sketched. It is the needed statement that the local structure of AG is determined by the inertia
groups. Because it is critical to our results, we give a detailed proof.

Lemma 2.14 (Raynaud). We have a ring isomorphism

(Ahs
p )

IG(P)
Q

∼= Chs
p .
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Proof. Recall that IG(P)= IG(Q). Let g1, . . . , gs ∈ G be a set of left coset representatives for G/IG(P),
with g1 the identity. Since Chs

p is strictly henselian, its residue field is separably closed, so there are
no nontrivial automorphisms of κ(Q) over it. Since the group of automorphisms of κ(Q)/κ(Chs

p ) is
isomorphic to DG(Q)/IG(Q), we have DG(Q) = IG(Q), so that IG(Q), which equals IG(P), is the
stabilizer of Q. Thus, if we put M j := g jQ, then the ideals M1, . . . ,Ms are exactly the maximal ideals
of Ahs

p , and all of the above discussion applies.
We claim that if one restricts the canonical localization map

φ1 : Ahs
p → (Ahs

p )Q

to Chs
p , one obtains an isomorphism onto (Ahs

p )
IG(Q)
Q . We see this as follows:

The map φ1 is the composition of φ with projection to the first coordinate. Because (7) makes φ a
G-equivariant isomorphism, a ∈ Ahs

p is in Chs
p = (A

hs
p )

G if and only if

(g(ag−1(M1)), . . . , g(ag−1(Ms)))= (aM1, . . . , aMs ) (8)

for all g ∈ G. From (8), we will deduce the following:

(a) If a ∈Chs
p is an arbitrary G-invariant, then φ1(a) is invariant under IG(P). Thus φ1(Chs

p ) is contained
in (Ahs

p )
IG(P)
Q .

(b) If a ∈ Chs
p is an arbitrary G-invariant, then all the coordinates of φ(a) are determined by the first

coordinate. Thus a itself is determined by φ1(a). In other words, the restriction of φ1 to Chs
p is

injective.

(c) If α ∈ (Ahs
p )

IG(P)
Q is arbitrary, there exists an a ∈ Chs

p with φ1(a)= α. Thus the restriction of φ1 to
Chs
p is surjective.

This will suffice to establish the lemma.
To prove (a), take g ∈ IG(P). The condition in the first coordinate of (8) is

g(ag−1(M1))= aM1 .

For g ∈ IG(P)= DG(Q), we have g−1(M1)=M1 =Q, and this condition becomes

g(aQ)= aQ.

Thus for the G-invariant a, we have that aQ = φ1(a) is an IG(P)-invariant. Therefore, φ1(Chs
p ) is

contained in (Ahs
p )

IG(P)
Q .

For (b), consider g = g j for j = 1, . . . , s. The condition in the j th coordinate of (8) is

g(ag−1(M j ))= aM j .

Since g−1
j (M j )=Q, this becomes

g j (aQ)= aM j .
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Letting j = 1, . . . , s, this shows that if a is a G-invariant, then all the coordinates of φ(a) are determined
by aQ, which is φ1(a), so a itself is determined by φ1(a). Therefore, the restriction of φ1 to Chs

p is
injective.

Lastly, for (c), let α ∈ (Ahs
p )

IG(P)
Q be arbitrary. We construct a specific a ∈ Ahs

p with φ1(a) = α, and
show it lies in Chs

p . Set

aM j := g j (α)

for j = 1, . . . , s, and let

a := φ−1(aM1, . . . , aMs ) ∈ Ahs
p .

Note that this a satisfies φ1(a) = aM1 = g1(α) = α since g1 is the identity. To show that it also lies in
Chs
p = (A

hs
p )

G , it is necessary and sufficient to show that φ(a) satisfies (8) for all g ∈ G, i.e., that

g(ag−1(M j ))= aM j (9)

for all g ∈ G and all j = 1, . . . , s.
To do this, we first establish that

ag(Q) = g(aQ) (10)

for all g ∈ G, and then use this to show (9) for all g and all j .
To see (10), first recall that α = aM1 = aQ, and then use this and M j = g j (Q) to rewrite the definition

of each aM j :

ag j (Q) = g j (aQ).

This establishes (10) in the particular case that g is one of g1, . . . , gs . An arbitrary g ∈ G has the form
g j h for some g j and some h ∈ IG(P). Since Q and aQ = α are both IG(P)-invariant, we have

ag(Q) = ag j h(Q) = ag j (Q) = g j (aQ)= g j h(aQ)= g(aQ),

and (10) is established for all g ∈ G.
Now we deduce (9). If g ∈ G is arbitrary, then

ag−1(M j ) = ag−1g j (Q)

because g j (Q)=M j , and

ag−1g j (Q) = g−1g j (aQ)

by (10). Thus ag−1(M j ) = g−1g j (aQ), and applying g to the left on both sides yields

g(ag−1(M j ))= g j (aQ)= aM j ,

so condition (9) is met for all g and all j , i.e., (8) is met for all g. Thus

a ∈ (Ahs
p )

G
= Chs

p .
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Since α ∈ (Ahs
p )

IG(P)
Q was arbitrary, this shows that the restriction of φ1 to Chs

p is surjective onto (Ahs
p )

IG(P)
Q ,

completing the proof of isomorphism. �

3. Inertia groups and Cohen–Macaulayness of invariant rings

Using Lemma 2.14, we can show that the Cohen–Macaulayness of a ring of invariants at a prime ideal p
can always be tested in a faithfully flat neighborhood of p, and only depends on the action of the inertia
group considered around this neighborhood. The precise statement is Theorem 3.1.

