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Ordinary algebraic curves with many automorphisms
in positive characteristic
Gábor Korchmáros and Maria Montanucci

Let X be an ordinary (projective, geometrically irreducible, nonsingular) algebraic curve of genus g(X)≥ 2
defined over an algebraically closed field K of odd characteristic p. Let Aut(X) be the group of all
automorphisms of X which fix K elementwise. For any solvable subgroup G of Aut(X) we prove that
|G| ≤ 34(g(X)+ 1)3/2. There are known curves attaining this bound up to the constant 34. For p odd,
our result improves the classical Nakajima bound |G| ≤ 84(g(X)− 1)g(X) and, for solvable groups G,
the Gunby–Smith–Yuan bound |G| ≤ 6(g(X)2 + 12

√
21g(X)3/2) where g(X) > cp2 for some positive

constant c.

1. Introduction

In this paper, X stands for a (projective, geometrically irreducible, nonsingular) algebraic curve of genus
g(X)≥ 2 defined over an algebraically closed field K of odd characteristic p. Let Aut(X) be the group
of all automorphisms of X which fix K elementwise. The assumption g(X)≥ 2 ensures that Aut(X) is
finite. However, the classical Hurwitz bound |Aut(X)| ≤ 84(g(X)−1) for complex curves fails in positive
characteristic, and there exist four families of curves satisfying |Aut(X)| ≥ 8g3(X) [Stichtenoth 1973;
Henn 1978; Hirschfeld et al. 2008, §11.12]. Each of them has p-rank γ (X) (equivalently, its Hasse–Witt
invariant) equal to zero; see for instance [Giulietti and Korchmáros 2014]. On the other hand, if X is
ordinary, i.e., g(X)= γ (X), Guralnick and Zieve announced in 2004, as reported in [Gunby et al. 2015;
Kontogeorgis and Rotger 2008], that for odd p there exists a sharper bound, namely |Aut(X)| ≤ cpg(X)

8/5

with some constant cp depending on p. It should be noticed that no proof of this sharper bound is available
in the literature. In this paper, we concern ourselves with solvable automorphism groups G of an ordinary
curve X, and for odd p we prove the even sharper bound:

Theorem 1.1. Let X be an algebraic curve of genus g(X)≥ 2 defined over an algebraically closed field K

of odd characteristic p. If X is ordinary and G is a solvable subgroup of Aut(X), then

|G| ≤ 34(g(X)+ 1)3/2. (1)

For odd p, our result provides an improvement on the classical Nakajima bound |G|≤84(g(X)−1)g(X)
[1987] and, for solvable groups, on the recent Gunby–Smith–Yuan bound |G| ≤ 6(g(X)2+12

√
21g(X)3/2)

proven in [Gunby et al. 2015] under the hypothesis that g(X) > cp2 for some positive constant c.

MSC2010: primary 14H37; secondary 14H05.
Keywords: algebraic curves, algebraic function fields, positive characteristic, automorphism groups.
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2 Gábor Korchmáros and Maria Montanucci

The following example is due to Stichtenoth, and it shows that (1) is the best possible bound apart from
the constant c [Korchmáros et al. 2018]. Let Fq be a finite field of order q = ph , and let K= Fq denote its
algebraic closure. For a positive integer m prime to p, let Y be the irreducible curve with affine equation

yq
+ y = xm

+
1

xm (2)

and F = K(Y) its function field. Let t = xm(q−1). The extension F |K(t) is a non-Galois extension
as the Galois closure of F with respect to H is the function field K(x, y, z) where x, y, z are linked
by (2) and zq

+ z = xm . Furthermore, g(Y)= (q − 1)(qm− 1), γ (Y)= (q − 1)2, and Aut(Y) contains
a subgroup QoU of index 2 where Q is an elementary abelian normal subgroup of order q2 and the
complement U is a cyclic group of order m(q−1). If m = 1, then Y is an ordinary curve, and in this case
2g(Y)3/2 = 2(q−1)3 < 2q2(q−1)= |Aut(X)|, which shows indeed that (1) is sharp up to the constant c.

Lower bounds on the order of solvable automorphism groups of algebraic curves depending on their
genera are due to Neftin and Zieve. Their [2015, Theorem 4.1] states that for every integer ` > 0 there
exists a curve X together with a solvable subgroup of Aut(X) of order d and derived length ` such that

g(X)≤ c`d logo` (d),

where c` is a constant and logo` denotes log iterated ` times. The curve X is constructed as a solvable
cover of a curve with at least one rational point, in which a given set S of rational points splits completely.

2. Background and preliminary results

For a subgroup G of Aut(X), let X denote a nonsingular model of K(X)G , that is, a (projective, nonsingular,
geometrically irreducible) algebraic curve with function field K(X)G , where K(X)G consists of all elements
of K(X) fixed by every element in G. Usually, X is called the quotient curve of X by G and denoted by
X/G. The field extension K(X)|K(X)G is Galois of degree |G|.

Since our approach is mostly group theoretical, we prefer to use notation and terminology from group
theory rather than from function field theory.

Let 8 be the cover of X|X where X=X/G. A point P ∈X is a ramification point of G if the stabilizer
G P of P in G is nontrivial; the ramification index eP is |G P |; a point Q ∈ X is a branch point of G if
there is a ramification point P ∈ X such that 8(P)= Q; the ramification (branch) locus of G is the set of
all ramification (branch) points. The G-orbit of P ∈ X is the subset o = {R | R = g(P), g ∈ G} of X,
and it is long if |o| = |G|; otherwise o is short. For a point Q, the G-orbit o lying over Q consists of all
points P ∈ X such that 8(P)= Q. If P ∈ o, then |o| = |G|/|G P | and hence Q is a branch point if and
only if o is a short G-orbit. It may be that G has no short orbits. This is the case if and only if every
nontrivial element in G is fixed-point-free on X, that is, the cover 8 is unramified. On the other hand, G
has a finite number of short orbits. For a nonnegative integer i , the i-th ramification group of X at P is
denoted by G(i)

P (or Gi (P) as in [Serre 1979, Chapter IV]) and defined to be

G(i)
P = {g | ordP(g(t)− t)≥ i + 1, g ∈ G P},

where t is a uniformizing element (local parameter) at P . Here G(0)
P = G P .
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Let g be the genus of the quotient curve X= X/G. The Riemann–Hurwitz genus formula gives

2g− 2= |G|(2g− 2)+
∑
P∈X

dP , (3)

where the different dP at P is given by

dP =
∑
i≥0

(|G(i)
P | − 1). (4)

If |G P | is prime to p, then dP = |G P | − 1.
Let γ be the p-rank of X, and let γ be the p-rank of the quotient curve X = X/G. The Deuring–

Shafarevich formula (see [Sullivan 1975] or [Hirschfeld et al. 2008, Theorem 11.62]) states that if G is a
p-group then

γ − 1= |G|(γ − 1)+
k∑

i=1

(|G| − `i ) (5)

where `1, . . . , `k are the sizes of the short orbits of G. If X is ordinary (and hence G(2)
P is trivial for every

P ∈ X; see Result 2.5(i)), then dP = |G
(0)
P | − 1+ |G(1)

P | − 1= 2(|G(0)
P | − 1)= 2(|G P | − 1) and hence (5)

follows from (3) and vice versa.
The Nakajima bound (see [1987, Theorem 1] or [Hirschfeld et al. 2008, Theorem 11.84]) states that

the existence of large p-groups of automorphisms implies that γ = 0.

Result 2.1. If X has positive p-rank γ , then every p-subgroup of Aut(X) has order ≤ p(γ − 1)/(p− 2).

A subgroup of Aut(X) is a prime to p group (or a p′-subgroup) if its order is prime to p. A subgroup G
of Aut(X) is tame if the 1-point stabilizer of any point in G is p′-group. Otherwise, G is nontame (or wild).
Obviously, every p′-subgroup of Aut(X) is tame, but the converse is not always true.

Result 2.2. The following claims hold.

(i) If |G|> 84(g(X)− 1), then G is nontame.

(ii) If G is abelian, then |G| ≤ 4g+ 4.

(iii) If G has prime order other than p, then |G| ≤ 2g+ 1.

The first two claims are due to Stichtenoth [1973]; see also [Hirschfeld et al. 2008, Theorems 11.56
and 11.79]. For a proof of claim (iii), see [Homma 1980] or [Hirschfeld et al. 2008, Theorem 11.108].

Henn’s bound [1978] (see also [Hirschfeld et al. 2008, Theorem 11.127]) has the following corollary.

Result 2.3. If |G|> 8g3, then X has zero p-rank, and G is not solvable.

An orbit o of G is tame if G P is a p′-group for P ∈ o. The structure of G P is well known; see for
instance [Serre 1979, Chapter IV, Corollary 4] or [Hirschfeld et al. 2008, Theorem 11.49].

Result 2.4. The stabilizer G P of a point P ∈ X in G is a semidirect product G P = Q P oU where the
normal subgroup Q P is a p-group while the complement U is a cyclic prime to p group.
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If X is ordinary, some more results are available; those used in this paper are collected below.

Result 2.5. If X is an ordinary curve, then

(i) Q(2)
P is trivial,

(ii) Q P is elementary abelian,

(iii) no nontrivial element of U commutes with a nontrivial element of Q P ,

(iv) |U | divides |Q P | − 1, and

(v) the quotient curve X/G for a p-group G of automorphisms is also ordinary.

Claim (i) is due to Nakajima [1987, Theorem 2.1]. Claim (ii) follows from claim (i) by Serre’s result
[1979, Corollary 3, p. 67] stating that the factor groups Q(i)

P /Q(i+1)
P for i ≥ 1 are elementary abelian; see

also [Hirschfeld et al. 2008, Theorem 11.74]. Claim (iii) follows from claim (ii) by Serre’s result [1979,
Corollary 1, p. 69]; see also [Hirschfeld et al. 2008, Theorem 11.75(ii)]. Claim (iv) is a consequence of
claim (iii) since the latter claim together with Result 2.4 imply that U induces an automorphism group of
Q P . Claim (v) follows from comparison of (3) to (5) taking into account claim (i).

For a nontrivial p-subgroup G of Aut(X), divide both sides in (3) by 2 and then subtract the result
from (5). If G(2)

P is trivial for every P ∈ X, then this computation gives

g(X)− γ (X)= |G|(g(X)− γ (X)) (6)

where X= X/Q [Nakajima 1987]. This shows the first two claims of the following result hold. The third
one is due to Stichtenoth [1973]; see also [Hirschfeld et al. 2008, Theorem 11.79].

Result 2.6. Let Q be nontrivial p-subgroup of Aut(X). Assume that Q(2)
P is trivial for every P ∈ X. Then

(i) (6) holds,

(ii) X and its quotient curve X/Q are simultaneously ordinary or not, and

(iii) |Q P | ≤ pg(X)/(p− 1).

The first two claims below on low-genus curves are well known; see for instance [Hirschfeld et al.
2008, Theorems 11.94 and 11.99]. The third one is a corollary of Henn’s bound.

Result 2.7. If G is an automorphism group of an elliptic curve E over K, then for every point P ∈ E the
order of the stabilizer G P of P in G divides 6 when p> 3 and 12 when p= 3. The solvable automorphism
groups of a genus-2 curve over K have order at most 48. For genus-3 curves the latter bound is 216.

We also need a technical result.

Result 2.8. Assume that Aut(X) has a solvable subgroup G of order larger than 34(g(X)+ 1)3/2. If N
is a normal subgroup of G and the quotient curve X = X/N is neither rational nor elliptic, then the
automorphism group G = G/N of X has order larger than 34(g(X)+ 1)3/2, as well.
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Since |N | = |G|/|G|, the claim is a straightforward consequence of (3) except for the cases where
g(X) = 2, or g(X) = 3, g(X) = 5, |N | = 2, and the cover X|X is unramified. Actually, the exceptional
cases do not occur. In fact, |G| ≥ |G|(g(X)− 1)/(g(X)− 1) > 34(g(X)+ 1)3/2(g(X)− 1)/(g(X)− 1) is
bigger than 48 and 8 ·27= 216 for g(X)= 2 and g(X)= 3, contradicting Results 2.7 and 2.3, respectively.

From group theory we use Dickson’s classification of finite subgroups of the projective linear group
PGL(2,K); see [Valentini and Madan 1980] or [Hirschfeld et al. 2008, Theorem A.8].

Result 2.9. The following is a complete list of finite solvable subgroups of PGL(2,K) up to conjugacy:

(i) cyclic groups of order prime to p,

(ii) elementary abelian p-groups,

(iii) dihedral groups with an index-2 cyclic subgroup of order prime to p,

(iv) the alternating group A4,

(v) the symmetric group S4,

(vi) semidirect products of an elementary abelian p-group of order ph by a cyclic group of order n with
n | (ph

− 1).

If PGL(2,K) is viewed as the automorphism group of the line over K, any cyclic subgroup of order
prime to p has exactly two points, while any p-subgroup has a unique fixed point [Valentini and Madan
1980].

We also use the Schur–Zassenhaus theorem; see for instance [Machì 2012, Corollary 7.5].

Result 2.10. Let G be a finite group with a normal subgroup N. If |N | is prime to the index [G : N ]
of N , then N has a complement in G, that is, G = N oM for a subgroup M of G. Such complements are
pairwise conjugate in G.

From representation theory, we need the Maschke theorem; see for instance [Machì 2012, Theorem 6.1].

Result 2.11. Any representation of a finite group over a field whose characteristic is prime to the order of
the group is completely reducible.

The following two lemmas of independent interest play a role in our proof of Theorem 1.1.

Lemma 2.12. Let X be an ordinary algebraic curve of genus g(X) ≥ 2 defined over an algebraically
closed field K of odd characteristic p. Let H be a solvable automorphism group of Aut(X) containing a
normal p-subgroup Q such that |Q| and [H : Q] are coprime. Suppose that a complement U of Q in H
is abelian and that

|H |>
{

18(g− 1) for |U | = 3,
12(g− 1) otherwise.

(7)

Then U is cyclic, and the quotient curve X= X/Q is rational. Furthermore, Q has exactly two (nontame)
short orbits, say �1, �2. They are also the only short orbits of H , and g(X)= |Q| − (|�1| + |�2|)+ 1.
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Proof. From Result 2.10, H = QoU . Set |Q| = pk and |U | = u. Then p - u. Furthermore, if u = 2, then
|H | = 2|Q|> 9g(X) whence |Q|> 4.5g(X). From Result 2.1, X has zero p-rank, which is not possible
as X is assumed to be ordinary of genus at least 2. Therefore, u ≥ 3.

Three cases are treated separately according as the quotient curve X= X/Q has genus g at least 2, or
X is elliptic, or rational.

If g(X)≥ 2, then Aut(X) has a subgroup isomorphic to U , and Result 2.2(ii) yields 4g(X)+ 4≥ |U |.
Furthermore, from (3) applied to Q, g− 1≥ |Q|(g(X)− 1). Let c = 12 or c = 18, according as |U |> 3
or |U | = 3, so that |H |> c(g− 1) from (7). Then

(4g(X)+ 4)|Q| ≥ |U ||Q| = |H | ≥ c(g− 1)≥ c|Q|(g(X)− 1),

whence

c ≤ 4
g(X)+ 1

g(X)− 1
.

As the right-hand side is smaller than 12, a contradiction to the choice of the constant c is obtained.
If X is elliptic, then the cover X|X ramifies; otherwise X itself would be elliptic. Thus, Q has some

short orbits. The group H acts on the set of short orbits of Q. In this action, an orbit of a given short
orbit o of Q with respect to H is a set of short orbits of Q having the same length of o. We will refer
to these short orbits as images of o. Take a short orbit of Q together with its images o1, . . . , ou1 under
the action of H . Since Q is a normal subgroup of H , o = o1 ∪ · · · ∪ ou1 is an H -orbit of size u1 pv

where pv = |o1| = · · · = |ou1 |. Equivalently, the stabilizer of a point P ∈ o has order pk−vu/u1, and by
Result 2.4, it is the semidirect product Q1oU1 where |Q1| = pk−v and |U1| = u/u1 for subgroups Q1

of Q and U1 of U , respectively. The point P lying under P in the cover X|X is fixed by the factor
group U 1 = U1 Q/Q. Since X is elliptic, and p is prime to |U 1|, Result 2.7 yields |U 1| ≤ 4 for p = 3
and |U 1| ≤ 6 for p > 3. As U 1 ∼= U1, this yields the same bound for |U1|, that is, u ≤ 4u1 for p = 3
and u ≤ 6u1 for p > 3. Furthermore, since the p-group Q1 fixes P , and Q1

(0)
= Q(1)

1 = Q1, we have
dP =

∑
i≥0(|Q1

(i)
| − 1)≥ 2(|Q1| − 1)= 2(pk−v

− 1)≥ 4
3 pk−v . From (3) applied to Q, since P ∈ o and

|o| = pvu1, if p = 3, then

2g− 2≥ 3vu1dP ≥ 3vu1
( 4

3 3k−v)
=

4
3 3ku1 ≥

1
3 3ku = 1

3 |Q||U | =
1
3 |H |,

while for p > 3,

2g− 2≥ pvu1dP ≥ pvu1
( 4

3 pk−v)
=

4
3 pku1 ≥

2
9 pku = 2

9 |Q||U | =
2
9 |H |,

but this contradicts (7).
If X is rational, then Q has at least one short orbit. Furthermore, U = U Q/Q is isomorphic to a

subgroup of PGL(2,K)∼= Aut(X). Since U ∼=U and U is abelian, from Result 2.9, U is cyclic, U fixes
two points P0 and P∞, but no nontrivial element in U fixes a point other than P0 or P∞. Let o∞ and o0

be the Q-orbits lying over P0 and P∞, respectively. Obviously, o∞ and o0 are short orbits of H . We
show that Q has at most two short orbits, the candidates being o∞ and o0. By absurd, there is a Q-orbit o
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of size pm with m < k which lies over a point P ∈ X different from both P0 and P∞. Since the orbit of
P in U has length u, then the H -orbit of a point P ∈ o has length upm . If u > 3, (3) applied to Q gives

2g−2≥−2pk
+upm(pk−m

−1)≥−2pk
+upm 2

3 pk−m
=−2pk

+
2
3 upk

=
2
3(u−3)pk > 1

6 upk
=

1
6 |H |,

a contradiction with |H |> 12(g− 1). If u = 3, then p > 3, and hence,

2g− 2≥−2pk
+ 3pm(pk−m

− 1)= pk
− 3pm > 1

3 pk,

whence |H | = 3pk < 18(g− 1), a contradiction with (7). This proves that H has exactly two short orbits.
Since, as we have showed, Q has either one or two short orbits, and they are contained in o∞ ∪ o0, two
cases arise correspondingly. Assume first that Q has two short orbits. They are o∞ and o0. If their lengths
are pa and pb with a, b < k, then (5) (or (3)) applied to Q gives

g(X)− 1= γ (X)− 1=−pk
+ (pk

− pa)+ (pk
− pb)

whence g(X) = pk
− (pa

+ pb)+ 1 > 0. The same argument shows that if Q has just one short orbit,
then γ (X)= 0, a contradiction. �

Lemma 2.13. Let N be an automorphism group of an algebraic curve of even genus such that |N | is even.
Then any 2-subgroup of N has a cyclic subgroup of index 2.

Proof. Let U be a subgroup of N of order d = 2u
≥ 2, and X= X/U the arising quotient curve. From (3)

applied to U ,

2g(X)− 2= 2u(2g(X)− 2)+
m∑

i=1

(2u
− `i )

where `1, . . . , `m are the short orbits of U on X. Since g(X) is even, 2g(X)− 2 ≡ 2 (mod 4). On the
other hand, 2u(2g(X)− 2)≡ 0 (mod 4). Therefore, some `i (1≤ i ≤m) must be either 1 or 2. Therefore,
U or a subgroup of U of index 2 fixes a point of X and hence is cyclic. �

3. The proof of Theorem 1.1

Our proof is by induction on the genus. Theorem 1.1 holds for g(X)= 2, as |G| ≤ 48 for any solvable
automorphism group G of a genus-2 curve; see Result 2.7. For g(X) > 2, X is taken by absurd for
a minimal counterexample with respect the genera so that for any solvable subgroup of Aut(X) of an
ordinary curve X of genus g(X)≥ 2 we have |G| ≤ 34(g+ 1)3/2. Two cases are treated separately.

Case I. G contains a minimal normal p-subgroup.

Proposition 3.1. Let X be an ordinary algebraic curve of genus g defined over an algebraically closed
field K of odd characteristic p > 0. If G is a solvable subgroup of Aut(X) containing a minimal normal
p-subgroup N , then |G| ≤ 34(g+ 1)3/2.
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Proof. Before going through the proof we describe the main steps in it.
Take the largest normal p-subgroup Q of G. Let X be the quotient curve of X with respect to Q,

and let G = G/Q. The first step is to show that X is rational. Then we derive from the classification
in Result 2.9 that G is a semidirect product of Q by cyclic group U of order prime to p. Therefore,
Lemma 2.12 applies to G. This gives us enough information on the action of Q on X: Q has exactly
two (nontame) orbits, say �1 and �2, and they are also the only short orbits of G. Then a subgroup H
of G of index ≤ 2 preserves both �1 and �2, inducing a permutation group on each of them. If both �1

and �2 are nontrivial, that is, |�1|> 1 and |�2|> 1, then two cases are possible, according as Q P with
P ∈�1 is sharply transitive and faithful on �2 or some nontrivial element in Q P fixes �2 pointwise. So
the next step is to rule out both these possibilities using elementary permutation group theory together
with Results 2.2 and 2.4. If �1 = {P} and |�2| > 1, then G fixes P , and the structure of G is given
by Result 2.4 where Q is an elementary abelian group, that is, a vector space over the prime field of K

and G is a linear group so that some appropriate result from representation theory can be used. In fact,
combining Result 2.11 with (5) allows us to rule out this possibility. If �1 = {P} and �2 = {Q}, we
are able to prove a much stronger bound, namely |G| ≤ 2(g(X)+ 1). In this final step, our approach is
function field theory rather than group theory as it uses some ideas from Nakajima’s paper [1987] and the
Riemann–Roch theorem together with some results on linearized polynomials over finite fields.

The quotient group G is a subgroup of Aut(X), and it has no normal p-subgroup; otherwise G would
have a normal p-subgroup properly containing Q. For g= g(X) three cases may occur, namely g≥ 2,
g = 1, or g = 0. If g ≥ 2, then Result 2.8 shows that |G| > 34(g+ 1)3/2. Since X is still ordinary by
Result 2.5(v), this contradicts our choice of X to be a minimal counterexample. If g= 1, then the cover
K(X)|K(X) ramifies. Take a short orbit 1 of Q. Let 0 be the nontame short orbit of G that contains 1.
Since Q is normal in G, the orbit 0 partitions into short orbits of Q whose components have the same
length, which is equal to |1|. Let k be the number of the Q-orbits contained in 0. Then

|G P | =
|G|

k|1|

holds for every P ∈ 0. Moreover, the quotient group G P Q/Q fixes a place on X. Now, from Result 2.7,

|G P Q|
|Q|

=
|G P |

|G P ∩ Q|
=
|G P |

|Q P |
≤ 12.

From this together with (3) and Result 2.5(i),

2g− 2≥ 2k|1|(|Q P | − 1)≥ 2k|1|
|Q P |

2
≥

k|1||G P |

12
=
|G|
12
,

which contradicts our hypothesis |G|> 34(g+ 1)3/2.
It turns out that X is rational. Therefore, G is isomorphic to a subgroup of PGL(2,K) which contains

no normal p-subgroup. From Result 2.9, G is a prime to p subgroup which is either cyclic, or dihedral,
or isomorphic to one of the groups Alt4,Sym4. In all cases, G has a cyclic subgroup U of index ≤ 6 and
of order distinct from 3. We may dismiss all cases but the cyclic one up to replacing G with U , that is, up
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to assuming that G = QoU with |G| ≥ 34
6 (g(X)+1)3/2. Then |G|> 12(g−1). Therefore, Lemma 2.12

applies to G. Thus, Q has exactly two (nontame) orbits, say �1 and �2, and they are also the only short
orbits of G. More precisely,

γ − 1= |Q| − (|�1| + |�2|). (8)

We may also observe that G P with P ∈�1 contains a subgroup V isomorphic to U . In fact, |Q||U | =
|G|= |G P ||�1|= |Q PoV ||�1|= |V ||Q P ||�1|with a prime to p subgroup V fixing P , whence |U |= |V |.
Since V is cyclic the claim follows.

We proceed with the case where both �1 and �2 are nontrivial, that is, their lengths are at least 2.
Assume that Q is nonabelian, and look at the action of its center Z(Q) on X. Since Z(Q) is a nontrivial

normal subgroup of G, we can argue as before to show that quotient curve X/Z(Q) is rational, and hence
that the Galois cover X|(X/Z(Q)) ramifies at some points. Indeed, observe that in the previous arguments
normality of Q was only used to dismiss all cases but the rational one, and hence we may simply replace
Q with Z(Q). In other words, there is a point P ∈�1 (or R ∈�2) such that some nontrivial subgroup T
of Z(Q) fixes P (or R). Suppose that the former case occurs. Since �1 is a Q-orbit, T fixes �1 pointwise.

The group G has an index ≤ 2 subgroup H that induces a permutation group on �1. Let M1 be the
kernel of this permutation representation. Obviously, T is a nontrivial p-subgroup of M1. Therefore, M
contains some but not all elements from Q. Since both M1 and Q are normal subgroups of G, N =M1∩Q
is a nontrivial normal p-subgroup of G. As we have proven before, the quotient curve X̃=X/N is rational,
and hence the factor group G̃ = G/N is isomorphic to a subgroup of PGL(2,K). Since 1� N � Q, the
order of G̃ is divisible by p. From Result 2.9, G̃ = Q̃o Ũ where Q̃ is an elementary abelian p-group of
order q and Ũ ∼=U N/N ∼=U with |Ũ | = |U | is a divisor of q − 1.

This shows that Q acts on �1 as an abelian transitive permutation group. Obviously this holds true
when Q is abelian. Therefore, the action of Q on �1 is sharply transitive. In terms of 1-point stabilizers
of Q on �1, we have Q P = Q P ′ for any P, P ′ ∈ �1. Moreover, Q P = N , and hence Q P is a normal
subgroup of G.

Furthermore, since X is an ordinary curve, Q P is an elementary abelian group by Result 2.5(ii).
The quotient curve X/Q P is rational, and its automorphism group contains the factor group Q/Q P .

Hence, exactly one of the Q P -orbits is preserved by Q. Since �1 is a Q-orbit consisting of fixed
points of Q P , �2 must be a Q P -orbit. Similarly, if Z(Q) 6= Q P , the factor group Z(Q)Q P/Q P is an
automorphism group of X/Q P and hence exactly one of the Q P -orbits is preserved by Z(Q). Either
Z(Q) fixes a point in�1 but then Z(Q)= Q P , or�2 is a Z(Q)-orbit. This shows that either Z(Q)= Q P ,
or Z(G) acts transitively on �2.

Two cases arise according as Q P is sharply transitive and faithful on �2 or some nontrivial element
in Q P fixes �2 pointwise.

If some nontrivial element in Q P fixes �2 pointwise, then the kernel M2 of the permutation represen-
tation of H on �2 contains a nontrivial p-subgroup. Hence, the above results extend from �1 to �2, and
Q R is a normal subgroup of Q.
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If Q P is (sharply) transitive on �2, then the abelian group Z(Q)Q P acts on �2 as a sharply transitive
permutation group, as well. Hence, either Z(Q)= Q P , or as before M2 contains a nontrivial p-subgroup,
and Q R is a normal subgroup of Q. In the former case, Q= Q P Q R with Q R∩Q P ={1}, and Z(Q)= Q P

yields that

Q = Q P × Q R. (9)

This shows that Q is abelian, and hence |Q|≤ 4g+4 by Result 2.2(ii). Also, either |Q P | or |Q R| is at most
√

4g+ 4. From Result 2.5(i), G(2)
P at P ∈�1 is trivial. Furthermore, for G P = Q P o V , Result 2.5(iv)

gives |U | = |V | ≤ |Q P | − 1. Hence, |U |< |Q P | ≤
√
|Q| ≤

√
4g+ 4 whence

|G| = |U ||Q| ≤ 8(g+ 1)3/2. (10)

If Q R is a normal subgroup, take a point R from �2, and look at the subgroup Q P,R of Q P fixing R.
Actually, we prove that either Q P,R = Q P or Q P,R is trivial. Suppose that Q P,R 6= {1}. Since Q P,R =

Q P ∩ Q R and both Q P and Q R are normal subgroups of G; the same holds for Q P,R . By (ii), the
quotient curve X/Q P,R is rational and hence its automorphism group Q/Q P,R fixes exactly one point.
Furthermore, each point in �2 is totally ramified. Therefore, Q R = Q P,R; otherwise Q R/Q P,R would fix
any point lying under a point in �1 in the cover X|(X/Q P,R).

It turns out that either Q P = Q R or Q P ∩ Q R = {1}, whenever P ∈�1 and R ∈�2.
In the former case, from (5) applied to Q P ,

γ − 1=−|Q P | + |�1|(|Q P | − 1)+ |�2|(|Q P | − 1)=−|Q P | + |Q| − |�1| + |Q| − |�2|.

This together with (8) give Q = Q P , a contradiction.
Therefore, the latter case must hold. Thus, Q = Q P × Q R and Q P (and also Q R) is an elementary

abelian group since it is isomorphic to a p-subgroup of PGL(2,K). Also, |Q P | = |Q R| =
√
|Q|. Since

Q is abelian, this yields |Q P | ≤
√

4g+ 4 by Result 2.2(ii). Now, the argument used after (9) can be
employed to prove (10). This ends the proof in the case where both �1 and �2 are nontrivial.

Suppose next �1 = {P} and |�2| ≥ 2. Then G fixes P , and hence G = Q oU with an elementary
abelian p-group Q. Furthermore, G has a permutation representation on �2 with kernel K . As �2 is a
short orbit of Q, the stabilizer Q R of R ∈�2 in Q is nontrivial. Since Q is abelian, this yields that K is
nontrivial, and hence it is a nontrivial elementary abelian normal subgroup of G. In other words, Q is
an r -dimensional vector space V (r, p) over a finite field Fp with |Q| = pr , the action of each nontrivial
element of U by conjugacy is a nontrivial automorphism of V (r, p), and K is a U -invariant subspace.
By Result 2.11, K has a complementary U -invariant subspace. Therefore, Q has a subgroup M such that
Q = K ×M , and M is a normal subgroup of G. Since K ∩M = {1}, and �2 is an orbit of Q, this yields
|M | = |�2|. The factor group G/M is an automorphism group of the quotient curve X/M , and Q/M is
a nontrivial p-subgroup of G/M whereas G/M fixes two points on X/M . Therefore the quotient curve
X/M is not rational since the 2-point stabilizer in the representation of PGL(2,K) as an automorphism
group of the rational function field is a prime to p (cyclic) group. We show that X/M is not elliptic either.
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From (5), g(X)− 1= γ (X)− 1=−|Q| + 1+ |�2|, and so g(X) is even. Since M is a normal subgroup
of odd order, g(X)≡ 0 (mod 2) yields that g(X/M)≡ 0 (mod 2). In particular, g(X/M) 6= 1. Therefore,
g(X/M)≥ 2. At this point we may repeat our previous argument and prove |G/M |> 34(g(X/M)+1)3/2.
Again, we get a contradiction with our choice of X to be a minimal counterexample, which ends the proof
in the case where just one of �1 and �2 is trivial.

We are left with the case where both short orbits of Q are trivial. Our goal is to prove a much stronger
bound for this case, namely |U | ≤ 2 whence

|G| ≤ 2(g(X)+ 1). (11)

We also show that if equality holds then X is a hyperelliptic curve with equation

f (U )= aT + b+ cT−1, a, b, c ∈ K∗, (12)

where f (U ) ∈ K[U ] is an additive polynomial of degree |Q|.
Let �1 = {P1} and �2 = {P2}. Then Q has two fixed points P1 and P2, but no nontrivial element in Q

fixes a point of X other than P1 and P2. From (5),

g(X)+ 1= γ (X)+ 1= |Q|. (13)

Therefore, |U | ≤ g(X). Actually, for our purpose, we need a stronger estimate, namely |U | ≤ 2. To prove
the latter bound, we use some ideas from Nakajima’s paper [1987] regarding the Riemann–Roch spaces
L(D) of certain divisors D of K(X). Our first step is to show

(i) dimK L((|Q| − 1)P1)= 1 and

(ii) dimK L((|Q| − 1)P1+ P2)≥ 2.

Let ` ≥ 1 be the smallest integer such that dimK L(`P1) = 2, and take x ∈ L(`P1) with vP1(x) = −`.
As Q = Q P1 , the Riemann–Roch space L(`P1) contains all cσ = σ(x)− x with σ ∈ Q. This yields
cσ ∈K by vP1(cσ )≥−`+ 1 and our choice of ` to be minimal. Also, Q = Q P2 together with vP2(x)≥ 0
show vP2(cσ )≥ 1. Therefore, cσ = 0 for all σ ∈ Q, that is, x is fixed by Q. From `= [K(X) : K(x)] =
[K : K(X)Q

][K(X)Q
: K(x)] and |Q|=[K :K(X)Q

], it turns out that ` is a multiple of |Q|. Thus `> |Q|−1
whence (i) follows. From the Riemann–Roch theorem, dimK L((|Q| − 1)P1+ P2) ≥ |Q| − g+ 1 = 2,
which proves (ii).

Let d ≥ 1 be the smallest integer such that dimK L(d P1+ P2)= 2. From (ii)

d ≤ |Q| − 1. (14)

Let α be a generator of the cyclic group U . Since α fixes both points P1 and P2, it acts on L(d P1+ P2)

as a K-vector space automorphism α. If α is trivial, then α(u) = u for all u ∈ L(d P1+ P2). Suppose
that α is nontrivial. Since U is a prime to p cyclic group, α has two distinct eigenspaces, so that
L(d P1+ P2)= K⊕Ku where u ∈ L(d P1+ P2) is an eigenvector of α with eigenvalue ξ ∈ K∗ so that
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α(u) = ξu with ξ |U | = 1. Therefore, there is u ∈ L(d P1 + P2) with u 6= 0 such that α(u) = ξu with
ξ |U | = 1. The pole divisor of u is

div(u)∞ = d P1+ P2. (15)

Since Q = Q P1 = Q P2 , the Riemann–Roch space L(d P1+ P2) contains σ(u) and hence contains all

θσ = σ(u)− u, σ ∈ Q.

By our choice of d to be minimal, this yields θσ ∈ K, and then defines the map θ from Q into K that
takes σ to θσ . More precisely, θ is a homomorphism from Q into the additive group (K,+) of K as the
following computation shows:

θσ1◦σ2 = (σ1 ◦ σ2)(u)− u = σ1(σ2(u)− u+ u)− u = σ1(θσ2)+ σ1(u)− u = θσ2 + θσ1 = θσ1 + θσ2 .

Also, θ is injective. In fact, if θσ0 = 0 for some σ0 ∈ Q \ {1}, then u is in the fixed field of σ0, which is
impossible since vP2(u)=−1 whereas P2 is totally ramified in the cover X|(X/〈σp〉). The image θ(Q)
of θ is an additive subgroup of K of order |Q|. The smallest subfield of K containing θ(Q) is a finite
field Fpm and hence θ(Q) can be viewed as a linear subspace of Fpm considered as a vector space over Fp.
Therefore, the polynomial

f (U )=
∏
σ∈Q

(U − θσ ) (16)

is a linearized polynomial over Fp [Lidl and Niederreiter 1983, §4, Theorem 3.52]. In particular, f (U ) is
an additive polynomial of degree |Q|; see also [Serre 1962, Chapter V, §5]. Also, f (U ) is separable as θ
is injective. From (16), the pole divisor of f (u) ∈ K(X) is

div( f (u))∞ = |Q|(d P1+ P2). (17)

For every σ0 ∈ Q,

σ0( f (u))=
∏
σ∈Q

(σ0(u)− θσ )=
∏
σ∈Q

(u+ θσ0 − θσ )=
∏
σ∈Q

(u− θσσ−1
0
)=

∏
σ∈Q

(u− θσ )= f (u).

Thus, f (u)∈K(X)Q . Furthermore, from α ∈ NG(Q), for every σ ∈ Q there is σ ′ ∈ Q such that ασ = σ ′α.
Therefore,

α( f (u))=
∏
σ∈Q

(α(σ (u)−u))=
∏
σ∈Q

(α(σ (u))−ξu)=
∏
σ∈Q

(σ ′(α(u))−ξu)=
∏
σ∈Q

(σ ′(ξu)−ξu)= ξ f (u).

This shows that if R ∈ X is a zero of f (u) then Supp(div( f (u)0)) contains the U -orbit of R of length
|U |. Actually, since σ( f (u))= f (u) for σ ∈ Q, Supp(div( f (u)0)) contains the G-orbit of R of length
|G| = |Q||U |. This together with (17) give

|U ||(d + 1). (18)
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On the other hand, K(X)Q is rational. Let P1 and P2 be the points lying under P1 and P2, respectively, and
let R1, R2, . . . , Rk with k= (d+1)/|U | be the points lying under the zeros of f (u) in the cover X|(X/Q).
We may represent K(X)Q as the projective line K∪{∞} over K so that P1 =∞, P1 = 0, and Ri = ti for
1≤ i ≤ k. Let g(t)= td

+ t−1
+h(t) where h(t) ∈K[t] is a polynomial of degree k = (d+1)/|U | whose

roots are r1, . . . , rk . It turns out that f (u), g(t) ∈ K(X) have the same pole and zero divisors, and hence

c f (u)= td
+ t−1

+ h(t), c ∈ K∗. (19)

We prove that K(X)= K(u, t). From [Sullivan 1975] (see also [Hirschfeld et al. 2008, Remark 12.12]),
the polynomial cT f (X)− T d+1

− 1− h(T )T is irreducible, and the plane curve C has genus g(C) =
1
2(q − 1)(d + 1). Comparison with (13) shows K(X)= C and d = 1 whence |U | ≤ 2. If equality holds,
then deg h(T )= 1 and X is a hyperelliptic curve with Equation (12). �

Case II. G contains no minimal normal p-subgroup.

Proposition 3.2. Let X be an ordinary algebraic curve of genus g defined over a field K of odd char-
acteristic p > 0. If G is a solvable subgroup of Aut(X) with a minimal normal subgroup N , then
|G| ≤ 34(g(X)+ 1)3/2.

Proof. We begin with an outline of the proof.
Since X is chosen to be a (minimal) counterexample, Proposition 3.1 yields that G contains no nontrivial

normal p-subgroup. The factor group G = G/N is a subgroup of Aut(X) where X = X/N . As in the
proof of Proposition 3.1, we begin by showing that X must be rational. This time Result 2.6(ii) does not
apply and some more effort is needed to rule out the possibility of g(X)≥ 2 while the elliptic case does
not require a different approach. If X is rational, the classification in Result 2.9 gives the possibility of
the structure of G and its action on X. A careful analysis shows that G must be of type (vi) in Result 2.9.
From this we obtain the possibilities for the action of G on X. After that, (3) and (5) together with
straightforward computation are sufficient to end the proof although the case where N is an elementary
abelian 2-group requires some additional facts from group theory.

We prove that g(X) ≥ 2. By Result 2.2(ii), |N | ≤ 4g(X)+ 4 as N is abelian. If X is also ordinary,
then the choice of X to have minimal genus implies that |G| ≤ 34(g(X)+ 1)3/2. Comparing this with
Result 2.8 shows a contradiction. Therefore, the possibility for X to be nonordinary is investigated.

From Result 2.5(i), any p-subgroup S of G has trivial second ramification group at any point X. The
latter property remains true when X and S are replaced by X and the factor group S= SN/N , respectively.
To show this claim, take P ∈ X and let S P be the subgroup of S fixing P . Since p - |N | there is a point
P ∈X lying over P which is fixed by S. Hence, the stabilizer SP of P in S is a nontrivial normal subgroup
of G P . Since N is a normal subgroup in G, so is NP in G P . This yields that the product NP SP is actually
a direct product. Therefore, NP is trivial by Result 2.5(iii), that is, the cover X|X is unramified at P .
From this, the claim follows.

Actually, N may be taken to be the largest normal subgroup N1 of G whose order is prime to p. Also,
by our hypothesis, the quotient curve X1 = X/N1 is neither rational, nor elliptic. From Result 2.8, its
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K-automorphism group G1 = G/N1 has order bigger than 34(g(X1)+ 1)3/2. Since G and hence G1 are
solvable, G1 has a minimal normal d-subgroup where d must be equal to p by the choice of N1 to be the
largest normal, prime to p subgroup of G. Take the largest normal p-subgroup N2 of G1. Observe that
N2 6=G1. In fact, if N2=G1, then G1 is p-group of order bigger than 34(g(X1)+1)3/2> pg(X1)/(p−2).
From Result 2.1, X1 has zero p-rank, and hence G1 fixes a point P1 ∈ X1. On the other hand, since G(2)

1

is trivial, Result 2.6(iii) shows |G1| ≤ pg(X1)/(p−1), a contradiction. Now, define X2 to be the quotient
curve X1/N2. Since the second ramification group of N1 at any point of X1 is trivial, Result 2.6(i) gives
g(X1)− γ (X1)= |N2|(g(X2)− γ (X2)). In particular, if X2 is ordinary or rational, then X1 is an ordinary
curve. From the proof of Proposition 3.1, the case g(X2)= 1 cannot occur as |G1|> 34(g(X1)+ 1)3/2.
Therefore, g(X2) ≥ 2 with g(X2) > γ (X2) may be assumed. The factor group G2 = G1/N2 is a K-
automorphism group of the quotient curve X2 = X1/N2, and it has a minimal normal d-subgroup with
d 6= p, by the choice of N2. Define N3 to be the largest normal, prime to p subgroup of G2. Observe that
N3 must be a proper subgroup of G2; otherwise G2 itself would be a prime to p subgroup of Aut(X2)

of order bigger than 34(g(X2)+ 1)3/2, contradicting Result 2.2(i). Therefore, there exists a (maximal)
nontrivial normal p-subgroup N4 in the factor group G3 = G2/N3. Now, the above argument remains
valid whenever G, N1,G1, N2,X1,X2 are replaced by G2, N3,G3, N4,X3,X4 where the quotient curves
are X3 = G2/N3 and X4 = G3/N4. In particular, g(X4) 6= 1 and g(X3)− γ (X3)= |N4|(g(X4)− γ (X4)).
Repeating the above argument, a finite sharply decreasing sequence g(X1)> g(X2)> g(X3)> g(X4)> · · ·

arises. If this sequence has n + 1 members, then g(Xn)− γ (Xn) = |Nn+1|(g(Xn+1)− γ (Xn+1)) with
g(Xn+1)= γ (Xn+1)= 0. Therefore, for some (odd) index m ≤ n, the curve Xm would not be ordinary,
but the successive member Xm+1 would be an ordinary curve. Since Xm+1 is a quotient curve of Xm with
respect to a p-subgroup, this is impossible by Result 2.6(ii).

We continue with the elliptic case. Since g(X)≥ 2, (3) applied to X ensures that N has a short orbit. Let
0 be a short orbit of G containing a short orbit of N . Since N is a normal subgroup of G, 0 is partitioned
into short orbits 61, . . . , 6k of N each of length |61|. Take a point Ri from 6i for i = 1, 2, . . . , k, and
set 6 =61 and S = S1. With this notation, |G| = |GS||0| = |GS|k|6|, and (3) gives

2g(X)− 2≥
k∑

i=1

|6i |(|NSi | − 1)= k|6|(|NS| − 1)≥+ 1
2 k|6||NS| =

1
2 |G|
|NS|

|GS|
. (20)

Also, the factor group GS N/N is a subgroup of Aut(X) fixing the point of X lying under S in the cover
X|X. From Result 2.7,

|GS N |
|N |

=
|GS|

|GS ∩ N |
=
|GS|

|NS|
≤ 12.

