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On the relative Galois module structure
of rings of integers in tame extensions

Adebisi Agboola and Leon R. McCulloh

Let F be a number field with ring of integers OF and let G be a finite group. We describe an approach to
the study of the set of realisable classes in the locally free class group Cl(OF G) of OF G that involves
applying the work of McCulloh in the context of relative algebraic K theory. For a large class of soluble
groups G, including all groups of odd order, we show (subject to certain mild conditions) that the set
of realisable classes is a subgroup of Cl(OF G). This may be viewed as being a partial analogue in the
setting of Galois module theory of a classical theorem of Shafarevich on the inverse Galois problem for
soluble groups.
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Introduction

Suppose that F is a number field with ring of integers OF , and let G be a finite group. If Fπ/F is any
tame Galois G-algebra extension of F , then a classical theorem of E. Noether implies that the ring of
integers Oπ of Fπ is a locally free OF G-module, and so determines a class (Oπ ) in the locally free class
group Cl(OF G) of OF G. Hence, if we write H 1

t (F,G) for the pointed set of isomorphism classes of
tame G-extensions of F , then we obtain a map of pointed sets

ψ : H 1
t (F,G)→ Cl(OF G), [π ] 7→ (Oπ ).

Even when G is abelian, so that H 1
t (F,G) is actually a group, this map is almost never a group

homomorphism. We say that an element c ∈ Cl(OF G) is realisable if c = (Oπ ) for some tame Galois
G-algebra extension Fπ/F , and we write R(OF G) for the collection of realisable classes in Cl(OF G).
These classes are natural objects of study, and they have arisen in a number of different contexts in Galois
module theory. The problem of describing R(OF G) for a given G may be viewed as being a loose
analogue of the inverse Galois problem in the setting of arithmetic Galois module theory.

When G is abelian, McCulloh [1987] has given a complete description of R(OF G) by showing that it
is equal to the kernel of a certain Stickelberger homomorphism on Cl(OF G). In particular, he has shown
that R(OF G) is in fact a group. In subsequent unpublished work McCulloh [2011; 2012] showed that, for
arbitrary G, the set R(OF G) is always contained in the kernel of this Stickelberger homomorphism, and
he raised the question of whether or not R(OF G) is in fact always equal to this kernel. This question has
inspired research by a number of authors, and we refer the reader to, e.g., [Byott and Sodaïgui 2005; Byott
et al. 2006; Farhat and Sodaïgui 2015] and to the bibliographies of these papers for further information
concerning previous work on this problem.

In this paper we shall describe a new approach to studying this topic that involves combining the
methods introduced by McCulloh [1987; 2011] with techniques involving relative algebraic K -theory and
categorical twisted forms introduced by D. Burns and Agboola [2006]. This enables us to both clarify
certain aspects of the theory of realisable classes and to establish new results. Although our perspective
is somewhat different, it should be stressed that many of the main ideas that we use are in fact already
present in some form in [McCulloh 1987; 2011].

Let us now describe the contents of this paper in more detail. In Section 2 we recall some basic
facts concerning principal homogeneous spaces, Galois algebras and resolvends; these play a key role in
everything that follows. Next, we assemble a number of technical results explaining how resolvends may
be used to compute discriminants of rings of integers in Galois G-extensions. We also discuss how certain
Galois cohomology groups may be expressed in terms of resolvends in a manner that is very useful for
calculations in class groups and K -groups. In Section 4 we explain how determinants of resolvends may
be represented in terms of certain character maps, and we recall an approximation theorem of A. Siviero
(which is in turn a variant of [McCulloh 1987, Theorem 2.14]).
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We begin Section 5 by outlining the results we need about twisted forms and relative algebraic K -
groups from [Agboola and Burns 2006]. Each tame G-extension Fπ/F of F has an associated resolvend
isomorphism

rG : Fπ ⊗F Fc
' FcG

of FcG-modules, and this may be used to construct a categorical twisted form which is represented by an
element [Oπ , OF G; rG] in a certain relative algebraic K -group K0(OF G, Fc). The group K0(OF G, Fc)

admits a natural surjection onto the locally free class group Cl(OF G), sending [Oπ , OF G; rG] to (Oπ ),
and so there is a map of pointed sets

9 : H 1
t (F,G)→ K0(OF G, Fc), [π ] 7→ [Oπ , OF G; rG]

which is a refinement (more precisely, a lifting) of the map ψ above.
Crucial to our approach is the fact that each of the constructions that we have just described admits a

local variant. Let v be any place of F , and write H 1
t (Fv,G) for the pointed set of isomorphism classes of

tame G-extensions of Fv. Then there is a localisation homomorphism

λv : K0(OF G, Fc)→ K0(OFvG, Fc
v )

as well as a map of pointed sets

9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ), [πv] 7→ [Oπv , OFvG; rG].

The following result reflects the fact that [Oπ , OF G; rG] is a much finer structure invariant than (Oπ )

(see Proposition 13.1 below):

Proposition A. The kernel of 9 is finite.

Let G ′ denote the derived subgroup of G. We may identify H 1(F,G ′) with a subset of H 1(F,G) via
the exact sequence 0→ G ′→ G → Gab

→ 0. Proposition A is proved by showing that Ker(9) is a
subset of the pointed set H 1

fnr(F,G ′) of isomorphism classes of G ′-Galois F-algebras that are unramified
at all finite places of F ; this last set is finite because there are only finitely many unramified extensions of
F of bounded degree. If G is abelian, the map 9 is injective (see Proposition 14.3). In many cases one
can show that Ker(9)= H 1

fnr(F,G ′), but we do not know whether this equality always holds.
Write KR(OF G) for the image of 9, i.e., for the collection of realisable classes of K0(OF G, Fc).

The central conjecture of this paper gives a precise description of KR(OF G) in terms of a local-global
principle for the relative algebraic K -group K0(OF G, Fc). This may be described as follows.

For each place v of F , let H 1
nr(Fv,G) denote the subset H 1

t (Fv,G) consisting of isomorphism classes
of unramified G-extensions of Fv. We define a pointed set of ideles J (H 1

t (F,G)) of H 1
t (F,G) to

be the restricted direct product over all places v of the sets H 1
t (Fv,G) with respect to the subsets

H 1
nr(Fv,G) (see Definition 6.2). The natural maps H 1

t (F,G)→ H 1
t (Fv,G) for each v induce a map

H 1
t (F,G)→ J (H 1

t (F,G)). We also define a group of ideles J (K0(OF G, Fc)) of K0(OF G, Fc) to
be the restricted direct product over all places of F of the groups K0(OFvG, Fc

v ) with respect to the
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subgroups K0(OFvG, OFc
v
) (see Definition 5.8). We show that the maps λv above induce an injective

localisation map
λ : K0(OF G, Fc)→ J (K0(OF G, Fc))

(see Proposition 5.9), and that the maps 9v induce an idelic version

9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

of the map 9 (see Definition 6.2). We conjecture that KR(OF G) has the following description (see
Conjecture 6.5 below):

Conjecture B. KR(OF G)= λ−1(Im(9 id)).

In other words, our conjecture predicts that an element x lies in the image of 9 if and only if λv(x)
lies in the image of 9v for every place v of F . We remark that it follows directly from the definitions that

KR(OF G)⊆ λ−1(Im(9 id)).

We point out that, in contrast to R(OF G), it is not difficult to show that if G is nontrivial, then
KR(OF G) is never a subgroup of K0(OF G, Fc) (cf. [Agboola and Burns 1998, Remark 2.10(iii); 2006,
Remarks 6.13(i)].) Nevertheless, by applying the methods of [McCulloh 1987; 2011] in the present
context, we show that Conjecture B implies both an affirmative answer to McCulloh’s question concerning
R(OF G) as well as a positive solution to the inverse Galois problem for G over F (see Theorems 6.6,
6.7 and 13.6 below):

Theorem C. If Conjecture B holds, then R(OF G) is a subgroup of Cl(OF G). Furthermore, if c ∈
R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and (Oπ ) = c. The
extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places of F. In
particular, the inverse Galois problem for G admits a positive solution over F.

In order to orient the reader, we shall now briefly indicate the main ideas involved in the proof of
Theorem C.

We begin by observing that the long exact sequence of relative algebraic K -theory yields a sequence

K1(FcG) ∂1
−→ K0(OF G, Fc) ∂0

−→Cl(OF G)→ 0.

Hence, in order to show that R(OF G) = Im(ψ) is a subgroup of Cl(OF G), it suffices to show that
∂1(K1(FcG)) · Im(9) is a subgroup of K0(OF G, Fc).

To do this, we first show that it suffices to prove that

λ(∂1(K1(FcG))) · Im(9 id)

is a subgroup of J (K0(OF G, Fc)). Once this is done, it is not hard to show that ∂1(K1(FcG)) · Im(9)
is equal to the kernel of the homomorphism

K0(OF G, Fc) λ
−→ J (K0(OF G, Fc))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] · Im(9 id)
,
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and so is indeed a subgroup of K0(OF G, Fc) (see Theorem 6.7 below). The crux of the proof of the
first part of Theorem C therefore consists of showing that λ(∂1(K1(FcG))) · Im(9 id) is a subgroup of
K0(OF G, Fc).

This is accomplished as follows. Write G(−1) for the group G (viewed as a set) endowed with an
action of �F via the inverse cyclotomic character. Although in general this is only an action on G as
a set (rather than via automorphisms of G), the induced action on conjugacy classes of G does induce
an action on the centre Z(Fc

[G]) of the group ring FcG. We write Z(Fc
[G(−1)]) to denote Z(Fc

[G])
endowed with this action. We set

3(FG) := Z(Fc
[G(−1)])�F ,

and we write 3(OF G) for the (unique) OF -maximal order in 3(FG). For each place v of F , we define
3(FvG) and 3(OFvG) in an analogous manner. We write J (3(FG)) for the restricted direct product
over all places of F of the groups 3(FvG)× with respect to the subgroups 3(OFvG)

×.
Let Irr(G) denote the set of irreducible characters of G. Motivated by an analysis of normal integral

basis generators of tame local extensions, we define a Stickelberger pairing

〈−,−〉G : Irr(G)×G→Q.

(Loosely speaking, this may be viewed as being a monodromy-type pairing that encodes ramification data
associated to tame extensions of local fields in a uniform manner (cf. Definition 10.6 below).) We then
use this pairing to construct a K -theoretic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc)).

The homomorphism K2t is closely related to the map 9 id in the following way. We show that even
though the map 9v is just a map of pointed sets, the image 9v(H 1

nr(Fv,G)) of the restriction of 9v
to H 1

nr(Fv,G) is in fact a subgroup of K0(OFvG, Fc
v ) for each v. Using an approximation theorem for

J (3(FG)), we show further that, for a suitable choice of auxiliary ideal a of OF , the homomorphism
K2t may be used to construct a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v 9v(H 1

nr(Fv,G))
,

where Cl′a
+
(3(OF G)) is a certain finite quotient of J (3(FG)). We prove that

Im(2t
a)= Im(9 id),

where 9 id denotes the composition of 9 id with the obvious quotient map

J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v 9v(H 1

nr(Fv,G))
.

We then show that this in turn implies that

λ(∂1(K1(FcG))) · Im(K2t)= λ(∂1(K1(FcG))) · Im(9 id). (0-1)
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In particular, this proves that the right-hand side of (0-1) is a subgroup of J (K0(OF G, Fc)), as claimed.
This completes our outline of the proof of the first part of Theorem C.

The strategy of the proof of the second part of Theorem C may be very roughly described as follows.
Suppose that x ∈λ−1(Im(9 id)). By using the map K2t together with a suitable approximation theorem on
J (K0(OF G, Fc)), we show that there are infinitely many y ∈ λ−1(Im(9 id)) such that (i) ∂0(y)= ∂0(x),
and (ii) each y corresponds via Conjecture B to an element [πy] ∈ H 1

t (F,G) which is ramified (away
from S) in such a way that πy ∈ Hom(�F ,G) is forced to be surjective. This in turn implies that Fπy

is a field (rather than just a Galois algebra), and so the inverse Galois problem for G admits a positive
solution over F .

Let us now turn to our results concerning the validity of Conjecture B.
When G is abelian, we obtain the following refinement of [McCulloh 1987, Theorem 6.7] (see

Theorem 14.2 below):

Theorem D. Conjecture B is true if G is abelian.

By combining our methods with work of Neukirch, we are able to establish a variant of Conjecture B
for a large class of soluble groups, including all groups of odd order (see Theorems 16.4 and 16.5
below). We thereby obtain the following result, which may be viewed as being a partial analogue of a
classical theorem of Shafarevich [1954] on the inverse Galois problem for soluble groups in the context
of arithmetic Galois module theory. (See Theorem 16.7 of the main text.)

Theorem E. Suppose that G is of odd order and that (|G|, hF )= 1, where hF denotes the class number
of F. Suppose also that F contains no nontrivial |G|-th roots of unity. Then R(OF G) is a subgroup of
Cl(OF G). If c ∈ R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and
(Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places
of F.

While it is perhaps conceivable that it might be possible to remove the hypothesis (|G|, hF )= 1 of
Theorem E using methods similar to those of the present paper (although we do not as yet know how to do
this), the same probably cannot be said of the condition concerning the number of roots of unity in F . This
latter hypothesis is forced upon us because our proof makes crucial use of a lifting theorem of Neukirch
(see Section 15) where such hypotheses are unavoidable (cf. the last paragraph of the introduction of
[Neukirch 1979]). It would be interesting to determine whether or not the methods of [Shafarevich 1954]
can be used to prove a result similar to Theorem E for all soluble groups.

The results and techniques introduced in this paper suggest a number of different avenues of further
investigation. For example, our methods may also be applied in the context of the relative Galois module
structure of the square root of the inverse different as studied by C. Tsang [2016; 2017], and it seems
reasonable to expect that an analogue of Theorem E holds in this setting. Applying the methods of
[Agboola 2012] to the study of counting and equidistribution problems involving cohomological classes
in relative algebraic K -groups should lead to new results concerning similar problems for number fields,
generalising certain aspects of e.g., [Wright 1989; Malle 2002]. Our techniques may also be applied in
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the setting of global function fields [Agboola and Burns 2001; 2006], and it would be of interest to further
investigate the connection between the approach adopted here and that taken in e.g., [Chinburg 1994] (cf.,
for example, [Agboola and Burns 2006, §4]).

Here is an outline of the rest of this paper. In Section 7, we explain a hitherto unpublished result
of McCulloh that describes how resolvends of normal integral bases of tamely ramified extensions of
nonarchimedean local fields admit certain Stickelberger factorisations (see Definition 7.12); this is a
nonabelian analogue of a version of Stickelberger’s factorisation of abelian Gauss sums. A somewhat
analogous (but much simpler) framework over R is described in Section 8.

In Section 9, we recall the definition and properties of the Stickelberger pairing. We also give a
new character-theoretic description of this pairing (see Proposition 9.2) as well as an application of this
description (see Corollary 9.4).

We construct a K -theoretic version of the transpose Stickelberger homomorphism in Section 10, and
we also briefly describe an alternative approach to defining the Stickelberger pairing and establishing its
basic properties. In Section 11 we construct transpose Stickelberger homomorphisms 2t

a on modified
narrow ray class groups Cl′a

+
(3(OF G)). These are used in Section 12 to prove Theorem 6.6, thereby

completing the proof of the first part of Theorem C.
In Section 13 we prove Proposition A, and we explain how a weaker form of Conjecture B implies that

every realisable class in Cl(OF G) may be realised (in infinitely many ways) by rings of integers of tame
field (and not merely Galois algebra) G-extensions of F . This proves the second part of Theorem C.

We give a proof of Theorem D in Section 14. In Section 15, we describe work of Neukirch on the
solution to an embedding problem that is required for the proof of Theorem E. This proof is completed in
Section 16 via showing that a suitable variant of Conjecture B holds for a large class of soluble groups
(see Definition 16.1 and Theorems 16.3 and 16.4).

1. Notation and conventions

For any field L , we write Lc for an algebraic closure of L , and we set

�L := Gal(Lc/L).

If L is a number field or a nonarchimedean local field (by which we shall always mean a finite extension
of Qp for some prime p), then OL denotes the ring of integers of L . If L is an archimedean local field,
then we adopt the usual convention of setting OL = L .

Throughout this paper, F will denote a number field. For each place v of F , we fix an embedding
Fc
→ Fc

v , and we view �Fv as being a subgroup of �F via this choice of embedding. We write Iv for
the inertia subgroup of �Fv when v is finite.

The symbol G will always denote a finite group upon which �F acts trivially. If H is any finite group,
we write Irr(H) for the set of irreducible Fc-valued characters of H and RH for the corresponding ring
of virtual characters. We write 1H (or simply 1 if there is no danger of confusion) for the trivial character
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in RH . If h ∈ H , then we write c(h) for the conjugacy class of h in H and C(H) for the set of conjugacy
classes of H . We denote the derived subgroup of H by H ′.

If L is a number field or a local field, and 0 is any group upon which �L acts continuously, we identify
0-torsors over L (as well as their associated algebras, which are Hopf–Galois extensions associated
to A0 := (Lc0)�L ) with elements of the set Z1(�L , 0) of 0-valued continuous 1-cocycles of �L (see
[Serre 1997, I.5.2] and Section 2 below). If π ∈ Z1(�L , 0), then we write Lπ/L for the corresponding
Hopf–Galois extension of L , and Oπ for the integral closure of OL in Lπ . (Thus Oπ = Lπ if L is an
archimedean local field.) Each such Lπ is a principal homogeneous space (p.h.s.) of the Hopf algebra
Map�L

(0, Lc) of �L -equivariant maps from 0 to Lc. It may be shown that if π1, π2 ∈ Z1(�L , 0),
then Lπ1 ' Lπ2 if and only if π1 and π2 differ by a coboundary. The set of isomorphism classes of
0-torsors over L may be identified with the pointed cohomology set H 1(L , 0) := H 1(�L , 0). We write
[π ] ∈ H 1(L , 0) for the class of Lπ in H 1(L , 0). If L is a number field or a nonarchimedean local field
we write H 1

t (L , 0) for the subset of H 1(L , 0) consisting of those [π ] ∈ H 1(L , 0) for which Lπ/L is at
most tamely ramified. If L is an archimedean local field, we set H 1

t (L ,G)= H 1(L ,G). We denote the
subset of H 1

t (L , 0) consisting of those [π ] ∈ H 1
t (L , 0) for which Lπ/L is unramified at all (including

infinite) places of L by H 1
nr(L , 0). (So, with this convention, if L is an archimedean local field, we have

H 1
nr(L , 0) = 0.) If L is a number field, we write H 1

fnr(F, 0) for the subset of H 1
t (F, 0) consisting of

those [π ] ∈ H 1
t (F, 0) for which Lπ/L is unramified at all finite places of L .

If A is any algebra, we write Z(A) for the centre of A. If A is semisimple, we write

nrd : A×→ Z(A)×, nrd : K1(A)→ Z(A)×

for the reduced norm maps on A× and K1(A) respectively [Fröhlich 1983, Chapter II, §1]. If A is an
R-algebra for some ring R, and R → R1 is an extension of R, we write AR1 := A⊗R R1 to denote
extension of scalars from R to R1.

If S1 and S2 are sets, we sometimes use the notation S1
epi
−→ S2 to denote a surjective map from S1 to S2.

2. Principal homogeneous spaces and resolvends

In this section we shall describe some basic facts concerning principal homogeneous spaces and resolvends.
Throughout this section, the symbol L denotes either a number field or a local field.

Principal homogeneous spaces. [McCulloh 1987, §1; Byott 1998, §1]. Let 0 be any finite group upon
which �L acts continuously on the left, and write Z1(�L , 0) for the set of 0-valued continuous �L

1-cocycles. If π ∈ Z1(�L , 0), then we write π0 for the set 0 endowed with the following modified action
of �L : if

0→ π0, γ 7→ γ

is the identity map on the underlying sets, then

γ ω = π(ω) · γ ω
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for each γ ∈ 0 and ω ∈�L . The group 0 acts on π0 via right multiplication.
We define an associated L-algebra Lπ by

Lπ :=Map�L
(π0, Lc);

this is the algebra of Lc-valued functions on π0 that are fixed under the action of �L . The Hopf algebra

A = AL := (Lc0)�L

acts on Lπ via the rule
(α · a)(γ )=

∑
g∈0

αg · a(γ · g)

for all γ ∈ 0 and α =
∑

g∈0 αg · g ∈ A. The algebra Lπ is a principal homogeneous space (p.h.s. for
short) of the Hopf algebra

B :=Map�L
(0, Lc). (2-1)

It may be shown that every p.h.s. of B is isomorphic to an algebra of the form Lπ for some π , and so
every such p.h.s. may be viewed as being a subset of the Lc-algebra Map(0, Lc). It is easy to check that

Lπ ⊗L Lc
= Lc0 · `0,

where `0 ∈Map(0, Lc) is defined by

`0(γ )=

{
1 if γ = 1,
0 otherwise.

This implies that Lπ is a free, rank one A-module.
The Wedderburn decomposition of Lπ may be described as follows. For any γ ∈ π0, write Stab(γ )

for the stabiliser of γ in �L , and set
L(γ ) := (Lc)Stab(γ ).

Then
Lπ '

∏
�L\π0

L(γ ),

where�L\
π0 denotes the set of�L -orbits of π0, and the product is taken over a set of orbit representatives.

In general, the field L(γ ) is not normal over L . However, if �L acts trivially on 0, then Z1(�L , 0)=

Hom(�L , 0), and for each γ ∈π 0, we have

L(γ )= (Lc)Ker(π)
=: Lπ , (2-2)

with Gal(Lπ/L)' π(�L). In this case, we have that

Lπ '
∏

0/π(�L )

Lπ , (2-3)

and this isomorphism depends only upon the choice of a transversal of π(�L) in 0.
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Remark 2.1. For most of this paper we shall only need to consider the case in which �L acts trivially
on 0; in this situation A= L0, and Lπ is a 0-Galois L-algebra. A notable exception to this will occur in
Section 7, when we take L to be a nonarchimedean local field, and we construct a canonical subextension
of a tame extension Lπ/L (see Definitions 7.4 and 7.6). This canonical subextension is complementary
to the maximal unramified subextension of Lπ/L , and is not usually a Galois algebra extension of L . It
is however, a p.h.s. of a Hopf algebra of the form (2-1) associated to a certain group 0 equipped (as a set)
with a nontrivial �L -action.

Resolvends. [McCulloh 1987, §1; Byott 1998, §2]. Since every p.h.s. of B may be viewed as being a
subset of Map(0, Lc), it is natural to consider the Fourier transforms of elements of Map(0, Lc). These
arise via the resolvend map

r0 :Map(0, Lc)→ Lc0, a 7→
∑
s∈0

a(s)s−1.

The map r0 is an isomorphism of left Lc0-modules, but not of algebras, because it does not preserve
multiplication. It is easy to show that for any a ∈ Map(0, Lc), we have that a ∈ Lπ if and only if
r0(a)ω = r0(a) ·π(ω) for all ω ∈�L . It may also be shown that an element a ∈ Lπ generates Lπ as an A-
module if and only if r0(a) ∈ (Lc0)×. Two elements a1, a2 ∈Map(0, Lc) with r0(a1), r0(a2) ∈ (Lc0)×

generate the same p.h.s. as an A-module if and only if r0(a1)= b · r0(a2) for some b ∈ A×. If a is any
generator of Lπ as an A-module, then a 0-valued �L 1-cocycle that represents the class [π ] of π in the
pointed cohomology set H 1(L , 0) is given by

ω 7→ r0(a)−1
· r0(a)ω.

We define pointed sets (where in each case the distinguished element is afforded by 1∈ A×Lc = (Lc0)×)

H(A) := {α ∈ A×Lc : α
−1
·αω ∈ 0, ∀ω ∈�L} and H(A) := H(A)/0 = {α ·0 : α ∈ H(A)},

and we write r0(a) ∈H(A) for the image in H(A) of r0(a) ∈ H(A). The element r0(a) is referred to
as the reduced resolvend of a. If A is any OL -order in A, then we define H(A) and H(A) in a similar
manner. Hence we have

H(A)= AOLc ∩ H(A) and H(A)= H(A)/0.

Write L t for the maximal, tamely ramified extension of L . We set

Ht(A) := {α ∈ H(A) : αω = α, ∀ω ∈�L t } and Ht(A) := Ht(A)/0 = {α ·0 : α ∈ Ht(A)},

and we define Ht(A) and Ht(A) analogously for any OL -order A in A.
We shall now give a characterisation of the set H(A) that avoids any explicit mention of Galois action.

This is a nonabelian version of a description of H(A) in terms of primitive elements of quotients of
groups of units in Hopf algebras in the abelian case [Agboola and Burns 2006, Theorem 6.4].
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In order to do this, we first note that there are �L -equivariant homomorphisms of algebras

1, i1, i2 : ALc → ALc ⊗Lc ALc

induced by the maps
1(γ )= γ ⊗ γ, i1(γ )= γ ⊗ 1, i2(γ )= 1⊗ γ

for γ ∈ 0.
We define a map of pointed sets

P : A×Lc → (ALc ⊗Lc ALc)×, x 7→1(x) · [i1(x) · i2(x)]−1.

It is easy to verify that

P(x1 · x2)=1(x1) ·P(x2) · [i1(x1) · i2(x1)]
−1.

As P(γ ) = 1 for each γ ∈ 0, it follows that P induces a map of pointed sets (which we denote by the
same symbol)

P : A×Lc/0→ (ALc ⊗Lc ALc)×.

Theorem 2.2. Let x ∈ A×Lc . Then x ∈ H(A) if and only if P(x) ∈ (A⊗L A)×.

Proof. Suppose that x ∈ H(A). Then if ω ∈�L , we have

xω = x · γω

for some γω ∈ 0. Hence

[1(x)(i1(x)i2(x))−1
]
ω
=1(x)(γω⊗ γω)[i1(x)(γω⊗ 1)i2(x)(1⊗ γω)]−1

=1(x)(γω⊗ γω)(1⊗ γω)−1i2(x)−1(γω⊗ 1)−1i1(x)−1

=1(x)(γω⊗ γω)(1⊗ γω)−1(γω⊗ 1)−1i2(x)−1i1(x)−1

=1(x)[i1(x)i2(x)]−1.

This shows that
P(x) ∈ [(ALc ⊗Lc ALc)×]�L = (A⊗L A)×.

Suppose conversely that P(x) ∈ (A⊗L A)×, and that xω = x · uω for each ω ∈�L . We wish to show
that uω ∈ 0. As the maps 1, i1, and i2 are �L -equivariant, we have that

1(x)ω =1(x) ·1(uω), i1(x)ω = i1(x) · i1(uω), i2(x)ω = i2(x) · i2(uω),

and a straightforward computation shows that

P(x)ω =1(x) ·P(uω) · [i1(x) · i2(x)]−1.

As P(x)= P(x)ω, this implies that P(uω)= 1, i.e., that

1(uω)= i1(uω) · i2(uω).
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It now follows that uω ∈ 0 via an argument identical to that given in [Agboola and Burns 2006, Theo-
rem 6.4]. �

Let F be a number field. Our next result shows that the pointed set H(AF ) of resolvends satisfies a
Hasse principle.

Proposition 2.3. Let F be a number field, and suppose that x ∈ (Fc0)×. Then x ∈ H(AF ) if and only if
locv(x) ∈ H(AFv ) for every finite place v of F.

Proof. We first observe that the map P commutes with localisation, i.e., for each finite place v of F ,
we have

locv(P(x))= P(locv(x)) (2-4)

for all x ∈ (Fc0)×. Hence we have

x ∈ H(AF )⇐⇒ P(x) ∈ (AF ⊗F AF )
× (from Theorem 2.2)

⇐⇒ locv(P(x)) ∈ (AFv ⊗Fv AFv )
× for each finite v

⇐⇒ P(locv(x)) ∈ (AFv ⊗Fv AFv )
× for each finite v (from (2-4))

⇐⇒ locv(x) ∈ H(AFv ) for each finite v (from Theorem 2.2). �

Remark 2.4. It is also possible to give a proof of Proposition 2.3 directly from the definition of H(AF ).
The standard such proof that was known to the authors is valid only for abelian groups 0; we are grateful
to an anonymous referee for explaining how this proof may be modified so as to hold for arbitrary finite
groups.

Suppose that x ∈ A×Fc is such that, for each finite place v of F , we have locv(x) ∈ H(AFv ). We wish
to show that x ∈ H(AF ).

Let E/F be any finite Galois extension such that �E fixes x . Then the action of �F on x factors
through the action of the finite group D := Gal(E/F). Hence, to prove the desired result, it suffices to
show that for any δ ∈ D, we have xδ = x · γδ, with γδ ∈ 0.

Let GF denote the subgroup of �F generated by the subgroups �Fv as v runs over the finite places
of F . As each element of �F is conjugate to an element of �Fv for some v, it follows via the Chebotarev
density theorem that the image GF of GF in D has nontrivial intersection with every conjugacy class
of D. A lemma of Jordan now implies that GF must be equal to the whole of D [Serre 2003, p. 435,
Theorem 4’]. The result we seek now follows at once.

3. Resolvends and cohomology

Recall that F is a number field and G is a finite group upon which �F acts trivially. In this section, we
explain, following [McCulloh 1987, §2], how resolvends may be used to compute discriminants of rings
of integers of G-Galois extensions of F , and to describe certain Galois cohomology groups.
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For each [π ] ∈ H 1(F,G), the standard trace map

Tr :Map(G, Fc)→ Fc

induces a trace map

Tr : Fπ → F

via restriction. This in turn yields an associated, nondegenerate bilinear form (a, b) 7→ Tr(ab) on Fπ . If
M is any full OF -lattice in Fπ , then we set

M∗ := {b ∈ Fπ | Tr(b ·M)⊆ OF } and disc(Oπ/OF ) := [O∗π : Oπ ]OF ,

where the symbol [− : −]OF denotes the OF -module index. We see from the isomorphism (2-3) that
we have

disc(Oπ/OF )= disc(OFπ /OF )
[G:π(�F )],

where disc(OFπ /OF ) denotes the usual discriminant of the number field Fπ over F , and so it follows that

disc(Oπ/OF )= OF

if and only if Fπ/F is unramified at all finite places of F .

Definition 3.1. We write [−1] for the maps induced on Map(G, Fc) and FcG by the map g 7→ g−1 on G.

Lemma 3.2. Suppose that a, b ∈ Fπ for some [π ] ∈ H 1(F,G). Then

rG(a) · rG(b)[−1]
=

∑
s∈G

Tr(asb) · s−1
∈ FG.

Proof. This may be verified via a straightforward calculation (see, e.g., [McCulloh 1983, (1.6)], and note
that the calculation given there is valid for an arbitrary finite group G). �

Corollary 3.3. Suppose that Fπ = FG · a. Then we have:

(i) rG(a)−1
= rG(b)[−1], where b ∈ Fπ satisfies Tr(asbt)= δs,t .

(ii) (OF G · a)∗ = OF G · b.

(iii) [(OF G · a)∗ : OF G · a]OF = [OF G : OF G · rG(a) · rG(a)[−1]
]OF .

(iv) rG(a) ∈ (OFc G)× if and only if Oπ = OF G · a and disc(Oπ/OF )= OF .

Analogous results hold if F is replaced by Fv for any finite place v of F.

Proof. Exactly as in [McCulloh 1987, 2.10 and 2.11]. �

Lemma 3.4. Suppose that L is either a number field or a local field. Then

(i) H 1(L , (LcG)×)= 1,

(ii) H 1(L , Z(LcG)×)= 1.
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Proof. For each χ ∈ Irr(G), write d(χ) for the degree of χ , and Md(χ)(Lc) for the algebra of d(χ)×d(χ)-
matrices over Lc. Then the Wedderburn isomorphism of algebras

LcG '
⊕

χ∈Irr(G)

Md(χ)(Lc)

yields isomorphisms of groups

(LcG)× '
⊕

χ∈Irr(G)

GLd(χ)(Lc), Z(LcG)× '
⊕

χ∈Irr(G)

(Lc)×.

Let χ1, . . . , χm ∈ Irr(G) be a set of representatives of �L\ Irr(G). Write Stab(χi ) for the stabiliser of χi

in �L , and set L[χi ] := (Lc)Stab(χi ). There are isomorphisms of �L -modules

(LcG)× '
m⊕

i=1

Ind�L
�L[χi ]

(GLd(χi )(L
c)), Z(LcG)× '

m⊕
i=1

Ind�L
�L[χi ]

(Lc)×.

We have

H 1(L , (LcG)×)' H 1(L ,
m⊕

i=1

Ind�L
�L[χi ]

GLd(χi )(L
c))'

m⊕
i=1

H 1(L[χi ],GLd(χi )(L
c))= 1,

where the second isomorphism follows via Shapiro’s lemma and the final equality is a standard consequence
of Hilbert’s Theorem 90. This proves (i). The proof of (ii) is very similar. �

Recall that two pointed sets S1 and S2 are said to be isomorphic if there is a bijection of sets

f : S1→ S2

with f (x1)= f (x2), where xi is the distinguished element of Si , (i = 1, 2).
A sequence

· · · → Si−1
fi−→ Si

fi+1−−−→ Si+1→ · · ·

of pointed sets is said to be exact if there is an equality of sets

Im( fi )= f −1
i+1(xi+1),

where xi+1 is the distinguished element of Si+1.

Theorem 3.5. (1) There is an exact sequence of pointed sets

1→ G→ (FG)×→H(FG)→ H 1(F,G)→ 1. (3-1)

(2) For each finite place v of F , recall that H 1
nr(Fv,G) denotes the subset of H 1(Fv,G) consisting of

those [πv] ∈ H 1(Fv,G) for which the associated G-Galois extension Fπv/Fv is unramified. Then
there is an exact sequence of pointed sets

1→ G→ (OFvG)
×
→H(OFvG)→ H 1

nr(Fv,G)→ 1. (3-2)
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(3) There are exact sequences of pointed sets

1→ G→ (FG)×→Ht(FG)→ H 1
t (F,G)→ 1, (3-3)

and

1→ G→ (FvG)×→Ht(FvG)→ H 1
t (Fv,G)→ 1 (3-4)

for each place v of F.

Proof. When G is abelian, parts (a) and (b) are proved in [McCulloh 1987, p. 268 and p. 273] by
considering the �F and �Fv -cohomology of the exact sequences of abelian groups

1→ G→ (FcG)×→ (FcG)×/G→ 1 (3-5)

and

1→ G→ (OFc
v
G)×→ (OFc

v
G)×/G→ 1

respectively. If G is nonabelian, and these exact sequences are viewed as exact sequences of pointed sets
instead, then a similar proof of part (a) also holds, as is pointed out in [McCulloh 1987, p. 268]: taking
�F -cohomology of the exact sequence (3-5) of pointed sets yields an exact sequence

1→ G→ (FG)×→H(FG)→ H 1(F,G)→ H 1(F, (FcG)×), (3-6)

and since H 1(F, (FcG)×)= 1 (see Lemma 3.4(i)), (3-1) immediately follows.
Alternatively, we could also argue directly (as is done in [McCulloh 1987]) that the map H(FG)→

H 1(F,G) in (3-6) is surjective. Let us briefly describe the argument given in [McCulloh 1987]. Suppose
that [π ] ∈ H 1(F,G), and let a ∈ Fπ be a normal basis generator of Fπ/F . Set α = rG(a); then the coset
α ·G ∈H(FG) lies in the preimage of [π ], and so it follows that (3-6) is indeed surjective on the right,
as claimed.

Part (b) follows from Corollary 3.3(iv) (cf. the proof of (2.12) on [McCulloh 1987, p. 273]).
The proof of (c) is very similar to that of (a). Let F t and F t

v denote the maximal tamely ramified
extensions of F and Fv respectively, and set �t

F := Gal(F t/F), �t
Fv := Gal(F t

v/Fv). Then (c) follows
via considering the �t

F and �t
Fv -cohomology of the exact sequences of pointed sets

1→ G→ (F t G)×→ (F t G)×/G→ 1

and

1→ G→ (F t
vG)×→ (F t

vG)×/G→ 1

respectively, using the direct argument given in [McCulloh 1987, p. 268] that we have described above. �

Suppose that L is a number field or a local field. Recall that Z(LG) denotes the centre of LG. Before
stating our next result, we note that the reduced norm map

nrd : (LG)×→ Z(LG)×
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induces an injection Gab
→ Z(LG)×. (More explicitly, if we identify Z(LcG)× with

∏
χ∈Irr(G)(L

c)× via
the Wedderburn decomposition of LcG (see the proof of Lemma 3.4), then the injection Gab

→ Z(LG)×

is induced by the map G→ Z(LcG)× given by g 7→ [(det(χ))(g)]χ , where det(χ) is the abelian character
of G defined below in Definition 4.3. See also (4-5).) In what follows, we shall identify Gab with its
image in Z(LG)× under this map. We set

H(Z(LG)) := {α ∈ Z(LcG)× : α−1
·αω ∈ Gab, ∀ω ∈�L},

H(Z(LG)) := H(Z(LG))/Gab
= {α ·Gab

: α ∈ H(Z(LG))}.

We define H(Z(A)) and H(Z(A)) analogously for any OL -order A in LG.

Proposition 3.6. Let L be a number field or a local field. Then there is an exact sequence of abelian
groups:

1→ Gab
→ Z(LG)×→H(Z(LG))→ H 1(L ,Gab)→ 1. (3-7)

Proof. This follows at once from taking �L cohomology of the exact sequence of abelian groups

1→ Gab
→ Z(LcG)×→ Z(LcG)×/Gab

→ 1,

arising from the injection Gab
→ Z(LcG)× induced by the reduced norm map nrd : (LG)×→ Z(LG)×

as described above, and noting that H 1(�L , Z(LcG)×)= 1, via Lemma 3.4(ii). �

It is easy to see that the group (LG)× acts on the pointed set H(LG) by left multiplication. Write
(LG)×\H(LG) for the quotient set afforded by this action. It follows from Theorem 3.5 and Proposition 3.6
that there are isomorphisms

H 1(L ,G)−→∼ (LG)×\H(LG) and H 1(L ,Gab)−→∼ Z(LG)×\H(Z(LG))

of pointed sets and abelian groups respectively, and that the following diagram commutes:

H 1(L ,G)
∼
−−−→ (LG)×\H(LG)y y nrd

H 1(L ,Gab)
∼
−−−→ Z(LG)×\H(Z(LG)).

(3-8)

(Here the left-hand vertical arrow is induced by the quotient map G→ Gab, while the right-hand vertical
arrow is induced by the reduced norm map nrd : (LcG)×→ Z(LcG)×. )

We shall need the following result in Section 6.

Proposition 3.7. Let F be a number field. For each finite place v of F , the image of the map

nrd : (OFvG)
×
\H(OFvG)→ Z(OFvG)

×
\H(Z(OFvG))

of pointed sets is in fact a group.
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Proof. Just as in the case of (3-8), we see from the exact sequences (3-2) and (3-7) that there is a
commutative diagram

H 1
nr(Fv,G)

∼
−−−→ (OFvG)

×
\H(OFvG)y y nrd

H 1
nr(Fv,Gab) −−−→ Z(OFvG)

×
\H(Z(OFvG))y ∩ y ∩

H 1(Fv,Gab)
∼
−−−→ Z(FvG)×\H(Z(FvG)).

(3-9)

The middle horizontal arrow of this commutative diagram is therefore injective, and its image is a
subgroup of Z(OFvG)

×
\H(Z(OFvG)). Hence, to prove the desired result, it suffices to show that the

map H 1
nr(Fv,G)→ H 1

nr(Fv,Gab) is surjective. This is in turn an immediate consequence of the fact that
the Galois group Gal(Fnr

v /Fv) is profinite free on a single generator. �

4. Determinants and character maps

In this section we shall describe how determinants of resolvends may be represented in terms of certain
character maps.

Let L be a number field or a local field.
Suppose that 0 is any finite group upon which the absolute Galois group �L of L acts (possibly

trivially). Then �L also acts on the ring R0 of virtual characters of 0 according to the following rule: if
χ ∈ Irr(0) and ω ∈�L , then, for each γ ∈ 0, we have χω(γ )= ω(χ(ω−1(γ ))).

We begin by recalling some well-known facts and definitions concerning determinant maps (see, e.g.,
[Fröhlich 1983, Chapter II; 1984, Chapter I]).

Definition 4.1. For each element a of GLn(LcG), we define an element

Det(a) ∈ Hom(RG, (Lc)×)' Z(LcG)× (4-1)

in the following way: if T is any representation of G over Lc with character φ, then we set

Det(a)(φ) := det(T (a)).

It may be shown that this definition depends only upon the character φ, and not upon the choice of
representation T . The map

Det : GLn(LcG)→ Hom(RG, (Lc)×)

is �L -equivariant, and so induces a map

Det : GLn(LG)→ Hom�L (RG, (Lc)×).

Remark 4.2. The map Det in (4-1) above is essentially the same as the reduced norm map. Let

nrd : (LcG)×→ Z(LcG)× (4-2)



1840 Adebisi Agboola and Leon R. McCulloh

denote the reduced norm. Then (4-2) induces an isomorphism

nrd : K1(LcG)−→∼ Z(LcG)× ' Hom(RG, (Lc)×) (4-3)

(see, e.g., [Curtis and Reiner 1987, Theorem 45.3]). Suppose now that φ is any Lc-valued character of G
and let a ∈ (LcG)×. Then we have that

Det(a)(φ)= nrd(a)(φ)

(see [Fröhlich 1984, Chapter I, Proposition 2.7]).

Definition 4.3. Suppose that χ ∈ Irr(G). We define an abelian character det(χ) of G as follows. Let T
be any representation of G over Lc affording χ . For each element g ∈ G, we set

(det(χ))(g)= Det(T (g)).

Then det(χ) is independent of the choice of T , and may be viewed as being a character of Gab. We extend
det to a homomorphism RG→ (Gab)∧, where (Gab)∧ denotes the group of characters of Gab, by defining

det
( ∑
χ∈Irr(G)

aχχ
)
=

∏
χ∈Irr(G)

(det(χ))aχ ,

and we set

AG := Ker(det).

Hence we have an exact sequence of groups

0→ AG→ RG
det
−→ (Gab)∧→ 0. (4-4)

Applying the functor Hom(−, (Lc)×) to (4-4), we obtain an exact sequence

0→ Gab
→ Hom(RG, (Lc)×)

rag
−→Hom(AG, (Lc)×)→ 0, (4-5)

which is surjective on the right because (Lc)× is divisible. It follows that there are �L -equivariant
isomorphisms

Hom(AG, (Lc)×)' Hom(RG, (Lc)×)/Gab
' Z(LcG)×/Gab. (4-6)

In what follows, we shall sometimes identify Hom(AG, (Lc)×) with Z(LcG)×/Gab via (4-6) without
explicit mention.

Taking �L -cohomology of (4-5) yields an exact sequence

0→ Gab
→ Hom�L (RG, (Lc)×)

rag
−→Hom�L (AG, (Lc)×)→ H 1(L ,Gab)→ 1, (4-7)

which is surjective on the right via Lemma 3.4(ii).
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Definition 4.4. Let Rs
G denote the (additive) subgroup of RG generated by the symplectic characters

of G. Thus, Rs
G is generated by the irreducible symplectic characters of G, together with elements of the

form χ +χ , where χ ∈ RG and χ denotes the complex conjugate of χ . All virtual characters lying in Rs
G

are real-valued.
If F is a number field, and v is a real place of F , we write

Hom+�Fv
(RG, (Fc

v )
×)

for those elements f ∈ Hom�Fv
(RG, (Fc

v )
×) for which f (η) > 0 for all η ∈ Rs

G . Note that if f ∈
Hom�Fv

(RG, (Fc
v )
×) and χ ∈ RG , then we automatically have

f (χ +χ)= f (χ) · f (χ) > 0.

Hence in fact f ∈Hom+�Fv
(RG, (Fc

v )
×) if and only if f is positive on all irreducible, symplectic characters

of G. In particular, if G has no nontrivial irreducible symplectic characters (e.g., if |G| is odd), then we have

Hom+�Fv
(RG, (Fc

v )
×)= Hom�Fv

(RG, (Fc
v )
×).

We write Z(FvG)×+ for the image of Hom+�Fv
(RG, (Fc

v )
×) in Z(FvG)× under the isomorphism

Hom�Fv
(RG, (Fc

v )
×)−→∼ Z(FvG)×.

Proposition 4.5. Let F be a number field. For each place v of F , we write

Det : (Fc
vG)×→ Hom(RG, (Fc

v )
×)' Z(Fc

vG)× (4-8)

for the determinant homomorphism afforded by Definition 4.1.

(1) If v is real, then (4-8) induces an isomorphism

Det((FvG)×)' Hom+�Fv
(RG, (Fc

v )
×)' Z(FvG)×

+
. (4-9)

(2) If v is finite or complex, then the map (4-8) induces isomorphisms

Det((FvG)×)' Hom�Fv
(RG, (Fc

v )
×)' Z(FvG)×, (4-10)

Det(H(FvG))' Hom�Fv
(AG, (Fc

v )
×). (4-11)

(3) If v is finite of residue characteristic coprime to |G|, so OFvG is an OFv -maximal order in FvG, then
(4-8) induces isomorphisms

Det((OFvG)
×)' Hom�Fv

(RG, (OFc
v
)×)' Z(OFvG)

×, (4-12)

Det(H(OFvG))' Hom�Fv
(AG, (OFc

v
)×). (4-13)
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Proof. The isomorphisms (4-9), (4-10) and (4-12) are standard and are explained in e.g., [Fröhlich 1983,
Chapter II, §1].

Suppose that v is either finite or complex. Theorem 3.5(a) and (4-10) yield the commutative diagram

G
⊆
−−−→ (FvG)× −−−→ H(FvG)

epi
−−−→ H 1(Fv,G)y

y Det

y Det

y epi

Gab ⊆
−−−→ Det((FvG)×) −−−→ Det(H(FvG))

epi
−−−→ H 1(Fv,Gab)∥∥∥ y∼

y ∥∥∥
Gab ⊆
−−−→ Hom�Fv

(RG, (Fc
v )
×) −−−→ Hom�Fv

(AG, (Fc
v )
×)

epi
−−−→ H 1(Fv,Gab),

(4-14)

and this implies that the map

Det(H(FvG))→ Hom�Fv
(AG, (Fc

v )
×)

is an isomorphism, which proves (4-11).
Suppose now that v is finite of residue characteristic coprime to |G|. In order to establish (4-13), we

first observe that applying the functor Hom(−, (OFc
v
)×) to the exact sequence (4-4) yields a sequence

0→ Gab
→ Hom(RG, (OFc

v
)×)→ Hom(AG, (OFc

v
)×)→ 1 (4-15)

which is surjective on the right because (OFc
v
)× is divisible. Taking �Fv -cohomology of (4-15) yields

0→ Gab
→ Hom�Fv

(RG, (OFc
v
)×)→ Hom�Fv

(AG, (OFc
v
)×)→

→ H 1(Fv,Gab) f
−→ H 1(Fv,Hom(RG, (OFc

v
)×)). (4-16)

Now since v does not divide the order of G, Z(OFvG) is an OFv -maximal order in (the split algebra)
Z(FvG) and

Z(OFc
v
G)× ' Hom(RG, (OFc

v
)×)

(see (4-12)). Suppose that π ∈Ker( f ). Then there exists u ∈ Z(OFc
v
G)× such that uω ·u−1

= π(ω) for all
ω ∈�Fv . This implies that u|G

ab
|
∈ Z(OFvG)

×. As v -|Gab
| and Z(OFvG) is a maximal order, it follows

that u ∈ Z(OFnr
v

G)×, and so π ∈ H 1
nr(Fv,Gab). Hence there is an exact sequence

0→ Gab
→ Hom�Fv

(RG, (OFc
v
)×)→ Hom�Fv

(AG, (OFc
v
)×)→ H 1

nr(Fv,Gab). (4-17)

We recall also (see the proof of Proposition 3.7) that the natural map H 1
nr(Fv,G)→ H 1

nr(Fv,Gab) is
surjective because the group Gal(Fnr

v /Fv) is profinite free on a single generator. Theorem 3.5(b) together
with (4-12) and (4-17) now yield the following commutative diagram:
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G
⊆
−−−→ (OFvG)

×
−−−→ H(OFvG)

epi
−−−→ H 1

nr(Fv,G)y
y Det

y Det

y epi

Gab ⊆
−−−→ Det((OFvG)

×) −−−→ Det(H(OFvG))
epi
−−−→ H 1

nr(Fv,Gab)∥∥∥ y∼
y ∥∥∥

Gab ⊆
−−−→ Hom�Fv

(RG, (OFc
v
)×) −−−→ Hom�Fv

(AG, (OFc
v
)×) −−−→ H 1

nr(Fv,Gab).

(4-18)

It follows from (4-18) that the third row of this diagram is surjective on the right. Since Det(H(OFvG))
is a subgroup of Hom�Fv

(AG, (OFc
v
)×), we see that the map

Det(H(OFvG))→ Hom�Fv
(AG, (OFc

v
)×)

is an isomorphism. This establishes (4-13). �

If on the other hand v is finite and v | |G|, so OFvG is not an OFv -maximal order in FvG, then we have

Det(H(OFvG))⊆ Hom�Fv
(AG, (Oc

Fv )
×),

but this inclusion is not in general an equality. If a is any integral ideal of OF , set

Ua(OFc
v
) := (1+ aOFc

v
)∩ (OFc

v
)×,

and write Uα(OFc
v
) instead of Ua(OFc

v
) when a= αOF . We shall need the following result of A. Siviero

(which is a variant of [McCulloh 1987, Theorem 2.14]) in Section 11.

Proposition 4.6 (A. Siviero). Let v be a finite place of F. Then if N ∈ Z>0 is divisible by a sufficiently
large power of |G|, we have

Hom�Fv
(AG,UN (OFc

v
))⊆ Det(H(OFvG))⊆ Hom�Fv

(AG, (OFc
v
)×).

Proof. This is shown in [Siviero 2013, Theorem 5.1.10] when G is abelian, and the proof for arbitrary
finite G is quite similar. As the reference is not widely accessible, we describe the argument.

If v -|G|, then Proposition 4.5(iii) implies that we have

Hom�Fv
(AG, O×Fc

v
)= Det(H(OFvG))= Hom�Fv

(AG, (OFc
v
)×),

and so it follows that the desired result holds in this case. We may therefore suppose that v | |G|.
We first observe that the group

Hom�Fv
(AG, (OFc

v
)×)

Det((OFvG)×/G)

is annihilated by |Gab
|[Det(M×

v ) : Det(OFvG)
×
], where Mv denotes any OFv -maximal order in FvG

containing OFvG. Since AG is finitely generated, it follows that Det((OFvG)
×/G) is of finite index in
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Hom�Fv
(AG, (OFc

v
)×), and so is an open subgroup of Hom�Fv

(AG, (OFc
v
)×). The result now follows

from the fact that, because v | |G|, the collection of groups

{Hom�Fv
(AG,U|G|n (OFc

v
)) | n ≥ 0}

is a fundamental system of neighbourhoods of the identity of Hom�Fv
(AG, (OFc

v
)×). �

Remark 4.7. When G is abelian, it follows from [McCulloh 1987, Theorem 2.14] that we may take
N = |G|2 in Proposition 4.6.

We shall also require the following related result in Section 15.

Proposition 4.8. Let 0 be a finite group with an action of �F . Suppose that v | |0| is a finite place of F ,
and write pv for the maximal ideal of OFv . Then for all sufficiently large n, we have

Hom�Fv
(A0,Upn

v
(OFc

v
))⊆ rag[Hom�Fc

v
(R0, (OFc

v
)×)].

Proof. The proof of this is very similar to that of Proposition 4.6. We observe that

|0ab
| ·Hom�Fc

v
(A0, (OFc

v
)×)⊆ rag[Hom�Fc

v
(R0, (OFc

v
)×)],

which implies that rag[Hom�Fc
v
(R0, (OFc

v
)×)] is an open subgroup of Hom�Fc

v
(A0, (OFc

v
)×) because A0

is finitely generated. The desired result now follows since the collection of groups {Hom�Fv
(A0,Upn

v
(OFc

v
)) |

n ≥ 0} is a fundamental system of neighbourhoods of the identity of Hom�Fc
v
(A0, (OFc

v
)×). �

5. Twisted forms and relative K -groups

Recall that G is a finite group upon which �F acts trivially. In this section, we shall recall some basic
facts concerning categorical twisted forms and relative algebraic K -groups. The reader may consult
[Agboola and Burns 2006; Swan 1968, Chapter 15] for some of the details that we omit.

Twisted forms. Suppose that R is a Dedekind domain with field of fractions L of characteristic zero. (For
notational convenience, we shall sometimes also allow ourselves to take R = L .) Let A be any R-algebra
which is finitely generated as an R-module and which satisfies A⊗R L ' LG.

Definition 5.1. Let3 be any extension of R, and write P(A) and P(A⊗R3) for the categories of finitely
generated, projective A and A⊗R 3-modules respectively. A categorical 3-twisted A-form (or twisted
form for short) is an element of the fibre product category P(A)×P(A⊗R3) P(A), where the fibre product
is taken with respect to the functor P(A)→ P(A⊗R 3) afforded by extension of scalars. In concrete
terms therefore, a twisted form consists of a triple (M, N ; ξ), where M and N are finitely generated,
projective A-modules, and

ξ : M ⊗R 3−→
∼ N ⊗R 3

is an isomorphism of A⊗R 3-modules.
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Example 5.2. If Fπ/F is any G-extension and Lπ ⊆ Fπ is any nonzero projective OF G-module, then
(Lπ , OF G; rG) is a categorical Fc-twisted OF G-form. In particular, if Fπ/F is a tame G-extension,
then (Oπ , OF G; rG) is a categorical Fc-twisted OF G-form. Similarly, if v is any place of F , then (still
assuming Fπ/F to be tame) (Oπ,v, OFvG; rG) is a categorical Fc

v -twisted OFvG-form. We shall mainly
be concerned with twisted forms of these types in this paper.

We write K0(A,3) for the Grothendieck group associated to the fibre product category P(A)×P(A⊗R3)

P(A), and we write [M, N ; ξ ] for the isomorphism class of the twisted form (M, N ; ξ) in K0(A,3).
The group K0(A,3) is often called the relative K -group with respect to the homomorphism A→ 3.
Recall [Swan 1968, Theorem 15.5] that there is a long exact sequence of relative algebraic K -theory:

K1(A)→ K1(A⊗R 3)
∂1
A,3
−−−→ K0(A,3)

∂0
A,3
−−−→ K0(A)→ K0(A⊗R 3). (5-1)

The first and last arrows in this sequence are afforded by extension of scalars from R to 3. The map
∂0
A,3 is defined by

∂0
A,3([M, N ; λ])= [M] − [N ].

The map ∂1
A,3 is defined by first recalling that the group K1(A⊗R 3) is generated by pairs of the form

(V, φ), where V is a finitely generated, free, A⊗R3-module, and φ : V −→∼ V is an A⊗R3-isomorphism.
If T is any projective A-submodule of V satisfying T ⊗A3' V , then we set

∂1
A,3(V, φ)= [T, T ;φ].

It may be shown that this definition is independent of the choice of T .
We shall often ease notation and write e.g., ∂0 rather than ∂0

A,3 when no confusion is likely to result.

Idelic description and localisation. [Fröhlich 1983, Chapter II,§1]. Let us retain the notation established
above, and suppose in addition that we now work over a number field F . The reduced norm map

nrd : (FG)×→ Z(FG)×

induces isomorphisms

K1(FG)' nrd(K1(FG))' nrd((FG)×)' Det((FG)×)⊆ Z(FG)× (5-2)

and
K1(FvG)' nrd(K1(FvG))' nrd((FvG)×)' Det((FvG)×)⊆ Z(FvG)× (5-3)

for each place v of F . In general the natural map K1(Av)→ K1(FvG) is not injective, and so the reduced
norm map

nrd : K1(Av)→ Z(Av)×

is not an isomorphism (although it is surjective if Av is an OFv -maximal order in FvG). If we write
K1(Av)

′ for the image of K1(Av) in K1(FvG), then (5-3) induces isomorphisms

K1(Av)
′
' nrd(K1(Av)

′)' nrd((Av)×)' Det(A×v ). (5-4)
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We shall make frequent use of the identifications (5-2), (5-3) and (5-4) (as well as those afforded by
Proposition 4.5) in what follows, sometimes without explicit mention.

For each place v of F , we write

locv : K1(FG)→ K1(FvG)

for the obvious localisation map.

Definition 5.3. We define the group of ideles J (K1(FG)) of K1(FG) to be the restricted direct product
over all places v of F of the groups Det(FvG)× ' K1(FvG) with respect to the subgroups Det(OFvG)

×.
We define the group of finite ideles J f (K1(FG)) in a similar manner but with the restricted direct product
taken over all finite places v of F .

If E is any extension of F , then the homomorphism

Det(FG)×→ J (K1(FG))×Det(EG)×, x 7→ ((locv(x))v, x−1)

induces a homomorphism

1A,E : Det(FG)×→
J (K1(FG))∏
v Det(Av)×

×Det(EG)×.

Theorem 5.4. (a) There is a natural isomorphism

Cl(A)−→∼
J (K1(FG))

Det(FG)×
∏
v Det(Av)×

.

(b) There is a natural isomorphism

hA,E : K0(A, E)−→∼ Coker(1A,E).

Proof. Part (a) is a well-known result of A. Fröhlich [1984, Chapter I]. Part (b) is proved in [Agboola and
Burns 2006, Theorem 3.5]. �

Remark 5.5. If [M, N ; ξ ] ∈ K0(A, E) and M , N are locally free A-modules of rank one (which is the
only case that we shall need in this paper), then hA,E([M, N ; ξ ]) may be described explicitly as follows.

For each place v of F , we choose Av-bases mv of Mv and nv of Nv. We also choose an FG basis
n∞ of NF , as well as an FG-module isomorphism θ : MF −→

∼ NF . Then, for each v, we may write
nv = νv · n∞, with νv ∈ (FvG)×. As θ−1(n∞) is an FG-basis of MF , we may write mv = µv · θ

−1(n∞),
with µv ∈ (FvG)×. Finally, writing θE for the map ME → NE afforded by θ via extension of scalars
from F to E , we have that (ξ ◦ θ−1

E )(n∞) = ν∞ · n∞ for some ν∞ ∈ (EG)×. Then a representative of
hA,E([M, N ; ξ ]) is given by the image of [(µv ·ν−1

v )v, ν∞] in J (K1(FG))×K1(EG), and a representative
of ∂0(hA,E([M, N ; ξ ])) ∈ Cl(A) is given by the image of (µv · ν−1

v )v ∈ J (K1(FG)).

Remark 5.6. As Av = FvG when v is infinite (by convention), we see that

J (K1(FG))∏
v Det(Av)×

'
J f (K1(FG))∏
v -∞Det(Av)×

.
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Hence the infinite places of F in fact play no explicit role on the right-hand sides of the isomorphisms given
by Theorem 5.4, and so these isomorphisms may be formulated using the finite idele group J f (K1(FG))
of K1(FG) instead of the full idele group J (K1(FG)).

Lemma 5.7. Suppose that v is a place of F and that Ev is any extension of Fv. Then there is an
isomorphism

K0(Av, Ev)' Det(EvG)×/Det(Av)×.

Proof. This follows directly from the long exact sequence of relative K -theory (5-1) applied to K0(Av, Ev),
together with (5-3) and (5-4). �

For each place v of F , there is a localisation map on relative K -groups:

λv : K0(A, E)→ K0(Av, Ev), [M, N ; ξ ] 7→ [Mv, Nv, ξv],

where ξv denotes the map obtained from ξ via extension of scalars from E to Ev . It is not hard to check
that, in terms of the descriptions of K0(A, E) and K0(Av, Ev) afforded by Theorem 5.4 and Lemma 5.7,
the map λv is that induced by the homomorphism (which we denote by the same symbol λv)

λv : J (K1(FG))×Det(EG)×→ Det(EvG)×, [(xv)v, x∞] 7→ [xv · locv(x∞)].

Definition 5.8. We define the idele group J (K0(A, E)) of K0(A, E) to be the restricted direct product
over all places v of F of the groups K0(Av, Ev) with respect to the subgroups K0(Av, OEv ).

We define the group of finite ideles J f (K0(A, Fc)) in a similar manner, but with the restricted direct
product taken over all finite places of F .

Proposition 5.9. (a) The homomorphism

λ :=
∏
v

λv : K0(A, E)→
∏
v

K0(Av, Ev)

is injective.

(b) If F has no real places or if G admits no irreducible symplectic characters, then the homomorphism

λ f :=
∏
v -∞

λv : K0(A, E)→
∏
v -∞

K0(Av, Ev)

is injective.

(c) The image of λ lies in the idele group J (K0(A, E)).

Proof. (a) Suppose that α ∈ K0(A, E) lies in the kernel of λ, and let

[(xv)v, x∞] ∈ J (K1(FG))×Det(EG)×

be a representative of α. Then for each v, we have

xv · locv(x∞) ∈ Det(Av)× ⊆ Det(FvG)×. (5-5)
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Since xv ∈Det(FvG)× ⊆ Z(FvG)×, we see that locv(x∞) ∈ Z(FvG)× for each v. Hence x∞ ∈ Z(FG)×,
and so via the Hasse–Schilling norm theorem [Swan 1970, Theorem 7.6; Curtis and Reiner 1981,
Theorem 7.8] we deduce that x∞ ∈ Det(FG)×. Hence α is also represented by the idele

[(locv(x∞))v, x−1
∞
] · [(xv)v, x∞] = [(xv · locv(x∞))v, 1],

and now (5-5) and Theorem 5.4(b) imply that α = 0 in K0(A, E). Therefore λ is injective, as claimed.

(b) The proof of this assertion is virtually identical to that of part (a). Using the same notation as in the
proof of part (a), we see that locv(x∞)∈Det(FvG)×' Z(FvG)× for each finite place v of F . This implies
that x∞ ∈ Z(FG)×. Under our hypotheses, we have that Det(FG)×' Z(FG)×, and so x∞ ∈Det(FG)×.
The remainder of the argument proceeds exactly as in the proof of part (a).

(c) If β = [M, N ; ξ ] ∈ K0(A, E), then for all but finitely many places v, the isomorphism ξv :

M⊗OF Ev−→∼ N⊗OF Ev obtained from ξ via extension of scalars from E to Ev restricts to an isomorphism
M⊗OF OEv −→

∼ N ⊗OF OEv . Hence, for all but finitely many v, we have that λv(β) ∈ K0(Av, OEv ), and
so λ(β) ∈ J (K0(A, E)), as asserted. �

6. Cohomological classes in relative K -groups

Recall that F is a number field and that G is a finite group upon which �F acts trivially. In this section
we shall explain how the set of realisable classes R(OF G) ⊆ Cl(OF G) may be studied via imposing
local cohomological conditions on elements of the relative K -group K0(OF G, Fc).

Definition 6.1. We define maps 9 and 9v (for each place v of F) by

9 =9G : H 1
t (F,G)→ K0(OF G, Fc), [π ] 7→ [Oπ , OF G; rG],

9v =9G,v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ), [πv] 7→ [Oπv , OFvG; rG].

We set
KR(OF G) := Im(9).

Definition 6.2. We define the pointed set of ideles J (H 1
t (F,G)) of H 1

t (F,G) to be the restricted direct
product over all places v of F of the pointed sets H 1

t (Fv,G)with respect to the pointed subsets H 1
nr(Fv,G),

and we write
9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

for the map afforded by the maps 9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ).

In general, KR(OF G) is not a subgroup of K0(OF G, Fc). However, although H 1
nr(Fv,G) is in general

merely a pointed set and not a group, the following result holds.

Proposition 6.3. Let v be any place of F , and write 9nr
v for the restriction of 9v to H 1

nr(Fv,G). Then
Im(9nr

v ) is a subgroup of K0(OFvG, Fc
v ).

Proof. If v is infinite, then H 1
nr(Fv,G) = 0, and so Im(9nr

v ) = 0. For finite v, the result follows from
Proposition 3.7 and Lemma 5.7. �
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Definition 6.4. We say that an element x ∈ K0(OF G, Fc) is cohomological (respectively cohomological
at v) if x ∈ Im(9) (respectively λv(x) ∈ Im(9v)). We say that x is locally cohomological if x is
cohomological at v for all places v of F . We write

LC(OF G) := λ−1(Im(9 id))

for the subset of K0(OF G, Fc) consisting of locally cohomological elements.

The long exact sequence of relative K -theory (5-1) applied to K0(OF G, Fc) yields a long exact
sequence

K1(OF G)→ K1(FcG) ∂1
−→ K0(OF G, Fc) ∂0

−→Cl(OF G)→ 0, (6-1)

where Cl(OF G) denotes the locally free class group of OF G. We set

ψ := ∂0
◦9,

and we write
R(OF G) := Im(ψ).

McCulloh has conjectured that R(OF G) is always a subgroup of Cl(OF G), and he has proved that
this is true whenever G is abelian [McCulloh 1987, Corollary 6.20]. The following conjecture gives a
precise characterisation of the image KR(OF G) of 9.

Conjecture 6.5. An element of K0(OF G, Fc) is cohomological if and only if it is locally cohomological.
In other words, we have that

KR(OF G)= LC(OF G).

