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Introduction

Suppose that F is a number field with ring of integers OF , and let G be a finite group. If Fπ/F is any
tame Galois G-algebra extension of F , then a classical theorem of E. Noether implies that the ring of
integers Oπ of Fπ is a locally free OF G-module, and so determines a class (Oπ ) in the locally free class
group Cl(OF G) of OF G. Hence, if we write H 1

t (F,G) for the pointed set of isomorphism classes of
tame G-extensions of F , then we obtain a map of pointed sets

ψ : H 1
t (F,G)→ Cl(OF G), [π ] 7→ (Oπ ).

Even when G is abelian, so that H 1
t (F,G) is actually a group, this map is almost never a group

homomorphism. We say that an element c ∈ Cl(OF G) is realisable if c = (Oπ ) for some tame Galois
G-algebra extension Fπ/F , and we write R(OF G) for the collection of realisable classes in Cl(OF G).
These classes are natural objects of study, and they have arisen in a number of different contexts in Galois
module theory. The problem of describing R(OF G) for a given G may be viewed as being a loose
analogue of the inverse Galois problem in the setting of arithmetic Galois module theory.

When G is abelian, McCulloh [1987] has given a complete description of R(OF G) by showing that it
is equal to the kernel of a certain Stickelberger homomorphism on Cl(OF G). In particular, he has shown
that R(OF G) is in fact a group. In subsequent unpublished work McCulloh [2011; 2012] showed that, for
arbitrary G, the set R(OF G) is always contained in the kernel of this Stickelberger homomorphism, and
he raised the question of whether or not R(OF G) is in fact always equal to this kernel. This question has
inspired research by a number of authors, and we refer the reader to, e.g., [Byott and Sodaïgui 2005; Byott
et al. 2006; Farhat and Sodaïgui 2015] and to the bibliographies of these papers for further information
concerning previous work on this problem.

In this paper we shall describe a new approach to studying this topic that involves combining the
methods introduced by McCulloh [1987; 2011] with techniques involving relative algebraic K -theory and
categorical twisted forms introduced by D. Burns and Agboola [2006]. This enables us to both clarify
certain aspects of the theory of realisable classes and to establish new results. Although our perspective
is somewhat different, it should be stressed that many of the main ideas that we use are in fact already
present in some form in [McCulloh 1987; 2011].

Let us now describe the contents of this paper in more detail. In Section 2 we recall some basic
facts concerning principal homogeneous spaces, Galois algebras and resolvends; these play a key role in
everything that follows. Next, we assemble a number of technical results explaining how resolvends may
be used to compute discriminants of rings of integers in Galois G-extensions. We also discuss how certain
Galois cohomology groups may be expressed in terms of resolvends in a manner that is very useful for
calculations in class groups and K -groups. In Section 4 we explain how determinants of resolvends may
be represented in terms of certain character maps, and we recall an approximation theorem of A. Siviero
(which is in turn a variant of [McCulloh 1987, Theorem 2.14]).
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We begin Section 5 by outlining the results we need about twisted forms and relative algebraic K -
groups from [Agboola and Burns 2006]. Each tame G-extension Fπ/F of F has an associated resolvend
isomorphism

rG : Fπ ⊗F Fc
' FcG

of FcG-modules, and this may be used to construct a categorical twisted form which is represented by an
element [Oπ , OF G; rG] in a certain relative algebraic K -group K0(OF G, Fc). The group K0(OF G, Fc)

admits a natural surjection onto the locally free class group Cl(OF G), sending [Oπ , OF G; rG] to (Oπ ),
and so there is a map of pointed sets

9 : H 1
t (F,G)→ K0(OF G, Fc), [π ] 7→ [Oπ , OF G; rG]

which is a refinement (more precisely, a lifting) of the map ψ above.
Crucial to our approach is the fact that each of the constructions that we have just described admits a

local variant. Let v be any place of F , and write H 1
t (Fv,G) for the pointed set of isomorphism classes of

tame G-extensions of Fv. Then there is a localisation homomorphism

λv : K0(OF G, Fc)→ K0(OFvG, Fc
v )

as well as a map of pointed sets

9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ), [πv] 7→ [Oπv , OFvG; rG].

The following result reflects the fact that [Oπ , OF G; rG] is a much finer structure invariant than (Oπ )

(see Proposition 13.1 below):

Proposition A. The kernel of 9 is finite.

Let G ′ denote the derived subgroup of G. We may identify H 1(F,G ′) with a subset of H 1(F,G) via
the exact sequence 0→ G ′→ G → Gab

→ 0. Proposition A is proved by showing that Ker(9) is a
subset of the pointed set H 1

fnr(F,G ′) of isomorphism classes of G ′-Galois F-algebras that are unramified
at all finite places of F ; this last set is finite because there are only finitely many unramified extensions of
F of bounded degree. If G is abelian, the map 9 is injective (see Proposition 14.3). In many cases one
can show that Ker(9)= H 1

fnr(F,G ′), but we do not know whether this equality always holds.
Write KR(OF G) for the image of 9, i.e., for the collection of realisable classes of K0(OF G, Fc).

The central conjecture of this paper gives a precise description of KR(OF G) in terms of a local-global
principle for the relative algebraic K -group K0(OF G, Fc). This may be described as follows.

For each place v of F , let H 1
nr(Fv,G) denote the subset H 1

t (Fv,G) consisting of isomorphism classes
of unramified G-extensions of Fv. We define a pointed set of ideles J (H 1

t (F,G)) of H 1
t (F,G) to

be the restricted direct product over all places v of the sets H 1
t (Fv,G) with respect to the subsets

H 1
nr(Fv,G) (see Definition 6.2). The natural maps H 1

t (F,G)→ H 1
t (Fv,G) for each v induce a map

H 1
t (F,G)→ J (H 1

t (F,G)). We also define a group of ideles J (K0(OF G, Fc)) of K0(OF G, Fc) to
be the restricted direct product over all places of F of the groups K0(OFvG, Fc

v ) with respect to the
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subgroups K0(OFvG, OFc
v
) (see Definition 5.8). We show that the maps λv above induce an injective

localisation map
λ : K0(OF G, Fc)→ J (K0(OF G, Fc))

(see Proposition 5.9), and that the maps 9v induce an idelic version

9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

of the map 9 (see Definition 6.2). We conjecture that KR(OF G) has the following description (see
Conjecture 6.5 below):

Conjecture B. KR(OF G)= λ−1(Im(9 id)).

In other words, our conjecture predicts that an element x lies in the image of 9 if and only if λv(x)
lies in the image of 9v for every place v of F . We remark that it follows directly from the definitions that

KR(OF G)⊆ λ−1(Im(9 id)).

We point out that, in contrast to R(OF G), it is not difficult to show that if G is nontrivial, then
KR(OF G) is never a subgroup of K0(OF G, Fc) (cf. [Agboola and Burns 1998, Remark 2.10(iii); 2006,
Remarks 6.13(i)].) Nevertheless, by applying the methods of [McCulloh 1987; 2011] in the present
context, we show that Conjecture B implies both an affirmative answer to McCulloh’s question concerning
R(OF G) as well as a positive solution to the inverse Galois problem for G over F (see Theorems 6.6,
6.7 and 13.6 below):

Theorem C. If Conjecture B holds, then R(OF G) is a subgroup of Cl(OF G). Furthermore, if c ∈
R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and (Oπ ) = c. The
extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places of F. In
particular, the inverse Galois problem for G admits a positive solution over F.

In order to orient the reader, we shall now briefly indicate the main ideas involved in the proof of
Theorem C.

We begin by observing that the long exact sequence of relative algebraic K -theory yields a sequence

K1(FcG) ∂1
−→ K0(OF G, Fc) ∂0

−→Cl(OF G)→ 0.

Hence, in order to show that R(OF G) = Im(ψ) is a subgroup of Cl(OF G), it suffices to show that
∂1(K1(FcG)) · Im(9) is a subgroup of K0(OF G, Fc).

To do this, we first show that it suffices to prove that

λ(∂1(K1(FcG))) · Im(9 id)

is a subgroup of J (K0(OF G, Fc)). Once this is done, it is not hard to show that ∂1(K1(FcG)) · Im(9)
is equal to the kernel of the homomorphism

K0(OF G, Fc) λ
−→ J (K0(OF G, Fc))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] · Im(9 id)
,
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and so is indeed a subgroup of K0(OF G, Fc) (see Theorem 6.7 below). The crux of the proof of the
first part of Theorem C therefore consists of showing that λ(∂1(K1(FcG))) · Im(9 id) is a subgroup of
K0(OF G, Fc).

This is accomplished as follows. Write G(−1) for the group G (viewed as a set) endowed with an
action of �F via the inverse cyclotomic character. Although in general this is only an action on G as
a set (rather than via automorphisms of G), the induced action on conjugacy classes of G does induce
an action on the centre Z(Fc

[G]) of the group ring FcG. We write Z(Fc
[G(−1)]) to denote Z(Fc

[G])
endowed with this action. We set

3(FG) := Z(Fc
[G(−1)])�F ,

and we write 3(OF G) for the (unique) OF -maximal order in 3(FG). For each place v of F , we define
3(FvG) and 3(OFvG) in an analogous manner. We write J (3(FG)) for the restricted direct product
over all places of F of the groups 3(FvG)× with respect to the subgroups 3(OFvG)

×.
Let Irr(G) denote the set of irreducible characters of G. Motivated by an analysis of normal integral

basis generators of tame local extensions, we define a Stickelberger pairing

〈−,−〉G : Irr(G)×G→Q.

(Loosely speaking, this may be viewed as being a monodromy-type pairing that encodes ramification data
associated to tame extensions of local fields in a uniform manner (cf. Definition 10.6 below).) We then
use this pairing to construct a K -theoretic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc)).

The homomorphism K2t is closely related to the map 9 id in the following way. We show that even
though the map 9v is just a map of pointed sets, the image 9v(H 1

nr(Fv,G)) of the restriction of 9v
to H 1

nr(Fv,G) is in fact a subgroup of K0(OFvG, Fc
v ) for each v. Using an approximation theorem for

J (3(FG)), we show further that, for a suitable choice of auxiliary ideal a of OF , the homomorphism
K2t may be used to construct a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v 9v(H 1

nr(Fv,G))
,

where Cl′a
+
(3(OF G)) is a certain finite quotient of J (3(FG)). We prove that

Im(2t
a)= Im(9 id),

where 9 id denotes the composition of 9 id with the obvious quotient map

J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v 9v(H 1

nr(Fv,G))
.

We then show that this in turn implies that

λ(∂1(K1(FcG))) · Im(K2t)= λ(∂1(K1(FcG))) · Im(9 id). (0-1)



1828 Adebisi Agboola and Leon R. McCulloh

In particular, this proves that the right-hand side of (0-1) is a subgroup of J (K0(OF G, Fc)), as claimed.
This completes our outline of the proof of the first part of Theorem C.

The strategy of the proof of the second part of Theorem C may be very roughly described as follows.
Suppose that x ∈λ−1(Im(9 id)). By using the map K2t together with a suitable approximation theorem on
J (K0(OF G, Fc)), we show that there are infinitely many y ∈ λ−1(Im(9 id)) such that (i) ∂0(y)= ∂0(x),
and (ii) each y corresponds via Conjecture B to an element [πy] ∈ H 1

t (F,G) which is ramified (away
from S) in such a way that πy ∈ Hom(�F ,G) is forced to be surjective. This in turn implies that Fπy

is a field (rather than just a Galois algebra), and so the inverse Galois problem for G admits a positive
solution over F .

Let us now turn to our results concerning the validity of Conjecture B.
When G is abelian, we obtain the following refinement of [McCulloh 1987, Theorem 6.7] (see

Theorem 14.2 below):

Theorem D. Conjecture B is true if G is abelian.

By combining our methods with work of Neukirch, we are able to establish a variant of Conjecture B
for a large class of soluble groups, including all groups of odd order (see Theorems 16.4 and 16.5
below). We thereby obtain the following result, which may be viewed as being a partial analogue of a
classical theorem of Shafarevich [1954] on the inverse Galois problem for soluble groups in the context
of arithmetic Galois module theory. (See Theorem 16.7 of the main text.)

Theorem E. Suppose that G is of odd order and that (|G|, hF )= 1, where hF denotes the class number
of F. Suppose also that F contains no nontrivial |G|-th roots of unity. Then R(OF G) is a subgroup of
Cl(OF G). If c ∈ R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and
(Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places
of F.

While it is perhaps conceivable that it might be possible to remove the hypothesis (|G|, hF )= 1 of
Theorem E using methods similar to those of the present paper (although we do not as yet know how to do
this), the same probably cannot be said of the condition concerning the number of roots of unity in F . This
latter hypothesis is forced upon us because our proof makes crucial use of a lifting theorem of Neukirch
(see Section 15) where such hypotheses are unavoidable (cf. the last paragraph of the introduction of
[Neukirch 1979]). It would be interesting to determine whether or not the methods of [Shafarevich 1954]
can be used to prove a result similar to Theorem E for all soluble groups.

The results and techniques introduced in this paper suggest a number of different avenues of further
investigation. For example, our methods may also be applied in the context of the relative Galois module
structure of the square root of the inverse different as studied by C. Tsang [2016; 2017], and it seems
reasonable to expect that an analogue of Theorem E holds in this setting. Applying the methods of
[Agboola 2012] to the study of counting and equidistribution problems involving cohomological classes
in relative algebraic K -groups should lead to new results concerning similar problems for number fields,
generalising certain aspects of e.g., [Wright 1989; Malle 2002]. Our techniques may also be applied in
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the setting of global function fields [Agboola and Burns 2001; 2006], and it would be of interest to further
investigate the connection between the approach adopted here and that taken in e.g., [Chinburg 1994] (cf.,
for example, [Agboola and Burns 2006, §4]).

Here is an outline of the rest of this paper. In Section 7, we explain a hitherto unpublished result
of McCulloh that describes how resolvends of normal integral bases of tamely ramified extensions of
nonarchimedean local fields admit certain Stickelberger factorisations (see Definition 7.12); this is a
nonabelian analogue of a version of Stickelberger’s factorisation of abelian Gauss sums. A somewhat
analogous (but much simpler) framework over R is described in Section 8.

In Section 9, we recall the definition and properties of the Stickelberger pairing. We also give a
new character-theoretic description of this pairing (see Proposition 9.2) as well as an application of this
description (see Corollary 9.4).

We construct a K -theoretic version of the transpose Stickelberger homomorphism in Section 10, and
we also briefly describe an alternative approach to defining the Stickelberger pairing and establishing its
basic properties. In Section 11 we construct transpose Stickelberger homomorphisms 2t

a on modified
narrow ray class groups Cl′a

+
(3(OF G)). These are used in Section 12 to prove Theorem 6.6, thereby

completing the proof of the first part of Theorem C.
In Section 13 we prove Proposition A, and we explain how a weaker form of Conjecture B implies that

every realisable class in Cl(OF G) may be realised (in infinitely many ways) by rings of integers of tame
field (and not merely Galois algebra) G-extensions of F . This proves the second part of Theorem C.

We give a proof of Theorem D in Section 14. In Section 15, we describe work of Neukirch on the
solution to an embedding problem that is required for the proof of Theorem E. This proof is completed in
Section 16 via showing that a suitable variant of Conjecture B holds for a large class of soluble groups
(see Definition 16.1 and Theorems 16.3 and 16.4).

1. Notation and conventions

For any field L , we write Lc for an algebraic closure of L , and we set

�L := Gal(Lc/L).

If L is a number field or a nonarchimedean local field (by which we shall always mean a finite extension
of Qp for some prime p), then OL denotes the ring of integers of L . If L is an archimedean local field,
then we adopt the usual convention of setting OL = L .

Throughout this paper, F will denote a number field. For each place v of F , we fix an embedding
Fc
→ Fc

v , and we view �Fv as being a subgroup of �F via this choice of embedding. We write Iv for
the inertia subgroup of �Fv when v is finite.

The symbol G will always denote a finite group upon which �F acts trivially. If H is any finite group,
we write Irr(H) for the set of irreducible Fc-valued characters of H and RH for the corresponding ring
of virtual characters. We write 1H (or simply 1 if there is no danger of confusion) for the trivial character
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in RH . If h ∈ H , then we write c(h) for the conjugacy class of h in H and C(H) for the set of conjugacy
classes of H . We denote the derived subgroup of H by H ′.

If L is a number field or a local field, and 0 is any group upon which �L acts continuously, we identify
0-torsors over L (as well as their associated algebras, which are Hopf–Galois extensions associated
to A0 := (Lc0)�L ) with elements of the set Z1(�L , 0) of 0-valued continuous 1-cocycles of �L (see
[Serre 1997, I.5.2] and Section 2 below). If π ∈ Z1(�L , 0), then we write Lπ/L for the corresponding
Hopf–Galois extension of L , and Oπ for the integral closure of OL in Lπ . (Thus Oπ = Lπ if L is an
archimedean local field.) Each such Lπ is a principal homogeneous space (p.h.s.) of the Hopf algebra
Map�L

(0, Lc) of �L -equivariant maps from 0 to Lc. It may be shown that if π1, π2 ∈ Z1(�L , 0),
then Lπ1 ' Lπ2 if and only if π1 and π2 differ by a coboundary. The set of isomorphism classes of
0-torsors over L may be identified with the pointed cohomology set H 1(L , 0) := H 1(�L , 0). We write
[π ] ∈ H 1(L , 0) for the class of Lπ in H 1(L , 0). If L is a number field or a nonarchimedean local field
we write H 1

t (L , 0) for the subset of H 1(L , 0) consisting of those [π ] ∈ H 1(L , 0) for which Lπ/L is at
most tamely ramified. If L is an archimedean local field, we set H 1

t (L ,G)= H 1(L ,G). We denote the
subset of H 1

t (L , 0) consisting of those [π ] ∈ H 1
t (L , 0) for which Lπ/L is unramified at all (including

infinite) places of L by H 1
nr(L , 0). (So, with this convention, if L is an archimedean local field, we have

H 1
nr(L , 0) = 0.) If L is a number field, we write H 1

fnr(F, 0) for the subset of H 1
t (F, 0) consisting of

those [π ] ∈ H 1
t (F, 0) for which Lπ/L is unramified at all finite places of L .

If A is any algebra, we write Z(A) for the centre of A. If A is semisimple, we write

nrd : A×→ Z(A)×, nrd : K1(A)→ Z(A)×

for the reduced norm maps on A× and K1(A) respectively [Fröhlich 1983, Chapter II, §1]. If A is an
R-algebra for some ring R, and R → R1 is an extension of R, we write AR1 := A⊗R R1 to denote
extension of scalars from R to R1.

If S1 and S2 are sets, we sometimes use the notation S1
epi
−→ S2 to denote a surjective map from S1 to S2.

2. Principal homogeneous spaces and resolvends

In this section we shall describe some basic facts concerning principal homogeneous spaces and resolvends.
Throughout this section, the symbol L denotes either a number field or a local field.

