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We study periodic points and orbit length distribution for endomorphisms of abelian varieties in character-
istic p > 0. We study rationality, algebraicity and the natural boundary property for the dynamical zeta
function (the latter using a general result on power series proven by Royals and Ward in the appendix),
as well as analogues of the prime number theorem, also for tame dynamics, ignoring orbits whose order
is divisible by p. The behavior is governed by whether or not the action on the local p-torsion group
scheme is nilpotent.
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Introduction

The study of the orbit structure of a dynamical system starts by considering periodic points, which,
as advocated by Smale [1967, §1.4] and Artin and Mazur [1965], can be approached by considering
dynamical zeta functions. More precisely, let S denote a set (typically, a topological space, differentiable
manifold, or an algebraic variety), let f : S → S be a map on a set S (typically, a homeomorphism,
a diffeomorphism, or a regular map), and denote by fn the number of fixed points of the n-th iterate
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f n
= f ◦ f ◦ · · · ◦ f (n times), i.e., the number of distinct solutions in S of the equation f n(x)= x . Let

us say that f is confined if fn is finite for all n, and use the notation f

�

S to indicate that f satisfies
this assumption. For such f , the basic question is to find patterns in the sequence ( fn)n>1: Does it
grow in some controlled way? Does it satisfy a recurrence relation, so that finitely many fn suffice
to determine all? These questions are recast in terms of the (full) dynamical zeta function, defined as
ζ f (z) := exp

(∑
fnzn/n

)
. Typical questions are:

(Q1) Is ζ f (generically) a rational function? [1967, Problem 4.5]

(Q2) Is ζ f algebraic as soon as it has a nonzero radius of convergence? [Artin and Mazur 1965, Question 2
on p.84]

Answers to these questions vary widely depending on the situation considered; we quote some results that
provide context for our study. The dynamical zeta function ζ f (z) is rational when f is an endomorphism
of a real torus [Baake et al. 2010, Theorem 1]; f is a rational function of degree > 2 on P1(C) [Hinkkanen
1994, Theorem 1]; or f is the Frobenius map on a variety X defined over a finite field Fq , so that fn is the
number of Fqn -rational points on X and ζ f (z) is the Weil zeta function of X [Dwork 1960; Grothendieck
1965, Corollary 5.2]. Our original starting point for this work was Andrew Bridy’s automaton-theoretic
proof that ζ f (z) is transcendental for separable dynamically affine maps on P1(Fp), e.g., for the power
map x 7→ xm where m is coprime to p ([Bridy 2012, Theorem 1] and [Bridy 2016, Theorems 1.2 and 1.3]).
Finally, we mention that ζ f (z) has natural boundary (namely, it does not extend analytically beyond the
disk of convergence) for some explicit automorphisms of solenoids, e.g., the map dual to doubling on
Z[1/6] (see Bell, Miles, and Ward [2014]).

In this paper, we deal with these questions in a rather “rigid” algebraic situation, when S = A(K ) is
the set of K -points on an abelian variety over an algebraically closed field of characteristic p > 0, and
f = σ is a confined endomorphism σ ∈ End(A) (reserving the notation f for the general case). It is
plain that ζσ has nonzero radius of convergence (Proposition 5.2). We provide an exact dichotomy for
rationality of zeta functions in terms of an arithmetical property of σ

�

A. Call σ very inseparable if
σ n
−1 is a separable isogeny for all n > 1. The terminology at first may appear confusing, but notice that

the multiplication-by-m map for an integer m is very inseparable precisely when p |m, i.e., when it is an
inseparable isogeny or zero. For another example, if A is defined over a finite field, the corresponding
(inseparable) Frobenius is very inseparable.

Theorem A (Theorems 4.3 and 6.3). Suppose that σ : A→ A is a confined endomorphism of an abelian
variety A over an algebraically closed field K of characteristic p > 0. Then σ is very inseparable if
and only if it acts nilpotently on the local p-torsion subgroup scheme A[p]0. Furthermore, the following
dichotomy holds:

(i) If σ is very inseparable, then (σn) is linear recurrent, and ζσ (z) is rational.

(ii) If σ is not very inseparable, then (σn) is nonholonomic (see Definition 1.1 below), and ζσ (z) is
transcendental.
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Since the local p-torsion group scheme has trivial group of K -points, in the given characterization
of very inseparability it is essential to use the scheme structure of A[p]0. When A is ordinary — which
happens along a Zariski dense subspace in the moduli space of abelian varieties — very inseparable
endomorphisms form a proper ideal in the endomorphism ring. Thus, in relation to question (Q1) above,
in our case rationality is not generic at all.

The proofs proceed as follows: The number σn is the quotient of the degree of σ n
−1 by its inseparability

degree. We use arithmetical properties of the endomorphism ring of A and the action of its elements on
the p-divisible subgroup to study the structure of these degrees as a function of n, showing that their
`-valuations are of the form “(periodic sequence) × (periodic power of |n|`)” (Propositions 2.3 and 2.7).
The emerging picture is that the degree is a very regular function of n essentially controlled by linear
algebra/cohomology, but to study the inseparability degree, one needs to use geometry. The crucial tool
is a general commutative algebra lemma (Lemma 2.1). We find that for some positive integers q,$ ,

dn := deg(σ n
− 1)=

r∑
i=1

miλ
n
i for some mi ∈ Z and distinct λi ∈ C∗, and

degi (σ
n
− 1)= rn|n|sn

p for $ -periodic sequences rn ∈ Q∗, sn ∈ Z60.

(1)

Note in particular that this implies that the degree zeta function

Dσ (z) := exp
(∑

dnzn/n
)
=

r∏
i=1

(1− λi z)−mi ,

(called the “false zeta function” by Smale [1967, p.768]) is rational. In Proposition 3.1, we then prove
an adaptation of the Hadamard quotient theorem in which one of the series displays such periodic
behavior, but the other is merely assumed holonomic. From this, we can already deduce the rationality or
transcendence of ζσ . In contrast to Bridy’s result, we make no reference to the theory of automata.

Example B. We present as a warm up example the case where E is an ordinary elliptic curve over F3

and let σ = [2] be the doubling map and τ = [3] the tripling map, where everything can be computed
explicitly. Although the example lacks some of the features of the general case, we hope this will help
the reader to grasp the basic ideas. For this example, some facts follow from the general theory in [Bridy
2016]; and, since ζσ (z) equals the dynamical zeta function induced by doubling on the direct product of
the circle and the solenoid dual to Z[1/6] [Bell et al. 2014], some properties could be deduced from the
existing literature, which we will not do.

First of all,

deg(σ n
− 1)= (2n

− 1)2 = 4n
− 2 · 2n

+ 1 and deg(τ n
− 1)= (3n

− 1)2 = 9n
− 2 · 3n

+ 1.

The corresponding degree zeta functions are:

Dσ (z)=
(1− 2z)2

(1− 4z)(1− z)
and Dτ (z)=

(1− 3z)2

(1− 9z)(1− z)
.
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From the definition, σ is not very inseparable but τ is. In fact, τn = deg(3n
− 1) and ζτ = Dτ but, since

we are on an ordinary elliptic curve (where E[pm
] is of order pm), we find

σn = (2n
− 1)2|2n

− 1|3 = (2n
− 1)2r−1

n |n|
−sn
3 , with $ = 2; r2k = 3, s2k =−1; r2k+1 = 1, s2k+1 = 0.

In our first proof of the transcendence of ζσ (z), we use the fact that σ2n differs from a linear recurrence
by a factor |n|3 to argue that it is not holonomic.

Since we are on an ordinary curve, the local 3-torsion group scheme is E[3]0 = µ3, which has
End(E[3]0) = F3 in which the only nilpotent element is the zero element. Thus, we can detect very
inseparability of σ or τ by their image under End(E)→ End(E[3]0)= F3 being zero, and indeed, τ = [3]
maps to zero, but σ = [2] does not. ♦

In some cases, we prove a stronger result. Let 3 denote a dominant root of the linear recurrence (1)
satisfied by deg(σ n

− 1), i.e., 3 ∈ {λi } has |3| =max|λi |. In Proposition 5.1, we prove some properties
of 3, e.g., that 3> 1 is real and 1/3 is a pole of ζσ .

Theorem C (Theorem 5.5). If σ : A→ A is a confined, not very inseparable endomorphism of an abelian
variety A over an algebraically closed field K of characteristic p > 0 such that 3 is the unique dominant
root, then the dynamical zeta function ζσ (z) has a natural boundary along |z| = 1/3.

This result implies nonholonomicity and hence transcendence for such functions; our proof of
Theorem C is independent of that of Theorem A. The existence of a natural boundary follows from the fact
that the logarithmic derivative of ζσ can be expressed through certain “adelically perturbed” series that
satisfy Mahler-type functional equations in the sense of [Bell et al. 2013], and hence have accumulating
poles (proven in the Appendix by Royals and Ward). From the theorem we see, in connection with
question (Q2) above, that a “generic” ζσ is far from algebraic (not even holonomic), despite having a
positive radius of convergence.

Example B (continued). The dominant roots are 3σ = 4 and 3τ = 9, which are simple. Since ζτ is
rational, it extends meromorphically to C. We prove that ζσ (z) has a natural boundary at |z| = 1

4 , as
follows. It suffices to prove this for the function Z(z)= zζ ′σ (z)/ζσ (z)=

∑
σnzn , which we can expand as

Z(z)=
∑
2-n

(2n
− 1)2zn

+
1
3

∑
2 | n

|n|3(2n
− 1)2zn

;

if we write f (t)=
∑
|n|3tn , then

Z(z)=
z(1+ 28z2

+ 16z4)

(1− 16z2)(1− 4z2)(1− z2)
+

1
3( f (16z2)− 2 f (4z2)+ f (z2)).

It suffices to prove that f (t) has a natural boundary at |t | = 1, and this follows from the fact that f
satisfies the functional equation

f (z)=
z2
+ z

1− z3 +
1
3 f (z3),
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and hence acquires singularities at the dense set in the unit circle consisting of all third power roots
of unity. ♦

Section 6 constitutes a purely arithmetic geometric study of the notion of very inseparability. We prove
that very inseparable isogenies are inseparable and that an isogeny σ : E→ E of an elliptic curve E is
very inseparable if and only if it is inseparable. We give examples where very inseparability is not the
same as inseparability even for simple abelian varieties. We study very inseparability using the description
of A[p]0 through Dieudonné modules, from which it follows that very inseparable endomorphisms are
precisely those of which a power factors through the Frobenius morphism.

Example D. Let E denote an ordinary elliptic curve over a field of characteristic 3 and set A = E × E ;
then the map [2] × [3] is inseparable but not very inseparable, since there exist n for which 2n

− 1
is divisible by 3. In this case, End(A[3]0) is the two-by-two matrix algebra over F3, which contains
noninvertible nonnilpotent elements, and under End(A)→ End(A[3]0)= M2(F3), [2]× [3] is mapped to
the matrix diag(2, 0), which is such an element. ♦

We then introduce the tame zeta function ζ ∗σ , defined as

ζ ∗σ (z) := exp
(∑

p -n

σn
zn

n

)
, (2)

summing only over n that are not divisible by p. The full zeta function ζσ is an infinite product of tame
zeta functions of p-power iterates of σ (Proposition 7.2). Thus, one “understands” the full zeta function
by understanding those tame zeta functions. Our main result in this direction says that the tame zeta
function belongs to a cyclic extension of the field of rational functions:

Theorem E (Theorem 7.3). For any (very inseparable or not) σ

�

A, a positive integer power of the tame
zeta function ζ ∗σ is rational.

The minimal such integral power tσ > 0 seems to be an interesting arithmetical invariant of σ

�

A;
for example, on an ordinary elliptic curve E , one can choose tσ to be a p-th power for σ

�

E , but for a
certain endomorphism of a supersingular elliptic curve, tσ = p2(p+ 1) (cf. Proposition 7.4).

Example B (continued). The tame zeta function for σ is, by direct computation,

ζ ∗σ (z)= exp
(

1
3

∑
3 -n, 2 | n

(2n
− 1)2

zn

n
+

∑
3-n, 2-n

(2n
− 1)2

zn

n

)

=
9

√
F2(z)9 F64(z6)

F8(z3)3 F4(z2)3
, where Fa(z) :=

(1− az)2

(1− a2z)(1− z)
,

and hence tσ = 9. Note that even for the very inseparable τ , ζ ∗τ (z) = Dτ (z)/ 3
√

Dτ 3(z3) is not rational,
and tτ = 3. ♦
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In Section 8, we investigate functional equations for ζσ and ζ ∗σ under z 7→ 1/(deg(σ )z). For very
inseparable σ , there is such a functional equation (which can also be understood cohomologically), but
not for ζσ having a natural boundary. On the other hand, we show that all tame zeta functions satisfy a
functional equation when continued to their Riemann surface (see Theorem 8.3).

In Section 9, we study the distribution of prime orbits for σ

�

A. Let P` denote the number of prime
orbits of length ` for σ . In case of a unique dominant root, we deduce sharp asymptotics for P` of the
form

P` =
3`

`r`|`|
s`
p
+ O(32`), where 2 :=max{Re(s) : Dσ (3

−s)= 0}. (3)

We average further, as in the prime number theorem (PNT). Define the prime orbit counting function
πσ (X) and the tame prime orbit counting function π∗σ (X) by

πσ (X) :=
∑
`6X

P` and π∗σ (X) :=
∑
`6X
p -`

P`.

Again, whether or not σ is very inseparable is related to the limit behavior of these functions.

Theorem F (Theorems 9.5 and 9.9). If σ

�

A has a unique dominant root 3> 1, then, with $ as in (1)
and for X taking integer values, we have:

(i) If σ is very inseparable, limX→+∞ Xπσ (X)/3X exists and equals 3/(3− 1).

(ii) If σ is not very inseparable, then Xπσ (X)/3X is bounded away from zero and infinity, its set
of accumulation points is a union of a Cantor set and finitely many points (in particular, it is
uncountable), and every accumulation point is a limit along a sequence of integers X for which
(X, X) converges in the topological group

{(a, x) ∈ Z/$Z×Zp : a ≡ x mod |$ |−1
p }.

(iii) For any k ∈ {0, . . . , p$ − 1}, the limit lim
X→+∞

X≡k mod p$

Xπ∗σ (X)/3
X
=: ρk exists.

An expression for ρk in terms of arithmetic invariants can be found in (39). We also present an analogue
of Mertens’ second theorem (Proposition 9.10) on the asymptotics of

Mer(σ ) :=
∑
`6X

P`/3`

in X . It turns out that, in contrast to the PNT analogue, this type of averaged asymptotics is insensitive to
the endomorphism being very inseparable or not.

Example B (continued). Including a subscript for σ or τ in the notation, Möbius inversion relates Pσ,`
to the values of σ`, and hence of λi , rn, sn; we find for the very inseparable τ that Pτ,` = 9`/`+ O(3`),
which we can sum to the analogue of the prime number theorem πτ (X)∼ 9/8 · 9X/X . The situation is
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Figure 1. Plot of X 7→ Xπ∗σ (X)/4
X , where σ is doubling on an ordinary elliptic curve

in characteristic 3 (dots) and the six limit values as computed from (39) (horizontal
solid lines).

different for the not very inseparable σ , where

Pσ,` =
4`

`

{
|3`|3 if ` is even,
1 if ` is odd

+ O(2`), (4)

and πσ (X)X/4X has uncountably many limit points in the interval [1/12, 4/3] (following the line of
thought set out in [Everest et al. 2007]).

We find as main term in Mer(τ ) the X -th harmonic number
∑

`6X 1/`, and, taking into account the
constant term from summing error terms in (3), we get Mer(τ )∼ log X + c for some c ∈ R. On the other
hand, a more tedious computation gives Mer(σ )∼ 5/8 log X + c′ for some c′ ∈ R.

