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We prove that arithmetic quantum unique ergodicity holds on compact arithmetic quotients of GL2(Qp)

for automorphic forms belonging to the principal series. We interpret this conclusion in terms of the
equidistribution of eigenfunctions on covers of a fixed regular graph or along nested sequences of regular
graphs.

Our results are the first of their kind on any p-adic arithmetic quotient. They may be understood as
analogues of Lindenstrauss’s theorem on the equidistribution of Maass forms on a compact arithmetic
surface. The new ingredients here include the introduction of a representation-theoretic notion of “p-adic
microlocal lifts” with favorable properties, such as diagonal invariance of limit measures; the proof of
positive entropy of limit measures in a p-adic aspect, following the method of Bourgain–Lindenstrauss;
and some analysis of local Rankin–Selberg integrals involving the microlocal lifts introduced here as well
as classical newvectors. An important input is a measure-classification result of Einsiedler–Lindenstrauss.
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1. Introduction

1.1. Overview. Let p be a prime number. This article is concerned with the limiting behavior of eigen-
functions on compact arithmetic quotients of the group G := GL2(Qp). A rich class of such quotients is
parametrized by the definite quaternion algebras B over Q that split at p. A maximal order R in such an
algebra and an embedding B ↪→ M2(Qp) give rise to a discrete cocompact subgroup 0 := R[1/p]× of G.
Fix one such 0. The corresponding arithmetic quotient X := 0\G is then compact; in interpreting this, it
may help to note that the center of 0 is the discrete cocompact subgroup Z[1/p]× of Q×p . In adelic terms,
we may identify X with B×\B×A /B×

∞

∏
6̀=p R×` (see Section 2.1 for notation).
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The space X is a p-adic analogue of the cotangent bundle of an arithmetic hyperbolic surface, such as
the modular surface SL2(Z)\H. It comes with commuting families of Hecke correspondences T` indexed
by the primes ` 6= p (see Section 3.1). To zeroth approximation, the space X is modeled by its minimal
quotient Y := X/K = 0\G/K by the maximal compact subgroup K := GL2(Zp) of G. That quotient Y
comes with an additional Hecke correspondence Tp. To simplify the exposition of Section 1.1, it will be
convenient to assume that

(the torsion subgroup of 0)= {±1}. (1)

Then Y may be safely regarded as an undirected (p+ 1)-regular finite multigraph (see [Vignéras 1980;
Serre 2003; Lindenstrauss 2006b, §8]), whose adjacency matrix is Tp. The simplifying assumption (1)
holds when the underlying quaternion algebra has discriminant (say) 73, in which case the graph (Y , Tp)

may be depicted as follows when p = 2, 3:1

Such graphs and their eigenfunctions appear naturally in several contexts, and have been extensively
studied since the pioneering work of Brandt [1943] and Eichler [1955]; they specialize to the p-isogeny
graphs of elliptic curves in finite characteristic [Gross 1987, §2], provide an important tool for constructing
spaces of modular forms [Pizer 1980], and their remarkable expansion properties have been studied and
applied in computer science following [Lubotzky et al. 1988].

To study the space X at a finer resolution than that of its minimal quotient Y , we introduce for each
pair of integers m,m′ the notation m..m′ := {m,m+ 1, . . . ,m′} and set

Ym..m′ :=

{
nonbacktracking paths x = (xm→ xm+1→ · · · → xm′)

indexed by m..m′ on the graph (Y , Tp)

}
. (2)

We will recall in Definition 10 the standard group-theoretic realization of Ym..m′ as a quotient of X . We
may and shall identify Y0..0 with Y . For m..m′ ⊇ n..n′, we define compatible surjections Ym..m′→ Yn..n′

by forgetting part of the path. For example, if N > 0, then the map Y−N ..N → Y0..0 = Y sends a path x as
in (2) to its central vertex x0. We define L2(Ym..m′) with respect to the normalized counting measure, so
that the maps Ym..m′→ Yn..n′ are measure-preserving.

We wish to study the asymptotic behavior of “eigenfunctions” in L2(Ym..m′) as |m−m′| →∞. From
the arithmetic perspective, there is a distinguished collection of such eigenfunctions, whose definition is

1 The images were produced using the “Graph” and “BrandtModule” functions in Sage [2015].
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analogous to that of the set of normalized classical holomorphic newforms of some given weight and
level:

Definition 1 (newvectors). Let L2
new(Ym..m′)⊆ L2(Ym..m′) denote the space of functions ϕ : Ym..m′→ C

that are orthogonal to pullbacks from Yn..n′ whenever n..n′ ( m..m′. Let Fm..m′ ⊆ L2
new(Ym..m′) be an

orthonormal basis consisting of ϕ for which:

• the pullback of ϕ to X = 0\G generates an irreducible representation of G = GL2(Qp) under the
right translation action, and

• ϕ is an eigenfunction of the Hecke operator T` (see Section 3.1) for all primes ` 6= p.

It is known2 then that |Fm..m′ | � |Ym..m′ | � p|m−m′| for |m −m′| sufficiently large. To simplify the
exposition of Section 1.1, we focus on the symmetric intervals −N ..N . Fix n ∈ Z>0. Let N > n be
an integral parameter tending off to ∞. Denote by pr : Y−N ..N � Y−n..n the natural surjection. For
ϕ ∈ F−N ..N , we may define a probability measure µϕ on Y−n..n by setting

µϕ(E) :=
1

|Y−N ..N |

∑
x∈Y−N ..N :pr(x)∈E

|ϕ|2(x).

For example, in the instructive special case n = 0, the measures µϕ live on the base graph Y0..0 = Y and
assign to subsets E ⊆ Y the number

µϕ(E)=
1

|Y−N ..N |

∑
x=(x−N→···→xN )∈Y−N ..N :x0∈E

|ϕ|2(x),

which quantifies how much mass ϕ : Y−N ..N → C assigns to paths whose central vertex lies in E .

Question 2. Fix n ∈ Z>0. Let N > n traverse a sequence of positive integers tending to∞. For each N ,
choose an element ϕN ∈ F−N ..N . What are the possible limits of the sequence of measures µϕN on the
space Y−n..n?

The following conjecture has not appeared explicitly in the literature, but may be regarded nowadays
as a standard analogue of the arithmetic quantum unique ergodicity conjecture of Rudnick–Sarnak [1994]
(see [Sarnak 2011; Nelson et al. 2014]).

Conjecture 3. In the context of Question 2, the uniform measure on Y−n..n is the only possible weak limit.
In other words, for any sequence ϕN ∈ F−N ..N and any E ⊆ Y−n..n ,

lim
N→∞

µϕN (E)=
|E |
|Y−n..n|

.

2 One may verify this by applying the trace formula for L2(0\G) to an element f ∈C∞c (G), as in [Nelson 2017], that defines
the orthogonal projection onto L2

new(Ym..m′), or alternatively by appealing to the Eichler/Jacquet–Langlands correspondence,
which identifies Fm..m′ with the set of normalized weight two newforms on 00(p|m−m′|dB), with dB the discriminant of B, and
appealing to standard formulas for dimensions of spaces of newforms.
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Conjecture 3 predicts that for any sequence ϕN ∈F−N ..N , the corresponding sequence of L2-massesµϕN

equidistributes under pushforward to any fixed space Y−n..n . One can formulate this conclusion more con-
cisely in terms of equidistribution on the compact space lim

←−−
Y−n..n of infinite bidirectional nonbacktracking

paths, or equivalently, on the space X = 0\G.
We note that the quantum unique ergodicity conjecture of Rudnick–Sarnak [1994] includes the case of

nonarithmetic compact hyperbolic surfaces, while Conjecture 3, as formulated here, is specific to the
arithmetic setting. We indicate in Remark 31 how one might formulate it more generally.

By explicating the triple product formula [Ichino and Ikeda 2010], one can show that Conjecture 3
follows from an open case of the subconvexity conjecture, which in turn follows from GRH; the latter
can be shown to imply more precisely that

µϕN (E)=
|E |
|Y−n..n|

+ O(p−(1+o(1))N/2) (3)

for fixed n. There are nowadays well-developed techniques (see for instance [Nelson 2016, §1.4]) to
establish that:

• the prediction (3) holds for ϕN outside a hypothetical exceptional subset of density o(1),

• if (3) is true, it is essentially optimal, and

• Conjecture 3 holds for ϕN outside a hypothetical exceptional subset of extremely small density
|F−N ..N |

−1/2+o(1). (This may be understood as a very strong form of “quantum ergodicity,” which
would assert the analogous conclusion with density o(1); compare with [Anantharaman and Le Mas-
son 2015; Le Masson and Sahlsten 2017].)

The problem of eliminating such exceptions entirely (in the present setting and related ones) has proven
subtle.

For context, we recall some instances in which the difficulty indicated above has been overcome;
notation and terminology should be clear by analogy.

Theorem 4 [Lindenstrauss 2006b]. Let 0′\H be a compact hyperbolic surface attached to an order in
a nonsplit indefinite quaternion algebra. Let ϕ traverse a sequence of L2-normalized Hecke–Laplace
eigenfunctions on 0′\H with Laplace eigenvalue tending to∞. Then the L2-masses µϕ equidistribute.

Theorem 5 (N, N–Pitale–Saha, Hu [Nelson 2011; Nelson et al. 2014; Hu 2018]). Fix a natural number q0.
Let q traverse a sequence of natural numbers tending to∞. Let ϕ be an L2-normalized holomorphic Hecke
newform on the standard congruence subgroup 00(q) of SL2(Z). Then the pushforward to 00(q0)\H of
the L2-mass of ϕ equidistributes.

We may of course specialize Theorem 5 to powers of a fixed prime:

Theorem 6 (N, N–Pitale–Saha, Hu [Nelson 2011; Nelson et al. 2014; Hu 2018]). Fix a prime p and
a nonnegative integer n0. Let n traverse a sequence of natural numbers tending to ∞. Let ϕ be an
L2-normalized holomorphic Hecke newform on 00(pn). Then the pushforward to 00(pn0)\H of the
L2-mass of ϕ equidistributes.
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Conjecture 3 is in the spirit of Theorem 6, save a crucial distinction to be discussed in due course
(see Remark 19). Unfortunately, the method underlying the proof of Theorem 6, due to Holowinsky–
Soundararajan [2010], is fundamentally inapplicable to Conjecture 3 due to its reliance on parabolic
Fourier expansions, which are unavailable on the compact quotient X . We will instead develop here a
method more closely aligned with that underlying the proof of Theorem 4.

To describe our result, we must recall that the elements of F−N ..N may be partitioned according to the
isomorphism class of the representation of G = GL2(Qp) that they generate. Any such representation
has unramified central character,3 and for N sufficiently large, is (isomorphic to) either:

• a (ramified) principal series representation (see Section 5.3), or

• a (supercuspidal) discrete series representation.

(See for instance [Schmidt 2002].) A (computable) positive proportion of elements of F−N ..N belongs
to either category. The dichotomy here is analogous to that on SL2(Z)\SL2(R) between Maass forms
(principal series) and holomorphic forms (discrete series).

