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Let O be the ring of S-integers in a number field k. We prove that if the group of units O× is infinite then
every matrix in 0 = SL2(O) is a product of at most 9 elementary matrices. This essentially completes
a long line of research in this direction. As a consequence, we obtain a new proof of the fact that 0 is
boundedly generated as an abstract group that uses only standard results from algebraic number theory.

1. Introduction

Let k be a number field. Given a finite subset S of the set V k of valuations of k containing the set V k
∞

of
archimedian valuations, we let Ok,S denote the ring of S-integers in k, i.e.,

Ok,S = {a ∈ k× | v(a)≥ 0 for all v ∈ V k
\ S} ∪ {0}.

As usual, for any commutative ring R, we let SL2(R) denote the group of unimodular 2× 2-matrices
over R and refer to the SL2(R)-matrices

E12(a)=
(

1 a
0 1

)
and E21(b)=

(
1 0
b 1

)
(a, b ∈ R)

as elementary (over R).
It was established in [Vasershtein 1972] (see also [Liehl 1981]) that if the ring of S-integers O= Ok,S

has infinitely many units, the group 0 = SL2(O) is generated by elementary matrices. The goal of this
paper is to prove that in this case 0 is actually boundedly generated by elementaries. More precisely, we
prove the following.

Theorem 1.1. Let O= Ok,S be the ring of S-integers in a number field k, and assume that the group of
units O× is infinite. Then every matrix in SL2(O) is a product of at most 9 elementary matrices.

The quest to validate the property that every element of SL2(O) is a product of a bounded number of
elementary matrices has a considerable history. First, G. Cooke and P. J. Weinberger [1975] established it
(with the same bound as in Theorem 1.1) assuming the truth of a suitable form of the generalized Riemann
hypothesis, which still remains unproven. Later, it was shown in [Loukanidis and Murty 1994] (see also
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[Murty 1995]) by analytic tools that the argument can be made unconditional if |S| ≥max(5, 2[k :Q]−3).
On the other hand, B. Liehl [1984] proved the result by algebraic methods for some special fields k. The
first unconditional proof in full generality was given by D. Carter, G. Keller and E. Paige in an unpublished
preprint; their argument was streamlined and made available to the public by D. W. Morris [2007]. This
argument is based on model theory and provides no explicit bound on the number of elementaries required;
besides, it uses difficult results from additive number theory.

M. Vsemirnov [2014] proved Theorem 1.1 for O= Z[1/p] using the results of D. R. Heath-Brown
[1986] on Artin’s primitive root conjecture (thus, in a broad sense, this proof develops the initial approach
of Cooke and Weinberger [1975]); his bound on the number of elementaries required is ≤ 5. Subsequently,
the third-named author reworked the argument from [Vsemirnov 2014] to avoid the use of [Heath-Brown
1986] in an unpublished note. These notes were the beginning of the work of the first two authors that
eventually led to a proof of Theorem 1.1 in the general case. It should be noted that our proof uses only
standard results from number theory such as Artin reciprocity and Chebotarev’s density theorem, and is
relatively short and constructive with an explicit bound which is independent of the field k and the set S.
This, in particular, implies that Theorem 1.1 remains valid for any infinite S.

The problem of bounded generation (particularly by elementaries) has been considered for S-arithmetic
subgroups of algebraic groups other than SL2. A few years after [Cooke and Weinberger 1975], Carter
and Keller [1983] showed that SLn(O) for n ≥ 3 is boundedly generated by elementaries for any ring
O of algebraic integers (see [Tavgen 1990] for other Chevalley groups of rank > 1, and [Erovenko and
Rapinchuk 2006] for isotropic, but nonsplit (or quasisplit), orthogonal groups). The upper bound on the
number of factors required to write every matrix in SLn(O) as a product of elementaries given in [Carter
and Keller 1983] is 1

2(3n2
− n)+ 681− 1, where 1 is the number of prime divisors of the discriminant

of k; in particular, this estimate depends on the field k. Using our Theorem 1.1, one shows in all cases
where the group of units O× is infinite, this estimate can be improved to 1

2(3n2
− n)+ 4, hence made

independent of k — see Corollary 4.6. The situation not covered by this result are when O is either Z or
the ring of integers in an imaginary quadratic field — see below. The former case was treated in [Carter
and Keller 1984] with an estimate 1

2(3n2
− n)+ 36, so only in the case of imaginary quadratic fields the

question of the existence of a bound on the number of elementaries independent of the k remains open.
From a more general perspective, Theorem 1.1 should be viewed as a contribution to the sustained

effort aimed at proving that all higher rank lattices are boundedly generated as abstract groups. We recall
that a group 0 is said to have bounded generation (BG) if there exist elements γ1, . . . , γd ∈ 0 such that

0 = 〈γ1〉 · · · 〈γd〉,

where 〈γi 〉 denotes the cyclic subgroup generated by γi . The interest in this property stems from the fact
that while being purely combinatorial in nature, it is known to have a number of far-reaching consequences
for the structure and representations of a group, particularly if the latter is S-arithmetic. For example,
under one additional (necessary) technical assumption, (BG) implies the rigidity of completely reducible
complex representations of 0 (known as SS-rigidity) — see [Rapinchuk 1990; Platonov and Rapinchuk
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1994, Appendix A]. Furthermore, if 0 is an S-arithmetic subgroup of an absolutely simple simply
connected algebraic group G over a number field k, then assuming the truth of the Margulis–Platonov
conjecture for the group G(k) of k-rational points [Platonov and Rapinchuk 1994, §9.1], (BG) implies
the congruence subgroup property (i.e., the finiteness of the corresponding congruence kernel — see
[Lubotzky 1995; Platonov and Rapinchuk 1992]). For applications of (BG) to the Margulis–Zimmer
conjecture, see [Shalom and Willis 2013]. Given these and other implications of (BG), we would like to
point out the following consequence of Theorem 1.1.

Corollary 1.2. Let O = Ok,S be the ring of S-integers, in a number field k. If the group of units O× is
infinite, then the group 0 = SL2(O) has bounded generation.

We note that combining this fact with the results of [Lubotzky 1995; Platonov and Rapinchuk 1992],
one obtains an alternative proof of the centrality of the congruence kernel for SL2(O) (provided that O×

is infinite), originally established by J.-P. Serre [1970]. We also note that (BG) of SL2(O) is needed to
prove (BG) for some other groups [Tavgen 1990; Erovenko and Rapinchuk 2006].

Next, it should be pointed out that the assumption that the unit group O× is infinite is necessary for the
bounded generation of SL2(O), hence cannot be omitted. Indeed, it follows from Dirichlet’s unit theorem
[Cassels and Fröhlich 1967, §2.18] that O× is finite only when |S| = 1 which happens precisely when S
is the set of archimedian valuations in the following two cases:

(1) k = Q and O = Z. In this case, the group SL2(Z) is generated by the elementaries, but has a
nonabelian free subgroup of finite index, which prevents it from having bounded generation.

(2) k = Q(
√
−d) for some square-free integer d ≥ 1, and Od is the ring of algebraic integers in k.

According to [Grunewald and Schwermer 1981], the group 0 = SL2(Od) has a finite index subgroup
that admits an epimorphism onto a nonabelian free group, hence again cannot possibly be boundedly
generated. Moreover, P. M. Cohn [1966] shows that if d /∈ {1, 2, 3, 7, 11} then 0 is not even generated
by elementary matrices.

The structure of the paper is the following. In Section 2 we prove an algebraic result about abelian
subextensions of radical extensions of general field — see Proposition 2.1. This statement, which may
be of independent interest, is used in the paper to prove Theorem 3.7. This theorem is one of the
number-theoretic results needed in the proof of Theorem 1.1, and it is established in Section 3 along with
some other facts from algebraic number theory. One of the key notions in the paper is that of a Q-split
prime: we say that a prime p of a number field k is Q-split if it is nondyadic and its local degree over the
corresponding rational prime is 1. In Section 3, we establish some relevant properties of such primes (see
Section 3A) and prove in Section 3B the following (known — see the remark in Section 3) refinement of
Dirichlet’s theorem from [Bass et al. 1967].

Theorem 3.3. Let O be the ring of S-integers in a number field k for some finite S⊂ V k containing V k
∞

. If
nonzero a, b ∈O are relatively prime (i.e., aO+bO=O) then there exist infinitely many principal Q-split
prime ideals p of O with a generator π such that π ≡ a (mod bO) and π > 0 in all real completions of k.
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Section 3C is devoted to the statement and proof of Theorem 3.7, which is another key number-theoretic
result needed in the proof of Theorem 1.1. In Section 4, we prove Theorem 1.1 and Corollary 1.2. Finally,
in Section 5 we correct the faulty example from [Vsemirnov 2014] of a matrix in SL2(Z[1/p]), where
p is a prime ≡ 1 (mod 29), that is not a product of four elementary matrices — see Proposition 5.1,
confirming thereby that the bound of 5 in [Vsemirnov 2014] is optimal.