Concerning the tame case, Figure 1 shows a graph (computed in SageMath [SageMath 2016]) of
the function π∗σ (X)X/4

X , in which one sees six different accumulation points. The values ρk can be
computed in closed form as rational numbers by noticing that if we sum (4) only over ` not divisible
by 3, we can split it into a finite sum over different values of ` modulo 6. We show the computed values
in Table 1, which match the asymptotics in the graph.1 ♦

We briefly discuss convergence rates in the above theorem (compare, e.g., [Pollicott and Sharp 1998])
in relation to analogues of the Riemann hypothesis (see Proposition 9.11): there is a function M(X)

1An amusing observation is the similarity between Figure 1 and the final image in the notorious paper by Fermi, Pasta, Ulam
and Tsingou (see the very suggestive Figures 4.3 and 4.5 in the modern account [Benettin et al. 2008]): the time averaged fraction
of the energy per Fourier mode in the eponymous particle system seems to converge to distinct values, whereas mixing would
imply convergence to a unique value; by work of Izrailev and Chirikov the latter seems to happen at higher energy densities.
This suggests an analogy (not in any way mathematically precise) between “very inseparable” and “ergodic/mixing/high energy
density”.
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k mod 6 ρk · 2−2
· 33
· 5 · 7 · 13 ρk (numerical)

0 839 0.27317867317867
1 17 · 193 1.06829466829467
2 22

· 461 0.60040700040700
3 461 0.15010175010175
4 17 · 67 0.37085877085877
5 22

· 839 1.09271469271469

Table 1. Exact and numerical values of the six limit values in Figure 1.

determined by the combinatorial information (p,3,$, (rn), (sn)) associated to σ

�

A as in (1), such that
for integer values X , we have

πσ (X)= M(X)+ O(32X )

where the “power saving” 2 is determined by the real part of zeros of the degree zeta function Dσ (3
−s).

Said more colloquially, the main term reflects the growth rate (analogue of entropy) and inseparability,
whereas the error term is insensitive to inseparability and determined purely by the action of σ on the
total cohomology.

Example B (continued). If we collect the main terms using the function, for k ∈ {0, 1},

Fk(3, X)=
∑
`6X

`≡k mod 2

3`/`

we arrive at the following analogue of the Riemann hypothesis for σ :

πσ (X)= M(X)+ O(2X ), with M(X) := 1
3 F0(4, X)+ F1(4, X)−

blog3(X)c∑
i=1

2
9i F0

(
43i
,

⌊
X
3i

⌋)
.

See Figure 2 (computed in SageMath [SageMath 2016]) for an illustration. ♦

Example G. All our results apply to the situation where A is an abelian variety defined over a finite field
Fq and σ is the Frobenius of Fq , which is very inseparable. This implies known results about curves C/Fq

when applied to the Jacobian A = Jac(C) of C , such as rationality of the zeta function and analogues of
PNT (compare [Rosen 2002, Theorem 5.12]).

We finish this introduction by discussing some open problems and possible future research directions.
In the near future, we hope to treat the case of linear algebraic groups, which will require different
techniques. Our methods in this paper rest on the presence of a group structure preserved by the map.
What happens in absence of a group structure is momentarily unclear to us, but we believe that the study
of the tame zeta function in such a more general setup merits consideration. We will consider this for
dynamically affine maps on P1 in the sense of [Bridy 2016] (not equal to, but still “close to” a group) in
future work. It would be interesting to study direct relations between our results and that of compact group
endomorphisms and S-integer dynamical systems — we briefly touch upon this at the end of Section 5.
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Figure 2. Plot of X 7→ log4|πσ (X)−M(X)|/X (dots) for integer X ∈ [10, 700] and the
solid line 2= 1/2, where σ is doubling on an ordinary elliptic curve in characteristic 3.

1. Generalities

Rationality and holonomicity. We start by recalling some basic facts about recurrence sequences.

Definition 1.1. A power series f =
∑

n> anzn
∈ C[[z]] is holonomic (or D-finite) if it satisfies a linear

differential equation over C(z), i.e., if there exist polynomials q0, . . . , qd ∈ C[z], not all zero, such that

q0(z) f (z)+ q1(z) f ′(z)+ . . .+ qd(z) f (d)(z)= 0. (5)

A sequence (an)n>1 is called holonomic if its associated generating function f =
∑

n>1 anzn
∈ C[[z]] is

holonomic.

In the following lemma, we collect some well-known equivalences between properties of a sequence
and its generating series:

Lemma 1.2. Let (an)n>1 be a sequence of complex numbers.

(i) The following conditions are equivalent:

(a) The sequence (an)n>1 satisfies a linear recurrence.
(b) The power series

∑
n>1 anzn is in C(z).

(c) There exist complex numbers λi and polynomials qi ∈ C[z], 1 6 i 6 s, such that we have
an =

∑s
i=1 qi (n)λn

i for n large enough.

(ii) The following conditions are equivalent:

(a) The power series f (z)= exp
(∑

n>1
an
n zn

)
is in C(z).
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(b) There exist integers mi and complex numbers λi , 16 i 6 s, such that the sequence an can be
written as an =

∑s
i=1 miλ

n
i for all n > 1.

Furthermore, if all an are in Q, then f (z) is in Q(z).

(iii) The following conditions are equivalent:

(a) The sequence (an)n>1 is holonomic.
(b) There exist polynomials q0, . . . , qd ∈ C[z], not all zero, such that for all n > 1 we have

q0(n)an + . . .+ qd(n)an+d = 0.

Furthermore, if a power series f (z) ∈ C[[z]] is algebraic over C(z), then it is holonomic.

Proof. Statement (i) follows from [Stanley 2012, Theorem 4.1.1 and Proposition 4.2.2]. Statement (ii) is
[Stanley 2012, Example 4.8]; the final claim holds since C(z)∩Q((z)) = Q(z) (see, e.g., [Milne 2013,
Lemma 27.9]). Statement (iii) is [Stanley 1980, Theorems 1.5 and 2.1]. �

Initial reduction from rational maps to confined endomorphisms. Let A denote an abelian variety over
an algebraically closed field K . Rational maps on abelian varieties are automatically regular [Milne 2008,
I.3.2], and are always compositions of an endomorphism and a translation [Milne 2008, I.3.7]. We say
that a regular map σ : A→ A is confined if the set of fixed points of σ n is finite for all n, which we
assume from now on. We use the notations from the introduction: σn is the number of fixed points of σ n

and ζσ is the Artin–Mazur dynamical zeta function of σ .
If σ is an endomorphism of A, confinedness is equivalent to the finiteness of the kernel ker(σ n

− 1)
for all n, or the fact that all σ n

− 1 are isogenies [Milne 2008, I.7.1]. For arbitrary maps, the following
allows us to restrict ourselves to the study of zeta functions of confined endomorphisms (where case (i)
can effectively occur, for example, when σ is a translation by a nontorsion point):

Proposition 1.3. Let σ : A→ A be a confined regular map and write σ = τbψ , where τb is a translation
by b ∈ A(K ) and ψ is an endomorphism of A. Then either

(i) σn = 0 for all n and hence ζσ (z)= 1; or else

(ii) ψ is confined and ζσ (z)= ζψ(z).

Proof. Iterates of σ are of the form

σ n
= τb(n)ψ

n, where b(n) =
n−1∑
i=0

ψ i (b).

Thus, σn = ψn if b(n) ∈ im(ψn
− 1) and σn = 0 otherwise. If σn = 0 for all n, then ζσ (z)= 1. Otherwise,

for some m > 1 we have σm > 0 and thus b(m) ∈ im(ψm
− 1), σm = ψm , and ψm

− 1 is an isogeny. It
follows that for all k > 1 we have b(km)

=
∑k−1

i=0 ψ
im(b(m)) and hence b(km)

∈ im(ψkm
− 1), σkm = ψkm ,

and ψkm
− 1 is an isogeny. Since ψk

− 1 is a factor of ψkm
− 1, we conclude that ψ is a confined

endomorphism, and hence ψk
−1 is surjective. In particular, b(k) ∈ im(ψk

−1), so σn =ψn for all n, and
hence ζσ (z)= ζψ(z). �
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We make the following standing assumptions from now on, that we will not repeat in formulations of
results. Only in Section 6 shall we temporarily drop the assumption of confinedness, since this will make
exposition smoother (this will be clearly indicated).

Standing assumptions: K is an algebraically closed field of characteristic p > 0. A is an
abelian variety over K of dimension g. The endomorphism σ : A→ A is confined.

2. Periodic patterns in (in)separability degrees

For now, we will consider ζσ as a formal power series

ζσ (z) := exp
(∑

n>1

σn
zn

n

)
,

and postpone the discussion of complex analytic aspects to Section 5. Let degi(τ ) denote the inseparability
degree of an isogeny τ ∈ End(A) (a pure p-th power). We then have the basic equation

σn =
deg(σ n

− 1)
degi(σ

n − 1)
. (6)

The strategy is to first consider the “false” (in the terminology of Smale [1967]) zeta function with σn

replaced by the degree of σ n
− 1. This turns out to be a rational function. We then turn to study the

inseparability degree, which is determined by the p-valuations of the other two sequences.
We start with a general lemma in commutative algebra that is our crucial tool for controlling the

valuations of certain elements of sequences:

Lemma 2.1. Let S denote a local ring with maximal ideal m and residue field k of characteristic p > 0
such that the ring S/pS is artinian. For σ ∈ S and a positive integer n, let In := (σ

n
− 1)S. Let σ denote

the image of σ in k.

(i) If σ ∈m, then In = S for all n.

(ii) If σ ∈ S∗, let e be the order of σ in k∗. Then:

(a) If e -n, then In = S (this happens in particular if e =∞).
(b) If e | n and p -m, then Imn = In .
(c) There exists an integer n0 such that for all n with e | n and ordp(n) > n0, we have Ipn = pIn .

Proof. Part (i) is clear, so assume σ ∈ S∗. If e -n, then σ n
− 1 is invertible in S, since σ n

− 1 6= 0 in k and
hence In = S.

If e | n, we can assume without loss of generality that e = 1 (replacing σ by σ e). Write σ n
= 1+ ε for

ε ∈m. Then for m coprime to p, we immediately find

σmn
− 1= εu

for a unit u ∈ S∗, and hence Imn = In , which proves (b). On the other hand,

σ pn
− 1= pεv+ ε p (7)
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for some unit v ∈ S∗. This shows that σ pn
− 1= ε(pv+ ε p−1)⊆ εm, which already implies that we get

Ipn ⊆ Inm, for all n. (8)

Since S/pS is artinian, there exists an integer n0 such that mn0 ⊆ pS. By iterating (8) n0+1 times, we have

In ⊆ pm, for all n with ordp(n) > n0.

Assuming now that ordp(n) > n0, we have ε ∈ pm, so ε p
∈ pεm. Hence we conclude from (7) that

σ pn
− 1= pεw for some unit w ∈ S∗, and hence Ipn = pIn . �

The degree zeta function. We start by considering the following zeta function with σn replaced by the
degree of σ n

− 1.

Definition 2.2. The degree zeta function is defined as the formal power series

Dσ (z) := exp
(∑

n>1

deg(σ n
− 1)

n
zn
)
.

Proposition 2.3. (i) Dσ (z) ∈ Q(z).

(ii) Let ` be a prime (which might or might not be equal to p). Then the sequence of `-adic valuations
(|deg(σ n

− 1)|`)n>1 is of the form

|deg(σ n
− 1)|` = rn · |n|

sn
`

for some periodic sequences (rn) and (sn) with rn ∈ Q∗ and sn ∈ N. Furthermore, there is an integer
ω such that we have

rn = rgcd(n,ω) for ` -n.

Proof. By [Grieve 2017, Cororllary 3.6], the degree of σ and the sequence deg(σ n
−1) can be computed as

deg σ =
k∏

i=1

NrdRi/Q(αi )
νi , deg(σ n

− 1)=
k∏

i=1

NrdRi/Q(α
n
i − 1)νi ,

where the Ri are finite-dimensional simple algebras over Q, the αi are elements of Ri , NrdRi/Q is the
reduced norm, and the νi are positive integers. These formulæ come from replacing the variety A by an
isogenous one that is a finite product of simple abelian varieties and applying the well-known results on
the structure of endomorphism algebras of simple abelian varieties.

After tensoring with Q, the algebras Ri become isomorphic to a finite product of matrix algebras
over Q. For matrix algebras the notion of reduced norm coincides with the notion of determinant, and
since the determinant of a matrix is equal to the product of its eigenvalues, we obtain formulæ of the form

deg(σ )=
q∏

i=1

ξi , deg(σ n
− 1)=

q∏
i=1

(ξ n
i − 1), (9)
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with ξi ∈Q (with possible repetitions to take care of multiplicities) and q = 2g (since deg is a polynomial
function of degree 2g). Multiplying out the terms in this expression, we finally obtain a formula of the form

deg(σ n
− 1)=

r∑
i=1

miλ
n
i , (10)

for some mi ∈ Z and λi ∈ Q. Now (i) follows from 1.2(ii).
In order to prove (ii), we will use (9). Consider a finite extension L of the field of `-adic numbers Q`

obtained by adjoining all ξi with 1 6 i 6 q. There is a unique extension of the valuation |·|` to L that
we continue to denote by the same symbol. Then we have

|deg(σ n
− 1)|` =

q∏
i=1

|ξ n
i − 1|`.

We now claim that for ξ ∈ L , we have

|ξ n
− 1|` =


|ξ |n` if |ξ |` > 1,

r ξn |n|
sξn
` if |ξ |` = 1,

1 if |ξ |` < 1,

(11)

where (r ξn )n and (sξn )n are certain periodic sequences, r ξn ∈R∗, sξn ∈ {0, 1}. The first and the last line of the
claim are immediate, and the second one follows from applying Lemma 2.1 to the ring of integers S = OL

with σ = ξ , as follows: set an = |ξ
n
− 1|−1

` and let eξ be the order of ξ in the residue field of S (note that
eξ is not divisible by `). Then by Lemma 2.1 there exists an integer N such that an = 1 if eξ -n; amn = an

if eξ | n and `-m; and a`n = `an if eξ | n and ord`(n)> N . Therefore, it suffices to set (r ξn , sξn )= (1, 0)
for eξ -n; (r ξn , sξn )= (a−1

eξ lν , 0) for eξ | n and ν := ord`(n) < N ; and (r ξn , sξn )= (a−1
eξ `N `

N , 1) for eξ | n and
ord`(n)> N . Note that for ` -n we have

r ξn =
{

1 if eξ -n,
a−1

eξ if eξ | n.

Multiplying together formulæ (11) for ξ = ξ1, . . . , ξq , we obtain

|deg(σ n
− 1)|` = ρnrn|n|

sn
` ,

where

ρ =

q∏
i=1

max(|ξi |`, 1)> 1

and (rn) and (sn) are periodic sequences, rn ∈ R∗, sn ∈ N. We claim that ρ = 1 (that is, there is no i such
that |ξi |` > 1). Indeed, we know that deg(σ n

− 1) is an integer, and hence ρnrn|n|
sn
` 6 1 for all n. Thus,

taking n→∞, ` -n, we get ρ = 1 and rn ∈ Q∗. This finishes the proof of the formula for |deg(σ n
− 1)|`.
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Furthermore, we have

rn =
∏

eξi | n

a−1
eξi
, for `-n,

and hence the final formula holds with ω = lcm(eξ1, . . . , eξq ). �

Remark 2.4. We present an alternative, cohomological description of the degree zeta function Dσ (z).
Fix a prime ` 6= p and let Hi

:= Hi
ét(A,Q`)=

∧i
(V`A)∨ denote the i-th `-adic cohomology group of A,

(V`A = T`A⊗Z` Q`, T`A is the Tate module and ∨ denotes the dual); then

Dσ (z)=
2g∏

i=1

det(1− σ ∗z|Hi )(−1)i+1
. (12)

This follows in the same way as for the Weil zeta function: let 0σ n ⊆ A× A denote the graph of σ n and
1⊆ A× A is the diagonal [Milne 2013, 25.6]. The Lefschetz fixed point theorem [Milne 2013, 25.1]
implies that

(0σ n ·1)=

2g∑
i=0

(−1)i tr(σ n
|Hi ).