Theorem 7 (main result). The conclusion of Conjecture 3 holds if ϕN belongs to the principal series.

Theorem 7 represents the first genuine instance of arithmetic quantum unique ergodicity in the level
aspect on a compact arithmetic quotient and also the first on any p-adic arithmetic quotient. It says that
for a sequence ϕN ∈F−N ..N belonging to the principal series, the corresponding L2-masses equidistribute
under pushforward to any fixed space Y−n..n .

Remark 8. Our result might be described concisely as arithmetic quantum unique ergodicity on the path
space over the fixed regular graph (Y , Tp) and as contributing to the growing literature concerning quantum
chaos on regular graphs (see [Brooks and Lindenstrauss 2010; 2013; Anantharaman and Le Masson
2015]). Alternatively, one could fix an auxiliary split prime ` 6= p, regard (Y−N ..N , T`) as traversing an
inverse system of (`+ 1)-regular graphs, and interpret Theorem 17 as a form of arithmetic quantum
unique ergodicity for such a sequence of graphs.

Remark 9. Assuming the multiplicity hypothesis that an element ϕ ∈ F−N ..N generating an irreducible
principal series representation of G is automatically an eigenfunction of the T` for ` 6= p (which is inspired
by analogy from the conjectural simplicity of the spectrum of the Laplacian on SL2(Z)\H), Theorem 17
may be understood as telling us something new about individual finite graphs (Y , Tp), such as those
pictured above, together with their realization as 0\G/K .

As indicated already, the proof of Theorem 7 is patterned on that of Theorem 4. An important ingredient
in the proof of Theorem 4 is the existence of a measure µ on 0′\SL2(R), called a microlocal lift, with
the properties:

• µ lifts the measure lim j→∞ µϕ j on 0′\H.

3 One may verify that “unramified central character” implies “trivial central character” in the present setup, but this special
feature will not play an important role for us.
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• µ is invariant under right translation by the diagonal subgroup of SL2(R).

• (µϕ j ) j 7→ µ is compatible with the Hecke operators (see [Silberman and Venkatesh 2007, Theorem
1.6] for details); this third property is that which is not obviously satisfied by the classical construction
via charts and pseudodifferential calculus.

The known construction of µ with such properties, due to Zelditch and Wolpert (see [Zelditch 1987;
Wolpert 2001; Lindenstrauss 2001]) and generalized by Silberman–Venkatesh [2007], relies heavily upon
explicit calculation with raising and lowering operators in the Lie algebra of SL2(R), which have no
obvious p-adic analogue. One point of this paper is to introduce such an analogue and to investigate
systematically its relationship to the classical theory of local newvectors. (The restriction to principal
series in Theorem 7 then arises for the same reason that Lindenstrauss’s argument does not apply to
holomorphic forms of large weight: the absence of a “microlocal lift” invariant by a split torus.) The
resulting construction may be of independent interest; for instance, it should have applications to the test
vector problem (see Section 1.5 and Remark 50).

A curious subtlety of the argument, to be detailed further in Remark 26, is that the “lift” we construct
is not a lift in the traditional sense (except against spherical observables, and even then only for p 6= 2).
It instead satisfies a weaker “equidistribution implication” property which suffices for us. This subtlety is
responsible for the most technical component of the argument (Section 6.3).

In the remainder of Section 1 we formulate our main result in a slightly more general setup (Section 1.2),
introduce a key tool (Section 1.3), give an overview of the proof (Section 1.4), interpret our results in
terms of L-functions (Section 1.5), and record some further remarks and open questions (Section 1.6).

1.2. Main results: general form. In this section we formulate a generalization of Theorem 4 in representa-
tion-theoretic language, which we adopt for the remainder of the paper.

Definition 10. Define the compact open subgroup

Km..m′ :=

[
o p−m

pm′ o

]×
, o := Zp, p := pZp (4)

of G. Each such subgroup is conjugate to K0..n for n = m′−m > 0, which is in turn analogous to the
congruence subgroup 00(pn) of SL2(Z). Assuming (1), one has compatible bijections

X/Km..m′ = 0\G/Km..m′
∼=
−→ Ym..m′,

0gKm..m′ 7→ (xm→ xm+1→ · · · → xm′) where x j := 0g
(

p− j

1

)
K ,

with Ym..m′ as defined in (2).

Definition 11. The space A(X) of smooth functions on X consists of all functions ϕ : X→ C that are
right-invariant under some open subgroup of G. An eigenfunction on X is an element ϕ ∈A(X) that is a
T`-eigenfunction for each ` and that generates an irreducible representation of G under the right translation
action gϕ(x) := ρreg(g)ϕ(x) := ϕ(xg). The uniform measure on X , denoted simply

∫
X , is the probability
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Haar coming from the G-action. An element ϕ ∈A(X) is L2-normalized if
∫

X |ϕ|
2
= 1. In that case, the

L2-mass of ϕ is the probability measure µϕ on X given by µϕ(9) :=
∫

X 9|ϕ|
2. Convergence of measures

always refers to the weak sense, i.e., limn→∞ µn =µ if for each fixed9 ∈A(X), limn→∞ µn(9)=µ(9).
A sequence of measures equidistributes if it converges to the uniform measure.

Definition 12. We denote by H ⊆ End(A(X)) the ring generated by ρreg(G) and the T`, so that an
eigenfunction in the sense of Definition 11 is an element of A(X) that generates an irreducible H-
submodule. We denote by A(X) the set of irreducible H-submodules of A(X), by A0(X)⊆ A(X) the
subset consisting of those that are not one-dimensional, and by A0(X)⊆A(X) the sum of the elements
of A0(X), or equivalently, the orthogonal complement of the one-dimensional irreducible submodules.

A theorem of Eichler/Jacquet–Langlands implies that each π ∈ A(X) occurs in A(X) with multiplicity
one, so that A(X) =

⊕
π∈A(X) π and A0(X) =

⊕
π∈A0(X) π . The one-dimensional elements of A(X)

are given by C(χ ◦ det) for each character χ of the compact group Q×p / det(0), thus A(X) = {C(χ ◦
det)}

⊔
A0(X).

Definition 13. Let χπ : Q×p → C× denote the central character of π . For π ∈ A0(X), the conductor
of π has the form C(π)= pc(π), where c(π) is the smallest nonnegative integer with the property that
π contains a nonzero vector ϕ satisfying gϕ = χπ (d)g for all g =

(
∗ ∗
∗ d
)
∈ K0..c(π) [Casselman 1973a;

Schmidt 2002].

Definition 14. Let π ∈ A0(X). For integers m,m′, a vector ϕ ∈ π will be called a newvector of support
m..m′ if m′−m = c(π) and gϕ = χπ (d)ϕ for all g=

(
∗ ∗
∗ d
)
∈ Km..m′ . Local newvector theory [Casselman

1973a; Schmidt 2002] implies that the space of such vectors is one-dimensional, so if ϕ is L2-normalized,
then the L2-mass µϕ depends only upon π and m..m′, not ϕ. A vector ϕ ∈ π will be called a generalized
newvector if it is a newvector of support m..m′ for some m,m′. (We include the adjective “generalized”
only to indicate explicitly that we are not necessarily referring to the traditional case m..m′ = 0..c(π),
which will play no distinguished role here.)

Remark 15. The newvectors of support m..m′ that generate representations with unramified central char-
acter may be characterized more simply as those eigenfunctions ϕ ∈A(X) (in the sense of Definition 11)
which:

(1) are Km..m′-invariant, or equivalently, descend to ϕ : Ym..m′→ C, and

(2) are orthogonal to pullbacks from Yn..n′ whenever n..n′ ( m..m′.

(The proof of this characterization is the same as the proof that local newvector theory [Casselman 1973a]
recovers classical Atkin–Lehner theory [1970].) Under the torsion-freeness assumption (1), “orthogonal”
can be taken to mean with respect to the normalized counting measure on Ym..m′ ; in general, one should
take that induced by the uniform measure on X . In this sense, Definition 14 is consistent with Definition 1.

Definition 16. We say that π ∈ A0(X) belongs to the principal series if the corresponding representation
of G does (see Section 5.3).
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Theorem 17 (equidistribution of newvectors II). Let π j ∈ A0(X) ( j = 1, 2, 3, . . . ) be a sequence with
C(π̄ j × π j )→∞. Assume that π j belongs to the principal series. Let ϕ j ∈ π j be an L2-normalized
generalized newvector. Then µϕ j equidistributes as j→∞.

Theorem 17 specializes to Theorem 7 upon requiring the central character of π j to be unramified and
restricting to newvectors of support m..m′ =−N ..N for some N .

Remark 18. Unlike earlier works such as [Nelson 2011; Nelson et al. 2014; Hu 2018], we have allowed
arbitrary central characters in Theorem 17. We note that the case of the argument in which the conductor
of the central character is as large as possible relative to that of the representation is a bit more technically
challenging than the others; see (26) and following.

Remark 19. Cases of Theorem 17 in which m..m′ is highly unbalanced, such as the most traditional case
m..m′ = 0..n analogous to Theorem 6, are easier: they follow, sometimes with a power savings, from the
triple product formula, the convexity bound for triple product L-functions, and nontrivial local estimates
as in [Nelson et al. 2014; Hu 2018]. Cases in which m..m′ is balanced, such as the case m..m′ =−N ..N
illustrated in Section 1.1, do not follow from such local arguments and require the new ideas introduced
here. This phenomenon is comparable to how the mass equidistribution on a hyperbolic surface 0′\H of a
weight k vector in a principal series π ↪→ L2(0′\SL2(R)) of parameter t→∞ follows from essentially
local means for t/k = o(1) but not for k = 0, or even for k� t ; see [Zelditch 1992; Reznikov 2001] for
some discussion along such lines. See also Remark 30 and footnote 12.

1.3. p-adic microlocal lifts. We turn to the key definitions that power the proof of the above results. We
develop them slightly more precisely and algebraically than is strictly necessary for the consequences
indicated above.

Let k be a nonarchimedean local field with ring of integers o, maximal ideal p, normalized valuation
ν : k� Z∪ {+∞}, and q := #o/p. (The case (k, o, p, q) = (Qp,Zp, pZp, p) is relevant for the above
application.)

To a generic irreducible representation π of GLn(k) one may attach a conductor C(π)= qc(π), with
c(π) ∈ Z>0; we recall this assignment in the most relevant case n = 2 in Section 5.3 and Section 5.5. One
also defines c(ω) for each character ω of o×; it is the smallest integer n for which ω has trivial restriction
to o× ∩ 1+ pn .

For context, we record the local form of Definition 14:

Definition 20 (newvectors). A vector v in an irreducible generic representation π of GL2(k) is a newvector
of support m..m′ if m′−m = c(π) and

π(g)v = χπ (d)v for all g =
(

a b
c d

)
∈ GL2(o)∩

[
o p−m

pm′ o

]
.

A generalized newvector is a newvector of some support.