Notations and conventions. For a field k, we let kab denote the maximal abelian extension of k. Further-
more, µ(k) will denote the group of all roots of unity in k; if µ(k) is finite, we let µ denote its order. For
n ≥ 1 prime to char k, we let ζn denote a primitive n-th root of unity.

In this paper, with the exception of Section 2, the field k will be a field of algebraic numbers (i.e., a
finite extension of Q), in which case µ(k) is automatically finite. We let Ok denote the ring of algebraic
integers in k. Furthermore, we let V k denote the set of (the equivalence classes of) nontrivial valuations of
k, and let V k

∞
and V k

f denote the subsets of archimedean and nonarchimedean valuations, respectively. For
any v ∈ V k , we let kv denote the corresponding completion; if v ∈ V k

f then Ov will denote the valuation
ring in kv with the valuation ideal p̂v and the group of units Uv = O×v .

Throughout the paper, S will denote a fixed finite subset of V k containing V k
∞

, and O = Ok,S the
corresponding ring of S-integers (see above). Then the nonzero prime ideals of O are in a natural bijective
correspondence with the valuations in V k

\ S. So, for a nonzero prime ideal p ⊂ O we let vp ∈ V k
\ S

denote the corresponding valuation, and conversely, for a valuation v ∈ V k
\ S we let pv ⊂ O denote the

corresponding prime ideal (note that pv = O∩ p̂v). Generalizing Euler’s ϕ-function, for a nonzero ideal a
of O, we set

φ(a)= |(O/a)×|.

For simplicity of notation, for an element a ∈ O, φ(a) will always mean φ(aO). Finally, for a ∈ k×, we
let V (a)= {v ∈ V k

f | v(a) 6= 0}.
Given a prime number p, one can write any integer n in the form n = pe

·m, for some nonnegative
integer e, where p -m. We then call pe the p-primary component of n.

2. Abelian subextensions of radical extensions

In this section, k is an arbitrary field. For a prime p 6= char k, we let µ(k)p denote the subgroup of µ(k),
consisting of elements satisfying x pd

= 1 for some d ≥ 0. If this subgroup is finite, we set λ(k)p to be
the nonnegative integer satisfying |µ(k)p| = pλ(k)p ; otherwise, set λ(k)p =∞. Clearly if µ(k) is finite,
then µ=

∏
p pλ(k)p . For a ∈ k×, we write n

√
a to denote an arbitrary root of the polynomial xn

− a.
The goal of this section is to prove the following.

Proposition 2.1. Let n ≥ 1 be an integer prime to char k, and let u ∈ k× be such that u /∈ µ(k)pk× p for
all p | n. Then the polynomial xn

− u is irreducible over k, and for t = n
√

u we have

k(t)∩ kab
= k(tm) where m =

n∏
p | n gcd(n, pλ(k)p)

,

with the convention that gcd(n, p∞) is simply the p-primary component of n.
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We first treat the case n = pd where p is a prime.

Proposition 2.2. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Fix an integer d ≥ 1,
set t = pd√u. Then

k(t)∩ kab
= k(t pγ ) where γ =max(0, d − λ(k)p).

We begin with the following lemma.

Lemma 2.3. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Set k1 = k( p
√

u). Then:

(i) [k1 : k] = p.

(ii) µ(k1)p = µ(k)p.

(iii) None of the p
√

u are in µ(k1)p(k×1 )
p.

Proof. (i) follows from [Lang 2002, Chapter VI, Theorem 9.1], as u /∈ (k×)p.

(ii) If λ(k)p =∞, then there is nothing to prove. Otherwise, we need to show that for λ= λ(k)p, we have
ζpλ+1 /∈ k1. Assume the contrary. Then, first, λ > 0. Indeed, we have a tower of inclusions k ⊆ k(ζp)⊆ k1.
Since [k1 : k] = p by (i), and [k(ζp) : k] ≤ p− 1, we conclude that [k(ζp) : k] = 1, i.e., ζp ∈ k.

Now, since ζpλ+1 /∈ k, we have
k1 = k(ζpλ+1)= k

(
p
√
ζpλ
)
. (1)

But according to Kummer’s theory (which applies because ζp ∈ k), the fact that k( p
√

a) = k( p
√

b) for
a, b ∈ k× implies that the images of a and b in k×/(k×)p generate the same subgroup. So, it follows
from (1) that uζ i

p ∈ (k
×)p for some i , and therefore u ∈ µ(k)p(k×)p, contradicting our choice of u.

(iii) Assume the contrary, i.e., some p-th root p
√

u can be written in the form p
√

u = ζa p for some a ∈ k×1
and ζ ∈ µ(k1)p. Let N = Nk1/k : k×1 → k× be the norm map. Then

N ( p
√

u)= N (ζ )N (a)p.

Clearly, N (ζ ) ∈ µ(k)p, so N ( p
√

u) ∈ µ(k)p(k×)p. On the other hand, N ( p
√

u)= u for p odd, and −u for
p = 2. In all cases, we obtain that u ∈ µ(k)p(k×)p. A contradiction. �

A simple induction now yields the following:

Corollary 2.4. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. For a fixed integer d ≥ 1,
set kd = k( pd√u). Then:

(i) [kd : k] = pd .

(ii) µ(kd)p = µ(k)p, hence λ(kd)p = λ(k)p.

Of course, assertion (i) is well known and follows, for example, from [Lang 2002, Chapter VI, §9].

Lemma 2.5. Let p be a prime number 6= char k, and let u ∈ k× \µ(k)p(k×)p. Fix an integer d ≥ 1, and
set t = pd√u and kd = k(t). Furthermore, for an integer j between 0 and d define ` j = k(t pd− j

)' k( p j√u).
Then any intermediate subfield k ⊆ `⊆ kd is of the form `= ` j for some j ∈ {0, . . . , d}.
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Proof. Given such an `, it follows from Corollary 2.4(i) that [kd : `] = p j for some 0≤ j ≤ d . Since any
conjugate of t is of the form ζ · t where ζ pd

= 1, we see that the norm Nkd/`(t) is of the form ζ0t p j
, where

again ζ pd

0 = 1. Then ζ0 ∈ µ(kd)p, and using Corollary 2.4(ii), we conclude that ζ0 ∈ k ⊆ `. So, t p j
∈ `,

implying the inclusion `d− j ⊆ `. Now, the fact that [kd : `d− j ] = p j implies that `= `d− j , yielding our
claim. �

Proof of Proposition 2.2. Set λ = λ(k)p. Then for any d ≤ λ the extension k( pd√u)/k is abelian, and
our assertion is trivial. So, we may assume that λ <∞ and d > λ. It follows from Lemma 2.5 that
` := k(t)∩kab is of the form `d− j = k(t p j

) for some j ∈ {0, . . . , d}. On the other hand, `d− j/k is a Galois
extension of degree pd− j , so must contain the conjugate ζpd− j t pd− j

of t pd− j
, implying that ζpd− j ∈ `d− j .

Since `d− j ' k( pd− j√u), we conclude from Corollary 2.4(ii) that d − j ≤ λ, i.e., j ≥ d − λ. This proves
the inclusion `⊆ k(t pγ ); the opposite inclusion is obvious. �

Proof of Proposition 2.1. Let n = pα1
1 · · · p

αs
s be the prime factorization of n, and for i = 1, . . . , s set

ni = n/pαi
i . Let t = n

√
u and ti = tni (so, ti is a pαi

i -th root of u). Using again [Lang 2002, Chapter VI,
Theorem 9.1] we conclude that [k(t) : k] = n, which implies that

[k(t) : k(ti )] = ni for all i = 1, . . . , r. (2)

Since for K := k(t)∩kab the degree [K : k] divides n, we can write K = K1 · · · Ks where Ki is an abelian
extension of k of degree pβi

i for some βi ≤ αi . Then the degree [Ki (ti ) : k(ti )] must be a power of pi .
Comparing with (2), we conclude that Ki ⊆ k(ti ). Applying Proposition 2.2 with d = αi , we obtain the
inclusion

Ki ⊆ k(t
p
γi
i

i )= k(tni p
γi
i ) where γi =max(0, αi − λ(k)pi ). (3)

It is easy to see that the gcd of the numbers ni pγi
i for i = 1, . . . , s is

m =
n∏

p|n gcd(n, pλ(k)p)
.