We use this to derive an obstruction to Cohen–Macaulayness for a characteristic p ring that will apply
in the situation of Theorem 1.2 to prove the “only if” direction. The statement is Proposition 3.11.

In all of what follows, we use the notation of Section 2C: A is a commutative, unital ring endowed
with a faithful action of a finite group G, if p is a prime ideal of AG , then Chs

p is the strict henselization
of AG at p, and Ahs

p is
A⊗AG Chs

p ,

with G acting through its action on A (and trivially on Chs
p ).

Theorem 3.1. Assume that AG is noetherian. Then the following assertions are equivalent:

(1) AG is Cohen–Macaulay.

(2) For every prime ideal p of AG , and for every prime ideal Q of Ahs
p lying over pChs

p and pulling back
to a prime P of A lying over p,

(Ahs
p )Q

IG(P)

is Cohen–Macaulay.

(3) For every maximal ideal p of AG , there is some prime ideal Q of Ahs
p lying over pChs

p and pulling
back to a prime P of A lying over p, such that

(Ahs
p )Q

IG(P)

is Cohen–Macaulay.

Proof. Clearly (2)⇒(3). We will show that (3)⇒(1) and (1)⇒(2).
(3)⇒(1): Lemma 2.14 states that for each maximal ideal p of AG and for any choice of P and Q as in (3),

Chs
p
∼= (Ahs

p )
IG(P)
Q .

Thus (3) implies that Chs
p is Cohen–Macaulay for each p. The homomorphism of local noetherian rings

(AG)p→ Chs
p

is flat, so by [Bruns and Herzog 1993, Theorem 2.1.7] quoted in Section 2A, Cohen–Macaulayness of
Chs
p is equivalent to that of (AG)p plus that of Chs

p /pChs
p . In particular, since Chs

p is Cohen–Macaulay, so
is (AG)p. Since this holds for all maximal ideals p of AG , AG is Cohen–Macaulay.
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(1)⇒(2): Suppose AG is Cohen–Macaulay. Let p be any prime ideal of AG . It suffices to prove that Chs
p

is Cohen–Macaulay since, by Lemma 2.14, for any P and Q as in (2), we have

Chs
p
∼= (Ahs

p )
IG(P)
Q .

Since (AG)p→ Chs
p is flat, we again have by [Bruns and Herzog 1993, Theorem 2.1.7] that the Cohen–

Macaulayness of Chs
p is equivalent to that of (AG)p plus that of Chs

p /pChs
p . The former ring is Cohen–

Macaulay since AG is, by the hypothesis (1), and the latter is Cohen–Macaulay since it is a field
(see Section 2A), namely, the residue field of the local ring Chs

p . �

Theorem 3.1 allows us to test Cohen–Macaulayness of an invariant ring AG locally, prime by prime, in
terms of the local ring (Ahs

p )Q and the local group action IG(P). For the application we have in mind in
Section 4, we will need to carry information about A and G to (Ahs

p )Q and IG(P), so we enunciate a few
more lemmas to accomplish this:

Lemma 3.2. If A is Cohen–Macaulay, then Ahs
p is Cohen–Macaulay for any prime ideal p of AG .

Proof. Suppose A is Cohen–Macaulay, thus noetherian, and p is a prime of AG . By Lemma 2.13, Ahs
p is

noetherian.
Let Q be any maximal ideal of Ahs

p and let P be its contraction in A. (Note that Q lies over pChs
p , per

Section 2C, and therefore P lies over p.) Now

AG
→ (AG)p→ Chs

p

is a flat map. Therefore, base changing by AG
→ AP,

AP→ AP⊗AG Chs
p = AP⊗A Ahs

p

is also a flat map. Since Q G Ahs
p pulls back to P in A, (Ahs

p )Q is a localization of AP⊗A Ahs
p ; thus

AP→ (Ahs
p )Q

is also flat. Therefore, again by [Bruns and Herzog 1993, Theorem 2.1.7], the Cohen–Macaulayness of
(Ahs

p )Q is equivalent to that of AP plus that of (Ahs
p )Q/P(A

hs
p )Q. The former is Cohen–Macaulay since

A is, while the latter is Cohen–Macaulay since it is an artinian local ring (see Section 2A), which in turn
is because AP→ (Ahs

p )Q is of relative dimension zero. This itself is because this map is a localization of
the base change AP⊗(AG)p− of the map (AG)p→ Chs

p , which is flat of relative dimension zero because it
is a strict henselization [EGA I 1960, Proposition 18.8.8(iii)]. �

For a natural number t , an element g ∈ G is called a t-reflection if the ideal generated by (g− 1)A
in A is contained in a prime of height ≤ t . A prime P contains (g− 1)A if and only if g ∈ IP(A), so
another way to say this is that g is a t-reflection if it is in the inertia group of some prime of height ≤ t .