Principal homogeneous spaces. [McCulloh 1987, §1; Byott 1998, §1]. Let 0 be any finite group upon
which �L acts continuously on the left, and write Z1(�L , 0) for the set of 0-valued continuous �L

1-cocycles. If π ∈ Z1(�L , 0), then we write π0 for the set 0 endowed with the following modified action
of �L : if

0→ π0, γ 7→ γ

is the identity map on the underlying sets, then

γ ω = π(ω) · γ ω
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for each γ ∈ 0 and ω ∈�L . The group 0 acts on π0 via right multiplication.
We define an associated L-algebra Lπ by

Lπ :=Map�L
(π0, Lc);

this is the algebra of Lc-valued functions on π0 that are fixed under the action of �L . The Hopf algebra

A = AL := (Lc0)�L

acts on Lπ via the rule
(α · a)(γ )=

∑
g∈0

αg · a(γ · g)

for all γ ∈ 0 and α =
∑

g∈0 αg · g ∈ A. The algebra Lπ is a principal homogeneous space (p.h.s. for
short) of the Hopf algebra

B :=Map�L
(0, Lc). (2-1)

It may be shown that every p.h.s. of B is isomorphic to an algebra of the form Lπ for some π , and so
every such p.h.s. may be viewed as being a subset of the Lc-algebra Map(0, Lc). It is easy to check that

Lπ ⊗L Lc
= Lc0 · `0,

where `0 ∈Map(0, Lc) is defined by

`0(γ )=

{
1 if γ = 1,
0 otherwise.

This implies that Lπ is a free, rank one A-module.
The Wedderburn decomposition of Lπ may be described as follows. For any γ ∈ π0, write Stab(γ )

for the stabiliser of γ in �L , and set
L(γ ) := (Lc)Stab(γ ).

Then
Lπ '

∏
�L\π0

L(γ ),

where�L\
π0 denotes the set of�L -orbits of π0, and the product is taken over a set of orbit representatives.

In general, the field L(γ ) is not normal over L . However, if �L acts trivially on 0, then Z1(�L , 0)=

Hom(�L , 0), and for each γ ∈π 0, we have

L(γ )= (Lc)Ker(π)
=: Lπ , (2-2)

with Gal(Lπ/L)' π(�L). In this case, we have that

Lπ '
∏

0/π(�L )

Lπ , (2-3)

and this isomorphism depends only upon the choice of a transversal of π(�L) in 0.
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Remark 2.1. For most of this paper we shall only need to consider the case in which �L acts trivially
on 0; in this situation A= L0, and Lπ is a 0-Galois L-algebra. A notable exception to this will occur in
Section 7, when we take L to be a nonarchimedean local field, and we construct a canonical subextension
of a tame extension Lπ/L (see Definitions 7.4 and 7.6). This canonical subextension is complementary
to the maximal unramified subextension of Lπ/L , and is not usually a Galois algebra extension of L . It
is however, a p.h.s. of a Hopf algebra of the form (2-1) associated to a certain group 0 equipped (as a set)
with a nontrivial �L -action.

Resolvends. [McCulloh 1987, §1; Byott 1998, §2]. Since every p.h.s. of B may be viewed as being a
subset of Map(0, Lc), it is natural to consider the Fourier transforms of elements of Map(0, Lc). These
arise via the resolvend map

r0 :Map(0, Lc)→ Lc0, a 7→
∑
s∈0

a(s)s−1.

The map r0 is an isomorphism of left Lc0-modules, but not of algebras, because it does not preserve
multiplication. It is easy to show that for any a ∈ Map(0, Lc), we have that a ∈ Lπ if and only if
r0(a)ω = r0(a) ·π(ω) for all ω ∈�L . It may also be shown that an element a ∈ Lπ generates Lπ as an A-
module if and only if r0(a) ∈ (Lc0)×. Two elements a1, a2 ∈Map(0, Lc) with r0(a1), r0(a2) ∈ (Lc0)×

generate the same p.h.s. as an A-module if and only if r0(a1)= b · r0(a2) for some b ∈ A×. If a is any
generator of Lπ as an A-module, then a 0-valued �L 1-cocycle that represents the class [π ] of π in the
pointed cohomology set H 1(L , 0) is given by

ω 7→ r0(a)−1
· r0(a)ω.

We define pointed sets (where in each case the distinguished element is afforded by 1∈ A×Lc = (Lc0)×)

H(A) := {α ∈ A×Lc : α
−1
·αω ∈ 0, ∀ω ∈�L} and H(A) := H(A)/0 = {α ·0 : α ∈ H(A)},

and we write r0(a) ∈H(A) for the image in H(A) of r0(a) ∈ H(A). The element r0(a) is referred to
as the reduced resolvend of a. If A is any OL -order in A, then we define H(A) and H(A) in a similar
manner. Hence we have

H(A)= AOLc ∩ H(A) and H(A)= H(A)/0.

Write L t for the maximal, tamely ramified extension of L . We set

Ht(A) := {α ∈ H(A) : αω = α, ∀ω ∈�L t } and Ht(A) := Ht(A)/0 = {α ·0 : α ∈ Ht(A)},

and we define Ht(A) and Ht(A) analogously for any OL -order A in A.
We shall now give a characterisation of the set H(A) that avoids any explicit mention of Galois action.

This is a nonabelian version of a description of H(A) in terms of primitive elements of quotients of
groups of units in Hopf algebras in the abelian case [Agboola and Burns 2006, Theorem 6.4].
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In order to do this, we first note that there are �L -equivariant homomorphisms of algebras

1, i1, i2 : ALc → ALc ⊗Lc ALc

induced by the maps
1(γ )= γ ⊗ γ, i1(γ )= γ ⊗ 1, i2(γ )= 1⊗ γ

for γ ∈ 0.
We define a map of pointed sets

P : A×Lc → (ALc ⊗Lc ALc)×, x 7→1(x) · [i1(x) · i2(x)]−1.

It is easy to verify that

P(x1 · x2)=1(x1) ·P(x2) · [i1(x1) · i2(x1)]
−1.

As P(γ ) = 1 for each γ ∈ 0, it follows that P induces a map of pointed sets (which we denote by the
same symbol)

P : A×Lc/0→ (ALc ⊗Lc ALc)×.

Theorem 2.2. Let x ∈ A×Lc . Then x ∈ H(A) if and only if P(x) ∈ (A⊗L A)×.

Proof. Suppose that x ∈ H(A). Then if ω ∈�L , we have

xω = x · γω

for some γω ∈ 0. Hence

[1(x)(i1(x)i2(x))−1
]
ω
=1(x)(γω⊗ γω)[i1(x)(γω⊗ 1)i2(x)(1⊗ γω)]−1

=1(x)(γω⊗ γω)(1⊗ γω)−1i2(x)−1(γω⊗ 1)−1i1(x)−1

=1(x)(γω⊗ γω)(1⊗ γω)−1(γω⊗ 1)−1i2(x)−1i1(x)−1

=1(x)[i1(x)i2(x)]−1.

This shows that
P(x) ∈ [(ALc ⊗Lc ALc)×]�L = (A⊗L A)×.

Suppose conversely that P(x) ∈ (A⊗L A)×, and that xω = x · uω for each ω ∈�L . We wish to show
that uω ∈ 0. As the maps 1, i1, and i2 are �L -equivariant, we have that

1(x)ω =1(x) ·1(uω), i1(x)ω = i1(x) · i1(uω), i2(x)ω = i2(x) · i2(uω),

and a straightforward computation shows that

P(x)ω =1(x) ·P(uω) · [i1(x) · i2(x)]−1.

As P(x)= P(x)ω, this implies that P(uω)= 1, i.e., that

1(uω)= i1(uω) · i2(uω).
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It now follows that uω ∈ 0 via an argument identical to that given in [Agboola and Burns 2006, Theo-
rem 6.4]. �

Let F be a number field. Our next result shows that the pointed set H(AF ) of resolvends satisfies a
Hasse principle.

Proposition 2.3. Let F be a number field, and suppose that x ∈ (Fc0)×. Then x ∈ H(AF ) if and only if
locv(x) ∈ H(AFv ) for every finite place v of F.

Proof. We first observe that the map P commutes with localisation, i.e., for each finite place v of F ,
we have

locv(P(x))= P(locv(x)) (2-4)

for all x ∈ (Fc0)×. Hence we have

x ∈ H(AF )⇐⇒ P(x) ∈ (AF ⊗F AF )
× (from Theorem 2.2)

⇐⇒ locv(P(x)) ∈ (AFv ⊗Fv AFv )
× for each finite v

⇐⇒ P(locv(x)) ∈ (AFv ⊗Fv AFv )
× for each finite v (from (2-4))

⇐⇒ locv(x) ∈ H(AFv ) for each finite v (from Theorem 2.2). �

Remark 2.4. It is also possible to give a proof of Proposition 2.3 directly from the definition of H(AF ).
The standard such proof that was known to the authors is valid only for abelian groups 0; we are grateful
to an anonymous referee for explaining how this proof may be modified so as to hold for arbitrary finite
groups.

Suppose that x ∈ A×Fc is such that, for each finite place v of F , we have locv(x) ∈ H(AFv ). We wish
to show that x ∈ H(AF ).

Let E/F be any finite Galois extension such that �E fixes x . Then the action of �F on x factors
through the action of the finite group D := Gal(E/F). Hence, to prove the desired result, it suffices to
show that for any δ ∈ D, we have xδ = x · γδ, with γδ ∈ 0.

Let GF denote the subgroup of �F generated by the subgroups �Fv as v runs over the finite places
of F . As each element of �F is conjugate to an element of �Fv for some v, it follows via the Chebotarev
density theorem that the image GF of GF in D has nontrivial intersection with every conjugacy class
of D. A lemma of Jordan now implies that GF must be equal to the whole of D [Serre 2003, p. 435,
Theorem 4’]. The result we seek now follows at once.

3. Resolvends and cohomology

Recall that F is a number field and G is a finite group upon which �F acts trivially. In this section, we
explain, following [McCulloh 1987, §2], how resolvends may be used to compute discriminants of rings
of integers of G-Galois extensions of F , and to describe certain Galois cohomology groups.
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For each [π ] ∈ H 1(F,G), the standard trace map

Tr :Map(G, Fc)→ Fc

induces a trace map

Tr : Fπ → F

via restriction. This in turn yields an associated, nondegenerate bilinear form (a, b) 7→ Tr(ab) on Fπ . If
M is any full OF -lattice in Fπ , then we set

M∗ := {b ∈ Fπ | Tr(b ·M)⊆ OF } and disc(Oπ/OF ) := [O∗π : Oπ ]OF ,

where the symbol [− : −]OF denotes the OF -module index. We see from the isomorphism (2-3) that
we have

disc(Oπ/OF )= disc(OFπ /OF )
[G:π(�F )],

where disc(OFπ /OF ) denotes the usual discriminant of the number field Fπ over F , and so it follows that

disc(Oπ/OF )= OF

if and only if Fπ/F is unramified at all finite places of F .

Definition 3.1. We write [−1] for the maps induced on Map(G, Fc) and FcG by the map g 7→ g−1 on G.

Lemma 3.2. Suppose that a, b ∈ Fπ for some [π ] ∈ H 1(F,G). Then

rG(a) · rG(b)[−1]
=

∑
s∈G

Tr(asb) · s−1
∈ FG.

Proof. This may be verified via a straightforward calculation (see, e.g., [McCulloh 1983, (1.6)], and note
that the calculation given there is valid for an arbitrary finite group G). �

Corollary 3.3. Suppose that Fπ = FG · a. Then we have:

(i) rG(a)−1
= rG(b)[−1], where b ∈ Fπ satisfies Tr(asbt)= δs,t .

(ii) (OF G · a)∗ = OF G · b.

(iii) [(OF G · a)∗ : OF G · a]OF = [OF G : OF G · rG(a) · rG(a)[−1]
]OF .

(iv) rG(a) ∈ (OFc G)× if and only if Oπ = OF G · a and disc(Oπ/OF )= OF .

Analogous results hold if F is replaced by Fv for any finite place v of F.

Proof. Exactly as in [McCulloh 1987, 2.10 and 2.11]. �

Lemma 3.4. Suppose that L is either a number field or a local field. Then

(i) H 1(L , (LcG)×)= 1,

(ii) H 1(L , Z(LcG)×)= 1.
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Proof. For each χ ∈ Irr(G), write d(χ) for the degree of χ , and Md(χ)(Lc) for the algebra of d(χ)×d(χ)-
matrices over Lc. Then the Wedderburn isomorphism of algebras

LcG '
⊕

χ∈Irr(G)

Md(χ)(Lc)

yields isomorphisms of groups

(LcG)× '
⊕

χ∈Irr(G)

GLd(χ)(Lc), Z(LcG)× '
⊕

χ∈Irr(G)

(Lc)×.

Let χ1, . . . , χm ∈ Irr(G) be a set of representatives of �L\ Irr(G). Write Stab(χi ) for the stabiliser of χi

in �L , and set L[χi ] := (Lc)Stab(χi ). There are isomorphisms of �L -modules

(LcG)× '
m⊕

i=1

Ind�L
�L[χi ]

(GLd(χi )(L
c)), Z(LcG)× '

m⊕
i=1

Ind�L
�L[χi ]

(Lc)×.

We have

H 1(L , (LcG)×)' H 1(L ,
m⊕

i=1

Ind�L
�L[χi ]

GLd(χi )(L
c))'

m⊕
i=1

H 1(L[χi ],GLd(χi )(L
c))= 1,

where the second isomorphism follows via Shapiro’s lemma and the final equality is a standard consequence
of Hilbert’s Theorem 90. This proves (i). The proof of (ii) is very similar. �

Recall that two pointed sets S1 and S2 are said to be isomorphic if there is a bijection of sets

f : S1→ S2

with f (x1)= f (x2), where xi is the distinguished element of Si , (i = 1, 2).
A sequence

· · · → Si−1
fi−→ Si

fi+1−−−→ Si+1→ · · ·

of pointed sets is said to be exact if there is an equality of sets

Im( fi )= f −1
i+1(xi+1),

where xi+1 is the distinguished element of Si+1.

Theorem 3.5. (1) There is an exact sequence of pointed sets

1→ G→ (FG)×→H(FG)→ H 1(F,G)→ 1. (3-1)

(2) For each finite place v of F , recall that H 1
nr(Fv,G) denotes the subset of H 1(Fv,G) consisting of

those [πv] ∈ H 1(Fv,G) for which the associated G-Galois extension Fπv/Fv is unramified. Then
there is an exact sequence of pointed sets

1→ G→ (OFvG)
×
→H(OFvG)→ H 1

nr(Fv,G)→ 1. (3-2)
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(3) There are exact sequences of pointed sets

1→ G→ (FG)×→Ht(FG)→ H 1
t (F,G)→ 1, (3-3)

and

1→ G→ (FvG)×→Ht(FvG)→ H 1
t (Fv,G)→ 1 (3-4)

for each place v of F.

Proof. When G is abelian, parts (a) and (b) are proved in [McCulloh 1987, p. 268 and p. 273] by
considering the �F and �Fv -cohomology of the exact sequences of abelian groups

1→ G→ (FcG)×→ (FcG)×/G→ 1 (3-5)

and

1→ G→ (OFc
v
G)×→ (OFc

v
G)×/G→ 1

respectively. If G is nonabelian, and these exact sequences are viewed as exact sequences of pointed sets
instead, then a similar proof of part (a) also holds, as is pointed out in [McCulloh 1987, p. 268]: taking
�F -cohomology of the exact sequence (3-5) of pointed sets yields an exact sequence

1→ G→ (FG)×→H(FG)→ H 1(F,G)→ H 1(F, (FcG)×), (3-6)

and since H 1(F, (FcG)×)= 1 (see Lemma 3.4(i)), (3-1) immediately follows.
Alternatively, we could also argue directly (as is done in [McCulloh 1987]) that the map H(FG)→

H 1(F,G) in (3-6) is surjective. Let us briefly describe the argument given in [McCulloh 1987]. Suppose
that [π ] ∈ H 1(F,G), and let a ∈ Fπ be a normal basis generator of Fπ/F . Set α = rG(a); then the coset
α ·G ∈H(FG) lies in the preimage of [π ], and so it follows that (3-6) is indeed surjective on the right,
as claimed.

Part (b) follows from Corollary 3.3(iv) (cf. the proof of (2.12) on [McCulloh 1987, p. 273]).
The proof of (c) is very similar to that of (a). Let F t and F t

v denote the maximal tamely ramified
extensions of F and Fv respectively, and set �t

F := Gal(F t/F), �t
Fv := Gal(F t

v/Fv). Then (c) follows
via considering the �t

F and �t
Fv -cohomology of the exact sequences of pointed sets

1→ G→ (F t G)×→ (F t G)×/G→ 1

and

1→ G→ (F t
vG)×→ (F t

vG)×/G→ 1

respectively, using the direct argument given in [McCulloh 1987, p. 268] that we have described above. �

Suppose that L is a number field or a local field. Recall that Z(LG) denotes the centre of LG. Before
stating our next result, we note that the reduced norm map

nrd : (LG)×→ Z(LG)×
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induces an injection Gab
→ Z(LG)×. (More explicitly, if we identify Z(LcG)× with

∏
χ∈Irr(G)(L

c)× via
the Wedderburn decomposition of LcG (see the proof of Lemma 3.4), then the injection Gab

→ Z(LG)×

is induced by the map G→ Z(LcG)× given by g 7→ [(det(χ))(g)]χ , where det(χ) is the abelian character
of G defined below in Definition 4.3. See also (4-5).) In what follows, we shall identify Gab with its
image in Z(LG)× under this map. We set

H(Z(LG)) := {α ∈ Z(LcG)× : α−1
·αω ∈ Gab, ∀ω ∈�L},

H(Z(LG)) := H(Z(LG))/Gab
= {α ·Gab

: α ∈ H(Z(LG))}.

We define H(Z(A)) and H(Z(A)) analogously for any OL -order A in LG.

Proposition 3.6. Let L be a number field or a local field. Then there is an exact sequence of abelian
groups:

1→ Gab
→ Z(LG)×→H(Z(LG))→ H 1(L ,Gab)→ 1. (3-7)

Proof. This follows at once from taking �L cohomology of the exact sequence of abelian groups

1→ Gab
→ Z(LcG)×→ Z(LcG)×/Gab

→ 1,

arising from the injection Gab
→ Z(LcG)× induced by the reduced norm map nrd : (LG)×→ Z(LG)×

as described above, and noting that H 1(�L , Z(LcG)×)= 1, via Lemma 3.4(ii). �

It is easy to see that the group (LG)× acts on the pointed set H(LG) by left multiplication. Write
(LG)×\H(LG) for the quotient set afforded by this action. It follows from Theorem 3.5 and Proposition 3.6
that there are isomorphisms

H 1(L ,G)−→∼ (LG)×\H(LG) and H 1(L ,Gab)−→∼ Z(LG)×\H(Z(LG))

of pointed sets and abelian groups respectively, and that the following diagram commutes:

H 1(L ,G)
∼
−−−→ (LG)×\H(LG)y y nrd

H 1(L ,Gab)
∼
−−−→ Z(LG)×\H(Z(LG)).