This and (20) yield |G| ≤ 48(g(X)− 1), a contradiction with our hypothesis 34(g(X)+ 1)3/2.
Therefore, X is rational. Thus, G is isomorphic to a subgroup of PGL(2,K). Since p divides |G|

but not |N |, G contains a nontrivial p-subgroup. From Result 2.9, either p = 3 and G ∼= Alt4,Sym4, or
G = QoC where Q is a normal p-subgroup and its complement C is a cyclic prime to p subgroup and
|C | divides |Q| − 1.
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If G ∼= Alt4,Sym4, then |G| ≤ 24 whence |G| ≤ 24|N | ≤ 96(g(X)+ 1) as N is abelian. Comparison
with our hypothesis |G| ≥ 34(g(X)+ 1)3/2 shows that g(X) ≤ 6. For small genera we need a little
more. If |N | is prime, then |N | ≤ 2g(X)+ 1 by Result 2.2(iii), and hence |G| ≤ 48(g(X)+ 1), which
is inconsistent with |G| ≥ 34(g(X) + 1)3/2. Otherwise, since p = 3 and |N | has order a power of
prime distinct from p, the bound |N | ≤ 4(g(X)+ 1) with g(X) ≤ 6 is only possible for (g(X), |N |) ∈
{(3, 16), (4, 16), (5, 16), (6, 16), (6, 25)}. Comparison of |G| ≤ 24|N | with |G| ≥ 34(g(X)+ 1)3/2 rule
out the latter three cases. Furthermore, since N is an elementary abelian group of order 16, g(X) must be
odd by Lemma 2.13. Finally, g(X)= 3, |N | = 16, and G/N ∼= Sym4 is impossible as Result 2.3 would
imply that X has zero p-rank.

Therefore, the case G = QoC occurs. Also, G fixes a unique place P ∈ X. Let 1 be the N -orbits
in X that lie over P in the cover X|X. We prove that 1 is a long orbit of N . By absurd, the permutation
representation of G on 1 has a nontrivial 1-point stabilizer containing a nontrivial subgroup M of N .
Since N is abelian, M is in the kernel. In particular, M is a normal subgroup of G contradicting our
choice of N to be minimal.

Take a Sylow p-subgroup Q of G of order |Q| = ph with h ≥ 1, and look at the action of Q on 1.
Since |1| = |N | is prime to p, Q fixes a point P ∈1, that is, Q = Q P . Since X is an ordinary curve,
Result 2.5(ii) shows that Q P and hence Q are elementary abelian. Therefore, G P = QoU where U is a
prime to p cyclic group. Thus,

|Q||C ||N | = |G||N | = |G| = |G P ||1| = |Q||U ||1| = |Q||U ||N |, (21)

whence |Q| = |Q| and |U | = |C |. Consider the subgroup H of G generated by G P and N . Since 1 is a
long N -orbit, G P ∩ N = {1}. As N is normal in H this implies that H = N oG P = N o (QoU ) and
hence |H | = |N ||Q||U |, which proves G = H = N o (QoU ).

Since X is rational and P is the unique fixed point of nontrivial elements of Q, each Q-orbit other
than {P} is long. Furthermore, C fixes a point R other than P and no nontrivial element of C fixes a
point distinct from P and R. This shows that the G-orbit �1 of R has length |Q|. In terms of the action
of G on X, there exist as many as |Q| orbits of N , say 11, . . . ,1|Q|, whose union 3 is a short G-orbit
lying over �1 in the cover X|X. Obviously, if at least one of 1i is a short N -orbit, then so are all.

We show that this actually occurs. Since the cover X|X ramifies, N has some short orbits, and by
absurd there exists a short N -orbit 6 not contained in 3. Then 6 and 3 are disjoint. Let 0 denote the
(short) G-orbit containing 6. Since N is a normal subgroup of G, 0 is partitioned into N -orbits, say
6 = 61, . . . , 6k , each of them of the same length |6|. Here k = |Q||U | since the set of points of X

lying under these k short N -orbits is a long G-orbit. Also, |N | = |6i ||NRi | for ≤ i ≤ k and Ri ∈6i . In
particular, |61| = |6i | and |NR1 | = |BRi |. From (3),

2g(X)− 2≥−2|N | +
k∑

i=1

|6i |(|NRi | − 1)=−2|N | + |Q||U ||61|(|NR1 | − 1).
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Since NR1 is nontrivial, |NR1 | − 1≥ 1
2 |NR1 |. Therefore,

2g(X)−2≥−2|N |+ 1
2 |Q||U ||61||NR1 |=−2|N |+ 1

2 |Q||U ||N |=|N |
( 1

2(|Q||U |−2)
)
=

1
2 |N |(|Q||U |−4).

As |Q||U | − 4≥ 1
2 |Q||U | by |Q||U | ≥ 4, this gives

2g(X)− 2≥ 1
4 |N ||U ||Q| =

1
4 |G|.

But this contradicts our hypothesis |G|> 34(g(X)+ 1)3/2.
Therefore, the short orbits of N are exactly 11, . . . ,1|Q|. Take a point Si from 1i for i = 1, . . . , |Q|.

Then NS1 and NSi are conjugate in G, and hence |NS1 | = |NSi |. From (3) applied to N ,

2g(X)− 2=−2|N | +
|Q|∑
i=1

|1i |(|NSi | − 1)=−2|N | + |Q||11|(|NS1 | − 1)≥−2|N | + 1
2 |Q||11||NS1 |.

Since |N | = |11||NS1 |, this gives 2g(X)−2≥ 1
2 |N |(|Q|−4) whence 2g(X)−2≥ 1

4 |N ||Q| provided that
|Q| ≥ 5. The missing case, |Q| = 3, cannot actually occur since in this case |C | = |U | ≤ |Q| − 1 = 2,
whence |G| = |Q||U ||N | ≤ 6|N | ≤ 24(g(X)+ 1), a contradiction with |G|> 34(g(X)+ 1)3/2. Thus,

|N ||Q| ≤ 8(g(X)− 1). (22)

Since |N ||U |< |N ||Q|, this also shows

|N ||U |< 8(g(X)− 1). (23)

Therefore,

|G||N | = |N |2|U ||Q|< 64(g(X)− 1)2.

Equations (22) and (23) together with our hypothesis |G| ≥ 34(g(X)+ 1)3/2 yield

|N |< 64
34

√
g(X)− 1. (24)

From (24) and |G| = |N ||Q||U | ≥ 34(g(X)+ 1)3/2 we obtain

|Q||U |>
342

64
(g(X)− 1) > 18(g(X)− 1),

which shows that Lemma 2.12 applies to the subgroup QoU of Aut(X). With the notation in Lemma 2.12,
this gives that QoU and Q have the same two short orbits, �1= {P} and �2. In the cover X|X, the point
P ∈ X lying under P is fixed by Q. We prove that �2 is a subset of the N -orbit 1 containing P . For this
purpose, it suffices to show that for any point R ∈�2, the point R ∈ X lying under R in the cover X|X

coincides with P . Since �2 is a Q-short orbit, the stabilizer Q R is nontrivial, and hence Q fixes R. Since
X is rational, this yields P = R. Therefore, �2 ∪ {P} is contained in 1, and either 1=�2 ∪ {P} or 1
contains a long Q-orbit. In the latter case, |U |< |Q|< |N |, and hence

|G|2 = |N ||Q||N ||U ||Q||U |< |N ||Q||N ||U ||N |2 ≤
642

34
(g(X)− 1)3
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whence |G|< 34(g(X)+ 1)3/2, a contradiction with our hypothesis. Otherwise |N | = |1| = 1+ |�2|. In
particular, |N | is even, and hence it is a power of 2. Also, by (5), g(X)−1= γ (X)−1=−|Q|+1+|�2|

where |�2| ≥ 1 is a power of p. This implies that g(X) is also even. Since N is an elementary abelian
2-group, Lemma 2.13 yields that either |N | = 2 or |N | = 4.

If |N | = 2, then �2 consists of a unique point R and Q o U fixes both points P and R. Since
1= {P, R}, and 1 is a G-orbit, the stabilizer G P,R is an index-2 (normal) subgroup of G. On the other
hand, G P,R = QoU and hence Q is the unique Sylow p-subgroup of QoU . Thus, Q is a characteristic
subgroup of the normal subgroup G P,R of G. But then Q is a normal subgroup of G, a contradiction
with our hypothesis.

If |N | = 4, then |1| = 4 and p = 3. The permutation representation of G of degree 4 on 1 contains
a 4-cycle induced by N but also a 3-cycle induced by Q. Hence, if K = ker, then G/K ∼= Sym4. On
the other hand, since both N and Ker are normal subgroups of G, their product N K is normal, as well.
Hence, N K/K is a normal subgroup of G/K , but this contradicts G/K ∼= Sym4. �
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Variance of arithmetic sums and L-functions in Fq[t]
Chris Hall, Jonathan P. Keating and Edva Roditty-Gershon

We compute the variances of sums in arithmetic progressions of arithmetic functions associated with
certain L-functions of degree 2 and higher in Fq [t], in the limit as q→∞. This is achieved by establishing
appropriate equidistribution results for the associated Frobenius conjugacy classes. The variances are
thus related to matrix integrals, which may be evaluated. Our results differ significantly from those that
hold in the case of degree-1 L-functions (i.e., situations considered previously using this approach). They
correspond to expressions found recently in the number field setting assuming a generalization of the pair
correlation conjecture. Our calculations apply, for example, to elliptic curves defined over Fq [t].
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1. Introduction

1.1. Analytic motivation. Let 3(n) denote the von Mangoldt function, defined by

3(n)=
{

log p if n = pk for some prime p and integer k ≥ 1,
0 otherwise.
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The prime number theorem implies ∑
n≤x

3(n)= x + o(x)

as x→∞, determining the average of3(n) over long intervals. In many problems one needs to understand
sums over shorter intervals and in arithmetic progressions. This is significantly more difficult, because the
fluctuations between different short intervals/arithmetic progressions can be large, and in many important
cases we do not have rigorous results.

One may seek to characterize the fluctuations in these sums via their variances. These variances are
the subject of several long-standing conjectures. For example, in the case of short intervals Goldston and
Montgomery [1987] made the following conjecture:

Conjecture 1.1.1 (variance of primes in short intervals). For any fixed ε > 0,∫ X

1

( ∑
X≤n≤x+h

3(n)− h
)2

dx ∼ h X (log X − log h)

uniformly for 1≤ h ≤ X1−ε.

It is natural to try to compute the variance in Conjecture 1.1.1 using the Hardy–Littlewood conjecture∑
n≤X

3(n)3(n+ k)∼S(k)X (1.1.2)

as X→∞, where S(k) is the singular series, defined in terms of products over primes p and q ,

S(k)=


2
∏
p>2

(
1−

1
(p− 1)2

)∏
q>2
q | k

q − 1
q − 2

if k is even,

0 if k is odd.

Montgomery and Soundararajan [2004] proved that (1.1.2), together with an assumption concerning
the implicit error term, implies a more precise asymptotic for the variance in Conjecture 1.1.1 when
log X ≤ h ≤ X1/2, namely that it is equal to

h X (log X − log h− γ0− log 2π)+ Oε(h15/16 X (log X)17/16
+ h2 X1/2+ε), (1.1.3)

where γ0 is the Euler–Mascheroni constant.
An alternative approach to computing this variance follows from

ζ ′(s)
ζ(s)
=−

∞∑
n=1

3(n)
ns ,

which links statistical properties of 3(n) to those of the zeros of the Riemann zeta-function ζ(s). Taking
this line, Goldston and Montgomery [1987] proved that Conjecture 1.1.1 is equivalent to the following
conjecture, due to Montgomery [1973], concerning the pair correlation of the nontrivial zeros of the
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zeta-function. Denoting the nontrivial zeros by 1
2+iγ and assuming the Riemann hypothesis (so γ ∈R), let

F(X, T )=
∑

0<γ,γ ′≤T

X i(γ−γ ′)w(γ − γ ′),

where w(u)= 4/(4+ u2).

Conjecture 1.1.4 (Montgomery’s pair correlation conjecture). For any fixed A ≥ 1

F(X, T )∼
T log T

2π

uniformly for T ≤ X ≤ T A.

See also [Chan 2003; Languasco et al. 2012], where lower-order terms are considered in the equivalence.
There is a similar theory in the case of sums in arithmetic progressions. The prime number theorem

for arithmetic progression states that for a fixed modulus c, when A is coprime to c∑
n≤X

n=A mod c

3(n)∼
X
φ(c)

as X→∞, (1.1.5)

where φ(c) is the Euler totient function, giving the number of reduced residues modulo c. The variance
of sums over different arithmetic progressions is then defined by

G(X, c)=
∑

A mod c
gcd(A,c)=1

∣∣∣∣ ∑
n≤X

n≡A mod c

3(n)−
X
φ(c)

∣∣∣∣2. (1.1.6)

Asymptotic formulae are known when G(X, c) is summed over a long range of values of c (see, e.g.,
[Montgomery 1970; Hooley 1975b; 1975c]), but much less is known concerning G(X, c) itself. In the
latter case, Hooley [1975a] made the following conjecture.

Conjecture 1.1.7 (variance of primes in arithmetic progressions).

G(X, c)∼ X log c.

Hooley was not specific about the size of c relative to X for which this asymptotic should hold.
Friedlander and Goldston [1996] showed that in the range c > X1+o(1),

G(X, c)∼ X log X − X −
X2

φ(c)
+ O

(
X

(log X)A

)
+ O((log c)3). (1.1.8)

This is a relatively straightforward range because it contains at most one prime. They conjectured that
Hooley’s asymptotic holds if X1/2+ε < c < X and further conjectured that if X1/2+ε < c < X1−ε then

G(X, c)∼ X log c− X ·
(
γ0+ log 2π +

∑
p | c

log p
p− 1

)
. (1.1.9)

They showed that both Conjecture 1.1.7 and (1.1.9) hold assuming the Hardy–Littlewood conjecture with
small remainders. For c < X1/2 relatively little seems to be known.
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Conjectures 1.1.1 and 1.1.7 remain open, but their analogues in the function-field setting have been
proved in the limit of large field size [Keating and Rudnick 2014]. Let Fq be a finite field of q elements and
Fq [t] the ring of polynomials with coefficients in Fq . Let M⊂ Fq [t] be the subset of monic polynomials
and Mn ⊂ M be the subset of polynomials of degree n. Let I ⊂ M be the subset of irreducible
polynomials and In = I ∩Mn . The norm of a nonzero polynomial f ∈ Fq [t] is defined to be | f | = qdeg f .

The von Mangoldt function is the function on M defined for m ≥ 1 by

3( f )=
{

d if f = πm with π ∈ Id ,

0 otherwise.

The prime polynomial theorem in this context is the identity∑
f ∈Mn

3( f )= qn. (1.1.10)

The analogue of Conjecture 1.1.1 is the following result, proved in [Keating and Rudnick 2014]: for
h ≤ n− 5,

1
qn

∑
A∈Mn

∣∣∣∣ ∑
| f−A|≤qh

3( f )− qh+1
∣∣∣∣2 ∼ qh+1(n− h− 2) (1.1.11)

as q→∞; note that |{ f : | f − A| ≤ qh
}| = qh+1.

In the same vein, there is a function-field result, also established in [Keating and Rudnick 2014],
that is similar to Conjecture 1.1.7: fix n ≥ 2; then, given a sequence of finite fields Fq and square-free
polynomials c ∈ Fq [t] with 2≤ deg(c)≤ n+ 1, one has∑

A mod c
gcd(A,c)=1

∣∣∣∣ ∑
f ∈Mn

f≡A mod c

3( f )−
qn

8(c)

∣∣∣∣2 ∼ qn(deg(c)− 1) (1.1.12)

as q→∞.
The asymptotic formulae (1.1.11) and (1.1.12) were established in [Keating and Rudnick 2014] by

expressing the variances as sums over families of L-functions. These L-functions can be expressed as the
characteristic polynomials of matrices representing Frobenius conjugacy classes. In the limit as q→∞,
these matrices become equidistributed in one of the classical compact groups and the sums become matrix
integrals of a kind familiar in random matrix theory. Evaluating these integrals leads to the expressions
above.

This approach to computing variances has subsequently been applied to other arithmetic functions
defined over function fields, including the Möbius function [Keating and Rudnick 2016], the square of
the Möbius function (i.e., the characteristic function of square-free polynomials) [loc. cit.], square-full
polynomials [Roditty-Gershon 2017], and the generalized divisor functions [Keating et al. 2018]. For
overviews see [Rudnick 2014; Keating and Roditty-Gershon 2016; Rodgers 2018]. The arithmetic
functions considered so far have all been associated with degree-1 L-functions (or simple functions
of these). Our main aim in this paper is to extend the theory to arithmetic functions associated with
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L-functions of degree 2 and higher. For example, our results apply to L-functions associated with elliptic
curves defined over Fq [t], and one expects them to apply to all standard automorphic L-functions. This
will require us to establish the appropriate equidistribution results for such L-functions. We achieve this
using the machinery developed by Katz [2012].

The main reason for moving to higher-degree L-functions is the recent discovery in the number-field
setting that one gets qualitatively new behavior when the degree exceeds 1 [Bui et al. 2016].

We summarize briefly now the results in [loc. cit.]. Let S denote the Selberg class L-functions. For
F ∈ S primitive, write

F(s)=
∞∑

n=1

aF (n)
ns .

Then F(s) has an Euler product

F(s)=
∏

p

exp
( ∞∑

l=1

bF (pl)

pls

)
(1.1.13)

and satisfies the functional equation

8(s)= εF8(1− s),

where 8(s)=8(s̄) and

8(s)= cs
( r∏

j=1

0(λj s+µj )

)
F(s)

for some c > 0, λj > 0, Re(µj )≥ 0 and |εF | = 1.
There are two important invariants of F(s): the degree dF and the conductor qF , given by

dF = 2
r∑

j=1

λj , qF = (2π)dF c2
r∏

j=1

λ
2λj
j ,

respectively. Another is m F , the order of the pole at s = 1, which equals 1 for the Riemann zeta function
and is expected to be 0 otherwise.

Let 3F be the arithmetic function defined by

F ′(s)
F(s)

=−

∞∑
n=1

3F (n)
ns ,

and let ψF be the function defined by

ψF (x) :=
∑
n≤x

3F (n).

The former will be the main focus of our attention.
A generalized prime number theorem of the form∑

n≤x

3F (n)= m F x + o(x)
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is expected to hold. In analogy with the case of the Riemann zeta function, it is natural to consider the
variance

ṼF (X, h) :=
∫ X

1

∣∣ψF (x + h)−ψF (x)−m F h
∣∣2 dx,

where h 6= 0. For example, when F represents an L-function associated with an elliptic curve, ṼF (X, h)
is the variance of sums over short intervals involving the Fourier coefficients of the associated modular
form evaluated at primes and prime powers; and in the case of Ramanujan’s L-function, it represents the
corresponding variance for sums involving the Ramanujan τ -function.

For most F ∈ S it is expected that∑
n≤X

3F (n)3F (n+ h)= o(X) when h 6= 0.

This might lead one to expect that ṼF (X, h) typically exhibits significantly different asymptotic behavior
than in the case when F is the Riemann zeta-function because in that case (1.1.2) plays a central role in
our understanding of the variance. However, all principal L-functions are believed to look essentially the
same from the perspective of the statistical distribution of their zeros; that is, it is conjectured that the
zeros of all primitive L-functions have a limiting distribution which coincides with that of random unitary
matrices, as in Montgomery’s conjecture (Conjecture 1.1.4). It was proved in [Bui et al. 2016], assuming
the generalized Riemann hypothesis (GRH), that an extension of the pair correlation conjecture for the
zeros that includes lower-order terms (and which itself follows from the ratio conjecture of [Conrey et al.
2008], along the lines of [Conrey and Snaith 2007]) is equivalent to the formulae (1.1.14) and (1.1.15)
below for ṼF (X, h), which generalize the Montgomery–Soundararajan formula (1.1.3).

If 0< B1 < B2 ≤ B3 < 1/dF , then

ṼF (X, h)= h X
(

dF log X
h
+ log qF − (γ0+ log 2π)dF

)
+ Oε(h X1+ε(h/X)c/3)+ Oε(h X1+ε(h X−(1−B1))1/3(1−B1)) (1.1.14)

uniformly for X1−B3 � h� X1−B2 , for some c > 0.
Otherwise, if 1/dF < B1 < B2 ≤ B3 < 1,

ṼF (X, h)= 1
6 h X (6 log X − (3+ 8 log 2))

+ Oε(h X1+ε(h/X)c/3)+ Oε(h X1+ε(h X−(1−B1))1/3(1−B1)) (1.1.15)

uniformly for X1−B3 � h� X1−B2 , for some c > 0.
If dF = 1 there is only one regime of behavior, governed by (1.1.14). When qF = 1, this coincides

exactly with (1.1.3); and when qF 6= 1, it generalizes (1.1.3) in a straightforward way.
If dF > 1 there are two ranges depending on the size of h. In the first range, ṼF (X, h)/h is proportional

to log h; in the second regime it is independent of h at leading order.
It is this kind of behavior that we seek to understand better in the context of function fields. We shall

focus on variances defined over arithmetic progressions rather than short intervals. In that case we are able
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to establish unconditional theorems, Theorems 1.2.3 and 9.0.1 below, which again exhibit the qualitatively
new form of the variance when the degree is 2 or higher.

Our function field results can be used to motivate predictions for the variance of sums over arithmetic
progressions of 3F in the number-field context reviewed above. In order to illustrate these predictions,
we focus now on two representative examples: elliptic curve L-functions and the Ramanujan L-function.

Let E/Q be an elliptic curve of conductor N defined over Q. The associated L-function F(s) will be
denoted by L(s, E) and is given by

L(s, E)=
∏
p | N

(1− ap p−s−1/2)−1
∏
p -N

(1− ap p−s−1/2
+ p−2s)−1,

where ap is the difference between p+ 1 and the number of points on the reduced curve mod p

ap = p+ 1− #Ẽ(Fp).

When p | N, then ap is either 1, −1, or 0. In general, we have the Hasse bound on ap, |ap|< 2
√

p; hence
we can write

ap

p1/2 = 2 cos(θp)= αp +βp,

where, for p -N, one has αp = eiθp and βp = e−iθp with θp ∈ [0, π] and for p | N, one has αp = ap, and
βp = 0. Let 3E be the arithmetic function defined by the logarithmic derivative of L(s, E):

L(s, E)′

L(s, E)
=−

∞∑
n=1

3E(n)n−s .

It follows that for e ≥ 1

3E(n)=
{

log p · (αe
p +β

e
p) if n = pe with p prime,

0 otherwise.

Our results in the function-field setting are analogous to computing the variance of the sum of 3E in
arithmetic progressions

Sx,c,E(A) :=
∑
n≤x

n=A mod c

3E(n).

Our function-field result (see Theorem 9.0.1) leads us to predict that for xε < c, ε > 0, the following
holds:

Var(Sx,c,E)∼
x
φ(c)

min{log x, 2 log c}.

This demonstrates the two regimes of behavior. We can also detect the degree of the L-function in
question as the coefficient of log c.

Another example of a degree-2 L-function is the Ramanujan L-function

L(s, τ )=
∏

p

(
1−

τ(p)
ps+11/2 +

1
p2s

)−1

,
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where τ is the Ramanujan tau function τ : N→ Z defined by the identity∑
n≥1

τ(n)qn
= q

∏
n≥1

(1− qn)24,

where q = exp(2π i z). Ramanujan conjectured (and his conjecture was proved by Deligne) that |τ(p)| ≤
2p11/2 for all primes p. Hence, as before, we can write

τ(p)
p11/2 = 2 cos(θp)= αp +βp.

Let 3τ be the arithmetic function defined by the logarithmic derivative of L(s, τ ):

L(s, τ )′

L(s, τ )
=−

∞∑
n=1

3τ (n)n−s .

It follows that for e ≥ 1

3τ (n)=
{

log p · (αe
p +β

e
p) if n = pe with p prime,

0 otherwise.

Again we are led to speculate that for xε < c and ε > 0, if

Sx,c,τ (A) :=
∑
n≤x

n=A mod c

3τ (n)

then the following holds:

Var(Sx,c,τ )∼
x
φ(c)

min{log x, 2 log c}.

1.2. Function-field analogue. Our results are quite general and to state them requires a good deal of
notation and terminology to be explained. For this reason we postpone presenting them until later sections,
when the necessary theory has been developed. To illustrate them however we first present below a special
case of one of them, and then we sketch a proof.

Remark 1.2.1. For reference, our main results are Theorems 9.0.1 and 12.3.1. The former provides
the variance estimates we need in terms of a matrix integral and the latter provides an application of
these estimates to L-functions of abelian varieties. Two key ingredients used to prove these theorems
are Theorems 10.0.4 and 11.0.1, which provide requisite equidistribution and big-monodromy results
respectively.

Suppose q is an odd prime power, and let ELeg/Fq(t) be the Legendre curve, that is, the elliptic curve
with affine model

y2
= x(x − 1)(x − t).

Over the ring Fq [t], this curve has bad multiplicative reduction at t = 0, 1 and good reduction everywhere
else, so it has conductor s = t (t − 1). It also has additive reduction at∞, so the L-function is given by
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an Euler product

L(T, ELeg/Fq(t))=
∏
π∈P

L(T deg(π), ELeg/Fπ )
−1,

where P ⊂ Fq [t] is the subset of monic irreducibles and Fπ is the residue field Fq [t]/πFq [t].
Each Euler factor of L(T, ELeg/Fq(t)) is the reciprocal of a polynomial in Q[T ] and satisfies

T d
dT

log L(T, ELeg/Fπ )
−1
=

∞∑
m=1

aπ,m T m
∈ Z[[T ]].

Moreover, if we define 3Leg to be the function on the subset M of monic polynomials given by

3Leg( f )=
{

d · aπ,m if f = πm with π ∈ P and deg(π)= d,
0 otherwise,

then the L-function satisfies

T d
dT

log(L(T, ELeg/Fq(t)))=
∞∑

n=1

( ∑
f ∈Mn

3Leg( f )
)

T n.

Let c ∈ Fq [t] be monic and square-free. For each n≥ 1 and each A in 0(c)= (Fq [t]/cFq [t])×, consider
the sum

Sn,c(A) :=
∑

f ∈Mn
f≡A mod c

3Leg( f ). (1.2.2)

Let A vary uniformly over 0(c), and consider the moments

E[Sn,c(A)] =
1
|0(c)|

∑
A∈0(c)

Sn,c(A), Var[Sn,c(A)] =
1
|0(c)|

∑
A∈0(c)

|Sn,c(A)− E[Sn,c(A)]|2.

These moments (and the quantity |0(c)|) depend on q , so one can ask how they behave when we replace
Fq by a finite extension, that is, let q→∞. Using the theory we develop in this paper one can prove the
following theorem.

Theorem 1.2.3. If gcd(c, s)= t and if deg(c) is sufficiently large, then

|0(c)| · E[Sn,c(A)] =
∑

f ∈Mn
gcd( f,c)=1

3Leg( f ), lim
q→∞

|0(c)|
q2n ·Var[Sn,c(A)] =min{n, 2 deg(c)− 1}.

See Theorem 12.3.1. We sketch the proof below in Section 1.3.

Remark 1.2.4. This should be compared to (1.1.12). For definiteness, we could replace “sufficiently
large” by deg(c) > 900, but we do not believe this bound to be optimal. We also do not believe the
hypothesis on gcd(c, s) is necessary (see Remark 11.0.2). We use it to deduce that certain monodromy
groups are big. We do not have any examples of coprime c and s where we know the monodromy groups
are not big.
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Remark 1.2.5. The fact that the expression for the variance depends on 2 deg(c) is a direct consequence
of the fact that the associated L-functions have degree 2. (For an L-function of degree r , one will get a
leading term of r deg(c) instead.) This then leads to there being two ranges of behavior.

1.3. Sketch of proof of Theorem 1.2.3. The calculation of the first moment proceeds immediately from
the definition (1.2.2). The first step in our proof of the rest of the theorem is to use Fourier analysis on
the multiplicative group 0(c) and rewrite the first and second moments in terms of coefficients of twisted
L-functions. Part of this step is to construct a 2-dimensional `-adic Galois representation

ρLeg : GK → GL(V ),

and for each character ϕ in the dual group 8(c)= Hom(0(c),Q×` ), to define a twisted L-function

LC(T, ρLeg⊗ϕ)=
∏
π -c

L(T dπ , (ρLeg⊗ϕ)π )
−1
= exp

( ∞∑
n=1

bρLeg⊗ϕ,n
T n

n

)
,

where C is the set of finite places dividing c and the infinite place. The reason for doing this is that one can
then rewrite the moments using orthogonality of characters, and we show that, for any field embedding
ι :Q→ C, one has

E[Sn,c(A)] =
1
φ(c)

ι(bρLeg⊗1,n), Var[Sn,c(A)] =
1

φ(c)2
∑

ϕ∈8(c)∗
|ι(bρLeg⊗ϕ,n)|

2,

where S∗ = S r {1} for S ⊆8(c).
The next step is to analyze the coefficients bρLeg⊗ϕ,n . It is relatively easy to show that they lie in Q.

One can also interpret them cohomologically via a trace formula. Moreover, using Deligne’s theorem one
can show that, for some integer R ≥ 0 and all ϕ in a subset 8(c)ρ good ⊆8(c), the normalized L-function

L∗C(T, ρLeg⊗ϕ)= LC(T/q, ρLeg⊗ϕ)= exp
( ∞∑

n=1

b∗ρLeg⊗ϕ,n
T n

n

)
is the reverse characteristic polynomial of a unitary matrix θρ,ϕ ∈UR(C) which is unique up to conjugacy.
Let

8(c)ρ bad =8(c)r8(c)ρ good

so that we have
φ(c)
q2n Var[Sn,c(A)] =

1
φ(c)

∑
ϕ∈8(c)∗ρ good

|Tr(std(θn
ρ,ϕ))|

2
+

1
φ(c)

∑
ϕ∈8(c)∗ρ bad

|ι(b∗ρLeg⊗ϕ,n)|
2.

The subset 8(c)ρ bad has density zero as q→∞, and Deligne’s theorem also implies that the terms in
the sum over bad characters are uniformly bounded. In particular,

φ(c)
q2n Var[Sn,c(A)] ∼

1
|8(c)∗ρ good|

∑
ϕ∈8(c)∗ρ good

|Tr(std(θn
ρ,ϕ))|

2

as q→∞.
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The final step in the proof is to show that

1
|8(c)∗ρ good|

∑
ϕ∈8(c)∗ρ good

|Tr(std(θn
ρ,ϕ))|

2
∼

∫
UR(C)

|Tr(θn)|2 dθ

with respect to Haar measure on UR(C). To do this, we must show that the θρ,ϕ are equidistributed in
UR(C). Roughly speaking, this is equivalent to showing that some accompanying monodromy group is
big and is where the conditions on gcd(c, s) and deg(c) come into play. We say a bit more about this in
the next section.

1.4. Underlying equidistribution theorem. The key ingredients we use to prove Theorem 1.2.3 and its
generalizations are the Mellin transform and Katz’s equidistribution theorem. More precisely, we start
with a lisse sheaf F on a dense open T ⊆ A1

t [1/s] and twist it by variable Dirichlet characters ϕ with
square-free conductor c to obtain a family of lisse sheaves Fϕ on T [1/c]; this family is a Mellin transform
of F. One can associate a monodromy group Garith to this family generated by Frobenius conjugacy
classes FrobE,ϕ for variable Dirichlet characters ϕ over finite extensions E/Fq . A priori Garith is reductive
and defined over Q`, but Deligne’s Riemann hypothesis allows us to associate the classes FrobE,ϕ for
“good” ϕ to well-defined conjugacy classes in a compact form of the “same” reductive group over C .
Katz’s equidistribution theorem implies these classes are equidistributed.

For our applications, we need equidistribution in a unitary group UR(C), and thus we need Garith to be
as big as possible, namely GLR,Q`

. We were only able to prove this is the case under the hypotheses that
deg(c)� 1 and that F has a unipotent block of exact multiplicity 1 about t = gcd(c, s)= 0. While we
do expect that one may encounter exceptions when deg(c) is small, we do not believe our lower bound
on deg(c) is sharp. On the other hand, the hypothesis on the monodromy about the unique prime dividing
gcd(c, s)was made in order to ensure we could exhibit elements of Garith whose existence helped ensure the
group was big. We conjecture one still has big monodromy under the weaker hypothesis that gcd(c, s)= 1.

1.5. Overview. The structure of this paper is as follows. We start in Section 2 by establishing notation
and relatively basic facts that we need throughout the rest of the paper.

Throughout the first several sections of the paper we work over a global function field K = Fq(X),
but starting in Section 5, we restrict to K = Fq(t). Throughout the entire paper we fix an `-adic Galois
representation

ρ : GK ,S→ GL(V ),

where GK ,S is a quotient of the absolute Galois group GK of K . We also fix a finite set of places C of K .
Ultimately it consists of the place at infinity in Fq(t) and the finite places corresponding to primes dividing
a square-free polynomial c ∈ Fq [t]. The characters we twist by will be continuous homomorphisms

ϕ : G t
K ,C→Q×` ,

where G t
K ,C is another quotient of GK .
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In Section 3, we define two L-functions: a partial L-function LC(T, ρ) and the complete L-function
L(T, ρ). It is the coefficients of the former which appear in our moment formulas, but the latter is
what might be called “the” L-function of ρ. Both are defined via an Euler product: for the complete
L-function, we use an Euler product over P, the set of all places of K ; for the other, we exclude the Euler
factors over C. They coincide if and only if the excluded (or missing) Euler factors are trivial. We recall
the cohomological manifestation of each L-function and the trace formula. We also derive numerical
invariants for ρ required for computing the degree of each L-function.

In Section 4, we consider twists of the representation ρ by tame `-adic characters ϕ with conductor
supported on C. If one replaces ρ by ρ⊗ ϕ, then one can apply the material of Section 3 to define
L(T, ρ⊗ ϕ) and LC(T, ρ⊗ ϕ). We provide an annotated version of those results in a manner which is
convenient for us.

In Section 5, we revert to K = Fq(t) and define the von Mangoldt function 3ρ of our Galois repre-
sentation. It is a multiplicative function M→Q` defined using the Euler factors L(T, ρv) for the finite
places in Fq(t), and for the trivial representation ρ = 1, one has, for m ≥ 1,

31( f )=
{

deg(π) if f = πm and π irreducible,
0 otherwise.

For each A ∈ 0(c), we consider the sum

Sn,c(A)=
∑

f ∈Mn(A)

3ρ( f ),

where Mn(A) = { f ≡ A mod c} ⊆Mn. We regard the sum as random variable with values in Q` by
varying A uniformly over 0(c) and express its moments as sums of coefficients of the partial L-functions
LC(T, ρ⊗ ϕ), where ϕ varies over characters of 0(c).

In Section 6, we define purity and weights. Purity boils down to saying that, in the complex plane,
some set of numbers lies on a circle centered at zero, and weight corresponds to the radius. These are
the properties usually used to state some sort of Riemann hypothesis. We impose purity on the (zeros
of the) Euler factors of L(T, ρ⊗ ϕ) and use Deligne’s theorem to deduce purity of its cohomology
factors Pi (T, ρ⊗ ϕ). A priori, these factors are polynomials in Q`[T ], but in fact, Deligne’s theorem
implies they have coefficients in Q. His theorem also tells us what the weight of each cohomological factor
should be, so we can use a field embedding ι :Q→ C to regard the sums Sn,c(A) as complex numbers.

In Section 7, we isolate conditions for a complete L-function L(T, ρ⊗ ϕ) to be a pure polynomial,
and they hold for most ϕ. These are the L-functions for which a suitable normalization L∗(T, ρ⊗ ϕ) has
coefficients in Q and is unitary, that is, equals the characteristic polynomial of a complex unitary matrix.
We also isolate conditions for LC(T, ρ⊗ ϕ) to be a pure polynomial since it is the coefficients of these
L-functions which appear in our moment calculations. These conditions imply the partial and complete
L-functions are polynomials and coincide.

In Section 8, we partition 8(c) into subsets of good and bad characters, and then we further partition
the bad characters into mixed and heavy characters. A character ϕ is good if it makes sense to say
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that a certain renormalization L∗C(T, ρ⊗ ϕ) of LC(T, ρ⊗ ϕ) is unitary, and otherwise it is bad, and
L∗C(T, ρ⊗ ϕ) is no longer unitary. If LC(T, ρ⊗ ϕ) is an impure polynomial, then ϕ is mixed, and if
LC(T, ρ⊗ ϕ) is not even a polynomial, then ϕ is heavy since LC(T, ρ⊗ ϕ) has poles of excess weight.

In Section 9, we return to our moment calculations. The main result of the section is that the second
moment can be approximated using a matrix integral over some compact subgroup K ⊆ UR(C), and
one has control over the error term precisely when no nontrivial ϕ is heavy. At this stage, all we know
about K is that each unitary L∗C(T, ρ⊗ ϕ) corresponds to a unique conjugacy class θρ,ϕ ⊂K and that the
classes become equidistributed in K as q→∞. In later sections we give conditions for it to be big, that
is, equal to UR(C).

In Section 10, we partition8(c) into cosets of a “one-parameter” subgroup8(u)ν ⊆8(c), and then we
attach a monodromy group to each coset ϕ8(u)ν. We define what it means for one of these monodromy
groups to be big, and then we define the big characters in 8(c) to be those ϕ whose coset has big
monodromy. We then show that if the density of big characters tends to 1 as q→∞, then the θρ,ϕ are
equidistributed in K =UR(C). In this case we say the Mellin transform of ρ has big monodromy.

In Section 11, we prove a theorem which asserts that the Mellin transform of ρ has big monodromy
provided ρ satisfies certain hypotheses. The material in this section rests heavily on the monumental
works of Katz, most notably the monograph [Katz 2012]. In order to prove our result, we were forced
to impose the condition that the (square-free) conductor s of ρ and the twisting conductor c satisfy
deg(gcd(c, s))= 1. We also imposed conditions on the local monodromy of ρ at the zero of deg(c, s).
We used both of these hypotheses to deduce that the relevant monodromy groups contained an element so
special that the group was forced to be big (e.g., for the specific example considered in Theorem 1.2.3
one obtains pseudoreflections). While the specific result we proved is new, it borrows heavily from the
rich set of tools developed by Katz, and one familiar with his work will easily recognize the intellectual
debt we owe him.

In Section 12, we bring everything together and show how Galois representations arising from (Tate
modules of) certain abelian varieties satisfy the requisite properties to apply the theorems of the earlier
sections. More precisely, we consider Jacobians of (elliptic and) hyperelliptic curves of arbitrary genus,
the Legendre curve being one such example. Because we chose to work with hyperelliptic curves we were
forced to assume q is odd. Nonetheless, we expect one can find other suitable examples in characteristic 2.

There are four appendices to the paper containing material we needed for the results in Section 11.
In Appendix A we recall the definition of and some basic facts about middle-extension sheaves. In
Appendix B we recall well-known formulas for Euler–Poincaré characteristic. In Appendix C we prove
the group-theoretic result which asserts that a reductive subgroup of GLR with the sort of special element
alluded to above is big. In Appendix D we recall much of the abstract formalism required to define the
monodromy groups which we want to show are big. While none of this material is new, it elaborates on
some of the facts which we felt were not always easy to give a direct reference for in [Katz 2012]. In
particular, our work should not be regarded as a substitute for Katz’s original monograph, but we hope
some readers will find it an acceptable and enriching complement to his masterful presentation.
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2. Notation

Let q = qn
0 be powers of a prime p and Fq be a finite field with q elements. We write q→∞ to mean

n→∞.
Let X be a proper smooth geometrically connected curve over Fq0 and K be the function field Fq(X)

(e.g., X = P1
t and K = Fq(t)). Let P be the set of places of K , and for each v ∈ P, let Fv be its residue

field and dv = [Fv : Fq ] be its degree. We identify the elements of P with the closed points of X in the
usual way.

Let K sep be a separable closure of K and Fq ⊂ K sep be the algebraic closure of Fq ⊂ K . Let
GK = Gal(K sep/K ) and GFq = Gal(Fq/Fq), and let GK ⊆ G K be the stabilizer of Fq so that there is an
exact sequence

1→ GK → G K → GFq → 1

of profinite groups. Given a quotient GK � Q of profinite groups, we write Q ⊆ Q for the image of GK

and call it the geometric subgroup.
For each subset S ⊂ P, let KS ⊆ K sep be the maximal subextension unramified away from S and

K t
S ⊆ KS be the maximal subextension tamely ramified over S. Both extensions are Galois over K , so

we write GK ,S and G t
K ,S for their respective Galois groups. There is a commutative diagram

GK //

""

GK ,S

{{

G t
K ,S

(2.0.1)

of quotients.
For each v ∈ P, we fix a place of K sep over v and write D(v)⊆ GK for its decomposition group; the

latter is well-defined up to conjugacy. Let I (v)⊆ D(v) be the inertia subgroup and P(v)⊆ I (v) be the
wild inertia subgroup (i.e., the p-Sylow subgroup). The quotient Gv = D(v)/I (v) is the absolute Galois
group of Fv, and we write Frobv ∈ Gv for the Frobenius element Frobdv

q and Frobv I (v) for its preimage
in D(v).

If v 6∈ S, then the inertia subgroup I (v) is contained in the kernel of the horizontal map in (2.0.1). In
particular, every element of the coset Frobv I (v) maps to the same element of GK ,S , which we denote by
Frobv ∈ GK ,S .

Given a smooth geometrically connected curve U over Fq , we write U for the base change curve U×Fq Fq .
We fix a geometric generic point η̄ of U and write π1(U ) and π1(U ) for the arithmetic and geometric
étale fundamental groups of U respectively. Moreover, if T is a second smooth geometrically connected
curve over Fq and if T → U is a finite étale cover, then we implicitly suppose the geometric generic
point of T maps to that of U and write π1(T )→ π1(U ) for the induced inclusion of fundamental groups.

Let `∈Z be a prime distinct from p and Q` be an algebraic closure of Q`. All sheaves on U we consider
are constructible étale Q`-sheaves, unless stated otherwise, and we write H i (U ,F ) and H i

c (U ,F ) for
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the étale cohomology groups of F. For each integer n, we also write F(n) for the Tate twisted sheaf
F ⊗Q`

Q`(n) and recall that

det(1− T Frobq | H i (U ,F(n)))= det(1− qnT Frobq | H i (U ,F )).

A similar identity holds for cohomology with compact supports (see [SGA 41/2 1977, Sommes trig.,
Theorem 1.13]). In particular, we have identities

dim(H i (U ,F(n)))= dim(H i (U ,F )), dim(H i
c (U ,F(n)))= dim(H i

c (U ,F ))

for every i and n.
The sheaf F is lisse (or locally constant) on U if and only it corresponds to a continuous representation

π1(U )→GL(V ) from the étale fundamental group to a finite-dimensional Q` vector space V (cf. [Milne
1980, II.3.16.d]). In that case one has identifications

H 0(U ,F )= V π1(U ) and H 2
c (U ,F(2))= Vπ1(U ) (2.0.2)

with the subspace of π1(U )-invariants and quotient space of π1(U )-coinvariants (see [SGA 41/2 1977,
Sommes trig., Remarques 1.18(d)]).

3. L-functions

In this section, we recall the construction of two L-functions attached to a Galois representation of the
absolute Galois group of a global function field K . A priori, both L-functions are given via Euler products,
the essential difference being that one Euler product is over all places of K while the other excludes the
Euler factors at a finite set of places of K . We call them the complete and partial L-functions respectively.
Each will play a role in later sections, and in particular, when they differ, that is, when at least one omitted
Euler factor is nontrivial, their roles will also differ. We do not elucidate the difference in this section, but
we do give necessary and sufficient criteria for the L-functions to coincide.

As we recall, both L-functions have a cohomological genesis via the Grothendieck–Lefschetz trace
formula. Therefore they can be expressed as rational functions, that is, quotients of polynomials in a single
variable, and the polynomials are products of (reverse) characteristic polynomials of an operator acting
on certain `-adic cohomology groups. Given basic information about ρ, we show how to calculate the
degrees of its L-functions, e.g., in terms of numerical invariants such as Swan and absolute conductors.

3.1. Euler products. Let S ⊂ P be a finite subset of places. Let V be a finite-dimensional Q`-vector
space and ρ be a homomorphism

ρ : GK ,S→ GL(V )

which is continuous with respect to the profinite topologies.
The decomposition group D(v) stabilizes the subspace Vv = V I (v), and the inertia subgroup I (v) acts

trivially on it, so there is a representation

ρv : Gv→ GL(Vv).
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The Euler factor of ρ at v is given by

L(T, ρv) := det(1− Tρv(Frobv) | Vv) ∈Q`[T ],

and its degree equals the dimension of Vv.
Let C ⊂ P be a finite subset. The partial and complete L-functions of ρ are the formal power series in

Q`[T ] with respective Euler products

LC(T, ρ) :=
∏
v 6∈C

L(T dv , ρv)
−1

and L(T, ρ) :=
∏
v∈P

L(T dv , ρv)
−1
. (3.1.1)

The ratio
MC(T, ρ) := L(T, ρ)/LC(T, ρ)=

∏
v∈C

L(T dv , ρv)
−1

is the reciprocal of a polynomial, and MC(T, ρ)= 1 if and only if L(T, ρ)= LC(T, ρ).