Now 0σ n intersects 1 precisely along the (finite flat) group torsion group scheme A[σ n
− 1], and hence

the intersection number (0σ n ·1) is the order of this group scheme, which is deg(σ n
− 1). Then the

standard determinant-trace identity [Milne 2013, 27.5] implies the result (12).
The characteristic polynomial of σ∗ acting on H1 has integer coefficients independent of the choice of

` and its set of roots is precisely the set of algebraic numbers ξi from the proof of Proposition 2.3 (with
multiplicities), see, e.g., [Mumford 2008, IV.19, Theorems 3 and 4].

Example 2.5. Suppose A is an abelian variety over a finite field Fq and σ is the q-Frobenius. Then σ n
−1

is separable for all n, so σn = deg(σ n
− 1) for all n, and ζσ (z)= Dσ (z) is exactly the Weil zeta function

of A/Fq . Thus, we recover the rationality of that function for abelian varieties; note that this is an “easy”
case: by cutting A with suitable hyperplanes, we are reduced to the case of (Jacobians of) curves, hence
essentially to the Riemann–Roch theorem for global function fields proven by F. K. Schmidt in 1927.

The inseparability degree. As in Proposition 2.3, we can control the regularity in the sequence of
inseparability degrees, with some more (geometric) work; this is relevant in the light of (6). We start with
a decomposition lemma in commutative algebra:

Lemma 2.6. Let R be a (commutative) ring and let M be an R-module such that for every m ∈ M the
ring R/ ann(m) is artinian. Let m be a maximal ideal of R. Then the localization Mm is equal to

Mm = M[m∞] := {m ∈ M :mkm = 0 for some k > 1}

and

M =
⊕
m

Mm,
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the direct sum being taken over all maximal ideals m of R.

Proof. Assume first that the module M is finitely generated, say, with generators m1, . . . ,ms . Set
I = ann(M). Then M is of finite length as a surjective image of the module

⊕s
i=1 R/ ann(mi ) and

hence the ring R/I is artinian, since it can be regarded as a submodule of M s via the embedding
r 7→ (rm1, . . . , rms). Therefore, the ideal I is contained in only finitely many maximal ideals m1, . . . ,ms

of R, and for the remaining maximal ideals m of R we have Mm = 0. The artinian ring R/I decomposes
as the product

R/I '
s∏

i=1

Rmi /I Rmi . (13)

Since I = ann(M), we have M⊗R R/I ' M and M⊗R Rmi /I Rmi ' Mmi . Thus, tensoring (13) with M ,
we obtain an isomorphism

M→ Mm1 ⊕ · · ·⊕Mms .

Since the modules Mmi are also of finite length, we see that each Mmi is annihilated by some power of
the maximal ideal mi .

We now turn to the case of an arbitrary module M . Consider the canonical map

8 : M→
∏
m

Mm,

the product being taken over all maximal ideals m of R. Restricting 8 to finitely generated submodules
N ⊆ M , and using the (already established) claim for finitely generated modules, we conclude that the
image of 8 is in fact contained in

⊕
m

Mm and that the induced map

8 : M→
⊕
m

Mm

(that we continue to denote by the same letter) is an isomorphism. For a maximal ideal n of R, multi-
plication by elements outside of n is bijective on Mn. Therefore, restricting 8 to M[m∞] shows that
M[m∞] = Mm[m

∞
]. Finally, we conclude from the case of finitely generated modules that every element

in Mm is annihilated by some power of the maximal ideal m. Thus, M[m∞] = Mm. �

Proposition 2.7. The inseparability degree of σ n
− 1 satisfies

degi(σ
n
− 1)= rn · |n|sn

p (14)

for periodic sequences (rn) and (sn) with rn ∈ Q∗ and sn ∈ Z, sn 6 0. Furthermore, there is an integer ω
such that we have

rn = rgcd(n,ω) for p -n.

Proof. The strategy of the proof is as follows: since degi(σ
n
− 1) is a power of p, it is sufficient to

compute |deg(σ n
− 1)|p and |σn|p. The former number has been already computed in Proposition 2.3(ii);

for the latter, we study the p-primary torsion of A as an R-module, where, not to have to worry about
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noncommutative arithmetic, we work with the ring R = Z[σ ] ⊆ End(A). Note that R need not be a
Dedekind domain. Let X := A(K )tor denote the subgroup of torsion points of A(K ). It has a natural
structure of an R-module, and as an abelian group is divisible; in fact,

X '
(

Z
[

1
p∞

]
/Z
) f

⊕

⊕
q 6=p

(
Z
[

1
q∞

]
/Z
)2g

,

where f is the p-rank of A, and

Z
[

1
q∞

]
=

⋃
k>1

Z
[

1
qk

]
.

As R acts on X , the localization Rm acts on Xm for each maximal ideal m of R. Since X is torsion as an
abelian group, the conditions of Lemma 2.6 are satisfied, and hence we have Xm = X [m∞] and

X =
⊕
m

Xm,

the sum being taken over all maximal ideals m of R. For an element τ ∈ R, we have

X [τ ] =
⊕
m

Xm[τ ].

Since Xm = X [m∞], for any prime number q we have Xm[q∞] = 0 if q 6∈m and Xm[q∞] = Xm if q ∈m,
and hence we get

X [q∞] =
⊕
q∈m

Xm.

Thus the groups Xm for q ∈m are q-power torsion. It follows that for τ ∈ R, τ 6= 0, we can compute

|X [τ ]|q =
∏
q∈m

|Xm[τ ]|q . (15)

Since X is a divisible abelian group, the groups Xm, being quotients of X , are also divisible. Thus, the
surjectivity of p : Xm→ Xm implies that there is a short exact sequence

0→ Xm[p] → Xm[pτ ]
p
−→ Xm[τ ] → 0. (16)

Let σ be an element of R, let em denote the order of σ in (Rm/mRm)
∗ for maximal ideals m of R

with p ∈ m and σ /∈ m. Note that em is then coprime with p. Applying (16) to τ = σ n
− 1 and using

Lemma 2.1, we get

|Xm[σ
mn
− 1]|p =


1 for σ ∈m,
1 for σ /∈m and em -mn,
|Xm[σ

n
− 1]|p for σ /∈m, p -m and em | n,

|Xm[σ
n
− 1]|p · |Xm[p]|p for σ /∈m, m = p, em | n, and ordp(n)� 0.
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Arguing in the same way as in the proof of Proposition 2.3, we conclude that there exist periodic sequences
(rmn )n and (smn )n with rmn ∈ Q∗ and smn ∈ N such that

|Xm[σ
n
− 1]|p = rmn |n|

smn
p for n > 1. (17)

Furthermore, rmn = 1 and smn = 0 for all n if σ ∈m, and

rmn = rmgcd(n,em) for σ /∈m and p -n.

Applying (15) to τ = σ n
− 1 and q = p, we get the equality

|σn|p =
∏
p∈m

|Xm[σ
n
− 1]|p.

Taking the product of the formulæ (17) over all maximal ideals m of R with p ∈m, we obtain periodic
sequences (r ′n)n and (s ′n)n with r ′n ∈ Q∗ and s ′n ∈ N such that

|σn|p = r ′n|n|
s′n
p

and
r ′n = r ′gcd(n,ω′) for p -n,

where
ω′ = lcm{em | σ /∈m}.

Writing

degi(σ
n
− 1)=

deg(σ n
− 1)

σn
=

|σn|p

|deg(σ n − 1)|p

and using Proposition 2.3(ii), we get sequences (rn) and (sn) satisfying all stated properties except that it
might be that sn >0 for some n. However, since degi(σ

n
−1) is an integer, letting$ be the common period

of (rn) and (sn), we automatically get sn 6 0 for all n such that the arithmetic sequence n+$N contains
terms divisible by arbitrarily high powers of p. For all the remaining n we have ordp(n) < ordp($), and
thus whenever sn > 0, we replace sn by 0 and rn by rn|n|

sn
p , obtaining the claim. �

3. A holonomic version of the Hadamard quotient theorem

The next proposition is our basic tool from the theory of recurrent sequences. It bears some resemblance
to the Hadamard quotient theorem (which is used in its proof), and to conjectural generalizations of
it as proposed by Bellagh and Bézivin [2011, “Question” in §1] (using holonomicity instead of linear
recurrence) and Dimitrov [2013, Conjecture in 1.1] (using algebraicity instead of linear recurrence). In
our special case, the proof relies on the quotient sequence having a specific form.

Proposition 3.1. Let (an)n>1, (bn)n>1, (cn)n>1 be sequences of nonzero complex numbers such that

an = bncn

for all n. Assume that:
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(i) (an)n>1 satisfies a linear recurrence.

(ii) (bn)n>1 is holonomic.

(iii) (cn)n>1 is of the form cn = rn|n|
sn
p for a prime p and periodic sequences (rn)n>1, (sn)n>1 with

rn ∈ Q∗, sn ∈ Z.

Then the sequence (cn)n>1 is bounded.

Proof. Note that cn 6= 0 for all n. Since the sequence (bn)n>1 given by bn = an/cn is holonomic, by
Lemma 1.2(iii) there exist polynomials q0, . . . , qd ∈ C[z] such that

q0(n)
an

cn
=−

d∑
i=1

qi (n+ i)
an+i

cn+i
, for n > 1. (18)

We may further assume that q0 6= 0 (otherwise, replace for i = 1, . . . , d the polynomials qi by (z− 1)qi

and shift the relation by one). Suppose cn = rn|n|
sn
p is not bounded and let $ be the common period of

both (rn) and (sn). The unboundedness of (cn)n>1 means that there exists an integer j > 1 with s j < 0
such that there are elements in the arithmetic sequence { j +$n | n > 0} which are divisible by an
arbitrarily high power of p. Fix such j and write s := s j . Let ν be an integer such that pν >max(d,$)
and let 5= lcm($, pν). Note that ordp 5= ν. By the assumption on { j +$n | n > 0}, there exists an
integer J such that J ≡ j (mod$) and J ≡ 0 (mod pν). By the definition of the sequence (cn)n>1, for
n≡ J (mod5) the values cn+1, . . . , cn+d are uniquely determined (i.e., do not depend on n). Substituting
such n into (18), we obtain a formula of the form

a′n
|n|sp
= b′n for n ≡ J (mod5),

where

a′n = q0(n)
an

r j
and b′n =−

d∑
i=1

qi (n+ i)
an+i

cn+i

are linear recurrence sequences along the arithmetic sequence n ≡ J (mod5) (here we use the fact that
the values cn+1, . . . , cn+d do not depend on n, and that linear recurrence sequences form an algebra). Note
that the values of (a′n)n>1 are nonzero for sufficiently large n, and hence so are (b′n)n>1. By Lemma 1.2(i),
a subsequence of a linear recurrence sequence along an arithmetic sequence is a linear recurrence sequence.
Since the sequence

|n|sp =
a′n
b′n

takes values in a finitely generated ring (namely Z[1/p]), we conclude from the Hadamard quotient
theorem [Rumely 1988; van der Poorten 1988, Théorème] that the sequence (|J +5n|sp)n>0 satisfies a
linear recurrence, say
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γ0|J +5n|sp + γ1|J +5(n+ 1)|sp + · · ·+ γe|J +5(n+ e)|sp = 0, for n large enough, (19)

where γ0, . . . , γe ∈ C, γ0 6= 0. Let µ be an integer such that pµ >5d . Since ν = ordp(5)6 ordp(J ), we
can find an integer 5′ > 0 such that 55′ ≡−J (mod pµ). Then for n ≡5′ (mod pµ−ν) the values of

|J +5(n+ 1)|sp, . . . , |J +5(n+ e)|sp

are independent of n (actually, |J +5(n+ j)|sp = p−νs
| j |sp for j = 1, . . . , e), and hence by (19) so is

the value of γ0|J +5n|sp for n sufficiently large. Substituting n =5′+ i pµ−ν with i = 0, . . . , p− 1, we
get a contradiction, since there is exactly one value of i for which |J +5(5′+ i pµ−ν)|sp < p−µs . �

4. Rationality properties of dynamical zeta functions

We prove a general rational/transcendental dichotomy in terms of the following arithmetical property:

Definition 4.1. An endomorphism σ ∈ End(A) is called very inseparable if σ n
−1 is a separable isogeny

for all n.

Note that the zero map is very inseparable. The notion “very inseparable” makes sense for arbitrary (not
necessarily confined) endomorphisms, but such very inseparable endomorphisms are then automatically
confined. We will study the geometric meaning of very inseparability in greater detail in Section 6; here
we content ourselves with discussing the case of elliptic curves.

Example 4.2. If A = E is an elliptic curve, things simplify greatly (compare [Bridy 2016, §5]): there
exists a (nonarchimedean) absolute value |·| on the ring End(E) such that degi(τ )= |τ |

−1 for τ ∈End(E).
It is immediate that inseparable isogenies together with the zero map form an ideal in End(E) and that an
inseparable isogeny σ (i.e., |σ | < 1) is very inseparable (i.e., |σ n

− 1| = 1 for all n). Neither of these
statements is true in general for higher-dimensional abelian varieties.

Theorem 4.3. (i) If σ is very inseparable, then ζσ (z) ∈ Q(z) is rational.

(ii) If σ is not very inseparable, then the sequence (σn) is not holonomic and ζσ (z) is transcendental
over C(z).

Proof. Suppose we are in case (i), so σ n
−1 is separable for all n. Since σn=deg(σ n

−1), Proposition 2.3(i)
implies that ζσ (z) is a rational function of z.

In case (ii), set an = deg(σ n
−1), bn = σn , and cn = degi(σ

n
−1). By Proposition 2.3(i), (an) satisfies

a linear recurrence. By Proposition 2.7, cn = rn|n|
sn
p for periodic rn ∈ Q∗ and sn ∈ Z. Assume, by

contradiction, that bn is holonomic, i.e., that the sequence (bn) is holonomic. The sequences (an), (bn),
and (cn) then satisfy all the conditions of Proposition 2.7, and we conclude that the sequence (cn) is
bounded. However, the following proves that (cn) is unbounded:

Lemma 4.4. If σ is not very inseparable, then the sequence degi(σ
n
− 1) is unbounded.
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Proof. By assumption, there exists n0 for which σ n0 − 1 is inseparable. Write σ n0 = 1+ ψ with ψ
inseparable; then

σ n0 p
− 1= (1+ψ)p

− 1= ψ(ψ p−1
+ pχ),

for some endomorphism χ : A→ A. Since p has identically zero differential, the map ψ p−1
+ pχ is

inseparable, and hence

degi(σ
n0 p
− 1)> 1+ degi(ψ)= 1+ degi(σ

n0 − 1),

and the result follows by iteration. �

To show the transcendence of ζσ (z) over C(z), suppose it is algebraic. Then so would be

z
ζ ′σ (z)
ζσ (z)

= z(log(ζσ (z)))′ =
∑

σnzn.