(3-8)

(Here the left-hand vertical arrow is induced by the quotient map G→ Gab, while the right-hand vertical
arrow is induced by the reduced norm map nrd : (LcG)×→ Z(LcG)×. )

We shall need the following result in Section 6.

Proposition 3.7. Let F be a number field. For each finite place v of F , the image of the map

nrd : (OFvG)
×
\H(OFvG)→ Z(OFvG)

×
\H(Z(OFvG))

of pointed sets is in fact a group.
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Proof. Just as in the case of (3-8), we see from the exact sequences (3-2) and (3-7) that there is a
commutative diagram

H 1
nr(Fv,G)

∼
−−−→ (OFvG)

×
\H(OFvG)y y nrd

H 1
nr(Fv,Gab) −−−→ Z(OFvG)

×
\H(Z(OFvG))y ∩ y ∩

H 1(Fv,Gab)
∼
−−−→ Z(FvG)×\H(Z(FvG)).

(3-9)

The middle horizontal arrow of this commutative diagram is therefore injective, and its image is a
subgroup of Z(OFvG)

×
\H(Z(OFvG)). Hence, to prove the desired result, it suffices to show that the

map H 1
nr(Fv,G)→ H 1

nr(Fv,Gab) is surjective. This is in turn an immediate consequence of the fact that
the Galois group Gal(Fnr

v /Fv) is profinite free on a single generator. �

4. Determinants and character maps

In this section we shall describe how determinants of resolvends may be represented in terms of certain
character maps.

Let L be a number field or a local field.
Suppose that 0 is any finite group upon which the absolute Galois group �L of L acts (possibly

trivially). Then �L also acts on the ring R0 of virtual characters of 0 according to the following rule: if
χ ∈ Irr(0) and ω ∈�L , then, for each γ ∈ 0, we have χω(γ )= ω(χ(ω−1(γ ))).

We begin by recalling some well-known facts and definitions concerning determinant maps (see, e.g.,
[Fröhlich 1983, Chapter II; 1984, Chapter I]).

Definition 4.1. For each element a of GLn(LcG), we define an element

Det(a) ∈ Hom(RG, (Lc)×)' Z(LcG)× (4-1)

in the following way: if T is any representation of G over Lc with character φ, then we set

Det(a)(φ) := det(T (a)).

It may be shown that this definition depends only upon the character φ, and not upon the choice of
representation T . The map

Det : GLn(LcG)→ Hom(RG, (Lc)×)

is �L -equivariant, and so induces a map

Det : GLn(LG)→ Hom�L (RG, (Lc)×).

Remark 4.2. The map Det in (4-1) above is essentially the same as the reduced norm map. Let

nrd : (LcG)×→ Z(LcG)× (4-2)
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denote the reduced norm. Then (4-2) induces an isomorphism

nrd : K1(LcG)−→∼ Z(LcG)× ' Hom(RG, (Lc)×) (4-3)

(see, e.g., [Curtis and Reiner 1987, Theorem 45.3]). Suppose now that φ is any Lc-valued character of G
and let a ∈ (LcG)×. Then we have that

Det(a)(φ)= nrd(a)(φ)

(see [Fröhlich 1984, Chapter I, Proposition 2.7]).

Definition 4.3. Suppose that χ ∈ Irr(G). We define an abelian character det(χ) of G as follows. Let T
be any representation of G over Lc affording χ . For each element g ∈ G, we set

(det(χ))(g)= Det(T (g)).

Then det(χ) is independent of the choice of T , and may be viewed as being a character of Gab. We extend
det to a homomorphism RG→ (Gab)∧, where (Gab)∧ denotes the group of characters of Gab, by defining

det
( ∑
χ∈Irr(G)

aχχ
)
=

∏
χ∈Irr(G)

(det(χ))aχ ,

and we set

AG := Ker(det).

Hence we have an exact sequence of groups

0→ AG→ RG
det
−→ (Gab)∧→ 0. (4-4)

Applying the functor Hom(−, (Lc)×) to (4-4), we obtain an exact sequence

0→ Gab
→ Hom(RG, (Lc)×)

rag
−→Hom(AG, (Lc)×)→ 0, (4-5)

which is surjective on the right because (Lc)× is divisible. It follows that there are �L -equivariant
isomorphisms

Hom(AG, (Lc)×)' Hom(RG, (Lc)×)/Gab
' Z(LcG)×/Gab. (4-6)

In what follows, we shall sometimes identify Hom(AG, (Lc)×) with Z(LcG)×/Gab via (4-6) without
explicit mention.

Taking �L -cohomology of (4-5) yields an exact sequence

0→ Gab
→ Hom�L (RG, (Lc)×)

rag
−→Hom�L (AG, (Lc)×)→ H 1(L ,Gab)→ 1, (4-7)

which is surjective on the right via Lemma 3.4(ii).
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Definition 4.4. Let Rs
G denote the (additive) subgroup of RG generated by the symplectic characters

of G. Thus, Rs
G is generated by the irreducible symplectic characters of G, together with elements of the

form χ +χ , where χ ∈ RG and χ denotes the complex conjugate of χ . All virtual characters lying in Rs
G

are real-valued.
If F is a number field, and v is a real place of F , we write

Hom+�Fv
(RG, (Fc

v )
×)

for those elements f ∈ Hom�Fv
(RG, (Fc

v )
×) for which f (η) > 0 for all η ∈ Rs

G . Note that if f ∈
Hom�Fv

(RG, (Fc
v )
×) and χ ∈ RG , then we automatically have

f (χ +χ)= f (χ) · f (χ) > 0.

Hence in fact f ∈Hom+�Fv
(RG, (Fc

v )
×) if and only if f is positive on all irreducible, symplectic characters

of G. In particular, if G has no nontrivial irreducible symplectic characters (e.g., if |G| is odd), then we have

Hom+�Fv
(RG, (Fc

v )
×)= Hom�Fv

(RG, (Fc
v )
×).

We write Z(FvG)×+ for the image of Hom+�Fv
(RG, (Fc

v )
×) in Z(FvG)× under the isomorphism

Hom�Fv
(RG, (Fc

v )
×)−→∼ Z(FvG)×.

Proposition 4.5. Let F be a number field. For each place v of F , we write

Det : (Fc
vG)×→ Hom(RG, (Fc

v )
×)' Z(Fc

vG)× (4-8)

for the determinant homomorphism afforded by Definition 4.1.

(1) If v is real, then (4-8) induces an isomorphism

Det((FvG)×)' Hom+�Fv
(RG, (Fc

v )
×)' Z(FvG)×

+
. (4-9)

(2) If v is finite or complex, then the map (4-8) induces isomorphisms

Det((FvG)×)' Hom�Fv
(RG, (Fc

v )
×)' Z(FvG)×, (4-10)

Det(H(FvG))' Hom�Fv
(AG, (Fc

v )
×). (4-11)

(3) If v is finite of residue characteristic coprime to |G|, so OFvG is an OFv -maximal order in FvG, then
(4-8) induces isomorphisms

Det((OFvG)
×)' Hom�Fv

(RG, (OFc
v
)×)' Z(OFvG)

×, (4-12)

Det(H(OFvG))' Hom�Fv
(AG, (OFc

v
)×). (4-13)
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Proof. The isomorphisms (4-9), (4-10) and (4-12) are standard and are explained in e.g., [Fröhlich 1983,
Chapter II, §1].

Suppose that v is either finite or complex. Theorem 3.5(a) and (4-10) yield the commutative diagram

G
⊆
−−−→ (FvG)× −−−→ H(FvG)

epi
−−−→ H 1(Fv,G)y

y Det

y Det

y epi

Gab ⊆
−−−→ Det((FvG)×) −−−→ Det(H(FvG))

epi
−−−→ H 1(Fv,Gab)∥∥∥ y∼

y ∥∥∥
Gab ⊆
−−−→ Hom�Fv

(RG, (Fc
v )
×) −−−→ Hom�Fv

(AG, (Fc
v )
×)

epi
−−−→ H 1(Fv,Gab),

(4-14)

and this implies that the map

Det(H(FvG))→ Hom�Fv
(AG, (Fc

v )
×)

is an isomorphism, which proves (4-11).
Suppose now that v is finite of residue characteristic coprime to |G|. In order to establish (4-13), we

first observe that applying the functor Hom(−, (OFc
v
)×) to the exact sequence (4-4) yields a sequence

0→ Gab
→ Hom(RG, (OFc

v
)×)→ Hom(AG, (OFc

v
)×)→ 1 (4-15)

which is surjective on the right because (OFc
v
)× is divisible. Taking �Fv -cohomology of (4-15) yields

0→ Gab
→ Hom�Fv

(RG, (OFc
v
)×)→ Hom�Fv

(AG, (OFc
v
)×)→

→ H 1(Fv,Gab) f
−→ H 1(Fv,Hom(RG, (OFc

v
)×)). (4-16)

Now since v does not divide the order of G, Z(OFvG) is an OFv -maximal order in (the split algebra)
Z(FvG) and

Z(OFc
v
G)× ' Hom(RG, (OFc

v
)×)

(see (4-12)). Suppose that π ∈Ker( f ). Then there exists u ∈ Z(OFc
v
G)× such that uω ·u−1

= π(ω) for all
ω ∈�Fv . This implies that u|G

ab
|
∈ Z(OFvG)

×. As v -|Gab
| and Z(OFvG) is a maximal order, it follows

that u ∈ Z(OFnr
v

G)×, and so π ∈ H 1
nr(Fv,Gab). Hence there is an exact sequence

0→ Gab
→ Hom�Fv

(RG, (OFc
v
)×)→ Hom�Fv

(AG, (OFc
v
)×)→ H 1

nr(Fv,Gab). (4-17)

We recall also (see the proof of Proposition 3.7) that the natural map H 1
nr(Fv,G)→ H 1

nr(Fv,Gab) is
surjective because the group Gal(Fnr

v /Fv) is profinite free on a single generator. Theorem 3.5(b) together
with (4-12) and (4-17) now yield the following commutative diagram:
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G
⊆
−−−→ (OFvG)

×
−−−→ H(OFvG)

epi
−−−→ H 1

nr(Fv,G)y
y Det

y Det

y epi

Gab ⊆
−−−→ Det((OFvG)

×) −−−→ Det(H(OFvG))
epi
−−−→ H 1

nr(Fv,Gab)∥∥∥ y∼
y ∥∥∥

Gab ⊆
−−−→ Hom�Fv

(RG, (OFc
v
)×) −−−→ Hom�Fv

(AG, (OFc
v
)×) −−−→ H 1

nr(Fv,Gab).

(4-18)

It follows from (4-18) that the third row of this diagram is surjective on the right. Since Det(H(OFvG))
is a subgroup of Hom�Fv

(AG, (OFc
v
)×), we see that the map

Det(H(OFvG))→ Hom�Fv
(AG, (OFc

v
)×)

is an isomorphism. This establishes (4-13). �

If on the other hand v is finite and v | |G|, so OFvG is not an OFv -maximal order in FvG, then we have

Det(H(OFvG))⊆ Hom�Fv
(AG, (Oc

Fv )
×),

but this inclusion is not in general an equality. If a is any integral ideal of OF , set

Ua(OFc
v
) := (1+ aOFc

v
)∩ (OFc

v
)×,

and write Uα(OFc
v
) instead of Ua(OFc

v
) when a= αOF . We shall need the following result of A. Siviero

(which is a variant of [McCulloh 1987, Theorem 2.14]) in Section 11.

Proposition 4.6 (A. Siviero). Let v be a finite place of F. Then if N ∈ Z>0 is divisible by a sufficiently
large power of |G|, we have

Hom�Fv
(AG,UN (OFc

v
))⊆ Det(H(OFvG))⊆ Hom�Fv

(AG, (OFc
v
)×).

Proof. This is shown in [Siviero 2013, Theorem 5.1.10] when G is abelian, and the proof for arbitrary
finite G is quite similar. As the reference is not widely accessible, we describe the argument.

If v -|G|, then Proposition 4.5(iii) implies that we have

Hom�Fv
(AG, O×Fc

v
)= Det(H(OFvG))= Hom�Fv

(AG, (OFc
v
)×),

and so it follows that the desired result holds in this case. We may therefore suppose that v | |G|.
We first observe that the group

Hom�Fv
(AG, (OFc

v
)×)

Det((OFvG)×/G)

is annihilated by |Gab
|[Det(M×

v ) : Det(OFvG)
×
], where Mv denotes any OFv -maximal order in FvG

containing OFvG. Since AG is finitely generated, it follows that Det((OFvG)
×/G) is of finite index in
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Hom�Fv
(AG, (OFc

v
)×), and so is an open subgroup of Hom�Fv

(AG, (OFc
v
)×). The result now follows

from the fact that, because v | |G|, the collection of groups

{Hom�Fv
(AG,U|G|n (OFc

v
)) | n ≥ 0}

is a fundamental system of neighbourhoods of the identity of Hom�Fv
(AG, (OFc

v
)×). �

Remark 4.7. When G is abelian, it follows from [McCulloh 1987, Theorem 2.14] that we may take
N = |G|2 in Proposition 4.6.

We shall also require the following related result in Section 15.

Proposition 4.8. Let 0 be a finite group with an action of �F . Suppose that v | |0| is a finite place of F ,
and write pv for the maximal ideal of OFv . Then for all sufficiently large n, we have

Hom�Fv
(A0,Upn

v
(OFc

v
))⊆ rag[Hom�Fc

v
(R0, (OFc

v
)×)].

Proof. The proof of this is very similar to that of Proposition 4.6. We observe that

|0ab
| ·Hom�Fc

v
(A0, (OFc

v
)×)⊆ rag[Hom�Fc

v
(R0, (OFc

v
)×)],

which implies that rag[Hom�Fc
v
(R0, (OFc

v
)×)] is an open subgroup of Hom�Fc

v
(A0, (OFc

v
)×) because A0

is finitely generated. The desired result now follows since the collection of groups {Hom�Fv
(A0,Upn

v
(OFc

v
)) |

n ≥ 0} is a fundamental system of neighbourhoods of the identity of Hom�Fc
v
(A0, (OFc

v
)×). �

5. Twisted forms and relative K -groups

Recall that G is a finite group upon which �F acts trivially. In this section, we shall recall some basic
facts concerning categorical twisted forms and relative algebraic K -groups. The reader may consult
[Agboola and Burns 2006; Swan 1968, Chapter 15] for some of the details that we omit.

Twisted forms. Suppose that R is a Dedekind domain with field of fractions L of characteristic zero. (For
notational convenience, we shall sometimes also allow ourselves to take R = L .) Let A be any R-algebra
which is finitely generated as an R-module and which satisfies A⊗R L ' LG.

Definition 5.1. Let3 be any extension of R, and write P(A) and P(A⊗R3) for the categories of finitely
generated, projective A and A⊗R 3-modules respectively. A categorical 3-twisted A-form (or twisted
form for short) is an element of the fibre product category P(A)×P(A⊗R3) P(A), where the fibre product
is taken with respect to the functor P(A)→ P(A⊗R 3) afforded by extension of scalars. In concrete
terms therefore, a twisted form consists of a triple (M, N ; ξ), where M and N are finitely generated,
projective A-modules, and

ξ : M ⊗R 3−→
∼ N ⊗R 3

is an isomorphism of A⊗R 3-modules.
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Example 5.2. If Fπ/F is any G-extension and Lπ ⊆ Fπ is any nonzero projective OF G-module, then
(Lπ , OF G; rG) is a categorical Fc-twisted OF G-form. In particular, if Fπ/F is a tame G-extension,
then (Oπ , OF G; rG) is a categorical Fc-twisted OF G-form. Similarly, if v is any place of F , then (still
assuming Fπ/F to be tame) (Oπ,v, OFvG; rG) is a categorical Fc

v -twisted OFvG-form. We shall mainly
be concerned with twisted forms of these types in this paper.

We write K0(A,3) for the Grothendieck group associated to the fibre product category P(A)×P(A⊗R3)

P(A), and we write [M, N ; ξ ] for the isomorphism class of the twisted form (M, N ; ξ) in K0(A,3).
The group K0(A,3) is often called the relative K -group with respect to the homomorphism A→ 3.
Recall [Swan 1968, Theorem 15.5] that there is a long exact sequence of relative algebraic K -theory:

K1(A)→ K1(A⊗R 3)
∂1
A,3
−−−→ K0(A,3)

∂0
A,3
−−−→ K0(A)→ K0(A⊗R 3). (5-1)

The first and last arrows in this sequence are afforded by extension of scalars from R to 3. The map
∂0
A,3 is defined by

∂0
A,3([M, N ; λ])= [M] − [N ].

The map ∂1
A,3 is defined by first recalling that the group K1(A⊗R 3) is generated by pairs of the form

(V, φ), where V is a finitely generated, free, A⊗R3-module, and φ : V −→∼ V is an A⊗R3-isomorphism.
If T is any projective A-submodule of V satisfying T ⊗A3' V , then we set

∂1
A,3(V, φ)= [T, T ;φ].

It may be shown that this definition is independent of the choice of T .
We shall often ease notation and write e.g., ∂0 rather than ∂0

A,3 when no confusion is likely to result.

Idelic description and localisation. [Fröhlich 1983, Chapter II,§1]. Let us retain the notation established
above, and suppose in addition that we now work over a number field F . The reduced norm map

nrd : (FG)×→ Z(FG)×

induces isomorphisms

K1(FG)' nrd(K1(FG))' nrd((FG)×)' Det((FG)×)⊆ Z(FG)× (5-2)

and
K1(FvG)' nrd(K1(FvG))' nrd((FvG)×)' Det((FvG)×)⊆ Z(FvG)× (5-3)

for each place v of F . In general the natural map K1(Av)→ K1(FvG) is not injective, and so the reduced
norm map

nrd : K1(Av)→ Z(Av)×

is not an isomorphism (although it is surjective if Av is an OFv -maximal order in FvG). If we write
K1(Av)

′ for the image of K1(Av) in K1(FvG), then (5-3) induces isomorphisms

K1(Av)
′
' nrd(K1(Av)

′)' nrd((Av)×)' Det(A×v ). (5-4)
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We shall make frequent use of the identifications (5-2), (5-3) and (5-4) (as well as those afforded by
Proposition 4.5) in what follows, sometimes without explicit mention.

For each place v of F , we write

locv : K1(FG)→ K1(FvG)

for the obvious localisation map.

Definition 5.3. We define the group of ideles J (K1(FG)) of K1(FG) to be the restricted direct product
over all places v of F of the groups Det(FvG)× ' K1(FvG) with respect to the subgroups Det(OFvG)

×.
We define the group of finite ideles J f (K1(FG)) in a similar manner but with the restricted direct product
taken over all finite places v of F .

If E is any extension of F , then the homomorphism

Det(FG)×→ J (K1(FG))×Det(EG)×, x 7→ ((locv(x))v, x−1)

induces a homomorphism

1A,E : Det(FG)×→
J (K1(FG))∏
v Det(Av)×

×Det(EG)×.

Theorem 5.4. (a) There is a natural isomorphism

Cl(A)−→∼
J (K1(FG))

Det(FG)×
∏
v Det(Av)×

.

