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We prove that the KLR algebra associated with the cyclic quiver of length e is a subquotient of the KLR
algebra associated with the cyclic quiver of length e+ 1. We also give a geometric interpretation of this
fact. This result has an important application in the theory of categorical representations. We prove that a
category with an action of s̃le+1 contains a subcategory with an action of s̃le. We also give generalizations
of these results to more general quivers and Lie types.
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1. Introduction

Consider the complex affine Lie algebra s̃le = sle[t, t−1
] ⊕ C1. In this paper, we study categorical

representations of s̃le. Our goal is to relate the notion of a categorical representation of s̃le with the notion
of a categorical representation of s̃le+1.

The Lie algebra s̃le has generators ei , fi for i ∈ [0, e− 1]. Let α0, . . . , αe−1 be the simple roots of s̃le.
Fix k ∈ [0, e− 1]. Consider the following inclusion of Lie algebras s̃le ⊂ s̃le+1:

er 7→


er if r ∈ [0, k− 1],
[ek, ek+1] if r = k,
er+1 if r ∈ [k+ 1, e− 1],

fr 7→


fr if r ∈ [0, k− 1],
[ fk+1, fk] if r = k,
fr+1 if r ∈ [k+ 1, e− 1].

(1)

It is clear that each s̃le+1-module can be restricted to the subalgebra s̃le of s̃le+1. So it is natural to ask
if we can do the same with categorical representations.

First, we recall the notion of a categorical representation. Let k be a field. Let C be an abelian
Hom-finite k-linear category that admits a direct sum decomposition C =

⊕
µ∈Ze Cµ. A categorical

representation of s̃le in C is a pair of biadjoint functors Ei , Fi : C → C for i ∈ [0, e− 1] satisfying a
list of axioms. The main axiom is that for each positive integer d there is an algebra homomorphism
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Rd(A
(1)
e−1)→ End(Fd)op, where F =

⊕e−1
i=0 Fi and Rd(A

(1)
e−1) is the KLR algebra of rank d associated

with the quiver A(1)e−1 (i.e., with the cyclic quiver of length e).
Let C be an abelian Hom-finite k-linear category. Assume that C =

⊕
µ∈Ze+1 Cµ has a structure of a

categorical representation of s̃le+1 with respect to functors E i , F i for i ∈ [0, e]. We want to restrict the
action of s̃le+1 on C to s̃le. The most obvious way to do this is to define new functors Ei , Fi : C→ C, for
i ∈ [0, e− 1], from the functors E i , F i : C→ C, for i ∈ [0, e], by the same formulas as in (1). Of course,
this makes no sense because the notion of a commutator of two functors does not exist. However, we are
able to get a structure of a categorical representation on a subcategory C ⊂ C (and not on the category C
itself). We do this in the following way.

Assume additionally that the category Cµ is zero whenever µ has a negative entry. For each e-
tuple µ = (µ1, . . . , µe) ∈ Ze we consider the (e+1)-tuple µ = (µ1, . . . , µk, 0, µk+1, . . . , µe) and we
set Cµ = Cµ,

C =
⊕
µ∈Ze

Cµ.

Next, consider the endofunctors of C given by

Ei =


E i |C if 06 i < k,
Ek Ek+1|C if i = k,
E i+1|C if k < i < e,

Fi =


F i |C if 06 i < k,
Fk+1 Fk |C if i = k,
F i+1|C if k < i < e.

The following theorem holds.

Theorem 1.1. The category C has the structure of a categorical representation of s̃le with respect to the
functors E0, . . . , Ee−1, F0, . . . , Fe−1. �

Let us explain our motivation for proving Theorem 1.1 (see [Maksimau 2015b] for more details).
Let Oν

−e be the parabolic category O for ĝlN = glN [t, t−1
] ⊕ C1⊕ C∂ with parabolic type ν at level

−e− N . By [Rouquier et al. 2016], there is a categorical representation of s̃le in Oν
−e. Now we apply

Theorem 1.1 to C = Oν
−(e+1). It happens that in this case the subcategory C ⊂ C defined as above is

equivalent to Oν
−e. This allows us to compare the categorical representations in the category O for ĝlN

for two different (negative) levels.
A result similar to Theorem 1.1 has recently appeared in [Riche and Williamson 2018], where it is

applied in the following way. It is known from [Chuang and Rouquier 2008] that there is a categorical
representation of s̃lp in the category Rep(GLn(Fp)) of finite dimensional algebraic representations of
GLn(Fp). Riche and Williamson used this fact to construct a categorical representation of the Hecke
category on the principal block Rep0(GLn(Fp)) of Rep(GLn(Fp)) for p > n. Their proof is in two steps.
First they show that the action of s̃lp on Rep(GLn(Fp)) induces an action of s̃ln on some full subcategory
of Rep(GLn(Fp)). The second step is to show that the action of s̃ln constructed on the first step induces
an action of the Hecke category on Rep0(GLn(Fp)). The first step of their proof is essentially p−n
consecutive applications of Theorem 1.1.

The main difficulty in proving Theorem 1.1 is showing that the action of the KLR algebra Rd(A
(1)
e ) on
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Fd , where F =
⊕e

i=0 F i , yields an action of the KLR algebra Rd(A
(1)
e−1) on Fd . So, to prove the theorem,

we need to compare the KLR algebra Rd(A
(1)
e ) with the KLR algebra Rd(A

(1)
e−1). This is done in Section 2.

We introduce the abbreviations 0 = A(1)e−1 and 0 = A(1)e . Let α =
∑e−1

i=0 diαi be a dimension vector of
the quiver 0. We consider the dimension vector α of 0 defined by

α =

k∑
i=0

diαi +

e∑
i=k+1

di−1αi .

Let Rα(0) and Rα(0) be the KLR algebras associated with the quivers 0 and 0 and the dimension
vectors α and α. The algebra Rα(0) contains idempotents e(i) parametrized by certain sequences i of
vertices of 0. In Section 2D we consider some sets of such sequences I αord and I αun. Set e=

∑
i∈I αord

e(i)∈
Rα(0) and

Sα(0)= eRα(0)e
/ ∑

i∈I αun

eRα(0)e(i)Rα(0)e.

The main result of Section 2 is the following theorem.

Theorem 1.2. There is an algebra isomorphism Rα(0)' Sα(0). �

The paper has the following structure. In Section 2 we study KLR algebras. In particular, we prove
Theorem 1.2. In Section 3 we study categorical representations. We prove our main result about categorical
representations (Theorem 1.1). We also generalize this theorem to arbitrary symmetric Kac–Moody
Lie algebras. In Appendix A we give a geometric construction of the isomorphism in Theorem 1.2. In
Appendix B, we give some versions of Theorems 1.1 and 1.2 in type A over a local ring.

It is important to emphasize the relation between the present paper and [Maksimau 2015b]. That preprint
contains (an earlier version of) the results of the present paper and an application of these results to the
category O for ĝlN . The preprint is expected to be published as two different papers. The present paper is
the first of them. It contains the results of the preprint about KLR algebras and categorical representations.
The second paper will give an application of the results of the first paper to the affine category O.

2. KLR algebras

For a noetherian ring A we denote by mod (A) the abelian category of left finitely generated A-modules.
We denote by N the set of nonnegative integers.

2A. Kac–Moody algebras associated with a quiver. Let 0 = (I, H) be a quiver without 1-loops with
the set of vertices I and the set of arrows H . For i, j ∈ I let hi, j be the number of arrows from i to j and
set also ai, j = 2δi, j − hi, j − h j,i . Let gI be the Kac–Moody algebra over C associated with the matrix
(ai, j ). Denote by ei , fi for i ∈ I the Serre generators of gI .

Remark 2.1. By the Kac–Moody Lie algebra associated with the Cartan matrix (ai, j ) we understand the
Lie algebra with the set of generators ei , fi , hi , i ∈ I , modulo the defining relations
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[hi , h j ] = 0,

[hi , e j ] = ai, j e j ,

[hi , f j ] = −ai, j e j ,

[ei , f j ] = δi, j hi ,

(ad(ei ))
1−ai, j (e j )= 0 i 6= j,

(ad( fi ))
1−ai, j ( f j )= 0 i 6= j.

In particular, if (ai, j ) is the affine Cartan matrix of type A(1)e−1, then we get the Lie algebra s̃le(C)=

sle(C)⊗C[t, t−1
]⊕C1 (not sle(C)⊗C[t, t−1

]⊕C1⊕C∂).

For each i ∈ I , let αi be the simple root corresponding to ei . Set

Q I =
⊕
i∈I

Zαi and Q+I =
⊕
i∈I

Nαi .

For α=
∑

i∈I diαi ∈Q+I denote by |α| its height, i.e., we have |α|=
∑

i∈I di . Set I α=
{

i = (i1, . . . , i|α|)∈
I |α| :

∑|α|
r=1 αir = α

}
.

2B. Doubled quiver. Let 0 = (I, H) be a quiver without 1-loops. Fix a decomposition I = I0 t I1 such
that there are no arrows between the vertices in I1. In this section we define a doubled quiver 0 = (I , H)
associated with (0, I0, I1). The idea is to “double” each vertex in the set I1 (we do not touch the vertices
from I0). We replace each vertex i ∈ I1 by a couple of vertices i1 and i2 with an arrow i1

→ i2. Each
arrow entering i should be replaced by an arrow entering to i1, each arrow coming from i should be
replaced by an arrow coming from i2.

Now we describe the construction of 0 = (I , H) formally. Let I 0 be a set that is in bijection with I0.
Let i0 be the element of I 0 associated with an element i ∈ I0. Similarly, let I 1 and I 2 be sets that are in
bijection with I1. Denote by i1 and i2 the elements of I 1 and I 2 respectively that correspond to an element
i ∈ I1. Put I = I 0 t I 1 t I 2. We define H in the following way. The set H contains 4 types of arrows:

• An arrow i0
→ j0 for each arrow i→ j in H with i, j ∈ I0.

• An arrow i0
→ j1 for each arrow i→ j in H with i ∈ I0, j ∈ I1.

• An arrow i2
→ j0 for each arrow i→ j in H with i ∈ I1, j ∈ I0.

• An arrow i1
→ i2 for each vertex i ∈ I1.

Set I∞=
∐

d∈N I d and I∞=
∐

d∈N I d , where I d and I d are the cartesian products. The concatenation
yields a monoid structure on I∞ and I∞. Let φ : I∞→ I∞ be the unique morphism of monoids such
that for i ∈ I ⊂ I∞ we have

φ(i)=
{

i0 if i ∈ I0,

(i1, i2) if i ∈ I1.



Categorical representations and KLR algebras 1891

There is a unique Z-linear map φ : Q I → Q I such that φ(I α)⊂ I
φ(α)

for each α ∈ Q+I . It is given by

φ(αi )=

{
αi0 if i ∈ I0,

αi1 +αi2 if i ∈ I1.

2C. KLR algebras. Let k be a field. Let 0= (I, H) be a quiver without 1-loops. For r ∈[1, d−1] let sr be
the transposition (r, r+1) ∈Sd . For i = (i1, . . . , id) ∈ I d set sr (i)= (i1, . . . , ir−1, ir+1, ir , ir+2, . . . , id).
For i, j ∈ I we set

Qi, j (u, v)=
{

0 if i = j,
(v− u)hi, j (u− v)h j,i else.

Definition 2.2. Assume that the quiver 0 is finite. The KLR-algebra Rd,k(0) is the k-algebra with the
set of generators τ1, . . . , τd−1, x1, . . . , xd , e(i) where i ∈ I d , modulo the following defining relations:

e(i)e( j)= δi, j e(i),∑
i∈I d

e(i)= 1,

xr e(i)= e(i)xr ,

τr e(i)= e(sr (i))τr ,

xr xs = xs xr ,

τr xr+1e(i)= (xrτr + δir ,ir+1)e(i),

xr+1τr e(i)= (τr xr + δir ,ir+1)e(i),

τr xs = xsτr if s 6= r, r + 1,

τrτs = τsτr if |r − s|> 1,

τ 2
r e(i)=

{
0 if ir = ir+1,

Qir ,ir+1(xr , xr+1)e(i) else,

(τrτr+1τr−τr+1τrτr+1)e(i)=
{
(xr+2− xr )

−1(Qir ,ir+1(xr+2, xr+1)−Qir ,ir+1(xr , xr+1))e(i) if ir= ir+2,

0 else.

for each i , j , r and s. We may write Rd,k = Rd,k(0). The algebra Rd,k admits a Z-grading such that
deg e(i)= 0, deg xr = 2 and deg τse(i)=−ais ,is+1 , for each 16 r 6 d , 16 s < d and i ∈ I d .