Furthermore, the subgroup of k(t)× generated by tn1 p
γ1
1 , . . . , tns pγs

s coincides with the cyclic subgroup
with generator tm . Then (3) yields the following inclusion

K = K1 · · · Ks ⊆ k(tm).

Since the opposite inclusion is obvious, our claim follows. �

Corollary 2.6. Assume that µ= |µ(k)|<∞. Let P be a finite set of rational primes 6= char k, and define

µ′ = µ ·
∏
p∈P

p.

Given u ∈ k× such that

u /∈ µ(k)p(k×)p for all p ∈ P,
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for any abelian extension F of k the intersection

E := F ∩ k( µ
′√
u, ζµ′)

is contained in k( µ
√

u, ζµ′).

Proof. Without loss of generality we may assume that ζµ′ ∈ F , and then we have the following tower of
field extensions

k( µ
√

u, ζµ′)⊂ E( µ
√

u)⊂ k( µ
′√
u, ζµ′).

We note that the degree [k( µ′
√

u, ζµ′) : k( µ
√

u, ζµ′)] divides
∏

p∈P p. So, if we assume that the assertion
of the lemma is false, then we should be able to find to find a prime p ∈ P that divides the degree
[E( µ
√

u) : k( µ
√

u, ζµ′)], and therefore does not divide the degree [k( µ′
√

u, ζµ′) : E( µ
√

u)]. The latter implies
that pµ
√

u ∈ E( µ
√

u). But this contradicts Proposition 2.1 since E( µ
√

u)= E ·k( µ
√

u) is an abelian extension
of k. �

3. Results from algebraic number theory

3A. Q-split primes. Our proof of Theorem 1.1 heavily relies on properties of so-called Q-split primes
in O.

Definition. Let p be a nonzero prime ideal of O, and let p be the corresponding rational prime. We say
that p is Q-split if p > 2, and for the valuation v = vp we have kv =Qp.

For the convenience of further references, we list some simple properties of Q-split primes.

Lemma 3.1. Let p be a Q-split prime in O, and for n≥ 1 let ρn : O→O/pn be the corresponding quotient
map. Then:

(a) The group of invertible elements (O/pn)× is cyclic for any n.

(b) If c ∈ O is such that ρ2(c) generates (O/p2)× then ρn(c) generates (O/pn)× for any n ≥ 2.

Proof. Let p > 2 be the rational prime corresponding to p, and v = vp be the associated valuation of k.
By definition, kv =Qp, hence Ov = Zp. So, for any n ≥ 1 we will have canonical ring isomorphisms

O/pn
' Ov/p̂

n
v = Zp/pnZp ' Z/pnZ. (4)

Then (a) follows from the well-known fact that the group (Z/pnZ)× is cyclic. Furthermore, the
isomorphisms in (4) are compatible for different n. Since the kernel of the group homomorphism
(Z/pnZ)×→ (Z/p2Z)× is contained in the Frattini subgroup of (Z/pnZ)× for n ≥ 2, the same is true
for the homomorphism (O/pn)×→ (O/p2)×. This easily implies (b). �

Let p be a Q-split prime, let v = vp be the corresponding valuation. We will now define the level `p(u)
of an element u ∈ O×v and establish some properties of this notion that we will need later.
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Let p > 2 be the corresponding rational prime. The group of p-adic units Up = Z×p has the natural
filtration by the congruence subgroups

U(i)p = 1+ pi Zp for i ∈ N.

It is well-known that

Up = C ×U(1)p

where C is the cyclic group of order (p− 1) consisting of all roots of unity in Qp. Furthermore, the
logarithmic map yields a continuous isomorphism U

(i)
p → pi Zp, which implies that for any u ∈ Up \C ,

the closure of the cyclic group generated by u has a decomposition of the form

〈u〉 = C ′×U(`)p

for some subgroup C ′ ⊂ C and some integer ` = `p(u) ≥ 1 which we will refer to as the p-level of u.
We also set `p(u)=∞ for u ∈ C .

Returning now to a Q-split prime p of k and keeping the above notations, we define the p-level `p(u) of
u ∈O×v as the p-level of the element in Up that corresponds to u under the natural identification Ov = Zp.
We will need the following.

Lemma 3.2. Let p be a Q-split prime in O, let p be the corresponding rational prime, and v = vp the
corresponding valuation. Suppose we are given an integer d ≥ 1 not divisible by p, a unit u ∈ O×v of
infinite order having p-level s = `p(u), an integer ns , and an element c ∈ Ov such that uns ≡ c (mod ps).
Then for any t ≥ s there exists an integer nt ≡ ns (mod d) for which unt ≡ c (mod pt).

Proof. In view of the identification Ov = Zp, it is enough to prove the corresponding statement for Zp.
More precisely, we need to show the following: Let u ∈Up be a unit of infinite order and p-level s= `p(u).
If c ∈ Up and ns ∈ Z are such that uns ≡ c (mod ps), then for any t ≥ s there exists nt ≡ ns (mod d) such
that unt ≡ c (mod pt). Thus, we have that uns ∈ cU

(s)
p , and we wish to show that

uns · 〈ud
〉 ∩ cU(t)p 6=∅.

Since cU
(t)
p is open, it is enough to show that

uns · 〈ud〉 ∩ cU(t)p 6=∅. (5)

But since `p(u)= s and d is prime to p, we have the inclusion 〈ud〉 ⊃ U
(s)
p , and (5) is obvious. �

3B. Dirichlet’s theorem for Q-split primes. The following known (see the remark below) result gives
the existence of Q-split primes in arithmetic progressions.

Theorem 3.3. Let O be the ring of S-integers in a number field k for some finite S⊂ V k containing V k
∞

. If
nonzero a, b ∈O are relatively prime (i.e., aO+bO=O) then there exist infinitely many principal Q-split
prime ideals p of O with a generator π such that π ≡ a (mod bO) and π > 0 in all real completions of k.
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The proof follows the same general strategy as the proof of Dirichlet’s theorem in [Bass et al. 1967] —
see Theorem A.10 in the appendix on number theory. First, we will quickly review some basic facts
from global class field theory (see, for example, [Cassels and Fröhlich 1967, Chapter VII]) and fix
some notations. Let Jk denote the group of ideles of k with the natural topology; as usual, we identify
k× with the (discrete) subgroup of principal ideles in Jk . Then for every open subgroup U ⊂ Jk of
finite index containing k× there exists a finite abelian Galois extension L/k and a continuous surjective
homomorphism αL/k : Jk→ Gal(L/k) (known as the norm residue map) such that:

• U= KerαL/k = NL/k(JL)k×.

• For every nonarchimedean v ∈ V k which is unramified in L we let FrL/k(v) denote the Frobe-
nius automorphism of L/k at v (i.e., the Frobenius automorphism FrL/k(w|v) associated to some
(equivalently, any) extension w|v) and let i(v) ∈ Jk be an idele with the components

i(v)v′ =
{

1 if v′ 6= v,
πv if v′ = v,

where πv ∈ kv is a uniformizer; then αL/k(i(v))= FrL/k(v).

For our fixed finite subset S ⊂ V k containing V k
∞

, we define the following open subgroup of Jk :

US :=
∏
v∈S

k×v ×
∏

v∈V k\S

Uv.

Then the abelian extension of k corresponding to the subgroup US := USk× will be called the Hilbert
S-class field of k and denoted K throughout the rest of the paper.

Next, we will introduce the idelic S-analogs of ray groups. Let b be a nonzero ideal of O= Ok,S with
the prime factorization

b= pn1
1 · · · p

nt
t , (6)

let vi = vpi be the valuation in V k
\ S associated with pi , and let V (b)= {v1, . . . , vt }. We then define an

open subgroup
RS(b)=

∏
v∈V k

Rv

where the open subgroups Rv ⊆ k×v are defined as follows. For v real, we let Rv be the subgroup of
positive elements, letting Rv = k×v for all other v ∈ S, and setting Rv = Uv for all v /∈ S ∪ V (b). It
remains to define Rv for v = vi ∈ V (b), in which case we set it to be the congruence subgroup U (ni )

vi of
Uvi modulo p̂ni

vi
. We then let K (b) denote the abelian extension of k corresponding to RS(b) := RS(b)k×

(“ray class field”). (Obviously, K (b) contains K for any nonzero ideal b of O.) Furthermore, given c ∈ k×,
we let jb(c) denote the idele with the following components:

jb(c)v =
{

c if v ∈ V (b),
1 if v /∈ V (b).