Let us now explain why Conjecture 6.5 implies that R(OF G) is a subgroup of Cl(OF G). In order
to do this, we shall require the following result which is equivalent to a theorem of McCulloh when G
is abelian, and whose proof relies on results contained in [McCulloh 1987; 2011]. Before stating the
result, we remind the reader that

∏
v Im(9nr

v ) is not merely a pointed set, but is in fact a subgroup of
J (K0(OF G, Fc)) (see Proposition 6.3).

Theorem 6.6. Let

9 id : J (H 1
t (F,G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

denote the map of pointed sets given by the composition of the map 9 id with the quotient homomorphism

J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
.

Then the image of 9 id is in fact a group. Hence it follows that

λ[∂1(K1(FcG))] · Im(9 id)

is a subgroup of J (K0(OF G, Fc)).
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This theorem will be proved in Section 12. It implies the following result.

Theorem 6.7. If Conjecture 6.5 holds, then R(OF G) is a subgroup of Cl(OF G).

Proof. It follows from the exact sequence (6-1) that R(OF G) is a subgroup of Cl(OF G) if and only
if ∂1(K1(FcG)) · KR(OF G) is a subgroup of K0(OF G, Fc). However, if Conjecture 6.5 is true, then
Theorem 6.6 implies that

∂1(K1(FcG)) · KR(OF G)= ∂1(K1(FcG)) ·LC(OF G) (6-2)

is the kernel of the homomorphism

K0(OF G, Fc) λ
−→ J (K0(OF G, Fc))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] · Im(9 id)
,

where the last arrow denotes the obvious quotient homomorphism. This implies the desired result. �

We conclude this section with the following result on unramified locally cohomological classes in
K0(OF G, Fc). This will be used in the proofs of Theorem 16.4 and Theorem E of the introduction (see
Section 16 below).

Proposition 6.8. (a) Let L be the maximal, abelian, everywhere unramified (including at all infinite
places) extension of F of exponent |Gab

|, and suppose that y ∈ K0(OF G, Fc) lies in the kernel of the map

β : K0(OF G, Fc) λF−→ J (K0(OF G, Fc))→
J (K0(OF G, Fc))∏

v Im(9nr
v )

.

Then y lies in the kernel of the extension of scalars map

eL : K0(OF G, Fc)→ K0(OL G, Fc).

Hence, if (h+F , |G
ab
|) = 1 (where h+F denotes the narrow class number of F), then L = F , and so β is

injective.

(b) Suppose that G admits no nontrivial irreducible symplectic characters, or that F has no real places,
and that y ∈ K0(OF G, Fc) lies in the kernel of the map

β f : K0(OF G, Fc)
λ f,F
−−−→ J f (K0(OF G, Fc))→

J f (K0(OF G, Fc))∏
v -∞ Im(9nr

v )
.

Then y lies in the kernel of the extension of scalars map

eM : K0(OF G, Fc)→ K0(OM G, Fc),

where M is the maximal, abelian, unramified (at all finite places) extension of F of exponent |Gab
|.

Hence if (hF , |Gab
|)= 1 then L = F , and so β f is injective.

Proof. (a) Suppose that y = [(yv), y∞] lies in the kernel of β, and let E/F be the smallest Galois
extension such that �E fixes y∞. For each place v of F , let w(v) be the place of E afforded by our fixed
choice of embedding Fc

→ Fc
v .



On the relative Galois module structure of rings of integers in tame extensions 1851

As y lies in the kernel of β, we have that yv · locv(y∞) ∈ Im(9nr
v ) for each place v. Hence, for each v,

locv(y∞) ∈ H(Z(FvG)) is an unramified Gab-resolvend over Fv (see Proposition 3.6). It follows that, for
each v, the extension Ew(v)/Fv is unramified and that [Ew(v) : Fv] divides |Gab

|. This implies that E/F
is unramified at all places v, and is of exponent dividing |Gab

|. Hence E ⊆ L , and so y∞ ∈ Det(LG)×.
Now since yv · locv(y∞) ∈ Im(9nr

v ) for each place v, we see that in fact yv · locv(y∞) ∈ Det(OLvG)
×.

Hence eL(y) is in the kernel of the localisation map

λL : K0(OL G, Fc)→ J (K0(OL G, Fc)),

and since λL is injective (see Proposition 5.9(a)) it follows that eL(y)= 0.
The final assertion now follows immediately.

(b) This proof is virtually identical to the proof of (a), except that here, because either G admits no
irreducible symplectic characters or F has no real places, we may appeal to the injectivity of the localisation
map λ f,M (see Proposition 5.9(b)) rather than that of λM . �

7. Local extensions I

The goal of this section is to describe how resolvends of normal integral bases of tamely ramified,
nonarchimedean local extensions admit Stickelberger factorisations (see Definition 7.12). This reflects the
fact that every tamely ramified G-extension of Fv is a compositum of an unramified extension of Fv and
a twist of a totally ramified extension of Fv. All of the results in this section are based on unpublished
notes of the second-named author.

For each finite place v of F , we fix a uniformiser $v of Fv , and we write qv for the order of the residue
field of Fv. We fix a compatible set of roots of unity {ζm}, and a compatible set {$ 1/m

v } of roots of $v.
So, if m and n are any two positive integers, then we have (ζmn)

m
= ζn , and ($ 1/mn

v )m =$
1/n
v .

Recall that Fnr
v (respectively F t

v) denotes the maximal unramified (respectively tamely ramified)
extension of Fv. Then

Fnr
v =

⋃
m≥1

(m,qv)=1

Fv(ζm) and F t
v =

⋃
m≥1

(m,qv)=1

Fv(ζm,$
1/m
v ).

The group �nr
v := Gal(Fnr

v /Fv) is topologically generated by a Frobenius element φv which may be
chosen to satisfy

φv(ζm)= ζ
qv
m and φv($

1/m
v )=$ 1/m

v

for each integer m coprime to qv. Our choice of compatible roots of unity also uniquely specifies a
topological generator σv of Gal(F t

v/Fnr
v ) by the conditions

σv($
1/m
v )= ζm ·$

1/m
v and σv(ζm)= ζm
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for all integers m coprime to qv. The group �t
v := Gal(F t

v/Fv) is topologically generated by φv and σv,
subject to the relation

φv · σv ·φ
−1
v = σ

qv
v . (7-1)

While reading the remainder of this section (especially Proposition 7.7 below), it may be helpful for
the reader to keep in mind the statement and proof of the following well-known result which provides
some motivation for a number of subsequent constructions.

Proposition 7.1. Set L := Fv . Let n be a positive integer with (n, qv)= 1, and suppose that µn ⊆ L. Set
E = L($ 1/n

v ), 0 = Gal(E/L)= Z/nZ, and β =
∑n−1

i=0 $
i/n
v . Then OE = OL0 ·β.

Proof. We first observe that plainly OL0 ·β ⊆ OE , as β ∈ OE .
Let χ denote the Kummer character of 0, defined by

χ(γ )=
γ ($

1/n
v )

$
1/n
v

∈ µn

for each γ ∈ 0. Then 0̂ = 〈χ〉, and for each 0≤ j ≤ n− 1, we have(∑
γ

χ j (γ )γ−1
)
·β =

(∑
γ

χ j (γ )γ−1
)
·

( n−1∑
i=0

$ i/n
v

)
=

n−1∑
i=0

(∑
γ

χ j (γ ) ·χ−i (γ ) ·$ i/n
v

)
= n ·$ j/n

v .

As n ∈ O×L , we therefore see that {$ j/n
v }

n−1
j=0 ⊆ OL0 · β, which implies that OE ⊆ OL0 · β. This

implies the desired result. �

Definition 7.2. For each finite place v of F , we define

6v(G) := {s ∈ G | sqv ∈ c(s)}

(recall that c(s) denotes the conjugacy class of s in G). Plainly if s ∈6v(G), then both c(s) and 〈s〉 are
subsets of 6v(G). Let us also remark that if s ∈6v(G), then the order |s| of s is coprime to qv.

Definition 7.3. If s ∈ G, we set

βs :=
1
|s|

|s|−1∑
i=0

$ i/|s|
v ;

note that βs depends only upon |s|, and so in particular we have

βs = βg−1sg

for every g ∈ G. We define ϕv,s ∈Map(G, OFc
v
) by setting

ϕv,s(g)=
{
σ i
v(βs) if g = si ,

0 if g /∈ 〈s〉.
Then

rG(ϕv,s)=

|s|−1∑
i=0

ϕv,s(si )s−i
=

|s|−1∑
i=0

σ i
v(βs)s−i . (7-2)
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We note that for each g ∈ G, we have

rG(ϕv,g−1sg)= g−1
· rG(ϕv,s) · g, (7-3)

and so
Det(rG(ϕv,g−1sg))= Det(rG(ϕv,s)), (7-4)

i.e., the element Det(rG(ϕv,s)) depends only upon the conjugacy class c(s) of s in G. We remark that it
will be shown later as a consequence of properties of the Stickelberger pairing that Det(rG(ϕv,s)) in fact
determines the subgroup 〈s〉 of G up to conjugation (see Remark 4.2 and Proposition 10.5(b)).

We shall see that generators of inertia subgroups of tame Galois G-extensions of Fv lie in 6v(G),
and that the elements ϕv,s for s ∈ G with (|s|, qv) = 1 may be used to construct normal integral basis
generators of tame (and of course totally ramified) Galois G-extensions of Fnr

v .

In order to ease notation, we shall now set L := Fv and O := OL , and we shall drop the subscript v
from our notation for the rest of this section.

Suppose now that Lπ/L is a tamely ramified Galois G-extension of L , corresponding to π ∈

Hom(�t ,G). We are going to describe McCulloh’s [2011] decomposition of resolvends of normal
integral basis generators of Lπ/L (see also [Byott 1998, §6]). When G is abelian, this decomposition is
an analogue of a version of Stickelberger’s factorisation of Gauss sums.

Write s := π(σ) and t := π(φ); then t · s · t−1
= sq , and so s ∈6(G). We define πr , πnr ∈Map(�t ,G)

by setting

πr (σ
mφn)= π(σm)= sm, (7-5)

πnr(σ
mφn)= π(φn)= tn. (7-6)

If ωi ∈�
t (i = 1, 2) with ωi = σ

mi ·φni , then a straightforward calculation using (7-1) shows that

ω1 ·ω2 = σ
m1+m2qn1

·φn1+n2 .

This implies that πnr ∈ Hom(�nr,G). Plainly we have

π(ω)= πr (ω) ·πnr(ω) (7-7)

for every ω=σm
·φn
∈�t . The map πnr ∈Hom(�nr,G) corresponds to an unramified Galois G-extension

Lπnr of L (see Remark 7.10 below for a more detailed discussion of this point). Since Lπnr/L is unramified,
Oπnr is a free OL G-module. Let anr be any normal integral basis generator of this extension. Note that
rG(anr) ∈ H(OG), because Lπnr/L is unramified (see Corollary 3.3(iv)).

Definition 7.4. Let G(πnr) denote the group G with �t -action given by

ω(g)= πnr(ω) · g ·πnr(ω)
−1

for ω ∈�t and g ∈ G.

Lemma 7.5. The map πr is a G(πnr)-valued 1-cocycle of �t .
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Proof. Suppose that ω1, ω2 ∈ �
t . Then since πnr ∈ Hom(�nr,G) and π = πr · πnr, a straightforward

calculation shows that

πr (ω1ω2)= πr (ω1) ·πnr(ω1) ·πr (ω2) ·πnr(ω1)
−1,

and this establishes the desired result. �

Definition 7.6. We write πr G(πnr) for the set G endowed with the following action of �t : for every
g ∈ G and ω ∈�t we have

gω = πr (ω) ·πnr(ω) · g ·πnr(ω)
−1.

Lemma 7.5 implies that if ω1, ω2 ∈�
t , then

g(ω1ω2) = (gω2)ω1 .

We set
Lπr (πnr) :=Map�t (

πr G(πnr), L t).

The algebra (L t G(πnr))
�t

acts on Lπr (πnr) via the rule

(α · a)(h)=
∑
g∈G

αg · a(h · g)

for all h ∈ G and α =
∑

g∈G αg · g ∈ (L t G(πnr))
�t

.

Proposition 7.7. (a) Recall that s ∈6(G). We have that ϕs ∈ Lπr (πnr).

(b) Set
A(πnr)= (OLc G(πnr))

�t
,

and let Oπr (πnr) be the integral closure of OL in Lπr (πnr). Then

A(πnr) ·ϕs = Oπr (πnr).

(c) For any αr ∈ Lπr (πnr) and ω ∈�t , we have

rG(αr )
ω
= πnr(ω)

−1
· rG(αr ) ·π(ω).

Proof.

(a) Suppose that ω = σm
·φn
∈�t . If g ∈ G and g /∈ 〈s〉, then we have that

ϕs(gω)= 0= ϕs(g)ω.

On the other hand, we also have

ϕs((si )ω)= ϕs((si )σ
mφn
)= ϕs(sm

· tn
·si
· t−n)= ϕs(sm+iqn

)= σm+iqn
(βs)= (σ

m
·φn) ·σ i (βs)= ϕs(si )ω.

Hence ϕs ∈ Lπr (πnr), as claimed.

(b) The proof of this assertion is very similar to that of [Byott 1998, Lemma 6.6], which is in turn an
analogue of [McCulloh 1987, 5.4].
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Set H = 〈s〉. Then �t acts transitively on πr H(πnr)⊆
πr G(πnr), and so the algebra

Lπr (πnr)
H
:=Map�t (

πr H(πnr), L t)

may be identified with a subfield of L t via identifying b ∈ Lπr (πnr)
H with xb = b(1) ∈ L t . We have that

xσ
m

b = b(sm) and xφb = xb,

and so it follows that Lπr (πnr)
H is the subfield of L t consisting of those elements of L t that are fixed by

both φ and σ |s|. This implies that Lπr (πnr)
H
= L[$ 1/|s|

] (which in general will not be normal over L),
and that the integral closure of OL in Lπr (πnr)

H is equal to OL [$
1/|s|
]. Plainly βs ∈ OL [$

1/|s|
] (as |s|

is invertible in OL ), and the element βs corresponds to the element ϕs |H ∈ Lπr (πnr)
H .

If we set A(πnr)H := (OL t H(πnr))
�t

, then for each integer k with 0 ≤ k ≤ |s| − 1, it is not hard to
check that ( |s|−1∑

i=0

ζ−ki
|s| si

)φ
=

|s|−1∑
i=0

ζ−ki
|s| si ,

and so we see that
|s|−1∑
i=0

ζ−ki
|s| si

∈ A(πnr)H .

A straightforward computation (cf. [McCulloh 1987, 5.4]) also shows that( |s|−1∑
i=0

ζ−ki
|s| si

)
·βs =$

k/|s|.

It therefore follows that A(πnr)H ·βs = OL [$
1/|s|
], and this in turn implies that

A(πnr) ·ϕs = Oπr (πnr),

as asserted.

(c) We have

rG(αr )
ω
=

∑
g∈G

αr (g)ω · g−1

=

∑
g∈G

αr (gω) · g−1

=

∑
g∈G

αr (πr (ω) ·πnr(ω) · g ·π−1
nr (ω)) · g

−1

=

∑
g∈G

αr (g) ·πnr(ω)
−1
· g−1
·πr (ω) ·πnr(ω)

= πnr(ω)
−1
· rG(αr ) ·π(ω),

as claimed. �
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Corollary 7.8. For any αr ∈ Lπr (πnr) and αnr ∈ Lπnr , there is a unique α ∈ Lπ such that

rG(αnr) · rG(αr )= rG(α).

Proof. Proposition 7.7(c) implies that, for any ω ∈�t , we have

[rG(αnr) · rG(αr )]
ω
= rG(αnr) · rG(αr ) ·π(ω),

and so rG(αnr) · rG(αr ) ∈ H(LG). As the map rG is bijective, it follows that there is a unique α ∈
Map(G, Lc) such that

rG(αnr) · rG(αr )= rG(α),

and that α ∈ Lπ . �

Theorem 7.9. If anr ∈ Lπnr is any normal integral basis generator of Lπnr/L , then the element a ∈ Lπ
defined by

rG(anr) · rG(ϕs)= rG(a) (7-8)

is a normal integral basis generator of Lπ/L.

Proof. The proof of this assertion is very similar to that of the analogous result in the abelian case described
in [McCulloh 1987, (5.7), p. 283]. We first observe that plainly OL G · a ⊆ Oπ because anr ∈ Oπnr and
ϕs ∈ Oπr (πnr). Hence, to prove the desired result, it suffices to show that

disc(OL G · a/OL)= disc(Oπ/OL).

This will in turn follow if we show that

disc(OLnr G · a/OLnr)= disc(Oπ/OL) · OLnr .

Recall (see (2-3)) that we may write Lπ '
⊕

G/π(�t ) Lπ , where Lπ is a field with Gal(Lπ/L)'π(�t).
Under this last isomorphism, the inertia subgroup of Gal(Lπ/L) is isomorphic to 〈s〉. The standard
formula for tame field discriminants therefore yields

disc(Oπ/OL)=$
(|s|−1)|π(�t )|/|s|

· OL

and so we have

disc(Oπ/O)=$ (|s|−1)|G|/|s|
· OL . (7-9)

Now rG(anr) ∈ (OLnr G)×, and we see from the proof of Proposition 7.7(b) that

OLnr G · a = OLnr G ·ϕs = Oπr (πnr)⊗OL OLnr '

⊕
G/〈s〉

OLnr[$ 1/|s|
].

Since

disc(OLnr[$ 1/|s|
]/OLnr)=$ |s|−1

· OLnr,
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it follows that

disc(OLnr G · a/OLnr)=$ (|s|−1)|G|/|s|
· OLnr = disc(Oπ/O) · OLnr,

and this establishes the desired result. �

Remark 7.10. We caution the reader that Lπnr is not in general equal to the maximal unramified subex-
tension of Lπ/L , even when Lπ is a field. Suppose, for example, that Lπ is a field, and write L0 for the
maximal unramified subextension of Lπ/L . Set f = [L0 : L]. Then it is not hard to check that

Lπnr '

|G|/ f∏
i=1

L0, (7-10)

and so Lπnr is a Galois algebra with “core field” L0. If α ∈ OL0 is such that OL0 = OL [Gal(L0/L)] ·α,
then we may take anr = (α, 0, . . . , 0) under the identification given by (7-10).

Suppose further that L contains the |s|-th roots of unity, and that Lπ = L0 · L($ 1/|s|). To ease notation,
write M := L($ 1/|s|), and set H = 〈s〉. Then a calculation similar to (but simpler than) that given in
the proof of Proposition 7.7(b) (see also Proposition 7.1) shows that OM = OL [H ] · βs , and it may be
shown by computing the coefficient of 1G on the left-hand side of (7-8) that a = α ·βs , as is of course
well known.

Remark 7.11. Suppose that s ∈ G with (|s|, q)= 1. A straightforward computation (cf. the proofs of
Propositions 7.1 and 7.7(b)) shows that for every ω ∈�Lnr , we may write

rG(ϕs)
ω
= rG(ϕs) · ϕ̃s(ω)

where [ϕ̃s] ∈ H 1
t (L

nr,G), and that ϕs is a normal integral basis generator of Lnr
ϕ̃s
/Lnr. We have that

[ϕ̃s1]= [ϕ̃s2] in H 1
t (L

nr,G) if and only if c(s1)= c(s2). It is easy to show that every element of H 1
t (L

nr,G)
is of the form [ϕ̃s] for some s ∈ G with (|s|, q)= 1 (cf. the proof of Proposition 7.1 again).

Definition 7.12. Let a be any normal integral basis generator of Lπ/L . Theorem 7.9 implies that we
may write

rG(a)= u · rG(anr) · rG(ϕs), (7-11)

where u ∈ (OG)× and anr is any normal integral basis generator of Lπnr/L . This may be viewed as being
a nonabelian analogue of a version of Stickelberger’s factorisation of abelian Gauss sums (see [Hilbert
1998, pages XXXV–XXXVI, and Theorems 135 and 136; McCulloh 1987, Introduction]), and so we call
(7-11) a Stickelberger factorisation of rG(a).

8. Local extensions II

Our goal in this section is to state certain results analogous to, (but very much simpler than), those in
Section 7, for extensions of Fv where v is an infinite place of F . This section may therefore be viewed as
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being a “supplement at infinity” to Section 7 (cf. [Fröhlich 1984, Chapter I, §3]). We remind the reader
that, if v is infinite, by convention, we set OFvG = FvG and H 1

t (Fv,G)= H 1(Fv,G).
Suppose first that v is a complex place of F . Then

K0(OFvG, Fc
v )= 0 and H 1(Fv,G)= 0,

and we set 6v(G) = {1}. As this case is totally degenerate, we therefore suppose henceforth in this
section that v is real. We set L = Fv ' R, and for the remainder of this section, we drop any further
reference to v from our notation.

Set Gal(Lc/L) = 〈σ 〉, and fix a primitive fourth root of unity ζ4 ∈ Lc (cf. the choice of compatible
roots of unity made at the beginning of Section 7), so Lc

= L(ζ4).
Write

6(G) := {s ∈ G | s2
= e}. (8-1)

(Note that this set is in fact independent of v.) For each s ∈6(G), we set

βs =
1
2(1+ ζ4).

Define ϕs ∈Map(G, Lc) by

ϕs(g)=
{
σ i (βs) if g = si ,
0 if g /∈ 〈s〉.

Then it is easy to check that

rG(ϕs)= βs · e+ σ(βs) · s = 1
2 [(1+ ζ4) · e+ (1− ζ4) · s].

Proposition 8.1. Suppose that π ∈ Hom(�L ,G) with π(σ)= s. Then ϕs ∈ Lπ , and

Lπ = LG ·ϕs .

Proof. The first assertion follows directly from the definition of ϕs . The second is an immediate
consequence of the fact that rG(ϕs) ∈ (LcG)×, because

1
2((1+ ζ4) · e+ (1− ζ4) · s) · 1

2((1− ζ4) · e+ (1+ ζ4) · s)= 1. �

Proposition 8.2. Suppose that χ ∈ RG , and write

χ |〈s〉 = a · 1+ b · ε,

where ε denotes the unique nontrivial irreducible character of 〈s〉. Then

[Det(rG(ϕs))](χ)= (−1)b/2.

Proof. This follows via a straightforward computation:

[Det(rG(ϕs))](χ)= 1(rG(ϕs))
a
· ε(rG(ϕs))

b
= (βs + σ(βs))

a
· (βs − σ(βs))

b
= 1a
· ζ b

4 = (−1)b/2. �
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Remark 8.3. In terms of the Stickelberger pairing 〈−,−〉G which will be introduced in the next section,
Proposition 8.2 asserts that

[Det(rG(ϕs))](χ)= (−1)〈χ,s〉G .

9. The Stickelberger pairing

Definition 9.1. The Stickelberger pairing is a Q-bilinear pairing

〈−,−〉G :QRG ×QG→Q (9-1)

that is defined as follows.
Let ζ|G| be a fixed, primitive |G|-th root of unity (see the conventions established at the beginning of

Section 7), and suppose first that G is abelian. Then if χ ∈ Irr(G) and g ∈ G, we may write χ(g)= ζ r
|G|

for some integer r . We define

〈χ, g〉G =
{

r
|G|

}
,

where {x} denotes the fractional part of x ∈Q, and we extend this to a pairing on QRG×QG via linearity.
For arbitrary finite G, the Stickelberger pairing is defined via reduction to the abelian case by setting

〈χ, g〉G = 〈χ |〈g〉, g〉〈g〉.

It is easy to check that both definitions agree when G is abelian.

We shall now explain a different way of expressing the Stickelberger pairing using the standard inner
product on RG . In order to do this, we must introduce some further notation.

For each s ∈ G, we set ms := |G|/|s|. We define a character ξs of 〈s〉 by ξs(si ) = ζ
ims
|G| ; so ξs is a

generator of the group of irreducible characters of 〈s〉. Then it follows from Definition 9.1 that

〈ξαs , sβ〉〈s〉 =
{
αβ

|s|

}
.

Define

4s :=
1
|s|

|s|−1∑
j=1

jξ j
s .

Proposition 9.2. Let (−,−)G denote the standard inner product on RG , and suppose that χ ∈ RG

and s ∈ G. Then we have

(χ, IndG
〈s〉(4s))G = 〈χ, s〉G .

Proof. Suppose that

χ |〈s〉 =

|s|−1∑
j=0

|s|−1a jξ
j

s ,
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where a j ∈ Z for each j . Then we have

〈χ, s〉G =
|s|−1∑
j=0

a j 〈ξ
j

s , s〉〈s〉 =
|s|−1∑
j=0

a j

{
j
|s|

}
=

1
|s|

|s|−1∑
j=0

a j j.

On the other hand, via Frobenius reciprocity, we have

(χ, IndG
〈s〉(4s))G = (χ |〈s〉, 4(s))〈s〉 =

( |s|−1∑
j=0

a jξ
j

s ,
1
|s|

|s|−1∑
j=0

jξ j
s

)
〈s〉
=

1
|s|

|s|−1∑
j=0

a j j = 〈χ, s〉G,

and this establishes the desired result. �

In order to apply Proposition 9.2, we shall require the following result concerning traces of sums of
roots of unity.

Lemma 9.3. Let n > 1 be an integer, and suppose that ζ is any primitive n-th root of unity. Write

y :=
n−1∑
i=1

i · ζ i .

Then

TrQ(ζ )/Q(y)=− 1
2 nφ(n),

where φ is the Euler φ-function. In particular, TrQ(ζ )/Q(y) 6= 0.

Proof. Each ζ i is a primitive d-th root of unity for some divisor d of n, and so it follows that

y =
∑
d | n

∑
1≤r≤d−1
(r,d)=1

nr
d
ζ nr/d .

If d | n, then applying Möbius inversion to the identity xd
− 1=

∏
m | d 8m(x) (where 8m(x) denotes the

m-th cyclotomic polynomial) yields 8m(x)=
∏

m | d(x
m.
− 1)µ(d/m), whence it is not hard to show that

TrQ(ε)/Q(ε)= µ(d) for any primitive d-th root ε of unity. Hence TrQ(ζ )/Q(ε)= φ(n)µ(d)/φ(d), and so
we have

TrQ(ζ )/Q(y)=
∑
d | n

∑
1≤r≤d−1
(r,d)=1

nr
d

TrQ(ζ )/Q(ζ
nr/d)= n

∑
d | n

µ(d)
d

φ(n)
φ(d)

s(d),

where

s(d)=

{
1 if d = 1,∑

1≤i≤d−1
(i,d)=1

i if d > 1.

It is well-known that

s(d)= 1
2 dφ(d)
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for any integer d > 1 (see, e.g., [Burton 2007, Theorem 7.7]). It therefore follows that

TrQ(ζ )/Q(y)= 1
2 nφ(n)

∑
d | n
d>1

µ(d)=− 1
2 nφ(n),

as claimed. �

We can now state the following corollary to Proposition 9.2.

Corollary 9.4. Suppose that s1 and s2 are elements of G.

(i) If c(s1)= c(s2), then 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG .

(ii) If 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG , then 〈s1〉 is conjugate to 〈s2〉 in G.

(iii) We have that 〈χ, s1〉G = 0 for all χ ∈QRG if and only if s1 = e.

Proof. (i) Let χ ∈ RG and s ∈G. It follows from the definition of the Stickelberger pairing that for fixed χ
the value of 〈χ, s〉G depends only upon the conjugacy class c(s) of s in G. Hence, if c(s1)= c(s2), then
〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG .

(ii) To show this we use Proposition 9.2. We first note that a straightforward computation shows that
the degree of the virtual character IndG

〈s〉(4s) is equal to |G|(|s| − 1)/2|s|, and so we see that IndG
〈s〉(4s)

determines |s|. Next, we remark that If {ti } is a set of representatives of G/〈s〉, then for each g ∈ G, we
have

[IndG
〈s〉(4s)](g)=

∑
t−1
i gti∈〈s〉

ξs(t−1
i gti ), (9-2)

and so the character IndG
〈s〉(4s) vanishes on all elements of G that are not conjugate to an element of 〈s〉.

Proposition 9.2 implies that under our hypotheses, IndG
〈s1〉
(4s1) = IndG

〈s2〉
(4s2). Hence, to prove the

desired result, it suffices to show that [IndG
〈s1〉
(4s1)](s1) 6= 0, because then

[IndG
〈s2〉
(4s1)](s1)= [IndG

〈s1〉
(4s1)](s1) 6= 0,

which implies (since |s1| = |s2|) that s1 is conjugate to a generator of 〈s2〉.
Now if sa

1 is any generator of 〈s1〉, then ξs1(s
a
1 ) is a primitive |s1|-th root of unity, and we have

ξs1(s
a
1 )=

|s1|−1∑
i=1

iξs1(s
a
1 )

i .

Hence if ζ denotes any primitive |s1|-th root of unity, Lemma 9.3 implies that

TrQ(ζ )Q(ξs1(s
a
1 ))=−

1
2 |s1|φ(|s1|).

It follows from (9-2) that TrQ(ζ )/Q[IndG
s1
(4s1)](s1) is equal to a nonzero multiple of −|s1|φ(|s1|)/2, and

so is nonzero. This in turn implies that [IndG
s1
(4s1)](s1) is also nonzero, thereby establishing the desired

result.



1862 Adebisi Agboola and Leon R. McCulloh

(iii) Proposition 9.2 implies that 〈χ, s1〉G = 0 for all χ ∈QRG if and only if (IndG
〈s1〉
(4s1), χ)G = 0 for

all χ ∈QRG . The latter condition holds if and only if IndG
〈s1〉
(4s1) = 0 and this happens if and only if

s1 = e. �

Remark 9.5. (a) The converse to Corollary 9.4(i) does not hold in general, e.g., it fails for the dihedral
group D2p of order 2p, where p > 3 is a prime. (See [Siviero 2013, Chapter 3; 2016] for an explicit
description of the Stickelberger pairing in this case.)

(b) Let χ1, . . . , χd (respectively c1, . . . , cd ) be the set of irreducible characters (respectively conjugacy
classes) of G. We refer the reader to [Bueno et al. 2016] for computations and conjectures concerning the
rank of the d × d-matrix [〈χi , c j 〉G] associated to the Stickelberger pairing 〈−,−〉G when G is cyclic.

10. The Stickelberger map and transpose homomorphisms

The Stickelberger map.

Definition 10.1. The Stickelberger map

2=2G :QRG→QG (10-1)

is defined by
2(χ)=

∑
g∈G

〈χ, g〉G · g.

We write G(−1) for the set G endowed with an action of �F via the inverse cyclotomic character.
Note that in general, for nonabelian G, this �F -action is not an action on G via group automorphisms; it
is only an action on the set G. However, it does induce an action on the additive group QG(−1), which
is all that we shall require.

The following proposition summarises some basic properties of the Stickelberger map.

Proposition 10.2. (a) We have that 2(χ) ∈ Z(QG) for all χ ∈ RG , i.e., in fact

2 :QRG→ Z(QG).

(b) Suppose that χ ∈ RG . Then 2(χ) ∈ ZG if and only if χ ∈ AG . Hence 2 induces a homomorphism
AG→ ZG.

(c) The map
2 :QRG→QG(−1)

is �F -equivariant.

Proof. The proofs of these assertions for arbitrary G are essentially the same as those in the case of
abelian G. See [McCulloh 1987, Propositions 4.3 and 4.5].

(a) It follows from the definition of the Stickelberger pairing that if χ ∈ RG and g ∈ G, then 〈χ, g〉G is
determined by the conjugacy class c(g) of g in G. This implies that 2(RG)⊆ Z(QG), as claimed.
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(b) Suppose that χ ∈ RG and g ∈ G. Write

χ |〈g〉 =
∑
η

aηη,

where the sum is over irreducible characters of 〈g〉, and set ζ|g| := ζ
|G|/|g|
|G| . Then

(det(χ))(g)= det(χ |〈g〉)(g)=
∏
η

η(g)aη =
∏
η

ζ
|g|〈aηη,g〉〈g〉
|g| = ζ

|g|
∑
η〈aηη,g〉〈g〉

|g| = ζ
|g|〈χ,g〉G
|g| .

It now follows that 〈χ, g〉G ∈ Z for all g ∈ G if and only if χ ∈ Ker(det)= AG , as required.

(c) Let κ denote the cyclotomic character of �F , and suppose that χ ∈ RG is of degree one. Then, for
each g ∈ G and ω ∈�F , we have

χω(g)= χ(gκ(ω)),

and so
〈χω, g〉G = 〈χ, gκ(ω)〉G . (10-2)

It follows via bilinearity that (10-2) holds for all χ ∈ RG and all g ∈ G. Hence, if we view 2(χ) as being
an element of QG(−1), then

2(χω)=
∑
g∈G

〈χω, g〉G · g =
∑
g∈G

〈χ, gκ(ω)〉G · g =
∑
g∈G

〈χ, g〉G · gκ
−1(ω)
=2(χ)ω. �

Transpose Stickelberger homomorphisms. We see from Proposition 10.2 that dualising the homomor-
phism

2 : AG→ Z(ZG)

and twisting by the inverse cyclotomic character yields an �F -equivariant transpose Stickelberger
homomorphism

2t
: Hom(Z(ZG(−1)), (Fc)×)→ Hom(AG, (Fc)×). (10-3)

Composing (10-3) with the sequence of homomorphisms

Hom(AG, (Fc)×)−→∼ Z(FcG)×/Gab
→

Det(FcG)×

Det(OF G)×
→ K0(OF G, Fc), (10-4)

(where the first arrow is given by (4-6), the second via (the inverse of) (4-3), and the third is via the
homomorphism ∂1 of (6-1)) yields a homomorphism

K2t
: Hom(Z(ZG(−1)), (Fc)×)→ K0(OF G, Fc). (10-5)

Hence, if we write C(G(−1)) for the set of conjugacy classes of G endowed with �F -action via the
inverse cyclotomic character, and set

3(OF G) := Hom�F (Z(ZG(−1)), OFc)=Map�F
(C(G(−1)), OFc)= Z(OFc [G(−1)])�F ,

3(FG) := Hom�F (Z(ZG(−1)), Fc)=Map�F
(C(G(−1)), Fc)= Z(Fc

[G(−1)])�F ,
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then K2t induces a homomorphism (which we denote by the same symbol):

K2t
:3(FG)×→ K0(OF G, Fc).

For each place v of F , we may apply the discussion above with F replaced by Fv to obtain local
versions

2t
v : Hom(Z(ZG(−1)), (Fc

v )
×)→ Hom(AG, (Fc

v )
×) (10-6)

and

K2t
v :3(FvG)×→ K0(OFvG, Fc

v ) (10-7)

of the maps 2t and K2t respectively. The homomorphism 2t commutes with local completion, and
K2t commutes with the localisation maps

λv : K0(OF G, Fc)→ K0(OFvG, Fc
v ).

Definition 10.3. We define the group of ideles J (3(FG)) of 3(FG) to be the restricted direct product
over all places v of F of the groups 3(FvG)× with respect to the subgroups 3(OFvG)

×.

For all finite places v of F not dividing the order of G, as OFvG is an OFv -maximal order in FvG, we
have that (see Proposition 4.5(ii))

2t
v(3(OFvG))⊆ Hom�Fv

(AG, (OFc
v
)×)= Det(H(OFvG)),

and so

K2t
v(3(OFvG))⊆ K0(OFvG, OFc

v
).

It follows that the homomorphisms 2t
v combine to yield an idelic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc)). (10-8)

We shall see in the next subsection that the idelic homomorphism K2t is closely related to the
homomorphism

9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

of Definition 6.2.

Prime F-elements.

Definition 10.4. Let v be a place of F . For each element s 6= e of 6v(G) (see Definition 7.2 and (8-1)),
define fv,s ∈3(FvG)× by

fv,s(c)=


−1 if v is real and c = c(s),
$v if v is finite and c = c(s),
1 otherwise.

(10-9)
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Observe that fv,s is �Fv -equivariant because s ∈ 6v(G) and so �Fv fixes c(s) when s is viewed as an
element of G(−1). The element fv,s depends only upon the conjugacy class c(s) of s. For all places v
of F , we define fv,e ∈ (3(FvG))× to be the constant function fv,e = 1.

Write

Fv := { fv,s | s ∈6v(G)},

and define the subset F ⊂ J (3(FG)) of prime F-elements by

f ∈ F⇐⇒ f ∈ J (3(FG)) and fv ∈ Fv for all places v of F .

Following [Byott 1998, Definition 7.1], we define the support Supp( f ) of f ∈ F to be set of all places v
of F for which fv 6= 1. We say that f is full if, for each s ∈ G there is a place v with fv = fv,s .

Our interest in the set F, as well as the relationship between K2t and9 id, is explained by the following
result.

Proposition 10.5. Let v be a place of F.

(a) For each s ∈6v(G), we have

Det(rG(ϕv,s))= K2t
v( fv,s)

in K0(OFvG, Fc
v ).

(b) Suppose that s1, s2 ∈6v(G) with

Det(rG(ϕv,s1))= Det(rG(ϕv,s2)). (10-10)

Then 〈s1〉 is conjugate in G to 〈s2〉.

(c) Suppose that v is finite. Let π1, π2 ∈ Hom(�Fv ,G) with [πi ] ∈ H 1
t (Fv,G) for each i , and set

si = πi (σv) (see (7-5)). Let ai be a normal integral basis generator of Fv,πi /Fv, and let

rG(ai )= ui · rG(ai,nr ) · rG(ϕsi )

be a Stickelberger factorisation of rG(ai ) (see Definition 7.12). Suppose that

Det(rG(a1)) ·Det(rG(a2))
−1
∈ Det((OFc

v
G)×). (10-11)

Then

Det(rG(ϕs1))= Det(rG(ϕs2))

and for some integer m and some h ∈ G, the equality

π1(ω)= h ·π2(ω)
m
· h−1

holds for all ω ∈ Iv.
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Proof.

(a) The proof of this assertion is very similar to that of [McCulloh 1987, Proposition 5.4].
It suffices to show that the equality

Det(rG(ϕv,s))=2
t
v( fv,s)

holds in Hom(AG, (Fc
v )
×).

Let χ ∈ RG , and write

χ |<s> =
∑
η

aηη,

where the sum is over irreducible characters η of 〈s〉.
Suppose first that v is finite. Using (7-2), we see that (cf. [McCulloh 1987, Proposition 5.4])

[Det(rG(ϕv,s))](χ)=
∏
η

( |s|−1∑
i=0

σ i
v(βs)η(s−i )

)aη
=$

〈
∑
η aηη,s〉〈s〉

v =$ 〈χ,s〉Gv , (10-12)

and so it follows that

[Det(rG(ϕv,s))](α)=$
〈α,s〉G
v

for all α ∈ AG .
If v is real, then the proof of Proposition 8.2 shows directly that

[Det(rG(ϕv,s))](χ)= (−1)〈χ,s〉G ,

and so we have

[Det(rG(ϕv,s))](α)= (−1)〈α,s〉G

for all α ∈ AG in this case also.
Now suppose that v is either finite or real. If α ∈ AG , then we have

(2t
v( fv,s))(α)= fv,s(2(α))= fv,s

(∑
g∈G

〈α, g〉G · g
)
=

∏
g∈G

fv,s(g)〈α,g〉G =
{
$
〈α,s〉G
v if v is finite,

(−1)〈α,s〉G if v is real.

The desired result now follows.

(b) The proof of (a) above shows that if (10-10) holds, then

〈χ, s1〉G = 〈χ, s2〉G

for every χ ∈ RG . It therefore follows from Corollary 9.4 that 〈s1〉 is conjugate in G to 〈s2〉.

(c) Observe that (10-11) holds if and only if

Det(rG(ϕs1)) ·Det(rG(ϕs2)
−1) ∈ Det((OFc

v
G)×), (10-13)
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and the proof of part (a) (see (10-12)) implies that (10-13) holds if and only if

Det(rG(ϕs1))= Det(rG(ϕs2)).

Part (b) therefore implies that 〈s1〉 and 〈s2〉 are conjugate. Hence

s1 = h · sm
2 · h

−1

for some m ∈ Z and h ∈ G, and so

rG(ϕs1)= h · rG(ϕsm
2
) · h−1

(see (7-3)).
For any ω ∈�Fnr

v
, we have

πi (ω)= rG(ai )
−1
· rG(ai )

ω
= rG(ϕsi )

−1
· rG(ϕsi )

ω.

Applying the map Fc
vG→ Fc

vG defined by
∑

g agg 7→
∑

g aggm to this equality (when i = 2) yields

π2(ω)
m
= rG(ϕsm

2
)−1
· rG(ϕsm

2
)ω.

The final assertion now follows. �

The Stickelberger pairing revisited. In this subsection we shall briefly describe an alternative definition
of the Stickelberger pairing that involves a direct connection with resolvends of local normal integral
basis generators. This will not be used in the sequel.

Let v be a finite place of F . There is a natural pairing

{−,−}G,v : Irr(G)× H 1(Fnr
v ,G)→Q/Z, (χ, [π ]) 7→ [v(Det(rG(a(π)))(χ))], (10-14)

where a(π) is any normal basis generator of Fnr
v,π/Fnr

v . Recall that every element of H 1
t (F

nr
v ,G) is of the

form ϕ̃v,s for some s∈G with v -|s| (see Remark 7.11). The restriction of {−,−}G,v to Irr(G)×H 1
t (F

nr
v ,G)

yields a refined pairing

{−,−}
(1)
G,v : Irr(G)× H 1

t (F
nr
v ,G)→Q, (χ, ϕ̃v,s) 7→ v(Det(rG(ϕv,s))(χ)). (10-15)

This leads to the following definition.

Definition 10.6. Suppose that v is finite and that v -|G|. We define a pairing

[−,−]G,v : Irr(G)×G→Q, (χ, g) 7→ v(Det(rG(ϕv,g))(χ)), (10-16)

and we extend this to a pairing on QRG ×QG via linearity.

Proposition 10.7. Suppose that v is finite and that v -|G|. Then for each χ ∈ Irr(G) and g ∈ G, we have

[χ, g]G,v = [χ |〈g〉, g]〈g〉,v. (10-17)
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Proof. Set H := 〈g〉. The property (10-17) is a direct consequence of the fact that the restriction map
RG → RH induces a homomorphism Hom(RH , (Fc

v )
×)→ Hom(RG, (Fc

v )
×) such that the following

diagram commutes:

(Fc
v H)×

⊆
−−−→ (Fc

vG)×y Det

y Det

Hom(RH , (Fc
v )
×) −−−→ Hom(RG, (Fc

v )
×)

(see, e.g., [Fröhlich 1976, p. 436; 1984, p. 118]). �

Proposition 10.8. Suppose that v is finite and that v -|G|. Then for each χ ∈ Irr(G) and g ∈ G, we have

[χ, g]G,v = 〈χ, g〉G . (10-18)

In particular, [−,−]G,v is independent of our choice of v.

Proof. Proposition 10.7 implies that we may assume that G is cyclic. The equality (10-18) may then be
established via an argument identical to that used in the proof of Proposition 10.5(a) (see also [McCulloh
1987, Proposition 5.4]). �

11. Modified ray class groups

Definition 11.1. Let a be an integral ideal of OF . For each finite place v of F , recall that

Ua(OFc
v
) := (1+ aOFc

v
)∩ (OFc

v
)×.

We define

U ′a(3(OFvG))⊆3(FvG)× =Map�Fv
(C(G(−1)), (Fc

v )
×)

by

U ′a(3(OFvG)) := {gv ∈3(FvG)×|gv(c) ∈Ua(OFc
v
) ∀c 6= 1}

(with gv(1) allowed to be arbitrary).
Set

U ′a(3(OF G)) :=
(∏

v

U ′a(3(OFvG))
)
∩ J (3(FG)).

Definition 11.2. For each real place v of F , we define

3(FvG)×
+
:= {gv ∈3(FvG)× | gv(c) ∈ R×>0 for all c ∈ C(G(−1))}

(with gv(1) allowed to be arbitrary).
If v is complex, we set 3(FvG)×+ :=3(FvG)×. We define

U ′
∞
(3(OF G)) :=

(∏
v |∞

3(FG)×
)
∩ J (3(FG)),
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and

U ′
∞
(3(OF G))+ :=

(∏
v |∞

3(FG)×
+

)
∩ J (3(FG)).

Definition 11.3. The modified ray class group modulo a of 3(OF G) is defined by

Cl′a(3(OF G)) :=
J (3(FG))

3(FG)× ·U ′a(3(OF G)) ·U ′
∞
(3(OF G))

.

The modified narrow ray class group modulo a is defined by

Cl′a
+
(3(OF G)) :=

J (3(FG))
3(FG)× ·U ′a(3(OF G)) ·U ′

∞
(3(OF G))+

.

We refer to the elements of Cl′a(3(OF G)) (respectively Cl′a
+
(3(OF G))) as the modified ray classes

(respectively modified narrow ray classes) of 3(OF G) modulo a.

Remark 11.4. Fix a set of representatives T of�F\C(G(−1)), and for each t ∈ T , let F(t) be the smallest
extension of F such that �F(t) fixes t . Then the Wedderburn decomposition of 3(FG) is given by

3(FG)=Map�F
(C(G(−1)), Fc)'

∏
t∈T

F(t), (11-1)

where the isomorphism is induced by evaluation on the elements of T .
The group Cl′a(3(OF G)) (respectively Cl′a

+
(3(OF G))) above is finite, and is isomorphic to the product

of the ray class groups Cla(OF(t)) (respectively the narrow ray class groups Cl+a (OF(t))) modulo a of
the Wedderburn components F(t) of 3(FG) with t 6= 1. There is a natural surjection

Cl′a
+
(3(OF G))→ Cl′a(3(OF G))

with kernel an elementary abelian 2-group.
If |G| is odd, then (as no nontrivial element of G is conjugate to its inverse) F(t) has no real places

when t 6= 1, and so Cla(OF(t))= Cl+a (OF(t)). Hence we have

Cl′a
+
(3(OF G))= Cla(3(OF G))

whenever G is of odd order.

Proposition 11.5. Let a be any integral ideal of OF . Then the inclusion F → J (3(FG)) induces a
surjection F→ Cl′a

+
(3(OF G)). In particular, each modified narrow ray class modulo a of 3(OF G)

contains infinitely many elements of F.

Proof. Let I (3(OF G)) denote the group of fractional ideals of 3(OF G). Then via the Wedderburn
decomposition (11-1) of 3(FG), we see that each fractional ideal B in 3(OF G) may be written in the
form B= (Bt)t∈T , where each Bt is a fractional ideal of OF(t). For each conjugacy class t ∈ T , let o(t)
denote the �F -orbit of t in C(G(−1)), and write |t | for the order of any element of t .
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For each idele ν ∈ J (3(FG)), let

co(ν) := [co(ν)t ]t∈T ∈ I (3(OF G))'
∏
t∈T

I (OF(t))

denote the ideal obtained by taking the idele content of ν. If v is a place of F , we view Fv as being a
subset of F via the obvious embedding 3(FvG)× ⊆ J (3(FG)), and we set

Fv := {co( fv) | fv ∈ Fv}.

Now suppose that v is finite, and consider the ideal

co( fv,s)= [co( fv,s)t ]t∈T

in I (3(OF G)). If c(s) /∈ o(t), then it follows from the definition of fv,s that co( fv,s)t = OF(t). Suppose
that c(s) ∈ o(t). Since s ∈6v(G), it follows that v(|s|)= 0 and that �Fv fixes c(s). Hence Fv(t)= Fv,
and so we see that co( fv,s)t is a prime ideal of OF(t) of degree one lying above v (cf. [McCulloh 1987,
pp. 287–289]). Furthermore, if t ∈ T and if v is a finite place of F that is totally split in F(t), then
fv,s ∈ Fv for all c(s) ∈ o(t).

We therefore deduce that if v is finite, the set Fv consists precisely of the invertible prime ideals
p= (pt)t∈T of 3(OF G) with pt1 a prime of degree one above v in F(t1) for some t1 ∈ T with v(|t1|)= 0
and pt = OF(t) for all t 6= t1. For every t ∈ T , the narrow ray class modulo a of F(t) contains infinitely
many primes of degree one, and this implies that F surjects onto Cl′a

+
(3(OF G)) as claimed. �

Our next result describes a transpose Stickelberger homomorphism on modified narrow ray class groups
Cl′a
+
(3(OF G)) for a suitable choice of a. Before stating it, we remind the reader that Proposition 6.3

implies that
∏
v Im(9nr

v ) is a subgroup of J (K0(OF G, Fc)).

Proposition 11.6. Let N be an integer, and set a := N · OF . Then if N is divisible by a sufficiently high
power of |G|, the idelic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc))

induces a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
.

Proof. To show this, we first observe that Proposition 4.6 implies that if N is divisible by a sufficiently
high power of |G| and v is any finite place of F , then we have

2t
v(U

′

a(3(OFvG)))⊆ Det((OFvG)
×/G)⊆ Det(H(OFvG))= Im(9nr

v ),

and so it follows that
K2t(U ′a(3(OF G)))⊆

∏
v

Im(9nr
v )

in J (K0(OF G, Fc)).
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Suppose that v is a real place of F and that h ∈3(FvG)×+. Then for each χ ∈ RG , we have (recalling
that 〈χ, e〉G = 0)

2t
v(h)(χ)=

∏
g∈G

h(c(g))〈χ,g〉G > 0,

and so 2t
v(h) ∈ Hom+�Fv

(RG, (Fc
v )
×). This implies that K2t(h) = 1 in K0(OFvG, Fc

v ), and therefore
K2t(U ′

∞
(3(OF G)))= 1 in J (K0(OF G, Fc)).

It now follows that K2t induces a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
,

as claimed. �

12. Proof of Theorem 6.6

In this section we shall prove Theorem 6.6. Recall that we wish to show that if

9 id : J (H 1
t (F,G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

denotes the map of pointed sets given by the composition of the map9 id with the quotient homomorphism

q1 : J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
,

then the image of 9 id is in fact a group.
To show this, we choose an ideal a= N · OF as in Proposition 11.6, and we consider the diagram

J (H 1
t (F,G))

9 id

y
F ⊂

−−−→ J (3(FG))
K2t

−−−→ J (K0(OF G, Fc))

q2

y q2

y q1

y
Cl′a
+
(3(OF G)) Cl′a

+
(3(OF G))

2t
a

−−−→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

(12-1)

Here q2 denotes the obvious quotient map. Proposition 11.6 shows that the right-hand square commutes,
and Proposition 11.5 shows that the left-most vertical arrow is surjective.

It follows from Proposition 10.5(a) that

q1[K2t(F)] = q1[9
id(J (H 1

t (F,G)))] = Im9 id.

On the other hand, we also have that

q1[K2t(F)] =2t
a(Cl′a

+
(3(OF G))),



1872 Adebisi Agboola and Leon R. McCulloh

which is a group. It therefore follows that Im(9 id) is indeed a group, as claimed.
This completes the proof of Theorem 6.6. �

13. Realisable classes from field extensions

In this section, after first proving that the kernel of 9 is finite, we explain how a slightly weaker form of
Conjecture B implies that every element of R(OF G) may be realised by the ring of integers of a tame
field (as opposed to merely a Galois algebra) G-extension of F .

Recall that G ′ denotes the derived subgroup of G, and note that we may view H 1(F,G ′) and H 1(Fv,G ′)
as being pointed subsets of H 1(F,G) and H 1(Fv,G) respectively via taking Galois cohomology of the
exact sequence of groups

0→ G ′→ G→ Gab
→ 0.

Recall also that we write H 1
fnr(F,G ′) for the set of isomorphism classes of G ′-Galois F-algebras that are

unramified at all finite places of F .

Proposition 13.1. (a) Let v be a finite place of F. Then Ker(9v)⊆ H 1
nr(Fv,G ′).

(b) Suppose that [π ] ∈ Ker(9). Then [π ] ∈ H 1
fnr(F,G ′)⊆ H 1(F,G). We have that Ker(9) is finite.

(c) Suppose that F/Q is at most tamely ramified at all primes dividing |G|. Then H 1
nr(F,G ′)⊆ Ker(9).

(d) Suppose that G has no irreducible symplectic characters or that F has no real places. Suppose also
that F/Q is at most tamely ramified at all primes dividing |G|. Then Ker(9)= H 1

fnr(F,G ′).

Proof.

(a) Let v be a finite place of F . Suppose that [πv] ∈ H 1
t (Fv,G), and that Oπv = OFvG · av. Recall (see

Sections 5 and 6) that we have

9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v )'
Det(Fc

vG)×

Det(OFvG)×
,

and that 9v([πv])= [Det(rG(av))] (see also Definition 4.1 and Remark 4.2). It follows that 9v([πv])= 0
if and only if Det(rG(av)) ∈ Det(OFvG)

×.
Hence, if 9v([πv])= 0, then for each ω ∈�Fv , we have

Det(rG(av)−1) ·Det(rG(av))ω = 1,

and so we deduce from (3-8) that [πv] lies in the kernel of the natural map H 1(Fv,G)→ H 1(Fv,Gab)

of pointed sets. This implies that [πv] ∈ H 1(Fv,G ′). Finally, we see from (7-11) and Proposition 10.5(c)
that Det(rG(av)) ∈ Det((OFvG)

×) only if [πv] ∈ H 1
nr(Fv,G). We now conclude that if [πv] ∈ Ker(9v),

then [πv] ∈ H 1
nr(Fv,G ′). This establishes part (a).

(b) Suppose that [π ] ∈ H 1(F,G) satisfies9([π ])= 0. Then9v(locv([π ]))= 0 for each place v, and so it
follows from part (a) that locv([π ]) ∈ H 1

nr(Fv,G ′) for all finite places v of F . Therefore [π ] ∈ H 1(F,G ′),
and π is unramified at each finite place of F , i.e., [π ] ∈ H 1

fnr(F,G ′). As there are only finitely many
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unramified extensions of F of bounded degree, it follows that H 1
fnr(F,G ′) is finite, and so Ker(9) is

finite, as claimed.

(c) Suppose that [π ] ∈ H 1
nr(F,G ′) ⊆ H 1

t (F,G), and write Oπv = OFvG · av for each finite place v of
F . As π is unramified at v, it follows that Det(rG(av)) ∈ Det(OFnr

v
G)×. Since locv([π ]) lies in the

kernel of the natural map H 1(Fv,G)→ H 1(Fv,Gab), we see from the diagram (3-8) that the image of
Det(rG(av)) in Z(FvG)×\H(Z(FvG)) is trivial, and so in fact Det(rG(av)) ∈ [Det(OFnr

v
G)×]�Fv . Note

that Det(rG(av)) is defined over the finite, unramified extension Fπvv of Fv (see (2-2)). Let L denote an
arbitrary finite, unramified extension of Fv.

If v -|G|, then OL G is an OL -maximal order in LG, and we have (see (4-12))

[Det(OL G)×]�Fv ' [Hom�L (RG, (OFc
v
)×)]�Fv ' Hom�Fv

(RG, (OFc
v
)×)' Det(OFvG)

×.

If v | |G|, then because F/Q is at most tamely ramified at all primes dividing |G|, it follows from M. J.
Taylor’s fixed point theorem for group determinants [1984, Chapter VIII] that

[Det(OL G)×]�Fv = Det(OFvG)
×.

Hence, for each finite place v of F , we see that Det(rG(av)) ∈ Det(OFvG)
×, and so 9v([πv]) = 0 (cf.

part (a) above).
Since H 1

nr(Fv,G) = 0 for all infinite places of F , it follows that 9v([πv]) = 0 for all places v of F .
This in turn implies that λ(9([π ]))= 0. As the localisation map λ is injective (see Proposition 5.9(a)), it
follows that 9([π ])= 0. Hence H 1

nr(F,G ′)⊆ Ker(9), as claimed.

(d) The proof of this assertion is very similar to that of part (c) above, and so here we shall be brief.
Suppose that [π ]∈H 1

fnr(F,G ′). Arguing exactly as in part (c), we see that9v([π ]v)=0 for all finite places
v of F , which in turn implies that λ f (9([π ])) = 0. Under our hypotheses, Proposition 5.9(b) implies
that the localisation map λ f is injective, and so 9([π ])= 0. Hence we see that H 1

fnr(F,G ′)⊆ Ker(9),
and so it follows from part (b) above that in fact H 1

fnr(F,G ′)= Ker(9), as asserted. �

Definition 13.2. Suppose that x ∈LC(OF G) (see Definition 6.4). We say that x is unramified (respectively
ramified) at a place v of F if λv(x) ∈ Im(H 1

nr(Fv,G)) (respectively if λv(x) /∈ Im(H 1
nr(Fv,G))).

If S is any finite set of places of F , we denote the set of x ∈ LC(OF G) that are unramified at all places
in S by LC(OF G)S .

Before stating our next result, it will be helpful to introduce the following notation. Suppose that
x ∈ LC(OF G) and let [(xv)v, x∞] ∈ J (K1(FG))×Det(FcG)× be a representative of x . Then λ(x) ∈
J (K0(OF G, Fc)) is represented by the element (xv · locv(x∞)) ∈

∏
v Det(Fc

vG)×. Hence it follows from
Theorem 7.9 and Proposition 10.5(a) that we have an equality

[(xv · locv(x∞))] = [a(x)] · K2t( f (x)) (13-1)

in J (K0(OF G, Fc)), where a(x)= (a(x)v) ∈
∏
v Det(H(OFvG)) and f (x) ∈ F.
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Definition 13.3. We say that x ∈ LC(OF G) is fully ramified if f (x) is full (see Definition 10.4 — note in
particular that this does not mean that x is ramified at all places of F , which would of course be absurd!).

Let us also recall that ∂0(x)∈Cl(OF G) is represented by the idele (xv)v ∈ J (K1(FG)) (see Remark 5.5).

Proposition 13.4. Suppose that S is any finite set of places of F , and that x ∈ LC(OF G). Then there
exist infinitely many y ∈ LC(OF G)S with ∂0(y)= ∂0(x) in Cl(OF G). Hence we have

∂0(LC(OF G))= ∂0(LC(OF G)S). (13-2)

Proof. Let a be an ideal of F chosen as in Proposition 11.6 (so a is divisible by a sufficiently high power
of |G| for the homomorphism 2t

a to be defined). Proposition 11.5 implies that there are infinitely many
choices of g ∈ F such that Supp(g) is disjoint from S and g lies in the same modified narrow ray class
modulo a as f (x), i.e.,

f (x)≡ g (mod3(FG)× ·U ′a(3(OF G)) ·U ′
∞
(3(OF G))+).

Hence for any such g, we have

K2t( f (x))= K2t(β · b · g)

where β ∈3(FG)× and b= (bv) ∈U ′a(3(OF G)) ·U ′
∞
(3(OF G))+. Now K2t(β) ∈ ∂1(K1(FcG)) (see

(10-3)–(10-5)), while K2t(b) lies in the image of
∏
v Det(H(OFvG)) in J (K0(OF G, Fc)), by virtue of

our choice of a. We therefore see from (13-1) that we have the equality

[(xv · locv(x∞))] · K2t(β)−1
= [a(x)] · K2t(b) · K2t(g)

in J (K0(OF G, Fc)). Then the class

y = [(xv · locv(x∞))] · K2t(β)−1

in J (K0(OF G, Fc)) satisfies the desired conditions.
The final assertion follows immediately from the exact sequence (6-1). �

Proposition 13.5. Suppose that S is any finite set of places of F , and that x ∈ LC(OF G). Then there
exist infinitely many y ∈ LC(OF G)S such that y is fully ramified and ∂0(y)= ∂0(x) in Cl(OF G).

Proof. This is a generalisation of [McCulloh 1983, Proposition 6.14], and it may be proved in the same
way as [Byott 1998, Proposition 7.4].

We begin by constructing a full element h of F as follows. Let M/F be a finite Galois extension such
that �M acts trivially on C(G(−1)). For each s ∈ G, choose a place v(s) of F that splits completely in
M/F ; the Chebotarev density theorem implies that this may be done so that the places v(s) are distinct
and disjoint from S. Then the element h =

∏
s∈G fv(s),s is full.

Next, we choose an ideal a of F as in Proposition 11.6 and observe that Proposition 11.5 implies that
there are infinitely many choices of g ∈ F with Supp(g) disjoint from S ∪Supp(h) such that g lies in the
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same modified narrow ray class of 3(OF G) modulo a as f (x) · h−1. Then, for any such g, we have that

f (x)≡ g · h (mod3(FG)× ·Ua(3(OF G)) ·U ′
∞
(3(OF G))+),

and g · h ∈ F is full. Now exactly as in the proof of Proposition 13.4 we may replace f (x) by g · h in
(13-1), changing the other terms in the equality as needed, to obtain y ∈ K0(OF G, Fc) satisfying the
stated conditions. �

Theorem 13.6. Let S be any finite set of places of F , and suppose that Conjecture B holds for LC(OF G)S ,
i.e., that

LC(OF G)S ⊆ KR(OF G)= Im(9). (13-3)

Then R(OF G) is a subgroup of Cl(OF G). If c∈R(OF G), then there exist infinitely many [π ]∈H 1
t (F,G)

such that Fπ is a field and (Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint
from S.

Proof. To prove the first assertion, it suffices to show that, under the given hypotheses, we have

∂0(LC(OF G))=R(OF G) (13-4)

(see the proof of Theorem 6.7, especially (6-2)).
We plainly have R(OF G)⊆ ∂0(LC(OF G)). Suppose that x ∈ LC(OF G), and set cx = ∂

0(x). Then
Proposition 13.5 implies that there exists y ∈ LC(OF G)S with ∂0(y) = cx . By hypothesis, we have
y ∈ Im(9), and so ∂0(y)= cx ∈R(OF G). This implies that ∂0(LC(OF G))⊆R(OF G). Hence (13-4)
holds, and so R(OF G) is a subgroup of Cl(OF G), as claimed.

Next, we observe that if c ∈R(OF G), then (13-4) and Proposition 13.5 imply that there are infinitely
many x ∈ LC(OF G)S such that x is fully ramified and ∂0(x)= c. For each such x , our hypotheses imply
that there exists πx ∈Hom(�F ,G) with [πx ] ∈ H 1

t (F,G) and 9([πx ])= x . The set of primes that ramify
in Fπx/F is equal to Supp( f (x)), and so Fπx/F has ramification disjoint from S. As f (x) is full, we see
that for each nonidentity element s ∈G, there is a place v(s)∈ Supp( f (x)) such that πx(σv(s))∈ c(s) (see
(7-5) and Proposition 10.5(a) and (b)). Hence Im(πx) has nontrivial intersection with every conjugacy
class of G and so is equal to the whole of G, by a lemma of Jordan (see [Serre 2003, p. 435, Theorem 4’]).
Therefore πx is surjective, and so Fπx is a field. This establishes the result. �

14. Abelian groups

In this section we shall prove that Conjecture 6.5 holds for abelian groups. We shall also show that the
map 9 is injective in this case.

Let G be abelian, and suppose that L is any finite extension of F or of Fv for some place v of F . As
G is abelian, the reduced norm map induces isomorphisms

(LG)× ' Det(LG)×, (OL G)× ' Det(OL G)×, (LcG)× ' Det(LcG)×. (14-1)
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For each finite place v of F , Lemma 5.7 and (14-1) imply that there are isomorphisms

K0(OFvG, Fc
v )'

Det(Fc
vG)×

Det(OFvG)×
'
(Fc
vG)×

(OFvG)×
.

Proposition 14.1. Let G be abelian and suppose that v is a finite place of F. Then the map9v is injective.

Proof. Suppose that [πv,i ] ∈ H 1
t (Fv,G) (i = 1, 2), with Oπv,i = OFvG ·av,i . Then 9v([πv,i ])= [rG(av,i )]

in (Fc
vG)×/(OFvG)

×. Hence if 9([πv,1]) = 9([πv,2]), then we have rG(av,1) · rG(av,2)−1
∈ (OFvG)

×.
This implies that [π1,v] = [π2,v] in H 1

t (Fv,G), and so it follows that 9v is injective, as claimed. �

Again because G is abelian, the pointed set of resolvends Ht(LG) is an abelian group, and the exact
sequences (3-3) and (3-4) show that there is an isomorphism

τ : H 1
t (L ,G)−→∼

Ht(LG)
(LG)×

(14-2)

defined as follows: if [π ] ∈ H 1
t (L ,G) with Lπ = LG · bπ , then τ([π ])= [rG(bπ )].

Note also that Theorem 5.4(b) and (14-1) imply that K0(OF G, Fc) is isomorphic to the cokernel of
the homomorphism

1OF G,Fc : (FG)×→
J (FG)∏
v(OFvG)×

× (FcG)×

induced by

(FG)×→ J (FG)× (FcG)×, x 7→ ((locv(x))v, x−1).

Theorem 14.2. Conjecture 6.5 is true when G is abelian.

Proof. Suppose that x ∈ LC(OF G), and let [(xv)v, x∞] ∈ J (FG)× (FcG)× be a representative of x . We
shall explain how to construct an element [π ] ∈ H 1

t (F,G) such that λv(x) = λv(9([π ])) for all finite
places v of F . Since G is abelian, and therefore admits no nontrivial irreducible symplectic characters,
this will imply that x =9([π ]) (see Proposition 5.9(b)).

For each v, we have that xv · locv(x∞) ∈ Ht(FvG). As xv ∈ (FvG)×, this implies that locv(x∞) ∈
Ht(FvG) for each v. It follows from Proposition 2.3 that x∞ ∈ H(FG), and we see in addition that in
fact x∞ ∈ Ht(FG). Hence x∞ is the resolvend of a normal basis generator of a tame extension Fπ/F .
Set πv := locv(π). Then for each finite v, we have

τ(9−1
v (λv(x)))= [locv(x∞)] = τ([πv])

in Ht(FvG)/(FvG)×, which in turn implies that

λv(x)=9v([πv])= λv(9([π ])).