For each α ∈ Q+I such that |α| = d set e(α) =
∑

i∈I α e(i) ∈ Rd,k. It is a homogeneous central
idempotent of degree zero. We have the following decomposition into a sum of unitary k-algebras
Rd,k =

⊕
|α|=d Rα,k, where Rα,k = e(α)Rd,k.

Let k(I )d be the direct sum of copies of the ring kd [x] := k[x1, . . . , xd ] labeled by I d . We write

k(I )d =
⊕
i∈I d

kd [x]e(i), (2)
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where e(i) is the idempotent of the ring k(I )d projecting to the component i . A polynomial in kd [x] can be
considered as an element of k(I )d via the diagonal inclusion. For each i, j ∈ I fix a polynomial Pi, j (u, v)
such that we have Qi, j (u, v)= Pi, j (u, v)Pj,i (v, u).

Denote by ∂r the Demazure operator on kd [x], i.e., we have

∂r ( f )= (xr − xr+1)
−1(sr ( f )− f ).

The following is proved in [Rouquier 2008, §3.2].

Proposition 2.3. The algebra Rd,k has a faithful representation in the vector space k(I )d such that the
element e(i) acts by projection to k(I )d e(i), the element xr acts by multiplication by xr and such that for
f ∈ kd [x] we have

τr · f e(i)=
{
∂r ( f )e(i) if ir = ir+1,

Pir ,ir+1(xr+1, xr )sr ( f )e(sr (i)) otherwise.
(3)

We will always choose Pi, j in the following way:

Pi, j (u, v)= (u− v)h j,i .

Remark 2.4. There is an explicit construction of a basis of a KLR algebra (see [Khovanov and Lauda
2009, Theorem 2.5]). Assume i, j ∈ I α . Set Si, j = {w ∈Sd :w(i)= j}. For each permutation w ∈Si, j

fix a reduced expression w = sp1 · · · spr and set τw = τp1 · · · τpr . Then the vector space e( j)Rα,ke(i) has
a basis {τwxa1

1 · · · x
ad
d e(i) : w ∈Si, j , a1, . . . , ad ∈ N}. Note that the element τw depends on the reduced

expression of w. Moreover, if we change the reduced expression of w, then the element τwe(i) is changed
only by a linear combination of monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e(i) with t < `(w). Note also

that if sp1 · · · spr is not a reduced expression, then the element τp1 · · · τpr e(i) may be written as a linear
combination of monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e(i) with t < r . Moreover, in both situations

above, the linear combination can be chosen in such a way that for each monomial τq1 · · · τqt x
b1
1 · · · x

bd
d e(i)

in the linear combination, the expression sq1 · · · sqt is reduced.

Remark 2.5. The algebra Rd,k in Definition 2.2 is well defined only for a finite quiver because of the
second relation. However, the algebra Rα,k is well defined even if the quiver is infinite because each
α uses a finite set of vertices. Thus, for an infinite quiver we can define Rd,k as Rd,k =

⊕
|α|=d Rα,k.

However, in this case the algebra Rd,k is not unitary.

2D. Balanced KLR algebras. From now on the quiver 0 is assumed to be finite. Fix a decomposition
I = I0t I1 as in Section 2B and consider the quiver 0= (I , H) as in Section 2B. Recall the decomposition
I = I 0 t I 1 t I 2. In this section we work with the KLR algebra associated with the quiver 0.

We say that a sequence i = (i1, i2, . . . , id) ∈ I d is unordered if there is an index r ∈ [1, d] such that the
number of elements from I 2 in the sequence (i1, i2, . . . , ir ) is strictly greater than the number of elements
from I 1. We say that it is well-ordered if for each index a such that ia = i1 for some i ∈ I1, we have a< d
and ia+1 = i2. We denote by I αord and I αun the subsets of well-ordered and unordered sequences in I α.
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The map φ from Section 2B yields a bijection

φ : Q+I →
{
α =

∑
i∈I

diαi ∈ Q+
I
: di1 = di2,∀i ∈ I1

}
, α 7→ α.

Fix α ∈ Q+I . Set e=
∑

i∈I αord
e(i) ∈ Rα,k(0).

Definition 2.6. For α ∈ Q+I , the balanced KLR algebra is the algebra

Sα,k(0)= eRα,k(0)e
/∑

i∈I αun

eRα,k(0)e(i)Rα,k(0)e.

We may write Sα,k(0)= Sα,k.

Remark 2.7. Assume that i = (i1, . . . , id) ∈ I αord. Let a be an index such that ia ∈ I 1. We have the
relation τ 2

a e(i) = (xa+1 − xa)e(i) in Rα,k. Moreover, we have τ 2
a e(i) = τae(sa(i))τae(i) and sa(i) is

unordered. Thus we have xae(i)= xa+1e(i) in Sα,k.

2E. The polynomial representation of Sα,k. We assume α=
∑

i∈I diαi ∈Q+I . Let i = (i1, . . . , id)∈ I αord.
Denote by J (i) the ideal of the polynomial ring kd [x]e(i)⊂k(I )d generated by the set

{(xr − xr+1)e(i) : ir ∈ I 1}.

Lemma 2.8. Assume that i∈ I αord and j∈ I αun. Then each element of e(i)Rα,ke( j) maps kd [x]e( j) to J (i).

Proof. We will prove by induction on k that for all i ∈ I αord and j ∈ I αun and all p1, . . . , pk such that the
permutation w = sp1 · · · spk ∈Sd satisfies w( j)= i , the monomial τp1 · · · τpk maps kd [x]e( j) to J (i).

Assume k=1. Write p= p1. Let us write i= (i1, . . . , id) and j= ( j1, . . . , jd). Then we have i= sp( j).
By assumptions on i and j we know that there exists i ∈ I1 such that i p = jp+1 = i1 and i p+1 = jp = i2.
In this case the statement is obvious because τp maps f e( j) ∈ kd [x]e( j) to (x p+1− x p)sp( f )e(i) by (3).

Now consider a monomial τp1 · · · τpk such that the permutation w = sp1 · · · spk satisfies w( j)= i and
assume that the statement is true for all such monomials of smaller length. By assumptions on i and j
there is an index r ∈ [1, d] such that ir = i1 for some i ∈ I1 and w−1(r + 1) < w−1(r). Thus w has a
reduced expression of the form w = sr sr1 · · · srh . This implies that τp1 · · · τpk e( j) is equal to a monomial
of the form τrτr1 · · · τrh e( j) modulo monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e( j) with t < k, see

Remark 2.4. As the sequence sr (i) is unordered, the case k = 1 and the induction hypothesis imply the
statement. �

Lemma 2.9. Assume that i, j ∈ I αord. Then each element of e(i)Rα,ke( j) maps J ( j) into J (i).

Proof. Take y ∈ e(i)Rα,ke( j). We must prove that for each r ∈ [1, d] such that jr = i1 for some i ∈ I1

and each f ∈ kd [x] we have y((xr − xr+1) f e( j)) ∈ J (i). We have (xr − xr+1) f e( j)=−τ 2
r ( f e(i)) (see

Remark 2.7). This implies

y((xr − xr+1) f e( j))=−yτ 2
r ( f e( j))=−yτr e(sr ( j))(τr ( f e( j))).

Thus Lemma 2.8 implies the statement because the sequence sr ( j) is unordered. �
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The representation of Rα,k on
k(I )α :=

⊕
i∈I α

k|α|[x]e(i)

yields a representation of eRα,ke on

k(I )α,ord :=
⊕
i∈I αord

k|α|[x]e(i).

Set Jα,ord =
⊕

i∈I αord
J (i). From Lemmas 2.8 and 2.9 we deduce the following.

Lemma 2.10. The representation of Rα,k on k(I )α factors through a representation of Sα,k on k(I )α,ord/Jα,ord.
This representation is faithful.

Proof. The faithfulness is proved in the proof of Theorem 2.12. �

2F. The comparison of the polynomial representations. Fix α ∈ Q+I . Set d = |α| and d = |α|. For each
sequence i = (i1, . . . , id) ∈ I α and r ∈ [1, d] we denote by r ′ or r ′i the positive integer such that r ′− 1 is
the length of the sequence φ(i1, . . . , ir−1) ∈ I∞.

For r ∈ [1, d] and r ∈ [1, d − 1] consider the element x∗r ∈ Sα,k and τ ∗r ∈ Sα,k, respectively, such that
for each i ∈ I α we have

x∗r e(φ(i))= xr ′e(φ(i)), τ ∗r e(φ(i))=



τr ′e(φ(i)), if ir , ir+1 ∈ I0,

τr ′τr ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

τr ′+1τr ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,

τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) if ir , ir+1 ∈ I1, ir 6= ir+1,

−τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) if ir = ir+1 ∈ I1.

For each i ∈ I α we have the algebra isomorphism

kd [x]e(i)' kd [x]e(φ(i))/J (φ(i)), xr e(i) 7→ xr ′e(φ(i)).

We will always identify k(I )α with k(I )α,ord/Jα,ord via this isomorphism.

Lemma 2.11. The action of the elements e(i), xr e(i) and τr e(i) of Rα,k on k(I )α is the same as the action
of the elements e(φ(i)), x∗r e(φ(i)), τ ∗r e(φ(i)) of Sα,k on k(I )α,ord/Jα,ord.

Proof. The proof is based on the observation that by construction for each i ∈ I1 and j ∈ I0 we have

Pi1, j0(u, v)Pi2, j0(u, v)= Pi, j (u, v), Pj0,i1(u, v)Pj0,i2(u, v)= Pj,i (u, v). (4)

For each i ∈ I α, we write φ(i)= (i ′1, i ′2, . . . , i ′
d
). The only difficult part concerns the operator τr e(i)

when at least one of the elements ir or ir+1 is in I1. Assume that ir ∈ I1 and ir+1 ∈ I0. In this case we have

i ′r ′ = (ir )
1
∈ I 1, i ′r ′+1 = (ir )

2
∈ I 2, i ′r ′+2 = (ir+1)

0
∈ I 0.

In particular, the element i ′r ′+2 is different from i ′r ′ and i ′r ′+1. Then, by (3), for each f ∈ kd [x] the element
τ ∗r e(φ(i))= τr ′τr ′+1e(φ(i)) maps f e(φ(i)) ∈ k(I )α,ord/Jα,ord to
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Pi ′r ′ ,i
′

r ′+2
(xr ′+1, xr ′)sr ′(Pi ′r ′+1,i

′

r ′+2
(xr ′+2, xr ′+1)sr ′+1( f ))e(sr ′sr ′+1(φ(i)))

= Pi ′r ′ ,i
′

r ′+2
(xr ′+1, xr ′)Pi ′r ′+1,i

′

r ′+2
(xr ′+2, xr ′)sr ′sr ′+1( f )e(φ(sr (i)))

= Pir ,ir+1(xr ′+1, xr ′)sr ′sr ′+1( f )e(φ(sr (i))),

where the last equality holds by (4). Thus we see that the action of τ ∗r e(φ(i)) on the polynomial
representation is the same as the action of τr e(i). The case when ir ∈ I0 and ir+1 ∈ I1 can be done similarly.

Assume now that ir 6= ir+1 are both in I1. By the assumption on the quiver 0 (see Section 2B), there are
no arrows in 0 between ir and ir+1. Thus there are no arrows in 0 between any of the vertices (ir )

1
= i ′r ′

or (ir )
2
= i ′r ′+1 and any of the vertices (ir+1)

1
= i ′r ′+2 or (ir+1)

2
= i ′r ′+3. Then, by (3), for each f ∈ kd [x]

the element τ ∗r e(i)= τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) maps f e(φ(i)) to

sr ′+1sr ′+2sr ′sr ′+1( f )e(φ(sr (i))).

Thus we see that the action of τ ∗r e(φ(i)) on the polynomial representation is the same as that of τr e(i).
Finally, assume that ir = ir+1 ∈ I1. In this case we have

(ir )
1
= i ′r ′ = (ir+1)

1
= i ′r ′+2 and (ir )

2
= i ′r ′+1 = (ir+1)

2
= i ′r ′+3.