Then θb : k×→ Gal(K (b)/k) defined by c 7→ αK (b)/k( jb(c))−1 is a group homomorphism.
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The following lemma summarizes some simple properties of these definitions.

Lemma 3.4. Let b⊂ O be a nonzero ideal.

(a) If a nonzero c ∈O is relatively prime to b (i.e., cO+b=O) then θb(c) restricts to the Hilbert S-class
field K trivially.

(b) If nonzero c1, c2 ∈ O are both relatively prime to b then c1 ≡ c2 (mod b) is equivalent to

prb( jb(c1)RS(b))= prb( jb(c2)RS(b)) (7)

where prb : Jk→
∏
v∈V (b) k×v is the natural projection.

Proof. (a) Since c is relatively prime to b, we have jb(c) ∈US . So, using the functoriality properties of
the norm residue map, we obtain

θb(c)|K = αK (b)/k( jb(c))−1
|K = αK/k( jb(c))−1

= idK

because jb(c) ∈US ⊂ US = KerαK/k , as required.

(b) As above, let (6) be the prime factorization of b, let vi = vpi ∈ V k
\ S be the valuation associated

with pi . Then for any c1, c2 ∈ O, the congruence c1 ≡ c2 (mod b) is equivalent to

c1 ≡ c2 (mod p̂ni
vi
) for all i = 1, . . . , t. (8)

On the other hand, for any v ∈ V k
f and any u1, u2 ∈Uv, the congruence u1 ≡ u2 (mod p̂n

v) for n ≥ 1 is
equivalent to

u1U (n)
v = u2U (n)

v ,

where U (n)
v is the congruence subgroup of Uv modulo p̂n

v . Thus, for (nonzero) c1, c2 ∈ O prime to b, the
conditions (7) and (8) are equivalent, and our assertion follows. �

We will now establish a result needed for the proof of Theorem 3.3 and its refinements.

Proposition 3.5. Let b be a nonzero ideal of O, let a ∈ O be relatively prime to b, and let F be a finite
Galois extension of Q that contains K (b). Assume that a rational prime p is unramified in F and
there exists an extension w of the p-adic valuation vp to F such that FrF/Q(w|vp)|K (b)= θb(a). If the
restriction v of w to k does not belong to S ∪ V (b) then:

(a) kv =Qp.

(b) The prime ideal p = pv of O corresponding to v is principal with a generator π satisfying π ≡
a (mod b) and π > 0 in every real completion of k.

We note since v is unramified in F which contains K (b), we in fact automatically have that v /∈ V (b).

Proof. (a) Since the Frobenius Fr(w|vp) generates Gal(Fw/Qp), our claim immediately follows from the
fact that it acts trivially on k.
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(b) According to (a), the local degree [kv : Qp] is 1, hence the residual degree f (v|vp) is also 1, and
therefore

Fr(w|v)= Fr(w|vp)
f (v|vp) = Fr(w|vp).

Thus,
αK (b)/k(i(v))= Fr(w|v)|K (b)= θb(a)= αK (b)/k( jb(a))−1,

and therefore
i(v) jb(a) ∈ KerαK (b)/K = RS(b)= RS(b)k×.

So, we can write
i(v) jb(a)= rπ with r ∈ RS(b), π ∈ k×. (9)

Then
π = i(v)( jb(a)r−1).

Since a is prime to b, the idele jb(a) ∈ US , and then jb(a)r−1
∈ US . For any v′ ∈ V k

\ (S ∪ {v}), the
v′-component of i(v) is trivial, so we obtain that π ∈Uv′ . On the other hand, the v-component of i(v) is
a uniformizer πv of kv implying that π is also a uniformizer. Thus, p= πO is precisely the prime ideal
associated with v. For any real v′, the v′-components of i(v) and jb(a) are trivial, so π equals the inverse
of the v′-component of r , hence positive in kv′ . Finally, it follows from (9) that

prb( jb(a))= prb( jb(π)r),

so π ≡ a (mod b) by Lemma 3.4(b), as required. �

Proof of Theorem 3.3. Set b= bO and σ = θb(a) ∈ Gal(K (b)/k). Let F be the Galois closure of K (b)
over Q, and let τ ∈ Gal(F/Q) be such that τ |K (b) = σ . Applying Chebotarev’s density theorem (see
[Cassels and Fröhlich 1967, Chapter VII, 2.4] or [Bass et al. 1967, A.6]) we find infinitely many rational
primes p > 2 for which the p-adic valuation vp is unramified in F , does not lie below any valuations in
S ∪ V (b), and has an extension w to F such that FrF/Q(w|vp)= τ . Let v = w|k, and let p= pv be the
corresponding prime ideal of O. Since p > 2, Proposition 3.5(a) implies that p is Q-split. Furthermore,
Proposition 3.5(b) asserts that p has a generator π such that π ≡ a (mod b) and π > 0 in every real
completion of k, as required. �

Remark. Dong Quan Ngoc Nguyen pointed out to us that Theorem 3.3, hence the essential part of
Dirichlet’s theorem from [Bass et al. 1967] (in particular, (A.11)), was known already to Hasse [1926,
Satz 13]. In the current paper, however, we use the approach described in [Bass et al. 1967] to establish the
key Theorem 3.7; the outline of the constructions from [loc. cit.] as well as the technical Lemma 3.4 and
Proposition 3.5 are included for this purpose. We note that in contrast to the argument in [loc. cit.], our
proofs of Theorems 3.3 and 3.7 involve the application of Chebotarev’s density theorem to noncommutative
Galois extensions.

We will now prove a statement from Galois theory that we will need in the next subsection.
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Lemma 3.6. Let F/Q be a finite Galois extension, and let κ be an integer for which F ∩Qab
⊆Q(ζκ).

Then F(ζκ)∩Qab
=Q(ζκ).

Proof. We need to show that

[F(ζκ) : F(ζκ)∩Qab
] = [F(ζκ) :Q(ζκ)]. (10)

Let
G = Gal(F(ζκ)/Q) and H = Gal(F/Q).

Then the left-hand side of (10) is equal to the order of the commutator subgroup [G,G], while the
right-hand side equals

[F : F ∩Q(ζκ)] = [F : F ∩Qab
] =

∣∣[H, H ]
∣∣.

Now, the restriction gives an injective group homomorphism

ψ : G→ H ×Gal(Q(ζκ)/Q).

Since the restriction G→ H is surjective, we obtain that ψ implements an isomorphism between [G,G]
and [H, H ]× {1}. Thus, [G,G] and [H, H ] have the same order, and (10) follows. �

3C. Key statement. In this subsection we will establish another number-theoretic statement which plays
a crucial role in the proof of Theorem 1.1. To formulate it, we need to introduce some additional notations.
As above, let µ = |µ(k)| be the number of roots of unity in k, let K be the Hilbert S-class field of k,
and let K̃ be the Galois closure of K over Q. Suppose we are given two finite sets P and Q of rational
primes. Let

µ′ = µ ·
∏
p∈P

p,

pick an integer λ≥ 1 which is divisible by µ and for which K̃ ∩Qab
⊆Q(ζλ), and set

λ′ = λ ·
∏
q∈Q

q.

Theorem 3.7. Let u ∈ O× be a unit of infinite order such that u /∈ µ(k)p(k×)p for every prime p ∈ P ,
and let q be a Q-split prime of O which is relatively prime to λ′. Then there exist infinitely many principal
Q-split primes p= πO of O with a generator π such that:

(1) For each p ∈ P , the p-primary component of φ(p)/µ divides the p-primary component of the order
of u (mod p).

(2) π (mod q2) generates (O/q2)×.

(3) gcd(φ(p), λ′)= λ.

Proof. As in the proof of Theorem 3.3, we will derive the required assertion by applying Chebotarev’s
density theorem to a specific automorphism of an appropriate finite Galois extension.
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Let K (q2) be the abelian extension K (b) of k introduced in Section 3B for the ideal b= q2. Set

L1 = K (q2)(ζλ′), L2 = k(ζµ′, µ′
√

u), L = L1L2 and `= L1 ∩ L2.

Then
Gal(L/k)= {σ = (σ1, σ2) ∈ Gal(L1/k)×Gal(L2/k) : σ1 | `= σ2 | `}. (11)

So, to construct σ ∈ Gal(L/k) that we will need in the argument it is enough to construct appropriate
σi ∈ Gal(L i/k) for i = 1, 2 that have the same restriction to `.

Lemma 3.8. The restriction maps define the following isomorphisms:

(1) Gal(L1/K )' Gal(K (q2)/K )×Gal(K (ζλ′)/K ).