(b) There is a natural isomorphism

hA,E : K0(A, E)−→∼ Coker(1A,E).

Proof. Part (a) is a well-known result of A. Fröhlich [1984, Chapter I]. Part (b) is proved in [Agboola and
Burns 2006, Theorem 3.5]. �

Remark 5.5. If [M, N ; ξ ] ∈ K0(A, E) and M , N are locally free A-modules of rank one (which is the
only case that we shall need in this paper), then hA,E([M, N ; ξ ]) may be described explicitly as follows.

For each place v of F , we choose Av-bases mv of Mv and nv of Nv. We also choose an FG basis
n∞ of NF , as well as an FG-module isomorphism θ : MF −→

∼ NF . Then, for each v, we may write
nv = νv · n∞, with νv ∈ (FvG)×. As θ−1(n∞) is an FG-basis of MF , we may write mv = µv · θ

−1(n∞),
with µv ∈ (FvG)×. Finally, writing θE for the map ME → NE afforded by θ via extension of scalars
from F to E , we have that (ξ ◦ θ−1

E )(n∞) = ν∞ · n∞ for some ν∞ ∈ (EG)×. Then a representative of
hA,E([M, N ; ξ ]) is given by the image of [(µv ·ν−1

v )v, ν∞] in J (K1(FG))×K1(EG), and a representative
of ∂0(hA,E([M, N ; ξ ])) ∈ Cl(A) is given by the image of (µv · ν−1

v )v ∈ J (K1(FG)).

Remark 5.6. As Av = FvG when v is infinite (by convention), we see that

J (K1(FG))∏
v Det(Av)×

'
J f (K1(FG))∏
v -∞Det(Av)×

.
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Hence the infinite places of F in fact play no explicit role on the right-hand sides of the isomorphisms given
by Theorem 5.4, and so these isomorphisms may be formulated using the finite idele group J f (K1(FG))
of K1(FG) instead of the full idele group J (K1(FG)).

Lemma 5.7. Suppose that v is a place of F and that Ev is any extension of Fv. Then there is an
isomorphism

K0(Av, Ev)' Det(EvG)×/Det(Av)×.

Proof. This follows directly from the long exact sequence of relative K -theory (5-1) applied to K0(Av, Ev),
together with (5-3) and (5-4). �

For each place v of F , there is a localisation map on relative K -groups:

λv : K0(A, E)→ K0(Av, Ev), [M, N ; ξ ] 7→ [Mv, Nv, ξv],

where ξv denotes the map obtained from ξ via extension of scalars from E to Ev . It is not hard to check
that, in terms of the descriptions of K0(A, E) and K0(Av, Ev) afforded by Theorem 5.4 and Lemma 5.7,
the map λv is that induced by the homomorphism (which we denote by the same symbol λv)

λv : J (K1(FG))×Det(EG)×→ Det(EvG)×, [(xv)v, x∞] 7→ [xv · locv(x∞)].

Definition 5.8. We define the idele group J (K0(A, E)) of K0(A, E) to be the restricted direct product
over all places v of F of the groups K0(Av, Ev) with respect to the subgroups K0(Av, OEv ).

We define the group of finite ideles J f (K0(A, Fc)) in a similar manner, but with the restricted direct
product taken over all finite places of F .

Proposition 5.9. (a) The homomorphism

λ :=
∏
v

λv : K0(A, E)→
∏
v

K0(Av, Ev)

is injective.

(b) If F has no real places or if G admits no irreducible symplectic characters, then the homomorphism

λ f :=
∏
v -∞

λv : K0(A, E)→
∏
v -∞

K0(Av, Ev)

is injective.

(c) The image of λ lies in the idele group J (K0(A, E)).

Proof. (a) Suppose that α ∈ K0(A, E) lies in the kernel of λ, and let

[(xv)v, x∞] ∈ J (K1(FG))×Det(EG)×

be a representative of α. Then for each v, we have

xv · locv(x∞) ∈ Det(Av)× ⊆ Det(FvG)×. (5-5)
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Since xv ∈Det(FvG)× ⊆ Z(FvG)×, we see that locv(x∞) ∈ Z(FvG)× for each v. Hence x∞ ∈ Z(FG)×,
and so via the Hasse–Schilling norm theorem [Swan 1970, Theorem 7.6; Curtis and Reiner 1981,
Theorem 7.8] we deduce that x∞ ∈ Det(FG)×. Hence α is also represented by the idele

[(locv(x∞))v, x−1
∞
] · [(xv)v, x∞] = [(xv · locv(x∞))v, 1],

and now (5-5) and Theorem 5.4(b) imply that α = 0 in K0(A, E). Therefore λ is injective, as claimed.

(b) The proof of this assertion is virtually identical to that of part (a). Using the same notation as in the
proof of part (a), we see that locv(x∞)∈Det(FvG)×' Z(FvG)× for each finite place v of F . This implies
that x∞ ∈ Z(FG)×. Under our hypotheses, we have that Det(FG)×' Z(FG)×, and so x∞ ∈Det(FG)×.
The remainder of the argument proceeds exactly as in the proof of part (a).

(c) If β = [M, N ; ξ ] ∈ K0(A, E), then for all but finitely many places v, the isomorphism ξv :

M⊗OF Ev−→∼ N⊗OF Ev obtained from ξ via extension of scalars from E to Ev restricts to an isomorphism
M⊗OF OEv −→

∼ N ⊗OF OEv . Hence, for all but finitely many v, we have that λv(β) ∈ K0(Av, OEv ), and
so λ(β) ∈ J (K0(A, E)), as asserted. �

6. Cohomological classes in relative K -groups

Recall that F is a number field and that G is a finite group upon which �F acts trivially. In this section
we shall explain how the set of realisable classes R(OF G) ⊆ Cl(OF G) may be studied via imposing
local cohomological conditions on elements of the relative K -group K0(OF G, Fc).

Definition 6.1. We define maps 9 and 9v (for each place v of F) by

9 =9G : H 1
t (F,G)→ K0(OF G, Fc), [π ] 7→ [Oπ , OF G; rG],

9v =9G,v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ), [πv] 7→ [Oπv , OFvG; rG].

We set
KR(OF G) := Im(9).

Definition 6.2. We define the pointed set of ideles J (H 1
t (F,G)) of H 1

t (F,G) to be the restricted direct
product over all places v of F of the pointed sets H 1

t (Fv,G)with respect to the pointed subsets H 1
nr(Fv,G),

and we write
9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

for the map afforded by the maps 9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v ).

In general, KR(OF G) is not a subgroup of K0(OF G, Fc). However, although H 1
nr(Fv,G) is in general

merely a pointed set and not a group, the following result holds.

Proposition 6.3. Let v be any place of F , and write 9nr
v for the restriction of 9v to H 1

nr(Fv,G). Then
Im(9nr

v ) is a subgroup of K0(OFvG, Fc
v ).

Proof. If v is infinite, then H 1
nr(Fv,G) = 0, and so Im(9nr

v ) = 0. For finite v, the result follows from
Proposition 3.7 and Lemma 5.7. �
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Definition 6.4. We say that an element x ∈ K0(OF G, Fc) is cohomological (respectively cohomological
at v) if x ∈ Im(9) (respectively λv(x) ∈ Im(9v)). We say that x is locally cohomological if x is
cohomological at v for all places v of F . We write

LC(OF G) := λ−1(Im(9 id))

for the subset of K0(OF G, Fc) consisting of locally cohomological elements.

The long exact sequence of relative K -theory (5-1) applied to K0(OF G, Fc) yields a long exact
sequence

K1(OF G)→ K1(FcG) ∂1
−→ K0(OF G, Fc) ∂0

−→Cl(OF G)→ 0, (6-1)

where Cl(OF G) denotes the locally free class group of OF G. We set

ψ := ∂0
◦9,

and we write
R(OF G) := Im(ψ).

McCulloh has conjectured that R(OF G) is always a subgroup of Cl(OF G), and he has proved that
this is true whenever G is abelian [McCulloh 1987, Corollary 6.20]. The following conjecture gives a
precise characterisation of the image KR(OF G) of 9.

Conjecture 6.5. An element of K0(OF G, Fc) is cohomological if and only if it is locally cohomological.
In other words, we have that

KR(OF G)= LC(OF G).

Let us now explain why Conjecture 6.5 implies that R(OF G) is a subgroup of Cl(OF G). In order
to do this, we shall require the following result which is equivalent to a theorem of McCulloh when G
is abelian, and whose proof relies on results contained in [McCulloh 1987; 2011]. Before stating the
result, we remind the reader that

∏
v Im(9nr

v ) is not merely a pointed set, but is in fact a subgroup of
J (K0(OF G, Fc)) (see Proposition 6.3).

Theorem 6.6. Let

9 id : J (H 1
t (F,G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

denote the map of pointed sets given by the composition of the map 9 id with the quotient homomorphism

J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
.

Then the image of 9 id is in fact a group. Hence it follows that

λ[∂1(K1(FcG))] · Im(9 id)

is a subgroup of J (K0(OF G, Fc)).
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This theorem will be proved in Section 12. It implies the following result.

Theorem 6.7. If Conjecture 6.5 holds, then R(OF G) is a subgroup of Cl(OF G).

Proof. It follows from the exact sequence (6-1) that R(OF G) is a subgroup of Cl(OF G) if and only
if ∂1(K1(FcG)) · KR(OF G) is a subgroup of K0(OF G, Fc). However, if Conjecture 6.5 is true, then
Theorem 6.6 implies that

∂1(K1(FcG)) · KR(OF G)= ∂1(K1(FcG)) ·LC(OF G) (6-2)

is the kernel of the homomorphism

K0(OF G, Fc) λ
−→ J (K0(OF G, Fc))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] · Im(9 id)
,

where the last arrow denotes the obvious quotient homomorphism. This implies the desired result. �

We conclude this section with the following result on unramified locally cohomological classes in
K0(OF G, Fc). This will be used in the proofs of Theorem 16.4 and Theorem E of the introduction (see
Section 16 below).

Proposition 6.8. (a) Let L be the maximal, abelian, everywhere unramified (including at all infinite
places) extension of F of exponent |Gab

|, and suppose that y ∈ K0(OF G, Fc) lies in the kernel of the map

β : K0(OF G, Fc) λF−→ J (K0(OF G, Fc))→
J (K0(OF G, Fc))∏

v Im(9nr
v )

.

Then y lies in the kernel of the extension of scalars map

eL : K0(OF G, Fc)→ K0(OL G, Fc).

Hence, if (h+F , |G
ab
|) = 1 (where h+F denotes the narrow class number of F), then L = F , and so β is

injective.

(b) Suppose that G admits no nontrivial irreducible symplectic characters, or that F has no real places,
and that y ∈ K0(OF G, Fc) lies in the kernel of the map

β f : K0(OF G, Fc)
λ f,F
−−−→ J f (K0(OF G, Fc))→

J f (K0(OF G, Fc))∏
v -∞ Im(9nr

v )
.

Then y lies in the kernel of the extension of scalars map

eM : K0(OF G, Fc)→ K0(OM G, Fc),

where M is the maximal, abelian, unramified (at all finite places) extension of F of exponent |Gab
|.

Hence if (hF , |Gab
|)= 1 then L = F , and so β f is injective.

Proof. (a) Suppose that y = [(yv), y∞] lies in the kernel of β, and let E/F be the smallest Galois
extension such that �E fixes y∞. For each place v of F , let w(v) be the place of E afforded by our fixed
choice of embedding Fc

→ Fc
v .
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As y lies in the kernel of β, we have that yv · locv(y∞) ∈ Im(9nr
v ) for each place v. Hence, for each v,

locv(y∞) ∈ H(Z(FvG)) is an unramified Gab-resolvend over Fv (see Proposition 3.6). It follows that, for
each v, the extension Ew(v)/Fv is unramified and that [Ew(v) : Fv] divides |Gab

|. This implies that E/F
is unramified at all places v, and is of exponent dividing |Gab

|. Hence E ⊆ L , and so y∞ ∈ Det(LG)×.
Now since yv · locv(y∞) ∈ Im(9nr

v ) for each place v, we see that in fact yv · locv(y∞) ∈ Det(OLvG)
×.

Hence eL(y) is in the kernel of the localisation map

λL : K0(OL G, Fc)→ J (K0(OL G, Fc)),

and since λL is injective (see Proposition 5.9(a)) it follows that eL(y)= 0.
The final assertion now follows immediately.

(b) This proof is virtually identical to the proof of (a), except that here, because either G admits no
irreducible symplectic characters or F has no real places, we may appeal to the injectivity of the localisation
map λ f,M (see Proposition 5.9(b)) rather than that of λM . �

7. Local extensions I

The goal of this section is to describe how resolvends of normal integral bases of tamely ramified,
nonarchimedean local extensions admit Stickelberger factorisations (see Definition 7.12). This reflects the
fact that every tamely ramified G-extension of Fv is a compositum of an unramified extension of Fv and
a twist of a totally ramified extension of Fv. All of the results in this section are based on unpublished
notes of the second-named author.

For each finite place v of F , we fix a uniformiser $v of Fv , and we write qv for the order of the residue
field of Fv. We fix a compatible set of roots of unity {ζm}, and a compatible set {$ 1/m

v } of roots of $v.
So, if m and n are any two positive integers, then we have (ζmn)

m
= ζn , and ($ 1/mn

v )m =$
1/n
v .

Recall that Fnr
v (respectively F t

v) denotes the maximal unramified (respectively tamely ramified)
extension of Fv. Then

Fnr
v =

⋃
m≥1

(m,qv)=1

Fv(ζm) and F t
v =

⋃
m≥1

(m,qv)=1

Fv(ζm,$
1/m
v ).

The group �nr
v := Gal(Fnr

v /Fv) is topologically generated by a Frobenius element φv which may be
chosen to satisfy

φv(ζm)= ζ
qv
m and φv($

1/m
v )=$ 1/m

v

for each integer m coprime to qv. Our choice of compatible roots of unity also uniquely specifies a
topological generator σv of Gal(F t

v/Fnr
v ) by the conditions

σv($
1/m
v )= ζm ·$

1/m
v and σv(ζm)= ζm
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for all integers m coprime to qv. The group �t
v := Gal(F t

v/Fv) is topologically generated by φv and σv,
subject to the relation

φv · σv ·φ
−1
v = σ

qv
v . (7-1)

While reading the remainder of this section (especially Proposition 7.7 below), it may be helpful for
the reader to keep in mind the statement and proof of the following well-known result which provides
some motivation for a number of subsequent constructions.

Proposition 7.1. Set L := Fv . Let n be a positive integer with (n, qv)= 1, and suppose that µn ⊆ L. Set
E = L($ 1/n

v ), 0 = Gal(E/L)= Z/nZ, and β =
∑n−1

i=0 $
i/n
v . Then OE = OL0 ·β.

Proof. We first observe that plainly OL0 ·β ⊆ OE , as β ∈ OE .
Let χ denote the Kummer character of 0, defined by

χ(γ )=
γ ($

1/n
v )

$
1/n
v

∈ µn

for each γ ∈ 0. Then 0̂ = 〈χ〉, and for each 0≤ j ≤ n− 1, we have(∑
γ

χ j (γ )γ−1
)
·β =

(∑
γ

χ j (γ )γ−1
)
·

( n−1∑
i=0

$ i/n
v

)
=

n−1∑
i=0

(∑
γ

χ j (γ ) ·χ−i (γ ) ·$ i/n
v

)
= n ·$ j/n

v .

As n ∈ O×L , we therefore see that {$ j/n
v }

n−1
j=0 ⊆ OL0 · β, which implies that OE ⊆ OL0 · β. This

implies the desired result. �

Definition 7.2. For each finite place v of F , we define

6v(G) := {s ∈ G | sqv ∈ c(s)}

(recall that c(s) denotes the conjugacy class of s in G). Plainly if s ∈6v(G), then both c(s) and 〈s〉 are
subsets of 6v(G). Let us also remark that if s ∈6v(G), then the order |s| of s is coprime to qv.

Definition 7.3. If s ∈ G, we set

βs :=
1
|s|

|s|−1∑
i=0

$ i/|s|
v ;

note that βs depends only upon |s|, and so in particular we have

βs = βg−1sg

for every g ∈ G. We define ϕv,s ∈Map(G, OFc
v
) by setting

ϕv,s(g)=
{
σ i
v(βs) if g = si ,

0 if g /∈ 〈s〉.
Then

rG(ϕv,s)=

|s|−1∑
i=0

ϕv,s(si )s−i
=

|s|−1∑
i=0

σ i
v(βs)s−i . (7-2)
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We note that for each g ∈ G, we have

rG(ϕv,g−1sg)= g−1
· rG(ϕv,s) · g, (7-3)

and so
Det(rG(ϕv,g−1sg))= Det(rG(ϕv,s)), (7-4)

i.e., the element Det(rG(ϕv,s)) depends only upon the conjugacy class c(s) of s in G. We remark that it
will be shown later as a consequence of properties of the Stickelberger pairing that Det(rG(ϕv,s)) in fact
determines the subgroup 〈s〉 of G up to conjugation (see Remark 4.2 and Proposition 10.5(b)).

We shall see that generators of inertia subgroups of tame Galois G-extensions of Fv lie in 6v(G),
and that the elements ϕv,s for s ∈ G with (|s|, qv) = 1 may be used to construct normal integral basis
generators of tame (and of course totally ramified) Galois G-extensions of Fnr

v .

In order to ease notation, we shall now set L := Fv and O := OL , and we shall drop the subscript v
from our notation for the rest of this section.

Suppose now that Lπ/L is a tamely ramified Galois G-extension of L , corresponding to π ∈

Hom(�t ,G). We are going to describe McCulloh’s [2011] decomposition of resolvends of normal
integral basis generators of Lπ/L (see also [Byott 1998, §6]). When G is abelian, this decomposition is
an analogue of a version of Stickelberger’s factorisation of Gauss sums.

Write s := π(σ) and t := π(φ); then t · s · t−1
= sq , and so s ∈6(G). We define πr , πnr ∈Map(�t ,G)

by setting

πr (σ
mφn)= π(σm)= sm, (7-5)

πnr(σ
mφn)= π(φn)= tn. (7-6)

If ωi ∈�
t (i = 1, 2) with ωi = σ

mi ·φni , then a straightforward calculation using (7-1) shows that

ω1 ·ω2 = σ
m1+m2qn1

·φn1+n2 .

This implies that πnr ∈ Hom(�nr,G). Plainly we have

π(ω)= πr (ω) ·πnr(ω) (7-7)

for every ω=σm
·φn
∈�t . The map πnr ∈Hom(�nr,G) corresponds to an unramified Galois G-extension

Lπnr of L (see Remark 7.10 below for a more detailed discussion of this point). Since Lπnr/L is unramified,
Oπnr is a free OL G-module. Let anr be any normal integral basis generator of this extension. Note that
rG(anr) ∈ H(OG), because Lπnr/L is unramified (see Corollary 3.3(iv)).

Definition 7.4. Let G(πnr) denote the group G with �t -action given by

ω(g)= πnr(ω) · g ·πnr(ω)
−1

for ω ∈�t and g ∈ G.