Then, by (3), for each f ∈ kd [x] the element τ ∗r e(φ(i))=−τr ′+1τr ′+2τr ′τr ′+1e(φ(i)) maps f e(φ(i)) to

sr ′+1∂r ′+2∂r ′(xr ′+1− xr ′+2)sr ′+1( f )e(φ(sr (i))),

where ∂r is the Demazure operator (see the definition before Proposition 2.3). To prove that this gives
the same result as for τr e(i), it is enough to check this on monomials xn

r xm
r+1e(i). Assume for simplicity

that n > m. The situation n 6 m can be treated similarly. The element τr e(i) maps this monomial to

∂r (xn
r xm

r+1)e(i)=−
n−1∑
a=m

xa
r xn+m−1−a

r+1 e(i).

Here the symbol
∑y

a=x means 0 when y = x − 1. The element τ ∗r e(φ(i)) maps xn
r ′+1xm

r ′+2e(φ(i)) to
sr ′+1∂r ′+2∂r ′[xm+1

r ′+1 xn
r ′+2− xm

r ′+1xn+1
r ′+2]e(φ(i)), which equals

sr ′+1

[
−

( m∑
a=0

xa
r ′x

m−a
r ′+1

)( n−1∑
b=0

xb
r ′+2xn−1−b

r ′+3

)
+

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+1

)( n∑
b=0

xb
r ′+2xn−b

r ′+3

)]
e(φ(i))

=

[
−

( m∑
a=0

xa
r ′x

m−a
r ′+2

)( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+3

)
+

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+2

)( n∑
b=0

xb
r ′+1xn−b

r ′+3

)]
e(φ(i))

=

[
−xm

r ′

( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+3

)
+ xn

r ′+1

(m−1∑
a=0

xa
r ′x

m−1−a
r ′+2

)]
e(φ(i))

=

[
−xm

r ′+1

( n−1∑
b=0

xb
r ′+1xn−1−b

r ′+2

)
+ xn

r ′+1

(m−1∑
a=0

xa
r ′+1xm−1−a

r ′+2

)]
e(φ(i))=−

(n−1∑
a=m

xa
r ′+1xm+n−1−a

r ′+2

)
e(φ(i)).
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Here the first equality follows from the following property of the Demazure operator

∂r (xn
r+1)=−∂r (xn

r )=

n−1∑
a=0

xa
r xn−1−a

r+1 ,

the fourth equality follows from Remark 2.7. Other equalities are obtained by elementary manipulations
with sums. �

2G. The isomorphism 8.

Theorem 2.12. For each α ∈ Q+I , there is an algebra isomorphism 8α,k : Rα,k→ Sα,k such that

e(i) 7→ e(φ(i)),

xr e(i) 7→ x∗r e(φ(i)),

τr e(i) 7→ τ ∗r e(φ(i)).

Proof. By Proposition 2.3, the representation k(I )α of Rα,k is faithful. Now, in view of Lemma 2.11, it is
enough to prove the following two facts:

• The elements e(φ(i)), x∗r , τ ∗r generate Sα,k.

• The representation k(I )α,ord/Jα,ord of Sα,k is faithful.

Fix i, j ∈ I α . Set i ′= (i ′1, . . . , i ′
d
)=φ(i) and j ′=φ( j). Let B and B′ be the bases of e( j)Rα,ke(i) and

e( j ′)Rα,ke(i ′), respectively, as in Remark 2.4. These bases depend on some choices of reduced expressions.
We will make some special choices later. For each element b = τwxa1

1 · · · x
ad
d e(i) ∈ B we construct an

element b∗ ∈ e( j ′)Sα,ke(i ′) that acts by the same operator on the polynomial representation. We set

b∗ = τ ∗p1
· · · τ ∗pk

(x∗1 )
a1 · · · (x∗d )

ad e(i ′) ∈ e( j ′)Sα,ke(i ′),

wherew= sp1 · · · spk is a reduced expression (as we said above, some special choice of reduced expressions
will be fixed later).

Let us call the permutation w ∈Si ′, j ′ balanced if we have w(a+ 1)= w(a)+ 1 for each a such that
i ′a = i1 for some i ∈ I (and thus i ′a+1 = i2). Otherwise we say that w is unbalanced. There exists a unique
map u : Si, j →Si ′, j ′ such that for each w ∈Si, j the permutation u(w) is balanced and w(r) < w(t)
if and only if u(w)(r ′) < u(w)(t ′) for each r, t ∈ [1, d], where r ′ = r ′i and t ′ = t ′i are as in Section 2F.
The image of u is exactly the set of all balanced permutations in Si ′, j ′ .

Assume that w ∈ Si ′, j ′ is unbalanced. We claim that there exists an index a such that i ′a ∈ I 1 and
w(a) > w(a+ 1). Indeed, let J be the set of indices a ∈ [1, d] such that i ′a ∈ I 1. As j ′ is well-ordered,
we have

∑
a∈J (w(a+ 1)−w(a)) = #J . As w is unbalanced, not all summands in this sum are equal

to 1. Then one of the summands must be negative. Let a ∈ J be an index such that w(a) > w(a+ 1).
We can assume that the reduced expression of w is of the form w = sp1 · · · spk sa . In this case the element
τwe(i ′) is zero in Sα,k because the sequence sa(i ′) is unordered.
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Assume that w ∈Si ′, j ′ is balanced. Thus, there exists some w̃ ∈Si, j such that u(w̃)=w. We choose
an arbitrary reduced expression w̃= sp1 · · · spk and we choose the reduced expression w= sq1 · · · sqr of w
obtained from the reduced expression of w̃ in the following way. For t ∈ {1, . . . , k} set i t

= spt+1 · · · spk (i)
(in particular, we have ik

= i). We write i t
= (i t

1, . . . , i t
d). We construct the reduced expression of w as

w = ŝp1 · · · ŝpk , where for a = pt we have

ŝa =


sa′ if i t

a, i t
a+1 ∈ I0,

sa′+1sa′ if i t
a ∈ I0 and i t

a+1 ∈ I1,

sa′sa′+1 if i t
a ∈ I1 and i t

a+1 ∈ I0,

sa′+1sa′sa′+2sa′+1 if i t
a, i t

a+1 ∈ I1,

where a′ = a′ir is as in Section 2F. Let us explain why the obtained expression of w is reduced. The fact
that the expression w̃ = sp1 · · · spk is reduced means the following. When we apply the transpositions
spk , spk−1, . . . , sp1 consecutively to the d-tuple (1, 2, . . . , d), if two elements of the set {1, 2, . . . , d} are
exchanged once by some s, then these two elements are never exchanged again by another s later. It
is clear that the expression w = sq1 · · · sqr = ŝp1 · · · ŝpk inherits the same property from w̃ = sp1 · · · spk

because for each a, b ∈ {1, 2, . . . , d}, a 6= b we have the following (we set a′ = a′i and b′ = b′i ):

• If ia, ib ∈ I0, then if the reduced expression of w̃ exchanges a and b exactly once or never exchanges
them then the expression ofw exchanges a′ and b′ exactly once or never exchanges them, respectively.

• If ia ∈ I0 and ib ∈ I1, then if the reduced expression of w̃ exchanges a and b exactly once or never
exchanges them then the expression of w exchanges a′ and b′ exactly once or never exchanges them,
respectively, and it also exchanges a′ with b′+1 exactly once or, respectively, never exchanges them.

• If ia ∈ I1 and ib ∈ I0, then if the reduced expression of w̃ exchanges a and b exactly once or never
exchanges them then the expression of w exchanges a′ and b′ exactly once or never exchanges them,
respectively, and it also exchanges a′+1 with b′ exactly once or, respectively, never exchanges them.

• If ia, ib ∈ I1, then if the reduced expression of w̃ exchanges a and b exactly once or never exchanges
them then the expression ofw exchanges a′ and b′ exactly once or never exchanges them, respectively,
and the same thing for a′ and b′+ 1, for a′+ 1 and b′, and for a′+ 1 and b′+ 1.

If the reduced expressions are chosen as above, then the element τwe(i ′)= τq1 · · · τqr e(i ′) ∈ Sα,k is equal
to ±(τp1 · · · τpk e(i))∗.

The discussion above shows that the image of an element b′ ∈ B′ in e( j ′)Sα,ke(i ′) is either zero or
of the form ±b∗ for some b ∈ B. Moreover, each b∗ for b ∈ B can be obtained in such a way. Now we
get the following:

• The elements e(φ(i)), x∗r , and τ ∗r generate Sα,k because the image of each element of B′ in
e( j ′)Sα,ke(i ′) is either zero or a monomial in e(φ(i)), x∗r , and τ ∗r .
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• The representation k(I )α,ord/Jα,ord of Sα,k is faithful because the spanning set {b∗:b∈ B} of e( j ′)Sα,ke(i ′)
acts on the polynomial representation by linearly independent operators (because the polynomial
representation of Rα,k in Proposition 2.3 is faithful). �

Remark 2.13. (a) Note that Theorem 2.12 also remains true for an infinite quiver 0 because α is
supported on a finite number of vertices (see also Remark 2.5).

(b) The formulas that define the isomorphism 8α,k become more natural if we look at them from the
point of view of Khovanov–Lauda diagrams (see [Khovanov and Lauda 2009]). Diagrammatically, the
isomorphism 8α,k looks in the following way. It sends a diagram representing an element of Rα,k to
the diagram (sometimes with a sign) obtained by replacing each strand with label k ∈ I1 by two parallel
strands with labels k1 and k2 (if there is a dot on the strand with label k, it should be moved to the strand
with label k1). For example, if i, j ∈ I0 and k ∈ I1, we have:

ki j

7→

k1k2i j

3. Categorical representations

3A. The standard representation of s̃le. Consider the affine Lie algebra s̃le = sle ⊗ C[t, t−1
] ⊕ C1,

defined over C. Let ei , fi and hi for i = 0, 1, . . . , e−1, be the standard generators of s̃le (see Remark 2.1).
Let Ve be a C-vector space with canonical basis {v1, . . . , ve} and set Ue = Ve ⊗C[z, z−1

]. The vector
space Ue has a basis {ur : r ∈ Z} where ua+eb = va ⊗ z−b for a ∈ [1, e], b ∈ Z. It has a structure of an
s̃le-module such that

fi (ur )= δi≡r ur+1 and ei (ur )= δi≡r−1ur−1.

Let {v′1, . . . , v
′

e+1} and {u′r : r ∈ Z} denote the bases of Ve+1 and Ue+1.
Fix an integer 06 k < e. Consider the following inclusion of vector spaces

Ve ⊂ Ve+1, vr 7→

{
v′r if r 6 k,
v′r+1 if r > k.
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It yields an inclusion sle ⊂ sle+1 such that

er 7→


er if r ∈ [1, k− 1],
[ek, ek+1] if r = k,
er+1 if r ∈ [k+ 1, e− 1],

fr 7→


fr if r ∈ [1, k− 1],
[ fk+1, fk] if r = k,
fr+1 if r ∈ [k+ 1, e− 1],

hr 7→


hr if r ∈ [1, k− 1],
hk + hk+1 if r = k,
hr+1 if r ∈ [k+ 1, e− 1].

This inclusion lifts uniquely to an inclusion s̃le ⊂ s̃le+1 such that

e0 7→

{
e0 if k 6= 0,
[e0, e1] else,

f0 7→

{
f0 if k 6= 0,
[ f1, f0] else,

h0 7→

{
h0 if k 6= 0,
h0+ h1 else.

Consider the inclusion Ue ⊂Ue+1 such that ur 7→ u′ϒ(r), where ϒ is defined in (8).

Lemma 3.1. The embeddings Ve ⊂ Ve+1 and Ue ⊂Ue+1 are compatible with the actions of sle ⊂ sle+1

and s̃le ⊂ s̃le+1, respectively. �

3B. Type A quivers. Let 0∞ = (I∞, H∞) be the quiver with the set of vertices I∞ = Z and the set of
arrows H∞ = {i→ i + 1 : i ∈ I∞}. Assume that e > 1 is an integer. Let 0e = (Ie, He) be the quiver with
the set of vertices Ie = Z/eZ and the set of arrows He = {i→ i + 1 : i ∈ Ie}. Then gIe is the Lie algebra
s̃le = sle⊗C[t, t−1

]⊕C1 (see Remark 2.1).
Assume that 0 = (I, H) is a quiver whose connected components are of the form 0e, with e ∈ N,

e > 1 or e =∞. For i ∈ I denote by i + 1 and i − 1 the (unique) vertices in I such that there are arrows
i→ i + 1 and i − 1→ i .

Let X I be the free abelian group with basis {εi : i ∈ I }. Set also

X+I =
⊕
i∈I

Nεi . (5)

Let us also consider the following additive map

ι : Q I → X I , αi 7→ εi − εi+1.

We may omit the symbol ι and write α instead of ι(α). Let φ denote also the unique additive embedding

φ : X I → X I , εi 7→ εi ′, (6)
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where

i ′ =
{

i0 if i ∈ I0,

i1 if i ∈ I1.