Hence x =9([π ]), as required. �

Proposition 14.3. If G is abelian, then the map 9 is injective.
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Proof. Let [π ] ∈ H 1
t (Fv,G), and suppose that [(xv)v, x∞] ∈ J (K1(FG))× (FcG)× is a representative

of 9([π ]). Then it follows from the proof of Theorem 14.2 that τ([π ])= x∞ in Ht(FG)/(FG)×. Since
τ is an isomorphism, we deduce that 9 is injective. �

15. Neukirch’s lifting theorem

Our main purpose in this section is to describe certain results, mainly from [Neukirch 1979], that will
be used in the proof of Theorem E. We refer the reader to [Neukirch 1979; 2008, IX.5] for full details
regarding these topics.

Let D be an arbitrary finite group. Consider the category D of homomorphisms η : G→ D of arbitrary
profinite groups G into D in which a morphism between two objects η1 : G1→ D and η2 : G2→ D is
defined to be a homomorphism ν : G1→ G2 such that η1 = η2 ◦ ν. We say that two such morphisms
νi : G1→ G2 (i = 1, 2) are equivalent if there is an element k ∈ Ker(η2) such that ν1(ω)= k · ν2(ω) · k−1

for all ω ∈ G1. Write Hom D(G1,G2) for the set of equivalence classes of homomorphisms G1 → G2,
and Hom D(G1,G2)epi for the subset of Hom D(G1,G2) consisting of equivalence classes of surjective
homomorphisms.

Suppose now that we have an exact sequence

0→ B→ G q
−→ D→ 0

with B abelian, and that L is a number field or a local field. Let h :�L → D be a fixed homomorphism.
We view�L

h
−→D and G q

−→D as being elements of D. The group D acts on B via inner automorphisms,
and this in turn induces an action of �L on B via h. We write L(B) for the smallest extension of L such
that �L(B) fixes B (i.e., L(B) is the field of definition of B).

It may be shown that the group H 1(L , B) acts on Hom D(�L ,G) in the following way. Let z ∈
Z1(L , B) be any 1-cocycle representing [z] ∈ H 1(L , B), and let ν ∈Hom(�L ,G) be any homomorphism,
representing an element [ν] ∈Hom D(�L ,G). Define z · ν :�L → G by

(z · ν)(ω)= z(ω) · ν(ω)

for all ω ∈�L . It is not hard to check that

h = q ◦ (z · ν),

and that the element [z · ν] ∈ Hom D(�L ,G) is independent of the choices of z and ν. It may also be
shown that Hom D(�L ,G) is a principal homogeneous space over H 1(L , B).

For a number field F , and a finite place v of F , we let Hom D(�Fv ,G)nr denote the set of classes of
homomorphisms �Fv → G that are trivial on Iv. We write J f (Hom D(�F ,G)) for the restricted direct
product over all finite places of F of the sets Hom D(�Fv ,G) with respect to the subsets Hom D(�Fv ,G)nr.

Now we can state Neukirch’s lifting theorem.



1878 Adebisi Agboola and Leon R. McCulloh

Theorem 15.1. Let F be a number field and let h : �F → D be a fixed, surjective homomorphism.
Suppose that

0→ B→ G q
−→ D→ 0

is an exact sequence for which B is a simple �F -module. (This implies that l · B = 0 for a unique
prime l.) Assume that the field of definition F(B) of B contains no nontrivial l-th roots of unity, and that
J f (Hom D(�F ,G)) 6=∅. Let S be any finite set of finite places of F. Then the natural map

Hom D(�F ,G)epi→
∏
v∈S

Hom D(�Fv ,G)

is surjective.

Proof. This is [Neukirch 1979, Main Theorem, p. 148]. �

The following result implies that Hom D(�Fv ,G) 6=∅ for all but finitely many v.

Proposition 15.2 [Neukirch 1979, Lemma 5]. Let F be a number field, and let v be a finite place of F.
Suppose that G1→ G2 is a surjective homomorphism of arbitrary profinite groups, and that there exists an
unramified homomorphism hv :�Fv → G2. Then HomG2(�Fv ,G1)nr 6=∅, and so HomG2(�Fv ,G1) 6=∅
also.

Proof. If hv is unramified, then hv factors through �Fv/Iv ' Ẑ, and a map Ẑ→ G2 may always be lifted
to a map Ẑ→ G1 by lifting the image of a topological generator of Ẑ. �

We now turn to two results of a local-global nature that will play a role in the proof of Theorem 16.4.
In order to describe them, we let 0 be a finite abelian group equipped with an action of �F such that 0 is
a simple �F -module. Then l ·0 = 0 for a unique prime l. Write F(0) for the field of definition of 0.

Theorem 15.3. Let M/F be a Galois extension with F(0) ⊆ M and µl * M , and let N/M be a finite
abelian extension. Let S be a finite set of finite places of F , and suppose given an element yv ∈ H 1(Fv, 0)
for each v ∈ S. Then there exists an element z ∈ H 1(F, 0) satisfying the following local conditions:

(i) zv = yv for each v ∈ S.

(ii) If v /∈ S, then zv is cyclic (i.e., is trivialised by a cyclic extension of Fv), and if zv is ramified, then v
splits completely in N/F.

Proof. This is [Neukirch 1979, Theorem 1]. �

In order to state our next result, we introduce the following notation.

Definition 15.4. Let T := {v1, . . . , vr } be any finite set of finite places of F containing all places that
ramify in F(0)/F and all places above l. Let pi denote the prime ideal of F corresponding to vi .
Proposition 4.8 implies that we may choose an integer N = N (T ) such that for each 1≤ i ≤ r and for
every place w of F(0) lying above vi , we have

Hom�F(0)w
(A0,UpN

i
(OF(0)cw))⊆ rag[Hom�F(0)w

(R0, O×F(0)cw)].
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Set

a= a(T )=
r∏

i=1

pi .

Let F(aN ) denote the ray class field of F modulo aN .

Theorem 15.5. Let v /∈ T be any finite place of F that splits completely in F(aN ), and suppose that s is
any nontrivial element of 0. Then there is an element b = b(v; s) ∈ H 1(F, 0) satisfying the following
local conditions:

(i) locvi (b)= 0 for 1≤ i ≤ r .

(ii) b|Iv = ϕ̃v,s (see Remark 7.11).

(iii) b is unramified away from v.

Proof. Let p be the prime ideal of F corresponding to v. Our hypotheses on v imply that p is principal,
with p ≡ 1 (mod aN ). Set M := F(0). As 0 is abelian, we have that H(M0) ' Hom�M (A0, (M

c)×)

(see (4-6)). Let $ be a generator of p, and define ρ ∈ Hom�M (A0, (M
c)×) by

ρ(α)=$ 〈α,s〉0 .

(This homomorphism is�M -equivariant because�M fixes 0.) Then ρ is the reduced resolvend of a normal
basis generator of an extension Mπ(ρ)/M corresponding to [π(ρ)] ∈ H 1(M, 0). Since p≡ 1 (mod aN ),
for each place w of M lying above a place vi in T , we have

locw(ρ) ∈ Hom�Mw
(A0,UpN

i
(OMc

w
))⊆ rag[Hom�Mw

(R0, O×Mc
w
)],

and so it follows that locw(π(ρ))= 0 (see (4-7)). In particular, π(ρ) is unramified at all places above T .
For all places w′ of M not lying above T or v we have that

locw′(ρ) ∈ Hom�M
w′
(A0, O×Mc

w′
),

and so π(ρ) is unramified at w′. This implies that π(ρ) is unramified away from v, since we have already
seen that π(ρ) does not ramify at any place above T . It is also easy to see that

b |Iw(v)= ϕ̃w(v),s

for any place w(v) of M lying above v (cf. the proof of Proposition 10.5(a)).
As $ ∈ F , we have that π(ρ) ∈ H 1(M, 0)Gal(M/F). Since 0�F = 0 (because 0 is a simple �F -

module), the restriction map H 1(F, 0)→ H 1(M, 0) is injective and induces an isomorphism H 1(F, 0)'
H 1(M, 0)Gal(M/F). Hence π(ρ) is the image of an element b ∈ H 1(F, 0) satisfying the conditions (i),
(ii) and (iii) of the theorem. �
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16. Soluble groups

In this section we shall use Neukirch’s lifting theorem to prove a result (see Theorem 16.4 below) that
implies Theorem E of the introduction. In order to describe this result, it will be helpful to formulate the
following definition.

Definition 16.1 (Property R). Let S be any finite (possibly empty) set of places of F . We shall say that
LC(OF G)S satisfies Property R if the following holds: Suppose given any fully ramified x ∈ LC(OF G)S .
For each finite place v of F , suppose also given a homomorphism πv,x ∈ Hom(�Fv ,G) such that
[πv,x ] ∈ H 1

t (Fv,G) and λv(x)=9v([πv,x ]). (Note that in general, such a choice of πv,x is not unique.)
Then there exists 5 ∈ Hom(�F ,G) with [5] ∈ H 1

t (F,G) such that

(a) x =9([5]),

(b) 5|Iv = πv,x |Iv for each finite place v of F .

(So in particular, x is cohomological.)

Proposition 16.2. If G is abelian, then LC(OF G) satisfies Property R.

Proof. We shall in fact prove a slightly stronger result. Suppose that G is abelian, and let x ∈ LC(OF G).
(Note that we do not assume that x is fully ramified.) Then Theorem 14.2 implies that x is cohomological.
As G is abelian, the maps 9 and 9v are injective (see Propositions 14.1 and 14.3). Hence it follows
that there is a unique [5] ∈ H 1

t (F,G) such that x =9([5]), and a unique [πv,x ] ∈ H 1
t (Fv,G) such that

λv(x)=9v([πv,x ]). We therefore see that

λv(x)=9v([5v])=9([πv,x ]),

and so 5v = πv,x . This implies that LC(OF G) satisfies Property R. �

Theorem 16.3. Suppose that LC(OF G)S satisfies Property R. Then R(OF G) is a subgroup of Cl(OF G).
If c ∈R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and (Oπ )= c. The
extensions Fπ/F may be chosen to have ramification disjoint from S.

Proof. This is an immediate consequence of Theorem 13.6. �

Our proof of Theorem E rests on the following result.

Theorem 16.4. Suppose that there is an exact sequence

0→ B→ G→ D→ 0,

where B is an abelian minimal normal subgroup of G with l · B = 0 for an odd prime l. Let S be any finite
set of finite places of F containing all places dividing |G|. Assume that the following conditions hold:

(i) The set LC(OF D)S satisfies Property R.

(ii) We have (|G|, hF )= 1, where hF denotes the class number of F.

(iii) Either G admits no irreducible symplectic characters, or F has no real places.
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(iv) The field F contains no nontrivial l-th roots of unity.

Then LC(OF G)S satisfies Property R.

Proof. We shall establish this result in several steps, one of which crucially involves Neukirch’s lifting
theorem (see Theorem 15.1).

Suppose that x ∈LC(OF G)S is fully ramified. For each finite place v of F , choose πv,x ∈Hom(�Fv ,G)
such that [πv,x ] ∈ H 1

t (Fv,G) with

λv(x)=9v([πv,x ]).

The choice of πv,x is not unique. However, if a(πv,x) is any normal integral basis generator of Fπv,x/Fv ,
with Stickelberger factorisation (see Definition 7.12)

rG(a(πv,x))= u(a(πv,x)) · rG(anr(πv,x)) · rG(ϕ(πv,x)), (16-1)

then Proposition 10.5(c) implies that Det(rG(ϕ(πv,x))) is independent of the choice of πv,x . Hence, if
ϕ(πv,x)=ϕv,s , say, then it follows from Proposition 10.5(b) that the subgroup 〈s〉 of G (up to conjugation)
and the determinant Det(rG(ϕv,s)) of the resolvend rG(ϕv,s) do not depend upon the choice of πv,x .

We write q :G→ D for the obvious quotient map, and we use the same symbol q for the induced maps

K0(OF G, Fc)→ K0(OF D, Fc), H 1(F,G)→ H 1(F, D), H 1(Fv,G)→ H 1(Fv, D).

Set

x := q(x), πv,x := q(πv,x).

Then x ∈ LC(OF D)S with

λv(x)=9D,v(πv,x)

for each finite place v of F , and x is fully ramified.
By hypothesis, LC(OF D)S satisfies Property R, and so there exists ρ ∈ Hom(�F , D) with [ρ] ∈

H 1
t (F, D) such that

x =9D([ρ]) (16-2)

and

ρ|Iv = πv,x |Iv (16-3)

for each finite place v of F . Hence, for each such v, we have that

Det(rD(ϕ(ρv)))= Det(rD(ϕ(πv,x))),

using the notation established in (16-1) above concerning Stickelberger factorisations. As x is fully
ramified, we see from the proof of Theorem 13.6 that ρ is surjective, and so Fρ is a field. We also see
that, as x ∈ LC(OF D)S , the extension Fρ/F is unramified at all places dividing |D|. Furthermore, if v | l
(so v ∈ S), then since πv,x is unramified, the same is true of πv,x , and so Fρ/F is also unramified at v.
Hence, as F ∩µl = {1} by hypothesis, it follows that Fρ ∩µl = {1} also.
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For each finite place v of F , we are now going to use the fact that x ∈ LC(OF G) to construct a lift
ρ̃v ∈ Hom(�Fv ,G) of ρv such that [ρ̃v] ∈ H 1

t (Fv,G) with

ρ̃v|Iv = πv,x |Iv . (16-4)

To do this, we first observe that if ϕ(πv,x)= ϕv,s , then ϕ(πv,x)= ϕv,s , where s = q(s), and so we have

ϕ(ρv)= ϕ(πv,x)= ϕv,s

(see (16-3)).
Next, we write

ρv = ρv,r · ρv,nr ,

with [ρv,nr ] ∈ H 1
nr(Fv, D) (see (7-7)). Since ρv,nr is unramified, Proposition 15.2 implies that [ρv,nr ] may

be lifted to [ρ̃v,nr ] ∈ H 1
nr(Fv,G). Let a(ρ̃v,nr ) be a normal integral basis generator of Fρ̃v,nr /Fv. Then

rG(a(ρ̃v,nr )) · rG(ϕv,s) is the resolvend of a normal integral basis generator of a tame Galois G-extension
Fρ̃v/Fv such that q([ρ̃v])= ρv (see Corollary 7.8 and Theorem 7.9). As ϕ(πv,x)= ϕv,s , we see from the
construction of ρ̃ that

ρ̃v|Iv = πv,x |Iv = ϕ̃v,s,

where [ϕ̃v,s] ∈ H 1
t (Iv,G) is defined in Remark 7.11. The map ρ̃v is our desired lift of ρv.

We are now ready to apply the results contained in Section 15. Consider the following diagram:

0 −−−→ B −−−→ G
q

−−−→ D −−−→ 0x ρ
�F

The group D acts on B via inner automorphisms, and we view B as being an �F -module via ρ. Then
B is a simple �F -module because B is a minimal normal subgroup of G and ρ is surjective. The field
of definition F(B) of B is contained in the field Fρ , and so in particular F(B) contains no nontrivial l-th
roots of unity. We are going to construct an element 5 ∈Hom D(�F ,G) such that

5|Iv = πv,x |Iv

for each finite place v of F . This will be accomplished in the following three steps:

I. We begin by observing that our construction above of a lift ρ̃v of ρv for each finite v shows that
J f (Hom D(�F ,G)) is nonempty. Let S be the set of finite places v of F at which x is ramified or v | |G|.
Theorem 15.1 implies that there exists 51 ∈Hom D(�F ,G) such that 51,v = ρ̃v for all v ∈ S. Observe
that 51 is unramified at all v | |G| because ρ̃v is unramified at these places (see (16-4)). Note also that
51 may well be ramified outside S.

II. Recall that Hom D(�F ,G) (respectively Hom D(�Fv ,G) for each finite v) is a principal homogeneous
space over H 1(F, B) (respectively H 1(Fv, B)). Let S1 denote the set of finite places v /∈ S of F at which
51 is ramified. For each v ∈ S1, choose yv ∈ H 1(Fv, B) so that yv ·51,v ∈Hom D(�Fv ,G) is unramified.
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Now apply Definition 15.4 (with 0= B and T =S) to obtain an ideal a= a(S) and an integer N = N (S)
as described there. Theorem 15.3 implies that there exists an element z ∈ H 1(F, B) such that:

(z1) zv = yv for all v ∈ S1.

(z2) zv = 1 for all v ∈ S.

(z3) If v /∈ S∪ S1, then zv is cyclic, and if zv is ramified, then v splits completely in (F(B) · F(aN ))/F ,
where F(aN ) denotes the ray class field of F modulo aN .

Set 52 := z ·51 ∈Hom D(�F ,G). Note that, as z might possibly be ramified, the homomorphism 52

might be ramified outside S. We shall eliminate any such potential ramification in the third and final step.

III. Let Sz be the set of places of F at which z is ramified (so S∩ Sz =∅). We see from (z3) that each
v ∈ Sz is totally split in F(aN )/F . Hence Theorem 15.5 implies that for each v ∈ Sz , we may choose
b(v) ∈ H 1(F, B) such that:

(b1) b(v)w = 1 for all w ∈ S.

(b2) b(v)|Iv = z−1
v |Iv .

(b3) b(v) is unramified away from v.

Set

5 :=

[( ∏
v∈Sz

b(v)
)
· z
]
·52.

Then it follows directly from the construction of 5 that we have

5|Iv = πv,x |Iv (16-5)

for all finite places v of F .
We claim that

x =9(5).

To show this, let τ =9(5)−1
· x . We see from (16-5) that

λv(τ ) ∈ Im(9nr
v )

for every finite place v of F . As either G admits no irreducible symplectic characters or F has no real places,
and as (hF , |G|)= 1 by hypothesis, Proposition 6.8(b) implies that τ = 0. Hence x =9(5), as claimed.

This completes the proof that LC(OF G)S satisfies Property R. �

Theorem 16.4 (in conjunction with Proposition 16.2) yields an abundant supply of groups G for which
LC(OF G)S satisfies Property R (for a suitable choice of S), and therefore also for which Theorem 16.3
holds. Here is an example of this.

Theorem 16.5. Let G be of odd order. Suppose that (|G|, hF ) = 1 and that F contains no nontrivial
|G|-th roots of unity. Let S be any finite set of finite places of F containing all places dividing |G|. Then
LC(OF G)S satisfies Property R.
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Proof. We shall establish this result by induction on the order of G. We first note that Proposition 16.2
implies that the theorem holds if G is abelian.

Suppose now that G is an arbitrary finite group of odd order. As |G| is odd, a well-known theorem of
Feit and Thompson [1963] implies that G is soluble. Hence G has an abelian minimal normal subgroup
B such that l · B = 0 for some odd prime l (see, e.g., [Rotman 1995, Theorem 5.24]), and there is an
exact sequence

0→ B→ G→ D→ 0

with D soluble. As |G| is odd, G admits no nontrivial irreducible symplectic characters. We may therefore
suppose by induction on the order of G that LC(OF D)S satisfies Property R. The desired result now
follows from Theorem 16.4. �

Remark 16.6. It follows from Theorem 14.2 that in Theorem 16.4, we may take D to be a finite abelian
group of arbitrary order (subject of course to the obvious constraint that the number field F is such that all
other conditions of Theorem 16.4 are satisfied). This enables one to show that Property R holds for many
nonabelian groups of even order (e.g., S3). However, if for example G is a nonabelian 2-group (e.g., H8),
then because µ2 ⊆ F for any number field F , we can no longer appeal to Neukirch’s lifting theorem, and
our proof of Theorem 16.4 fails. It appears very likely that new ideas are needed to establish Property R in
such cases (see also the remarks contained in the final paragraph of [Neukirch 1979, Introduction], where
a similar difficulty is briefly discussed in the context of the inverse Galois problem for finite groups).

We can now prove Theorem E of the introduction.

Theorem 16.7. Let G be of odd order and suppose that (|G|, hF )= 1, where hF denotes the class number
of F. Suppose also that F contains no nontrivial |G|-th roots of unity. Then R(OF G) is a subgroup of
Cl(OF G). If c ∈ R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and
(Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places
of F.

Proof. This is an immediate consequence of Theorems 16.5 and 16.3. �
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Categorical representations and KLR algebras
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We prove that the KLR algebra associated with the cyclic quiver of length e is a subquotient of the KLR
algebra associated with the cyclic quiver of length e+ 1. We also give a geometric interpretation of this
fact. This result has an important application in the theory of categorical representations. We prove that a
category with an action of s̃le+1 contains a subcategory with an action of s̃le. We also give generalizations
of these results to more general quivers and Lie types.
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1. Introduction

Consider the complex affine Lie algebra s̃le = sle[t, t−1
] ⊕ C1. In this paper, we study categorical

representations of s̃le. Our goal is to relate the notion of a categorical representation of s̃le with the notion
of a categorical representation of s̃le+1.

The Lie algebra s̃le has generators ei , fi for i ∈ [0, e− 1]. Let α0, . . . , αe−1 be the simple roots of s̃le.
Fix k ∈ [0, e− 1]. Consider the following inclusion of Lie algebras s̃le ⊂ s̃le+1:

er 7→


er if r ∈ [0, k− 1],
[ek, ek+1] if r = k,
er+1 if r ∈ [k+ 1, e− 1],

fr 7→


fr if r ∈ [0, k− 1],
[ fk+1, fk] if r = k,
fr+1 if r ∈ [k+ 1, e− 1].

(1)

It is clear that each s̃le+1-module can be restricted to the subalgebra s̃le of s̃le+1. So it is natural to ask
if we can do the same with categorical representations.

First, we recall the notion of a categorical representation. Let k be a field. Let C be an abelian
Hom-finite k-linear category that admits a direct sum decomposition C =

⊕
µ∈Ze Cµ. A categorical

representation of s̃le in C is a pair of biadjoint functors Ei , Fi : C → C for i ∈ [0, e− 1] satisfying a
list of axioms. The main axiom is that for each positive integer d there is an algebra homomorphism
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Keywords: KLR algebra, categorical representation, Hecke algebra, affine Lie algebra, quiver variety, flag variety.
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Rd(A
(1)
e−1)→ End(Fd)op, where F =

⊕e−1
i=0 Fi and Rd(A

(1)
e−1) is the KLR algebra of rank d associated

with the quiver A(1)e−1 (i.e., with the cyclic quiver of length e).
Let C be an abelian Hom-finite k-linear category. Assume that C =

⊕
µ∈Ze+1 Cµ has a structure of a

categorical representation of s̃le+1 with respect to functors E i , F i for i ∈ [0, e]. We want to restrict the
action of s̃le+1 on C to s̃le. The most obvious way to do this is to define new functors Ei , Fi : C→ C, for
i ∈ [0, e− 1], from the functors E i , F i : C→ C, for i ∈ [0, e], by the same formulas as in (1). Of course,
this makes no sense because the notion of a commutator of two functors does not exist. However, we are
able to get a structure of a categorical representation on a subcategory C ⊂ C (and not on the category C
itself). We do this in the following way.

Assume additionally that the category Cµ is zero whenever µ has a negative entry. For each e-
tuple µ = (µ1, . . . , µe) ∈ Ze we consider the (e+1)-tuple µ = (µ1, . . . , µk, 0, µk+1, . . . , µe) and we
set Cµ = Cµ,

C =
⊕
µ∈Ze

Cµ.

Next, consider the endofunctors of C given by

Ei =


E i |C if 06 i < k,
Ek Ek+1|C if i = k,
E i+1|C if k < i < e,

Fi =


F i |C if 06 i < k,
Fk+1 Fk |C if i = k,
F i+1|C if k < i < e.

The following theorem holds.

Theorem 1.1. The category C has the structure of a categorical representation of s̃le with respect to the
functors E0, . . . , Ee−1, F0, . . . , Fe−1. �

Let us explain our motivation for proving Theorem 1.1 (see [Maksimau 2015b] for more details).
Let Oν

−e be the parabolic category O for ĝlN = glN [t, t−1
] ⊕ C1⊕ C∂ with parabolic type ν at level

−e− N . By [Rouquier et al. 2016], there is a categorical representation of s̃le in Oν
−e. Now we apply

Theorem 1.1 to C = Oν
−(e+1). It happens that in this case the subcategory C ⊂ C defined as above is

equivalent to Oν
−e. This allows us to compare the categorical representations in the category O for ĝlN

for two different (negative) levels.
A result similar to Theorem 1.1 has recently appeared in [Riche and Williamson 2018], where it is

applied in the following way. It is known from [Chuang and Rouquier 2008] that there is a categorical
representation of s̃lp in the category Rep(GLn(Fp)) of finite dimensional algebraic representations of
GLn(Fp). Riche and Williamson used this fact to construct a categorical representation of the Hecke
category on the principal block Rep0(GLn(Fp)) of Rep(GLn(Fp)) for p > n. Their proof is in two steps.
First they show that the action of s̃lp on Rep(GLn(Fp)) induces an action of s̃ln on some full subcategory
of Rep(GLn(Fp)). The second step is to show that the action of s̃ln constructed on the first step induces
an action of the Hecke category on Rep0(GLn(Fp)). The first step of their proof is essentially p−n
consecutive applications of Theorem 1.1.

The main difficulty in proving Theorem 1.1 is showing that the action of the KLR algebra Rd(A
(1)
e ) on



Categorical representations and KLR algebras 1889

Fd , where F =
⊕e

i=0 F i , yields an action of the KLR algebra Rd(A
(1)
e−1) on Fd . So, to prove the theorem,

we need to compare the KLR algebra Rd(A
(1)
e ) with the KLR algebra Rd(A

(1)
e−1). This is done in Section 2.

We introduce the abbreviations 0 = A(1)e−1 and 0 = A(1)e . Let α =
∑e−1

i=0 diαi be a dimension vector of
the quiver 0. We consider the dimension vector α of 0 defined by

α =

k∑
i=0

diαi +

e∑
i=k+1

di−1αi .

Let Rα(0) and Rα(0) be the KLR algebras associated with the quivers 0 and 0 and the dimension
vectors α and α. The algebra Rα(0) contains idempotents e(i) parametrized by certain sequences i of
vertices of 0. In Section 2D we consider some sets of such sequences I αord and I αun. Set e=

∑
i∈I αord

e(i)∈
Rα(0) and

Sα(0)= eRα(0)e
/ ∑

i∈I αun

eRα(0)e(i)Rα(0)e.

The main result of Section 2 is the following theorem.

Theorem 1.2. There is an algebra isomorphism Rα(0)' Sα(0). �

The paper has the following structure. In Section 2 we study KLR algebras. In particular, we prove
Theorem 1.2. In Section 3 we study categorical representations. We prove our main result about categorical
representations (Theorem 1.1). We also generalize this theorem to arbitrary symmetric Kac–Moody
Lie algebras. In Appendix A we give a geometric construction of the isomorphism in Theorem 1.2. In
Appendix B, we give some versions of Theorems 1.1 and 1.2 in type A over a local ring.

It is important to emphasize the relation between the present paper and [Maksimau 2015b]. That preprint
contains (an earlier version of) the results of the present paper and an application of these results to the
category O for ĝlN . The preprint is expected to be published as two different papers. The present paper is
the first of them. It contains the results of the preprint about KLR algebras and categorical representations.
The second paper will give an application of the results of the first paper to the affine category O.

2. KLR algebras

For a noetherian ring A we denote by mod (A) the abelian category of left finitely generated A-modules.
We denote by N the set of nonnegative integers.

2A. Kac–Moody algebras associated with a quiver. Let 0 = (I, H) be a quiver without 1-loops with
the set of vertices I and the set of arrows H . For i, j ∈ I let hi, j be the number of arrows from i to j and
set also ai, j = 2δi, j − hi, j − h j,i . Let gI be the Kac–Moody algebra over C associated with the matrix
(ai, j ). Denote by ei , fi for i ∈ I the Serre generators of gI .

Remark 2.1. By the Kac–Moody Lie algebra associated with the Cartan matrix (ai, j ) we understand the
Lie algebra with the set of generators ei , fi , hi , i ∈ I , modulo the defining relations
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[hi , h j ] = 0,

[hi , e j ] = ai, j e j ,

[hi , f j ] = −ai, j e j ,

[ei , f j ] = δi, j hi ,

(ad(ei ))
1−ai, j (e j )= 0 i 6= j,

(ad( fi ))
1−ai, j ( f j )= 0 i 6= j.

In particular, if (ai, j ) is the affine Cartan matrix of type A(1)e−1, then we get the Lie algebra s̃le(C)=

sle(C)⊗C[t, t−1
]⊕C1 (not sle(C)⊗C[t, t−1

]⊕C1⊕C∂).

For each i ∈ I , let αi be the simple root corresponding to ei . Set

Q I =
⊕
i∈I

Zαi and Q+I =
⊕
i∈I

Nαi .

For α=
∑

i∈I diαi ∈Q+I denote by |α| its height, i.e., we have |α|=
∑

i∈I di . Set I α=
{

i = (i1, . . . , i|α|)∈
I |α| :

∑|α|
r=1 αir = α

}
.

2B. Doubled quiver. Let 0 = (I, H) be a quiver without 1-loops. Fix a decomposition I = I0 t I1 such
that there are no arrows between the vertices in I1. In this section we define a doubled quiver 0 = (I , H)
associated with (0, I0, I1). The idea is to “double” each vertex in the set I1 (we do not touch the vertices
from I0). We replace each vertex i ∈ I1 by a couple of vertices i1 and i2 with an arrow i1

→ i2. Each
arrow entering i should be replaced by an arrow entering to i1, each arrow coming from i should be
replaced by an arrow coming from i2.

Now we describe the construction of 0 = (I , H) formally. Let I 0 be a set that is in bijection with I0.
Let i0 be the element of I 0 associated with an element i ∈ I0. Similarly, let I 1 and I 2 be sets that are in
bijection with I1. Denote by i1 and i2 the elements of I 1 and I 2 respectively that correspond to an element
i ∈ I1. Put I = I 0 t I 1 t I 2. We define H in the following way. The set H contains 4 types of arrows:

• An arrow i0
→ j0 for each arrow i→ j in H with i, j ∈ I0.

• An arrow i0
→ j1 for each arrow i→ j in H with i ∈ I0, j ∈ I1.

• An arrow i2
→ j0 for each arrow i→ j in H with i ∈ I1, j ∈ I0.

• An arrow i1
→ i2 for each vertex i ∈ I1.

Set I∞=
∐

d∈N I d and I∞=
∐

d∈N I d , where I d and I d are the cartesian products. The concatenation
yields a monoid structure on I∞ and I∞. Let φ : I∞→ I∞ be the unique morphism of monoids such
that for i ∈ I ⊂ I∞ we have

φ(i)=
{

i0 if i ∈ I0,

(i1, i2) if i ∈ I1.
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There is a unique Z-linear map φ : Q I → Q I such that φ(I α)⊂ I
φ(α)

for each α ∈ Q+I . It is given by

φ(αi )=

{
αi0 if i ∈ I0,

αi1 +αi2 if i ∈ I1.

2C. KLR algebras. Let k be a field. Let 0= (I, H) be a quiver without 1-loops. For r ∈[1, d−1] let sr be
the transposition (r, r+1) ∈Sd . For i = (i1, . . . , id) ∈ I d set sr (i)= (i1, . . . , ir−1, ir+1, ir , ir+2, . . . , id).
For i, j ∈ I we set

Qi, j (u, v)=
{

0 if i = j,
(v− u)hi, j (u− v)h j,i else.

Definition 2.2. Assume that the quiver 0 is finite. The KLR-algebra Rd,k(0) is the k-algebra with the
set of generators τ1, . . . , τd−1, x1, . . . , xd , e(i) where i ∈ I d , modulo the following defining relations:

e(i)e( j)= δi, j e(i),∑
i∈I d

e(i)= 1,

xr e(i)= e(i)xr ,

τr e(i)= e(sr (i))τr ,

xr xs = xs xr ,

τr xr+1e(i)= (xrτr + δir ,ir+1)e(i),

xr+1τr e(i)= (τr xr + δir ,ir+1)e(i),

τr xs = xsτr if s 6= r, r + 1,

τrτs = τsτr if |r − s|> 1,

τ 2
r e(i)=

{
0 if ir = ir+1,

Qir ,ir+1(xr , xr+1)e(i) else,

(τrτr+1τr−τr+1τrτr+1)e(i)=
{
(xr+2− xr )

−1(Qir ,ir+1(xr+2, xr+1)−Qir ,ir+1(xr , xr+1))e(i) if ir= ir+2,

0 else.

for each i , j , r and s. We may write Rd,k = Rd,k(0). The algebra Rd,k admits a Z-grading such that
deg e(i)= 0, deg xr = 2 and deg τse(i)=−ais ,is+1 , for each 16 r 6 d , 16 s < d and i ∈ I d .

For each α ∈ Q+I such that |α| = d set e(α) =
∑

i∈I α e(i) ∈ Rd,k. It is a homogeneous central
idempotent of degree zero. We have the following decomposition into a sum of unitary k-algebras
Rd,k =

⊕
|α|=d Rα,k, where Rα,k = e(α)Rd,k.

Let k(I )d be the direct sum of copies of the ring kd [x] := k[x1, . . . , xd ] labeled by I d . We write

k(I )d =
⊕
i∈I d

kd [x]e(i), (2)
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where e(i) is the idempotent of the ring k(I )d projecting to the component i . A polynomial in kd [x] can be
considered as an element of k(I )d via the diagonal inclusion. For each i, j ∈ I fix a polynomial Pi, j (u, v)
such that we have Qi, j (u, v)= Pi, j (u, v)Pj,i (v, u).

Denote by ∂r the Demazure operator on kd [x], i.e., we have

∂r ( f )= (xr − xr+1)
−1(sr ( f )− f ).

The following is proved in [Rouquier 2008, §3.2].

Proposition 2.3. The algebra Rd,k has a faithful representation in the vector space k(I )d such that the
element e(i) acts by projection to k(I )d e(i), the element xr acts by multiplication by xr and such that for
f ∈ kd [x] we have

τr · f e(i)=
{
∂r ( f )e(i) if ir = ir+1,

Pir ,ir+1(xr+1, xr )sr ( f )e(sr (i)) otherwise.
(3)

We will always choose Pi, j in the following way:

Pi, j (u, v)= (u− v)h j,i .

Remark 2.4. There is an explicit construction of a basis of a KLR algebra (see [Khovanov and Lauda
2009, Theorem 2.5]). Assume i, j ∈ I α . Set Si, j = {w ∈Sd :w(i)= j}. For each permutation w ∈Si, j

fix a reduced expression w = sp1 · · · spr and set τw = τp1 · · · τpr . Then the vector space e( j)Rα,ke(i) has
a basis {τwxa1

1 · · · x
ad
d e(i) : w ∈Si, j , a1, . . . , ad ∈ N}. Note that the element τw depends on the reduced

expression of w. Moreover, if we change the reduced expression of w, then the element τwe(i) is changed
only by a linear combination of monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e(i) with t < `(w). Note also

that if sp1 · · · spr is not a reduced expression, then the element τp1 · · · τpr e(i) may be written as a linear
combination of monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e(i) with t < r . Moreover, in both situations

above, the linear combination can be chosen in such a way that for each monomial τq1 · · · τqt x
b1
1 · · · x

bd
d e(i)

in the linear combination, the expression sq1 · · · sqt is reduced.

Remark 2.5. The algebra Rd,k in Definition 2.2 is well defined only for a finite quiver because of the
second relation. However, the algebra Rα,k is well defined even if the quiver is infinite because each
α uses a finite set of vertices. Thus, for an infinite quiver we can define Rd,k as Rd,k =

⊕
|α|=d Rα,k.

However, in this case the algebra Rd,k is not unitary.

2D. Balanced KLR algebras. From now on the quiver 0 is assumed to be finite. Fix a decomposition
I = I0t I1 as in Section 2B and consider the quiver 0= (I , H) as in Section 2B. Recall the decomposition
I = I 0 t I 1 t I 2. In this section we work with the KLR algebra associated with the quiver 0.

We say that a sequence i = (i1, i2, . . . , id) ∈ I d is unordered if there is an index r ∈ [1, d] such that the
number of elements from I 2 in the sequence (i1, i2, . . . , ir ) is strictly greater than the number of elements
from I 1. We say that it is well-ordered if for each index a such that ia = i1 for some i ∈ I1, we have a< d
and ia+1 = i2. We denote by I αord and I αun the subsets of well-ordered and unordered sequences in I α.
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The map φ from Section 2B yields a bijection

φ : Q+I →
{
α =

∑
i∈I

diαi ∈ Q+
I
: di1 = di2,∀i ∈ I1

}
, α 7→ α.

Fix α ∈ Q+I . Set e=
∑

i∈I αord
e(i) ∈ Rα,k(0).

Definition 2.6. For α ∈ Q+I , the balanced KLR algebra is the algebra

Sα,k(0)= eRα,k(0)e
/∑

i∈I αun

eRα,k(0)e(i)Rα,k(0)e.

We may write Sα,k(0)= Sα,k.

Remark 2.7. Assume that i = (i1, . . . , id) ∈ I αord. Let a be an index such that ia ∈ I 1. We have the
relation τ 2

a e(i) = (xa+1 − xa)e(i) in Rα,k. Moreover, we have τ 2
a e(i) = τae(sa(i))τae(i) and sa(i) is

unordered. Thus we have xae(i)= xa+1e(i) in Sα,k.

2E. The polynomial representation of Sα,k. We assume α=
∑

i∈I diαi ∈Q+I . Let i = (i1, . . . , id)∈ I αord.
Denote by J (i) the ideal of the polynomial ring kd [x]e(i)⊂k(I )d generated by the set

{(xr − xr+1)e(i) : ir ∈ I 1}.

Lemma 2.8. Assume that i∈ I αord and j∈ I αun. Then each element of e(i)Rα,ke( j) maps kd [x]e( j) to J (i).

Proof. We will prove by induction on k that for all i ∈ I αord and j ∈ I αun and all p1, . . . , pk such that the
permutation w = sp1 · · · spk ∈Sd satisfies w( j)= i , the monomial τp1 · · · τpk maps kd [x]e( j) to J (i).

Assume k=1. Write p= p1. Let us write i= (i1, . . . , id) and j= ( j1, . . . , jd). Then we have i= sp( j).
By assumptions on i and j we know that there exists i ∈ I1 such that i p = jp+1 = i1 and i p+1 = jp = i2.
In this case the statement is obvious because τp maps f e( j) ∈ kd [x]e( j) to (x p+1− x p)sp( f )e(i) by (3).

Now consider a monomial τp1 · · · τpk such that the permutation w = sp1 · · · spk satisfies w( j)= i and
assume that the statement is true for all such monomials of smaller length. By assumptions on i and j
there is an index r ∈ [1, d] such that ir = i1 for some i ∈ I1 and w−1(r + 1) < w−1(r). Thus w has a
reduced expression of the form w = sr sr1 · · · srh . This implies that τp1 · · · τpk e( j) is equal to a monomial
of the form τrτr1 · · · τrh e( j) modulo monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e( j) with t < k, see

Remark 2.4. As the sequence sr (i) is unordered, the case k = 1 and the induction hypothesis imply the
statement. �

Lemma 2.9. Assume that i, j ∈ I αord. Then each element of e(i)Rα,ke( j) maps J ( j) into J (i).

Proof. Take y ∈ e(i)Rα,ke( j). We must prove that for each r ∈ [1, d] such that jr = i1 for some i ∈ I1

and each f ∈ kd [x] we have y((xr − xr+1) f e( j)) ∈ J (i). We have (xr − xr+1) f e( j)=−τ 2
r ( f e(i)) (see

Remark 2.7). This implies

y((xr − xr+1) f e( j))=−yτ 2
r ( f e( j))=−yτr e(sr ( j))(τr ( f e( j))).

Thus Lemma 2.8 implies the statement because the sequence sr ( j) is unordered. �
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The representation of Rα,k on
k(I )α :=

⊕
i∈I α

k|α|[x]e(i)

yields a representation of eRα,ke on

k(I )α,ord :=
⊕
i∈I αord

k|α|[x]e(i).

Set Jα,ord =
⊕

i∈I αord
J (i). From Lemmas 2.8 and 2.9 we deduce the following.

Lemma 2.10. The representation of Rα,k on k(I )α factors through a representation of Sα,k on k(I )α,ord/Jα,ord.
This representation is faithful.

Proof. The faithfulness is proved in the proof of Theorem 2.12. �

2F. The comparison of the polynomial representations. Fix α ∈ Q+I . Set d = |α| and d = |α|. For each
sequence i = (i1, . . . , id) ∈ I α and r ∈ [1, d] we denote by r ′ or r ′i the positive integer such that r ′− 1 is
the length of the sequence φ(i1, . . . , ir−1) ∈ I∞.

For r ∈ [1, d] and r ∈ [1, d − 1] consider the element x∗r ∈ Sα,k and τ ∗r ∈ Sα,k, respectively, such that
for each i ∈ I α we have

x∗r e(φ(i))= xr ′e(φ(i)), τ ∗r e(φ(i))=



τr ′e(φ(i)), if ir , ir+1 ∈ I0,

τr ′τr ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

τr ′+1τr ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,

τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) if ir , ir+1 ∈ I1, ir 6= ir+1,

−τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) if ir = ir+1 ∈ I1.

For each i ∈ I α we have the algebra isomorphism

kd [x]e(i)' kd [x]e(φ(i))/J (φ(i)), xr e(i) 7→ xr ′e(φ(i)).

We will always identify k(I )α with k(I )α,ord/Jα,ord via this isomorphism.

Lemma 2.11. The action of the elements e(i), xr e(i) and τr e(i) of Rα,k on k(I )α is the same as the action
of the elements e(φ(i)), x∗r e(φ(i)), τ ∗r e(φ(i)) of Sα,k on k(I )α,ord/Jα,ord.

Proof. The proof is based on the observation that by construction for each i ∈ I1 and j ∈ I0 we have

Pi1, j0(u, v)Pi2, j0(u, v)= Pi, j (u, v), Pj0,i1(u, v)Pj0,i2(u, v)= Pj,i (u, v). (4)

For each i ∈ I α, we write φ(i)= (i ′1, i ′2, . . . , i ′
d
). The only difficult part concerns the operator τr e(i)

when at least one of the elements ir or ir+1 is in I1. Assume that ir ∈ I1 and ir+1 ∈ I0. In this case we have

i ′r ′ = (ir )
1
∈ I 1, i ′r ′+1 = (ir )

2
∈ I 2, i ′r ′+2 = (ir+1)

0
∈ I 0.

In particular, the element i ′r ′+2 is different from i ′r ′ and i ′r ′+1. Then, by (3), for each f ∈ kd [x] the element
τ ∗r e(φ(i))= τr ′τr ′+1e(φ(i)) maps f e(φ(i)) ∈ k(I )α,ord/Jα,ord to
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Pi ′r ′ ,i
′

r ′+2
(xr ′+1, xr ′)sr ′(Pi ′r ′+1,i

′

r ′+2
(xr ′+2, xr ′+1)sr ′+1( f ))e(sr ′sr ′+1(φ(i)))

= Pi ′r ′ ,i
′

r ′+2
(xr ′+1, xr ′)Pi ′r ′+1,i

′

r ′+2
(xr ′+2, xr ′)sr ′sr ′+1( f )e(φ(sr (i)))

= Pir ,ir+1(xr ′+1, xr ′)sr ′sr ′+1( f )e(φ(sr (i))),

where the last equality holds by (4). Thus we see that the action of τ ∗r e(φ(i)) on the polynomial
representation is the same as the action of τr e(i). The case when ir ∈ I0 and ir+1 ∈ I1 can be done similarly.

Assume now that ir 6= ir+1 are both in I1. By the assumption on the quiver 0 (see Section 2B), there are
no arrows in 0 between ir and ir+1. Thus there are no arrows in 0 between any of the vertices (ir )

1
= i ′r ′

or (ir )
2
= i ′r ′+1 and any of the vertices (ir+1)

1
= i ′r ′+2 or (ir+1)

2
= i ′r ′+3. Then, by (3), for each f ∈ kd [x]

the element τ ∗r e(i)= τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) maps f e(φ(i)) to

sr ′+1sr ′+2sr ′sr ′+1( f )e(φ(sr (i))).

Thus we see that the action of τ ∗r e(φ(i)) on the polynomial representation is the same as that of τr e(i).
Finally, assume that ir = ir+1 ∈ I1. In this case we have

(ir )
1
= i ′r ′ = (ir+1)

1
= i ′r ′+2 and (ir )

2
= i ′r ′+1 = (ir+1)

2
= i ′r ′+3.

Then, by (3), for each f ∈ kd [x] the element τ ∗r e(φ(i))=−τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) maps f e(φ(i)) to

sr ′+1∂r ′+2∂r ′(xr ′+1− xr ′+2)sr ′+1( f )e(φ(sr (i))),

where ∂r is the Demazure operator (see the definition before Proposition 2.3). To prove that this gives
the same result as for τr e(i), it is enough to check this on monomials xn

r xm
r+1e(i). Assume for simplicity

that n > m. The situation n 6 m can be treated similarly. The element τr e(i) maps this monomial to

∂r (xn
r xm

r+1)e(i)=−
n−1∑
a=m

xa
r xn+m−1−a

r+1 e(i).

Here the symbol
∑y

a=x means 0 when y = x − 1. The element τ ∗r e(φ(i)) maps xn
r ′+1xm

r ′+2e(φ(i)) to
sr ′+1∂r ′+2∂r ′[xm+1

r ′+1 xn
r ′+2− xm

r ′+1xn+1
r ′+2]e(φ(i)), which equals

sr ′+1

[
−

( m∑
a=0

xa
r ′x

m−a
r ′+1

)( n−1∑
b=0

xb
r ′+2xn−1−b

r ′+3

)
+

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+1

)( n∑
b=0

xb
r ′+2xn−b

r ′+3

)]
e(φ(i))

=

[
−

( m∑
a=0

xa
r ′x

m−a
r ′+2

)( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+3

)
+

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+2

)( n∑
b=0

xb
r ′+1xn−b

r ′+3

)]
e(φ(i))

=

[
−xm

r ′

( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+3

)
+ xn

r ′+1

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+2

)]
e(φ(i))

=

[
−xm

r ′+1

( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+2

)
+ xn

r ′+1

(m−1∑
a=0

xa
r ′+1xm−1−a

r ′+2

)]
e(φ(i))=−

(n−1∑
a=m

xa
r ′+1xm+n−1−a

r ′+2

)
e(φ(i)).
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Here the first equality follows from the following property of the Demazure operator

∂r (xn
r+1)=−∂r (xn

r )=

n−1∑
a=0

xa
r xn−1−a

r+1 ,

the fourth equality follows from Remark 2.7. Other equalities are obtained by elementary manipulations
with sums. �

2G. The isomorphism 8.

Theorem 2.12. For each α ∈ Q+I , there is an algebra isomorphism 8α,k : Rα,k→ Sα,k such that

e(i) 7→ e(φ(i)),

xr e(i) 7→ x∗r e(φ(i)),

τr e(i) 7→ τ ∗r e(φ(i)).

Proof. By Proposition 2.3, the representation k(I )α of Rα,k is faithful. Now, in view of Lemma 2.11, it is
enough to prove the following two facts:

• The elements e(φ(i)), x∗r , τ ∗r generate Sα,k.

• The representation k(I )α,ord/Jα,ord of Sα,k is faithful.

Fix i, j ∈ I α . Set i ′= (i ′1, . . . , i ′
d
)=φ(i) and j ′=φ( j). Let B and B′ be the bases of e( j)Rα,ke(i) and

e( j ′)Rα,ke(i ′), respectively, as in Remark 2.4. These bases depend on some choices of reduced expressions.
We will make some special choices later. For each element b = τwxa1

1 · · · x
ad
d e(i) ∈ B we construct an

element b∗ ∈ e( j ′)Sα,ke(i ′) that acts by the same operator on the polynomial representation. We set

b∗ = τ ∗p1
· · · τ ∗pk

(x∗1 )
a1 · · · (x∗d )

ad e(i ′) ∈ e( j ′)Sα,ke(i ′),

wherew= sp1 · · · spk is a reduced expression (as we said above, some special choice of reduced expressions
will be fixed later).

Let us call the permutation w ∈Si ′, j ′ balanced if we have w(a+ 1)= w(a)+ 1 for each a such that
i ′a = i1 for some i ∈ I (and thus i ′a+1 = i2). Otherwise we say that w is unbalanced. There exists a unique
map u : Si, j →Si ′, j ′ such that for each w ∈Si, j the permutation u(w) is balanced and w(r) < w(t)
if and only if u(w)(r ′) < u(w)(t ′) for each r, t ∈ [1, d], where r ′ = r ′i and t ′ = t ′i are as in Section 2F.
The image of u is exactly the set of all balanced permutations in Si ′, j ′ .

Assume that w ∈ Si ′, j ′ is unbalanced. We claim that there exists an index a such that i ′a ∈ I 1 and
w(a) > w(a+ 1). Indeed, let J be the set of indices a ∈ [1, d] such that i ′a ∈ I 1. As j ′ is well-ordered,
we have

∑
a∈J (w(a+ 1)−w(a)) = #J . As w is unbalanced, not all summands in this sum are equal

to 1. Then one of the summands must be negative. Let a ∈ J be an index such that w(a) > w(a+ 1).
We can assume that the reduced expression of w is of the form w = sp1 · · · spk sa . In this case the element
τwe(i ′) is zero in Sα,k because the sequence sa(i ′) is unordered.
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Assume that w ∈Si ′, j ′ is balanced. Thus, there exists some w̃ ∈Si, j such that u(w̃)=w. We choose
an arbitrary reduced expression w̃= sp1 · · · spk and we choose the reduced expression w= sq1 · · · sqr of w
obtained from the reduced expression of w̃ in the following way. For t ∈ {1, . . . , k} set i t

= spt+1 · · · spk (i)
(in particular, we have ik

= i). We write i t
= (i t

1, . . . , i t
d). We construct the reduced expression of w as

w = ŝp1 · · · ŝpk , where for a = pt we have

ŝa =


sa′ if i t

a, i t
a+1 ∈ I0,

sa′+1sa′ if i t
a ∈ I0 and i t

a+1 ∈ I1,

sa′sa′+1 if i t
a ∈ I1 and i t

a+1 ∈ I0,

sa′+1sa′sa′+2sa′+1 if i t
a, i t

a+1 ∈ I1,

where a′ = a′ir is as in Section 2F. Let us explain why the obtained expression of w is reduced. The fact
that the expression w̃ = sp1 · · · spk is reduced means the following. When we apply the transpositions
spk , spk−1, . . . , sp1 consecutively to the d-tuple (1, 2, . . . , d), if two elements of the set {1, 2, . . . , d} are
exchanged once by some s, then these two elements are never exchanged again by another s later. It
is clear that the expression w = sq1 · · · sqr = ŝp1 · · · ŝpk inherits the same property from w̃ = sp1 · · · spk

because for each a, b ∈ {1, 2, . . . , d}, a 6= b we have the following (we set a′ = a′i and b′ = b′i ):

• If ia, ib ∈ I0, then if the reduced expression of w̃ exchanges a and b exactly once or never exchanges
them then the expression ofw exchanges a′ and b′ exactly once or never exchanges them, respectively.

• If ia ∈ I0 and ib ∈ I1, then if the reduced expression of w̃ exchanges a and b exactly once or never
exchanges them then the expression of w exchanges a′ and b′ exactly once or never exchanges them,
respectively, and it also exchanges a′ with b′+1 exactly once or, respectively, never exchanges them.

• If ia ∈ I1 and ib ∈ I0, then if the reduced expression of w̃ exchanges a and b exactly once or never
exchanges them then the expression of w exchanges a′ and b′ exactly once or never exchanges them,
respectively, and it also exchanges a′+1 with b′ exactly once or, respectively, never exchanges them.

• If ia, ib ∈ I1, then if the reduced expression of w̃ exchanges a and b exactly once or never exchanges
them then the expression ofw exchanges a′ and b′ exactly once or never exchanges them, respectively,
and the same thing for a′ and b′+ 1, for a′+ 1 and b′, and for a′+ 1 and b′+ 1.

If the reduced expressions are chosen as above, then the element τwe(i ′)= τq1 · · · τqr e(i ′) ∈ Sα,k is equal
to ±(τp1 · · · τpk e(i))∗.

The discussion above shows that the image of an element b′ ∈ B′ in e( j ′)Sα,ke(i ′) is either zero or
of the form ±b∗ for some b ∈ B. Moreover, each b∗ for b ∈ B can be obtained in such a way. Now we
get the following:

• The elements e(φ(i)), x∗r , and τ ∗r generate Sα,k because the image of each element of B′ in
e( j ′)Sα,ke(i ′) is either zero or a monomial in e(φ(i)), x∗r , and τ ∗r .
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• The representation k(I )α,ord/Jα,ord of Sα,k is faithful because the spanning set {b∗:b∈ B} of e( j ′)Sα,ke(i ′)
acts on the polynomial representation by linearly independent operators (because the polynomial
representation of Rα,k in Proposition 2.3 is faithful). �

Remark 2.13. (a) Note that Theorem 2.12 also remains true for an infinite quiver 0 because α is
supported on a finite number of vertices (see also Remark 2.5).

(b) The formulas that define the isomorphism 8α,k become more natural if we look at them from the
point of view of Khovanov–Lauda diagrams (see [Khovanov and Lauda 2009]). Diagrammatically, the
isomorphism 8α,k looks in the following way. It sends a diagram representing an element of Rα,k to
the diagram (sometimes with a sign) obtained by replacing each strand with label k ∈ I1 by two parallel
strands with labels k1 and k2 (if there is a dot on the strand with label k, it should be moved to the strand
with label k1). For example, if i, j ∈ I0 and k ∈ I1, we have:

ki j

7→

k1k2i j

3. Categorical representations

3A. The standard representation of s̃le. Consider the affine Lie algebra s̃le = sle ⊗ C[t, t−1
] ⊕ C1,

defined over C. Let ei , fi and hi for i = 0, 1, . . . , e−1, be the standard generators of s̃le (see Remark 2.1).
Let Ve be a C-vector space with canonical basis {v1, . . . , ve} and set Ue = Ve ⊗C[z, z−1

]. The vector
space Ue has a basis {ur : r ∈ Z} where ua+eb = va ⊗ z−b for a ∈ [1, e], b ∈ Z. It has a structure of an
s̃le-module such that

fi (ur )= δi≡r ur+1 and ei (ur )= δi≡r−1ur−1.

Let {v′1, . . . , v
′

e+1} and {u′r : r ∈ Z} denote the bases of Ve+1 and Ue+1.
Fix an integer 06 k < e. Consider the following inclusion of vector spaces

Ve ⊂ Ve+1, vr 7→

{
v′r if r 6 k,
v′r+1 if r > k.
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It yields an inclusion sle ⊂ sle+1 such that

er 7→


er if r ∈ [1, k− 1],
[ek, ek+1] if r = k,
er+1 if r ∈ [k+ 1, e− 1],

fr 7→


fr if r ∈ [1, k− 1],
[ fk+1, fk] if r = k,
fr+1 if r ∈ [k+ 1, e− 1],

hr 7→


hr if r ∈ [1, k− 1],
hk + hk+1 if r = k,
hr+1 if r ∈ [k+ 1, e− 1].

This inclusion lifts uniquely to an inclusion s̃le ⊂ s̃le+1 such that

e0 7→

{
e0 if k 6= 0,
[e0, e1] else,

f0 7→

{
f0 if k 6= 0,
[ f1, f0] else,

h0 7→

{
h0 if k 6= 0,
h0+ h1 else.

Consider the inclusion Ue ⊂Ue+1 such that ur 7→ u′ϒ(r), where ϒ is defined in (8).

Lemma 3.1. The embeddings Ve ⊂ Ve+1 and Ue ⊂Ue+1 are compatible with the actions of sle ⊂ sle+1

and s̃le ⊂ s̃le+1, respectively. �

3B. Type A quivers. Let 0∞ = (I∞, H∞) be the quiver with the set of vertices I∞ = Z and the set of
arrows H∞ = {i→ i + 1 : i ∈ I∞}. Assume that e > 1 is an integer. Let 0e = (Ie, He) be the quiver with
the set of vertices Ie = Z/eZ and the set of arrows He = {i→ i + 1 : i ∈ Ie}. Then gIe is the Lie algebra
s̃le = sle⊗C[t, t−1

]⊕C1 (see Remark 2.1).
Assume that 0 = (I, H) is a quiver whose connected components are of the form 0e, with e ∈ N,

e > 1 or e =∞. For i ∈ I denote by i + 1 and i − 1 the (unique) vertices in I such that there are arrows
i→ i + 1 and i − 1→ i .

Let X I be the free abelian group with basis {εi : i ∈ I }. Set also

X+I =
⊕
i∈I

Nεi . (5)

Let us also consider the following additive map

ι : Q I → X I , αi 7→ εi − εi+1.

We may omit the symbol ι and write α instead of ι(α). Let φ denote also the unique additive embedding

φ : X I → X I , εi 7→ εi ′, (6)
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where

i ′ =
{

i0 if i ∈ I0,

i1 if i ∈ I1.

3C. Categorical representations. Let 0 = (I, H) be a quiver as in Section 3B. Let k be a field. Assume
that C is a Hom-finite k-linear abelian category.

Definition 3.2. A gI -categorical representation (E, F, x, τ ) in C is the following data:

(1) a decomposition C =
⊕

µ∈X I
Cµ,

(2) a pair of biadjoint exact endofunctors (E, F) of C,

(3) morphisms of functors x : F→ F and τ : F2
→ F2,

(4) decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi ,

satisfying the following conditions:

(a) We have Ei (Cµ)⊂ Cµ+αi , Fi (Cµ)⊂ Cµ−αi .

(b) For each d ∈ N there is an algebra homomorphism ψd : Rd,k→ End(Fd)op such that ψd(e(i)) is
the projector to Fid · · · Fi1 , where i = (i1, . . . , id) and

ψd(xr )= Fd−r x Fr−1 and ψd(τr )= Fd−r−1τ Fr−1.

(c) For each M ∈ C the endomorphism of F(M) induced by x is nilpotent.

Remark 3.3. (a) For a pair of adjoint functors (E, F) we have an isomorphism End(Ed)' End(Fd)op.
In particular, the algebra homomorphism Rd,k→ End(Fd)op in Definition 3.2 yields an algebra homo-
morphism Rd,k→ End(Ed).

(b) If the quiver 0 is infinite, the direct sums in (4) should be understood in the following way. For each
object M ∈ C, there is only a finite number of i ∈ I such that Ei (M) and Fi (M) are nonzero.

3D. From s̃le+1-categorical representations to s̃le-categorical representations. As in Section 3A, we
fix 0 6 k < e. Only in Section 3D, we assume that 0 = (I, H) and 0 = (I , H) are fixed as in as in
Section B2 (i.e., we have 0 = 0e, I1 = {k} and we identity 0 with 0e+1).

Let C be a Hom-finite abelian k-linear category. Let

E = E0⊕ E1⊕ · · ·⊕ Ee and F = F0⊕ F1⊕ · · ·⊕ Fe

be endofunctors defining a s̃le+1-categorical representation in C. Let ψd : Rd,k → End(Fd)op be the
corresponding algebra homomorphism. We set F i = F id · · · F i1 for any tuple i = (i1, . . . , id) ∈ I d and
Fα=

⊕
i∈I α F i for any element α∈Q+

I
. If |α|=d letψα : Rα,k→End(Fα)op be the α-component ofψd .

Now, recall the notation X+
I

from (5). Assume that we have

Cµ = 0, ∀µ ∈ X I\X
+

I
. (7)

For µ ∈ X+I set Cµ = Cφ(µ), where the map φ is as in (6). Let C =
⊕

µ∈X+I
Cµ.
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Remark 3.4. (a) C is stable by F i , E i for each i 6= k, k+ 1,

(b) C is stable by Fk+1 Fk , Ek Ek+1,

(c) F id F id−1 · · · F i1(M) = 0 for each M ∈ C whenever the sequence (i1, . . . , id) is unordered (see
Section 2D).

Consider the following endofunctors of C:

Ei =


E i |C if 06 i < k,
Ek Ek+1|C if i = k,
E i+1|C if k < i < e,

and Fi =


F i |C if 06 i < k,
Fk+1 Fk |C if i = k,
F i+1|C if k < i < e.

Similarly to the notations above we set Fi = Fid · · · Fi1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =⊕
i∈I α Fi for any element α ∈ Q+I . Note that we have Fi = Fφ(i)|C for each i ∈ I α.
Let α ∈ Q+I and α = φ(α). Note that we have

Fα =
⊕
i∈I αord

F i |C .

The homomorphism ψα yields a homomorphism eRα,ke→ End(Fα)op, where e=
∑

i∈I αord
e(i). By (c),

the homomorphism eRα,ke→End(Fα)op factors through a homomorphism Sα,k→End(Fα)op. Let us call
it ψ ′α . Then we can define an algebra homomorphism ψα : Rα,k→ End(Fα)op by setting ψα =ψ ′α ◦8α,k.

Now, Theorem 2.12 implies the following result.

Theorem 3.5. For each category C, defined as above, that satisfies (7), we have a categorical represen-
tation of s̃le in the subcategory C of C given by functors Fi and Ei and the algebra homomorphisms
ψα : Rα,k→ End(Fα)op. �

Now, we describe the example that motivated us to prove Theorem 3.5. See [Maksimau 2015b]
for details.

Example 3.6. Let Ue and Ve be as in Section 3A. Fix ν = (ν1, . . . , νl) ∈ Nl and put N =
∑l

r=1 νr . Set
∧
νUe =∧

ν1Ue⊗ · · ·⊗∧
νl Ue.

Let Oν
−e be the parabolic category O for ĝlN with parabolic type ν at level −e− N . The categorical

representation of s̃le in Oν
−e (constructed in [Rouquier et al. 2016]) yields an s̃le-module structure on the

(complexified) Grothendieck group [Oν
−e] of Oν

−e. This module is isomorphic to ∧νUe.
Let us apply Theorem 1.1 to C = Oν

−(e+1). It happens that in this case the subcategory C ⊂ C defined
as above is equivalent to Oν

−e. The embedding of categories Oν
−e ⊂ Oν

−(e+1) categorifies the embedding
∧
νUe ⊂∧

νUe+1 (see also Lemma 3.1).

3E. Reduction of the number of idempotents. In this section we show that it is possible to reduce the
number of idempotents in the quotient in Definition 2.6. This is necessary to generalize Theorem 3.5.
Here we assume the quivers 0 = (I, H) and 0 = (I , H) are as in Section 2B.
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We fix α ∈ Q+I and put α = φ(α). We say that the sequence i ∈ I α is almost ordered if there exists
a well-ordered sequence j ∈ I α such that there exists an index r such that jr ∈ I 1 and i = sr ( j). It
is clear from the definition that each almost ordered sequence is unordered because the subsequence
(i1, i2, . . . , ir ) of i contains more elements from I 2 than from I 1. The following lemma reduces the
number of generators of the kernel of eRα,ke→ Sα,k (see Definition 2.6).

Lemma 3.7. The kernel of the homomorphism eRα,ke→ Sα,k is equal to
∑

i eRα,ke(i)Rα,ke, where i
runs over the set of all almost ordered sequences in I α.

Proof. Denote by J the ideal
∑

i eRα,ke(i)Rα,ke of eRα,ke, where i runs over the set of all almost
ordered sequences in I α.

By definition, each element of the kernel of eRα,ke→ Sα,k is a linear combination of elements of the
form eae( j)be, where a and b are in Rα,k and the sequence j is unordered. By Remark 2.4, it is enough
to prove that for each i ∈ I αord, j ∈ I αun, b ∈ Rα,k and indices p1, . . . , pk the element e(i)τp1 · · · τpk e( j)be
is in J . We will prove this statement by induction on k.

Assume that k = 1. Write p = p1. The element e(i)τpe( j)be may be nonzero only if i = sp( j). This
is possible only if the sequence j is almost ordered. Thus the element e(i)τpe( j)be is in J .

Now, assume that k > 1 and that the statement is true for each value < k. Set w = sp1 · · · spk . We
may assume that i = w( j), otherwise the element e(i)τp1 · · · τpk e( j)be is zero. By assumptions on i
and j there is an index r ∈ [1, d] such that ir ∈ I 1 and w−1(r + 1) < w−1(r). Thus w has a reduced
expression of the formw= sr sr1 · · · srh . This implies that τp1 · · · τpk e( j) is equal to a monomial of the form
τrτr1 · · · τrh e( j)modulo monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e( j)with t< k, see Remark 2.4. Thus

the element e(i)τ1 · · · τke( j)be is equal to e(i)τrτr1 · · · τrh e( j)be modulo the elements of the same form
e(i)τp1 · · · τpk e( j)be with smaller k. The element e(i)τrτr1 · · · τrh e( j)be is in J because the sequence
sr (i) is almost ordered and the additional terms are in J by the induction assumption. �

3F. Generalization of Theorem 3.5. In this section we modify slightly the definition of a categorical
representation given in Definition 3.2. The only difference is that we use the lattice Q I instead of X I .
This new definition is not equivalent to Definition 3.2. In this section we work with an arbitrary quiver
0 = (I, H) without 1-loops.

Let k be a field. Let C be a k-linear Hom-finite category.

Definition 3.8. A gI -quasicategorical representation (E, F, x, τ ) in C is the following data

(1) a decomposition C =
⊕

α∈Q I
Cα,

(2) a pair of biadjoint exact endofunctors (E, F) of C,

(3) morphisms of functors x : F→ F , τ : F2
→ F2,

(4) decompositions E =
⊕

i∈I Ei , F =
⊕

i∈I Fi ,

satisfying the following conditions.