3.2. Galois modules versus sheaves. While most of this paper uses the language of global fields, it is
useful to adopt a geometric language. Certain readers will find the latter language more to their taste,
and we acknowledge that many of our results may have a more appealing formulation in the language of
geometry (and sheaves). However, we felt the language of Galois representations over global (function)
fields was accessible to a broader audience, so we tried to do “as much as possible” in that language.

3.3. Middle extensions. Recall X is a proper smooth geometrically connected curve over Fq . Let U ⊆ X
be a dense Zariski open subset over Fq . Let F be a sheaf on X and Fη̄ be its geometric generic stalk. The
latter is a GK -module, and up to replacing U by a dense open subset, it is even a module over the étale
fundamental group π1(U ); that is, F is lisse on U. Conversely, for every finite-dimensional Q`-vector
space V and continuous homomorphism π1(U )→ GL(V ), there is a lisse Q`-sheaf on U whose stalk
over η̄ is the π1(U )-module V.

There are two sheaves and morphisms one can associate to the inclusion j : U → X : those in the
diagram

j! j∗F→ F→ j∗ j∗F (3.3.1)

and constructed in Appendix A.

Definition 3.3.2. We say F is supported on U if and only if the first map of (3.3.1) is an isomorphism,
and F is a middle extension if and only if the second map is an isomorphism for every j .

The following proposition shows that there is a canonical middle-extension sheaf on X we can associate
to ρ. We denote it by ME(ρ).

Proposition 3.3.3. There is a middle extension F with Fη̄ = V as G K -modules, and it is unique up to
isomorphism.

Proof. One can identify Vv with the stalk ME(ρ)v and ρv with the restriction of π1(U )→ GL(V ) to the
decomposition group D(v)⊂ π1(U ) See Proposition A.0.4 and compare [Milne 1980, 3.1.16]. �
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Corollary 3.3.4. Let S ′ ⊂ P be a finite subset containing S and ρ ′ : G K ,S ′→ GL(V ) be the composition
of ρ with the natural quotient G K ,S ′ � GK ,S . Then ME(ρ) and ME(ρ ′) are isomorphic.

Proof. The quotient GK → GK ,S factors as GK � G K ,S ′ � GK ,S , and ME(ρ ′)η̄ = V = ME(ρ) as
GK -modules. Since ME(ρ),ME(ρ ′) are both middle extensions, Proposition 3.3.3 implies they are
isomorphic. �

3.4. Cohomological manifestation. Suppose Z = X rU equals C. Then L(T, ρ) and LC(T, ρ) equal
the L-functions of the sheaves ME(ρ) and j! j∗ME(ρ) respectively. More precisely, the Euler products of
the latter coincide with (3.1.1). Moreover, they all have the same Euler factors over U ; hence MC(T, ρ)
has an Euler product over Z which coincides with that of the L-function of ME(ρ) over Z .

The étale cohomology groups of these sheaves are finite-dimensional Q`-vector spaces, and Frobq acts
Q`-linearly on them. In particular, we have characteristic polynomials

PC,i (T, ρ) := det(1− T Frobq | H i
c (U ,ME(ρ))), (3.4.1)

which are trivial for i 6= 0, 1, 2 since U is a curve. Moreover, PC,i (T )= 1 if U is an affine curve, that is,
if C is nonempty, and then

LC(T, ρ)= PC,1(T, ρ)/PC,2(T, ρ). (3.4.2)

Similarly, the characteristic polynomials

Pi (T, ρ) := det(1− T Frobq | H i (X ,ME(ρ))) (3.4.3)

are trivial for i 6= 0, 1, 2 since X is a curve, and they satisfy

L(T, ρ)=
P1(T, ρ)

P0(T, ρ)P2(T, ρ)
. (3.4.4)

Finally, if C =∅ and thus U = X , then

P∅,i (T, ρ)= Pi (T, ρ) for all i,

and thus L(T, ρ)= L∅(T, ρ).

3.5. Numerical invariants of ρ. Let

rankv(ρ) := deg(L(T, ρv)), dropv(ρ) := dim(V )− rankv(ρ),

and Swanv(ρ) be the Swan conductor of V as an Q`[I (v)]-module (see [Katz 1988, 1.6]). We call these
and

dropC(ρ) :=
∑
v∈C

dv · dropv(ρ)

the local invariants of ρ. On the other hand, we call

rank(ρ) := dim(V ), drop(ρ) :=
∑
v∈P

dv · dropv(ρ), Swan(ρ) :=
∑
v∈P

dv ·Swanv(ρ)
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and

r∅(ρ) := deg(L(T, ρ)), rC(ρ) := deg(LC(T, ρ))

the global invariants.

Proposition 3.5.1. Let g be the genus of X. Then the Euler characteristics χ(X,ME(ρ)) and χc(U,ME(ρ))
(see (B.0.5)) satisfy

r∅(ρ)=−χ(X ,ME(ρ))= (drop(ρ)+Swan(ρ))− (2− 2g) · rank(ρ), (3.5.2)

rC(ρ)=−χc(U ,ME(ρ))= (drop(ρ)− dropC(ρ)+Swan(ρ))− (2− 2g− deg(C)) · rank(ρ). (3.5.3)

Moreover, if ME(ρ) is supported on U (see Definition 3.3.2), then χc(U ,ME(ρ))= χ(X ,ME(ρ)).

Proof. See Proposition B.1.1 and Corollary B.1.2. �

One deduces immediately that

rC(ρ)= r∅(ρ)+ deg(C) · rank(ρ)− dropC(ρ). (3.5.4)

3.6. Trace formula. The local traces of ρ are given by

aρ,v,m := Tr(ρv(Frobv)m | Vv) for v ∈ P and m ≥ 1, (3.6.1)

and they satisfy

T d
dT

log L(T, ρv)−1
=

∞∑
m=1

aρ,v,m T m for v ∈ P. (3.6.2)

Combining this with (3.1.1) yields the identity

T d
dT

log LC(T, ρ)=
∞∑

n=1

( ∑
md=n

∑
v∈PdrC

d · aρ,v,m

)
T n, (3.6.3)

where Pd ⊂ P is the finite subset of places of degree d.
Let U ⊆ X be the open complement of C. The cohomological traces of ρ are given by

bρ,n :=
2∑

i=0

(−1)i ·Tr(Frobq | H i
c (U ,ME(ρ))) for n ≥ 1

and they satisfy

T d
dT

log LC(T, ρ)=
∞∑

n=1

bρ,nT n. (3.6.4)

Combining this with (3.6.3) yields the Grothendieck–Lefschetz trace formula∑
md=n

∑
v∈PdrC

d · aρ,v,m = bρ,n. (3.6.5)

See [SGA 41/2 1977, Rapport, §3] for details.



Variance of arithmetic sums and L-functions in Fq[t] 37

4. Twisted L-functions

In this section, we apply the theory of the previous section to the twist of a Galois representation by a
Dirichlet character. We start by defining the twist and its L-functions, and then we apply the theory from
the previous section, e.g., to calculate the respective degrees.

4.1. Twists by characters. Let S⊂P be a finite subset and V be a finite-dimensional Q`-vector space. Let

ρ : GK ,S→ GL(V )

be a Galois representation, that is, a continuous homomorphism.
Let C ⊂ P be a finite subset. An `-adic character with conductor supported on C is a continuous

homomorphism
ϕ : GK ,C→Q×` ,

and we write 8(C) for the set of all such characters which also have finite image. By definition, ϕ factors
as a composite homomorphism

GK ,C � Gab
K ,C→Q×`

through the maximal abelian quotient. We say it is tame if and only if it factors as a composite homomor-
phism

Gab
K ,C � G t,ab

K ,C→Q×`

through the maximal tame (abelian) quotient.
Let R= C ∪S so that there are natural quotients

GK ,R � GK ,S and GK ,R � GK ,C .

Let ρR and ϕR be the respective compositions

ρR : GK ,R � GK ,S→ GL(V ), ϕR : GK ,R � GK ,C→Q×` .

The tensor product of ρ and ϕ is the representation

ρ⊗ϕ = (g 7→ ρR(g)ϕR(g)) : GK ,R→ GL(Vϕ),

where Vϕ = V as Q`-vector spaces.

4.2. L-functions. The Euler factors of the L-functions of ρ⊗ ϕ are given by

L(T, (ρ⊗ ϕ)v) := det(1− T (ρ⊗ ϕ)v(Frobv) | V I (v)
ϕ ),

and in particular,
L(T, (ρ⊗ ϕ)v)= L(ϕC(Frobv)T, ρv) for v 6∈ C. (4.2.1)

Moreover, the partial and complete L-functions of ρ⊗ ϕ satisfy

LC(T, ρ⊗ ϕ) :=
∏
v 6∈C

L(T dv , (ρ⊗ ϕ)v)
−1
=

∏
i

PC,i (T, ρ⊗ ϕ)(−1)i+1
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and
L(T, ρ⊗ ϕ) :=

∏
v∈P

L(T dv , (ρ⊗ ϕ)v)
−1
=

∏
i

Pi (T, ρ⊗ ϕ)(−1)i+1

respectively, where

PC,i (T, ρ⊗ ϕ) := det(1− T Frobq | H i
c (U ,ME(ρ⊗ ϕ))),

Pi (T, ρ⊗ ϕ) := det(1− T Frobq | H i (X ,ME(ρ⊗ ϕ))).

Recall U ⊂ X is the open complement of C. Compare (3.1.1), (3.4.1), and (3.4.2).

4.3. Numerical invariants. Recall the numerical invariants defined in Section 3.5. We say a character
ϕ is tame if and only if it factors through the maximal tame quotient GK ,C � G t

K ,C , or equivalently,
Swan(ρ) vanishes. Let

rC(ρ⊗ ϕ) := deg(LC(T, ρ⊗ ϕ))

as in Section 3.5.

Proposition 4.3.1. If ϕ is tame, then

rC(ρ⊗ ϕ)= rC(ρ)= deg(L(T, ρ))+ (deg(c)+ 1) dim(V )− dropC(ρ). (4.3.2)

Proof. If ϕ is tame and g is the genus of X , then Proposition 3.5.1 and Lemma B.1.3 imply

rC(ρ⊗ ϕ)
(3.5.3)
= (drop(ρ⊗ ϕ)− dropC(ρ⊗ ϕ)+Swan(ρ⊗ ϕ))− (2− 2g− deg(C)) · rank(ρ⊗ ϕ).

B.1.3
= (drop(ρ)− dropC(ρ)+Swan(ρ))− (2− 2g− deg(C)) · rank(ρ)

(3.5.3)
= rC(ρ)

(3.5.4)
= r∅(ρ)+ deg(C) · rank(ρ)− dropC(ρ).

The proposition follows by observing that

r∅(ρ)= deg(L(T, ρ)), deg(C)= deg(c)+ 1, rank(ρ)= dim(V ). �

Remark 4.3.3. Observe deg(LC(T, ρ⊗ ϕ)) is independent of ϕ.

4.4. Trace formula. By (4.2.1), we have

T d
dT

log L(T, (ρ⊗ ϕ)v)−1
=

∞∑
m=1

ϕ(Frobv)maρ,v,m T m for v ∈ P r C. (4.4.1)

We also have

T d
dT

log LC(T, ρ⊗ ϕ)=
∞∑

n=1

bρ⊗ϕ,nT n, (4.4.2)

where

bρ⊗ϕ,n :=
2∑

i=1

(−1)i ·Tr(Frobq | H i
c (U ,ME(ρ⊗ ϕ))) for n ≥ 1.
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Thus, we have the twisted Grothendieck–Lefschetz trace formula∑
md=n

∑
v∈PdrC

d ·ϕ(Frobv)maρ,v,m = bρ⊗ϕ,n. (4.4.3)

Compare (3.6.5).

5. Sums in arithmetic progressions

Throughout this section (and many of the remaining sections) we suppose that X is the projective t-line P1
t

and thus that K = Fq(t).

5.1. Dirichlet characters. Let c ∈ Fq [t] be monic and square-free of degree d ≥ 1, and let

0(c) := (Fq [t]/c Fq [t])× and 8(c) := Hom(0(c),Q×).

The latter are finite abelian groups and are noncanonically isomorphic of order equal to the Euler
totient φ(c). Let UC ⊂ P be the complement of the finite set

C := supp(c)= {v ∈ P : ordv(c) 6= 0}.

Then∞∈ C and
∑

v∈C deg(v)= d + 1.
The elements of u of UC are in natural bijection with the maximal ideals pu ⊂ Fq [t] which do not

contain c, and such an ideal is generated by a unique monic πu ∈ pu . In particular, abelian class field
theory supplies both a well-defined element Frobu ∈ Gab

K ,C and a homomorphism

αC : Gab
K ,C→ 0(c), with αC(Frobu)= πu mod c for u ∈ UC .

This allows us to regard any character ϕ ∈8(c) as a (continuous) composite homomorphism

ϕ : GK ,C � G t,ab
K ,C � 0(c)→Q×.

We call the composite homomorphism a tame Dirichlet character and say it has conductor supported in C.

5.2. Von Mangoldt function. Let M⊂ Fq [t] be the subset of monic polynomials, I ⊂M be the subset
of irreducibles, and Id ⊂ I be the monics of degree d. There is a natural bijection between the finite
places v ∈ P r {∞} and the elements π ∈ I since X = P1

t . We write v : I → P r {∞} for the map
sending an irreducible to its corresponding place.

We define the von Mangoldt function of ρ to be the map 3ρ :M→Q` given by

3ρ( f )=
{

d · aρ,v(π),m if f = πm,where m ≥ 1 and π ∈ Id ,

0 otherwise.
(5.2.1)

Recall aρ,v(π),m is the local trace defined in (3.6.1), and in (3.6.2), it is completely determined by the
Euler factor L(T, ρv). We also define the extension by zero of ϕ ∈8(c) to be the map ϕ! :M→Q` given
by

ϕ!( f )=
{
ϕ( f + c Fq [t]) if gcd( f, c)= 1,
0 otherwise.
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It is multiplicative and satisfies

ϕ!(π)=

{
ϕ(Frobv(π)) if π -c,
0 otherwise

for π ∈ I.

There may be other multiplicative maps extending ϕ, but for our extension we have the identity

bρ⊗ϕ,n =
∑

f ∈Mn

ϕ!( f )3ρ( f ) for n ≥ 1 (5.2.2)

by (4.4.3). We observe that in the special case ϕ = 1 this simplifies to

bρ,n =
∑

A∈0(c)

∑
f ∈Mn(A)

3ρ( f ), (5.2.3)

where Mn(A)⊆Mn is the subset of f satisfying f ≡ A mod c.

5.3. Sums in random arithmetic progressions. Consider the sum

Sn,c(A) :=
∑

f ∈Mn(A)

3ρ( f ) for A ∈ 0(c) and n ≥ 1, (5.3.1)

where 3ρ :M→Q` is the von Mangoldt function of ρ.
For each n, we would like to regard the sum as a random variable on 0(c), e.g., so that we can speak

of the mean and variance. If we were loathe to impose hypotheses on the range of 3ρ , we might consider
the drastic measure of choosing a field isomorphism Q`→C . Instead, we fix field embeddings ι :Q→C

and Q→Q` and suppose the range of 3ρ is a subset of Q⊂Q`. This allows us to define the elements

E[Sn,c(A)] :=
1
φ(c)

∑
A∈0(c)

Sn,c(A), (5.3.2)

Var[Sn,c(A)] :=
1
φ(c)

∑
A∈0(c)

∣∣ι(Sn,c(A)− E[Sn,c(A)])
∣∣2 (5.3.3)

in Q and C respectively.

5.4. Coefficients of L-functions. Observe that, for each A1, A2 ∈ 0(c), one has

1
φ(c)

∑
ϕ∈8(c)

ϕ(A1)ϕ̄(A2)=

{
1 if A1 = A2,

0 if A1 6= A2,

and thus by (5.2.2), one has

Sn,c(A)=
1
φ(c)

∑
f ∈Mn

3ρ( f )
∑
ϕ∈8(c)

ϕ!( f )ϕ̄!(A)=
1
φ(c)

∑
ϕ∈8(c)

bρ⊗ϕ,n · ϕ̄!(A).

Therefore, if we write 1 ∈8(c) for the trivial character, then (5.3.2) becomes

E[Sn,c(A)] =
1

φ(c)2
∑
ϕ∈8(c)

bρ⊗ϕ,n
∑

A∈0(c)

ϕ̄!(A)=
1
φ(c)

bρ,1,n
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since, for every ϕ1, ϕ2 ∈8(c), one has

1
φ(c)

∑
A∈0(c)

ϕ1(A)ϕ̄2(A)=
{

1 if ϕ1 = ϕ2,

0 if ϕ1 6= ϕ2.
(5.4.1)

In particular, we have the identity

Sn,c(A)− E[Sn,c(A)] =
1
φ(c)

∑
ϕ∈8(c)∗

bρ⊗ϕ,n · ϕ̄(A), where 8(c)∗ =8(c)r {1},

and (5.3.3) becomes

Var[Sn,c(A)] =
1

φ(c)3
∑

A∈0(c)

∑
ϕ1,ϕ2∈8(c)∗

bρ⊗ϕ1,n b̄ρ⊗ϕ2,n · ϕ̄1!(A)ϕ2!(A)=
1

φ(c)2
∑

ϕ∈8(c)∗
|bρ⊗ϕ,n|2

by (5.4.1).
In summary, the function Sn,c(A) of the random variable A satisfies

E[Sn,c(A)] =
1
φ(c)

bρ⊗1,n, Var[Sn,c(A)] =
1

φ(c)2
∑
ϕ∈8(c)
ϕ 6=1

|ι(bρ⊗ϕ,n)|2. (5.4.2)

In order to say anything meaningful about these numbers individually or as q grows, we need to impose
additional hypotheses on ρ, e.g., that the Euler factors of L(T, ρ) satisfy a suitable Riemann hypothesis.
Doing so will enable us to apply Deligne’s theorem and to rewrite the variance in terms of a matrix
integral.

6. Purity and weights

Let Q→Q` and ι :Q→ C be field embeddings. Using these embeddings we can define what it means
for a representation such as ρ to be pointwise ι-pure of some weight w ∈ R. We do so by imposing a
Riemann hypothesis on the zeros of each of the Euler factors, i.e., that they embed in C via ι and lie on
a suitable circle centered at the origin. The property is local in that it places constraints on each of the
Euler factors, and it does not immediately say anything global. To show that the partial and complete
L-functions also satisfy a suitable Riemann hypothesis, one needs Deligne’s theorem.

6.1. Purity. We say a polynomial in Q`[T ] is ι-pure of q-weight w if and only if it is nonzero and each
of its zeros α ∈Q` lies in Q and satisfies

|ι(α)|2 = (1/q)w.

We also say it is pure of q-weightw if and only if it is ι-pure of q-weight w for every ι. More generally, we
say it is mixed of q-weights ≤ w if and only if it is a product of polynomials, each pure of q-weight ≤ w.

Remark 6.1.1. Our terminology is unconventional in that we incorporate q; however, we need to make
q explicit since we have not said where the polynomial comes from.
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Remark 6.1.2. In many applications w is usually rational and often an integer.

6.2. Riemann hypothesis. We say the representation ρ⊗ ϕ is pointwise (ι-)pure of weight w if and only
if the Euler factor L(T dv , (ρ⊗ ϕ)v) is (ι-)pure of q-weight w for every v 6∈ S.

Theorem 6.2.1. (Deligne) If ρ⊗ ϕ is pointwise (ι-)pure of weight w, then the cohomological factors
Pi,C(T, ρ⊗ ϕ) are (ι-)mixed of q-weights ≤w+ n and the factors Pi (T, ρ⊗ ϕ) both lie in Q[T ] and are
(ι-)pure of q-weight w+ n.

Proof. See Theorems 1 and 2 of [Deligne 1980] for the respective assertions about Pi,C(T, ρ⊗ ϕ) and
Pi (T, ρ⊗ ϕ) in terms of the middle extension ME(ρ⊗ ϕ). The theorems are stated in terms of ι, but
one can easily deduce the statement for pointwise pure ρ⊗ ϕ by considering all ι simultaneously. �

The following lemma implies every twist ρ⊗ ϕ is pointwise pure if and only if ρ is.

Lemma 6.2.2. If ρ = ρ⊗ 1 is pointwise ι-pure of weight w, then so is ρ⊗ ϕ.

Proof. Observe that ζ = ϕC(Frobv) is a root of unity since 0(c) has finite order; hence ζ ∈ Q and
|ι(ζ )|2 = 1. If v 6∈ C and if α ∈Q is a zero of L(T, (ρ⊗ ϕ)v), then (4.2.1) implies that α/ζ is a zero of
L(T, ρv). In particular, |α|2 = |α/ζ |2 = (1/qdv )w; hence L(T dv , (ρ⊗ ϕ)v) is ι-pure of q-weight w for
almost all v. �

6.3. Weight bound for missing Euler factors. Let F be a middle-extension sheaf on X (e.g., ME(ρ⊗ ϕ)).
We say that F is pointwise (ι-)pure of weight w if and only if for some dense Zariski open subset U ⊆ X
on which F is lisse, the corresponding representation of π1(U ) is pointwise (ι-)pure of weight w. In
general, even for U maximal among such U, the complement Z = X rU may be nonempty, and there
may be mild degeneration among the zeros of the corresponding Euler factors.

Lemma 6.3.1. Let j : U → X be the inclusion of a dense Zariski open subset and Z = X rU. If F is
lisse on U and pointwise ι-pure of weight w, then

det(1− T Frobq | H 0(Z , j∗F ))=
∏
z∈Z

L(T dz ,Fz)

is ι-mixed of q-weights ≤ w.

Proof. See [Deligne 1980, 1.8.1]. �

7. Polynomial L-functions

A priori, the partial and complete L-functions are different and rational, that is, a quotient of two
polynomials. We suppose that ρ is pointwise ι-pure of known weight so that we can speak of the weights
of the zeros and poles of the L-functions. Under suitable additional conditions on ϕ, the L-functions of
ρ⊗ ϕ coincide, are polynomials, and are ι-pure of known q-weight. As we explain in the next section,
these properties will allow us to associate a conjugacy class of unitary matrices to ρ⊗ ϕ.



Variance of arithmetic sums and L-functions in Fq[t] 43

7.1. Semisimplicity. Consider an exact sequence of GK ,S-modules

0→ V1→ V → V2→ 0, (7.1.1)

and let ρ : GK ,S → GL(V ) and ρi : GK ,S → GL(Vi ) for i = 1, 2 be the corresponding structure
homomorphisms.

A priori, (7.1.1) does not split, but we say ρ is arithmetically semisimple if and only if the sequence
splits for every GK ,S-invariant subspace V1 ⊆ V. By Clifford’s theorem, the condition implies that ρ
is geometrically semisimple since GK ,S is normal in GK ,S (cf. [Curtis and Reiner 1962, 49.2]): every
GK ,S-invariant subspace of V has a GK ,S-invariant complement. We also say that ρ is geometrically
simple if and only if ρ is irreducible and geometrically semisimple.

Lemma 7.1.2. If ρ is geometrically simple, then so is ρ⊗ ϕ.

Proof. If Wϕ ⊆ Vϕ is a G K ,R-invariant subspace, then W = Wϕ ⊗ ϕ̄ is a G K ,R-invariant subspace.
Moreover, if ρ is geometrically simple, then W equals 0 or V ; hence Wϕ equals 0 or Vϕ . �

7.2. Invariants and coinvariants. We say ρ has trivial geometric invariants if and only if the subspace
in V of GK ,S-invariants is zero, and it has trivial geometric coinvariants if and only if the quotient space
of GK ,S-coinvariants of V is zero. These properties are equivalent when ρ is geometrically semisimple.

Proposition 7.2.1. If ρ is pointwise ι-pure, then it is geometrically semisimple, and in particular it has
trivial geometric invariants if and only if it has trivial geometric coinvariants.

Proof. One can rephrase semisimplicity for ρ in terms of semisimplicity for ME(ρ) (cf. [Beı̆linson et al.
1982, 5.1.7]). It follows that both are geometrically semisimple if ρ is ι-pure (see [Beı̆linson et al. 1982,
5.3.8]), and then the spaces of invariants and coinvariants are isomorphic, so both vanish or neither does. �

Corollary 7.2.2. If ρ is pointwise ι-pure and has trivial geometric invariants, then H i (X ,ME(ρ)) and
H i

c (U ,ME(ρ)) vanish for i 6= 1, and there is an exact sequence

0→ H 0(Z ,ME(ρ))→ H 1
c (U ,ME(ρ))→ H 1(X ,ME(ρ))→ 0. (7.2.3)

Therefore L(T, ρ)= P1(T, ρ) and LC(T, ρ)= P1,C(T, ρ).

Proof. Suppose ρ is pointwise ι-pure and has trivial geometric invariants so that Proposition 7.2.1 implies
ρ has trivial geometric coinvariants. We claim H i (X ,ME(ρ)) vanishes for i 6= 1. The corollary then
follows by observing that (B.0.3) simplifies to (7.2.3) and that H 2

c (U ,ME(ρ)) vanishes by (B.0.4).
The claim is independent of U, so up to shrinking U, we suppose j∗ME(ρ) is lisse. Then

H 0(X ,ME(ρ))= H 0(U ,ME(ρ)) and H 2(X ,ME(ρ))= H 2
c (U ,ME(ρ))

are the subspace of π1(U )-invariants and (a Tate twist of the) quotient space of π1(U )-coinvariants,
respectively, of V by (2.0.2). The claim is also independent of S, so up to replacing S by a finite superset
in P, we suppose ρ factors through a natural quotient GK ,S � π1(U ). Then the cohomology spaces
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in question are the GK ,S-invariants and GK ,S-coinvariants of V, which are trivial by hypothesis, so
H i (X ,ME(ρ)) vanishes for i 6= 1 as claimed. �

7.3. Pure polynomial L-functions. In this section we present two theorems. They address the partial
and complete L-functions of ρ⊗ ϕ respectively. In both cases we focus on necessary and sufficient
conditions for the L-function in question to be a polynomial.

Let A1
t [1/c] ⊆A1

t be the open complement of the locus c= 0. To say that a sheaf F on P1
t is supported

on U ⊆ P1
t means that the stalks of F vanish over the points of the complement Z = P1

t rU.

Theorem 7.3.1. The following are equivalent:

(i) MC(T, ρ)= 1; that is, ME(ρ) is supported on A1
t [1/c].

(ii) LC(T, ρ) is a polynomial which is ι-pure of q-weight w+ 1.

Note, MC(T, ρ) is the L-function of the restriction of ME(ρ) to Z , so the former is trivial if and only
if the latter is.

Proof. If (i) holds, then the subspace of I (∞)-invariants of V is trivial, so a fortiori, the subspace of
GK ,S-invariants is trivial. Therefore Corollary 7.2.2 implies LC(T, ρ) equals L(T, ρ) = P1(T, ρ) and
hence Theorem 6.2.1 implies (ii) holds.

If (ii) holds, then P2,C(T, ρ) divides P1,C(T, ρ) by (3.4.2). Theorem 6.2.1 implies P2,C(T, ρ)= P2(T, ρ)
is ι-pure of q-weight w+ 2, so it is coprime to P1,C(T, ρ) and hence trivial. Therefore H 2(X ,ME(ρ))
vanishes, and hence H 0(X ,ME(ρ)) also vanishes since ρ is geometrically semisimple. That is, ρ has
trivial geometric invariants. Moreover, 1/MC(T, ρ) is a polynomial which is ι-mixed of q-weights ≤ w
by Lemma 6.3.1, while L(T, ρ) is a polynomial which is ι-pure of q-weight w, so Corollary 7.2.2 implies
(i) holds. �

Now we turn to the complete L-function.

Theorem 7.3.2. Suppose ρ⊗ ϕ is pointwise ι-pure of weight w. Then the following assertions are
equivalent:

(i) The complete L-function L(T, ρ⊗ ϕ) is in Q(T ) but not Q[T ].

(ii) The cohomological factors P0(T, ρ⊗ ϕ) and P2(T, ρ⊗ ϕ) are nontrivial polynomials in Q[T ].

(iii) The cohomological factor P2(T, ρ⊗ ϕ) is a nontrivial polynomial in Q[T ].

(iv) The twist ρ⊗ ϕ has nontrivial geometric coinvariants.

(v) The twist ρ⊗ ϕ has nontrivial geometric invariants and coinvariants.

If these assertions are not true, then:

(vi) LC(T, ρ⊗ ϕ) equals P1,C(T, ρ⊗ ϕ) and is ι-mixed of q-weights ≤ w+ 1.

(vii) L(T, ρ⊗ ϕ) is the largest ι-pure factor of q-weight w+ 1 of LC(T, ρ⊗ ϕ).
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Proof. First we prove the assertions are equivalent. On one hand, Theorem 6.2.1 implies that the
cohomological factors Pi (T, ρ) are relatively prime, so (i) and (ii) are equivalent. Moreover, (ii) and (v)
(resp. (iii) and (iv)) are equivalent by (2.0.2) and (3.4.1). On the other hand, Proposition 7.2.1 implies
that P0(T, ρ⊗ ϕ) is trivial if and only if P2(T, ρ⊗ ϕ) is trivial, so (ii) and (iii) are equivalent.

Now suppose the assertions are not true. On one hand, Corollary 7.2.2 implies

L(T, ρ⊗ ϕ)= P1(T, ρ⊗ ϕ), LC(T, ρ⊗ ϕ)= P1,C(T, ρ⊗ ϕ),

so both are polynomials as claimed. On the other hand, Theorem 6.2.1 implies L(T, ρ⊗ ϕ) is ι-pure
of q-weight w+ 1 and LC(T, ρ⊗ ϕ) is ι-mixed of q-weights ≤ w+ 1 since ρ⊗ ϕ is pointwise ι-pure
of weight w. Moreover, Lemma 6.3.1 implies that LC(T, ρ⊗ ϕ)/L(T, ρ⊗ ϕ) = 1/MC(T, ρ⊗ ϕ) is a
polynomial which is ι-mixed of q-weights≤w, so L(T, ρ⊗ ϕ) is the largest ι-pure factor of LC(T, ρ⊗ ϕ)
of q-weight w+ 1 as claimed. �

Remark 7.3.3. Observe that LC(T, ρ⊗ ϕ) is “usually” a pure polynomial of degree r∅(ρ) (compare
Remark 4.3.3).

8. Trichotomy of characters

Fix field embeddings Q→Q` and ι :Q→ C . We suppose throughout this section that ρ is pointwise
ι-pure of weight w so that we can apply Deligne’s theorem and talk about the weights of the zeros and
poles of LC(T, ρ⊗ ϕ) as ϕ varies. Having done so, we partition 8(c) into three classes of characters
based the possible size of the summands of

Var[Sn,c(A)] =
1

φ(c)2
∑

ϕ∈8(c)r{1}

|ι(bρ⊗ϕ,n)|2. (8.0.1)

In our classification, each ϕ ∈8(c) is either good or bad (for ρ), and each bad character is either mixed
or heavy. On one hand, one can show that most characters are good and that they’re the ones for which
we will regard

b∗ρ⊗ϕ,n :=
ι(bρ⊗ϕ,n)
qn(1+w)/2

as the trace of a unitary matrix. This will allow us to approximate the sum in (8.0.1) using a matrix
integral. On the other hand, the heavy characters are those for which |b∗ρ⊗ϕ,n|

2 is unbounded as q→∞,
and their number is bounded as q→∞.

8.1. Good versus bad. We say that a character ϕ ∈ 8(c) is good for ρ if and only if it belongs to the
subset

8(c)ρ good := {ϕ ∈8(c) : LC(T, ρ⊗ ϕ)= L(T, ρ⊗ ϕ) ∈Q[T ]}, (8.1.1)

and otherwise we say it is bad for ρ and define

8(c)ρ bad :=8(c)r8(c)ρ good.

As we will see, this coincides with Katz’s classification of characters in [Katz 2012] (cf. Lemma 10.3.1).
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By Theorem 7.3.2, the good characters are precisely those for which the partial L-function LC(T, ρ⊗ ϕ)
has three properties: it is identical to the polynomial

P1,C(T, ρ)= det
(
1− T Frobq | H 1

c (A
1
t [1/c],ME(ρ⊗ ϕ))

)
,

it has degree R = rC(ρ), and it is ι-pure of q-weight w+ 1. Equivalently, they are the characters for
which the normalized L-function

L∗C(T, ρ⊗ ϕ)= LC(T/(
√

q)1+w, ρ⊗ ϕ) (8.1.2)

is a polynomial and ι-pure of q-weight zero.
In particular, if std :UR(C)→GLR(C) is the inclusion UR(C)⊆GLR(C), then for each good ϕ, there

is a unique conjugacy class

θρ,ϕ ⊂UR(C)⊆ GLR(C)

such that ι(L∗C(T, ρ⊗ ϕ)) equals the characteristic polynomial of std(θρ,ϕ). Therefore, from the identity

T d
dT

ι(L∗C(T, ρ⊗ ϕ))=
∞∑

n=1

b∗ρ⊗ϕ,nT n (8.1.3)

one deduces that

b∗ρ⊗ϕ,n =−Tr(std(θn
ρ,ϕ)) for ϕ ∈8(c)ρ good (8.1.4)

and n ≥ 1.

8.2. Equidistributed matrices. If we combine (8.0.1) with (8.1.4), then

φ(c)
qn(1+w)Var[Sn,c(A)] =

1
φ(c)

∑
ϕ∈8(c)∗ρ good

|Tr(std(θn
ρ,ϕ))|

2
+

1
φ(c)

∑
ϕ∈8(c)∗ρ bad

|ι(b∗ρ⊗ϕ,n)|
2. (8.2.1)

Definition 8.2.2. Let K ⊆UR(C) be a compact reductive subgroup, say a maximal compact subgroup of
a reductive subgroup G(C)⊆ GLR(C). The multiset

2ρ,q := {θρ,ϕ : ϕ ∈8(c)ρ good} ⊆UR(C)

becomes equidistributed in K as q→∞ if and only if it satisfies:

(i) K∩ θ is nonempty, for any θ ∈2ρ,q and any q .

(ii) For any continuous central function f : K→ C, one has

lim
q→∞

1
|8(c)∗ρ good|

∑
ϕ∈8(c)∗ρ good

f (θρ,ϕ)=
∫

K

f (θ) dθ, (8.2.3)

where dθ is probability Haar measure on K.

The general theory of Katz tells us that, in favorable situations, some such K exists and is unique up to
conjugation.
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Remark 8.2.4. The Peter–Weyl theorem implies that proving 8.2.2(ii) holds is equivalent to proving that
(8.2.3) holds for every f of the form f = Tr ◦3, where

3 : K→ GLdim(3)(C)

is a finite-dimensional representation. One may even restrict to irreducible representations.

8.3. Refining bad: mixed versus heavy. There are two ways a character can be bad:

(i) either L(T, ρ⊗ ϕ) is not a polynomial in Q(T );

(ii) or L(T, ρ⊗ ϕ) and LC(T, ρ⊗ ϕ) are polynomials but not equal to each other in Q[T ].

What distinguishes the first case from the second is that ι(L(T, ρ⊗ ϕ)) has poles some of which have
excessive weight. More precisely, if the factor P2(T, ρ⊗ ϕ) of the denominator of L(T, ρ⊗ ϕ) is
nontrivial, then it ι-mixed of q-weights ≤ w+ 1 but not ι-mixed of q-weights ≤ w (cf. Theorem 7.3.2).

Definition 8.3.1. We say that ϕ is heavy for ρ (or ρ-heavy) if and only if it lies in the subset

8(c)ρ heavy := {ϕ ∈8(c)ρ bad : L(T, ρ⊗ ϕ) 6∈Q[T ]}.

Otherwise, we say that ϕ is mixed for ρ (or ρ-mixed) to mean it lies in the subset

8(c)ρmixed :=8(c)ρ bad r8(c)ρ heavy.

Equivalently, ϕ is mixed for ρ if and only if LC(T, ρ⊗ ϕ) is a polynomial which is ι-mixed of q-weights
≤ w+ 1 but not ι-pure of q-weight w+ 1.

Lemma 8.3.2. Suppose ρ is geometrically simple and pointwise ι-pure and ϕ ∈8(c). Then ϕ is heavy
for ρ if and only if ρ⊗ ϕ is geometrically isomorphic to the trivial representation.

Proof. The essential point is that since ρ⊗ ϕ is geometrically simple, the quotient space of geometric
coinvariants (Vϕ)GK ,R

either vanishes or equals Vϕ . The former occurs if and only if ρ⊗ ϕ is geometrically
isomorphic to the trivial representation, so the lemma follows from Theorem 7.3.2. �

Corollary 8.3.3. Suppose ρ is geometrically simple and pointwise ι-pure, and let r = dim(V ). Then
8(c)ρ heavy ⊆ {1} if and only if one of the following hold:

(i) r > 1.

(ii) r = 1 and ρ is geometrically isomorphic to the trivial representation.

(iii) r = 1 and ρ is not geometrically isomorphic to a Dirichlet character in 8(c).

Moreover, 8(c)ρ heavy = {1} if and only if (ii) holds.

Proof. Let ϕ ∈ 8(c). Lemma 8.3.2 implies that ϕ is heavy for ρ if and only if ρ⊗ ϕ is geometrically
isomorphic to the trivial representation (and hence r = 1). By the contrapositive, ϕ is not heavy for ρ if
and only if r > 1 or ρ is not geometrically isomorphic to 1/ϕ. Therefore (i) or (iii) holds if and only if
8(c)ρ heavy is empty, and (ii) holds if and only if 8(c)ρ heavy = {1}. �
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9. Variance revisited

We have yet to make precise what we mean when we say that most characters are good or that most bad
characters are mixed. Nonetheless, the following theorem shows how we can express the Var[Sn,c(A)]
using our trichotomy of characters.

Theorem 9.0.1. Let K ⊆ UR(C) be a compact reductive subgroup and dθ be its Haar measure. Sup-
pose that ρ is pointwise ι-pure of weight w, that 2ρ,q is equidistributed in K as q → ∞, and that
8(c)ρ heavy ⊆ {1}. Then

φ(c)
qn(1+w) ·Var[Sn,c(A)] =

|8(c)ρ good|

|8(c)|

∫
K

|Tr(θn)|2 dθ + O
(
|8(c)ρmixed r {1}|

|8(c)|

)
as q→∞.

The proof is in Section 9.2.

Remark 9.0.2. Later we will prove

|8(c)ρ good| ∼ |8(c)|, |8(c)ρmixed r {1}| = O(|8(c)|/q).

See Corollaries 10.3.2 and 10.3.3.

Remark 9.0.3. One can also show that∫
UR(C)

|Tr std(θn)|2 dθ =min{n, R}. (9.0.4)

See1 [Diaconis and Evans 2001, Theorem 1].

9.1. Archimedean bounds.

Lemma 9.1.1. If M is an invertible d × d matrix with coefficients in Q` and if det(1−M T ) is mixed of
q-weights ≤ w, then Tr(M) ∈Q and |ι(Tr(M))|2 ≤ dqw for every field embedding ι :Q→ C .

Proof. If M is invertible and ψ(T )= det(1−M T ) is mixed, there exist β1, . . . , βd ∈Q× such that

ψ(T )=
d∏

i=1

(1−βi T )= 1−Tr(M) · T + · · ·+ (−1)d · det(M) · T d

and such that Tr(M)= β1+ · · ·+βm also lies in Q. Therefore, if ι :Q→ C is a field embedding, then

|Tr(M)|2 =
∣∣∣∣ d∑

i=1

ι(βi )

∣∣∣∣2 ≤ d∑
i=1

|ι(βi )|
2
= dqw

as claimed. �

1The reference [Diaconis and Shahshahani 1994, Theorem 2] is sometimes used, but as explained in [Diaconis and Evans
2001], the theorem is incorrectly stated.
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Lemma 9.1.2. Suppose ρ is pointwise ι-pure of weight w and ϕ ∈ 8(c). If ϕ is heavy for ρ, then
|b∗ρ⊗ϕ,n|

2
= O(qn), and otherwise |b∗ρ⊗ϕ,n|

2
= O(1). Moreover, the bounds assume n tends to infinity

and the implied constants depend only on ρ.

Proof. Consider the Tate twist

F :=ME(ρ⊗ ϕ)⊗Q`((1+w)/2).

It is pointwise ι-pure of weight −1 since F is pointwise ι-pure of weight w, and its partial L-function is
L∗C(T, ρ⊗ ϕ). Therefore

b∗ρ⊗ϕ,n =−Tr(Frobn
q | H

1
c (A

1
t [1/c],F ))+Tr(Frobn

q | H
2
c (A

1
t [1/c],F ))

by (8.1.3). Moreover, the second term on the right vanishes unless ϕ is heavy, and∣∣ι(Tr(Frobn
q | H

i
c (A

1
t [1/c],F ))

)∣∣2 = O(qn(i−1))

by Theorem 6.2.1 and Lemma 9.1.1. �

9.2. Proof of Theorem 9.0.1. By (8.2.1) we have

φ(c)
qn(1+w)Var[Sn,c(A)] =

1
φ(c)

∑
ϕ∈8(c)∗ρ good

|Tr(std(θn
ρ,ϕ))|

2
+

1
φ(c)

∑
ϕ∈8(c)∗ρ bad

|ι(b∗ρ⊗ϕ,n)|
2

for any S ⊆8(c).
On one hand, by (8.2.3) we have

lim
q→∞

1
φ(c)

∑
ϕ∈8(c)ρ good

ϕ 6=1

|Tr(std(θn
ρ,ϕ))|

2
=
|8(c)ρ good|

|8(c)|

∫
UR(C)

|Tr(θn)|2 dθ.

On the other hand, by Lemma 9.1.2 we have

1
φ(c)

∑
ϕ∈8(c)ρ bad

ϕ 6=1

|ι(b∗ρ⊗ϕ,n)|
2
=

1
|8(c)|

∑
ϕ∈8(c)ρmixed

ϕ 6=1

O(1)+
1
|8(c)|

∑
ϕ∈8(c)ρ heavy

ϕ 6=1

O(qn)

=
|8(c)ρmixed r {1}|

|8(c)|
· O(1)+

|8(c)ρ heavy r {1}|
|8(c)|

· O(qn),

where the implied constants are independent of ϕ, and the last term vanishes if 8(c)ρ heavy ⊆ {1}.

Remark 9.2.1. While we do not need the result, we point out that (5.4.2) and Lemma 9.1.2 imply

φ(c)
qn(1+w) · |ι(E[Sn,c(A)])|2 = |b∗ρ,n|

2
= O(1) for q→∞,

when ρ is pointwise ι-pure of weight w and ϕ is not heavy for ρ.
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10. Big monodromy implies equidistribution

In principle, one could try to exhibit equidistribution for all of 2ρ,q at once. Instead we follow Katz and
(try to) prove simultaneous and uniform equidistribution for certain one-parameter families of characters.
More precisely, we partition 8(c) into cosets ϕ8(u)ν of a subgroup 8(u)ν (defined in Section 10.2) and
(try to) prove equidistribution for characters in

ϕ8(u)νρ good = ϕ8(u)
ν
∩8(c)ρ good. (10.0.1)

Doing so for a single coset is equivalent to showing that an associated monodromy group we denote by
Ggeom(ρ, ϕ8(u)ν) equals GLR,Q`

. See Sections 10.2, 10.3, and 10.4.
The monodromy group is an algebraic subgroup of GLR,Q`

. We say the former is big if and only if it
equals the latter, and we write

8(c)ρ big = {ϕ ∈8(c) : Ggeom(ρ, ϕ8(u)ν) is big} (10.0.2)

for the subset of big characters. We say that the Mellin transform of ρ has big monodromy in GLR,Q`
if

and only if

|8(c)ρ big| ∼ |8(c)| as n→∞, (10.0.3)

where q = qn
0 for prime power q0. We show that it implies 2ρ,q becomes equidistributed in UR(C). By

Remark 8.2.4, it suffices to prove the following theorem.

Theorem 10.0.4. Suppose ρ is pointwise ι-pure and ϕ is in 8(c)ρ big. Let 3 :UR(C)→ GLdim(3)(C) be
a finite-dimensional representation. If q = qn

0 is sufficiently large, then

1
|ϕ8(u)νρ good|

∑
ϕ′∈ϕ8(u)νρ good

Tr3(θρ,ϕ′)=
∫

UR(C)

Tr3(θ) dθ + o(1) as n→∞, (10.0.5)

and the implicit constant depends only on r = dim(V ) and dim(3). In particular, if the Mellin transform
of ρ has big monodromy, then 2ρ,q becomes equidistributed in UR(C) as n→∞.