3C. Categorical representations. Let 0 = (I, H) be a quiver as in Section 3B. Let k be a field. Assume
that C is a Hom-finite k-linear abelian category.

Definition 3.2. A gI -categorical representation (E, F, x, τ ) in C is the following data:

(1) a decomposition C =
⊕

µ∈X I
Cµ,

(2) a pair of biadjoint exact endofunctors (E, F) of C,

(3) morphisms of functors x : F→ F and τ : F2
→ F2,

(4) decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi ,

satisfying the following conditions:

(a) We have Ei (Cµ)⊂ Cµ+αi , Fi (Cµ)⊂ Cµ−αi .

(b) For each d ∈ N there is an algebra homomorphism ψd : Rd,k→ End(Fd)op such that ψd(e(i)) is
the projector to Fid · · · Fi1 , where i = (i1, . . . , id) and

ψd(xr )= Fd−r x Fr−1 and ψd(τr )= Fd−r−1τ Fr−1.

(c) For each M ∈ C the endomorphism of F(M) induced by x is nilpotent.

Remark 3.3. (a) For a pair of adjoint functors (E, F) we have an isomorphism End(Ed)' End(Fd)op.
In particular, the algebra homomorphism Rd,k→ End(Fd)op in Definition 3.2 yields an algebra homo-
morphism Rd,k→ End(Ed).

(b) If the quiver 0 is infinite, the direct sums in (4) should be understood in the following way. For each
object M ∈ C, there is only a finite number of i ∈ I such that Ei (M) and Fi (M) are nonzero.

3D. From s̃le+1-categorical representations to s̃le-categorical representations. As in Section 3A, we
fix 0 6 k < e. Only in Section 3D, we assume that 0 = (I, H) and 0 = (I , H) are fixed as in as in
Section B2 (i.e., we have 0 = 0e, I1 = {k} and we identity 0 with 0e+1).

Let C be a Hom-finite abelian k-linear category. Let

E = E0⊕ E1⊕ · · ·⊕ Ee and F = F0⊕ F1⊕ · · ·⊕ Fe

be endofunctors defining a s̃le+1-categorical representation in C. Let ψd : Rd,k → End(Fd)op be the
corresponding algebra homomorphism. We set F i = F id · · · F i1 for any tuple i = (i1, . . . , id) ∈ I d and
Fα=

⊕
i∈I α F i for any element α∈Q+

I
. If |α|=d letψα : Rα,k→End(Fα)op be the α-component ofψd .

Now, recall the notation X+
I

from (5). Assume that we have

Cµ = 0, ∀µ ∈ X I\X
+

I
. (7)

For µ ∈ X+I set Cµ = Cφ(µ), where the map φ is as in (6). Let C =
⊕

µ∈X+I
Cµ.
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Remark 3.4. (a) C is stable by F i , E i for each i 6= k, k+ 1,

(b) C is stable by Fk+1 Fk , Ek Ek+1,

(c) F id F id−1 · · · F i1(M) = 0 for each M ∈ C whenever the sequence (i1, . . . , id) is unordered (see
Section 2D).

Consider the following endofunctors of C:

Ei =


E i |C if 06 i < k,
Ek Ek+1|C if i = k,
E i+1|C if k < i < e,

and Fi =


F i |C if 06 i < k,
Fk+1 Fk |C if i = k,
F i+1|C if k < i < e.

Similarly to the notations above we set Fi = Fid · · · Fi1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =⊕
i∈I α Fi for any element α ∈ Q+I . Note that we have Fi = Fφ(i)|C for each i ∈ I α.
Let α ∈ Q+I and α = φ(α). Note that we have

Fα =
⊕
i∈I αord

F i |C .

The homomorphism ψα yields a homomorphism eRα,ke→ End(Fα)op, where e=
∑

i∈I αord
e(i). By (c),

the homomorphism eRα,ke→End(Fα)op factors through a homomorphism Sα,k→End(Fα)op. Let us call
it ψ ′α . Then we can define an algebra homomorphism ψα : Rα,k→ End(Fα)op by setting ψα =ψ ′α ◦8α,k.

Now, Theorem 2.12 implies the following result.

Theorem 3.5. For each category C, defined as above, that satisfies (7), we have a categorical represen-
tation of s̃le in the subcategory C of C given by functors Fi and Ei and the algebra homomorphisms
ψα : Rα,k→ End(Fα)op. �

Now, we describe the example that motivated us to prove Theorem 3.5. See [Maksimau 2015b]
for details.

Example 3.6. Let Ue and Ve be as in Section 3A. Fix ν = (ν1, . . . , νl) ∈ Nl and put N =
∑l

r=1 νr . Set
∧
νUe =∧

ν1Ue⊗ · · ·⊗∧
νl Ue.

Let Oν
−e be the parabolic category O for ĝlN with parabolic type ν at level −e− N . The categorical

representation of s̃le in Oν
−e (constructed in [Rouquier et al. 2016]) yields an s̃le-module structure on the

(complexified) Grothendieck group [Oν
−e] of Oν

−e. This module is isomorphic to ∧νUe.
Let us apply Theorem 1.1 to C = Oν

−(e+1). It happens that in this case the subcategory C ⊂ C defined
as above is equivalent to Oν

−e. The embedding of categories Oν
−e ⊂ Oν

−(e+1) categorifies the embedding
∧
νUe ⊂∧

νUe+1 (see also Lemma 3.1).

3E. Reduction of the number of idempotents. In this section we show that it is possible to reduce the
number of idempotents in the quotient in Definition 2.6. This is necessary to generalize Theorem 3.5.
Here we assume the quivers 0 = (I, H) and 0 = (I , H) are as in Section 2B.
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We fix α ∈ Q+I and put α = φ(α). We say that the sequence i ∈ I α is almost ordered if there exists
a well-ordered sequence j ∈ I α such that there exists an index r such that jr ∈ I 1 and i = sr ( j). It
is clear from the definition that each almost ordered sequence is unordered because the subsequence
(i1, i2, . . . , ir ) of i contains more elements from I 2 than from I 1. The following lemma reduces the
number of generators of the kernel of eRα,ke→ Sα,k (see Definition 2.6).

Lemma 3.7. The kernel of the homomorphism eRα,ke→ Sα,k is equal to
∑

i eRα,ke(i)Rα,ke, where i
runs over the set of all almost ordered sequences in I α.

Proof. Denote by J the ideal
∑

i eRα,ke(i)Rα,ke of eRα,ke, where i runs over the set of all almost
ordered sequences in I α.

By definition, each element of the kernel of eRα,ke→ Sα,k is a linear combination of elements of the
form eae( j)be, where a and b are in Rα,k and the sequence j is unordered. By Remark 2.4, it is enough
to prove that for each i ∈ I αord, j ∈ I αun, b ∈ Rα,k and indices p1, . . . , pk the element e(i)τp1 · · · τpk e( j)be
is in J . We will prove this statement by induction on k.

Assume that k = 1. Write p = p1. The element e(i)τpe( j)be may be nonzero only if i = sp( j). This
is possible only if the sequence j is almost ordered. Thus the element e(i)τpe( j)be is in J .

Now, assume that k > 1 and that the statement is true for each value < k. Set w = sp1 · · · spk . We
may assume that i = w( j), otherwise the element e(i)τp1 · · · τpk e( j)be is zero. By assumptions on i
and j there is an index r ∈ [1, d] such that ir ∈ I 1 and w−1(r + 1) < w−1(r). Thus w has a reduced
expression of the formw= sr sr1 · · · srh . This implies that τp1 · · · τpk e( j) is equal to a monomial of the form
τrτr1 · · · τrh e( j)modulo monomials of the form τq1 · · · τqt x

b1
1 · · · x

bd
d e( j)with t< k, see Remark 2.4. Thus

the element e(i)τ1 · · · τke( j)be is equal to e(i)τrτr1 · · · τrh e( j)be modulo the elements of the same form
e(i)τp1 · · · τpk e( j)be with smaller k. The element e(i)τrτr1 · · · τrh e( j)be is in J because the sequence
sr (i) is almost ordered and the additional terms are in J by the induction assumption. �

3F. Generalization of Theorem 3.5. In this section we modify slightly the definition of a categorical
representation given in Definition 3.2. The only difference is that we use the lattice Q I instead of X I .
This new definition is not equivalent to Definition 3.2. In this section we work with an arbitrary quiver
0 = (I, H) without 1-loops.

Let k be a field. Let C be a k-linear Hom-finite category.

Definition 3.8. A gI -quasicategorical representation (E, F, x, τ ) in C is the following data

(1) a decomposition C =
⊕

α∈Q I
Cα,

(2) a pair of biadjoint exact endofunctors (E, F) of C,

(3) morphisms of functors x : F→ F , τ : F2
→ F2,

(4) decompositions E =
⊕

i∈I Ei , F =
⊕

i∈I Fi ,

satisfying the following conditions.

(a) We have Ei (Cα)⊂ Cα−αi , Fi (Cα)⊂ Cα+αi .
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(b) For each d ∈ N there is an algebra homomorphism ψd : Rd,k→ End(Fd)op such that ψd(e(i)) is
the projector to Fid · · · Fi1 , where i = (i1, . . . , id) and

ψd(xr )= Fd−r x Fr−1 and ψd(τr )= Fd−r−1τ Fr−1.

(c) For each M ∈ C the endomorphism of F(M) induced by x is nilpotent.

If the quiver 0 is infinite, condition (4) should be understood in the same way as in Remark 3.3(b).

Now, fix a decomposition I = I0t I1 as in Section 2B. We consider the quiver 0 = (I , H) and the map
φ as in Section 2B. To distinguish the elements of Q I and Q I , we write Q I =

⊕
i∈I Zαi . For each α ∈ Q I

we set α = φ(α) ∈ Q I . (See Section 2B for the notation.) However we can sometimes use the symbol α
for an arbitrary element of Q I that is not associated with some α in Q I . Let C be a Hom-finite abelian
k-linear category. Let E =

⊕
i∈I E i and F =

⊕
i∈I F i be endofunctors defining a gI -quasicategorical

representation in C. Let ψd : Rd,k(0)→ End(Fd)op be the corresponding algebra homomorphism. We
set F i = F id · · · F i1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =

⊕
i∈I α F i for any element α ∈ Q+

I
. If

|α| = d, let ψα : Rα,k→ End(Fα)op be the α-component of ψd .
Assume that C is an abelian subcategory of C satisfying the following conditions:

(a) C is stable by F i and E i for each i ∈ I0.

(b) C is stable by F i2 F i1 and E i1 E i2 for each i ∈ I1.

(c) We have F i2(C)= 0 for each i ∈ I1.

(d) We have C =
⊕

α∈Q I
C ∩ Cα.

By (d), we get a decomposition C =
⊕

α∈Q I
Cα, where Cα = C ∩ Cα. For each i ∈ I we consider the

following endofunctors Ei and Fi of C:

Fi =

{
F i |C if i ∈ I0,

F i2 F i1 |C if i ∈ I1,
and Ei =

{
E i |C if i ∈ I0,

E i1 E i2 |C if i ∈ I1.

As in the notations above we set Fi = Fid · · · Fi1 for any tuple i = (i1, . . . , id) ∈ I d and Fα =
⊕

i∈I α Fi

for any element α ∈ Q+I . Note that we have Fi = Fφ(i)|C for each i ∈ I α.
Let α ∈ Q+I . We have

Fα =
⊕
i∈I αord

F i |C .

The homomorphism ψα yields a homomorphism eRα,ke→ End(Fα)op, where e=
∑

i∈I αord
e(i).

Since the category C satisfies (a), (b) and (c), for each almost ordered sequence i = (i1, . . . , id) ∈ I α

we have F id · · · F i1(C)= 0. By Lemma 3.7, this implies that the homomorphism eRα,ke→ End(Fα)op

factors through a homomorphism Sα,k→ End(Fα)op. Let us call it ψ ′α. Then we can define an algebra
homomorphism ψα : Rα,k→ End(Fα)op by setting ψα = ψ ′α ◦8α,k.

Now, Theorem 2.12 implies the following result.
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Theorem 3.9. For each abelian subcategory C ⊂ C as above, that satisfies (a)–(d), we have a gI -
quasicategorical representation in C given by functors Fi and Ei and the algebra homomorphisms
ψα : Rα,k→ End(Fα)op. �

Remark 3.10. Assume that the category C is such that we have Cα = 0 whenever α =
∑

i∈I diαi ∈ Q I is
such that di1 < di2 for some i ∈ I1. In this case the subcategory C ⊂ C defined by C =

⊕
α∈Q I

Cα satisfies
conditions (a)–(d).