This contradicts the fact that σn is not holonomic. �

Corollary 4.5. At most one of the functions

ζσ (z)= exp
(∑

n>1

σn
zn

n

)
and

1
ζσ (z)

= exp
(∑

n>1

−σn
zn

n

)
is holonomic.

Proof. Assume that both these functions are holonomic. Since the class of holonomic functions is closed
under taking the derivative and the product [Stanley 1980, Theorem 2.3], we conclude that zζ ′σ (z)/ ζσ (z)
is holonomic, contradicting Theorem 4.3(ii). �

Remark 4.6. It is not true that the multiplicative inverse of a holonomic function is necessarily holonomic.
Harris and Shibuya [1985] proved that this happens precisely if the logarithmic derivative of the function
is algebraic. We do not know whether ζσ (z) is holonomic for not very inseparable σ , but Theorem 5.5
will show that ζσ (z) is not holonomic for a large class of maps.

Remark 4.7. If σ is not assumed to be confined, we could change the definition of σn by considering σn

to be the number of fixed points of σ n whenever it is finite, and 0 otherwise. This is in the spirit of [Artin
and Mazur 1965], where only isolated fixed points of diffeomorphisms of manifolds were considered. In
this case, we could still prove a variant of Theorem 4.3 saying that if σ is a (not necessarily confined)
endomorphism of A such that there exist n such that σ n

−1 is an isogeny of arbitrarily high inseparability
degree, then (σn) is not holonomic; one needs to use the fact that (the proof of) Proposition 3.1 holds even
if we do not insist that an and bn be nonzero and instead demand that cn = 1 if an = 0. Note, however,
that without the assumption that σ is confined, ζσ (z) could be an algebraic but not rational function.
For example, let E be a supersingular elliptic curve over a field of characteristic 2, let A = E × E , and
σ = [2]× [−1]. Then

ζσ (z)=
1− 2z
1+ 2z

√
(1+ z)(1+ 4z)
(1− z)(1− 4z)

.
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5. Complex analytic aspects

We now turn to questions of convergence and analytic continuation.

Radius of convergence. From the proof of Proposition 2.3, we pick up the formula

deg(σ n
− 1)=

q∏
i=1

(ξ n
i − 1)=

r∑
i=1

miλ
n
i , (20)

where we note for future use that q = 2g,
∏q

i=1 ξi = deg(σ ), and λi are of the form λi =
∏

j∈I ξ j for
some I ⊆ {1, . . . , q}, each occurring with sign (−1)|I |. Recall that {λi } are called the roots of the linear
recurrence, and λi is called a dominant root if it is of maximal absolute value amongst the roots. The
roots {λi } of the recurrence should not be confused with the roots {ξi } of the characteristic polynomial of
σ on H1 (the dual of the `-adic Tate module for any choice of ` 6= p).

The following proposition follows from (20) and the fact that deg(σ n
− 1) takes only positive values.

Proposition 5.1. (i) The ξi are not roots of unity.

(ii) The linear recurrent sequence deg(σ n
− 1) has a dominant positive real root, denoted 3.

(iii) 3 =
∏q

i=1 max{|ξi |, 1} > 1 is the Mahler measure of the characteristic polynomial of σ acting
on H1.

(iv) 3= 1 if and only if σ is nilpotent.

(v) deg(σ n
− 1) has a unique dominant root if and only if there is no ξi with |ξi | = 1.

(vi) If deg(σ n
− 1) has a unique dominant root 3, then 3 has multiplicity 1.

Proof. (i) This is clear since σ is confined.

(ii) If not, deg(σ n
−1)would be negative infinitely often by a result of Bell and Gerhold [2007, Theorem 2].

(iii) Denote temporarily 3̃=
∏q

i=1 max{|ξi |, 1}. We will prove shortly that 3̃=3. Formula (20) implies
that 36 3̃ and

a1(n) :=
∑
|λ j |=3̃

m jλ
n
j

equals
a1(n)= (−1)t Pn

∏
j∈J

(ξ n
j − 1), (21)

where t is the number of indices i such that |ξi | < 1, P :=
∏
|ξi |>1 ξi , and J ⊆ {1, . . . , q} denotes the

set of indices i such that |ξi | = 1. Since the right hand side of (21) is nonzero, we conclude that 3̃=3.
Finally, by Remark 2.4, ξi are the roots of the indicated characteristic polynomial.

(iv) Since none of the ξi is a root of unity, and since the set {ξi } is closed under Galois conjugation,
Kronecker’s theorem implies that either some ξi has absolute value |ξi |> 1, in which case 3> 1, or else
all ξi are 0. The latter is equivalent to σ acting nilpotently on H1, and hence σ is nilpotent since End(A)
embeds into (the opposite ring of) End(H1).
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(v) From (21) we immediately get that if J =∅, then deg(σ n
−1) has a unique dominant root. Conversely,

if J 6=∅, then substituting n = 0 into (21) gives
∑

m j = 0, and hence in the formula there are at least
two distinct values of λ j occurring, and the dominant root is not unique.

(vi) We have already proved that if there is a unique dominant root, then J =∅. Thus we read from (21)
that the multiplicity of3 is±1. Since deg(σ n

−1) takes only positive values, the multiplicity is in fact 1. �

Proposition 5.2. The radius of convergence of the power series defining ζσ (z) is 1/3 > 0.

Proof. Note first that we have a trivial bound σn = O(3n), which implies that the power series ζσ (z)
is majorized by exp(

∑
n>1 C3nzn/n) = (1 − 3z)−C for some constant C > 0. Thus the radius of

convergence of ζσ (z) is at least 1/3. If σ is nilpotent, the maps σ n
−1 are all invertible, and hence σn = 1

and ζσ (z)= 1/(1− z). Assume thus that σ is not nilpotent, and hence by Proposition 5.1(iv), 3> 1.
For the other inequality, we write the linear recurrence sequence deg(σ n

− 1) =
∑r

i=1 miλ
n
i as the

sum of two linear recurrence sequences a1(n) and a2(n), a1(n) as in (21) containing the terms with λi of
absolute value 3̃=3, and a2(n) containing the terms where λi is of strictly smaller absolute value.

Since all ξ j with j ∈ J are algebraic numbers on the unit circle but not roots of unity, a theorem of
Gel’fond [1960, Theorem 3] implies that for any ε > 0 and n = n(ε) sufficiently large,∏

j∈J

|ξ n
j − 1|>3−nε

and hence |a1(n)| > 3n(1−ε) for sufficiently large n. The formula in Proposition 2.7 implies that
degi(σ

n
−1)= O(ns) for some integer s, and hence it follows from (6) that σn >3

n(1−2ε) for sufficiently
large n. For the lower bound, analogous reasoning proves that the radius of convergence of ζσ (z) is at
most 1/31−2ε, implying the claim. �

Remark 5.3. The value log3 describes the growth rate of the number of periodic points and plays the
role of entropy as defined in the presence of a topology or a measure. It is the logarithm of the spectral
radius of σ acting on the total (`-adic) cohomology of A — even in the not very inseparable case — as in
a result of Friedland’s [1991] in the context of complex dynamics.

The degree zeta function. The degree zeta function Dσ (z) is a rational function, and hence admits a
meromorphic continuation to the entire complex plane. Actually,

Dσ (z)=
r∏

i=1

(1− λi z)−mi ,

written in terms of the parameters in (20), immediately provides the extension. Poles (with multiplicity mi )
occur at 1/λi with mi > 0; zeros (with multiplicity mi ) occur at 1/λi with mi < 0. We may describe the
behavior of zeros and poles more precisely.

Proposition 5.4. Assume that σ is not nilpotent. Let 3′ :=max{|λi | : |λi |<3}<3.

(i) The function Dσ (z) has a pole at 1/3.
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(ii) The function Dσ (z) has a zero z0 with |z0|=1/3′ and is holomorphic in the annulus 1/3< |z|<1/3′.

(iii) 3′ >
√
3.

Proof. In order to prove (i), we need to show that the multiplicity m of 3 is positive. If 3 is a dominant
root, this follows from Proposition 5.1(vi). If 3 is not a dominant root and m < 0, the sequence
deg(σ n

−1)−m3n is a linear recurrent sequence with positive values and no dominant positive real root,
contradicting [Bell and Gerhold 2007, Theorem 2].

Let us now prove (ii). Let ρ denote the minimal value of |ξi | and |ξi |
−1 that is strictly larger than 1, i.e.,

ρ =min(min{|ξi | : |ξi |> 1},min{|ξi |
−1
: 0< |ξi |< 1});

it exists since by Proposition 5.1(iv), 3> 1. Write the set of indices {1, . . . , q} = J−< ∪ J−∪ J ∪ J+∪ J+> ,
where membership i ∈ J ∗

∗
is defined by the corresponding condition in the second row of the following table:

J−< J− J J+ J+>
|ξi |< ρ

−1
|ξi | = ρ

−1
|ξi | = 1 |ξi | = ρ |ξi |> ρ

From (20) we see that there is no λ j with 3/ρ < |λ j |<3 and that the terms λ j with |λ j | =3/ρ arise as
products

∏
i∈I ξi where I contains J+> , I is disjoint from J−< , I ∩ J can be anything and either I contains

all except one i ∈ J+ or I contains all i ∈ J+ and exactly one i ∈ J−.
Setting as before P :=

∏
i∈J+∪J+> ξi and t = #(J−< ∪ J−), we get

∑
|λ j |=3/ρ

m jλ
n
j = (−1)t−1 Pn

∏
j∈J

(ξ n
j − 1)

(∑
i∈J+

ξ−n
i +

∑
i∈J−

ξ n
i

)
. (22)

Since the right-hand side is not identically zero as a function of n, we conclude that 3′ = 3/ρ. We
consider two cases.

Case 1: J =∅. Then by Proposition 5.1(vi), P =3 has multiplicity 1 and hence from (21) we conclude
that t is even. Therefore by (22) all λi with |λi | =3

′ have multiplicity mi < 0, and hence correspond to
zeros of Dσ (z).

Case 1: J 6=∅. Substituting n = 0 into (21) shows that the sum of multiplicities mi of λi with |λi | =3

is 0. By (22), the same is true for multiplicities m j of λ j with |λ j | = 3
′. Thus there is some λi with

|λi | =3
′ and mi < 0.

For the proof of (iii), note that since 3′ =3/ρ, the stated inequality is equivalent to 3> ρ2. Since
3 =

∏
max{|ξi |, 1}, it is enough to prove that there are at least two elements in the (nonempty) set

J+ ∪ J+> . Since q = 2g is even, it suffices to prove that both #J and t = #(J− ∪ J−< ) are even. Since ξi

with |ξi | = 1 occur in complex conjugate pairs, #J is even, and the corresponding term in (21) is real
positive. In the course of proof of Proposition 5.2 we have shown that the sum a1(n) dominates the
remaining terms, and hence is positive for large n. Hence we find from (21) that P > 1 and t is even. �
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Analytic continuation/natural boundary. When σ is very inseparable, ζσ (z) coincides with the degree
zeta function Dσ (z) and hence is a rational function. One may wonder whether a Pólya–Carlson
dichotomy holds for the functions ζσ (z), meaning that, when they are not rational as above, they admit
a natural boundary as complex function (and hence they are nonholonomic; in this context also called
“transcendentally transcendental”).

We confirm this for a large class of such maps, providing at the same time another proof of their
transcendence (and even nonholonomicity). The crucial tool is Theorem A.1 that Royals and Ward prove
in the Appendix of this paper.

Theorem 5.5. Suppose that σ is not very inseparable and that 3 is the unique dominant root. Then the
function ζσ (z) has the circle |z| = 1/3 as its natural boundary. In particular, ζσ (z) is not holonomic.

Proof. We start by the observation that ζσ (z) has the same natural boundary as Zσ (z) :=
∑
σnzn if the

latter function has natural boundary [Bell et al. 2014, Lemma 1]. Next, we find an expression

Zσ (z)=
r∑

i=1

mi

∑
n>1

r−1
n |n|

−sn
p (λi z)n,

where mi and λi are as in (10) and rn and sn are as in Proposition 2.7. We now apply Theorem A.1: in
the notation of that theorem, we choose S to be the set of primes containing p and all primes ` for which
|rn|` 6= 1 for some n. By periodicity of (rn), the set S is finite. Let an := degi(σ

n
−1)= rn|n|

sn
p . Suppose

$ is a common period for (rn) and (sn). For ` ∈ S, set n` =$ , c`,k = |rk |`; for ` 6= p, set e`,k = 0, and
set ep,k =−sk . Then |an|S = a−1

n , and hence we can write

Zσ (z)=
r∑

i=1

mi f (λi z),

where f is the function associated to (an) as in Theorem A.1. Since σ is not very inseparable, by
Lemma 4.4 the sequence (an) takes infinitely many values. We find that the term f (λi z) has a natural
boundary along |z| = 1/|λi |. If 3 is the unique λi of maximal absolute value, then the dense singularities
along this circle cannot be canceled by other terms, and we conclude that Zσ (z) has a natural boundary
along |z| = 1/3, and the same holds for ζσ (z). Since a holonomic function has only finitely many
singularities (corresponding to the zeros of q0(z) if the series function satisfies (5), compare to [Flajolet
et al. 2004/06, Theorem 1]), ζσ (z) cannot be holonomic. �

Question 5.6. Is |z| = 1/3 a natural boundary for ζσ (z) for any not very inseparable σ (even without
the assumption of a unique dominant root)?

Metrizable group endomorphisms with the same zeta function. Given the analogy between our results
and some properties of metrizable group endomorphisms, one may ask for the following more formal
relationship:

Question 5.7. Can one associate to an action of σ

�

A an endomorphism of a compact metrizable abelian
group τ

�

G with the same Artin–Mazur zeta function, i.e., ζσ = ζτ ?
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The analogue of this question over the complex numbers is trivial, as one may take G = A(C). The
degree zeta function Dσ (z) artificially equals the Artin–Mazur zeta function of an endomorphism τ of a
2g-dimensional real torus whose matrix has the same characteristic polynomial as that of σ acting on
T`(A) for any ` 6= p (e.g., the companion matrix). This implies that for a very inseparable σ

�

A, indeed,
ζσ (z)= ζτ (z).

Even in the not very inseparable case, it is sometimes possible to construct such τ

�

G, like we did for
the example in the introduction.

In general, it would be natural to consider the induced action of σ on the torsion subgroup A(K )tor

(dual of the total Tate module
∏

T`(A)). This provides the correct contribution |σn|` at all primes ` 6= p;
for such `, the size of the cokernel of σ n

− 1 acting on T`(A) is precisely |σn|
−1
` . However, at `= p, we

found no such natural group in general, and it seems that |σn|p is genuinely determined by the geometry
of the p-torsion subgroup scheme.

6. Geometric characterization of very inseparable endomorphisms

In this section, we analyze the condition of very inseparability from a geometric point of view as well as its
relation to inseparability. For this, it is advantageous to temporarily drop the assumption of confinedness
and consider a general σ ∈ End(A).

Elementary properties. We start by listing properties of very inseparability that follow more or less
directly from the definition. For this, we first write out a very basic property:

Lemma 6.1. Whether σ ∈ End(A) is a separable isogeny or not is determined by its action on the finite
commutative group scheme A[p], i.e., by its image under the map End(A)→ End(A[p]).

Proof. If two endomorphisms σ, τ : A→ A induce the same map on A[p], then σ − τ vanishes on the
group scheme A[p], and hence it factors through the map [p] : A→ A. Thus σ − τ = pν for some
ν : A→ A, and hence the map End(A)/p End(A) ↪→ End(A[p]) is injective. Since an endomorphism
A→ A is a separable isogeny if and only if it induces an isomorphism on the tangent space, and since
every map of the form pν induces the zero map on the tangent space, we conclude that σ is a separable
isogeny if and only if τ is a separable isogeny. �

Proposition 6.2. Let σ ∈ End(A).