The proof is in Section 10.5.

Remark 10.0.6. Observe that the q-weight w of ρ plays no role in the statement of the theorem. This
is because we factored out the weight in the normalization (8.1.2). Another way to achieve the same
renormalization is to replace ρ by an appropriate Tate twist so that w = −1 and L∗C(T, ρ⊗ ϕ) =
LC(T, ρ⊗ ϕ).

10.1. Reduction to Gm. Recall X = P1
t and c ∈ Fq [t] ⊂ K is monic and square-free. Let P1

u denote the
projective u-line and Uc = X r C. Moreover, let L equal Fq(u)→ K , the Fq-linear field embedding
generated by u 7→ c and corresponding to the finite cover c : X→ P1

u . The morphism has generic degree
n = deg(c) and is generically étale since it has n distinct points over u = 0. It also fits in a commutative
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diagram
Uc //

c
��

X

c
��

Coo

c
��

Gm // P1
u C′={0,∞}oo

where the outer vertical maps are finite morphisms.
Let R be a finite set of places in L including those lying under C ∪S and those which ramify in K/L ,

and let U ′ ⊂ P1
u be the corresponding open complement. Then for each ϕ ∈8(c), we have an induced

representation
Ind(ρ⊗ ϕ) : GL ,R→ GL(Ind(Vϕ)),

where Ind(Vϕ) is a vector space of dimension n ·dim(Vϕ). The representation is the geometric generic fiber
of F =Q∗ME(ρ⊗ ϕ), and the hypotheses on R imply F is lisse on U ′ ⊂ P1

u . (In fact, Proposition A.0.4
implies F and ME(Ind(ρ⊗ ϕ)) are isomorphic on U ′.). In particular, if ū is a geometric closed point of
P1

u , that is, the image of a closed point of X , and if

c−1(ū)= {t̄1, . . . , t̄m} ⊂ X ,

then the various geometric stalks satisfy

(Q∗F )ū = H 0(ū,Q∗F )=
m⊕

i=1

H 0(t̄i ,F )=
m⊕

i=1

Ft̄i (10.1.1)

as Q`-vector spaces (cf. [Milne 1980, II.3.1(e) and II.3.5(c)]). Thus if F is supported on Uc, then Q∗F is
supported on Gm .

Lemma 10.1.2. If ρ is pointwise ι-pure of weight w, then so is Ind(ρ⊗ ϕ).

Proof. Let v̄ be a place in L not lying in R, and let v | v̄ denote any place in K lying over v̄. Then

L(T deg(v̄), Ind(ρ⊗ ϕ)v̄)=
∏
v | v̄

L(T deg(v), (ρ⊗ ϕ)v)

by (10.1.1). In particular, Lemma 6.2.2 implies the factors on the right are ι-pure of q-weight w, so the
left side is also ι-pure of q-weight w. �

The functorial properties of Q∗ yield canonical isomorphisms

H i (X ,F )= H i (X ,Q∗F ) and H i
c (U c,F )= H i

c (Gm,Q∗F ) (10.1.3)

for each i . For example, Q∗ is exact since c is a finite map, so the first identity in (10.1.3) is a consequence
of the (trivial) Leray spectral sequence (cf. [Milne 1980, II.3.6 and III.1.18]). In particular, the identities
(3.4.2), (3.4.4), and (10.1.3) jointly imply that

L(T,ME(ρ⊗ϕ))= L(T,Q∗ME(ρ⊗ϕ)) and LC(T,ME(ρ⊗ϕ))= LC′(T,Q∗ME(ρ⊗ϕ)) (10.1.4)

for ϕ ∈8(c).
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10.2. One-parameter families. Recall c ∈ Fq [t] ⊂ K is monic and square-free and Fq(u)→ K is the
function-field embedding which sends u to c. The norm map K → Fq(u) is multiplicative and sends
t − a to (−1)nu for n = deg(c) and a ∈ Fq a zero of c. It also induces homomorphisms

ν : 0(c)→ 0(u) and ν∗ :8(u)→8(c),

where
0(u) := (Fq [u]/uFq [u])× and 8(u) := Hom(0(u),Q×` )

(see [Katz 2013, §2]). In particular, ν is surjective, so its dual ν∗ is injective, and we can identify 8(u)
with its image 8(u)ν. Moreover, as the following lemma shows, twisting by elements of the coset ϕ8(u)ν

is the “same” as twisting by elements of 8(u).

Lemma 10.2.1. Let ϕ ∈8(c) and α ∈8(u):

(i) Q∗ME(ρ⊗ ϕ) is isomorphic to ME(Ind(ρ⊗ ϕ)).

(ii) Q∗ME(ρ⊗ ϕαν) is isomorphic to ME(Ind(ρ⊗ ϕ)⊗α).

Proof. By [Katz 2002, 3.3.1], Q∗ME(ρ⊗ ϕ) is a middle extension, and since it is generically equal to
the middle-extension sheaf ME(Ind(ρ⊗ ϕ)), Proposition 3.3.3 implies part (i) holds.

Up to replacing ρ by ρ⊗ ϕ, we suppose without loss of generality that ϕ = 1. Let T ⊆ P1
t be a

dense Zariski open subset and U = c(T ). Suppose that U ⊆ Gm so that c∗ME(α) is lisse on T, that the
restriction c : T → U is étale, and that ME(ρ) is lisse on T. Let i : T → P1

t and j : U → P1
u be the

inclusions. We have

ME(ρ⊗αν)' i∗i∗(ME(ρ⊗αν))' i∗i∗(ME(ρ)⊗ME(αν))' i∗i∗(ME(ρ)⊗ c∗ME(α))

since each of the sheaves is a middle extension and lisse on T. Therefore the projection formula implies

Q∗ME(ρ⊗αν)'Q∗(i∗i∗(ME(ρ)⊗ c∗ME(α)))' j∗ j∗(Q∗ME(ρ)⊗ME(α))

since each of the sheaves is lisse on U and a middle extension on P1
u (by part (i)) and since c : T →U is

étale. Finally,

j∗ j∗(Q∗ME(ρ)⊗ME(α))' j∗ j∗(ME(Ind(ρ))⊗ME(α))'ME(Ind(ρ)⊗α)

and thus part (ii) holds. �

10.3. Counting good characters. We say a character ϕ ∈8(c) is good for ρ or simply good if and only
if it lies in the subset 8(c)ρ good defined in (8.1.1). When c = t and thus A1

t [1/c] = Gm , our notion of
good coincides with that of [Katz 2012, Chapter 3]. For general c, the following lemma shows how our
notion relates to his via Q∗:

Lemma 10.3.1. If ϕ ∈8(c) and α ∈8(u), then the following are equivalent:

(i) ϕαν is good for ρ.

(ii) ME(ρ⊗ ϕαν) is supported on A1
t [1/c].
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(iii) ME(Ind(ρ⊗ ϕ)⊗α) is supported on Gm .

(iv) α ∈8(u) is good for Q∗ME(ρ⊗ ϕ).

Proof. Theorem 7.3.1 implies the first conditions (i) and (ii) are equivalent. Conditions (ii) and (iii) are
equivalent by the identity in (10.1.1) for ū ∈ C′. Finally, taking c = t and applying the equivalence of (i)
and (ii) yields the equivalence of (iii) and (iv). �

Let 8(c)ρ bad be the complement 8(c)r8(c)ρ good and ϕ8(u)νρ bad =8(c)ρ bad ∩ϕ8(u)ν.

Corollary 10.3.2. |ϕ8(u)νρ bad| ≤ (1+ deg(c)) · rank(ρ).

Proof. If ϕ ∈8(c)ρ bad, then ϕ it coincides with some tame character of ρ at some v ∈ C, and there are at
most (1+ deg(c)) · rank(ρ) such characters. Compare [Katz 2012, pp. 12–13]. �

Corollary 10.3.3. |8(c)ρ good| ∼ |8(c)| as q→∞.

Proof. Observe that Corollary 10.3.2 implies

|8(c)| − |8(c)ρ good| = |8(c)ρ bad| =
∑
ϕ8(u)ν

|8(u)νρ bad| ≤ O(|8(c)|/|8(u)ν |)= o(|8(c)|)

as q→∞. �

One can also show that

|8(c0)ρ good| ∼ |8(c0)| as q→∞ (10.3.4)

for any monic divisor c0 | c.

10.4. Tannakian monodromy groups. Suppose c = t and thus C′ = C = {0,∞} and 8(u) = 8(c).
Suppose moreover that ρ is geometrically simple and dim(V ) > 1 so that no geometric subquotient of
ME(ρ) is a Kummer sheaf.

Let j : Gm→ P1
u be the inclusion, let j0 : Gm→ A1

u be the inclusion map, and for each α ∈8(u), let

ωα(ME(ρ))= H 1
c (A

1
u, j0∗ j∗ME(ρ⊗α)).

It is a GFq -module; that is, Frobq acts functorially, and it corresponds to a well-defined conjugacy class
of elements FrobFq ,α ⊂ GL(ω(ME(ρ))), where ω(ME(ρ)) = ω1(ME(ρ)) and 1 ∈ 8(u) is the trivial
character. Moreover, if α is good, then

ωα(ME(ρ))= H 1
c (Gm,ME(ρ⊗α)),

and in particular

LC(T, ρ⊗α)= det(1−FrobαT |ω(ME(ρ))).

In a way we will not make precise here, the Frobα “generate” `-adic reductive subgroups

Ggeom(ρ,8(u)ν)⊆ Garith(ρ,8(u)ν)⊆ GLR,Q`
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which are well-defined up to conjugacy. They are fundamental groups of certain Tannakian categories,
and we call them the Tannakian monodromy groups of ρ. See Appendix D for details. We say the Mellin
transform of ρ has big Tannakian monodromy if and only if Ggeom(ρ,8(u)ν)= GLR,Q`

.
For general c and ϕ ∈8(c), we write

Ggeom(ρ, ϕ8(u)ν)⊆ Garith(ρ, ϕ8(u)ν)⊆ GLR,Q`

for the Tannakian monodromy groups of Ind(ρ⊗ ϕ), and we say that the Mellin transform of ρ⊗ ϕ
has big Tannakian monodromy if and only if Ggeom(ρ, ϕ8(u)ν)= GLR,Q`

. Now the action of Frobq on
ωα(ME(ρ⊗ ϕ)) corresponds to a well-defined conjugacy class FrobFq ,α ⊂ Garith(ρ, ϕ8(u)ν).

10.5. Proof of Theorem 10.0.4. We may suppose without loss of generality that 3 is irreducible since it
is semisimple and Tr(31⊕32)= Tr(31)+Tr(32) for any representations 31,32. Moreover, we have
the Schur orthogonality relations∫

UR(C)

Tr3(θ) dθ =
{

1 if 3 is the trivial representation,
0 otherwise,

so to prove (10.0.5) we must show that

1
|ϕ8(u)νρ good|

∑
ϕ′∈ϕ8(u)νρ good

Tr3(θρ,ϕ′)=
{

1 if 3 is the trivial representation,
o(1) otherwise,

(10.5.1)

when q is large.
If q is sufficiently large, then Corollary 10.3.2 implies

|ϕ8(u)νρ bad| ≤ (1+ deg(c)) · rank(ρ) < |ϕ8(u)ν |

and thus ϕ8(u)νρ good is nonempty. In particular, the left side of (10.5.1) is defined for large q, and it is
identically 1 when 3 is the trivial representation. On the other hand, if 3 is nontrivial and if q is bigger
than (|ϕ8(u)νρ bad| + 1)2, then [Katz 2012, 7.5] implies

1
|ϕ8(u)νρ good|

∣∣∣∣ ∑
ϕ′∈ϕ8(u)νρ good

Tr3(θρ,ϕ′)
∣∣∣∣≤ (dim(V )+ dim(3))

(
1
√

q
+

1
√

q3

)
. (10.5.2)

Thus (10.5.1) holds, as claimed, and the implicit constant depends only on r and dim(3).
To complete the proof of the theorem we must show that 2ρ,q becomes equidistributed in UR(C). We

observe that

|Tr3(θρ,ϕ′)| ≤ dim(3) for ϕ′ ∈ ϕ8(u)νρ good. (10.5.3)

Therefore ∑
ϕ∈8(c)ρ good

Tr3(θρ,ϕ)=
∑

ϕ∈8(c)ρ good∩ ρ big

Tr3(θρ,ϕ)+ o(1) · |8(c)ρ good r8(c)ρ good∩ ρ big|,
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where

8(c)ρ good∩ ρ big =8(c)ρ good ∩8(c)ρ big.

In particular, if the Mellin transform of ρ has big monodromy, that is, if (10.0.3) holds, then

|8(c)ρ good r8(c)ρ good∩ ρ big|

|8(c)ρ good|
= o(1) for q→∞

and thus

1
|8(c)ρ good|

∑
ϕ∈8(c)ρ good

Tr3(θρ,ϕ)
(10.5.3)
=

1
|8(c)ρ good|

∑
ϕ∈8(c)ρ good∩ ρ big

Tr3(θρ,ϕ)+ o(1) · O(dim(3))

(10.0.5)
=

∫
UR(C)

Tr3(θ) dθ + o(1)

as q→∞. Therefore 2ρ,q becomes equidistributed in UR(C) as claimed.

11. Exhibiting big monodromy

In this section we present sufficient criteria for the Mellin transform of ρ to have big monodromy and
refer the interested reader to Section 12 for explicit examples of representations meeting these criteria.
Before stating the main theorem, we make some hypotheses and introduce pertinent terminology.

Throughout this section, we suppose that gcd(s, c)= t − a for some a ∈ Fq . One could easily argue
that this is less general than supposing that s, c are relatively prime; however, we do not presently have a
way to avoid our hypothesis. For ease of exposition, we also suppose that a = 0 and observe that, up to
performing an additive translation t 7→ t + a, this represents no additional loss of generality.

For t = 0,∞, we regard Vϕ as an I (t)-module and then denote it by Vϕ(t). We write Vϕ(t)unip for
the maximal subspace of Vϕ(t) on which I (t) acts unipotently. It is a direct summand of Vϕ(t), and
each simple e-dimensional submodule of it is isomorphic to a common module Unip(e). We say Vϕ(t)
has a unique unipotent block of exact multiplicity 1 if and only if, for a unique integer e ≥ 1, some
I (t)-submodule is isomorphic Unip(e) but no submodule is isomorphic to Unip(e)⊕Unip(e).

Theorem 11.0.1. Suppose that gcd(s, c) = t and that deg(c) ≥ 3. Suppose moreover that V (0) has a
unique unipotent block of exact multiplicity 1 and that ρ is geometrically simple and pointwise pure. If
r := dim(V ) and deg(c) satisfy

deg(c) > 1
r
(
72(r2

+ 1)2− r − deg(L(T, ρ))+ dropC(ρ)
)
,

then the Mellin transform of ρ has big monodromy.

We prove the theorem in Section 11.11.

Remark 11.0.2. As the reader will notice, the proof of our theorem has a lot in common with the proof
of [Katz 2012, Theorem 17.1]. We need both the hypothesis on gcd(c, s) and the structure of V (0)unip

in order to exhibit special elements of the relevant arithmetic monodromy groups. More precisely, the
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hypothesis that gcd(c, s) = t helps ensure that, for sufficiently many ϕ, some induced representation
Ind(Vϕ) has the property that Ind(Vϕ)(0)unip

= V (0)unip (cf. Lemma 11.10.1). The hypothesis on the
structure of these coincident modules then leads to the desired element (cf. Lemma 11.7.4). We expect
one can remove this hypothesis but do not know how to do so.

Remark 11.0.3. The hypothesis gcd(c, s)= t also plays a minor role in Proposition 11.9.1. However,
one could easily make other hypotheses (e.g., gcd(c, s)= 1) and still be able to proceed (cf. [Katz 2013,
Theorem 5.1]).

11.1. Two norm maps. This subsection recalls material from [Katz 2012, §2] and borrows heavily from
that paper.

Let B be the finite Fq -algebra Fq [t]/c Fq [t]. It is a direct product of finite extensions of Fq and hence
étale since c is square-free. More generally, for each finite extension E/Fq , the Fq -algebra

BE = B⊗Fq E

is étale and has the structure of a free B-module of rank d = [E : Fq ].
Let B be the functor from the category of Fq -algebras to itself defined for an Fq -algebra R by

B(R)= R[t]/cR[t].

It is the functor R 7→ BR = B⊗Fq R. In fact, B(R) even has the structure of an étale R-algebra which is
free of rank deg(c). In particular, for each Fq -algebra R, there is a norm map B(R)→ R which is part of
a transformation

NormB/Fq : B→ idFq−algebras

between B and the identity functor on the category of Fq -algebras.
Let B× be the functor from the category of Fq -algebras to the category of groups defined by

B×(R)= (R[t]/cR[t])×.

It is the composition of B with the functor A 7→ A× of Fq -algebras. Moreover, the restriction of the norm
map B(R)→ R to the group of units yields a homomorphism

νR : B
×(R)→ R×,

and in particular, νFq is the map ν of Section 10.2.
For each finite extension E/Fq , let BE , B×E be the functors on variable Fq -algebras R defined by

BE(R)= BE ⊗Fq R, B×E (R)= (BE ⊗Fq R)×

respectively.
On one hand, BE takes values in the category of Fq -algebras. However, BE(R) also has the structure

of an étale BR-algebra which is free of rank d as a BR-module since

BE ⊗Fq R = B⊗Fq E ⊗Fq R = BR ⊗Fq E
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and since BE is an étale B-algebra which is free of rank d as a B-module. In particular, there is a
transformation

NormE/Fq : BE → B

between the functors BE and B.
On the other hand, B×E takes values in the category of groups and is even a smooth commutative group

scheme. More precisely, B× is a group scheme over Fq of multiplicative type (i.e., a torus), and B×E is the
torus ResE/Fq (B

×) over Fq given by extending scalars to E and then taking the Weil restriction of scalars
of B× back down to Fq (cf. [Bosch et al. 1990, §7.6]). Moreover, the transformation NormE/Fq induces a
transformation

NormE/Fq : B
×

E → B×

which is even an étale surjective homomorphism of tori. In particular, since

B×E (Fq)= B×(E)= (E[t]/cE[t])×,

one obtains a second norm map

ν ′E : (E[t]/cE[t])×→ (Fq [t]/cFq [t])×

which is a surjective homomorphism by Lang’s theorem.

11.2. Characters of a twisted torus. Let E/Fq be a finite extension and 8E(c) be the dual group
Hom(B×(E),Q×` ) so that8Fq (c)=8(c). Suppose that c splits completely over E , and let a1, . . . , an ∈ E
be the zeros of c so that c =

∏n
i=1(t − ai ) in E[t].

For each E-algebra R, the Chinese remainder theorem implies that there is a unique algebra isomorphism

R[t]/cR[t] →
n∏

i=1

R[t]/(t − ai )R[t] (11.2.1)

which sends the residue class of t to the tuple (a1, . . . , an) of residue class representatives. Writing it as
an isomorphism B(R)→ Rn and restricting to units yields a group isomorphism B×(R)→ (R×)n . As
R varies over E-algebras, the latter isomorphisms in turn yield an isomorphism of tori σ : B×→ Gn

m

over E . In particular, applying Weil restriction of scalars from E to Fq yields an isomorphism

ResE/Fq (σ ) : B
×

E → Gn
m,E

of tori over Fq , where Gm,E = ResE/Fq (Gm).
There is a unique permutation φ ∈ Sym([n]), where [n] = {1, 2, . . . , n}, satisfying aφ−1(i) = aq

i since c
is square-free and has coefficients in Fq . While σ does not descend to a morphism B×→ Gn

m in general,
we can use φ to construct a twisted form T of Gn

m over Fq such that σ is the pullback of a morphism
B×→ T over Fq . More precisely, we define the twisted Frobenius τ on T = Gn

m as the composition

(b1, . . . , bn) 7→ (bq
1 , . . . , bq

n ) 7→ (bq
φ(1), . . . , bq

φ(n))
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of the usual Frobenius automorphism and a permutation of the coordinates of Gn
m . One can easily verify

that τ d is the d-th power of the usual Frobenius and thus T is indeed a twist of Gn
m (cf. [Carter 1985,

Section 1.17 and Chapter 3] or [Platonov and Rapinchuk 1994, §2.1.7]). Moreover, one can also show
that (a1, . . . , an) is fixed by τ and even that

T(Fq)= Tτ=1
= B×(Fq).

In particular, by precomposing with τ we obtain the automorphism τ∨E on

Hom(T(E),Q×` )= Hom(Gn
m(E),Q×` )= Hom(E×,Q×` )

n

given by

τ∨E : (ϕ1, . . . , ϕn) 7→ (ϕ
q
φ−1(1), . . . , ϕ

q
φ−1(n)). (11.2.2)

Composition of ResE/Fq (σ ) with the projection Gn
m,E → Gm,E onto the i-th factor yields a surjective

homomorphism

πi : B
×

E → Gm,E

of tori over Fq . In particular, taking duals of the respective groups of E-rational points and using the
bijections Gm,E(Fq)= Gm(E)= E× yields an isomorphism

σ∨E :

n∏
i=1

Hom(E×,Q×` ) 3 (ϕ1, . . . , ϕn) 7→

n∏
i=1

ϕiπi ∈8E(c).

We observe that since ν ′E is surjective its dual ν ′ ∨E is a monomorphism 8(c)→8E(c) and thus we can
identify 8(c) with a subset of Hom(E×,Q×` )

n . More precisely, it is the subgroup of characters fixed by
τ∨E and thus

(σ∨E )
−1(ν ′ ∨E (8(c)))= {(ϕ1, . . . , ϕn) ∈ Hom(E×,Q×` )

n
: ϕφ(i) = ϕ

q
i for i ∈ [n]}. (11.2.3)

11.3. Characters with distinct components. We say that a character ϕ ∈8E(c) has distinct components
if and only if it lies in the subset

8E(c)distinct = {σ
∨

E (ϕ1, . . . , ϕn) ∈8E(c) : ϕi 6= ϕj for 1≤ i < j ≤ n},

and we define the corresponding subset of 8(c) as the intersection

8(c)distinct =8E(c)distinct ∩ ν
′ ∨

E (8(c)),

where ν ′ ∨E :8(c)→8E(c) is the dual of ν ′E .

Lemma 11.3.1. 8(c)distinct is well-defined; that is, it does not depend upon our choice of E.

Proof. Let E ′/E be a finite extension and observe that the norm map E ′×→ E× is surjective so it induces
a monomorphism

Hom(E×,Q×` )→ Hom(E ′×,Q×` ),
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and thus
8E(c)distinct =8E ′(c)distinct ∩8E(c).

In particular, if E ′′/Fq is a second finite extension over which c splits completely and if E ′ contains the
compositum E E ′′, then

8E(c)distinct ∩ ν
′ ∨

E (8(c))=8E ′(c)distinct ∩ ν
′ ∨

E ′ (8(c))=8E ′′(c)distinct ∩ ν
′ ∨

E ′′ (8(c))

and 8(c)distinct is indeed well-defined. �

Let c =
∏r

j=1 πi ∈ Fq [t] be a factorization into monic irreducibles. The quotient E j = Fq [t]/πj Fq [t]
is a finite extension of Fq of degree n j = deg(πj ). It is also the splitting field of πj and thus may be
embedded in E . Moreover, there are bijections

8(c)=
r∏

j=1

8(πj )=

r∏
j=1

Hom(E×j ,Q×` ), 8E(c)=
r∏

j=1

8E(πj )=

r∏
j=1

Hom(E×,Q×` )
n j (11.3.2)

given by applying the Chinese remainder theorem.
For each monic factor c0 of c in Fq [t], let 8(c0)distinct be the subset of 8(c0) defined much as above

but with c0 in lieu of c. One can easily verify that it does not depend upon the polynomial c of which c0

is a factor.

Lemma 11.3.3. |8(πj )distinct| ∼ |8(πj )| for each j ∈ [r ], as q→∞.

Proof. Let j ∈ [r ], and suppose without loss of generality that a1, . . . , an j are the zeros of πj and
φ(i)≡ i + 1 mod n j for i ∈ [n j ]. Then by (11.2.3) and (11.3.2) there is an identification

8(πj )= {(ϕ1, . . . , ϕn j ) ∈ Hom(E×j ,Q×` )
n j : ϕi+1 = ϕ

q
i for i ∈ [n j − 1]},

since any ϕ ∈ Hom(E×,Q×` ) factors through an inclusion E×j → E× if ϕqnj
= ϕ.

The groups E×j and Hom(E×j ,Q×` ) are cyclic and noncanonically isomorphic, so let g and χ be
respective generators. Then we have a further identifications

8(πj )= {(χ
e1, . . . , χ

enj ) ∈ Hom(E×j ,Q×` )
n j : ei+1 ≡ qei mod qn j − 1 for i ∈ [n j − 1]}

= {(ge1, . . . , genj ) ∈ (E×j )
n j : ei+1 ≡ qei mod qn j − 1 for i ∈ [n j − 1]}.

From this last identification one easily deduces an identification between 8(πj )distinct and the set

{(ge1, . . . , genj ) ∈ (E×j )
n j : ei+1 ≡ qei mod qn j − 1 for i ∈ [n j − 1] and Fq(ge1)= E j },

and thus
|8(πj )distinct| = |{ge

∈ E×j : e ∈ [q
n j − 1] and E j = Fq(ge)}|.

Finally, it is well known that the cardinality of the right-hand set is asymptotic to qn j − 1 as q→∞ (cf.
[Rosen 2002, 2.2]), and thus

|8(πj )| = |Hom(E×j ,Q×` )| = |E
×

j | = qn j − 1∼ |8(πj )distinct| for q→∞

as claimed. �
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Corollary 11.3.4. If c0 is a monic factor of c in Fq [t], then |8(c0)distinct| ∼ |8(c0)| as q→∞.

Proof. Suppose without loss of generality that c = π1 · · ·πs with s ∈ [r ] so that there is a bijection

8(c0)=

s∏
j=1

8(πj ).

This bijection in turn induces an inclusion

8(c0)distinct→

s∏
j=1

8(πj )distinct

whose coimage is bounded above by
∏s

j=1(deg(c0)− n j ) since an element of the codomain lies in the
image if (and only if) the components are pairwise distinct. In particular,

|8(c0)distinct| ∼

s∏
j=1

|8(πj )distinct|
Lem.11.3.3
∼

s∏
j=1

|8(πj )| for q→∞

as claimed. �

11.4. Properties of H2
c . Let X be a smooth geometrically connected curve over Fq , let T ⊆ X be a dense

Zariski open subset, and let F be a sheaf on X .

Lemma 11.4.1. There is an isomorphism H 2
c (T ,F )→ H 2

c (X ,F ).

Proof. See [SGA 41/2 1977, Sommes trig., Remarques 1.18(d)] and also [Deligne 1980, §1.4, (1.4.1b)]. �

Let G be a sheaf on X and G∨ be its dual. Suppose F and G are lisse on T, and thus so is G∨. Let
ρ : π1(T )→GL(V ), ω : π1(T )→GL(W ), and ω∨ : π1(T )→GL(W∨) be the respective corresponding
representations.

Lemma 11.4.2. Suppose F and G are lisse and geometrically simple on T :

(i) dim(H 2
c (T ,F ⊗G∨))= dim(Homπ1(T )(W, V ))≤ 1.

(ii) dim(H 2
c (T ,F ⊗G∨))= 1 if and only if F and G are geometrically isomorphic on T.

Proof. Use [SGA 41/2 1977, Sommes trig., Remarques 1.18(d)] and Schur’s lemma [Curtis and Reiner
1962, 27.3]. Compare [Katz 1996, §7.0]. �

11.5. Invariant scalars. Let λ ∈ F×q . If we identify Gm with P1
u r {0,∞} and regard λ as an element of

Gm(Fq), then multiplication by it (i.e., translation) induces an automorphism of P1
u over Fq , which we

also denote by λ : P1
u → P1

u . We say λ is an invariant scalar of G if and only if the direct image λ∗G
is geometrically isomorphic to G. For example, 1 is an invariant scalar for every G, and every λ is an
invariant scalar of the constant sheaf Q`.

Let α : π1(Gm)→ Q×` be a tame character. The corresponding sheaf Lα = ME(α) is a so-called
Kummer sheaf.

Lemma 11.5.1. Every λ ∈ F×q is an invariant scalar of Lα.
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Proof. The tame fundamental group of Gm is a quotient and completely generated by the images of the
inertia groups I (0) and I (∞). The character α is completely determined by these images, and translation
by λ does not change how I (0) and I (∞) act since it fixes both 0 and∞. Therefore λ∗Lα and Lα are
lisse and geometrically isomorphic on Gm , and λ is an invariant scalar of Lα. �

Corollary 11.5.2. λ is an invariant scalar of G if and only if it is an invariant scalar of G⊗Lα.

In particular, the answer to the question of whether or not λ is an invariant scalar of Q∗ME(ρ⊗ ϕ)
depends only on the coset ϕ8(u)ν.

Proof. The sheaves λ∗Lα and Lα are lisse and geometrically isomorphic on Gm by Lemma 11.5.1.
Moreover,

λ∗(G⊗Lα)⊗ (G⊗Lα)∨ = λ∗G⊗ (λ∗Lα ⊗L∨α )⊗G∨,

so λ∗G⊗G∨ and λ∗(G⊗Lα)⊗ (G⊗Lα)∨ are lisse and geometrically isomorphic on P1
u r {0,∞}. Thus

λ is an invariant scalar of G if and only if it is an invariant scalar of G⊗Lα. �

The following lemma gives a cohomological criterion for detecting invariant scalars.

Lemma 11.5.3. Let λ ∈ F×q . Suppose λ∗G and G are lisse and geometrically simple on U. Then the
following are equivalent:

(i) λ is an invariant scalar of G.

(ii) H 2
c (U , λ∗G⊗G∨) 6= 0.

(iii) H 2(P1
u, λ∗G⊗G∨) 6= 0.

Proof. Lemma 11.4.2 implies the equivalence of (1) and (2), and Lemma 11.4.1 implies the equivalence
of (2) and (3). �

11.6. Avoiding invariant scalars. Consider the affine plane curve

Xλ : λc(x1)= c(x2),

and let πi : Xλ→ A1
t be the map (x1, x2) 7→ xi . They are part of a commutative diagram

Xλ
π2
//

π1

��

π

��

A1
t

c
��

A1
t λc

// A1
u

where π = cπ2 = λcπ1. Moreover, the maps c and λc are generically étale of degree n = deg(c); thus
their fiber product π is generically étale of degree n2. Let g : Xλ→ A1

t ×A1
t be the product map (π1, π2).

Let E/Fq be a finite extension over which c splits and Z = {a1, . . . , an} ⊆ E be the zeros of c.

Lemma 11.6.1. Xλ is smooth over the n2 points of Z ×A1
u

Z = Z × Z.
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Proof. The subset Z ⊂ A1
t is the vanishing locus of c and λc; hence Z×A1

u
Z = Z × Z . Moreover,

∂

∂x2
(λc(x1)− c(x2))= c′(x2)=

n∑
i=1

∏
j 6=i

(x − aj )

does not vanish at any ai ∈ Z since c is square-free, so Xλ is smooth at every (ai , aj ) ∈ Z × Z . �

Consider the external tensor product sheaf

Eρ⊗ϕ,λ :=ME(ρ⊗ ϕ)�ME(ρ⊗ ϕ)∨ = π∗1 ME(ρ⊗ ϕ)⊗π∗2 ME(ρ⊗ ϕ)∨

on A1
t ×A1

t and the tensor product sheaf

Tρ⊗ϕ,λ := λQ∗ME(ρ⊗ ϕ)⊗Q∗ME(ρ⊗ ϕ)∨

on P1
u . They have respective generic ranks r2 and (nr)2 since both ME(ρ⊗ ϕ) and its dual have generic

rank r and since c has degree n.
Let Tλ ⊆ Xλ be a smooth dense Zariski open subset and Uλ = π(Tλ). Up to shrinking Tλ, we suppose

that Eρ⊗ϕ,λ is lisse on Tλ and that π is étale over Uλ.

Lemma 11.6.2. The sheaves π∗g∗(Eρ⊗ϕ,λ) and Tρ⊗ϕ,λ are lisse and isomorphic on Uλ.

Proof. Consider the commutative diagram

Tλ

π

��

g
// π1(Tλ)×π2(Tλ)

i
//

h
��

A1
t ×A1

t

(λc,c)
��

Uλ
1

// Uλ×Uλ j
// A1

u ×A1
u

where i and j are the canonical inclusions, h is induced by (λc, c), and 1 is the diagonal map. On one
hand, h is étale, so h∗i∗(Eρ⊗ϕ,λ) is lisse on Uλ×Uλ and therefore 1∗h∗i∗(Eρ⊗ϕ,λ) is lisse on Uλ. On
the other hand, there are canonical isomorphisms

π∗g∗(Eρ⊗ϕ,λ)' π∗(π1, π2)
∗i∗(Eρ⊗ϕ,λ)'1∗h∗i∗(Eρ⊗ϕ,λ)'1∗ j∗(λc, c)∗(Eρ⊗ϕ,λ)'1∗ j∗Tρ⊗ϕ,λ

on Uλ. �

The contrapositive of the following corollary gives us a way to show some λ is not an invariant scalar.

Corollary 11.6.3. Suppose ρ is geometrically simple and ϕ ∈8(c). Then the following are equivalent:

(i) λ is an invariant scalar of Q∗ME(ρ⊗ ϕ).

(ii) H 2
c (Uλ, Tρ⊗ϕ,λ) 6= 0.

They imply

(iii) H 2
c (T λ, Eρ⊗ϕ,λ) 6= 0.
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Proof. Lemmas 11.5.3 and 11.6.2 imply the equivalence of (1) and (2). If π1(Uλ)→ GL(V ) is the
representation corresponding to Tλ, then V π1(Uλ) ⊆ V π1(Tλ) so (2.0.2) and (2) imply (3). �

The following proposition was inspired by [Katz 2002, Proof of Theorem 5.1.3].

Proposition 11.6.4. Suppose deg(c)≥ 2+ deg(gcd(c, s)) and ϕ ∈8(c)distinct:

(i) If ρ is geometrically irreducible, then so is ME(ρ⊗ ϕ).

(ii) λ= 1 is the only invariant scalar of Q∗ME(ρ⊗ ϕ).

Proof. Let E/Fq be a splitting field of c and a1, a2 ∈ E be zeros of c which are distinct from each other
and the zeros of s. Let ϕ1, ϕ2 ∈ Hom(E×,Q×` ) be the corresponding components of (σ∨E )

−1(ν ′ ∨E (ϕ)) as
an element of (σ∨E )

−1(8E(c)) (compare (11.2.3) and (11.3.2)). Then ϕ1, ϕ2 are distinct characters, so
α = ϕ1/ϕ2 is a nontrivial character.

Let λ ∈ F×q be an arbitrary scalar. If λ 6= 1, then for each component T ′λ ⊆ Tλ over Fq , there is a smooth
point t ′ = (t ′1, t ′2) ∈ T ′λ(Fq) satisfying {t ′1, t ′2} = {a1, a2}. The map π is étale over 0 since c is square-free;
hence we can use π to identify I (t ′) with I (0). We can also identify I (t ′1) and I (t ′2) with I (0).

On one hand, the stalk of ME(ρ⊗ ϕ) at t = t ′i and the stalk at t = 0 of Qr
`⊗Lϕi are isomorphic as

I (0)-modules since s(ai ) 6= 0. Moreover, the stalk of Eρ⊗ϕ,λ at t ′ and the stalk at u = 0 of Qr2

` ⊗Lϕ
are isomorphic as I (0)-modules. On the other hand, the latter stalks have no I (0)-invariants since ϕ is
nontrivial, so a fortiori, the geometric generic stalk of Eρ⊗ϕ,λ has no π1(T λ)-invariants. Therefore (2.0.2)
implies H 2

c (T λ, Eρ⊗ϕ,λ) vanishes for λ 6= 1, and hence the contrapositive of Corollary 11.6.3 implies
λ= 1 is the only invariant scalar of Q∗ME(ρ⊗ ϕ). �

11.7. Baby theorem. In this subsection we prove a simplified version of Theorem 11.0.1.
Let U be a dense Zariski open subset of Gm = P1

u r {0,∞} and θ : π1(U )→ GL(W ) be a continuous
representation to a finite-dimensional Q`-vector space W . Let8(u) be the dual of0(u)= (Fq [u]/uFq [u])×

(cf. Section 10.2). For u = 0,∞, let W (u) denote W regarded as an I (u)-module and W (u)unip be its
maximal submodule where I (u) acts unipotently. If θ is geometrically simple and pointwise pure of
weight w and if dim(W ) > 1, then we can associate to θ a pair of Tannakian monodromy groups

Ggeom(θ,8(u))⊆ Garith(θ,8(u))⊆ GLR,Q`

for R = χ(Gm,ME(θ)) (see Section D.14 and Theorem D.7.1).

Theorem 11.7.1. Suppose that θ is geometrically simple and pointwise pure of weightw, that dim(W )> 1
or that θ does not factor through the composed quotient π1(U )� π1(Gm)� π t

1(Gm), and that λ = 1
is the only invariant scalar of ME(θ). Suppose moreover that W (0)unip has dimension at most r and a
unique unipotent block of exact multiplicity 1 and that R > 72(r2

+ 1)2. Finally, suppose W (∞)unip
= 0.

Then Ggeom(θ,8(u)) equals GLR,Q`
.

The proof consists of a few steps and will occupy the remainder of this section.
Let G = Garith(θ,8(u)) and H = Ggeom(θ,8(u)).
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Lemma 11.7.2. G and H are reductive and there is an exact sequence

1→ H → G→ T → 1

for some torus T over Q`.

Proof. Observe that ME(θ) is geometrically simple yet is not a Kummer sheaf since otherwise one would
have dim(W )= 1 and θ would factor through π1(U )� π t

1(Gm). Moreover, θ is geometrically simple and
pointwise pure of weight w by hypothesis. Therefore the lemma follows from Proposition D.14.1(i). �

A priori G or H could be disconnected, so let G0 and H 0 be the respective identity components.

Lemma 11.7.3. G0 and H 0 are (Lie-)irreducible subgroups of GLR,Q`
.

Proof. This follows from [Katz 2012, Theorem 8.2 and Corollary 8.3] since λ= 1 is the only invariant
scalar of ME(θ). �

Let µm : (Q
×)m→ Zm be the m-th weight multiplicity map for m = R given in Definition C.1.2.

Lemma 11.7.4. There exist an element g ∈ G0 and an eigenvalue tuple γ ∈ (Q×` )
R of g satisfying the

following:

(i) γ = (γ1, . . . , γR) lies in (Q×)R and thus det(g)= γ1 · · · γR lies in Q×.

(ii) |ι(det(g))|2 = (1/q)w for some w 6= 0 and every field embedding ι :Q→ C .

(iii) c = µR(γ ) satisfies len(c)≤ r + 1 and 1= clen(c) < clen(c)−1 and c2 ≤ r .

Proof. This follows from Proposition D.14.1(ii) with g = f c for any element f ∈ FrobFq ,1 and for
c = [G : G0

]. More precisely, if α = (α1, . . . , αR) is an eigenvalue tuple of f , then all the αi lie in Q,
all the nonzero weights w1, . . . , wn of the αi are negative since W (∞)unip vanishes, one has 1≤ n ≤ r
since 1 ≤ dim(W (0)unip) ≤ r , there is a unique nonzero weight of multiplicity 1 since W (0)unip has a
unique unipotent block of exact multiplicity 1, and the weight zero has multiplicity R− n ≥ R− r > 1.
Hence it suffices to take γ ∈ (Q×)R to be the eigenvalue tuple with γi = α

c
i for 1≤ i ≤ R and w to be

(w1+ · · ·+wn)c. �

Corollary 11.7.5. det(H)=Q×` .

Proof. This follows from Lemma 11.7.4(ii) and the argument in [Katz 2012, Proof of Theorem 17.1]
using the element g in Lemma 11.7.4. �

Let [G0,G0
] be the derived subgroup of G0.

Lemma 11.7.6. [G0,G0
] = SLR,Q`

.

Proof. Combine Lemmas 11.7.3 and 11.7.4 to deduce that the hypotheses of Theorem C.4.1 hold, and
thus G0 equals one of SLR(Q`) or GLR(Q`). The derived subgroup of both of these groups equals
SLR(Q`). �
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We may now complete the proof of the theorem. First, we have inclusions

[G0,G0
] ⊆ [G,G] ⊆ [GLR,Q`

,GLR,Q`
] = SLR,Q`

,

and Lemma 11.7.6 implies the outer terms are equal, so the inclusions are equalities. Moreover,
Lemma 11.7.2 implies H is normal in G and G/H is abelian, so H contains [G,G] = SLR,Q`

, and hence,
by Corollary 11.7.5, H = GLR,Q`

as claimed.

11.8. Frobenius reciprocity. Let c : T → U be a finite étale map of smooth geometrically connected
curves over Fq . Let F be a lisse sheaf on T and π1(T )→ GL(V ) be the corresponding representation.
Similarly, let G be a lisse sheaf U and π1(U )→ GL(W ) be the corresponding representation. Let F∨ be
the dual of F and π1(T )→ GL(V∨) be the corresponding representation.

Lemma 11.8.1. Q∗(F∨) is isomorphic to the dual of Q∗F.

Proof. See [Katz 2002, Lemmma 3.1.3]. �

Therefore we may unambiguously write Q∗F∨.

Proposition 11.8.2. dim(H 2
c (T , c∗G⊗F∨))= dim(H 2

c (U ,G⊗Q∗F∨)).

Proof. Let H = π1(T ) and G = π1(U ). We suppose that V is a left H -module and W is a left G-module,
and define IndG

H (V ) to be the (Mackey) induced module HomG(Q`[H ], V ) and ResG
H (W ) to be the

restricted module W regarded as a left H -module. Then Frobenius reciprocity implies that there is a
bijection of vector spaces

HomH (ResG
H (W ), V )→ HomG(W, IndG

H (V ))

given by ψ 7→ (w 7→ (r 7→ ψ(rv))) (cf. [Katz 2002, §3.0]). Moreover, Lemma 11.4.2 implies

dim(H 2
c (T , c∗G⊗F∨))= dim(HomH (ResG

H (W ), V )),

dim(H 2
c (U ,G⊗Q∗F∨))= dim(HomG(W, IndG

H (V ))),

so the proposition follows immediately. �

11.9. Begetting simplicity. In this section we give a criterion for Ind(ρ⊗ ϕ) to be geometrically simple.
Our argument was inspired by [Katz 2013, Proof of Theorem 5.1.1].

Proposition 11.9.1. Let ϕ ∈8(c)distinct. Suppose that gcd(c, s)= t , that deg(c)≥ 2, and that ϕ(0(t))= 1.
If ρ is geometrically simple, then so are ρ⊗ ϕ and Ind(ρ⊗ ϕ).

Proof. Let T ⊆ P1
t be a dense Zariski open subset and U = c(T ). Up to shrinking T, we suppose that

F =ME(ρ⊗ ϕ) is lisse over T and that c is étale over U.
Suppose that ρ is geometrically simple and thus so is ρ⊗ ϕ. Let G = Q∗F∨ (cf. Lemma 11.8.1),

and observe that Lemma 10.2.1(i) implies that G and ME(Ind(ρ⊗ ϕ))∨ are isomorphic over U. We
wish to show that dim(H 2(U ,G ⊗ G∨)) = 1 so that Lemma 11.4.2 implies that ME(Ind(ρ⊗ ϕ)) is
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geometrically simple over U, that is, that Ind(ρ⊗ ϕ) is geometrically simple. In fact, Lemma 11.4.1 and
Proposition 11.8.2 imply

dim(H 2
c (P

1
u,G⊗G∨))= dim(H 2

c (U ,Q∗F ⊗Q∗F∨))= dim(H 2
c (T , c∗Q∗F ⊗F∨)),

so it suffices to show the last term equals 1.
The functor c∗ is left adjoint to the functor Q∗ since c is finite (cf. [Milne 1980, II.3.14]), so the identify

map Q∗F→Q∗F induces an adjoint c∗Q∗F→ c. Generically it is the trace map Ind(Vϕ)→ Vϕ and thus
is surjective (cf. [Milne 1980, V.1.12]). Let K be the kernel so that we have an exact sequence of sheaves

0→ K→ c∗Q∗F→ F→ 0. (11.9.2)

These sheaves and F∨ are all lisse over T, so the sequence

0→ K⊗F∨→ c∗Q∗F ⊗F∨→ F ⊗F∨→ 0 (11.9.3)

is exact on T. In particular, we have a corresponding exact sequence of cohomology

H 2
c (U ,K⊗F∨)→ H 2

c (T , c∗Q∗F ⊗F∨)→ H 2
c (T ,F ⊗F∨)→ H 3

c (T ,K⊗F∨),

the last term of which vanishes. The hypothesis that F is geometrically simple implies the penultimate
term has dimension 1 by Lemma 11.4.2, so it suffices to show that the first term vanishes.