Appendix A: The geometric construction of the isomorphism 8

The goal of this section is to give a geometric construction of the isomorphism 8 in Theorem 2.12.

A1. The geometric construction of the KLR algebra. Let k be a field. Let 0 = (I, H) be a quiver
without 1-loops. See Section 2A for the notations related to quivers. For an arrow h ∈ H we will write h′

and h′′ for its source and target respectively. Fix α =
∑

i∈I diαi ∈ Q+I and set d = |α|. Set also

Eα =
⊕
h∈H

Hom(Vh′, Vh′′), Vi = Cdi , V =
⊕
i∈I

Vi .

The group Gα =
∏

i∈I GL(Vi ) acts on Eα by base changes.
Set

I α =
{

i = (i1, . . . , id) ∈ I d
:

d∑
r=1

αir = α

}
.

We denote by Fi the variety of all flags

φ = (V = V 0
⊃ V 1

⊃ · · · ⊃ V d
= {0})

in V that are homogeneous with respect to the decomposition V =
⊕

i∈I Vi and such that the I -graded
vector space V r−1/V r has graded dimension ir for r ∈ [1, d]. We denote by F̃i the variety of pairs
(x, φ) ∈ Eα × Fi such that x preserves φ, i.e., we have x(V r ) ⊂ V r for r ∈ {0, 1, . . . ,m}. Let πi be
the natural projection from F̃i to Eα, i.e., πi : F̃i → Eα, (x, φ) 7→ x . For i, j ∈ I α we denote by
Z i, j the variety of triples (x, φ1, φ2) ∈ Eα × Fi × F j such that x preserves φ1 and φ2 (i.e., we have
Z i, j = F̃i ×Eα F̃ j ). Set

Zα =
∐

i, j∈I α
Z i, j and F̃α =

∐
i∈I α

F̃i .

We have an algebra structure on H Gα
∗ (Zα, k) such that the multiplication is the convolution product with

respect to the inclusion Zα⊂ F̃α× F̃α . Here H Gα
∗ (•, k) denotes the Gα-equivariant Borel–Moore homology

with coefficients in k. See [Chriss and Ginzburg 1997, §2.7] for the definition of the convolution product.
The following result is proved by Rouquier [2008] and by Varagnolo and Vasserot [2011] in the

situation char k = 0. See [Maksimau 2015a] for the proof over an arbitrary field.
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Proposition A.1. There is an algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k). Moreover, for each i, j ∈ I α ,

the vector subspace e(i)Rα,k(0)e( j) ⊂ Rα,k(0) corresponds to the vector subspace H Gα
∗ (Z i, j , k) ⊂

H Gα
∗ (Zα, k). �

A2. The geometric construction of the isomorphism8. As in Section 2B, fix a decomposition I = I0tI1

and consider the quiver 0 = (I , H); also fix α ∈ Q+I and consider α = φ(α) ∈ Q+
I

.
We start from the variety Zα defined with respect to the quiver 0. By Proposition A.1, we have an

algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k). We have an obvious projection p : Zα→ Eα defined by

(x, φ1, φ2) 7→ x . For each i ∈ I1 denote by hi the unique arrow in 0 that goes from i1 to i2. Consider the
following open subset of Eα: E0

α = {x ∈ Eα : xhi is invertible ∀i ∈ I1}. Set Z0
α = p−1(E0

α). The pullback
with respect to the inclusion Z0

α ⊂ Zα yields an algebra homomorphism H Gα
∗ (Zα, k)→ H Gα

∗ (Z0
α, k) (see

[Chriss and Ginzburg 1997, Lemma 2.7.46]).

Remark A.2. If the sequence i ∈ I α is unordered, then a flag from Fi is never preserved by an element
from E0

α. This implies that Z i, j ∩ Z0
α =∅ if i or j is unordered. Thus for each i ∈ I αun, the idempotent

e(i) is in the kernel of the homomorphism H Gα
∗ (Zα, k)→ H Gα

∗ (Z0
α, k).

Let e be the idempotent as in Definition 2.6. Consider the following subset of Zα:

Z ′α =
∐

i, j∈I αord

Z i, j .

The algebra isomorphism Rα,k(0)' H Gα
∗ (Zα, k) above restricts to an algebra isomorphism eRα(0)e'

H Gα
∗ (Z ′α, k).
Now, set Z ′0α = Z ′α ∩ Z0

α. Similarly to the construction above, we have an algebra homomorphism
H Gα
∗ (Z ′α, k)→ H Gα

∗ (Z ′0α , k). By Remark A.2, the kernel of this homomorphism contains the kernel of
eRα,k(0)e→ Rα,k(0) (see Theorem 2.12). The following result implies that these kernels are the same.

Lemma A.3. We have the following algebra isomorphism Rα,k(0)' H Gα
∗ (Z ′0α , k).

Proof. For each i ∈ I0 we identify Vi ' Vi0 . For each i ∈ I1 we identify Vi ' Vi1 ' Vi2 . We have a
diagonal inclusion Gα ⊂ Gα, i.e., the component GL(Vi ) of Gα with i ∈ I0 goes to GL(Vi0) and the
component GL(Vi ) with i ∈ I1 goes diagonally to GL(Vi1)×GL(Vi2).

Set Gbis
α =

∏
i∈I1

GL(Vi2)⊂ Gα. We have an obvious group isomorphism Gα/Gbis
α ' Gα.

Let us denote by X the choice of isomorphisms Vi1 ' Vi2 mentioned above. Let E X
α be the subset of

Eα that contains only x ∈ Eα such that for each i ∈ I1 the component xhi is the isomorphism chosen in X .
The group Gbis

α acts freely on E0
α such that each orbit intersects E X

α once. This implies that we have
an isomorphism of algebraic varieties E0

α/Gbis
α ' E X

α . Now, set Z ′Xα = p−1(E X
α ). The same argument as

above yields Z ′0α /Gbis
α ' Z ′Xα . We get the following chain of algebra isomorphisms

H Gα
∗
(Z ′0α , k)' H Gα/Gbis

α
∗ (Z ′0α /Gbis

α , k)' H Gα
∗
(Z ′Xα , k).
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To complete the proof we have to show that the Gα-variety Z ′Xα is isomorphic to Zα . Each element of
I αord is of the form φ(i) for a unique i ∈ I α , where φ is as in Section 2B. Let us abbreviate i ′ = φ(i). By
definition we have

Z ′α =
∐

i, j∈I α
Z i ′, j ′ .

Set Z X
i ′, j ′ = Z i ′, j ′ ∩ Z ′Xα . We have an obvious isomorphism of Gα-varieties Z X

i ′, j ′ ' Z i, j . (Beware, the
variety Z i, j is defined with respect to the quiver 0 and the variety Z i ′, j ′ is defined with respect to the
quiver 0.) Taking the union for all i, j ∈ I α yields an isomorphism of Gα-varieties Z ′Xα ' Zα. �

Corollary A.4. We have the following commutative diagram.

eRα,k(0)e −−−→ Rα,k(0)y y
H Gα
∗ (Z ′α, k) −−−→ H Gα

∗ (Z ′0α , k).

Here the left vertical map is the isomorphism from Proposition A.1, the right vertical map is the isomor-
phism from Lemma A.3, the top horizontal map is obtained from Theorem 2.12 and the bottom horizontal
map is the pullback with respect to the inclusion Z ′0α ⊂ Z ′α.

Proof. The result follows directly from Lemma A.3. The commutativity of the diagram is easy to see on
the generators of Rα,k(0).

Indeed, the isomorphism Rα,k ' H Gα
∗ (Zα, k) is defined in the following way (see [Maksimau 2015a,

§2.9, Theorem 2.4] for more details). The element e(i) corresponds to the fundamental class [Z i,i ]. The
element xr e(i) corresponds to the first Chern class of some line bundle on Z i,i . The element ψr e(i)
corresponds to the fundamental class of some correspondence in Zsr (i),i . The commutativity of the
diagram in the statement follows from standard properties of Chern classes and fundamental classes. �

Appendix B: A local ring version in type A

In this appendix we give some versions of the main results of the paper (Theorems 2.12 and 3.5) over a
local ring. These ring versions are interesting because the study of the category O for ĝlN in [Maksimau
2015b] uses a deformation argument. For this we need a version of Theorem 1.2 over a local ring.

It is known that the affine Hecke algebra over a field is related with the KLR algebra (see Propositions
B.5, B.6). This allows to reformulate the definition of a categorical representation (see Definition 3.2) that
is given in term of KLR algebras in an equivalent way in terms of Hecke algebras (see Definition B.14).
The main difficulty is that there is no known relation between Hecke and KLR algebras over a ring.
Over a local ring, we can give a definition of a categorical representation using the Hecke algebra
(see Definition B.17). But we have no equivalent definition in terms of KLR algebras. That is why,
Proposition B.12, that is a ring analogue of Theorem 2.12, is formulated in terms of Hecke algebras and
not in terms of KLR algebras.
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B1. Intertwining operators. The center of the algebra Rα,k is the ring of symmetric polynomials kd [x]Sd ,
see [Rouquier 2008, Proposition 3.9]. Thus Sα,k is a kd [x]Sd -algebra under the isomorphism 8α,k in
Section 2G. Let 6 be the polynomial

∏
a<b(xa − xb)

2
∈ kd [x]Sd . Let Rα,k[6−1

] and Sα,k[6−1
] be the

rings of quotients of Rα,k and Sα,k obtained by inverting 6. We can extend the isomorphism 8α,k from
Theorem 2.12 to an algebra isomorphism

8α,k : Rα,k[6−1
] → Sα,k[6−1

].

Assume that the connected components of the quiver 0 are of the form 0a for a ∈ N, a > 1 or a =∞.
(The quiver 0a is defined in Section 3B.)

Note that there is an action of the symmetric group Sd on k(I )d permuting the variables and the
components of i . Consider the following element in Rα,k[6−1

]:

9r e(i)=


((xr − xr+1)τr + 1)e(i) if ir+1 = ir ,

−(xr − xr+1)
−1τr e(i) if ir+1 = ir − 1,

τr e(i) else.

The element 9r e(i) is called intertwining operator. Using the formulas (3) we can check that 9r e(i)
still acts on the polynomial representation and the corresponding operator is equal to sr e(i). Note also
that 9̃r = (xr − xr+1)9r is an element of Rα,k.

Lemma B.1. The images of intertwining operators by 8α,k : Rα,k → Sα,k can be described in the
following way. For i ∈ I α such that ir − 1 6= ir+1 we have

8α,k(9r e(i))=


9r ′e(φ(i)) if ir , ir+1 ∈ I0,

9r ′9r ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

9r ′+19r ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,

9r ′+19r ′+29r ′9r ′+1e(φ(i)) if ir , ir+1 ∈ I1.

For i ∈ I α such that ir − 1= ir+1 we have

8α,k(9̃r e(i))=


9̃r ′e(φ(i)) if ir , ir+1 ∈ I0,

9̃r ′9r ′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,

9r ′+19̃r ′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1.

Here r ′ = r ′i is as in Section 2F.

Proof. By construction of 8α,k, the elements 8α,k(9r e(i)) and 8α,k(9̃r e(i)) are the unique elements of
Sα,k that acts on the polynomial representation by the same operator as 9r e(i) and 9̃r e(i), respectively.

The right hand side in the formulas for 8α,k(9r e(i)) or 8α,k(9̃r e(i)) in the statement is an element
X in Sα,k[6−1

]. To complete the proof we have to show that:

(1) X acts by the same operator as 9r e(i) or 9̃r e(i), respectively, on the polynomial representation.

(2) X is in Sα,k.



1908 Ruslan Maksimau

Part (1) is obvious. Part (2) follows from part (1) and from the faithfulness of the polynomial represen-
tation of Sα,k[6−1

] (see Lemma 2.10). (In fact, part (2) is not obvious only in the case ir = ir+1 ∈ I1.) �

B2. Special quivers. From now on we will be interested only in some special types of quivers.
First, consider the quiver 0=0e, where e is an integer> 1. In particular, from now on we fix I =Z/eZ.

Fix k ∈ [0, e− 1] and set I1 = {k} and I0 = I\{k}. In this case the quiver 0 is isomorphic to 0e+1. More
precisely, the decomposition I = I 0 t I 1 t I 2 is such that I 1 = {k} and I 2 = {k+ 1}. To avoid confusion,
for i ∈ I we will write αi and εi for αi and εi respectively.

