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Grothendieck rings for Lie superalgebras
and the Duflo–Serganova functor

Crystal Hoyt and Shifra Reif

We show that the Duflo–Serganova functor on the category of finite-dimensional modules over a finite-
dimensional contragredient Lie superalgebra induces a ring homomorphism on a natural quotient of the
Grothendieck ring, which is isomorphic to the ring of supercharacters. We realize this homomorphism as
a certain evaluation of functions related to the supersymmetry property. We use this realization to describe
the kernel and image of the homomorphism induced by the Duflo–Serganova functor.

1. Introduction

The Duflo–Serganova functor was originally introduced in [Duflo and Serganova 2005] together with
associated varieties of modules over Lie superalgebras. On the category of finite-dimensional modules, the
Duflo–Serganova functor is a tensor functor which preserves the superdimension. This functor was used
by Serganova [2011] to prove the conjecture of Kac and Wakimoto that the superdimension of a finite-
dimensional module is zero if and only if the atypicality of the module is maximal. The Duflo–Serganova
functor was also used to give an additional proof for the superdimension formula of GL(m | n)-modules
in [Heidersdorf and Weissauer 2014], and has been applied to study Deligne categories in [Comes and
Heidersdorf 2017; Entova-Aizenbud et al. 2015; Heidersdorf 2015; Heidersdorf and Weissauer 2015].

Given an odd element x in a Lie superalgebra g satisfying [x, x] = 0, we have that x2
= 0 in the

universal enveloping algebra of g, and so for every g-module M , we can define the cohomology

Mx := KerM x/x M.

In fact, Mx is a module for the Lie superalgebra

gx := Ker adx/ Im adx ,

which is a Lie superalgebra of smaller rank than g. For example, if g= gl(m | n) and x is a root vector,
then gx = gl(m− 1 | n− 1). Duflo and Serganova [2005] defined the functor DSx : M 7→ Mx from the
category of g-modules to the category of gx -modules, which we refer to as the Duflo–Serganova functor.

One of the difficulties that arises in using the Duflo–Serganova functor is that it is not exact. It is
therefore surprising that it induces a ring homomorphism dsx on a natural quotient of the Grothendieck ring
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of the category of finite-dimensional g-modules. This quotient is defined by identifying the equivalence
class of a module [M] with −[5(M)], where 5 is the shift of parity functor. We refer to this quotient as
the supercharacter ring of g and show that the homomorphism dsx is indeed well defined.

Sergeev and Veselov [2011] described the supercharacter ring as a ring of functions admitting a
certain supersymmetry condition. In this paper, we realize the homomorphism dsx in terms of evaluation
of functions related to the supersymmetry condition. For example, the supercharacter ring of the Lie
supergroup GL(m | n) corresponding to the Lie superalgebra gl(m | n) is isomorphic to the ring of
doubly symmetric Laurent polynomials in x1, . . . , xm, y1, . . . , yn for which the evaluation x1 = y1 = t
is independent of t . If x is a root vector for the root εi − δ j of gl(m | n), then the homomorphism dsx

is given by the evaluation xi = y j = t , which is independent of the variable t after evaluation, by the
supersymmetry property.

We use this realization to describe the kernel of the homomorphism dsx when x is a root vector. In
particular, we show that if g is a Lie superalgebra of type I, the supercharacters of Kac modules form a
basis for the kernel. When g is a Lie superalgebra of type II, there are no Kac modules; however, we show
that the kernel has a basis consisting of expressions similar to the supercharacters of Kac modules. These
are the same expressions that were used by Gruson and Serganova [2010] to define Kazhdan–Lusztig
polynomials for the orthosymplectic Lie superalgebras.

We also describe the image of dsx . In particular, for g= sl(m | n), m 6= n, and osp(m | 2n), we show
that the image is the supercharacter ring of Gx , where Gx is the Lie supergroup corresponding to the Lie
superalgebra gx . Moreover, we prove that the homomorphism induced by the Duflo–Serganova functor
from the category of finite-dimensional G-modules to the category of finite-dimensional Gx -modules
is surjective. For the exceptional Lie superalgebras, we explicitly describe the image using a set of
generators.

2. Preliminaries

2A. Lie superalgebras. Lie superalgebras are a natural generalization of Lie algebras which first appeared
in mathematical physics. In this paper, we study the finite-dimensional contragredient Lie superalgebras
g = g0 ⊕ g1 with indecomposable Cartan matrix. These are the Lie superalgebras sl(m | n), m 6= n,
gl(n | n), osp(m | 2n), D(2, 1, α), F(4), or G(3). We also consider the case when g= gl(m | n) is the
general linear Lie superalgebra. These Lie superalgebras resemble reductive Lie algebras in their structure
theory; in particular, they are defined by a Cartan matrix and they possess an even supersymmetric
invariant bilinear form ( · , · ) which has kernel equal to the center of g.

Fix a Cartan subalgebra h⊂ g0 ⊂ g, and consider the corresponding root space decomposition

g= h⊕
⊕
α∈1

gα.

Then the set of roots 1 ⊂ h∗ splits 1 = 10 t11 into even roots 10 and odd roots 11. A choice of
positive roots 1+ = 1+

0
t1+

1
determines a triangular decomposition of g given by g = n+⊕ h⊕ n−,
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where n±=
⊕

α∈1± gα . Let ρ0=
1
2

∑
α∈1+

0
α, ρ1=

1
2

∑
α∈1+

1
α, and ρ= ρ0−ρ1. The Weyl group W of g

is by definition the Weyl group of g0. The sign map sgn :W →{±1} is defined by w 7→ (−1)l(w), where
l(w) denotes the length of w as a product of simple reflections with respect to a set of simple roots for g0.