In the geometric situation (where A is a finitely generated algebra over a field), the ideal generated by
(g− 1)A corresponds to the fixed point locus of g, so this definition makes a group element a t-reflection
if this fixed point locus has codimension at most t . Thus if G is a linear group acting on the coordinate
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ring of affine space, a 1-reflection is either the identity or a reflection in the classical sense. A 2-reflection
has a fixed point locus of codimension 0, 1, or 2. In particular, if G acts by permutations of a basis, then
the 2-reflections are exactly the identity, the transpositions, the double transpositions, and the 3-cycles.

Lemma 3.3. If an element g ∈ IG(P) acts as a t-reflection on AP, then it acts as a t-reflection on A.

Proof. Since g ∈ IG(P), we have (g− 1)A ⊂P. The primes of A contained in P are in containment-
preserving bijection with the primes of AP, with the bijection given by extension along the canonical
localization map, and (g− 1)AP is the image of (g− 1)A along this map. Thus if a prime of height t in
AP contains (g− 1)AP, then its pullback in A is also of height t and contains (g− 1)A. �

Lemma 3.4. If A is noetherian, and g ∈ IG(P)= IG(Q) acts as a t-reflection on Ahs
p , then it acts as a

t-reflection on A.

Proof. If g is a t-reflection on Ahs
p , then there is a prime ideal S of Ahs

p of height ≤ t and containing
(g−1)Ahs

p . Let R be S’s pullback in A. Then R contains (g−1)A. Since by Section 2C and Lemma 2.13,

A→ Ahs
p

is a flat extension of noetherian rings, going-down applies [Eisenbud 1995, Lemma 10.11], so that the
height of S is at least that of R. In particular, the height of R is ≤ t , so that g is a t-reflection on A. �

We will also need to take an element of G acting on A but not as a t-reflection, and conclude that it
does not act on a certain subring as a t-reflection either:

Lemma 3.5. If N is the normal subgroup of G generated by the t-reflections, then no element of G \ N
acts on AN as a t-reflection.

Remark 3.6. This lemma does not require a noetherian hypothesis on A.

Proof. Let g ∈ G. We will show that if its image g ∈ G/N acts on AN as a t-reflection, then actually
g ∈ N .

If g acts on AN as a t-reflection, then there is a prime p of AN of height ≤ t with g ∈ IG/N (p). Let P
be any prime of A lying over p. The height of P is equal to that of p (e.g., by [Gordeev and Kemper
2003, Lemma 5.3], which is stated for noetherian A but the argument holds in general); in particular it
is ≤ t . By Lemma 2.10, we have

IG/N (p)= IG(P)/IN (P).

In particular, IG(P) surjects onto IG/N (p), so there is an element g′ ∈ IG(P) whose image in G/N is g.
Since P has height ≤ t , g′ is a t-reflection, so it is contained in N by construction. Then its image g
must actually be the identity. So g (with the same image) lies in the kernel of G→ G/N , i.e., g ∈ N . �

The following lemma allows us to detect a failure of Cohen–Macaulayness locally.

Lemma 3.7. Let A be a ring containing the prime field Fp, and let G be a p-group. Suppose that A is
Cohen–Macaulay, AG is noetherian, and A is finite over AG . Further, suppose there is a prime ideal P
of A such that G = IG(P). Then AG is not Cohen–Macaulay unless G is generated by its 2-reflections.



When are permutation invariants Cohen–Macaulay over all fields? 1809

Remark 3.8. This statement is closely related to [Gordeev and Kemper 2003, Theorem 5.5], which also
applies to non-p-groups and gives some control over how far AG can be from Cohen–Macaulay. However,
a key step in the proof of that result requires the rings to be normal rings that are localizations of algebras
finitely generated over fields. As our application will be to rings that do not fulfill this hypothesis, we
give an independent proof.

Proof of Lemma 3.7. Let N be the normal subgroup of G generated by the 2-reflections.
Since A is finite over the noetherian ring AG , it is noetherian as an AG-module. Since it also contains Fp,

[Lorenz and Pathak 2001, Corollary 4.3] applies, which, when specialized to the situation that G is a
p-group, states that if both A and AG are Cohen–Macaulay, then the map

TrG/N : AN
→ AG

given by

x 7→
∑

g∈G/N

gx

is surjective onto AG , where we think of each g as an element of G and the sum is taken over coset
representatives of N .

We will show that this map cannot be surjective unless N = G. Since A is Cohen–Macaulay by
assumption, this will show AG is not Cohen–Macaulay if N 6= G.

If TrG/N is surjective, then we have

1=
∑

g∈G/N

gx

for some x ∈ AN . Since G = IG(P), all g ∈ G satisfy gx = x mod P in A, thus

1=
∑

g∈G/N

x = [G : N ]x mod P

in A. Since G is a p-group and A contains Fp, [G : N ]x = 0 in A unless N = G. In particular, [G : N ]x
cannot be 1 mod P unless N = G. �

Remark 3.9. The map TrG/N is called the relative trace or relative transfer; see Remark 2.3.