(2) Gal(K (ζλ′)/K (ζλ))' Gal(Q(ζλ′)/Q(ζλ))'
∏

q∈Q Gal(Q(ζqλ)/Q(ζλ)).

Proof. (1) We need to show that K (q2)∩ K (ζλ)= K . But the Galois extensions K (q2)/K and K (ζλ)/K
are respectively totally and unramified at the extensions of vq to K (since q is prime to λ), so the required
fact is immediate.

(2) Since K (ζλ′)= K (ζλ) ·Q(ζλ′), we only need to show that

K (ζλ)∩Q(ζλ′)=Q(ζλ). (12)

We have
K (ζλ)∩Q(ζλ′)⊆ K̃ (ζλ)∩Qab

=Q(ζλ)

by Lemma 3.6. This proves one inclusion in (12); the other inclusion is obvious. �

Since q is Q-split, the group (O/q2)× is cyclic (Lemma 3.1(a)), and we pick c ∈ O so that c (mod q2)

is a generator of this group. We then set

σ ′1 = θq2(c) ∈ Gal(K (q2)/K )

in the notations of Section 3B (see Lemma 3.4(a)). Next, for q ∈ Q, we let qe(q) be the q-primary
component of λ. Then using the isomorphism from Lemma 3.8(2), we can find σ ′′1 ∈ Gal(K (ζλ′)/K )
such that

σ ′′1 (ζλ)= ζλ but σ ′′1 (ζqe(q)+1) 6= ζqe(q)+1 for all q ∈ Q. (13)

We then define σ1 ∈ Gal(L1/K ) to be the automorphism corresponding to the pair (σ ′1, σ
′′

1 ) in terms of
the isomorphism from Lemma 3.8(1) (in other words, the restrictions of σ1 to K (q2) and K (ζλ′) are σ ′1
and σ ′′1 , respectively).

We fix a µ′-th root µ′
√

u, and for ν|µ′ set ν
√

u = ( µ′
√

u)µ
′/ν (also denoted uν

−1
). To construct σ2 ∈

Gal(L2/k), we need the following.

Lemma 3.9. Let σ0 ∈ Gal(`/k). Then there exists σ2 ∈ Gal(L2/k) such that

(1) σ2|`= σ0.
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(2) For any p ∈ P , if pd(p) is the p-primary component of µ then

σ2(u p−(d(p)+1)
) 6= u p−(d(p)+1)

.

Consequently either σ2(ζpd(p)+1) 6= ζpd(p)+1 or σ2 acts nontrivially on all pd(p)+1-th roots of u.

Proof. Since L1/k is an abelian extension, we conclude from Corollary 2.6 that

`⊆ k( µ
√

u, ζµ′)⊆ kab. (14)

On the other hand, according to Proposition 2.1, none of the roots pµ
√

u for p ∈ P lies in kab, and the
restriction maps yield an isomorphism

Gal
(
k( µ

′√
u, ζµ′)/k( µ

√
u, ζµ′)

)
→

∏
p∈P

Gal
(
k( pµ
√

u, ζµ′)/k( µ
√

u, ζµ′)
)
.

It follows that for each p ∈ P we can find τp ∈ Gal
(
k( µ′
√

u, ζµ′)/k( µ
√

u, ζµ′)
)

such that

τp(u p−(d(p)+1)
)= ζp · u p−(d(p)+1)

and τp(uq−(d(q)+1)
)= uq−(d(q)+1)

for all q ∈ P \ {p}.

Now, let σ̃0 be any extension of σ0 to L2. For p ∈ P , define

χ(p)=
{

1 if σ̃0(u p−(d(p)+1)
)= u p−(d(p)+1)

,

0 if σ̃0(u p−(d(p)+1)
) 6= u p−(d(p)+1)

Set

σ2 = σ̃0 ·
∏
p∈P

τχ(p)p .

In view of (14), all τp’s act trivially on `, so σ2 | `= σ̃0|`= σ0 and (1) holds. Furthermore, the choice of
the τp’s and the χ(p)’s implies that (2) also holds. �

Continuing the proof of Theorem 3.7, we now use σ1 ∈ Gal(L1/k) constructed above, set σ0 = σ1|`,
and using Lemma 3.9 construct σ2 ∈ Gal(L2/k) with the properties described therein. In particular, part
(1) of this lemma in conjunction with (11) implies that the pair (σ1, σ2) corresponds to an automorphism
σ ∈ Gal(L/k). As in the proof of Theorem 3.3, we let F denote the Galois closure of L over Q, and let
σ̃ ∈Gal(F/Q) be such that σ̃ |L=σ . By Chebotarev’s density theorem, there exist infinitely many rational
primes π > 2 that are relatively prime to λ′ ·µ′ and for which the π -adic valuation vπ is unramified in F ,
does not lie below any valuation in S∪{vq}, and has an extension w to F such that FrF/Q(w|vπ )= σ̃ . Let
v = w|k, and let p= pv be the corresponding prime ideal of O. As in the proof of Theorem 3.3, we see
that p is Q-split. Furthermore, since σ |K (q2)= θq2(c), we conclude that p has a generator π such that
π ≡ c (mod q2) (see Proposition 3.5(b)). Then by construction π (mod q2) generates (O/q2)×, verifying
condition (2) of Theorem 3.7.

To verify condition (1), we fix p ∈ P and consider two cases. First, suppose σ(ζpd(p)+1) 6= ζpd(p)+1 .
Since p is prime to p, this means that the residue field O/p does not contain an element of order pd(p)+1

(although, since µ is prime to p, it does contain an element of order µ, hence of order pd(p)). So, in



Bounded generation of SL2 over rings of S-integers with infinitely many units 1963

this case φ(p)/µ is prime to p, and there is nothing to prove. Now, suppose that σ(ζpd(p)+1) = ζpd(p)+1 .
Then by construction σ acts nontrivially on every pd(p)+1-th root of u, and therefore the polynomial
X pd(p)+1

− u has no roots in kv . Again, since p is prime to p, we see from Hensel’s lemma that u (mod p)

is not a pd(p)+1-th power in the residue field. It follows that the p-primary component of the order of
u (mod p) is not less than the p-primary component of φ(p)/pd(p), and (1) follows.

Finally, by construction σ acts trivially on ζλ but nontrivially on ζqλ for any q ∈ Q. Since p is prime
to λ′, we see that the residue field O/p contains an element of order λ, but does not contain an element of
order qλ for any q ∈ Q. This means that λ|φ(p) but φ(p)/λ is relatively prime to each q ∈ Q, which is
equivalent to condition (3) of Theorem 3.7. �

4. Proof of Theorem 1.1

First, we will introduce some additional notation needed to convert the task of factoring a given matrix
A ∈ SL2(O) as a product of elementary matrices into the task of reducing the first row of A to (1, 0). Let

R(O)= {(a, b) ∈ O2
| aO+ bO= O}

(note that R(O) is precisely the set of all first rows of matrices A ∈ SL2(O)). For λ ∈ O, one defines two
permutations, e+(λ) and e−(λ), of R(O) given respectively by

(a, b) 7→ (a, b+ λa) and (a, b) 7→ (a+ λb, b).

These permutations will be called elementary transformations of R(O). For (a, b), (c, d) ∈ R(O) we
will write (a, b) n

H⇒ (c, d) to indicate the fact that (c, d) can be obtained from (a, b) by a sequence of n
(equivalently, ≤ n) elementary transformations. For the convenience of further reference, we will record
some simple properties of this relation.

Lemma 4.1. Let (a, b) ∈ R(O).

(1a) If (c, d) ∈ R(O) and (a, b) n
H⇒ (c, d), then (c, d) n

H⇒ (a, b).

(1b) If (c, d), (e, f ) ∈R(O) are such that (a, b) m
H⇒ (c, d) and (c, d) n

H⇒ (e, f ), then (a, b) m+n
HH⇒ (e, f ).

(2a) If c ∈ O such that c ≡ a (mod bO), then (c, b) ∈ R(O), and (a, b) 1
H⇒ (c, b).

(2b) If d ∈ O such that d ≡ b (mod aO), then (a, d) ∈ R(O), and (a, b) 1
H⇒ (a, d).

(3a) If (a, b) n
H⇒ (1, 0) then any matrix A ∈ SL2(O) with the first row (a, b) is a product of ≤ n + 1

elementary matrices.

(3b) If (a, b) n
H⇒ (0, 1) then any matrix A ∈ SL2(O) with the second row (a, b) is a product of ≤ n+ 1

elementary matrices.

(4a) If a ∈ O× then (a, b) 2
H⇒ (0, 1).