(a) We have Ei (Cα)⊂ Cα−αi , Fi (Cα)⊂ Cα+αi .
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(b) For each d ∈ N there is an algebra homomorphism ψd : Rd,k→ End(Fd)op such that ψd(e(i)) is
the projector to Fid · · · Fi1 , where i = (i1, . . . , id) and

ψd(xr )= Fd−r x Fr−1 and ψd(τr )= Fd−r−1τ Fr−1.

(c) For each M ∈ C the endomorphism of F(M) induced by x is nilpotent.

If the quiver 0 is infinite, condition (4) should be understood in the same way as in Remark 3.3(b).

Now, fix a decomposition I = I0t I1 as in Section 2B. We consider the quiver 0 = (I , H) and the map
φ as in Section 2B. To distinguish the elements of Q I and Q I , we write Q I =

⊕
i∈I Zαi . For each α ∈ Q I

we set α = φ(α) ∈ Q I . (See Section 2B for the notation.) However we can sometimes use the symbol α
for an arbitrary element of Q I that is not associated with some α in Q I . Let C be a Hom-finite abelian
k-linear category. Let E =

⊕
i∈I E i and F =

⊕
i∈I F i be endofunctors defining a gI -quasicategorical

representation in C. Let ψd : Rd,k(0)→ End(Fd)op be the corresponding algebra homomorphism. We
set F i = F id · · · F i1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =

⊕
i∈I α F i for any element α ∈ Q+

I
. If

|α| = d, let ψα : Rα,k→ End(Fα)op be the α-component of ψd .
Assume that C is an abelian subcategory of C satisfying the following conditions:

(a) C is stable by F i and E i for each i ∈ I0.

(b) C is stable by F i2 F i1 and E i1 E i2 for each i ∈ I1.

(c) We have F i2(C)= 0 for each i ∈ I1.

(d) We have C =
⊕

α∈Q I
C ∩ Cα.

By (d), we get a decomposition C =
⊕

α∈Q I
Cα, where Cα = C ∩ Cα. For each i ∈ I we consider the

following endofunctors Ei and Fi of C:

Fi =

{
F i |C if i ∈ I0,

F i2 F i1 |C if i ∈ I1,
and Ei =

{
E i |C if i ∈ I0,

E i1 E i2 |C if i ∈ I1.

As in the notations above we set Fi = Fid · · · Fi1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =
⊕

i∈I α Fi

for any element α ∈ Q+I . Note that we have Fi = Fφ(i)|C for each i ∈ I α.
Let α ∈ Q+I . We have

Fα =
⊕
i∈I αord

F i |C .

The homomorphism ψα yields a homomorphism eRα,ke→ End(Fα)op, where e=
∑

i∈I αord
e(i).

Since the category C satisfies (a), (b) and (c), for each almost ordered sequence i = (i1, . . . , id) ∈ I α

we have F id · · · F i1(C)= 0. By Lemma 3.7, this implies that the homomorphism eRα,ke→ End(Fα)op

factors through a homomorphism Sα,k→ End(Fα)op. Let us call it ψ ′α. Then we can define an algebra
homomorphism ψα : Rα,k→ End(Fα)op by setting ψα = ψ ′α ◦8α,k.

Now, Theorem 2.12 implies the following result.



1904 Ruslan Maksimau

Theorem 3.9. For each abelian subcategory C ⊂ C as above, that satisfies (a)–(d), we have a gI -
quasicategorical representation in C given by functors Fi and Ei and the algebra homomorphisms
ψα : Rα,k→ End(Fα)op. �

Remark 3.10. Assume that the category C is such that we have Cα = 0 whenever α =
∑

i∈I diαi ∈ Q I is
such that di1 < di2 for some i ∈ I1. In this case the subcategory C ⊂ C defined by C =

⊕
α∈Q I

Cα satisfies
conditions (a)–(d).

Appendix A: The geometric construction of the isomorphism 8

The goal of this section is to give a geometric construction of the isomorphism 8 in Theorem 2.12.

A1. The geometric construction of the KLR algebra. Let k be a field. Let 0 = (I, H) be a quiver
without 1-loops. See Section 2A for the notations related to quivers. For an arrow h ∈ H we will write h′

and h′′ for its source and target respectively. Fix α =
∑

i∈I diαi ∈ Q+I and set d = |α|. Set also

Eα =
⊕
h∈H

Hom(Vh′, Vh′′), Vi = Cdi , V =
⊕
i∈I

Vi .

The group Gα =
∏

i∈I GL(Vi ) acts on Eα by base changes.
Set

I α =
{

i = (i1, . . . , id) ∈ I d
:

d∑
r=1

αir = α

}
.

We denote by Fi the variety of all flags

φ = (V = V 0
⊃ V 1

⊃ · · · ⊃ V d
= {0})

in V that are homogeneous with respect to the decomposition V =
⊕

i∈I Vi and such that the I -graded
vector space V r−1/V r has graded dimension ir for r ∈ [1, d]. We denote by F̃i the variety of pairs
(x, φ) ∈ Eα × Fi such that x preserves φ, i.e., we have x(V r ) ⊂ V r for r ∈ {0, 1, . . . ,m}. Let πi be
the natural projection from F̃i to Eα, i.e., πi : F̃i → Eα, (x, φ) 7→ x . For i, j ∈ I α we denote by
Z i, j the variety of triples (x, φ1, φ2) ∈ Eα × Fi × F j such that x preserves φ1 and φ2 (i.e., we have
Z i, j = F̃i ×Eα F̃ j ). Set

Zα =
∐

i, j∈I α
Z i, j and F̃α =

∐
i∈I α

F̃i .

We have an algebra structure on H Gα
∗ (Zα, k) such that the multiplication is the convolution product with

respect to the inclusion Zα⊂ F̃α× F̃α . Here H Gα
∗ (•, k) denotes the Gα-equivariant Borel–Moore homology

with coefficients in k. See [Chriss and Ginzburg 1997, §2.7] for the definition of the convolution product.
The following result is proved by Rouquier [2008] and by Varagnolo and Vasserot [2011] in the

situation char k = 0. See [Maksimau 2015a] for the proof over an arbitrary field.
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Proposition A.1. There is an algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k). Moreover, for each i, j ∈ I α ,

the vector subspace e(i)Rα,k(0)e( j) ⊂ Rα,k(0) corresponds to the vector subspace H Gα
∗ (Z i, j , k) ⊂

H Gα
∗ (Zα, k). �

A2. The geometric construction of the isomorphism8. As in Section 2B, fix a decomposition I = I0tI1

and consider the quiver 0 = (I , H); also fix α ∈ Q+I and consider α = φ(α) ∈ Q+
I

.
We start from the variety Zα defined with respect to the quiver 0. By Proposition A.1, we have an

algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k). We have an obvious projection p : Zα→ Eα defined by

(x, φ1, φ2) 7→ x . For each i ∈ I1 denote by hi the unique arrow in 0 that goes from i1 to i2. Consider the
following open subset of Eα: E0

α = {x ∈ Eα : xhi is invertible ∀i ∈ I1}. Set Z0
α = p−1(E0

α). The pullback
with respect to the inclusion Z0

α ⊂ Zα yields an algebra homomorphism H Gα
∗ (Zα, k)→ H Gα

∗ (Z0
α, k) (see

[Chriss and Ginzburg 1997, Lemma 2.7.46]).

Remark A.2. If the sequence i ∈ I α is unordered, then a flag from Fi is never preserved by an element
from E0

α. This implies that Z i, j ∩ Z0
α =∅ if i or j is unordered. Thus for each i ∈ I αun, the idempotent

e(i) is in the kernel of the homomorphism H Gα
∗ (Zα, k)→ H Gα

∗ (Z0
α, k).

Let e be the idempotent as in Definition 2.6. Consider the following subset of Zα:

Z ′α =
∐

i, j∈I αord

Z i, j .

The algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k) above restricts to an algebra isomorphism eRα(0)e'

H Gα
∗ (Z ′α, k).
Now, set Z ′0α = Z ′α ∩ Z0

α. Similarly to the construction above, we have an algebra homomorphism
H Gα
∗ (Z ′α, k)→ H Gα

∗ (Z ′0α , k). By Remark A.2, the kernel of this homomorphism contains the kernel of
eRα,k(0)e→ Rα,k(0) (see Theorem 2.12). The following result implies that these kernels are the same.

Lemma A.3. We have the following algebra isomorphism Rα,k(0)' H Gα
∗ (Z ′0α , k).

Proof. For each i ∈ I0 we identify Vi ' Vi0 . For each i ∈ I1 we identify Vi ' Vi1 ' Vi2 . We have a
diagonal inclusion Gα ⊂ Gα, i.e., the component GL(Vi ) of Gα with i ∈ I0 goes to GL(Vi0) and the
component GL(Vi ) with i ∈ I1 goes diagonally to GL(Vi1)×GL(Vi2).

Set Gbis
α =

∏
i∈I1

GL(Vi2)⊂ Gα. We have an obvious group isomorphism Gα/Gbis
α ' Gα.

Let us denote by X the choice of isomorphisms Vi1 ' Vi2 mentioned above. Let E X
α be the subset of

Eα that contains only x ∈ Eα such that for each i ∈ I1 the component xhi is the isomorphism chosen in X .
The group Gbis

α acts freely on E0
α such that each orbit intersects E X

α once. This implies that we have
an isomorphism of algebraic varieties E0

α/Gbis
α ' E X

α . Now, set Z ′Xα = p−1(E X
α ). The same argument as

above yields Z ′0α /Gbis
α ' Z ′Xα . We get the following chain of algebra isomorphisms

H Gα
∗
(Z ′0α , k)' H Gα/Gbis

α
∗ (Z ′0α /Gbis

α , k)' H Gα
∗
(Z ′Xα , k).
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To complete the proof we have to show that the Gα-variety Z ′Xα is isomorphic to Zα . Each element of
I αord is of the form φ(i) for a unique i ∈ I α , where φ is as in Section 2B. Let us abbreviate i ′ = φ(i). By
definition we have

Z ′α =
∐

i, j∈I α
Z i ′, j ′ .

Set Z X
i ′, j ′ = Z i ′, j ′ ∩ Z ′Xα . We have an obvious isomorphism of Gα-varieties Z X

i ′, j ′ ' Z i, j . (Beware, the
variety Z i, j is defined with respect to the quiver 0 and the variety Z i ′, j ′ is defined with respect to the
quiver 0.) Taking the union for all i, j ∈ I α yields an isomorphism of Gα-varieties Z ′Xα ' Zα. �

Corollary A.4. We have the following commutative diagram.

eRα,k(0)e −−−→ Rα,k(0)y y
H Gα
∗ (Z ′α, k) −−−→ H Gα

∗ (Z ′0α , k).

Here the left vertical map is the isomorphism from Proposition A.1, the right vertical map is the isomor-
phism from Lemma A.3, the top horizontal map is obtained from Theorem 2.12 and the bottom horizontal
map is the pullback with respect to the inclusion Z ′0α ⊂ Z ′α.

Proof. The result follows directly from Lemma A.3. The commutativity of the diagram is easy to see on
the generators of Rα,k(0).

Indeed, the isomorphism Rα,k ' H Gα
∗ (Zα, k) is defined in the following way (see [Maksimau 2015a,

§2.9, Theorem 2.4] for more details). The element e(i) corresponds to the fundamental class [Z i,i ]. The
element xr e(i) corresponds to the first Chern class of some line bundle on Z i,i . The element ψr e(i)
corresponds to the fundamental class of some correspondence in Zsr (i),i . The commutativity of the
diagram in the statement follows from standard properties of Chern classes and fundamental classes. �

Appendix B: A local ring version in type A

In this appendix we give some versions of the main results of the paper (Theorems 2.12 and 3.5) over a
local ring. These ring versions are interesting because the study of the category O for ĝlN in [Maksimau
2015b] uses a deformation argument. For this we need a version of Theorem 1.2 over a local ring.

It is known that the affine Hecke algebra over a field is related with the KLR algebra (see Propositions
B.5, B.6). This allows to reformulate the definition of a categorical representation (see Definition 3.2) that
is given in term of KLR algebras in an equivalent way in terms of Hecke algebras (see Definition B.14).
The main difficulty is that there is no known relation between Hecke and KLR algebras over a ring.
Over a local ring, we can give a definition of a categorical representation using the Hecke algebra
(see Definition B.17). But we have no equivalent definition in terms of KLR algebras. That is why,
Proposition B.12, that is a ring analogue of Theorem 2.12, is formulated in terms of Hecke algebras and
not in terms of KLR algebras.
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B1. Intertwining operators. The center of the algebra Rα,k is the ring of symmetric polynomials kd [x]Sd ,
see [Rouquier 2008, Proposition 3.9]. Thus Sα,k is a kd [x]Sd -algebra under the isomorphism 8α,k in
Section 2G. Let 6 be the polynomial

∏
a<b(xa − xb)

2
∈ kd [x]Sd . Let Rα,k[6−1

] and Sα,k[6−1
] be the

rings of quotients of Rα,k and Sα,k obtained by inverting 6. We can extend the isomorphism 8α,k from
Theorem 2.12 to an algebra isomorphism

8α,k : Rα,k[6−1
] → Sα,k[6−1

].

Assume that the connected components of the quiver 0 are of the form 0a for a ∈ N, a > 1 or a =∞.
(The quiver 0a is defined in Section 3B.)

Note that there is an action of the symmetric group Sd on k(I )d permuting the variables and the
components of i . Consider the following element in Rα,k[6−1

]:

9r e(i)=


((xr − xr+1)τr + 1)e(i) if ir+1 = ir ,

−(xr − xr+1)
−1τr e(i) if ir+1 = ir − 1,

τr e(i) else.

The element 9r e(i) is called intertwining operator. Using the formulas (3) we can check that 9r e(i)
still acts on the polynomial representation and the corresponding operator is equal to sr e(i). Note also
that 9̃r = (xr − xr+1)9r is an element of Rα,k.

Lemma B.1. The images of intertwining operators by 8α,k : Rα,k → Sα,k can be described in the
following way. For i ∈ I α such that ir − 1 6= ir+1 we have

8α,k(9r e(i))=


9r ′e(φ(i)) if ir , ir+1 ∈ I0,

9r ′9r ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

9r ′+19r ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,

9r ′+19r ′+29r ′9r ′+1e(φ(i)) if ir , ir+1 ∈ I1.

For i ∈ I α such that ir − 1= ir+1 we have

8α,k(9̃r e(i))=


9̃r ′e(φ(i)) if ir , ir+1 ∈ I0,

9̃r ′9r ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

9r ′+19̃r ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1.

Here r ′ = r ′i is as in Section 2F.

Proof. By construction of 8α,k, the elements 8α,k(9r e(i)) and 8α,k(9̃r e(i)) are the unique elements of
Sα,k that acts on the polynomial representation by the same operator as 9r e(i) and 9̃r e(i), respectively.

The right hand side in the formulas for 8α,k(9r e(i)) or 8α,k(9̃r e(i)) in the statement is an element
X in Sα,k[6−1

]. To complete the proof we have to show that:

(1) X acts by the same operator as 9r e(i) or 9̃r e(i), respectively, on the polynomial representation.

(2) X is in Sα,k.
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Part (1) is obvious. Part (2) follows from part (1) and from the faithfulness of the polynomial represen-
tation of Sα,k[6−1

] (see Lemma 2.10). (In fact, part (2) is not obvious only in the case ir = ir+1 ∈ I1.) �

B2. Special quivers. From now on we will be interested only in some special types of quivers.
First, consider the quiver 0=0e, where e is an integer> 1. In particular, from now on we fix I =Z/eZ.

Fix k ∈ [0, e− 1] and set I1 = {k} and I0 = I\{k}. In this case the quiver 0 is isomorphic to 0e+1. More
precisely, the decomposition I = I 0 t I 1 t I 2 is such that I 1 = {k} and I 2 = {k+ 1}. To avoid confusion,
for i ∈ I we will write αi and εi for αi and εi respectively.

Remark B.2. If 0 is as above, a sequence i = (i1, . . . , id) ∈ I d is well ordered if for each index a such
that ia = k we have a < d and ia+1 = k+ 1. The sequence i is unordered if there is r 6 d such that the
subsequence (i1, . . . , ir ) contains more elements equal to k+ 1 than elements equal to k.

Let ϒ : Z→ Z be the map given for a ∈ Z and b ∈ [0, e− 1] by

ϒ(ae+ b)=
{

a(e+ 1)+ b if b ∈ [0, k],
a(e+ 1)+ b+ 1 if b ∈ [k+ 1, e− 1].

(8)

Now, consider the quiver 0̃= (0∞)tl (i.e., 0̃ is a disjoint union of l copies of 0∞). Set 0̃= ( Ĩ , H̃) and
write α̃i and ε̃i and for αi and εi respectively for each i ∈ Ĩ . We identify an element of Ĩ with an element
(a, b) ∈ Z×[1, l] in the obvious way. Consider the decomposition Ĩ = Ĩ0 t Ĩ1 such that (a, b) ∈ Ĩ1 if and
only if a ≡ k mod e. In this case the quiver 0̃ is isomorphic to 0̃. We will often write 0̃ instead of 0̃ (but
sometimes, if confusion is possible, we will use the notation 0̃ to stress that we work with the doubled
quiver). More precisely, in this case we have

(a, b)0 = (ϒ(a), b),

(a, b)1 = (ϒ(a), b),

(a, b)2 = (ϒ(a)+ 1, b).

To distinguish notations, we will always write φ̃ for any of the maps φ̃ : Ĩ∞→ Ĩ∞, Q Ĩ → Q Ĩ , X Ĩ → X Ĩ

in Section 2B.
From now on we write 0 = 0e, 0 = 0e+1 and 0̃ = (0∞)tl . Recall that

I = Ie = Z/eZ, I = Ie+1 = Z/(e+ 1)Z, Ĩ = (I∞)tl
= Z×[1, l].

Consider the quiver homomorphism πe : 0̃→ 0 such that

πe : Ĩ → I, (a, b) 7→ a mod e.

Then πe+1 is a quiver homomorphism πe+1 : 0̃→ 0. They yield Z-linear maps

πe : Q Ĩ → Q I , πe : X Ĩ → X I , πe+1 : Q Ĩ → Q I , πe+1 : X Ĩ → X I .
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The following diagrams are commutative for α ∈ Q+I and α̃ ∈ Q+
Ĩ

such that πe(α̃)= α,

Q Ĩ
φ̃

−−−→ Q Ĩ

πe

y πe+1

y
Q I

φ
−−−→ Q I

X Ĩ
φ̃

−−−→ X Ĩ

πe

y πe+1

y
X I

φ
−−−→ X I

Ĩ α̃
φ̃

−−−→ Ĩ φ̃(α̃)

πe

y πe+1

y
I α

φ
−−−→ I φ(α)

The quiver 0̃ is infinite. We will sometimes use its truncated version. Fix a positive integer N . Denote
by 0̃6N the full subquiver (i.e., a quiver with a smaller set of vertices and the same arrows between
these vertices) of 0̃ that contains only vertices (a, b) such that |a|6 eN . Let 0̃6N be the doubled quiver
associated with 0̃6N . We can see the quiver 0̃6N as a full subquiver of 0̃ that contains only vertices
(a, b) such that we have {

−(e+ 1)N 6 a 6 (e+ 1)N if k 6= 0,
−(e+ 1)N 6 a 6 (e+ 1)N + 1 else.

(Attention, it is not true that the isomorphism of quivers 0̃ ' 0̃ takes 0̃6N to 0̃6N .)

B3. Hecke algebras. Let R be a commutative ring with 1. Fix an element q ∈ R.

Definition B.3. The affine Hecke algebra HR,d(q) is the R-algebra generated by T1, . . . , Td−1 and the
invertible elements X1, . . . , Xd modulo the following defining relations

Xr Xs = Xs Xr ,

Tr Xr = Xr Tr if |r − s|> 1,

Tr Ts = Ts Tr if |r − s|> 1,

Tr Tr+1Tr = Tr+1Tr Tr+1,

Tr Xr+1 = Xr Tr + (q − 1)Xr+1,

Tr Xr = Xr+1Tr − (q − 1)Xr+1,

0= (Tr − q)(Tr + 1).

Assume that R = k is a field and q 6= 0, 1. The algebra Hd,k(q) has a faithful representation (see
[Miemietz and Stroppel 2016, Proposition 3.11]) in the vector space k[X±1

1 , . . . , X±1
d ] such that X±1

r

acts by multiplication by X±1
r and Tr by

Tr (P)= qsr (P)+ (q − 1)Xr+1(Xr − Xr+1)
−1(sr (P)− P).

The following operator acts on k[X±1
1 , . . . , X±1

d ] as the reflection sr

9r =
Xr − Xr+1

q Xr − Xr+1
(Tr − q)+ 1= (Tr + 1)

Xr − Xr+1

Xr − q Xr+1
− 1.

For a future use, consider the element 9̃r ∈ Hd,k given by

9̃r = (q Xr − Xr+1)9r = (Xr − Xr+1)Tr + (q − 1)Xr+1.
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B4. The isomorphism between Hecke and KLR algebras. First, we define some localized versions of
Hecke algebras and KLR algebras. Let F be a finite subset of k×. We view F as the vertex set of a quiver
with an arrow i→ j if and only if j = qi . Consider the algebra

A1 =
⊕
i∈Fd

k[X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (q Xr − X t)

−1
: r 6= t]e(i),

where e(i) are orthogonal idempotents and Xr commutes with e(i). Let H loc
d,k(q) be the A1-module given by

the extension of scalars from the k[X±1
1 , . . . , X±1

d ]-module Hd,k(q). It has a k-algebra structure such that

Tr e(i)− e(sr (i))Tr = (1− q)Xr+1(Xr − Xr+1)
−1(e(i)− e(sr (i)))

and

Z−1Tr = Tr Z−1, where Z =
∏
r<t

(Xr − X t)
2
∏
r 6=t

(q Xr − X t)
2.

In this section the KLR algebras are always defined with respect to the quiver F. We consider the algebra

A2 =
⊕
i∈Fd

k[x1, . . . , xd ][S−1
i ]e(i),

where

Si = {(xr + 1), (ir (xr + 1)− it(xt + 1)), (qir (xr + 1)− it(xt + 1) : r 6= t)}.

Consider the following central element in Rd,k

z =
∏

r

(xr + 1)
∏

i, j∈F,r 6=t

(i(xr + 1)− j (xt + 1)).

The A2-module Rloc
d,k = A2⊗k(F)d

Rd,k has a k-algebra structure because it is a subalgebra in Rd,k[z−1
],

where k(F)d is as in (2).

Remark B.4. We assumed above that the set F is finite. This assumption is important because it implies
that A1 contains k[X±1

1 , . . . , X±1
d ] and A2 contains k[x1, . . . , xd ]. However, it is possible to define the

algebras above (A1, A2, H loc
d,k(q) and Rloc

d,k) for arbitrary F ⊂ k×. Indeed, if F1 ⊂ F2 are finite, then
the algebra defined with respect to F1 is obviously a nonunitary subalgebra of the algebra defined with
respect to F2. Then we can define the algebras A1, A2, H loc

d,k(q) and Rloc
d,k with respect to any arbitrary F .

For example, we define the algebra Rloc
d,k associated with F as

Rloc
d,k(F)= lim

−→

F0⊂F
Rloc

d,k(F0),

where the direct limit is taken over all finite subsets F0 of F . Note that if the set F is infinite, then the
algebras A1, A2, H loc

d,k(q) and Rloc
d,k are not unitary.

From now on we assume that F is an arbitrary subset of k×.
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Proposition B.5. There is an isomorphism of k-algebras Rloc
d,k ' H loc

d,k(q) such that

e(i) 7→ e(i),

xr e(i) 7→ (i−1
r Xr − 1)e(i),

9r e(i) 7→9r e(i).

Proof. The polynomial representations of Hd,k(q) and Rd,k yield faithful representations of H loc
d,k(q) and

Rloc
d,k on A1 and A2 respectively. Moreover, there is an isomorphism of k-algebras A2 ' A1 given by

xr e(i) 7→ (i−1
r Xr − 1)e(i).

This implies the statement. Indeed, the elements e(i) ∈ Rloc
d,k and e(i) ∈ H loc

d,k(q) act on A2 ' A1 by
the same operators. The elements xr e(i) ∈ Rloc

d,k and (i−1
r Xr − 1)e(i) ∈ H loc

d,k(q) act on A2 ' A1 by the
same operators. Finally, the elements 9r e(i) ∈ Rloc

d,k and 9r e(i) ∈ H loc
d,k(q) also act on A2 ' A1 by the

same operators. The elements above generate the algebras Rloc
d,k and H loc

d,k(q). �

Now, we consider the subalgebra R̂d,k of Rloc
d,k generated by

• the elements of Rd,k,

• the elements (xr + 1)−1,

• the elements of the form (ir (xr + 1)− it(xt + 1))−1e(i) such that r 6= t and ir 6= it ,

• the elements of the form (qir (xr + 1)− it(xt + 1))−1e(i) such that r 6= t and qir 6= it .

Similarly, consider the subalgebra Ĥd,k(q) of H loc
d,k(q) generated by

• the elements of Hd,k(q),

• the elements of the form (Xr − X t)
−1e(i) such that r 6= t and ir 6= it ,

• the elements of the form (q Xr − X t)
−1e(i) such that r 6= t and qir 6= it .

Note that the element 9r e(i) ∈ H loc
d,k(q) belongs to Ĥd,k(q) if ir 6= qir+1. We have the following

proposition, see also [Rouquier 2008, §3.2].

Proposition B.6. The isomorphism Rloc
d,k ' H loc

d,k(q) from Proposition B.5 restricts to an isomorphism
R̂d,k ' Ĥd,k(q). �

B5. Deformation rings. In this section we introduce some general definitions from [Rouquier et al.
2016] for a later use.

We call the deformation ring (R, κ, κ1, . . . , κl) a regular commutative noetherian C-algebra R with 1
equipped with a homomorphism C[κ±1, κ1, . . . , κl] → R. Let κ, κ1, . . . , κl also denote the images of
κ, κ1, . . . , κl in R. A deformation ring is in general position if any two elements of the set

{κu − κv + aκ + b, κ − c : a, b ∈ Z, c ∈Q, u 6= v}

have no common nontrivial divisors. A local deformation ring is a deformation ring which is a local ring
such that κ1, . . . , κl, κ − e belong to the maximal ideal of R. Note that each C-algebra that is a field has
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a trivial local deformation ring structure, i.e., such that κ1 = · · · = κl = 0 and κ = e. We always consider
C as a local deformation ring with a trivial deformation ring structure.

We will write κ = κ(e+ 1)/e and κr = κr (e+ 1)/e. We will abbreviate R for (R, κ, κ1, . . . , κl) and
R for (R, κ, κ1, . . . , κ l).

Let R be a complete local deformation ring with residue field k. Consider the elements qe =

exp(2π
√
−1/κ) and qe+1 = exp(2π

√
−1/κ) in R. These elements specialize to ζe = exp(2π

√
−1/e)

and ζe+1 = exp(2π
√
−1/(e+ 1)) in k.

B6. The choice of F . From now on we assume that R is a complete local deformation ring in general
position with residue field k and field of fractions K . In this section we define some special choice of the
set F . This choice of parameters is particularly interesting because it is related with the categorical action
on the category O for ĝlN , see [Rouquier et al. 2016].

Fix a tuple ν = (ν1, . . . , νl) ∈ Zl . Put Qr = exp(2π
√
−1(νr + κr )/κ) for r ∈ [1, l]. The canonical

homomorphism R→ k maps qe to ζe and Qr to ζ νr
e .

Now, consider the subset F of R given by

F=
⋃

r∈Z,t∈[1,l]

{qr
e Qt }.

Denote by Fk the image of F in k with respect to the surjection R→ k. Recall from Section B4 that we
consider F (and Fk) as a vertex set of a quiver. The set F is a vertex set of a quiver that is a disjoint
union if l infinite linear quivers. The set Fk is a vertex set of a cyclic quiver of length e.

Fix k ∈ [0, e− 1]. To this k we associate a map ϒ : Z→ Z as in (8). Now, consider the tuple

ν = (ν1, . . . , νl) ∈ Zl, νr = ϒ(νr ) ∀r ∈ [1, l].

Let R be as in the previous section. Let k and K be the residue field and the field of fractions of R
respectively. Now, consider Q = (Q1, . . . , Ql), where Qr = exp(2π

√
−1(νr + κr )/κ) and κ and κr are

defined in Section B5. Consider the subset F of R given by

F=
⋃

r∈Z,t∈[1,l]

{qr
e+1 Qt }.

Denote by F k the image of F in k with respect to the surjection R→ k. The set F is a vertex set of a
quiver that is a disjoint union of l infinite linear quivers. The set F k is a vertex set of a cyclic quiver of
length e+ 1.

B7. Algebras Ĥ, ŜH, R̂ and Ŝ. Let 0 = (I, H), 0 = (I , H) and 0̃ = ( Ĩ , H̃) be as in Section B2.
We will use the notation F , Fk, F and F k as in previous section. (In particular, we fix some

ν = (ν1, . . . , νl).)
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We have the following isomorphisms of quivers

Ĩ ' F, i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

Ĩ ' F, i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

I ' Fk, i 7→ pi := ζ
i
e ,

I ' Fk, i 7→ pi := ζ
i
e+1.

These isomorphisms yield the following commutative diagrams

Ĩ
∼
−−−→ F

πe

y y
I

∼
−−−→ Fk,

Ĩ
∼
−−−→ F

πe+1

y y
I

∼
−−−→ Fk.

We will identify

I ' Fk, I ' Fk, Ĩ ' F, Ĩ ' F

as above.
Our goal is to obtain an analogue of Theorem 2.12 over the ring R. First, consider the algebras Ĥd,k(ζe)

and Ĥd,K (qe) defined in the same way as in Section B4 with respect to the sets Fk ⊂ k and F⊂ K . We
can consider the R-algebra Ĥd,R(qe) defined in a similar way with respect to the same set of idempotents
as Ĥd,k(ζe) (i.e., with respect to the set Fk, not F).

The algebra Ĥd,K (qe) is not unitary because the quiver 0̃ is infinite. To avoid this problem we consider
the truncated version of this algebra. Let Ĥ6N

d,K (qe) be the quotient of Ĥd,K (qe) by the two-sided ideal
generated by the idempotents e( j) ∈ Ĩ d such that j contains a component that is not a vertex of the
truncated quiver 0̃6N (see Section B2). (In fact, the algebra Ĥ6N

d,K (qe) is isomorphic to a direct summand
of Ĥd,K (qe)).

Similarly, we define the algebras Ĥd,k(ζe+1), Ĥd,K (qe+1) and Ĥd,R(qe+1) using the sets F and F k
instead of F and Fk. We define a truncation Ĥ6N

d,K
(qe+1) of Ĥd,K (qe+1) using the quiver 0̃6N .

For each i ∈ I d we consider the following idempotent in Ĥ6N
d,K (qe):

e(i)=
∑

j∈ Ĩ d ,πe( j)=i

e( j).

Here we mean that e( j) is zero if j contains a vertex that is not in the truncated quiver 0̃6N . The
idempotent e(i) is well defined because only a finite number of terms in the sum are nonzero. For each
i ∈ I d we can define an idempotent e(i) ∈ Ĥ6N

d,K
(qe+1) in a similar way.

Lemma B.7. There is an injective algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe) such that e(i) 7→ e(i),

Xr e(i) 7→ Xr e(i) and Tr e(i) 7→ Tr e(i).

Proof. It is clear that we have an algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe) as in the statement. We

only have to check the injectivity.
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For each w ∈ Sd we have an element Tw ∈ Hd,R(q) defined in the following way. We have Tw =
Ti1 · · · Tir , where w = si1 · · · sir is a reduced expression. It is well-known that Tw is independent of the
choice of the reduced expression. Moreover, the algebra Hd,R(q) is free over R[X±1

1 , . . . , X±1
d ] with a

basis {Tw : w ∈Sd}.
Set

B =
⊕
i∈Fd

k

R[X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (qe Xr − X t)

−1
: r 6= t]e(i),

where we invert (Xr − X t) only if ir 6= it and we invert (qe Xr − X t) only if ζeir 6= it . We have
Ĥd,R(qe) = B ⊗R[X±1

1 ,...,X±1
d ]

Hd,R(qe). This implies that the B-module Ĥd,R(qe) is free with a basis
{Tw : w ∈Sd}.

Similarly, we can show that the algebra Ĥ6N
d,K (qe) is free (with a basis {Tw : w ∈Sd}) over

B ′ =
⊕
j∈Fd

K [X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (qe Xr − X t)

−1
: r 6= t]e( j),

where we invert (Xr − X t) only if jr 6= jt and we invert (qe Xr − X t) only if qe jr 6= jt , and we take only
j that are supported on the vertices of the truncated quiver 06N .

Now, the injectivity of the homomorphism follows from the fact that it takes a B-basis of Ĥd,R(qe) to
a B ′-linearly independent set in Ĥ6N

d,K (qe). �

Now we define the algebra ŜHα,k(ζe+1) that is a Hecke analogue of a localization of the balanced
KLR algebra Sα,k. To do so, consider the idempotent e=

∑
i∈I αord

e(i) in Ĥα,k(ζe+1). We set

ŜHα,k(ζe+1)= eĤα,k(ζe+1)e/
∑
j∈I αun

eĤα,k(ζe+1)e( j)Ĥα,k(ζe+1)e.

Now, we define a similar algebra over K . To do this, we need to introduce some additional notation.
Denote by Q+

Ĩ ,eq
the subset of Q+

Ĩ
that contains only α̃ such that for each k ∈ Ĩ1, the dimension vector α̃

has the same dimensions at vertices k1 and k2.
Set

Ĥ6N
α,K
(qe+1)=

⊕
πe+1(α̃)=α

Ĥα̃,K (qe+1), and ŜH6N
α,K (qe+1)=

⊕
πe+1(α̃)=α

ŜH α̃,K (qe+1),

where in the sums we take only α̃∈Q+
Ĩ,eq

that are supported on the vertices of the truncated quiver 0̃6N

and ŜH α̃,K (qe+1) is defined similarly to ŜHα,k(ζe+1). More precisely, we have

ŜH α̃,K (qe+1)= ẽα̃Hα̃,K (qe+1)ẽα̃/
∑
j∈ Ĩ α̃un

ẽα̃Hα̃,K (qe+1)e( j)Hα̃,K (qe+1)ẽα̃,

where ẽα̃ =
∑

j∈ Ĩ α̃ord
e( j).
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Remark B.8. Consider the following idempotents in Ĥ6N
α,K
(qe+1):

ẽ=
∑

πe+1(α̃)=α

ẽα̃ and e=
∑

i∈I αord

e(i),

where the first sum is taken only by α̃ ∈ Q+
Ĩ ,eq

. (Note that Ĥ6N
α,K
(qe+1) was defined as a quotient of

Ĥα,K (qe+1). So, if α̃ is not supported on 0̃6N , then the idempotent ẽα̃ is zero by definition. In particular,
the sum has a finite number of nonzero terms.) Set also Ĩ α =

∐
πe+1(α̃)=α

Ĩ α̃ , where the sum is taken only
by α̃ ∈ Q+

Ĩ ,eq
. By definition, the algebra ŜH6N

α,K (qe+1) is a quotient of ẽĤ6N
α,K
(qe+1)ẽ. But we can see this

algebra as the same quotient of eĤ6N
α,K
(qe+1)e (we do the quotient with respect to the same idempotents).

Indeed, the idempotent e is a sum of a bigger number of standard idempotents e( j), j ∈ Ĩ α than the
idempotent ẽ. More precisely, the idempotent ẽ is the sum all e( j) such that j is well-ordered while e is
the sum of all e( j) such that πe+1( j) is well-ordered. But each j ∈ Ĩ α such that πe+1( j) is well-ordered
and j is not well-ordered must be unordered. Then such e( j) becomes zero after taking the quotient.

Finally, we define the R-algebra ŜH N
α,R(qe+1) as the image in ŜH6N

α,K (qe+1) of the following composi-
tion of homomorphisms

eĤα,R(qe+1)e→ eĤ6N
α,K
(qe+1)e→ ŜH6N

α,K (qe+1).

The lemma below shows that the algebra ŜH N
α,R(qe+1) is independent of N for N large enough. So,

we can write simply ŜHα,R(qe+1) instead of ŜH N
α,R(qe+1) for N large enough.

Lemma B.9. Assume N > 2d. Then the algebra ŜH N
α,R(qe+1) is independent of N .

Proof. Denote by JN the kernel of eĤα,R(qe+1)e→ ŜH6N
α,K (qe+1). Take M > N . It is clear that we have

JM ⊂ JN .
Let us show that we also have an opposite inclusion if N > 2d. We want to show that each element

x ∈ JN is also in JM . It is enough to show this for x of the form x = Xe(i), where i ∈ I αord and
X is composed of the elements of the form Tr and Xr . Then Xe(i) ∈ JN means that the element
Xe( j) ∈ ŜH6N

α,K (qe+1) is zero for each j ∈ Ĩ α supported on 0̃6N such that πe+1( j)= i . To show that we
have Xe(i)∈ JM we must check that the element Xe( j)∈ ŜH6M

α,K (qe+1) is zero for each j ∈ Ĩ α supported

on 0̃6M such that πe+1( j)= i .
Let α̃ ∈ Q+

Ĩ ,eq
be such that j ∈ Ĩ α̃. It is clear that we can find an α̃′ ∈ Q+

Ĩ ,eq
supported on

0̃62d such that we have an isomorphism Ĥα̃,K (qe+1) ' Ĥα̃,K (qe+1) that induces an isomorphism
ŜH α̃,K (qe+1)' ŜH α̃,K (qe+1) and such that this isomorphism preserves the generators Xr and Tr and sends
the idempotent e( j) to some idempotent e( j ′) such that j ′ is supported on 0̃62d and πe+1( j)= πe+1( j ′).
Then the element Xe( j) ∈ ŜH6M

α,K (qe+1) is zero because Xe( j ′) ∈ ŜH6M
α,K (qe+1) is zero. This implies

x ∈ JM . �
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Now we define the KLR versions of the algebras ŜHα,k(ζe+1) and ŜH6N
α,K (qe+1). As for the Hecke

version, we denote by e the idempotent
∑

i∈I αord
e(i) in R̂α,k(0). Set

Ŝα,k(0)= eR̂α,k(0)e/
∑
i∈I αun

eR̂α,k(0)e(i)Rα,k(0)e.

For each α̃ ∈ Q+
Ĩ ,eq

we consider the idempotent ẽα̃ =
∑

j∈ Ĩ α̃ord
e( j) in R̂α̃,K (0̃). Set

Ŝα,K (0̃6N )=
⊕

πe+1(α̃)=α

Ŝα̃,K (0̃),

where we take only α̃ ∈ Q+
Ĩ ,eq

that are supported on the vertices of the truncated quiver 0̃6N and

Ŝα̃,K (0̃)= ẽα̃ R̂α̃,K (0̃)ẽα̃/
∑
j∈ Ĩ α̃un

ẽα̃ R̂α̃,K (0̃)e( j)Rα̃,K (0̃)ẽα̃.

Remark B.10. By Proposition B.6 we have algebra isomorphisms

R̂α,k(0)' Ĥα,k(ζe), R̂α,K (0̃6N )' Ĥ6N
α,K (qe),

R̂α,k(0)' Ĥα,k(ζe+1), R̂α,K (0̃6N )' Ĥ6N
α,K
(qe+1),

from which we deduce the isomorphisms

Ŝα,k(0)' ŜHα,k(ζe+1) and Ŝα,K (0̃6N )' ŜH6N
α,K (qe+1).

We may use these isomorphisms without mentioning them explicitly. Using the identifications above
between KLR algebras and Hecke algebras, a localization of the isomorphism in Theorem 2.12 yields an
isomorphism

8α,k : Ĥα,k(ζe)→ ŜHα,k(ζe+1).

In the same way we also obtain an algebra isomorphism

8α̃,K : Ĥα̃,K (qe)→ ŜH φ̃(α̃),K (qe+1)

for each α̃ ∈ Q+
Ĩ

. Taking the sum over all α̃ ∈ Q+
Ĩ

such that πe(α̃)= α and such that α̃ is supported on
the vertices of the truncated quiver 0̃6N yields an isomorphism

8α,K : Ĥ6N
α,K (qe)→ ŜH6N

α,K (qe+1).

Lemma B.11. The homomorphism eĤα,R(qe+1)e→ eĤα,k(ζe+1)e factors through a homomorphism
ŜHα,R(qe+1)→ ŜHα,k(ζe+1).

Proof. In Section 2E we constructed a faithful polynomial representation of Sα,k. Let us call it Polk. It
is constructed as a quotient of the standard polynomial representation of eRα,ke. After localization we
get a faithful representation P̂olk of Ŝα,k. Thus the kernel of the algebra homomorphism eR̂α,ke→ Ŝα,k
is the annihilator of the representation P̂olk. We can transfer this to the Hecke side (because the
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isomorphism in Proposition B.6 comes from the identification of the polynomial representations) and
we obtain that the kernel of the algebra homomorphism eĤα,k(ζe+1)e→ ŜHα,k(ζe+1) is the annihilator
of the representation P̂olk. Similarly, we can characterize the kernel of the algebra homomorphism
eĤ6N

α,K
(qe+1)e→ ŜH6N

α,K (qe+1) as the annihilator of a similar representation P̂ol6N
K .

The K -vector space P̂ol6N
K has an R-submodule P̂ol R stable by the action of eĤα,R(qe+1)e such that

k⊗R P̂ol R = P̂olk and it is compatible with the algebra homomorphism eĤα,R(qe+1)e→ eĤα,k(ζe+1)e.
By definition of ŜHα,R(qe+1) and the discussion above, the kernel of the algebra homomorphism
eĤα,R(qe+1)e → ŜHα,R(qe+1) is formed by the elements that act by zero on P̂ol6N

K (we assume
that N is big enough). Thus each element of this kernel acts by zero on P̂ol R . This implies, that
an element of the kernel of eĤα,R(qe+1)e→ ŜHα,R(qe+1) specializes to an element of the kernel of
eĤα,k(ζe+1)e→ ŜHα,k(ζe+1). This proves the statement. �

B8. The deformation of the isomorphism 8.

Proposition B.12. There is a unique algebra homomorphism 8α,R : Ĥα,R(qe)→ ŜHα,R(qe+1) such that
the following diagram is commutative:

Ĥα,k(ζe)
8α,k
−−−→ ŜHα,k(ζe+1)x x

Ĥα,R(qe)
8α,R
−−−→ ŜHα,R(qe+1)y y

Ĥ6N
α,K (qe)

8α,K
−−−→ ŜH6N

α,K (qe+1).

Proof. First we consider the algebras H loc
α,k(ζe), H loc

α,R(qe) and H loc,6N
α,K (qe) obtained from Ĥα,k(ζe),

Ĥα,R(qe) and Ĥ6N
α,K (qe) by inverting

• (Xr − X t) and (ζe Xr − X t) with r 6= t ,

• (Xr − X t) and (qe Xr − X t) with r 6= t ,

• (Xr − X t) and (qe Xr − X t) with r 6= t

respectively. Let SH loc
α,k
(ζe+1) and SH loc,6N

α,K
(qe+1) be the localizations of ŜHα,k(ζe+1) and ŜH6N

α,K (qe+1)

such that the isomorphisms 8α,k and 8α,K above induce isomorphisms

8α,k : H loc
α,k(ζe)→ SH loc

α,k(ζe+1) and 8α,K : H loc,6N
α,K (qe)→ SH loc,6N

α,K
(qe+1).

Let SH loc
α,R
(qe+1) be the image in SH loc,6N

α,K
(qe+1) of the following composition of homomorphisms

eH loc
α,R
(qe+1)e→ eH loc,6N

α,K
(qe+1)e→ SH loc,6N

α,K
(qe+1).

(We assume N > 2d. Then, similarly to Lemma B.9, the algebra SH loc
α,R

is independent of N under this
assumption.)
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Next, we want to prove that there exists an algebra homomorphism 8α,R : H loc
α,R(qe)→ SH loc

α,R
(qe+1)

such that the following diagram is commutative:

H loc
α,k(ζe)

8α,k
−−−→ SH loc

α,k
(ζe+1)x x

H loc
α,R(qe)

8α,R
−−−→ SH loc

α,R
(qe+1)y y

H loc,6N
α,K (qe)

8α,K
−−−→ SH loc,6N

α,K
(qe+1).

(9)

We just need to check that the map 8α,K takes an element of H loc
α,R(qe) to an element of SH loc

α,R
(qe+1)

and that it specializes to the map 8α,k : H loc
α,k(ζe)→ SH loc

α,k
(ζe+1). We will check this on the generators

e(i), Xr e(i) and 9r e(i) of H loc
α,R(qe).

This is obvious for the idempotents e(i).
Let us check this for Xr e(i). Assume that i ∈ I α and j ∈ Ĩ |α| are such that we have πe( j) = i .

Write i ′ = φ(i) and j ′ = φ̃( j). Set r ′ = r ′j = r ′i , see the notation in Section 2F. By Theorem 2.12 and
Proposition B.5 we have

8α,K (Xr e( j))= p−1
j ′r ′

p jr Xr ′e( j ′).

Since, p−1
j ′r ′

p jr depends only on i and r and e(i)=
∑

πe( j)=i e( j), we deduce that

8α,K (Xr e(i))= p−1
j ′r ′

p jr Xr ′e(i ′).

Thus the element 8α,K (Xr e(i)) is in SH loc
α,R and its image in SH loc

α,k is p−1
i ′r ′

pir Xr ′e(i ′)=8α,k(Xr e(i)).
Next, we consider the generators 9r e(i). We must prove that for each j such that πe( j)= i and for

each r we have

• 8α,K (9r e( j))=4e( j ′), for some element 4 ∈ H loc
α,R(qe) that depends only on r and i ,

• the image of 4e(i ′) in SH loc
α,k
(qe+1) under the specialization R→ k is 8α,k(9r e(i)).

This follows from Lemma B.1.
Now we obtain the diagram from the claim of Proposition B.12 as the restriction of the diagram (9). �

B9. Alternative definition of a categorical representation. There is an alternative definition of a cate-
gorical representation, where the KLR algebra is replaced by the affine Hecke algebra.

Let R be a C-algebra. Fix an invertible element q ∈ R, q 6= 1. Let C be an R-linear exact category.

Definition B.13. A representation datum in C is a tuple (E, F, X, T ) where (E, F) is a pair of exact
biadjoint functors C→ C and X ∈ End(F)op and T ∈ End(F2)op are endomorphisms of functors such
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that for each d ∈ N, there is an R-algebra homomorphism ψd : Hd,R(q)→ End(Fd)op given by

Xr 7→ Fd−r X Fr−1
∀r ∈ [1, d],

Tr 7→ Fd−r−1T Fr−1
∀r ∈ [1, d − 1].

Now, assume that R = k is a field. Assume that C is a Hom-finite k-linear abelian category. Let F be a
subset of k× (possibly infinite). As in Section B4, we view F as the vertex set of a quiver with an arrow
i→ j if and only if j = qi .

Definition B.14. A gF-categorical representation in C is the datum of a representation datum (E, F, X, T )
and a decomposition C =

⊕
µ∈XF

Cµ satisfying the conditions (a) and (b) below. For i ∈F, let Ei and
Fi be endofunctors of C such that for each M ∈ C the objects Ei (M) and Fi (M) are the generalized
i-eigenspaces of X acting on E(M) and F(M) respectively, see also Remark 3.3 (a). We assume

(a) F =
⊕

i∈F Fi and E =
⊕

i∈F Ei ,

(b) Ei (Cµ)⊂ Cµ+αi and Fi (Cµ)⊂ Cµ−αi .

If the set F is infinite, condition (a) should be understood in the same way as in Remark 3.3 (b).

Remark B.15. (a) By definition, for each object M ∈ C and each d ∈ Z>0, we have Fid · · · Fi1(M) 6= 0
only for a finite number of sequences (i1, . . . , id) ∈ Fd . (Else, the endomorphism algebra of Fd(M) is
infinite-dimensional.) Then the homomorphism Hd,k(q)→ End(Fd(M))op extends to a homomorphism
Ĥd,k(q)→ End(Fd(M))op such that only a finite number of idempotents e( j) has a nonzero image. (We
define the action of e(i) as the projection from Fd to Fid · · · Fi1 . Note that the action of (Xr − X t)

−1e(i)
such that ir 6= it is well defined because Xr and X t have different eigenvalues. Similarly, the action of
(q Xr − X t)

−1e(i) such that r 6= t and qir 6= it is well defined.) In particular, we obtain a homomorphism
Ĥd,k(q)→ End(Fd)op.

(b) As in part (a), if we have a categorical representation in the sense of Definition 3.2, then the homomor-
phism Rd,k→End(Fd)op extends to a homomorphism R̂d,k→End(Fd)op. Then Proposition B.6 implies
that the two definitions of a categorical representation of gF (Definitions 3.2 and B.14) are equivalent.

B10. Categorical representations over R. We assume that the ring R is as in Section B6. We are going
to obtain an analogue of Theorem 3.5 over R.

Let CR , Ck and CK be R-, k- and K -linear categories, respectively. Assume that Ck and CK are Hom-
finite k-linear and K -linear abelian categories, respectively. Assume that the category CR is exact. Fix
R-linear functors �k : CR→ Ck and �K : CR→ CK .

Remark B.16. The first example of a situation as above that we should imagine is the following. Let A
be an R-algebra that is finitely generated as an R-module. We set CR = mod (A), Ck = mod (k⊗R A),
CK = mod (K ⊗R A), �k = k⊗ • and �K = K ⊗ •.

Another interesting situation (that in fact motivated the result of this section) is when CB , for B ∈
{R, k, H}, is the category O for ĝlN over B at a negative level. We do not want to assume in this section
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that the category CR is abelian because [Rouquier et al. 2016] constructs a categorical representation only
in the 1-filtered category O over R (and not in the whole abelian category O over R).

Definition B.17. A categorical representation of (s̃le, sl⊕l
∞
) in (CR, Ck, CK ) is the following data

(1) a categorical representation of gI = s̃le in Ck,

(2) a categorical representation of g Ĩ = sl⊕l
∞

in CK ,

(3) a representation datum (E, F) in CR (with respect to the Hecke algebra Hd,R(qe)) such that the
functors E and F commute with �k and �K ,

(4) lifts (with respect to �k) of decompositions E =
⊕

i∈I Ei , F =
⊕

i∈I Fi and Ck =
⊕

X I
Ck,µ from

Ck to CR

such that the following compatibility conditions are satisfied:

• The decomposition CR =
⊕

µ∈Xe
CR,µ is compatible with the decomposition CK =

⊕
µ̃∈X Ĩ

CK ,µ̃ (i.e.,
we have �K (CR,µ)⊂

⊕
πe(µ̃)=µ

CK ,µ̃).

• The decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi in CR are compatible with the decompositions
E =

⊕
j∈ Ĩ E j and F =

⊕
j∈ Ĩ F j in CK with respect to �K (i.e., the functors Ei =

⊕
j∈ Ĩ ,πe( j)=i E j

and Fi =
⊕

j∈ Ĩ ,πe( j)=i F j for CK correspond to the functors Ei , Fi for CR).

• The actions of the Hecke algebras Hd,R(qe), Hd,k(ζe) and Hd,K (qe) on End(Fd)op for CR , Ck and
CK are compatible with �k and �K .

Proposition B.12 yields the following version of Theorem 3.5 over R.
Let (CR, Ck, CK ) be a categorical representation of (s̃le+1, sl

⊕l
∞
). Assume that for each µ ∈ X I\X

+

I
we

have Ck,µ=CR,µ=0 and the for each µ̃∈ X Ĩ\X
+

Ĩ
we have CK ,µ̃=0. Let CR , Ck and CK be the subcategory

of CR , Ck and CK , respectively, defined in the same way as in Section 3D. Then we have the following.

Theorem B.18. There is a categorical representation of (s̃le, sl⊕l
∞
) in (CR, Ck, CK ).

Proof. We obtain a categorical representation of s̃le in Ck by Theorem 3.5. A similar argument as in
the proof of Theorem 3.5 yields a categorical representation of sl⊕l

∞
in CK (we just have to replace the

isomorphism 8 from Section 2G associated with the quiver 0e by a similar isomorphism associated
with the quiver 0̃). To construct a representation datum in CR , we use the homomorphism 8α,R from
Proposition B.12. All axioms of a (s̃le, sl⊕l

∞
)-categorical representation in (CR, Ck, CK ) follow automati-

cally from the axioms of a categorical representation of (s̃le+1, sl
⊕l
∞
) in (CR, Ck, CK ). �
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On nonprimitive Weierstrass points
Nathan Pflueger

We give an upper bound for the codimension in Mg,1 of the variety MS
G,1 of marked curves (C, p) with a

given Weierstrass semigroup. The bound is a combinatorial quantity which we call the effective weight of
the semigroup; it is a refinement of the weight of the semigroup, and differs from the weight precisely
when the semigroup is not primitive. We prove that whenever the effective weight is less than g, the
variety MS

G,1 is nonempty and has a component of the predicted codimension. These results extend
previous results of Eisenbud, Harris, and Komeda to the case of nonprimitive semigroups. We also survey
other cases where the codimension of MS

G,1 is known, as evidence that the effective weight estimate is
correct in wider circumstances.

1. Introduction

Given a point p on a smooth curve C of genus g, there is an associated numerical semigroup

S(C, p)= {−valp( f ) : f ∈ 0(C \ {p},OC)},

given by the pole orders of rational functions with no poles away from p. Weierstrass’s Lückensatz (now
an easy consequence of the Riemann–Roch formula) states that there are exactly g gaps in S(C, p).1

In reverse, any numerical semigroup S with g gaps defines a (not necessarily closed) subvariety
MS

g,1 ⊆Mg,1 of the moduli space of curves with a marked point. These loci stratify Mg,1, with the locus
defined by the ordinary semigroup Hg = {0, g+ 1, g+ 2, . . .} dense and open, and the value of the i-th
gap (i = 1, 2, . . . , g) an upper semicontinuous function.

The link between the combinatorics of these numerical semigroups and the geometry of curves and their
moduli is a wide and fascinating story that remains largely mysterious, though many intriguing special
cases (specific types of semigroups) are well understood. The core of the difficulty (and excitement)
in this story lies in the fact that S(C, p) is not an arbitrary sequence of integers, but a semigroup; this
combinatorial restriction reflects itself in the geometry of the stratification.

Our objective is to propose a partial answer to a basic question: given a semigroup S, what is the
codimension of MS

g,1 in Mg,1?

MSC2010: 14H55.
Keywords: Weierstrass points, numerical semigroups, algebraic curves, limit linear series.

1The author has heard conflicting stories about whether the number of gaps in a numerical semigroup is called the “genus”
due to this fact from geometry, or as a joking reference to the “number of holes” in the semigroup.
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Definition 1.1. The effective weight of a numerical semigroup S is

ewt(S)=
∑

gaps b

(# generators a < b).

Alternatively, ewt(S) is the number of pairs (a, b), where 0< a < b, a is a generator, and b is a gap.

In almost every situation where codimMS
g,1 is known for an explicit family of semigroups (as well

as for all semigroups of genus up to 6), it is equal to ewt(S); we summarize a number of these cases in
Section 2. The first genus in which the author is aware of a semigroup with codimMS

g,1 < ewt(S) is
g = 9 (the example is discussed in Section 2F).

Our main results are the following, which give much stronger evidence for the utility of ewt(S) in the
study of this stratification of Mg,1.

Theorem 1.2. If MS
g,1 is nonempty and X is any irreducible component of it, then

dim X ≥ dimMg,1− ewt(S).

We call a point or irreducible component of MS
g,1 effectively proper if the local dimension of MS

g,1 is
exactly dimMg,1− ewt(S).

Theorem 1.3. If S is a genus g numerical semigroup with ewt(S)≤ g− 2, then MS
g,1 has an effectively

proper component. If char k = 0, then the same is true for all numerical semigroups with ewt(S)≤ g− 1.

The effective weight is a refinement of a more naive quantity, the weight of a semigroup, and the two
quantities are equal for S if and only if S is primitive, meaning that the sum of any two nonzero elements
is greater than the largest gap (see Section 2A).

Theorems 1.2 and 1.3 were originally proved, with a characteristic 0 hypothesis, for primitive semi-
groups (using the weight) by Eisenbud and Harris [1987] and Komeda [1991]. Our proofs are based on
theirs, using the theory of limit linear series as the central technical tool. Our primary innovation is to
apply the machinery of limit linear series to produce incomplete linear series with specified vanishing
data on smooth curves. The basic technique is the same: curves with Weierstrass semigroups of genus g
are constructed by choosing a suitable genus g−1 semigroup and a marked curve realizing it, attaching
an elliptic curve at the Weierstrass point, marking a second point on the elliptic curve differing by torsion,
and deforming the resulting nodal curve.

Remark 1.4. The choice of terminology “effective weight” was made in reference to terminology from
the numerical semigroup literature. The set of all numerical semigroups can be arranged in a rooted tree,
with each level corresponding to a different genus, where the parent of a semigroup S is given by adding
the largest gap back into S. The children of a given semigroup S correspond to the “effective generators”
of S, which are defined to be the generators that are larger than the largest gap. For details, and a study of
the structure of this tree, see [Bras-Amorós and Bulygin 2009]. The effective weight of S is determined
by examining, in the path from the root (genus 0 semigroup) to S, the index of the effective generator
removed at each step (when the effective generators are listed in increasing order). If a similar procedure



On nonprimitive Weierstrass points 1925

were followed, arranging all cofinite subsets of N into a tree (not just semigroups), then the quantity
constructed in the same way would be the weight, rather than the effective weight.

1A. Speculation and conjectures. While there are semigroups S for which codimMS
g,1< ewt(S), to the

author’s knowledge all such examples fall in the range g ≤ codimMS
g,1 ≤ 2g. Therefore, we (somewhat

speculatively) conjecture that no such semigroups exist in codimension less than g.

Conjecture 1.5. If MS
g,1 has a component of codimension less than g in Mg,1, then all components of

MS
g,1 have codimension exactly ewt(S).

Curiously, we are not aware of any numerical semigroups of any genus for which codimMS
g,1 > 2g.

Therefore we also make the following (equally speculative) conjecture.

Conjecture 1.6. For any numerical semigroup such that MS
g,1 6= ∅, all components of MS

g,1 have
codimension at most 2g.

Note that in the above conjectures, g and 2g perhaps ought to be replaced with g+C1 and 2g+C2

for some constants C1 and C2, the value of which we have no strong beliefs about. We have stated the
conjectures as above merely to make them specific.

Although not relevant to the present paper, we also mention a purely combinatorial conjecture about
the effective weight that arose during this work. We have verified this conjecture by a computer search2

up to genus 50.

Conjecture 1.7. For any numerical semigroup of genus g,

ewt(S)≤
⌊
(g+ 1)2

8

⌋
.

Remark 1.8. If true, this conjecture is sharp. For g ≤ 5, this follows from case analysis. For g ≥ 6,
this follows from a general construction. Let η be an integer between −2 and 2 inclusive such that
η ≡ g+ 1 (mod 4) (there are two choices if g ≡ 1 (mod 4), and one otherwise). Let c = 1

4(3g+ 3+ η)
and d = 1

4(5g+ 1+ 3η). Then the semigroup

S = 〈c, c+ 1, . . . , d − 1, d〉 = N \ {1, 2, . . . , c− 1, d + 1, d + 2, . . . , 2c− 1}

has genus g and effective weight 1
8(g+ 1)2− 1

8η
2
=
⌊ 1

8(g+ 1)2
⌋
. For 10≤ g ≤ 50, a computer search

shows that these are the only semigroups of this effective weight, while for g≤ 9 there are some additional
sporadic examples achieving the same maximum.

The semigroups above (that appear, empirically, to maximize ewt(S) in a given genus) also provide
examples where codimMS

g,1 < ewt(S) [Pflueger 2016].

2C++ source code is available on the author’s website. The search took approximately 17 hours on a 3.4Ghz Intel i7-3770 CPU.
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Outline of the paper

We summarize in Section 2 several cases where codimMS
g,1 is known in the literature, including the

simplest case where strict inequality codimMS
g,1 < ewt(S) occurs. Section 3 summarizes background on

linear series and limit linear series needed for the proofs of the main theorems. Theorem 1.2 is proved in
Section 4. Section 5 is purely combinatorial, and provides some preliminary results on the structure of
numerical semigroups of low effective weight. Section 6 gives the proof of Theorem 1.3.

Conventions

Throughout this paper, we work over an algebraically closed field k. In Section 2, we assume char k = 0.
A point of a scheme will always refer to a closed point, and when we say that a general point of a scheme
satisfies a property, we mean that there exists a dense open subset in which all points satisfy the property.
A curve is always reduced, connected, and complete. A marked curve is a pair (C, p) of a curve C and a
point p ∈ C .

We denote by N the set of nonnegative integers; a numerical semigroup is a cofinite subset S ⊆ N

containing 0 and closed under addition. The elements of N \ S are called the gaps of S, and the number
of gaps is called the genus. A positive element of S that is not equal to the sum of two positive elements
of S is called a generator, and a sum of two positive elements is called composite.

We denote the set {0, g+ 1, g+ 2, . . .} by Hg, which we call the ordinary semigroup of genus g.

2. Background

The classification question of Weierstrass points can be asked on various levels. Hurwitz [1892] first
raised the simple existence question, while we are concerned with the more geometric dimension question.

Question 2.1. For which S is MS
g,1 6=∅?

Question 2.2. Given S, how many irreducible components does MS
g,1 have? What are their codimensions?

Question 2.3. Given S, what is the maximum codimension of an irreducible component of MS
g,1?

The number of semigroups of genus g grows exponentially with g with limiting ratio 1+
√

5
2 [Zhai 2013],

and present knowledge, even about Question 2.1, becomes quite sparse for large genus if all semigroups
are considered (see [Kaplan and Ye 2013]). This is one reason we prefer to focus on Questions 2.2 and 2.3:
if one hopes for general results, matters become much more tractable upon restricting to the more plentiful
sorts of semigroups, i.e., those for which codimMS

g,1 is small compared to g.
This restriction, to semigroups expected to appear in low codimension, is what allowed Eisenbud and

Harris to prove their rather strong results, later extended by Komeda. The downside of their results is that
they needed to impose not just a quantitative restriction (weight being less than g) but a qualitative one:
that the semigroup is primitive.

In the remainder of this section, we summarize some known results and simple cases of answers to
these questions, in order to highlight the extent to which the effective weight brings many known cases
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under one umbrella. We conclude in Section 2F, however, with the first example we know in which the
effective weight does not give the correct codimension.

Throughout this background section, we will assume that char k = 0, as much of the literature makes
this assumption.

2A. The work of Eisenbud, Harris and Komeda. The weight of a numerical semigroup is most simply
defined as the sum of the gaps minus

(g+1
2

)
. An alternate description, more suggestive of the link to the

effective weight, is that wt(S) is the number of pairs (a, b) where 0 < a < b, a ∈ S, and b 6∈ S. This
description shows that wt(S)− ewt(S) is equal to the number of pairs (a, b) where a < b, a is composite,
and b is a gap; hence wt(S)= ewt(S) if and only if S is primitive.

All semigroups satisfy codimMS
g,1 ≤ wt(S) (see Remark 4.3 for one argument), and a point of MS

g,1

at which equality holds locally is called dimensionally proper. Eisenbud and Harris [1987] proved that
if S is primitive and wt(S) ≤ g − 2, then MS

g,1 has dimensionally proper points. Their proof made
a characteristic 0 assumption, since this assumption was built into their theory of limit linear series
developed in [Eisenbud and Harris 1986], but modern treatments of limit linear series (e.g., [Osserman
2006; 2013]) make no such assumption. The proofs of Eisenbud and Harris [1987] can therefore be
carried to characteristic p with no modification.

The argument of Eisenbud and Harris [1987] proceeds by induction on g. It nearly succeeds in proving
the same result for primitive semigroups with wt(S)≤ g− 1 (rather than g− 2), except that the inductive
step fails for one very specific class of semigroups of weight g − 1. Komeda’s contribution [1991]
is to prove the theorem in this special case by a different argument, without limit linear series (and
with a characteristic 0 hypothesis), thus extending the results of Eisenbud and Harris [1987] to the case
wt(S)= g− 1. A second argument for this special case appears in [Coppens and Kato 1994].

Eisenbud and Harris observe [1987, Corollary on p. 497] that the primitivity hypothesis is necessary,
i.e., codimMS

g,1 <wt(S) if S is nonprimitive. This fact of course also now follows from our Theorem 1.2.
This is no minor difficulty, as many semigroups, including those that appear with low codimension in
the Weierstrass stratification of Mg,1, are not primitive. The main example, which provided substantial
motivation regarding how to refine wt(S), is the following.

Example 2.4. A hyperelliptic curve of genus g has 2g+ 2 points with semigroup {2, 4, 6, . . . , 2g− 2} ∪
H2g = 〈2, 2g+ 1〉 (the ramification points of the double cover of P1), while the rest of the points have
the ordinary semigroup (see e.g., [Arbarello et al. 1985, Exercise I.E-3]). Furthermore, if 2 ∈ S(C, p)
then C is necessarily hyperelliptic. Hence S = 〈2, 2g + 1〉 is called the hyperelliptic semigroup, and
codimMS

g,1 = g− 1 (the codimension of the hyperelliptic locus in Mg plus 1).
The hyperelliptic semigroup has the distinction of having the maximum weight of all genus g semi-

groups, namely
(g

2

)
. So the weight bound is spectacularly off in this case. However ewt(S)= g− 1.