Remark B.2. If 0 is as above, a sequence i = (i1, . . . , id) ∈ I d is well ordered if for each index a such
that ia = k we have a < d and ia+1 = k+ 1. The sequence i is unordered if there is r 6 d such that the
subsequence (i1, . . . , ir ) contains more elements equal to k+ 1 than elements equal to k.

Let ϒ : Z→ Z be the map given for a ∈ Z and b ∈ [0, e− 1] by

ϒ(ae+ b)=
{

a(e+ 1)+ b if b ∈ [0, k],
a(e+ 1)+ b+ 1 if b ∈ [k+ 1, e− 1].

(8)

Now, consider the quiver 0̃= (0∞)tl (i.e., 0̃ is a disjoint union of l copies of 0∞). Set 0̃= ( Ĩ , H̃) and
write α̃i and ε̃i and for αi and εi respectively for each i ∈ Ĩ . We identify an element of Ĩ with an element
(a, b) ∈ Z×[1, l] in the obvious way. Consider the decomposition Ĩ = Ĩ0 t Ĩ1 such that (a, b) ∈ Ĩ1 if and
only if a ≡ k mod e. In this case the quiver 0̃ is isomorphic to 0̃. We will often write 0̃ instead of 0̃ (but
sometimes, if confusion is possible, we will use the notation 0̃ to stress that we work with the doubled
quiver). More precisely, in this case we have

(a, b)0 = (ϒ(a), b),

(a, b)1 = (ϒ(a), b),

(a, b)2 = (ϒ(a)+ 1, b).

To distinguish notations, we will always write φ̃ for any of the maps φ̃ : Ĩ∞→ Ĩ∞, Q Ĩ → Q Ĩ , X Ĩ → X Ĩ

in Section 2B.
From now on we write 0 = 0e, 0 = 0e+1 and 0̃ = (0∞)tl . Recall that

I = Ie = Z/eZ, I = Ie+1 = Z/(e+ 1)Z, Ĩ = (I∞)tl
= Z×[1, l].

Consider the quiver homomorphism πe : 0̃→ 0 such that

πe : Ĩ → I, (a, b) 7→ a mod e.

Then πe+1 is a quiver homomorphism πe+1 : 0̃→ 0. They yield Z-linear maps

πe : Q Ĩ → Q I , πe : X Ĩ → X I , πe+1 : Q Ĩ → Q I , πe+1 : X Ĩ → X I .
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The following diagrams are commutative for α ∈ Q+I and α̃ ∈ Q+
Ĩ

such that πe(α̃)= α,

Q Ĩ
φ̃

−−−→ Q Ĩ

πe

y πe+1

y
Q I

φ
−−−→ Q I

X Ĩ
φ̃

−−−→ X Ĩ

πe

y πe+1

y
X I

φ
−−−→ X I

Ĩ α̃
φ̃

−−−→ Ĩ φ̃(α̃)

πe

y πe+1

y
I α

φ
−−−→ I φ(α)

The quiver 0̃ is infinite. We will sometimes use its truncated version. Fix a positive integer N . Denote
by 0̃6N the full subquiver (i.e., a quiver with a smaller set of vertices and the same arrows between
these vertices) of 0̃ that contains only vertices (a, b) such that |a|6 eN . Let 0̃6N be the doubled quiver
associated with 0̃6N . We can see the quiver 0̃6N as a full subquiver of 0̃ that contains only vertices
(a, b) such that we have {

−(e+ 1)N 6 a 6 (e+ 1)N if k 6= 0,
−(e+ 1)N 6 a 6 (e+ 1)N + 1 else.

(Attention, it is not true that the isomorphism of quivers 0̃ ' 0̃ takes 0̃6N to 0̃6N .)

B3. Hecke algebras. Let R be a commutative ring with 1. Fix an element q ∈ R.

Definition B.3. The affine Hecke algebra HR,d(q) is the R-algebra generated by T1, . . . , Td−1 and the
invertible elements X1, . . . , Xd modulo the following defining relations

Xr Xs = Xs Xr ,

Tr Xr = Xr Tr if |r − s|> 1,

Tr Ts = Ts Tr if |r − s|> 1,

Tr Tr+1Tr = Tr+1Tr Tr+1,

Tr Xr+1 = Xr Tr + (q − 1)Xr+1,

Tr Xr = Xr+1Tr − (q − 1)Xr+1,

0= (Tr − q)(Tr + 1).

Assume that R = k is a field and q 6= 0, 1. The algebra Hd,k(q) has a faithful representation (see
[Miemietz and Stroppel 2016, Proposition 3.11]) in the vector space k[X±1

1 , . . . , X±1
d ] such that X±1

r

acts by multiplication by X±1
r and Tr by

Tr (P)= qsr (P)+ (q − 1)Xr+1(Xr − Xr+1)
−1(sr (P)− P).

The following operator acts on k[X±1
1 , . . . , X±1

d ] as the reflection sr

9r =
Xr − Xr+1

q Xr − Xr+1
(Tr − q)+ 1= (Tr + 1)

Xr − Xr+1

Xr − q Xr+1
− 1.

For a future use, consider the element 9̃r ∈ Hd,k given by

9̃r = (q Xr − Xr+1)9r = (Xr − Xr+1)Tr + (q − 1)Xr+1.
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B4. The isomorphism between Hecke and KLR algebras. First, we define some localized versions of
Hecke algebras and KLR algebras. Let F be a finite subset of k×. We view F as the vertex set of a quiver
with an arrow i→ j if and only if j = qi . Consider the algebra

A1 =
⊕
i∈Fd

k[X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (q Xr − X t)

−1
: r 6= t]e(i),

where e(i) are orthogonal idempotents and Xr commutes with e(i). Let H loc
d,k(q) be the A1-module given by

the extension of scalars from the k[X±1
1 , . . . , X±1

d ]-module Hd,k(q). It has a k-algebra structure such that

Tr e(i)− e(sr (i))Tr = (1− q)Xr+1(Xr − Xr+1)
−1(e(i)− e(sr (i)))

and

Z−1Tr = Tr Z−1, where Z =
∏
r<t

(Xr − X t)
2
∏
r 6=t

(q Xr − X t)
2.

In this section the KLR algebras are always defined with respect to the quiver F. We consider the algebra

A2 =
⊕
i∈Fd

k[x1, . . . , xd ][S−1
i ]e(i),

where

Si = {(xr + 1), (ir (xr + 1)− it(xt + 1)), (qir (xr + 1)− it(xt + 1) : r 6= t)}.

Consider the following central element in Rd,k

z =
∏

r

(xr + 1)
∏

i, j∈F,r 6=t

(i(xr + 1)− j (xt + 1)).

The A2-module Rloc
d,k = A2⊗k(F)d

Rd,k has a k-algebra structure because it is a subalgebra in Rd,k[z−1
],

where k(F)d is as in (2).

Remark B.4. We assumed above that the set F is finite. This assumption is important because it implies
that A1 contains k[X±1

1 , . . . , X±1
d ] and A2 contains k[x1, . . . , xd ]. However, it is possible to define the

algebras above (A1, A2, H loc
d,k(q) and Rloc

d,k) for arbitrary F ⊂ k×. Indeed, if F1 ⊂ F2 are finite, then
the algebra defined with respect to F1 is obviously a nonunitary subalgebra of the algebra defined with
respect to F2. Then we can define the algebras A1, A2, H loc

d,k(q) and Rloc
d,k with respect to any arbitrary F .

For example, we define the algebra Rloc
d,k associated with F as

Rloc
d,k(F)= lim

−→

F0⊂F
Rloc

d,k(F0),

where the direct limit is taken over all finite subsets F0 of F . Note that if the set F is infinite, then the
algebras A1, A2, H loc

d,k(q) and Rloc
d,k are not unitary.

From now on we assume that F is an arbitrary subset of k×.
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Proposition B.5. There is an isomorphism of k-algebras Rloc
d,k ' H loc

d,k(q) such that

e(i) 7→ e(i),

xr e(i) 7→ (i−1
r Xr − 1)e(i),

9r e(i) 7→9r e(i).

Proof. The polynomial representations of Hd,k(q) and Rd,k yield faithful representations of H loc
d,k(q) and

Rloc
d,k on A1 and A2 respectively. Moreover, there is an isomorphism of k-algebras A2 ' A1 given by

xr e(i) 7→ (i−1
r Xr − 1)e(i).

This implies the statement. Indeed, the elements e(i) ∈ Rloc
d,k and e(i) ∈ H loc

d,k(q) act on A2 ' A1 by
the same operators. The elements xr e(i) ∈ Rloc

d,k and (i−1
r Xr − 1)e(i) ∈ H loc

d,k(q) act on A2 ' A1 by the
same operators. Finally, the elements 9r e(i) ∈ Rloc

d,k and 9r e(i) ∈ H loc
d,k(q) also act on A2 ' A1 by the

same operators. The elements above generate the algebras Rloc
d,k and H loc

d,k(q). �

Now, we consider the subalgebra R̂d,k of Rloc
d,k generated by

• the elements of Rd,k,

• the elements (xr + 1)−1,

• the elements of the form (ir (xr + 1)− it(xt + 1))−1e(i) such that r 6= t and ir 6= it ,

• the elements of the form (qir (xr + 1)− it(xt + 1))−1e(i) such that r 6= t and qir 6= it .

Similarly, consider the subalgebra Ĥd,k(q) of H loc
d,k(q) generated by

• the elements of Hd,k(q),

• the elements of the form (Xr − X t)
−1e(i) such that r 6= t and ir 6= it ,

• the elements of the form (q Xr − X t)
−1e(i) such that r 6= t and qir 6= it .

Note that the element 9r e(i) ∈ H loc
d,k(q) belongs to Ĥd,k(q) if ir 6= qir+1. We have the following

proposition, see also [Rouquier 2008, §3.2].

Proposition B.6. The isomorphism Rloc
d,k ' H loc

d,k(q) from Proposition B.5 restricts to an isomorphism
R̂d,k ' Ĥd,k(q). �

B5. Deformation rings. In this section we introduce some general definitions from [Rouquier et al.
2016] for a later use.

We call the deformation ring (R, κ, κ1, . . . , κl) a regular commutative noetherian C-algebra R with 1
equipped with a homomorphism C[κ±1, κ1, . . . , κl] → R. Let κ, κ1, . . . , κl also denote the images of
κ, κ1, . . . , κl in R. A deformation ring is in general position if any two elements of the set

{κu − κv + aκ + b, κ − c : a, b ∈ Z, c ∈Q, u 6= v}

have no common nontrivial divisors. A local deformation ring is a deformation ring which is a local ring
such that κ1, . . . , κl, κ − e belong to the maximal ideal of R. Note that each C-algebra that is a field has
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a trivial local deformation ring structure, i.e., such that κ1 = · · · = κl = 0 and κ = e. We always consider
C as a local deformation ring with a trivial deformation ring structure.

We will write κ = κ(e+ 1)/e and κr = κr (e+ 1)/e. We will abbreviate R for (R, κ, κ1, . . . , κl) and
R for (R, κ, κ1, . . . , κ l).

Let R be a complete local deformation ring with residue field k. Consider the elements qe =

exp(2π
√
−1/κ) and qe+1 = exp(2π

√
−1/κ) in R. These elements specialize to ζe = exp(2π

√
−1/e)

and ζe+1 = exp(2π
√
−1/(e+ 1)) in k.

B6. The choice of F . From now on we assume that R is a complete local deformation ring in general
position with residue field k and field of fractions K . In this section we define some special choice of the
set F . This choice of parameters is particularly interesting because it is related with the categorical action
on the category O for ĝlN , see [Rouquier et al. 2016].

Fix a tuple ν = (ν1, . . . , νl) ∈ Zl . Put Qr = exp(2π
√
−1(νr + κr )/κ) for r ∈ [1, l]. The canonical

homomorphism R→ k maps qe to ζe and Qr to ζ νr
e .

Now, consider the subset F of R given by

F=
⋃

r∈Z,t∈[1,l]

{qr
e Qt }.

Denote by Fk the image of F in k with respect to the surjection R→ k. Recall from Section B4 that we
consider F (and Fk) as a vertex set of a quiver. The set F is a vertex set of a quiver that is a disjoint
union if l infinite linear quivers. The set Fk is a vertex set of a cyclic quiver of length e.

Fix k ∈ [0, e− 1]. To this k we associate a map ϒ : Z→ Z as in (8). Now, consider the tuple

ν = (ν1, . . . , νl) ∈ Zl, νr = ϒ(νr ) ∀r ∈ [1, l].