Fix now for each nonnegative integer N a partition N = N1+ N2 into nonnegative integers N1, N2

with the property that N1, N2 →∞ as N →∞. The precise choice is unimportant; one might take
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N1 := bN/2c, N2 := dN/2e for concreteness. Using this choice, we introduce the following class of
vectors:

Definition 21 (microlocal lifts). Let π be a GL2(k)-module. A vector v ∈ π shall be called a microlocal
lift if:

• it is nonzero,

• it generates an irreducible admissible representation of GL2(k), and

• there is a positive integer N and characters ω1, ω2 of o× so that c(ω1/ω2)= N and

π(g)v = ω1(a)ω2(det(g)/a)v for all g =
(

a b
c d

)
∈ GL2(o)∩

[
o pN1

pN2 o

]
.

In that case, we refer to N as the level and (ω1, ω2) as the orientation of v.

The observation that the special case ω1 = 1 of Definition 21 is similar to Definition 20 leads easily
to the following characterization of microlocal lifts as twists of generalized newvectors from “extremal
principal series” representations “1�χ” (see Section 6.1 for the proof):

Lemma 22. An irreducible admissible representation π of GL2(k) contains a microlocal lift if and only
if π is an irreducible principal series representation π ∼= χ1�χ2 for which N := c(π̄ ⊗π)/2= c(χ1/χ2)

is nonzero. In that case, the set of microlocal lifts is a disjoint union C×ϕ+ tC×ϕ−, where

C×ϕ+ = {microlocal lifts in π of level N and orientation (ω1, ω2)},

C×ϕ− = { microlocal lifts in π of level N and orientation (ω2, ω1) },

with ωi := χi |o× . Explicitly, C×ϕ+ is the inverse image under the nonequivariant twisting isomorphism
π → π ⊗ χ−1

1
∼= 1� χ−1

1 χ2 of the set of nonzero newvectors of support −N1..N2. The set C×ϕ− is
described similarly, with the roles of ω1 and ω2 reversed.

Remark 23. We briefly compare with the archimedean analogue inspiring Definition 21; a more complete
exposition of this analogy seems beyond the scope of this article. Let π be a principal series representation
of PGL2(R) of parameter t→±∞ with lowest weight vector ϕ0 corresponding to a spherical Maass form
of eigenvalue 1

4 + t2 on some hyperbolic surface. The Zelditch–Wolpert construction4 of a microlocal lift
ϕ1 of ϕ0 is given up to normalizing factors in terms of standard raising/lowering operators Xn for n ∈ Z

(see [Wolpert 2001; Lindenstrauss 2001]) by ϕ1 :=
∑

n:|n|6t1 Xnϕ0, where |t | = t1t2 with t1, t2→∞ as
|t | → ∞. The choice ϕ2 :=

∑
n:|n|6t1(−1)n Xnϕ0 also works. The analogue of (|t |, ϕ1, ϕ2, |.|

i t , |.|−i t)

in the notation of Definition 21 and Lemma 22 is (q N , v1, v2, χ1, χ2) with q := #o/p and v1, v2 ∈ π

microlocal lifts of respective orientations (ω1, ω2), (ω2, ω1). The analogy may be obtained by comparing
how GL2(o) acts on v1, v2 to how the Lie algebra of PGL2(R) acts on ϕ1, ϕ2. The factorization |t | = t1t2
is roughly analogous to the partition N = N1 + N2. It is also instructive to compare the formulas for
ϕ1, ϕ2 in their induced models with those of Section 6.2.

4 We discuss here only the “positive measure” incarnation of that construction rather than the “distributional” one.
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Remark 24. Le-Masson [2014] and Anantharaman–Le-Masson [2015] have introduced a notion of
microlocal lifts on regular graphs and used that notion to prove some analogues of the quantum ergodicity
theorem. Definition 21 serves different aims in that we do not explicitly vary the graph (except perhaps in
the second sense indicated in Remark 8); it would be interesting to extend it further and compare the two
notions on any domain of overlap.

For the remainder of Section 1.3, take k=Qp, so that GL2(k)=G. Definition 21 applies to π ∈ A0(X).

Theorem 25 (basic properties of microlocal lifts). Let N traverse a sequence of positive integers tending
to∞, and let ϕ ∈ π ∈ A0(X) be an L2-normalized microlocal lift of level N on X with L2-mass µϕ:

• Diagonal invariance: Any weak subsequential limit of the sequence of measures µϕ is a(Q×p )-
invariant.

• Lifting property: Suppose temporarily that p 6= 2, so that ν(2)= 0. Let ϕ′ ∈ π be an L2-normalized
newvector of support −N ..N , and let 9 ∈ A(X)K be independent of N and right-invariant by
K := GL2(Zp). Then

lim
N→∞

(µϕ(9)−µϕ′(9))= 0.

• Equidistribution implication: Suppose that µϕ equidistributes as N → ∞. Let ϕ′ ∈ π be an
L2-normalized generalized newvector. Then µϕ′ equidistributes as N →∞.

Theorem 25 is established in Section 7 after developing the necessary local preliminaries in Section 5
and Section 6. The proof involves uniqueness of invariant trilinear forms5 on GL2 and stationary phase
analysis of local Rankin–Selberg integrals. Theorem 25 is essentially local, i.e., does not exploit the
arithmeticity of 0 6 G, and is stated here in a global setting only for convenience; see Theorem 49 for a
local analogue.

Remark 26. The “lifting property” of Theorem 25 has been included only for the sake of illustration; it
is not strictly necessary for the logical purposes of this paper. We have assumed p 6= 2 in its statement
because the corresponding assertion is false when p = 2. For general p and nonspherical observables 9,
there does not appear to be any simple relationship between the quantities µϕ(9) and µϕ′(9) except
that convergence to

∫
X 9 of the first implies that of the second (the “equidistribution implication”). The

“lifting” relationship here is thus more subtle than that in [Lindenstrauss 2006b].

1.4. Equidistribution of microlocal lifts. Our core result (from which the others are ultimately derived)
is the following:

Theorem 27 (equidistribution of microlocal lifts). Let N traverse a sequence of positive integers tending
to∞. Let ϕ ∈A(X) be an L2-normalized microlocal lift of level N on X . Then µϕ equidistributes.

5 It should be possible to avoid this comparatively deep fact in the proof of the first part of Theorem 25, but it is required by
the application to subconvexity (Theorem 29), and the calculations required by that application already suffice here.
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The proof depends upon an analogue of Lindenstrauss’s celebrated result [2006b]. Here and throughout
this article, “entropy” refers to the Kolmogorov–Sinai entropy of a measurable dynamical system (see,
e.g., [Lindenstrauss 2006a, §8]).

Theorem 28 (measure classification). Let µ be a probability measure on X , invariant by the center of G,
with the properties:

(1) µ is a(Q×p )-invariant.

(2) µ is T`-recurrent for some split prime ` 6= p.

(3) The entropy of almost every ergodic component of µ is positive for the a(Q×p )-action.

Then µ is the uniform measure.

We explain in Section 2 the specialization of Theorem 28 from a result of Einsiedler–Lindenstrauss
[2008, Theorem 1.5]. To deduce Theorem 27, we apply Theorem 28 with µ any weak limit of the
L2-masses of a sequence of L2-normalized microlocal lifts of level tending to∞. Since X is compact, µ
is a probability measure. The invariance hypothesis follows from the diagonal invariance of Theorem 25,
while the T`-recurrence and positive entropy hypotheses are verified below in Section 3 and Section 4. The
proof of our main result Theorem 27 is then complete. Theorem 27 and the equidistribution implication
of Theorem 25 imply Theorem 17.

1.5. Estimates for L-functions. For definitions of the L-functions and local distinguishedness, see
[Piatetski-Shapiro and Rallis 1987; Ichino 2008]. We record the following because it provides an
unambiguous benchmark of the strength of our results.

Theorem 29 (weakly subconvex bound). Fix σ ∈ A0(X). Let π ∈ A0(X) traverse a sequence with
C(π̄×π)→∞. Assume that π belongs to the principal series and that σ⊗ π̄⊗π is locally distinguished.
Then

L(σ × π̄ ×π, 1/2)
L(adπ, 1)2

= o(C(σ × π̄ ×π)1/4). (5)

The previously best known estimate for the LHS of (5) is the general weakly subconvex estimate
of Soundararajan [2010], specializing here to L � C1/4/(log C)1−ε with L := L

(
σ × π̄ ×π, 1

2

)
, C :=

C(σ × π̄ ×π). The bound (5) improves upon that estimate in the unlikely (but difficult to exclude) case
that L(adπ, 1) is exceptionally small, which turns out to be the most difficult one for equidistribution
problems; see [Holowinsky and Soundararajan 2010] for further discussion.

Theorem 27 implies Theorem 29 after a local calculation with the triple product formula (see Section 7);
in fact, the calculation shows that the two results are equivalent.

Remark 30. Theorem 29 implies Theorem 17, but the converse does not hold in general; a special case
of the failure of that converse was noted and discussed at length in [Nelson et al. 2014, §1]. The present
work may thus be understood as clarifying that discussion: the equivalence between subconvexity and
equidistribution problems in the depth aspect is restored by working not with newvectors, but instead
with the p-adic microlocal lifts introduced here.
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1.6. Further remarks.

Remark 31. Theorems 17 and 27 apply only to sequences of vectors ϕ that generate irreducible H-
modules. One can ask whether the conclusion holds under the (hypothetically) weaker assumption that ϕ
generates an irreducible G-module. The problem formulated this way makes sense for any finite volume
quotient 0′\G, not necessarily arithmetic; an affirmative answer would represent a p-adic analogue of
the Rudnick–Sarnak quantum unique ergodicity conjecture [1994]. In that direction, we note that the
method of Brooks–Lindenstrauss [2014] should apply in our setting, allowing one to relax the hypothesis
of irreducibility under the full Hecke algebra to that under a single auxiliary Hecke operator T` for some
fixed split prime ` 6= p.

An affirmative answer to the question raised above would, by the (proof of the) equidistribution
implication of Theorem 25, imply that the conclusion of Conjecture 3 remains valid on possibly nonarith-
metic quotients 0′\G under the hypothesis that ϕN ∈ L2

new(Y−N ..N ) traverses a sequence of unit vectors
that generate principal series representations of GL2(Qp). (The analogous assertion for supercuspidal
representations fails because such representations may be shown to occur with large multiplicity. A
similar phenomenon is responsible for the subtlety in formulating holomorphic analogues of quantum
unique ergodicity; see [Luo and Sarnak 2003; Holowinsky and Soundararajan 2010].)

Remark 32. Our results apply to principal series representations of conductor pN with p fixed and
N→∞. A natural question is whether one can establish analogous results for N fixed, such as N = 100,
and p→∞. We highlight here the weaker question of whether one can establish equidistribution (in a
balanced case, cf. Remark 19) as N→∞ for p satisfying p6 p0(N ) for some p0(N ) tending effectively
to∞ as N →∞. Our results and a diagonalization argument imply an ineffective analogue.

Remark 33. The crucial local results of this article have been formulated and proved in generality, i.e.,
over any nonarchimedean local field. On the other hand, we have assumed in our global results that the
subgroup 0 of G was constructed from a maximal order in a quaternion algebra over Q. We expect that
our results hold more generally:

(1) The statements and proofs of all our results except Theorem 29 extend straightforwardly to the case
that 0 arises from a fixed Eichler order in a quaternion algebra over Q. To extend Theorem 29 in
that direction would require some local triple product estimates at the “uninteresting” primes ` 6= p
which we do not pursue here.