Remark 3.10. The proof uses a result of Lorenz and Pathak [2001, Lemma 4.3], which has as a hypothesis
that A is noetherian as an AG-module; call this (?). Above, we deduced (?) from the assumptions that (1)
AG is noetherian and (2) A is finite over it. Actually, (?) also implies (1) and (2), hence is equivalent to
them. Since any ideal of AG is also an AG-submodule of A (since AG embeds in A), (?) implies that all
these ideals are finitely generated, thus (1). Meanwhile, A itself is an AG-submodule of A, so (?) implies
it is finitely generated as an AG-module, thus (2). More generally, if a module M over a ring R has an
injective R-module map from R, then noetherianity of M as R-module is equivalent to noetherianity of
R as a ring plus finite generation of M over R, by the same arguments.
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Combining all of these results, we get an obstruction to Cohen–Macaulayness for a characteristic p
ring expressed entirely in terms of the presence of a certain inertia group. The proof of the “only if”
direction of Theorem 1.2 will be an application of this proposition.

Proposition 3.11. Let A be a ring containing Fp and let G be a finite group of automorphisms of A. Let
N be the normal subgroup of G generated by the 2-reflections. Suppose that AN is Cohen–Macaulay, AG

is noetherian, and AN is finite over AG . If there is an inertia group for the action of G/N on AN that is a
nontrivial p-group, then AG is not Cohen–Macaulay.

Proof. Note that

AG
= (AN )G/N .

Since AG is noetherian, Theorem 3.1 applies.
Suppose P is a prime of AN whose inertia group IG/N (P) is a p-group, per the hypothesis. Let

p=P∩ (AN )G/N ,

let Chs
p be the strict henselization of (AG)p = ((AN )G/N )p, and let

(AN )hs
p = AN

⊗AG Chs
p ,

as in Section 2C.
By assumption, AN is Cohen–Macaulay. Thus (AN )hs

p is Cohen–Macaulay, by Lemma 3.2, and thus
so is

((AN )hs
p )Q

for any Q G (AN )hs
p , and in particular any Q as described in Theorem 3.1.

As AN is finite over the noetherian ring AG by assumption, its base change (AN )hs
p is finite over Chs

p ,
which is noetherian by [EGA I 1960, Proposition 18.8.8(iv)], as discussed in Section 2C. The localization
((AN )hs

p )Q is a homomorphic image of (AN )hs
p by the isomorphism (4), so it too is finite over Chs

p .
By Lemma 2.14, Chs

p is the invariant ring for the action of IG/N (P) on ((AN )hs
p )Q. Since A contains

Fp and therefore so do AN and ((AN )hs
p )Q, and since IG/N (P) is a p-group that is equal to IG/N (Q)

which is an inertia group of ((AN )hs
p )Q, we have now verified all the hypotheses of Lemma 3.7 for the

action of IG/N (P) on ((AN )hs
p )Q. We can conclude from that lemma that the invariant ring cannot be

Cohen–Macaulay unless IG/N (P) is generated by 2-reflections.
However IG/N (P) is not so generated. By Lemma 3.5, no nontrivial element of G/N acts on AN as a

2-reflection. In particular, no nontrivial element of IG/N (P) acts on AN as a 2-reflection. Since AN is
Cohen–Macaulay, it is noetherian, so Lemma 3.4 applies, and no nontrivial element of IG/N (P) acts on
(AN )hs

p as a 2-reflection either. By Lemma 3.3, the same is true for the action of IG/N (P)= IG/N (Q) on

((AN )hs
p )Q.
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In particular, the p-group IG/N (P) is not generated by 2-reflections on this ring, since it is nontrivial.
Then Lemma 3.7 implies that

((AN )hs
p )

IG/N (P)
Q

is not Cohen–Macaulay. Therefore, by Theorem 3.1, neither is (AN )G/N
= AG . �

4. Permutation invariants

In this section we prove the two directions of Theorem 1.2. A schematic diagram of the proof is found in
Figure 5.

4A. The if direction. In this section we prove:

Proposition 4.1. If G is generated by transpositions, double transpositions, and 3-cycles, then k[x]G is
Cohen–Macaulay regardless of the field k.

The groundwork has been laid in Section 2B. The remaining piece of the proof is supplied by a recent,
beautiful result of Christian Lange, building on earlier work of Marina Mikhaîlova. Let H be a finite
subgroup of the orthogonal group Od(R), acting on Rd . Endow Rd with its standard piecewise-linear (PL)
structure. The topological quotient Rd/H carries a PL structure such that the quotient map Rd

→Rd/H is
a PL map, and the main result of [Lange 2016] is that it is a PL manifold (possibly with boundary) if and
only if H is generated by 2-reflections. (Lange calls elements of Od(R) fixing a codimension-2 subspace
rotations since they rotate a plane and fix its orthogonal complement, so he calls groups generated this
way rotation-reflection groups.) The bulk of the work in this result lies in the “if” direction. The proof is
a delicate induction on the group order, based on a complete classification of rotation-reflection groups.
This classification was proven in joint work of Lange and Mikhaîlova [2016].