Lemma 7.5. The map πr is a G(πnr)-valued 1-cocycle of �t .
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Proof. Suppose that ω1, ω2 ∈ �
t . Then since πnr ∈ Hom(�nr,G) and π = πr · πnr, a straightforward

calculation shows that

πr (ω1ω2)= πr (ω1) ·πnr(ω1) ·πr (ω2) ·πnr(ω1)
−1,

and this establishes the desired result. �

Definition 7.6. We write πr G(πnr) for the set G endowed with the following action of �t : for every
g ∈ G and ω ∈�t we have

gω = πr (ω) ·πnr(ω) · g ·πnr(ω)
−1.

Lemma 7.5 implies that if ω1, ω2 ∈�
t , then

g(ω1ω2) = (gω2)ω1 .

We set
Lπr (πnr) :=Map�t (

πr G(πnr), L t).

The algebra (L t G(πnr))
�t

acts on Lπr (πnr) via the rule

(α · a)(h)=
∑
g∈G

αg · a(h · g)

for all h ∈ G and α =
∑

g∈G αg · g ∈ (L t G(πnr))
�t

.

Proposition 7.7. (a) Recall that s ∈6(G). We have that ϕs ∈ Lπr (πnr).

(b) Set
A(πnr)= (OLc G(πnr))

�t
,

and let Oπr (πnr) be the integral closure of OL in Lπr (πnr). Then

A(πnr) ·ϕs = Oπr (πnr).

(c) For any αr ∈ Lπr (πnr) and ω ∈�t , we have

rG(αr )
ω
= πnr(ω)

−1
· rG(αr ) ·π(ω).

Proof.

(a) Suppose that ω = σm
·φn
∈�t . If g ∈ G and g /∈ 〈s〉, then we have that

ϕs(gω)= 0= ϕs(g)ω.

On the other hand, we also have

ϕs((si )ω)= ϕs((si )σ
mφn
)= ϕs(sm

· tn
·si
· t−n)= ϕs(sm+iqn

)= σm+iqn
(βs)= (σ

m
·φn) ·σ i (βs)= ϕs(si )ω.

Hence ϕs ∈ Lπr (πnr), as claimed.

(b) The proof of this assertion is very similar to that of [Byott 1998, Lemma 6.6], which is in turn an
analogue of [McCulloh 1987, 5.4].
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Set H = 〈s〉. Then �t acts transitively on πr H(πnr)⊆
πr G(πnr), and so the algebra

Lπr (πnr)
H
:=Map�t (

πr H(πnr), L t)

may be identified with a subfield of L t via identifying b ∈ Lπr (πnr)
H with xb = b(1) ∈ L t . We have that

xσ
m

b = b(sm) and xφb = xb,

and so it follows that Lπr (πnr)
H is the subfield of L t consisting of those elements of L t that are fixed by

both φ and σ |s|. This implies that Lπr (πnr)
H
= L[$ 1/|s|

] (which in general will not be normal over L),
and that the integral closure of OL in Lπr (πnr)

H is equal to OL [$
1/|s|
]. Plainly βs ∈ OL [$

1/|s|
] (as |s|

is invertible in OL ), and the element βs corresponds to the element ϕs |H ∈ Lπr (πnr)
H .

If we set A(πnr)H := (OL t H(πnr))
�t

, then for each integer k with 0 ≤ k ≤ |s| − 1, it is not hard to
check that ( |s|−1∑

i=0

ζ−ki
|s| si

)φ
=

|s|−1∑
i=0

ζ−ki
|s| si ,

and so we see that
|s|−1∑
i=0

ζ−ki
|s| si

∈ A(πnr)H .

A straightforward computation (cf. [McCulloh 1987, 5.4]) also shows that( |s|−1∑
i=0

ζ−ki
|s| si

)
·βs =$

k/|s|.

It therefore follows that A(πnr)H ·βs = OL [$
1/|s|
], and this in turn implies that

A(πnr) ·ϕs = Oπr (πnr),

as asserted.

(c) We have

rG(αr )
ω
=

∑
g∈G

αr (g)ω · g−1

=

∑
g∈G

αr (gω) · g−1

=

∑
g∈G

αr (πr (ω) ·πnr(ω) · g ·π−1
nr (ω)) · g

−1

=

∑
g∈G

αr (g) ·πnr(ω)
−1
· g−1
·πr (ω) ·πnr(ω)

= πnr(ω)
−1
· rG(αr ) ·π(ω),

as claimed. �
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Corollary 7.8. For any αr ∈ Lπr (πnr) and αnr ∈ Lπnr , there is a unique α ∈ Lπ such that

rG(αnr) · rG(αr )= rG(α).

Proof. Proposition 7.7(c) implies that, for any ω ∈�t , we have

[rG(αnr) · rG(αr )]
ω
= rG(αnr) · rG(αr ) ·π(ω),

and so rG(αnr) · rG(αr ) ∈ H(LG). As the map rG is bijective, it follows that there is a unique α ∈
Map(G, Lc) such that

rG(αnr) · rG(αr )= rG(α),

and that α ∈ Lπ . �

Theorem 7.9. If anr ∈ Lπnr is any normal integral basis generator of Lπnr/L , then the element a ∈ Lπ
defined by

rG(anr) · rG(ϕs)= rG(a) (7-8)

is a normal integral basis generator of Lπ/L.

Proof. The proof of this assertion is very similar to that of the analogous result in the abelian case described
in [McCulloh 1987, (5.7), p. 283]. We first observe that plainly OL G · a ⊆ Oπ because anr ∈ Oπnr and
ϕs ∈ Oπr (πnr). Hence, to prove the desired result, it suffices to show that

disc(OL G · a/OL)= disc(Oπ/OL).

This will in turn follow if we show that

disc(OLnr G · a/OLnr)= disc(Oπ/OL) · OLnr .

Recall (see (2-3)) that we may write Lπ '
⊕

G/π(�t ) Lπ , where Lπ is a field with Gal(Lπ/L)'π(�t).
Under this last isomorphism, the inertia subgroup of Gal(Lπ/L) is isomorphic to 〈s〉. The standard
formula for tame field discriminants therefore yields

disc(Oπ/OL)=$
(|s|−1)|π(�t )|/|s|

· OL

and so we have

disc(Oπ/O)=$ (|s|−1)|G|/|s|
· OL . (7-9)

Now rG(anr) ∈ (OLnr G)×, and we see from the proof of Proposition 7.7(b) that

OLnr G · a = OLnr G ·ϕs = Oπr (πnr)⊗OL OLnr '

⊕
G/〈s〉

OLnr[$ 1/|s|
].

Since

disc(OLnr[$ 1/|s|
]/OLnr)=$ |s|−1

· OLnr,
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it follows that

disc(OLnr G · a/OLnr)=$ (|s|−1)|G|/|s|
· OLnr = disc(Oπ/O) · OLnr,

and this establishes the desired result. �

Remark 7.10. We caution the reader that Lπnr is not in general equal to the maximal unramified subex-
tension of Lπ/L , even when Lπ is a field. Suppose, for example, that Lπ is a field, and write L0 for the
maximal unramified subextension of Lπ/L . Set f = [L0 : L]. Then it is not hard to check that

Lπnr '

|G|/ f∏
i=1

L0, (7-10)

and so Lπnr is a Galois algebra with “core field” L0. If α ∈ OL0 is such that OL0 = OL [Gal(L0/L)] ·α,
then we may take anr = (α, 0, . . . , 0) under the identification given by (7-10).

Suppose further that L contains the |s|-th roots of unity, and that Lπ = L0 · L($ 1/|s|). To ease notation,
write M := L($ 1/|s|), and set H = 〈s〉. Then a calculation similar to (but simpler than) that given in
the proof of Proposition 7.7(b) (see also Proposition 7.1) shows that OM = OL [H ] · βs , and it may be
shown by computing the coefficient of 1G on the left-hand side of (7-8) that a = α ·βs , as is of course
well known.

Remark 7.11. Suppose that s ∈ G with (|s|, q)= 1. A straightforward computation (cf. the proofs of
Propositions 7.1 and 7.7(b)) shows that for every ω ∈�Lnr , we may write

rG(ϕs)
ω
= rG(ϕs) · ϕ̃s(ω)

where [ϕ̃s] ∈ H 1
t (L

nr,G), and that ϕs is a normal integral basis generator of Lnr
ϕ̃s
/Lnr. We have that

[ϕ̃s1]= [ϕ̃s2] in H 1
t (L

nr,G) if and only if c(s1)= c(s2). It is easy to show that every element of H 1
t (L

nr,G)
is of the form [ϕ̃s] for some s ∈ G with (|s|, q)= 1 (cf. the proof of Proposition 7.1 again).

Definition 7.12. Let a be any normal integral basis generator of Lπ/L . Theorem 7.9 implies that we
may write

rG(a)= u · rG(anr) · rG(ϕs), (7-11)

where u ∈ (OG)× and anr is any normal integral basis generator of Lπnr/L . This may be viewed as being
a nonabelian analogue of a version of Stickelberger’s factorisation of abelian Gauss sums (see [Hilbert
1998, pages XXXV–XXXVI, and Theorems 135 and 136; McCulloh 1987, Introduction]), and so we call
(7-11) a Stickelberger factorisation of rG(a).

8. Local extensions II

Our goal in this section is to state certain results analogous to, (but very much simpler than), those in
Section 7, for extensions of Fv where v is an infinite place of F . This section may therefore be viewed as
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being a “supplement at infinity” to Section 7 (cf. [Fröhlich 1984, Chapter I, §3]). We remind the reader
that, if v is infinite, by convention, we set OFvG = FvG and H 1

t (Fv,G)= H 1(Fv,G).
Suppose first that v is a complex place of F . Then

K0(OFvG, Fc
v )= 0 and H 1(Fv,G)= 0,

and we set 6v(G) = {1}. As this case is totally degenerate, we therefore suppose henceforth in this
section that v is real. We set L = Fv ' R, and for the remainder of this section, we drop any further
reference to v from our notation.

Set Gal(Lc/L) = 〈σ 〉, and fix a primitive fourth root of unity ζ4 ∈ Lc (cf. the choice of compatible
roots of unity made at the beginning of Section 7), so Lc

= L(ζ4).
Write

6(G) := {s ∈ G | s2
= e}. (8-1)

(Note that this set is in fact independent of v.) For each s ∈6(G), we set

βs =
1
2(1+ ζ4).

Define ϕs ∈Map(G, Lc) by

ϕs(g)=
{
σ i (βs) if g = si ,
0 if g /∈ 〈s〉.

Then it is easy to check that

rG(ϕs)= βs · e+ σ(βs) · s = 1
2 [(1+ ζ4) · e+ (1− ζ4) · s].

Proposition 8.1. Suppose that π ∈ Hom(�L ,G) with π(σ)= s. Then ϕs ∈ Lπ , and

Lπ = LG ·ϕs .

Proof. The first assertion follows directly from the definition of ϕs . The second is an immediate
consequence of the fact that rG(ϕs) ∈ (LcG)×, because

1
2((1+ ζ4) · e+ (1− ζ4) · s) · 1

2((1− ζ4) · e+ (1+ ζ4) · s)= 1. �

Proposition 8.2. Suppose that χ ∈ RG , and write

χ |〈s〉 = a · 1+ b · ε,

where ε denotes the unique nontrivial irreducible character of 〈s〉. Then

[Det(rG(ϕs))](χ)= (−1)b/2.

Proof. This follows via a straightforward computation:

[Det(rG(ϕs))](χ)= 1(rG(ϕs))
a
· ε(rG(ϕs))

b
= (βs + σ(βs))

a
· (βs − σ(βs))

b
= 1a
· ζ b

4 = (−1)b/2. �
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Remark 8.3. In terms of the Stickelberger pairing 〈−,−〉G which will be introduced in the next section,
Proposition 8.2 asserts that

[Det(rG(ϕs))](χ)= (−1)〈χ,s〉G .

9. The Stickelberger pairing

Definition 9.1. The Stickelberger pairing is a Q-bilinear pairing

〈−,−〉G :QRG ×QG→Q (9-1)

that is defined as follows.
Let ζ|G| be a fixed, primitive |G|-th root of unity (see the conventions established at the beginning of

Section 7), and suppose first that G is abelian. Then if χ ∈ Irr(G) and g ∈ G, we may write χ(g)= ζ r
|G|

for some integer r . We define

〈χ, g〉G =
{

r
|G|

}
,

where {x} denotes the fractional part of x ∈Q, and we extend this to a pairing on QRG×QG via linearity.
For arbitrary finite G, the Stickelberger pairing is defined via reduction to the abelian case by setting

〈χ, g〉G = 〈χ |〈g〉, g〉〈g〉.

It is easy to check that both definitions agree when G is abelian.

We shall now explain a different way of expressing the Stickelberger pairing using the standard inner
product on RG . In order to do this, we must introduce some further notation.

For each s ∈ G, we set ms := |G|/|s|. We define a character ξs of 〈s〉 by ξs(si ) = ζ
ims
|G| ; so ξs is a

generator of the group of irreducible characters of 〈s〉. Then it follows from Definition 9.1 that

〈ξαs , sβ〉〈s〉 =
{
αβ

|s|

}
.

Define

4s :=
1
|s|

|s|−1∑
j=1

jξ j
s .

Proposition 9.2. Let (−,−)G denote the standard inner product on RG , and suppose that χ ∈ RG

and s ∈ G. Then we have

(χ, IndG
〈s〉(4s))G = 〈χ, s〉G .

Proof. Suppose that

χ |〈s〉 =

|s|−1∑
j=0

|s|−1a jξ
j

s ,
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where a j ∈ Z for each j . Then we have

〈χ, s〉G =
|s|−1∑
j=0

a j 〈ξ
j

s , s〉〈s〉 =
|s|−1∑
j=0

a j

{
j
|s|

}
=

1
|s|

|s|−1∑
j=0

a j j.

On the other hand, via Frobenius reciprocity, we have

(χ, IndG
〈s〉(4s))G = (χ |〈s〉, 4(s))〈s〉 =

( |s|−1∑
j=0

a jξ
j

s ,
1
|s|

|s|−1∑
j=0

jξ j
s

)
〈s〉
=

1
|s|

|s|−1∑
j=0

a j j = 〈χ, s〉G,

and this establishes the desired result. �

In order to apply Proposition 9.2, we shall require the following result concerning traces of sums of
roots of unity.

Lemma 9.3. Let n > 1 be an integer, and suppose that ζ is any primitive n-th root of unity. Write

y :=
n−1∑
i=1

i · ζ i .

Then

TrQ(ζ )/Q(y)=− 1
2 nφ(n),

where φ is the Euler φ-function. In particular, TrQ(ζ )/Q(y) 6= 0.

Proof. Each ζ i is a primitive d-th root of unity for some divisor d of n, and so it follows that

y =
∑
d | n

∑
1≤r≤d−1
(r,d)=1

nr
d
ζ nr/d .

If d | n, then applying Möbius inversion to the identity xd
− 1=

∏
m | d 8m(x) (where 8m(x) denotes the

m-th cyclotomic polynomial) yields 8m(x)=
∏

m | d(x
m.
− 1)µ(d/m), whence it is not hard to show that

TrQ(ε)/Q(ε)= µ(d) for any primitive d-th root ε of unity. Hence TrQ(ζ )/Q(ε)= φ(n)µ(d)/φ(d), and so
we have

TrQ(ζ )/Q(y)=
∑
d | n

∑
1≤r≤d−1
(r,d)=1

nr
d

TrQ(ζ )/Q(ζ
nr/d)= n

∑
d | n

µ(d)
d

φ(n)
φ(d)

s(d),

where

s(d)=

{
1 if d = 1,∑

1≤i≤d−1
(i,d)=1

i if d > 1.

It is well-known that

s(d)= 1
2 dφ(d)
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for any integer d > 1 (see, e.g., [Burton 2007, Theorem 7.7]). It therefore follows that

TrQ(ζ )/Q(y)= 1
2 nφ(n)

∑
d | n
d>1

µ(d)=− 1
2 nφ(n),

as claimed. �

We can now state the following corollary to Proposition 9.2.

Corollary 9.4. Suppose that s1 and s2 are elements of G.

(i) If c(s1)= c(s2), then 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG .

(ii) If 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG , then 〈s1〉 is conjugate to 〈s2〉 in G.

(iii) We have that 〈χ, s1〉G = 0 for all χ ∈QRG if and only if s1 = e.

Proof. (i) Let χ ∈ RG and s ∈G. It follows from the definition of the Stickelberger pairing that for fixed χ
the value of 〈χ, s〉G depends only upon the conjugacy class c(s) of s in G. Hence, if c(s1)= c(s2), then
〈χ, s1〉G = 〈χ, s2〉G for all χ ∈QRG .

(ii) To show this we use Proposition 9.2. We first note that a straightforward computation shows that
the degree of the virtual character IndG

〈s〉(4s) is equal to |G|(|s| − 1)/2|s|, and so we see that IndG
〈s〉(4s)

determines |s|. Next, we remark that If {ti } is a set of representatives of G/〈s〉, then for each g ∈ G, we
have

[IndG
〈s〉(4s)](g)=

∑
t−1
i gti∈〈s〉

ξs(t−1
i gti ), (9-2)

and so the character IndG
〈s〉(4s) vanishes on all elements of G that are not conjugate to an element of 〈s〉.

Proposition 9.2 implies that under our hypotheses, IndG
〈s1〉
(4s1) = IndG

〈s2〉
(4s2). Hence, to prove the

desired result, it suffices to show that [IndG
〈s1〉
(4s1)](s1) 6= 0, because then

[IndG
〈s2〉
(4s1)](s1)= [IndG

〈s1〉
(4s1)](s1) 6= 0,

which implies (since |s1| = |s2|) that s1 is conjugate to a generator of 〈s2〉.
Now if sa

1 is any generator of 〈s1〉, then ξs1(s
a
1 ) is a primitive |s1|-th root of unity, and we have

ξs1(s
a
1 )=

|s1|−1∑
i=1

iξs1(s
a
1 )

i .

Hence if ζ denotes any primitive |s1|-th root of unity, Lemma 9.3 implies that

TrQ(ζ )Q(ξs1(s
a
1 ))=−

1
2 |s1|φ(|s1|).

It follows from (9-2) that TrQ(ζ )/Q[IndG
s1
(4s1)](s1) is equal to a nonzero multiple of −|s1|φ(|s1|)/2, and

so is nonzero. This in turn implies that [IndG
s1
(4s1)](s1) is also nonzero, thereby establishing the desired

result.
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(iii) Proposition 9.2 implies that 〈χ, s1〉G = 0 for all χ ∈QRG if and only if (IndG
〈s1〉
(4s1), χ)G = 0 for

all χ ∈QRG . The latter condition holds if and only if IndG
〈s1〉
(4s1) = 0 and this happens if and only if

s1 = e. �

Remark 9.5. (a) The converse to Corollary 9.4(i) does not hold in general, e.g., it fails for the dihedral
group D2p of order 2p, where p > 3 is a prime. (See [Siviero 2013, Chapter 3; 2016] for an explicit
description of the Stickelberger pairing in this case.)