(2) Our results should extend to Eichler orders in totally definite quaternion algebras over totally real
number fields, but some mild care is required in formulating such extensions when the class group
has nontrivial 2-torsion: as observed in a related context in [Nelson 2012], there are sequences of
dihedral forms that fail to satisfy the most naive formulation of quantum unique ergodicity.

(3) We expect our results extend to automorphic forms on definite quaternion algebras having fixed
nontrivial infinity type; such an extension would require a more careful study of the measure
classification input in Section 2.
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(4) Over function fields, analogues of our results should follow more directly and in quantitatively
stronger forms from Deligne’s theorem and extensions of the triple product formula to the function
field setting.

We leave such extensions to the interested reader.

Organization of this paper. We verify the measure-classification (Theorem 28) and its hypotheses in
Section 2, Section 3, and Section 4. We review the representation theory of GL2(k) in Section 5. In
Section 6 and Section 7, we prove our core results, notably Theorem 25, and their applications. Some
additional results of independent interest are recorded along the way.

2. Measure classification

The purpose of this section is to deduce Theorem 28 from the following specialization to Qp of a result
of Einsiedler–Lindenstrauss [2008, Theorem 1.5]:

Theorem 34. Let G = G1×G2, where G1 is a semisimple linear algebraic group over Qp with Qp-rank
1 and G2 is a characteristic zero S-algebraic group. Let 0′ ⊂ G be a discrete subgroup. Let A1 be a
Qp-split torus of G1 and let χ be a nontrivial Qp-character of A1 that can be extended to CG1(A1). Let
M1 = {h ∈ CG1(A1) : χ(h)= 1}. Let ν be an A1-invariant, G2-recurrent probability measure on 0′\G
such that:

(1) almost every A1-ergodic component of ν has positive entropy with respect to some a ∈ A1 with
|χ(a)| 6= 1, and

(2) for ν-almost every x ∈ 0′\G, the group {h ∈ M1×G2 : xh = x} is finite.

Then ν is a convex combination of homogeneous measures, each of which is supported on an orbit of a
subgroup H which contains a finite index subgroup of a semisimple algebraic subgroup of G1 of Qp-rank
one.

To deduce Theorem 28 from Theorem 34 requires no new ideas, but we record a complete verification
for completeness.

2.1. Consequences of strong approximation. Recall that R is a maximal order in a definite quaternion
algebra B. (For general background on quaternion algebras we mention [Vignéras 1980; Voight 2018;
Nelson 2015, §2.2].)

For a prime p, we shall use the notations Bp := B⊗Q Qp, Rp := R⊗Z Zp. A superscripted (1) denotes
“norm one elements,” e.g., B(1)p := {b ∈ B×p : nr(b) = 1}. Denote by A f the finite adele ring of Q and
B̂ := B⊗Q A f . (Thus BA := B∞× B̂ with BA := B⊗Q A, B∞ := B⊗Q R, and A the adele ring of Q.)
Regard B×, B×p , R×p as subsets of B̂× in the standard way.

Lemma 35. Let U be a subgroup of B̂× for which:

(i) There is a prime p that splits B for which U contains an open subgroup of B̂(1) containing B(1)p .
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(ii) The image nr(U ) of U under the reduced norm nr : B̂×→ A×f satisfies Q×+ nr(U )= A×f .

Then B×U = B̂×.

Proof. It is known (e.g., by Hasse–Minkowski) that nr : B× → Q×+ is surjective. Let b ∈ B̂× be
given. By (ii), there exists γ ∈ B× and h ∈ U for which γ bh ∈ B̂(1). Let p be as in (i). The strong
approximation theorem [Kneser 1966], applied to the simply connected semisimple algebraic group B(1)

and its noncompact factor B(1)p , implies that B(1)B(1)p is dense in B̂(1). By (i), we may write γ bh = δh′

for some δ ∈ B(1) and h′ ∈U . Therefore b = γ−1δh′h−1 belongs to B×U , as required. �

Let p be a split prime for B. For any prime `, one has nr(B×` )=Q×` ; because R is a maximal order (in
particular, an Eichler order), one has moreover that nr(R×` )=Z×` . The hypotheses of Lemma 35 thus apply
to U = B×p

∏
`6=p R×` : (i) is clearly satisfied, while (ii) follows from the consequence Q×+Q×p

∏
`6=p Z×` =

A×f of strong approximation for the ideles. For similar but simpler reasons, the hypotheses apply also to
U = B×p B×`

∏
q 6=`,p R×q . Thus

B×B×p
∏
6̀=p

R×` = B̂× = B×B×p B×`
∏

q 6=`,p

R×q .

We have B×∩
∏
`6=p R×` = R[1/p]× and B×∩

∏
q 6=`,p R×q = R[1/p`]×, whence the natural identifications

R[1/p]×\B×p /Q
×

p = B×\B̂×/Q×p
∏
6̀=p

R×` = R[1/p`]×\B×p B×` /Q
×

p R×` . (6)

Since Z[1/p`]×Q×p Z×` =Q×p Q×` , the RHS of (6) is unaffected by further reduction modulo Q×` , i.e.,

R[1/p]×\B×p /Q
×

p = R[1/p`]×\B×p B×` /Q
×

p Q×` R×` . (7)

2.2. Deduction of Theorem 28. Let p be a split prime for B. Identify B×p = GL2(Qp) and X =
0\GL2(Qp) as in Section 1. Let µ be a measure on X satisfying the hypotheses of Theorem 28. It is
invariant under the diagonal torus of GL2(Qp), which generates the latter modulo SL2(Qp), so to prove
that µ is the uniform measure, we need only verify that it is SL2(Qp)-invariant. To that end, we apply
Theorem 34: Set G1 := PGL2(Qp)= B×p /Q

×
p , G2 := PGL2(Q`)= B×` /Q

×

` , G := G1×G2. Recall that
0 = R[1/p]×. Take for 0′ the image of R[1/p`]× in G. By strong approximation in the form (7), we
may identify 0\GL2(Qp)/Q

×
p with 0′\G/PGL2(Z`) and µ with a right PGL2(Z`)-invariant measure ν

on 0′\G. Our task is then to verify that ν is invariant by the image of SL2(Qp). Take for A1 the diagonal
torus in G1 and for χ : A1→Q×p the map χ(diag(y1, y2)) := y1/y2. We have CG1(A1)= A1. The group
M1 is trivial, hence each {h ∈ M1×G2 : xh = x} is trivial. The hypotheses of Theorem 28 are satisfied,
so ν is invariant by some finite index subgroup H1 of some semisimple algebraic subgroup of G1 (of
Qp-rank one) that contains A1. The smallest such H1 is the image of SL2(Qp), so we conclude.
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3. Recurrence

In this section we formulate and verify the T`-recurrence hypothesis required by Theorem 28. The
argument here is as in [Lindenstrauss 2006b, §8] except that we allow general central characters; for
completeness, we record a proof of the key estimate in that case. The proof is simple; a key insight of
Lindenstrauss [2006b] is that the condition enunciated here is useful for the present purposes.

3.1. Hecke operators.

3.1.1. Summary of facts. For a positive integer n coprime to p, the Hecke operator Tn ∈ End(A(X))
is defined by Tnϕ(x) :=

∑
α∈Mn/M1

ϕ(α−1x), where Mn := R[1/p] ∩ nr−1(nZ[1/p]×), so that M1 = 0.
These operators commute with one another and also with ρreg(G). Given a scalar element m, let us
introduce the general abbreviation z(m) for the corresponding quaternion. For m ∈Q×, we abbreviate
z(m) := ρreg(z(m)). If ` | disc B, then the operator T` is an involution modulo the action of the center,
namely T 2

` = T`2 = z(`−1); otherwise, T` is induced by a correspondence of degree `+ 1. The adjoint of
Tn is T ∗n = z(n)Tn , and one has the composition formula

Tm Tn =
∑

d∈Z>1:d | gcd(m,n), gcd(d,disc B)=1

d · z(d−1)Tmn/d2 . (8)

3.1.2. Derivations. Since we are unaware of a convenient reference for the facts recalled above, we
briefly indicate how they fall out from the adelic picture and the structure of the local Hecke algebras. (The
reader is strongly encouraged to skip this section, which we have included only for completeness.) With
notation as in Section 2.1, let us abbreviate H` := B×` , J` := R×` and H :=

∏
`6=p H` and J :=

∏
`6=p J`,

so that J is a compact open subgroup of H and G× H = B̂×. By strong approximation as in Section 2.1,
the map G 3 x 7→ (x, 1) ∈ G × H induces a bijection X = 0\G ∼

−→ B×\(G × H/J ). In this way, we
may identify each ϕ ∈ A(X) with a right-J -invariant function 8 : B×\(G × H)→ C, called the lift
of ϕ. Equip H with the Haar measure assigning volume one to J . Then the algebra H := C∞c (J\H/J ),
under convolution, acts on A(X) by translating the corresponding lifts. The algebra H decomposes as a
restricted tensor product of local Hecke algebras H` = C∞c (J`\H`/J`), where again we normalize so that
J` has volume one. These local Hecke algebras may be described as follows:

• Suppose ` | disc(B), i.e., that ` does not split B, so that B` is a quaternion division algebra. Then
J` is the kernel of the map H`→ Z sending an element to the valuation of its reduced norm. This
induces an isomorphism from H` to the group algebra C[Z]. In other words, H` has a basis given
by the characteristic functions T`n of those x ∈ H` with reduced norm of valuation n, and we
have T`m T`n = T`m+n . We note that T`2n is the characteristic function of J`z(`n)J`, where as usual
z(y) ∈ H` denotes the scalar element corresponding to y ∈Q×` .

• Suppose `- disc(B), i.e., that ` splits B. Then H`∼=GL2(Q`) and J`∼=GL2(Z`). Let T`n ∈H` denote
the characteristic function of H (`n)

` , where H (`n)
` denotes the set of all k ∈ R` with reduced norm of
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valuation n. Then T`m T`n =
∑|m−n|

j=0 ` j z(` j )T`m+n−2 j , with z(y) as before. The Hecke algebra H j is
generated by the T`n together with the characteristic functions of J`z(y)J` taken over y ∈Q×` /Z

×

` .

In summary, the algebra H is generated by:

• For each m ∈
∏
`6=p Q×` /Z

×

` , the characteristic function of J z(m−1)J = J z(m−1)= z(m−1)J .

• For each n ∈
∏
`6=p(Q

×

` ∩Z`)/Z
×

` , the characteristic function of the double-J -coset

H (n)
:=

{
k ∈

∏
6̀=p

R` : nr(`) ∈ n
∏
`6=p

Z×`

}
.