The space h∗ inherits an even supersymmetric bilinear form ( · , · ). A root β ∈11 is called isotropic
if (β, β)= 0. Two roots α, β ∈1 are called orthogonal if (α, β)= 0. The maximal number of linearly
independent mutually orthogonal isotropic roots is called the defect of g. We denote by 1iso := {β ∈11 |

(β, β)= 0} the set of all isotropic roots and by 1+iso =1iso ∩1
+ the set of positive isotropic roots, and

we let ρiso :=
1
2

∑
α∈1+iso

α. We define

Sg = {B ⊂1iso | B = {β1, . . . , βk | (βi , β j )= 0, βi 6= ±β j }} (2-1)

to be the set of subsets of linearly independent mutually orthogonal isotropic roots.
The space h∗ has a natural basis ε1, . . . , εm, δ1, . . . , δn , which for gl(m | n) and osp(m | 2n) satisfies

(εi , ε j ) = δi j = −(δi , δ j ) and (εi , δ j ) = 0. The roots of g have a nice presentation in this basis (see
[Cheng and Wang 2012; Musson 2012] for more details). Let Qg = spanZ1 be the root lattice of g, and
let Q+g = spanZ1

+. The parity function p :1→ Z2 extends uniquely to a linear function p : Qg→ Z2.
The root lattice Qg is contained in the integral weight lattice P0 for g0, where

P0 =

{
λ ∈ h∗

∣∣∣∣ 2(λ, α)
(α, α)

∈ Z for all α ∈10

}
.

The set of dominant integral weights

P+
0
=

{
λ ∈ P0

∣∣∣∣ 2(λ, α)
(α, α)

≥ 0 for all α ∈10

}
is the set of highest weights of finite-dimensional simple g0-modules.

The category of finite-dimensional modules Fg over a Lie superalgebra g is not semisimple; that is,
there exist indecomposable modules which are not irreducible. For example, a Lie superalgebra g of type I
has a decomposition g= g−1⊕ g0⊕ g+1, so one can define the Kac module of highest weight λ ∈ P0 as

K (λ)= Indgg0⊕g+1
L0(λ),

where L0(λ) is the finite-dimensional simple g0-module of highest weight λ and g+1 acts trivially on L0(λ).
Then K (λ) is a finite-dimensional, indecomposable g-module with a unique simple quotient L(λ), where
λ is the highest weight with respect to the distinguished choice of simple roots, and K (λ) is simple (i.e.,
K (λ) = L(λ)) if and only if λ is a typical weight: (λ+ ρ, β) 6= 0 for all β ∈ 1iso (see, for example,
[Cheng and Wang 2012, Chapter 2] for more details).

If G0 is a simply connected and connected Lie group corresponding to the Lie algebra g0 [Serganova
2014], and FG is the full subcategory of Fg consisting of all finite-dimensional G0-integrable modules,
then FG is equivalent to the category of finite-dimensional modules over the corresponding algebraic
supergroup G [Serganova 2014].
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2B. Supercharacter rings of Lie superalgebras. The character theory of Lie superalgebras is a rich area
of research which has led to interesting applications in number theory [Kac and Wakimoto 1994; 2014].
For a finite-dimensional g-module M , with weight decomposition M =

⊕
µ∈h∗ Mµ and weight spaces

Mµ
= Mµ

0
⊕Mµ

1
, the supercharacter of M is defined to be

sch M =
∑
µ∈h∗

(dim Mµ

0
− dim Mµ

1
)eµ,

while the character of M is given by ch M =
∑
(dim Mµ

0
+ dim Mµ

1
)eµ. A finite-dimensional simple

g-module is determined by its supercharacter, as well as by its character [Sergeev and Veselov 2011,
Proposition 4.2].

The supercharacter ring Jg of a Lie superalgebra g is defined to be the image of the map

sch : Fg→ Z[P0]
W ,

where Z[P0] := Z{eµ | µ ∈ P0}. For an element f ∈ Jg, with f =
∑

µ∈P0
cµeµ, we call the set

Supp f = {µ ∈ P0 | cµ 6= 0} the support of f .
For a fixed choice of positive roots1+=1+

0
t1+

1
, we denote the super Weyl denominator by R= R0/R1

where R0 =
∏
α∈1+

0
(1−e−α) and R1 =

∏
α∈1+

1
(1−e−α). Note that the supercharacter of the Kac module

equals

sch K (λ)= e−ρR−1
· ch L0(λ),

where 1+ =1+
0
t1+

1
is the distinguished choice of simple roots.

The Grothendieck group of the category Fg is defined by taking the free abelian group generated by
the elements [M] which represent each isomorphism class of finite-dimensional g-modules, and modding
out by the relations [M1] − [M2] + [M3] for all exact sequences 0→ M1→ M2→ M3→. Since Fg is
closed under tensor products, the Grothendieck group inherits a natural ring structure.

The Grothendieck ring of Fg has a natural quotient described as follows. Let 5 denote the parity
reversing functor from Fg to itself, and let Kg denote the quotient of the Grothendieck ring of Fg by
the ideal 〈[5(M)] + [M] | M is a g-module〉. The map sch : Kg → Z[P0]

W0 given on generators by
[M] 7→ sch M is injective [Sergeev and Veselov 2011, Proposition 4.4], and its image is the supercharacter
ring Jg of g.

Remark 1. In this paper, we identify the rings Kg and Jg under this isomorphism, and use the notation Jg

to denote this ring. Given a module M ∈ Fg, we write [M] for its image in Jg.

Sergeev and Veselov [2011] gave an explicit description of supercharacter rings for basic classical Lie
superalgebras as follows. The supercharacter ring of g is isomorphic to the space of supersymmetric
exponential functions

Jg = { f ∈ Z[P0]
W
| Dβ f is in the ideal generated by (eβ − 1) for any β ∈1iso} (2-2)
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where Dβ(eλ)= (λ, β)eβ . Sergeev and Veselov [2011, §7] also described the supercharacter ring JG ⊂Jg

for the Lie supergroup G corresponding to the Lie superalgebra g as a ring of Laurent polynomials subject
to some additional conditions. Recall the basis ε1, . . . , εm, δ1, . . . , δn of h∗, and define xi := eεi , y j := eδ j ,
ui = xi + x−1

i , and v j = y j + y−1
j .

GL(m | n): The supercharacter ring of GL(m | n) is

JG =

{
f ∈ Z[x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
n ]

Sm×Sn

∣∣∣∣ y j
∂ f
∂y j
+ xi

∂ f
∂xi
∈ 〈y j − xi 〉

}
. (2-3)

SL(m | n), m 6= n: The supercharacter ring of SL(m | n) for m 6= n is the quotient of (2-3) by the ideal
〈x1 · · · xm − y1 · · · yn〉.