Remark 2.5. Since the semigroups of maximum weight provide a nice example where the weight bound
fails to be exact (and suggested the definition of the effective weight), it seems reasonable to try to find
cases where the effective weight bound fails to be exact in the semigroups of maximum effective weight.
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Indeed, these semigroups provide such examples; see [Pflueger 2016]. See also Conjecture 1.7 and the
remark following it.

One notable extension of Eisenbud and Harris’s result, and method of proof, was given by Bullock
[2013]. Using a variation on Eisenbud and Harris’s inductive argument, Bullock proves that for the
nonprimitive semigroup

S = {0, g− 1, g+ 1, g+ 2, . . . , 2g− 2} ∪ H2g

of weight g, the locus MS
g,1 is irreducible of codimension g− 1. The manner in which Bullock treated a

nonprimitive semigroup with Eisenbud and Harris’s basic method provided inspiration for our method in
proving the more general Theorem 1.3. Note that S is “barely nonprimitive,” as there is only one gap
exceeding one composite element. See Remark 2.9 for more about Bullock’s work.

2B. The Deligne bound and negatively graded semigroups. The best general-purpose lower bound on
codimMS

g,1 is the Deligne bound, defined below.

Definition 2.6. For any numerical semigroup S, let λ(S) be the number of gaps b 6∈ S such that b+a ∈ S
for all positive elements a ∈ S.

Proposition 2.7. Let S be a numerical semigroup of genus g. If MS
g,1 is nonempty, then

codimMS
g,1 ≥ g− λ(S).

Proof. This bound follows from results of Deligne [SGA 7II 1973], first applied to the moduli of Weierstrass
points by Pinkham [1974, Theorems 10.3 and 13.9]. For a discussion of the bound in this form, see [Rim
and Vitulli 1977, Corollary 6.3]. �

In most cases, the Deligne bound and the effective weight bound do not coincide. Interestingly, the
cases where they do coincide are semigroups of a particular structure: they are the “negatively graded
semigroups” studied by Rim and Vitulli. Rim and Vitulli [1977, Theorem 4.7] prove that a semigroup is
negatively graded (a deformation-theoretic condition) if and only if it is one of the following.

Definition 2.8. Let g ≥ 2 be a positive integer. For each integer e between 1 and g− 1 inclusive, define:

NG1
g,e = (g− e+ 1) ·Z∪ Hc, where c = g+bg/(g− e)c,

NG2
g,e = {0, g, g+ 1, . . . , g+ e− 1} ∪ Hg+e,

and also define, for g ≥ 3,

NG3
g = {0, g− 1, g+ 1, g+ 2, . . . , 2g− 2} ∪ H2g−1.

Observe that ewt(NG1
g,e) = ewt(NG2

g,e) = e, and ewt(NG3
g) = g− 1. Note that NG1

g,1 = NG2
g,1 and

NG1
3,2 = NG3

3, but in all other cases the semigroups described above are distinct. Therefore for g ≥ 4,
there is one negatively graded semigroup of effective weight 1, two negatively graded semigroups of
effective weight e for 2≤ e ≤ g− 2, and three negatively graded semigroups of effective weight g− 1.
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Half of the semigroups NG1
g,e
(
those for which e ≤ g

2

)
, and all of the semigroups NG2

g,e are primitive,
while NG3

g and the other half of the NG1
g,e are not.

Remark 2.9. The three semigroups NG1
g,g−1, NG2

g,g−1, and NG3
g of effective weight g− 1 were studied

by Bullock [2013]; they correspond to the three irreducible components of the locus of “subcanonical
points” {(C, p) ∈Mg,1 : (2g− 2)p ∼ KC}; see [Kontsevich and Zorich 2003] for further background
about this locus. All three are called symmetric semigroups, since a positive integer n is a gap if and only
if 2g− 1− n is not a gap; this condition is equivalent to the condition that 2g− 1 is a gap.

Remark 2.10. The semigroups NG2
g,e are among the first semigroups for which MS

g,1 was studied in
detail; see [Pinkham 1974, Theorem 14.7].

In fact, the negatively graded semigroups are precisely the semigroups for which the Deligne lower
bound (on codimension) and the effective weight upper bound coincide.

Proposition 2.11. For any numerical semigroup S of genus g,

ewt(S)≥ g− λ(S),

with equality if and only if S is either ordinary or one of the semigroups NG1
g,e, NG2

g,e, or NG3
g.

Proof. Let E denote the set of pairs (a, b) ∈N2 such that a < b, a is a generator of S, and b is a gap. Let
3 denote the set of gaps b such that b+a ∈ S for all positive elements a ∈ S. By definition, ewt(S)= |E |
and λ(S)= |3|.

For all (a, b) ∈ E , b − a is necessarily a gap that is not in 3. Conversely, any gap b′ that is not
an element of 3 must be equal to b− a for some (a, b) ∈ E . This shows that the complement of 3
in N \ S has at most |E | elements, hence ewt(S) ≥ g − λ(S). Furthermore, this argument shows that
equality holds if and only if each (a, b) ∈ E gives a distinct difference b−a. Assume now that S satisfies
ewt(S)= g−λ(S); we will show that S is of one of the three forms stated. The case where S is ordinary
is immediate, so assume that S is nonordinary. Denote by m, n the first two generators of S.

Case 1: Suppose there are no gaps above n. In this case S = NG1
g,g−m+1.

Case 2: Suppose that n=m+1. There can be no two consecutive gaps b and b+1 of S greater than m+1,
since otherwise (m, b) and (m+ 1, b+ 1) both lie in E . Similarly, there is at most one gap b such that
b− 1 is a generator. Since all elements of S less than 2m are generators, these two facts show that there
is at most one gap b of S between m and 2m. If there are no gaps between m and 2m, then S is ordinary.
If there is one gap b between m and 2m, then S contains {m,m+1, . . . , b−1, b+1, b+2, . . . , 2m−1},
which generate all integers greater than 2m (recall that b > n = m+ 1 by assumption), so in fact b is the
only gap greater than m. Hence S = NG2

g,b−g.

Case 3: Suppose that n ≥m+2 and there is some gap b> n. Assume that b is the smallest such gap. The
gap b is less than m+n, since otherwise b−m would be an element of S and b could not be a gap. Since
(n, b) ∈ E and 1≤ b−n ≤m−1, it follows that not all of (m,m+1), . . . , (m, 2m−1) can lie in E ; this
implies that n ≤ 2m− 1, hence m+ 3≤ b ≤ 3m− 1. The pair (m,m+ 1) lies in E , so (b− 1, b) cannot
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lie in E , hence b− 1 is a composite element of S. The only possibility is that b = 2m + 1. Therefore
(2m−1, 2m+1)∈ E . This shows that (m,m+2) 6∈ E , so n=m+2. Therefore m+2,m+3, . . . , 2m ∈ S
and 2m + 1 6∈ S. The numbers m,m + 2,m + 3, . . . , 2m generate all integers greater than 2m + 1, so
2m+ 1 is the largest gap of S. Therefore m = g− 1 and S = NG3

g in this case. �

Remark 2.12. It would be interesting to find a more direct connection between negative grading and the
equality of the Deligne and effective weight bounds. It seems improbable that the fact that the same list
of semigroups is found in both contexts is merely a combinatorial coincidence.

2C. Semigroups of low genus. The exact codimension of MS
g,1 is known for all semigroups of genus

less than or equal to 6; in all of these cases, ewt(S) = codimMS
g,1. We now summarize where these

results can be found in the literature.
Most of these loci MS

g,1 have been described by Nakano; see Table 2 of [Nakano 2008].3 Of the rows
in Nakano’s table where dimMS

g,1 is not known, all but one are in fact one of the negatively graded
semigroups discussed in Section 2B, hence codimMS

g,1 is equal to ewt(S) in those cases. The remaining
semigroup is S = 〈5, 7, 9, 11, 13〉 (N (6)12, in the naming system of [Nakano 2008]). The discussion in
[Bullock 2014, Section 2.2] shows that for this semigroup, MS

g,1 has a component of codimension ewt(S)
(equal to wt(S) in this case since S is primitive), and the main theorem of [Bullock 2014] shows that this
is the only component.

2D. Two-generator semigroups. We now show that any numerical semigroup S with only two generators
exists as a Weierstrass semigroup, and that MS

g,1 is irreducible of codimension ewt(S) in Mg,1. This
furnishes an infinite family of nonprimitive semigroups of effective weight larger than g for which the
effective weight gives the correct codimension.

Let 1< e < d be relatively prime integers and let S = 〈e, d〉. The genus of S is 1
2(e− 1)(d − 1), as a

short combinatorial argument shows.
The effective weight is the number of gaps greater than e plus the number of gaps greater that d , which

can be expressed as:

ewt(S)= 2g− d − e+
⌊

d
e

⌋
+ 2.

To analyze MS
g,1, we use the following description.

Proposition 2.13. Let S, g, d, e be as above, and let P denote the convex lattice polygon {(i, j) ∈ R2
:

i, j ≥ 0, ei + d j ≤ ed}. Let (ci, j )(i, j)∈P be coefficients such that the affine curve C̃ defined by

0=
∑

(i, j)∈P∩Z2

ci, j x i y j

3There is a typographical error in that table: the semigroup 〈5, 6, 7〉 is stated in one column to be 11-dimensional, while the
following column indicates that MS

g,1 is an open subset of a 10-dimensional weighted projective space. The second column is

correct.
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is smooth, and such that the coefficients cd,0 and c0,e are nonzero. Then the completion C of C̃ has only
one additional point p, which has Weierstrass semigroup S. Viewing the coordinates x and y as rational
functions on C regular on C̃ , the pole orders of x and y at p are d and e, respectively.

Conversely, given any (C, p) ∈MS
g,1 and rational functions f and g of pole orders e and d at p and

regular elsewhere, the map ( f, g) embeds C̃ = C \ {p} as an affine curve of the form above.

Proof. Embed the affine plane as the set U = {(x, y, 1)} in the weighted projective plane P(e, d, 1), and
let C denote the closure of C̃ in P(e, d, 1). Denote by X , Y and Z the weighted homogeneous coordinates
on P(e, d, 1). The equation of C is

0=
∑

(i, j)∈P∩Z2

ci, j X i Y j Zde−ei−d j . (1)

Note that the nonvanishing of cd,0 and c0,e ensures that the scheme cut out by this homogeneous
equation has no components supported on the complement of U , so since this scheme matches C̃ on U it
is indeed equal to the closure of C̃ .

Neither of the points (1, 0, 0), (0, 1, 0) lie on C since cd,0 and c0,e are nonzero. Therefore any points of
C \ C̃ lie on {(x, y, 0) : x, y 6= 0} ∼= Spec k[u, u−1

], where u = XdY−e. The scheme-theoretic intersection
of C with this curve is given by the equation cd,0u+c0,e = 0. Hence C meets the boundary transversely in
a single point; it follows that C is smooth, hence it is the completion of C̃ , and has exactly one additional
point on the boundary; denote this point by p.

The rational functions x and y are regular on C̃ and their divisors of zeros are degree e and d,
respectively, hence they have poles of orders e and d at p. It follows that the Weierstrass semigroup of
p contains e and d, hence it contains all of S. It suffices to verify that the genus of C is equal to the
genus of S, which is 1

2(d − 1)(e− 1). This can be deduced from standard results in the geometry of
toric surfaces; we summarize an argument using results from [Cox et al. 2011]. To the convex lattice
polygon P , we may associate, as described in [loc. cit.], a toric variety X P together with a projective
embedding. The variety X P is isomorphic to P(e, d, 1) [loc. cit., Exercise 10.2.6(a)]. The hyperplane
sections in this embedding are subschemes cut out by equations of the form of (1), so the curve C is one
such hyperplane section. By [loc. cit., Proposition 10.5.8], the arithmetic genus of the subscheme cut out
by (1) is equal to the number of interior lattice points of P . The area of P is 1

2 de, and the number of
boundary vertices of P is d + e+ 1 (since d and e are relatively prime, there are no lattice points interior
to the edge from (d, 0) to (0, e), so we need only count the points on the other two edges). It follows
from Pick’s theorem that the number of interior lattice points of P is 1

2(d − 1)(e− 1), as desired.
For the converse, suppose that f and g are rational functions on C as in the proposition statement, and let

C̃ be C\{p}. Then ( f, g) defines a map from C̃ to the affine plane. The ring generated by f and g includes
functions of every possible pole order at p, hence this ring includes all regular functions on C̃ , and ( f, g) is
an embedding. Both f d and ge have pole order de at p, so some linear combination of them has a strictly
smaller pole order, hence is expressible as a linear combination of functions f i g j , where ei + d j ≤ de.
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In other words, C̃ satisfies a relation of the form 0=
∑

(i, j)∈P∩Z2 ci, j x i y j . Since there can be no relations
of smaller degree, this must be the generator of the ideal of (the image in the affine plane of) C̃ . �

We can use this description to determine the dimension of MS
g,1. The dimension of the space of curves

in the affine plane of the form in the Proposition is |P ∩Z2
| − 1. Using Pick’s theorem and the fact that

there are d + e+ 1 vertices on the boundary of P (as in the proof of the proposition), this dimension is
1
2(d+1)(e+1). This exceeds dimMS

g,1 by the dimension of the set of ways to embed a given (C, p)∈MS
g,1

in this manner, which is equal to h0(OC(e· p))+h0(OC(d · p)), which in turn is equal to 4+
⌊ d

e

⌋
. Therefore

dimMS
g,1 =

1
2(d + 1)(e+ 1)− 4−

⌊ d
e

⌋
= g+ d + e− 4−

⌊d
e

⌋
.

Combining with the earlier calculation of ewt(S), we have proved:

Proposition 2.14. Let S=〈e, d〉 be a numerical semigroup with two generators. Then MS
g,1 is irreducible

of codimension ewt(S) in Mg,1.

2E. Total inflection points of nodal plane curves. Another naturally arising class of semigroups for
which the effective weight bound is exact are those arising from nodal plane curves. These have been
investigated by Coppens and Kato [1994]. Although they do not explicitly analyze the dimension of MS

g,1,
their results readily give its value, which coincides with the value that the effective weight would predict.

Definition 2.15. Let d ≥ 3 be an integer, and δ a nonnegative integer less than
(d−1

2

)
. Let

Nd,δ = 〈d − 1, d〉 ∪ Hc,

where g =
(d−1

2

)
− δ and c is the gth gap in 〈d − 1, d〉.

Remark 2.16. The genus of the semigroup 〈d−1, d〉 is
(d−1

2

)
, so this is well defined. The semigroup Nd,δ

can be thought of as the “simplest” (e.g., the lowest-effective-weight) semigroup of genus g containing
both d and d−1. It can also be described as the genus g ancestor of 〈d−1, d〉 in the semigroup tree (see
Remark 1.4).

Theorem 2.17 [Coppens and Kato 1994, Theorem 2.3]. Let L be a fixed line in P2. Let X denote the
variety of degree d plane curves C with δ simple nodes and smooth at all other points, such that C
intersects L at a smooth point of C to multiplicity d. Then for a general point [C] ∈ X , the Weierstrass
semigroup of (C, p) is Nd,δ.

Proposition 2.18. For S = Nd,δ, with d and δ as in Definition 2.15, MS
g,1 is irreducible of codimension

ewt(S) in Mg,1.

Proof. The genus of S is g =
(d−1

2

)
− δ by definition, and its only generators that are below any gaps are

d − 1 and d, which lie below all gaps of S except 1, 2, . . . , d − 2. Therefore

ewt(S)= 2g− 2d + 4.

Let X be the variety in the statement of Theorem 2.17. It has a dense open subset U consisting of curves
C such that the normalization of (C, p) lies in MS

g,1, and the induced map U →MS
g,1 has irreducible
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fibers of dimension 6, since there is a 6-dimensional space of automorphisms of P2 fixing a line. The
map is dominant since any (C, p) with Weierstrass semigroup S may be given a morphism to P2 using
two rational functions of pole orders d − 1 and d at p; the image curve will be smooth at the image
of p, and the image of p will be a total inflection point since the divisor d · p must be the pullback of
some hyperplane section. Therefore dim X = dimMS

g,1 + 6. It suffices to show that X is irreducible
of dimension g + 2d. The dimension of X is equal to g + 2d by [Harris 1986, Lemma 2.4], and the
irreducibility of X follows from [Ran 1989, Irreducibility Theorem (bis)]. �

2F. A case where codimMS
g,1 6= ewt(S). The smallest genus in which we are aware of a semigroup S

for which codimMS
g,1 6= ewt(S) is g = 9.

The example is
S = 〈6, 7, 8〉 = N \ {1, 2, 3, 4, 5, 9, 10, 11, 17}.

For this semigroup, ewt(S) = 12, but we claim that codimMS
g,1 = 11. We will sketch a proof of

this fact, omitting the full details. In [Pflueger 2016], we describe MS
g,1 for all semigroups of the form

〈d − r + 1, d − r + 2, . . . , d〉 in complete detail. These semigroups furnish a large collection of cases
where codimMS

g,1 < ewt(S).
If (C, p) ∈MS

g,1, then one can show that the complete linear series |8p| embeds C in P3 as the
complete intersection of a quadric Q and a quartic R, and in this embedding the osculating plane H at p
meets C at p only. Hence we can study MS

g,1 via the variety of triples (C, H, p) of a smooth complete
intersections C of a quadric and quartic, a hyperplane H , and a point p such that C and H meet at p
only. One can calculate that the dimension of this variety is 29, and verify that for a general point of this
variety, (C, p) does indeed have Weierstrass semigroup S. Since a point (C, p) ∈MS

g,1 determines the
triple (C, H, p) up to automorphisms of P3, this shows that dimMS

g,1 = 29− dim Aut P3
= 14, hence

codimMS
g,1 = 25− 14= 11.

3. Dimensionally proper linear series

This section collects several key facts and definitions about families of linear series on marked algebraic
curves, including a “regeneration lemma” from the theory of limit linear series. The regeneration lemma
is the basic inductive tool in the proof of Theorem 1.3.

Our discussion will be brief, and a number of proofs and precise definitions are omitted where they are
not necessary for the application in this paper. A complete discussion of these matters can be found in
[Osserman 2013, Chapter 4]; other useful references are [Arbarello et al. 1985, Chapter IV], [Harris and
Morrison 1998, Chapter 5] and [Arbarello et al. 2011, Chapter XXI].

3A. Varieties of linear series with specified ramification.

Definition 3.1. Let C be a smooth curve. A linear series of rank r and degree d on C , or “a gr
d ,” is a pair

(L , V ) consisting of a degree d line bundle on C and an (r + 1)-dimensional vector space V of global
sections of L . We will sometimes refer to the linear series simply as V .
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Let p be a point of C . The vanishing sequence aV
0 (p), . . . , aV

r (p) of V consists of the r + 1 distinct
orders of vanishing of elements s ∈ V at the point p, in (strictly) increasing order.

We will often use the phrase vanishing sequence to refer to a set of r +1 nonnegative integers between
0 and d inclusive (when the values of r and d are clear from context). Vanishing sequences will be
denoted by capital roman letters, while the individual elements of a vanishing sequence will be denoted by
the corresponding lowercase letter, with a subscript. For example, the elements of a vanishing sequence
A will be denoted a0, a1, . . . , ar , in increasing order.

In the following two definitions, we describe the set of closed points of a scheme without specifying
the scheme structure. We hope the reader will forgive this, as the scheme structure is not relevant to our
application. Full details, including the functors that these schemes represent, can be found in [Osserman
2013, Section 4.1]. Although we only need the following two definitions in the cases n = 1 and n = 2,
we state them in fuller generality.

Definition 3.2. Let C be a smooth curve, p1, . . . , pn be distinct points of C , and A1, . . . , An be vanishing
sequences. Denote by

Gr
d(C; (p1, A1), . . . , (pn, An))

a scheme whose closed points correspond to the gr
ds (L , V ) on C such that for i=1, . . . , n and j=0, . . . , r ,

the inequality aV
j (pi )≥ai

j holds (recall that we write ai
j to denote the j -th element of the set Ai ). Denote by

G̃r
d(C; (p1, A1), . . . , (pn, An))

the open subscheme where equality aV
j (pi )= ai

j holds for all i and j .

Remark 3.3. In this definition and those that follow, our notation differs slightly from that of, for example,
[Osserman 2013]. In particular, we specify the vanishing sequence at each marked point, whereas most
authors specify the ramification sequence, defined by αi (p) = ai (p) − i . We have chosen to work
exclusively with vanishing orders, as it significantly reduces clutter in several parts of the present paper.

Definition 3.4. Let C→ B be a smooth, proper family of curves and s1, . . . , sn be disjoint sections. In
the case n = 0, assume that the family has at least one section. Denote by

Gr
d(C/B; (s1, A1), . . . , (sn, An))→ B

a scheme whose fiber over b ∈ B is Gr
d(Cb; (s1(b), A1), . . . , (sn(b), An)).

Denote by Gr
g,d(A

1, . . . , An)→Mg,n the scheme formed by gluing these schemes together (or, more
precisely, gluing these schemes together over a versal family of n-marked curves, and then taking the
quotient by a finite group action).

The notation G̃r
d or G̃r

g,d will refer to the open subscheme where the vanishing sequences match the
prescribed sequences exactly.
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Here, Mg,n denotes the coarse moduli space of smooth curves with n distinct marked points. We
omit the details of the gluing process; it suffices for our purposes that a scheme Gr

g,d(A
1, . . . , An) exists,

whose fibers over Mg,n are isomorphic to the varieties Gr
d(C; (p1, A1), . . . , (pn, An)).

3B. Dimensionally proper points.

Definition 3.5. For integers g, r, d and vanishing sequences A1, . . . , An , define

ρg(r, d; A1, . . . , An)= (r + 1)(d − r)− rg−
n∑

i=1

r∑
j=0

(ai
j − j).

When g, r, d, A1, . . . , An are clear from context, we will denote this number simply by ρ.

Lemma 3.6. If Gr
d(C/B; (s1, A1), . . . , (sn, An)) is nonempty, its local dimension at any point is greater

than or equal to dim B+ ρ.

Proof. See, for example, [Osserman 2013, Theorem 4.1.3] for full details; what follows is a brief summary.
First, describe Gr

d(C/B) (where we must assume that C→ B has a section) as a degeneracy locus of a
map of vector bundles over the relative Picard scheme Picd(C/B), and bound its dimension with this
description. Note that the assumption that C→ B has a section is needed to construct the relative Picard
scheme Picd(C/B). Then impose the vanishing conditions by intersecting the pullback of n Schubert
cells under n maps of Grassmannian bundles; this imposes at most a number of conditions equal to the
double summation in the formula for ρ. �

Definition 3.7. A linear series (L , V ) ∈ Gr
d(C; (p1, A1), . . . , (pn, An)) is called dimensionally proper

(with respect to the choice of A1, . . . , An) if there exists a deformation (C/B, s1, . . . , sn) of (C, p1, . . . , pn)

such that
dim Gr

d(C/B; (s1, A1), . . . , (sn, An))= dim B+ ρ,

locally at (L , V ).
Equivalently, (L , V ) is dimensionally proper if the local dimension of Gr

g,d(A
1, . . . , An) at (L , V ) is

equal to 3g+ n− 3+ ρ.

3C. Regeneration. We will reduce the proof of Theorem 1.3 to the existence of dimensionally proper
points of a suitable variety of linear series. The existence results will come from an induction on genus,
made possible by the following “regeneration lemma.”

Lemma 3.8. Fix positive integers g1, g2, d, r and two vanishing sequences A and A′. Denote by d − A
the vanishing sequence {d − ar , d − ar−1, . . . , d − a0}.

If G̃r
g1,d(A) and G̃r

g2,d(d − A, A′) both have dimensionally proper points, then G̃r
g1+g2,d(A

′) also has
dimensionally proper points.

This lemma is a standard application of the theory of limit linear series, pioneered by Eisenbud and
Harris [1986]. It is essentially a special case of the “smoothing theorem” [Eisenbud and Harris 1986, Theo-
rem 3.4], which is referred to as the “regeneration theorem” in the expository account [Harris and Morrison
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C1 C2

p q

Figure 1. The nodal curve X of Situation 3.9.

1998, Theorem 5.41]. Both of these sources work over the complex numbers and work locally in the
complex-analytic setting. We give a proof of Lemma 3.8 below based on the more recent [Osserman 2006],
which is therefore valid in characteristic p. The theory of limit linear series has subsequently been expanded
(for example, to include curves not of compact type) in various ways (e.g., [Osserman 2014a; Osserman
2014b; Amini and Baker 2015]), but for our purposes the theory developed in [Osserman 2006] is sufficient.

Limit linear series, as their name suggests, provide a way to construct, from a family of smooth
algebraic curves degenerating to a nodal curve and a family of linear series on the smooth curves, an
object over the nodal curve that serves as a well-defined limit of the linear series on smooth curves. For
the purpose of Lemma 3.8, we need only consider particularly simple nodal curves.

Situation 3.9. Fix positive integers g1 and g2. Let C1 and C2 be smooth curves of genus g1 and g2

respectively, let p1 be a point of C1 and let p2 and q be distinct points of C2. Denote by X the nodal
curve obtained by gluing p1 to p2, and denote the attachment point by p ∈ X . See Figure 1.

We will only require a specific type of limit linear series, namely refined series. In general, the refined
series form an open subset of all limit linear series. We do not require nonrefined series (called coarse
series in the Eisenbud and Harris theory) for our application, so we will not discuss them.

Definition 3.10. In Situation 3.9, a refined limit linear series of rank r and degree d on X (or a limit gr
d

on X ), is a pair ((L1, V1), (L2, V2)) of gr
ds on C1 and C2 respectively, such that for i = 0, 1, . . . , r ,

aV1
i (p1)= d − aV2

r−i (p2). (2)

Equation (2) is called the compatibility condition. The linear series (L i , Vi ) is called the Ci -aspect of the
limit linear series.

Another way to view a refined limit linear series on X is that it consists of a choice of vanishing
sequence A (with respect to the data r, d) and a point in

G̃r
d(C1; (p1, A))× G̃r

d(C2; (p2, d − A)).

Therefore a natural way to define a scheme structure for the set of refined limit linear series is as follows.

Definition 3.11. In Situation 3.9, the scheme of refined limit gr
ds on X is

Gr,ref
d (X)=

⋃
A

G̃r
d(C1; (p1, A))× G̃r

d(C2; (p2, d − A)),

where the union is taken within the scheme Gr
d(C1)×Gr

d(C2).



On nonprimitive Weierstrass points 1937

Definition 3.11 extends in an obvious way to families X → B of two-component curves. What is less
obvious is that it can also be extended to certain families of curves in which some members are smooth
and some are singular. For our purposes, we require the following facts:

(1) There is a special type of family X → B of nodal curves, called a smoothing family [Osserman
2006, Definition 3.1]. For every flat, proper family X → B of genus g curves, all are either smooth
curves or two-component curves with one node, with X regular and B regular and connected, and for
every choice of point b ∈ B, there is an étale neighborhood B ′→ B of b such that the fiber product
X ′→ B ′ is a smoothing family [loc. cit., Lemma 3.3].

(2) If X → B is a smoothing family of curves, all either smooth or two-component, there is a scheme
Gr,ref

d (X/B)→ B, whose fiber over any b ∈ B is either Gr
d(Xb) (if Xb is smooth) or Gr,ref

d (Xb) (if
Xb is a two-component curve) [loc. cit., Proposition 6.6].

(3) For such a smoothing family, the dimension bound

dim Gr,ref
d (X/B)≥ dim B+ ρg(r, d)

holds locally at every point [loc. cit., Theorem 5.3].

(4) With a family X → B as above, given a section s whose image lies in the smooth locus of every
fiber, and a vanishing sequence A, there also exists a scheme

G̃r,ref
d (X/B; (s, A))→ B,

whose fiber over a point b ∈ B such that Xb is smooth is isomorphic to G̃r
d(Xb; (s(b), A)), and whose

fiber over a point b ∈ B such that Xb is singular consists (set-theoretically) of those refined limit
linear series such that the aspect of the component on which s(b) lies has vanishing sequence equal
to A at s(b) [loc. cit., Corollary 6.10].

(5) In the previous situation, the dimension bound

dim Gr,ref
d (X/B; (s, A))≥ dim B+ ρg(r, d; A)

holds locally at every point [loc. cit., Theorem 4.4.10].

With this machinery in place, we can prove the regeneration lemma.

Proof of Lemma 3.8. Suppose that there are two dimensionally proper linear series

(L1, V1) ∈ G̃r
d(C1; (p1, A)) and (L2, V2) ∈ G̃r

d(C2; (p2, d − A), (q, A′)),

where C1 and C2 are smooth curves of genus g1 and g2, respectively. Form from (C1, p1) and (C2, p2, q)
a nodal two-component marked curve (X, q) as in Situation 3.9. Let (X/B, s) be a versal deformation
of (X, q), and let 1⊂ B denote the locus of singular curves, which is of codimension 1 in B. We may
assume (perhaps after taking a base change to an étale neighborhood) that X/B is a smoothing family, and
hence form the scheme G̃r,ref

d (X/B; (s, A′)) of refined limit linear series. The two linear series (L1, V1)
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and (L2, V2) constitute the aspects of a refined limit linear series on X . Since both of these aspects are
dimensionally proper, the local dimension, at this point, of the preimage of1 in G̃r,ref

d (X/B; (s, A′))must
be equal to exactly dim1+ ρg1(r, d; A)+ ρg2(r, d; d − A, A′). A bit of algebra shows that this is equal
to dim1+ρg(r, d; A′) (this bit of algebra is sometimes referred to as “the additivity of the Brill–Noether
number,” e.g., in [Eisenbud and Harris 1986, Lemma 3.6]). On the other hand, the local dimension, at
this same point, of the entire space G̃r,ref

d (X/B; (s, A′)) is at least dim B + ρg(r, d; A′); since 1 has
codimension one, it follows that the local dimension of G̃r,ref

d (X/B; (s, A′)) is in fact exactly equal to
dim B+ρg(r, d; A′), and that no irreducible component containing this point lies entirely over 1. Taking
any irreducible component and restricting it to the complement of 1 in B, we obtain a dimensionally
proper family of gr

ds on smooth marked curves of genus g, with imposed vanishing sequence A′ at the
marked point. Hence G̃r

g,d(A
′) has dimensionally proper points. �

4. The effective weight bound

We will prove Theorem 1.2 in this section. The proof comes from the dimension bound of Lemma 3.6,
applied to carefully chosen vanishing data at the marked point. Our main point of departure from previous
work on this subject (e.g., [Eisenbud and Harris 1987; Bullock 2013]) is that we consider incomplete linear
series (that is, (L , V ) where V is a strict subspace of the space of global sections of L), which nonetheless
determine the Weierstrass semigroup. This innovation allows the weight bound to be improved to the
effective weight bound.

Definition 4.1. Let S ⊂ N be a numerical semigroup of genus g. An effective subsequence for S is a
finite subset T ⊂ S such that

(1) T contains 0,

(2) T contains all generators of S, and

(3) T does not contain any composite elements of S that are less than the largest gap of S.

In the statement below and elsewhere, we will write d − T to denote the set {d − t : t ∈ T }.

Lemma 4.2. Let T be an effective subsequence for a numerical semigroup S of genus g, and d ≥max T
an integer. Let r = |T | − 1. For any smooth marked curve (C, p) of genus g:

(1) If the Weierstrass semigroup of (C, p) is not S, then

G̃r
d(C; (p, d − T ))=∅.

(2) If the Weierstrass semigroup of (C, p) is S, then the reduced structure of G̃r
d(C; (p, d − T )) is

isomorphic to the affine space of dimension

ρg(r, d; d − T )+ ewt(S).

Proof. Suppose that (L , V ) ∈ G̃r
d(C; (p, d − T )). Since 0 ∈ T , one of the vanishing orders of V must be

d itself. Therefore L must be OC(d · p), and V may be regarded as a vector space of rational functions
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on C , regular away from p, including functions of pole orders t ∈ T and no others. In particular, T is a
subset of the Weierstrass semigroup of p. Hence S(C, p) contains all of the generators of S, and hence is
precisely equal to S since S and S(C, p) have the same genus. This proves part (1).

Now suppose that the Weierstrass semigroup of (C, p) is S. Let W be the vector space of global
sections of OC(d · p); regard the elements of W as rational functions on C . This space has a complete
flag {0} = W0 ⊂ W1 ⊂ · · · ⊂ W` = W , where Wi consists of those rational functions of pole order
less than si , where S = {0 = s0, s1, s2, . . .} (written in increasing order). Then the reduced structure
of G̃r

d(C; (p, d − T )) may be identified with an open Schubert cell in the Grassmannian of (r + 1)-
dimensional subspaces of W with respect to this flag, hence it is isomorphic to an affine space. If we
write T = {s ji : i = 0, . . . , r} ( ji increasing with i), then the dimension of this Schubert cell is equal to∑r

i=0( ji − i). For i = 0, 1, 2, . . . , r , s ji − ji is equal to the number of gaps below s ji , and therefore

ji − i = (s ji − i)− g+ (#gaps of S greater than sji ).

Summing over all i and performing some algebra, we obtain

dim G̃r
d(C; (p, d − T ))= ρg(r, d; d − T )− g+

∑
t∈T

(#gaps of S greater than t).

Now, the value 0 ∈ T contributes g to the sum on the right side of this equation, the set of generators of S
contribute ewt(S) total to the sum, and all elements of T that are composite in S have no gaps of S above
them, thus contribute 0. Therefore dim G̃r

d(C; (p, d − T ))= ρg(r, d; d − T )+ ewt(S). �

Remark 4.3. If T were selected to be S ∩ {n ∈ N : n ≤ 2g− 1} (that is, if we include many composite
elements), then the same proof would show that G̃r

d(C; (p, d − T )) is either empty or a single point,
and the following corollary would prove the ordinary weight bound codimMS

g,1 ≤ wt(S). Omitting the
composite elements is precisely what strengthens the bound from wt(S) to ewt(S).

Corollary 4.4. Let (C/B, s) be a smooth, proper family of genus g curves with a section, and consider
the subvariety

BS
= {b ∈ B : (Cb, s(b)) ∈MS

g,1}

of marked curves with Weierstrass semigroup S. If BS is nonempty, then dim BS
≥ dim B− ewt(S).

Proof. The morphism G̃r
d(C/B; (s, d − T ))→ B has image equal to BS , and all fibers of dimension

ρg(T )+ ewt(S). Hence

dim BS
= dim G̃r

d(C/B; (s, d − T ))− ρg(r, d; d − T )− ewt(S).

Lemma 3.6 now gives the result. �

Proposition 4.5. Let S be a numerical semigroup and let T be an effective subsequence for S. Let d
be any integer greater than or equal to max T . Also let g be the genus of S and r = |T | − 1. The map
G̃r

g,d(d − T )→Mg,1 gives a bijection between the irreducible components of G̃r
g,d(d − T ) and MS

g,1.
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Under this bijection, the effectively proper components of MS
g,1 correspond to the dimensionally proper

components of G̃r
g,d(d − T ).

In particular, MS
g,1 has effectively proper points if and only if G̃r

g,d(d − T ) has dimensionally
proper points.

Proof. The fiber of this morphism over the point corresponding to a marked curve (C, p) is equal to
G̃r

d(C; (p, d− T )). By Lemma 4.2, this fiber is either irreducible of dimension ρg(r, d; d− T )+ ewt(S)
(if (C, p) ∈MS

g,1), or empty (otherwise). From this it follows that the irreducible components are in
bijection, and that a component of MS

g,1 has dimension dimMg,1−ewt(S) if and only if the corresponding
component of G̃r

g,d(d − T ) has dimension dimMg,1+ ρg(r, d; d − T ). �

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Let (C, p) be any marked smooth curve with Weierstrass semigroup S. Let
(C/B, s) be a versal deformation of (C, p). Corollary 4.4, applied to (C/B, s), implies that the local
dimension of MS

g,1 at (C, p) is at least dimMg,1− ewt(S). For any irreducible component X of MS
g,1, a

general point of X lies on no other irreducible components, hence dim X ≥ dimMg,1− ewt(S). �

5. Secundive semigroups

This section collects several purely combinatorial ingredients needed to perform the inductive proof of
Theorem 1.3.

Definition 5.1. A numerical semigroup S is called secundive if the largest gap is smaller than the sum of
the two smallest generators.

Remark 5.2. The author has chosen “secundive” as a weaker form of “primitive” (“primus” and “secundus”
meaning, respectively, “first” and “second” in Latin).

Lemma 5.3. If S is a semigroup with ewt(S)≤ g− 1, then S is secundive.

Proof. Let S be a semigroup that is not secundive; we will show that ewt(S) ≥ g. Let m and n be the
smallest and second-smallest generators of S, and let f be the largest gap of S. Since S is not secundive,
f > m+ n.

Consider the following three subsets of N×N:

(1) {(m, a) : m < a and a 6∈ S}.

(2) {(n, a) : n ≤ a < m+ n and a 6∈ S}.

(3) {(a, f ) : n ≤ a < m+ n,m -a, and a ∈ S}.

These three sets are disjoint, and every pair (x, y) in one of the three sets consists of a generator x and
a gap y, with x < y. Therefore the sum of the sizes of the three sets is less than or equal to ewt(S).
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The size of the first set is g−m+ 1. The sum of the sizes of the second and third sets is equal to the
number of integers a ∈ {n, n+ 1, . . . ,m+ n− 1} that are not divisible by m. There is exactly one a such
that m | a and n ≤ a <m+ n, hence the sum of the sizes of the second and third sets is equal to m− 1. It
follows that ewt(S)≥ g. �

Remark 5.4. The method of the proof above, with slight modification, shows that the inequality ewt(S)≥g
is sharp (for nonsecundive semigroups), and provides a method to enumerate the equality cases. In fact,
there exist nonsecundive semigroups with ewt(S)= g for all g ≥ 6. On the other hand, all semigroups of
genus g ≤ 5 are secundive.

Our inductive argument requires reducing the study of one secundive semigroup to another, which
must be smaller both in genus and in effective weight. This is accomplished with the following operation.

Definition 5.5. For two integers s and k, with k ≥ 2, define

slidek(s)=


s if s ≡ 0 mod k,
s− 2 if s ≡ 1 mod k,
s− 1 otherwise.

For a set S of integers and an integer k ≥ 2, define

slidek(S)= {slidek(s) : s ∈ S}.

In other words, slidek fixes all multiples of k in place, and replaces each nonmultiple with the preceding
nonmultiple. In particular, this function is order-preserving when restricted to nonmultiples of k; this is
the feature which makes it interact well with the effective weight.

Definition 5.6. Let S be a secundive numerical semigroup of genus g. Call an element k ∈ S a good
slider if the following three conditions are met:

(a) S′ = slidek(S) is a secundive numerical semigroup of genus g− 1.

(b) ewt(S′)= ewt(S)− 1.

(c) There exists an effective subsequence (Definition 4.1) T for S such that slidek(T ) is an effective
subsequence for S′.

Lemma 5.7. Let S be a secundive numerical semigroup and let m be the smallest generator of S:

(1) If m+ 1 6∈ S, then m is a good slider.

(2) If the largest gap of S is less than 2m− 1, then any k ∈ S such that k+ 1 6∈ S is a good slider.

(3) If m ≥ 3, 2m− 2 ∈ S and 2m− 1 is the largest gap of S, then 2m− 2 is a good slider.

Proof. Part (1). Suppose that m+ 1 6∈ S, and let S′ = slidem(S). Let n be the second-smallest generator
of S, and let f be the largest gap of S; note that neither is divisible by m. Then m is the smallest positive
element of S′ (this is where we use the hypothesis that m+ 1 6∈ S), the smallest element of S′ that isn’t a
multiple of m is n′ = slidem(n), and the largest integer that is not in S′ is f ′ = slidem( f ).
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Since S is secundive, f − n ≤ m − 1. Equivalently, there are fewer than m − 1 nonmultiples of m
between n and f inclusive. The same is true of n′ and f ′ since sliding preserves order among nonmultiples
of m, hence f ′− n′ ≤ m− 1 as well.

The sum of any two elements of S′ is either a multiple of m or exceeds m + n′, which exceeds f ′,
hence this sum lies in S′. So S′ is indeed a numerical semigroup. Since m+n′ > f ′, S′ is secundive. The
gaps of S′ are precisely {slidem(a) : a 6∈ S, a ≥ 2}, so the genus of S′ is g− 1.

To compare ewt(S) and ewt(S′), observe first that in a secundive semigroup, an element a smaller than
the largest gap is a generator if and only if it is either equal to m or not divisible by m. All other generators
(those larger than the largest gap) do not contribute to the effective weight. Next observe that m has one
fewer gap above it in S′ than in S. Finally, note that slidem establishes a bijection between the generators
of S between m and f exclusive and the generators of S′ between m and f ′ exclusive, and that the number
of gaps above a given generator is preserved by this bijection. This shows that ewt(S′)= ewt(S)− 1.

For part (c) of Definition 5.6, let T consist of 0 and also the smallest positive element of S in each con-
gruence class modulo m. This set necessarily includes all generators of S, and the fact that S is secundive
implies that any composite elements of S in T exceeds the largest gap, hence T is an effective subsequence
of S. The set T ′ = slidem(T ) is precisely equal to the set containing 0 and the smallest positive element
of S′ in each congruence class modulo m, so since S′ is also a secundive semigroup, T ′ is an effective
subsequence of S′ by the same reasoning. This completes the proof that m is a good slider when m+1 6∈ S.

Part (2). Now assume that the largest gap of S is less than 2m − 1, and that k ∈ S is an element
with k + 1 6∈ S. Then S is primitive. The smallest positive element of S′ is either m − 1 or m, and the
largest gap of S′ is less than 2m − 2, hence S′ is in fact a primitive semigroup as well. The operation
slidek preserves the number of gaps above every element of S, except in one case: the number of gaps
of S′ above slidek(k) = k is one less than the number of gaps above k in S. So ewt(S′) = ewt(S)− 1.
Finally, the set T can be constructed in a manner similar to Part (1): let T consist of 0 and the smallest
positive element of S in each congruence class modulo k. Then T ′ = slidek(T ) is the result of an identical
construction applied to S′, and a set constructed this way contains all generators of the semigroup. Since
S and S′ are primitive, the sets T and T ′ are effective subsequences, since the condition of containing
no composite elements less than the largest gap is vacuous.

Part (3). Now assume that 2m − 2 ∈ S, 2m − 1 6∈ S, and all integers larger than 2m are in S. Then
again, S is primitive. The largest gap of S′ = slide2m−2(S) is 2m− 3, and the smallest element of S′ is
m − 1 (note that m 6= 2m − 2 since we are assuming m ≥ 3), so S′ is also a primitive semigroup. The
rest of the argument is now analogous to the proof of Part (2). �

Lemma 5.8. Let S be a secundive numerical semigroup and let m be the smallest generator of S. If
m + 1 ∈ S, 2m − 2 6∈ S, and 2m − 1 6∈ S, then ewt(S) ≥ g− 1. Furthermore, equality ewt(S) = g− 1
occurs if and only if S = {0,m,m+ 1} ∪ H2m .

Proof. Note that the hypotheses imply that m ≥ 4, so m+1< 2m−2. Also note that since S is secundive
and contains m+ 1, in fact S is primitive and the largest gap is 2m− 1.
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Since all elements of S less than the largest gap are generators, the effective weight (which is equal to
the weight) is equal to the size of the set E = {(a, b) ∈ N2

: 0< a < b, a ∈ S, b 6∈ S}.
The elements of E can be partitioned into four types:

(1) The pairs (m, 2m− 2), (m, 2m− 1), (m+ 1, 2m− 2), and (m+ 1, 2m− 1).

(2) Pairs of the form (m, a) or (m+ 1, a), where m+ 2≤ a ≤ 2m− 3 and a 6∈ S.

(3) Pairs of the form (a, 2m− 2) or (a, 2m− 1), where m+ 2≤ a ≤ 2m− 3 and a ∈ S.

(4) Pairs of the form (a, b), where m+ 2≤ a < b ≤ 2m− 3, a ∈ S, and b 6∈ S.

There are four pairs of the first type. Since every element a between m+2 and 2m−3 inclusive appears
in either two pairs of the second type or two pairs of the third type (depending on whether or not a ∈ S),
the total number of pairs of either the second or third type is exactly 2(m−4). Therefore, adding the four
pairs of the first type, ewt(S) is equal to 2m− 4 plus the number of pairs of the fourth type. On the other
hand, the genus of S is at most (m− 1)+ (m− 2)= 2m− 3, with equality if and only if S contains no
elements between m+2 and 2m−3 inclusive. Hence g−1≤ 2m−4≤ ewt(S), with equality throughout
if and only if S consists precisely of 0,m,m+ 1 and all integers greater than or equal to 2m. �

Corollary 5.9. If S is a numerical semigroup with 1 ≤ ewt(S) ≤ g − 2, then S has a good slider. If
ewt(S)= g− 1, then S has a good slider unless S = {0,m,m+ 1} ∪ H2m for some m ≥ 4.

Proof. Suppose that 1 ≤ ewt(S) ≤ g − 1 and that S does not have a good slider. By Lemma 5.3, S
is secundive. Let m be the smallest generator of S. By Lemma 5.7(1), m + 1 ∈ S; this must be the
second-smallest generator. Since S is secundive, the largest gap of S is less than m + (m + 1), so it is
at most 2m − 1. Since ewt(S) > 0, the largest gap is greater than m, hence at least m + 2. Therefore
m + 2 ≤ 2m − 1, so m ≥ 3. By Lemma 5.7(2), the largest gap is in fact equal to 2m − 1, and by
Lemma 5.7(3), 2m− 2 6∈ S. This implies that m+ 1< 2m− 2, hence m ≥ 4. By Lemma 5.8, it follows
that ewt(S) is equal to g− 1 and S = {0,m,m+ 1} ∪ H2m . �

6. Existence of effectively proper points

We can now prove Theorem 1.3 by assembling the ingredients of the previous sections and the following
statement about elliptic curves. This lemma is similar to [Eisenbud and Harris 1987, Proposition 5.2],
and plays an analogous role in our argument.

Lemma 6.1. Fix integers d and r , and let T and T ′ be two vanishing sequences. As usual, denote the
elements of these, in increasing order, by ti and t ′i . Suppose that there exists an integer k, 1 ≤ k ≤ r ,
such that:

(1) t0 = t ′0 = 0 and tk = t ′k .

(2) for all i 6∈ {0, k}, neither ti nor t ′i is divisible by tk .

(3) for all i 6∈ {0, k}, the inequalities ti−1 ≤ t ′i < ti hold.

Then G̃r
1,d(T

′, d − T ) has dimensionally proper points.
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Proof. Denote the number tk = t ′k by m. Fix an elliptic curve E with a point p. Consider the trivial
family E × E→ E given by projection to the second coordinate, with two sections s1(q)= (p, q) and
s2(q) = (q, q). Fix a point q0 ∈ E differing from p by torsion of order exactly m. Let B be the open
subset of E given by removing p and all points q ′ differing from p by torsion of order dividing m,
except the point q0 itself. We can now regard (E × B, s1, s2) as a family of twice-marked elliptic curves
{(E, p, q)}q∈B , with the property that exactly one member (E, p, q0) of this family has p− q of torsion
order m, and all others have p−q either nontorsion or torsion of order not dividing m. We will show that
G̃r

d(E × B/B; (s1, T ′), (s2, d − T )) is nonempty of dimension ρ1(r, d; T ′, d − T )+ 1, which will prove
the result.

More specifically, we will show that if p and q are points not differing by torsion of order divid-
ing m (which is the case for all but one member of the family), G̃r

d(E; (p, T ′), (q, d − T )) is empty,
while if p and q differ by torsion of order exactly m (the case for one member of the family), then
G̃r

d(E; (p, T ′), (q, d − T )) is nonempty of dimension ρ1(r, d; T ′, d − T )+ 1.
Suppose that (E, p, q) is a twice-marked elliptic curve and (L , V ) is some linear series with vanishing

orders exactly T ′ at p and d − T at q .
The key observation is that for any i ∈ {0, 1, . . . , r}, the subspace

Vi = V (−t ′i p− (d − ti )q)

of V consisting of sections vanishing to order at least t ′i at p and order at least d− ti at q must be at least
1-dimensional.

In particular, for i = 0 and i = k it follows that the divisors d ·q and m · p+ (d−m) ·q are both in the
divisor class defined by the line bundle L . Hence L must be the line bundle OE(d ·q), and the points p and q
must differ by an element of Pic0(E) of order dividing m. This shows that Gr

d(E; (p, T ′), (q, d − T )) is
indeed empty whenever p, q do not differ by torsion of order dividing m.

We will now assume that p and q differ by torsion of order exactly m.

Claim 1. For i=0,1, . . . , r−1, there are no sections s∈V whose divisor of zeros contains t ′i+1 p+(d−ti )q.

Proof of claim 1. If i = 0, k− 1, or k, then the divisor t ′i+1 p+ (d − ti )q has degree greater than d, so it
certainly cannot be contained in the divisor of zeros of s. Otherwise, t ′i+1+ (d − ti )≥ d , so the only way
for the divisor of s to contain such a divisor is if t ′i+1 = ti and the divisor of s is exactly ti p+ (d − ti )q.
But this implies that p− q is ti -torsion, which is impossible since m -ti when i 6= 0, k. �

Claim 2. The space Vi is exactly 1-dimensional, and a nonzero section of Vi vanishes to order exactly
t ′i at p and d − ti at q.

Proof of claim 2. The second statement follows from claim 1. The first part follows from the second: in a
2-dimensional space of sections, there must be 2 distinct orders of vanishing at any given point. �

Therefore we see that (L , V ) has a very simple form: L =OE(d ·q) and V is the span of r+1 disjoint
1-dimensional subspaces Vi , each of which is spanned by a section of L vanishing along the divisor
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t ′i p+ (d − ti )q. Conversely, it is clear that any choice of these r + 1 spaces Vi gives rise to a point of
G̃r

d(E; (p, T ′), (q, d − T )). From this description, we can calculate from Riemann–Roch:

dim G̃r
d(E; (p, T ′), (q, d − T ))=

r∑
i=0

dim PH 0(L(−t ′i p− (d − ti )q))

=

r∑
i=0

dim PH 0(OE(−t ′i p+ ti q))

= 2+
r∑

i=0

(ti − t ′i − 1).

In the third line, we use the fact that for all i 6∈ {0, k}, ti − t ′i > 0, hence h1(E,OE(−t ′i p+ ti q)) = 0,
while for i = 0 and i = k, h1(OE(−t ′i p+ ti q))= h1(OE)= 1.

On the other hand, a bit of algebra shows that

ρ1(r, d; T ′, d − T )= 1+
r∑

i=0

(ti − t ′i − 1).

So we have established that, in the case where p− q differ by torsion of order m,

dim Gr
d(E; (p, T ′), (q, d − T ))= 1+ ρ1(r, d; T ′, d − T ).

By the remarks in the first paragraph, this proves that G̃r
1,d(T

′, d−T ) has dimensionally proper points. �

Corollary 6.2. If S is a secundive numerical semigroup, k is a good slider for S, and Mslidek(S)
g−1,1 has

effectively proper points, then MS
g,1 has effectively proper points.

Proof. Let T be an effective subsequence of S such that T ′ = slidek(T ) is an effective subsequence
of S′ = slidek(S). Removing some elements if necessary, we may assume that T and T ′ contain no
multiples of k other than 0 and k. Let r = |T |− 1 and let d =max T . By Proposition 4.5, G̃r

g−1,d(d− T ′)
has dimensionally proper points. By Lemma 6.1, G̃r

1,d(T
′, d − T ) also has dimensionally proper points.

The regeneration lemma, Lemma 3.8, implies that G̃r
g,d(d − T ) also has dimensionally proper points;

Proposition 4.5 now implies that MS
g,1 has an effectively proper component. �

Remark 6.3. In fact, the proof of Corollary 6.2 shows that the existence of effectively proper points of
MS

g,1 can be deduced from the existence of effectively proper points of MS′
g−1,1 whenever S′ and S are

semigroups of genus g− 1 and g respectively possessing effective subsequences T ′ and T that satisfy the
hypotheses of Lemma 6.1. It is possible that more MS

g,1 can be shown to have effective proper points by
constructing S′ in a different way from the slide construction.

Proof of Theorem 1.3. Let S be a numerical semigroup of genus g, such that ewt(S) ≤ g− 2. We will
prove that MS

g,1 has effectively proper components by induction on g. For g = 1 the only semigroup
is H1, and there is nothing to prove.
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Suppose that g ≥ 2 and the result holds for genus g − 1. If ewt(S) = 0, then S = Hg and MS
g,1 is

a dense open subset of Mg,1, so the result follows. Otherwise, Corollaries 5.9 and 6.2 show that the
existence of an effectively proper point of MS

g,1 follows from the existence of an effectively proper point
of MS′

g−1,1 for some semigroup S′ of genus g−1 and effective weight ewt(S)−1≤ g−3. This completes
the induction.

Now suppose that char k = 0 and S is a numerical semigroup of genus g such that ewt(S)= g−1. The
argument above works without modification, except in one case: g is odd and S={0, 1

2 g+ 3
2 ,

1
2 g+ 5

2}∪Hg+3

(this is the exception in Corollary 5.9). The main theorem of [Komeda 1991] is that for this specific
semigroup, in characteristic 0, MS

g,1 has dimensionally proper points (which are the same as effectively
proper points, since S is primitive). With this possibility accounted for, the induction is complete in the
case ewt(S)= g− 1 as well. �
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Bounded generation of SL2 over rings of S-integers
with infinitely many units

Aleksander V. Morgan, Andrei S. Rapinchuk and Balasubramanian Sury

To Alex Lubotzky on his 60th birthday

Let O be the ring of S-integers in a number field k. We prove that if the group of units O× is infinite then
every matrix in 0 = SL2(O) is a product of at most 9 elementary matrices. This essentially completes
a long line of research in this direction. As a consequence, we obtain a new proof of the fact that 0 is
boundedly generated as an abstract group that uses only standard results from algebraic number theory.

1. Introduction

Let k be a number field. Given a finite subset S of the set V k of valuations of k containing the set V k
∞

of
archimedian valuations, we let Ok,S denote the ring of S-integers in k, i.e.,

Ok,S = {a ∈ k× | v(a)≥ 0 for all v ∈ V k
\ S} ∪ {0}.

As usual, for any commutative ring R, we let SL2(R) denote the group of unimodular 2× 2-matrices
over R and refer to the SL2(R)-matrices

E12(a)=
(

1 a
0 1

)
and E21(b)=

(
1 0
b 1

)
(a, b ∈ R)

as elementary (over R).
It was established in [Vasershtein 1972] (see also [Liehl 1981]) that if the ring of S-integers O= Ok,S

has infinitely many units, the group 0 = SL2(O) is generated by elementary matrices. The goal of this
paper is to prove that in this case 0 is actually boundedly generated by elementaries. More precisely, we
prove the following.

Theorem 1.1. Let O= Ok,S be the ring of S-integers in a number field k, and assume that the group of
units O× is infinite. Then every matrix in SL2(O) is a product of at most 9 elementary matrices.

The quest to validate the property that every element of SL2(O) is a product of a bounded number of
elementary matrices has a considerable history. First, G. Cooke and P. J. Weinberger [1975] established it
(with the same bound as in Theorem 1.1) assuming the truth of a suitable form of the generalized Riemann
hypothesis, which still remains unproven. Later, it was shown in [Loukanidis and Murty 1994] (see also

MSC2010: primary 11F06; secondary 11R37, 20H05.
Keywords: bounded generation, arithmetic groups, congruence subgroup problem.
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[Murty 1995]) by analytic tools that the argument can be made unconditional if |S| ≥max(5, 2[k :Q]−3).
On the other hand, B. Liehl [1984] proved the result by algebraic methods for some special fields k. The
first unconditional proof in full generality was given by D. Carter, G. Keller and E. Paige in an unpublished
preprint; their argument was streamlined and made available to the public by D. W. Morris [2007]. This
argument is based on model theory and provides no explicit bound on the number of elementaries required;
besides, it uses difficult results from additive number theory.

M. Vsemirnov [2014] proved Theorem 1.1 for O= Z[1/p] using the results of D. R. Heath-Brown
[1986] on Artin’s primitive root conjecture (thus, in a broad sense, this proof develops the initial approach
of Cooke and Weinberger [1975]); his bound on the number of elementaries required is ≤ 5. Subsequently,
the third-named author reworked the argument from [Vsemirnov 2014] to avoid the use of [Heath-Brown
1986] in an unpublished note. These notes were the beginning of the work of the first two authors that
eventually led to a proof of Theorem 1.1 in the general case. It should be noted that our proof uses only
standard results from number theory such as Artin reciprocity and Chebotarev’s density theorem, and is
relatively short and constructive with an explicit bound which is independent of the field k and the set S.
This, in particular, implies that Theorem 1.1 remains valid for any infinite S.

The problem of bounded generation (particularly by elementaries) has been considered for S-arithmetic
subgroups of algebraic groups other than SL2. A few years after [Cooke and Weinberger 1975], Carter
and Keller [1983] showed that SLn(O) for n ≥ 3 is boundedly generated by elementaries for any ring
O of algebraic integers (see [Tavgen 1990] for other Chevalley groups of rank > 1, and [Erovenko and
Rapinchuk 2006] for isotropic, but nonsplit (or quasisplit), orthogonal groups). The upper bound on the
number of factors required to write every matrix in SLn(O) as a product of elementaries given in [Carter
and Keller 1983] is 1

2(3n2
− n)+ 681− 1, where 1 is the number of prime divisors of the discriminant

of k; in particular, this estimate depends on the field k. Using our Theorem 1.1, one shows in all cases
where the group of units O× is infinite, this estimate can be improved to 1

2(3n2
− n)+ 4, hence made

independent of k — see Corollary 4.6. The situation not covered by this result are when O is either Z or
the ring of integers in an imaginary quadratic field — see below. The former case was treated in [Carter
and Keller 1984] with an estimate 1

2(3n2
− n)+ 36, so only in the case of imaginary quadratic fields the

question of the existence of a bound on the number of elementaries independent of the k remains open.
From a more general perspective, Theorem 1.1 should be viewed as a contribution to the sustained

effort aimed at proving that all higher rank lattices are boundedly generated as abstract groups. We recall
that a group 0 is said to have bounded generation (BG) if there exist elements γ1, . . . , γd ∈ 0 such that

0 = 〈γ1〉 · · · 〈γd〉,

where 〈γi 〉 denotes the cyclic subgroup generated by γi . The interest in this property stems from the fact
that while being purely combinatorial in nature, it is known to have a number of far-reaching consequences
for the structure and representations of a group, particularly if the latter is S-arithmetic. For example,
under one additional (necessary) technical assumption, (BG) implies the rigidity of completely reducible
complex representations of 0 (known as SS-rigidity) — see [Rapinchuk 1990; Platonov and Rapinchuk
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1994, Appendix A]. Furthermore, if 0 is an S-arithmetic subgroup of an absolutely simple simply
connected algebraic group G over a number field k, then assuming the truth of the Margulis–Platonov
conjecture for the group G(k) of k-rational points [Platonov and Rapinchuk 1994, §9.1], (BG) implies
the congruence subgroup property (i.e., the finiteness of the corresponding congruence kernel — see
[Lubotzky 1995; Platonov and Rapinchuk 1992]). For applications of (BG) to the Margulis–Zimmer
conjecture, see [Shalom and Willis 2013]. Given these and other implications of (BG), we would like to
point out the following consequence of Theorem 1.1.

Corollary 1.2. Let O = Ok,S be the ring of S-integers, in a number field k. If the group of units O× is
infinite, then the group 0 = SL2(O) has bounded generation.

We note that combining this fact with the results of [Lubotzky 1995; Platonov and Rapinchuk 1992],
one obtains an alternative proof of the centrality of the congruence kernel for SL2(O) (provided that O×

is infinite), originally established by J.-P. Serre [1970]. We also note that (BG) of SL2(O) is needed to
prove (BG) for some other groups [Tavgen 1990; Erovenko and Rapinchuk 2006].

Next, it should be pointed out that the assumption that the unit group O× is infinite is necessary for the
bounded generation of SL2(O), hence cannot be omitted. Indeed, it follows from Dirichlet’s unit theorem
[Cassels and Fröhlich 1967, §2.18] that O× is finite only when |S| = 1 which happens precisely when S
is the set of archimedian valuations in the following two cases:

(1) k = Q and O = Z. In this case, the group SL2(Z) is generated by the elementaries, but has a
nonabelian free subgroup of finite index, which prevents it from having bounded generation.

(2) k = Q(
√
−d) for some square-free integer d ≥ 1, and Od is the ring of algebraic integers in k.

According to [Grunewald and Schwermer 1981], the group 0 = SL2(Od) has a finite index subgroup
that admits an epimorphism onto a nonabelian free group, hence again cannot possibly be boundedly
generated. Moreover, P. M. Cohn [1966] shows that if d /∈ {1, 2, 3, 7, 11} then 0 is not even generated
by elementary matrices.

The structure of the paper is the following. In Section 2 we prove an algebraic result about abelian
subextensions of radical extensions of general field — see Proposition 2.1. This statement, which may
be of independent interest, is used in the paper to prove Theorem 3.7. This theorem is one of the
number-theoretic results needed in the proof of Theorem 1.1, and it is established in Section 3 along with
some other facts from algebraic number theory. One of the key notions in the paper is that of a Q-split
prime: we say that a prime p of a number field k is Q-split if it is nondyadic and its local degree over the
corresponding rational prime is 1. In Section 3, we establish some relevant properties of such primes (see
Section 3A) and prove in Section 3B the following (known — see the remark in Section 3) refinement of
Dirichlet’s theorem from [Bass et al. 1967].

Theorem 3.3. Let O be the ring of S-integers in a number field k for some finite S⊂ V k containing V k
∞

. If
nonzero a, b ∈O are relatively prime (i.e., aO+bO=O) then there exist infinitely many principal Q-split
prime ideals p of O with a generator π such that π ≡ a (mod bO) and π > 0 in all real completions of k.
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Section 3C is devoted to the statement and proof of Theorem 3.7, which is another key number-theoretic
result needed in the proof of Theorem 1.1. In Section 4, we prove Theorem 1.1 and Corollary 1.2. Finally,
in Section 5 we correct the faulty example from [Vsemirnov 2014] of a matrix in SL2(Z[1/p]), where
p is a prime ≡ 1 (mod 29), that is not a product of four elementary matrices — see Proposition 5.1,
confirming thereby that the bound of 5 in [Vsemirnov 2014] is optimal.

Notations and conventions. For a field k, we let kab denote the maximal abelian extension of k. Further-
more, µ(k) will denote the group of all roots of unity in k; if µ(k) is finite, we let µ denote its order. For
n ≥ 1 prime to char k, we let ζn denote a primitive n-th root of unity.

In this paper, with the exception of Section 2, the field k will be a field of algebraic numbers (i.e., a
finite extension of Q), in which case µ(k) is automatically finite. We let Ok denote the ring of algebraic
integers in k. Furthermore, we let V k denote the set of (the equivalence classes of) nontrivial valuations of
k, and let V k

∞
and V k

f denote the subsets of archimedean and nonarchimedean valuations, respectively. For
any v ∈ V k , we let kv denote the corresponding completion; if v ∈ V k

f then Ov will denote the valuation
ring in kv with the valuation ideal p̂v and the group of units Uv = O×v .

Throughout the paper, S will denote a fixed finite subset of V k containing V k
∞

, and O = Ok,S the
corresponding ring of S-integers (see above). Then the nonzero prime ideals of O are in a natural bijective
correspondence with the valuations in V k

\ S. So, for a nonzero prime ideal p ⊂ O we let vp ∈ V k
\ S

denote the corresponding valuation, and conversely, for a valuation v ∈ V k
\ S we let pv ⊂ O denote the

corresponding prime ideal (note that pv = O∩ p̂v). Generalizing Euler’s ϕ-function, for a nonzero ideal a
of O, we set

φ(a)= |(O/a)×|.

For simplicity of notation, for an element a ∈ O, φ(a) will always mean φ(aO). Finally, for a ∈ k×, we
let V (a)= {v ∈ V k

f | v(a) 6= 0}.
Given a prime number p, one can write any integer n in the form n = pe

·m, for some nonnegative
integer e, where p -m. We then call pe the p-primary component of n.

2. Abelian subextensions of radical extensions

In this section, k is an arbitrary field. For a prime p 6= char k, we let µ(k)p denote the subgroup of µ(k),
consisting of elements satisfying x pd

= 1 for some d ≥ 0. If this subgroup is finite, we set λ(k)p to be
the nonnegative integer satisfying |µ(k)p| = pλ(k)p ; otherwise, set λ(k)p =∞. Clearly if µ(k) is finite,
then µ=

∏
p pλ(k)p . For a ∈ k×, we write n

√
a to denote an arbitrary root of the polynomial xn

− a.
The goal of this section is to prove the following.

Proposition 2.1. Let n ≥ 1 be an integer prime to char k, and let u ∈ k× be such that u /∈ µ(k)pk× p for
all p | n. Then the polynomial xn

− u is irreducible over k, and for t = n
√

u we have

k(t)∩ kab
= k(tm) where m =

n∏
p | n gcd(n, pλ(k)p)

,

with the convention that gcd(n, p∞) is simply the p-primary component of n.
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We first treat the case n = pd where p is a prime.