Proof of Proposition 4.1. Let G act on Rn by permutations of the axes. Let x1, . . . , xn be the coordinates
on Rn . The subspace

T =
{ n∑

i=1

xi = 0
}

is G-invariant. Transpositions in G act as reflections on T , while double transpositions and 3-cycles act
as rotations. Thus under the hypothesis of the proposition, G acts on T as a rotation-reflection group. By
Lange’s work [2016], T/G is a PL manifold.

Recall the1 of Section 2B: it is the order complex of Bn \{∅}, which is the first barycentric subdivision
of an (n− 1)-simplex. Embed the underlying topological space |1| of 1 in T as follows. First, map the
vertices of 1 to the barycenters of the standard simplex{

xi ≥ 0,
∑

xi = 1
}
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G generated by 2-reflections

1/G satisfies (2)

Lange’s theorem (§4A)

k[1/G] is CMReisner etc. (§2B)
k[1]G is CM

Reiner (§2B)

k[x]G is CM

Garsia–Stanton/Reiner (§2B)

G not generated by 2-reflections

∃p with G B
π N/N ∼= Z/p

Lemma 4.5 (§4B)

∃P G k[x]N s.t. IG/N (P)∼= Z/p

Lemma 4.4 (§4B)

Proposition 3.11 (§3)

k[x]N is CM

If char k = p, k[x]G is not CM

Figure 5. Schematic diagram of the proof of Theorem 1.2. Arrows are implications,
and small print above or interrupting an arrow names a result needed for the implication
to go through. The §-references indicate where to look for statements and notation
definitions. The top half is the “if” direction (Proposition 4.1). The bottom half is the
“only if” direction (Proposition 4.2). The group N is the subgroup of G generated by the
2-reflections, so the “if” direction is required to conclude that k[x]N is Cohen–Macaulay
in the bottom half.

in Rn by mapping each vertex, which by definition is an element α ∈ Bn \ {∅}, which is itself a nonempty
subset of [n], to the barycenter

1
|α|

∑
i∈α

ei

of the set of standard basis vectors {ei }i∈α corresponding to that subset. Then, extend this map to all of
1 by extending linearly from the vertices to each simplex in 1. Finally, project the affine hyperplane
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xi = 1

}
containing the image orthogonally onto T via (x1, . . . , xn) 7→ (x1−1/n, . . . , xn−1/n). This

embedding is G-equivariant for the action of G on |1| induced from its action on [n], and the present
action of G on T .

The embedded complex |1| ⊂ T is evidently a polyhedron, and it is a star of the origin in T since it is
the union of closed line segments from the origin to its compact boundary, these segments are disjoint
except for the origin itself, and it is a neighborhood of the origin in T (see the definition of a star in
Section 2B). Since the action of G is linear, it permutes these segments. Thus |1|/G = |1/G| is also
a union of line segments from the (image of the) origin to its compact boundary, and these segments
are disjoint except for the origin itself. Also, |1/G| is a neighborhood of the (image of the) origin
since T → T/G is the quotient map by a group of homeomorphisms and is therefore an open map. It is
additionally a polyhedron since the quotient map T→ T/G is PL, and the image of a compact polyhedron
under a PL map is a compact polyhedron [Rourke and Sanderson 1972, Corollary 2.5]. In other words,
|1/G| is a polyhedral star of the image of the origin in the PL (n−1)-manifold T/G. It is therefore (per
[Rourke and Sanderson 1972, pp.20–21], see the discussion at the end of Section 2B) homeomorphic to a
ball. In particular, it is contractible, thus

H̃i (|1/G|; k)= 0

for all i , regardless of the field k; and it is a manifold (with boundary), thus

Hi (|1/G|, |1/G| − q; k)= 0

for all i < n − 1 and all q ∈ |1/G|, regardless of k. Thus it satisfies (2) for all i < dim1/G and all
q ∈ |1/G|, so by the discussion in Section 2B, k[x]G is Cohen–Macaulay. �

4B. The only if direction. In this section we complete the proof of Theorem 1.2 by proving the converse
of Proposition 4.1.

Proposition 4.2. If G is not generated by transpositions, double transpositions, and 3-cycles, then there
exists a prime p such that for any k of characteristic p, k[x]G is not Cohen–Macaulay.

The proof is at the end of the section. Actually we prove somewhat more: for a group G not generated
by transpositions, double transpositions, and 3-cycles, we give an explicit construction yielding the prime
p. The precise statement is given below as Proposition 4.2b.

In this section, p is conceptually prior to the field k. Our proof will first construct p and then prove
that when char k = p, k[x]G is not Cohen–Macaulay.

We develop the needed machinery for the proof. Let 5n be the poset of partitions of the set [n], with
the order relation given, for any π, τ ∈5n , by

π ≤ τ ⇐⇒ π refines τ.
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An element g ∈G⊂ Sn partitions [n] into orbits, and thus determines an element π ∈5n . This gives a map

ϕ : G→5n

g 7→ π.

If π ∈5n , we write G B
π for the blockwise stabilizer of π in G, i.e., the set of elements of G that act

separately on each block of π .
For a given π ∈5n , let P?

π be the prime ideal of k[x] generated by the binomials xi − x j for every
pair i, j ∈ [n] lying in the same block of π . The dimension of P?

π (i.e., the dimension of k[x]/P?
π ) is the

number of blocks of π .

Lemma 4.3. With this notation, we have

IG(P
?
π )= G B

π .