B(m | n): The supercharacter ring of OSP(2m+ 1 | 2n) is

JG =

{
f ∈ Z[u1, . . . , um, v1, . . . , vn]

Sm×Sn

∣∣∣∣ ui
∂ f
∂ui
+ v j

∂ f
∂v j
∈ 〈ui − v j 〉

}
.

C(n+ 1): The supercharacter ring of OSP(2 | 2n) is

JG =

{
f ∈ Z[u1, v1, . . . , vn]

Sm

∣∣∣∣ u1
∂ f
∂u1
+ v j

∂ f
∂v j
∈ 〈u1− v j 〉

}
.

D(m | n), m ≥ 2: The supercharacter ring of OSP(2m | 2n) for m ≥ 2 is

JG =

{
f ∈ Z[u1, . . . , um, v1, . . . , vn]

Sm×Sn

∣∣∣∣ ui
∂ f
∂ui
+ v j

∂ f
∂v j
∈ 〈ui − v j 〉

}
.

Remark 2. Note that f ∈ JGL(m|n) if and only if it is supersymmetric in x1, . . . , xm, y1, . . . yn , that is,
if it is invariant under permutation of x1, . . . , xm and of y1, . . . , yn , and if the substitution x1 = y1 = t
made in f is independent of t (see for example [Musson 2012, §12]).

2C. The Duflo–Serganova functor. The idea behind the Duflo–Serganova functor is simple and natural.
For any odd element x ∈ g1 of a finite-dimensional contragredient Lie superalgebra g which satisfies
[x, x] = 0, we have that x2

= 0 in the universal enveloping algebra of g, and so for any finite-dimensional
g-module M we can define the cohomology

Mx := KerM x/x M. (2-4)

Then Mx is in fact a module over the Lie superalgebra

gx := gx/[x, g],

where gx
= {a ∈ g | [x, a] = 0} is the centralizer of x in g [Duflo and Serganova 2005, Lemma 6.2]. The

Duflo–Serganova functor DSx : Fg→ Fgx is defined from the category of finite-dimensional g-modules
to the category of finite-dimensional gx -modules by sending M 7→ Mx .
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The Duflo–Serganova functor is a cohomology functor and hence is a symmetric monoidal tensor
functor; that is, for g-modules M, N one has a natural isomorphism Mx ⊗ Nx → (M ⊗ N )x [Serganova
2011]. Moreover, the Duflo–Serganova functor commutes with direct sums; however, it is not exact.

Let Xg = {x ∈ g1 : [x, x] = 0}, and let Sg be the set of subsets of mutually orthogonal isotropic roots
(see (2-1)). Then the G0-orbits of Xg are in one-to-one correspondence with the W -orbits of Sg via the
correspondence

B = {β1, . . . , βk} 7→ x = xβ1 + · · ·+ xβk ∈ Xg, (2-5)

where each xβi ∈ gβi is chosen to be nonzero [Duflo and Serganova 2005, Theorem 4.2].
The Lie superalgebra gx can be naturally embedded into gx

⊂ g, in such a way that hx = h∩ gx is
a Cartan subalgebra of gx and the root spaces of gx are root spaces of g [Duflo and Serganova 2005,
Lemma 6.3]. More explicitly, Duflo and Serganova proved the following:

If B = {β1, . . . , βk} ∈ S and x = xβ1 + · · · + xβk for some nonzero xβi ∈ gβi , then gx
⊂ g can

be decomposed into a semidirect sum gx
= [x, g] D gx , where gx = hx ⊕

(⊕
α∈1x

gα
)
, the subspace

hx = h∩ gx is a Cartan subalgebra of gx , and

1x = {α ∈1 | (α, β)= 0 for all β ∈ B and ±α /∈ B} (2-6)

is the root system of gx .
For each finite-dimensional contragredient Lie superalgebra g with irreducible Cartan matrix, we can

explicitly describe the isomorphism type of gx . If B= {β1, . . . , βk} ∈S and x = xβ1+· · ·+ xβk for some
nonzero xβi ∈ gβi , then by [Duflo and Serganova 2005, Remark 6.4] we have the following description. In
particular, the defect of gx equals the defect of g minus k. Note that in the last three columns the defect
of g is 1 and k = 1:

g gl(m | n) sl(m | n), m 6= n osp(m | 2n) D(2, 1, α) F4 G3

gx gl(m− k | n− k) sl(m− k | n− k) osp(m− 2k | 2n− 2k) C sl(3) sl(2)

Remark 3. Note that when gx is simple, the embedding gx
⊂ g is determined by the condition that the

root spaces of gx are mapped into the respective root spaces of g, since in this case hx ⊂ [n
+
x , n

−
x ]. For

g= gl(m, n), we take the matrix embedding of gx = gl(m− k | n− k) into gl(m | n) which has 2k zero
rows and 2k zero columns at the locations ri , n+ si , for i = 1, . . . , k, when B = {βi = εri − δsi }i=1,...,k is
the set of maximal isotropic roots defining x .

3. The Duflo–Serganova functor and the supercharacter ring

In this section, we prove that the Duflo–Serganova functor DSx :Fg→Fgx induces a ring homomorphism
dsx :Jg→Jgx , and we realize it as a certain evaluation of the functions f ∈Jg related to the supersymmetry
property defining Jg.
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3A. The ring homomorphism induced by the Duflo–Serganova functor. Let g be a finite-dimensional
contragredient Lie superalgebra with indecomposable Cartan matrix, or let g= gl(m, n), and fix a Cartan
subalgebra h of g. Let B = {β1, . . . , βk} ∈ Sg, x ∈ Xg, and x = xβ1 +· · ·+ xβk for nonzero xβi ∈ gβi . Fix
an embedding gx ⊂ gx

⊂ g with Cartan subalgebra hx = h∩ gx (see Section 2C).

Lemma 4. For g-modules M and N we have

(1) sch Mx(h)= sch M(h) for all h ∈ hx and

(2) if sch M = sch N , then sch Mx = sch Nx .