Let E/Fq be a splitting field of c, let a1, . . . , an ∈ E be the zeros of c, and let

(ϕ1, . . . , ϕn)= (σ
∨

E )
−1(ν ′ ∨E (ϕ)) ∈ Hom(E×,Q×` )

n

as in (11.2.3). We suppose without loss of generality that a1 = 0 and thus s(a2) · · · s(an) 6= 0 since
gcd(c, s)= t .

Let H = π1(T ) and G = π1(U ), and let H→GL(Vϕ) and G→GL(IndG
H (Vϕ)) be the representations

corresponding to F and Q∗F respectively. The exact sequences (11.9.2) and (11.9.3) correspond to exact
sequences of H -modules

0→ K → R→ Vϕ→ 0 (11.9.4)

and
0→ K ⊗ V∨ϕ → R⊗ V∨ϕ → Vϕ ⊗ V∨ϕ → 0,

where R = ResG
H (IndG

H (Vϕ)). We claim the first term of the latter sequence has no I (0)-coinvariants so
a fortiori has no π1(T )-coinvariants, and hence H 2(T ,K⊗F∨) vanishes as claimed.

The translation map t 7→ t + ai induces an isomorphism I (0) ' I (ai ) for each i ∈ [n], so we can
regard Vϕ(ai ) as an I (0)-module. In fact, we have isomorphisms of I (0)-modules

R(0)'
n⊕

i=1

Vϕ(ai ), K (0)'
n⊕

i=2

Vϕ(ai ), (K ⊗ V∨ϕ )(0)'
n⊕

i=2

(Qr−1
` ⊗ϕ

−1
i ).

More precisely, the first isomorphism corresponds to the fact that the geometric stalks of c∗Q∗F and F
satisfy (c∗Q∗F )0 =

⊕
c(a)=0 Fa since c is étale over u = 0 (cf. (10.1.1)); the second isomorphism uses
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(11.9.4) and the assumption that a1 = 0 to identify K (0) with R(0)/Vϕ(0); and the last isomorphism
uses that s(a2) · · · s(an) 6= 0, that is, Cr {a1} lies in the locus of lisse reduction of ME(ρ⊗ ϕ)∨.

The hypothesis that 0(t) is in the kernel of ϕ implies that Vϕ(0)' V (0) as I (0)-modules. Moreover,
ϕ2, . . . , ϕn are all nontrivial since they are distinct from the trivial character ϕ1 by hypothesis, so each
of the summands (Qr−1

` ⊗ ϕ−1
i ) has trivial I (0)-coinvariants. Therefore K ⊗ V∨ϕ has trivial π1(T )-

coinvariants as claimed. �

11.10. Preserving unipotent blocks. For each monic divisor c0 of c in Fq [t], consider the subset

8(c0)ρ good = {ϕ ∈8(c0) :ME(ρ⊗ ϕ) is supported on A1
t [1/c0]}.

If ρ is the trivial representation, then it consists of the odd primitive characters of conductor c0.
For t = 0,∞, let Vϕ(t) denote Vϕ regarded as an I (t)-module. Similarly, for u = 0,∞, let Ind(Vϕ)(u)

denote Ind(Vϕ) regarded as an I (u)-module, and let Ind(Vϕ)(u)unip be the maximal submodule of
Ind(Vϕ)(u), where I (u) acts unipotently. We say that Ind(Vϕ)(0) (resp. Vϕ(0)) has a unipotent block of
dimension e and exact multiplicity m if and only if it has an I (0)-submodule isomorphic to U (e)⊕m but
no I (0)-submodule isomorphic to U (e)⊕m+1.

Lemma 11.10.1. Suppose gcd(c, s)= t , and let c0 = c/t and ϕ ∈8(c)distinct ∩8(c0)ρ good. Then:

(i) Ind(Vϕ)(0) has a unipotent block of dimension e and exact multiplicity m if and only if V (0) does.

(ii) Ind(Vϕ)(∞)unip
= 0.

Proof. On one hand, Vϕ(z)unip
= 0 for every z ∈ C r {0} since ϕ is in 8(c0)ρ good and gcd(c0, s) = 1.

Moreover, Vϕ(0) and V (0) are isomorphic as I (0)-modules since ϕ(0(t)) = 1. Therefore the only
unipotent blocks of Ind(Vϕ)(0) are those coming from Vϕ(0), and all such blocks contribute identical
blocks to Vϕ(0) (cf. [Milne 1980, II.3.1(e) and II.3.5(c)]), so (i) holds. On the other hand, every unipotent
block of Ind(Vϕ)(∞) contributes to Vϕ(∞)unip, and the latter vanishes since ϕ is good for ρ, so (ii)
holds. �

11.11. Proof of Theorem 11.0.1. Recall that R is given by

R := rC(ρ)= (deg(c)+ 1)r + deg(L(T, ρ))− dropC(ρ) (11.11.1)

and it equals deg(LC(T, ρ⊗ ϕ)) for all ϕ ∈8(c) (see Proposition 4.3.1).

Lemma 11.11.2. R > 72(r2
+ 1)2.

Proof. This follows from (11.11.1) and the hypothesis on deg(c) in the statement of the theorem. �

Let c0 = c/t .

Lemma 11.11.3. Suppose ϕ ∈8(c)distinct ∩8(c0)ρ good. Then the following hold:

(i) Ind(ρ⊗ ϕ) is geometrically simple.
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(ii) dim(Ind(Vϕ)(0)unip)= dim(Vϕ(0)unip) and Ind(Vϕ)(0) has a unique unipotent block of exact multi-
plicity 1.

(iii) Ind(Vϕ)(∞)unip
= 0.

Proof. Part (i) follows from Proposition 11.9.1 since ϕ is in 8(c)distinct ∩8(c0), since ρ is geometrically
simple, and since deg(c)≥ 2. Parts (ii) and (iii) follow from Lemma 11.10.1 since ϕ is also in 8(c0)ρ good

and since V (0) has a unique unipotent block of exact multiplicity 1. �

Corollary 11.11.4. (8(c)distinct ∩8(c0)ρ good)⊆8(c)ρ big.

Proof. Let ϕ ∈8(c)distinct∩8(c0)ρ good, and let θ = Ind(ρ⊗ ϕ) and W = Ind(Vϕ). Then Lemmas 11.11.3
and 10.1.2 imply that θ = Ind(ρ⊗ ϕ) is geometrically simple and pointwise pure of weight w since
ϕ ∈ 8(c)distinct. Moreover, dim(W ) = deg(c) · dim(V ) > 2 since deg(c) ≥ 2, and Proposition 11.6.4
implies that λ = 1 is the only invariant scalar of ME(θ) ' Q∗ME(ρ⊗ ϕ) since deg(c) ≥ 3 and ϕ ∈
8(c)distinct. Lemma 11.11.3 also implies that W (0) has a unique unipotent block of exact multiplicity 1,
that dim(W (0)unip) = dim(V (0)unip) ≤ dim(V ) = r , and that W (∞)unip

= 0. Finally, Lemma 11.11.2
implies R > 72(r2

+ 1)2. Therefore the hypotheses of Theorem 11.7.1 hold, and hence ϕ ∈8(c)ρ big. �

Corollary 11.11.5. (8(c)distinct ∩8(c0)ρ good)8(u)ν ⊆8(c)ρ big.

Proof. This follows from Corollary 11.11.4 since 8(c)ρ big is a union of cosets ϕ8(u)ν. �

Let ϕ ∈8(c) and ϕ8(u)ν be the corresponding coset.

Lemma 11.11.6. |ϕ8(u)ν ∩8(c0)| = 1.

Proof. We must show that there is a unique element α∈8(u) satisfying ϕαν(0(t))=1. Since gcd(s, c)= t ,
we can speak of the component of ϕ at t = 0: it is the character given by restricting χ to the subgroup
0(t) ⊆ 0(c). There is a unique element of 8(u)ν with the same component at t = 0; call it βν. Then
α = 1/β is the desired character. �

We need one more estimate to complete the proof of the theorem.

Lemma 11.11.7. |8(c)distinct ∩8(c0)ρ good| ∼ |8(c0)distinct| ∼ |8(c0)| as q→∞.

Proof. We observe that there are natural inclusions(
8(c0)distinct r

⋃
π | c0

8(c0/π)

)
⊆ (8(c)distinct ∩8(c0))⊆8(c0)distinct

since an element of 8(c0)distinct will fail to lie in 8(c)distinct only if one of its deg(c0) components is
trivial, that is, if it lies in8(c0/π) for some prime factor π | c0. Intersecting with8(c0)ρ good gives further
inclusions(

(8(c0)ρ good ∩8(c0)distinct)r
⋃
π | c0

8(c0/π)

)
⊆ (8(c)distinct ∩8(c0)ρ good)⊆8(c0)distinct.
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Finally, we know that

|8(c0)ρ good|
(10.3.4)
∼ |8(c0)|

11.3.4
∼ |8(c0)distinct|,

∣∣∣∣⋃
π | c0

8(c0/π)

∣∣∣∣/|8(c)| � 1/q = o(1)

and hence ∣∣∣∣(8(c0)ρ good ∩8(c0)distinct)r
⋃
π | c0

8(c0/π)

∣∣∣∣∼ |8(c0)|

as q→∞. �

Corollary 11.11.8. |(8(c)distinct ∩8(c0)ρ good)8(u)ν | ∼ |8(c)| for q→∞.

Proof. Combine Lemma 11.11.6 and Lemma 11.11.7. �

The theorem now follows by observing that

|8(c)|
Cor.11.11.8
∼ |(8(c)distinct ∩8(c0)ρ good)8(u)ν |

Cor.11.11.5
≤ |8(c)ρ big| ≤ |8(c)|

and thus
|8(c)ρ big| ∼ |8(c)|

for q→∞.
Therefore, the Mellin transform of ρ has big monodromy as claimed and Theorem 11.0.1 holds.

12. Application to explicit abelian varieties

In this section we apply the theory developed in the previous sections to representations coming from
(the Tate modules of) a general class of abelian varieties. More precisely, we give an explicit family
of abelian varieties for which we can show the corresponding representations satisfy the hypotheses of
Theorem 11.0.1. Our principal application, of which Theorem 1.2.3 is a special case, is Theorem 12.3.1.

Throughout this section we suppose that q is an odd prime power so that we can speak of hyperelliptic
curves. One who is interested in even characteristic or in L-functions whose Euler factors have odd
degree is encouraged to consider Kloosterman sheaves (e.g., see [Katz 1988, 7.3.2]).

12.1. Some hyperelliptic curves and their Jacobians. Let g be a positive integer. In this section we
construct an explicit family of abelian varieties which give rise to Galois representations we can easily
show satisfy the hypotheses of Theorem 10.0.4. One member of this family is an elliptic curve, the
Legendre curve, and it has affine model

XLeg : y2
= x(x − 1)(x − t).

It is isomorphic to its own Jacobian, and the general abelian varieties in our family will be Jacobians of
curves. More precisely, we fix a monic square-free f ∈ Fq [x] of degree 2g and consider the projective
plane curve X/K with affine model

X : y2
= f (x)(x − t). (12.1.1)
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For technical reasons we will eventually suppose that f has a zero a in Fq , and up to the change of
variables x 7→ x + a, we will suppose that a = 0. We do not need this hypothesis yet since the discussion
in this section does not use it.

The curve X has genus g. If g > 1, it is a so-called hyperelliptic curve, and otherwise it is an elliptic
curve. Either way its Jacobian J is a g-dimensional principally polarized abelian variety over K . See
[Cohen et al. 2006] for more information about hyperelliptic curves and their Jacobians.

For each finite place v = π , one can define a reduction X/Fπ starting with the reduction of (12.1.1)
modulo π .

Lemma 12.1.2. The monic polynomial s = f (t) ∈ Fq [t] satisfies the following:

(i) If π -s, then X/Fπ is a smooth projective curve of genus g.

(ii) If π | s, then X/Fπ is smooth away from a single node and has genus g− 1.

Proof. The essential point is that, for any monic polynomial h(x) with coefficients in a field F of
characteristic not 2, the affine curve y2

= h(x) is smooth if and only if h is a square-free polynomial.
More generally, if h = h1h2

2, where h1, h2 ∈ F[x] are square-free and relatively prime, then the following
hold:

(i) The map (x, y) 7→ (x, y/h2(x)) induces a birational map from y2
= h1(x) to y2

= h(x).

(ii) The deg(h2) points (x, y) satisfying h2(x)= y = 0 are so-called nodes of y2
= h(x).

(iii) The map in (1) corresponds to blowing up the nodes in (2).

(iv) The curve y2
= h1(x) is smooth of genus b(deg(h1)− 1)/2c since h1 is square-free.

(v) Both curves have one point at infinity if deg(h) is odd and two points at infinity if deg(h) is even.

(Compare [Hartshorne 1977, Chapter I, Exercises 5.6.1–3].) The proof of the lemma will consist of
showing that we are in this general situation.

Let t0 ∈ Fπ satisfy t ≡ t0 mod π , and let h0(x) := f (x)(x − t0) ∈ Fπ [x]. The polynomial f (x) is
square-free by hypothesis, so h0(x) is square-free if and only if f (t0) = 0, or equivalently, π | s. In
particular, if π -s, then h0 is square-free and y2

= h0(x) is smooth of genus g. Otherwise, h0 = h1h2
2,

where h1= f/(x− t0) and h2= x− t0 are coprime (since f is square-free), and thus y2
= h0(x) is smooth

away from the node (t0, 0) and birational to the curve y2
= h1(x), which is smooth of genus g− 1. �

Remark 12.1.3. One can also define a reduction X/F∞ by writing t = 1/u and clearing denominators,
and one eventually finds that X/F∞ has genus zero. However, the arguments are subtler and beyond the
scope of this article, so we omit them.

For example, XLeg has smooth reduction away from t = 0, 1,∞, over t = 0, 1 its reduction is a
so-called node, and over t =∞ it is a so-called cusp. Since it is isomorphic to its Jacobian, these are
sometimes referred to as good, multiplicative, and additive reduction respectively. However, in general,
one needs to construct separately reductions J/Fπ , for every π , and also a reduction J/F∞.
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Lemma 12.1.4. (i) If π -s, then J/Fπ is the Jacobian of X/Fπ so it is a g-dimensional abelian variety.

(ii) If π | s, then J/Fπ is an extension of an abelian variety by a 1-dimensional torus.

Proof. Both statements are easy consequences of Lemma 12.1.2. More precisely, if X/Fπ is projective
and smooth away from n nodes, then J/Fπ is an extension of a (g−n)-dimensional abelian variety by an
n-dimensional torus. See [Bosch et al. 1990, 9.2.8] and keep in mind Lemma 12.1.2. �

Remark 12.1.5. One can also show that J/F∞ is a g-dimensional additive linear algebraic group, but
demonstrating it directly is harder and requires a finer statement than the claim in Remark 12.1.3.

One can regard the various reductions of J as the special fibers of the (identity component of the)
Néron model of J/K over P1

t . However, for our purposes, Lemma 12.1.4 contains all the information we
need about the model. More precisely, we only need to know the respective dimensions gπ , mπ , and aπ
of the good, multiplicative, and additive parts of J/Fπ . Thus

(gπ ,mπ , aπ )=
{
(g, 0, 0) if π -s,
(g− 1, 1, 0) if π | s

(12.1.6)

by Lemma 12.1.4. In Section 12.2 we will show that

(g∞,m∞, a∞)= (0, 0, g)

as claimed in Remark 12.1.5.

12.2. Tate modules. Let ` be a prime distinct from the characteristic p of Fq . For each m ≥ 0, let
J [`m
] ⊆ J (K ) be the subgroup of `m-torsion; it is isomorphic to (Z/`m)2g and hence is a finite Galois

module. Multiplication by ` induces an epimorphism J [`m+1
]� J [`m

] for each m, and the Z`-Tate
module of J is the projective limit

T`(J ) := lim
←−−

J [`m
].

Concretely one can regard T`(J ) as the set

{(P0, P1, . . .) : Pm ∈ J [`m
] and `Pm+1 = Pm for m ≥ 0}.

It is even a Galois Z`-module (since the action of G K and multiplication by ` commute), and it is
isomorphic to Z`

2g as a Z`-module (cf. [Serre and Tate 1968, §1]).
Let V be the vector space T`(J )⊗Z` Q` and GK →GL(V ) be the corresponding Galois representation.

For each v ∈ P, let V (v) denote V as an I (v)-module and let V (v)unip be the maximal submodule where
I (v) acts unipotently.

Proposition 12.2.1. Let v ∈ P, and let gz and mz be the respective dimensions of the abelian and
multiplicative part of J/Fv Then

V (v)unip
'U (1)⊕2gv ⊕U (2)⊕mv .

Proof. This is a general fact about Tate modules of abelian varieties. See [SGA 7I 1972, Exposé IX,
§2.1]. �
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Let S = {π ∈ P : π | s} ∪ {∞}, where s = f (t) as in Lemma 12.1.2. Then by Proposition 12.2.1, the
action of G K on V induces a representation

ρ : GK ,S→ GL(V )

since

dim(V I (v))= dim(V )= 2g for v ∈ P rS

by (12.1.6).

Lemma 12.2.2. The representation ρ is geometrically simple and pointwise pure of weight 1, and it
satisfies

dropv(ρ)=


0, v ∈ P rS,
1, v ∈ S r {∞},
2g, v =∞,

Swan(ρ)= 0.

Proof. The values dropv(ρ) for v 6= ∞ follow directly from (12.1.6) since

dropv(ρ)= dim(V )− dim(V I (v))= 2g− 2gv −mv

by Proposition 12.2.1. For the assertions about geometric simplicity and weight and about drop∞(ρ)
and Swan(ρ) we refer to [Katz and Sarnak 1999, 10.1.9 and 10.1.17] (cf. [Hall 2008, §5] for a related
discussion about J [`]). �

Corollary 12.2.3. L(T, J/K )= 1; that is, it is a polynomial and deg(L(T, J/K ))= 0.

Proof. The representation ρ is geometrically simple and dim(V ) = 2g > 0, so ρ has trivial geometric
invariants. Moreover, it is pointwise pure of weight w = 1, so Theorem 7.3.2 implies L(T, ρ) is a
polynomial of degree

r∅(ρ)
(3.5.2)
= drop(ρ)+Swan(ρ)− 2 · dim(V ) 12.2.2

= (deg( f ) · 1+ 1 · 2g)+ 0− 2 · 2g = 0

as claimed. �

Let c ∈ Fq [t] be monic and square-free and C ⊂ P be the finite subset consisting of∞ and v(π) for
every prime factor π of c (cf. Section 4).

Lemma 12.2.4. For every ϕ ∈8(c), the representation ρ⊗ ϕ is geometrically simple and pointwise pure
of weight 1, and ϕ is not heavy.

Proof. Lemma 7.1.2 implies that ρ⊗ ϕ is geometrically simple since ρ is. Moreover, it has trivial
geometric invariants since dim(V )= 2g > 1, so ϕ is not heavy. Finally, Lemma 6.2.2 implies that it is
pointwise pure of weight w = 1 since ρ is. �

Corollary 12.2.5. If ϕ ∈8(c), then LC(T, ρ⊗ ϕ) is a polynomial and

deg(LC(T, ρ⊗ ϕ))= 2g · deg(c)− deg(gcd(c, s)).
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Proof. By Lemma 12.2.4 the hypotheses of Theorem 7.3.2 hold, and hence LC(T, ρ⊗ ϕ) is a polynomial
of degree

rC(ρ)
(4.3.2)
= deg(L(T, ρ))+ (deg(c)+ 1) dim(V )− dropC(ρ)= 2g · (deg(c)+ 1)− dropC∩S(ρ).

The corollary follows by observing that

dropC∩S(ρ)=
∑
v∈C∩S

dv · dropv(ρ)= deg(gcd(c, s)) · 1+ drop∞(ρ)

and that drop∞(ρ)= 2g. �

12.3. Arithmetic application. In this section we show how to apply our main theorem to the example
given above. Let M⊂ Fq [t] be the subset of monic polynomials, I ⊂M and Mn ⊂M be the subsets of
irreducibles and polynomials of degree n respectively, and Id =Md ∩ I. Recall that K = Fq(t) and that
π 7→ v(π) induces a bijection I→ P r {∞}.

The Euler factor at v =∞ of the L-function of J is trivial since drop∞(ρ) = dim(V ), and thus the
complete L-function satisfies

L(T, J/K )=
∏
π∈I

L(T deg(π), J/Fπ )−1
=

∏
v∈P

L(T dv , ρv)
−1
= L f (T, ρ).

Similarly, for the partial L-function of ρ, we have

LC(T, ρ)=
∏

v∈PrC

L(T dv , ρv)
−1
=

∏
π∈I
π -c

L(T deg(π), J/Fπ )−1.

For each π ∈ I, the Euler factor L(T, J/Fπ )−1 is the reciprocal of a polynomial with coefficients in Z

so it satisfies

T d
dT

log(L(T, J/Fπ ))=
∞∑

n=1

aπ,nT n

for integers aπ,n ∈ Z.
The complete L-function is also a polynomial with coefficients in Z, and it satisfies

T d
dT

log(L(T, J/K ))= T d
dT

log(L f (T, ρ))=
∞∑

n=1

( ∑
f ∈Mn

3ρ( f )
)

T n,

where 3ρ( f ) :M→ Z is the von Mangoldt function of ρ defined in (5.2.1) by

3ρ( f )=
{

d · aπ,n if f = πm and π ∈ Id ,

0 otherwise.

Similarly, the partial L-function of ρ is a polynomial with coefficients in Z and satisfies

T d
dT

LC(T, ρ)=
∞∑

n=1

( ∑
f ∈Mn

gcd( f,c)=1

3ρ( f )
)

T n.
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For A in 0(c)= (Fq [t]/cFq [t])× and positive integer n, we defined the sum Sn,c(A) in (5.3.1) by

Sn,c(A)=
∑

f ∈Mn
f≡A mod c

3ρ( f ).

We then defined the expected value and variance of this sum as A varies uniformly over 0(c) by

E[Sn,c(A)] =
1
φ(c)

∑
A∈0(c)

Sn,c(A), Var[Sn,c(A)] =
1
φ(c)

∑
A∈0(c)

∣∣Sn,c(A)− E[Sn,c(A)]
∣∣2

respectively, where φ(c)= |0(c)| (see (5.4.2)).

Theorem 12.3.1. Suppose that gcd(c, s)= t and that deg(c) > 1
2g (72(4g2

+ 1)2+ 1). Then

φ(c) · E[Sn,c(A)] =
∑

f ∈Mn
gcd( f,c)=1

3ρ( f ) and lim
q→∞

φ(c)
q2n ·Var[Sn,c(A)] =min{n, 2g · deg(c)− 1}.

Proof. This will follow from applying Theorems 11.0.1, 10.0.4, and 9.0.1 successively, the last with
Remarks 9.0.2 and 9.0.3 in mind. To complete the proof we show that all the hypotheses of the first
theorem are met.

Lemma 12.2.4 implies that ρ is pointwise pure of weight w = 1 and that 8(c)ρ heavy is empty.2

Moreover, Proposition 12.2.1 implies that V (0) has a unique unipotent block of dimension 2 and no
other unipotent block of multiplicity 1 (since 2g− 2 6= 1); hence Theorem 11.0.1 implies that the Mellin
transform of ρ has big monodromy since gcd(c, s)= t and since

deg(c) > 1
2g
(72((2g)2+ 1)2− 2g− 0+ (1+ 2g))= 1

2g
(72(4g2

+ 1)2+ 1).

Therefore the hypotheses of Theorem 11.0.1 hold as claimed. �

Taking g = 1 and f = x(x − 1) yields Theorem 1.2.3 from Section 1.

Appendix A: Middle extension sheaves

Recall the following notation:

• X is a proper smooth geometrically connected curve over Fq .

• U is a dense Zariski open subset of X defined over Fq .

• K is the function field Fq(X).

• P is the set of places of K .

• C is a finite subset of P .

• G K is the absolute Galois group G K = Gal(K sep/K ).

2There are mixed characters, but as shown the proof of Theorem 9.0.1, they do not contribute to the main term of the variance
estimate.
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• I (v) is the inertia subgroup in G K of v ∈ P .

• GK ,C is the quotient of GK by normal closure of 〈 I (v) | v ∈ P r C 〉.

• ` is a prime in N coprime to q.

• F is a sheaf on X .

• G is a sheaf on U.

All sheaves in this section are constructible and étale with coefficients in Q`.
Let j : U → X be the inclusion of a dense Zariski open subset. Given G (e.g., the pullback sheaf

F |U = j∗F), there are two3 functorial extensions of G to a sheaf on all of X we wish to consider: the
extension by zero j!G and the direct image j∗G. As F and G vary we have

HomX ( j!G,F )= HomU (G, j∗F ) and HomX (F, j∗G)= HomU ( j∗F,G);

that is, the functors j!, j∗ are adjoints of j∗ (cf. [Milne 1980, II.3.14.a]). In particular, the adjoints of the
identity j∗F→ j∗F are maps of the form j! j∗F→ F and F→ j∗ j∗F called adjunction maps. We say
that F is supported on U if and only if the first map is an isomorphism, and F is a middle extension if
and only if the second map is an isomorphism for every j .

Lemma A.0.1. (i) If j∗F is lisse and F→ j∗ j∗F is an isomorphism, then F is a middle extension.

(ii) If G is lisse, then j∗G is a middle extension.

Proof. Let U ′ ⊆ X be a dense Zariski open and U ′′ =U ∩U ′. Consider the commutative diagram

U ′′ i ′
//

i
��

U ′

j ′

��

U
j
// X

of inclusions and the corresponding commutative diagram

F

��

// j∗ j∗F

��

j ′
∗

j ′∗F // (i j)∗(i j)∗F = (i ′ j ′)∗(i ′ j ′)∗F

(A.0.2)

of adjunction maps.
Suppose G is lisse. On one hand, this implies the map G → i∗i∗G is an isomorphism, so the right

map of (A.0.2) is an isomorphism when G = j∗F. In particular, if the top map of (A.0.2) is also an
isomorphism, then the left map must also be an isomorphism for every j ′; hence (i) holds. On the other
hand, the direct image map j∗G→ j∗i∗i∗G is also an isomorphism. It even coincides with the adjunction
map j∗G→ j ′

∗
j ′∗ j∗G via the functorial identities j∗i∗i∗G = j ′

∗
i ′
∗
i∗G = j ′

∗
j ′∗ j∗G, so (ii) holds. �

3One can also consider hybrid versions such as j ′′
!

j ′∗G for inclusions j ′ :U→U ′ and j ′′ :U ′′→ X , but we do not need such
versions.
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Lemma A.0.3. Suppose F is a middle extension. If j∗F ' G on U, then F ' j∗G on X.

Proof. Let j∗ j∗F→F be the inverse of the adjunction map F→ j∗ j∗F, and let j∗F→ G and G→ j∗F
be mutually inverse morphisms. Then the composed maps

F→ j∗ j∗F→ j∗G and j∗G→ j∗ j∗F→ F

are mutually inverse. �

Let η̄ be a geometric generic point of X and V be a finite-dimensional Q`[GK ,C]-module. The following
proposition shows that there is a canonical middle-extension sheaf on X we can associate to V (cf. [Milne
1980, 3.1.16]).

Proposition A.0.4. There is a middle extension F with Fη̄ = V as GK ,C-modules, and it is unique up to
isomorphism.

Proof. Suppose U ⊆ X is the open complement corresponding to C so that the structure map GK→GL(V )
factors through the quotient GK �GK ,C and so that we can identify GK ,C with the étale fundamental group
π1(U, η̄). Then there is a lisse sheaf G on U corresponding to the representation π1(U, η̄)→ GL(V )
through which GK→GL(V ) factors, and it is unique up to isomorphism. In particular, G and F = j∗G are
middle-extension sheaves by Lemma A.0.1(ii) and Fη̄ = Gη̄ = V as GK ,C-modules. Every isomorphism
Fη̄' V of GK ,C-modules extends to an isomorphism j∗F→G of lisse sheaves, and Lemma A.0.3 implies
the latter extends to an isomorphism F ' j∗G. �

Appendix B: Euler characteristics

We continue the notation of the previous section. Let j :U → X be the inclusion of a dense Zariski open
subset and F be a sheaf on U. Then there is an exact sequence

0→ j!F→ j∗F→ SF → 0,

where SF is a skyscraper sheaf supported on Z = X rU, and the corresponding long exact sequence of
(étale) cohomology (over Fq ) can be written

· · · → H i (Z ,SF )→ H i+1
c (U ,F )→ H i+1(X , j∗F )→ · · · , (B.0.1)

where n ∈ Z.

Lemma B.0.2. There exist exact sequences

0→ H 0
c (U ,F )→ H 0(X , j∗F )→ H 0(Z ,SF )→ H 1

c (U ,F )→ H 1(X , j∗F )→ 0 (B.0.3)

and

0→ H 2
c (U ,F )→ H 2(X , j∗F )→ 0 (B.0.4)

and all other cohomology groups in (B.0.1) vanish.
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Proof. The first term of (B.0.1) vanishes unless n = 0 since dim(Z)= 0, and the other two terms vanish
for n+1 6= 0, 1, 2 since U and X are curves. Therefore (B.0.1) breaks into the pieces (B.0.3) and (B.0.4),
and all other terms vanish. �

If U = X , then the middle term of (B.0.3) vanishes, and otherwise the first term vanishes since any
curve U ( X is affine. Either way, the Euler characteristics

χ(X , j∗F ) :=
2∑

n=0

(−1)n dim(H i (X , j∗F )), χc(U , j∗F ) :=
2∑

n=0

(−1)n dim(H i
c (U , j∗F )), (B.0.5)

and χ(Z ,SF )= dim(H 0(Z ,SF )) satisfy

χ(X , j∗F )−χc(U ,F )= χ(Z ,SF )=
∑
z∈Z

deg(z) · dim(F I (z)
η̄ ). (B.0.6)

B.1. Middle extensions. Let ρ be a Galois representation and ME(ρ) be the corresponding middle-
extension sheaf.

Proposition B.1.1. Let g be the genus of X. Then

χ(X ,ME(ρ))= (2− 2g) · rank(ρ)− (drop(ρ)+Swan(ρ)).

Proof. Suppose ME(ρ) is lisse on U ; we may since ME(ρ) is a middle extension. On one hand, the
Euler–Poincaré formula, as proved by Raynaud [1966, Théorème 1], asserts

χc(U ,ME(ρ))= χc(U ) · rank(ρ)−Swan(ρ), χc(U )= 2− 2g− deg(Z).

On the other hand, a short calculation shows

χ(Z ,ME(ρ))= deg(Z) · rank(ρ)− drop(ρ)

since U is open and dense in X and hence Z is finite, and thus

χ(X ,ME(ρ))= χc(U ,ME(ρ))+χ(Z ,ME(ρ))= (2− 2g) · rank(ρ)− drop(ρ)−Swan(ρ)

as claimed. �

Let C ⊂ P be the subset of places corresponding to the finite complement Z = X rU.

Corollary B.1.2. If ME(ρ) is supported on U, then χc(U ,ME(ρ))= χ(X ,ME(ρ)), and

χc(U ,ME(ρ))= (2− deg(C)) · rank(ρ)− (drop(ρ)− dropC(ρ)+Swan(ρ))

in general.

Proof. If ME(ρ) is supported on U, then dropC(ρ)= deg(C) · rank(ρ), so it suffices to show (3.5.3) holds
in general. Recall that Z = C, so the desired identity follows easily from the identities

χc(U ,ME(ρ))= χ(X ,ME(ρ))−χ(Z ,ME(ρ)),

χ(Z ,ME(ρ))= deg(C) · rank(ρ)− dropC(ρ)

and (3.5.2). �
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Let ϕ be a character of conductor supported by C.

Lemma B.1.3. (i) If ϕ is tame, then Swan(ρ⊗ ϕ)= Swan(ρ).

(ii) drop(ρ⊗ ϕ)− drop(ρ)= dropC(ρ⊗ ϕ)− dropC(ρ).

Proof. If v ∈ P, then Swanv(ρ⊗ ϕ)= Swanv(ρ) since tensoring with tamely ramified character (e.g., ϕ)
does not change the local Swan conductor. Moreover, if v 6∈ C, then V and Vϕ are isomorphic as I (v)-
modules (since ϕ has conductor supported on C). Hence L(T, ρv) and L(T, (ρ⊗ ϕ)v) have the same
degree, and in particular,

dropv(ρ⊗ ϕ)− dropv(ρ)= deg(L(T, ρv))− deg(L(T, (ρ⊗ ϕ)v))= 0

when v 6∈ C. �

Appendix C: Detecting a big subgroup of GLR

Let R be a positive integer and G be a connected reductive subgroup of GLR(Q`), and suppose G acts
irreducibly on QR

` . The main goal of this section is to state and prove a theorem of the following form:

Claim C.0.1. If G contains a suitable element g, then G = SLR(Q`) or G = GLR(Q`).

We give explicit conditions on g after introducing some terminology and preliminary results.

C.1. Weight multiplicity map. Let m be a positive integer and [m] = {1, . . . ,m}.

Definition C.1.1. A weight partition map of an element α = (α1, . . . , αm) in (Q×)m is a map wα :
[m] → [m] satisfying the following for every i, j ∈ [m]:

wα(i)= wα( j) if and only if |ι(αi )| = |ι(αj )|,

|w−1
α (i)| ≥ |w−1

α ( j)| if i ≤ j.

The fibers of wα partition the indices i ∈ [m] according to the corresponding weights − logq |ι(αi )|
2 and

are ordered according to size.

In general, α may have multiple weight partition maps, but all will induce the same partition of [m],
have the same range, and yield the same map [m] → Z given by i 7→ |w−1

α (i)|. In particular, if wα is a
weight partition map of α and if σ ∈ Sym(m), then the composed map wασ is also a weight partition
map of α.

Definition C.1.2. The m-th weight multiplicity map is the map

µm : (Q
×)m→ Zm

which sends an element α to the tuple λ= (λ1, . . . , λm) satisfying λi = |w
−1
α (i)| for some weight partition

map wα and every i ∈ [m].

Definition C.1.3. For any λ= µm(α), let len(λ)=max{1≤ i ≤ m : λi 6= 0}.
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Observe that [len(λ)] is the range of any weight partition map wα of α and (λ1, . . . , λlen(λ)) is a
partition of m.

Example C.1.4. Let λ = µ5(1,−1, q,−q, q2). Then λ = µ5(q2,−q, q,−1, 1) = (2, 2, 1, 0, 0), and
thus len(λ)= 3 and (2, 2, 1) is a partition of 5.

Lemma C.1.5. Let α, β ∈ (Q×)m , and let s ∈ Q× and σ ∈ Sym(m). Suppose βi = sασ(i) for every
i ∈ [m]. Then µm(α)= µm(β).

Proof. Let wα, wβ be respective weight partition maps of α, β. Then for every i, j ∈ [m], one has

wβ(i)=wβ( j) ⇐⇒ |ι(βi )| = |ι(βj )| ⇐⇒ |ι(ασ(i))| = |ι(ασ( j))| ⇐⇒ wασ(i)=wασ( j).

In particular, the weight partition maps σwα, wβ of α, β respectively coincide, so µm(α) = µm(β) as
claimed. �

C.2. Tensor indecomposability. Let m, n ≥ 2 be integers, let α ∈ (Q×)m, β ∈ (Q×)n, and γ ∈ (Q×)mn

be elements, and let a = µm(α), b = µn(β), c = µmn(γ ). We regard α and β as respective tuples of
eigenvalues of matrices A ∈ GLm(Q) and B ∈ GLn(Q). We also suppose that γ is an eigenvalue tuple of
the tensor product A⊗ B, and thus there exists a bijection τ : [m]× [n] → [mn] satisfying

γτ(i, j) = αiβj for (i, j) ∈ [m]× [n].

Let wα, wβ, wγ be weight partition maps of α, β, γ respectively.

Lemma C.2.1. There exists a unique map κ : [len(a)]× [len(b)] → [len(c)] which makes the following
diagram commute:

[m]× [n] τ
//

wα×wβ

��

[mn]

wγ

��

[len(a)]× [len(b)]
κ
// [len(c)].

In particular,

ck =
∑

κ(i, j)=k

ai bj . (C.2.2)

Proof. To see that such a map exists observe that wγ τ factors through wα ×wβ since

(wα ×wβ)(i1, j1)= (wα ×wβ)(i2, j2) ⇐⇒ |αi1 | = |αi2 | and |β j1 | = |β j2 |

H⇒ |αi1β j1 | = |αi2β j2 |

⇐⇒ |γτ(i1, j1)| = |γτ(i2, j2)|

⇐⇒ wγ τ(i1, j1)= wγ τ(i2, j2)

for every i1, i2 ∈ [m] and j1, j2 ∈ [n]. To see that the map is unique, observe that the left vertical map of
the diagram is surjective and that the map must satisfy l 7→ wγ τ(i, j) for any (i, j) in (wα ×wβ)−1(l).
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Finally, (C.2.2) follows from the identities

ck = |w
−1
γ (k)| = |(τ ◦wγ )−1(k)| = |(wα ×wβ ◦ κ)−1(k)|

=

∑
κ(i, j)=k

|(wα ×wβ)
−1(i, j)| =

∑
κ(i, j)=k

ai bj . �

Example C.2.3. Let α = (1, 1, q), β = (1, q, q), and γ = (1, 1, q, q, q, q, q, q2, q2). The maps wα and
wβ are canonical and given by

wα(i)=
{

1, i = 1, 2,
2, i = 3,

wβ( j)=
{

2, j = 1,
1, j = 2, 3.

The maps τ and wγ are not canonical, so we choose

τ(i, j)= 3( j − 1)+ i, wγ ( j)=


2, i = 1, 2,
1, j = 3, . . . , 7,
3, i = 8, 9.

Then one has a = b = (2, 1, 0) and c = (4, 2, 2, 0, 0, 0, 0, 0, 0), and also

wγ τ(i, j)=


1, (i, j)= (1, 1), (2, 1),
3, (i, j)= (3, 2), (3, 2),
2, otherwise

for (i, j) ∈ [3]× [3]. Therefore, the domain and codomain of κ are [2]× [2] and [3] respectively, and

κ(i, j)=


1, (i, j)= (1, 1), (2, 2),
2, (i, j)= (1, 2),
3, (i, j)= (2, 1)

for (i, j) ∈ [2]× [2].

Lemma C.2.4. For each l ∈ [len(a)], the restriction of κ to {l}× [len(b)] is injective, and in particular,
len(b)≤ len(c).

Proof. Recall that [len(a)] and [len(b)] are the respective ranges of wα and wβ , so suppose i ∈ [m] and
j1, j2 ∈ [n]. Moreover, one has

κ(wα(i), wβ( j1))= κ(wα(i), wβ( j2)) ⇐⇒ wγ τ(i, j1)= wγ τ(i, j2)

⇐⇒ |γτ(i, j1)| = |γτ(i, j2)|

⇐⇒ |αiβ j1 | = |αiβ j2 |

⇐⇒ wβ( j1)= wβ( j2),

and thus the restriction of κ to {wα(i)}× [len(b)] is injective as claimed. �

Let r be a positive integer.

Lemma C.2.5. (i) If clen(c) ≤ r , then alen(a) ≤ r and blen(b) ≤ r .

(ii) If a1 > r then clen(b) > r and if b1 > r then clen(a) > r .
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Proof. For part (i), we prove the contrapositive. More precisely, if k ∈ [len(c)], then one has

ck
(C.2.2)
=

∑
κ(i, j)=k

ai bj ≥ alen(a)blen(b) ≥max{alen(a), blen(b)},

and thus clen(c) > r if alen(a) > r or blen(b) > r . Thus (i) holds.
For part (ii), we suppose, without loss of generality, that a1 > r and show that clen(b) > r . We first

observe that Lemma C.2.4 implies the integers κ(1, 1), . . . , κ(1, len(b)) are distinct. Moreover, for each
l ∈ [len(b)], one has

cκ(1,l) ≥ a1bl > r · 1= r.

Therefore at least len(b) integers in the monotone decreasing sequence c1, . . . , clen(b) exceed r , and thus
(ii) holds. �

The following proposition is the main result of this subsection. We will use it to deduce that a certain
representation is tensor indecomposable whenever mn� r .

Proposition C.2.6. Suppose clen(c) = 1 < len(c) and c2 ≤ r . If len(c) ≤ r + 1, then m, n ≤ r2
+ 1 and

thus mn ≤ (r2
+ 1)2.

Proof. Lemma C.2.5(i) implies that alen(a) = blen(b) = 1 since clen(c) = 1. Therefore len(a) ≥ 2 and
len(b) ≥ 2 since m ≥ 2 and n ≥ 2 respectively, and moreover, c2 ≥ clen(a) or c2 ≥ clen(b). Hence the
contrapositive of Lemma C.2.5(ii) implies a1 ≤ r and b1 ≤ r since c2 ≤ r . In particular, if len(c)≤ r + 1,
then Lemma C.2.4 implies len(a), len(b)≤ r + 1, and thus

m =
len(a)∑
i=1

ai ≤ ra1+ alen(a) ≤ r2
+ 1, n =

len(b)∑
j=1

bj ≤ rb1+ blen(b) ≤ r2
+ 1

as claimed. �

C.3. Pairing avoidance. Let n be a positive integer and I be the n× n identity matrix. We define the
orthogonal and symplectic groups of matrices by

On(Q)= {M ∈ GLn(Q) : M M t
= I },

Sp2n(Q)=

{
M ∈ GL2n(Q) : M P M t

= P for P =
(

0 I
−I 0

)}
respectively.

Lemma C.3.1. Suppose h ∈ GLm(Q), where m = n (resp. m = 2n) and hgh−1
∈ On(Q) (resp. hgh−1

∈

Sp2n(Q)). Let α ∈ (Q×)m be a tuple of the eigenvalues of g and a = µm(α). Then some involution
π ∈ Sym(len(a)) satisfies the following:

(i) ai = aπ(i) for every i ∈ [len(a)].

(ii) π has at most one fixed point.
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Proof. Since g and hgh−1 have the same eigenvalues, we suppose without loss of generality that h = 1.
The involution s 7→ 1/s of Q× induces a permutation of the eigenvalues of elements of On(Q) and
Sp2n(Q). The latter is an involution σ ∈ Sym(m) with the property that, for any weight partition map wα
of α and every i ∈ [m], one has

wα(i)=wασ(i) ⇐⇒ |αi | = |ασ(i)| ⇐⇒ |αi | = |1/αi | ⇐⇒ |αi | = 1.

The involution in question is given bywα(i) 7→wασ(i) for every i ∈ [m]; recallwα maps onto [len(a)]. �

The following is the main result of this subsection. We will use it to show that some subgroup of
GLm(Q) fails to preserve nondegenerate pairings which are either symmetric or alternating.

Proposition C.3.2. Let g be an element of GLm(Q), α ∈ (Q×)m be a tuple of its eigenvalues, and
a =µm(α). If there exist i, j such that ai , aj are distinct from each other and from all ak for k 6= i, j , then
g is not conjugate to an element of Om(Q). If moreover m = 2n, then g is not conjugate to an element of
Sp2n(Q).

Proof. We prove the contrapositive. More precisely, if hgh−1
∈ Om(Q) or hgh−1

∈ Sp2n(Q) for some
h ∈ GLm(Q) and if π ∈ Sym(len(a)) is an involution satisfying the properties of Lemma C.3.1, then
π(i)= i for at most one i . Therefore, for all but at most one i and for j = π(i), one has i 6= j and ai = aj .
In particular, there is at most one i such that ai 6= aj for j 6= i . �

C.4. Main theorem. In this section we state and prove the main result of this appendix.

Theorem C.4.1. Let r, R be positive integers and G be a connected reductive subgroup of GLR(Q`). Let
g ∈ G be an element and γ ∈ (Q×` )

R be an eigenvector tuple of g. Suppose that G is irreducible, that γ
lies in (Q×)R , and that c = µR(γ ) satisfies 1< len(c) ≤ r + 1 and 1= clen(c) < clen(c)−1 and c2 ≤ r . If
R > 72(r2

+ 1)2, then either G = SLR(Q`) or G = GLR(Q`).