(b) Let χ1, . . . , χd (respectively c1, . . . , cd ) be the set of irreducible characters (respectively conjugacy
classes) of G. We refer the reader to [Bueno et al. 2016] for computations and conjectures concerning the
rank of the d × d-matrix [〈χi , c j 〉G] associated to the Stickelberger pairing 〈−,−〉G when G is cyclic.

10. The Stickelberger map and transpose homomorphisms

The Stickelberger map.

Definition 10.1. The Stickelberger map

2=2G :QRG→QG (10-1)

is defined by
2(χ)=

∑
g∈G

〈χ, g〉G · g.

We write G(−1) for the set G endowed with an action of �F via the inverse cyclotomic character.
Note that in general, for nonabelian G, this �F -action is not an action on G via group automorphisms; it
is only an action on the set G. However, it does induce an action on the additive group QG(−1), which
is all that we shall require.

The following proposition summarises some basic properties of the Stickelberger map.

Proposition 10.2. (a) We have that 2(χ) ∈ Z(QG) for all χ ∈ RG , i.e., in fact

2 :QRG→ Z(QG).

(b) Suppose that χ ∈ RG . Then 2(χ) ∈ ZG if and only if χ ∈ AG . Hence 2 induces a homomorphism
AG→ ZG.

(c) The map
2 :QRG→QG(−1)

is �F -equivariant.

Proof. The proofs of these assertions for arbitrary G are essentially the same as those in the case of
abelian G. See [McCulloh 1987, Propositions 4.3 and 4.5].

(a) It follows from the definition of the Stickelberger pairing that if χ ∈ RG and g ∈ G, then 〈χ, g〉G is
determined by the conjugacy class c(g) of g in G. This implies that 2(RG)⊆ Z(QG), as claimed.
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(b) Suppose that χ ∈ RG and g ∈ G. Write

χ |〈g〉 =
∑
η

aηη,

where the sum is over irreducible characters of 〈g〉, and set ζ|g| := ζ
|G|/|g|
|G| . Then

(det(χ))(g)= det(χ |〈g〉)(g)=
∏
η

η(g)aη =
∏
η

ζ
|g|〈aηη,g〉〈g〉
|g| = ζ

|g|
∑
η〈aηη,g〉〈g〉

|g| = ζ
|g|〈χ,g〉G
|g| .

It now follows that 〈χ, g〉G ∈ Z for all g ∈ G if and only if χ ∈ Ker(det)= AG , as required.

(c) Let κ denote the cyclotomic character of �F , and suppose that χ ∈ RG is of degree one. Then, for
each g ∈ G and ω ∈�F , we have

χω(g)= χ(gκ(ω)),

and so
〈χω, g〉G = 〈χ, gκ(ω)〉G . (10-2)

It follows via bilinearity that (10-2) holds for all χ ∈ RG and all g ∈ G. Hence, if we view 2(χ) as being
an element of QG(−1), then

2(χω)=
∑
g∈G

〈χω, g〉G · g =
∑
g∈G

〈χ, gκ(ω)〉G · g =
∑
g∈G

〈χ, g〉G · gκ
−1(ω)
=2(χ)ω. �

Transpose Stickelberger homomorphisms. We see from Proposition 10.2 that dualising the homomor-
phism

2 : AG→ Z(ZG)

and twisting by the inverse cyclotomic character yields an �F -equivariant transpose Stickelberger
homomorphism

2t
: Hom(Z(ZG(−1)), (Fc)×)→ Hom(AG, (Fc)×). (10-3)

Composing (10-3) with the sequence of homomorphisms

Hom(AG, (Fc)×)−→∼ Z(FcG)×/Gab
→

Det(FcG)×

Det(OF G)×
→ K0(OF G, Fc), (10-4)

(where the first arrow is given by (4-6), the second via (the inverse of) (4-3), and the third is via the
homomorphism ∂1 of (6-1)) yields a homomorphism

K2t
: Hom(Z(ZG(−1)), (Fc)×)→ K0(OF G, Fc). (10-5)

Hence, if we write C(G(−1)) for the set of conjugacy classes of G endowed with �F -action via the
inverse cyclotomic character, and set

3(OF G) := Hom�F (Z(ZG(−1)), OFc)=Map�F
(C(G(−1)), OFc)= Z(OFc [G(−1)])�F ,

3(FG) := Hom�F (Z(ZG(−1)), Fc)=Map�F
(C(G(−1)), Fc)= Z(Fc

[G(−1)])�F ,
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then K2t induces a homomorphism (which we denote by the same symbol):

K2t
:3(FG)×→ K0(OF G, Fc).

For each place v of F , we may apply the discussion above with F replaced by Fv to obtain local
versions

2t
v : Hom(Z(ZG(−1)), (Fc

v )
×)→ Hom(AG, (Fc

v )
×) (10-6)

and

K2t
v :3(FvG)×→ K0(OFvG, Fc

v ) (10-7)

of the maps 2t and K2t respectively. The homomorphism 2t commutes with local completion, and
K2t commutes with the localisation maps

λv : K0(OF G, Fc)→ K0(OFvG, Fc
v ).

Definition 10.3. We define the group of ideles J (3(FG)) of 3(FG) to be the restricted direct product
over all places v of F of the groups 3(FvG)× with respect to the subgroups 3(OFvG)

×.

For all finite places v of F not dividing the order of G, as OFvG is an OFv -maximal order in FvG, we
have that (see Proposition 4.5(ii))

2t
v(3(OFvG))⊆ Hom�Fv

(AG, (OFc
v
)×)= Det(H(OFvG)),

and so

K2t
v(3(OFvG))⊆ K0(OFvG, OFc

v
).

It follows that the homomorphisms 2t
v combine to yield an idelic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc)). (10-8)

We shall see in the next subsection that the idelic homomorphism K2t is closely related to the
homomorphism

9 id
: J (H 1

t (F,G))→ J (K0(OF G, Fc))

of Definition 6.2.

Prime F-elements.

Definition 10.4. Let v be a place of F . For each element s 6= e of 6v(G) (see Definition 7.2 and (8-1)),
define fv,s ∈3(FvG)× by

fv,s(c)=


−1 if v is real and c = c(s),
$v if v is finite and c = c(s),
1 otherwise.

(10-9)
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Observe that fv,s is �Fv -equivariant because s ∈ 6v(G) and so �Fv fixes c(s) when s is viewed as an
element of G(−1). The element fv,s depends only upon the conjugacy class c(s) of s. For all places v
of F , we define fv,e ∈ (3(FvG))× to be the constant function fv,e = 1.

Write

Fv := { fv,s | s ∈6v(G)},

and define the subset F ⊂ J (3(FG)) of prime F-elements by

f ∈ F⇐⇒ f ∈ J (3(FG)) and fv ∈ Fv for all places v of F .

Following [Byott 1998, Definition 7.1], we define the support Supp( f ) of f ∈ F to be set of all places v
of F for which fv 6= 1. We say that f is full if, for each s ∈ G there is a place v with fv = fv,s .

Our interest in the set F, as well as the relationship between K2t and9 id, is explained by the following
result.

Proposition 10.5. Let v be a place of F.

(a) For each s ∈6v(G), we have

Det(rG(ϕv,s))= K2t
v( fv,s)

in K0(OFvG, Fc
v ).

(b) Suppose that s1, s2 ∈6v(G) with

Det(rG(ϕv,s1))= Det(rG(ϕv,s2)). (10-10)

Then 〈s1〉 is conjugate in G to 〈s2〉.

(c) Suppose that v is finite. Let π1, π2 ∈ Hom(�Fv ,G) with [πi ] ∈ H 1
t (Fv,G) for each i , and set

si = πi (σv) (see (7-5)). Let ai be a normal integral basis generator of Fv,πi /Fv, and let

rG(ai )= ui · rG(ai,nr ) · rG(ϕsi )

be a Stickelberger factorisation of rG(ai ) (see Definition 7.12). Suppose that

Det(rG(a1)) ·Det(rG(a2))
−1
∈ Det((OFc

v
G)×). (10-11)

Then

Det(rG(ϕs1))= Det(rG(ϕs2))

and for some integer m and some h ∈ G, the equality

π1(ω)= h ·π2(ω)
m
· h−1

holds for all ω ∈ Iv.
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Proof.

(a) The proof of this assertion is very similar to that of [McCulloh 1987, Proposition 5.4].
It suffices to show that the equality

Det(rG(ϕv,s))=2
t
v( fv,s)

holds in Hom(AG, (Fc
v )
×).

Let χ ∈ RG , and write

χ |<s> =
∑
η

aηη,

where the sum is over irreducible characters η of 〈s〉.
Suppose first that v is finite. Using (7-2), we see that (cf. [McCulloh 1987, Proposition 5.4])

[Det(rG(ϕv,s))](χ)=
∏
η

( |s|−1∑
i=0

σ i
v(βs)η(s−i )

)aη
=$

〈
∑
η aηη,s〉〈s〉

v =$ 〈χ,s〉Gv , (10-12)

and so it follows that

[Det(rG(ϕv,s))](α)=$
〈α,s〉G
v

for all α ∈ AG .
If v is real, then the proof of Proposition 8.2 shows directly that

[Det(rG(ϕv,s))](χ)= (−1)〈χ,s〉G ,

and so we have

[Det(rG(ϕv,s))](α)= (−1)〈α,s〉G

for all α ∈ AG in this case also.
Now suppose that v is either finite or real. If α ∈ AG , then we have

(2t
v( fv,s))(α)= fv,s(2(α))= fv,s

(∑
g∈G

〈α, g〉G · g
)
=

∏
g∈G

fv,s(g)〈α,g〉G =
{
$
〈α,s〉G
v if v is finite,

(−1)〈α,s〉G if v is real.

The desired result now follows.

(b) The proof of (a) above shows that if (10-10) holds, then

〈χ, s1〉G = 〈χ, s2〉G

for every χ ∈ RG . It therefore follows from Corollary 9.4 that 〈s1〉 is conjugate in G to 〈s2〉.

(c) Observe that (10-11) holds if and only if

Det(rG(ϕs1)) ·Det(rG(ϕs2)
−1) ∈ Det((OFc

v
G)×), (10-13)
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and the proof of part (a) (see (10-12)) implies that (10-13) holds if and only if

Det(rG(ϕs1))= Det(rG(ϕs2)).

Part (b) therefore implies that 〈s1〉 and 〈s2〉 are conjugate. Hence

s1 = h · sm
2 · h

−1

for some m ∈ Z and h ∈ G, and so

rG(ϕs1)= h · rG(ϕsm
2
) · h−1

(see (7-3)).
For any ω ∈�Fnr

v
, we have

πi (ω)= rG(ai )
−1
· rG(ai )

ω
= rG(ϕsi )

−1
· rG(ϕsi )

ω.

Applying the map Fc
vG→ Fc

vG defined by
∑

g agg 7→
∑

g aggm to this equality (when i = 2) yields

π2(ω)
m
= rG(ϕsm

2
)−1
· rG(ϕsm

2
)ω.

The final assertion now follows. �

The Stickelberger pairing revisited. In this subsection we shall briefly describe an alternative definition
of the Stickelberger pairing that involves a direct connection with resolvends of local normal integral
basis generators. This will not be used in the sequel.

Let v be a finite place of F . There is a natural pairing

{−,−}G,v : Irr(G)× H 1(Fnr
v ,G)→Q/Z, (χ, [π ]) 7→ [v(Det(rG(a(π)))(χ))], (10-14)

where a(π) is any normal basis generator of Fnr
v,π/Fnr

v . Recall that every element of H 1
t (F

nr
v ,G) is of the

form ϕ̃v,s for some s∈G with v -|s| (see Remark 7.11). The restriction of {−,−}G,v to Irr(G)×H 1
t (F

nr
v ,G)

yields a refined pairing

{−,−}
(1)
G,v : Irr(G)× H 1

t (F
nr
v ,G)→Q, (χ, ϕ̃v,s) 7→ v(Det(rG(ϕv,s))(χ)). (10-15)

This leads to the following definition.

Definition 10.6. Suppose that v is finite and that v -|G|. We define a pairing

[−,−]G,v : Irr(G)×G→Q, (χ, g) 7→ v(Det(rG(ϕv,g))(χ)), (10-16)

and we extend this to a pairing on QRG ×QG via linearity.

Proposition 10.7. Suppose that v is finite and that v -|G|. Then for each χ ∈ Irr(G) and g ∈ G, we have

[χ, g]G,v = [χ |〈g〉, g]〈g〉,v. (10-17)
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Proof. Set H := 〈g〉. The property (10-17) is a direct consequence of the fact that the restriction map
RG → RH induces a homomorphism Hom(RH , (Fc

v )
×)→ Hom(RG, (Fc

v )
×) such that the following

diagram commutes:

(Fc
v H)×

⊆
−−−→ (Fc

vG)×y Det

y Det

Hom(RH , (Fc
v )
×) −−−→ Hom(RG, (Fc

v )
×)

(see, e.g., [Fröhlich 1976, p. 436; 1984, p. 118]). �

Proposition 10.8. Suppose that v is finite and that v -|G|. Then for each χ ∈ Irr(G) and g ∈ G, we have

[χ, g]G,v = 〈χ, g〉G . (10-18)

In particular, [−,−]G,v is independent of our choice of v.

Proof. Proposition 10.7 implies that we may assume that G is cyclic. The equality (10-18) may then be
established via an argument identical to that used in the proof of Proposition 10.5(a) (see also [McCulloh
1987, Proposition 5.4]). �

11. Modified ray class groups

Definition 11.1. Let a be an integral ideal of OF . For each finite place v of F , recall that

Ua(OFc
v
) := (1+ aOFc

v
)∩ (OFc

v
)×.

We define

U ′a(3(OFvG))⊆3(FvG)× =Map�Fv
(C(G(−1)), (Fc

v )
×)

by

U ′a(3(OFvG)) := {gv ∈3(FvG)×|gv(c) ∈Ua(OFc
v
) ∀c 6= 1}

(with gv(1) allowed to be arbitrary).
Set

U ′a(3(OF G)) :=
(∏

v

U ′a(3(OFvG))
)
∩ J (3(FG)).

Definition 11.2. For each real place v of F , we define

3(FvG)×
+
:= {gv ∈3(FvG)× | gv(c) ∈ R×>0 for all c ∈ C(G(−1))}

(with gv(1) allowed to be arbitrary).
If v is complex, we set 3(FvG)×+ :=3(FvG)×. We define

U ′
∞
(3(OF G)) :=

(∏
v |∞

3(FG)×
)
∩ J (3(FG)),
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and

U ′
∞
(3(OF G))+ :=

(∏
v |∞

3(FG)×
+

)
∩ J (3(FG)).

Definition 11.3. The modified ray class group modulo a of 3(OF G) is defined by

Cl′a(3(OF G)) :=
J (3(FG))

3(FG)× ·U ′a(3(OF G)) ·U ′
∞
(3(OF G))

.

The modified narrow ray class group modulo a is defined by

Cl′a
+
(3(OF G)) :=

J (3(FG))
3(FG)× ·U ′a(3(OF G)) ·U ′

∞
(3(OF G))+

.

We refer to the elements of Cl′a(3(OF G)) (respectively Cl′a
+
(3(OF G))) as the modified ray classes

(respectively modified narrow ray classes) of 3(OF G) modulo a.

Remark 11.4. Fix a set of representatives T of�F\C(G(−1)), and for each t ∈ T , let F(t) be the smallest
extension of F such that �F(t) fixes t . Then the Wedderburn decomposition of 3(FG) is given by

3(FG)=Map�F
(C(G(−1)), Fc)'

∏
t∈T

F(t), (11-1)

where the isomorphism is induced by evaluation on the elements of T .
The group Cl′a(3(OF G)) (respectively Cl′a

+
(3(OF G))) above is finite, and is isomorphic to the product

of the ray class groups Cla(OF(t)) (respectively the narrow ray class groups Cl+a (OF(t))) modulo a of
the Wedderburn components F(t) of 3(FG) with t 6= 1. There is a natural surjection

Cl′a
+
(3(OF G))→ Cl′a(3(OF G))

with kernel an elementary abelian 2-group.
If |G| is odd, then (as no nontrivial element of G is conjugate to its inverse) F(t) has no real places

when t 6= 1, and so Cla(OF(t))= Cl+a (OF(t)). Hence we have

Cl′a
+
(3(OF G))= Cla(3(OF G))

whenever G is of odd order.

Proposition 11.5. Let a be any integral ideal of OF . Then the inclusion F → J (3(FG)) induces a
surjection F→ Cl′a

+
(3(OF G)). In particular, each modified narrow ray class modulo a of 3(OF G)

contains infinitely many elements of F.

Proof. Let I (3(OF G)) denote the group of fractional ideals of 3(OF G). Then via the Wedderburn
decomposition (11-1) of 3(FG), we see that each fractional ideal B in 3(OF G) may be written in the
form B= (Bt)t∈T , where each Bt is a fractional ideal of OF(t). For each conjugacy class t ∈ T , let o(t)
denote the �F -orbit of t in C(G(−1)), and write |t | for the order of any element of t .
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For each idele ν ∈ J (3(FG)), let

co(ν) := [co(ν)t ]t∈T ∈ I (3(OF G))'
∏
t∈T

I (OF(t))

denote the ideal obtained by taking the idele content of ν. If v is a place of F , we view Fv as being a
subset of F via the obvious embedding 3(FvG)× ⊆ J (3(FG)), and we set

Fv := {co( fv) | fv ∈ Fv}.

Now suppose that v is finite, and consider the ideal

co( fv,s)= [co( fv,s)t ]t∈T

in I (3(OF G)). If c(s) /∈ o(t), then it follows from the definition of fv,s that co( fv,s)t = OF(t). Suppose
that c(s) ∈ o(t). Since s ∈6v(G), it follows that v(|s|)= 0 and that �Fv fixes c(s). Hence Fv(t)= Fv,
and so we see that co( fv,s)t is a prime ideal of OF(t) of degree one lying above v (cf. [McCulloh 1987,
pp. 287–289]). Furthermore, if t ∈ T and if v is a finite place of F that is totally split in F(t), then
fv,s ∈ Fv for all c(s) ∈ o(t).

We therefore deduce that if v is finite, the set Fv consists precisely of the invertible prime ideals
p= (pt)t∈T of 3(OF G) with pt1 a prime of degree one above v in F(t1) for some t1 ∈ T with v(|t1|)= 0
and pt = OF(t) for all t 6= t1. For every t ∈ T , the narrow ray class modulo a of F(t) contains infinitely
many primes of degree one, and this implies that F surjects onto Cl′a

+
(3(OF G)) as claimed. �

Our next result describes a transpose Stickelberger homomorphism on modified narrow ray class groups
Cl′a
+
(3(OF G)) for a suitable choice of a. Before stating it, we remind the reader that Proposition 6.3

implies that
∏
v Im(9nr

v ) is a subgroup of J (K0(OF G, Fc)).