Proof. We have an exact sequence 0→kerM x→M→x M→0 of hx -invariant spaces. Thus, M/ kerM x∼=
5(x M) as hx -modules, where 5 switches the parity of a superspace, and so sch(M/ kerM x)(h) =
sch5(x M)(h) for all h ∈ hx . Hence, for all h ∈ hx ⊂ hx we have that

sch M(h)= sch ker x(h)+ sch5(x M)(h)= sch ker x(h)− sch M(h)= sch(kerM x/x M)(h)

= sch(Mx)(h). �

Remark 5. The following example shows that Lemma 4 does not hold if we replace supercharacter by
character. It also shows that the Duflo–Serganova functor is not exact.

Example 6. Let g = gl(2 | 1) with the standard choice of simple roots {α = ε1 − ε2, β = ε2 − δ1}.
Let K (0) be the Kac module with highest weight zero, and denote the highest weight vector by v0.
Then K (0)= span{v0, fβv0, fα+βv0, fβ fα+βv0}, where fβ ∈ g−β and fα+β ∈ g−α−β are nonzero. The
maximal submodule of K (0) is K (0) := span{ fβv0, fα+βv0, fβ fα+βv0}, and the simple quotient of K (0)
is isomorphic to the trivial g-module L(0). Clearly, the g-modules K (0) and L(0)⊕ K (0) have the same
character and supercharacter.

Let us show that for x = fβ , the gx -modules K (0)x and (L(0)⊕ K (0))x have the same supercharacter
but not the same character. In this case, gx = gl(1 | 0). By a direct computation using (2-4) and
the basis given above, one can check that K (0)x = {0}, L(0)x ∼= C1|0, and K (0)x ∼= C0|1, where C1|0

and C0|1 are the even and odd trivial gx -modules, respectively. Thus, ch K (0)x = sch K (0)x = 0 and
sch(L(0)⊕ K (0))x = 0, while ch(L(0)⊕ K (0))x = 2.

Definition 7. We define dsx : Jg→ Jgx on the generators [M] ∈ Jg, where M ∈ Fg, by

dsx([M])= [DSx(M)],

and we extend linearly to Jg.

It is not difficult to show that dsx is a well defined linear map using Lemma 4. The fact that dsx is a
ring homomorphism then follows from the fact that DSx is a tensor functor. Hence, we have:

Proposition 8. Let g be a finite-dimensional contragredient Lie superalgebra, and let x ∈ g1 nonzero
such that [x, x] = 0. The functor DSx :Fg→Fgx induces a ring homomorphism on the corresponding
supercharacter rings dsx : Jg→ Jgx .
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Remark 9. The proofs in Section 3A also work for modules in the BGG category O, and so the Duflo–
Serganova functor induces a group homomorphism on the quotient of the Grothendieck group by the
parity. However, it is not a ring homomorphism since category O is not closed under tensor products.

3B. Realization of the ring homomorphism. Given f ∈Jg we can realize f :h→C as a supersymmetric
function in the variables x1, . . . , xm, y1, . . . , yn with xi = eεi and y j = eδ j , using the supercharacter ring
description of Sergeev and Veselov (see (2-2)). (Note that for F(4) we take xi = e(1/2)εi and y j = e(1/2)δ j .)

Theorem 10. Suppose dsx : Jg→ Jgx is defined by x = xβ1 + · · · + xβk for nonzero xβi ∈ gβi , where
B = {β1, . . . , βk} ∈ Sg.

(1) Then for any f ∈ Jg,

dsx( f )= f |hx .

(2) If B = {ε1− δ1}, then dsx( f ) is given by substituting x1 = y1 into f , that is,

dsx f = f |x1=y1 .

If g= F(4) or D(2, 1, α) and B = { 12(ε1+ ε2+ ε3− δ1)} or B = {ε1− ε2− ε3}, then dsx f is given
by substituting y1 = x1x2x3 or x1 = x2x3 into f , respectively.

(3) If B = {βi = aiεri −biδsi }i=1,...,k for some ai , bi ∈ {±1}, then dsx f is given by substituting xai
ri = ybi

si

into f , that is,

dsx f = f |
x

ai
ri =y

bi
si , i=1,...,k

.

(4) For any f ∈ Jg,

dsx( f )= f |β1=···=βk=0.

Proof. It suffices to prove (1) for a spanning set of Jg. Suppose [M] ∈Kg corresponds to a module M ∈Fg.
By Lemma 4, we have

dsx([M])= [DSx(M)] = sch Mx = (sch M)|hx = [M]|hx ∈ Jgx .

Hence, dsx( f )= f |hx for any f ∈ Jg.
To prove (2), fix f ∈ Jg, and suppose that x ∈ gβ . If β = ε1− δ1, then the evaluation fx1=y1=t is well

defined and independent of t due to the supersymmetry property of f ∈ Jg. Thus,

f |x1=y1=t := f (t, x2, . . . , xm | t, y2, . . . , yn)

is equal to the restriction of f to the hyperplane x1− y1 = 0. Since hx ⊂ hx
= {h ∈ h | β(h)= 0} belongs

to the hyperplane x1− y1= 0, we have proven that dsx f = f |hx = f |x1=y1 . The cases β = ε1+ε2+ε3−δ1

and β = ε1− ε2− ε3 are similar.
Now (3) can be proven using arguments similar to that of (2) and the fact that

hx
= {h ∈ h | β(h)= 0 for all β ∈ B}.
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Finally, (4) follows from (3) since if βi = aiεri −biδri , then βi = 0 if and only if xai
ri y−bi

ri = eβi = 1 if and
only if xai

ri = ybi
ri . �

Corollary 11. If x = xβ1 + · · ·+ xβk where xβi ∈ gβi and B = {β1, . . . , βk} ∈ S, then for all f ∈ Jg

dsx( f )= dsxβ1
◦ · · · ◦ dsxβk

( f ).

4. The kernel of the ring homomorphism

In this section, we give a Z-basis for the kernel of dsx when x ∈ gβ is a root vector of an isotropic root β
for the Lie superalgebra g. Our basis is given by elements of the following form.

Definition 12. For each λ ∈ P0, we define

k(λ) := R−1
·

∑
w∈W

(−1)l(w)+p(w(ρ)−ρ)ew(λ+ρ)−ρ .