Proof. The ring k[x]/P?
π is the polynomial ring obtained by identifying xi with x j for each i and j in

the same block of π , so its indeterminates are in bijection with the blocks of π . If h ∈ G B
π , then h acts

separately on the xi ’s in each block, and therefore h fixes P?
π setwise and the induced action on k[x]/P?

π

is trivial. Thus h ∈ IG(P
?
π ). Conversely, if h /∈ G B

π , then either h fixes π but not blockwise, in which case
h fixes P?

π setwise but the action of h on k[x]/P?
π is not trivial, so that h ∈ DG(P

?
π ) but not IG(P

?
π ); or

else h does not fix π at all, in which case it does not act on P?
π , and is not contained in DG(P

?
π ), let

alone IG(P
?
π ). �

If N is a normal subgroup of G, denote by G B
π N/N the image of G B

π in the quotient G/N , and let

Pπ =P?
π ∩ k[x]N .

Lemma 4.4. With this notation, we have

IG/N (Pπ )= G B
π N/N .

Proof. We have from Lemma 2.10 that

IG/N (Pπ )= IG(P
?
π )/IN (P

?
π )= IG(P

?
π )/(N ∩ IG(P

?
π )),

and from Lemma 4.3 that

IG(P
?
π )/(N ∩ IG(P

?
π ))= G B

π /(N ∩G B
π )= G B

π N/N . �

The following lemma is the device we use to find the characteristic p in which we can prove that k[x]G

fails to be Cohen–Macaulay.

Lemma 4.5. Let NGG be a proper normal subgroup. Let π be minimal in5n among partitions associated
(via ϕ) with elements of G that are not in N. Then:

(1) The group G B
π N/N is cyclic of prime order, say p.
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(2) Any element g of G \ N whose orbits are given by π has order a power of p.

(3) The image of g in G/N generates G B
π N/N.

Proof. Let g be an element of G \ N whose orbits are given by π , and let h be any other nontrivial
element of G B

π , in other words a nontrivial element of G whose orbits refine π . (Note that, by minimality
of π , either ϕ(h)= π or else h ∈ N .) Pick any element a ∈ [n] acted on nontrivially by h. Then g acts
nontrivially on a as well since h’s orbits refine g’s.

Since h preserves π and g acts transitively on each block of π , there is an m ∈Z such that gm(a)= h(a).
Then h−1gm(a)= a, so that h−1gm both preserves π and has a fixed point a that g does not have. Thus
its orbits properly refine π , and minimality of π among partitions associated to elements of G \N implies
that h−1gm

∈ N . Thus hN = gm N . This shows that g generates the image of G B
π in G/N , proving (3);

thus G B
π N/N is cyclic. Meanwhile, for any prime p dividing the order of g, the orbits of g p also properly

refine those of g, so g p is in N too; thus the image of g in G/N has order dividing p. Since g /∈ N by
construction, the order of the image of g in G/N is exactly p. This completes the proof of (1). If q is a
hypothetical second prime dividing the order of g in G, then the order of the image of g in G/N is q , for
the same reason it is p, and it follows that q = p after all, so there is no such second prime. Therefore g
has p-power order in G. This proves (2). �

Proof of Proposition 4.2. Let N be the subgroup of G generated by the transpositions, double transpositions,
and 3-cycles (i.e., 2-reflections). By Proposition 4.1, k[x]N is a Cohen–Macaulay ring. Since k[x] is a
finitely generated algebra over k, k[x]G is also finitely generated as an algebra over k [Bourbaki 1964,
Chapitre V §1.9, Théorème 2], so in particular it is noetherian. By the same logic, k[x]N is finitely
generated as an algebra over k, and therefore over k[x]G . Since it is a subring of k[x], which is integral
over k[x]G by [Bourbaki 1964, Chapitre V §1.9, Proposition 22], it is integral over k[x]G as well, which,
together with finite generation as an algebra, implies it is actually finite over the noetherian ring k[x]G .
Thus if k is a field of positive characteristic p, then Proposition 3.11 applies, and we can show k[x]G is
not Cohen–Macaulay by exhibiting an inertia group for the action of G/N on k[x]N that is a nontrivial
p-group.

Now if N is a proper subgroup of G per the hypothesis, then we can find a π ∈5n that is minimal
among all partitions associated (via ϕ) with elements of G \N . Then Lemma 4.5 gives us a prime number
p such that G B

π N/N is cyclic of order p, and then Lemma 4.4 gives us a prime ideal Pπ of k[x]N such that

IG/N (Pπ )= G B
π N/N .

Thus, for any k of this specific characteristic, we can conclude by Proposition 3.11 that k[x]G fails to
be Cohen–Macaulay. �

An examination of the proof in view of conclusion (2) of Lemma 4.5 shows that we have actually
proven the following constructive version of Proposition 4.2 with no additional work:

Proposition 4.2b. Let N be the subgroup of G generated by the transpositions, double transpositions,
and 3-cycles. If N ( G, then for any g ∈ G \ N whose orbits are not refined by the orbits of any other
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g ∈G\N , the order of g is a prime power p`, where p has the property that k[x]G is not Cohen–Macaulay
if char k = p. �

5. Conclusion and further questions

In this section we note some implications of the results above, and pose questions for further exploration.
Throughout, let N be the subgroup of G ⊂ Sn generated by the transpositions, double transpositions, and
3-cycles, as at the end of Section 4B.