Proposition 2.2. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Fix an integer d ≥ 1,
set t = pd√u. Then

k(t)∩ kab
= k(t pγ ) where γ =max(0, d − λ(k)p).

We begin with the following lemma.

Lemma 2.3. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Set k1 = k( p
√

u). Then:

(i) [k1 : k] = p.

(ii) µ(k1)p = µ(k)p.

(iii) None of the p
√

u are in µ(k1)p(k×1 )
p.

Proof. (i) follows from [Lang 2002, Chapter VI, Theorem 9.1], as u /∈ (k×)p.

(ii) If λ(k)p =∞, then there is nothing to prove. Otherwise, we need to show that for λ= λ(k)p, we have
ζpλ+1 /∈ k1. Assume the contrary. Then, first, λ > 0. Indeed, we have a tower of inclusions k ⊆ k(ζp)⊆ k1.
Since [k1 : k] = p by (i), and [k(ζp) : k] ≤ p− 1, we conclude that [k(ζp) : k] = 1, i.e., ζp ∈ k.

Now, since ζpλ+1 /∈ k, we have
k1 = k(ζpλ+1)= k

(
p
√
ζpλ
)
. (1)

But according to Kummer’s theory (which applies because ζp ∈ k), the fact that k( p
√

a) = k( p
√

b) for
a, b ∈ k× implies that the images of a and b in k×/(k×)p generate the same subgroup. So, it follows
from (1) that uζ i

p ∈ (k
×)p for some i , and therefore u ∈ µ(k)p(k×)p, contradicting our choice of u.

(iii) Assume the contrary, i.e., some p-th root p
√

u can be written in the form p
√

u = ζa p for some a ∈ k×1
and ζ ∈ µ(k1)p. Let N = Nk1/k : k×1 → k× be the norm map. Then

N ( p
√

u)= N (ζ )N (a)p.

Clearly, N (ζ ) ∈ µ(k)p, so N ( p
√

u) ∈ µ(k)p(k×)p. On the other hand, N ( p
√

u)= u for p odd, and −u for
p = 2. In all cases, we obtain that u ∈ µ(k)p(k×)p. A contradiction. �

A simple induction now yields the following:

Corollary 2.4. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. For a fixed integer d ≥ 1,
set kd = k( pd√u). Then:

(i) [kd : k] = pd .

(ii) µ(kd)p = µ(k)p, hence λ(kd)p = λ(k)p.

Of course, assertion (i) is well known and follows, for example, from [Lang 2002, Chapter VI, §9].

Lemma 2.5. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Fix an integer d ≥ 1, and
set t = pd√u and kd = k(t). Furthermore, for an integer j between 0 and d define ` j = k(t pd− j

)' k( p j√u).
Then any intermediate subfield k ⊆ `⊆ kd is of the form `= ` j for some j ∈ {0, . . . , d}.
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Proof. Given such an `, it follows from Corollary 2.4(i) that [kd : `] = p j for some 0≤ j ≤ d . Since any
conjugate of t is of the form ζ · t where ζ pd

= 1, we see that the norm Nkd/`(t) is of the form ζ0t p j
, where

again ζ pd

0 = 1. Then ζ0 ∈ µ(kd)p, and using Corollary 2.4(ii), we conclude that ζ0 ∈ k ⊆ `. So, t p j
∈ `,

implying the inclusion `d− j ⊆ `. Now, the fact that [kd : `d− j ] = p j implies that `= `d− j , yielding our
claim. �

Proof of Proposition 2.2. Set λ = λ(k)p. Then for any d ≤ λ the extension k( pd√u)/k is abelian, and
our assertion is trivial. So, we may assume that λ <∞ and d > λ. It follows from Lemma 2.5 that
` := k(t)∩kab is of the form `d− j = k(t p j

) for some j ∈ {0, . . . , d}. On the other hand, `d− j/k is a Galois
extension of degree pd− j , so must contain the conjugate ζpd− j t pd− j

of t pd− j
, implying that ζpd− j ∈ `d− j .

Since `d− j ' k( pd− j√u), we conclude from Corollary 2.4(ii) that d − j ≤ λ, i.e., j ≥ d − λ. This proves
the inclusion `⊆ k(t pγ ); the opposite inclusion is obvious. �

Proof of Proposition 2.1. Let n = pα1
1 · · · p

αs
s be the prime factorization of n, and for i = 1, . . . , s set

ni = n/pαi
i . Let t = n

√
u and ti = tni (so, ti is a pαi

i -th root of u). Using again [Lang 2002, Chapter VI,
Theorem 9.1] we conclude that [k(t) : k] = n, which implies that

[k(t) : k(ti )] = ni for all i = 1, . . . , r. (2)

Since for K := k(t)∩kab the degree [K : k] divides n, we can write K = K1 · · · Ks where Ki is an abelian
extension of k of degree pβi

i for some βi ≤ αi . Then the degree [Ki (ti ) : k(ti )] must be a power of pi .
Comparing with (2), we conclude that Ki ⊆ k(ti ). Applying Proposition 2.2 with d = αi , we obtain the
inclusion

Ki ⊆ k(t
p
γi
i

i )= k(tni p
γi
i ) where γi =max(0, αi − λ(k)pi ). (3)

It is easy to see that the gcd of the numbers ni pγi
i for i = 1, . . . , s is

m =
n∏

p|n gcd(n, pλ(k)p)
.

Furthermore, the subgroup of k(t)× generated by tn1 p
γ1
1 , . . . , tns pγs

s coincides with the cyclic subgroup
with generator tm . Then (3) yields the following inclusion

K = K1 · · · Ks ⊆ k(tm).

Since the opposite inclusion is obvious, our claim follows. �

Corollary 2.6. Assume that µ= |µ(k)|<∞. Let P be a finite set of rational primes 6= char k, and define

µ′ = µ ·
∏
p∈P

p.

Given u ∈ k× such that

u /∈ µ(k)p(k×)p for all p ∈ P,
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for any abelian extension F of k the intersection

E := F ∩ k( µ
′√
u, ζµ′)

is contained in k( µ
√

u, ζµ′).

Proof. Without loss of generality we may assume that ζµ′ ∈ F , and then we have the following tower of
field extensions

k( µ
√

u, ζµ′)⊂ E( µ
√

u)⊂ k( µ
′√
u, ζµ′).

We note that the degree [k( µ′
√

u, ζµ′) : k( µ
√

u, ζµ′)] divides
∏

p∈P p. So, if we assume that the assertion
of the lemma is false, then we should be able to find to find a prime p ∈ P that divides the degree
[E( µ
√

u) : k( µ
√

u, ζµ′)], and therefore does not divide the degree [k( µ′
√

u, ζµ′) : E( µ
√

u)]. The latter implies
that pµ
√

u ∈ E( µ
√

u). But this contradicts Proposition 2.1 since E( µ
√

u)= E ·k( µ
√

u) is an abelian extension
of k. �

3. Results from algebraic number theory

3A. Q-split primes. Our proof of Theorem 1.1 heavily relies on properties of so-called Q-split primes
in O.

Definition. Let p be a nonzero prime ideal of O, and let p be the corresponding rational prime. We say
that p is Q-split if p > 2, and for the valuation v = vp we have kv =Qp.

For the convenience of further references, we list some simple properties of Q-split primes.

Lemma 3.1. Let p be a Q-split prime in O, and for n≥ 1 let ρn : O→O/pn be the corresponding quotient
map. Then:

(a) The group of invertible elements (O/pn)× is cyclic for any n.

(b) If c ∈ O is such that ρ2(c) generates (O/p2)× then ρn(c) generates (O/pn)× for any n ≥ 2.

Proof. Let p > 2 be the rational prime corresponding to p, and v = vp be the associated valuation of k.
By definition, kv =Qp, hence Ov = Zp. So, for any n ≥ 1 we will have canonical ring isomorphisms

O/pn
' Ov/p̂

n
v = Zp/pnZp ' Z/pnZ. (4)

Then (a) follows from the well-known fact that the group (Z/pnZ)× is cyclic. Furthermore, the
isomorphisms in (4) are compatible for different n. Since the kernel of the group homomorphism
(Z/pnZ)×→ (Z/p2Z)× is contained in the Frattini subgroup of (Z/pnZ)× for n ≥ 2, the same is true
for the homomorphism (O/pn)×→ (O/p2)×. This easily implies (b). �

Let p be a Q-split prime, let v = vp be the corresponding valuation. We will now define the level `p(u)
of an element u ∈ O×v and establish some properties of this notion that we will need later.
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Let p > 2 be the corresponding rational prime. The group of p-adic units Up = Z×p has the natural
filtration by the congruence subgroups

U(i)p = 1+ pi Zp for i ∈ N.

It is well-known that

Up = C ×U(1)p

where C is the cyclic group of order (p− 1) consisting of all roots of unity in Qp. Furthermore, the
logarithmic map yields a continuous isomorphism U

(i)
p → pi Zp, which implies that for any u ∈ Up \C ,

the closure of the cyclic group generated by u has a decomposition of the form

〈u〉 = C ′×U(`)p

for some subgroup C ′ ⊂ C and some integer ` = `p(u) ≥ 1 which we will refer to as the p-level of u.
We also set `p(u)=∞ for u ∈ C .

Returning now to a Q-split prime p of k and keeping the above notations, we define the p-level `p(u) of
u ∈O×v as the p-level of the element in Up that corresponds to u under the natural identification Ov = Zp.
We will need the following.

Lemma 3.2. Let p be a Q-split prime in O, let p be the corresponding rational prime, and v = vp the
corresponding valuation. Suppose we are given an integer d ≥ 1 not divisible by p, a unit u ∈ O×v of
infinite order having p-level s = `p(u), an integer ns , and an element c ∈ Ov such that uns ≡ c (mod ps).
Then for any t ≥ s there exists an integer nt ≡ ns (mod d) for which unt ≡ c (mod pt).

Proof. In view of the identification Ov = Zp, it is enough to prove the corresponding statement for Zp.
More precisely, we need to show the following: Let u ∈Up be a unit of infinite order and p-level s= `p(u).
If c ∈ Up and ns ∈ Z are such that uns ≡ c (mod ps), then for any t ≥ s there exists nt ≡ ns (mod d) such
that unt ≡ c (mod pt). Thus, we have that uns ∈ cU

(s)
p , and we wish to show that

uns · 〈ud
〉 ∩ cU(t)p 6=∅.

Since cU
(t)
p is open, it is enough to show that

uns · 〈ud〉 ∩ cU(t)p 6=∅. (5)

But since `p(u)= s and d is prime to p, we have the inclusion 〈ud〉 ⊃ U
(s)
p , and (5) is obvious. �

3B. Dirichlet’s theorem for Q-split primes. The following known (see the remark below) result gives
the existence of Q-split primes in arithmetic progressions.

Theorem 3.3. Let O be the ring of S-integers in a number field k for some finite S⊂ V k containing V k
∞

. If
nonzero a, b ∈O are relatively prime (i.e., aO+bO=O) then there exist infinitely many principal Q-split
prime ideals p of O with a generator π such that π ≡ a (mod bO) and π > 0 in all real completions of k.
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The proof follows the same general strategy as the proof of Dirichlet’s theorem in [Bass et al. 1967] —
see Theorem A.10 in the appendix on number theory. First, we will quickly review some basic facts
from global class field theory (see, for example, [Cassels and Fröhlich 1967, Chapter VII]) and fix
some notations. Let Jk denote the group of ideles of k with the natural topology; as usual, we identify
k× with the (discrete) subgroup of principal ideles in Jk . Then for every open subgroup U ⊂ Jk of
finite index containing k× there exists a finite abelian Galois extension L/k and a continuous surjective
homomorphism αL/k : Jk→ Gal(L/k) (known as the norm residue map) such that:

• U= KerαL/k = NL/k(JL)k×.

• For every nonarchimedean v ∈ V k which is unramified in L we let FrL/k(v) denote the Frobe-
nius automorphism of L/k at v (i.e., the Frobenius automorphism FrL/k(w|v) associated to some
(equivalently, any) extension w|v) and let i(v) ∈ Jk be an idele with the components

i(v)v′ =
{

1 if v′ 6= v,
πv if v′ = v,

where πv ∈ kv is a uniformizer; then αL/k(i(v))= FrL/k(v).

For our fixed finite subset S ⊂ V k containing V k
∞

, we define the following open subgroup of Jk :

US :=
∏
v∈S

k×v ×
∏

v∈V k\S

Uv.

Then the abelian extension of k corresponding to the subgroup US := USk× will be called the Hilbert
S-class field of k and denoted K throughout the rest of the paper.

Next, we will introduce the idelic S-analogs of ray groups. Let b be a nonzero ideal of O= Ok,S with
the prime factorization

b= pn1
1 · · · p

nt
t , (6)

let vi = vpi be the valuation in V k
\ S associated with pi , and let V (b)= {v1, . . . , vt }. We then define an

open subgroup
RS(b)=

∏
v∈V k

Rv

where the open subgroups Rv ⊆ k×v are defined as follows. For v real, we let Rv be the subgroup of
positive elements, letting Rv = k×v for all other v ∈ S, and setting Rv = Uv for all v /∈ S ∪ V (b). It
remains to define Rv for v = vi ∈ V (b), in which case we set it to be the congruence subgroup U (ni )

vi of
Uvi modulo p̂ni

vi
. We then let K (b) denote the abelian extension of k corresponding to RS(b) := RS(b)k×

(“ray class field”). (Obviously, K (b) contains K for any nonzero ideal b of O.) Furthermore, given c ∈ k×,
we let jb(c) denote the idele with the following components:

jb(c)v =
{

c if v ∈ V (b),
1 if v /∈ V (b).

Then θb : k×→ Gal(K (b)/k) defined by c 7→ αK (b)/k( jb(c))−1 is a group homomorphism.
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The following lemma summarizes some simple properties of these definitions.

Lemma 3.4. Let b⊂ O be a nonzero ideal.

(a) If a nonzero c ∈O is relatively prime to b (i.e., cO+b=O) then θb(c) restricts to the Hilbert S-class
field K trivially.

(b) If nonzero c1, c2 ∈ O are both relatively prime to b then c1 ≡ c2 (mod b) is equivalent to

prb( jb(c1)RS(b))= prb( jb(c2)RS(b)) (7)

where prb : Jk→
∏
v∈V (b) k×v is the natural projection.

Proof. (a) Since c is relatively prime to b, we have jb(c) ∈US . So, using the functoriality properties of
the norm residue map, we obtain

θb(c)|K = αK (b)/k( jb(c))−1
|K = αK/k( jb(c))−1

= idK

because jb(c) ∈US ⊂ US = KerαK/k , as required.

(b) As above, let (6) be the prime factorization of b, let vi = vpi ∈ V k
\ S be the valuation associated

with pi . Then for any c1, c2 ∈ O, the congruence c1 ≡ c2 (mod b) is equivalent to

c1 ≡ c2 (mod p̂ni
vi
) for all i = 1, . . . , t. (8)

On the other hand, for any v ∈ V k
f and any u1, u2 ∈Uv, the congruence u1 ≡ u2 (mod p̂n

v) for n ≥ 1 is
equivalent to

u1U (n)
v = u2U (n)

v ,

where U (n)
v is the congruence subgroup of Uv modulo p̂n

v . Thus, for (nonzero) c1, c2 ∈ O prime to b, the
conditions (7) and (8) are equivalent, and our assertion follows. �

We will now establish a result needed for the proof of Theorem 3.3 and its refinements.

Proposition 3.5. Let b be a nonzero ideal of O, let a ∈ O be relatively prime to b, and let F be a finite
Galois extension of Q that contains K (b). Assume that a rational prime p is unramified in F and
there exists an extension w of the p-adic valuation vp to F such that FrF/Q(w|vp)|K (b)= θb(a). If the
restriction v of w to k does not belong to S ∪ V (b) then:

(a) kv =Qp.

(b) The prime ideal p = pv of O corresponding to v is principal with a generator π satisfying π ≡
a (mod b) and π > 0 in every real completion of k.

We note since v is unramified in F which contains K (b), we in fact automatically have that v /∈ V (b).

Proof. (a) Since the Frobenius Fr(w|vp) generates Gal(Fw/Qp), our claim immediately follows from the
fact that it acts trivially on k.
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(b) According to (a), the local degree [kv : Qp] is 1, hence the residual degree f (v|vp) is also 1, and
therefore

Fr(w|v)= Fr(w|vp)
f (v|vp) = Fr(w|vp).

Thus,
αK (b)/k(i(v))= Fr(w|v)|K (b)= θb(a)= αK (b)/k( jb(a))−1,

and therefore
i(v) jb(a) ∈ KerαK (b)/K = RS(b)= RS(b)k×.

So, we can write
i(v) jb(a)= rπ with r ∈ RS(b), π ∈ k×. (9)

Then
π = i(v)( jb(a)r−1).

Since a is prime to b, the idele jb(a) ∈ US , and then jb(a)r−1
∈ US . For any v′ ∈ V k

\ (S ∪ {v}), the
v′-component of i(v) is trivial, so we obtain that π ∈Uv′ . On the other hand, the v-component of i(v) is
a uniformizer πv of kv implying that π is also a uniformizer. Thus, p= πO is precisely the prime ideal
associated with v. For any real v′, the v′-components of i(v) and jb(a) are trivial, so π equals the inverse
of the v′-component of r , hence positive in kv′ . Finally, it follows from (9) that

prb( jb(a))= prb( jb(π)r),

so π ≡ a (mod b) by Lemma 3.4(b), as required. �

Proof of Theorem 3.3. Set b= bO and σ = θb(a) ∈ Gal(K (b)/k). Let F be the Galois closure of K (b)
over Q, and let τ ∈ Gal(F/Q) be such that τ |K (b) = σ . Applying Chebotarev’s density theorem (see
[Cassels and Fröhlich 1967, Chapter VII, 2.4] or [Bass et al. 1967, A.6]) we find infinitely many rational
primes p > 2 for which the p-adic valuation vp is unramified in F , does not lie below any valuations in
S ∪ V (b), and has an extension w to F such that FrF/Q(w|vp)= τ . Let v = w|k, and let p= pv be the
corresponding prime ideal of O. Since p > 2, Proposition 3.5(a) implies that p is Q-split. Furthermore,
Proposition 3.5(b) asserts that p has a generator π such that π ≡ a (mod b) and π > 0 in every real
completion of k, as required. �

Remark. Dong Quan Ngoc Nguyen pointed out to us that Theorem 3.3, hence the essential part of
Dirichlet’s theorem from [Bass et al. 1967] (in particular, (A.11)), was known already to Hasse [1926,
Satz 13]. In the current paper, however, we use the approach described in [Bass et al. 1967] to establish the
key Theorem 3.7; the outline of the constructions from [loc. cit.] as well as the technical Lemma 3.4 and
Proposition 3.5 are included for this purpose. We note that in contrast to the argument in [loc. cit.], our
proofs of Theorems 3.3 and 3.7 involve the application of Chebotarev’s density theorem to noncommutative
Galois extensions.

We will now prove a statement from Galois theory that we will need in the next subsection.
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Lemma 3.6. Let F/Q be a finite Galois extension, and let κ be an integer for which F ∩Qab
⊆Q(ζκ).

Then F(ζκ)∩Qab
=Q(ζκ).

Proof. We need to show that

[F(ζκ) : F(ζκ)∩Qab
] = [F(ζκ) :Q(ζκ)]. (10)

Let
G = Gal(F(ζκ)/Q) and H = Gal(F/Q).

Then the left-hand side of (10) is equal to the order of the commutator subgroup [G,G], while the
right-hand side equals

[F : F ∩Q(ζκ)] = [F : F ∩Qab
] =

∣∣[H, H ]
∣∣.

Now, the restriction gives an injective group homomorphism

ψ : G→ H ×Gal(Q(ζκ)/Q).

Since the restriction G→ H is surjective, we obtain that ψ implements an isomorphism between [G,G]
and [H, H ]× {1}. Thus, [G,G] and [H, H ] have the same order, and (10) follows. �

3C. Key statement. In this subsection we will establish another number-theoretic statement which plays
a crucial role in the proof of Theorem 1.1. To formulate it, we need to introduce some additional notations.
As above, let µ = |µ(k)| be the number of roots of unity in k, let K be the Hilbert S-class field of k,
and let K̃ be the Galois closure of K over Q. Suppose we are given two finite sets P and Q of rational
primes. Let

µ′ = µ ·
∏
p∈P

p,

pick an integer λ≥ 1 which is divisible by µ and for which K̃ ∩Qab
⊆Q(ζλ), and set

λ′ = λ ·
∏
q∈Q

q.

Theorem 3.7. Let u ∈ O× be a unit of infinite order such that u /∈ µ(k)p(k×)p for every prime p ∈ P ,
and let q be a Q-split prime of O which is relatively prime to λ′. Then there exist infinitely many principal
Q-split primes p= πO of O with a generator π such that:

(1) For each p ∈ P , the p-primary component of φ(p)/µ divides the p-primary component of the order
of u (mod p).

(2) π (mod q2) generates (O/q2)×.

(3) gcd(φ(p), λ′)= λ.

Proof. As in the proof of Theorem 3.3, we will derive the required assertion by applying Chebotarev’s
density theorem to a specific automorphism of an appropriate finite Galois extension.
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Let K (q2) be the abelian extension K (b) of k introduced in Section 3B for the ideal b= q2. Set

L1 = K (q2)(ζλ′), L2 = k(ζµ′, µ′
√

u), L = L1L2 and `= L1 ∩ L2.

Then
Gal(L/k)= {σ = (σ1, σ2) ∈ Gal(L1/k)×Gal(L2/k) : σ1 | `= σ2 | `}. (11)

So, to construct σ ∈ Gal(L/k) that we will need in the argument it is enough to construct appropriate
σi ∈ Gal(L i/k) for i = 1, 2 that have the same restriction to `.

Lemma 3.8. The restriction maps define the following isomorphisms:

(1) Gal(L1/K )' Gal(K (q2)/K )×Gal(K (ζλ′)/K ).

(2) Gal(K (ζλ′)/K (ζλ))' Gal(Q(ζλ′)/Q(ζλ))'
∏

q∈Q Gal(Q(ζqλ)/Q(ζλ)).

Proof. (1) We need to show that K (q2)∩ K (ζλ)= K . But the Galois extensions K (q2)/K and K (ζλ)/K
are respectively totally and unramified at the extensions of vq to K (since q is prime to λ), so the required
fact is immediate.

(2) Since K (ζλ′)= K (ζλ) ·Q(ζλ′), we only need to show that

K (ζλ)∩Q(ζλ′)=Q(ζλ). (12)

We have
K (ζλ)∩Q(ζλ′)⊆ K̃ (ζλ)∩Qab

=Q(ζλ)

by Lemma 3.6. This proves one inclusion in (12); the other inclusion is obvious. �

Since q is Q-split, the group (O/q2)× is cyclic (Lemma 3.1(a)), and we pick c ∈ O so that c (mod q2)

is a generator of this group. We then set

σ ′1 = θq2(c) ∈ Gal(K (q2)/K )

in the notations of Section 3B (see Lemma 3.4(a)). Next, for q ∈ Q, we let qe(q) be the q-primary
component of λ. Then using the isomorphism from Lemma 3.8(2), we can find σ ′′1 ∈ Gal(K (ζλ′)/K )
such that

σ ′′1 (ζλ)= ζλ but σ ′′1 (ζqe(q)+1) 6= ζqe(q)+1 for all q ∈ Q. (13)

We then define σ1 ∈ Gal(L1/K ) to be the automorphism corresponding to the pair (σ ′1, σ
′′

1 ) in terms of
the isomorphism from Lemma 3.8(1) (in other words, the restrictions of σ1 to K (q2) and K (ζλ′) are σ ′1
and σ ′′1 , respectively).

We fix a µ′-th root µ′
√

u, and for ν|µ′ set ν
√

u = ( µ′
√

u)µ
′/ν (also denoted uν

−1
). To construct σ2 ∈

Gal(L2/k), we need the following.

Lemma 3.9. Let σ0 ∈ Gal(`/k). Then there exists σ2 ∈ Gal(L2/k) such that

(1) σ2|`= σ0.
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(2) For any p ∈ P , if pd(p) is the p-primary component of µ then

σ2(u p−(d(p)+1)
) 6= u p−(d(p)+1)

.

Consequently either σ2(ζpd(p)+1) 6= ζpd(p)+1 or σ2 acts nontrivially on all pd(p)+1-th roots of u.

Proof. Since L1/k is an abelian extension, we conclude from Corollary 2.6 that

`⊆ k( µ
√

u, ζµ′)⊆ kab. (14)

On the other hand, according to Proposition 2.1, none of the roots pµ
√

u for p ∈ P lies in kab, and the
restriction maps yield an isomorphism

Gal
(
k( µ

′√
u, ζµ′)/k( µ

√
u, ζµ′)

)
→

∏
p∈P

Gal
(
k( pµ
√

u, ζµ′)/k( µ
√

u, ζµ′)
)
.

It follows that for each p ∈ P we can find τp ∈ Gal
(
k( µ′
√

u, ζµ′)/k( µ
√

u, ζµ′)
)

such that

τp(u p−(d(p)+1)
)= ζp · u p−(d(p)+1)

and τp(uq−(d(q)+1)
)= uq−(d(q)+1)

for all q ∈ P \ {p}.

Now, let σ̃0 be any extension of σ0 to L2. For p ∈ P , define

χ(p)=
{

1 if σ̃0(u p−(d(p)+1)
)= u p−(d(p)+1)

,

0 if σ̃0(u p−(d(p)+1)
) 6= u p−(d(p)+1)

Set

σ2 = σ̃0 ·
∏
p∈P

τχ(p)p .

In view of (14), all τp’s act trivially on `, so σ2 | `= σ̃0|`= σ0 and (1) holds. Furthermore, the choice of
the τp’s and the χ(p)’s implies that (2) also holds. �

Continuing the proof of Theorem 3.7, we now use σ1 ∈ Gal(L1/k) constructed above, set σ0 = σ1|`,
and using Lemma 3.9 construct σ2 ∈ Gal(L2/k) with the properties described therein. In particular, part
(1) of this lemma in conjunction with (11) implies that the pair (σ1, σ2) corresponds to an automorphism
σ ∈ Gal(L/k). As in the proof of Theorem 3.3, we let F denote the Galois closure of L over Q, and let
σ̃ ∈Gal(F/Q) be such that σ̃ |L=σ . By Chebotarev’s density theorem, there exist infinitely many rational
primes π > 2 that are relatively prime to λ′ ·µ′ and for which the π -adic valuation vπ is unramified in F ,
does not lie below any valuation in S∪{vq}, and has an extension w to F such that FrF/Q(w|vπ )= σ̃ . Let
v = w|k, and let p= pv be the corresponding prime ideal of O. As in the proof of Theorem 3.3, we see
that p is Q-split. Furthermore, since σ |K (q2)= θq2(c), we conclude that p has a generator π such that
π ≡ c (mod q2) (see Proposition 3.5(b)). Then by construction π (mod q2) generates (O/q2)×, verifying
condition (2) of Theorem 3.7.

To verify condition (1), we fix p ∈ P and consider two cases. First, suppose σ(ζpd(p)+1) 6= ζpd(p)+1 .
Since p is prime to p, this means that the residue field O/p does not contain an element of order pd(p)+1

(although, since µ is prime to p, it does contain an element of order µ, hence of order pd(p)). So, in
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this case φ(p)/µ is prime to p, and there is nothing to prove. Now, suppose that σ(ζpd(p)+1) = ζpd(p)+1 .
Then by construction σ acts nontrivially on every pd(p)+1-th root of u, and therefore the polynomial
X pd(p)+1

− u has no roots in kv . Again, since p is prime to p, we see from Hensel’s lemma that u (mod p)

is not a pd(p)+1-th power in the residue field. It follows that the p-primary component of the order of
u (mod p) is not less than the p-primary component of φ(p)/pd(p), and (1) follows.

Finally, by construction σ acts trivially on ζλ but nontrivially on ζqλ for any q ∈ Q. Since p is prime
to λ′, we see that the residue field O/p contains an element of order λ, but does not contain an element of
order qλ for any q ∈ Q. This means that λ|φ(p) but φ(p)/λ is relatively prime to each q ∈ Q, which is
equivalent to condition (3) of Theorem 3.7. �

4. Proof of Theorem 1.1

First, we will introduce some additional notation needed to convert the task of factoring a given matrix
A ∈ SL2(O) as a product of elementary matrices into the task of reducing the first row of A to (1, 0). Let

R(O)= {(a, b) ∈ O2
| aO+ bO= O}

(note that R(O) is precisely the set of all first rows of matrices A ∈ SL2(O)). For λ ∈ O, one defines two
permutations, e+(λ) and e−(λ), of R(O) given respectively by

(a, b) 7→ (a, b+ λa) and (a, b) 7→ (a+ λb, b).

These permutations will be called elementary transformations of R(O). For (a, b), (c, d) ∈ R(O) we
will write (a, b) n

H⇒ (c, d) to indicate the fact that (c, d) can be obtained from (a, b) by a sequence of n
(equivalently, ≤ n) elementary transformations. For the convenience of further reference, we will record
some simple properties of this relation.

Lemma 4.1. Let (a, b) ∈ R(O).

(1a) If (c, d) ∈ R(O) and (a, b) n
H⇒ (c, d), then (c, d) n

H⇒ (a, b).

(1b) If (c, d), (e, f ) ∈R(O) are such that (a, b) m
H⇒ (c, d) and (c, d) n

H⇒ (e, f ), then (a, b) m+n
HH⇒ (e, f ).

(2a) If c ∈ O such that c ≡ a (mod bO), then (c, b) ∈ R(O), and (a, b) 1
H⇒ (c, b).

(2b) If d ∈ O such that d ≡ b (mod aO), then (a, d) ∈ R(O), and (a, b) 1
H⇒ (a, d).

(3a) If (a, b) n
H⇒ (1, 0) then any matrix A ∈ SL2(O) with the first row (a, b) is a product of ≤ n + 1

elementary matrices.

(3b) If (a, b) n
H⇒ (0, 1) then any matrix A ∈ SL2(O) with the second row (a, b) is a product of ≤ n+ 1

elementary matrices.

(4a) If a ∈ O× then (a, b) 2
H⇒ (0, 1).

(4b) If b ∈ O× then (a, b) 2
H⇒ (1, 0).
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Proof. (1a) We observe that the inverse of an elementary transformation is again an elementary transfor-
mation given by [e±(λ)]−1

= e±(−λ), so the required fact follows. Part (1b) is obvious.
(Note that (1) implies that the relation between (a, b) and (c, d) ∈ R(O) defined by (a, b) n

H⇒ (c, d)
for some n ∈ N is an equivalence relation.)

(2a) We have c = a+ λb with λ ∈ O. Then

cO+ bO= aO+ bO= O,

so (c, a) ∈ R(O), and e+(λ) takes (a, b) to (c, b). The argument for (2b) is similar.

(3a) Suppose A ∈ SL2(O) has the first row (a, b). Then for λ ∈ O, the first row of the product AE12(λ)

is (a, b + λa) = e+(λ)(a, b), and similarly the first row of AE21(λ) is e−(λ)(a, b). So, the fact that
(a, b) n

H⇒(1, 0) implies that there exists a matrix U ∈ SL2(O) which is a product of n elementary matrices
and is such that AU has the first row (1, 0). This means that AU = E21(z) for some z ∈ O, and then
A = E21(z)U−1 is a product of ≤ n+ 1 elementary matrices. The argument for (3b) is similar.

(4a) This follows since e−(−a)e+(a−1(1− b))(a, b)= (0, 1). The proof of (4b) is similar. �

Remark. All assertions of Lemma 4.1 are valid over any commutative ring O.

Corollary 4.2. Let q be a principal Q-split prime ideal of O with generator q , and let z ∈ O be such that
z (mod q2) generates (O/q2)×. Given an element of R(O) of the form (b, qn) with n ≥ 2, and an integer
t0, there exists an integer t ≥ t0 such that (b, qn) 1

H⇒ (zt , qn).

Proof. By Lemma 3.1(b), the element z (mod qn) generates (O/qn)×. Since b is prime to q, one can find
t ∈ Z such that b ≡ zt (mod qn). Adding to t a suitable multiple of φ(qn) if necessary, we can assume
that t ≥ t0. Our assertion then follows from Lemma 4.1(2a). �

Lemma 4.3. Suppose we are given (a, b) ∈ R(O), a finite subset T ⊆ V k
f , and an integer n 6= 0. Then

there exists α ∈ Ok and r ∈ O× such that V (α)∩ T =∅, and (a, b) 1
H⇒ (αrn, b).

Proof. Let hk be the class number of k. If for each v ∈ S \ V k
∞

we let mv denote the maximal ideal of
Ok corresponding to v, then the ideal (mv)hk is principal, and its generator πv satisfies v(πv)= hk and
w(πv)= 0 for all w ∈ V k

f \ {v}. Let R be the subgroup of k× generated by πv for v ∈ S \ V k
∞

; note that
R ⊂ O×. We can pick r ∈ R so that a′ := ar−n

∈ Ok . We note that since a and b are relatively prime
in O, we have V (a′)∩ V (b)⊂ S.

Now, it follows from the strong approximation theorem that there exists γ ∈ Ok such that

v(γ b)≥ 0 and v(γ b)≡ 0 (mod nhk) for all v ∈ S \ V k
∞
,

and
v(γ b)= 0 for all v ∈ V (a′) \ S.

Then, in particular, we can find s ∈ R so that v(γ bs−1)= 0 for all v ∈ S \ V k
∞

. Set

γ ′ := γ s−1
∈ O and b′ := γ ′b ∈ Ok .
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By construction,

v(b′)= 0 for all v ∈ V (a′)∪ (S \ V k
∞
), (15)

implying that V (a′)∩ V (b′)=∅, which means that a′ and b′ are relatively prime in Ok .
Again, by the strong approximation theorem we can find t ∈ Ok such that

v(t)= 0 for v ∈ T ∩ V (a′) and v(t) > 0 for v ∈ T \ V (a′).

Set α = a′+ tb′ ∈ Ok . Then for v ∈ T ∩ V (a′) we have v(a′) > 0 and v(tb′)= 0 (in view of (15)), while
for v ∈ T \ V (a′) we have v(a′)= 0 and v(tb′) > 0. In either case,

v(α)= v(a′+ tb′)= 0 for all v ∈ T,

i.e., V (α)∩ T =∅. On the other hand,

a+ rntγ ′b = rn(a′+ tb′)= rnα,

which means that (a, b) 1
H⇒ (αrn, b), as required. �

Recall that we let µ denote the number of roots of unity in k.

Lemma 4.4. Let (a, b)∈R(O) be such that a = α ·rµ for some α ∈ Ok and r ∈O× where V (α) is disjoint
from S ∪ V (µ). Then there exist a′ ∈ O and infinitely many Q-split prime principal ideals q of O with a
generator q such that for any m ≡ 1 (mod φ(a′O)) we have (a, b) 3

H⇒ (a′, qµm).

Proof. The argument below is adapted from the proof of Lemma 3 in [Carter and Keller 1983]. It relies
on the properties of the power residue symbol (in particular, the power reciprocity law) described in the
appendix on number theory in [Bass et al. 1967]. We will work with all v ∈ V k (and not only v ∈ V k

\ S),
so to each such v we associate a symbol (“modulus”) mv. For v ∈ V k

f we will identify mv with the
corresponding maximal ideal of Ok (obviously, pv =mvO for v ∈ V k

\S); the valuation ideal and the group
of units in the valuation ring Ov (or Omv ) in the completion kv will be denoted m̂v and Uv respectively.
For any divisor κ |µ, we let (

∗ , ∗

mv

)
κ

be the (bimultiplicative, skew-symmetric) power residue symbol of degree κ on k×v [Bass et al. 1967,
p.85]. We recall that

( x,y
mv

)
κ
= 1 if one of the elements x, y is a κ-th power in k×v (in particular, if either v

is complex or v is real and one of the elements x, y is positive in kv) or if v is nonarchimedean /∈ V (κ)
and x, y ∈Uv . It follows that for any x, y ∈ k×, we have

( x,y
mv

)
κ
= 1 for almost all v ∈ V k . Furthermore,

we have the reciprocity law: ∏
v∈V k

(
x, y
mv

)
κ

= 1. (16)
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Now, let µ = pe1
1 · · · p

en
n be a prime factorization of µ. For each i = 1, . . . , n, pick vi ∈ V (pi ).

According to [Bass et al. 1967, A.17], the values(
x, y
mvi

)
p

ei
i

for x, y ∈Uvi

cover all pei
i -th roots of unity. Thus, we can pick units ui , u′i ∈Uvi for i = 1, . . . , n so that

( ui ,u′i
mvi

)
p

ei
i

is
a primitive pei

i -th root of unity. On the other hand, since ui , u′i ∈Uvi and vi (µ/pei
i )= 0, we have(

ui , u′i
mvi

)p
ei
i

µ

=

(
ui , u′i
mvi

)
µ/p

ei
i

= 1.

Thus,

ζp
ei
i
:=

(
ui , u′i
mvi

)
µ

is a primitive pei
i -th root of unity for each i = 1, . . . , n, making

ζµ :=

n∏
i=1

(
ui , u′i
mvi

)
µ

(17)

a primitive µ-th root of unity. Furthermore, it follows from the inverse function theorem or Hensel’s
lemma that we can find an integer N > 0 such that

1+ m̂N
v ⊂ k×v

µ for all v ∈ V (µ). (18)

We now write b= βtµ with β ∈Ok and t ∈O×. Since a, b are relatively prime in O, so are α, β, hence
V (α)∩V (β)⊂ S. On the other hand, by our assumption V (α) is disjoint from S∪V (µ), so we conclude
that V (α) is disjoint from V (β)∪V (µ). Applying Theorem 3.3 to the ring Ok we obtain that there exists
β ′ ∈ Ok having the following properties:

(11) b := β ′Ok is a prime ideal of Ok and the corresponding valuation vb /∈ S ∪ V (µ).

(21) β ′ > 0 in every real completion of k.

(31) β ′ ≡ β (mod αOk).

(41) For each i = 1, . . . , n, we have

β ′ ≡ u′i (mod m̂N
vi
) and β ′ ≡ 1 (mod m̂N

v )

for all v ∈ V (pi ) \ {vi }.

Set b′ = β ′tµ. It is a consequence of (3)1 that b ≡ b′ (mod aO), so by Lemma 4.1(2) we have (a, b) 1
H⇒

(a, b′). Furthermore, it follows from (4)1 and (18) that β ′/u′i ∈ k×vi

µ, so(
ui , β

′

mvi

)
µ

=

(
ui , u′i
mvi

)
µ

= ζpei
i
.



Bounded generation of SL2 over rings of S-integers with infinitely many units 1967

Since ζµ defined by (17) is a primitive µ-th root of unity, we can find an integer d > 0 such that

1=
(
α, β ′

b

)
µ

· ζ d
µ =

(
α, β ′

b

)
µ

·

n∏
i=1

(
ud

i , β
′

mvi

)
µ

. (19)

By construction, vb /∈ V (α)∪V (µ), so applying Theorem 3.3 one more time, we find α′ ∈Ok such that:

(12) a := α′Ok is a prime ideal of Ok and the corresponding valuation va /∈ S ∪ V (µ).

(22) α′ ≡ α (mod b).

(32) α′ ≡ ud
i (mod m̂N

vi
) for i = 1, . . . , n.

Set a′ = α′rµ. Then a′O= α′O is a prime ideal of O and a′ ≡ a (mod b′O), so (a, b′) 1
H⇒ (a′, b′).

Now, we note that
(
α′,β ′

mv

)
µ
= 1 if either v ∈ V k

∞
(since β ′ > 0 in all real completions of k) or

v ∈ V k
f \ (V (α

′)∪V (β ′)∪V (µ)). Since the ideals a= α′Ok and b= β ′Ok are prime by construction, we
have V (α′)={va} and V (β ′)={vb}. Besides, it follows from (18) and (4)1 that for v∈V (pi )\{vi }we have
β ′ ∈ k×v

µ, and therefore again
(
α′,β ′

mv

)
µ
= 1. Thus, the reciprocity law (16) for α′, β ′ reduces to the relation(

α′, β ′

a

)
µ

·

(
α′, β ′

b

)
µ

·

n∏
i=1

(
α′, β ′

mvi

)
µ

= 1. (20)

It follows from (2)2 and (3)2 that(
α′, β ′

b

)
µ

=

(
α, β ′

b

)
µ

and
(
α′, β ′

mvi

)
µ

=

(
ud

i , β
′

mvi

)
µ

for all i = 1, . . . , n.

Comparing now (19) with (20), we find that(
β ′, α′

a

)
µ

=

(
α′, β ′

a

)−1

µ

= 1.

This implies [Bass et al. 1967, A.16] that β ′ is a µ-th power modulo a, i.e., β ′ ≡ γ µ (mod a) for some
γ ∈Ok . Clearly, the elements a′ = α′rµ and γ t are relatively prime in O, so applying Theorem 3.3 to this
ring, we find infinitely many Q-split principal prime ideals q of O having a generator q ≡ γ t (mod a′O).
Then for any m ≡ 1 (mod φ(a′O)) we have

qµm
≡ qµ ≡ β ′tµ ≡ b′ (mod a′O),

so (a′, b′) 1
H⇒ (a′, qµm). Then by Lemma 4.1(1b), we have (a, b) 3

H⇒ (a′, qµm), as required. �

The final ingredient that we need for the proof of Theorem 1.1 is the following lemma which uses
the notion of the level `p(u) of a unit u of infinite order with respect to a Q-split ideal p introduced in
Section 3A.

Lemma 4.5. Let p be a principal Q-split ideal of O with a generator π , and let u ∈ O× be a unit of
infinite order. Set s = `p(u), and let λ and m be integers satisfying λ|φ(p) and m ≡ 0 (mod φ(ps)/λ).
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Given an integer δ > 0 dividing λ and b ∈ O prime to π such that b is a δ-th power mod p while ν := λ/δ
divides the order of u (mod p), for any integer t ≥ s there exists an integer nt for which

(π t , bm) 1
H⇒ (π t , unt ).

Proof. Let p be the rational prime corresponding to p. Being a divisor of λ, the integer δ is relatively
prime to p. So, the fact that b is a δ-th power mod p implies that it is also a δ-th power mod ps . On
the other hand, it follows from our assumptions that λm = δνm is divisible by φ(ps), and therefore
(bm)ν ≡ 1 (mod ps). But since ν is prime to p, the subgroup of elements in (O/ps)× of order dividing
ν is isomorphic to a subgroup of (O/p)×, hence cyclic. So, the fact that the order of u (mod p), and
consequently the order u (mod ps), is divisible by ν implies that every element in (O/ps)× whose order
divides ν lies in the subgroup generated by u (mod ps). Thus, bm

≡ uns (mod ps) for some integer ns .
Since p is Q-split, we can apply Lemma 3.2 to conclude that for any t ≥ s there exists an integer nt such
that bm

≡ unt (mod pt). Then (π t , bm) 1
H⇒ (π t , unt ) by Lemma 4.1(2). �

We will call a unit u ∈O× fundamental if it has infinite order and the cyclic group 〈u〉 is a direct factor
of O×. Since the group O× is finitely generated (Dirichlet’s unit theorem, cf. [Cassels and Fröhlich 1967,
§2.18]) it always contains a fundamental unit once it is infinite. We note that any fundamental unit has
the following property:

u /∈ µ(k)p(k×)p for any prime p.

We are now in a position to give

Proof of Theorem 1.1. We return to the notations of Section 3C: we let K denote the Hilbert S-class
field of k, let K̃ be its normal closure over Q, and pick an integer λ≥ 1 which is divisible by µ and for
which K̃ ∩Qab

⊂ Q(ζλ). Furthermore, since O× is infinite by assumption, we can find a fundamental
unit u ∈ O×. By Lemma 4.1(3), it suffices to show that for any (a, b) ∈ R(O), we have

(a, b) 8
H⇒ (1, 0). (21)

First, applying Lemma 4.3 with T = (S \ V k
∞
)∪ V (µ) and n = µ, we see that there exist α ∈ Ok and

r ∈ O× such that

V (α)∩ (S ∪ V (µ))=∅ and (a, b) 1
H⇒ (αrµ, b).

Next, applying Lemma 4.4 to the last pair, we find a′ ∈ O and a Q-split principal prime ideal q such that
vq /∈ S ∪ V (λ)∪ V (φ(a′O)) and (αrµ, b) 3

H⇒ (a′, qµm) for any m ≡ 1 (mod φ(a′O)). Then

(a, b) 4
H⇒ (a′, qµm) for any m ≡ 1 (mod φ(a′O)). (22)

To proceed with the argument we will now specify m. We let P and Q denote the sets of prime divisors
of λ/µ and φ(a′O), respectively, and define λ′ and µ′ as in Section 3C; we note that by construction q is
relatively prime to λ′. So, we can apply Theorem 3.7 which yields a Q-split principal prime ideal p= πO
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so that vp /∈ V (φ(a′O)) and conditions (1) - (3) are satisfied. Let s = `p(u) be the p-level of u. Condition
(3) implies that

gcd(φ(p)/λ, λ′/λ)= 1= gcd(φ(p)/λ, φ(a′O))

since λ′/λ is the product of all prime divisors of φ(a′O). It follows that the numbers φ(ps)/λ and φ(a′O)
are relatively prime, and therefore one can pick a positive integer m so that

m ≡ 0 (mod φ(ps)/λ) and m ≡ 1 (mod φ(a′O)).

Fix this m for the rest of the proof.
Condition (2) of Theorem 3.7 enables us to apply Corollary 4.2 with z = π and t0 = s to find t ≥ s so

that (a′, qµm) 1
H⇒ (π t , qµm). Since P consists of all prime divisors of λ/µ, condition (1) of Theorem 3.7

implies that λ/µ divides the order of u (mod p). Now, applying Lemma 4.5 with δ = µ and b = qµ, we
see that (π t , qµm) 1

H⇒(π t , unt ) for some integer nt . Finally, since u is a unit, we have (π t , unt ) 2
H⇒(1, 0).

Combining these computations with (22), we obtain (21), completing the proof. �

Corollary 4.6. Assume that the group O× is infinite. Then for n ≥ 2, any matrix A ∈ SLn(O) is a product
of ≤ 1

2(3n2
− n)+ 4 elementary matrices.

Proof. For n = 2, this is equivalent to Theorem 1.1. Now, let n ≥ 3. Since the ring O is Dedekind, it
is well-known and easy to show that any A ∈ SLn(O) can be reduced to a matrix in SL2(O) by at most
1
2(3n2

− n)− 5 elementary operations [Carter and Keller 1983, p. 683]. Now, our result immediately
follows from Theorem 1.1. �

Proof of Corollary 1.2. Let

e+ : α 7→
(

1 α

0 1

)
and e− : α 7→

(
1 0
α 1

)
be the standard 1-parameter subgroups. Set U± = e±(O). In view of Theorem 1.1, it is enough to show
that each of the subgroups U+ and U− is contained in a product of finitely many cyclic subgroups of
SL2(O). Let hk be the class number of k. Then there exists t ∈ O× such that v(t)= hk for all v ∈ S \ V k

∞

and v(t) = 0 for all v /∈ S. Then O = Ok[1/t]. So, letting U±0 = e±(Ok) and h =
( t

0
0

t−1

)
, we will have

the inclusion

U± ⊂ 〈h〉U±0 〈h〉.

On the other hand, if w1, . . . , wn (where n= [k :Q]) is a Z-basis of Ok then U±0 = 〈e±(w1)〉 · · · 〈e±(wn)〉,
hence

U± ⊂ 〈h〉〈e±(w1)〉 · · · 〈e±(wn)〉〈h〉, (23)

as required. �

Remarks. (1) Quantitatively, it follows from the proof of Theorem 1.1 that SL2(O) = U−U+ · · ·U−

(nine factors), so since the right-hand side of (23) involves n+ 2 cyclic subgroups, with 〈h〉 at both ends,
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we obtain that SL2(O) is a product of 9[k :Q]+ 10 cyclic subgroups. Also, it follows from [Vsemirnov
2014] that SL2(Z[1/p]) is a product of 11 cyclic subgroups.

(2) If S = V k
∞

, then the proof of Corollary 1.2 yields a factorization of SL2(O) as a finite product
〈γ1〉 · · · 〈γd〉 of cyclic subgroups where all generators γi are elementary matrices, hence unipotent. On the
contrary, when S 6= V k

∞
, the factorization we produce involves some diagonal (semisimple) matrices. So, it

is worth pointing out in the latter case there is no factorization with all γi unipotent. Indeed, let v ∈ S \V k
∞

and let γ ∈ SL2(O) be unipotent. Then there exists N = N (γ ) such that for any a = (ai j ) ∈ 〈γ 〉 we have
v(ai j )≤ N (γ ) for all i, j ∈ {1, 2}. It follows that if SL2(O)=〈γ1〉 · · · 〈γd〉 where all γi are unipotent, then
there exists N0 such that for any a= (ai j )∈ SL2(O) we have v(ai j )≤ N0 for i, j ∈ {1, 2}, which is absurd.

5. Example

For a ring of S-integers O in a number field k such that the group of units O× is infinite, we let ν(O)
denote the smallest positive integer with the property that every matrix in SL2(O) is a product of ≤ ν(O)
elementary matrices. So, the result of [Vsemirnov 2014] implies that ν(Z[1/p]) ≤ 5 for any prime p,
and our Theorem 1.1 yields that ν(O)≤ 9 for any O as above. It may be of some interest to determine
the exact value of ν(O) in some situations. In Example 2.1 on p.289, Vsemirnov [2014] claims that the
matrix

M =
(

5 12
12 29

)
is not a product of four elementary matrices in SL2(Z[1/p]) for any p ≡ 1 (mod 29), and therefore
ν(Z[1/p])= 5 in this case. However this example is faulty because for any prime p, in SL2(Z[1/p]) we
have

M =
(

5 12
12 29

)
=

((
1 0
2 1

)
·

(
1 2
0 1

))2

However, it turns out that the assertion that ν(Z[1/p])= 5 is valid not only for p ≡ 1 (mod 29) but in
fact for all p > 7. More precisely, we have the following.

Proposition 5.1. Let O= Z[1/p], where p is prime > 7. Then not every matrix in SL2(O) is a product of
four elementary matrices.

In the remainder of this section, unless stated otherwise, we will work with congruences over the ring
O rather than Z, so the notation a ≡ b (mod n) means that elements a, b ∈ O are congruent modulo the
ideal nO. We begin the proof of the proposition with the following lemma.

Lemma 5.2. Let O = Z[1/p], where p is any prime, and let r be a positive integer satisfying p ≡ 1
(mod r). Then any matrix A ∈ SL2(O) of the form

A =
(

1−pα ∗

∗ 1−pβ

)
, α, β ∈ Z (24)



Bounded generation of SL2 over rings of S-integers with infinitely many units 1971

which is a product of four elementary matrices, satisfies the congruence

A ≡±
(

0 1
−1 0

)
(mod r).

Proof. The required congruence is obvious for the diagonal entries, so we only need to establish it for
the off-diagonal ones. Since A is a product of four elementary matrices, it admits one of the following
presentations:

A = E12(a)E21(b)E12(c)E21(d), (25)

or

A = E21(a)E12(b)E21(c)E12(d), (26)

with a, b, c, d ∈ O.
First, suppose we have (25). Then

A =
(
∗ ∗

∗ 1+ bc

)
.

Comparing with (24), we get bc =−pβ , so b and c are powers of p with opposite signs. Thus, A looks
as follows:

A = E12(a)E21(±pγ )E12(∓pδ)E21(d)=
(

∗ a(1−pγ+δ)∓pδ

d(1−pγ+δ)±pγ ∗

)
.

Consequently, the required congruences for the off-diagonal entries immediately follow from the fact that
p ≡ 1 (mod r), proving the lemma in this case.

Now, suppose we have (26). Then

A−1
= E12(−d)E21(−c)E12(−b)E21(−a),

which means that A−1 has a presentation of the form (25). Since the required congruence in this case has
already been established, we conclude that

A−1
≡±

(
0 −1
1 0

)
(mod r).

But then we have

A ≡±
(

0 1
−1 0

)
(mod r),

as required. �

To prove the proposition, we will consider two cases:

CASE 1: p− 2 is composite. Write p− 2 = r1 · r2, where r1 and r2 are positive integers > 1, and set
r = p− 1. Then

ri 6≡ ±1 (mod r) for i = 1, 2. (27)
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Indeed, we can assume that r2 ≤
√

p− 2. If r2 ≡±1 (mod r) then because r is prime to p, the number
r2∓ 1 would be a nonzero integral multiple of r . Then r ≤ r2+ 1, hence

p− 2≤
√

p− 2+ 1.

But this is impossible since p > 3. Thus, r2 6≡ ±1 (mod r). Since r1 · r2 ≡−1 (mod r), condition (27)
follows.

Now, consider the matrix

A =
(

1−p r1·p
r2 1−p

)
One immediately checks that A ∈ SL2(O). At the same time, A is of the form (24). Then Lemma 5.2 in
conjunction with (27) implies that A is not a product of four elementary matrices.

CASE 2. p and p− 2 are both primes. In the beginning of this paragraph we will use congruences in Z.
Clearly, a prime > 3 can only be congruent to ±1 (mod 6Z). Since p > 5 and p− 2 is also prime, in our
situation we must have p ≡ 1 (mod 6Z). Furthermore, since p > 7, the congruence p ≡ 0 or 2 (mod 5Z)

is impossible. Thus, in the case at hand we have

p ≡ 1, 13, or 19 (mod 30Z).

If p ≡ 13 (mod 30Z), then p3
≡ 7 (mod 30Z), and therefore p3

− 2 is an integral multiple of 5. Set
r = p− 1 and s = (p3

− 2)/5, and consider the matrix

A =
(

1−p3 5p3

s 1−p3

)
Then A is a matrix in SL2(O) having form (24). Note that 5p3

≡ 5 (mod r), which is different from
±1 (mod r) since r > 6. Now, it follows from Lemma 5.2 that A is not a product of four elementary
matrices.

It remains to treat the case where p ≡ 1 or 19 (mod 30Z). Consider the following matrix:

A =
(

900 53 · 899
17 900

)
,

and note that A ∈ SL2(Z) and

A−1
=

(
900 −53 · 899
−17 900

)
.

It suffices to show that neither A nor A−1 can be written in the form

E12(a)E21(b)E12(c)E21(d)=
(

∗ c+ a(1+ bc)
b+ d(1+ bc) (1+ bc)

)
, with a, b, c, d ∈ O. (28)

Assume that either A or A−1 is written in the form (28). Then 1+ bc = 900, so

b, c ∈ {±pn,±29pn,±31pn,±899pn
| n ∈ Z}.
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Set
t = b+ d(1+ bc) and u = c+ a(1+ bc).

We have the following congruences in O= Z[1/p]:

t ≡ b (mod 30) and u ≡ c (mod 30).

Analyzing the above list of possibilities for b and c, we conclude that each of t and u is ≡±pn (mod 30)
for some integer n. Thus, if p ≡ 1 (mod 30) then t, u ≡ ±1 (mod 30), and if p ≡ 19 (mod 30) then
t, u ≡±1,±19 (mod 30). Since 17 6≡ ±1,±19 (mod 30), we obtain a contradiction in either case. (We
observe that the argument in this last case is inspired by Vsemirnov’s argument in his Example 2.1.)
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Tensor triangular geometry of filtered modules
Martin Gallauer

We compute the tensor triangular spectrum of perfect complexes of filtered modules over a commutative
ring and deduce a classification of the thick tensor ideals. We give two proofs: one by reducing to perfect
complexes of graded modules which have already been studied in the literature by Dell’Ambrogio and
Stevenson (2013, 2014) and one more direct for which we develop some useful tools.
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Introduction

One of the age-old problems mathematicians engage in is to classify their objects of study, up to an
appropriate equivalence relation. In contexts in which the domain is organized in a category with
compatible tensor and triangulated structure (we call this a tt-category) it is natural to view objects as
equivalent when they can be constructed from each other using sums, extensions, translations, tensor
product etc., in other words, using the tensor and triangulated structure alone. This can be made precise
by saying that the objects generate the same thick tensor ideal (or, tt-ideal) in the tt-category. This sort of
classification is precisely what tt-geometry, as developed by Balmer, achieves. To a (small) tt-category T
it associates a topological space Spc(T ) called the tt-spectrum of T which, via its Thomason subsets,
classifies the (radical) tt-ideals of T . A number of classical mathematical domains have in the meantime
been studied through the lens of tt-geometry; we refer to [Balmer 2010b] for an overview of the basic
theory, its early successes and applications.
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One type of context which does not seem to have received any attention so far arises from filtered
objects. Examples pertinent to tt-geometry abound: filtrations by the weight in algebraic geometry induce
filtrations on cohomology theories, giving rise to filtered vector spaces, representations or motives; (mixed)
Hodge theory involves bifiltered vector spaces; filtrations by the order of a differential operator play an
important role in the theory of D-modules.

In this note, we take the first steps in the study of filtered objects through the lens of tt-geometry by
focusing on a particularly interesting case whose unfiltered analogue is well-understood. Namely, we
give a complete account of the tt-geometry of filtered modules. This is already enough to say something
interesting about certain motives, as we explain at the end of this introduction. To describe our results in
more detail, let us recall the analogous situation for modules.

Let R be a ring, assumed commutative and with unit. Its derived category D(R) is a tt-category
which moreover is compactly generated, and the compact objects coincide with the rigid (or, strongly
dualizable) objects, which are also called perfect complexes. These are (up to isomorphism in the derived
category) the bounded complexes of finitely generated projective R-modules. The full subcategory
Dperf(R) of perfect complexes inherits the structure of a (small) tt-category, and the Hopkins–Neeman–
Thomason classification of its thick subcategories can be interpreted as the statement that the tt-spectrum
Spc(Dperf(R)) is precisely the Zariski spectrum Spec(R). In this particular case, thick subcategories are
the same as tt-ideals so that this result indeed classifies perfect complexes up to the triangulated and
tensor structure available.

In this note we will replicate these results for filtered R-modules. Its derived category D(Modfil(R))
is a tt-category which moreover is compactly generated, and the compact objects coincide with the
rigid objects. We characterize these “perfect complexes” as bounded complexes of “finitely generated
projective” objects in the category Modfil(R) of filtered R-modules.1 The full subcategory Dperf

fil (R) of
perfect complexes inherits the structure of a (small) tt-category. For a regular ring R this is precisely the
filtered derived category of R in the sense first studied by Illusie [1971], and for general rings it is a full
subcategory. Our main theorem computes the tt-spectrum of this tt-category.

Theorem 4.1. The tt-spectrum of Dperf
fil (R) is canonically isomorphic to the homogeneous Zariski spectrum

Spech(R[β]) of the polynomial ring in one variable. In particular, the underlying topological space
contains two copies of Spec(R), connected by specialization. Schematically:

Spec(R)≈U (β)

Spec(R)≈ Z(β)

•p

•
p+〈β〉

•q

•

q+〈β〉

Spech(R[β])

1In the body of the text these are rather called split finite projective for reasons which will become apparent when they are
introduced.
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As a consequence we are able to classify the tt-ideals in Dperf
fil (R). To state it precisely notice that

we may associate to any filtered R-module M its underlying R-module π(M) as well as the R-module
of its graded pieces gr(M). These induce two tt-functors Dperf

fil (R)→ Dperf(R). Also, recall that the
support of an object M ∈Dperf(R), denoted by supp(M), is the set of primes in Spc(Dperf(R))= Spec(R)
which do not contain M . This is extended to a set E of objects by taking the union of the supports of its
elements: supp(E) :=

⋃
M∈E supp(M). Conversely, starting with a set of primes Y ⊂ Spec(R), we define

KY := {M ∈ Dperf(R) | supp(M)⊂ Y }.

Corollary 4.9. There is an inclusion preserving bijection:

{5⊂ 0 |5,0 ⊂ Spec(R) Thomason subsets} ↔ {tt-ideals in Dperf
fil (R)}

(5⊂ 0) 7→ π−1(K5)∩ gr−1(K0)

( supp(πJ )⊂ supp(grJ ))←[ J

Clearly, an important role is played by the element β appearing in the theorem. It can be interpreted as
the following morphism of filtered R-modules. Let R(0) be the module R placed in filtration degree 0,
while R(1) is R placed in degree 1 (our filtrations are by convention decreasing), and β : R(0)→ R(1) is
the identity on the underlying modules:2

R(1) : · · · = 0 ⊂ R = R = · · ·

R(0) :

β

OO

· · · = 0

OO

= 0

OO

⊂ R

id

OO

= · · ·

Note that β has trivial kernel and cokernel but is not an isomorphism, witnessing the fact that the
category of filtered modules is not abelian. We will give two proofs of Theorem 4.1, the first of which
relies on “abelianizing” the category. It is observed in [Schneiders 1999] that the derived category of
filtered modules is canonically identified with the derived category of graded R[β]-modules. And the
tt-geometry of graded modules has been studied in [Dell’Ambrogio and Stevenson 2013; 2014]. Together
these two results provide a short proof of Theorem 4.1, but in view of future studies of filtered objects in
more general abelian tensor categories we thought it might be worthwhile to study filtered modules in
more detail and in their own right. For the second proof we will use the abelianization only minimally
to construct the category of perfect complexes of filtered modules (Section 3). The computation of the
tt-geometry stays within the realm of filtered modules, as we now proceed to explain.

As mentioned above, forgetting the filtration and taking the associated graded of a filtered R-module
gives rise to two tt-functors. It is not difficult to show that Spc(π) and Spc(gr) are injective with disjoint
images (Section 4). The challenge is in proving that they are jointly surjective — more precisely, proving
that the images of Spc(π) and Spc(gr) are exactly the two copies of Spec(R) in the picture above. As

2We call this element β in view of the intended application described at the end of this introduction. In the context of motives
considered there, β is the “Bott element” of [Hasemeyer and Hornbostel 2005].
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suggested by this then, and as we will prove, inverting β (in a categorical sense) amounts to passing from
filtered to unfiltered R-modules, while killing β amounts to passing to the associated graded.

We prove surjectivity first for R a noetherian ring, by reducing to the local case, using some general
results we establish on central localization (Section 5), extending the discussion in [Balmer 2010a]. In
the local noetherian case, the maximal ideal is “generated by nonzerodivisors and nilpotent elements”
(more precisely, it admits a system of parameters); we will study how killing such elements affects the
tt-spectrum (Section 6) which allows us to decrease the Krull dimension of R one by one until we reach
the case of R a field.

Although the category of filtered modules is not abelian, it has the structure of a quasiabelian category,
and we will use the results of Schneiders [1999] on the derived category of a quasiabelian category, in
particular the existence of two t-structures, to deal with the case of a field (Section 7). In fact, the category
of filtered vector spaces can reasonably be called a semisimple quasiabelian category, and we will prove
in general that the t-structures in that case are hereditary. With this fact it is then possible to deduce the
theorem in the case of a field.

Finally, we will reduce the case of arbitrary rings to noetherian rings (Section 8) by proving in
general that tt-spectra are continuous, that is for filtered colimits of tt-categories one has a canonical
homeomorphism

Spc(lim
−−→

i
Ti )−→

∼ lim
←−−

i
Spc(Ti ).

In fact, we will prove a more general statement which we believe will be useful in other studies of tt-
geometry as well, because it often allows to reduce the tt-geometry of “infinite objects” to the tt-geometry
of “finite objects”. For example, it shows immediately that the noetherianity assumption in the results
of [Dell’Ambrogio and Stevenson 2013] is superfluous, arguably simplifying the proof given for this
observation in [Dell’Ambrogio and Stevenson 2014].

We mentioned above that one of our motivations for studying the questions discussed in this note
lies in the theory of motives. Let us therefore give the following application. We are able to describe
completely the spectrum of the triangulated category of Tate motives over the algebraic numbers with
integer coefficients, DTM(Q,Z). (Previously, only the rational part DTM(Q,Q) was known.)

Theorem. The tt-spectrum of DTM(Q,Z) consists of the following primes, with specialization relations
as indicated by the lines going upward.

m0

· · ·

· · ·

e`

m`

· · ·

· · ·

} rational motivic cohomology

} mod-` étale cohomology

} mod-` motivic cohomology

Here ` runs through all prime numbers and the primes are defined by the vanishing of the cohomology
theories as indicated on the right. Moreover, the proper closed subsets are precisely the finite subsets
stable under specialization.
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As a consequence, we are able to classify the thick tensor ideals of DTM(Q,Z). This theorem and
related results are proved in a separate paper [Gallauer 2017].

1. Conventions

A symmetric, unital monoidal structure on a category is called tensor structure if the category is additive
and the monoidal product is additive in each variable separately. We also call these data simply a tensor cat-
egory. A tensor functor between tensor categories is a strong, unital, symmetric monoidal additive functor.

Our conventions regarding tensor triangular geometry mostly follow those of [Balmer 2010a]. A tensor
triangulated category (or tt-category for short) is a triangulated category with a compatible (symmetric,
unital) tensor structure. Typically, one assumes that the category is (essentially) small. If not specified
otherwise, the tensor product is denoted by ⊗ and the unit by 1. A tt-functor is an exact tensor functor
between tt-categories.

A tt-ideal in a tt-category T is a thick subcategory I ⊂ T such that T ⊗ I ⊂ I. If S is a set of objects
in T we denote by 〈S〉 the tt-ideal generated by S. To a small rigid tt-category T one associates a locally
ringed space Spec(T ), called the tt-spectrum of T , whose underlying topological space is denoted by
Spc(T ). It consists of prime ideals in T , i.e., proper tt-ideals I such that a⊗b ∈ I implies a ∈ I or b ∈ I.
(The underlying topological space Spc(T ) is defined even if T is not rigid.)