Here p(w(ρ)− ρ) denotes the parity of w(ρ)− ρ, which is well defined since w(ρ)− ρ ∈ Q. Note
that the element w(ρ)− ρ may be odd, e.g., in osp(1 | 2).

For each λ∈ P+
0

, the expression k(λ) is in Z[P0]
W since it is the product of the W -invariant polynomial

eρ1 R1 and the character of a finite-dimensional g0-module given by the Weyl character formula. Moreover,
since the evaluation k(λ)|β=0 equals zero for any β ∈1iso, we have that k(λ) ∈ Jg. It is clear that k(λ) is
in the kernel of dsx for any x ∈ gβ , since dsx(R1)= 0.

For Lie superalgebras of type I with the distinguished choice of simple roots, k(λ) is the supercharacter
of a Kac module when λ ∈ P+

0
, whereas in type II, k(λ) is a virtual supercharacter. Similar virtual

characters were used by Gruson and Serganova [2010] to study the character formula of simple modules
over orthosymplectic Lie superalgebras.

We need the following definition to prove the main result in this section for Lie superalgebras of type II.

Definition 13. Given a finite-dimensional Lie superalgebra g with root system1, we define a Lie algebra g̃
as follows. We let 1̃ be the root system with positive even roots given by

1̃+ :=

{
α ∈1+

0

∣∣∣∣ α2 /∈11

}
∪ {α ∈1+

1
| α /∈1iso},

and we let g̃ be the semisimple Lie algebra with root system 1̃. If11=1iso, then g̃= g0. If g= B(m | n),
G(3), then g̃∼= Bm × Bn,G2× A1, respectively. We set ρ̃ := 1

2

∑
α∈1̃+ α. Note that ρ = ρ̃− ρiso, since

β ∈ 1iso if and only if β ∈ 11 but 2β /∈ 10. Let P+g̃ denote the set of dominant integral weights of g̃.
Then P+

0
⊂ P+g̃ and the Weyl group of g̃ is isomorphic to the Weyl group of g0. We extend the definition

of k(λ) to λ ∈ Pg̃ by letting

k(λ) := R−1
·

∑
w∈W

(−1)l(w)+p(w(λ+ρ)−ρ)ew(λ+ρ)−ρ .

We have the following lemma.
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Lemma 14. The set {k(µ) | µ ∈ P+g̃ + ρiso} is linearly independent.

Proof. To prove linear independence we consider a completion of Z[Pg̃], where we allow expansions in
the domain |e−α|< 1 for α ∈ 1̃+. Note that in this completion, R−1

=
∑

ν∈−Q+g̃
bνeν for some bν ∈Z. For

each µ∈ P+g̃ +ρiso, we will show that µ+ρ is a strictly dominant element of Pg̃, that is, w(µ+ρ)<µ+ρ
for w ∈W , w 6= 1. Indeed, if µ ∈ P+g̃ +ρiso, then µ+ρ = λ+ ρ̃ for some λ ∈ P+g̃ . Since λ+ ρ̃ is strictly
dominant with respect to g̃, it is also strictly dominant with respect to g0 and the claim follows. Thus,

k(µ)= eµ+
∑

ν∈µ−Q+g̃

aνeν

and linear independence follows. �

Remark 15. Note that if one takes the distinguished choice of simple roots for gl(m, n), then P+ =
P++ ρiso, since in this case (ρiso, α)= 0 for every even root α.

The following lemma is used in the proof of the main theorem of this section.

Lemma 16. For each µ ∈ P+g̃ , we have k(µ+ ρiso)= eρiso
∏
α∈1+iso

(1− e−α) · ch L g̃(µ).

Proof. For any element g ∈ Z[Pg̃] with Supp g ⊂ µ+ Qg̃, we write g =
∑

λ∈Qg̃
cµ+λeµ+λ, and we define

g =
∑

λ∈Qg̃
(−1)p(λ)cµ+λeµ+λ, where p : Qg̃→ Z2 is the parity function. Clearly, this operation is an

involution. So we have that

eρiso
∏
α∈1+iso

(1− e−α) · ch L g̃(µ)= (−1)p(ρiso)eρiso
∏
α∈1+iso

(1+ e−α) · sch L g̃(µ)

= (−1)p(ρiso)eρiso
∏
α∈1+iso

(1+ e−α)
∑

w∈W (−1)l(w)+p(w(µ+ρ̃)−ρ̃)ew(µ+ρ̃)−ρ̃∏
α∈1̃+

0
(1− e−α)

=

∏
α∈1+

1

(1+ e−α) ·
∑

w∈W (−1)l(w)+p(w(µ+ρiso+ρ)−ρ)ew((µ+ρiso)+ρ̃−ρiso)−ρ̃+ρiso∏
α∈1̃+

0
(1− e−α)

∏
α∈1+

1
\1+iso

(1+ e−α)

=

∏
α∈1+

1

(1+ e−α)
∑

w∈W (−1)l(w)+p(w((µ+ρiso)+ρ)−ρ)ew((µ+ρiso)+ρ)−ρ∏
α∈1+

0
(1− e−α)

= k(µ+ ρiso),

and hence, the claim follows. �

We have the following theorem.

Theorem 17. If β is an odd isotropic root and x ∈ gβ , then the set

{k(λ) | λ ∈ P+
0
+ ρiso} (4-1)

is a Z-basis for the kernel of dsx : Jg→ Jgx .
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Proof. Linear independence of the set (4-1) follows from Lemma 14 since P+
0
⊂ P+g̃ . So it only remains

to show that the set (4-1) spans the kernel of dsx : Jg→ Jgx .
Let f ∈ Jg such that dsx( f ) = 0. According to Theorem 10, this means that the restriction of f to

the hyperplane β = 0 is zero, or equivalently, substituting e−β = 1 yields zero. Hence, f is divisible
by (1−e−β). Since f is W -invariant and Wβ=1iso, it follows that f is divisible by eρiso

∏
α∈1+iso

(1−e−α).
Write

f = eρiso
∏
α∈1+iso

(1− e−α) · g.

Then g is a W -invariant element of Z[P0], since both f and eρiso
∏
α∈1+iso

(1− e−α) are W -invariant.