Let us denote the operators on A(X) obtained in the first case by z̃(m) and in the second by T̃n . Since
Q×

∏
` Z×` =

∏
` Q×` , we may assume in the first case that m is represented by an element of Q× coprime

to p; we then verify readily, using the identity 8(x, z(m−1))=8(z(m)x, 1), that z̃(m)= z(m) as defined
above. In the second case, we note first that we may assume that n is a positive integer coprime to p.
Using strong approximation as in Section 2.1, we see then that the natural map Mn/M1→ H (n)/J is
bijective. Decomposing H (n) into right J -cosets, it follows readily that T̃n = Tn . Thus the operators Tn

and z(m) generate the same subalgebra of End(A(X)) as H does. The relations stated in Section 3.1.1
follow from the corresponding local relations given above.

3.2. Spherical averaging operators. Let n be a positive integer coprime to p. The operator Tn on A(X)
is induced by the correspondence on X , denoted also by Tn , given for x ∈ X by the multiset (i.e.,
formal sum) Tn(x) :=

∑
s∈Mn/0

s−1x . Thus Tnϕ(x) =
∑

y∈Tn(x) ϕ(y). Denote by Mprim
n the set of all

primitive elements of Mn , i.e., those that are not divisible inside R[1/p] by any divisor d > 1 of n.
Then Mprim

n is right-invariant by 0, and one has Mn =
⊔

d2 | n z(d)Mprim
n/d2 . Denote by Sn the “Hecke

sphere” correspondence Sn(x) :=
∑

s∈Mprim
n /0

s−1x ; it likewise induces an operator Sn on A(X) given by
Snϕ(x) :=

∑
s∈Mprim

n /0
ϕ(s−1x)=

∑
y∈Sn(x) ϕ(y), and one has

Tn(x)=
∑
d2 | n

z(d−1)Sn/d2(x). (9)

3.3. Recurrence. Let ` 6= p be a split prime, that is to say, a prime that splits the quaternion algebra
underlying the construction of 0, so that the Hecke operator T` has degree `+ 1.

Definition 36. Let Z denote the center of G. A finite Z -invariant measure µ on X is called T`-recurrent
if for each Borel subset E ⊆ X and µ-almost every x ∈ E , there exist infinitely many positive integers n
for which S`n (x)∩ E 6=∅.

Theorem 37 (Hecke recurrence). Let µ be any subsequential limit of a sequence of L2-masses µϕ of
L2-normalized automorphic forms ϕ ∈ π ∈ A0(X). Then µ is T`-recurrent.6

The proof of Theorem 37 reduces via measure-theoretic considerations as in [Lindenstrauss 2006b;
Brooks and Lindenstrauss 2014] to that of the following:

6It suffices to assume only that ϕ is a T`-eigenfunction.
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Lemma 38. There exists c0 > 0 and n0 > 1 so that for each split prime ` and ϕ ∈ π ∈ A0(X) and x ∈ X ,
one has

∑
k6n

∑
y∈S

`k (x)
|ϕ(y)|2 > c0n|ϕ(x)|2 for all natural numbers n > n0.

Proof. By a theorem of Eichler, Shimura and Igusa, π is tempered,7 hence there exist α, β ∈ C(1) (the
Satake parameters) so that λπ (`)= α+β; one then has more generally for n ∈ Z>1 that

λπ (`
n)=

αn+1
−βn+1

α−β
. (10)

By (9), one has T`n =
∑

k6n:k≡n(2) z(`(k−n)/2)S`k . Conversely, S`k = T`k − 1k>2z(`−1)T`k−2 . Since π
has a unitary central character, there is θ ∈ C(1) so that z(`−1)ϕ = θϕ for all ϕ ∈ π . Thus, denoting by
`k/2σk ∈ C the scalar by which S`k acts on π , one obtains σk = λ(`

k)−1k>2θ`
−1λ(`k−2), which expands

for k > 2 to

σk =
γ1α

k
− γ2β

k

α−β
, (11)

with γ1 := α− θ`
−1α−1, γ2 := β − θ`

−1β−1. Note that |γ1|, |γ2|>
1
2 .

We turn to the main argument. For m, k ∈ Z>0, Cauchy–Schwarz gives

`m
|λπ (`

m)ϕ(x)|2 = |T`mϕ(x)|2 6 (1+ `−1)`m
∑

y∈T`m (x)

|ϕ(y)|2,

`k
|σkϕ(x)|2 = |S`kϕ(x)|2 6 (1+ `−1)`k

∑
y∈S

`k (x)

|ϕ(y)|2,

whence by (9) that
∑

k6n
∑

y∈S
`k (x)
|ϕ(y)|2� |ϕ(x)|2cπ,`(n) with

cπ,`(n) :=
∑
k6n

|σk |
2
+max

m6n
|λπ (`

m)|2. (12)

Our task thereby reduces to verifying that cπ,`(n)� n, uniformly in π and (unimportantly) `. Suppose
this estimate fails. Then there is a sequence of integers j →∞ and tuples (π, n, `) = (π j , n j , ` j ) as
above, depending upon j , so that n→∞ as j→∞ and cπ,`(n)= o(n). Here asymptotic notation refers
to the j→∞ limit, and for quantities A, B = A j , B j depending (implicitly) upon j , we write A� B for
lim sup j→∞ |A j/B j |<∞ and A≪ B or A = o(B) for lim sup j→∞ |A j/B j | = 0; the notations A� B
and A≫ B are defined symmetrically. We shall derive from this supposition a contradiction. By passing
to subsequences, we may consider separately cases in which the Satake parameters α, β of π , as defined
above, satisfy:

(i) |α−β|≫ 1/n, or

(ii) |α−β| � 1/n.8

7 As in the references, the nontempered case may be treated more simply.
8The standard argument considers cases for which |α−β| � 1/n and |α−β|≪ 1/n. We have found the present division

slightly more efficient.
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In case (i), we have |1− αβ̄|−1 ≪ n, and so upon expanding the square and summing the geometric
series,

cπ,`(n)>
∑
k6n

|σk |
2
=
|γ1|

2n+ |γ2|
2n+ o(n)

|α−β|2
>

n/3
|α−β|2

� n.

In case (ii), one has |α− β|−1/10� n, so the largest positive integer m 6 n for which m|α− β| < 1
10

satisfies m� n, and (10) gives cπ,`(n)> |λπ (`m)|2�m2
� n2> n. In either case, we derive the required

contradiction. �

4. Positive entropy

In this section we verify the entropy hypothesis required by Theorem 28. The basic ideas here are due
to Bourgain–Lindenstrauss [2003] following earlier work of Rudnick–Sarnak [1994] and Lindenstrauss
[2001] and followed by later developments of Silberman–Venkatesh [≥ 2018] and Brooks–Lindenstrauss
[2014]. Those works dealt with archimedean aspects; the present p-adic adaptation is obtained by
replacing the role played by the discreteness of Z in R with that of Z[1/p] in R×Qp. We also give a new
formulation of the basic line of attack (Lemma 41) emphasizing convolution over covering arguments
(compare with [Silberman and Venkatesh ≥ 2018, Lemma 3.4]), which may be of use in other contexts.

Call ε > 0 admissible if it belongs to the image of |.| :Q×p → R×+. For a compact open subgroup C of
Q×p and admissible ε > 0 set

B(U, ε) :=
{(

a b
c d

)
∈ G : a, d ∈U, |b|, |c|6 ε

}
.

We refer to [Lindenstrauss 2006a, §8] for definitions and basic facts concerning (Kolmogorov–Sinai)
entropy. As in [Lindenstrauss 2006a, §8; Bourgain and Lindenstrauss 2003; Silberman and Venkatesh
≥ 2018, Theorem 6.4], the following criterion suffices:

Theorem 39 (positive entropy on almost every ergodic component). For each compact subset � of G,
there exists U as above and C, c> 0 so that for all admissible ε∈ (0, 1), all L2-normalized ϕ ∈π ∈ A0(X),
and all x ∈�, one has µϕ(x B(U, ε))6 Cεc.

Let us henceforth fix � as in Theorem 39. We then take for U any open subgroup of o× with the
property that for small enough ε, one has

x B(U, ε)x−1
⊆ K for all x ∈�, (13)

gB(U, ε)g−1
∩0 = {1} for all g ∈ G. (14)

(Let us recall why it is possible to do this. Since K is open, we may find for each x ∈� a pair (U, ε) so
that (13) holds. Since � is compact, we may find one pair that works for every x . Similarly, since 0 is
discrete in G, we may find for each g ∈ G a pair (U, ε) so that (14) holds. The validity of (14) depends
only upon the class of g in the quotient 0\G, which is compact, so we may again find one pair that works
every g.)
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We now state two independent lemmas, prove Theorem 39 assuming them, and then prove the lemmas.

Lemma 40 (bounds for Hecke returns). For all small enough admissible ε ∈ (0, 1), all n ∈ Z>1 coprime
to p and satisfying n <

√
1/2ε−1, all m ∈ Q× with numerator and denominator coprime to p, and all

x ∈�, the set S := Mn ∩ z(m)x B(U, ε)x−1 has cardinality #S 6 6
∏

pk ||n(k+1). In particular, #S 6 213

if n has at most 10 prime divisors counted with multiplicity.

Lemma 41 (geometric amplification). Let (c`)`∈Z>1 be a finitely supported sequence of scalars. Set
T :=

∑
` c`T`/

√
` and T a

:=
∑

` |c`|T
∗

` /
√
`. Let ϕ ∈ A(X), ψ, ν ∈ C∞c (G). Define 9 ∈ A(X) by

9(g) :=
∑

γ∈0 |ψ |(γ g) and ψ ∗ ν ∈ C∞c (G) by ψ ∗ ν(x) :=
∫

y∈G ψ(xy)ν(y). Then

‖Tϕ(ψ ∗ ν)‖L2(G) 6 ‖ϕ‖L2(X)‖T
a9‖L2(X)‖ν‖L2(G).