(i) The endomorphism σ is very inseparable if and only if σ n
−1 is a separable isogeny for all n6 p4g2

.

(ii) If A= A1× A2 with A1 and A2 abelian varieties and σ = σ1×σ2 with σi ∈ End(Ai ), then σ is very
inseparable if and only if σ1 and σ2 are both very inseparable.

(iii) Multiplication [m] : A→ A by an integer m is very inseparable if and only if m is divisible by p.

(iv) An endomorphism of an elliptic curve is very inseparable if and only if it is either an inseparable
isogeny or zero.
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(v) If E is an elliptic curve over a field of characteristic 3, then the isogeny σ := [2]×[3] on A := E×E
is inseparable but not very inseparable.

Proof. To prove (i), observe that by Lemma 6.1, it suffices to look at the images of σ n
− 1 in the ring

End(A)/p End(A). Since End A is finite free of rank at most 4g2, this ring is finite of cardinality 6 p4g2
,

and hence the sequence of images of σ n
−1 is ultimately periodic (i.e., periodic except for a finite number

of n) with all possible values already occurring for n 6 p4g2
.

Property (ii) is immediate from the definition.
Since an endomorphism of an abelian variety is a separable isogeny if and only if its differential is

surjective, to prove (iii), observe that the differential of the multiplication by mn
− 1 map is still given by

multiplication by mn
− 1 and hence is surjective if and only if it is nonzero, i.e., when p does not divide

mn
− 1. The latter happens for all n > 1 if and only if p |m.

Statement (iv) was already discussed in Example 4.2.
Property (v) follows immediately from (ii) and (iii). �

Using the local group scheme A[ p]0. The category of finite commutative group schemes over K is
abelian and decomposes as the product of the category of finite étale and the category of finite local group
schemes (see, e.g., [Goren 2002, A§4]). The group scheme A[p] decomposes canonically as the product
of the étale part A[p]ét and the local part A[p]0. We now provide a geometric characterization of (very)
inseparability using the local p-torsion subgroup scheme, as in Theorem A in the introduction.

Theorem 6.3. Let σ ∈ End(A).

(i) σ is a separable isogeny if and only if it induces an isomorphism on A[p]0.

(ii) σ is very inseparable if and only if it induces a nilpotent map on A[p]0.

Proof. Under the splitting A[p] = A[p]ét× A[p]0, the morphism σ [p] induced by σ on A[p] splits as a
product morphism σ [p] = σ [p]ét× σ [p]0. Therefore, we have

ker σ [p] = ker σ [p]ét× ker σ [p]0. (23)

An isogeny σ is separable if and only if ker σ is étale.
We turn to the proof of (i). In one direction, first assume that σ is a separable isogeny. Then ker σ

is étale, and hence so is its subgroup scheme ker σ [p]. From the decomposition (23), we conclude that
ker σ [p]0 is both étale and local, hence trivial. Since A[p]0 is a finite group scheme, the map σ [p]0 is an
isomorphism.

For the other direction, assume first that σ is not an isogeny. Let B be the reduced connected component
of 0 of ker σ . Then B is an abelian subvariety, B[p]0 is a nontrivial group scheme (because multiplication
by p on B is not étale) and is contained in the kernel of σ [p]0 and hence σ [p]0 is not an isomorphism.

Secondly, assume that σ is an inseparable isogeny. Then ker σ is not étale. We have ker σ ⊆ A[n] for
n = deg σ . Writing n = pt u with u coprime with p, we get a decomposition ker σ = ker σ [pt

]×ker σ [u].
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The group scheme ker σ [u] is étale (as a subgroup scheme of A[u]), and hence ker σ [pt
] cannot be étale,

which means that ker σ [pt
]
0 is nontrivial. For each integer r , we have an exact sequence

0→ ker σ [pr−1
]
0
→ ker σ [pr

]
0 pr−1
−→ ker σ [p]0.

Applying this inductively for r = t, t − 1, . . . , 2, we conclude that ker σ [p]0 is nontrivial, and hence the
morphism σ [p]0 is not an isomorphism. This proves (i).

For the proof of (ii), consider the natural homomorphism ϕ : End(A)→ End(A[p]0). Since End(A)
is a finite Z-algebra, and since p ∈ kerϕ, the ring R := im(ϕ) is a finite Fp-algebra. By part (i), the map
σ n
− 1 is a separable isogeny if and only if its image ϕ(σ n

− 1) is a unit in End(A[p]0). We claim that
ϕ(σ n

− 1) is then a unit in R; in fact, the ring R is a finite Fp-algebra, and hence there exists a monic
polynomial f ∈ Fp[t], f = td

+ ad−1td−1
+ · · · + a0, of lowest degree such that f (σ n

− 1) = 0. If the
constant term a0 of f is different than zero, then we easily see that σ n

− 1 is invertible in R, its inverse
being −a−1

0
∑d−1

i=0 (σ
n
− 1)i . If on the other hand a0 = 0, then σ n

− 1 is a two-sided zero-divisor in R,
hence in End(A[p]0), and therefore cannot be a unit in End(A[p]0). Thus, our claim is now reduced to
the proof of the following lemma. �

Lemma 6.4. Let R be a finite (not necessarily commutative) Fp-algebra and let r ∈ R. Then the following
conditions are equivalent:

(i) For all positive integers rn
− 1 is invertible.

(ii) The element r is nilpotent.

Proof. Let J denote the Jacobson radical of R. The ring R is artinian and hence the ring R = R/J is
semisimple [Lam 1991, 4.14]. For an element s ∈ R, denote the image of s in R by s. Then s is invertible
in R if and only if s is invertible in R [Lam 1991, 4.18] and s is nilpotent if and only if s is nilpotent
(this follows from the fact that the Jacobson radical of an artinian ring is nilpotent, see [Lam 1991, 4.12]).
Thus we have reduced the claim to the case of a semisimple ring R.

By the Wedderburn–Artin theorem [Lam 1991, 3.5], a semisimple ring is a product of matrix rings
over division rings which in our case need to be finite, and hence by another theorem of Wedderburn
[Lam 1991, 13.1] are commutative. Thus we can decompose the ring R as a product of matrix rings over
finite fields

R '
s∏

i=1

Mni (Fqi ).

Clearly, each of the properties in the statement of the lemma can be considered separately for each term
in this product, and we are reduced to proving that a matrix N over a finite field has the property that
N n
− 1 is invertible for all n > 1 if and only if N is nilpotent.

If N is nilpotent, then all the matrices N n
− 1 are invertible, since in any ring the sum of a unit and

a nilpotent that commute with each other is a unit. Conversely, if N is not nilpotent, then N has some
eigenvalue λ 6= 0, perhaps in a larger (but still finite) field. Let n > 1 be such that λn

= 1 (such n always
exists in a finite field). Then the matrix N n

− 1 is not invertible. �
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We have some immediate corollaries (where Corollary 6.5(i) refines Lemma 6.1):

Corollary 6.5. Let σ ∈ End(A).

(i) Whether σ is a separable isogeny or not, or very inseparable or not, is determined by its action on
A[p]0, i.e., on its image under the map

End(A)→ End(A[p]0).

(ii) Very inseparable isogenies are inseparable.

(iii) There exists a simple abelian surface with a confined isogeny that is inseparable but not very
inseparable and for which inseparable isogenies together with the zero map do not form an ideal.

Proof. Statement (i) is immediate from Theorem 6.3. Statement (ii) follows from Theorem 6.3, since
nilpotents are not invertible. Concerning (iii), the following is an example of a simple abelian variety
A and an inseparable but not very inseparable isogeny σ (all computational data used can be found at
[LMFDB Collaboration 2013]). Consider the isogeny class of supersingular abelian surfaces over F5

of p-rank 0 with characteristic polynomial of the Frobenius π equal to x4
+ 25= 0. The splitting field

L := Q(π)= Q(i,
√

10) has no real embeddings, hence by [Waterhouse 1969, Theorem 6.1] there exists
a simple abelian surface A with endomorphism ring OL = Z[i, π] (the ring of integers in L , containing
both π and 5/π =−iπ ). Consider σ = i−2= π2/5−2, with characteristic polynomial σ 2

+4σ +5= 0.
The endomorphism σ is a confined isogeny since on a simple abelian variety these are exactly the
endomorphisms that are neither zero nor roots of unity. Denoting the reduction of σ modulo 5 by σ , we
find that

σ 2
= σ . (24)

Note that A[p] = A[p]0 and hence there is an injective map OL/5OL ↪→ End(A[p]0). Now σ is separable
if and only if σ is an isomorphism on A[p]0, which, by (24), happens exactly if σ = 1. But then σ = 5ψ+1
for some ψ ∈ OL , which does not hold. Hence σ is inseparable. On the other hand, σ is very inseparable
if and only if σ is nilpotent on A[p]0, which, by (24), happens exactly if σ = 0. This means that σ = 5ψ
for some ψ ∈ OL , which does not hold either. Hence σ is not very inseparable.

Let σ ′ =−i−2. We similarly prove that σ ′ is inseparable, and yet the map σ +σ ′ =−4 is a separable
isogeny. Hence the set of inseparable isogenies together with the zero map is not closed under addition. �

Using Dieudonné modules. The structure of the endomorphism ring of the local group scheme A[p]0

can be computed explicitly using the theory of Dieudonné modules, and we will use this to deduce some
more results on very inseparability.

The group schemes A[p] and A[p]0 are objects in the category CK of finite commutative group schemes
over K annihilated by p. By covariant Dieudonné theory [Goren 2002, A§5] there is an equivalence of
categories

D : CK → finite length left E-modules,
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where E= K [F, V ] denotes the noncommutative ring of polynomials with relations

FV = V F = 0, Fλ= λp F and Vλp
= λV for λ ∈ K .

We may consider being a very inseparable endomorphism or a separable isogeny as a property of the
image of an endomorphism under the map End(A)→ EndE(D(A[p]0)).

Example 6.6. If A is an ordinary elliptic curve, then A[p]0 ∼= µp, so End(A[p]0) = Fp. If A is a
supersingular elliptic curve, the local group scheme A[p]0 is the unique nonsplit self-dual extension of
αp by αp. The Dieudonné module is D(A[p]0)= E/E(V + F) [Goren 2002, A.5.4] and a computation
[Goren 2002, A.5.8] gives a ring isomorphism

End(A[p]0)∼= EndE(E/E(V + F))∼=
{(

a p b
0 a

)
: a ∈ Fp2, b ∈ K

}
.

From these computations, one also sees directly that noninvertible elements are nilpotent in End(A[p]0)
in both the ordinary and the supersingular case, giving an alternative proof of 6.2(iv).

Proposition 6.7. Let σ ∈ End(A) and set D := D(A[p])0).

(i) σ is a separable isogeny (respectively, very inseparable endomorphism) if and only if its image in
EndK [F](D/VD) is invertible (respectively, nilpotent).

(ii) σ is very inseparable if and only if a power of σ factors through the p-Frobenius map Fr : A 7→ A(p).

(iii) If End(A) is commutative, the set of very inseparable endomorphisms forms an ideal in End(A).

(iv) There exists an abelian variety for which the set of very inseparable endomorphisms is not closed
under either addition or multiplication (in particular, it is not an ideal).

(v) Let A denote a simple ordinary abelian variety defined over a finite field Fq ⊆ K with (commutative)
endomorphism ring O :=End(A) and Frobenius endomorphism π . Set R := Z[π, q/π ]. Then R⊆ O

and if p -[O:R], then any isogeny of A is very inseparable if and only if it is inseparable. This is in
particular true if q = p > 5.

Proof. We first prove (i). The relations in E imply that VE is a two-sided ideal in E. In this way, σ , as an
E-endomorphism of D, gives rise to an endomorphism σ̃ of the E/VE= k[F]-module D/VD. The first
claim is that σ is nilpotent if and only if σ̃ is. The interesting direction is where σ̃ is nilpotent, meaning
that σ n(D)⊆ VD for some n. Since V is nilpotent on D [Goren 2002, A.5], say V dD= 0, we can iterate
the equation to get σ nd(D) ⊆ V dD = 0. Secondly, we claim that σ is invertible if and only if σ̃ is so.
Again, the interesting direction is when σ̃ is invertible. If we let D′ denote the image of σ : D→ D, then
D′ is an E-submodule of D and D= D′+ VD. Iterating this sufficiently many times, we find that

D= D′+ VD= D′+ VD′+ V 2D= · · · = D′+ VD′+ · · ·+ V d−1D′ ⊆ D′.

This shows that σ is surjective, and, since it is an endomorphism of the underlying finite-dimensional
vector space, it is then automatically injective.
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In order to prove (ii), note that the Dieudonné module D(A(p)[p]0) can be identified with D=D(A[p]0)
with the E-action twisted by the geometric Frobenius map ψ : K → K , ψ(λ) = λ1/p. Under this
identification, the map induced by the p-Frobenius Fr : A→ A(p) on the Dieudonné modules is the
ψ-semilinear map V : D→ D [Goren 2002, A.5]. Moreover, the map V is nilpotent.

If σ is very inseparable, there exists n with σ n
|A[p]0 = 0. Since A[Fr] ⊆ A[p]0, we have σ n

|A[Fr] = 0
and hence σ n factors through Fr. Conversely, suppose that σ n

= τ ◦Fr for some τ : A(p)→ A. Passing to
the Dieudonné modules, and using the fact that the map D(τ ) is ψ−1-semilinear (and hence commutes
with V ), we see that D(σ n)D⊆ VD, so D(σ ) is nilpotent modulo V . By part (i), we find that σ is very
inseparable.

For the proof of (iii), note that, without any assumptions on the ring End(A), the set I of maps in
End(A) that factor through the p-Frobenius Fr is a left ideal in End(A). Therefore by (ii), if the ring
End(A) is commutative, the set of very inseparable maps in End(A) coincides with the radical of I , and
hence is an ideal.

For (iv), consider A = E × E for an ordinary elliptic curve E . Then End(A)=M2(End(E)) surjects
onto End(A[p]0)=M2(Fp) (see Example 6.6). The set of very inseparable endomorphisms corresponds
under this map to matrices whose image in M2(Fp) is nilpotent, and it suffices to remark that the set of
nilpotent elements in M2(Fp) is not closed under neither addition nor multiplication.

For (v), we indeed have R ⊆ O by [Waterhouse 1969, 7.4]. Let σ ∈ O and observe that the coprimality
of [O:R] to p implies that there exists an integer N coprime to p with Nσ ∈ R. Therefore, it suffices
to prove the equivalence of inseparability and very inseparability for elements of R. Represent such an
element σ ∈ R by ∑

i>1

aiπ
i
+

∑
j>0

b j (π
′) j ,

with π ′= q/π and ai , bi ∈Z (the terms containing both π and π ′ may be omitted since they do not change
the image of σ in End(D)). Since A is defined over Fq with q = pr , we have π = Frr and π ′ = Verr ,
where Ver : A(p)→ A is the Verschiebung. On the level of Dieudonné modules, Fr maps to V and Ver
maps to F [Goren 2002, A.5], so σ maps to the endomorphism

σ̃ :=
∑

b j Fr j
∈ EndK [F](D/VD).

In the ordinary case, the Dieudonné modules of A[p] and A[p]0 are

D(A[p])= (E/(V, 1− F)⊕E/(F, 1− V ))g and D= D(A[p]0)= (E/(V, 1− F))g

(since this is the subgroup scheme of D(A[p]) on which V is nilpotent [Goren 2002, A.5]). Hence F = 1
in End(D/VD)=Mg(Fp), and σ̃ :=

∑
b j is a scalar multiplication; therefore, it is nilpotent if and only

if it is zero (i.e., noninvertible).
The final claim follows from a result of Freeman and Lauter [2008, Proposition 3.7]. �

We were unable to answer the following natural questions:
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Question 6.8. (i) Can one construct a simple abelian variety for which very inseparable endomorphisms
do not form an ideal?