All rings are commutative with unit, and morphisms of rings are unital. For R a ring, we denote by
Spec(R) the Zariski spectrum of R (considered as a locally ringed space) whereas Spc(R) denotes its
underlying topological space (as for the tt-spectrum). We adopt similar conventions regarding graded
rings R: they are commutative in a general graded sense [Balmer 2010a, 3.4], and possess a unit. Spech(R)
denotes the homogeneous Zariski spectrum with underlying topological space Spch(R).

As a general rule, canonical isomorphisms in categories are typically written as equalities.

2. Category of filtered modules

In this section we describe filtered modules from a slightly nonstandard perspective which will be useful in
the sequel. Hereby we follow the treatment in [Schapira and Schneiders 2016]. The idea is to embed the
(nonabelian) category of filtered modules into its abelianization, the category of presheaves of modules on
the poset Z. From this embedding we deduce a number of properties of the category of filtered modules.
Much of the discussion in this section applies more generally to filtered objects in suitable abelian tensor
categories.

Fix a commutative ring with unit R. Denote by Mod(R) the abelian category of R-modules, with its
canonical tensor structure. We view Z as a monoidal category where

hom(m, n)=
{
{∗} m ≤ n,
∅ m > n

and m ⊗ n = m + n. The Day convolution product then induces a tensor structure on the category of
presheaves on Z with values in Mod(R) which we denote by Zop R. Explicitly, an object a of Zop R is an
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infinite sequence of morphisms in Mod(R)

· · · → an+1
an,n+1
−−−→ an

an−1,n
−−−→ an−1→ · · · , (2.1)

and the tensor product of two such objects a and b is described by

(a⊗Zop b)n = colimp+q≥n ap⊗R bq .

Let M be an R-module and n ∈ Z. The associated presheaf ⊕homZ(−,n)M is denoted by M(n). It is the
object

· · · → 0→ 0→ M id
−→M id

−→M→ · · ·

with the first M in degree n. Via the association σ0 : M 7→ M(0) we view Mod(R) as a full subcategory
of Zop R. For any object a ∈ Zop R and n ∈ Z we denote by a(n) the tensor product a⊗ R(n), and we
call it the n-th twist of a. Explicitly, this is the sequence of (2.1) shifted to the left by n places, i.e.,
a(n)m = am−n .

The category Zop R is R-linear Grothendieck abelian, and the monoidal structure is closed. Explicitly,
the internal hom of a, b ∈ Zop R is given by

hom(a, b)n = homZop R(a(n), b).

Here is another way of thinking about Zop R. Let a ∈ Zop R be a presheaf of R-modules. Associate to it
the graded R[β]-module

⊕
n∈Z an with β acting by β : a→ a(1), i.e., in degree n by an−1,n : an→ an−1.

In particular, β is assumed to have degree -1. Conversely, given a graded R[β]-module
⊕

n∈Z Mn , define
a presheaf by n 7→ Mn and transition maps ·β : Mn→ Mn−1. This clearly establishes an isomorphism of
categories Zop R =Modgr(R[β]), and it is not difficult to see that the isomorphism is compatible with the
tensor structures on both sides.

Definition 2.2. (1) A filtered R-module is an object a ∈ Zop R such that an,n+1 is a monomorphism for
all n ∈ Z. The full subcategory of filtered R-modules in Zop R is denoted by Modfil(R).

(2) A finitely filtered R-module is a filtered R-module a such that an,n+1 is an isomorphism for almost
all n.

(3) A filtered R-module a is separated if
⋂

n∈Z an = 0.

For a filtered R-module a we denote the “underlying” R-module lim
−−→n→−∞ an by π(a). This clearly

defines a functor π :Modfil(R)→Mod(R) which “forgets the filtration”. In this way we recover the
more classical perspective on filtrations: an R-module π(a) together with a (decreasing, exhaustive)
filtration (an)n∈Z; a morphism f : a→ b of filtered R-modules a, b is an R-linear morphism π(a)→π(b)
compatible with the filtration.

To a filtered R-module a one can associate its (Z-)graded R-module whose n-th graded piece is
coker(an,n+1)= an/an+1. This clearly defines a functor gr

•
:Modfil(R)→Modgr(R)=

∏
n∈Z Mod(R).

The following observation is simple but very useful.
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Lemma 2.3 [Schapira and Schneiders 2016, 3.5]. The inclusion ι : Modfil(R)→ Zop R admits a left
adjoint κ : Zop R→Modfil(R) given by

κ(a)n = im(an→ lim
−−→

m→−∞
am)

and the canonical transition maps.

It follows from Lemma 2.3 that Modfil(R) is complete and cocomplete. Limits, filtered colimits and
direct sums are computed in Zop R while pushouts are computed by applying the reflector κ to the pushout
in Zop R. (The statement about limits and pushouts is formal, while the rest stems from the fact that
filtered colimits and direct sums are exact in Mod(R).) In particular, Modfil(R) is additive and has kernels
and cokernels. However, it is not an abelian category as witnessed by the morphism

β : R(0)→ R(1) (2.4)

induced by the map 0→ 1 in Z through the Yoneda embedding: both ker(β) and coker(β) are 0 but β is
not an isomorphism. It is an example of a nonstrict morphism. (A morphism f : a→ b is called strict if
the canonical morphism coim( f )→ im( f ) is an isomorphism, or equivalently if im(π( f ))∩bn = im( fn)

for all n ∈ Z.) However, one can easily check that strict monomorphisms and strict epimorphisms in
Modfil(R) are preserved by pushouts and pullbacks, respectively [Schapira and Schneiders 2016, 3.9]. In
other words, Modfil(R) is a quasiabelian category (we will use [Schneiders 1999] as a reference for the
basic theory of quasiabelian categories).

An object a in a quasiabelian category is called projective if hom(a,−) takes strict epimorphisms to
surjections. (Note that this convention differs from the categorical notion of a projective object!) For exam-
ple, for a projective R-module M and n ∈ Z the object M(n) is projective since homModfil(R)(M(n),−)=
homR(M, (−)n).

Lemma 2.5 [Schneiders 1999, 3.1.8]. For any a ∈Modfil(R), the canonical morphism⊕
n∈Z

⊕
x∈an

R(n)→ a (2.6)

is a strict epimorphism with projective domain. In particular, the quasiabelian category Modfil(R) has
enough projectives.

Let us denote by σ :Modgr(R)→Modfil(R) the canonical functor which takes (Mn)n to
⊕

n Mn(n).
A filtered R-module is called split if it lies in the essential image of σ . Correspondingly we call a filtered
R-module split free, split projective or split finite projective if it is (isomorphic to) the image of a free,
projective or finite projective graded R-module under σ , respectively. In other words, an object of the
form

⊕
n Mn(n) with

⊕
n Mn free, projective or finite projective, respectively. Lemma 2.5 shows that

every object in Modfil(R) admits a canonical split free resolution.
It is clear that split projective objects are projective, and the converse is also true as we now prove (see

Lemma 2.8 below).
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Lemma 2.7. The full additive subcategory Projfil(R) of split projectives is idempotent complete. The
same is true for the full additive subcategory projfil(R) of split finite projectives.

Proof. Let f : a −→∼ b⊕ c be an isomorphism, with a split projective. Since a is split, there is a canonical
isomorphism g : a −→∼

⊕
n grn(a)(n), and we can define the following composition of isomorphisms:

b⊕ c f −1

∼
−→a g

∼
−→

⊕
n

grn(a)(n)
f
∼
−→

⊕
n

grn(b⊕ c)(n)=
(⊕

n

grn(b)(n)
)
⊕

(⊕
n

grn(c)(n)
)
.

It is easy to see that this induces an isomorphism b ∼=
⊕

n grn(b)(n), and we also see that grn(b) is a
direct summand of grn(a). In other words, b is split projective as required. The same proof applies in
the finite case. �

Lemma 2.8. For a filtered R-module a ∈Modfil(R) the following are equivalent:

(1) a is projective.

(2) a is split projective.

Proof. Let a be projective. As remarked in Lemma 2.5, there is a canonical strict epimorphism b→ a
with b split free. By definition of projectivity, there is a section a→ b, and since Modfil(R) has kernels
and images, we deduce that a is a direct summand of b. It therefore suffices to prove that every direct
summand of a split free is split projective. This follows from Lemma 2.7. �

In general, due to the possibility of the tensor product in Mod(R) not being exact, the tensor structure
on Zop R does not restrict to the subcategory Modfil(R). We can use the reflector κ to rectify this: for
a, b ∈Modfil(R), let

a⊗ b = κ(ι(a)⊗Zop ι(b)).

This defines a tensor structure on Modfil(R).3 It is clear that the internal hom on Zop R restricts to a bifunctor
on Modfil(R), and it follows formally from Lemma 2.3 that this bifunctor is the internal hom on Modfil(R).

Although we will in the sequel only use the implication (1)⇒(2) of the following result, it is satisfying
to see these notions match up as they do in Mod(R). Recall that an object a in a category with filtered
colimits is called finitely presented if hom(a,−) commutes with these filtered colimits.

Lemma 2.9. For a filtered R-module a ∈Modfil(R) the following are equivalent:

(1) a is split finite projective.

(2) a is rigid (or strongly dualizable).

(3) a is finitely presented and projective.

Proof. Since σ :Modgr(R)→Modfil(R) is a tensor functor it preserves rigid objects. This shows the
implication (1)⇒(2).

3This can be seen as a particular instance of [Day 1972] due to the canonical isomorphisms

κ(a⊗Zop κ(b))←−∼ κ(a⊗Zop b)−→∼ κ(κ(a)⊗Zop b)

for any a, b ∈ Zop.
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For (2)⇒(3) notice that the unit R(0) is both finitely presented and projective. The latter is clear, and
the former is true as filtered colimits are computed in Zop R. The implication is now obtained from the
identification

hom(a,−)= hom(R(0), hom(a, R(0))⊗−)

together with the fact that the tensor product preserves filtered colimits and strict epimorphisms.
Finally for (3)⇒(1), we start with the identification a =

⊕
n grn(a)(n) with grn(a) projective R-

modules, which exists by Lemma 2.8. Notice that the forgetful functor π :Modfil(R)→Mod(R) has a
right adjoint 1 :Mod(R)→Modfil(R) which takes an R-module to the same R-module with the constant
filtration. It is clear that 1 commutes with filtered colimits so that

hom(π(a), lim
−−→
−)= hom(a, lim

−−→
1−)= lim

−−→
hom(a,1−)= lim

−−→
hom(π(a),−),

hence π(a) is a finitely presented R-module. We conclude that a=
⊕

grn(a)(n) is split finite projective. �

Corollary 2.10. (1) If a ∈Modfil(R) is projective then a⊗− preserves kernels of arbitrary morphisms.

(2) If a, b ∈Modfil(R) are projective then so is a⊗ b.

Proof. Since the tensor product commutes with direct sums both statements follow from Lemma 2.8. �

3. Derived category of filtered modules

Quasiabelian categories are examples of exact categories and can therefore be derived in the same way.
However, the theory for quasiabelian categories is more precise and we will exploit this fact starting in
the current section. In the case of (separated, finitely) filtered R-modules we obtain what is classically
known as the filtered derived category of R. Some of its basic properties are established, a number of
which are deduced from the relation with the derived category of Zop R.

For ∗ ∈ {b,−,+,∅} we denote by C∗(Modfil(R)) the category of bounded (respectively bounded
above, bounded below, unbounded) cochain complexes in Modfil(R), and by K∗(Modfil(R)) the associated
homotopy category. A complex

A : · · · → Al−1 dl−1
−→ Al dl

−→ Al+1
→ · · ·

is called strictly exact if all differentials dl are strict, and the canonical morphism im(dl−1)→ ker(dl) is
an isomorphism for all l. We note the following simple but useful fact.

Lemma 3.1 [Sjödin 1973, 1]. Let A be a complex in Modfil(R) and consider the following conditions:

(1) A is strictly exact.

(2) All its differentials dl are strict and the underlying complex π(A) is exact.

(3) The associated graded complex gr
•
(A) is exact, i.e., grn(A) is an exact complex for all n ∈ Z.

We have (1)⇔(2)⇒(3), and if Al is finitely filtered and separated for all l ∈ Z then all conditions are
equivalent.
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The class of strictly exact complexes forms a saturated null system K∗ac [Schneiders 1999, 1.2.15]
and we set D∗(Modfil(R))=K∗(Modfil(R))/K∗ac. The canonical triangulated structure on K∗(Modfil(R))
induces a triangulated structure on D∗(Modfil(R)). As follows from Lemma 3.1, this definition is an
extension of the classical “filtered derived category” considered in [Illusie 1971]. There, complexes
are assumed to be (uniformly) finitely filtered separated and the localization is with respect to filtered
quasiisomorphisms, i.e., morphisms f : A→ B of complexes such that grn( f ) is a quasiisomorphism of
complexes of R-modules, for all n ∈ Z.

The functor ι :Modfil(R)→ Zop R clearly preserves strictly exact complexes (we say that ι is strictly
exact), hence it derives trivially to an exact functor of triangulated categories ι : D∗(Modfil(R)) →
D∗(Zop R).

Proposition 3.2 [Schapira and Schneiders 2016, 3.16]. The functor ι :D∗(Modfil(R))→D∗(Zop R) is an
equivalence of categories. Its quasiinverse is given by the left derived functor of κ .

Explicitly, Lκ may be computed using the “Rees functor” λ :Zop R→Modfil(R) which takes a ∈Zop R
to the filtered R-module λ(a) with

λ(a)n =
⊕
m≥n

am

and the obvious inclusions as transition maps [Schapira and Schneiders 2016, 3.12]. It comes with a
canonical epimorphism εa : ιλ(a)→ a and since Modfil(R) is closed under subobjects in Zop R, objects
in Zop R admit an additively functorial two-term resolution by objects in Modfil(R). Thus a complex A in
Zop R is replaced by the cone of ker(εA)→ ιλ(A) which is a complex in Modfil(R) and computes Lκ(A).

The tensor product ⊗Zop on Zop R can be left derived and yields

⊗
L
Zop : D∗(Zop R)×D∗(Zop R)→ D∗(Zop R)

for ∗ ∈ {−,∅}. This follows for example from [Cisinski and Déglise 2009, 2.3] (where the descent
structure is given by (G = {R(n) | n ∈ Z},H= {0})).

Lemma 3.3. The tensor product on Modfil(R) induces a left-derived tensor product

⊗
L
: D∗(Modfil(R))×D∗(Modfil(R))→ D∗(Modfil(R))

where ∗ ∈ {−,∅}. Moreover, the equivalence of Proposition 3.2 is compatible with the derived tensor
products.

Proof. Recall that the tensor product was defined as κ ◦⊗Zop ◦ (ι× ι). Therefore the left-derived tensor
product is given by

⊗
L
= Lκ ◦⊗L

Zop ◦ (ι× ι).

The second statement is then clear. �

Corollary 3.4. The triangulated category D(Modfil(R)) is compactly generated. For an object A ∈
D(Modfil(R)) the following are equivalent:
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(1) A is compact.

(2) A is rigid.

(3) A is isomorphic to a bounded complex of split finite projectives.

Proof. It is easy to see [Choudhury and Gallauer 2015, 3.20] that the set {R(n) |n ∈Z} compactly generates
D(Zop R). The first statement therefore follows from Proposition 3.2. As is true in general [Neeman 1992,
2.2], the compact objects span precisely the thick subcategory generated by these generators R(n). From
this we see immediately that (3) implies (1). The converse implication follows from Corollary 3.5 below.

That (3) implies (2) is easy to see, using Lemma 2.9. Finally that (2) implies (1) follows formally from
the tensor unit being compact (see the proof of Lemma 2.9). �

We denote by Dperf
fil (R) the full subcategory of compact objects in D(Modfil(R)). Its objects are also

called perfect filtered complexes. Note that this is an idempotent complete, rigid tt-category. We denote
the tensor product on Dperf

fil (R) simply by ⊗. Recall that projfil(R) denotes the additive category of split
finite projective filtered R-modules.

Corollary 3.5. The canonical functor Kb(projfil(R)) → D(Modfil(R)) induces an equivalence of tt-
categories

Kb(projfil(R))−→∼ Dperf
fil (R).

Proof. The fact that the image of the functor is contained in Dperf
fil (R) was proved in Corollary 3.4. It

therefore makes sense to consider the following square of canonical exact functors

Kb(projfil(R)) //

��

Dperf
fil (R)

��

K−(Projfil(R)) // D−(Modfil(R))

The vertical arrows are the inclusions of full subcategories. (For the right vertical arrow this follows from
[Keller 1996, 11.7].) Moreover, the bottom horizontal arrow is an equivalence, by [Schneiders 1999,
1.3.22] together with Lemma 2.5. We conclude that the top horizontal arrow is fully faithful as well.

Next, we notice that since projfil(R) is idempotent complete by Lemma 2.7, the same is true of its
bounded homotopy category [Balmer and Schlichting 2001, 2.8]. It follows that the image of the top
horizontal arrow is a thick subcategory containing R(n), n ∈Z. As remarked in the proof of Corollary 3.4,
this implies essential surjectivity.

As tensoring with a split finite projective is strictly exact, by Corollary 2.10, the same is true for objects
in Kb(projfil(R)). It is then clear that the equivalence just established preserves the tensor product. �

For future reference we record the following simple fact.

Lemma 3.6. Let J ⊂ Dperf
fil (R) be a thick subcategory. Then the following are equivalent:

(1) J is a tt-ideal.

(2) J is closed under R(n)⊗−, n ∈ Z.
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Proof. As remarked in the proof of Corollary 3.4, the category of filtered complexes Dperf
fil (R) is generated

as a thick subcategory by R(n), n ∈ Z. Thus (2) implies (1):

J ⊗Dperf
fil (R)= J ⊗〈R(n) | n ∈ Z〉thick

⊂ J .

The converse is trivial. �

Let us discuss the derived analogues of the functors π and gr
•

introduced earlier.

Lemma 3.7. The functor π :Modfil(R)→Mod(R) is strictly exact and derives trivially to a tt-functor
π : D(Modfil(R))→ D(R). The latter preserves compact objects and restricts to a tt-functor

π : Dperf
fil (R)→ Dperf(R),

where Dperf(R) denotes the category of perfect complexes over R, i.e., the compact objects in D(R).

Proof. The first statement follows from Lemma 3.1. The functor π being tensor, it preserves rigid objects
and the second statement follows from Corollary 3.4. �

Lemma 3.8. The functor gr
•
: Modfil(R)→ Modgr(R) is strictly exact and derives trivially to an ex-

act functor gr
•
: D(Modfil(R))→ D(Modgr(R)). The latter preserves compact objects and induces a

conservative tt-functor

gr := ⊕ gr
•
: Dperf

fil (R)→ Dperf(R).

Proof. That gr
•

is strictly exact is Lemma 3.1. It follows that gr
•

derives trivially to give an exact functor
gr
•
: D(Modfil(R))→ D(Modgr(R)). For each n, grn clearly sends perfect filtered complexes to perfect

complexes, i.e., gr
•

preserves compact objects (by Corollary 3.4).
The functor ⊕ : Modgr(R)→ Mod(R) is strictly exact (in fact, it preserves arbitrary kernels and

cokernels) and hence derives trivially as well to give a tt-functor which preserves compact objects.
There is a canonical natural transformation (on the underived level)

gr
•
⊗ gr

•
→ gr

•
◦⊗

endowing gr
•

with the structure of a unital lax monoidal functor [Sjödin 1973, 3]. This natural transfor-
mation is easily seen to be an isomorphism for split finite projective filtered R-modules [Sjödin 1973,
12]. It follows that gr : Kb(projfil(R))→ Kb(proj(R)) is a tt-functor (proj(R) is the category of finitely
generated projective R-modules). Conservativity of this functor follows from Lemma 3.1. �

Finally, notice that viewing Mod(R) as a tensor subcategory of Modfil(R) induces a section

σ0 : Dperf(R)→ Dperf
fil (R)

to both gr and π .
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4. Main result

The set of endomorphisms of the unit in a tt-category T is a (unital commutative) ring RT , called the
central ring of T . There is a canonical morphism of locally ringed spaces

ρT : Spec(T )→ Spec(RT )

comparing the tt-spectrum of T with the Zariski spectrum of its central ring, as explained in [Balmer
2010a].

There is also a graded version of this construction. Given an invertible object u ∈ T , it makes sense to
consider the graded central ring with respect to u ([Balmer 2010a, 3.2], see also Section 5 for further
discussion):

R•T ,u := homT (1, u⊗•), • ∈ Z.

This is a unital ε-commutative graded ring [Balmer 2010a, 3.3] and we can therefore consider its
homogeneous spectrum. There is again a canonical morphism of locally ringed spaces

ρ•T ,u : Spec(T )→ Spech(R•T ,u).

The inclusion RT →R•T ,u as the degree 0 part provides a factorization ρT = (RT ∩−) ◦ ρ
•

T ,u .

Let us specialize to T = Dperf
fil (R). The object R(1) ∈ Dperf

fil (R) is clearly invertible and we define
R•R :=R•

Dperf
fil (R),R(1)

, so that

R•R = homDperf
fil (R)

(R(0), R(•)), • ∈ Z.

Also, ρ•R := ρ
•

Dperf
fil (R),R(1)

.

We are now in a position to state our main result.

Theorem 4.1. (1) The graded central ring R•R is canonically isomorphic to the polynomial ring R[β]
where β : R(0)→ R(1) as in (2.4) has degree 1.

(2) The morphism
ρ•R : Spec(Dperf

fil (R))→ Spech(R[β])

is an isomorphism of locally ringed spaces.

The first part is immediate: by Corollary 3.5, morphisms R(0)→ R(n) in Dperf
fil (R) may be computed

in the homotopy category into which projfil(R) embeds fully faithfully. Using the Yoneda embedding we
therefore find

homDperf
fil (R)

(R(0), R(n))= homKb(projfil(R))(R(0), R(n))

= homprojfil(R)(R(0), R(n))

=⊕homZ(0,n)R

=

{
R · {0→ n} n ≥ 0,
0 n < 0

and under this identification, {0→ n} corresponds to βn .
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In the remainder of this section we outline two proofs of the second part of Theorem 4.1 and deduce the
classification of tt-ideals in Dperf

fil (R) in Corollary 4.9. The subsequent sections will provide the missing
details.

First proof of Theorem 4.1(2). It is proven in [Dell’Ambrogio and Stevenson 2013, 5.1] (R noetherian);
[Dell’Ambrogio and Stevenson 2014, 4.7] (R general) that the comparison map

ρ• : Spc(Dperf(R[β])gr)→ Spch(R[β])

is a homeomorphism, where the thick subcategory of compact objects in D(Modgr(R[β])) is denoted
by D(R[β])perf

gr . It then follows from Proposition 3.2 and Lemma 3.3 (as well as the identification
Zop R ∼=Modgr(R[β]) discussed in Section 2) that the same is true for ρ•R : Spc(Dperf

fil (R))→ Spch(R[β]).
By [Balmer 2010a, 6.11], the morphism of locally ringed spaces ρ•R is then automatically an isomorphism.

�

Second proof of Theorem 4.1(2). For the second proof of Theorem 4.1.(2) we proceed as follows. By
[Balmer 2010a, 6.11], it suffices to show that

ρ•R : Spc(Dperf
fil (R))→ Spch(R•R)

is a homeomorphism on the underlying topological spaces.
Consider the invertible object R ∈ Dperf(R) and the associated graded central ring R[t, t−1

] where
t = id : R→ R has degree 1. The morphisms of graded R-algebras induced by gr and π respectively are
given by

R[β] gr
−→ R[t, t−1

] R[β] π
−→ R[t, t−1

]

β 7−→ 0 β 7−→ t
(4.2)

Recall (Section 3) the existence of a section σ0 to gr and π . We therefore obtain for ξ ∈ {gr, π}
commutative diagrams of topological spaces and continuous maps

Spc(Dperf(R))
Spc(ξ)

//

ρ•

��

ρ

&&

Spc(Dperf
fil (R))

Spc(σ0)
//

ρ•R
��

Spc(Dperf(R))

ρ•

��

ρ

xx

Spch(R[t, t−1
])

Spch(ξ)
//

∼

��

Spch(R[β])
Spch(σ0)

//

��

Spch(R[t, t−1
])

∼

��

Spc(R)
=

Spc(ξ)
// Spc(R)

=

Spc(σ0)
// Spc(R)

where the outer vertical maps are all homeomorphisms [Balmer 2010a, 8.1] and the composition of the
horizontal morphisms in each row is the identity. It follows immediately that both Spc(gr) and Spc(π)
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are homeomorphisms onto their respective images which are disjoint by (4.2). More precisely, we have

im(Spc(gr))⊆ (ρ•R)
−1(Z(β))= supp(cone(β)), (4.3)

im(Spc(π))⊆ (ρ•R)
−1(U (β))=U (cone(β)).

It now remains to prove two things:

• Spc(gr) and Spc(π) are jointly surjective.

• Specializations lift along ρ•R .

Indeed, since ρ•R is a spectral map between spectral spaces [Balmer 2010a, 5.7], it being a homeomorphism
is equivalent to it being bijective and lifting specializations [Hochster 1967, 8.16].

The first bullet point is the subject of the subsequent sections. Let us assume it for now and establish
the second bullet point. In particular, we now assume that the inclusions in (4.3) are equalities. Let
ρ•R(P) ρ•R(Q) be a specialization in Spch(R[β]), i.e., ρ•R(P)⊂ ρ

•

R(Q). If β /∈ ρ•R(Q) then both primes
lie in the image of Spc(π) and we already know that P Q. Similarly, if β ∈ ρ•R(P) then both primes
lie in the image of Spc(gr) and we deduce again that P Q. So we may assume β ∈ ρ•R(Q)\ρ

•

R(P).
Define r= ρ•R(Q)∩ R ∈ Spc(R) and notice that

ρ•R(P)⊂ r[β] ⊂ r+〈β〉 = ρ•R(Q).

Consequently, the preimage of r[β] under ρ•R is the prime

R= ker(Dperf
fil (R)

π
−→Dperf(R)→ Dperf(R/r))

which contains the prime

Q= ker(Dperf
fil (R)

gr
−→Dperf(R)→ Dperf(R/r)).

We now obtain specialization relations
P R Q

and the proof is complete. �

As a consequence of Theorem 4.1 we will classify the tt-ideals in Dperf
fil (R).

Lemma 4.4. The following two maps set up an order preserving bijection

{5⊂ 0 |5,0 ⊂ Spc(R) Thomason subsets} ↔ {Thomason subsets of Spc(Dperf
fil (R))}

(5⊂ 0) 7→ Spc(π)(5)tSpc(gr)(0)

(Spc(π)−1(Y )⊂ Spc(gr)−1(Y ))←[ Y

Here, the order relation on the left is given by (5⊂ 0)≤ (5′ ⊂ 0′) if 5⊂5′ and 0 ⊂ 0′.

Proof. To ease the notation, let us denote in this proof by p : S → T (respectively, g : S → T ) the
map Spc(π) : Spc(R)→ Spc(Dperf

fil (R)) (respectively Spc(gr)). It might be helpful to keep the following
picture in mind.
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S = Spc(R)

U (β)≈ Spc(R)

Z(β)≈ Spc(R)

g

p

•p

•
p+〈β〉

•q

•

q+〈β〉

T

Thus g and p are spectral maps between spectral spaces, homeomorphisms onto disjoint images which
jointly make up all of T . Moreover, the image of p is open, and there is a common retraction r : T → S
to both g and p.

First, the preimages of a Thomason subset Y ⊂ T under the spectral maps g and p are Thomason.
Moreover, every Thomason subset is closed under specializations from which one deduces p−1(Y ) ⊂
g−1(Y ). This shows that the map from right to left is well defined.

Next, given 5⊂ 0 ⊂ Spc(R) two Thomason subsets we claim that p(5)t g(0) is Thomason as well.
By assumption, we may write 5=

⋃
i 5i and 0 =

⋃
j 0 j with 5c

i and 0c
j quasicompact open subsets,

and hence also

5=5∩0 =

(⋃
i

5i

)
∩

(⋃
j

0 j

)
=

⋃
i, j

(5i ∩0 j )

with (5i ∩0 j )
c
=5c

i ∪0
c
j quasicompact open. Then

p(5)t g(0)=
(⋃

i, j

p(5i ∩0 j )

)
t

(⋃
j

g(0 j )

)
=

⋃
i, j

(p(5i ∩0 j )t g(0 j ))

and we reduce to the case where 5c and 0c are quasicompact open. But in that case,

(p(5)t g(0))c = (p(0c)t g(0c))∪ p(5c)= r−1(0c)∪ p(5c).

Again, r is a spectral map and hence the first set is quasicompact open. The second one is quasicompact
by assumption, and also open since p is a homeomorphism onto an open subset. This shows that the map
from left to right is also well defined.

It is obvious that the two maps are order preserving and inverses to each other. �

To state the classification result more succinctly, let us make the following definition.

Definition 4.5. Let a ∈ Dperf
fil (R). For ξ ∈ {π, gr} set

suppξ (a) := {p ∈ Spc(R) | ξ(a⊗ κ(p)) 6= 0 ∈ Dperf(κ(p))}.

We extend this definition to arbitrary subsets J ⊂ Dperf
fil (R) by

suppξ (J ) :=
⋃
a∈J

suppξ (a).
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Lemma 4.6. Let a ∈ Dperf
fil (R). Then:

(1) suppgr(a)= {p ∈ Spc(R) | a⊗ κ(p) 6= 0 ∈ Dperf
fil (κ(p))}.

(2) suppπ (a)⊂ suppgr(a).

(3) suppξ (a)= supp(ξ(a)).

Proof.

(1) The functor gr : Dperf
fil (κ(p))→ Dperf(κ(p)) is conservative by Lemma 3.8, thus the claim.

(2) This follows immediately from the first part.

(3) We have
suppξ (a)= {p ∈ Spc(R) | ξ(a⊗ κ(p)) 6= 0 ∈ Dperf(κ(p))}

= {p ∈ Spc(R) | ξ(a)⊗ κ(p) 6= 0 ∈ Dperf(κ(p))}

= supp(ξ(a)). �

The relation to the usual support can be expressed in two (equivalent) ways.

Lemma 4.7. Let a ∈ Dperf
fil (R). Then

(1) supp(a)= Spc(π)(suppπ (a))tSpc(gr)(suppgr(a)).

(2) Under the bijection of Lemma 4.4, supp(a) corresponds to the pair suppπ (a)⊂ suppgr(a).

Proof. Both statements follow from

Spc(ξ)−1(supp(a))= supp(ξ(a))= suppξ (a),

the last equality being true by Lemma 4.6. �

Lemma 4.8. Let Y ⊂ Spc(Dperf
fil (R)) be a Thomason subset, corresponding to 5⊂ 0 under the bijection

in Lemma 4.4. For a ∈ Dperf
fil (R) the following are equivalent:

(1) supp(a)⊂ Y .

(2) suppπ (a)⊂5 and suppgr(a)⊂ 0.

Proof. This follows immediately from the way 5⊂ 0 is associated to Y , together with Lemma 4.7. �

Corollary 4.9. There is an inclusion preserving bijection:

{5⊂ 0 |5,0 ⊂ Spc(R) Thomason subsets} ↔ {tt-ideals in Dperf
fil (R)}

(5⊂ 0) 7→ {a | suppπ (a)⊂5, suppgr(a)⊂ 0}

( suppπ (J )⊂ suppgr(J ))←[ J

Proof. A bijection between Thomason subsets of Spc(Dperf
fil (R)) and tt-ideals in Dperf

fil (R) is described in
[Balmer 2010b, 14]. Explicitly, it is given by Y 7→ {a | supp(a)⊂ Y } and supp(J )←[ J . The Corollary
follows by composing this bijection with the one of Lemma 4.4, using Lemmas 4.7 and 4.8. �
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5. Central localization

In this section we study several localizations of Dperf
fil (R) which will allow us to catch primes (points for

the tt-spectrum). In order to accommodate the different localizations we are interested in, we want to
work in the following setting. Let A be a tensor category with central ring R = homA(1,1), and fix an
invertible object u ∈A. Most of the discussion in [Balmer 2010a, §3] regarding graded homomorphisms
and central localization carries over to our setting. Let us recall what we will need from [loc. cit.].

The graded central ring of A with respect to u is R•= homA(1, u⊗•). This is a Z-graded ε-commutative
ring, where ε ∈ R is the central switch for u, i.e., the switch u⊗ u −→∼ u⊗ u is given by multiplication
by ε. For any objects a, b ∈ A, the Z-graded abelian group hom•A(a, b) = homA(a, b⊗ u⊗•) has the
structure of a graded R•-module in a natural way.

Let S ⊂R• be a multiplicative subset of central homogeneous elements. The central localization S−1A
of A with respect to S is obtained as follows: it has the same objects as A, and for a, b ∈A,

homS−1A(a, b)= (S−1 hom•A(a, b))0,

the degree 0 elements in the graded localization.
We now prove that this is in fact a categorical localization.

Proposition 5.1. The canonical functor Q :A→ S−1A is the localization with respect to

6 = {a s
−→ a⊗ u⊗n

| a ∈A, s ∈ S, |s| = n}.

Moreover, S−1A has a canonical structure of a tensor category, and Q is a tensor functor.

Proof. Denote by Q′ the localization functor A→6−1A. It is clear by construction that every morphism
in 6 is inverted in S−1A thus Q factors through Q′, say via the functor F :6−1A→ S−1A. The functor
F is clearly essentially surjective. And fully faithfulness follows readily from the fact, easy to verify, that
6 admits a calculus of left (and right) fractions [Gabriel and Zisman 1967, 2.2].

The fact that 6−1A is an additive category and Q′ an additive functor is [Gabriel and Zisman 1967,
3.3], and the analogous statement about the monoidal structure is proven in [Day 1973]. The monoidal
product in 6−1A is automatically additive in each variable. �

Consider the homotopy category Kb(A) of A. This is a tt-category (large if A is) with the same graded
central ring R• (with respect to u considered in degree 0).

Lemma 5.2. There is a canonical equivalence of tt-categories S−1Kb(A) ' Kb(S−1A), and both are
equal to the Verdier localization of Kb(A) with kernel 〈cone(s) | s ∈ S〉.

Proof. The first statement can be shown in two steps. First, consider the category of chain complexes
Cb(A) and the canonical functor Cb(A)→ Cb(S−1A). By Proposition 5.1, it factors through S−1Cb(A)→
Cb(S−1A); fully faithfulness and essential surjectivity of this functor are an easy exercise using the explicit
nature of the central localization. (The point is that for bounded complexes there are always only finitely
many morphisms involved thus the possibility of finding a “common denominator”.)
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Next, since Cb(−)→Kb(−) is a categorical localization (with respect to chain homotopy equivalences),
Proposition 5.1 easily implies the claim.

Compatibility with the tt-structure is also straightforward. The second statement follows from [Balmer
2010a, 3.6]. �

We want to draw two consequences from this discussion. For the first one, denote by proj(R) the
tensor category of rigid objects in Mod(R), i.e., the category of finitely generated projective R-modules.
We let A= projfil(R) and as the invertible object u we choose R(1) so that R• = R[β].

Lemma 5.3. The functor π : projfil(R)→ proj(R) is the central localization at the multiplicative set
{βn
| n ≥ 0} ⊂ R[β].

Proof. Consider the set of arrows6={βn
:a→a(n) |a∈projfil(R), n≥0}. By Proposition 5.1, the central

localization in the statement of the Lemma is the localization at 6. We have 6−1 projfil(R)(a, b) =
lim
−−→n homprojfil(R)(a(−n), b). At each level n, this maps injectively into homproj(R)(πa, πb), and the
transition maps f 7→ f ◦β are injective as well since β is an epimorphism, hence the induced map

lim
−−→

n
homprojfil(R)(a(−n), b)→ homproj(R)(πa, πb)

is injective. For surjectivity, we may assume a, b ∈ projfil(R) are of “weight in [m, n]”, i.e., m ≤ n and
gri (a)= gri (b)= 0 for all i /∈ [m, n]. In that case f : πa→ πb comes from a map f : a(m− n)→ b.

We have proved that π :6−1 projfil(R)→ proj(R) is fully faithful. Essential surjectivity is clear. �

Corollary 5.4. The functor π : Dperf
fil (R) → Dperf(R) is the Verdier localization at the morphisms

β : A→ A(1), every A ∈ Dperf
fil (R). In particular, ker(π)= 〈cone(β)〉.

Proof. Let S = {βn
} ⊂ R[β]. We know from Lemma 5.3 that S−1 projfil(R) = proj(R) hence also

S−1 Dperf
fil (R)=Dperf(R), by Lemma 5.2, and this is the Verdier localization with kernel 〈cone(βn) | n≥ 0〉.

The latter tt-ideal is equal to 〈cone(β)〉 by [Balmer 2010a, 2.16] and we conclude. �

Still in the same context let p⊂ R be a prime ideal. Denote by q : R→ Rp the canonical localization
morphism, and set S = R\p.

Lemma 5.5. The morphism q induces an equivalence of tensor categories

S−1 projfil(R)' projfil(Rp).

Proof. The functor S−1 projfil(R)→ projfil(Rp) is given by ⊗R Rp. This is clearly a tensor functor. Since
Rp is local every finitely generated projective Rp-module is free thus ⊗R Rp is essentially surjective. For
full faithfulness notice that ⊗R Rp is additive and one therefore reduces to check this for twists of R:

S−1 homprojfil(R)(R(m), R(n))=
{

S−1 R n ≥ m,
0 n < m

=

{
Rp n ≥ m,
0 n < m

= homprojfil(Rp)(Rp(m), Rp(n)). �
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Corollary 5.6. The square of topological spaces

Spc(Dperf
fil (R))

ρR

��

Spc(Dperf
fil (Rp))

Spc(q)
oo

ρRp

��

Spc(R) Spc(Rp)Spc(q)
oo

is cartesian.

Proof. By Lemmas 5.2 and 5.5, we know that Dperf
fil (Rp) is the Verdier localization of Dperf

fil (R) with kernel
〈cone(s) | s ∈ S〉. The claim now follows from [Balmer 2010a, 5.6]. �

Remark 5.7. Lemma 5.5 is false for general multiplicative subsets S ⊂ R, even without taking into
account filtrations. The proof shows that the functor S−1 projfil(R) → projfil(S−1 R) is always fully
faithful but it may fail to be essentially surjective. The correct statement would therefore be that
(S−1 projfil(R))\ ' projfil(S−1 R), where (−)\ denotes the idempotent completion. We then deduce

Kb(projfil(S−1 R))' Kb((S−1 projfil(R))\)

' (Kb(S−1 projfil(R)))\ [Balmer and Schlichting 2001, 2.8]

' (S−1Kb(projfil(R)))\ Lemma 5.2

and since the tt-spectrum is invariant under idempotent completion, we obtain a cartesian square as in
Corollary 5.6 for arbitrary multiplicative subsets S ⊂ R.

6. Reduction steps

Let R be a noetherian ring. Recall from Section 4 that we would like to prove that the tt-functors
π, gr : Dperf

fil (R)→ Dperf(R) induce jointly surjective maps

Spc(π),Spc(gr) : Spc(Dperf(R))→ Spc(Dperf
fil (R)).

In this section, we will explain how to reduce this statement to R a field. The latter case will be proved in
Section 7, and the case of arbitrary (i.e., not necessarily noetherian) rings will be addressed in Section 8.

Proposition 6.1. If r ∈ R is nilpotent then the canonical map

Spc(Dperf
fil (R/r))→ Spc(Dperf

fil (R))

is surjective.

Proof. Let F = ⊗R R/r : Dperf
fil (R) → Dperf

fil (R/r). We will use the criterion in [Balmer 2017, 1.3]
to establish surjectivity of Spc(F), i.e., we want to prove that F detects ⊗-nilpotent morphisms. Let
f : A → B ∈ Dperf

fil (R) such that f := F( f ) = 0. Equivalently, we may consider f as a morphism
f ′ : R(0)→ A∨⊗ B, where A∨ denotes the dual of A. Then f ′ = 0 and if ( f ′)⊗m

= 0 then also f ⊗m
= 0,

in other words we reduce to A = R(0).
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The morphism f in Dperf
fil (R) is then determined by a map f 0

: R(0)→ B0 such that δ0 f 0
= 0, and

f = 0 means that there is a map h : R/r(0)→ B−1/r such that f 0 = δ−1h. Choose a lift h : R(0)→ B−1

of h to projfil(R). There exists g : R(0)→ B0 such that f 0
− gr = δ−1h. The composite gr determines a

chain morphism, and we may assume that f 0 is of the form gr for some g : R(0)→ B0. (The map g
itself does not necessarily determine a chain morphism.)

Let m ≥ 1 such that r◦m = 0. Then f ⊗m
: R(0)→ B⊗m is described by the morphism

R(0) (gr)⊗m
−−−→ (B0)⊗m ↪→ (B⊗m)0

which factors as

R(0) r◦m=0
−−−→ R(0) g⊗m

−→ (B0)⊗m ↪→ (B⊗m)0.

We conclude that f is ⊗-nilpotent as required. �

Proposition 6.2. Let r ∈ R be a nonzerodivisor. The image of the canonical map

Spc(Dperf
fil (R/r))→ Spc(Dperf

fil (R))

is precisely the support of cone(r).

Proof. Let F =⊗R R/r : Dperf
fil (R)→ Dperf

fil (R/r). The fact that r is a nonzerodivisor means that R/r(0)
is an object in Dperf

fil (R) hence F admits a right adjoint G : Dperf
fil (R/r)→ Dperf

fil (R) (which is simply the
forgetful functor). We may therefore invoke [Balmer 2017, 1.7]: the image of Spc(F) is the support of
G(R/r(0))= cone(r). �

We can now put these pieces together. Notice that we have, for any ring morphism R → R′ and
ξ ∈ {π, gr}, commutative squares

Spc(Dperf
fil (R)) Spc(Dperf

fil (R
′))

Spc(⊗R R′)
oo

Spc(Dperf(R))

Spc(ξ)

OO

Spc(Dperf(R′)).
Spc(⊗R R′)

oo

Spc(ξ)

OO
(6.3)

Let P ∈ Spc(Dperf
fil (R)) be a prime and set p = ρR(P) ∈ Spc(R). From Corollary 5.6 we know that P

lies in the subspace Spc(Dperf
fil (Rp)). Using (6.3) we therefore reduce to a local ring (R, p) (still assuming

p = ρR(P)). We now do induction on the dimension d of R. In each case, repeated application of
Proposition 6.1 in conjunction with (6.3) allows us to assume R reduced. If d = 0, R is necessarily
a field and this case will be dealt with in Corollary 7.9. If d > 0 there exists a nonzerodivisor r ∈ p.
Proposition 6.2 in conjunction with (6.3) reduce us to R/r but this ring has dimension d − 1 and we
conclude by induction.
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7. The case of a field

In this section we will prove Theorem 4.1 in the case of R = k a field. This will follow easily from a
more precise description of Dperf

fil (k).
We begin with a result describing the structure of any morphism in projfil(k). For this, let us agree

to call a quasiabelian category semisimple if every short strictly exact sequence splits. Equivalently, a
quasiabelian category is semisimple if every object is projective.

Lemma 7.1. The category projfil(k) is semisimple quasiabelian.

Proof. Notice that projfil(k)⊂Modfil(k) is simply the full subcategory of separated filtered vector spaces
whose underlying vector space is finite dimensional. This is an additive subcategory and the set of objects
is closed under kernels and cokernels in Modfil(k). We deduce that it is a quasiabelian subcategory.

Since every object in projfil(k) is projective (Lemma 2.9), semisimplicity follows. �

Lemma 7.2. Let f : a → b be a morphism in a semisimple quasiabelian category. Then f is the
composition

f = fm ◦ fem ◦ fe, (7.3)

where

• fe is the projection onto a direct summand (in particular a strict epimorphism),

• fem is an epimonomorphism,

• fm is the inclusion of a direct summand (in particular a strict monomorphism).

Proof. As in every quasiabelian category, f factors as

a fe−→ coim( f ) fem−→ im( f ) fm−→ b,

where fe is a strict epimorphism, fem is an epimonomorphism, and fm is a strict monomorphism. The
lemma now follows from the definition of semisimplicity. �

Remark 7.4. Lemma 7.2 allows to characterize certain properties of morphisms f :a→b in a particularly
simple way:

(1) f is a monomorphism if and only if fe is an isomorphism.

(2) f is an epimorphism if and only if fm is an isomorphism.

(3) f is strict if and only if fem is an isomorphism.

Fix a semisimple quasiabelian category A. Its bounded derived category Db(A) admits a bounded
t-structure whose heart D♥(A) is the subcategory of objects represented by complexes

0→ a f
−→ b→ 0, (7.5)

where b sits in degree 0 and f is a monomorphism in A.4

4This is [Schneiders 1999, 1.2.18, 1.2.21]. The reader who is puzzled by the asymmetry of this statement should rest assured
that there is a dual t-structure for which the objects in the heart are represented by epimorphisms [Schneiders 1999, 1.2.23]. Also,
the existence of the t-structures does not require A to be semisimple.
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Lemma 7.6. The t-structure on Db(A) is strongly hereditary, i.e., for any A, B ∈ D♥(A) and i ≥ 2, we
have homDb(A)(A, B[i])= 0.

Proof. This follows from the fact that A and B are represented by complexes of the form (7.5), and that
homomorphisms can be computed in the homotopy category. Indeed, as every object in A is projective,
the canonical functor Kb(A)→ Db(A) is an equivalence [Schneiders 1999, 1.3.22]. �

Assume now in addition that A is a tensor category and every object is a finite sum of invertibles.
Clearly, projfil(k) satisfies this condition.

Proposition 7.7. Every object in Db(A) is of the form⊕
i

cone(gi )[i]⊕
⊕

j
c j [a j ],

where the sums are finite, the c j are invertible in A, and the gi are epimonomorphisms in A.

Proof. Let A ∈ Db(A). By Lemma 7.6, the object A is a finite direct sum of shifts of objects in D♥(A).
As discussed above, every object in the heart is represented by a complex as in (7.5). We then deduce
from Remark 7.4 that f is an epimonomorphism g followed by the inclusion of a direct summand, say
with direct complement c. Thus

cone( f )= cone(g)⊕ c. �

We now come to the study of tt-ideals in Dperf
fil (k)= Db(projfil(k)). Proposition 7.7 tells us that every

prime ideal is generated by cones of epimonomorphisms in projfil(k). However, it turns out that all these
cones generate the same prime ideal (except if 0, of course).

Proposition 7.8. There is a unique nontrivial, proper tt-ideal in Dperf
fil (k) given by

ker(π)= 〈cone(β)〉.

In particular, 〈cone(β)〉 is a prime ideal.

Proof. The equality of the two tt-ideals follows from Corollary 5.4. Since π is a tt-functor and Dperf(k) is
local, it is clear that its kernel is a prime ideal.

Let A be a nonzero object in Dperf
fil (k) such that 〈A〉 6=Dperf

fil (k). We would like to show 〈A〉= 〈cone(β)〉.
By Proposition 7.7, we may assume A = cone(g) where g is a nonstrict epimonomorphism in projfil(k).
Writing the domain and codomain of g as a sum of invertibles, we may identify g with a square matrix with
entries in the polynomial ring k[β]. Let p(β) ∈ k[β] be the determinant. Since g is not an isomorphism
neither is gr(g) ∈ Dperf(k) by Lemma 3.8. We deduce that p(0)= 0, or in other words p(β)= β · p′(β)
for some p′(β) ∈ k[β].

Let T = Dperf
fil (k)/〈cone(g)〉 and denote by ϕ : Dperf

fil (k)→ T the localization functor. As T is a tt-
category we can consider the graded (automatically commutative) central ring R•T with respect to ϕ(k(1)).
Since ϕ(g) is invertible, ϕ(p) ∈R•T is invertible as well. But then we must have

(ϕ(p)−1
·ϕ(p′)) ·ϕ(β)= ϕ(p)−1

·ϕ(p)= 1

so ϕ(β) is invertible as well. In other words, cone(β) ∈ ker(ϕ)= 〈cone(g)〉.
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Conversely, π(g) is an isomorphism since g is an epimonomorphism. In other words, cone(g) ∈
〈cone(β)〉. �

Corollary 7.9. The canonical morphism

ρ•k : Spec(Dperf
fil (k))→ Spech(k[β])

is an isomorphism of locally ringed spaces. The tt-spectrum Spc(Dperf
fil (k)) is the topological space

〈0〉 = ker(gr)

〈cone(β)〉 = ker(π)

where the only nontrivial specialization relation is indicated by the vertical line going upward.

8. Continuity of tt-spectra

Our primary goal in this section is to deduce the veracity of Theorem 4.1 from its veracity for noetherian
rings. The idea is to write an arbitrary ring as a filtered colimit of noetherian rings, and since this technique
of reducing some statement in tt-geometry to the analogous statement about “more finite” objects can be
useful in other contexts we decided to approach the question in greater generality.

Denote by t tCat the category of small tt-categories and tt-functors. For the moment we assume that all
structure is strict, e.g., the tt-functors preserve the tensor product and translation functor on the nose.

Lemma 8.1. The forgetful functor ttCat→ Cat creates filtered colimits.

Proof sketch. The fact that filtered colimits of monoidal categories are created by the forgetful functor is
[Johnstone 2002, C1.1.8]. Since filtered colimits commute with finite products, the colimit will be an addi-
tive category. It is obvious how to endow the filtered colimit with a translation functor and a class of distin-
guished triangles. The axioms for the triangulated structure all involve only finitely many objects and mor-
phisms each and therefore are easily seen to hold. The same is true for exactness of the monoidal product.

It remains to check universality. But given a cocone on the diagram there is a unique morphism (a
priori not respecting the tt-structure) from the filtered colimit. Hence all one needs to know is that it
actually does respect the tt-structure. Again, in each case this only involves finitely many objects and
morphisms and is easily seen to hold. �

Let us be given a filtered diagram (Ti , fi j : Ti → T j )i∈I in t tCat and denote by T its colimit, and by
fi : Ti → T the canonical functors.

Proposition 8.2. The induced map

ϕ := lim
←−−

i
f −1
i : Spc(T )→ lim

←−−
i

Spc(Ti )

is a homeomorphism.

Proof. This follows from Proposition 8.5. �
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Remark 8.3. In practice, of course, tt-categories and tt-functors are rarely strict, and (filtered) diagrams
of such things are rarely strictly functorial. Denote by 2-t tCat the 2-category of small tt-categories,
tt-functors, and tt-isotransformations without any strictness assumptions.

Given a pseudofunctor F : I → 2-t tCat , where I is a small filtered category, we are going to endow
its pseudocolimit 2-lim

−−→I F with the structure of a tt-category. For this, choose a strictification of F , i.e., a
strict 2-functor G : I → Cat together with a pseudonatural equivalence η : F→ G (as pseudofunctors
I → Cat). Then use η pointwise to endow each category G(i), where i ∈ I , with the structure of a
tt-category, and each functor G(α), where α : i→ j , with the structure of a tt-functor. In other words,
make η into a pseudonatural equivalence of pseudofunctors I → 2-t tCat . Since 2-lim

−−→
F ' 2-lim

−−→
G, we

may assume without loss of generality that F is a strict 2-functor. But in this case the canonical functor
2-lim
−−→I F→ lim

−−→I F from the pseudocolimit to the (1-categorical) colimit is an equivalence (here we use
the assumption that I is filtered see [SGA 42 1972, VI.6.8]). Then we can apply Lemma 8.1.5

Proposition 8.2 also holds in this nonstrict context. Notice first that nonstrict tt-functors induce maps
on spectra exactly in the same way as strict ones. Moreover, isomorphic (nonstrict) tt-functors induce the
same map. Therefore the statement of Proposition 8.2 makes sense also for pseudofunctors I → 2-t tCat .
It is clear that F→ 2- lim

−−→
F satisfies the assumptions of Proposition 8.5 below, thus a homeomorphism

Spc(2- lim
−−→

F)−→∼ lim
←−−

i
Spc(F(i)).

In order to generalize Proposition 8.2 we now abstract the pertinent properties of the relation between
the system (Ti , fi j ) and the “limit” T .

Definition 8.4. Let T• : I → 2-t tCat be a pseudofunctor and f : T•→ T a pseudonatural transformation,
T ∈ 2-t tCat . We say that

• f is surjective on morphisms if for each morphism α : a→ b in T there exists i ∈ I , and a morphism
αi : ai → bi in Ti such that fi (αi )∼= α.

• f detects isomorphisms if for each ai , bi ∈ Ti such that fi (ai )∼= fi (bi ) in T there exists u : i→ j
such that Tu(ai )∼= Tu(bi ).

The condition fi (αi )∼= α here means that there are isomorphisms a ∼= fi (ai ) and b ∼= fi (bi ) such that

a α
//

∼

b

∼

fi (ai ) fi (αi )

// fi (bi )

commutes. The transformation f being surjective on morphisms implies in particular that f is “surjective
on objects” and even “surjective on triangles”, in an obvious sense. Note also that detecting isomorphisms
is equivalent to detecting zero objects.

5This is maybe not wholly satisfactory. In analogy to Lemma 8.1 one might expect the statement that 2-t tCat → 2-Cat
creates filtered pseudocolimits. We won’t need this at present, and leave it as a question for the interested reader.
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In the following result a category I is said to be conjoining if

• I is nonempty, and

• for any i, j ∈ I there exists k ∈ I and i→ k, j→ k.

In contrast to a filtered category, it is not necessary that parallel morphisms can be equalized. (Of course,
in applications I will often just be a directed poset.)

Proposition 8.5. Let T• : I → 2-t tCat be a pseudofunctor with I conjoining and f : T•→ T a pseudonat-
ural transformation, T ∈ 2-t tCat. Assume that f is surjective on morphisms and detects isomorphisms.
Then the induced map

ϕ := lim
←−−

i
f −1
i : Spc(T )→ lim

←−−
i

Spc(Ti )

is a homeomorphism.

Proof.

(1) We first prove injectivity. Let P 6=Q∈ Spc(T ), say a ∈P\Q. There exists i ∈ I and ai ∈ Ti such that
fi (ai )∼= a since f is surjective on objects. But then ai ∈ f −1

i (P)\ f −1
i (Q) which implies ϕ(P) 6= ϕ(Q).

(2) For surjectivity, let (Pi )i ∈ lim
←−−

Spc(Ti ). Define

P= {a ∈ T | ∃i ∈ I, ai ∈Pi : a ∼= fi (ai )} ⊂ T .

We claim that P can also be described as

P′ = {a ∈ T | ∀i ∈ I, ai ∈ Ti : a ∼= fi (ai )⇒ ai ∈Pi }.

Indeed, if a ∈P′ choose i ∈ I and ai ∈ Ti such that a ∼= fi (ai ) which is possible since f is surjective
on objects. By definition of P′ we must have ai ∈Pi , and therefore a ∈P. Conversely, if a ∈P, say
a∼= fi (ai ) with ai ∈Pi , and we are given a′j ∈ T j such that a∼= f j (a′j ), let k ∈ I and ui : i→ k, u j : j→ k.
We have fkTui (ai )∼= fi (ai )∼= a ∼= f j (a′j )∼= fkTu j (a

′

j ) and so by assumption on f there exists u : k→ l
such that Tuui (ai ) ∼= TuTui (ai ) ∼= TuTu j (a

′

j )
∼= Tuu j (a

′

j ). The former lies in Pl hence so does the latter,
and this implies a′j ∈P j .

It is now straightforward to prove that P is a prime ideal. For example, let D : a→ b→ c→+ be a
triangle in T with a, b∈P. By assumption there exists i ∈ I and a triangle Di :ai→bi→ ci→

+ in Ti such
that fi (Di )∼= D. By what we just proved we must then have ai , bi ∈Pi and hence also ci ∈Pi . But then
c∼= fi (ci )∈P. Since P is clearly closed under translations, this shows that it is a triangulated subcategory.

For thickness we proceed similarly. Let a, b ∈ T such that a⊕b ∈P. We may find i ∈ I and ai , bi ∈ Ti

such that a ∼= fi (ai ), b∼= fi (bi ). Then fi (ai ⊕bi )∼= a⊕b ∈P thus ai ⊕bi ∈Pi and this implies ai ∈Pi

or bi ∈Pi , i.e., a ∈P or b ∈P. Primality is proven in exactly the same way as thickness.
Let πi : lim←−−Spc(Ti )→ Spc(Ti ) be the canonical projection so that πiϕ = f −1

i . Then

πiϕ(P)= f −1
i (P)= f −1

i (P′)=Pi

and this completes the proof of surjectivity.
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(3) Since ϕ is continuous, it remains to show that it is open. A basis for the topology of Spc(T ) is given
by U (a)= Spc(T )\ supp(a), where a runs through the objects of T . Fix a ∈ T , say a ∼= fi (ai ) with some
ai ∈ Ti . We claim that ϕ(U (a))= π−1

i (U (ai )) (which is open hence this would complete the proof).
Let P ∈ U (a), which means fi (ai ) ∼= a ∈ P, or equivalently, ai ∈ f −1

i (P) = πiϕ(P), i.e., ϕ(P) ∈
π−1

i (U (ai )). Conversely, suppose (Pi )i ∈ π
−1
i (U (ai )), i.e., ai ∈ Pi . By the proof of surjectivity in

part (2), (Pi )i = ϕ(P) with a ∈P, i.e., (Pi )i ∈ ϕ(U (a)). �

Remark 8.6. Certainly, these are not the only reasonable conditions on f which allow to deduce a
homeomorphism on spectra. For example, it is likely that surjectivity on morphisms could be replaced
by a nilfaithfulness assumption inspired by [Balmer 2017]. We mainly chose these conditions with easy
applicability in mind.

We may apply this result to filtered modules, thereby concluding the second proof of Theorem 4.1.

Corollary 8.7. If ρ•R : Spc(Dperf
fil (R))→ Spch(R[β]) is a homeomorphism for noetherian rings then it is

a homeomorphism for all rings.

Proof. Let R be an arbitrary ring and write it as the filtered colimit of its finitely generated subrings
R = lim

−−→i Ri . An inclusion Ri ⊂ R j induces a base change tt-functor ⊗Ri R j : D
perf
fil (Ri )→ Dperf

fil (R j )

and we obtain a pseudofunctor Dperf
fil (R•) : I → 2-t tCat together with a pseudonatural transformation

f =⊗R : Dperf
fil (R•)→ Dperf

fil (R). Let us check that f satisfies the assumptions of Proposition 8.5.
Note first that every free R-module comes from a free Ri -module by base change, for any i . Also, a

morphism between finitely generated free R-modules is described by a matrix with entries in R. Adding
these finitely many entries to Ri we see that morphisms also come from some Ri . In particular, this
is true for idempotent endomorphisms of finitely generated free R-modules. We deduce that finitely
generated projective R-modules also arise by base change from some Ri . The same is then true for
objects and morphisms in projfil(R) and therefore also in Dperf

fil (R)= Kb(projfil(R)) (Corollary 3.5). In
other words, f is surjective on morphisms. Moreover, a perfect filtered complex is 0 in Dperf

fil (R) if and
only if it is nullhomotopic and such a homotopy again comes from some Ri . We conclude that f detects
isomorphisms as well.

We may therefore apply Proposition 8.5 to deduce a commutative square

Spc(Dperf
fil (R)) //

ρ•R
��

lim
←−−i Spc(Dperf

fil (Ri ))

(ρ•Ri
)i

��

Spch(R[β]) // lim
←−−i Spch(Ri [β])

where the top horizontal map is a homeomorphism. Since the Ri are all noetherian rings, the right vertical
map is a homeomorphism by assumption. And the bottom horizontal map is clearly a homeomorphism.
We conclude that the left vertical map is too. �
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The Euclidean distance degree of
smooth complex projective varieties

Paolo Aluffi and Corey Harris

We obtain several formulas for the Euclidean distance degree (ED degree) of an arbitrary nonsingular
variety in projective space: in terms of Chern and Segre classes, Milnor classes, Chern–Schwartz–
MacPherson classes, and an extremely simple formula equating the Euclidean distance degree of X with
the Euler characteristic of an open subset of X .

1. Introduction

The Euclidean distance degree (ED degree) of a variety X is the number of critical nonsingular points
of the distance function from a general point u outside of X . This definition, tailored to real algebraic
varieties, may be adapted to complex projective varieties X , by considering the critical points of the
(complex-valued) function

∑
i (xi − ui )

2 on the smooth part of the affine cone over X . This is the context
in which we will work in this paper. The ED degree is studied thoroughly in [Draisma et al. 2016], which
provides a wealth of examples, results, and applications. In particular, [Draisma et al. 2016, Theorem 5.4]
states that the ED degree of a complex projective variety X ⊆ Pn−1 equals the sum of its “polar degrees”,
provided that the variety satisfies a technical condition related to its intersection with the isotropic quadric,
i.e., the quadric Q with equation x2

1 + · · ·+ x2
n = 0. As a consequence, a formula is obtained [Draisma

et al. 2016, Theorem 5.8] computing the Euclidean distance degree of a nonsingular variety X , assuming
that X intersects Q transversally, i.e., under the assumption that Q ∩ X is a nonsingular hypersurface
of X . This number is a certain combination of the degrees of the components of the Chern class of X
(see (3-1)); we call this number the “generic Euclidean distance degree” of X , gEDdeg(X), since it equals
the Euclidean distance degree of a general translate of X .

There are several directions in which this formula could be generalized. For example, the hypothesis
of nonsingularity on X could be relaxed; it is then understood that the role of the Chern class of X is
taken by the so-called Chern–Mather class of X , one of several generalizations of the notion of Chern
class to possibly singular X . The resulting formula (see, e.g., [Aluffi 2018, Proposition 2.9]) gives the
generic ED degree of an arbitrarily singular variety X . In a different direction, one could maintain the
nonsingularity hypothesis, but attempt to dispose of any requirement regarding the relative position of Q
and X , and aim at computing the “actual” ED degree of X .

MSC2010: primary 14C17; secondary 14N10, 57R20.
Keywords: algebraic optimization, intersection theory, characteristic classes, Chern–Schwartz–MacPherson classes.
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The main result of this note is of this second type. It consists of formulas for the Euclidean distance
degree of an arbitrary nonsingular subvariety of projective space; different versions are presented, in
terms of different types of information that may be available on X . The simplest form of the result is the
following:

Theorem 8.1. Let X be a smooth subvariety of Pn−1, and assume X 6⊆ Q. Then

EDdeg(X)= (−1)dim Xχ(X r (Q ∪ H)), (1-1)

where H is a general hyperplane.

Here, χ is the ordinary topological Euler characteristic. This statement will be proven in Section 8; in
each of Sections 5–7 we obtain an equivalent formulation of the same result. These serve as stepping stones
in the proof of (1-1), and seem of independent interest. Theorems 5.1 and 6.1 will express EDdeg(X) as a
“correction” γ (X) of the generic Euclidean distance degree due to the singularities of Q∩X . For example,
it will be a consequence of Theorem 6.1 that when Q ∩ X has isolated singularities, then this correction
equals the sum of the Milnor numbers of the singularities. (If X is a smooth hypersurface of degree 6= 2,
the singularities of Q∩ X are necessarily isolated; see Section 9.3.) Theorem 5.1 expresses γ (X) in terms
of the Segre class of the singularity subscheme of Q ∩ X ; this version of the result is especially amenable
to effective implementation, using available algorithms for the computation of Segre classes [Harris 2017].
Theorem 7.1 relates the Euclidean distance degree to Chern–Schwartz–MacPherson classes, an important
notion in the theory of characteristic classes for singular or noncompact varieties. In fact, EDdeg(X)
admits a particularly simple expression, given in (7-3), in terms of the Chern–Schwartz–MacPherson
class of the nonsingular, but noncompact, variety X r Q. Theorem 8.1, reproduced above, follows from
this expression.

The progression of results in Sections 5–8 is preceded by a general formula, Theorem 4.3, giving the
correction term γ (X) for essentially arbitrary varieties X . Coupled with [Aluffi 2018, Proposition 2.9],
this yields a general formula for EDdeg(X). This master formula is our main tool for the applications to
nonsingular varieties obtained in the sections that follow; in principle it could be used in more general
situations, but at this stage we do not know how to extract a simple statement such as formula (1-1) from
Theorem 4.3 without posing some nonsingularity hypothesis on X .

Refining the techniques used in this paper may yield more general results, but this is likely to be
challenging. Ultimately, the reason why we can obtain simple statements such as (1-1) is that Segre
classes of singularity subschemes of hypersurfaces of a nonsingular variety X are well understood. In
general, singularities of X will themselves contribute to the singularity subscheme of Q ∩ X , even if the
intersection of Q and X is (in some suitable sense) “transversal”. In fact, for several of our formulas to
hold it is only necessary that X be nonsingular along Q ∩ X (see Remarks 5.2 and 6.2).

The raw form of our result is a standard application of Fulton–MacPherson intersection theory, modulo
one technical difficulty, which we will attempt to explain here. Techniques developed in [Draisma
et al. 2016] express the ED degree as the degree of a projection map from a certain correspondence in
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Pn−1
×Pn−1. Applying Fulton–MacPherson’s intersection theory, one obtains a formula for the ED degree

involving the Segre class of an associated subscheme Z1u in the conormal space of X (Theorem 4.3);
this formula holds for arbitrary X 6⊆ Q. In the nonsingular case, the formula may be recast in terms
of the Segre class in X of a scheme supported on the singular locus of Q ∩ X . A somewhat surprising
complication arises here, since this scheme does not coincide with the singularity subscheme of Q ∩ X .
However, we can prove (Lemma 5.4) that the ideal sheaves of the two subschemes have the same integral
closure, and deduce from this that their Segre classes coincide. This is key to our explicit formulas.