Proof of Theorem 39. We have Tϕ = λϕ with λ :=
∑

c`λπ (`), where T`ϕ =
√
`λπ (`)ϕ. Abbreviate

J := B(U, ε); it is a group. Let x ∈ �. Take ψ := 1x B(U,ε) > 0 and ν := eJ := vol(J )−11J . Then
1x B(U,ε) = |ψ ∗ ν|

2. By (14), we have µTϕ(|ψ ∗ ν|
2) = ‖Tϕ(ψ ∗ ν)‖2L2(G), and so by Lemma 41,

µϕ(x B(U, ε)) 6 |λ|−1
‖T a9‖L2(X)‖ν‖L2(G). The square ‖T a9‖2L2(X) is a linear combination of terms

〈T ∗` 9, T ∗`′9〉 = 〈T`′T
∗

` 9,9〉 to which we apply the Hecke multiplicativity (8) and the unfolding: for
m, n ∈ Z>1,

〈z(m)T ∗n 9,9〉‖ν‖
2
L2(G) =

∫
g∈G

∑
s∈Mn

ψ(z(m)sg)ψ(g) vol(J )−1
= #Mn ∩ z(m−1)x J x−1. (15)

By Lemma 40, we thereby obtain

µϕ(x B(U, ε))2 6 213
|λ|−2

∑
`,`′

|c`c`′ |
∑

d | (`,`′)

d/
√
``′

provided that c` is supported on integers ` 6 2−1/4ε−1/2 having at most 5 prime factors counted with
multiplicity. A standard choice of c` completes the proof. For completeness, we record a variant of the
choice from [Venkatesh 2010, §4.1]: Set L := (1/ε)0.1. Denote by L the set consisting of all `= q or
`= q2 taken over primes q ∈ [L , 2L]; each such q splits B provided ε is small enough. Set c` := 0 unless
` ∈ L, in which case c` := L−1 log(L) sgn(λπ (`))−1. We have

∑
` |c`| � 1 and |c`|6 L−1 log(L), while

Iwaniec’s trick |λπ (q)|2+ |λπ (q2)|> 1, a consequence of (8), implies λ� 1. With trivial estimation we
obtain µϕ(x B(U, ε))� L−1/2(log L)O(1)

� ε0.01, as required. �

Proof of Lemma 40. Observe first, thanks to (13) and nZ[1/p]× ∩ (Q+×Zp)= {n} and z(m) ∈ K , that
S ⊆ Mn ∩K = R(n) := {α ∈ R : nr(α)= n}. Given s, t ∈ S, their commutator u := sts−1t−1 thus satisfies
nr(u)= 1 and n2u = stsιt ι ∈ R, hence tr(u) ∈ n−2Z. Since S is conjugate to a subset of the preimage in
M2(o) of the upper-triangular Borel in M2(o/q) with q := {x ∈ o : |x |6 ε2

}, and the commutator of that
preimage is contained in the preimage of the unipotent, one has | tr(u)− 2|p 6 ε2. Since B is definite,
| tr(u)|∞ 6 2| nr(u)|1/2∞ = 2. The integer a := n2 tr(u)− 2n2 thus satisfies |a|∞|a|p 6 2n2ε2 < 1 and so
must be zero, i.e., tr(u)= 2; since B is nonsplit, u = 1. In summary, any two elements of S commute.
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Since B is nonsplit and definite, S is contained in the set O(n) of norm n elements in some imaginary
quadratic order O ⊂ R. Thus #S 6 #O(n)6 #O× · #{I ⊆O : nr(I )= n}6 6

∏
pk ||n(k+ 1). �

Proof of Lemma 41. Write M := R[1/p]. We may express the operator T by the formula Tϕ(x) =∑
s∈M/0 hsϕ(s−1x) for some finitely supported coefficients hs ; then T a9(x) =

∑
s∈M/0 |hs |9(sx).

Abbreviate I := ‖Tϕ(ψ ∗ν)‖L2(G). By the triangle inequality and a change of variables x 7→ sx , we have

I 6
∑

s∈M/0

|hs |

(∫
x∈G
|ϕ|2(x)|ψ ∗ ν(sx)|2

)1/2

.

By a change of variables, ψ ∗ν(sx)=
∫

y∈G ψ(sy)ν∗y (x) with ν∗y (x) := ν(x
−1 y). By the triangle inequality,

I 6
∫

y∈G

∑
s∈M/0 |hs ||ψ(sy)|‖ϕν∗y‖L2(G). We unfold

∫
y∈G

∑
s∈M/0 =

∫
y∈X

∑
s∈0\M

∑
γ∈0, giving

I 6
∫

y∈X T a9(y)‖ϕν∗y‖L2(G). We conclude via Cauchy–Schwartz and the identity
∫

y∈X ‖ϕν
∗
y‖

2
L2(G) =

‖ν‖2L2(G)‖ϕ‖
2
L2(X). �

5. Representation-theoretic preliminaries

5.1. Generalities. Let k be a nonarchimedean local field with maximal order o, maximal ideal p, nor-
malized valuation ν : k→ Z∪ {+∞}, and q := #o/p. Fix Haar measures dx, d×y on k, k× assigning
volume one to maximal compact subgroups. Fix a nontrivial unramified additive character ψ : k→ C(1).
Set G := GL2(k).

5.2. Some notation and terminology. For x ∈ k and y1, y2 ∈ k×, set

n(x) :=
(

1 x
0 1

)
, n′(x) :=

(
1 0
x 1

)
,

diag(y1, y2) :=

(
y1 0
0 y2

)
, w :=

(
−1

1

)
,

and a(y) := diag(y, 1), z(y) := diag(y, y). Say that a vector v in some GL2(k)-module π is supported on
m..m′, for integers m,m′ with m 6m′, if v is invariant by n(p−m) and n′(pm′), and that v has orientation
(ω1, ω2), for characters ω1, ω2 of o×, if π(diag(y1, y2))v = ω1(y1)ω2(y2)v for all y1, y2 ∈ o

×.

5.3. Principal series representations. For characters χ1, χ2 : k× → C×, denote by π = χ1 � χ2 the
principal series representation of G realized in its induced model as a space of smooth functions
v : G→ C satisfying v(n(x) diag(y1, y2)g)= |y1/y2|

1/2χ1(y1)χ2(y2)v(g) for all x ∈ k and y1, y2 ∈ k×

and g ∈ G. A sufficient condition for π to be irreducible is that c(χ1/χ2) 6= 0 (see, e.g., [Schmidt 2002]).
If χ1, χ2 are unitary, then π is unitary; an invariant norm is given by ‖v‖2 :=

∫
x∈k |v(n

′(x))|2 dx (see, e.g.,
[Knapp 1986, (7.1)]). The log-conductor is c(π)= c(χ1)+ c(χ2) and the central character is χπ = χ1χ2

(see, e.g., [Schmidt 2002]).
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The following “line model” parametrization of π shall be convenient: for suitable f ∈ C∞(k), define
v f ∈ π by

v f (g) := f (c/d)|det(g)/d2
|
1/2χ1(det(g)/d)χ2(d), g =

(
a b
c d

)
. (16)

If χ1, χ2 are unitary, then ‖v f ‖
2
=
∫

k | f |
2.

5.4. Generic representations. Recall that an irreducible representation σ of G is generic if it is iso-
morphic to an irreducible subspace W(σ, ψ) of the space of smooth functions W : G→ C satisfying
W (n(x)g)=ψ(x)W (g) for all x, g ∈ k,G; in that case, W(σ, ψ) is called the Whittaker model of σ . It is
known that every nongeneric irreducible representation of G is one-dimensional (see, e.g., [Schmidt 2002]).

For each W ∈W(σ, ψ), denote also by W the function W : k×→ C defined by W (y) := W (a(y)).
The space K(σ, ψ) of functions W : k×→ C arising in this way from some W ∈W(σ, ψ) is called the
Kirillov model of σ . It is known that the natural map W(σ, ψ)→ K(σ, ψ) is an isomorphism and that
K(σ, ψ)⊇ C∞c (k

×) (see, e.g., [Schmidt 2002]).
An irreducible principal series representation π = χ1�χ2 is generic (see, e.g., [Schmidt 2002]); the

standard intertwining map from π to its ψ-Whittaker model W(π, ψ), denoted π 3 v 7→Wv :GL2(k)→C,
is given by Wv(g) :=

∫
x∈k v(wn(x)g)ψ(−x) dx . In general, this integral fails to converge absolutely and

must instead be interpreted via analytic continuation, regularization, or as a limit of integrals taken over
the compact subgroups p−n of k as n→∞ (see, e.g., [Bump 1997, p. 485]); for the sake of presentation,
we ignore such technicalities in what follows.

5.5. Newvector theory. Recall Definition 20. Recall also from Section 1.3 that we have fixed decompo-
sitions N = N1+ N2 of every nonnegative integer N , with N1, N2→∞ as N →∞.

Theorem 42 (basic newvector theory). Let π be a generic irreducible representation of GL2(k) and let
m 6 m′ be integers. Then the space of vectors in π supported on m..m′ and with orientation (1, χπ |o×)
has dimension max(0, 1+ |m−m′| − c(π)).

In particular, let π be any irreducible representation of GL2(k) with ramified central character χπ .
Denote by V the space of vectors in π supported on −N1..N2 with orientation (1, χπ |o×). Then V = 0
unless π is generic, in which case dim V =max(0, 1+ N − c(π)).

Proof. For the first assertion, see [Casselman 1973a]. The generic case of the second assertion follows
from the first assertion, so suppose π is one-dimensional. Write π = χ ◦ det for some χ : k×→ C×.
Since χπ is ramified, the characters (1, χπ |o×) and (χ |o×, χ |o×) of o××o× are distinct, and so V = 0. �

Lemma 43. Let π be an irreducible generic representation of GL2(k) with ramified central character χπ .
Then c(χπ ) 6 c(π) with equality precisely when π is isomorphic to an irreducible principal series
representation χ1�χ2 for which at least one of the inducing characters χ1, χ2 is unramified.

Proof. This is well-known; see [Templier 2014, Lemma 3.1; Casselman 1973b, Proof of Proposition 2]. �
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Lemma 44. Let π = χ1 � χ2 be an irreducible principal series representation of G. Let v ∈ π be a
newvector of some support m..m′:

(1) If χ1 is ramified and χ2 is ramified, then v = v f as in (16) for f a character multiple of the
characteristic function of an o×-coset, thus f = cχ1$ no× for some c ∈ C, χ : k×→ C× and n ∈ Z.

(2) If χ1 is unramified and χ2 is ramified, then v = v f for f = c1a for some scalar c and fractional
o-ideal a⊂ k.

Proof. Both assertions are well-known in the special case m = 0 (see [Schmidt 2002]) and follow
inductively in general using that a($) bijectively maps newvectors of support m..m′ to those of support
m− 1..m′− 1. �

5.6. Local Rankin–Selberg integrals. Let π be an irreducible unitary principal series representation of
G := GL2(k) and σ an irreducible generic unitary representation of PGL2(k). We have the following
special case of a theorem of D. Prasad:

Theorem 45 [Prasad 1990]. The space HomG(σ ⊗ π̄ ⊗ π,C), consisting of trilinear functionals ` :
σ ⊗ π̄ ⊗ π → C satisfying the diagonal invariance `(σ (g)v1, π̄(g)v2, π(g)v3) = `(v1, v2, v3) for all
g ∈ G and all vectors, is one-dimensional.

We may fix a nonzero element `RS ∈ HomG(σ ⊗ π̄ ⊗π,C) as follows: Denote by Z the center of G
and U := {n(x) : x ∈ k}. Equip the right G-space ZU\G with the Haar measure for which∫

g∈ZU\G
φ(g)=

∫
y∈k×

∫
x∈k

φ(a(y)n′(x)) d×y
|y|

dx (17)

for φ ∈ Cc(ZU\G) (see [Michel and Venkatesh 2010, §3.1.5]). Realize π in its induced model. For
W1 ∈ W(σ, ψ),W2 ∈ W(π, ψ) and v3 ∈ π , set `RS(W1,W 2, v3) :=

∫
ZU\G W1W 2v3 (see [Michel and

Venkatesh 2010, §3.4.1]). The definition applies in particular when W2 is the image Wv of some v ∈ π
under the intertwiner from Section 5.4.

