Vol. 12, No. 7, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
When are permutation invariants Cohen–Macaulay over all fields?

Ben Blum-Smith and Sophie Marques

Vol. 12 (2018), No. 7, 1787–1821
Abstract

We prove that the polynomial invariants of a permutation group are Cohen–Macaulay for any choice of coefficient field if and only if the group is generated by transpositions, double transpositions, and 3-cycles. This unites and generalizes several previously known results. The “if” direction of the argument uses Stanley–Reisner theory and a recent result of Christian Lange in orbifold theory. The “only if” direction uses a local-global result based on a theorem of Raynaud to reduce the problem to an analysis of inertia groups, and a combinatorial argument to identify inertia groups that obstruct Cohen–Macaulayness.

Keywords
invariant theory, modular invariant theory, henselization, Stanley–Reisner, Cohen–Macaulay, commutative ring, finite group
Mathematical Subject Classification 2010
Primary: 13A50
Secondary: 05E40
Milestones
Received: 26 February 2018
Revised: 16 May 2018
Accepted: 17 June 2018
Published: 27 October 2018
Authors
Ben Blum-Smith
Department of Natural Sciences and Mathematics
Eugene Lang College, the New School for Liberal Arts
New York City, NY
United States
Sophie Marques
Department of Mathematics and Applied Mathematics
University of Cape Town
Cape Town
South Africa