Vol. 12, No. 9, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 11, 1867–2053
Issue 10, 1681–1865
Issue 9, 1533–1680
Issue 8, 1359–1532
Issue 7, 1239–1357
Issue 6, 1127–1237
Issue 5, 981–1126
Issue 4, 805–980
Issue 3, 541–804
Issue 2, 267–539
Issue 1, 1–266

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Microlocal lifts and quantum unique ergodicity on $GL_2(\mathbb{Q}_p)$

Paul D. Nelson

Vol. 12 (2018), No. 9, 2033–2064

We prove that arithmetic quantum unique ergodicity holds on compact arithmetic quotients of GL2(p) for automorphic forms belonging to the principal series. We interpret this conclusion in terms of the equidistribution of eigenfunctions on covers of a fixed regular graph or along nested sequences of regular graphs.

Our results are the first of their kind on any p-adic arithmetic quotient. They may be understood as analogues of Lindenstrauss’s theorem on the equidistribution of Maass forms on a compact arithmetic surface. The new ingredients here include the introduction of a representation-theoretic notion of “p-adic microlocal lifts” with favorable properties, such as diagonal invariance of limit measures; the proof of positive entropy of limit measures in a p-adic aspect, following the method of Bourgain–Lindenstrauss; and some analysis of local Rankin–Selberg integrals involving the microlocal lifts introduced here as well as classical newvectors. An important input is a measure-classification result of Einsiedler–Lindenstrauss.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

arithmetic quantum unique ergodicity, microlocal lifts, representation theory
Mathematical Subject Classification 2010
Primary: 58J51
Secondary: 22E50, 37A45
Received: 26 January 2017
Revised: 9 April 2018
Accepted: 15 July 2018
Published: 21 December 2018
Paul D. Nelson
Departement Mathematik