The trick encapsulated by the following lemma (a careful application of “nonarchimedean integration
by parts”) shall be exploited repeatedly in Section 6.3:

Lemma 46 (application of diagonal invariance). Let f ∈ C∞c (k). Let U1 be an open subgroup of o× for
which f̄ ⊗ f is U1-invariant in the sense that f̄ (ux) f (uy) = f̄ (x) f (y) for all u, x, y ∈ U1, k, k. Let
W1 ∈W(σ, ψ). Then

`RS(W1,W v f , v f )=

∫
x∈k, y∈k×, t∈k

f (x) f̄
(

x + y
t

)
F(x, y, t;W1,U1)

dt
|t |

dx d×y,

where F(x, y, t;W1,U1) := Eu∈U1 W1(a(y)n′(x/u))χ1χ
−1
2 (ut)ψ(ut) with Eu∈U1 denoting an integral

with respect to the probability Haar.
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Proof. Set g := a(y)n′(x)=
( y

x 1

)
. For t ∈ k one has wn(t)g =

(
−x

y+t x
−1
t

)
, hence

v f (g)= f (x)|y|1/2χ1(y),

v̄ f (wn(t)g)= f̄ ((y+ t x)/t)|y/t2
|
1/2χ−1

1 (y/t)χ−1
2 (t),

v f (g)W v f (g)=
∫

t∈k
v f (g)v f (wn(t)g)ψ(−t) dt

= |y| f (x)
∫

t∈k
f̄
(

x + y
t

)
χ1χ

−1
2 (t)ψ(t) dt

|t |
.

Integrating against W1(a(y)n′(x))|y|−1 dx d×y gives that `RS(W1,W v f , v f ) equals∫
x∈k, y∈k×, t∈k

f (x) f̄
(

x + y
t

)
W1(a(y)n′(x))χ1χ

−1
2 (t)ψ(t) dt

|t |
dx d×y.

To obtain the claimed formula, we apply for u ∈ U1 the substitutions t 7→ ut, x 7→ x/u, invoke the
assumed U1-invariance of f̄ ⊗ f , and average over u. �

5.7. Gauss sums. We shall repeatedly use the following without explicit mention:

Lemma 47. Let U1 6 o× be an open subgroup and ω a character of o×. For t ∈ k×, set H(t) :=
H(t, ω,U1) := Eu∈U1ω(ut)ψ(ut), where E denotes integration with respect to the probability Haar.

(1) For fixed U1, one has H(t)= 0 unless −ν(t)= c(ω)+ O(1), in which case H(t)� C(ω)−1/2, with
implied constants depending at most upon U1.

(2) Suppose U1 = o× and c(ω) > 0. Then H(t) = 0 unless −ν(t) = c(ω), in which case H(t) is
independent of t and has magnitude |H(t)| = cC(ω)−1/2 for some c > 0 depending only upon k.

Proof. For U1 = o×, these are standard assertions concerning Gauss sums. The standard proof adapts to
the general case (compare with [Michel and Venkatesh 2010, 3.1.14]). �

6. Local study of nonarchimedean microlocal lifts

Recall Definition 21 and the statement of Lemma 22. Retain the notation of Section 5.

6.1. Proof of Lemma 22: determination of microlocal lifts. For any character χ : k× → C×, the
nonequivariant twisting isomorphism π→ π ′ := π ⊗χ induces nonequivariant linear isomorphisms

V :={microlocal lifts in π of orientation (ω1, ω2)}

∼={microlocal lifts in π ′ of orientation (ω′1, ω
′

2)},

(18)

with ω′i := ωi ·χ |o× . We thereby reduce to verifying the conclusion in the special case ω1 = 1. Suppose
V 6= 0. Write ω := ω2. By the convention N > 1 of Definition 21, ω is ramified. The central character χπ
of π restricts to ω, hence is ramified; by Theorem 42, dim V =max(0, 1+ c(π)− c(χπ )), and so V 6= 0
only if c(π) > c(χπ ). By Lemma 43, the latter happens only if c(π) = c(χπ ) and π has the indicated
form, in which case dim V = 1. The explicit description of V now follows in general from (18).
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6.2. Explicit formulas. Let π := χ1�χ2 and ωi := χi |o× with N := c(ω1/ω2)> 1.

Lemma 48. Define f1, f2 ∈ C∞(k) (as if in the “line model” of Section 5.3) by

f1(x) := 1pN2 (x), f2(x) := 1pN1 (1/x)|1/x |χ−1
1 χ2(x)

and v1, v2 ∈ π in the induced model on g =
(
∗

c
∗

d

)
∈ GL2(k) by

v1(g): = v f1(g)= 1pN2 (c/d)
∣∣∣∣det g

d2

∣∣∣∣1/2χ1(det(g)/d)χ2(d), (19)

v2(g): = v f2(g)= 1pN1 (d/c)
∣∣∣∣det g

c2

∣∣∣∣1/2χ1(det(g)/c)χ2(c), (20)

and W1,W2 ∈ π in the Kirillov model K(π, ψ) by9

W1(y): = 1p−N1 (y)|y|1/2χ1(y), W2(y) := 1p−N1 (y)|y|1/2χ2(y). (21)

Then v1,W1 and v2,W2 are microlocal lifts of orientations (ω1, ω2) and (ω2, ω1), respectively.

Proof. The formulas for W1, v1 in the case χ1 = 1 and those for W2, v2 in the case χ2 = 1 follow from
known formulas for standard newvectors [Schmidt 2002]; the general case follows from the twisting
isomorphisms (18). �

6.3. Stationary phase analysis of local Rankin–Selberg integrals. In this section we apply stationary
phase analysis to evaluate and estimate some local Rankin–Selberg integrals involving microlocal lifts
and newvectors. We use these in Section 7 to prove Theorem 25 and Theorem 29. Retain the notation of
Section 5.1. Let χ1, χ2 be unitary characters of k× for which N := c(χ1/χ2) is positive. Let π = χ1�χ2

be the corresponding generic irreducible unitary principal series representation of GL2(k), realized in
its induced model and equipped with the norm given in Section 5.3. Equip the complex-conjugate
representation π̄ with the compatible unitary structure. Define the intertwiner π 3 v 7→Wv ∈W(π, ψ)

as in Section 5.4. Let σ be a generic irreducible unitary representation of PGL2(k), realized in its
ψ-Whittaker model σ =W(σ, ψ).

Theorem 49. Let v ∈ π be a microlocal lift of orientation (χ1|o×, χ2|o×), let v′ ∈ π be a generalized
newvector, and let W1 ∈ σ .

(I) If N is large enough in terms of W1, then

`RS(W1,W v, v)= cq−N/2
‖v‖2

∫
y∈k×

W1(y) d×y,

where10 c := q N/2
∫

t∈k× χ1χ
−1
2 (t)ψ(t) dt/|t | � 1 is a complex scalar which is independent of W1

and whose magnitude depends only upon k.

9Recall that ψ is assumed unramified.
10 The integral defining c should be interpreted in the usual way as (for instance) a limit of integrals over increasing finite

unions of o×-cosets.
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(II) One has `RS(W1⊗W v′ ⊗ v
′)� q−N/2

‖v′‖2 with the implied constant depending at most upon W1.

(III) Suppose that ν(2)= 0, χπ is unramified, ‖v′‖ = ‖v‖, the support of v′ is −N ..N , σ is unramified,
and W1 ∈ σ is spherical, so that N = c(χ1) = c(χ2) and c(π) = 2N. Then `RS(W1,W v, v) =

`RS(W1,W v′, v
′).

The most difficult assertion is (II), which is used only to deduce the equidistribution of newvectors
(Theorem 17). Assertion (III) serves only the purpose of illustration (see the discussion after Theorem 25).
The other main results of this article (Theorems 29, 27) require only (I), whose proof is very short.

Proof of (I). Without loss of generality, let v = v f with f (x) := 1pN2 (x). Because N2 is large in enough
in terms of W1, we have whenever f (x) 6= 0 that W1(a(y)n′(x/u))=W1(y) for all u ∈ o×. Lemma 46
gives after the simplifications f (x) f̄ (x + y/t) = 1pN2 (x)1pN2 (y/t) and 1pN2 (x)F(x, y, t;W1, o

×) =

1pN2 (x)W1(y)H(t) with H(t) := Eu∈o×χ1χ
−1
2 (ut)ψ(ut) that

`RS(W1,W v, v)=

∫
y∈k×

W1(y)
∫

x∈k
1pN2 (x)

∫
t∈k

1pN2 (y/t)H(t) dt
|t |

dx d×y.

We have W1(y)H(t)= 0 unless |t | � q N and |y| � 1; because N1 is large enough in terms of W1, the
factor 1pN2 (y/t)= 1 is thus redundant. Since

∫
x∈k 1pN2 (x) dx =

∫
k | f |

2
= ‖v‖2, we obtain the required

identity. �

Proof of (II). Suppose first that χ1 and χ2 are both ramified. In that case, Lemma 44 says that v′ = v f

with f a character multiple of the characteristic function of some o× coset. In particular,

f is supported on a coset of o×, and f̄ ⊗ f is o×-invariant. (22)

From the mod-center identity a(y)n′(x)≡ n(y/x)a(y/x2)wn(1/x), we have

W1(a(y)n′(x))= ψ(y/x)W1(a(y/x2)wn(1/x)). (23)

From (23) and standard bounds on Whittaker functions, we have11

sup
x∈k

∫
y∈k×
|W1(a(y)n′(x))| d×y� 1. (24)

By (23), there exists a fixed open subgroup U1 6 o× for which

W1(a(y)n′(x/u))=W1(a(y)n′(x))×
{

1 for |x |6 1,
ψ((u− 1)y/x) for |x |> 1.

(25)

Without loss of generality, suppose
∫

k | f |
2
= 1. We apply Lemma 46, split the integral according as

|x |6 1 or not, and appeal to (24) and (25); our task thereby reduces to showing with

H1(t) := Eu∈U1χ1χ
−1
2 (ut)ψ(ut),

H2(t, y/x) := ψ(−y/x)Eu∈U1χ1χ
−1
2 (ut)ψ(u(t + y/x))

11 See [Michel and Venkatesh 2010, 3.2.3], and recall that σ is assumed generic and unitary.
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that the quantities

I1 := sup
y∈k×

∫
t∈k×

∫
x∈k:|x |61

| f (x) f̄ (x + y/t)H1(t)| d×t dx d×y,

I2 := sup
y∈k×

∫
t∈k×

∫
x∈k:|x |>1

| f (x) f̄ (x + y/t)H2(t, y/x)| d×t dx d×y

are O(q−N/2). We have H1(t) = 0 unless |t | � q N , in which case H1(t)� q−N/2; the set of such t
has d×t-volume O(1), so an adequate estimate for I1 follows from Cauchy–Schwartz applied to the
x-integral. Similarly, H2(t, y/x) = 0 unless |t + y/x | � q N , in which case H2(t, y/x)� q−N/2; the
support condition on f shows that f (x) f̄ (x + y/t)= 0 unless |t + y/x | = |t |, we may conclude once
again by Cauchy–Schwartz.12

We turn to the case that one of χ1, χ2 is unramified. By the assumption c(χ1/χ2) 6= 0, the other one is
ramified. By symmetry, we may suppose that χ1 is unramified and χ2 is ramified. By Lemma 44, we may
suppose without loss of generality that v′ = v f for f = 1a with a⊂ k a fractional o-ideal. Then f̄ ⊗ f
is o×-invariant. We split the integral over x ∈ k as above, and the same argument works for the range
|x |6 1. The remaining range contributes

I3 :=

∫
x∈k:|x |>1

∫
y∈k×

∫
t∈k×

1a(x)1a(x + y/t)H3(t, y/x; x) dx d×y d×t, (26)

where

H3(t, y/x; x) :=W1(a(y/x2)wn(1/x))Eu∈U1χ1χ
−1
2 (ut)ψ(u(t + y/x)).