Proposition 11.6. Let N be an integer, and set a := N · OF . Then if N is divisible by a sufficiently high
power of |G|, the idelic transpose Stickelberger homomorphism

K2t
: J (3(FG))→ J (K0(OF G, Fc))

induces a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
.

Proof. To show this, we first observe that Proposition 4.6 implies that if N is divisible by a sufficiently
high power of |G| and v is any finite place of F , then we have

2t
v(U

′

a(3(OFvG)))⊆ Det((OFvG)
×/G)⊆ Det(H(OFvG))= Im(9nr

v ),

and so it follows that
K2t(U ′a(3(OF G)))⊆

∏
v

Im(9nr
v )

in J (K0(OF G, Fc)).
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Suppose that v is a real place of F and that h ∈3(FvG)×+. Then for each χ ∈ RG , we have (recalling
that 〈χ, e〉G = 0)

2t
v(h)(χ)=

∏
g∈G

h(c(g))〈χ,g〉G > 0,

and so 2t
v(h) ∈ Hom+�Fv

(RG, (Fc
v )
×). This implies that K2t(h) = 1 in K0(OFvG, Fc

v ), and therefore
K2t(U ′

∞
(3(OF G)))= 1 in J (K0(OF G, Fc)).

It now follows that K2t induces a homomorphism

2t
a : Cl′a

+
(3(OF G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
,

as claimed. �

12. Proof of Theorem 6.6

In this section we shall prove Theorem 6.6. Recall that we wish to show that if

9 id : J (H 1
t (F,G))→

J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

denotes the map of pointed sets given by the composition of the map9 id with the quotient homomorphism

q1 : J (K0(OF G, Fc))→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )
,

then the image of 9 id is in fact a group.
To show this, we choose an ideal a= N · OF as in Proposition 11.6, and we consider the diagram

J (H 1
t (F,G))

9 id

y
F ⊂

−−−→ J (3(FG))
K2t

−−−→ J (K0(OF G, Fc))

q2

y q2

y q1

y
Cl′a
+
(3(OF G)) Cl′a

+
(3(OF G))

2t
a

−−−→
J (K0(OF G, Fc))

λ[∂1(K1(FcG))] ·
∏
v Im(9nr

v )

(12-1)

Here q2 denotes the obvious quotient map. Proposition 11.6 shows that the right-hand square commutes,
and Proposition 11.5 shows that the left-most vertical arrow is surjective.

It follows from Proposition 10.5(a) that

q1[K2t(F)] = q1[9
id(J (H 1

t (F,G)))] = Im9 id.

On the other hand, we also have that

q1[K2t(F)] =2t
a(Cl′a

+
(3(OF G))),
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which is a group. It therefore follows that Im(9 id) is indeed a group, as claimed.
This completes the proof of Theorem 6.6. �

13. Realisable classes from field extensions

In this section, after first proving that the kernel of 9 is finite, we explain how a slightly weaker form of
Conjecture B implies that every element of R(OF G) may be realised by the ring of integers of a tame
field (as opposed to merely a Galois algebra) G-extension of F .

Recall that G ′ denotes the derived subgroup of G, and note that we may view H 1(F,G ′) and H 1(Fv,G ′)
as being pointed subsets of H 1(F,G) and H 1(Fv,G) respectively via taking Galois cohomology of the
exact sequence of groups

0→ G ′→ G→ Gab
→ 0.

Recall also that we write H 1
fnr(F,G ′) for the set of isomorphism classes of G ′-Galois F-algebras that are

unramified at all finite places of F .

Proposition 13.1. (a) Let v be a finite place of F. Then Ker(9v)⊆ H 1
nr(Fv,G ′).

(b) Suppose that [π ] ∈ Ker(9). Then [π ] ∈ H 1
fnr(F,G ′)⊆ H 1(F,G). We have that Ker(9) is finite.

(c) Suppose that F/Q is at most tamely ramified at all primes dividing |G|. Then H 1
nr(F,G ′)⊆ Ker(9).

(d) Suppose that G has no irreducible symplectic characters or that F has no real places. Suppose also
that F/Q is at most tamely ramified at all primes dividing |G|. Then Ker(9)= H 1

fnr(F,G ′).

Proof.

(a) Let v be a finite place of F . Suppose that [πv] ∈ H 1
t (Fv,G), and that Oπv = OFvG · av. Recall (see

Sections 5 and 6) that we have

9v : H 1
t (Fv,G)→ K0(OFvG, Fc

v )'
Det(Fc

vG)×

Det(OFvG)×
,

and that 9v([πv])= [Det(rG(av))] (see also Definition 4.1 and Remark 4.2). It follows that 9v([πv])= 0
if and only if Det(rG(av)) ∈ Det(OFvG)

×.
Hence, if 9v([πv])= 0, then for each ω ∈�Fv , we have

Det(rG(av)−1) ·Det(rG(av))ω = 1,

and so we deduce from (3-8) that [πv] lies in the kernel of the natural map H 1(Fv,G)→ H 1(Fv,Gab)

of pointed sets. This implies that [πv] ∈ H 1(Fv,G ′). Finally, we see from (7-11) and Proposition 10.5(c)
that Det(rG(av)) ∈ Det((OFvG)

×) only if [πv] ∈ H 1
nr(Fv,G). We now conclude that if [πv] ∈ Ker(9v),

then [πv] ∈ H 1
nr(Fv,G ′). This establishes part (a).

(b) Suppose that [π ] ∈ H 1(F,G) satisfies9([π ])= 0. Then9v(locv([π ]))= 0 for each place v, and so it
follows from part (a) that locv([π ]) ∈ H 1

nr(Fv,G ′) for all finite places v of F . Therefore [π ] ∈ H 1(F,G ′),
and π is unramified at each finite place of F , i.e., [π ] ∈ H 1

fnr(F,G ′). As there are only finitely many
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unramified extensions of F of bounded degree, it follows that H 1
fnr(F,G ′) is finite, and so Ker(9) is

finite, as claimed.

(c) Suppose that [π ] ∈ H 1
nr(F,G ′) ⊆ H 1

t (F,G), and write Oπv = OFvG · av for each finite place v of
F . As π is unramified at v, it follows that Det(rG(av)) ∈ Det(OFnr

v
G)×. Since locv([π ]) lies in the

kernel of the natural map H 1(Fv,G)→ H 1(Fv,Gab), we see from the diagram (3-8) that the image of
Det(rG(av)) in Z(FvG)×\H(Z(FvG)) is trivial, and so in fact Det(rG(av)) ∈ [Det(OFnr

v
G)×]�Fv . Note

that Det(rG(av)) is defined over the finite, unramified extension Fπvv of Fv (see (2-2)). Let L denote an
arbitrary finite, unramified extension of Fv.

If v -|G|, then OL G is an OL -maximal order in LG, and we have (see (4-12))

[Det(OL G)×]�Fv ' [Hom�L (RG, (OFc
v
)×)]�Fv ' Hom�Fv

(RG, (OFc
v
)×)' Det(OFvG)

×.

If v | |G|, then because F/Q is at most tamely ramified at all primes dividing |G|, it follows from M. J.
Taylor’s fixed point theorem for group determinants [1984, Chapter VIII] that

[Det(OL G)×]�Fv = Det(OFvG)
×.

Hence, for each finite place v of F , we see that Det(rG(av)) ∈ Det(OFvG)
×, and so 9v([πv]) = 0 (cf.

part (a) above).
Since H 1

nr(Fv,G) = 0 for all infinite places of F , it follows that 9v([πv]) = 0 for all places v of F .
This in turn implies that λ(9([π ]))= 0. As the localisation map λ is injective (see Proposition 5.9(a)), it
follows that 9([π ])= 0. Hence H 1

nr(F,G ′)⊆ Ker(9), as claimed.

(d) The proof of this assertion is very similar to that of part (c) above, and so here we shall be brief.
Suppose that [π ]∈H 1

fnr(F,G ′). Arguing exactly as in part (c), we see that9v([π ]v)=0 for all finite places
v of F , which in turn implies that λ f (9([π ])) = 0. Under our hypotheses, Proposition 5.9(b) implies
that the localisation map λ f is injective, and so 9([π ])= 0. Hence we see that H 1

fnr(F,G ′)⊆ Ker(9),
and so it follows from part (b) above that in fact H 1

fnr(F,G ′)= Ker(9), as asserted. �

Definition 13.2. Suppose that x ∈LC(OF G) (see Definition 6.4). We say that x is unramified (respectively
ramified) at a place v of F if λv(x) ∈ Im(H 1

nr(Fv,G)) (respectively if λv(x) /∈ Im(H 1
nr(Fv,G))).

If S is any finite set of places of F , we denote the set of x ∈ LC(OF G) that are unramified at all places
in S by LC(OF G)S .

Before stating our next result, it will be helpful to introduce the following notation. Suppose that
x ∈ LC(OF G) and let [(xv)v, x∞] ∈ J (K1(FG))×Det(FcG)× be a representative of x . Then λ(x) ∈
J (K0(OF G, Fc)) is represented by the element (xv · locv(x∞)) ∈

∏
v Det(Fc

vG)×. Hence it follows from
Theorem 7.9 and Proposition 10.5(a) that we have an equality

[(xv · locv(x∞))] = [a(x)] · K2t( f (x)) (13-1)

in J (K0(OF G, Fc)), where a(x)= (a(x)v) ∈
∏
v Det(H(OFvG)) and f (x) ∈ F.
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Definition 13.3. We say that x ∈ LC(OF G) is fully ramified if f (x) is full (see Definition 10.4 — note in
particular that this does not mean that x is ramified at all places of F , which would of course be absurd!).

Let us also recall that ∂0(x)∈Cl(OF G) is represented by the idele (xv)v ∈ J (K1(FG)) (see Remark 5.5).

Proposition 13.4. Suppose that S is any finite set of places of F , and that x ∈ LC(OF G). Then there
exist infinitely many y ∈ LC(OF G)S with ∂0(y)= ∂0(x) in Cl(OF G). Hence we have

∂0(LC(OF G))= ∂0(LC(OF G)S). (13-2)

Proof. Let a be an ideal of F chosen as in Proposition 11.6 (so a is divisible by a sufficiently high power
of |G| for the homomorphism 2t

a to be defined). Proposition 11.5 implies that there are infinitely many
choices of g ∈ F such that Supp(g) is disjoint from S and g lies in the same modified narrow ray class
modulo a as f (x), i.e.,

f (x)≡ g (mod3(FG)× ·U ′a(3(OF G)) ·U ′
∞
(3(OF G))+).

Hence for any such g, we have

K2t( f (x))= K2t(β · b · g)

where β ∈3(FG)× and b= (bv) ∈U ′a(3(OF G)) ·U ′
∞
(3(OF G))+. Now K2t(β) ∈ ∂1(K1(FcG)) (see

(10-3)–(10-5)), while K2t(b) lies in the image of
∏
v Det(H(OFvG)) in J (K0(OF G, Fc)), by virtue of

our choice of a. We therefore see from (13-1) that we have the equality

[(xv · locv(x∞))] · K2t(β)−1
= [a(x)] · K2t(b) · K2t(g)

in J (K0(OF G, Fc)). Then the class

y = [(xv · locv(x∞))] · K2t(β)−1

in J (K0(OF G, Fc)) satisfies the desired conditions.
The final assertion follows immediately from the exact sequence (6-1). �

Proposition 13.5. Suppose that S is any finite set of places of F , and that x ∈ LC(OF G). Then there
exist infinitely many y ∈ LC(OF G)S such that y is fully ramified and ∂0(y)= ∂0(x) in Cl(OF G).

Proof. This is a generalisation of [McCulloh 1983, Proposition 6.14], and it may be proved in the same
way as [Byott 1998, Proposition 7.4].

We begin by constructing a full element h of F as follows. Let M/F be a finite Galois extension such
that �M acts trivially on C(G(−1)). For each s ∈ G, choose a place v(s) of F that splits completely in
M/F ; the Chebotarev density theorem implies that this may be done so that the places v(s) are distinct
and disjoint from S. Then the element h =

∏
s∈G fv(s),s is full.

Next, we choose an ideal a of F as in Proposition 11.6 and observe that Proposition 11.5 implies that
there are infinitely many choices of g ∈ F with Supp(g) disjoint from S ∪Supp(h) such that g lies in the



On the relative Galois module structure of rings of integers in tame extensions 1875

same modified narrow ray class of 3(OF G) modulo a as f (x) · h−1. Then, for any such g, we have that

f (x)≡ g · h (mod3(FG)× ·Ua(3(OF G)) ·U ′
∞
(3(OF G))+),

and g · h ∈ F is full. Now exactly as in the proof of Proposition 13.4 we may replace f (x) by g · h in
(13-1), changing the other terms in the equality as needed, to obtain y ∈ K0(OF G, Fc) satisfying the
stated conditions. �

Theorem 13.6. Let S be any finite set of places of F , and suppose that Conjecture B holds for LC(OF G)S ,
i.e., that

LC(OF G)S ⊆ KR(OF G)= Im(9). (13-3)

Then R(OF G) is a subgroup of Cl(OF G). If c∈R(OF G), then there exist infinitely many [π ]∈H 1
t (F,G)

such that Fπ is a field and (Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint
from S.

Proof. To prove the first assertion, it suffices to show that, under the given hypotheses, we have

∂0(LC(OF G))=R(OF G) (13-4)

(see the proof of Theorem 6.7, especially (6-2)).
We plainly have R(OF G)⊆ ∂0(LC(OF G)). Suppose that x ∈ LC(OF G), and set cx = ∂

0(x). Then
Proposition 13.5 implies that there exists y ∈ LC(OF G)S with ∂0(y) = cx . By hypothesis, we have
y ∈ Im(9), and so ∂0(y)= cx ∈R(OF G). This implies that ∂0(LC(OF G))⊆R(OF G). Hence (13-4)
holds, and so R(OF G) is a subgroup of Cl(OF G), as claimed.

Next, we observe that if c ∈R(OF G), then (13-4) and Proposition 13.5 imply that there are infinitely
many x ∈ LC(OF G)S such that x is fully ramified and ∂0(x)= c. For each such x , our hypotheses imply
that there exists πx ∈Hom(�F ,G) with [πx ] ∈ H 1

t (F,G) and 9([πx ])= x . The set of primes that ramify
in Fπx/F is equal to Supp( f (x)), and so Fπx/F has ramification disjoint from S. As f (x) is full, we see
that for each nonidentity element s ∈G, there is a place v(s)∈ Supp( f (x)) such that πx(σv(s))∈ c(s) (see
(7-5) and Proposition 10.5(a) and (b)). Hence Im(πx) has nontrivial intersection with every conjugacy
class of G and so is equal to the whole of G, by a lemma of Jordan (see [Serre 2003, p. 435, Theorem 4’]).
Therefore πx is surjective, and so Fπx is a field. This establishes the result. �

14. Abelian groups

In this section we shall prove that Conjecture 6.5 holds for abelian groups. We shall also show that the
map 9 is injective in this case.

Let G be abelian, and suppose that L is any finite extension of F or of Fv for some place v of F . As
G is abelian, the reduced norm map induces isomorphisms

(LG)× ' Det(LG)×, (OL G)× ' Det(OL G)×, (LcG)× ' Det(LcG)×. (14-1)
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For each finite place v of F , Lemma 5.7 and (14-1) imply that there are isomorphisms

K0(OFvG, Fc
v )'

Det(Fc
vG)×

Det(OFvG)×
'
(Fc
vG)×

(OFvG)×
.

Proposition 14.1. Let G be abelian and suppose that v is a finite place of F. Then the map9v is injective.

Proof. Suppose that [πv,i ] ∈ H 1
t (Fv,G) (i = 1, 2), with Oπv,i = OFvG ·av,i . Then 9v([πv,i ])= [rG(av,i )]

in (Fc
vG)×/(OFvG)

×. Hence if 9([πv,1]) = 9([πv,2]), then we have rG(av,1) · rG(av,2)−1
∈ (OFvG)

×.
This implies that [π1,v] = [π2,v] in H 1

t (Fv,G), and so it follows that 9v is injective, as claimed. �

Again because G is abelian, the pointed set of resolvends Ht(LG) is an abelian group, and the exact
sequences (3-3) and (3-4) show that there is an isomorphism

τ : H 1
t (L ,G)−→∼

Ht(LG)
(LG)×

(14-2)

defined as follows: if [π ] ∈ H 1
t (L ,G) with Lπ = LG · bπ , then τ([π ])= [rG(bπ )].

Note also that Theorem 5.4(b) and (14-1) imply that K0(OF G, Fc) is isomorphic to the cokernel of
the homomorphism

1OF G,Fc : (FG)×→
J (FG)∏
v(OFvG)×

× (FcG)×

induced by

(FG)×→ J (FG)× (FcG)×, x 7→ ((locv(x))v, x−1).

Theorem 14.2. Conjecture 6.5 is true when G is abelian.

Proof. Suppose that x ∈ LC(OF G), and let [(xv)v, x∞] ∈ J (FG)× (FcG)× be a representative of x . We
shall explain how to construct an element [π ] ∈ H 1

t (F,G) such that λv(x) = λv(9([π ])) for all finite
places v of F . Since G is abelian, and therefore admits no nontrivial irreducible symplectic characters,
this will imply that x =9([π ]) (see Proposition 5.9(b)).

For each v, we have that xv · locv(x∞) ∈ Ht(FvG). As xv ∈ (FvG)×, this implies that locv(x∞) ∈
Ht(FvG) for each v. It follows from Proposition 2.3 that x∞ ∈ H(FG), and we see in addition that in
fact x∞ ∈ Ht(FG). Hence x∞ is the resolvend of a normal basis generator of a tame extension Fπ/F .
Set πv := locv(π). Then for each finite v, we have

τ(9−1
v (λv(x)))= [locv(x∞)] = τ([πv])

in Ht(FvG)/(FvG)×, which in turn implies that

λv(x)=9v([πv])= λv(9([π ])).

Hence x =9([π ]), as required. �

Proposition 14.3. If G is abelian, then the map 9 is injective.
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Proof. Let [π ] ∈ H 1
t (Fv,G), and suppose that [(xv)v, x∞] ∈ J (K1(FG))× (FcG)× is a representative

of 9([π ]). Then it follows from the proof of Theorem 14.2 that τ([π ])= x∞ in Ht(FG)/(FG)×. Since
τ is an isomorphism, we deduce that 9 is injective. �

15. Neukirch’s lifting theorem

Our main purpose in this section is to describe certain results, mainly from [Neukirch 1979], that will
be used in the proof of Theorem E. We refer the reader to [Neukirch 1979; 2008, IX.5] for full details
regarding these topics.

Let D be an arbitrary finite group. Consider the category D of homomorphisms η : G→ D of arbitrary
profinite groups G into D in which a morphism between two objects η1 : G1→ D and η2 : G2→ D is
defined to be a homomorphism ν : G1→ G2 such that η1 = η2 ◦ ν. We say that two such morphisms
νi : G1→ G2 (i = 1, 2) are equivalent if there is an element k ∈ Ker(η2) such that ν1(ω)= k · ν2(ω) · k−1

for all ω ∈ G1. Write Hom D(G1,G2) for the set of equivalence classes of homomorphisms G1 → G2,
and Hom D(G1,G2)epi for the subset of Hom D(G1,G2) consisting of equivalence classes of surjective
homomorphisms.