(4b) If b ∈ O× then (a, b) 2
H⇒ (1, 0).
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Proof. (1a) We observe that the inverse of an elementary transformation is again an elementary transfor-
mation given by [e±(λ)]−1

= e±(−λ), so the required fact follows. Part (1b) is obvious.
(Note that (1) implies that the relation between (a, b) and (c, d) ∈ R(O) defined by (a, b) n

H⇒ (c, d)
for some n ∈ N is an equivalence relation.)

(2a) We have c = a+ λb with λ ∈ O. Then

cO+ bO= aO+ bO= O,

so (c, a) ∈ R(O), and e+(λ) takes (a, b) to (c, b). The argument for (2b) is similar.

(3a) Suppose A ∈ SL2(O) has the first row (a, b). Then for λ ∈ O, the first row of the product AE12(λ)

is (a, b + λa) = e+(λ)(a, b), and similarly the first row of AE21(λ) is e−(λ)(a, b). So, the fact that
(a, b) n

H⇒(1, 0) implies that there exists a matrix U ∈ SL2(O) which is a product of n elementary matrices
and is such that AU has the first row (1, 0). This means that AU = E21(z) for some z ∈ O, and then
A = E21(z)U−1 is a product of ≤ n+ 1 elementary matrices. The argument for (3b) is similar.

(4a) This follows since e−(−a)e+(a−1(1− b))(a, b)= (0, 1). The proof of (4b) is similar. �

Remark. All assertions of Lemma 4.1 are valid over any commutative ring O.

Corollary 4.2. Let q be a principal Q-split prime ideal of O with generator q , and let z ∈ O be such that
z (mod q2) generates (O/q2)×. Given an element of R(O) of the form (b, qn) with n ≥ 2, and an integer
t0, there exists an integer t ≥ t0 such that (b, qn) 1

H⇒ (zt , qn).

Proof. By Lemma 3.1(b), the element z (mod qn) generates (O/qn)×. Since b is prime to q, one can find
t ∈ Z such that b ≡ zt (mod qn). Adding to t a suitable multiple of φ(qn) if necessary, we can assume
that t ≥ t0. Our assertion then follows from Lemma 4.1(2a). �

Lemma 4.3. Suppose we are given (a, b) ∈ R(O), a finite subset T ⊆ V k
f , and an integer n 6= 0. Then

there exists α ∈ Ok and r ∈ O× such that V (α)∩ T =∅, and (a, b) 1
H⇒ (αrn, b).

Proof. Let hk be the class number of k. If for each v ∈ S \ V k
∞

we let mv denote the maximal ideal of
Ok corresponding to v, then the ideal (mv)hk is principal, and its generator πv satisfies v(πv)= hk and
w(πv)= 0 for all w ∈ V k

f \ {v}. Let R be the subgroup of k× generated by πv for v ∈ S \ V k
∞

; note that
R ⊂ O×. We can pick r ∈ R so that a′ := ar−n

∈ Ok . We note that since a and b are relatively prime
in O, we have V (a′)∩ V (b)⊂ S.

Now, it follows from the strong approximation theorem that there exists γ ∈ Ok such that

v(γ b)≥ 0 and v(γ b)≡ 0 (mod nhk) for all v ∈ S \ V k
∞
,

and
v(γ b)= 0 for all v ∈ V (a′) \ S.

Then, in particular, we can find s ∈ R so that v(γ bs−1)= 0 for all v ∈ S \ V k
∞

. Set

γ ′ := γ s−1
∈ O and b′ := γ ′b ∈ Ok .
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By construction,

v(b′)= 0 for all v ∈ V (a′)∪ (S \ V k
∞
), (15)

implying that V (a′)∩ V (b′)=∅, which means that a′ and b′ are relatively prime in Ok .
Again, by the strong approximation theorem we can find t ∈ Ok such that

v(t)= 0 for v ∈ T ∩ V (a′) and v(t) > 0 for v ∈ T \ V (a′).

Set α = a′+ tb′ ∈ Ok . Then for v ∈ T ∩ V (a′) we have v(a′) > 0 and v(tb′)= 0 (in view of (15)), while
for v ∈ T \ V (a′) we have v(a′)= 0 and v(tb′) > 0. In either case,

v(α)= v(a′+ tb′)= 0 for all v ∈ T,

i.e., V (α)∩ T =∅. On the other hand,

a+ rntγ ′b = rn(a′+ tb′)= rnα,

which means that (a, b) 1
H⇒ (αrn, b), as required. �

Recall that we let µ denote the number of roots of unity in k.

Lemma 4.4. Let (a, b)∈R(O) be such that a = α ·rµ for some α ∈ Ok and r ∈O× where V (α) is disjoint
from S ∪ V (µ). Then there exist a′ ∈ O and infinitely many Q-split prime principal ideals q of O with a
generator q such that for any m ≡ 1 (mod φ(a′O)) we have (a, b) 3

H⇒ (a′, qµm).

Proof. The argument below is adapted from the proof of Lemma 3 in [Carter and Keller 1983]. It relies
on the properties of the power residue symbol (in particular, the power reciprocity law) described in the
appendix on number theory in [Bass et al. 1967]. We will work with all v ∈ V k (and not only v ∈ V k

\ S),
so to each such v we associate a symbol (“modulus”) mv. For v ∈ V k

f we will identify mv with the
corresponding maximal ideal of Ok (obviously, pv =mvO for v ∈ V k

\S); the valuation ideal and the group
of units in the valuation ring Ov (or Omv ) in the completion kv will be denoted m̂v and Uv respectively.
For any divisor κ |µ, we let (

∗ , ∗

mv

)
κ

be the (bimultiplicative, skew-symmetric) power residue symbol of degree κ on k×v [Bass et al. 1967,
p.85]. We recall that

( x,y
mv

)
κ
= 1 if one of the elements x, y is a κ-th power in k×v (in particular, if either v

is complex or v is real and one of the elements x, y is positive in kv) or if v is nonarchimedean /∈ V (κ)
and x, y ∈Uv . It follows that for any x, y ∈ k×, we have

( x,y
mv

)
κ
= 1 for almost all v ∈ V k . Furthermore,

we have the reciprocity law: ∏
v∈V k

(
x, y
mv

)
κ

= 1. (16)
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Now, let µ = pe1
1 · · · p

en
n be a prime factorization of µ. For each i = 1, . . . , n, pick vi ∈ V (pi ).

According to [Bass et al. 1967, A.17], the values(
x, y
mvi

)
p

ei
i

for x, y ∈Uvi

cover all pei
i -th roots of unity. Thus, we can pick units ui , u′i ∈Uvi for i = 1, . . . , n so that

( ui ,u′i
mvi

)
p

ei
i

is
a primitive pei

i -th root of unity. On the other hand, since ui , u′i ∈Uvi and vi (µ/pei
i )= 0, we have(

ui , u′i
mvi

)p
ei
i

µ

=

(
ui , u′i
mvi

)
µ/p

ei
i

= 1.

Thus,

ζp
ei
i
:=

(
ui , u′i
mvi

)
µ

is a primitive pei
i -th root of unity for each i = 1, . . . , n, making

ζµ :=

n∏
i=1

(
ui , u′i
mvi

)
µ

(17)

a primitive µ-th root of unity. Furthermore, it follows from the inverse function theorem or Hensel’s
lemma that we can find an integer N > 0 such that

1+ m̂N
v ⊂ k×v

µ for all v ∈ V (µ). (18)

We now write b= βtµ with β ∈Ok and t ∈O×. Since a, b are relatively prime in O, so are α, β, hence
V (α)∩V (β)⊂ S. On the other hand, by our assumption V (α) is disjoint from S∪V (µ), so we conclude
that V (α) is disjoint from V (β)∪V (µ). Applying Theorem 3.3 to the ring Ok we obtain that there exists
β ′ ∈ Ok having the following properties:

(11) b := β ′Ok is a prime ideal of Ok and the corresponding valuation vb /∈ S ∪ V (µ).

(21) β ′ > 0 in every real completion of k.

(31) β ′ ≡ β (mod αOk).

(41) For each i = 1, . . . , n, we have

β ′ ≡ u′i (mod m̂N
vi
) and β ′ ≡ 1 (mod m̂N

v )

for all v ∈ V (pi ) \ {vi }.