Case 1. First suppose that g does not have nonisotropic roots; then 1+iso = 1
+

1
and ρiso = ρ1. By the

theory of symmetric functions,

g =
finite∑
µ∈P+

0

aµ ch Lg0
(µ),

for some aµ ∈Z, where P+
0

is the set of highest weights of finite-dimensional g0-modules (see for example
[Macdonald 1995]).

By the Weyl character formula for semisimple Lie algebras, we have that

f = eρ1 R1 · g

= eρ1 R1

∑
µ∈P+

0

aµ ch Lg0
(µ)

= eρ1 R1

∑
µ∈P+

0

aµ

∑
w∈W (−1)l(w)ew(µ+ρ0)

eρ0 R0

= eρ1 R1

∑
λ∈P+

0
+ρ1

bλ

∑
w∈W (−1)l(w)ew(λ+ρ0−ρ1)

eρ0 R0

=

∑
λ∈P+

0
+ρ1

bλk(λ),

where bλ := aλ−ρ1
. For each w ∈W , the parity of w(ρ) equals the parity of ρ, since ρ ∈ P0. Hence, the

last equality follows.

Case 2. Suppose that g has nonisotropic roots. Since P0 ⊂ Pg̃,, by the theory of characters of Lie algebras

g =
finite∑
µ∈P+g̃

aµ ch L g̃(µ)
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for some aµ ∈ Z. By Lemma 16, we have that

f = eρiso
∏
α∈1+iso

(1− e−α) · g

= eρiso
∏
α∈1+iso

(1− e−α)
∑
µ∈P+g̃

aµ ch L g̃(µ)

=

∑
µ∈P+g̃

aµ · eρiso
∏
α∈1+iso

(1− e−α) · ch L g̃(µ)

=

∑
µ∈P+g̃

aµ · k(µ+ ρiso)

=

∑
λ∈P+g̃ +ρiso

bλk(λ) (4-2)

where bλ := aλ−ρiso . We are left to show that bλ= 0 for λ /∈ P+
0
+ρiso. Since Supp f ⊂ P0, Supp k(λ)⊂ P0,

the elements k(λ) forµ∈ P+g̃ +ρiso are linearly independent, and the sum in (4-2) is finite, we conclude that

f =
∑

λ∈P+
0
+ρiso

bλk(λ). �

Corollary 18. Let G be one of the Lie supergroups SL(m |n), m 6=n, GL(m |n), or SOSP(m |2n), and let g
be the corresponding Lie superalgebra. Let β be an odd isotropic root and x ∈gβ , and let DSx :FG→FGx

be the Duflo–Serganova functor from the category FG of finite-dimensional G-modules to the category
FGx of finite-dimensional Gx -modules, where Gx denotes the Lie supergroup corresponding to the Lie
superalgebra gx . Then the kernel of the induced ring homomorphism dsx : JG→ JGx has a Z-basis

{k(λ) | λ ∈ P+G + ρiso},

where P+G is the set of highest weights for finite-dimensional G-modules.

Proof. Let PG ⊂ P0 be the sublattice of integral weights of finite-dimensional G0-modules. Then for
G = GL(m | n) or SOSP(m | 2n)

PG =

{ m∑
i=1

λiεi +

n∑
j=1

µ jδ j

∣∣∣∣ λi , µ j ∈ Z

}
,

and the supercharacter ring for the category of finite-dimensional G-modules FG is

JG =

{
f ∈ Z[x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
n ]

W
∣∣∣∣ y j

∂ f
∂y j
+ xi

∂ f
∂xi
∈ 〈y j − xi 〉

}
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as shown in [Sergeev and Veselov 2011, §7] (note that this ring is therein denoted by J (g)0). If
G = SL(m | n), m 6= n, then

PG =

{ m∑
i=1

λiεi +

n∑
j=1

µ jδ j

∣∣∣∣ λi , µ j ∈ Z,

m∑
i=1

λi −

n∑
j=1

µ j = 0
}
,

and the supercharacter ring for the category of finite-dimensional G-modules FG is

JG =

{
f ∈ Z[x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
n ]

W/〈x1 · · · xm − y1 · · · yn〉

∣∣∣∣ y j
∂ f
∂y j
+ xi

∂ f
∂xi
∈ 〈y j − xi 〉

}
as shown in [Sergeev and Veselov 2011, §7]. Since in both cases JG = Jg ∩Z[PG], the kernel of the
homomorphism dsx :JG→JGx equals KerG dsx =Kerg dsx ∩Z[PG], where Kerg dsx is the kernel of the
corresponding homomorphism dsx :Jg→Jgx . It follows from the linear independence of the elements k(λ)
and the fact that λ ∈ PG if and only if Supp k(λ) ∈ PG that KerG dsx = span{k(λ) | λ ∈ PG +ρiso}. Since
P+G = P+g ∩ PG , the claim follows. �

Remark 19. On the level of categories, it was shown in [Boe et al. 2012] that a module M over a type-I
finite-dimensional contragredient Lie superalgebra has a filtration of Kac modules or dual Kac modules if
and only if DSx(M)= 0 for all x ∈ X−g or x ∈ X+g , respectively, where X±g = Xg∩n

± and g= n−⊕h⊕n+

is the triangular decomposition with respect to the distinguished choice of simple roots.

5. The image of the ring homomorphism

5A. Image of dsx for classical Lie superalgebras. Let g be one of the Lie superalgebras: sl(m | n),
m 6= n, gl(m | n), and osp(m | 2n). In this section, we describe the image of dsx for every x ∈ Xg. We
use the realization of dsx given in Theorem 10 and the explicit description of the supercharacter rings
given by Sergeev and Veselov [2011, §7].

Theorem 20. Let G be one of the Lie supergroups SL(m | n), m 6= n, GL(m | n), or OSP(m, 2n) and g be
the corresponding Lie superalgebra. For any x ∈ Xg, the Duflo–Serganova functor DSx :FG→FGx from
the category FG of finite-dimensional G-modules to the category FGx of finite-dimensional Gx -modules
induces a surjective ring homomorphism on the corresponding supercharacter rings dsx : JG→ JGx .