The proof will occupy the remainder of this subsection.
Since G is algebraic, it contains the semisimplification of g, an element for which γ is also an

eigenvector. Hence we replace g by its semisimplification and suppose without loss of generality that g
is semisimple. We also replace G and g by the conjugates h−1Gh and h−1gh by a suitable element h ∈
GLR(Q`) so that we may suppose without loss of generality that g is the diagonal matrix diag(γ1, . . . , γR).

Let V =QR
` and f be the diagonal matrix

f = diag(|ι(γ1)|, . . . , |ι(γR)|).

We claim we may regard f as an element of GLR(Q`). More precisely, it is an element of GLR(ι(Q))⊂

GLR(C) since |ι(γi )|
2
= ι(γi )ι(γi ) lies in the algebraically closed subfield ι(Q) ⊂ C and thus so does

|ι(γi )|. Replacing G, g, f by conjugates by a suitable common permutation matrix, we suppose without
loss of generality that |ι(γ1)| is an eigenvalue of f of multiplicity c1.

Lemma C.4.2. The matrix f is a semisimple element of G such that f − |ι(γ1)| ∈ End(V ) has rank at
most r2.
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Proof. For some sequence e1, . . . , en of tuples ei = (ei,1, . . . , ei,m) ∈ Zm, the intersection of G with the
subgroup of diagonal matrices in GLR(Q`) consists of all matrices diag(α1, . . . , αm) satisfying

m∏
i=1

α
e1,i
i =

m∏
i=1

α
e2,i
i = · · · =

m∏
i=1

α
en,i
i = 1.

By hypothesis, g lies in this intersection, and thus∣∣∣∣ι( m∏
i=1

γ
e1,i
i

)∣∣∣∣= ∣∣∣∣ι( m∏
i=1

γ
e2,i
i

)∣∣∣∣= · · · = ∣∣∣∣ι( m∏
i=1

γ
en,i
i

)∣∣∣∣= |ι(1)|
or equivalently

m∏
i=1

|ι(γi )|
e1,i =

m∏
i=1

|ι(γi )|
e2,i = · · · =

m∏
i=1

|ι(γi )|
en,i = 1.

Therefore f is a diagonal (hence semisimple) element of G as claimed. It remains to show f − |ι(γ1)| ∈

End(V ) has rank at most r2. Indeed, exactly c1 of its eigenvalues equal |ι(γ1)|; hence the rank of
f − |ι(γ1)| is

R− c1 ≤

len(c)∑
i=2

ci ≤ r · r = r2

by our hypotheses on c. �

Let [G,G] be the derived (i.e., commutator) subgroup of G. Observe that G acts irreducibly on
V = QR

` by hypothesis, so its center Z(G) consists entirely of scalars and G is an almost product of
[G,G] and Z(G). In particular, [G,G] is a connected semisimple group which also acts irreducibly on V,
and for some a ∈Q×` , the scalar multiple a f lies in [G,G].

Let g ⊆ glR = End(V ) be the Lie algebra of [G,G]. We claim g is simple. On one hand, g is a
semisimple irreducible Lie subalgebra of glR since [G,G] is semisimple and acts irreducibly on V. It
also contains a f , and Lemma C.4.2 implies that dim((a f − a|ι(γ1)|)V )≤ r2; hence the contrapositive of
Proposition C.2.6 implies that V is not tensor decomposable as a representation of g. On the other hand,
g has a decomposition g=

∏n
i=1 gi with respect to simple Lie subalgebras g1, . . . , gn ⊆ g, and thus V has

a tensor decomposition V =
⊗n

i=1 Vi where gi acts faithfully on Vi . In particular, n = 1 since V is not
tensor decomposable, and thus g is simple as claimed. (Compare [Katz 2002, proof of Theorem 1.4.3].)

We now apply the following theorem to deduce that g is one of sl(V ), so(V ), or sp(V ).

Theorem C.4.3. (Zarhin) Let g⊆End(V ) be a simple Lie subalgebra, and suppose that g acts irreducibly
on V. Let (a, f ) ∈ Q`× g and r = rank( f − a). If R = dim(V ) > 72r2, then g is one of sl(V ), so(V ),
or sp(V ).

Proof. See [Zarhin 1990, Lemma 4 and Theorem 6]. These results refer to constants D and D2 respectively,
and in the proofs one finds D = 1

8 and D2 = 9/D = 72 suffice. The latter is the source of the constant 72
in the hypothesis R > 72r2. Compare [Katz 2002, Theorem 1.4.4]. �

To complete the proof of the theorem it suffices to rule out g= so(V ) and g= sp(V ) or equivalently
to show that G preserves neither an orthogonal nor a symplectic pairing. However, our hypotheses on c,
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together with the contrapositive of Proposition C.3.2, imply that G preserves neither such type of pairing,
so g= sl(V ) as claimed. That is, [G,G] is SL(V ) and G is equal to one of SL(V ) or GL(V ).

Appendix D: Perverse sheaves and the Tannakian monodromy group

D.1. Category of perverse sheaves. Given a smooth curve X over a perfect field F, we can speak of the
so-called derived category Db

c (X,Q`). Its objects M are complexes of constructible Q`-sheaves on X
over F whose cohomology complex

· · · →H−1(M)→H0(M)→H1(M)→ · · ·

is bounded and whose cohomology sheaves Hi (M) are all constructible. There is a well-defined dual
object DM , the Verdier dual of M . Moreover, for each n ∈ Z, there is a well-defined shifted complex
M[n] which satisfies Hi (M[n])=Hi+n(M).

We say that M is semiperverse if and only if H0(M) is punctual and Hi (M) vanishes for i > 0 and that
M is perverse if and only if M and DM are semiperverse. We write Perv(X,Q`) for the full subcategory
of perverse objects in Db

c (X,Q`). It is an abelian category; thus one can speak of subquotients of its
objects as well as kernels and cokernels of its morphisms. It is common to call its objects perverse sheaves
despite the fact that they are complexes of sheaves.

There is a natural functor from the category of constructible Q`-sheaves on X over k to Db
c (X,Q`): it

sends a sheaf F to a complex concentrated at i = 0 and takes a morphism to the unique extension to a
morphism of complexes. The image of this functor is not stable under duality though: if F∨ is the dual
of F, then DF is isomorphic to F∨(1)[2]. If instead one sends each F to F

( 1
2

)
[1], then self-dual objects

are taken to self-dual objects and middle-extension sheaves are taken to perverse sheaves.

D.2. Purity. Let X be a smooth curve over Fq . We say an object M in Db
c (X,Q`) is ι-mixed of

weights ≤ w if and only if Hi (M) is pointwise ι-mixed of weights ≤ w + i for every i , and then
M[n] is ι-mixed of weights w+ n. We also say M is ι-pure of weight w if and only if M is ι-mixed of
weights ≤w and DM is ι-mixed of weights ≤−w, and then M[n] is ι-pure of weight w+n. Finally, we
say M is pure of weight w if and only if it is ι-pure of weight w for every field embedding ι :Q→ C .

D.3. Subobjects and subquotients. Let (C,⊕) be an abelian category, let 0 be its zero object, and let
M, N be a pair of objects in C.

We say that N is a subobject of M and write N ⊆ M if and only if there is a monomorphism N ↪→ M
in C. More generally, we say N of M is a subquotient of M if and only if there exist an object S, a
monomorphism S ↪→ M , and an epimorphism S � N all in C. Equivalently, N is a subquotient of M if
and only if there exist an object Q, an epimorphism M � Q, and a monomorphism N ↪→ Q all in C.

Proposition D.3.1. If M ∈ Perv(Gm,Q`) is ι-pure of weight w, then so is every subquotient N.

Proof. See [Beı̆linson et al. 1982, 5.3.1]. �
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Given a pair N1, N2 ⊆ M of subobjects, we write N1 ⊆ N2 ⊆ M if and only if N1 ⊆ N2 and, for
the corresponding monomorphisms, N1 ↪→ M equals the composition N1 ↪→ N2 ↪→ M . We also write
N1 = N2 ⊆ M if and only if N1 ⊆ N2 ⊆ M and N2 ⊆ N1 ⊆ M . For example, if M is an object in
Perv(Gm,Q`) and if φ is the Frobenius automorphism of M , then the subobjects N ⊆ M give rise to
precisely those subobjects N ⊆ M satisfying N = φ(N )⊆ M .

D.4. Kummer sheaves. Let Gm = P1
u r {0,∞} over Fq , and let π t

1(Gm) be the tame étale fundamental
group, that is, the maximal quotient of π1(Gm) whose kernel contains the p-Sylow subgroups of I (0)
and I (∞). It lies in an exact sequence

1→ π t
1(Gm)→ π t

1(Gm)→ Gal(Fq/Fq)→ 1,

where π t
1(Gm) is the image of π1(Gm) via the tame quotient π1(Gm)� π t

1(Gm).
We say a constructible sheaf on P1 is a Kummer sheaf if and only if it is a middle-extension sheaf

which is lisse of rank 1 on Gm and for which the corresponding representation factors through the quotient
π1(Gm) � π t

1(Gm). Equivalently, the Kummer sheaves are the middle-extension sheaves Lρ on P1

associated to a continuous character ρ : π t
1(Gm)→Q×` .

D.5. Middle convolution on P . Let π :Gm×Gm→Gm be the multiplication map on Gm over Fq . Using
it one can define two additive bifunctors on Db

c (Gm,Q`) corresponding to two flavors of multiplicative
convolution:

M ?! N := Rπ!(M � N ), M ?∗ N := Rπ∗(M � N ).

There is a canonical map M ?! N → M ?∗ N, but it need not be an isomorphism in general. However, if
both convolution objects lie in Perv(Gm,Q`), then one can speak of the image of the map and define

M ∗mid N := Image(M ?! N → M ?∗ N ).

This observation led Katz to define the full subcategory P of Perv(Gm,Q`) whose objects are all M
for which N 7→ M ?! N and N 7→ M ?∗ N take perverse sheaves to perverse sheaves (see [Katz 1996,
§2.6] and [Katz 2012, Chapter 2]). Among other things, it includes perverse sheaves F[1] for F a simple
middle-extension sheaf on Gm of generic rank at least 2. Moreover, it is an additive category with respect
to the usual direct sum of sheaves. Katz called the resulting additive bifunctor on P middle convolution.

D.6. The category Parith. Let Db
c (Gm,Q`)→ Db

c (Gm,Q`) be the “extension of scalars” functor which
sends an object of M over Fq to the object M = M×Fq Fq . It maps objects of Perv(Gm,Q`) to objects of
Perv(Gm,Q`), and we define Parith to be the full subcategory of Perv(Gm,Q`) whose objects M are those
for which M lies in P. Among other things, Parith contains perverse sheaves F[1] for F a geometrically
simple middle-extension sheaf on Gm over Fq which is of generic rank at least 2.

Once again we have the two flavors of multiplicative convolution

M ?! N := Rπ!(M � N ), M ?∗ N := Rπ∗(M � N )
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for any pair of objects M, N in Perv(Gm,Q`). We can also define middle convolution on Parith as before:

M ∗mid N := Image(M ?! N → M ?∗ N )

for any pair of objects M, N in Parith.

Proposition D.6.1. If M and N are ι-pure of weights m and n respectively, then M ∗mid N is ι-pure of
weight m+ n.

Proof. Our argument is essentially that of [Katz 2012, Chapter 4]. On one hand, M � N is ι-pure of
weight m + n on Gm ×Gm ; hence [Deligne 1980, 3.3.1] and Proposition D.3.1 imply M ?! N and its
perverse quotient M ∗mid N are ι-mixed of weight m+ n. On the other hand, DM and DN are ι-pure of
weights m and n respectively, and

D(M ∗mid N )= Image(D(M ?∗ N )→ D(M ?! N ))

= Image(DM ?! DN → DM ?∗ DN )= DM ∗mid DN ;

hence D(M ∗mid N ) is ι-mixed of weight ≤ m+ n (cf. [Deligne 1980, 6.2]). Thus M ∗mid N is ι-pure of
weight m+ n as claimed. �

D.7. The category Tann(Gm,Q`). Gabber and Loeser [1996, p. 529] defined an object M in Perv(Gm,Q`)

to be negligible if and only if its Euler characteristic χ(Gm,M) vanishes, or equivalently, it is isomorphic
to a successive extension of shifted Kummer sheaves Lρ[1] (cf. [loc. cit., 3.5.3]). They showed that
the full subcategory Negl(Gm,Q`) of Perv(Gm,Q`) whose objects are the negligible sheaves is a thick
subcategory of the abelian category (see [loc. cit., 3.5.2]), and thus one can speak of the quotient category

Tann(Gm,Q`) := Perv(Gm,Q`)/Negl(Gm,Q`).

They then proceeded to show that Tann(Gm,Q`) is a neutral Tannakian category (see [loc. cit., 3.7.5] and
[Deligne et al. 1982, II.2.19]).

Theorem D.7.1. The composite map P → Perv(Gm,Q`)→ Tann(Gm,Q`) induces an equivalence of
categories such that:

(i) Middle convolution on P induces a tensor product ⊗ on Tann(Gm,Q`).

(ii) The unit object 1 corresponds to the skyscraper sheaf i∗Q` for i : {1} → Gm the inclusion.

(iii) The dual M∨ of an object M is the object [x 7→ 1/x]∗DM.

(iv) The dimension dim(M) of an object M is χ(Gm,M).

(v) A fiber functor is M 7→ H 0(A1
u, j0!M) for j0 : Gm→ A1

u the inclusion.

See [Gabber and Loeser 1996, 3.7.2] and [Katz 2012, Chapters 2–3].
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D.8. The category Tann(Gm,Q`). Let Negl(Gm,Q`) be the full subcategory of Perv(Gm,Q`) whose
objects M are those for which M lies in Negl(Gm,Q`), and let

Tann(Gm,Q`) := Perv(Gm,Q`)/Negl(Gm,Q`).

Like Tann(Gm,Q`), the quotient category is an abelian category and even a neutral Tannakian category
with tensor product ⊗ given by middle convolution. Moreover, the “extension of scalars” functor induces
a functor

Tann(Gm,Q`)→ Tann(Gm,Q`)

which we also call the “extension of scalars” functor.

Proposition D.8.1. Suppose M, N ∈ Tann(Gm,Q`) are ι-pure of weights m and n respectively. Then
M∨, N∨, and M ⊗ N are ι-pure of weights m, n, and m+ n respectively.

Proof. The Verdier duals DM and DN are ι-pure of weights m and n respectively; hence so are the
Tannakian duals M∨ = [x 7→ 1/x]∗DM and N∨ = [x 7→ 1/x]∗DN. Moreover, Proposition D.6.1 implies
that M ⊗ N = M ∗mid N is ι-pure of weight m+ n. �

D.9. Semisimple abelian categories. We say that M is simple if and only if the only subobjects N ⊆ M
in C are isomorphic to 0 or M . More generally, we say that M is semisimple if and only if it is isomorphic
to a finite direct sum N1⊕ · · ·⊕ Nm of simple subobjects N1, . . . , Nm ⊆ M . We say that C is semisimple
if and only if each of its objects is semisimple.

Proposition D.9.1. If M ∈ Tann(Gm,Q`) is ι-pure of weight zero, then 〈M〉 is semisimple.

Proof. If N1, N2∈Tann(Gm,Q`) are ι-pure of weight zero, then so is N1⊕N2. Therefore Proposition D.6.1
implies that T a,b(M) is pure of weight zero, for every a, b ≥ 0, and [Beı̆linson et al. 1982, 5.3.8] implies
that T a,b(M) is semisimple. �

D.10. Tannakian monodromy group. Let k be an algebraically closed field of characteristic zero and
Veck be the category of finite-dimensional vector spaces over k. It is well known that the latter yields a
rigid abelian tensor category (Veck,⊗) with respect to the usual operators ⊕ and ⊗ of vector spaces and
with unit object 1= k.

Let (C,⊗) be a neutral Tannakian category over k. Thus (C,⊗) is a rigid abelian tensor category whose
unit object 1 satisfies k = End(1) and for which there exists a fiber functor ω, that is, an exact faithful
k-linear tensor functor ω : C→ Veck . For example, Veck is a neutral Tannakian category and the identity
functor Veck → Veck is a fiber functor. More generally, given an affine group scheme G over k, the
category Repk(G) of linear representations of G on finite-dimensional k-vector spaces yields a neutral
Tannakian category (Repk(G),⊗), and the forgetful functor Repk(G)→ Veck is a fiber functor.

Given an object M of C, its dual M∨, and nonnegative integers a, b, let

T a,b(M) := M⊗a
⊕ (M∨)⊗b
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and let 〈M〉 be the full tensor subcategory of C whose objects consist of all subobjects of T a,b(M)
for all a, b ≥ 0. For each automorphism γ ∈ AutC(M), let γ ∨ ∈ AutC(M∨) be the corresponding dual
automorphism and T a,b(γ ) ∈ AutC(T a,b(M)) be the induced automorphism.

Let Algk be the category of k-algebras and Set be the category of sets. Given a pair ω1, ω2 of fiber
functors C→ Veck and an object M in C, one can define a functor

Isom⊗(ω1|M, ω2|M) : Algk→ Set

by sending a k-algebra R to the set

{γ ∈ IsomR(ω1(M)R, ω2(M)R) : T a,b(γ )(ω1(N ))⊆ ω2(N ) for all a, b ≥ 0 and N ⊆ T a,b(M)},

where ωi (M)R = ωi (M)⊗k R and

IsomR(ω1(M)R, ω2(M)R)= {γ ∈ HomR(ω1(M)R, ω2(M)R) : γ is invertible}.

Similarly, given a single fiber functor ω : C→ Veck and object M in C, one can define a functor

Aut⊗(ω |M) : Algk→ Set

as the functor Isom⊗(ω |M, ω |M).

Theorem D.10.1. Let ω1, ω2 be fiber functors C→ Veck and M be an object of C.

(i) Aut⊗(ωi |M) is representable by an algebraic group scheme Gωi |M over k.

(ii) If 〈M〉 is semisimple, then Gωi |M is reductive.

(iii) Isom⊗(ω1 |M, ω2 |M) is represented by an affine scheme over k which is a Gω1 |M -torsor.

See [Deligne et al. 1982, II.2.11, II.2.20, II.2.28, and II.3.2].
We call the group scheme Gωi |M in the theorem the Tannakian monodromy group of 〈M〉 with respect

to ωi .

Theorem D.10.2. Let ω : Perv(Gm,Q`)→Veck be a fiber functor over Fq and M ∈ Perv(Gm,Q`). If M
is pure of weight zero, then Gω |M is reductive.

Proof. This follows from Proposition D.9.1 and Theorem D.10.1(ii). �

D.11. Geometric versus arithmetic monodromy. For every object M in Tann(Gm,Q`) and all integers
a, b ≥ 0, the “extension of scalars” functor sends a subobject N ⊆ T a,b(M) to a subobject N ⊆ T a,b(M).
Moreover, composing the functor with a fiber functor ω on Tann(Gm,Q`) yields a fiber functor on
Tann(Gm,Q`) which we also denote ω. Thus there is a natural transformation

Aut⊗(ω |M)→ Aut⊗(ω |M)

and a corresponding monomorphism of Tannakian monodromy groups

Gω |M → Gω |M .
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We call Gω |M and Gω |M the geometric and arithmetic Tannakian monodromy groups of M with respect
to ω respectively.

Proposition D.11.1. Suppose M is in Tann(Gm/Fq ,Q`) and is pure of weight zero. Then:

(i) Gω |M is a normal subgroup of Gω |M .

(ii) If M is arithmetically semisimple, then Gω |M/Gω |M is a torus, and thus Gω |M is reductive.

Proof. Proposition D.9.1 implies that M is semisimple, so part (1) follows from [Katz 2012, Theorem 6.1].
Therefore we can speak of the quotient Gω |M/Gω |M , and [loc. cit., Lemmma 7.1] implies it is a quotient
of M if M is arithmetically semisimple. Moreover, Theorem D.10.2 implies that Gω |M is reductive, so
part (2) follows by observing that the extension of a torus by a reductive group is reductive. �

D.12. Frobenius element. Let ω be a fiber functor Tann(Gm,Q`)→Veck , let E/Fq be a finite extension,
and let M be in Tann(Gm/E,Q`). The geometric Frobenius element of Gal(Fq/E) induces a well-defined
automorphism φE of M . By applying ω, one obtains a well-defined k-linear automorphism of ω(M), that
is, an element of GL(ω(M))=GL(ω(M)). It is even an element of Gω |M since, for every N ⊆ T a,b(M)
and a, b ≥ 0, one has

N = T a,b(φE)(N )⊆ T a,b(M)

and thus
ω(N )= T a,b(φE)(ω(N ))⊆ ω(T a,b(M))= T a,b(ω(M)).

We call ω(φE) the geometric Frobenius element of Gω |M .

D.13. Frobenius conjugacy classes. Let ω1, ω2 be fiber functors Tann(Gm,Q`)→ Veck , let M be an
element of Tann(Gm,Q`), and let π be an element of Isom⊗(ω1 |M, ω2 |M)(k). Then Theorem D.10.1(iii)
implies that the map g 7→ πg induces a bijection

Gω1 |M → Isom⊗(ω1 |M, ω2 |M).

Moreover, the map g2 7→ gπ2 = π
−1g2π induces an isomorphism Gω2 |M → Gω1 |M . While the map is

not canonical (since π is not), the conjugacy class

Frobω2 |M = {ω2(φ)
πg1 : g1 ∈ Gω1 |M(k)} ⊂ Gω1 |M(k)

is well-defined. We call it the geometric Frobenius conjugacy class of ω2 |M in Gω1 |M .
For each finite extension E/Fq and each character ρ ∈8E(u), let Lρ be the corresponding Kummer

sheaf on Gm over E and ωρ : Tann(Gm,Q`)→ Veck be the functor given by

M 7→ H 0(A1
u, j0!(M ⊗Lρ)).

It is a fiber functor by [Katz 2012, 3.2], and ω1 is the fiber functor of Theorem D.7.1(v). We write

FrobE,ρ ⊂ Gω1 |M

for the corresponding geometric Frobenius conjugacy class of ωρ |ME , where ME = M ×Fq E .
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Let m = dim(ωρ(M)) and n ∈ {0, 1, . . . ,m}. We say that ωρ(M) is mixed of weights w1, . . . , wm if
and only if there exists an eigenvector tuple α = (α1, . . . , αm) ∈ (Q

×

` )
m of any element of FrobE,ρ such

that α ∈ (Q×)m and such that

|ι(αi )|
2
= (1/|E |)wi for 1≤ i ≤ m

for every field embedding ι :Q→ C . We also say that ωρ(M) is mixed of nonzero weights w1, . . . , wn if
and only if it is mixed of weights w1, . . . , wm with wn+1 = · · · = wm = 0.

D.14. Monodromy for pure middle-extension sheaves. Let U ⊆ Gm be a dense Zariski open subset
over Fq . Let θ : π1(U )→ GL(W ) be a continuous representation to a finite-dimensional Q`-vector
space W and F be the restriction to Gm of the associated middle-extension sheaf ME(θ) on P1

u . Suppose
that θ is pointwise pure of weight w so that M = F((1+w)/2)[1] is pure of weight zero. Suppose
moreover that θ is geometrically simple and that it does not factor through the composed quotient
π1(U )� π1(Gm)� π t

1(Gm) so that M lies in Parith.
Let 8(u) be the dual of 0(u) = (Fq [u]/uFq [u])× (cf. Section 10.2). We define the geometric and

arithmetic Tannakian monodromy groups of (the Mellin transformation of) θ to be

Ggeom(θ,8(u)) := Gω1 |M , Garith(θ,8(u)) := Gω1 |M .

For u=0,∞, let W (u) denote W regarded as an I (u)-module, and let W (u)unip be the maximal submodule
of W (u) where I (u) acts unipotently. Moreover, let eu,1, . . . , eu,du be positive integers satisfying

W (u)unip
'U (eu,1)⊕ · · ·⊕U (eu,du )

as I (u)-modules, where U (e) denotes the irreducible e-dimensional I (u)-module on which I (u) acts
unipotently.

Proposition D.14.1. (i) The groups Ggeom(θ,8(u)) and Garith(θ,8(u)) are reductive, and there is an
exact sequence

1→ Ggeom(θ,8(u))→ Garith(θ,8(u))→ T → 1

for some torus T over Q`.

(ii) For each finite extension E/Fq and each α ∈8E(u), the stalk ωρ(M) is mixed of nonzero weights
−e0,1, . . . ,−e0,d0, e∞,1, . . . , e∞,d∞ .

Proof. Part (1) follows from Proposition D.11.1, and part (2) follows from [Katz 2012, Theorem 16.1]. �
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Extended eigenvarieties for
overconvergent cohomology

Christian Johansson and James Newton

Recently, Andreatta, Iovita and Pilloni constructed spaces of overconvergent modular forms in character-
istic p, together with a natural extension of the Coleman–Mazur eigencurve over a compactified (adic)
weight space. Similar ideas have also been used by Liu, Wan and Xiao to study the boundary of the
eigencurve. This all goes back to an idea of Coleman.

In this article, we construct natural extensions of eigenvarieties for arbitrary reductive groups G over a
number field which are split at all places above p. If G is GL2/Q, then we obtain a new construction of
the extended eigencurve of Andreatta–Iovita–Pilloni. If G is an inner form of GL2 associated to a definite
quaternion algebra, our work gives a new perspective on some of the results of Liu–Wan–Xiao.

We build our extended eigenvarieties following Hansen’s construction using overconvergent cohomol-
ogy. One key ingredient is a definition of locally analytic distribution modules which permits coefficients
of characteristic p (and mixed characteristic). When G is GLn over a totally real or CM number field, we
also construct a family of Galois representations over the reduced extended eigenvariety.

A correction was submitted on 27 October 2020 and posted online on 27 February 2021.

1. Introduction

1.1. The halo conjecture. The eigencurve, introduced by Coleman and Mazur [1998], is a rigid analytic
curve E rig over Qp which parametrizes systems of Hecke eigenvalues of finite-slope overconvergent
modular forms. It comes equipped with a morphism E rig

→W rig
0 , called the weight map, whose target is

known as weight space. W rig
0 parametrizes continuous characters κ : Z×p →Q×p and is a disjoint union of

a finite number of open unit discs. There is also a morphism E rig
→ G

rig
m which sends a system of Hecke

eigenvalues to the Up-eigenvalue; the p-adic valuation of the Up-eigenvalue is known as the slope. The
geometry of E rig encodes a wealth of information about congruences between finite-slope overconvergent
modular forms, and it is therefore not surprising that its study remains a difficult topic. In particular, we
know very little about the global geometry of E rig (for example, it is not known whether the number of
irreducible components of E rig is finite or not).

Let q = p if p 6= 2 and q = 4 if p = 2. The components of W rig
0 are parametrized by the characters

(Z/qZ)×→ (Z/qZ)×, and if we define X := Xκ = κ(exp(q))− 1, then X defines a parameter on each
component. Very little is known about the global geometry of E rig over the centre |X | ≤ q−1 and it
seems likely to be rather complicated. Near the boundary, however, the situation turns out to be rather
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simple. Coleman and Mazur raised the question of whether the slope tends to zero as one moves along a
component of E rig towards the boundary of W rig

0 . Buzzard and Kilford [2005] investigated this question
for p = 2 (and tame level 1) and proved a striking structure theorem: E rig

|{|X |>1/8} is a disjoint union
of connected components (Ei )

∞

i=0, and the weight map Ei →
{
|X |> 1

8

}
is an isomorphism for every i .

Moreover, the slope of a point on Ei with parameter X is i.v2(X), where vp is the p-adic valuation
(normalized so that vp(p)= 1). Out of this came a folklore conjecture; the following version is essentially
[Liu et al. 2017, Conjecture 1.2]:

Conjecture. For r ∈ (0, 1) sufficiently close to 1, E rig
|{|X |>r} is a disjoint union of connected components

(Ei )
∞

i=0 such that each Ei is finite over {|X |>r}. Moreover, there exist constants λi ∈R≥0 for i=0, 1, . . . ,
strictly increasing and tending to infinity, such that if x is a point on Ei with weight parameter X, then the
slope of x is λivp(X). The sequence (λi )

∞

i=0 is a finite union of arithmetic progressions, after perhaps
removing a finite number of terms.

We will loosely refer to this as the “halo conjecture” (the “halo” in question is the (disjoint union of)
annuli {|X |> r}). Let us assume p 6= 2 for simplicity. If κ is a point of W rig

0 then Up acts compactly on
the space of overconvergent modular forms M†

κ . The Fredholm determinants det(1−T .Up |M†
κ )∈Qp[[T ]]

interpolate to an entire series F =
∑
∞

n=0 anT n with coefficients in Zp[[Z
×
p ]] =O(W rig

0 )◦. Fix a character
η :Z×p → F×p and consider the ideal Iη = (p, [n]−η(n) | n= 1, . . . , p−1). The quotient ring Zp[[Z

×
p ]]/Iη

is isomorphic to Fp[[X ]] via the map sending [exp(p)] to 1+ X. We may consider the reduction Fη of F
modulo Iη and the character

κ̄η : Z
×

p → (Zp[[Z
×

p ]]/Iη)× ∼= Fp[[X ]]×.

In an unpublished note, Coleman conjectured that there should exist an Fp((X))-Banach space M†
κ̄η

of
“overconvergent modular forms of weight κ̄η” with a compact Up-action such that det(1−T .Up |M

†
κ̄η
)= Fη,

and promoted the idea that one should study the halo conjecture via integral models of the eigencurve
near the boundary of weight space.

In [Andreatta et al. 2018], Andreatta, Iovita and Pilloni proved Coleman’s conjecture on the existence
of M†

κ̄η
and constructed an integral model E ′ of E rig, which lives in the category of analytic adic spaces

[Huber 1994]. W rig
0 has a natural formal scheme model Spf Zp[[Z

×
p ]], which may be viewed as an adic

space W0 over the affinoid ring (Zp,Zp). Apart from the points corresponding to the adic incarnation
of W rig

0 , W0 contains an additional 2(p− 1) points in characteristic p, corresponding to the characters
η and κ̄η. The latter points are analytic in Huber’s sense (the former are not) and one may consider
the analytic locus W0 = W rig

0 ∪ {κ̄η | η} of W0 (viewing W rig
0 as an adic space). W0 may be viewed

as a compactification of W rig
0 , and Coleman’s idea may be interpreted as saying that one should study

the behaviour of E rig near the boundary of W0 by extending the eigencurve to an adic space living
over W0, turning global behaviour into local behaviour “at infinity”. At a point κ̄η, one can no longer
measure slopes using p. Instead, one has to use X. Noting that one can use X not only at κ̄η but also
“near” it, the halo conjecture says that the X -adic slope is constant as one approaches κ̄η. This supports
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the idea that an extension of E rig exists, and that the Ei in the halo conjecture are X -adic Coleman
families (i.e., subspaces which are finite over their images in weight space, and of constant slope). In this
framework, the slopes of Up should be the λi , with multiplicity the degree of X i over {|X |> r}. The halo
conjecture asserts, remarkably, that a Coleman family centred at a point over κ̄η extends to some locus
{|X |> r} in the component corresponding to η, where r is independent of the family (and in particular
its slope).

In [Liu et al. 2017], Liu, Wan and Xiao prove the halo conjecture for eigencurves for definite quaternion
algebras. Here the construction of (overconvergent) automorphic forms is of a combinatorial nature. Those
authors succeeded in proving the halo conjecture by calculations on some relatively explicit ad hoc integral
models of spaces of overconvergent automorphic forms. They construct one space over the whole of W0,
with a possibly noncompact Up-action, and another model over {|X |> p−1

} with a compact Up-action.
By the p-adic Jacquet–Langlands correspondence of [Chenevier 2005], this proves the halo conjecture
for the components of the Coleman–Mazur eigencurve of (generically) Steinberg or supercuspidal type at
some prime q 6= p.

1.2. Extended eigenvarieties for overconvergent cohomology. The main goal of this paper is to construct
extensions of eigenvarieties for a very general class of connected reductive groups G over Q. In
particular, we give a new construction of the extended eigencurve E ′ appearing in [Andreatta et al. 2018].
Our construction also gives a conceptual framework for many of the results in [Liu et al. 2017] (and
establishes a generalization of some of their results, which was described as an “optimistic expectation”
in Remark 3.26(2) of that paper). See Theorem 6.3.4 for an interpretation of some of their results using
the extended eigencurve.

Our construction of these eigenvarieties appears in Section 4.1. For the purposes of the introduction,
we have the following vague statement:

Theorem A. Let F be a number field and let H be a connected reductive group over F which is split
at all places above p. Set G = ResF

Q H. Then the eigenvarieties for G constructed in [Hansen 2017]
naturally extend to adic spaces XG over the extended weight space

W = Spa(Zp[[T ′0]],Zp[[T ′0]])
an,

where T ′0 is a certain quotient of the Zp-points T0 of a maximal torus in a suitable model of G over Zp.

The assumption that H is split at all places above p is made for convenience only; it makes it easy
to define a “canonical” Iwahori subgroup. We believe that it should be relatively straightforward to
generalize our constructions to general quasisplit G over Q (or to the setting of [Loeffler 2011]). The
resulting theory would, however, be even more notationally cumbersome, so we have decided to stick to
the simpler (but still very general) situation in this paper.

As a secondary goal, we show (Theorem 5.4.5) that when G = ResF
Q GLn/F , where F is a CM or

totally real number field, the reduced eigenvariety that we construct carries a Galois determinant (in the
language of [Chenevier 2014]) satisfying the expected compatibilities between Frobenii at unramified
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places and the eigenvalues of Hecke operators. This shows that, in these cases, the new systems of Hecke
eigenvalues that we construct in characteristic p carry arithmetic information.

Theorem B. There exists an n-dimensional continuous determinant D of GF with values in O+(X red
G )

such that
D(1− X Frobv)= Pv(X)

for unramified places v, where Pv(X) is the usual Hecke polynomial (5.3.1).

Our proof of Theorem B is an adaptation of an argument due to the first author and David Hansen
in the rigid setting, which will appear in a slightly refined form in [Hansen and Johansson ≥ 2019]. It
crucially uses Scholze’s results [2015] on Galois determinants attached to torsion classes, as well as
filtrations on distribution modules constructed in [Hansen 2015].

To end our brief discussion of the results established in this paper, we explain one interpretation of the
phrase “naturally extend” in Theorem A. Suppose for simplicity that F =Q, G(R) is compact modulo
centre, and G(Qp) may be identified with GLn(Qp). We let T0 ⊆GLn(Qp) denote the diagonal matrices
with entries in Zp (in this case T0 = T ′0). Modules of overconvergent automorphic forms for G (and some
fixed tame level, which we suppress) were constructed in [Chenevier 2004] (see also [Loeffler 2011]). If
we denote by U the Hecke operator corresponding to1

p
. . .

pn−1


then this acts compactly on the spaces of overconvergent automorphic forms, and so for each continuous
character κ : T0→ Q×p there is a characteristic power series Fκ ∈ Qp[[T ]] given by the determinant of
1− T U on the space of overconvergent automorphic forms of weight κ . The following theorem is a
consequence of our eigenvariety construction, together with Corollary 4.1.5.

Theorem C. The characteristic power series Fκ glue together to FW ∈O(W){{T }}, an entire function on
affine 1-space over W .

Suppose κ̄ : T0 → Fq((X))× is a continuous character, with q a power of p. Then we give an
interpretation of the specialization FW,κ̄ of FW at κ̄ as the characteristic power series of U acting on an
Fq((X))-Banach space of overconvergent automorphic forms of weight κ̄ .

The Fredholm hypersurface Z cut out by FW is locally quasifinite, flat and partially proper over W
and the eigenvariety X comes equipped with a finite map to Z .

1.3. Outline of the construction. The eigenvarieties that we extend are those constructed using overcon-
vergent cohomology (sometimes also referred to as overconvergent modular symbols). Overconvergent
cohomology was developed in [Stevens 1994; Ash and Stevens 2008], and the eigenvarieties were
constructed in [Hansen 2017]. Let us recall their construction in the special case of the Coleman–Mazur
eigencurve and p 6= 2. Let R be an affinoid Qp-algebra in the sense of rigid analytic geometry and
let κ : Z×p → R× be a continuous homomorphism. It is well known that κ is locally analytic, and in
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particular analytic on the cosets of 1+ psZp for all sufficiently large s. For such s, we consider the
Banach R-module Aκ [s] of functions f : pZp→ R which are analytic on the cosets of psZp. The monoid

1=

{
γ =

(
a b
c d

)
∈ M2(Zp)

∣∣∣∣ p | c, a ∈ Z×p , ad − bc 6= 0
}

acts on Aκ [s] from the right by

( f.γ )(x)= κ(a+ bx) f
(

c+ dx
a+ bx

)
.

We consider the dual space Dκ [s]=HomR,cts(Aκ [s], R), with the dual left action of1. A key point is that
the matrix t =

( 1
0

0
p

)
acts compactly on Dκ [s]; it factors through the compact injection Dκ [s] ↪→Dκ [s+1].

Fix an integer N ≥ 5 (for simplicity) which is coprime to p, and consider the congruence subgroup
0 = 01(N )∩00(p) ⊆1. We may view Dκ [s] as a local system D̃κ [s] on the complex modular curve
Y (0)= 0\H and consider the singular cohomology group

H 1(Y (0), D̃κ [s])= H 1(0,Dκ [s]),

where the right-hand side is group cohomology (in general we would consider cohomology in all degrees,
but it turns out that H i (0,Dκ [s]) = 0 if i 6= 1; see Section 6.1). It carries an action of the Hecke
operator Up. Considering these spaces for varying s and R =O(U), where U ⊆W rig

0 is an affinoid open
subset, Hansen shows how to construct an eigenvariety from the Ash–Stevens cohomology groups by
a clever adaptation of the eigenvariety construction of [Coleman 1997] (in the one-dimensional case)
and [Buzzard 2007] (in the general case).1 This eigenvariety turns out to equal the Coleman–Mazur
eigencurve. To extend this construction to W0, the key point is to define generalizations of the modules
Dκ [s] for all open affinoid subsets U ⊆W0. Let R =O(U) and let κ : Z×p → R× be the induced character.
The first thing to note is that κ is continuous but need not be locally analytic anymore, so one cannot
directly copy the definition of Dκ [s]. One could try to instead use the space Aκ of all continuous functions
pZp→ R. This carries an action of 1 by the same formula, and we may consider its dual Dκ . However,
the action of t is no longer compact, so one has to do something different.

Let f : pZp → R be a continuous function and let f (x) =
∑

n≥0 cn
( x/p

n

)
be its Mahler expansion.

Recall that, when U ⊆ W rig
0 (i.e., when R is a Qp-algebra), a theorem of Amice (see [Colmez 2010,

Théorème I.4.7]) says that f is analytic on the cosets of ps+1Zp if and only |cn|pn/ps(p−1)
→ 0 as n→∞.

Here |− | is any Qp-Banach algebra norm such that |p| = p−1. Dually, we may identify Dκ with the ring
of formal power series ∑

n≥0

dnT n,

where T n is the distribution f 7→ cn( f ) and dn is bounded as n → ∞. The analytic distribution
module Dκ [s] is defined by the weaker condition that |dn|p−n/ps(p−1) is bounded as n→∞. We may

1Note that it is not clear how to topologize the R-modules H1(0,Dκ [s]), nor that they can be made into potentially ON-able
Banach R-modules, so even in this special case we are combining Hansen’s eigenvariety construction with the Fredholm theory
of Coleman and Buzzard, rather than using the Coleman–Mazur–Buzzard eigenvariety construction.
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define norms ‖−‖r , for r ∈[1/p, 1), on Dκ by
∥∥∑

n≥0 dnT n
∥∥

r = supn |dn|rn. Let Dr
κ denote the completion

of Dκ with respect to ‖−‖r ; it may be explicitly described as the ring of power series
∑

n≥0 dnT n, where
|dn|rn

→ 0. While the Dκ [s] are not among the Dr
κ , one sees that lim

←−−r→1 D
r
κ = lim

←−−s→∞Dκ [s], so the
norms allow one to recover the space of locally analytic distributions. As an aside, we remark it is
possible to recover the Dκ [s] on the nose from the ‖−‖r , but we will not need them for the construction
of eigenvarieties.

The upshot of considering the norms ‖−‖r is that they may be constructed on Dκ for any open affinoid
U ⊆ W0, by the formula given above. It is, however, not clear a priori that the norms interact well
with the action of 1. As a monoid 1 is generated by the Iwahori subgroup I =1∩GL2(Zp) and the
element t . The element t acts via multiplication by p on pZp and it is not too hard to see that it induces
a norm-decreasing map (Dκ , ‖− ‖r )→ (Dκ , ‖− ‖r1/p) and that the inclusions D s

κ ⊆ Dr
κ for r < s are

compact. Thus t induces a compact operator on Dr
κ as desired. The action of I is more complicated to

analyze, but it turns out that I acts by isometries for sufficiently large r (depending only on κ). To see
this, it is useful to find a different description of ‖−‖r . This description, which we will outline below,
is one of the key technical innovations of this paper. It is the analogue, in our setting of norms, of the
observation in the rigid case that if κ is s-analytic then the I -action on Aκ preserves Aκ [s].

Schneider and Teitelbaum [2003] generalized the norms defined above to the spaces D(G, L) of
continuous distributions on a uniform pro-p group G [Dixon et al. 1999, Definition 4.1] valued in a
finite extension L of Qp. To recall this construction briefly, a choice of a minimal set of topological
generators of G induces an isomorphism G ∼= Zdim G

p of p-adic manifolds and using multivariable Mahler
expansions one may identify D(G, L) (as an L-Banach space) with OL [[T1, . . . , Tdim G]][1/p], and we
put (m = dim G) ∥∥∥∥∑

ni≥0

dn1,...,nm T n1
1 · · · T

nm
m

∥∥∥∥
r
= sup |dn1,...,nm |r

n1+···+nm .

Schneider and Teitelbaum showed that these norms are submultiplicative and independent of the choice
of minimal generating set. We generalize the construction of these norms to the module D(G, R) of
distributions on a uniform group G valued in a certain class of normed Zp-algebras R that we call
Banach–Tate Zp-algebras. These include the rings R =O(U) for U ⊆W0 open affinoid (for a suitable
choice of norm) and generalize the constructions in the previous paragraph, which was the special case
G = pZp. Moreover, the action of g ∈ G on D(G, R) via left or right translation is an isometry for ‖−‖r
(for any r ).

Let B0 = {γ ∈ I | c = 0} be the upper triangular Borel and let N 1 =
{( 1

x
0
1

) ∣∣ x ∈ pZp
}
∼= pZp; I has

an Iwahori decomposition I ∼= N 1× B0. Extend κ to a character of B0 by setting κ(γ )= κ(a). We have
an I -equivariant injection f 7→ F of Aκ into the space C(I, R) of continuous functions F : G→ R given
by F(n̄b)= f (n̄)κ(b), with n̄ ∈ N 1 and b ∈ B0. Here I acts on C(I, R) via left translation. The image
is the set of functions F such that F(gb) = κ(b)F(g) for all g ∈ I and b ∈ B0. Dually, we obtain an
I -equivariant surjection D(I, R)→ Dκ . If we pretend, momentarily, that I is uniform, then we may
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consider the quotient norm on Dκ induced from ‖−‖r on D(I, R) and one can show that for sufficiently
large r , this quotient norm agrees with the previously defined ‖−‖r on Dκ . This shows that I acts by
isometries on (Dκ , ‖ − ‖r ) for sufficiently large r . In reality I is not uniform, but one can adapt the
argument by working with a suitable open uniform normal subgroup of I.

This summarizes our construction of the modules Dr
κ which we use to construct the eigenvariety.

From the Dr
κ , we construct variants D<r

κ and function modules Ar
κ ⊆Aκ as well. When R is a Banach

Qp-algebra, the Aκ [s] and Dκ [s] appearing in [Hansen 2017] are equal to Ar
κ and D<r

κ , respectively, for
r = p−1/ps(p−1). It is easiest, however, to use the modules Dr

κ to construct the eigenvariety since they are
potentially orthonormalizable. Using the Dr

κ , the construction of the eigenvariety follows [loc. cit.], and
amounts largely to generalizing various well-known results from rigid geometry and nonarchimedean
functional analysis. Our arguments also generalize from the case of G = GL2/Q to the general case
considered in [loc. cit.] (as stated in Theorem A). In particular, our methods work for groups that do not
have Shimura varieties (such as G = ResF

Q GLn/F for n ≥ 3), which are intractable by the methods of
[Andreatta et al. 2018] (see also [Andreatta et al. 2016]).