A bit more care is required than in the above argument, which gives now an upper bound of +∞; the
problem is that the nonvanishing of H3(t, y/x; x) no longer restricts t to a volume O(1) subset of k×. We
do better here by exploiting additional cancellation coming from the y-integral: Let C1,C2 be positive
scalars, depending only upon W1,U1, so that

H3(t, y/x; x) 6= 0=⇒ C1q N < |y/x + t |< C2q N . (27)

If |y/x | > C2q N , then H3(t, y/x; x) 6= 0 only if |t | = |y/x |. If |y/x | 6 C1q N , then H3(t, y/x; x) 6= 0
only if C1q N < |t |<C2q N . Arguing as above, we reduce to considering the range C1q N < |y/x |<C2q N ,
in which H3(t, y/x; x) 6= 0 only if |t |< C2q N . The range C1q N 6 |t |< C2q N may be treated as before,
so we reduce to showing that

I4 :=

∫
x,y,t∈k,k×,k×:|x |>1,

C1q N<|y/x |<C2q N , |t |<C1q N

1a(x)1a(x + y/t)H3(t, y/x; x) dx d×y d×t = 0. (28)

12 The estimate just derived is essentially sharp when f is supported in a fixed open subset of k×, but can be substantially
sharpened when f is “unbalanced” in the sense that its support tends sufficiently rapidly with N either to zero or infinity. The
possibility of such sharpening is the simplest case of the “weak subconvexity” phenomenon identified in [Nelson et al. 2014].
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Note that the conditions defining the integrand imply that |xt/y|< 1. There is an open subgroup U2 of
o×, depending only upon W1,U1, so that

z ∈U2, |xt/y|< 1=⇒ t+zy/x
t+y/x

∈U1, (29)

|x |> 1, z ∈U2 =⇒W1(a(zy/x2)wn(1/x))=W1(a(y/x2)wn(1/x)), (30)

|xt/y|< 1, z ∈U2 =⇒ 1a(x + zy/t)= 1a(x + y/t). (31)

For N large enough in terms of W1,U1 and hence U2, we have

|xt/y|< 1=⇒ Ez∈U2χ
−1
1 χ2(t + zy/x)= 0. (32)

In I4, we substitute y 7→ yz with z ∈ U2 and average over z; by (31) and (30), our task reduces to
establishing for |xt/y|< 1 that

Ez∈U2Eu∈U1χ1χ
−1
2 (ut)ψ(u(t + zy/x))= 0,

which follows from (32) after the change of variables u 7→ u(t + y/x)/(t + zy/x) suggested by (29). �

Proof of (III). By (I), our task reduces to showing that

`RS(W1,W v′, v
′)= cq−N/2

‖v′‖2
∫

y∈k×
W1(y) d×y

with the same scalar c as in (I). Suppose without loss of generality that v′ = v f with f := χ21o× . Note
that f̄ ⊗ f is o×-invariant. If f (x) 6= 0, then W1(a(y)n′(x/u))=W1(y) for all u ∈ o×. Lemma 46 gives
after the simplification f (x)F(x, y, t;W1, o

×)= f (x)W1(y)H(t) with H as in the proof of (I) that

`RS(W1,W v′, v
′)=

∫
y∈k×

∫
x∈k

∫
t∈k

W1(y) f (x) f̄ (x + y/t)H(t) dt
|t |

dx d×y.

Because ν(2) = 0, we have c(χ2) = c(χ1χ
−1
2 ) = N . Thus if W1(y) f (x)H(t) 6= 0, then y, x, t ∈

o, o×,$−No× and so f (x) f̄ (x + y/t)= 1. From
∫

x∈k 1o×(x) dx =
∫

k | f |
2
= ‖v′‖2, we conclude. �

Remark 50. [Michel and Venkatesh 2010, 3.4.2; 2010, (3.25)] and Theorem 49(I) imply the following:
Let v2, v3 ∈ π be microlocal lifts of the same orientation and v1 ∈ σ , realized in its Kirillov model
K(σ, ψ). The formula ‖v1‖

2
:=
∫

y∈k× |v1(y)|2 d×y is known to define an invariant norm on σ . Suppose
that N is large enough in terms of v1. Then∫

g∈Z\G

∏
i=1,2,3

〈πi (g)vi , vi 〉 = cq−N
‖v2‖

2
‖v3‖

2
∫

y∈k×
〈a(y)v1, v1〉 d×y

for some positive scalar c � 1 depending only upon k. This identity solves the problem of producing a
subconvexity-critical test vector for the local triple product period in the QUE case when the varying
representation is principal series. It would be interesting to verify whether the supercuspidal case follows
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similarly using a modification of Definition 21 involving characters on an ε-neighborhood in GL2(o) of
the points of a suitable nonsplit torus, where ε � C(π̄ ⊗π)−1/4.13

7. Completion of the proof

In this section, ϕ ∈ π ∈ A0(X) traverses a sequence of L2-normalized microlocal lifts on X of level
N →∞. Thus ϕ and π , like most objects to be considered in this section, depend upon N , but we omit
this dependence from our notation. We use the abbreviations fixed to mean “independent of N” and
eventually to mean “for large enough N .” Asymptotic notation such as o(1) refers to the N →∞ limit.
Our aim is to verify the conclusions of Theorem 25 and Theorem 29.

As G-modules, π ∼= χ1�χ2 for some unitary characters χ1, χ2 of Q×p for which c(χ1/χ2)= N .
Recall our simplifying assumption that R is a maximal order. This implies that for any irreducible

H-submodule π ′ of A(X), the vector space underlying π ′ is an irreducible admissible G-module. In
other words, the local components at all places v 6= p are one-dimensional.

The function ϕ has unitary central character, so the measure µϕ is invariant by the center. Let ` be a
prime dividing the discriminant of B. Recalling from Section 3.1.1 that T` is an involution modulo the
center, we see that it acts on π by some scalar of magnitude one. Thus µϕ is T`-invariant. The natural
space of observables against which it suffices to test µϕ is thus

A+(X) :=
{
9 ∈A(X) :

T`9 =9 for ` | disc(B),
z9 =9 for z ∈ Z := center of G,

}
.

That space decomposes further as A+(X)= (⊕χC(χ ◦ det))⊕A+0 (X) where

• χ traverses the set of quadratic characters of the compact group Q×p /Z[1/p]× satisfying χ(`)= 1
for ` | disc(B), and

• A+0 (X) := A+(X) ∩ A0(X), which decomposes further as a countable direct sum A+0 (X) =
⊕σ∈A+0 (X)

σ where we substitute A for A to denote “irreducible submodules of.”

Let σ ∈ A+(X) be fixed. It is either one-dimensional and of the form C(χ ◦ det) for some χ as above,
or belongs to A+0 (X) and is generic as a G-module. Denote by `Aut : σ ⊗ π̄ ⊗π → C the G-invariant
functional defined by integration over X .

Lemma 51. Suppose σ is one-dimensional and `Aut 6= 0. Then σ is trivial eventually.

Proof. Write σ =C(χ ◦det) for some quadratic character χ . By Schur’s lemma, π ∼=χ1�χ2 is isomorphic
as a G-module to π ⊗ χ ◦ det ∼= χ1χ � χ2χ , which happens (see, e.g., [Schmidt 2002]) only if either
χ1 = χ1χ , in which case χ is trivial, or χ1 = χ2χ , in which case c(χ) = c(χ1/χ2) = N →∞, which
does not happen because χ is quadratic.14 �

13 Added later: the recent work [Nelson et al. ≥ 2018] contains results in this direction.
14We use here that the local field Qp is not a function field of characteristic 2.
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We now prove Theorem 25. It suffices to verify that the various assertions hold for fixed9 ∈σ ∈ A+(X).
They are tautological if σ is trivial, so by Lemma 51, we reduce to the case that σ ∈ A+0 (X) is generic. Fix
an unramified nontrivial characterψ :Qp→C(1) and G-equivariant isometric isomorphisms σ ∼=W(σ, ψ),
π ∼= χ1�χ2. Denote by `RS : σ ⊗ π̄ ⊗π→ C the trilinear form defined in Section 5.6. By Theorem 45
and the nonvanishing of `RS, there exists a complex scalar L1/2

∈ C so that

`Aut = L1/2`RS. (33)

Theorem 49(I) implies that `RS(σ (a(y))9, ϕ̄, ϕ)= `RS(9, ϕ̄, ϕ) holds eventually for fixed y ∈ k×; the
required diagonal invariance then follows from (33). If p 6= 2 and ϕ′ is an L2-normalized newvector
of support −N ..N and 9 ∈ σ K is spherical, then Theorem 49(III) gives `RS(9, ϕ̄, ϕ)= `RS(9, ϕ̄

′, ϕ′)

eventually; the lifting property then follows from (33). For the equidistribution application, we reduce
by Lemma 51 and (33) and Theorem 49(II) to showing that L1/2

= o(pN/2) holds under the hypothesis
that for each fixed 90 ∈ σ , one has `Aut(90, ϕ̄, ϕ) = o(1). Let 90 ∈ σ ∼= W(σ, ψ) be given in the
Kirillov model by the characteristic function of the unit group. By Theorem 49(I), `RS(90, ϕ̄, ϕ)� p−N/2

eventually, so our hypothesis and (33) give the required estimate for L1/2.
We turn to the proof of Theorem 29. Our assumptions on π and σ imply that σ ∈ A+0 (X) and that

the adelizations of σ, π̄ and π at each v ∈ SB := {∞}∪ {` : ` | disc(B)} are one-dimensional and have
trivial tensor product, hence that the product of their normalized matrix coefficients is one; by Ichino’s
formula [Ichino and Ikeda 2010] and [Michel and Venkatesh 2010, 3.4.2], it follows that L � |L1/2

|
2,

where L denotes the LHS of (5) and L1/2 is as above (compare with Remark 50). By Theorem 27 and
the argument of the previous paragraph, L1/2

= o(pN/2). Our goal is to show that L = o(C1/4), where
C := C(σ × π̄ × π) is the global conductor; the contribution to C from v ∈ SB is bounded, while the
contribution from p is

C(σp⊗χ
−1
1 χ2)C(σp⊗χ

−1
2 χ1)C(σp)

2
� C(χ−1

1 χ2)
4
= p4N .

Thus C � p4N . The known estimate L1/2
= o(pN/2) thus translates to the goal L = o(C1/4), as required.
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