Proof. We will use Corollary 11 to reduce to the case that x ∈ gβ for some isotropic root β. Using the
realization of dsx given in Theorem 10, we will show that dsx transfers a certain set of generators of the
supercharacter ring KG to a set of generators of the supercharacter ring JGx . We use the same set of
generators of JG that Sergeev and Veselov [2011, §7] used to give explicit descriptions of supercharacter
rings over basic Lie superalgebras and their corresponding Lie supergroups.

GL(m, n): The supercharacter ring of GL(m, n) is generated by (x1 · · · xm)/(y1 · · · yn), (y1 · · · yn)/

(x1 · · · xm), hk(x1, . . . , xm, y1, . . . , yn), and hk(x−1
1 , . . . , x−1

m , y−1
1 , . . . , y−1

n ), k ∈ Z>0, where

χG(t)=
∏m

i=1(1− xi t)∏n
j=1(1− y j t)

=

∞∑
k=0

hk(x1, . . . , xm, y1, . . . , yn)tk . (5-1)
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SL(m, n), m 6=n: The supercharacter ring of SL(m, n), m 6=n, is generated by hk(x1, . . . , xm, y1, . . . , yn)

and hk(x−1
1 , . . . , x−1

m , y−1
1 , . . . , y−1

n ), k ∈ Z>0, where hk is given by (5-1).

OSP(2m+1,2n): The supercharacter ring of OSP(2m+1,2n) is generated by hk(x1, . . . , xm, y1, . . . , yn),
k ∈ Z>0, where

χG(t)=

∏n
j=1(1− y j t)(1− y−1

j t)

(1− t)
∏m

i=1(1− xi t)(1− x−1
i t)
=

∞∑
k=0

hk(x1, . . . , xm, y1, . . . , yn)tk .

OSP(2, 2n): The supercharacter ring of OSP(2, 2n) is generated by hk(x1, y1, . . . , yn), k ∈Z>0, where

χG(t)=

∏m
i=1(1− y j t)(1− y−1

j t)

(1− x1t)(1− x−1
1 t)

=

∞∑
k=0

hk(x1, y1, . . . , yn)tk .

OSP(2m,2n), m≥2: The supercharacter ring of OSP(2m,2n) is generated by hk(x1, . . . , xm, y1, . . . , yn),
k ∈ Z>0, where

χG(t)=

∏n
p=1(1− y j t)(1− y−1

j t)∏m
i=1(1− xi t)(1− x−1

i t)
=

∞∑
k=0

hk(x1, . . . , xm, y1, . . . , yn)tk .

By Theorem 10, dsx(h
g
k)= (h

g
k)|β=0. Since χG is W -invariant and Wβ =1iso for any β ∈1iso, it suffices

to consider the case that β = ε1− δ1. In this case, β = 0 if and only if x1 = y1. It is not difficult to check
that χG(t)|x1=y1 = χGx , and hence, dsx(h

g
k)= hgx

k . Thus, all the generators of JGx are in the image of dsx .
The general case for arbitrary x ∈ Xg now follows from Corollary 11, since the composition of surjective

maps is surjective. �

Proposition 21. Let g = sl(m | n), m 6= n, or g = osp(m | 2n). Then for any x ∈ Xg, the image of
dsx : Jg→ Jgx is the supercharacter ring JGx of the Lie supergroup Gx .

Proof. We use Theorems 20 and 10, together with the description of the rings Jg given by Sergeev and
Veselov [2011] to prove that the image of the map dsx : Jg→ Jgx equals JGx in the case that x ∈ gβ is
an isotropic root β. The claim for any element x ∈ Xg then follows Corollary 11.

The supercharacter ring of g= sl(m | n), m 6= n, is Jg = JG ⊕
⊕

a∈C/Z J (g)a , where

J (g)a = (x1 · · · xn)
a
∏
i, j

(1− xi y−1
j )Z[x

±1, y±1
]

Sm×Sn
0 ,

and Z[x±1, y±1
]

Sm×Sn
0 is the quotient of the ring Z[x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
n ]

Sm×Sn by ideal 〈x1 · · · xm−

y1 · · · yn〉. Clearly, f |β=0 = f |xi=y j = 0 for any f ∈ J (g)a . Hence, dsx( f ) = 0 for any x ∈ Xg and
f ∈ J (g)a .

If g= B(m | n), C(n+ 1), or D(m | n), then Jg = JG ⊕ J̃ and dsx( f )= 0 for all f ∈ J̃. Indeed, for
β =±εi ± δ j it is not difficult to check that f |β=0 = f |x±1

i =y±1
j
= f |ui=v j = 0.
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The supercharacter ring of g= B(m | n) is Jg = JG ⊕ Jg,1/2, where

Jg,1/2 =
{ m∏

i=1

(x1/2
i + x−1/2

i )
∏
i, j

(ui − v j )g
∣∣∣∣ g ∈ Z[u1, . . . , um, v1, . . . , vn]

Sm×Sn

}
.

The supercharacter ring of g= C(n+ 1) is Jg = JG ⊕
(
J (g)−0 ⊕

⊕
a∈C/Z J (g)a

)
, where

J (g)−0 =
{

x1

n∏
j=1

(u1− v j )g
∣∣∣∣ g ∈ Z[u1, v1, . . . , vn]

Sn

}
,

J (g)a = xa
1

n∏
j=1

(1− x1 y j )(1− x1 y−1
j )Z[x

±1
1 , y±1

1 , . . . , y±1
n ]

W .

The supercharacter ring of g= D(m | n) is Jg = JG ⊕
(
J (g)−0 ⊕ Jg,1/2

)
, where

J (g)−0 =
{
ω
∏
i, j

(ui − v j )g
∣∣∣∣ g ∈ Z[u1, . . . , um, v1, . . . , vn]

Sm×Sn

}
,

Jg,1/2 =
∏
i, j

(ui − v j )((x1 . . . xm)
1/2Z[u1, . . . , um, v1, . . . , vn])

W . �

Proposition 22. Let g= gl(m | n) and x ∈ Xg. The image of dsx : Jg→ Jgx is⊕
a∈C/Z

(x1 · · · xm−k)
a(y1 · · · yn−k)

−aJGx ,

where k is the size of ψ(x) ∈ Sg under the bijection ψ : Xg/G0→ Sg/W , and JGx is the supercharacter
ring of the Lie supergroup Gx .