Set b′ = β ′tµ. It is a consequence of (3)1 that b ≡ b′ (mod aO), so by Lemma 4.1(2) we have (a, b) 1
H⇒

(a, b′). Furthermore, it follows from (4)1 and (18) that β ′/u′i ∈ k×vi

µ, so(
ui , β

′

mvi

)
µ

=

(
ui , u′i
mvi

)
µ

= ζpei
i
.
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Since ζµ defined by (17) is a primitive µ-th root of unity, we can find an integer d > 0 such that

1=
(
α, β ′

b

)
µ

· ζ d
µ =

(
α, β ′

b

)
µ

·

n∏
i=1

(
ud

i , β
′

mvi

)
µ

. (19)

By construction, vb /∈ V (α)∪V (µ), so applying Theorem 3.3 one more time, we find α′ ∈Ok such that:

(12) a := α′Ok is a prime ideal of Ok and the corresponding valuation va /∈ S ∪ V (µ).

(22) α′ ≡ α (mod b).

(32) α′ ≡ ud
i (mod m̂N

vi
) for i = 1, . . . , n.

Set a′ = α′rµ. Then a′O= α′O is a prime ideal of O and a′ ≡ a (mod b′O), so (a, b′) 1
H⇒ (a′, b′).

Now, we note that
(
α′,β ′

mv

)
µ
= 1 if either v ∈ V k

∞
(since β ′ > 0 in all real completions of k) or

v ∈ V k
f \ (V (α

′)∪V (β ′)∪V (µ)). Since the ideals a= α′Ok and b= β ′Ok are prime by construction, we
have V (α′)={va} and V (β ′)={vb}. Besides, it follows from (18) and (4)1 that for v∈V (pi )\{vi }we have
β ′ ∈ k×v

µ, and therefore again
(
α′,β ′

mv

)
µ
= 1. Thus, the reciprocity law (16) for α′, β ′ reduces to the relation(

α′, β ′

a

)
µ

·

(
α′, β ′

b

)
µ

·

n∏
i=1

(
α′, β ′

mvi

)
µ

= 1. (20)

It follows from (2)2 and (3)2 that(
α′, β ′

b

)
µ

=

(
α, β ′

b

)
µ

and
(
α′, β ′

mvi

)
µ

=

(
ud

i , β
′

mvi

)
µ

for all i = 1, . . . , n.

Comparing now (19) with (20), we find that(
β ′, α′

a

)
µ

=

(
α′, β ′

a

)−1

µ

= 1.

This implies [Bass et al. 1967, A.16] that β ′ is a µ-th power modulo a, i.e., β ′ ≡ γ µ (mod a) for some
γ ∈Ok . Clearly, the elements a′ = α′rµ and γ t are relatively prime in O, so applying Theorem 3.3 to this
ring, we find infinitely many Q-split principal prime ideals q of O having a generator q ≡ γ t (mod a′O).
Then for any m ≡ 1 (mod φ(a′O)) we have

qµm
≡ qµ ≡ β ′tµ ≡ b′ (mod a′O),

so (a′, b′) 1
H⇒ (a′, qµm). Then by Lemma 4.1(1b), we have (a, b) 3

H⇒ (a′, qµm), as required. �

The final ingredient that we need for the proof of Theorem 1.1 is the following lemma which uses
the notion of the level `p(u) of a unit u of infinite order with respect to a Q-split ideal p introduced in
Section 3A.

Lemma 4.5. Let p be a principal Q-split ideal of O with a generator π , and let u ∈ O× be a unit of
infinite order. Set s = `p(u), and let λ and m be integers satisfying λ|φ(p) and m ≡ 0 (mod φ(ps)/λ).
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Given an integer δ > 0 dividing λ and b ∈ O prime to π such that b is a δ-th power mod p while ν := λ/δ
divides the order of u (mod p), for any integer t ≥ s there exists an integer nt for which

(π t , bm) 1
H⇒ (π t , unt ).

Proof. Let p be the rational prime corresponding to p. Being a divisor of λ, the integer δ is relatively
prime to p. So, the fact that b is a δ-th power mod p implies that it is also a δ-th power mod ps . On
the other hand, it follows from our assumptions that λm = δνm is divisible by φ(ps), and therefore
(bm)ν ≡ 1 (mod ps). But since ν is prime to p, the subgroup of elements in (O/ps)× of order dividing
ν is isomorphic to a subgroup of (O/p)×, hence cyclic. So, the fact that the order of u (mod p), and
consequently the order u (mod ps), is divisible by ν implies that every element in (O/ps)× whose order
divides ν lies in the subgroup generated by u (mod ps). Thus, bm

≡ uns (mod ps) for some integer ns .
Since p is Q-split, we can apply Lemma 3.2 to conclude that for any t ≥ s there exists an integer nt such
that bm

≡ unt (mod pt). Then (π t , bm) 1
H⇒ (π t , unt ) by Lemma 4.1(2). �

We will call a unit u ∈O× fundamental if it has infinite order and the cyclic group 〈u〉 is a direct factor
of O×. Since the group O× is finitely generated (Dirichlet’s unit theorem, cf. [Cassels and Fröhlich 1967,
§2.18]) it always contains a fundamental unit once it is infinite. We note that any fundamental unit has
the following property:

u /∈ µ(k)p(k×)p for any prime p.

We are now in a position to give

Proof of Theorem 1.1. We return to the notations of Section 3C: we let K denote the Hilbert S-class
field of k, let K̃ be its normal closure over Q, and pick an integer λ≥ 1 which is divisible by µ and for
which K̃ ∩Qab

⊂ Q(ζλ). Furthermore, since O× is infinite by assumption, we can find a fundamental
unit u ∈ O×. By Lemma 4.1(3), it suffices to show that for any (a, b) ∈ R(O), we have

(a, b) 8
H⇒ (1, 0). (21)

First, applying Lemma 4.3 with T = (S \ V k
∞
)∪ V (µ) and n = µ, we see that there exist α ∈ Ok and

r ∈ O× such that

V (α)∩ (S ∪ V (µ))=∅ and (a, b) 1
H⇒ (αrµ, b).

Next, applying Lemma 4.4 to the last pair, we find a′ ∈ O and a Q-split principal prime ideal q such that
vq /∈ S ∪ V (λ)∪ V (φ(a′O)) and (αrµ, b) 3

H⇒ (a′, qµm) for any m ≡ 1 (mod φ(a′O)). Then

(a, b) 4
H⇒ (a′, qµm) for any m ≡ 1 (mod φ(a′O)). (22)

To proceed with the argument we will now specify m. We let P and Q denote the sets of prime divisors
of λ/µ and φ(a′O), respectively, and define λ′ and µ′ as in Section 3C; we note that by construction q is
relatively prime to λ′. So, we can apply Theorem 3.7 which yields a Q-split principal prime ideal p= πO
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so that vp /∈ V (φ(a′O)) and conditions (1) - (3) are satisfied. Let s = `p(u) be the p-level of u. Condition
(3) implies that

gcd(φ(p)/λ, λ′/λ)= 1= gcd(φ(p)/λ, φ(a′O))

since λ′/λ is the product of all prime divisors of φ(a′O). It follows that the numbers φ(ps)/λ and φ(a′O)
are relatively prime, and therefore one can pick a positive integer m so that

m ≡ 0 (mod φ(ps)/λ) and m ≡ 1 (mod φ(a′O)).

Fix this m for the rest of the proof.
Condition (2) of Theorem 3.7 enables us to apply Corollary 4.2 with z = π and t0 = s to find t ≥ s so

that (a′, qµm) 1
H⇒ (π t , qµm). Since P consists of all prime divisors of λ/µ, condition (1) of Theorem 3.7

implies that λ/µ divides the order of u (mod p). Now, applying Lemma 4.5 with δ = µ and b = qµ, we
see that (π t , qµm) 1

H⇒(π t , unt ) for some integer nt . Finally, since u is a unit, we have (π t , unt ) 2
H⇒(1, 0).

Combining these computations with (22), we obtain (21), completing the proof. �

Corollary 4.6. Assume that the group O× is infinite. Then for n ≥ 2, any matrix A ∈ SLn(O) is a product
of ≤ 1

2(3n2
− n)+ 4 elementary matrices.

Proof. For n = 2, this is equivalent to Theorem 1.1. Now, let n ≥ 3. Since the ring O is Dedekind, it
is well-known and easy to show that any A ∈ SLn(O) can be reduced to a matrix in SL2(O) by at most
1
2(3n2

− n)− 5 elementary operations [Carter and Keller 1983, p. 683]. Now, our result immediately
follows from Theorem 1.1. �

Proof of Corollary 1.2. Let

e+ : α 7→
(

1 α

0 1

)
and e− : α 7→

(
1 0
α 1

)
be the standard 1-parameter subgroups. Set U± = e±(O). In view of Theorem 1.1, it is enough to show
that each of the subgroups U+ and U− is contained in a product of finitely many cyclic subgroups of
SL2(O). Let hk be the class number of k. Then there exists t ∈ O× such that v(t)= hk for all v ∈ S \ V k

∞

and v(t) = 0 for all v /∈ S. Then O = Ok[1/t]. So, letting U±0 = e±(Ok) and h =
( t

0
0

t−1

)
, we will have

the inclusion

U± ⊂ 〈h〉U±0 〈h〉.