This technical difficulty is likely one of the main obstacles in extending the results of this paper to
the case of more general subvarieties of projective space, by analogous techniques. We may venture the
guess that a different approach, aiming at “understanding” (1-1) more directly, without reference to the
theory of characteristic classes of singular varieties, may be more amenable to generalization. Finding
such an approach would appear to be a natural project.

Preliminaries on the Euclidean distance degree are given in Section 2. In Section 3 we point out
that (1-1), in its equivalent formulation (8-2), agrees with gEDdeg(X) when X is nonsingular and meets
the isotropic quadric transversally. We find that this observation clarifies why a formula such as (1-1) may
be expected to hold without transversality hypotheses. It is perhaps natural to conjecture that an analogue
replacing ordinary Euler characteristics in (1-1) with the degree χMa of the Chern–Mather class may hold
for arbitrary varieties. Under the transversality hypothesis, an analogue of (8-2) does hold for possibly
singular varieties, as we show in Proposition 3.1. The main body of the paper consists of Sections 4–8
Examples of applications of the results obtained here are given in Section 9.

2. Preliminaries on the Euclidean distance degree

As recalled in the introduction, the Euclidean distance degree of a variety in Rn is the number of critical
nonsingular points of the (squared) distance function from a general point outside of the variety. We
consider the complex projective version of this notion: for a subvariety X ⊆ Pn−1

:= P(Cn), we let
EDdeg(X) be the number of critical points of the (complex) function

(x1− u1)
2
+ · · ·+ (xn − un)

2 (2-1)

which occur at nonsingular points of the cone over X , where (u1, . . . , un) is a general point.

Remark 2.1. If X is a subset of the isotropic quadric Q (with equation x2
1 + · · · + x2

n = 0), then the
quadratic term in (2-1) vanishes, and (2-1) has no critical points. Therefore, EDdeg(X)= 0 in this case,
and we can adopt the blanket convention that X 6⊆ Q. With suitable positions, our results will hold
without this assumption (see, e.g., Remark 5.8).

The definition of EDdeg(X) may be interpreted in terms of a projective ED correspondence, and this
will be needed for our results. Our reference here is [Draisma et al. 2016, §5] (but we use slightly different
notation). Consider the projective space Pn−1 and its dual P̌n−1, parametrizing hyperplanes in Pn−1. It
is well-known that the projective cotangent space T∗Pn

:= P(T ∗Pn−1) of Pn−1 may be realized as the
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incidence correspondence I ⊆ Pn−1
× P̌n−1 consisting of pairs (p, H) with p ∈ H . Every subvariety

X ( Pn−1 has a (projective) conormal space T∗X Pn−1, defined as the closure of the projective conormal
variety to X ; this may be realized as

T∗X Pn−1
:= {(p, H) | p ∈ Xns and Tp X ⊆ H} ⊆ I = T∗Pn−1.

Consider the subvariety Z ⊆ Pn−1
× P̌n−1

×Cn obtained as the image of

{(x, y, u) ∈ (Cn r {0})2×Cn
| u = x + y};

that is,

Z = {([x], [y], u) ∈ Pn−1
× P̌n−1

×Cn
| dim〈x, y, u〉 ≤ 2} (2-2)

consists of points ([x], [y], u) such that [x], [y], [u] are collinear. The (projective joint) ED correspon-
dence PE (denoted PEX,Y in [Draisma et al. 2016]) is the component of (T∗X Pn−1

×Cn)∩ Z dominating
T∗X Pn−1. Thus, the fiber of PE over ([x], [y]) ∈ T∗X Pn−1 consists, for [x] 6= [y], of the vectors u ∈ Cn

in the span of x and y; this confirms that PE is irreducible and has dimension n. (Since X 6⊆ Q by our
blanket assumption, there exist points ([x], [y]) ∈ T∗X Pn−1 with [x] 6= [y].) The projection PE→ Cn is
in fact dominant, and we have the following result.

Lemma 2.2. The Euclidean distance degree EDdeg(X) equals the degree of the projection PE→ Cn .

Proof. This is implied by the argument in the proof of [Draisma et al. 2016, Theorem 5.4]. �

Lemma 2.2 suggests that one should be able to express EDdeg(X) in terms of an intersection with the
fiber Zu of Z over a general point u ∈ Cn . We may view Zu as a subvariety of Pn−1

× P̌n−1:

Zu = {([x], [y]) ∈ Pn−1
× P̌n−1

| dim〈x, y, u〉 ≤ 2},

where u is now fixed (and general). It is easy to verify that Zu is an n-dimensional irreducible variety,
and that

[Zu] = hn−2
+ hn−3ȟ+ · · ·+ ȟn−2 (2-3)

in the Chow group A∗(Pn−1
× P̌n−1). Here, h, resp. ȟ, denote the pull-back of the hyperplane class from

Pn−1, resp. P̌n−1. (For example, one may verify (2-3) by intersecting Zu with suitably chosen Pi
× P̌ j

within Pn−1
× P̌n−1.) This implies the following statement; see [Draisma et al. 2016, Theorem 5.4].

Lemma 2.3. For all u ∈ Cn−1 and all subvarieties X ⊆ Pn−1,

Zu ·T
∗

X Pn−1
=

n−2∑
i=0

δi (X),

where the numbers δi (X) are the polar degrees of X.

Indeed, the polar degrees are (by definition) the coefficients of the monomials hn−1−i ȟi+1 in the class
[T∗X Pn−1

].
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In view of Lemma 2.3, we define

gEDdeg(X) :=
n−2∑
i=0

δi (X),

the “generic Euclidean distance degree” of X . By Lemma 2.2, EDdeg(X) is the contribution of the
projective ED correspondence to the intersection number gEDdeg(X) = Zu · T

∗

X Pn−1 calculated in
Lemma 2.3. It is a consequence of [Draisma et al. 2016, Theorem 5.4] that if X is in sufficiently general
position, then this contribution in fact equals the whole intersection number, i.e., EDdeg(X)=gEDdeg(X).
Our goal is to determine a precise “correction term” evaluating the discrepancy between EDdeg(X) and
gEDdeg(X) without any a priori hypothesis on X . In Section 4 we will formalize this goal and deduce
a general formula for EDdeg(X) for an arbitrary variety X . In Sections 4–8 we will use this result to
obtain more explicit formulas for EDdeg(X) under the assumption that X is nonsingular.

3. The generic Euclidean distance degree, revisited

This section is not used in the sections that follow, but should help motivating formula (1-1), which will
be proven in Section 8. We also propose a possible conjectural generalization of this formula to arbitrary
projective varieties.

We have defined the “generic” Euclidean distance degree of a subvariety X ⊆ Pn−1 as the sum of its
polar degrees. In [Draisma et al. 2016, Theorem 5.8] it is shown that if X is nonsingular, then

gEDdeg(X)=
dim X∑

j=0

(−1)dim X+ j c(X) j (2 j+1
− 1); (3-1)

this number may be interpreted as the Euclidean distance degree of a general translation of X , which will
meet Q transversally by Bertini’s theorem. Here c(X) j is the degree of the component of dimension j of
the Chern class c(T X)∩[X ] of X . Formula (3-1) holds for arbitrarily singular varieties X if one replaces
c(X) with the Chern–Mather class cMa(X) of X [Aluffi 2018, Proposition 2.9].

Assume first that X is nonsingular. As a preliminary observation, the reader is invited to perform the
following calculus exercise:

For 0≤ j ≤ N, the coefficient of t N in the expansion of

t N− j

(1+t)(1+2t)

is (−1) j (2 j+1
− 1).

With this understood, we have the following computation:

gEDdeg(X)= (−1)dim X
dim X∑

j=0

c(X) j (−1) j (2 j+1
− 1)
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= (−1)dim X
dim X∑

j=0

c(X) j

∫
hdim X− j

(1+ h)(1+ 2h)
· hcodim X

∩ [Pn−1
]

= (−1)dim X
∫

1
(1+ h)(1+ 2h)

· c(T X)∩ [X ]

= (−1)dim X
∫ (

1−
h

1+ h
−

2h
1+ 2h

+
h · 2h

(1+ h)(1+ 2h)

)
· c(T X)∩ [X ].

Assuming further that X is transversal to Q and that H is a general hyperplane, the last expression may
be rewritten as

(−1)dim X
(∫

c(T X)∩ [X ] −
∫

c(T (X ∩ H))∩ [X ∩ H ]

−

∫
c(T (X ∩ Q))∩ [X ∩ Q] +

∫
c(T (X ∩ Q ∩ H))∩ [X ∩ Q ∩ H ]

)
(by transversality, all of the loci appearing in this expression are nonsingular). The degree of the zero-
dimensional component of the Chern class of a compact complex nonsingular variety is its topological
Euler characteristic, so this computation shows

EDdeg(X)= (−1)dim X (χ(X)−χ(X ∩ H)−χ(X ∩ Q)+χ(X ∩ Q ∩ H)), (3-2)

if X is nonsingular and meets Q transversally (and where H is a general hyperplane).
Theorem 8.1 will amount to the assertion that (3-2) holds as soon as X is nonsingular, without any

hypothesis on the intersection of Q and X . By the good inclusion-exclusion properties of the Euler
characteristic, (3-2) is equivalent to (1-1).

While the computation deriving (3-2) from [Draisma et al. 2016, Theorem 5.8] is trivial under the
transversality hypothesis, we do not know of any simple way to obtain this formula in the general case.
The next several Sections (4–8) will lead to a proof of (3-2) for arbitrary nonsingular varieties.

The above computation can be extended to singular projective subvarieties. Just as the topological Euler
characteristic of a nonsingular variety is the degree of its top Chern class, we can define an “Euler–Mather
characteristic” of a possibly singular variety V by setting

χMa(V ) :=
∫

cMa(V ),

the degree of the Chern–Mather class of V . This number is a linear combination of Euler characteristics
of strata of V , with coefficients determined by the local Euler obstruction Eu, a well-studied numerical
invariant of singularities.

Proposition 3.1. For any subvariety X ⊆ Pn−1 intersecting Q transversally,

EDdeg(X)= (−1)dim X(χMa(X)−χMa(X ∩ Q)−χMa(X ∩ H)+χMa(X ∩ Q ∩ H)
)
, (3-3)

where H is a general hyperplane.
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Proof. Argue precisely as in the discussion leading to (3-2), using [Aluffi 2018, Proposition 2.9] in place
of [Draisma et al. 2016, Theorem 5.8]. The only additional ingredient needed for the computation is the
fact that if W is a nonsingular hypersurface intersecting a variety V transversally, then

cMa(W ∩ V )= W
1+W

∩ cMa(V ).

For a much stronger result, and a discussion of the precise meaning of “transversality”, we address the
reader to [Schürmann 2017], particularly Theorem 1.2. �

Of course (3-3) specializes to (3-2) when X is nonsingular, under the transversality hypothesis; but it
does not do so in general, because Q ∩ X may be singular even if X is nonsingular, and χMa(Q ∩ X)
does not necessarily agree with χ(Q ∩ X) in that case. Therefore, the transversality hypothesis in
Proposition 3.1 is necessary. The signed Euler–Mather characteristic of the complement,

(−1)dim X χMa(X r (Q ∪ H))= (−1)dim X
∫

c∗(EuXr(Q∪H))

(where c∗ denotes MacPherson’s natural transformation) may be the most natural candidate as an expression
for EDdeg(X) for arbitrary subvarieties X ⊆ Pn−1, without smoothness or transversality hypotheses.

4. Intersection formula

In Section 2 we defined the projective ED correspondence PE to be one component of the intersection
(T∗X Pn−1

× Cn) ∩ Z , where Z is the variety of linearly dependent triples defined in (2-2). We next
determine the union of the other irreducible components. We denote by 1 the diagonal in Pn−1

× P̌n−1.
In this section, X ⊆ Pn−1 is a subvariety (not necessarily smooth), and X 6⊆ Q (see Remark 2.1).

Lemma 4.1. There exists a subscheme Z1 ⊂ T∗X Pn−1
×Cn such that

(T∗X Pn−1
×Cn)∩ Z = PE ∪ Z1,

where the support of Z1 equals the support of (1∩T∗X Pn−1)×Cn .

Proof. Consider the projection (T∗X Pn−1
×Cn)∩Z→Pn−1

×P̌n−1. We have already observed in Section 2
that the fiber over ([x], [y]) ∈ T∗X Pn−1, ([x], [y]) 6∈1, consists of the span 〈x, y〉 in Cn; it follows that
PE is the only component of the intersection dominating T∗X Pn−1. (Again note that since X 6⊆ Q, there
are points ([x], [y]) ∈ T∗X , ([x], [y]) 6∈1.)

We claim that if ([x], [x]) ∈ T∗X Pn−1, then the fiber of (T∗X Pn−1
×Cn)∩ Z over ([x], [x]) consists of

the whole space Cn−1; the statement follows immediately from this assertion.
Trivially, ([x], [x], u) ∈ T∗X Pn−1

×Cn for all u, so we simply need to verify that ([x], [x], u) ∈ Z for
all u ∈Cn . But this is clear, since there are points ([x ′], [y′], u) with u ∈ 〈x ′, y′〉 and ([x ′], [y′]) arbitrarily
close to ([x], [x]). �
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The fact that Z contains 1×Cn (used in the proof) may also be verified by observing that equations
for Z in Pn−1

× P̌n−1
×Cn are given by the 3× 3 minors of the matrixx1 x2 . . . xn

y1 y2 . . . yn

u1 u2 . . . un

 (4-1)

associated with a point ([x], [y], u) ∈ Pn−1
× P̌n−1

×Cn; the diagonal 1×Cn obviously satisfies these
equations.

Now we fix a general u ∈Cn . By Lemma 2.2, the fiber PEu consists of EDdeg(X) simple points, which
will be disjoint from the diagonal for general u. On the other hand, for all u, the fiber Zu (when viewed
as a subvariety of Pn−1

× P̌n−1) contains 1. We deduce the following consequence of Lemma 4.1.

Corollary 4.2. For a general u ∈ Cn ,

Zu ∩T∗X Pn−1
= {EDdeg(X) simple points} t Z1u

(as subschemes of T∗X Pn−1), where the support of Z1u agrees with the support of 1∩T∗X Pn−1.

Taking into account Lemma 2.3 we obtain that

EDdeg(X)= gEDdeg(X)− γ (X), (4-2)

where γ (X) is the contribution of Z1u to the intersection product Zu ·T
∗

X Pn−1. This “correction term”
γ (X) does not depend on the chosen (general) u, and vanishes if 1∩T∗X Pn−1

= ∅, since in this case
Z1u =∅ by Corollary 4.2. This special case recovers the statement of [Draisma et al. 2016, Theorem 5.4],
and indeed (4-2) is essentially implicit in [loc. cit.]. We are interested in computable expressions for the
correction term γ (X).

We will first obtain the following master formula, through a direct application of Fulton–MacPherson
intersection theory. The diagonal 1 is isomorphic to Pn−1, and we denote by H its hyperplane class, as
well as its restrictions. (Thus, H agrees with the restriction of both h and ȟ.)

Theorem 4.3. With notation as above,

γ (X)=
∫
(1+ H)n−1

∩ s(Z1u ,T∗X Pn−1) (4-3)

for u general in Cn .

Here,
∫

denotes degree, and s(−,−) is the Segre class, in the sense of [Fulton 1984, Chapter 4]. Segre
classes are effectively computable by available implementations of algorithms (see, e.g., [Harris 2017]).
However, the need to obtain explicit equations for the scheme Z1u , and conditions guaranteeing that a
given u is general enough, limit the direct applicability of Theorem 4.3. Our task in the next several
sections of this paper will be to obtain from (4-3) concrete computational tools, at the price of requiring
X to be of a more specific type — we will assume in the following sections that X 6⊆ Q is nonsingular,
but otherwise arbitrary.
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The proof of Theorem 4.3 requires some additional information on Zu , which we gather next. As
noted in Section 2, Zu is an irreducible n-dimensional subvariety of Pn−1

× P̌n−1. Equations for Zu in
Pn−1

× P̌n−1 are given by the 3×3 minors of the matrix (4-1), where now u = (u1, . . . , un) is fixed. The
diagonal 1 is a divisor in Zu .

Lemma 4.4. The subvariety Zu of Pn−1
× P̌n−1 is smooth at all points ([x], [y]) 6= ([u], [u]).

Proof. Given (x, y, u) ∈ Pn−1
× P̌n−1

×Cn we can change coordinates so that u = (1, 0, . . . , 0). If either
[x] or [y] is not [u], we may without loss of generality assume that xn 6= 0, and hence xn = 1. The ideal
of Zu at this point ([x], [y]) is generated by the 3× 3 minors ofx1 x2 . . . xn−1 1

y1 y2 . . . yn−1 yn

1 0 . . . 0 0


and among these we find the n− 2 minors

yi − xi yn, i = 2, . . . , n− 1.

Near ([x], [y]), these generate the ideal of an irreducible smooth complete intersection of dimension
n = dim Zu , which must then coincide with Zu in a neighborhood of ([x], [y]), giving the statement. �

Denote complements of {([u], [u])} by ◦. Thus Z◦u = Zu r {([u], [u])}, 1◦ =1r {([u], [u])}, etc. By
Lemma 4.4, Z◦u is a local complete intersection in (Pn−1

× P̌n−1)◦, and we let N be its normal bundle.

Lemma 4.5. With notation as above, c(N )|1◦ = (1+ H)n−1.

Proof. Consider the rational map

π : Pn−1
× P̌n−1

→ Pn−2
×Pn−2

defined by the linear projection from [u] on each factor. Let U ⊆ Pn−1
× P̌n−1 be the complement of

the union of {[u]} × Pn−1 and P̌n−1
× {[u]}; thus, π |U : U → Pn−2

× Pn−2 is a regular map, and U
contains 1◦. A simple coordinate computation shows that Zu ∩U = π |−1

U (1′), where 1′ is the diagonal
in Pn−2

×Pn−2. It follows that

N |Zu∩U = π |
∗

U (N1′P
n−2
×Pn−2)∼= π |

∗

U (T1
′).

Since 1′ ∼= Pn−2, c(T1′) = (1+ H ′)n−1, where H ′ is the hyperplane class. The statement follows by
observing that the pull-back of H ′ to 1◦ agrees with the pull-back of H . This is the case, since the
restriction π |1◦ :1◦ ∼= Pn−1 r {u} →1′ ∼= Pn−2 is a linear projection. �

With these preliminaries out of the way, we can prove Theorem 4.3.

Proof of Theorem 4.3. Since [u] is general, it may be assumed not to be a point of X . This ensures that
([u], [u]) 6∈ T∗X Pn−1; in particular

Z◦u ∩T∗X Pn−1
= Zu ∩T∗X Pn−1.
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It follows that, as a class in A∗(Zu ∩T∗X Pn−1), the (Fulton–MacPherson) intersection product of T∗X Pn−1

by Zu on Pn−1
× P̌n−1 equals the intersection product of T∗X Pn−1 by Z◦u on (Pn−1

× P̌n−1)◦.
Therefore, we can view γ (X) as the contribution of Z1u to Z◦u ·T

∗

X Pn−1. Consider the fiber diagram

Zu ∩ T ∗X Pn−1 //

g

��

T ∗X Pn−1

��

Z◦u // (Pn−1
× P̌n−1)◦

By [Fulton 1984, §6.1] (especially Proposition 6.1(a), Example 6.1.1), this contribution equals∫
c(g|∗Z1u N )∩ s(Z1u ,T∗X Pn−1),

where N = NZ◦u (P
n−1
× P̌n−1)◦ as above. Since Z1u is supported on a subscheme of 1◦, c(g|∗Z1u N ) equals

(the restriction of) (1+ H)n−1 by Lemma 4.5. The stated formula follows. �

Summarizing, we have proven that

EDdeg(X)= gEDdeg(X)−
∫
(1+ H)n−1

∩ s(Z1u ,T∗X Pn−1) (4-4)

for all subvarieties X 6⊆ Q of Pn−1. (If X ⊆ Q, then EDdeg(X) = 0; see Remark 2.1.) The quantity
gEDdeg(X) is invariant under projective translations, and may be computed in terms of the Chern–Mather
class of X . The other term records subtle information concerning the intersection of X and Q, by means
of the Segre class s(Z1u ,T∗X Pn−1). We will focus on obtaining alternative expressions for this class.

5. Euclidean distance degree and Segre classes

Now we assume that X ⊆ Pn−1 is a smooth closed subvariety. As recalled in Section 3, in this case
gEDdeg(X) is given by a certain combination of the Chern classes of X :

gEDdeg(X)= (−1)dim X
dim X∑

j=0

(−1) j c(X) j (2 j+1
− 1).

An application of Theorem 4.3, obtained in this section, will yield an explicit formula for the correction
term γ (X) (and hence for EDdeg(X)). This result has two advantages over Theorem 4.3: first, the formula
will not depend on the choice of a general u; second, its ingredients will allow us to draw a connection
with established results in the theory of characteristic classes for singular varieties, leading to the results
presented in Sections 6–8.

The main result of this section is the following. Recall that we are denoting by Q the isotropic quadric,
i.e., the hypersurface of Pn−1 with equation

∑n
i=1 x2

i = 0. By our blanket assumption that X should not be
contained in Q, we have that Q ∩ X is a (possibly singular) hypersurface of X . We let J (Q ∩ X) denote
its singularity subscheme, defined locally by the partial derivatives of its equation in X (or equivalently
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by the appropriate Fitting ideal of the sheaf of differentials of Q ∩ X ). Also, recall that h denotes the
hyperplane class in Pn−1.

Theorem 5.1. Let X be a smooth subvariety of Pn−1, and assume X 6⊆ Q. Then

EDdeg(X)= gEDdeg(X)−
∫
(1+2h)·c(T ∗X⊗O(2h))

1+h
∩ s(J (Q ∩ X), X). (5-1)

The key ingredient in (5-1) is the Segre class s(J (Q ∩ X), X). This may be effectively computed by
using the algorithm for Segre classes described in [Harris 2017].

Remark 5.2. It will be clear from the argument that it is only necessary to require X to be nonsingular in
a neighborhood of Q ∩ X . (Of course X must only have isolated singularities in this case.) Formula (5-1)
holds as stated in this more general case; gEDdeg(X) may be computed using the same formula as in
the smooth case (that is, (3-1)), but using the degrees of the component of the Chern–Mather class of X
[Aluffi 2018, Proposition 2.9]. The hypothesis X 6⊆ Q is also not essential; see Remark 5.8.

The proof of Theorem 5.1 will rely on a more careful study of the schemes 1 ∩ T∗X Pn−1 and Z1u
encountered in Section 4. In Corollary 4.2 we have shown that these two schemes have the same support;
here we will prove the much stronger statement that they have the same Segre class in T∗X Pn−1. Since
1∩T∗X Pn−1 is closely related with J (Q ∩ X) (Lemma 5.3), this will allow us to recast Theorem 4.3 in
terms of the Segre class appearing in (5-1), by means of a result of W. Fulton.

Recall that 1⊆ Zu (in fact, 1 is a divisor in Zu); it follows that

1∩T∗X Pn−1
⊆ Z1u .

These two schemes have the same support (Corollary 4.2); but they are in general different. It is
straightforward to identify 1∩T∗X Pn−1 with a subscheme of X .

Lemma 5.3. Let δ : Pn−1
→ Pn−1

×Pn−1 be the diagonal embedding, and let X be a smooth subvariety
of Pn−1. Then J (Q ∩ X)= δ−1(T∗X Pn−1), i.e., δ maps J (Q ∩ X) isomorphically to 1∩T∗X Pn−1.

Proof. Since T∗X Pn−1
⊆ P(T ∗Pn−1), we have

1∩T∗X Pn−1
=1∩P(T ∗Pn−1)∩T∗X Pn−1

= T∗QPn−1
∩T∗X Pn−1. (5-2)

The diagonal δ restricts to an isomorphism q : Q
∼
→T∗QPn−1. By (5-2), we have that δ−1(T∗X Pn−1) agrees

with q−1(T∗X Pn−1), viewed as a subscheme of Pn−1.
Now q−1(T∗X Pn−1) consists of points [x] such that [x] ∈ Q∩X and T[x]Q⊇ T[x]X , and these conditions

define J (Q ∩ X) scheme-theoretically. The statement follows. �

Determining Z1u requires more work. We may assume without loss of generality that u = (1, 0, . . . , 0),
so that equations for Z1u are given by the 3× 3 minors ofx1 x2 . . . xn−1 xn

y1 y2 . . . yn−1 yn

1 0 . . . 0 0
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(defining Zu) as well as the requirement that ([x], [y]) ∈ T∗X Pn−1. It is in fact useful to keep in mind that,
for ([x], [y]) ∈ T∗X Pn−1, 1∩T∗X Pn−1 is defined by the 2× 2 minors of(

x1 x2 . . . xn−1 xn

y1 y2 . . . yn−1 yn

)
while Z1u is defined (near the diagonal) by the 2× 2 minors of(

x2 . . . xn−1 xn

y2 . . . yn−1 yn

)
.

Let I1∩T∗X Pn−1 ⊇ IZ1u be the corresponding ideal sheaves on T∗X Pn−1.

Lemma 5.4. The ideal I1∩T∗X Pn−1 is integral over IZ1u . Therefore,

s(Z1u ,T∗X Pn−1)= s(1∩T∗X Pn−1,T∗X Pn−1). (5-3)

Proof. The second assertion follows from the first; see the proof of [Aluffi 1995, Lemma 1.2]. The first
assertion may be verified on local analytic charts, so we obtain an analytic description of T∗X Pn−1 at a
point ([x], [x]) of the diagonal. Again without loss of generality we may let [x]= (1 : 0 : · · · : 0 : i)∈ Q∩X ,
and assume that the embedding ι : X→ Pn−1 has the following analytic description near this point:

ι : (s)= (s2, . . . , sd) 7→ (1 : s2 : · · · : sd : ϕd+1(s) : · · · : ϕn(s)).

Here s are analytic coordinates for X , centered at 0, and ϕ j (0)= 0 for j = d + 1, . . . , n− 1, ϕn(0)= i .
The tangent space to X at (s) is cut out by the n− d hyperplanes

ϕ j2x2+ · · ·+ϕ jd xd − x j =8 j x1, j = d + 1, . . . , n, (5-4)

where ϕ jk = ∂ϕ j/∂sk and
8 j = ϕ j2s2+ · · ·+ϕ jdsd −ϕ j .

The hyperplanes (5-4) span the fiber of T∗X Pn−1 over the point ι(s). Therefore, 1∩T∗X Pn−1 is cut out
by the 2× 2 minors of the matrix(

1 s2 . . . sd ϕd+1 . . . ϕn∑
j λ j8 j −

∑
j λ jϕ j2 . . . −

∑
j λ jϕ jd λd+1 . . . λn

)
(5-5)

where λd+1, . . . , λn are homogeneous coordinates in the fibers of T∗X Pn−1, while Z1u is cut out by the
2× 2 minors of (

s2 . . . sd ϕd+1 . . . ϕn

−
∑

j λ jϕ j2 . . . −
∑

j λ jϕ jd λd+1 . . . λn

)
. (5-6)

The last several minors in both matrices may be used to eliminate the homogeneous coordinates λ j ,
giving λ j ∝ ϕ j ; in other words, we find that, near ([x], [x]) both 1∩T∗X Pn−1 and Z1u lie in the local
analytic section σ : X→ T∗X Pn−1 defined by

σ(s) : (λd+1 : · · · : λn)= (ϕd+1(s) : · · · : ϕn(s)).
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Setting λ j = ϕ j we obtain from (5-6) generators

sk +
∑

j

ϕ jϕ jk, k = 2, . . . , d (5-7)

for the ideal of Z1u in σ(X); the same generators, together with

1−
n∑

j=d+1

ϕ j8 j (5-8)

give the ideal of 1 ∩ T∗X Pn−1 in σ(X). It suffices then to verify that (5-8) is integral over the ideal
generated by (5-7).

For this, note that the hypersurface ι−1(Q ∩ X) has the equation

G(s)= 1+ s2
2 + · · ·+ s2

d +ϕ
2
d+1+ · · ·+ϕ

2
n .

Since ∂G/∂sk = 2(sk +
∑

j ϕ jϕ jk), the ideal generated by (5-7) is nothing but(
∂G
∂s2

, . . . ,
∂G
∂sd

)
. (5-9)

On the other hand, (5-8) may be written as

1−
n∑

j=d+1

ϕ j8 j = 1−
n∑

j=d+1

ϕ j (ϕ j2s2+ · · ·+ϕ jdsd −ϕ j )

= 1− s2

(∑
j

ϕ jϕ j2

)
− · · ·− sd

(∑
j

ϕ jϕ jd

)
+ϕ2

d+1+ · · ·+ϕ
2
n

∼ 1+ s2
2 + · · ·+ s2

d +ϕ
2
d+1+ · · ·+ϕ

2
n = G(s)

modulo (5-7). Since G is integral over (5-9) by [Huneke and Swanson 2006, Corollary 7.2.6], this shows
that (5-8) is integral over (5-7), as needed. �

Remark 5.5. The argument also shows that the ideal of 1∩T∗X Pn−1 in σ(X) equals (G, ∂G/∂s2, . . . ,

∂G/∂sd), that is, the (local analytic) ideal of J (Q ∩ X). This confirms the isomorphism J (Q ∩ X) ∼=
1∩T∗X Pn−1 obtained in Lemma 5.3.

Remark 5.6. The smoothness of X is needed in our argument, since it gives us direct access to the
conormal space T∗X Pn−1. However, it is reasonable to expect that (5-3) holds without this assumption,
and it would be interesting to establish this equality for more general varieties.

By Theorem 4.3 and Lemma 5.4,

γ (X)=
∫
(1+ H)n−1

∩ s(1∩T∗X Pn−1,T∗X Pn−1) (5-10)

if X is nonsingular and not contained in Q. We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Our main tools are Lemma 5.3 and a result of W. Fulton. For a closed embedding
V ⊆ M of a scheme in a nonsingular variety M , Fulton [1984, Example 4.2.6] proves that the class

cF(V ) := c(T M |V )∩ s(V,M) (5-11)

is independent of M;. We call cF(V ) the “Chern–Fulton class” of V .
By Lemma 5.3, the diagonal embedding δ :Pn−1

→Pn−1
×P̌n−1 restricts to an isomorphism δ|J (Q∩X) :

J (Q ∩ X)
∼
→ 1 ∩ T∗X Pn−1. Let π ′ : 1 ∩ T∗X Pn−1

→ J (Q ∩ X) be the natural projection, that is, the
inverse of δ|J (Q∩X). Then

cF(1∩T∗X Pn−1)= π ′
∗cF(J (Q ∩ X)) (5-12)

by Fulton’s result. We proceed to determine this class. The Euler sequence for the projective bundle
T∗X Pn−1

= P(T ∗X Pn−1)
π
−→ X ,

0→ O→ π∗T ∗X Pn−1
⊗O(1)→ T (T∗X Pn−1)→ π∗T X→ 0,

yields

c(T (T∗X Pn−1))= c(π∗T ∗X Pn−1
⊗O(1)) ·π∗c(T X).

Pulling back and tensoring by O(1), the cotangent sequence defining the conormal bundle gives the exact
sequence

0→ π∗T ∗X Pn−1
⊗O(1)→ π∗T ∗Pn−1

⊗O(1)→ π∗T ∗X ⊗O(1)→ 0,

implying

c(T (T∗X Pn−1))=
c(π∗T ∗Pn−1

⊗O(1)) ·π∗c(T X)
c(π∗T ∗X ⊗O(1))

.

The cotangent bundle T ∗Pn−1 may be identified with the incidence correspondence in the product
Pn−1

× P̌n−1, and O(1) = O(h + ȟ) under this identification (see, e.g., [Aluffi 2018, §2.2]). Also,
c(T ∗Pn−1)= (1− h)n . It follows that

c(T (T∗X Pn−1))=
(1+ ȟ)n ·π∗c(T X)

(1+ h+ ȟ) · c(π∗T ∗X ⊗O(h+ ȟ))
.

Now we restrict to the diagonal. As in Section 4, we denote by H the hyperplane class in 1∼= Pn−1 (and
its restrictions); note that H = h ·1= ȟ ·1. Therefore

c(T (T∗X Pn−1)|1∩T∗X Pn−1)=
(1+ H)n ·π ′∗c(T X)

(1+ 2H) · c(π ′∗T ∗X ⊗O(2H))
,

where π ′ denotes the projection 1∩T∗X Pn−1
→ J (Q ∩ X) as above (and we are omitting other evident

restrictions). Since H = π ′∗h, the Chern–Fulton class of 1∩T∗X Pn−1 must be

cF(1∩T∗X Pn−1)= π ′
∗

(
(1+ h)n · c(T X)

(1+ 2h) · c(T ∗X ⊗O(2h))

)
∩ s(1∩T∗X Pn−1,T∗X Pn−1).
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Using (5-12), this shows that

s(1∩T∗X Pn−1,T∗X Pn−1)= π ′
∗

(
(1+ 2h) · c(T ∗X ⊗O(2h))

(1+ h)n · c(T X)
∩ cF(J (Q ∩ X))

)
= π ′

∗

(
(1+ 2h) · c(T ∗X ⊗O(2h))

(1+ h)n
∩ s(J (Q ∩ X), X)

)
.

Since π ′∗ = (δ|Q∩X )∗ preserves degrees, and H = π ′∗(h), (5-10) gives

γ (X)=
∫
(1+2h)·c(T ∗X⊗O(2h))

1+h
∩ s(J (Q ∩ X), X) (5-13)

and this concludes the proof. �

Remark 5.7. The very definition of the Euclidean distance degree relies on the square-distance function,∑
i (xi − ui )

2, which is not a projective invariant. Therefore, EDdeg(X) does depend on the choice of
coordinates in the ambient projective space Pn−1. Formula (4-2),

EDdeg(X)= gEDdeg(X)− γ (X),

expresses the Euclidean distance degree of a variety in terms of a quantity that is projectively invariant,
i.e., gEDdeg(X), and a correction term γ (X) which is not. In fact, the coordinate choice determines the
isotropic quadric Q; that is,

∑
i x2

i = 0 is a specific nonsingular quadric in Pn−1. Theorem 5.1 prompts us
to define a transparent “projective invariant version” EDdeg(Q, X) of the Euclidean distance degree, for
smooth X : EDdeg(Q, X) could be defined by the right-hand side of (5-1), where now Q is an arbitrary
nonsingular quadric in Pn−1. (If X is not necessarily smooth, (4-3) could likewise be used to define
such a notion.) The number EDdeg(Q, X) is determined by the pair X ∩ Q ⊆ X and does not depend on
the choice of coordinates. What Theorem 5.1 shows is that if homogeneous coordinates x1, . . . , xn are
chosen so that the equation of Q is

∑n
i=1 x2

i , then EDdeg(Q, X) equals the Euclidean distance degree of
the variety X (in those coordinates). This fact is occasionally useful in computations; see Section 9.5.

Remark 5.8. As pointed out in Remark 2.1, EDdeg(X) = 0 if X ⊆ Q. Theorem 5.1 is compatible
with this fact, in the following sense. If Q ∩ X = X , it is natural to set J (Q ∩ X) = X , and hence
s(J (Q ∩ X), X)= s(X, X)= [X ]. The reader can verify (using (3-1)) that∫

(1+2h)·c(T ∗X⊗O(2h))
1+h

∩ [X ] = gEDdeg(X).

Therefore (5-1) reduces to EDdeg(X)= 0 in this case, as expected.

6. Euclidean distance degree and Milnor classes

While the formula in Theorem 5.1 is essentially straightforward to implement, given the algorithm for the
computation of Segre classes in [Harris 2017], it is fair to say that its “geometric meaning” is not too
transparent. In this section and the following two we use results from the theory of characteristic classes
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of singular varieties to provide versions of the formula in terms of notions with a more direct geometric
interpretation.

Our first aim is the following result. The Milnor class of a variety V is the signed difference

M(V ) := (−1)dim V−1(cSM(V )− cF (V ))

between its Chern–Fulton class cF (V ) (which we already encountered in Section 5) and its CSM (“Chern–
Schwartz–MacPherson”) class.

We denote by M(V ) j the component of M(V ) of dimension j . The Milnor class owes its name to
the fact that if V is a hypersurface with at worst isolated singularities in a compact nonsingular variety,
then the degree of its Milnor class is the sum of the Milnor numbers of its singularities [Parusiński and
Pragacz 2001, Example 0.1].

The CSM class of a variety V is a “homology” class which agrees with the total Chern class of the
tangent bundle of V when V is nonsingular, and satisfies a functorial requirement formalized by Deligne
and Grothendieck. See [MacPherson 1974] for a definition inspired by this functorial requirement, and
[Schwartz 1965a; 1965b] for an earlier equivalent definition motivated by the problem of extending
theorems of Poincaré–Hopf type. An efficient summary of MacPherson’s definition (upgraded to the
Chow group) may be found in [Fulton 1984, Example 19.1.7]. With notation as in this reference (or as
in [MacPherson 1974]), our cSM(V ) is c∗(1V ).

As an easy consequence of functoriality, the degree of cSM(V ) equals χ(V ), the topological Euler
characteristic of V . In fact the degrees of all the terms in cSM(V ) may be interpreted in terms of Euler
characteristics [Aluffi 2013, Theorem 1.1], and this will be key for the version of the result we will present
in Section 8.

If V is a hypersurface, then cF(V ) equals the class of the virtual tangent bundle of V ; it may be
interpreted as the limit of the Chern class of a smoothing of V in the same linear equivalence class. The
terms in cF(V ) may therefore also be interpreted in terms of Euler characteristics (of smoothings of V ).
Roughly, the Milnor class measures the changes in the Euler characteristics of general hyperplane sections
of V as we smooth it within its linear equivalence class.

Theorem 6.1. Let X be a smooth subvariety of Pn−1, and assume X 6⊆ Q. Then

EDdeg(X)= gEDdeg(X)−
∑
j≥0

(−1) j degM(Q ∩ X) j . (6-1)

Milnor classes are also accessible computationally; see [Aluffi 2003, Example 4.7].

Remark 6.2. It suffices to require X to be nonsingular in a neighborhood of Q ∩ X ; see Remark 5.2.

Proof. We begin by recalling an expression relating the Milnor class of a hypersurface V of a nonsingular
variety M to the Segre class of its singularity subscheme J (V ). Letting L= O(V ),

M(V )= (−1)dim M c(T M)
c(L)

∩ (s(J (V ),M)∨⊗M L). (6-2)
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This is [Aluffi 1999a, Theorem I.4]. The notation used in this statement are as follows (see [Aluffi 1999a,
§1.4] or [Aluffi 1994, §2]): if A =

∑
i≥0 ai is a rational equivalence class in V ⊆ M , where ai has

codimension i in M , and L is a line bundle on V , then

A∨ =
∑
i≥0

(−1)i ai , A⊗M L=
∑
i≥0

ai

c(L)i

(note that the codimension is computed in the ambient variety M , even if the class may be defined in the
Chow group of the subscheme V ).

This notation satisfies several properties, for example a basic compatibility with respect to Chern
classes of tensors of vector bundles. One convenient property is given in [Aluffi 2017, Lemma 3.1]: with
notation as above, the term of codimension c in M in

c(L)c−1
∩ (A⊗M L)

is independent of L. In particular, ∫
c(L)dim M−1

∩ (A⊗M L)

is independent of L, and this implies (using [Aluffi 1994, Proposition 2])∫
c(L)dim M−1

∩ A =
∫

A⊗M L∨.

Apply this fact to γ (X) (from (5-13)), viewed as

γ (X)=
∫
(1+ 2h)dim X−1

∩

(
c(T ∗X ⊗O(2h))

(1+ h)(1+ 2h)dim X−2 ∩ s(J (Q ∩ X, X))
)
,

with M = X , L= O(2h). We obtain

γ (X)=
∫ (

c(T ∗X ⊗O(2h))
(1+ h)(1+ 2h)dim X−2 ∩ s(J (Q ∩ X, X))

)
⊗M O(−2h)

!
=

∫
c(T ∗X)

(1− h)(1− 2h)
∩
(
s(J (Q ∩ X, X))⊗M O(−2h)

)
,

where the equality != follows by applying [Aluffi 1994, Proposition 1]. Since the degree of a class in X is
the degree of its component of dimension 0, i.e., codimension dim X , this gives

γ (X)= (−1)dim X
∫ ( 1

1−h
·

c(T ∗X)
1−2h

∩
(
s(J (Q ∩ X, X))⊗M O(−2h)

))∨
= (−1)dim X

∫
1

1+h
·

c(T X)
1+2h

∩
(
s(J (Q ∩ X, X))∨⊗M O(2h)

)
.

Finally, by (6-2) (with M = X , V = Q ∩ X , L= O(V )= O(2h)), we get

γ (X)=
∫

1
1+h

∩M(Q ∩ X),
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and this implies (6-1). �

Corollary 6.3. If Q ∩ X only has isolated singularities xi , then

EDdeg(X)= gEDdeg(X)−
∑

i

µ(xi ),

where µ(−) denotes the Milnor number.

We will see that this is in fact the case for most smooth hypersurfaces (Section 9.3).

7. Euclidean distance degree and Chern–Schwartz–MacPherson classes

Our next aim is to express the Euclidean distance degree of a nonsingular projective variety directly,
rather than in terms of a correction from a “generic” situation. CSM classes provide a convenient means
to do so. The formula presented in Section 8 may look more appealing, but the alternative (7-1) presented
here, besides being a necessary intermediate result, is in a sense algorithmically more direct.

Theorem 7.1. Let X be a smooth subvariety of Pn−1. Then

EDdeg(X)= (−1)dim X
∑
j≥0

(−1) j (c(X) j − cSM(Q ∩ X) j ). (7-1)

Here, cSM(Q ∩ X) j denotes the degree of the j-dimensional component of Q ∩ X . Again, (7-1) is
straightforward to implement given available algorithms for characteristic classes (for example [Aluffi
2003; Jost 2015; Harris 2017]).

Remark 7.2. If X ⊆ Q, then cSM(Q ∩ X) = cSM(X) = c(X) by the basic normalization property of
CSM classes, as X is nonsingular. In this case (7-1) gives EDdeg(X)= 0, as it should (see Remark 2.1).
Therefore, we will assume X 6⊆ Q in the proof.

Remark 7.3. In the proof we will use the fact that c(X) = cF(X) if X is nonsingular. This prevents a
straightforward generalization of the argument to the case in which X is only required to be nonsingular
in a neighborhood of Q ∩ X .

Proof. According to Theorem 6.1,

EDdeg(X)= gEDdeg(X)− (−1)dim X
∑
j≥0

(−1) j (cSM(Q ∩ X) j − cF(Q ∩ X) j ).

By (3-1), therefore, EDdeg(X) equals

(−1)dim X
∑
j≥0

(−1) j((2 j+1
− 1)c(X) j + cF(Q ∩ X) j − cSM(Q ∩ X) j

)
. (7-2)

By definition,

cF(Q ∩ X)= c(T X)∩ s(Q ∩ X, X)= c(T X)·2h
1+2h

∩ [X ]
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(after push-forward to X ) since Q ∩ X is a hypersurface in X and O(Q) = O(2h) as Q is a quadric.
Therefore∑

j≥0

(−1) j cF(Q ∩ X) j =

∫
1

1+h
2h

1+2h
c(T X)∩ [X ] =

∑
j≥0

c(X) j

∫
hdim X− j

1+h
2h

1+2h
∩ [Pdim X

].

The coefficient of c(X) j in this expression equals the coefficient of h j in the expansion of

2h
(1+h)(1+2h)

=

∑
j≥0

(−1) j+1(2 j+1
− 2)h j .

Therefore (7-2) gives

EDdeg(X)= (−1)dim X
∑
j≥0

(−1) j(((2 j+1
− 1)− (2 j+1

− 2))c(X) j − cSM(Q ∩ X) j
)

and (7-1) follows. �

CSM classes may be associated with locally closed sets: if V is a locally closed set of a variety M ,
then cSM(V )= c∗(1V ) is a well-defined class in A∗M . (If V = V r W , with W closed, then cSM(V )=
cSM(V )− cSM(W ).) This notation allows us to express (7-1) in (even) more concise terms: if X is a
smooth subvariety of Pn−1, and X 6⊆ Q, then

EDdeg(X)= (−1)dim X
∑
j≥0

(−1) j cSM(X r Q) j . (7-3)

Indeed, c(X)= cSM(X) since X is nonsingular.
If Q∩X is (supported on) a simple normal crossing divisor, (7-3) admits a particularly simple expression,

given in the corollary that follows. An illustration of this case will be presented in Section 9.6.

Corollary 7.4. Let X ⊆ Pn−1 be a smooth subvariety, and assume the support of Q ∩ X is a divisor D
with normal crossings and nonsingular components Di , i = 1, . . . , r . Then

EDdeg(X)=
∫

c(T ∗X (log D))
1−H

∩ [X ] =
∫

1
1−H

·
c(T ∗X)∏
i (1−Di )

∩ [X ].

Proof. If D is a simple normal crossing divisor in X , then

cSM(X r D)= c(T X (− log D))∩ [X ] (7-4)

(see [Aluffi 1999b], or [Goresky and Pardon 2002, Proposition 15.3]). Using this fact in (7-3), the stated
formulas follow from simple manipulations and the well-known expression for c(T ∗X (log D)) when D
is a simple normal crossing divisor. �

Liao has shown that (7-4) holds as soon as D is a free divisor that is locally quasihomogeneous
[Liao 2012] or more generally with Jacobian of linear type [Liao 2018]. Therefore, EDdeg(X) =∫

c(T ∗X (log D))/(1− H)∩ [X ] as in Corollary 7.4 as soon as the support of Q ∩ X satisfies these less
restrictive conditions.
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8. Euclidean distance degree and Euler characteristics

Finally, we present a version of the main result which makes no use (in its formulation) of characteristic
classes for singular varieties. This is the version given in the introduction.

Theorem 8.1. Let X be a smooth subvariety of Pn−1. Then

EDdeg(X)= (−1)dim Xχ(X r (Q ∪ H)), (8-1)

where H is a general hyperplane.

By the inclusion-exclusion property of the topological Euler characteristic, (8-1) is equivalent to

EDdeg(X)= (−1)dim X (χ(X)−χ(X ∩ Q)−χ(X ∩ H)+χ(X ∩ Q ∩ H)) (8-2)

which has the advantage of only involving closed subsets of Pn−1. Any of the aforementioned implemen-
tations of algorithms for characteristic classes of singular varieties includes explicit functions to compute
Euler characteristics of projective schemes from defining homogenous ideals, so (8-2) is also essentially
trivial to implement. However, despite its conceptual simplicity, this expression is computationally
expensive.

Remark 8.2. As in Section 7, we have to insist that X be smooth; only requiring it to be nonsingular in
a neighborhood of Q ∩ X is not enough for the result to hold.

Proof. The statement is a consequence of Theorem 7.1 and of a result from [Aluffi 2013]. Collect the
degrees of the components of the CSM class of a locally closed set V ⊆ PN into a polynomial

0V (t)=
∑
j≥0

cSM(V ) j t j
;

and collect the signed Euler characteristics of generic linear sections of V into another polynomial

χV (t)=
∑
j≥0

(−1) jχ(V ∩ H1 ∩ · · · ∩ H j ) t j ,

where the Hi ’s are general hyperplanes. Then according to [Aluffi 2013, Theorem 1.1] we have

0V (t)= I(χV ),

where I is an explicit involution. It follows from the specific expression of I that

0V (−1)= χV (0)+χ ′V (0)

(see the paragraph preceding the statement of [Aluffi 2013, Theorem 1.1]). Therefore∑
j≥0

(−1) j cSM(V ) j = χ(V )−χ(V ∩ H) (8-3)

for every locally closed set V in projective space.
The statement of the theorem, in the form given in (8-2), follows by applying (8-3) to (7-1). �
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9. Examples

9.1. Computations. The ingredients needed to implement the main theorems of this text on computer
algebra systems such as [Sage] or [Macaulay2] are all available. One can compute Segre classes and
Chern–Mather classes via [Harris 2017] and Chern–Schwartz–MacPherson classes via (for example)
any of [Aluffi 2003; Marco-Buzunáriz 2012; Jost 2013; 2015; Helmer 2016; Harris 2017]. One issue in
concrete examples is that computer algebra systems prefer to work with Q-coefficients, and it is often
difficult to write the defining equations of a variety which is tangent to the isotropic quadric without
extending the field of coefficients. This difficulty can sometimes be circumvented by a suitable choice of
coordinates; see Remark 5.7. Also see Section 9.5 below for a discussion of a template situation.

In many cases, the “standard” algorithm of [Draisma et al. 2016, Example 2.11] appears to be at least
as fast as the alternatives obtained by implementing the results presented here. In some examples these
alternatives are faster, particularly if they take advantage of the refinements which will be presented below.
As an illustration, we can apply Proposition 9.2 (Section 9.4) to compute the ED degrees of plane curves
in terms of a generator of their homogeneous ideal. A (non-optimal) implementation of this method in
Macaulay2 can be coded as follows:

PP2 = QQ[x,y,z]; C = ideal( F )
S = QQ[s,t,i,Degrees=>{{1,0},{1,0},{0,1}}]/(i^2+1)
J = sub(C,{x=>s^2-t^2,y=>2*s*t,z=>i*(s^2+t^2)})
p = (first degrees radical J)#0 -- ignore degree of i
d = degree C
d*(d-2) + p

where F = F(x, y, z) is the defining homogeneous polynomial for the curve.
For example, trial runs of computations of the ED degrees of Fermat curves xd

+ yd
+ zd

= 0
for all degrees d = 3, . . . , 40 took an average of 4.5 seconds using this method (in a more efficient
implementation), and 260 seconds by using the standard algorithm. However, direct implementations of
the general formulas presented in this paper do not fare as well.

The interested reader can find the actual code used here, as well as implementations of the more general
formulas at http://github.com/coreysharris/EDD-M2. At this stage, the value of the formulas obtained in
Theorems 5.1–8.1 appears to rest more on their theoretical applications (in examples such as the ones
discussed below in Section 9.6) than in the speed of their computer algebra implementations.

If the variety is known to be transversal to the isotropic quadric, then its Euclidean distance degree
equals the generic Euclidean distance degree. This may be computed by using the algorithm for Chern(–
Mather) classes in [Harris 2017], often faster than the standard algorithm. For example, let S be a general
hyperplane section of the second Veronese embedding of P3 in P9. Then S is transversal to the isotropic
quadric, and the implementation of the algorithm in [Harris 2017] computes its Euclidean distance degree
(i.e., 36) in about 2 seconds. The standard algorithm appears to take impractically long on this example;

http://github.com/coreysharris/EDD-M2
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one can improve its performance by first projecting S to a general P3 (this does not affect the Euclidean
distance degree, by [Draisma et al. 2016, Corollary 6.1]), and the computation then takes about a minute.

9.2. Quadrics and spheres. Let X ⊆ Pn−1 be a nonsingular quadric hypersurface. We say that X is a
sphere if it is given by the equation

x2
1 + · · ·+ x2

n−1 = cx2
n

with c > 0 a real number. It is clear from the definition in terms of critical points of the distance function
that EDdeg(X)= 2 if X is a sphere in Pn−1, n ≥ 2.

We use this example to illustrate some of the formulas obtained in this paper.
First, since X is a degree 2 hypersurface in Pn−1,

c(T X)=
c(T Pn−1

|X )

1+ 2h
=
(1+ h)n

1+ 2h

(where h denotes the hyperplane class and its pull-backs, as in previous sections). Applying (3-1), one
easily sees that

gEDdeg(X)= 2n− 2,

while

c(T ∗X ⊗O(2h))= (1−h+2h)n

(1+2h)(1−2h+2h)
=
(1+h)n

1+2h
.

For a sphere X ⊆ Pn−1, the intersection Q ∩ X consists of a double quadric in Pn−2, supported on the
transversal intersection X ∩ H of X with a hyperplane. It follows that J (Q ∩ X)= X ∩ H , and therefore

s(J (Q ∩ X), X)= h ·[X ]
1+h

.

According to Theorem 5.1, the correction term in this case is given by∫
(1+2h)·c(T ∗X⊗O(2h))

1+h
·s(J (Q∩X), X)=

∫
(1+2h)(1+h)n

(1+h)(1+2h)
·
h ·2h
1+h
∩[Pn−1

]

=

∫
2(1+h)n−2

·h2
∩[Pn−1

]

= 2(n−2).

By (5-1), EDdeg(X)= (2n− 2)− 2(n− 2)= 2, as it should.
From the point of view of Theorem 8.1, we should deal with the topological Euler characteristics of X ,

X ∩ Q, X ∩ H , X ∩ Q ∩ H , where H is a general hyperplane (see (8-2)). If X is a sphere, then X ∩ Q
is (supported on) a nonsingular quadric in Pn−2; so is X ∩ H , and X ∩ Q ∩ H is a nonsingular quadric
in Pn−3. The Euler characteristic of a nonsingular quadric in PN is N + 1 if N is odd, N if N is even;
therefore

χ(X)−χ(X ∩ Q)−χ(X ∩ H)+χ(X ∩ Q ∩ H)=
{
(n− 1)− 2(n− 1)+ (n− 3)=−2 n odd,
n− 2(n− 2)+ (n− 2)= 2 n even.
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and by Theorem 8.1,
EDdeg(X)= (−1)dim Xχ(X r (Q ∪ H))= 2

for all n, as expected.

9.3. Hypersurfaces. The case of smooth hypersurfaces of degree ≥ 3 is more constrained than it may
look at first.

Claim 9.1. If two smooth hypersurfaces of degree d1, d2 in projective space are tangent along a positive
dimensional algebraic set, then d1 = d2.

(This is [Aluffi 2000, Claim 3.2].) It follows that if X ⊂ Pn−1 is a smooth hypersurface of degree
d 6= 2, then the intersection Q ∩ X necessarily has isolated singularities. We are then within the scope of
Corollary 6.3, and we can conclude

EDdeg(X)= gEDdeg(X)−
∑

i

µ(xi ),

where the sum is over all singularities xi of Q ∩ X , and µ(−) denotes the Milnor number.

9.4. Curves. Let C ⊆ Pn−1 be a nonsingular curve. Then

EDdeg(C)= d + #(Q ∩C)−χ(C). (9-1)

(This follows immediately from Theorem 8.1.)
For example, the twisted cubic parametrized by

(s : t) 7→ (s3
:
√

3s2t :
√

3st2
: t3)

has EDdeg equal to 3: indeed, it meets the isotropic quadric at the images of the solutions of s6
+3s4t2

+

3s2t4
+ t6
= (s2

+ t2)3 = 0, that is, at two points. More generally, the Euclidean distance degree of the
rational normal curve of degree n− 1 in Pn−1 parametrized by

(s : t) 7→
(√(n−1

j

)
sn−1− j t j

)
j=0,...,n−1

is (n− 1)+ 2− 2= n− 1.
For plane curves, (9-1) admits a particularly explicit formulation.

Proposition 9.2. Let C be a nonsingular plane curve, defined by an irreducible homogeneous polynomial
F(x, y, z). Then

EDdeg(C)= d(d − 2)+ R,

where R is the number of distinct factors of the polynomial

F(s2
− t2, 2st, i(s2

+ t2)) ∈ C[t]

and d = deg F.
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Proof. This follows immediately from (9-1), after observing that d −χ(C)= d − (2− (d − 1)(d − 2))=
d(d−2) and that the isotropic conic x2

+ y2
+z2
= 0 is parametrized by (s : t) 7→ (s2

− t2, 2st, i(s2
+ t2)).

�

For instance, consider the conic x2
+ 2y2

+ 2iyz = 0. Since

(s2
− t2)2+ 2(2st)2+ 2i(2st)(i(s2

+ t2))= (s− t)4,

we have R = 1, therefore its Euclidean distance degree is 2 · 0+ 1= 1.
For another example, the Fermat quintic C : x5

+ y5
+ z5
= 0 has R = 8 (as Macaulay2 can verify),

therefore EDdeg(C) = 5 · 3+ 8 = 23 (see [Draisma et al. 2016, Example 2.5]). More generally, the
Euclidean distance degree of the Fermat curve xd

+ yd
+ zd
= 0 is d(d − 2)+ R, where R is the number

of distinct factors of the polynomial

(s2
− t2)d + (2st)d + (i(s2

+ t2))d .

An explicit expression for the Euclidean distance degree of Fermat hypersurfaces in any dimension may
be found in [Lee 2017, Theorem 4].

9.5. Surfaces. According to Theorem 8.1, if S⊆Pn−1 is a smooth degree-d surface, and C is the support
of the intersection Q ∩ S (which may very well be singular), then

EDdeg(S)= χ(S)−χ(S ∩ H)−χ(C)+ deg(C),

where H is a general hyperplane. If n−1= 3, then χ(S)= d(d2
−4d+6) and χ(S∩ H)= 3d−d2; for

d 6= 2, C is necessarily reduced (Claim 9.1), so deg(C)= 2d. In this case (S ⊆ P3 a smooth surface of
degree d 6= 2, or more generally such that S ∩ Q is reduced),

EDdeg(S)= d(d2
− 4d + 6)− (3d − d2)−χ(C)+ 2d = d(d2

− 3d + 5)−χ(C). (9-2)

If C is nonsingular, then χ(C)=−2d(d − 2), and EDdeg(S)= gEDdeg(S)= d(d2
− d + 1).

If S is a plane in P3, tangent to the isotropic quadric Q, then C = Q ∩ S is a pair of lines, and (9-2)
gives EDdeg(S)= 0. But note that the coefficients of the equation of this plane are necessarily not all real,
so the enumerative interpretation of EDdeg(S) as the number of critical points of a “distance” function
should be taken cum grano salis.

Next let S be a Veronese surface in P5, described parametrically by

(s : t : u) 7→ (a1s2
: a2st : a3su : a4t2

: a5tu : a6u2)

with a1 . . . a6 6= 0. According to Theorem 8.1,

EDdeg(S)= 3− 2−χ(C)+ 2 deg C = 2 deg C −χ(C)+ 1,

where C is the support of the curve with equation

a2
1 x4
+ a2

2 x2 y2
+ a2

3 x2z2
+ a4 y4

+ a5 y2z2
+ a6z4

= 0 (9-3)
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in the plane. (The degree of the image of C in P5 is 2 deg C .)
For example, if C is a smooth quartic (the “generic” case), then χ(C) = −4 and EDdeg(S) =

gEDdeg(S)= 13. If the rank of the matrix2a2
1 a2

2 a2
3

a2
2 2a2

4 a2
5

a2
3 a2

5 2a2
6

 (9-4)

is 1, then (9-3) is a double (smooth) conic, so that χ(C)= deg(C)= 2 and EDdeg(S)= 3. For example,
this is the case for

(s : t : u) 7→ (s2
:
√

2 st :
√

2 su : t2
:
√

2 tu : u2). (9-5)

If the rank of (9-4) is 2, then (9-3) factors as a product

(a′x2
+ b′y2

+ c′z2)(a′′x2
+ b′′y2

+ c′′z2)= 0

and the factors are different and correspond to nonsingular conics. If these conics meet transversally, then
EDdeg(S) = 9; if they are “bitangent”, then EDdeg(S) = 7 (use Corollary 6.3, or again Theorem 8.1).
Explicit examples of these two types are

(s : t : u) 7→ (s2
:
√

3 st : 2 su :
√

2 t2
:
√

5 tu :
√

3 u2)

and

(s : t : u) 7→ (s2
:
√

3 st :
√

2 su :
√

2 t2
:
√

3 tu : u2).

More general Veronese embeddings are considered in Section 9.6.
Note that we could equivalently hold the surface S = X fixed, choosing for example the standard

Veronese embedding, parametrized by (s : t : u) 7→ (s2
: st : su : t2

: tu : u2) with ideal

(x1x4− x2
2 , x1x5− x2x3, x1x6− x2

3 , x2x5− x3x4, x2x6− x3x5, x4x6− x2
5)

in P5
(x1:···:x6)

, and consider a more general nonsingular quadric

Q : q1x2
1 + q2x2

2 + · · ·+ q6x2
6 = 0,

q1 . . . q6 6= 0, in place of the isotropic quadric. This corresponds to a change of coordinates xi 7→
√

qi xi ;
i.e., qi = a2

i with notation as above. The right-hand side EDdeg(Q, X) of (5-1) (or equivalently (6-1),
(7-1), (8-1)) is independent of the coordinate choice; see Remark 5.7. For example, choosing

x2
1 + 2x2

2 + 2x2
3 + x2

4 + 2x2
5 + x2

6 = 0

for Q, along with the standard Veronese embedding, is equivalent to choosing the standard isotropic
quadric along with the embedding (9-5) (hence EDdeg(Q, X)= 3 in this case).

This observation may be useful in effective computations, since computer algebra systems prefer to
work with Q coefficients.
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9.6. Segre and Segre–Veronese varieties. Let X be the image of the usual Segre embedding

P(Cm1)× · · ·×P(Cm p)→ P(Cm1 ⊗ · · ·⊗Cm p),

that is, Pm1−1
× · · ·×Pm p−1

→ Pm1...m p−1. This embedding maps a point

((s1
1 : · · · : s

1
m1
), . . . , (s p

1 : · · · : s
p
m p
))

to the point in Pm1...m p−1 whose homogeneous coordinates (x) are all the monomials of multidegree
(1, . . . , 1) in the variables s1, . . . , s p. The equation

∑
i x2

i = 0 of the isotropic quadric pulls back to(∑
i

(s1
i )

2
)
. . .

(∑
i

(s p
i )

2
)
= 0.

Let Qi be the isotropic quadric in the i-th factor. Then this shows that

Q ∩ X = (Q1×Pm2−1
× · · ·×Pm p−1)∪ · · · ∪ (Pm1−1

× · · ·×Pm p−1−1
× Q p).

It follows that Q ∩ X is a divisor with normal crossings and nonsingular components. Denoting by hi the
hyperplane class in the i-th factor, the class of the i-th component is 2hi . By Corollary 7.4,

EDdeg(X)=
∫

1
1− h1− · · ·− h p

·
(1− h1)

m1 . . . (1− h p)
m p

(1− 2h1) . . . (1− 2h p)
∩ [X ]. (9-6)

The conclusion is that EDdeg(Pm1−1
× · · · × Pm p−1) equals the coefficient of hm1−1

1 . . . hm p−1
p in the

expansion of

1
1− h1− · · ·− h p

·

p∏
i=1

(1− hi )
mi

1− 2hi
.

Friedland and Ottaviani [2014, Theorem 4] (see [Draisma et al. 2016, Theorem 8.1]) obtain a different
expression for the same quantity: they prove that it must equal the coefficient of zm1−1

1 . . . zm p−1
p in the

expression
p∏

i=1

ẑmi
i − zmi

i

ẑi − zi
, (9-7)

where ẑi = (z1+ · · ·+ z p)− zi . These coefficients must be equal, since they both compute the Euclidean
distance degrees of Segre varieties. We note that, for example,

EDdeg(P2
×P8

×P11
×P13

×P24)= 1430462027777307645494624

according to both formulas.
The same technique may be used to deal with Segre–Veronese varieties, obtained by composing a

Segre embedding with a product of Veronese embeddings:

P(Cm1)×· · ·×P(Cm p)→P(Symω1 Cm1)×· · ·×P(Symωp Cm p)→P(Symω1 Cm1⊗· · ·⊗Symωp Cm p).
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Using general coordinates for the Veronese embeddings, each Qi (with notation as above) restricts to
a smooth hypersurface of degree 2ωi , and the resulting hypersurfaces of the product meet with normal
crossings. The hyperplane class restricts to ω1h1+ · · · +ωph p, therefore (again by Corollary 7.4) the
EDdegree of this variety equals the coefficient of hm1−1

1 . . . hm p−1
p in the expansion of

1
1−ω1h1− · · ·−ωph p

·

p∏
i=1

(1− hi )
mi

1− 2ωi hi
. (9-8)

Friedland and Ottaviani also consider Segre–Veronese varieties, but they choose suitably invariant
coordinates in each factor; this is a different problem. (For p= 1, m1 =ω1 = 2, this choice of coordinates
is given by (9-5).) They prove [Friedland and Ottaviani 2014, Draisma et al. 2016, Theorem 8.6] that with
these special coordinates the EDdegree is given again by the coefficient of zm1−1

1 . . . zm p−1
p in (9-7), but

where now ẑi = (ω1z1+ · · ·+ωpz p)− zi . From our point of view, the choice of coordinates affects the
restrictions of the isotropic quadrics Qi to the factors. With the invariant coordinates used by Friedland
and Ottaviani, each Qi restricts to a multiple quadric, and this affects the denominator of (9-8): the
resulting EDdegree equals the coefficient of hm1−1

1 . . . hm p−1
p in the expansion of

1
1−ω1h1− · · ·−ωph p

·

p∏
i=1

(1− hi )
mi

1− 2hi
. (9-9)

Therefore, this coefficient must agree with the one obtained with the Friedland–Ottaviani formula. (It
does not seem combinatorially trivial that this should be the case in general; it is easy to verify that both
formulas yield ((ω1− 1)m1 − 1)/(ω1− 2) for p = 1.)
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