5A. Bad primes; relation to previous work. Given a permutation group G ⊂ Sn , let us refer to the set
of prime numbers p for which k[x]G fails to be Cohen–Macaulay if char k = p as the bad primes of G.

It was mentioned in the introduction that the “if” direction of Theorem 1.2 implies that the bad primes
of G are a subset of the primes dividing [G : N ]. We see this as follows: the “if” direction implies that
k[x]N is Cohen–Macaulay. Then, since

k[x]G = (k[x]N )G/N ,

it follows from the Hochster–Eagon theorem [Hochster and Eagon 1971, Proposition 13] that k[x]G is
Cohen–Macaulay in any characteristic not dividing the order of G/N . Meanwhile, the “only if” direction
of Theorem 1.2 implies that if the set of primes dividing [G : N ] is nonempty, then so is G’s set of bad
primes.

It was also mentioned in the introduction that the present work unites and generalizes several previously
known results: Reiner’s theorem [1992] that the invariant rings of An and the diagonally embedded
Sn ↪→ Sn× Sn are Cohen–Macaulay over all fields; Hersh’s similar theorem [2003a; 2003b] for the wreath
product S2 o Sn ⊂ S2n , and Kemper’s theorems [1999] that in the p-group case, the “only if” direction of
Theorem 1.2 holds, and that the invariant ring of a regular permutation group G is Cohen–Macaulay over
all fields if and only if G = C2, C3, or C2×C2, and in all other cases, every prime dividing |G| is a bad
prime for G. Most of these results are immediate implications of the “if” direction of Theorem 1.2:

• The group An is generated by 3-cycles.

• The diagonal Sn ↪→ Sn × Sn is generated by the double transpositions (i, i + 1)(i + n, i + n+ 1) for
i = 1, . . . , n− 1.

• The wreath product S2 oSn is generated by the transpositions (2i−1, 2i) and the double transpositions
(2i − 1, 2i + 1)(2i, 2i + 2) for i = 1, . . . , n− 1.

• The regular representations of C2, C3, and C2×C2 are generated by (in fact, their only nontrivial
elements are) transpositions, 3-cycles, and double transpositions, respectively.

Recovering the other half of Kemper’s result on regular permutation groups (that every prime dividing
|G| is bad for G) from the present work requires the constructive version of the “only if” direction given
in Proposition 4.2b. Recall that if G acts regularly, i.e., freely and transitively, on [n], then this action is
isomorphic to G’s left-translation action on its own elements. Then we have |G| = n, and every element
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g of G splits [n] into orbits of equal length the order of g, because these orbits are in bijection with the
right cosets 〈g〉h, h ∈ G.

If G acts regularly and |G| = n ≥ 5, then G does not contain any transpositions, double transpositions,
or 3-cycles, so N is trivial. If p is any prime dividing |G|, then G has an element g of order p, which,
by the discussion in the last paragraph, partitions [n] into orbits of equal length p. This partition cannot
be refined by any nontrivial partition with parts of equal length since p is prime; thus no element of
G \ N = G \ {1} can have orbits refining g’s. It follows from Proposition 4.2b that p is a bad prime for G.

The remaining case is n = 4 and G = C4. In this case, G is a 2-group not generated by its lone double
transposition, so it follows from Theorem 1.2 that 2 is a bad prime for G.

5B. Groups generated by transpositions, double transpositions, and 3-cycles. Theorem 1.2 calls atten-
tion to the family of permutation groups generated by transpositions, double transpositions, and 3-cycles.
One may wonder how extensive is this family of groups. It turns out to be very limited. One can extract a
classification from Lange and Mikhaîlova’s classification of all rotation-reflection groups [2016], but this
is more power than is needed. In the case that G is transitive, such groups were already classified in 1979
by W. Cary Huffman [1980, Theorem 2.1]:

(1) If G’s transpositions generate a transitive subgroup, then G = Sn .

(2) If G contains a transposition but the transpositions do not act transitively, then n = 2m is even and
G is isomorphic to the wreath product S2 o Sm .

(3) If G does not contain a transposition but does contain a three-cycle, then G = An .

(4) Otherwise, G contains no transpositions or 3-cycles and is generated by double transpositions. Then
we have:

(a) If G contains a subgroup acting transitively on 5 points and fixing the rest, then either n = 5
and G ∼= D5 in its usual action on the vertices of a regular pentagon, or else n = 6 and
G ∼= A5 ∼= PSL(2, 5) in its transitive action on 6 points, e.g., the six points of the projective line
over F5.

(b) If G contains a subgroup acting transitively on 7 points and fixing the rest, then either n = 7
and G ∼= GL(3, 2) acting on the nonzero vectors of F3

2, or else n = 8 and G ∼= AGL(3, 2) =
F3

2 oGL(3, 2) acting on the points of A3
F2

.
(c) If G does not contain either of these kinds of subgroups, then n=2m is even, and G is isomorphic

to the alternating subgroup of the wreath product S2 o Sm .