Remark 1.3.1. In independent work, Daniel Gulotta [2018] used a similar definition of distribution
modules to extend Urban’s construction [2011] of equidimensional eigenvarieties for reductive groups
possessing discrete series.

1.4. Questions and future work.

Generalizations of the halo conjecture. It is interesting to consider how the halo conjecture might
generalize beyond the case of GL2/Q. For general G we raise the following questions:

Question 1.4.1. Does every irreducible component of the extended eigenvariety XG contain a point in
the locus p = 0?

Question 1.4.2. Are there irreducible components of XG contained in the locus p = 0?

In the case of G = GL2/Q it is a consequence of the halo conjecture that every irreducible component
contains a characteristic-p point. Similarly, when G is an inner form of GL2/Q associated to a definite
quaternion algebra over Q, it is a consequence of the results of [Liu et al. 2017] that every irreducible
component contains a characteristic-p point (see Theorem 6.3.4). In general, we regard an affirmative
answer to the first question as a very weak version of the halo conjecture.

If a component has a characteristic-p point, it becomes possible to study characteristic-0 points
in the component (if they exist) by passing to the characteristic-p point, or to points approximat-
ing the characteristic-p point. In the case of GL2/Q (or its inner forms), components which have
a characteristic-p point have a Zariski dense set of points corresponding to (twists of) classical modular
forms of weight 2. One argument in this spirit appears in [Pottharst and Xiao 2014], which has been used
by the authors in combination with the methods of [Liu et al. 2017] to establish new cases of the parity
conjecture for the Bloch–Kato Selmer groups associated to Hilbert modular forms. We essentially do
this by showing that there is a classical parallel weight-2 point on every irreducible component of an
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eigenvariety for a definite quaternion algebra over a totally real field in which p splits completely. See
[Johansson and Newton 2018] for more details.

Dimensions of irreducible components and functoriality. We note here that the theory of global irreducible
components for the adic spaces we work with requires some explanation (see [Conrad 1999] for the
rigid case). We have done this in a sequel to this paper [Johansson and Newton 2017], where we also
generalize some of the results of [Hansen 2017]. In particular, we show that the lower bound for the
dimension of irreducible components [loc. cit., Theorem 1.1.6] and (a variant of) the interpolation of
Langlands functoriality [loc. cit., Theorem 5.1.6] generalize to our extended eigenvarieties.

One application of the interpolation of Langlands functoriality is that in the case of GL2/Q (or its inner
forms) [Bergdall and Pollack 2016; Liu et al. 2017] show that the extended eigenvarieties contain the
usual rigid eigenvarieties as a proper subspace. Applying functoriality (cyclic base change, for example)
then shows that this is true for a larger class of groups. See [Johansson and Newton 2017] for more details.

Galois representations. In [Andreatta et al. 2018] the natural question is raised as to whether the Galois
representations attached to characteristic-p points of the extended eigencurve are trianguline (in an
appropriate sense). One can similarly ask this question for the characteristic-p Galois representations con-
structed in this paper. Note that in our level of generality, it is still only conjectural that the characteristic-0
Galois representations carried by the eigenvariety are trianguline, but this is known, for example, in the
case where G is a definite unitary group defined with respect to a CM field. It would also be interesting
to construct a “patched extended eigenvariety” in this setting, extending the construction of [Breuil et al.
2017], and we hope to study this in the near future.

1.5. An outline of the paper. Let us describe the contents of the paper. Section 2 collects what we need
about the eigenvariety machine and the notion of slope decompositions, and introduces some functional-
analytic terminology that we will need throughout the paper. Since the key point of the paper is the
construction of certain norms, we adopt terminology that puts emphasis on the norm, as opposed to
merely the underlying topology. We give a definition of a slope decomposition (a concept introduced in
[Ash and Stevens 2008]) that differs slightly from the definitions that appear in the literature. This is
necessary since the definition given in [loc. cit.] neither localizes nor glues well, and so is not suitable for
the construction of eigenvarieties. Our definition is a formalization of an informal definition that the first
author learnt from conversations with David Hansen.

In Section 3, we carry out the construction of the norms on the Dκ , following the outline above. We
first discuss the generalization of the Schneider–Teitelbaum norms to distributions on a uniform group G
valued in a certain class of normed Zp-algebras that we call Banach–Tate Zp-algebras. These include,
for example, all Banach Qp-algebras in the usual sense, as well as Tate rings R = O(U) with U an
affinoid open subset of weight space (equipped with a suitable norm). We show that, in a precise sense,
the completion of D(G, R) with respect to the family of norms (‖ − ‖r )r∈[1/p,1) only depends on the
underlying topology of R. Imposing some additional conditions on the norm (which is always possible in
practice), we then construct the modules Dr

κ , D<r
κ and Ar

κ as outlined above.
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Section 4 then uses the modules Dr
κ to construct the eigenvariety, following the strategy in [Hansen

2017]. Since the Dr
κ are potentially orthonormalizable, the construction simplifies somewhat. We end

the section by generalizing the “Tor-spectral sequence” [loc. cit, Theorem 3.3.1] to our setting, which is
a key tool for analyzing the geometry of eigenvarieties, and use it give a description of the “points” of
the eigenvariety valued in a local field. We use this description in Section 5 when we construct Galois
determinants.

In Section 6 we discuss the relationship of our work with that of [Andreatta et al. 2018; Liu et al.
2017]. We show that when G = GL2/Q, our construction, over the normalization of the weight space W0

discussed above, produces the same eigencurve as in [Andreatta et al. 2018] (this normalization is only
different from W0 if p = 2). When G is the algebraic group over Q associated with the units of a definite
quaternion algebra over Q, we show that our framework gives a conceptual proof of [Liu et al. 2017,
Theorem 3.16], which is a key ingredient in their proof of the halo conjecture. In essence, the numerical
estimate of [loc. cit., Theorem 3.16] falls out directly from our proof of compactness of the Up-operator.
Thus, it is possible to view our proof of compactness of suitable “Up-like” operators (known as controlling
operators) as a generalization of [loc. cit., Theorem 3.16], as asked for in [loc. cit., Remark 3.26(2)].
Since this numerical estimate doesn’t appear strong enough to establish the halo conjecture in more
general situations, we have restricted ourselves to proving the statement in the setting of [loc. cit.] as an
illustration of our method.

Finally, the Appendix proves various results that we need on the class of Tate rings whose associated
affinoid adic spaces appear as the local pieces of our eigenvarieties; some of these results might be of
independent interest.

2. Preliminaries

The goal of this section is to set up some functional analytic terminology and theory. Specifically, we
require the results of [Buzzard 2007, §2–3] on Fredholm determinants, Riesz theory and the construction
of spectral varieties in a level of generality that is intermediate between the settings of [Buzzard 2007;
Coleman 1997] (see also [Andreatta et al. 2018, Appendice B]). For example, we need to work over coeffi-
cient rings arising from affinoid opens in the adic space W0 discussed in our Introduction. These rings are
complete topological rings which are Tate in the language of Huber [1993, §1]. The topology on these rings
is induced by a norm, and to discuss the spectral theory of compact operators it is convenient to fix such
a norm. This gives rise to a class of normed rings which we call Banach–Tate rings (see Definition 2.1.2).

The proofs in [Buzzard 2007] go through with little to no change when working over Banach–Tate
rings, so we will be rather brief. All norms etc. will be nonarchimedean so we will ignore this adjective.
All rings will be commutative unless otherwise specified.

2.1. Fredholm determinants over Banach–Tate rings.

Definition 2.1.1. Let R be a ring. A function | − | : R→ R≥0 is called a seminorm if (for all r, s ∈ R)

(1) |0| = 0 and |1| = 1;
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(2) |r + s| ≤max(|r |, |s|);

(3) |rs| ≤ |r ||s|.

If in addition |r | = 0 only if r = 0, then we say that |− | is a norm. A ring R together with a (semi-)norm
will be called a (semi-)normed ring. A normed ring R is called a Banach ring if the metric induced by the
norm is complete.

If f : R→ S is a morphism of normed rings, we say that f is bounded if there is a constant C > 0
such that | f (r)| ≤ C |r | for all r ∈ R.

We say that two norms |− |, |− |′ on a ring R are equivalent if they induce the same topology. We say
that they are bounded-equivalent if there are constants C1,C2 > 0 such that C1|r | ≤ |r |′ ≤ C2|r | for all
r ∈ R (note that this is stronger than equivalence, see Lemma 2.1.6). Let R be a normed ring. We say
that r ∈ R is multiplicative if |rs| = |r ||s| for all s ∈ R.

Definition 2.1.2. Let R be a normed ring. We say that R is Tate if R contains a multiplicative2 unit $
such that |$ |< 1. We call such a $ a multiplicative pseudouniformizer. If R is also complete, we say
that R is a Banach–Tate ring. If R is a Tate normed ring and $ is a multiplicative pseudouniformizer,
then we define the corresponding valuation v$ on R by v$ (r)=− loga |r |, where a = |$−1

|.

We remark that it is easy to see that a unit $ in a normed ring R is multiplicative if and only if
|$−1

| = |$ |−1. A multiplicative pseudouniformizer $ is a uniform unit in the sense of [Kedlaya and
Liu 2015, Remark 2.3.9(b)].

Remark 2.1.3. Let R be a Tate normed ring, with $ a multiplicative pseudouniformizer:

(1) The underlying topological ring is a Tate ring in the language of Huber; the unit ball R0 is a ring of
definition and $ is a topologically nilpotent unit. Conversely, assume R is a Tate ring and $ ∈ R is a
topologically nilpotent unit, contained in some ring of definition R0. If a ∈ R>1, then we may define a
norm on R by |r | = inf{a−n

| r ∈$ n R0, n ∈ Z}. Equipped with this norm, R is a Tate normed ring with
unit ball R0 and $ is a multiplicative pseudouniformizer.

(2) A Banach–Tate ring A is the same thing as a Banach algebra A satisfying |Am
| 6= 1 in the language

of [Coleman 1997, §1] (and what we call a Banach ring is what Coleman calls a Banach algebra). Here
Am denotes the set of multiplicative units of A. Additionally, when R is a Banach–Tate ring and R+ is
a ring of integral elements, a choice of a multiplicative pseudouniformizer $ may be used to identify
the Gelfand spectrum M(R) of bounded multiplicative seminorms on R [Berkovich 1990, §1.2] with
the maximal compact Hausdorff quotient of the adic spectrum Spa(R, R+) [Huber 1993]; see [Kedlaya
and Liu 2015, Definition 2.4.6]. Concretely, $ gives us a natural way of viewing a rank-1 point in
Spa(R, R+) as a bounded multiplicative seminorm.

Definition 2.1.4. Let R be a normed ring. A normed R-module is an R-module M equipped with a
function ‖−‖ : M→ R≥0 such that (for all m, n ∈ M and r ∈ R)

2That is, a unit which is multiplicative in the sense we just defined, as well as being a unit for multiplication!
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(1) ‖m‖ = 0 if and only if m = 0;

(2) ‖m+ n‖ ≤max(‖m‖, ‖n‖);

(3) ‖rm‖ ≤ |r |‖m‖.

We remark that if r ∈ R is a multiplicative unit, then one sees easily that ‖rm‖ = |r |‖m‖ for all m ∈ M.
If R is a Banach ring and M is complete, we say that M is a Banach R-module.

Let R be a Tate normed ring. If M and N are normed R-modules, then a homomorphism φ :M→ N is
a continuous R-linear map. In this case, continuity of an R-linear map φ is equivalent to boundedness; i.e.,
there exists C ∈R>0 such that ‖φ(m)‖≤C‖m‖ for all m∈M. In this case we set |φ|=supm 6=0 |φ(m)||m|

−1

as usual; HomR,cts(M, N ) becomes a normed R-module with respect to this norm. The open mapping
theorem holds in this context; see, e.g., [Huber 1994, Lemma 2.4(i)].

Let R be a Noetherian Banach–Tate ring. The results of [Bosch et al. 1984, §3.7.2] hold in the context
of Banach–Tate rings with the same proofs (thanks to the open mapping theorem), so R being Noetherian
is equivalent to all ideals being closed. Moreover, the results of [loc. cit., §3.7.3] hold for Noetherian
Banach–Tate rings with the same proofs. In particular, any finitely generated R-module carries a canonical
complete topology, and any abstract R-linear map between two finitely generated R-modules is continuous
and strict with respect to the canonical topology.

Definition 2.1.5. Let R be a Banach–Tate ring and let I be a set. We define cR(I ) to be the set of
sequences (ri )i∈I in R tending to 0 (with respect to the filter of subsets of I with finite complement). It is
a Banach R-module when equipped with the norm ‖(ri )‖ = supi∈I |ri |.

We say that a Banach R-module M is (potentially) orthonormalizable (or (potentially) ON-able for
short) if there exists a set I such that M is R-linearly isometric (resp. merely R-linearly homeomorphic)
to cR(I ). A set in M corresponding to the set {ei = (δi j )j | i ∈ I } ⊆ cR(I ) under such a map is called an
(potential) ON-basis.

Finally, we say that a Banach R-module M has property (Pr) if it is a direct summand of a potentially
ON-able Banach R-module.

If M→ N is a continuous morphism of ON-able Banach R-modules, then we may define its matrix
for a fixed ON-basis on M and one on N as on [Buzzard 2007, p. 65], and the properties stated there
hold in this situation as well. A morphism φ : M → N between general Banach R-modules is said
to be of finite rank if the image of φ is contained in a finitely generated submodule of N. More
generally, φ is said to be compact (or completely continuous) if it is a limit of finite-rank operators in
HomR,cts(M, N ). If R is Noetherian, [loc. cit., Lemma 2.3, Proposition 2.4] go through with the same
proofs (using a multiplicative pseudouniformizer $ for what Buzzard calls ρ in the proof of Lemma 2.3)
and we see that if φ : M→ N is a continuous R-linear map between ON-able Banach R-modules with
matrix (ai j ) with respect to some bases (ei )i∈I of M and ( f j )j∈J of N, then φ is compact if and only if
lim j→∞ supi∈I |ai j | = 0. When M = N and (ei )i∈I = ( f j )j∈J this allows us to define the characteristic
power series, or Fredholm determinant, det(1− Tφ) of a compact φ using the recipe on [loc. cit., p. 67]
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and one sees that det(1− T u) ∈ R{{T }}, where

R{{T }} =
{∑

n

anT n
∈ R[[T ]]

∣∣∣∣ |am |Mm
→ 0 for all M ∈ R≥0

}
is the ring of entire power series in R.

Moving on, we remark that [loc. cit., Lemma 2.5, Corollary 2.6] are true in our setting with the same
proofs. In particular, the notion of the Fredholm determinant extends to compact operators on potentially
ON-able M, and may be computed using a potential ON-basis. It will be useful (at least psychologically)
for us to know that these notions remain unchanged if we replace the norm on R by an equivalent one.
First, we remark that changing the norm on R to an equivalent one doesn’t change the topology on cR(I )
(for I arbitrary). This can be seen directly, but it is also a consequence of the following lemma, which we
will need later.

Lemma 2.1.6. Let R be a complete Tate ring, and let $,π ∈ R be topologically nilpotent units. Assume
that we have two equivalent norms | − |$ and | − |π on R (inducing the intrinsic topology) such that $ is
multiplicative for | − |$ and π is multiplicative for | − |π . Then we may find constants C1,C2, s1, s2 > 0
such that

C1|a|s1
π ≤ |a|$ ≤ C2|a|s2

π

for all a ∈ R.

Proof. We thank a referee for suggesting a more efficient argument for this proof. First, note that it
suffices to find constants such that the inequalities hold for all nonzero a ∈ R, since it trivially holds
for a = 0 and all choices of constants. We will first prove the second inequality. To start, pick C ′ > 0
such that |a|π ≤ 1 implies |a|$ ≤ C ′ for all a ∈ R (possible since the norms are equivalent). Since $ is
topologically nilpotent we may find m ∈ Z≥1 such that |$m

|π < 1. It follows that |$−m
|π ≥ |$

m
|
−1
π > 1.

For any nonzero a ∈ R, set

n =
⌈

log |a|π
log |$m |−1

π

⌉
.

We have |$m
|
n
π |a|π ≤ 1. If n ≥ 0, we deduce that |$mna|π ≤ |$m

|
n
π |a|π ≤ 1. If n < 0 we similarly

deduce that

|$mna|π ≤ |$−m
|
−n
π |a|π ≤ |$

m
|
n
π |a|π ≤ 1.

Therefore we have |$mna|$ ≤ C ′. By multiplicativity of $ for | − |$ we get |a|$ ≤ C ′|$ |−mn
$ . Setting

q = |$ |−m
$ > 1, we then have

|a|$ ≤ C ′qn
≤ C ′q(log |a|π/ log |$m

|
−1
π )+1

= C ′q|a|s2
π ,

where we have put s2 = (logq |$
m
|
−1
π )
−1; note that s2 > 0. Set C2 = C ′q; we get

|a|$ ≤ C2|a|s2
π ,

with C2, s2 > 0 as desired.
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To get the first inequality, note that by symmetry we may find D, t > 0 such that |a|π ≤ D|a|t$ .
Rearranging we obtain

C1|a|s1
π ≤ |a|$ ≤ C2|a|s2

π

as desired, where C1 = D−1/t and s1 = 1/t . �

Remark 2.1.7. If R has two equivalent norms | − | and | − |′ with a common multiplicative pseudouni-
formizer $ such that |$ | = |$ |′, then the proof shows that | − | and | − |′ are bounded-equivalent. This
is also easy to see directly, and will be used freely throughout the paper.

Suppose then that (M, | − |) is a Banach (R, | − |)-module, and (M, | − |′) is a Banach (R, | − |′)-
module, where | − | and | − |′ are equivalent on both R and M. A Banach (R, | − |)-module isomorphism
(M, |−|)∼= (cR(I ), |−|) is then the same thing as a Banach (R, |−|′)-module isomorphism (M, |−|′)∼=
(cR(I ), | − |′), since (cR(I ), | − |)∼= (cR(I ), | − |′) as topological R-modules via the identity map. Thus
(M, |− |) is potentially ON-able if and only if (M, |− |′) is potentially ON-able, and (ei )i∈I is a potential
ON-basis for (M, |− |) if and only if it is a potential ON-basis for (M, |− |′). It follows, at least when R
is Noetherian (which is all we need), that an operator φ is compact on a potentially ON-able (M, | − |) if
and only if it is compact on a potentially ON-able (M, | − |′), and the Fredholm determinant is the same.

We remark that the results [Buzzard 2007, Lemma 2.7–Corollary 2.10] hold over Noetherian Banach–
Tate rings R, again with the same proofs. We can extend the notion of Fredholm determinants of compact
operators on Banach R-modules with property (Pr) as on [loc. cit., pp. 72–73], and the results there hold
over Noetherian Banach–Tate rings. One also sees that having property (Pr) is stable when changing
the norms on (R,M) to equivalent ones, as is compactness of operators and the Fredholm determinants
for compact operators are unchanged. We summarize the results of this section with the following
proposition:

Proposition 2.1.8. Let R be a Noetherian Banach–Tate ring. If M is a Banach R-module with property
(Pr) and φ : M→ M is compact then there is a well-defined Fredholm determinant

det(1− Tφ|M) ∈ R{{T }}.

If we change the norms on (R,M) to equivalent ones, then M still has property (Pr), φ is still compact,
and the Fredholm determinant is unchanged.

2.2. Riesz theory, slope factorizations and slope decompositions. We continue to let R denote a Banach–
Tate ring. If Q ∈ R[T ], we write Q∗(T ) := T deg Q Q(1/T ). We recall the following definitions:

Definition 2.2.1. A Fredholm series is a formal power series F = 1+
∑

n≥1 anT n
∈ R{{T }}. A polynomial

Q ∈ R[T ] is called multiplicative if the leading coefficient of Q is a unit (in other words, if Q∗(0) ∈ R×).
Two entire series P, Q ∈ R{{T }} are said to be relatively prime if the ideal (P, Q) is equal to R{{T }}.

The proof of [Buzzard 2007, Theorem 3.3] goes through without changes; we state it for completeness
(see also [Andreatta et al. 2018, Théoremè B.2]). Implicit in this is that [Buzzard 2007, Lemma 3.1]
holds with the same proof; we will make use of this later.
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Theorem 2.2.2. Assume that R is Noetherian. Let M be a Banach R-module with property (Pr) and
let u : M → M be a compact operator with F = det(1− T u). Assume that we have a factorization
F = QS, where S is a Fredholm series, Q ∈ R[T ] is a multiplicative polynomial, and Q and S are
relatively prime in R{{T }}. Then Ker Q∗(u) ⊆ M is finitely generated and projective and has a unique
u-stable closed complement N such that Q∗(u) is invertible on N. The idempotent projectors M →
Ker Q∗(u) and M→ N lie in the closure of R[u] ⊆ EndR,cts(M). The rank of Ker Q∗(u) is deg Q, and
det(1− T u | Ker Q∗(u))= Q. Moreover, u is invertible on Ker Q∗(u), and det(1− T u | N )= S.

Proof. Apart from the last sentence, this is (a minor reformulation of) [Buzzard 2007, Theorem 3.3]. To
see that u is invertible on Ker Q∗(u), note that

det(u | Ker Q∗(u))= Q∗(0) ∈ R×.

To see that det(1− T u | N )= S, write S′ = det(1− T u | N ) and note that

F = det(1− T u | Ker Q∗(u)) det(1− T u | N )= QS′.

Hence Q(S− S′)= 0, and Q is not a zero divisor since Q(0)= 1, so S = S′. �

The following lemma may be extracted from the proof of [loc. cit., Lemma 5.6]; we give the short
proof for completeness.

Lemma 2.2.3. Assume that R is Noetherian. Let M and M ′ be two Banach R-modules with property
(Pr) and assume that we have a continuous R-linear map v : M → M ′ and a compact R-linear map
i : M ′→ M. Set u = iv and u′ = vi . Then u and u′ are both compact and det(1− T u)= det(1− T u′);
call this entire power series F. If F = QS is a factorization as in Theorem 2.2.2, then i restricts to an
isomorphism between Ker Q∗(u′) and Ker Q∗(u).

Proof. Compactness of u and u′ and the equality of their Fredholm determinants follows from [loc. cit.,
Proposition 2.7]. Now assume we have a factorization F = QS. If x ′ ∈ Ker Q∗(u′), then Q∗(u)(i(x ′))=
i(Q∗(u′)(x ′)) = 0 so i(Ker Q∗(u′)) ⊆ Ker Q∗(u). Furthermore, if i(x ′) = 0 then u′(x ′) = 0, so
Q∗(u′)(x ′) = Q∗(0).x ′ = 0 and hence x ′ = 0, so i is injective on Ker Q∗(u′). For surjectivity onto
Ker Q∗(u), let x ∈ Ker Q∗(u) and choose y ∈ Ker Q∗(u) with u(y) = x (possible by Theorem 2.2.2).
Then one checks, similarly to the computation above, that v(y)∈Ker Q∗(u′), and hence i(v(y))=u(y)= x ,
which gives us surjectivity and finishes the proof. �

Next, we let K be a field, complete with respect to a nontrivial nonarchimedean absolute value. We
briefly define the Newton polygon of a power series F ∈ K [[T ]], following [Ash and Stevens 2008, §4.2]
(in this special case). A subset N ⊆ R2 is said to be sup-convex if it is convex and, if a point (a, b) is
in N, then N contains the whole half-line {(a, b+ t) | t ≥ 0} above it. Given an arbitrary subset S ⊆ R2,
there is a unique smallest sup-convex set containing S, which we will denote by H+(S). If I ⊆ Z≥0 and
ω : I → R is a function, then any set of the form H+({(n, ω(n)) | n ∈ I }) is called a Newton polygon. We
refer to [loc. cit., §4.2] for the notions of vertices, edges and slopes of a Newton polygon.
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Definition 2.2.4. Let F =
∑

n≥0 anT n
∈ K [[T ]]. Fix a pseudouniformizer $ ∈ K and consider the

corresponding valuation v$ . The Newton polygon of F is the Newton polygon H+(S(F)), where

S(F)= {(n, v$ (an)) | n ∈ IF } ⊆ R2,

with IF = {n ∈ Z≥0 | an 6= 0}.

Let h ∈ R. We say that a power series F ∈ K [[T ]] has slope ≤ h (or > h) if all slopes of its Newton
polygon are ≤ h (or> h). Now consider a Banach–Tate ring R with a multiplicative pseudouniformizer$ .
We say that F ∈ R[[T ]] has slope ≤ h (or > h) if, for any x in the Gelfand spectrum M(R) with residue
field Kx , the specialization Fx ∈ Kx [[T ]] has slope ≤ h (or > h).

Definition 2.2.5. Let R be a Banach–Tate ring with a fixed multiplicative pseudouniformizer $ . Let
F ∈ R{{T }} be a Fredholm series and let h ∈R. A slope ≤ h-factorization of F is a factorization F = QS
in R{{T }}, where Q is a multiplicative polynomial of slope ≤ h and S is a Fredholm series of slope > h.

Remark 2.2.6. If R is a complete Tate ring with a fixed topologically nilpotent unit $ , then the notions
of slope factorizations and slope ≤ h or > h are independent of the choice of a norm on R with $
multiplicative. Moreover, one can define all these notions directly without choosing a norm on R.

Recall that an element a ∈ R is called quasinilpotent if its spectral seminorm3
|a|sp is 0. This is

equivalent to |a|x = 0 for all x ∈M(R) by [Berkovich 1990, Corollary 1.3.2]. The set of quasinilpotent
elements forms an ideal of R, which is the kernel of the Gelfand transform R→

∏
x∈M(R) Kx . We note

that it is easy to see that a quasinilpotent element is topologically nilpotent. For the kinds of rings R
which appear in practice in this paper, the quasinilpotent elements are just the nilpotent elements (this
follows from Theorem A.7), and the proof of the following lemma is simpler. However, we will avoid
imposing additional technical assumptions at this stage.

Lemma 2.2.7. Let R be a Banach–Tate ring with a fixed multiplicative pseudouniformizer $ and let
h ∈Q≥0. Let S be a Fredholm series of slope > h and Q a multiplicative polynomial of slope ≤ h. Then
Q and S are relatively prime.

Proof. We will use Coleman’s resultant Res, for which we refer to [Coleman 1997, §A3] (the reader
may also benefit from the discussion on [Buzzard 2007, p. 74]). By [Coleman 1997, Lemma A3.7]
it suffices to prove that Res(Q, S) is a unit in R{{T }}. Pick x ∈M(R) and specialize to Kx . Then
Res(Q, S)x = Res(Qx , Sx) and since Qx has slope ≤ h and Sx has slope > h we see that Res(Q, S)x ∈
Kx{{T }}× = K×x . By [Berkovich 1990, Corollary 1.2.4] we see that Res(Q, S) = a0+ T .F(T ), where
a0 ∈ R× and F(T ) ∈ R{{T }} has quasinilpotent coefficients. Multiplying by a−1

0 we see that it suffices to
prove that if F ∈ R{{T }} has quasinilpotent coefficients, then 1− T .F(T ) ∈ R{{T }}×.

To prove this, we use an argument suggested to us by a referee, which is more efficient than our original
argument. First note that the formal inverse of 1− T .F(T ) is G(T )=

∑
n≥0 T n.F(T )n, so we need to

show that this is entire. Setting H(T ) = T .F(T ), it suffices to show that if H(T ) is any entire power

3The definition of the spectral seminorm is recalled in the Appendix.
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series with H(0)= 0 and with quasinilpotent coefficients, then
∑

n≥0 H(T )n converges and is entire. In
fact, it suffices to prove that

∑
n≥0 H(T )n ∈ R〈T 〉, since if we have proved this we can apply this to

H($−N T ) for all N (which still has quasinilpotent coefficients) to deduce that
∑

n≥0 H(T )n is entire.
So, to show this, it suffices to show that H(T ) is topologically nilpotent in R〈T 〉, where we equip R〈T 〉

with the Gauss norm coming from the norm on R. Since the coefficients of H tend to 0, we may write
H(T )=

∑N
n=1 hnT n

+
∑

n>N hnT n, with |hn|< 1 for n > N. Then the tail
∑

n>N hnT n is topologically
nilpotent (it has Gauss norm < 1) and the terms hnT n are topologically nilpotent for all n since hn is
quasinilpotent (and hence topologically nilpotent). So H(T ) is a finite sum of topologically nilpotent
elements, and hence topologically nilpotent. �

Continue to let R be a Banach–Tate ring with a fixed multiplicative pseudouniformizer $ . The
following is a minor variation of [Ash and Stevens 2008, Definition 4.6.1].

Definition 2.2.8. Let M be an (abstract) R-module, let u : M→ M be an R-linear map and let h ∈Q.
An element m ∈ M is said to have slope ≤ h with respect to u if there is a multiplicative polynomial
Q ∈ R[T ] such that

(1) Q∗(u).m = 0;

(2) the slope of Q is ≤ h.

We let M≤h ⊆ M denote the subset of elements of slope ≤ h.

Lemma 2.2.9 [Ash and Stevens 2008, Proposition 4.6.2]. M≤h is an R-submodule of M, which is stable
under u.

Proof. It is clear from the definition that M≤h is closed under multiplication, and stable under u. It
therefore suffices to prove that it is closed under addition, for which it suffices to prove that if Q1 and Q2

are two multiplicative polynomials of slope ≤ h, then so is Q1 Q2. To see this it suffices to specialize
to the case when R is a field and the norm is an absolute value. The assertion is then well known (for
example, the argument in the proof of [loc. cit., Proposition 4.6.2] carries over without change). �

Definition 2.2.10 [Ash and Stevens 2008, Definition 4.6.3]. Let M be an R-module with an R-linear
map u : M → M and let h ∈ Q. A slope ≤ h-decomposition of M is an R[u]-module decomposition
M = Mh ⊕Mh such that

(1) Mh is a finitely generated R-submodule of M≤h ;

(2) for every multiplicative polynomial Q ∈ R[T ] of slope ≤ h, the map Q∗(u) : Mh
→ Mh is an

isomorphism of R-modules.

Proposition 2.2.11. We keep the above notation. If M has a slope ≤ h-decomposition Mh ⊕ Mh, then
it is unique, and Mh = M≤h (in particular the latter is finitely generated over R). We will from now on
write M>h for the unique complement. Moreover, slope decompositions satisfy the following functorial
properties:
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(1) Let f :M→ N be a morphism of R[u]-modules with slope≤h-decompositions. Then f (M≤h)⊆ N≤h

and f (M>h)⊆ N>h . Moreover, both Ker( f ) and Im( f ) have slope ≤ h-decompositions.

(2) Let C • be a complex of R[u]-modules and suppose that each C i has a slope≤ h-decomposition. Then
every H i (C •) has a slope ≤ h-decomposition, explicitly given by H i (C •)= H i (C •

≤h)⊕ H i (C •>h).

Proof. The proof is identical to that of [Ash and Stevens 2008, Lemma 4.6.4]: one equates slope ≤ h-
decompositions with S-decompositions (as defined and studied in [loc. cit., §4.1]) for the set S ⊆ R[u] of
all Q∗(u), where Q is a multiplicative polynomial of slope ≤ h. The properties then stated follow from
general facts about S-decompositions, recorded in [loc. cit., Proposition 4.1.2]. �

Definition 2.2.12. Let R be a Banach–Tate ring with a fixed multiplicative pseudouniformizer $ and let
M be a Banach R-module. Assume that M has a slope≤ h-decomposition M =M≤h⊕M>h . If f : R→ S
is a bounded morphism of Banach–Tate rings such that f ($) is a multiplicative pseudouniformizer in S,
we say that the slope ≤ h-decomposition is functorial for R→ S if M⊗̂R S = (M≤h⊗R S)⊕ (M>h⊗̂R S)
is a slope ≤ h-decomposition of M⊗̂R S (using f ($) to define slopes for S). We say that the slope ≤ h-
decomposition is functorial if it is functorial for all such bounded homomorphisms of Banach–Tate rings
out of R.

Theorem 2.2.13. Let R be a Noetherian Banach–Tate ring with a fixed multiplicative pseudouni-
formizer $ , and let M be a Banach R-module with property (Pr). Let u be a compact R-linear operator
on M, with Fredholm determinant F(T ) = det(1− T u). If M has a slope ≤ h-decomposition which is
functorial with respect to R→ Kx for all x ∈M(R), then F has a slope ≤ h-factorization. Conversely, if
F has a slope ≤ h-factorization, then M has a functorial slope ≤ h-decomposition.

Proof. Assume that M has a slope ≤ h-decomposition M = M≤h ⊕M>h which is functorial with respect
to R→ Kx for all x ∈M(R). Then both of these spaces satisfy property (Pr) and are u-stable, and hence
we have

F = det(1− T u | M≤h) det(1− T u | M>h).

We claim that this is a slope ≤ h-factorization. Put Q = det(1− T u | M≤h), S = det(1− T u | M>h).
Pick x ∈M(R) with residue field Kx and specialize. We have Qx = det(1− T u | M≤h ⊗R Kx) and
Sx = det(1− T u | M>h⊗̂R Kx). By assumption M⊗̂R Kx = (M≤h⊗R Kx)⊕ (M>h⊗̂R Kx) is a slope ≤ h-
decomposition, so Qx has slopes ≤ h and Sx has slopes > h and so F = QS is a slope ≤ h-factorization.

Conversely, assume that F has a slope ≤ h-factorization F = QS. By Lemma 2.2.7 Q and S are
relatively prime, so we may apply Theorem 2.2.2 to get a u-stable decomposition M = Ker Q∗(u)⊕ N.
It is easy to see that this decomposition is functorial, as is a slope ≤ h-factorization, so it suffices to
prove that this decomposition is a slope ≤ h-decomposition. First, since Q has slope ≤ h we see that
Ker Q∗(u)⊆ M≤h (and we know it’s finitely generated). It remains to show that for every multiplicative
polynomial P of slope ≤ h, P∗(u) is invertible on N. By Lemma 2.2.7 P and S are relatively prime.
Since S = det(1− T u | N ) (by Theorem 2.2.2), it follows from [Buzzard 2007, Lemma 3.1] that P∗ is
invertible on N, as desired. �
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Corollary 2.2.14. With notation and assumptions as in the theorem, a slope ≤ h-decomposition of M is
functorial if and only if it is functorial for the natural map R→ Kx for all x ∈M(R).

2.3. Fredholm hypersurfaces. In this section we discuss the notion of Fredholm hypersurfaces and relate
this to slope factorizations and decompositions. We will use Huber’s adic spaces as our framework for
nonarchimedean geometry, and we will use standard notions and notation from this theory freely, referring
to the basic references [Huber 1994; 1996].

Any Tate ring R with a Noetherian ring of definition has an associated affinoid adic space Spa(R, R+),
for any ring of integral elements R+, by [Huber 1994, Theorem 2.5]. Fix an R+ and consider X =
Spa(R, R+). We will frequently be interested in affine 1-space over X. As an adic space over (Z,Z), we
have A1

= Spa(Z[T ],Z); it represents the functor X 7→O(X) on the category of adic spaces (we note that
the functor X 7→ O+(X) is represented by the “closed unit disc” Spa(Z[T ],Z[T ])). The fibre product
A1

X := X ×Spa(Z,Z) A1 exists, but it is no longer affinoid. Indeed, if we pick a topologically nilpotent unit
$ ∈ R, it can be checked that the fibre product is given by

A1
X =

⋃
m≥0

Spa(R〈$m T 〉, R+〈$m T 〉)

with respect to the transition maps coming from the natural inclusions. The ring of global functions on
A1

X is the ring of entire power series R{{T }}. Pick a topologically nilpotent unit $ ∈ R. If h ∈Q then,
writing h = m/n with m ∈ Z and n ∈ Z≥1, we define an affinoid subset BX,h ⊆ A1

X by

BX,h = {|T n
| ≤ |$−m

|} ⊆ A1
X .

We have A1
X =

⋃
h∈Q BX,h .

Let R be a complete Tate ring with a Noetherian ring of definition and let F ∈ R{{T }} be a Fredholm
series. Put X = Spa(R, R◦). The closed subvariety Z(F) := {F = 0} ⊆ A1

X is called the Fredholm
hypersurface of F, or sometimes the spectral variety of F. It carries a projection map Z(F)→ X, which
is flat, locally quasifinite and partially proper by [Andreatta et al. 2018, Théoremè B.1].

Definition 2.3.1. Let R be a complete Tate ring with a Noetherian ring of definition, and pick a topologi-
cally nilpotent unit $ ∈ R. Let F be a Fredholm series with Fredholm hypersurface Z = Z(F)⊆ A1

X ,
where X = Spa(R, R◦). Let h ∈Q≥0 and let U ⊆ X be an open affinoid in X ; put ZU,h = Z ∩BU,h ⊆A1

X

(this is an open affinoid subset of Z ). We say that the pair (U, h) is a slope datum for (X, F) if ZU,h→U
is finite of constant degree (if the pair (X, F) is clear form the context, we occasionally just say that
(U, h) is a slope datum).

Theorem 2.3.2. Let R be a complete Tate ring with a Noetherian ring of definition, and pick a topologi-
cally nilpotent unit $ ∈ R. Let F be a Fredholm series over R with spectral variety Z = Z(F) ⊆ A1

X ,
where X = Spa(R, R◦). Let U ⊆ X be an open affinoid and let h ∈Q≥0. Then:

(1) (U, h) is a slope datum for (X, F) if and only if F has a slope ≤ h-factorization in OX (U ){{T }}.

(2) The collection of all ZU,h for all slope data (U, h) is an open cover of Z.
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Proof. This follows almost directly from [Andreatta et al. 2018, Théoremè B.1, Corollaire B.1]. The
second assertion is shown by tracing through the proof of [loc. cit., Lemme B.1, Théoremè B.1]; adapting
the proof of [loc. cit., Théoremè B.1] slightly one sees that one may take the sets to be of the form ZU,h

(the degree is locally constant on U, so constancy of the degree can be arranged). For the first assertion,
the statement that if (U, h) is a slope datum then F has a slope ≤ h-factorization in OX (U ){{T }} is
[loc. cit., Corollaire B.1]. Conversely, if F = QS is a slope ≤ h-factorization in OX (U ){{T }}, then S is a
unit in O(BU,h). Therefore O(ZU,h)=O(BU,h)/(F)=O(BU,h)/(Q) is finite of constant degree equal
to deg Q over U, and hence ZU,h→U is finite of constant degree. �

More generally, let X be an analytic adic space locally of the form Spa(R, R◦) for R a complete
Tate ring with a Noetherian ring of definition, and let F be a Fredholm series over X with Fredholm
hypersurface Z . If U ⊆ X is an open affinoid and h ∈Q≥0, we say that (U, h) is a slope datum for (X, F)
if O(U ) is Tate and there is a topologically nilpotent unit $ ∈O(U ) such that ZU,h , defined using this
choice of $ , is finite flat of constant degree over U.

When constructing eigenvarieties, it will be useful to consider a slightly more general notion. Let X be
an analytic adic space as above and let F be a Fredholm series over X, with associated hypersurface Z .
Write π : Z→ X for the projection. We let Cov(Z) denote the set of all open affinoid V ⊆ Z such that
π(V )⊆ X is open affinoid, O(π(V )) is Tate, and the map π |V : V → π(V ) is finite of constant degree.
Then we have the following theorem.

Theorem 2.3.3. Keep the notation and assumptions of the paragraph above. Then Cov(Z) is an open
cover of Z. If V ∈ Cov(Z), then there exists a factorization F = QS in O(π(V )){{T }}, where Q is a
multiplicative polynomial of degree degπ |V , S is a Fredholm series, Q and S are relatively prime, and
we have

O(V )=O(π(V ))[T ]/(Q) and O+(V )= (O(π(V ))[T ]/(Q))◦.

Conversely, if such a factorization of F exists in O(U ){{T }}, where U ⊆ X is open affinoid and O(U ) is
Tate, then V = Spa

(
O(U )[T ]/(Q), (O(U )[T ]/(Q))◦

)
is naturally an element of Cov(Z).

Proof. The assertions about rings of integral elements follow immediately from the rest by Lemma A.3.
The first two parts are [Andreatta et al. 2018, Théoremè B.1, Corollaire B.1]. Note that if π : V →U is a
finite flat morphism, with U ⊂ X and V ⊂ Z open affinoid, then π is open by [Huber 1996, Lemma 1.7.9].
For the last part, it is clear that V →U is finite and surjective of constant degree deg Q, so it remains to
see that V is naturally an open subset of Z . For this we may work locally over U. Set B =O(U ). For
each n we have compatible morphisms

B[T ]/(Q)→ B〈$ nT 〉/(Q)← B〈$ nT 〉/(F).

The second map is the projection onto the first factor in the decomposition

B〈$ nT 〉/(F)∼= B〈$ nT 〉/(Q)× B〈$ nT 〉/(S)
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which results from the fact that Q and S are relatively prime. Thus {Q = 0} ⊆ Z is open and closed
in Z . Moreover, when n is sufficiently large, we claim that the first map is an isomorphism. To
see this, consider the quotient map p : B[T ] → B[T ]/(Q) and equip the target with a submultiplica-
tive norm that induces the canonical topology. For large enough n we will have |p($ nT )| ≤ 1 and
hence p(B0[$

nT ]) ⊆ (B[T ]/(Q))0 (here we are using −0 to denote unit balls), so p is continuous
for the topology on B[T ] coming from the inclusion B[T ] ⊆ B〈$ nT 〉, and we may complete to
obtain a morphism B〈$ nT 〉 → B[T ]/(Q) with kernel Q B〈$ nT 〉. This gives an inverse to the map
B[T ]/(Q)→ B〈$ nT 〉/(Q), proving the claim. Thus we may identify V with {Q = 0} ⊆ Z , which
shows that V is naturally an open subset of Z . �

3. Relative distribution algebras

3.1. Relative distribution algebras and norms. A p-adic analytic group will in this paper always mean
a Qp-analytic group. Let R be a Banach–Tate ring. We denote the unit ball of R by R0. If there exists a
norm-decreasing homomorphism Zp→ R, where we equip Zp with the usual norm |x |p = p−ordp(x), we
call such an R (together with the map Zp→ R) a Banach–Tate Zp-algebra. The goal of this section is
to extend some of the constructions of [Schneider and Teitelbaum 2003, §4] to the case of continuous
functions and distributions valued in such R. In particular, we construct R-valued analogues of (locally)
analytic distribution algebras for compact p-adic analytic groups. We begin with a lemma on the existence
of Banach–Tate Zp-algebra norms.

Lemma 3.1.1. Let R be a Noetherian Banach–Tate ring with norm | − | and a multiplicative pseudouni-
formizer $ . Assume that there exists a continuous homomorphism Zp→ R (necessarily unique). Then
there exists a Banach-Tate Zp-algebra norm | − |′ on R which is bounded-equivalent to | − |s for some
s > 0, and such that $ is a multiplicative pseudouniformizer for | − |′.

Proof. Note first that a norm |−|′ on R is a Banach–Tate Zp-algebra norm if and only if |p|′ ≤ p−1, so we
need to check this. By continuity of Zp→ R we have p ∈ R◦◦. Choose m ∈ Z≥1 such that |p|sp < |$ |

2/m

and consider the finite free R-algebra

S = R[$ 1/m
] = R[X ]/(Xm

−$).

We equip S with its canonical topology as a finite R-module; then the induced subspace topology on R⊆ S
agrees with the original topology on S. Thus we have p,$ 1/m

∈ S◦◦. Now equip S with a submultiplicative
R-Banach module norm | − |S that induces the canonical topology. Note that $ is a multiplicative
pseudouniformizer for | − |S with |$ |S = |$ |, and that (R, | − |)→ (S, | − |S) is norm-decreasing. We
then have |p$−1/m

|S,sp < |$ |
1/m < 1 by construction, so p$−1/m is topologically nilpotent in S. We

can then choose a ring of definition S2 of S containing $ 1/m and p$−1/m and consider the norm

|s|2 = inf{|$ |k/m
| s ∈$ k/m S2}.

Since p ∈$ 1/m S2 we have |p|2 < 1, and we may hence find s > 0 such that |p|s2 ≤ p−1. Restricting the
norm | − |′ := |− |s2 to R ⊆ S then gives the desired norm. �
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Definition 3.1.2. Let X be a compact topological space and let A be a topological Zp-algebra:

(1) We let C(X, A) denote the A-module of all continuous A-valued functions on X , and let Csm(X, A)
denote the subspace of all locally constant functions.

(2) We put D(X, A)= HomA,cts(C(X, A), A).