Proof. By Sergeev and Veselov [2011], the supercharacter ring of gl(m | n) is Jg =
⊕

a,b∈C/Z J (g)a,b
where J (g)0,0 = JG ,

J (g)a,b = (x1 · · · xm)
a(y1 · · · yn)

−a J (g)0,0

when a+ b ∈ Z, but a /∈ Z, and

J (g)a,b = (x1 · · · xm)
a(y1 · · · yn)

b
∏
i, j

(1− xi y−1
j )Z[x

±1
1 , . . . , x±1

m , y±1
1 , . . . , y±1

n ]
Sm×Sn

when a+ b /∈ Z.
Then we have that f |xi=y j = 0 for any f ∈ J (g)a,b with a+ b /∈ Z. By Theorem 20, dsx(J (g)0,0)=

J (gx)0,0. Since dsx( f )= f |xri=ysi , i=1,...,k by Theorem 10, we have that

dsx(J (g)a,b)= (x1 · · · xm−k)
a(y1 · · · yn−k)

−a J (gx)0,0 = J (gx)a,b

when a+ b ∈ Z, but a /∈ Z. �
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5B. The image of dsx for the exceptional Lie superalgebras. In this section, we describe the image
of dsx for the Lie superalgebras G(3), F(4), and D(2, 1, α), using the explicit description of the super-
character rings given by Sergeev and Veselov [2011, §7].

Since G(3), F(4), and D(2, 1, α) have defect 1, we may assume that x ∈ gβ for some isotropic root β.
Moreover, since Wβ =11, it suffices to describe the image for a fixed choice of β.

5B1. G(3). Let β = ε3+δ1. Then gx ∼= sl(2) with1x ={±(ε1−ε2)}. The supercharacter ring of G(3) is

Jg = {g(w)+ (v1− u1)(v1− u2)(v1− u3)h | h ∈ Z[u1, u2, u3, v1]
S3, g ∈ Z[w]},

where y1 = eδ1 , v1 = y1+ y−1
1 , xi = eεi , ui = xi + x−1

i for i = 1, 2, 3, and

w = v2
1 − v1(u1+ u2+ u3+ 1)+ u1u2+ u1u3+ u2u3.

Note that x1x2x3 = 1, so u3 = x1x2+ x−1
1 x−1

2 .
Theorem 10 implies that dsx( f )= f |y1=x−1

3 =x1x2
for every f ∈ Jg. Hence, dsx( f )= dsx(g(w)) since

(v1− u3)|y1=x−1
3 =x1x2

= 0. Thus, the image of dsx is the polynomial ring Z[wx ] generated by the element

wx := w|y1=x−1
3 =x1x2

=
x1

x2
+

x2

x1
∈ Jgx .

Note that wx+1 is the supercharacter of the adjoint representation of sl(2), and that x1/x2+ x2/x1 equals
x2

1 + x2
2 in Jgx due to the relation x1x2 = 1. Finally, we obtain that

Im dsx = Z[x2
1 + x−2

2 ]( JGx = JSL(2) = Z[x±1
1 , x±1

2 ]
S2/〈x1x2− 1〉 ∼= Z[x1+ x−1

1 ].

5B2. F(4). Let β = 1
2(ε1 + ε2 + ε3 − δ1). Then gx ∼= sl(3) with 1x = {εi − ε j | 1 ≤ i, j ≤ 3}. The

supercharacter ring of F(4) is

Jg = {g(w1, w2)+ Qh | h ∈ Z[x±2
1 , x±2

2 , x±2
3 , (x1x2x3)

±1, y±1
1 ]

W0, g ∈ Z[w1, w2]},

where y1 = e(1/2)δ1 , xi = e(1/2)εi for i = 1, 2, 3, and

Q = (y1+ y−1
1 − x1x2x3− x−1

1 x−1
2 x−1

3 )

3∏
i=1

(
y1+ y−1

1 −
x1x2x3

x2
i
−

x2
i

x1x2x3

)
,

wk =
∑
i 6= j

x2k
i

x2k
j

+

3∑
i=1

(x2k
i + x−2k

i )+ y2k
1 + y−2k

1 − (yk
1 + y−k

1 )

3∏
i=1

(xk
i + x−k

i ), k = 1, 2.

Theorem 10 implies that dsx( f )= f |x1x2x3=y1 for every f ∈ Jg. Hence, dsx( f )= dsx(g(w1, w2)) since
Q|x1x2x3=y1 = 0. Thus, the image of dsx is generated by the elements

w1
x := w1|x1x2x3=y1=

∑
i 6= j

x2
i

x2
j
,

w2
x := w2|x1x2x3=y1=

∑
i 6= j

x4
i

x4
j
,

and is a proper subring of JGx = JSL(3) = Z[x±1
1 , x±1

2 , x±3 ]
S3/〈x1x2x3− 1〉.
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5B3. D(2, 1, α). Let β = ε1− ε2− ε3. Then gx ∼= C.
If α /∈Q, then the supercharacter ring of D(2, 1, α) is

Jg = {c+ Qh | c ∈ Z, h ∈ Z[u1, u2, u3]},

where xi := eεi , ui = xi + x−1
i for i = 1, 2, 3, and

Q = (x1− x2x3)(x2− x1x3)(x3− x1x2)(1− x1x2x3)x−2
1 x−2

2 x−2
3

= u2
1+ u2

2+ u2
3− u1u2u3− 4.

If α = p/q ∈Q, then the supercharacter ring of D(2, 1, α) is

Jg = {g(wα)+ Qh | g ∈ Z[wα], h ∈ Z[u1, u2, u3]},

where

wα = (x1+ x−1
1 − x2x3− x−1

2 x−1
3 )

(x p
2 − x−p

2 )(xq
3 − x−q

3 )

(x2− x−1
2 )(x3− x−1

3 )
+ x p

2 x−q
3 + x−p

2 xq
3 .

By Theorem 10, dsx( f )= f |x1=x2x3 for every f ∈ Jg. Since Q|x1=x2x3 = 0, dsx( f )= c for some c ∈ Z

when α /∈Q, while dsx( f )= dsx(g(wα)) when α ∈Q. Thus, the image of dsx is Z⊂ JC when α /∈Q

and the image is Z[wα] ⊂ JC when α ∈Q.
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