(ii) Consider the subset of the moduli space of abelian varieties of given dimension and given degree
of polarization consisting of those abelian varieties A for which inseparable isogenies are very
inseparable. Is this locus dense in the moduli space? Recall that, by a result of Norman and Oort
[1980, Theorem 3.1], the ordinary locus is dense.

7. The tame zeta function

We revert to our standard assumptions and define the following general “tame” version of the Artin–Mazur
zeta function for varieties over fields of positive characteristic (the construction is somewhat reminiscent
of that of the Artin–Hasse exponential):

Definition 7.1. Let K denote an algebraically closed field of positive characteristic p > 0, X/K an
algebraic variety, and let f : X→ X denote a confined morphism. The tame zeta function ζ ∗f is defined
as the formal power series

ζ ∗f (z) := exp
(∑

p -n

fn
zn

n

)
, (25)

summing only over n that are not divisible by p.

A basic observation is:

Proposition 7.2. We have identities of formal power series

ζX, f (z)=
∏
i>0

pi
√
ζ ∗

X, f pi (z pi
) (26)

and

ζ ∗X, f (z)= ζX, f (z)/ p
√
ζX, f p(z p). (27)

Proof. For the first identity (26), we do a formal computation, splitting the sum over n into parts where n
is exactly divisible by a given power pi of p (denoted pi

‖ n):

ζX, f (z)= exp
(∑

i>0

∑
pi ‖ n

fn

n
zn
)

= exp
(∑

i>0

∑
p -m

f pi m

pi m
z pi m

)

= exp
(∑

i>0

1
pi

∑
p -m

( f pi
)m

m
(z pi

)m
)

=

∏
i>0

exp
(

1
pi log(ζ ∗

f pi (z pi
))

)
.
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For the second identity (27), we compute as follows:

ζ ∗X, f (z)= exp
(∑

n>1

fn

n
zn
−

∑
k>1

f pk

pk
z pk
)
= exp

(∑
n>1

fn

n
zn
)/

exp
(

1
p

∑
k>1

( f p)k

k
z pk
)
. �

Theorem 7.3. For σ

�

A, there exists an integer t > 0 (depending on σ ) such that (ζ ∗σ )
t is a rational

function. In particular, ζ ∗σ is algebraic.

Proof. Proposition 2.7 implies that for p -n the inseparability degree degi(σ
n
− 1) = rn is periodic of

period ω with rn = rgcd(n,ω). Let µ denote the Möbius function. For n |ω, define rational numbers αn by

αn =
1
n

∑
e | n

µ(n/e)
re

. (28)

By Möbius inversion and the equality rn = rgcd(n,ω), we get

1
rn
=

∑
d | gcd(n,ω)

dαd for all n > 1.

Therefore,

ζ ∗σ (z)= exp
(∑

p -n

deg(σ n
− 1)

nrn
zn
)

= exp
(∑

d |ω

αd

∑
p -m

deg(σ dm
− 1)

m
zdm

)

=

∏
d |ω

(
exp

(∑
p -m

deg(σ dm
− 1)

m
zdm

))αd

.

Using the notation of Proposition 2.3(i), we can rewrite this as

ζ ∗σ (z)=
∏
d |ω

(
Dσ d (zd)/

p
√

Dσ pd (z pd)

)αd

(29)

and hence the result follows from the rationality of the degree zeta functions. �

The minimal exponent tσ > 0 for which ζ ∗σ (z) ∈ Q(z) is an invariant of the dynamical system σ

�

A.
We briefly discuss the arithmetic significance of such tσ , by considering both ordinary and supersingular
elliptic curves.

Proposition 7.4. Let E denote an elliptic curve, σ ∈ End(E), and let tσ be the minimal positive integer
for which ζ ∗σ (z)

tσ ∈ Q(z).

(i) If E is ordinary, tσ is a pure p-th power.

(ii) There exists a (supersingular) E and σ

�

E for which tσ is not a pure p-th power.
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Proof. If σ is an endomorphism of an ordinary elliptic curve, then there is a valuation |·| on the quotient
field L of the endomorphism ring that extends the p-valuation and such that degi σ =|σ | (cf. Example 4.2).
If σ is very inseparable, ζ ∗σ (z) is rational, and the claim is clear. Otherwise, let s be the minimal positive
integer for which M := |σ s

− 1|< 1. We find that for integers n not divisible by p,

rn = degi(σ
n
− 1)=

{
1 if s -n,
M if s | n.

(30)

Substituting this into (28), we get ω = s. If s = 1, we have α1 = 1/M , and if s > 1, we find

αn =


1 if n = 1,
0 if n | s, 1< n < s,
(1−M)/(Ms) if n = s.

(31)

Since p splits in L [Deuring 1941, §2.10], the valuation |·| has residue field Fp, and hence s | (p− 1).
From (29), it follows that ζ ∗σ (z) is a product of rational functions to powers 1/p and (1−M)/(Mps) (and
1/(Mp) if s = 1). Now with M = p−r for some r > 1, we find that (1−M)/(Mps)= (pr

− 1)/pr+1s,
which has denominator a power of p, since s divides p− 1. This proves (i).

For (ii) consider a supersingular elliptic curve A = E . We have already seen in Example 4.2 that the
inseparability degree of an isogeny is detected by a valuation on the quaternion algebra End(E)⊗Q,
on which we now briefly elaborate. The ring O = End(E) is a maximal order in a quaternion algebra,
and its completion Op = End(E)⊗Z Zp is an order in the unique quaternion division algebra D over Qp

[Deuring 1941]. There exists a valuation v : D→ Z on D with the property that Op = {x ∈ D : v(x)> 0}.
Let p = {x ∈ O : v(x) > 1}. Then p is a two-sided maximal ideal in O with pOp = p2Op and we
have an isomorphism O/p ' Fp2 . The inseparable degree of an isogeny σ ∈ O is given by the formula
degi(σ )= pv(σ ), cf. [Bridy 2016, Proposition 5.5].

Let σ ∈ O be an endomorphism such that its image in O/p' Fp2 generates the multiplicative group of
the field and such that v(σ p2

−1
− 1)= 1. Then for integers n not divisible by p we have

degi(σ
n
− 1)=

{
1 if (p2

− 1)-n,
p if (p2

− 1) | n.
(32)

Let us prove that such σ exists: choose elements σ0, τ ∈ O such that the image of σ0 in O/p ' Fp2

generates the multiplicative group of the field and v(τ)= 1. Then one of the elements σ0, σ0+ τ satisfies
the desired conditions.

Furthermore, the degree is of the form deg(σ n
−1)=mn

−λn
−(λ′)n+1 for λ, λ′ ∈Q and m := λλ′ ∈Z.

Using the convenient notation

Z(z) :=
p
√

1− z p

1− z
,

a somewhat tedious computation, splitting the terms in log ζ ∗σ (z) to take into account the cases in (32),
gives that

ζ ∗σ (z)=
g1(z)

p(p+1)
√

gp2−1(z)
, where gi (z) :=

Z(zi )Z((mz)i )
Z((λz)i )Z((λ′z)i )

.
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Note that Z(z) is itself a p-th root of a rational function. We conclude that t = p2(p+ 1) suffices to have
ζ ∗σ (z)

t
∈ Q(z) but ζ ∗σ (z)

t is not rational for any choice of t as a pure p-th power. �

8. Functional equations

In this section, we study the existence of functional equations for full and tame zeta functions on abelian
varieties. Assume throughout the section that σ is an isogeny. Under the transformation z 7→ 1/ deg(σ )z,
we will find a functional equation for zeta functions of very inseparable endomorphisms, and a “Riemann
surface” version of a functional equation for the tame zeta function. Since this transformation does not
make sense for ζσ as a formal power series, Dσ , ζσ , and ζ ∗σ are therefore considered as genuine functions
of a complex variable, and the symbols are understood to refer to their (maximal) analytic continuations.

Proposition 8.1. The degree zeta function Dσ (z) (cf. Definition 2.2) satisfies a functional equation of the
form

Dσ

(
1

deg(σ )z

)
= Dσ (z).

Proof. We use the notations from (20). It is clear that the multiset of λi is stable under the involution
λ 7→ deg(σ )/λ. From this symmetry, we obtain a functional equation for the exponential generating
function Dσ (z)=

∏r
i=1(1− λi z)−mi of the form

Dσ

(
1

deg(σ )z

)
= (−z)

∑r
i=1 mi

r∏
i=1

λ
mi
i Dσ (z).

Substituting n = 0 into (20) gives
∑r

i=1 mi = 0 and a direct computation using the form of λi and the
fact that q is even shows that

∏r
i=1 λ

mi
i = 1, which gives the claim. �

Remark 8.2. The functional equation for Dσ (z) can be placed in the cohomological framework from
Remark 2.4: consider the Poincaré duality pairing 〈·, ·〉 : Hi

× H2g−i
⊗ Q`(g) → Q`, under which

〈σ∗x, y〉 = 〈x, σ ∗y〉, with σ∗σ ∗ = [deg σ ]. Hence if σ ∗ has eigenvalues αi on Hi , then σ∗ has eigenvalues
deg(σ )/αi on H2g−i , but these sets are the same by duality. In this way the functional equation picks up
a factor zχ(A), where χ(A) is the `-adic Euler characteristic of A. But here, χ(A) = 0

(
since the i-th

`-adic Betti number of an abelian variety of dimension g is the binomial coefficient
(2g

i

))
.

Theorem 8.3. (i) If σ is very inseparable, then ζσ (z) extends to a meromorphic function on the entire
complex plane and satisfies a functional equation of the form

ζσ

(
1

deg(σ )z

)
= ζσ (z).

(ii) If σ is not very inseparable and 3 is the unique dominant root, then ζσ (z) cannot satisfy a func-
tional equation under z 7→ 1/ deg(σ )z; actually, the intersection of the domains of ζσ (z) and
ζσ (1/ deg(σ )z) is empty.
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(iii) For any confined σ , let Xσ denote the concrete Riemann surface of the algebraic function ζ ∗σ (z) (a
finite covering of the Riemann sphere). Then there exists an involution τ ∈ Aut(Xσ ) such that the
meromorphic extension ζ ∗σ : Xσ → Ĉ fits into a commutative diagram of the form

Xσ

ζ ∗σ
��

τ
// Xσ

ζ ∗σ
��

Ĉ id
// Ĉ.

(33)

Proof. If σ is very inseparable, then ζσ = Dσ , and the result follows from Proposition 8.1.
If σ is not very inseparable and 3 is the unique dominant root, then by Theorem 5.5 the function

ζσ (z) has a natural boundary on |z| = 1/3. Thus ζσ (z) and ζσ (1/deg(σ )z) are commonly defined
only on 3/deg(σ ) < |z| < 1/3 which is empty when 32 > deg(σ ). By Proposition 5.1(iii), we have
32 >3>

∏
|ξi | = deg σ, so this always holds.

For the third part of the theorem, consider (29) that expresses the function ζ ∗σ in terms of degree zeta
functions. Write αd/p = Ad/Bd for coprime integers Ad , Bd , let N denote the least common multiple of
Bd over all d |ω and set βd := Nαd/p ∈ Z. Then ζ ∗σ extends to a function on the Riemann surface Xσ
corresponding to the projective curve defined by the affine equation

yN
=

∏
d |ω

(
Dσ d (xd)p

Dσ pd (x pd)

)βd

given by ζ ∗σ (x, y)= y. By the fact that all Dσ satisfy the functional equation as in Proposition 8.1, the
map τ : Xσ → Xσ , τ (x, y)= (1/(deg(σ )x), y) is an involution of Xσ (we use that deg(σ r )= deg(σ )r

for any integer r ). The same functional equations then prove that the diagram (33) commutes. �

9. Prime orbit growth

In this section, we consider the prime orbit growth for a confined endomorphism σ : A→ A. We are
interested in possible analogues of the prime number theorem (PNT), much like Parry and Pollicott [1983]
proved for axiom A flows. In our case, it follows almost immediately from the rationality of their zeta
functions that such an analogue holds for very inseparable σ . In general, however, as we will see, the
prime orbit counting function displays infinitely many forms of limiting behavior. Nevertheless, the
(weaker) analogue of Chebyshev’s bounds and Mertens’ second theorem hold. In accordance with our
philosophy, we also consider counting only “tame” prime orbits (i.e, of length coprime to p), and in this
case we see finitely many forms of limiting behavior, detectable from properties of the p-divisible group.
Finally, we briefly discuss good main and error terms reflecting analogues of the Riemann hypothesis.

Notations/Definitions 9.1. A prime orbit O of length `=: `(O) of σ : A→ A is a set

O = {x, σ x, σ 2x, . . . , σ `x = x} ⊆ A(K )
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of exact cardinality `. Letting P` denote the number of prime orbits of length ` for σ , the prime orbit
counting function is πσ (X) :=

∑
`6X P`.

As formal power series, the zeta function of σ admits a product expansion

ζσ (z)=
∏
O

1
1− z`(O)

,

where the product runs over all prime orbits. Since σn =
∑

` | n `P`, Möbius inversion implies that
P` = 1

`

∑
n | ` µ

(
`
n

)
σn. Our proofs will exploit the fact that the numbers σn differ from the linear recurrent

sequence deg(σ n
− 1) only by a multiplicative factor, the inseparable degree, that grows quite slowly.

To avoid complications, we make the following assumption:

Standing assumption/notations:
The dominant root 3> 1 is unique.
The $ -periodic sequences (rn) and (sn), sn 6 0, are as in (14).
All asymptotic formulæ in this section hold for integer values of the parameter.

By Proposition 5.1(vi), this implies that 3> 1 is of multiplicity one. We start with a basic proposition
describing the asymptotics of P`. Interestingly, the error terms are determined by the zeros of the degree
zeta function. This appears to be a rather strong result with a very easy proof, dependent on the exponential
growth.

Proposition 9.2. P` =3`/(`r`|`|
s`
p )+ O(32`), where 2 :=max{Re(s) : Dσ (3

−s)= 0} ∈
[ 1

2 , 1
)
.

Proof. From (10), we get deg(σ n
− 1)=3n

+ O(32`) for

2 := max
|λi |6=3

log|λi |

log(3)
.

By Proposition 5.4, this equals the largest real part of a zero of Dσ (3
−s), and 1/262< 1. Hence

σ` =
deg(σ `− 1)
degi(σ

`− 1)
=

3`

r`|`|
s`
p
+ O(32`).

Expressing the number of prime orbits in terms of the number of fixed points, we get

P` =
1
`

∑
n | `

µ

(
`

n

)
σn =

σ`

`
+

1
`

∑
n | `
n<`

µ

(
`

n

)
σn.

Since |µ(`/n)σn|6 deg(σ n
− 1)6 M3n for some constant M depending only on σ , we get∣∣∣∣∣∑

n | `
n<`

µ

(
`

n

)
σn

∣∣∣∣∣6 `M3`/2,

and since 2> 1
2 , the claim follows. �
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The remainder of this section is dedicated to a study of what happens to the asymptotics if we further
average in `, like in the prime number theorem or Mertens’ theorem. We will see that between PNT and
Mertens’ theorem, information about σ being very inseparable or not gets lost.

The next lemma is formulated in a general way and will be applied several times in order to asymptoti-
cally replace factors “1/`” for `6 X by “1/X”. This leads to simplified main terms at the cost of worse
error terms (we will discuss another approach leading to a “complicated main term with good error term”
at the end of the section).