When one considers intransitive groups G, one does not end up too far beyond direct products of the
above, since transpositions and 3-cycles can only act in a single orbit, while double transpositions can
only act in two orbits, as a transposition in each. For example, if G has two orbits, the classification
begins as follows. If G is not a direct product of the above, it contains a double transposition that acts
as a transposition in each orbit. Then its image in each orbit contains a transposition, so is either Sn or
S2 o Sm by the above. The possibilities are then highly constrained by Goursat’s lemma.
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Thus Theorem 1.2 shows that most permutation groups G have at least one bad prime.

5C. Further questions. Since Theorem 1.2 implies that the set of bad primes of G is contained in the
set of prime factors of [G : N ] and is nonempty exactly when the latter is nonempty, one might hope that
these two sets are always equal. This is not the case. For example, let G ⊂ S7 be the Frobenius group of
order 21 generated by

(1234567), (124)(365).

All the nontrivial elements in this group are 7-cycles or double 3-cycles. Thus N is trivial in this case,
and the candidate bad primes are 3 and 7.

Now π = {1, 2, 4} ∪ {3, 5, 6} ∪ {7} is a minimal partition as in Lemma 4.5, and thus the corresponding
g = (124)(365) generates an inertia group of order 3 for the action of G/N = G on k[x]N = k[x]. Then
Proposition 4.2b shows that if k has characteristic 3, k[x]G fails to be Cohen–Macaulay; i.e., 3 is a bad
prime for this G.

On the other hand, 7 is not a bad prime for this G. This can be seen using the criterion given by
Kemper [2001, Theorem 3.3], since 7 divides |G| just once. Thus, a prime can divide [G : N ] without
being bad. (By a computer calculation, no example of this phenomenon occurs below degree 7.)

At the other extreme, one might hope that the bad primes of G are only those which are furnished
by Proposition 4.2b. This is not true either. Take G = D7, the dihedral group of order 14 acting on the
vertices of a heptagon, which is also a Frobenius group. Now, all the nontrivial elements are 7-cycles
and triple transpositions, so again, N is trivial, and the candidate bad primes are 2 and 7. This time, they
both really are bad primes. One can see this using Kemper’s criterion [2001, Theorem 3.3]. For 2 it
also follows from Proposition 4.2b, but for 7 it does not, since the 7-cycles have orbits that are properly
refined by the triple transpositions.

Thus it remains to be determined, for a given G, exactly which primes are bad. Theorem 1.2 gives us a
finite list of candidate bad primes (those dividing [G : N ]), and, if this list is nonempty, Proposition 4.2b
gives us some specific primes that are definitely bad. Among the remaining candidate bad primes, if
any divide |G| only once, [Kemper 2001, Theorem 3.3] can be used to determine if they are actually
bad. What remains to be determined is whether p is a bad prime if p2

| |G| and p is not associated to a
g ∈ G \ N with minimal orbits as in Proposition 4.2b.

Question 5.1. How can Cohen–Macaulayness of k[x]G be assessed when [Kemper 2001, Theorem 3.3]
and the present work are both inapplicable, i.e., when p | [G : N ] and p2

| |G|, but p does not come from
a minimal g ∈ G \ N as in Proposition 4.2b?

Another line of inquiry that flows from the present work has to do with the relationship between the
arguments in the “if” and “only if” directions. The proof of the “if” direction is a mildly revised version
of an argument given by the first author in his doctoral thesis [Blum-Smith 2017]. In that same work, he
also proved the “only if” direction for k[1/G] (see Section 2B for notation), but not for k[x]G . There,
the “only if” argument was framed in the same topological language as the “if” argument, which is why
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it applied to k[1/G] (taking advantage of Stanley–Reisner theory) but not k[x]G . The second author
suggested to transfer the “only if” argument from topological into commutative-algebraic language, and
much of the present paper sprang from this suggestion.

This transfer was accomplished piecemeal, with an individual search for each commutative-algebraic
fact needed to replace each topological fact. For example, Raynaud’s theorem (Lemma 2.14) replaced an
elementary principle about the relationship between point stabilizers and the local structure in a topological
quotient. The well-behavedness of inertia groups with respect to normal subgroups (Lemma 2.10) replaced
an elementary fact about group actions on a set. The observation that inertia p-groups obstruct Cohen–
Macaulayness if they are not generated by 2-reflections (Lemma 3.7), based on [Lorenz and Pathak 2001,
Corollary 4.3], replaced an argument about the homology of links in the quotient of a simplicial complex.

Nonetheless, the authors had the conviction throughout that an overarching principle was at play. It
may be fruitful to seek a more comprehensive understanding of the relationship between the topology
and the algebra. Stanley–Reisner theory gives a partial answer to this question, but it does not appear to
account for the “only if” direction of Theorem 1.2, so a fuller picture is desirable.

Here are two more focused questions that approach this inquiry from various directions:

Question 5.2. Is there a purely algebraic proof of Theorem 1.2, making no use of Stanley–Reisner theory
or Lange’s result on PL manifolds?

Question 5.3. For a fixed p= char k as in Question 5.1, can k[x]G be Cohen–Macaulay without k[1/G]
being Cohen–Macaulay?
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