On the other hand, if w1, . . . , wn (where n= [k :Q]) is a Z-basis of Ok then U±0 = 〈e±(w1)〉 · · · 〈e±(wn)〉,
hence

U± ⊂ 〈h〉〈e±(w1)〉 · · · 〈e±(wn)〉〈h〉, (23)

as required. �

Remarks. (1) Quantitatively, it follows from the proof of Theorem 1.1 that SL2(O) = U−U+ · · ·U−

(nine factors), so since the right-hand side of (23) involves n+ 2 cyclic subgroups, with 〈h〉 at both ends,
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we obtain that SL2(O) is a product of 9[k :Q]+ 10 cyclic subgroups. Also, it follows from [Vsemirnov
2014] that SL2(Z[1/p]) is a product of 11 cyclic subgroups.

(2) If S = V k
∞

, then the proof of Corollary 1.2 yields a factorization of SL2(O) as a finite product
〈γ1〉 · · · 〈γd〉 of cyclic subgroups where all generators γi are elementary matrices, hence unipotent. On the
contrary, when S 6= V k

∞
, the factorization we produce involves some diagonal (semisimple) matrices. So, it

is worth pointing out in the latter case there is no factorization with all γi unipotent. Indeed, let v ∈ S \V k
∞

and let γ ∈ SL2(O) be unipotent. Then there exists N = N (γ ) such that for any a = (ai j ) ∈ 〈γ 〉 we have
v(ai j )≤ N (γ ) for all i, j ∈ {1, 2}. It follows that if SL2(O)=〈γ1〉 · · · 〈γd〉 where all γi are unipotent, then
there exists N0 such that for any a= (ai j )∈ SL2(O) we have v(ai j )≤ N0 for i, j ∈ {1, 2}, which is absurd.

5. Example

For a ring of S-integers O in a number field k such that the group of units O× is infinite, we let ν(O)
denote the smallest positive integer with the property that every matrix in SL2(O) is a product of ≤ ν(O)
elementary matrices. So, the result of [Vsemirnov 2014] implies that ν(Z[1/p]) ≤ 5 for any prime p,
and our Theorem 1.1 yields that ν(O)≤ 9 for any O as above. It may be of some interest to determine
the exact value of ν(O) in some situations. In Example 2.1 on p.289, Vsemirnov [2014] claims that the
matrix

M =
(

5 12
12 29

)
is not a product of four elementary matrices in SL2(Z[1/p]) for any p ≡ 1 (mod 29), and therefore
ν(Z[1/p])= 5 in this case. However this example is faulty because for any prime p, in SL2(Z[1/p]) we
have

M =
(

5 12
12 29

)
=

((
1 0
2 1

)
·

(
1 2
0 1

))2

However, it turns out that the assertion that ν(Z[1/p])= 5 is valid not only for p ≡ 1 (mod 29) but in
fact for all p > 7. More precisely, we have the following.

Proposition 5.1. Let O= Z[1/p], where p is prime > 7. Then not every matrix in SL2(O) is a product of
four elementary matrices.

In the remainder of this section, unless stated otherwise, we will work with congruences over the ring
O rather than Z, so the notation a ≡ b (mod n) means that elements a, b ∈ O are congruent modulo the
ideal nO. We begin the proof of the proposition with the following lemma.

Lemma 5.2. Let O = Z[1/p], where p is any prime, and let r be a positive integer satisfying p ≡ 1
(mod r). Then any matrix A ∈ SL2(O) of the form

A =
(

1−pα ∗

∗ 1−pβ

)
, α, β ∈ Z (24)
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which is a product of four elementary matrices, satisfies the congruence

A ≡±
(

0 1
−1 0

)
(mod r).

Proof. The required congruence is obvious for the diagonal entries, so we only need to establish it for
the off-diagonal ones. Since A is a product of four elementary matrices, it admits one of the following
presentations:

A = E12(a)E21(b)E12(c)E21(d), (25)

or

A = E21(a)E12(b)E21(c)E12(d), (26)

with a, b, c, d ∈ O.
First, suppose we have (25). Then

A =
(
∗ ∗

∗ 1+ bc

)
.

Comparing with (24), we get bc =−pβ , so b and c are powers of p with opposite signs. Thus, A looks
as follows:

A = E12(a)E21(±pγ )E12(∓pδ)E21(d)=
(

∗ a(1−pγ+δ)∓pδ

d(1−pγ+δ)±pγ ∗

)
.

Consequently, the required congruences for the off-diagonal entries immediately follow from the fact that
p ≡ 1 (mod r), proving the lemma in this case.

Now, suppose we have (26). Then

A−1
= E12(−d)E21(−c)E12(−b)E21(−a),

which means that A−1 has a presentation of the form (25). Since the required congruence in this case has
already been established, we conclude that

A−1
≡±

(
0 −1
1 0

)
(mod r).

But then we have

A ≡±
(

0 1
−1 0

)
(mod r),

as required. �

To prove the proposition, we will consider two cases:

CASE 1: p− 2 is composite. Write p− 2 = r1 · r2, where r1 and r2 are positive integers > 1, and set
r = p− 1. Then

ri 6≡ ±1 (mod r) for i = 1, 2. (27)
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Indeed, we can assume that r2 ≤
√

p− 2. If r2 ≡±1 (mod r) then because r is prime to p, the number
r2∓ 1 would be a nonzero integral multiple of r . Then r ≤ r2+ 1, hence

p− 2≤
√

p− 2+ 1.

But this is impossible since p > 3. Thus, r2 6≡ ±1 (mod r). Since r1 · r2 ≡−1 (mod r), condition (27)
follows.

Now, consider the matrix

A =
(

1−p r1·p
r2 1−p

)
One immediately checks that A ∈ SL2(O). At the same time, A is of the form (24). Then Lemma 5.2 in
conjunction with (27) implies that A is not a product of four elementary matrices.

CASE 2. p and p− 2 are both primes. In the beginning of this paragraph we will use congruences in Z.
Clearly, a prime > 3 can only be congruent to ±1 (mod 6Z). Since p > 5 and p− 2 is also prime, in our
situation we must have p ≡ 1 (mod 6Z). Furthermore, since p > 7, the congruence p ≡ 0 or 2 (mod 5Z)

is impossible. Thus, in the case at hand we have

p ≡ 1, 13, or 19 (mod 30Z).

If p ≡ 13 (mod 30Z), then p3
≡ 7 (mod 30Z), and therefore p3

− 2 is an integral multiple of 5. Set
r = p− 1 and s = (p3

− 2)/5, and consider the matrix

A =
(

1−p3 5p3

s 1−p3

)
Then A is a matrix in SL2(O) having form (24). Note that 5p3

≡ 5 (mod r), which is different from
±1 (mod r) since r > 6. Now, it follows from Lemma 5.2 that A is not a product of four elementary
matrices.

It remains to treat the case where p ≡ 1 or 19 (mod 30Z). Consider the following matrix:

A =
(

900 53 · 899
17 900

)
,

and note that A ∈ SL2(Z) and

A−1
=

(
900 −53 · 899
−17 900

)
.

It suffices to show that neither A nor A−1 can be written in the form

E12(a)E21(b)E12(c)E21(d)=
(

∗ c+ a(1+ bc)
b+ d(1+ bc) (1+ bc)

)
, with a, b, c, d ∈ O. (28)

Assume that either A or A−1 is written in the form (28). Then 1+ bc = 900, so

b, c ∈ {±pn,±29pn,±31pn,±899pn
| n ∈ Z}.
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Set
t = b+ d(1+ bc) and u = c+ a(1+ bc).

We have the following congruences in O= Z[1/p]:

t ≡ b (mod 30) and u ≡ c (mod 30).

Analyzing the above list of possibilities for b and c, we conclude that each of t and u is ≡±pn (mod 30)
for some integer n. Thus, if p ≡ 1 (mod 30) then t, u ≡ ±1 (mod 30), and if p ≡ 19 (mod 30) then
t, u ≡±1,±19 (mod 30). Since 17 6≡ ±1,±19 (mod 30), we obtain a contradiction in either case. (We
observe that the argument in this last case is inspired by Vsemirnov’s argument in his Example 2.1.)
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