Lemma 9.3. Let (a`) be a bounded sequence and let 3> 1 be a real number. Then∑
`6X

a`
`
3`−X

=
1
X

∑
`6X

a`3`−X
+ O(1/X2).

Proof. Write ∑
`6X

a`
`
3`−X

−
1
X

∑
`6X

a`3`−X
=

∑
`6X

a`(X − `)
X`

3`−X .

With M := sup|a`|<+∞, the “top half” of this sum can be bounded as follows:∣∣∣∣ ∑
X/26`6X

a`(X − `)
X`

3`−X
∣∣∣∣6 2M

X2

∑
i>0

i3−i
= O(1/X2)

while the “bottom half” is easily seen to be O(X3−X/2), whence the claim. �

(Non)analogues of PNT and analogues of Chebyshev’s estimates. The first application is to the follow-
ing “fluctuating” asymptotics for the prime orbit counting function:

Proposition 9.4.
Xπσ (X)
3X =

∑
`6X

1
r`|`|

s`
p
3`−X

+ O(1/X).

Proof. By Proposition 9.2 we see that

Xπσ (X)
3X = X

∑
`6X

P`3−X
= X

∑
`6X

(
1

`r`|`|
s`
p
3`−X

+3−X O(32`)
)
.

The error terms in this sum form a geometric series and hence decrease exponentially. Applying Lemma 9.3
to the main term, we find the stated result. �

The next theorem discusses the analogue of the PNT in our setting; an analogue of Chebyshev’s 1852
determination of the order of magnitude of the prime counting function holds in general, but the analogue
of the PNT holds only for very inseparable endomorphisms. The result for general endomorphisms
is similar in spirit to that for the 3-adic doubling map considered in [Everest et al. 2005, Theorem 3],
S-integer dynamical systems in [Everest et al. 2007] (from which we take the terminology “detector
group”), or to Knieper’s theorem [1997, Theorem B] on the asymptotics of closed geodesics on rank one
manifolds of nonpositive curvature.
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Theorem 9.5. (i) The order of magnitude of πσ (X) is πσ (X)�3X/X , in the sense that the function
Xπσ (X)/3X is bounded away from 0 and∞.

(ii) Consider the “detector” group

Gσ := {(a, x) ∈ Z/$Z×Zp : a ≡ x mod |$ |−1
p }.

If (Xn) is a sequence of integers such that Xn →+∞ and (Xn, Xn) has a limit in the group Gσ ,
then the sequence Xnπσ (Xn)/3

Xn converges, and every accumulation point of Xπσ (X)/3X arises
in this way.

(iii) (a) If σ is very inseparable, limX→+∞ Xπσ (X)/3X exists and equals 3/(3− 1).
(b) If σ is not very inseparable, then the set of accumulation points of Xπσ (X)/3X is a union of a

Cantor set and finitely many points. In particular, it is uncountable.

Proof. For (i), we estimate the value of Xπσ (X)/3X in terms of the sum in Proposition 9.4. The bound
from above is trivial; for the bound from below we consider the terms with ` = X − 1 and ` = X and
note that for at least one of these indices we have |`|p = 1. We thus obtain the bounds

1
3max(r`)

6 lim inf
X→+∞

Xπσ (X)
3X 6 lim sup

X→+∞

Xπσ (X)
3X 6

3

3− 1
. (34)

To prove (ii), the formula in Proposition 9.4 may be rewritten as

Xπσ (X)
3X =

X−1∑
`=0

1
rX−`|X − `|

sX−`
p

3−`+ O(1/X). (35)

If (Xn) is as indicated, i.e., if Xn mod$ stabilizes (say at the value $0 mod$ ) and Xn converges to
some x in Zp, then individual summands in (35) have a well-defined limit while the whole sum is bounded
uniformly in n by the convergent series

∑
∞

t=03
−t . Thus

lim
n→+∞

Xnπσ (Xn)

3Xn
=

∞∑
`=0

1

r$0−`|x − `|
s$0−`
p

3−`, (36)

where (rn) and (sn) are prolonged to periodic sequences for n ∈ Z in an obvious manner; if x is a positive
integer, then the term corresponding to ` = x should be construed as 3−`/r$0−` if s$0−` = 0, and 0
otherwise.

We now prove (iii). When σ is very inseparable, $ = 1, rn = 1, sn = 0, and Proposition 9.4 implies
the result by summing the geometric series

∑
k>03

−k
= 1/(1− 1/3) in (36). Note that the result also

follows by Tauberian methods applied to the rational zeta function ζσ = Dσ .
In the case of general σ , we consider the map ϕ : Gσ→R which associates to an element ($0, x)∈Gσ

the limit

ϕ($0, x)= lim
n→+∞

Xnπσ (Xn)

3Xn
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for a sequence (Xn) of integers such that Xn→+∞ and Xn has the limit ($0, x) in Gσ . By (36), this
map is continuous. We will show that in some neighborhood of each point the map ϕ is either constant
or a homeomorphism. Note that since Gσ is compact, the set of accumulation points of Xπσ (X)/3X is
equal to the image of ϕ.

Choose $0 mod$ , two distinct elements x, y ∈ Zp and two sequences of integers (Xn) and (Yn)

which tend to infinity and such that Xn mod$ = Yn mod$ =$0 and Xn→ x and Yn→ y in Zp. Then
by (36) we have

ϕ($0, x)−ϕ($0, y)=
∞∑
`=0

a`, (37)

where

a` =
1

r$0−`

(
1

|x − `|
s$0−`
p
−

1

|y− `|
s$0−`
p

)
3−`.

Let k > 0 be such that |x − y|p = p−k . The terms a` are nonzero if and only if ` ≡ x (mod pk+1)

or `≡ y (mod pk+1) and furthermore s$0−` 6= 0. Note that whether such ` exists depends only on the
values of x −$0 and y −$0 modulo gcd(pk+1,$). For ` with a` 6= 0, the terms a` can be bounded
from below:

|a`|>
1

r$0−`

(pks$0−` − p(k+1)s$0−`)3−` >
1

2r$0−`

pks$0−`3−`

while clearly |a`|63−` for any `.
We now consider two cases depending on whether or not there exists ` such that a` 6= 0.

Case 1: Assume first that there exists ` such that a` 6= 0 and let `0 be the smallest such `. Since any other
such ` differs from `0 by a multiple of pk , we get∣∣∣∣ ∞∑

`=0

a`

∣∣∣∣> ( 1
2r$0−`0

pks$0−`0 −
3−pk

1−3−pk

)
3−`0 .

Since the sequences (r`) and (s`) take only finitely many values, the expression on the right is positive
for k larger than a constant K0 which depends only on σ but not on x , y, or $0. Therefore from (37) we
conclude that if |x − y|p 6 p−K0 , then ϕ($0, x) 6= ϕ($0, y).

Case 2: If a` = 0 for all `, then by (37) we have ϕ($0, x)= ϕ($0, y). Let pν be the largest power of
p dividing $ . Recall that whether a` = 0 for all ` depends only on the values of x −$0 and y −$0

modulo gcd(pk+1,$). Therefore if a` = 0 for all ` for |x − y| = p−k with k > ν, then the map ϕ is
locally constant in a neighborhood of ($0, x).

Replacing K0 with max(K0, ν) if necessary, we see that the map ϕ : Gσ→R restricted to open compact
subsets

B($0, x)= {($0, y) ∈ Gσ : |x − y|p 6 p−K0} ⊆ Gσ
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is either injective (corresponding to Case 1) or constant (corresponding to Case 2). Since Gσ is a disjoint
union of finitely many subsets B($0, x), and since each B($0, x) is topologically a Cantor set, we
conclude that the image of ϕ is a union of finitely many (possibly no) Cantor sets and finitely many points.

In order to finish the proof, it is enough to note that if σ is very inseparable, then there exists
($0, x) ∈ Gσ for which Case 1 holds, so the image of ϕ contains a Cantor set. Indeed, by Lemma 4.4
there exists an integer $0 such that s$0 < 0. It is then easy to see that Case 1 holds for this choice of $0

and x = 0. �

Example 9.6. If σ is the (very inseparable) Frobenius (relative to Fq) on an abelian variety A/Fq of
dimension g, then 3= qg and we find that

∑
`6X P` ∼ qg(X+1)/(X (qg

− 1)), where P` is the number of
closed points of A with residue field Fq` .

Our warm up example from the introduction illustrates what happens in the not very inseparable case.

Tame prime orbit counting. Now consider the analogous question in the tame case.

Definition 9.7. The tame prime orbit counting function is π∗σ (X) :=
∑
`6X
p -`

P`.

Remark 9.8. The tame zeta function ζ ∗σ (z) is not exactly equal to the formal Euler product over orbits of
length coprime to p, but rather (notice the difference with (26)):∏

p -`(O)

1
1− z`(O)

=

∏
i>0

pi
√
ζ ∗σ (z pi

).

We find only finitely many possible kinds of limiting behavior, governed by the values of the periodic
sequence (rn) (the warm up example from the introduction illustrates this).

Theorem 9.9. For any k ∈ {0, . . . , p$ − 1} the limit

lim
X→+∞

X≡k mod p$

Xπ∗σ (X)
3X = ρk (38)

exists (so there is convergence along sequences of values of X that converge in the “tame detector group”
G∗σ := Z/p$ ) and is given by

ρk =
1

3p$ − 1

∑
16n6p$

p -n

3〈n−k〉

rn
, (39)

where 〈x〉 denotes the representative for x mod p$ in {1, . . . , p$ }.

Proof. By Proposition 9.2 we have

π∗σ (X)=
∑

`6X, p -`

(
3`

`r`
+ O(32`)

)
.
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The error terms in this formula form a geometric progression and hence are O(32X ). Multiplying by
3−X and applying Lemma 9.3, we get

π∗σ (X)
3X =

1
X3X

∑
`6X, p -`

3`
1
r`
+ O(1/X2).

We split the sum by values of rn , as follows:

lim
X→+∞

Xπ∗σ (X)
3X = lim

X→+∞

1
3X

( ∑
16n6p$

p -n

1
rn

⌊
X−n
p$

⌋∑
s=0

3n+s p$
)
= lim

X→+∞

( ∑
16n6p$

p -n

3
p$
⌊

X−n
p$

⌋
+p$+n−X

rn(3p$ − 1)

)
.

The limit does not converge in general, but if we put X = Y p$ + k for fixed k and Y →+∞, we find
the indicated result, since p$

⌊ k−n
p$

⌋
+ p$ + n− k = 〈n− k〉. �

We refer to the example in the introduction for some explicit computations and graphs.

Analogue of Mertens’ theorem. The PNT is equivalent to the statement that the reciprocals of the primes
up to X sum, up to a constant, to log log X+o(1/ log X). Mertens’ second theorem is the same statement
but with the weaker error term O(1/ log X). It turns out that the analogue of this last theorem in our
setting does hold, and very inseparable and not very inseparable endomorphisms behave in the same way.

Proposition 9.10. For some c ∈ Q and c′ ∈ R we have
∑

`6X P`/3` = c log X + c′+ O(1/X).

Proof. From Proposition 9.2 we find∑
`6X

P`/3` =
∑
`6X

(
1

`r`|`|
s`
p
+ O(3(2−1)`)

)
.

The error terms in this formula sum to c′′+ O(3(2−1)X ) for some c′′ ∈ R and the main terms sum to

$∑
j=1

1
r j

B−s j , j (X),

where for integers s > 0, $ > 0, and j , we set

Bs, j (X) :=
∑
n6X

n≡ j mod$

|n|sp
n
.

The proposition follows from

Bs, j (X)= cs, j log X + c′s, j + O(1/X), (40)
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for constants cs, j ∈ Q and c′s, j ∈ R. The case s = 0 is well-known and we will thus limit ourselves to the
case s > 0. To prove (40), we first consider the related sum

As, j (X)=
∑
n6X

n≡ j mod$

|n|sp

and we claim that

As, j (X)= cs, j X + O(1) with cs, j ∈ Q. (41)

Then Abel summation gives

Bs, j (X)=
As, j (X)

X
+

∫ X

1

As, j (t)
t2 dt,

so (40) follows, setting c′s, j = cs, j +
∫
∞

1 (As, j (t)− cs, j t) dt/t2
∈ R. To prove (41), observe that the

arithmetic sequence j +$N might or might not contain terms divisible by arbitrarily high power of p
depending on whether | j |p6 |$ |p or | j |p > |$ |p. In the latter case the sequence |n|p for n≡ j (mod$)
is constant, and the asymptotic formula for As, j is clear. In the former case we write k for the power of p
dividing $ . In the formula defining As, j , we isolate terms with a given value of |n|p. For each integer
q > k the number of terms n ≡ j (mod$) with n 6 X and |n|p = p−q is p− 1/(pq−k+1$)X + O(1),
the implicit constant being independent of q. We thus get the asymptotic formula

As, j =
∑
q>k

p−sq
(

p− 1
pq−k+1$

X + O(1)
)
= cs, j X + O(1),

with cs, j = (p− 1)ps(1−k)/((ps+1
− 1)$). �

Error terms in the PNT. We now briefly discuss how to identify good main terms and error terms in the
asymptotics for the number of prime orbits. From Proposition 9.2, it is immediate that

πσ (X)= M(X)+ O(32X )

with “main term”

M(X) :=
∑
`6X

3`

`r`|`|
s`
p

depending only on the data (p,3,$, (rn), (sn)) and the power saving in the error term is dictated by the
zeros of the degree zeta function Dσ .

Finding 2 geometrically: Finding 2 can sometimes be approached geometrically, as follows. Recall
that ξi are roots of the characteristic polynomial of σ acting on H1 and all λi are products of such roots
(corresponding to the characteristic polynomial of σ acting on Hi

=∧
i H1 for various i). Suppose that

|ξi |
2
= a (42)
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for all i and a fixed integer a. Then 3 = ag and 2 = 1 − 1/(2g), so we get an error term of the
form O(ag−1/2). By [Mumford 2008, Chapter 4, Application 2], condition (42) happens if for some
polarization on A with Rosati involution ′, we have σσ ′ = a in End(A). In Weil’s proof of the analogue
of the Riemann hypothesis for abelian varieties A/Fq , it is shown that this holds for σ the q-Frobenius
with a = qg.

Another expression for the main term: One may express the main term M(X) as follows. For k ∈
{0, . . . ,$ − 1}, define

Fk(3, X)=
∑
`6X

`≡k mod$

3`/`; (43)

then

M(X)=
$−1∑
k=0

r−1
k

(
Fk(3, X)+

∑
i>1

p(sk−1)i (1− p−sk )
∑

06k′<$
pi k′≡k mod$

Fk′

(
3pi

,

⌊
X
pi

⌋))
. (44)

We collect the information in the following proposition.

Proposition 9.11. With M(X) the function defined in (44) using (43), depending only on the data
(p,3,$, (rn), (sn)) (i.e., the growth rate 3 and the inseparability degree pattern), we have for integer
values of X ,

πσ (X)= M(X)+ O(32X )

where

2= {Re(s) : s is a zero of Dσ (3
−s)}. �

A worked example is in the introduction.

The tame case: In the tame setting, one similarly finds π∗σ (X)=M∗(X)+ O(32X ) with

M∗(X)=
$−1∑
k=0

r−1
k

(
Fk(3, X)− 1

p

∑
06k′<$

pk′≡k mod$

Fk′

(
3p,

⌊
X
p

⌋))
.

Remark 9.12. Due to its exponential growth as a function of a real variable X , it is not possible to
approximate M(bXc) by a continuous function with error O(3ϑX ) for any ϑ < 1. Note that Fk(3, X)
can be evaluated using the Lerch transcendent.