Let R be as in the previous section. Let k and K be the residue field and the field of fractions of R
respectively. Now, consider Q = (Q1, . . . , Ql), where Qr = exp(2π

√
−1(νr + κr )/κ) and κ and κr are

defined in Section B5. Consider the subset F of R given by

F=
⋃

r∈Z,t∈[1,l]

{qr
e+1 Qt }.

Denote by F k the image of F in k with respect to the surjection R→ k. The set F is a vertex set of a
quiver that is a disjoint union of l infinite linear quivers. The set F k is a vertex set of a cyclic quiver of
length e+ 1.

B7. Algebras Ĥ, ŜH, R̂ and Ŝ. Let 0 = (I, H), 0 = (I , H) and 0̃ = ( Ĩ , H̃) be as in Section B2.
We will use the notation F , Fk, F and F k as in previous section. (In particular, we fix some

ν = (ν1, . . . , νl).)
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We have the following isomorphisms of quivers

Ĩ ' F, i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

Ĩ ' F, i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

I ' Fk, i 7→ pi := ζ
i
e ,

I ' Fk, i 7→ pi := ζ
i
e+1.

These isomorphisms yield the following commutative diagrams

Ĩ
∼
−−−→ F

πe

y y
I

∼
−−−→ Fk,

Ĩ
∼
−−−→ F

πe+1

y y
I

∼
−−−→ Fk.

We will identify

I ' Fk, I ' Fk, Ĩ ' F, Ĩ ' F

as above.
Our goal is to obtain an analogue of Theorem 2.12 over the ring R. First, consider the algebras Ĥd,k(ζe)

and Ĥd,K (qe) defined in the same way as in Section B4 with respect to the sets Fk ⊂ k and F⊂ K . We
can consider the R-algebra Ĥd,R(qe) defined in a similar way with respect to the same set of idempotents
as Ĥd,k(ζe) (i.e., with respect to the set Fk, not F).

The algebra Ĥd,K (qe) is not unitary because the quiver 0̃ is infinite. To avoid this problem we consider
the truncated version of this algebra. Let Ĥ6N

d,K (qe) be the quotient of Ĥd,K (qe) by the two-sided ideal
generated by the idempotents e( j) ∈ Ĩ d such that j contains a component that is not a vertex of the
truncated quiver 0̃6N (see Section B2). (In fact, the algebra Ĥ6N

d,K (qe) is isomorphic to a direct summand
of Ĥd,K (qe)).

Similarly, we define the algebras Ĥd,k(ζe+1), Ĥd,K (qe+1) and Ĥd,R(qe+1) using the sets F and F k
instead of F and Fk. We define a truncation Ĥ6N

d,K
(qe+1) of Ĥd,K (qe+1) using the quiver 0̃6N .

For each i ∈ I d we consider the following idempotent in Ĥ6N
d,K (qe):

e(i)=
∑

j∈ Ĩ d ,πe( j)=i

e( j).

Here we mean that e( j) is zero if j contains a vertex that is not in the truncated quiver 0̃6N . The
idempotent e(i) is well defined because only a finite number of terms in the sum are nonzero. For each
i ∈ I d we can define an idempotent e(i) ∈ Ĥ6N

d,K
(qe+1) in a similar way.

Lemma B.7. There is an injective algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe) such that e(i) 7→ e(i),

Xr e(i) 7→ Xr e(i) and Tr e(i) 7→ Tr e(i).

Proof. It is clear that we have an algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe) as in the statement. We

only have to check the injectivity.
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For each w ∈ Sd we have an element Tw ∈ Hd,R(q) defined in the following way. We have Tw =
Ti1 · · · Tir , where w = si1 · · · sir is a reduced expression. It is well-known that Tw is independent of the
choice of the reduced expression. Moreover, the algebra Hd,R(q) is free over R[X±1

1 , . . . , X±1
d ] with a

basis {Tw : w ∈Sd}.
Set

B =
⊕
i∈Fd

k

R[X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (qe Xr − X t)

−1
: r 6= t]e(i),

where we invert (Xr − X t) only if ir 6= it and we invert (qe Xr − X t) only if ζeir 6= it . We have
Ĥd,R(qe) = B ⊗R[X±1

1 ,...,X±1
d ]

Hd,R(qe). This implies that the B-module Ĥd,R(qe) is free with a basis
{Tw : w ∈Sd}.

Similarly, we can show that the algebra Ĥ6N
d,K (qe) is free (with a basis {Tw : w ∈Sd}) over

B ′ =
⊕
j∈Fd

K [X±1
1 , . . . , X±1

d ][(Xr − X t)
−1, (qe Xr − X t)

−1
: r 6= t]e( j),

where we invert (Xr − X t) only if jr 6= jt and we invert (qe Xr − X t) only if qe jr 6= jt , and we take only
j that are supported on the vertices of the truncated quiver 06N .

Now, the injectivity of the homomorphism follows from the fact that it takes a B-basis of Ĥd,R(qe) to
a B ′-linearly independent set in Ĥ6N

d,K (qe). �

Now we define the algebra ŜHα,k(ζe+1) that is a Hecke analogue of a localization of the balanced
KLR algebra Sα,k. To do so, consider the idempotent e=

∑
i∈I αord

e(i) in Ĥα,k(ζe+1). We set

ŜHα,k(ζe+1)= eĤα,k(ζe+1)e/
∑
j∈I αun

eĤα,k(ζe+1)e( j)Ĥα,k(ζe+1)e.

Now, we define a similar algebra over K . To do this, we need to introduce some additional notation.
Denote by Q+

Ĩ ,eq
the subset of Q+

Ĩ
that contains only α̃ such that for each k ∈ Ĩ1, the dimension vector α̃

has the same dimensions at vertices k1 and k2.
Set

Ĥ6N
α,K
(qe+1)=

⊕
πe+1(α̃)=α

Ĥα̃,K (qe+1), and ŜH6N
α,K (qe+1)=

⊕
πe+1(α̃)=α

ŜH α̃,K (qe+1),

where in the sums we take only α̃∈Q+
Ĩ,eq

that are supported on the vertices of the truncated quiver 0̃6N

and ŜH α̃,K (qe+1) is defined similarly to ŜHα,k(ζe+1). More precisely, we have

ŜH α̃,K (qe+1)= ẽα̃Hα̃,K (qe+1)ẽα̃/
∑
j∈ Ĩ α̃un

ẽα̃Hα̃,K (qe+1)e( j)Hα̃,K (qe+1)ẽα̃,

where ẽα̃ =
∑

j∈ Ĩ α̃ord
e( j).
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Remark B.8. Consider the following idempotents in Ĥ6N
α,K
(qe+1):

ẽ=
∑

πe+1(α̃)=α

ẽα̃ and e=
∑

i∈I αord

e(i),

where the first sum is taken only by α̃ ∈ Q+
Ĩ ,eq

. (Note that Ĥ6N
α,K
(qe+1) was defined as a quotient of

Ĥα,K (qe+1). So, if α̃ is not supported on 0̃6N , then the idempotent ẽα̃ is zero by definition. In particular,
the sum has a finite number of nonzero terms.) Set also Ĩ α =

∐
πe+1(α̃)=α

Ĩ α̃ , where the sum is taken only
by α̃ ∈ Q+

Ĩ ,eq
. By definition, the algebra ŜH6N

α,K (qe+1) is a quotient of ẽĤ6N
α,K
(qe+1)ẽ. But we can see this

algebra as the same quotient of eĤ6N
α,K
(qe+1)e (we do the quotient with respect to the same idempotents).

Indeed, the idempotent e is a sum of a bigger number of standard idempotents e( j), j ∈ Ĩ α than the
idempotent ẽ. More precisely, the idempotent ẽ is the sum all e( j) such that j is well-ordered while e is
the sum of all e( j) such that πe+1( j) is well-ordered. But each j ∈ Ĩ α such that πe+1( j) is well-ordered
and j is not well-ordered must be unordered. Then such e( j) becomes zero after taking the quotient.

Finally, we define the R-algebra ŜH N
α,R(qe+1) as the image in ŜH6N

α,K (qe+1) of the following composi-
tion of homomorphisms

eĤα,R(qe+1)e→ eĤ6N
α,K
(qe+1)e→ ŜH6N

α,K (qe+1).

The lemma below shows that the algebra ŜH N
α,R(qe+1) is independent of N for N large enough. So,

we can write simply ŜHα,R(qe+1) instead of ŜH N
α,R(qe+1) for N large enough.

Lemma B.9. Assume N > 2d. Then the algebra ŜH N
α,R(qe+1) is independent of N .

Proof. Denote by JN the kernel of eĤα,R(qe+1)e→ ŜH6N
α,K (qe+1). Take M > N . It is clear that we have

JM ⊂ JN .
Let us show that we also have an opposite inclusion if N > 2d. We want to show that each element

x ∈ JN is also in JM . It is enough to show this for x of the form x = Xe(i), where i ∈ I αord and
X is composed of the elements of the form Tr and Xr . Then Xe(i) ∈ JN means that the element
Xe( j) ∈ ŜH6N

α,K (qe+1) is zero for each j ∈ Ĩ α supported on 0̃6N such that πe+1( j)= i . To show that we
have Xe(i)∈ JM we must check that the element Xe( j)∈ ŜH6M

α,K (qe+1) is zero for each j ∈ Ĩ α supported

on 0̃6M such that πe+1( j)= i .
Let α̃ ∈ Q+

Ĩ ,eq
be such that j ∈ Ĩ α̃. It is clear that we can find an α̃′ ∈ Q+

Ĩ ,eq
supported on

0̃62d such that we have an isomorphism Ĥα̃,K (qe+1) ' Ĥα̃,K (qe+1) that induces an isomorphism
ŜH α̃,K (qe+1)' ŜH α̃,K (qe+1) and such that this isomorphism preserves the generators Xr and Tr and sends
the idempotent e( j) to some idempotent e( j ′) such that j ′ is supported on 0̃62d and πe+1( j)= πe+1( j ′).
Then the element Xe( j) ∈ ŜH6M

α,K (qe+1) is zero because Xe( j ′) ∈ ŜH6M
α,K (qe+1) is zero. This implies

x ∈ JM . �
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Now we define the KLR versions of the algebras ŜHα,k(ζe+1) and ŜH6N
α,K (qe+1). As for the Hecke

version, we denote by e the idempotent
∑

i∈I αord
e(i) in R̂α,k(0). Set

Ŝα,k(0)= eR̂α,k(0)e/
∑
i∈I αun

eR̂α,k(0)e(i)Rα,k(0)e.

For each α̃ ∈ Q+
Ĩ ,eq

we consider the idempotent ẽα̃ =
∑

j∈ Ĩ α̃ord
e( j) in R̂α̃,K (0̃). Set

Ŝα,K (0̃6N )=
⊕

πe+1(α̃)=α

Ŝα̃,K (0̃),

where we take only α̃ ∈ Q+
Ĩ ,eq

that are supported on the vertices of the truncated quiver 0̃6N and

Ŝα̃,K (0̃)= ẽα̃ R̂α̃,K (0̃)ẽα̃/
∑
j∈ Ĩ α̃un

ẽα̃ R̂α̃,K (0̃)e( j)Rα̃,K (0̃)ẽα̃.

Remark B.10. By Proposition B.6 we have algebra isomorphisms

R̂α,k(0)' Ĥα,k(ζe), R̂α,K (0̃6N )' Ĥ6N
α,K (qe),

R̂α,k(0)' Ĥα,k(ζe+1), R̂α,K (0̃6N )' Ĥ6N
α,K
(qe+1),

from which we deduce the isomorphisms

Ŝα,k(0)' ŜHα,k(ζe+1) and Ŝα,K (0̃6N )' ŜH6N
α,K (qe+1).

We may use these isomorphisms without mentioning them explicitly. Using the identifications above
between KLR algebras and Hecke algebras, a localization of the isomorphism in Theorem 2.12 yields an
isomorphism

8α,k : Ĥα,k(ζe)→ ŜHα,k(ζe+1).

In the same way we also obtain an algebra isomorphism

8α̃,K : Ĥα̃,K (qe)→ ŜH φ̃(α̃),K (qe+1)

for each α̃ ∈ Q+
Ĩ

. Taking the sum over all α̃ ∈ Q+
Ĩ

such that πe(α̃)= α and such that α̃ is supported on
the vertices of the truncated quiver 0̃6N yields an isomorphism

8α,K : Ĥ6N
α,K (qe)→ ŜH6N

α,K (qe+1).