Suppose now that we have an exact sequence

0→ B→ G q
−→ D→ 0

with B abelian, and that L is a number field or a local field. Let h :�L → D be a fixed homomorphism.
We view�L

h
−→D and G q

−→D as being elements of D. The group D acts on B via inner automorphisms,
and this in turn induces an action of �L on B via h. We write L(B) for the smallest extension of L such
that �L(B) fixes B (i.e., L(B) is the field of definition of B).

It may be shown that the group H 1(L , B) acts on Hom D(�L ,G) in the following way. Let z ∈
Z1(L , B) be any 1-cocycle representing [z] ∈ H 1(L , B), and let ν ∈Hom(�L ,G) be any homomorphism,
representing an element [ν] ∈Hom D(�L ,G). Define z · ν :�L → G by

(z · ν)(ω)= z(ω) · ν(ω)

for all ω ∈�L . It is not hard to check that

h = q ◦ (z · ν),

and that the element [z · ν] ∈ Hom D(�L ,G) is independent of the choices of z and ν. It may also be
shown that Hom D(�L ,G) is a principal homogeneous space over H 1(L , B).

For a number field F , and a finite place v of F , we let Hom D(�Fv ,G)nr denote the set of classes of
homomorphisms �Fv → G that are trivial on Iv. We write J f (Hom D(�F ,G)) for the restricted direct
product over all finite places of F of the sets Hom D(�Fv ,G) with respect to the subsets Hom D(�Fv ,G)nr.

Now we can state Neukirch’s lifting theorem.
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Theorem 15.1. Let F be a number field and let h : �F → D be a fixed, surjective homomorphism.
Suppose that

0→ B→ G q
−→ D→ 0

is an exact sequence for which B is a simple �F -module. (This implies that l · B = 0 for a unique
prime l.) Assume that the field of definition F(B) of B contains no nontrivial l-th roots of unity, and that
J f (Hom D(�F ,G)) 6=∅. Let S be any finite set of finite places of F. Then the natural map

Hom D(�F ,G)epi→
∏
v∈S

Hom D(�Fv ,G)

is surjective.

Proof. This is [Neukirch 1979, Main Theorem, p. 148]. �

The following result implies that Hom D(�Fv ,G) 6=∅ for all but finitely many v.

Proposition 15.2 [Neukirch 1979, Lemma 5]. Let F be a number field, and let v be a finite place of F.
Suppose that G1→ G2 is a surjective homomorphism of arbitrary profinite groups, and that there exists an
unramified homomorphism hv :�Fv → G2. Then HomG2(�Fv ,G1)nr 6=∅, and so HomG2(�Fv ,G1) 6=∅
also.

Proof. If hv is unramified, then hv factors through �Fv/Iv ' Ẑ, and a map Ẑ→ G2 may always be lifted
to a map Ẑ→ G1 by lifting the image of a topological generator of Ẑ. �

We now turn to two results of a local-global nature that will play a role in the proof of Theorem 16.4.
In order to describe them, we let 0 be a finite abelian group equipped with an action of �F such that 0 is
a simple �F -module. Then l ·0 = 0 for a unique prime l. Write F(0) for the field of definition of 0.

Theorem 15.3. Let M/F be a Galois extension with F(0) ⊆ M and µl * M , and let N/M be a finite
abelian extension. Let S be a finite set of finite places of F , and suppose given an element yv ∈ H 1(Fv, 0)
for each v ∈ S. Then there exists an element z ∈ H 1(F, 0) satisfying the following local conditions:

(i) zv = yv for each v ∈ S.

(ii) If v /∈ S, then zv is cyclic (i.e., is trivialised by a cyclic extension of Fv), and if zv is ramified, then v
splits completely in N/F.

Proof. This is [Neukirch 1979, Theorem 1]. �

In order to state our next result, we introduce the following notation.

Definition 15.4. Let T := {v1, . . . , vr } be any finite set of finite places of F containing all places that
ramify in F(0)/F and all places above l. Let pi denote the prime ideal of F corresponding to vi .
Proposition 4.8 implies that we may choose an integer N = N (T ) such that for each 1≤ i ≤ r and for
every place w of F(0) lying above vi , we have

Hom�F(0)w
(A0,UpN

i
(OF(0)cw))⊆ rag[Hom�F(0)w

(R0, O×F(0)cw)].
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Set

a= a(T )=
r∏

i=1

pi .

Let F(aN ) denote the ray class field of F modulo aN .

Theorem 15.5. Let v /∈ T be any finite place of F that splits completely in F(aN ), and suppose that s is
any nontrivial element of 0. Then there is an element b = b(v; s) ∈ H 1(F, 0) satisfying the following
local conditions:

(i) locvi (b)= 0 for 1≤ i ≤ r .

(ii) b|Iv = ϕ̃v,s (see Remark 7.11).

(iii) b is unramified away from v.

Proof. Let p be the prime ideal of F corresponding to v. Our hypotheses on v imply that p is principal,
with p ≡ 1 (mod aN ). Set M := F(0). As 0 is abelian, we have that H(M0) ' Hom�M (A0, (M

c)×)

(see (4-6)). Let $ be a generator of p, and define ρ ∈ Hom�M (A0, (M
c)×) by

ρ(α)=$ 〈α,s〉0 .

(This homomorphism is�M -equivariant because�M fixes 0.) Then ρ is the reduced resolvend of a normal
basis generator of an extension Mπ(ρ)/M corresponding to [π(ρ)] ∈ H 1(M, 0). Since p≡ 1 (mod aN ),
for each place w of M lying above a place vi in T , we have

locw(ρ) ∈ Hom�Mw
(A0,UpN

i
(OMc

w
))⊆ rag[Hom�Mw

(R0, O×Mc
w
)],

and so it follows that locw(π(ρ))= 0 (see (4-7)). In particular, π(ρ) is unramified at all places above T .
For all places w′ of M not lying above T or v we have that

locw′(ρ) ∈ Hom�M
w′
(A0, O×Mc

w′
),

and so π(ρ) is unramified at w′. This implies that π(ρ) is unramified away from v, since we have already
seen that π(ρ) does not ramify at any place above T . It is also easy to see that

b |Iw(v)= ϕ̃w(v),s

for any place w(v) of M lying above v (cf. the proof of Proposition 10.5(a)).
As $ ∈ F , we have that π(ρ) ∈ H 1(M, 0)Gal(M/F). Since 0�F = 0 (because 0 is a simple �F -

module), the restriction map H 1(F, 0)→ H 1(M, 0) is injective and induces an isomorphism H 1(F, 0)'
H 1(M, 0)Gal(M/F). Hence π(ρ) is the image of an element b ∈ H 1(F, 0) satisfying the conditions (i),
(ii) and (iii) of the theorem. �
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16. Soluble groups

In this section we shall use Neukirch’s lifting theorem to prove a result (see Theorem 16.4 below) that
implies Theorem E of the introduction. In order to describe this result, it will be helpful to formulate the
following definition.

Definition 16.1 (Property R). Let S be any finite (possibly empty) set of places of F . We shall say that
LC(OF G)S satisfies Property R if the following holds: Suppose given any fully ramified x ∈ LC(OF G)S .
For each finite place v of F , suppose also given a homomorphism πv,x ∈ Hom(�Fv ,G) such that
[πv,x ] ∈ H 1

t (Fv,G) and λv(x)=9v([πv,x ]). (Note that in general, such a choice of πv,x is not unique.)
Then there exists 5 ∈ Hom(�F ,G) with [5] ∈ H 1

t (F,G) such that

(a) x =9([5]),

(b) 5|Iv = πv,x |Iv for each finite place v of F .

(So in particular, x is cohomological.)

Proposition 16.2. If G is abelian, then LC(OF G) satisfies Property R.

Proof. We shall in fact prove a slightly stronger result. Suppose that G is abelian, and let x ∈ LC(OF G).
(Note that we do not assume that x is fully ramified.) Then Theorem 14.2 implies that x is cohomological.
As G is abelian, the maps 9 and 9v are injective (see Propositions 14.1 and 14.3). Hence it follows
that there is a unique [5] ∈ H 1

t (F,G) such that x =9([5]), and a unique [πv,x ] ∈ H 1
t (Fv,G) such that

λv(x)=9v([πv,x ]). We therefore see that

λv(x)=9v([5v])=9([πv,x ]),

and so 5v = πv,x . This implies that LC(OF G) satisfies Property R. �

Theorem 16.3. Suppose that LC(OF G)S satisfies Property R. Then R(OF G) is a subgroup of Cl(OF G).
If c ∈R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and (Oπ )= c. The
extensions Fπ/F may be chosen to have ramification disjoint from S.

Proof. This is an immediate consequence of Theorem 13.6. �

Our proof of Theorem E rests on the following result.

Theorem 16.4. Suppose that there is an exact sequence

0→ B→ G→ D→ 0,

where B is an abelian minimal normal subgroup of G with l · B = 0 for an odd prime l. Let S be any finite
set of finite places of F containing all places dividing |G|. Assume that the following conditions hold:

(i) The set LC(OF D)S satisfies Property R.

(ii) We have (|G|, hF )= 1, where hF denotes the class number of F.

(iii) Either G admits no irreducible symplectic characters, or F has no real places.
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(iv) The field F contains no nontrivial l-th roots of unity.

Then LC(OF G)S satisfies Property R.

Proof. We shall establish this result in several steps, one of which crucially involves Neukirch’s lifting
theorem (see Theorem 15.1).

Suppose that x ∈LC(OF G)S is fully ramified. For each finite place v of F , choose πv,x ∈Hom(�Fv ,G)
such that [πv,x ] ∈ H 1

t (Fv,G) with

λv(x)=9v([πv,x ]).

The choice of πv,x is not unique. However, if a(πv,x) is any normal integral basis generator of Fπv,x/Fv ,
with Stickelberger factorisation (see Definition 7.12)

rG(a(πv,x))= u(a(πv,x)) · rG(anr(πv,x)) · rG(ϕ(πv,x)), (16-1)

then Proposition 10.5(c) implies that Det(rG(ϕ(πv,x))) is independent of the choice of πv,x . Hence, if
ϕ(πv,x)=ϕv,s , say, then it follows from Proposition 10.5(b) that the subgroup 〈s〉 of G (up to conjugation)
and the determinant Det(rG(ϕv,s)) of the resolvend rG(ϕv,s) do not depend upon the choice of πv,x .

We write q :G→ D for the obvious quotient map, and we use the same symbol q for the induced maps

K0(OF G, Fc)→ K0(OF D, Fc), H 1(F,G)→ H 1(F, D), H 1(Fv,G)→ H 1(Fv, D).

Set

x := q(x), πv,x := q(πv,x).

Then x ∈ LC(OF D)S with

λv(x)=9D,v(πv,x)

for each finite place v of F , and x is fully ramified.
By hypothesis, LC(OF D)S satisfies Property R, and so there exists ρ ∈ Hom(�F , D) with [ρ] ∈

H 1
t (F, D) such that

x =9D([ρ]) (16-2)

and

ρ|Iv = πv,x |Iv (16-3)

for each finite place v of F . Hence, for each such v, we have that

Det(rD(ϕ(ρv)))= Det(rD(ϕ(πv,x))),

using the notation established in (16-1) above concerning Stickelberger factorisations. As x is fully
ramified, we see from the proof of Theorem 13.6 that ρ is surjective, and so Fρ is a field. We also see
that, as x ∈ LC(OF D)S , the extension Fρ/F is unramified at all places dividing |D|. Furthermore, if v | l
(so v ∈ S), then since πv,x is unramified, the same is true of πv,x , and so Fρ/F is also unramified at v.
Hence, as F ∩µl = {1} by hypothesis, it follows that Fρ ∩µl = {1} also.
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For each finite place v of F , we are now going to use the fact that x ∈ LC(OF G) to construct a lift
ρ̃v ∈ Hom(�Fv ,G) of ρv such that [ρ̃v] ∈ H 1

t (Fv,G) with

ρ̃v|Iv = πv,x |Iv . (16-4)

To do this, we first observe that if ϕ(πv,x)= ϕv,s , then ϕ(πv,x)= ϕv,s , where s = q(s), and so we have

ϕ(ρv)= ϕ(πv,x)= ϕv,s

(see (16-3)).
Next, we write

ρv = ρv,r · ρv,nr ,

with [ρv,nr ] ∈ H 1
nr(Fv, D) (see (7-7)). Since ρv,nr is unramified, Proposition 15.2 implies that [ρv,nr ] may

be lifted to [ρ̃v,nr ] ∈ H 1
nr(Fv,G). Let a(ρ̃v,nr ) be a normal integral basis generator of Fρ̃v,nr /Fv. Then

rG(a(ρ̃v,nr )) · rG(ϕv,s) is the resolvend of a normal integral basis generator of a tame Galois G-extension
Fρ̃v/Fv such that q([ρ̃v])= ρv (see Corollary 7.8 and Theorem 7.9). As ϕ(πv,x)= ϕv,s , we see from the
construction of ρ̃ that

ρ̃v|Iv = πv,x |Iv = ϕ̃v,s,

where [ϕ̃v,s] ∈ H 1
t (Iv,G) is defined in Remark 7.11. The map ρ̃v is our desired lift of ρv.

We are now ready to apply the results contained in Section 15. Consider the following diagram:

0 −−−→ B −−−→ G
q

−−−→ D −−−→ 0x ρ
�F

The group D acts on B via inner automorphisms, and we view B as being an �F -module via ρ. Then
B is a simple �F -module because B is a minimal normal subgroup of G and ρ is surjective. The field
of definition F(B) of B is contained in the field Fρ , and so in particular F(B) contains no nontrivial l-th
roots of unity. We are going to construct an element 5 ∈Hom D(�F ,G) such that

5|Iv = πv,x |Iv

for each finite place v of F . This will be accomplished in the following three steps:

I. We begin by observing that our construction above of a lift ρ̃v of ρv for each finite v shows that
J f (Hom D(�F ,G)) is nonempty. Let S be the set of finite places v of F at which x is ramified or v | |G|.
Theorem 15.1 implies that there exists 51 ∈Hom D(�F ,G) such that 51,v = ρ̃v for all v ∈ S. Observe
that 51 is unramified at all v | |G| because ρ̃v is unramified at these places (see (16-4)). Note also that
51 may well be ramified outside S.

II. Recall that Hom D(�F ,G) (respectively Hom D(�Fv ,G) for each finite v) is a principal homogeneous
space over H 1(F, B) (respectively H 1(Fv, B)). Let S1 denote the set of finite places v /∈ S of F at which
51 is ramified. For each v ∈ S1, choose yv ∈ H 1(Fv, B) so that yv ·51,v ∈Hom D(�Fv ,G) is unramified.
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Now apply Definition 15.4 (with 0= B and T =S) to obtain an ideal a= a(S) and an integer N = N (S)
as described there. Theorem 15.3 implies that there exists an element z ∈ H 1(F, B) such that:

(z1) zv = yv for all v ∈ S1.

(z2) zv = 1 for all v ∈ S.

(z3) If v /∈ S∪ S1, then zv is cyclic, and if zv is ramified, then v splits completely in (F(B) · F(aN ))/F ,
where F(aN ) denotes the ray class field of F modulo aN .

Set 52 := z ·51 ∈Hom D(�F ,G). Note that, as z might possibly be ramified, the homomorphism 52

might be ramified outside S. We shall eliminate any such potential ramification in the third and final step.

III. Let Sz be the set of places of F at which z is ramified (so S∩ Sz =∅). We see from (z3) that each
v ∈ Sz is totally split in F(aN )/F . Hence Theorem 15.5 implies that for each v ∈ Sz , we may choose
b(v) ∈ H 1(F, B) such that:

(b1) b(v)w = 1 for all w ∈ S.

(b2) b(v)|Iv = z−1
v |Iv .

(b3) b(v) is unramified away from v.

Set

5 :=

[( ∏
v∈Sz

b(v)
)
· z
]
·52.

Then it follows directly from the construction of 5 that we have

5|Iv = πv,x |Iv (16-5)

for all finite places v of F .
We claim that

x =9(5).

To show this, let τ =9(5)−1
· x . We see from (16-5) that

λv(τ ) ∈ Im(9nr
v )

for every finite place v of F . As either G admits no irreducible symplectic characters or F has no real places,
and as (hF , |G|)= 1 by hypothesis, Proposition 6.8(b) implies that τ = 0. Hence x =9(5), as claimed.

This completes the proof that LC(OF G)S satisfies Property R. �

Theorem 16.4 (in conjunction with Proposition 16.2) yields an abundant supply of groups G for which
LC(OF G)S satisfies Property R (for a suitable choice of S), and therefore also for which Theorem 16.3
holds. Here is an example of this.

Theorem 16.5. Let G be of odd order. Suppose that (|G|, hF ) = 1 and that F contains no nontrivial
|G|-th roots of unity. Let S be any finite set of finite places of F containing all places dividing |G|. Then
LC(OF G)S satisfies Property R.
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Proof. We shall establish this result by induction on the order of G. We first note that Proposition 16.2
implies that the theorem holds if G is abelian.

Suppose now that G is an arbitrary finite group of odd order. As |G| is odd, a well-known theorem of
Feit and Thompson [1963] implies that G is soluble. Hence G has an abelian minimal normal subgroup
B such that l · B = 0 for some odd prime l (see, e.g., [Rotman 1995, Theorem 5.24]), and there is an
exact sequence

0→ B→ G→ D→ 0

with D soluble. As |G| is odd, G admits no nontrivial irreducible symplectic characters. We may therefore
suppose by induction on the order of G that LC(OF D)S satisfies Property R. The desired result now
follows from Theorem 16.4. �

Remark 16.6. It follows from Theorem 14.2 that in Theorem 16.4, we may take D to be a finite abelian
group of arbitrary order (subject of course to the obvious constraint that the number field F is such that all
other conditions of Theorem 16.4 are satisfied). This enables one to show that Property R holds for many
nonabelian groups of even order (e.g., S3). However, if for example G is a nonabelian 2-group (e.g., H8),
then because µ2 ⊆ F for any number field F , we can no longer appeal to Neukirch’s lifting theorem, and
our proof of Theorem 16.4 fails. It appears very likely that new ideas are needed to establish Property R in
such cases (see also the remarks contained in the final paragraph of [Neukirch 1979, Introduction], where
a similar difficulty is briefly discussed in the context of the inverse Galois problem for finite groups).

We can now prove Theorem E of the introduction.

Theorem 16.7. Let G be of odd order and suppose that (|G|, hF )= 1, where hF denotes the class number
of F. Suppose also that F contains no nontrivial |G|-th roots of unity. Then R(OF G) is a subgroup of
Cl(OF G). If c ∈ R(OF G), then there exist infinitely many [π ] ∈ H 1

t (F,G) such that Fπ is a field and
(Oπ )= c. The extensions Fπ/F may be chosen to have ramification disjoint from any finite set S of places
of F.

Proof. This is an immediate consequence of Theorems 16.5 and 16.3. �
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