Appendix: Adelic perturbation of power series
by Robert Royals and Thomas Ward

The result in this appendix comes from the thesis of Royals [2015], the first author, and arose there
in connection with the following question about “adelic perturbation” of linear recurrence sequences.
Write |m|S =

∏
`∈S|m|` for m ∈ Q and S a set of primes, and for an integer sequence a = (an) define a
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function fa,S by fa,S(z)=
∑
∞

n=1|an|Sanzn . If a is an integer linear recurrence sequence, does fa,S satisfy
a Pólya–Carlson dichotomy? That is, does fa,S admit a natural boundary whenever it does not define a
rational function? This remains open, but for certain classes of linear recurrence and for |S|<∞, the
following theorem is the key step in the argument.

Theorem A.1. Let a = (an) be an integer sequence with the property that for every prime ` there exist
constants n` in Z>0, (c`,i )

n`−1
i=0 in Qn` , and (e`,i )

n`−1
i=0 in Zn`

>0 such that |an|` = c`,k |n|
e`,k
` if n ≡ k mod n`.

Let S be a finite set of primes and write f (z)=
∑

n>1|an|Szn . If the sequence (|an|S) takes infinitely many
values, then f admits the unit circle as a natural boundary. Otherwise, f is a rational function.

The method of proof is reminiscent of Mahler’s, in which functional equations allow one to conclude
that certain functions have singularities along a dense set of roots of unity (compare [Bell et al. 2013]).

For the proof, it is necessary to consider a slightly more general setup. Assume that S is a finite set
of primes and for each ` ∈ S there is an associated positive integer e`, write e for the collection (e`)`∈S ,
and write FS,e,r (z) =

∑
n>0|n− r |S,ezn for some r ∈ Q, where |n|S,e =

∏
`∈S|n|

e`
` . Notice that there is

always a bound of the shape
A

nB � |n− r |` 6max{1, |r |`},

for constants A, B > 0, so the radius of convergence of FS,e,r is 1. If |r |` > 1 for some ` ∈ S then
|n− r |` = |r |` for all n ∈ N, and so

FS,e,r (z)= |r |
e`
`

∑
n>0

|n− r |S−{`},ezn
= |r |e`` FS−{`},e,r (z)

wherever these series are defined. Thus as far as the question of a natural boundary is concerned, we may
safely assume that |r |` 6 1 for all ` ∈ S.

Now let ` ∈ S be fixed. Since |r |` 6 1, we can write

r = r0+ r1`+ r2`
2
+ · · ·

with ri ∈ {0, 1, . . . , `− 1} for all i > 0. For r ∈ Q let the positive integer r0+ r1`+ · · · + re−1`
e−1 be

written as r mod `e. In particular, r mod `e is the smallest nonnegative integer with

|r − (r mod `e)|` 6 `
−e.

If n= pe1
1 · · · p

e j
j for distinct primes pi , then write r mod n for the smallest nonnegative integer satisfying

|r − (r mod n)|pi 6 p−ei
i

for i = 1, . . . , j (which exists by the Chinese remainder theorem).
Next we will obtain some functional equations for FS,e,r . For m>0, we write tm= (r−(r mod `m))/`m .

Note that |tm |p 6 1 for all p ∈ S and m > 0. We claim that for any m > 1 we have the equality

FS,e,tm−1(z)= FS−{`},e,tm−1(z)+ `
−e`zrm−1 FS,e,tm (z

`)− zrm−1 FS−{`},e,tm (z
`). (45)
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Indeed, we compare directly the coefficients of zn on both sides of this equation. The coefficient on the
left is |n− tm−1|S,e. The coefficient on the right is |n− tm−1|S−{`},e if ` -(n− tm−1) and

|n− tm−1|S−{`},e+ `
−e`

∣∣∣∣n− rm−1

`
− tm

∣∣∣∣
S,e
−

∣∣∣∣n− rm−1

`
− tm

∣∣∣∣
S−{`},e

otherwise. Since (n− rm−1)/`− tm = (n− tm−1)/` and |`|S−{`},e = 1, after an easy manipulation we see
that both these coefficients are equal and hence we get (45).

Combining formulæ(45) for m = 1, . . . , s, we obtain the equality:

FS,e,r (z)= FS−{`},e,r (z)− (`e` − 1)
s−1∑
k=1

1
`ke`

zr mod `k
FS−{`},e,tk (z

`k
)

− `−(s−1)e`zr mod `s
FS−{`},e,ts (z

`s
)+ `−se`zr mod `s

FS,e,ts (z
`s
). (46)

Since we have |ts |p 6 1 for all p ∈ S and s > 0, the coefficients in the power series FS−{`},e,ts (z
`s
) and

FS,e,ts (z
`s
) are bounded by 1, and hence for |z|< 1 we can bound the two latter terms in (46) by

|−`−(s−1)e`zr mod `s
FS−{`},e,ts (z

`s
)+ `−se`zr mod `s

FS,e,ts (z
`s
)|6 (`−(s−1)e` + `−se`)

∑
n>0

|z|n`
s
.

Thus by passing in (46) with s to infinity, we obtain:

FS,e,r (z)= FS−{`},e,r (z)− (`e` − 1)
∑
k>1

1
`ke`

zr mod `k
FS−{`},e,tk (z

`k
). (47)

Lemma A.2. Let S be a finite set of primes, e = {e` | ` ∈ S} the associated exponents, and n > 1 an
integer divisible by some prime q 6∈ S. Then there is a constant cn,e,S > 0 such that for any primitive n-th
root of unity µ and for all λ ∈ [0, 1) we have |FS,e,r (λµ)|< cn,e,S .

The constant cn,e,S does not depend on r under the assumption that |r |` 6 1 for all ` ∈ S.

Proof. We proceed by induction on the cardinality of S. For S =∅ we have

FS,e,r (z)=
∑
m>0

|m− r |∅,ezm
=

1
1− z

,

and the existence of the claimed constant is clear. Now suppose that |S|> 1, let p ∈ S and write

FS,e,r (z)= FS−{p},e,r (z)− (pep − 1)
∑
k>1

1
pkep

zr mod pk
FS−{p},e,tk (z

pk
).

So,

|FS,e,r (z)|6 |FS−{p},e,r (z)| + (pep − 1)
∑
k>1

1
pkep
|zr mod pk

||FS−{p},e,tk (z
pk
)|

6 (pep − 1)
∑
k>0

1
pkep
|FS−{p},e,tk (z

pk
)|
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for |z|6 1. If z = λµ for some λ ∈ [0, 1) and µ is a primitive n-th root of unity with q | n, then z pk
= λ′µ′

where λ′ ∈ [0, 1) and µ′ is a primitive n′-th root of unity with q | n′, and n′ is one of finitely many possible
values. Thus by the inductive hypothesis there is a constant c with |FS−{p},e,tk (z

pk
)| < c for all k, and

hence |FS,e,r (z)|< (pep − 1)cpep/(pep − 1). Taking this as cn,e,S gives the lemma. �

Lemma A.3. Let S be a finite set of primes and let r ∈ Q be such that |r |p 6 1 for all p ∈ S. Suppose
that n > 1 is an integer divisible only by primes in S, and that µ is a primitive n-th root of unity. Writing
n = p f1

1 · · · p
f j
j where p1, . . . , p j are distinct primes in S and fi > 1 for all i = 1, . . . , j , we have

|FS,e,r (λµ)| →∞

as λ→ 1−. More precisely,

Re((−1) jµ−(r mod n)FS,e,r (λµ))→∞

as λ→ 1− and there exists a constant c′n,e,S (which does not depend on r and λ) such that

|Im((−1) jµ−(r mod n)FS,e,r (λµ))|< c′n,e,S and Re((−1) jµ−(r mod n)FS,e,r (λµ)) >−c′n,e,S.

Proof. We again write z = λµ and define the function ϕS,e,r,µ(λ) by the formula

ϕS,e,r,µ(λ)= (−1) jµ−(r mod n)FS,e,r (λµ),

where j is the number of prime factors of n.
We proceed by induction on the number of distinct prime factors in n starting with n = 1. In this case

ϕS,e,r,µ(λ) =
∑

m>0|m − r |S,eλm for each m, λm
→ 1− as λ→ 1−, and |m − r |S,e = 1 infinitely often.

This shows that the real part tends to infinity as λ→ 1− and is bounded from below by 0. The imaginary
part is bounded as FS,e,r (λ) is real for all λ ∈ [0, 1).

Now let p1, . . . , p j ∈ S be distinct, and let n =
∏ j

i=1 p fi
i with fi > 1 for all i . Let p = p1 and

use the variables r0, r1, . . . to indicate the p-adic coefficients of r and t0, t1, . . . to indicate the values
tk = (r−r mod pk)/pk for all k. Assume first that f1= 1. We will apply the functional equation (47). For
all k > 1, µpk

is a primitive (n/p)-th root of unity and the formula tk = (r − r mod pk)/pk implies that

r mod n ≡ r mod pk
+ pk(tk mod (n/p)) (mod n).

Thus (47) after some manipulation gives

ϕS,e,r,µ(λ)= ϕS−{p},e,r,µ(λ)+ (pep − 1)
∞∑

k=1

λr mod pk

pkep
ϕS−{p},e,tk ,µpk (λpk

).

The leading term in this expression is bounded by Lemma A.2, and the inductive hypothesis applied to
the terms ϕS−{p},e,r,µpk (λpk

) shows that their real part tends to +∞ as λ→ 1− and is bounded away from
−∞ independently of r and λ. Since these terms appear within the geometric progression

∑
∞

k=1 p−kep ,
we obtain that

ϕS,e,r,µ(λ)→∞
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as λ→ 1− and the same argument proves the latter claim. This proves the inductive step for the case f1= 1.
We will use this as the base case for a second inductive proof for f1 > 1. The argument in this case is

similar except that we will use the functional equation (45) instead of (47). As before, µp is a primitive
(n/p)-th root of unity and

r mod n ≡ r mod p+ p(t1 mod (n/p)) (mod n).

Thus (45) after some manipulation gives

ϕS,e,r,µ(λ)= ϕS−{p},e,r,µ(λ)+ p−epλr mod pϕS,e,t1,µp(λp)− λr mod pϕS−{p},e,t1,µp(λp).

The first and the third terms in this expression are bounded by Lemma A.2, and hence the claim follows im-
mediately from the inductive hypothesis applied to the term ϕS,e,t1,µp(λp). This concludes the induction. �

Proof of Theorem A.1. If c`,k = 0 for some ` ∈ S and k we will automatically take e`,k = 0 as the power
of |n|` plays no role. Another case we wish to avoid is if for some ` and k ∈ {0, 1, . . . , n` − 1}, the
value |n|` is constant for all n ≡ k mod n`. Writing v` for the `-adic order, this happens exactly when
v`(n`) > v`(k), and in this case |n|` = |k|`. If this is the case and e`,k 6= 0, then we will set e`,k = 0 and
substitute c`,k |k|

e`,k
` for c`,k . Let N = lcm{n p | p ∈ S}. For each j ∈ {0, 1, . . . , N − 1} consider the value

of |an|S when n ≡ j mod N . For each p, n ≡ j mod N and thus n ≡ j mod n p as n p | N . Let kp, j be
the unique element of {0, 1, . . . , n p − 1} such that kp, j ≡ j mod n p. So

|an|S =
∏
p∈S

|an|p =
∏
p∈S

cp,kp, j |n|
ep,k p, j
p

as n ≡ j ≡ kp, j mod n p for all p ∈ S. If for any nonzero n with n ≡ j mod N we have |an|S = 0, or
equivalently an = 0, we define S j =∅ and d j = 0. If this is the case, then it follows that for this value n

0=
∏
p∈S

cp,kp, j |n|
ep,k p, j
p

and |n|
ep,k p, j
p 6= 0 implies that cp,kp, j = 0 for some p ∈ S. This in turn implies that |am |S = 0 and hence

am = 0 for any m ≡ j mod N . If, on the other hand, for some n ≡ j mod N we have |an|S 6= 0 then for
all m ≡ j mod N we have |am |S 6= 0 and hence cp,kp, j 6= 0 for all p ∈ S. If for a prime p ∈ S we have
vp(N ) > vp( j), then for all n ≡ j mod N we have |n|p = | j |p. We will split S into the disjoint union
S j t S′j t S′′j , where

S j = {p ∈ S | vp(N )6 vp( j) and ep,kp, j 6= 0},

S′j = {p ∈ S | vp(N ) > vp( j) and ep,kp, j 6= 0},

S′′j = {p ∈ S | vp(N ) > vp( j) and ep,kp, j = 0}.

Thus for all n ≡ j mod N we have

|an|S =
∏
p∈S

cp,kp, j ·

∏
p∈S′j

| j |
ep,k p, j
p · |n|S j ,e( j),
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where e( j) denotes the collection of exponents {ep,k j | p ∈ S j }. Set

d j =
∏
p∈S

cp,kp, j ·

∏
p∈S′j

| j |
ep,k p, j
p

and |an|S = d j |n|S j ,e( j) for all n ≡ j mod N .
Assume that the sequence (|an|S) takes infinitely many values. This implies that there exists some j

for which S j is nonempty. By our assumption, for such j we have d j 6= 0. Consider the family of sets
{S j | 06 j < N }, partially ordered by inclusion. Since it is finite and the S j are not all empty, there is a
nonempty maximal element S j0 . Write

f (z)=
∞∑

n=1

|an|Szn
=

N−1∑
j=0

∑
n≡ j (N )

|an|Szn
=

N−1∑
j=0

f j (z)

where
f j (z)=

∑
n≡ j (N )

|an|Szn

=

∑
n≡ j (N )

d j |n|S j ,e( j)zn

=

∞∑
k=0

d j |k N + j |S j ,e( j)zk N+ j

= d j |N |S j ,e( j)

∞∑
k=0

|k+ j/N |S j ,e( j)zk N+ j

= d j |N |S j ,e( j)z j g j (zN )

with g j (z)= FS j ,e( j),− j/N (z). Thus f = h1+ h2, where h1 is the sum of the f j with S j = S j0 and h2 is
the sum of the f j with S j 6= S j0 . Let n =

∏
q∈S j0

q fq be an integer divisible by every prime in S j0 and by
no other primes such that for each q ∈ S j0 we have fq > vq(N ) and let µ be a primitive n-th root of unity.
If j with 06 j < N has S j 6= S j0 then f j (λµ)= d j |N |S j ,e( j)(λµ) j g j (λ

NµN ) is bounded as λ→ 1− by
Lemma A.2 as µN is an n/N -th root of unity and n/N is divisible by every prime in S j0 and hence by
some prime not in S j by maximality of S j0 . Thus |h2(λµ)| is bounded as λ→ 1−. Suppose instead that
S j = S j0 . By Lemma A.3 we have that

Re((−1)m(µN )−(− j/N mod n/N )g j (zN ))→∞

as λ→ 1− where m = |S j0 |. Equivalently,

Re((−1)mµ( j mod n)g j (zN ))→∞,

and thus

Re((−1)mz j g j (zN ))→∞
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as λ→ 1−. As the real part of every term in h1(z) goes to∞, this means that

Re((−1)m f (λµ))→∞

as λ→ 1−. Since this is true for any µ that is a
(∏

q∈S j0
q fq
)
-th root of unity with each fq > vq(N ),

these singularities form a dense set on the unit circle. It follows that f admits a natural boundary on the
unit circle.

For the second part of the theorem, assume that the sequence (|an|S) takes only finitely many values.
Then (|an|S) is periodic modulo N , and thus

f (z)=
N∑

j=1

∑
n≡ j (N )

|a j |Szn
=

N∑
j=1

|a j |S

∞∑
m=0

zm N+ j
=

N∑
j=1

|a j |S
z j

1− zN ,

completing the proof. �
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