Lemma B.11. The homomorphism eĤα,R(qe+1)e→ eĤα,k(ζe+1)e factors through a homomorphism
ŜHα,R(qe+1)→ ŜHα,k(ζe+1).

Proof. In Section 2E we constructed a faithful polynomial representation of Sα,k. Let us call it Polk. It
is constructed as a quotient of the standard polynomial representation of eRα,ke. After localization we
get a faithful representation P̂olk of Ŝα,k. Thus the kernel of the algebra homomorphism eR̂α,ke→ Ŝα,k
is the annihilator of the representation P̂olk. We can transfer this to the Hecke side (because the
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isomorphism in Proposition B.6 comes from the identification of the polynomial representations) and
we obtain that the kernel of the algebra homomorphism eĤα,k(ζe+1)e→ ŜHα,k(ζe+1) is the annihilator
of the representation P̂olk. Similarly, we can characterize the kernel of the algebra homomorphism
eĤ6N

α,K
(qe+1)e→ ŜH6N

α,K (qe+1) as the annihilator of a similar representation P̂ol6N
K .

The K -vector space P̂ol6N
K has an R-submodule P̂ol R stable by the action of eĤα,R(qe+1)e such that

k⊗R P̂ol R = P̂olk and it is compatible with the algebra homomorphism eĤα,R(qe+1)e→ eĤα,k(ζe+1)e.
By definition of ŜHα,R(qe+1) and the discussion above, the kernel of the algebra homomorphism
eĤα,R(qe+1)e → ŜHα,R(qe+1) is formed by the elements that act by zero on P̂ol6N

K (we assume
that N is big enough). Thus each element of this kernel acts by zero on P̂ol R . This implies, that
an element of the kernel of eĤα,R(qe+1)e→ ŜHα,R(qe+1) specializes to an element of the kernel of
eĤα,k(ζe+1)e→ ŜHα,k(ζe+1). This proves the statement. �

B8. The deformation of the isomorphism 8.

Proposition B.12. There is a unique algebra homomorphism 8α,R : Ĥα,R(qe)→ ŜHα,R(qe+1) such that
the following diagram is commutative:

Ĥα,k(ζe)
8α,k
−−−→ ŜHα,k(ζe+1)x x

Ĥα,R(qe)
8α,R
−−−→ ŜHα,R(qe+1)y y

Ĥ6N
α,K (qe)

8α,K
−−−→ ŜH6N

α,K (qe+1).

Proof. First we consider the algebras H loc
α,k(ζe), H loc

α,R(qe) and H loc,6N
α,K (qe) obtained from Ĥα,k(ζe),

Ĥα,R(qe) and Ĥ6N
α,K (qe) by inverting

• (Xr − X t) and (ζe Xr − X t) with r 6= t ,

• (Xr − X t) and (qe Xr − X t) with r 6= t ,

• (Xr − X t) and (qe Xr − X t) with r 6= t

respectively. Let SH loc
α,k
(ζe+1) and SH loc,6N

α,K
(qe+1) be the localizations of ŜHα,k(ζe+1) and ŜH6N

α,K (qe+1)

such that the isomorphisms 8α,k and 8α,K above induce isomorphisms

8α,k : H loc
α,k(ζe)→ SH loc

α,k(ζe+1) and 8α,K : H loc,6N
α,K (qe)→ SH loc,6N

α,K
(qe+1).

Let SH loc
α,R
(qe+1) be the image in SH loc,6N

α,K
(qe+1) of the following composition of homomorphisms

eH loc
α,R
(qe+1)e→ eH loc,6N

α,K
(qe+1)e→ SH loc,6N

α,K
(qe+1).

(We assume N > 2d. Then, similarly to Lemma B.9, the algebra SH loc
α,R

is independent of N under this
assumption.)
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Next, we want to prove that there exists an algebra homomorphism 8α,R : H loc
α,R(qe)→ SH loc

α,R
(qe+1)

such that the following diagram is commutative:

H loc
α,k(ζe)

8α,k
−−−→ SH loc

α,k
(ζe+1)x x

H loc
α,R(qe)

8α,R
−−−→ SH loc

α,R
(qe+1)y y

H loc,6N
α,K (qe)

8α,K
−−−→ SH loc,6N

α,K
(qe+1).

(9)

We just need to check that the map 8α,K takes an element of H loc
α,R(qe) to an element of SH loc

α,R
(qe+1)

and that it specializes to the map 8α,k : H loc
α,k(ζe)→ SH loc

α,k
(ζe+1). We will check this on the generators

e(i), Xr e(i) and 9r e(i) of H loc
α,R(qe).

This is obvious for the idempotents e(i).
Let us check this for Xr e(i). Assume that i ∈ I α and j ∈ Ĩ |α| are such that we have πe( j) = i .

Write i ′ = φ(i) and j ′ = φ̃( j). Set r ′ = r ′j = r ′i , see the notation in Section 2F. By Theorem 2.12 and
Proposition B.5 we have

8α,K (Xr e( j))= p−1
j ′r ′

p jr Xr ′e( j ′).

Since, p−1
j ′r ′

p jr depends only on i and r and e(i)=
∑

πe( j)=i e( j), we deduce that

8α,K (Xr e(i))= p−1
j ′r ′

p jr Xr ′e(i ′).

Thus the element 8α,K (Xr e(i)) is in SH loc
α,R and its image in SH loc

α,k is p−1
i ′r ′

pir Xr ′e(i ′)=8α,k(Xr e(i)).
Next, we consider the generators 9r e(i). We must prove that for each j such that πe( j)= i and for

each r we have

• 8α,K (9r e( j))=4e( j ′), for some element 4 ∈ H loc
α,R(qe) that depends only on r and i ,

• the image of 4e(i ′) in SH loc
α,k
(qe+1) under the specialization R→ k is 8α,k(9r e(i)).

This follows from Lemma B.1.
Now we obtain the diagram from the claim of Proposition B.12 as the restriction of the diagram (9). �

B9. Alternative definition of a categorical representation. There is an alternative definition of a cate-
gorical representation, where the KLR algebra is replaced by the affine Hecke algebra.

Let R be a C-algebra. Fix an invertible element q ∈ R, q 6= 1. Let C be an R-linear exact category.

Definition B.13. A representation datum in C is a tuple (E, F, X, T ) where (E, F) is a pair of exact
biadjoint functors C→ C and X ∈ End(F)op and T ∈ End(F2)op are endomorphisms of functors such
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that for each d ∈ N, there is an R-algebra homomorphism ψd : Hd,R(q)→ End(Fd)op given by

Xr 7→ Fd−r X Fr−1
∀r ∈ [1, d],

Tr 7→ Fd−r−1T Fr−1
∀r ∈ [1, d − 1].

Now, assume that R = k is a field. Assume that C is a Hom-finite k-linear abelian category. Let F be a
subset of k× (possibly infinite). As in Section B4, we view F as the vertex set of a quiver with an arrow
i→ j if and only if j = qi .

Definition B.14. A gF-categorical representation in C is the datum of a representation datum (E, F, X, T )
and a decomposition C =

⊕
µ∈XF

Cµ satisfying the conditions (a) and (b) below. For i ∈F, let Ei and
Fi be endofunctors of C such that for each M ∈ C the objects Ei (M) and Fi (M) are the generalized
i-eigenspaces of X acting on E(M) and F(M) respectively, see also Remark 3.3 (a). We assume

(a) F =
⊕

i∈F Fi and E =
⊕

i∈F Ei ,

(b) Ei (Cµ)⊂ Cµ+αi and Fi (Cµ)⊂ Cµ−αi .

If the set F is infinite, condition (a) should be understood in the same way as in Remark 3.3 (b).

Remark B.15. (a) By definition, for each object M ∈ C and each d ∈ Z>0, we have Fid · · · Fi1(M) 6= 0
only for a finite number of sequences (i1, . . . , id) ∈ Fd . (Else, the endomorphism algebra of Fd(M) is
infinite-dimensional.) Then the homomorphism Hd,k(q)→ End(Fd(M))op extends to a homomorphism
Ĥd,k(q)→ End(Fd(M))op such that only a finite number of idempotents e( j) has a nonzero image. (We
define the action of e(i) as the projection from Fd to Fid · · · Fi1 . Note that the action of (Xr − X t)

−1e(i)
such that ir 6= it is well defined because Xr and X t have different eigenvalues. Similarly, the action of
(q Xr − X t)

−1e(i) such that r 6= t and qir 6= it is well defined.) In particular, we obtain a homomorphism
Ĥd,k(q)→ End(Fd)op.

(b) As in part (a), if we have a categorical representation in the sense of Definition 3.2, then the homomor-
phism Rd,k→End(Fd)op extends to a homomorphism R̂d,k→End(Fd)op. Then Proposition B.6 implies
that the two definitions of a categorical representation of gF (Definitions 3.2 and B.14) are equivalent.

B10. Categorical representations over R. We assume that the ring R is as in Section B6. We are going
to obtain an analogue of Theorem 3.5 over R.

Let CR , Ck and CK be R-, k- and K -linear categories, respectively. Assume that Ck and CK are Hom-
finite k-linear and K -linear abelian categories, respectively. Assume that the category CR is exact. Fix
R-linear functors �k : CR→ Ck and �K : CR→ CK .

Remark B.16. The first example of a situation as above that we should imagine is the following. Let A
be an R-algebra that is finitely generated as an R-module. We set CR = mod (A), Ck = mod (k⊗R A),
CK = mod (K ⊗R A), �k = k⊗ • and �K = K ⊗ •.

Another interesting situation (that in fact motivated the result of this section) is when CB , for B ∈
{R, k, H}, is the category O for ĝlN over B at a negative level. We do not want to assume in this section
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that the category CR is abelian because [Rouquier et al. 2016] constructs a categorical representation only
in the 1-filtered category O over R (and not in the whole abelian category O over R).

Definition B.17. A categorical representation of (s̃le, sl⊕l
∞
) in (CR, Ck, CK ) is the following data

(1) a categorical representation of gI = s̃le in Ck,

(2) a categorical representation of g Ĩ = sl⊕l
∞

in CK ,

(3) a representation datum (E, F) in CR (with respect to the Hecke algebra Hd,R(qe)) such that the
functors E and F commute with �k and �K ,

(4) lifts (with respect to �k) of decompositions E =
⊕

i∈I Ei , F =
⊕

i∈I Fi and Ck =
⊕

X I
Ck,µ from

Ck to CR

such that the following compatibility conditions are satisfied:

• The decomposition CR =
⊕

µ∈Xe
CR,µ is compatible with the decomposition CK =

⊕
µ̃∈X Ĩ

CK ,µ̃ (i.e.,
we have �K (CR,µ)⊂

⊕
πe(µ̃)=µ

CK ,µ̃).

• The decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi in CR are compatible with the decompositions
E =

⊕
j∈ Ĩ E j and F =

⊕
j∈ Ĩ F j in CK with respect to �K (i.e., the functors Ei =

⊕
j∈ Ĩ ,πe( j)=i E j

and Fi =
⊕

j∈ Ĩ ,πe( j)=i F j for CK correspond to the functors Ei , Fi for CR).

• The actions of the Hecke algebras Hd,R(qe), Hd,k(ζe) and Hd,K (qe) on End(Fd)op for CR , Ck and
CK are compatible with �k and �K .

Proposition B.12 yields the following version of Theorem 3.5 over R.
Let (CR, Ck, CK ) be a categorical representation of (s̃le+1, sl

⊕l
∞
). Assume that for each µ ∈ X I\X

+

I
we

have Ck,µ=CR,µ=0 and the for each µ̃∈ X Ĩ\X
+

Ĩ
we have CK ,µ̃=0. Let CR , Ck and CK be the subcategory

of CR , Ck and CK , respectively, defined in the same way as in Section 3D. Then we have the following.

Theorem B.18. There is a categorical representation of (s̃le, sl⊕l
∞
) in (CR, Ck, CK ).

Proof. We obtain a categorical representation of s̃le in Ck by Theorem 3.5. A similar argument as in
the proof of Theorem 3.5 yields a categorical representation of sl⊕l

∞
in CK (we just have to replace the

isomorphism 8 from Section 2G associated with the quiver 0e by a similar isomorphism associated
with the quiver 0̃). To construct a representation datum in CR , we use the homomorphism 8α,R from
Proposition B.12. All axioms of a (s̃le, sl⊕l

∞
)-categorical representation in (CR, Ck, CK ) follow automati-

cally from the axioms of a categorical representation of (s̃le+1, sl
⊕l
∞
) in (CR, Ck, CK ). �
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