When A is a normed ring, we may topologize C(X, A) and Csm(X, A) using the supremum norm, and
we may give D(X, A) the corresponding dual/operator norm. If A is complete, this makes C(X, A) into
a complete A-module. When the topology on X is profinite, Csm(X, A) is dense in C(X, A) and, if R
is a Banach–Tate Zp-algebra, the natural map C(X,Zp)⊗̂Zp R→ C(X, R) is a topological isomorphism.
Similarly C(X,Zp)⊗̂Zp R0 ∼= C(X, R0), where R0 is the unit ball of R.

Continue to let X be a profinite set and R a Banach–Tate Zp-algebra with unit ball R0 and a multiplicative
pseudouniformizer $ . Note that D(X, R0)= HomR0(C(X, R0), R0) (i.e., continuity with respect to the
$ -adic topology is automatic) and that this is the unit ball in D(X, R). We may equip D(X, R0) with the
weak topology coming from the family of maps D(X, R0)→ R0 given by µ 7→ µ( f ) for f ∈ C(X, R0)

and the $ -adic topology on R0. We will refer to this topology as the weak-star topology on D(X, R0).
When X = G is a profinite group, D(G, R) carries a convolution product

(µ ∗ ν)( f )= µ(g 7→ ν(h 7→ f (gh))).

One checks directly that δg ∗ δh = δgh for all g, h ∈ G, where δg denotes the Dirac distribution at g. This
product preserves D(G, R0). We sum up some basic properties of the weak-star topology.

Lemma 3.1.3. If X is finite (hence discrete) the weak-star topology on D(X, R0) coincides with the
$ -adic topology. In general, if X = lim

←−−n Xn is an inverse limit of finite sets Xn , we have a natural
isomorphism D(X, R0)∼= lim

←−−n D(Xn, R0) which identifies the weak-star topology on the source with the
inverse limit topology, where D(Xn, R0) is equipped with the$ -adic topology. When X =G is a profinite
group this is a ring homomorphism, and multiplication on D(G, R0) is jointly continuous with respect to
the weak-star topology.

Proof. The first assertion is straightforward. For the second, note that the formation of D(X, R0) is
covariantly functorial in X, so the maps X → Xn induce a natural map D(X, R0)→ lim

←−−n D(Xn, R0)

which is continuous by the first assertion when we equip the source and the target with the topologies in
the statement of the lemma. Moreover it is easily checked to be a ring homomorphism when X = G is a
profinite group. Unraveling, we see that this morphism is the natural morphism

HomR0(C(X, R0), R0)→ HomR0(Csm(X, R0), R0)

induced by the inclusion Csm(X, R0)⊆ C(X, R0). Since this subspace is dense for the $ -adic topology,
we see that the map is an isomorphism. To check that it also a homeomorphism, note first that by the
same density one may define the weak-star topology using only locally constant functions. It is then
straightforward to check that all basic opens from locally constant functions come by pullback from basic
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opens on the D(Xn, R0), which implies that the map is a homeomorphism. Finally, multiplication is
jointly continuous for the $ -adic topology on D(Gn, R0) for all n, and hence jointly continuous on the
inverse limit. This implies the last assertion. �

Let X = lim
←−−n Xn be a countable inverse limit of finite sets, viewed as a profinite set. We define

R0[[X ]] := lim
←−−n R0[Xn] and R[[X ]] := (lim

←−−n R0[Xn])[1/$ ]; these are R0- and R-modules, respectively,
and independent of the choice of the Xn’s (here, if B is a ring and S is a finite set, B[S] denotes the
free B-module generated by the set S). If the Xn are groups (so X is a profinite group) then they carry
natural algebra structures. We may topologize R0[[X ]] in two ways; either giving it the natural inverse
limit topology or the $ -adic topology. We give R[[X ]] the topology induced from the $ -adic topology
on R0[[X ]], which is compatible with viewing R[[X ]] as an R-Banach module with unit ball R0[[X ]].

Proposition 3.1.4. Let X = lim
←−−n Xn be a profinite set. There is a natural R-Banach module isomorphism

R[[X ]] → D(X, R) sending [x] to δx . It restricts to an R0-module isomorphism R0[[X ]] → D(X, R0)

which identifies the inverse limit topology on the source with the weak-star topology on the target. If
X = G is a profinite group, then these maps are ring homomorphisms.

Proof. Define compatible maps R0[Xn] → HomR0(C(Xn, R0), R0) by [x] 7→ δx ; one checks directly that
this is an isomorphism of topological R0-modules, and that it is a ring homomorphism when X is a
profinite group. Taking inverse limits we get

R0[[X ]] −→∼ HomR0(Csm(X, R0), R0)= D(X, R0).

Lemma 3.1.3 shows that this identifies the inverse limit topology on the source with the weak-star
topology on the target. Inverting $ we get the desired isomorphism R[[X ]] → D(X, R), which is clearly
a Banach module isomorphism since it identifies the respective unit balls R0[[X ]] and D(X, R0). �

Recall the notion of a uniform pro-p group from [Dixon et al. 1999, Definition 4.1]. When G is a
uniform pro-p group, Zp[[G]] may be identified with a ring of noncommutative formal power series{∑

α

dαbα
∣∣∣∣ dα ∈ Zp

}
,

where d is the dimension of G, α = (α1, . . . , αd) ∈ Zd
≥0 is a multi-index, g1, . . . , gd is a minimal set

of topological generators of G, bi = [gi ] − 1 and bα := bα1
1 · · · b

αd
d . Our next goal is to show that the

analogous description holds for R0[[G]], with the same commutation relations between the bα.

Proposition 3.1.5. Let G = Zd
p. For α ∈ Zd

≥0, let Eα : Zd
p→ Zp denote the function

Eα(x1, . . . , xd)=

(
x1

α1

)
· · ·

(
xd

αd

)
.

Then the Amice transform

µ 7→
∑
α

µ(Eα)T
α1

1 · · · T
αd

d
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defines an algebra isomorphism D(Zd
p, R0)−→

∼ R0[[T1, . . . , Td ]] which identifies the weak-star topology
on the source with the product topology R0[[T1, . . . , Td ]] =

∏
α R0.T

α1
1 · · · T

αd
d on the target.

Proof. Once again this is a simple extension of a well-known result, so we content ourselves with a sketch.
The key observation is that C(Zd

p, R0)∼= C(Zd
p,Zp)⊗̂Zp R0. Then it is clear that

D(Zd
p, R0)−→

∼
∏
α

R0

via µ 7→ (µ(Eα))α and it is straightforward to check that this identifies the weak topology on the source
with the product topology on the target (it is the statement that the Eα suffice to define the weak-star
topology). To finish, we remark that the computation that the algebra structures match up is identical to
the well-known one in the case R0 = Zp. �

Note that the topology on R0[[T1, . . . , Td ]] described in the proposition is equal to the ($, T1, . . . , Td)-
adic topology. Let us return to the case of a general uniform pro-p group G. The ring Zp[[G]] is described
by formal power series as above. Following [Schneider and Teitelbaum 2003], let us define elements
cβγ,α ∈ Zp by

bβbγ =
∑
α

cβγ,αbα. (3.1.1)

We remark that, for fixed α, cβγ,α→ 0 as |β| + |γ | → +∞ (here and elsewhere, for a multi-index α we
define |α| = α1+ · · ·+αd ). This follows from [loc. cit., Lemma 4.1(ii)].

Proposition 3.1.6. Let G be a uniform pro-p group and use the notation above. Then R0[[G]] may be
identified with the ring of formal power series{∑

α

dαbα
∣∣∣∣ dα ∈ R0

}
with multiplication given by(∑

β

dβbβ
)(∑

γ

eγ bγ
)
=

∑
α

(∑
β,γ

dβeγ cβγ,α

)
bα.

Proof. The choice g1, . . . , gd of a minimal (ordered) set of topological generators identifies G, as p-adic
analytic manifold, with Zd

p. Thus we get a topological isomorphism R0[[G]] ∼= R0[[Z
d
p]] of R0-modules

(for both the weak-star and the $ -adic topology). Proposition 3.1.5 then implies the description in
terms of power series. To see that the multiplication works out as described, note that the natural map
Zp[[G]]→ R0[[G]] is an algebra homomorphism; hence the above formula is true for products of monomials.
We can then deduce the formula in general by noting that R0 is central in R0[[G]] and that the subring
generated by R0 and the image of Zp[[G]] (for which the formula holds) is dense in R0[[G]] with respect
to the weak-star topology, and that multiplication is jointly continuous for the weak-star topology. �

Inverting $ we get an explicit description of R[[G]] when G is uniform. Using this we may now
define a family of norms on R[[G]] following [Schneider and Teitelbaum 2003, §4]. We continue to fix a
minimal ordered set of topological generators g1, . . . , gd .
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Definition 3.1.7. Let r ∈ [1/p, 1). We define the r -norm ‖−‖r on R[[G]] by the formula∥∥∥∥∑
α

dαbα
∥∥∥∥

r
= sup

α

|dα|r |α|.

Recall that we have fixed a choice of norm | − | on R such that |z| ≤ |z|p for all z ∈ Zp. This will
be convenient for some calculations. Note that the definition of ‖− ‖r a priori depends on the choice
of generators. We remark that for all r ∈ [1/p, 1), ‖ − ‖r induces the weak-star topology on R0[[G]]
by Proposition 3.1.5 and a straightforward calculation. It follows that any homomorphism G→ H of
uniform groups induces a continuous homomorphism R0[[G]] → R0[[H ]] when the source and target are
equipped with (any) r -norms, since this is true for the weak-star topology using the characterization in
Lemma 3.1.3.

Proposition 3.1.8. The norm ‖− ‖r is independent of the choice of minimal ordered set of topological
generators for G, and is submultiplicative. Finally, if we replace the norm | − | on R by a bounded-
equivalent Zp-algebra norm | − |′, then the resulting norm ‖−‖′r is bounded-equivalent to ‖−‖r .

Proof. For the proof of independence, we follow the discussion after the proof of [Schneider and
Teitelbaum 2003, Theorem 4.10]. Let g′1, . . . , g′d be a different choice and set b′i = [g

′

i ] − 1 ∈ Zp[[G]]
etc., and let ‖−‖′r denote the r -norm with respect to this choice. We may write

b′β =
∑
α

cβ,αbα

in Zp[[G]], and one has |cβ,α|pr |α| ≤ r |β| (see [loc. cit.]). Transporting this to R[[G]] we have the same
identity, and the inequality |cβ,α|r |α| ≤ r |β| (since |cβ,α| ≤ |cβ,α|p). Expanding out a general element
µ ∈ R[[G]] we then have

µ=
∑
β

d ′βb′β =
∑
α

(∑
β

d ′βcβ,α

)
bα.

We then have

‖µ‖r ≤ sup
β,α

|d ′β ||cβ,α|r
|α|
≤ sup

β

|d ′β |r
|β|
= ‖µ‖′r .

By symmetry, we must have equality.
To prove submultiplicativity, we follow the proof of [Schneider and Teitelbaum 2003, Proposition 4.2].

Recall the cβγ,α from (3.1.1). By [loc. cit., Lemma 4.1(ii)] we have |cβγ,α|r |α| ≤ |cβγ,α|pr |α| ≤ r |β|+|γ |

for all α, β, γ . Let µ=
∑

β dβbβ and ν =
∑

γ eγ bγ be elements of R[[G]]; then we have

µ ∗ ν =
∑
α

(∑
β,γ

dβeγ cβγ,α

)
bα

and we can calculate

‖µν‖r = sup
α

∣∣∣∣∑
β,γ

dβeγ cβγ,α

∣∣∣∣r |α| ≤ sup
β,γ

|dβ ||eγ |r |β|+|γ | = ‖µ‖r‖ν‖r ,
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where we use submultiplicativity and |cβγ,α|r |α| ≤ r |β|+|γ | to obtain the middle inequality. This finishes
the proof of submultiplicativity.

Finally, suppose we have C1|x | ≤ |x |′ ≤ C2|x | for all x ∈ R. Then C1|dα|r |α| ≤ |dα|′r |α| ≤ C2|dα|r |α|

for all α which implies

C1

∥∥∥∥∑
α

dαbα
∥∥∥∥

r
≤

∥∥∥∥∑
α

dαbα
∥∥∥∥′

r
≤ C2

∥∥∥∥∑
α

dαbα
∥∥∥∥

r

as desired. �

Before moving on to general compact p-adic analytic G, we record a few properties of the r -norms.

Lemma 3.1.9. Let r ∈ [1/p, 1). If g ∈ G, then ‖[g]‖r = 1 and ‖[g]µ‖r = ‖µ[g]‖r = ‖µ‖r for all
µ ∈ R[[G]]. Moreover, if φ is an automorphism of G (of p-adic analytic groups), then φ induces an
automorphism of R[[G]] satisfying ‖φ(µ)‖r = ‖µ‖r for all µ ∈ R[[G]].

Proof. The first statement follows from the fact that the expansion of [g] has coefficients in Zp and
the constant term is 1. The second is an easy consequence of the first and submultiplicativity (since
[g]−1

= [g−1
] also has norm 1).

For the final statement, observe that if g1, . . . , gd is a set of topological generators then so are
φ(g1), . . . , φ(gd). Since the r-norms are independent of the choice of generators, we conclude that if
µ=

∑
α dαbα, then

‖φ(µ)‖r =

∥∥∥∥∑
α

dα(φ(b))α
∥∥∥∥

r
= sup

α

|dα|r |α| = ‖µ‖r . �

We will use the last property mostly in the case when H is a compact p-adic analytic group, N ⊆ H is
a uniform open normal subgroup, and φ is the automorphism of N given by conjugation by some h ∈ H.

Now let G be an arbitrary compact p-analytic group. Pick a uniform open normal subgroup N and a
set h1, . . . , ht of coset representatives of G/N. Any µ∈ R[[G]] may be written uniquely as µ=

∑
i [hi ]µi

with µi ∈ R[[N ]], and we define a norm ‖−‖N ,r on R[[G]] by

‖µ‖N ,r = sup
i
‖µi‖r .

We could alternatively take a right coset decomposition µ =
∑

i νi [hi ] with νi ∈ R[[N ]], and define
‖−‖

right
N ,r on R[[G]] by

‖µ‖
right
N ,r = sup

i
‖νi‖r .

Proposition 3.1.10. We have ‖ − ‖N ,r = ‖− ‖
right
N ,r . The definition is also independent of the choice of

coset representatives. Moreover, ‖−‖N ,r is submultiplicative and satisfies ‖[g]‖N ,r = 1 and ‖[g]µ‖N ,r =

‖µ[g]‖N ,r = ‖µ‖N ,r for all g ∈ G and µ ∈ R[[G]].

Proof. For left/right independence, note that µ=
∑

i ([hi ]µi [h−1
i ])[hi ] and hence

‖µ‖
right
N ,r = sup

i
‖[hi ]µi [h−1

i ]‖r = sup
i
‖µi‖r = ‖µ‖N ,r
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by Lemma 3.1.9. For independence of the coset representatives, suppose we have h′i a different set with
hi = h′i ni ; then µ=

∑
i [h
′

i ]([ni ]µi ) and hence

‖µ‖′N ,r = sup
i
‖[ni ]µi‖r = sup

i
‖µi‖r = ‖µ‖N ,r

by Lemma 3.1.9 again. Next we prove submultiplicativity. Define k(i, j) by hi h j = hk(i, j)ni j . For
µ=

∑
i [hi ]µi and ν =

∑
j [h j ]νj in R[[G]], we have

µν =
∑

k

[hk]

( ∑
i, j :k(i, j)=k

[ni j ]([h−1
j ]µi [h j ])νj

)
.

Using Lemma 3.1.9 and submultiplicativity for ‖ − ‖r on N one then sees easily that ‖µν‖N ,r ≤

‖µ‖N ,r‖ν‖N ,r .
Next, let g∈G. Writing g=hi n for some i and n∈N, we see that ‖[g]‖N ,r =‖[n]‖r =1 by Lemma 3.1.9.

Finally, the last property then follows by the same argument as in the proof of Lemma 3.1.9. �

As the notation suggests, ‖−‖N ,r does depend on the choice of N. For a study of how the completions
change when one changes the subgroup in certain situations, see [Ardakov and Wadsley 2013, §10.6–10.8].

3.2. Completions. In this section we study the case when G is a uniform pro-p group in more detail.
Let R be a Banach–Tate Zp-algebra with multiplicative pseudouniformizer $ as usual.

Definition 3.2.1. For r ∈ [1/p, 1), define Dr (G, R) to be the completion of D(G, R) with respect to the
norm ‖−‖r , and we let D(G, R) denote the completion of D(G, R) with respect to the entire family of
norms (‖−‖r )r∈[1/p,1).

Remark 3.2.2. Note that if we change the norm on R to a bounded-equivalent one, then the completion
Dr (G, R) is unchanged, by Proposition 3.1.8.

The motivation for this definition is that if R is a Banach Qp-algebra, D(G, R) is naturally isomorphic
to the space of locally analytic R-valued distributions on G, by Proposition 3.2.9.

Note that there are natural norm-decreasing injective maps D s(G, R)→ Dr (G, R) whenever r ≤ s
(which we will think of as inclusions), and that they fit together into an inverse system with limit D(G, R).
The explicit description of D(G, R) from Proposition 3.1.6 gives us an explicit formal power series
description

Dr (G, R)=
{∑

α

dαbα
∣∣∣∣ dα ∈ R, |dα|r |α|→ 0

}
and the norm is still given by

∥∥∑ dαbα
∥∥

r = sup |dα|r |α|. We see that, unlike D(G, R), the Dr (G, K ) are
naturally potentially ON-able, with a potential ON-basis given by the elements $−n(r,$,α)bα, where

n(r,$, α)=
⌊
|α| logp r

logp |$ |

⌋
. (3.2.1)
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Lemma 3.2.3. If r < s then the inclusion ι : D s(G, R) ↪→ Dr (G, R) is a compact map of R-Banach
modules.

Proof. For simplicity set Dr
:= Dr (G, R) etc. for the duration of this proof. Choose a minimal set of

topological generators g1, . . . , gd of G and set bi = [gi ] − 1 as usual. For n ≥ 1 define Tn : D s
→ Dr by

Tn

(∑
α

dαbα
)
=

∑
|α|<n

dαbα.

By definition we see that Tn is of finite rank. Then if
∑

α dαbα is in the unit ball of D s , i.e., |dα|s|α| ≤ 1
for all α, we have ∥∥∥∥(ι− Tn)

(∑
α

dαbα
)∥∥∥∥

r
=

∥∥∥∥∑
|α|≥n

dαbα
∥∥∥∥

r
≤ (r/s)n.

Thus ‖ι− Tn‖ ≤ (r/s)n , where ‖− ‖ is the operator norm on HomR,cts(D s,Dr ), and hence Tn → ι as
n→∞, so ι is compact. �

Lemma 3.2.4. Let G and H be two uniform pro-p groups and assume that f :G→ H is a homomorphism
of p-adic analytic groups such that f (G)⊆ H pn

for some n ≥ 0. Then the induced map f∗ : D(G, R)→
D(H, R) is norm-decreasing when we equip D(G, R) with ‖ − ‖r and D(H, R) with ‖ − ‖r1/pn . As a
consequence, we get an induced map

f∗ : Dr (G, R)→ Dr (H, R)

which factors through the natural map Dr1/pn

(H, R)→ Dr (H, R). In particular, when n ≥ 1, f∗ is
compact.

Proof. We start with the first assertion. Note that the general case follows from two special cases: n = 0,
f arbitrary, and n = 1, G = H p with f the inclusion. Indeed the general case can be written as a
composition of these cases.

So, suppose first that n = 0. Scaling by powers of $ , it suffices to prove this for D(G, R0). The map
f∗ is continuous with respect to the norm ‖−‖r (see the discussion after Definition 3.1.7). Let g1, . . . , gd

be a minimal set of topological generators for G and let bi = [gi ]− 1 as usual. Using that ‖[h]− 1‖r ≤ r
for all h ∈ H, we see that∥∥∥∥ f∗

(∑
dαbα

)∥∥∥∥
r
=

∥∥∥∥∑ dα f∗(b)α
∥∥∥∥

r
≤ sup |dα|r |α| =

∥∥∥∥∑ dαbα
∥∥∥∥

r

as desired, using continuity of f∗. This completes the proof of the first special case.
Next, we consider the second case G = H p

⊆ H. Let s = r1/p; since r ≥ p−1 we have s ≥ p−1/p >

p−1/(p−1). Let h1, . . . , hd be a minimal set of topological generators for H. Then h p
1 , . . . , hd

1 form a
minimal set of topological generators for H p. Set bi = [h

p
i ]− 1 and b′i = [hi ]− 1 (apologies for the mild

abuse of notation). Then, inside D(H, R), we have

‖bi‖s = ‖(1+ b′i )
p
− 1‖s =

∥∥∥∥ p∑
k=1

(p
k

)
(b′i )

k
∥∥∥∥

s
= s p
= r
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using s > p−1/(p−1) and |p| ≤ |p|p = p−1. Thus, if
∑

dαbα ∈ D(H p, R), then inside D(H, R) we have∥∥∥∥∑ dαbα
∥∥∥∥

s
≤ sup |dα|rα,

which is equal to
∥∥∑ dαbα

∥∥
r computed inside D(H p, R). This finishes the proof of first assertion. The

remaining assertions are then easily verified (using Lemma 3.2.3 for last one). �

Before discussing what happens when one changes the norm on R, we record the following important
base change lemma.

Lemma 3.2.5. Let R and S be Banach–Tate Zp-algebras, and let f : R → S be a bounded ring ho-
momorphism. Suppose that there is a multiplicative pseudouniformizer $ ∈ R such that f ($) is also
multiplicative. Let r ∈ [1/p, 1). Then the natural map Dr (G, R)⊗̂R S→ Dr (G, S) is an isomorphism of
Banach S-modules.

Proof. Note that (since f is bounded) the fact that $ and f ($) are both multiplicative implies that |$ | =
| f ($)|. We recall the potential ON-bases ($−n(r,$,α)bα)α and ( f ($)−n(r, f ($),α)bα)α of Dr (G, R) and
Dr (G, S), respectively. It is straightforward to check that the tensor product norm on(⊕

α

R($−n(r,$,α)bα)
)
⊗R S =

⊕
α

S( f ($−n(r,$,α))bα)

induced by ‖−‖r on Dr (G, R) and the norm on S is bounded-equivalent to the norm induced by ‖−‖r
on Dr (G, S), and so we obtain isomorphic completions, which gives the desired statement. �

Our next goal is to prove that D(G, R) is independent, as a topological R-module, of the choice of
norm on R. Recall that we only consider norms for which there exists a multiplicative pseudouniformizer,
and such that the natural map Zp→ R is norm-decreasing.

Proposition 3.2.6. D(G, R) is independent of the choice of norm on R.

Proof. Let | − | and | − |′ be two equivalent such norms on R; for r ∈ [1/p, 1) we get the corresponding
r-norms ‖− ‖r and ‖− ‖′r on D(G, R). Let µ =

∑
α dαbα ∈ D(G, R) be an arbitrary element and use

Lemma 2.1.6 to find constants C1,C2, s1, s2 > 0 such that

C1|a|s1 ≤ |a|′ ≤ C2|a|s2

for all a ∈ R. Then

C1|dα|s1r |α| ≤ |dα|′r |α| ≤ C2|dα|s2r |α|

for all α and hence

C1‖µ‖
s1
r1/s1
≤ ‖µ‖′r ≤ C2‖µ‖

s2
r1/s2

for all r such that r, r1/s1, r1/s2 ∈ [1/p, 1). It follows that the families (‖− ‖r ) and (‖− ‖′r ) define the
same topology on D(G, R), and hence the same completion, as required. �
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We now introduce a variant of the Dr (G, R), which, when R is a Banach Qp-algebra, recovers the
analytic distribution algebra (with fixed radius of analyticity). Although we do not use this variant in our
construction of eigenvarieties, it is used in Section 5 to construct Galois representations.

Let r > s ≥ 1/p. Let Dr,◦(G, R) = {
∑

dαbα | |dα|r |α| ≤ 1} denote the unit ball of Dr (G, R). We
define D<r,◦(G, R) to be the closure of Dr,◦(G, R) in D s(G, R). Note that D<r,◦(G, R) is an R0-module,
a priori depending on s, which carries two natural topologies (the $ -adic topology and the subspace
topology coming from D s(G, R)).

Proposition 3.2.7. We have

D<r,◦(G, R)=
{∑

α

dαbα ∈ D s(G, R)
∣∣∣∣ |dα|r |α| ≤ 1

}
as a subset of D s(G, R). Thus D<r,◦(G, R) is independent of s. The subspace topology corresponds to the
weak topology with respect to the family of maps (µ 7→ dα(µ))α on the right-hand side (and is therefore
also independent of s). The $ -adic topology is induced by the norm∥∥∥∥∑ dαbα

∥∥∥∥
r
= sup

α

|dα|′r |α|

and is separated and complete.

Proof. Let W =
{∑

dαbα ∈ D s(G, R)
∣∣ |dα|r |α| ≤ 1

}
. Since the maps µ 7→ dα(µ) are continuous we see

that W is closed. On other hand, any finite truncation of an element in W is in Dr,◦(G, R), so Dr,◦(G, R)
is dense in W. It follows that W =D<r,◦(G, R). The subspace topology is given by the norm ‖−‖s , and
one checks easily that this agrees with the weak topology in the statement of the proposition. The final
statement is similarly easy to check; we leave it to the reader. �

We then set D<r (G, R) = D<r,◦(G, R)[1/$ ]; this is naturally a Banach R-module which embeds
into D s(G, R) for all s ∈ [1/p, r). The (D<r (G, R))r>1/p form an inverse system and the natural map
Dr (G, R)→ D s(G, R) factors over D<r (G, R), so we therefore have

D(G, R)= lim
←−−

r
D<r (G, R)

as well. Recall the potential ON-basis ($−n(r,$,α)bα)α of Dr (G, R); we have

D<r (G, R)=
{∑

α

dαbα
∣∣∣∣ |dα|r |α| bounded

}
=

(∏
α

R0.$
−n(r,$,α)bα

)[
1
$

]
.

We remark that if ($−n(r,$,α)bα)α is an ON-basis, we have D<r,◦(G, R)=
∏
α R0.$

−n(r,$,α)bα and the
weak topology on the left-hand side is equal to the product topology on the right-hand side. Next, we
define some function modules in a similar fashion. We put

C<r,◦(G, R)= { f ∈ C(G, R) | |µ( f )| ≤ 1 for all µ ∈ D(G, R)∩Dr,◦(G, R)}
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and set C<r (G, R)= C<r,◦(G, R)[1/$ ] ⊆ C(G, R). We note that f =
∑

α cαEα ∈ C<r (G, R) if and only
if $−n(r,$,α)bα( f )= cα$−n(r,$,α) is bounded as α→∞; from this one sees that

C<r (G, R)=
(∏

α

R0.$
n(r,$,α)Eα

)[
1
$

]
and that it is the dual space of Dr (G, R), and that the dual norm is given by

∥∥∑
α cαEα

∥∥
r = supα |cα|r

−|α|.
When r > s ≥ 1/p, we let Cr (G, R) denote the closure of C<s(G, R) inside C<r (G, R). Tracing through
the definitions we get an explicit description

Cr (G, R)=
{∑

α

cαEα

∣∣∣∣ |cα|r−|α|→ 0
}
=

⊕̂
α

R.$ n(r,$,α)Eα

and see that the dual space of Cr (G, R) is D<r (G, R).

Remark 3.2.8. The reader should compare our description of Cr (G, R) with the construction of [Liu
et al. 2017, Section 5.4]. Here, the authors give a definition of a “modified” space of continuous functions
on Zp with values in Zp[[T, pT−1

]] which is morally (apart from the slight difference in coefficients and
the fact that we have only defined Cr (G, R) for r > 1/p) the space C1/p(Zp, R), where R is the Tate ring
obtained as the rational localization

Zp[[T ]]
〈

p
T

〉[
1
T

]
of Zp[[T ]]. We give R the norm with unit ball Zp[[T ]]〈p/T 〉 and |T | = 1/p, defined as in Remark 2.1.3.
The definition which appears in [loc. cit.] is therefore a useful motivation for the general constructions of
this article, although we will not use the modules Cr (G, R) in this article. We will see in Theorem 6.3.4
that one may use the module D1/p(Zp, R) (which is defined) to prove the main results of [loc. cit.].

To finish this section we discuss the relationship between our constructions and the spaces of locally
analytic functions or distributions when R is a Banach Qp-algebra. We may and do assume that Qp is
isometrically embedded into R and that |p| = 1/p. Recall that the atlas on G induced from our choice of
a topological basis identifies G pn

with (pnZp)
dim G. Amice’s theorem [Colmez 2010, Théorème I.4.7]

tells us that the space of n-analytic functions on G with respect to this atlas is explicitly given as

Cn-an(G,Qp)=
⊕̂
α

Qp.kαEα,

where kα := bp−nα1c! · · · bp−nαdim Gc! . The space of n-analytic R-valued functions on G is then

Cn-an(G, R)=
⊕̂
α

R.kαEα ⊆ C(G, R).

It is well known that |kα| ∼ r |α|n with rn = p−1/pn(p−1), and it follows that Cn-an(G, R) = Crn (G, R) as
Qp-Banach spaces. Since rn→ 1 from below as n→∞ it follows that C (G, R) is the space of locally
analytic R-valued functions on G, with its usual locally convex topology. Dually, D(G, R) is then the
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space of locally analytic R-valued distributions with its usual locally convex topology. We sum up this
discussion in a proposition.

Proposition 3.2.9. When R is Banach Qp-algebra, C (G, R) is canonically the space of locally analytic
R-valued functions on G and D(G, R) is dually the space of locally analytic R-valued distributions on G.

3.3. Ash–Stevens distribution modules for Banach–Tate Z p-algebras. While the definitions in this
subsection will be of a local nature, let us nevertheless start by introducing the global setup that we will
need to define eigenvarieties. Let F be a number field. We put G = ResF

Q H, where H is a connected
reductive group over F split at all places v | p. G is then a connected reductive group over Q. When v | p
we write HOFv

for a split model of HFv over OFv and choose a Borel subgroup Bv (with unipotent radical
Nv) and a maximal torus Tv ⊆ Bv of HOFv

. Set

GZp =

∏
v | p

ResOFv
Zp

HOFv
, B =

∏
v | p

ResOFv
Zp

Bv, T =
∏
v | p

ResOFv
Zp

Tv

and also put N=
∏
v | p ResOFv

Zp
Nv . We use overlines to denote opposite groups; e.g., B=

∏
v | p ResOFv

Zp
Bv ,

where the Bv are the opposite Borels of Bv.
We will also need notation for various subgroups of G := G(Qp). Set G0 = GZp(Zp), B0 = B(Zp),

T0 = T (Zp), and N0 = N(Zp). We let I denote the Iwahori subgroup of G defined as the preimage of
B(Fp) under the reduction map G0→ GZp(Fp), and we let Ks = Ker(G0→ GZp(Z/ps)) be the s-th
principal congruence subgroup of G0 for s ≥ 1. Again for s ≥ 1, set

Ts = Ker(T0→ T (Z/psZ)),

Ns = Ker(N0→ N(Z/psZ)),

N s = Ker(N(Zp)→ N(Z/psZ)).

Set Bs = Ts Ns for s ≥ 0. We have Iwahori decompositions I = N 1T0 N0 and Ks = N s Ts Ns . Next, choose
a splitting T := T (Qp)→ T0 of the inclusion T0 ⊆ T and put 6 = Ker(T → T0). We set

6+ = {t ∈6 | t N 1t−1
⊆ N 1},

6cpt
= {t ∈6 | t N 1t−1

⊆ N 2}.

We may then define 1p = I6+ I ; this is a monoid and (1p, I ) is a Hecke pair (which means that I and
δ I δ−1 are commensurable for all δ ∈1p). The corresponding Hecke algebra (defined over Zp) will be
denoted by T(1p, I ).

With these preparations let us now move on to the definition of analytic and locally analytic distribution
modules for general Banach–Tate Zp-algebras R. When R is a Banach Qp-algebra, these were defined in
[Ash and Stevens 2008] using (locally) analytic functions on I. Recasting this in terms of the norms of
the previous section, we are able to extend the definition to all Banach–Tate Zp-algebras.

Let κ : T0→ R× be a continuous character. We will put some restrictions on the choice of norm on R,
according to the following lemma. We set ε = 1 if p 6= 2 and ε = 2 if p = 2, and put q = pε.
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Lemma 3.3.1. Keep the above notation and assume that R is Noetherian. Write | − | for the given norm
on R and let $ be a multiplicative pseudouniformizer. Then there exists a Banach–Tate Zp-algebra norm
|− |

′ on R, bounded-equivalent to |− |s for some s > 0, such that |κ(t)|′ ≤ 1 for all t ∈ T0, |κ(t)−1|′ < 1
for all t ∈ Tε , and $ is a multiplicative pseudouniformizer for | − |′.

Proof. The proof is similar to that of Lemma 3.1.1. Let t1, . . . , ta be a set of topological generators of T0

and let ta+1, . . . , tb be a set of topological generators for Tε ; it suffices to find | − |′ such that |κ(ti )|′ ≤ 1
for i = 1, . . . , a, |κ(ti )− 1| < 1 for i = a+ 1, . . . , b, and |p|′ ≤ p−1, which is bounded-equivalent to
| − |

s for some s > 0.
Since T0 is compact, κ(T0) is bounded, and hence ti is powerbounded for all i . Moreover, Tε is

pro-p and R◦/R◦◦ is a reduced discrete ring of characteristic p, so the continuous homomorphism
Tε→ (R◦/R◦◦)× induced from κ is trivial. We conclude that κ(Tε)⊆ 1+ R◦◦ and hence κ(ti )− 1 ∈ R◦◦

for i = a+ 1, . . . , b. We may now choose m such that |κ(ti )− 1|sp < |$ |
2/m for i = a+ 1, . . . , b and

|p|sp < |$ |
2/m. Arguing with S = R[$ 1/m

] as in Lemma 3.1.1 we may construct a norm | − |2 on
R for which $ is a multiplicative pseudouniformizer with |$ |2 = |$ |, |κ(ti )|2 ≤ 1 for i = 1, . . . , a,
|κ(ti )− 1|2 < 1 for i = a + 1, . . . , b, and |p|2 < 1. Setting | − |′ := | − |s2 for s sufficiently large then
gives the desired norm. �

Definition 3.3.2. Let R be a Banach–Tate Zp-algebra and κ : T0→ R× a continuous character. We will
say that the norm of R is adapted to κ if κ(T0) ⊆ R0 and |κ(t)− 1| < 1 for all t ∈ Tε . Note that then
|κ(t)| = 1 for all t ∈ T0 and there exists an r < 1 such that |κ(t)− 1| ≤ r for all t ∈ Tε .

For the rest of the subsection we consider a Banach–Tate Zp-algebra R and character κ : T0→ R such
that the norm on R is adapted to κ . We extend κ to a character of B0 by making it trivial on N0. We define
Aκ ⊆ C(I, R) to be the subset of functions such that f (gb)= κ(b) f (g) for all g ∈ I and b ∈ B0. Aκ is
naturally a Banach R-module and carries a continuous right action of I by left translation. Restricting a
function from I to N 1 gives a topological isomorphism Aκ ∼= C(N 1, R). By definition, 6+ acts on the
left on N 1 by conjugation, and via the previous isomorphism this induces a right action of 6+ on Aκ .
These actions fit together into a right action of 1p on Aκ . We let Dκ denote the dual HomR,cts(Aκ , R),
equipped with the dual left 1p-action. Since Aκ is the set of B0-invariants of C(I, R) with respect to the
action ( f.b)(g) = κ(b)−1 f (gb) (b ∈ B0, g ∈ I ), Dκ is the Hausdorff B0-coinvariants of D(I, R) with
respect to the dual (right) action. We record a more precise statement for future use:

Proposition 3.3.3. The natural surjection D(I, R)→ Dκ is equivariant for the natural left I -actions on
both sides. Identifying Dκ with D(N 1, R), the map is given by δn̄b 7→ κ(b)δn̄ .

Proof. The inverse to the restriction map Aκ→ C(N 1, R) is given by f 7→ (n̄b 7→ κ(b) f (n̄)) (here and
above n̄ ∈ N 1 and b ∈ B0). From this one sees directly that the dual map sends δn̄b to κ(b)δn̄ . That this
characterizes the maps follows from R-linearity and continuity for the weak-star topology. �

To apply the results from the previous subsection we will need to know that some groups are uniform.
The following result is presumably well known to experts but we have been unable to find a suitable
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reference. The proof we give is due to Konstantin Ardakov, and we thank him for allowing us to include
it here (any errors are due to the authors).

Proposition 3.3.4. Ks and N s are uniform for s ≥ ε.

Proof. By construction the groups are products Ks =
∏
v | p Ks,v, and similarly for N s,v, in a natural

way, so it suffices to prove that each Ks,v and each N s,v is uniform. Fix v | p and let s ≥ ε. First
assume that Hv = GLn/OFv

. Then we have the usual matrix logarithm log : Ks,v → ps Mn(OFv ) and
exponential exp : ps Mn(OFv )→ Ks,v. They converge and are inverse to each other (by our assumption
on s) and the Lie algebra ps Mn(OFv ) is easily seen to be powerful by assumption, so by the definition
of the correspondence between powerful Lie algebras and uniform pro-p groups [Dixon et al. 1999,
Theorem 9.10] via the Campbell–Hausdorff series we see that Ks,v is the uniform group corresponding
to ps Mn(OFv ). To get the result for N s,v we may by conjugation assume that Nv is the group of lower
triangular unipotent matrices; the corresponding Lie algebra is that of lower triangular nilpotent matrices
and we then argue similarly.

Now let Hv be arbitrary and choose a closed immersion Hv ↪→ GLn/OFv
for some n. We thereby

identify Hv with a closed subgroup of GLn/OFv
. Writing B′v for the upper triangular Borel of GLn/OFv

,
N ′v for its unipotent radical, N ′v for the opposite of N ′v and T ′v for the diagonal torus, we may assume, after
conjugating if necessary, that Tv ⊆ T ′v etc. We write K ′s,v etc. for the corresponding principal congruence
subgroups. With this setup, we now give the rest of the proof for the Ks,v only; the proof for N s,v

proceeds in the same way. Note that Ks,v = Hv(OFv )∩K ′s,v . By [Dixon et al. 1999, Theorem 4.5] we see
that K ′s,v is torsion-free and that it suffices to prove that Ks,v is powerful, i.e., that [Ks,v, Ks,v] ⊆ K q

s,v,
where [Ks,v, Ks,v] is the derived subgroup of Ks,v and K q

s,v is the subgroup generated by the q-th powers
of elements in Ks,v (any compact p-adic analytic group is topologically finitely generated). We remark
that it is easy to see that [K ′s,v, K ′s,v] ⊆ K ′s+ε,v = (K

′
s,v)

q . Using this and Ks,v = Hv(OFv )∩ K ′s,v , we see
that [Ks,v, Ks,v] ⊆ K ′s+ε,v ∩ Hv(OFv )= Ks+ε,v and K q

s,v ⊆ Ks+ε,v.
It remains to prove that Ks+ε,v ⊆ K q

s,v. We have Ts+ε,v = T q
s,v using the logarithm and exponential

(Tv is a split torus). We have an isomorphism of OFv -schemes
∏
α xα :

∏
α Ga −→

∼ Nv, where α ranges
through the roots of Hv whose root subgroups are contained in Nv, and xα is a corresponding root
homomorphism. Under this isomorphism Ns,v corresponds to

∏
α psOFv , and by standard properties of xα

one has xα(q.(psa))= xα(psa)q for any a ∈OFv . It follows that Ns+ε,v = N q
s,v . Similarly N s+ε,v = N q

s,v .
By the Iwahori decomposition we then see that Ks+ε,v ⊆ K q

s,v as desired. �

Remark 3.3.5. Note that the argument in the final paragraph of the above proof also implies that, for
arbitrary p and s ≥ 1, we have N s+1,v = N p

s,v.

Definition 3.3.6. Let r ∈ [1/p, 1):

(1) We define a norm ‖−‖sub
r on Dκ by transporting the norm ‖−‖N ε ,r (defined before Proposition 3.1.10)

on D(N 1, R) to Dκ via the isomorphism D(N 1, R)∼= Dκ obtained by restriction of functions from
I to N 1.
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(2) We define a norm ‖ − ‖quot
r on Dκ as the quotient norm induced from ‖ − ‖Kε ,r (defined before

Proposition 3.1.10) via the natural surjection D(I, R)→ Dκ .

Note that ‖ − ‖quot
r is I -invariant; this follows from I -equivariance of the surjection and from

Proposition 3.1.10. The following is the key result of this subsection:

Proposition 3.3.7. Suppose that |κ(t)− 1| ≤ r for all t ∈ Tε . Then ‖−‖quot
r = ‖−‖

sub
r on Dκ .

Proof. Let us first assume that p 6=2. First we claim that ‖−‖quot
r is equal to the quotient norm on Dκ coming

from the surjection D(K1, R)→Dκ and the norm ‖−‖r on the source. To see this, pick a set (bi )i of coset
representatives of I/K1 lying in B0 and define a map πκ : D(I, R)=

⊕
i δbiD(K1, R)→ D(K1, R) by

(δbiµi )i 7→
∑

i

κ(bi )µi .

We remark that composing this map with the natural surjection D(K1, R)→Dκ gives the natural surjection
D(I, R)→ Dκ (this follows from the explicit formula in Proposition 3.3.3). To prove the claim, it then
suffices to prove that ‖−‖r is the quotient norm of ‖−‖K1,r via πκ . Write ‖−‖′r for this quotient norm.
For simplicity assume that 1 is one of the coset representatives bi . Then our map is a section of the
inclusion D(K1, R)⊆ D(I, R). It is then clear that ‖−‖′r ≤ (‖−‖K1,r )|D(K1,r) = ‖−‖r . Conversely, if
µ=

∑
i κ(bi )µi ∈ D(K1, R) is the image of

∑
i δbiµi ∈ D(I, R), then

‖µ‖r ≤ sup
i
‖κ(bi )µi‖r ≤ sup

i
‖µi‖r =

∥∥∥∥∑
i

δbiµi

∥∥∥∥
K1,r

.

Taking the infimum over such presentations we obtain ‖−‖r ≤ ‖−‖′r , and hence equality.
Next, let n̄1, . . . , n̄k (resp. n1, . . . , nk) be a minimal set of topological generators of N 1 (resp. N1),

and let t1, . . . , tl be a set of topological generators of T1. Put nα =
∏

i (δni − 1)αi and similarly for T1

and N 1. By Proposition 3.3.3, the map D(K1, R)→ Dκ is then given by∑
α,β,γ

dα,β,γ n̄α tβnγ 7→
∑
α

(∑
β

dα,β,0
∏

i

(κ(ti )− 1)βi

)
n̄α.

We then make a computation similar to the one in the proof of the claim above. First, it’s clear that
‖− ‖

quot
r ≤ ‖− ‖

sub
r since restricting ‖− ‖r on D(K1, R) to D(N 1, R) gives (the intrinsically defined)

‖−‖r , and the composition D(N 1, R)→ D(K1, R)→ Dκ
∼= D(N 1, R) is the identity. Second, if∑

α

eα n̄α =
∑
α

(∑
β

dα,β,0
∏

i

(κ(ti )− 1)βi

)
n̄α,

then∥∥∥∥∑
α

eα n̄α
∥∥∥∥

r
≤ sup

α,β

(
|dα,β,0|

∏
i

|κ(ti )− 1|βi r |α|
)
≤ sup

α,β

|dα,β,0|r |α|+|β| ≤
∥∥∥∥∑
α,β,γ

dα,β,γ n̄α tβnγ
∥∥∥∥

r
,

where we have used the assumption |κ(ti )−1| ≤ r for all i to obtain the second inequality. Hence, taking
the infimum over such presentations, we see that ‖−‖sub

r ≤ ‖−‖
quot
r and equality follows.
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The case p = 2 is similar. We identify Dκ with D(N 1, R) and consider the subspace D(N 2, R). It
carries the norm ‖ − ‖r and also receives a quotient norm from the norm ‖ − ‖r on D(K2, R) via the
surjection ϕ :D(K2, R)→D(N 2, R). These two norms are equal by the same type of argument as in the
second part above. We then equip D(I, R) with the norm ‖−‖K2,r and D(N 1, R) with the norm ‖−‖sub

r .
Pick coset representatives (n̄i )i of N 1/N 2 and (bj )j of B0/B2, both containing 1. We may then write
the map D(I, R)→ D(N 1, R) as⊕

i, j

δn̄i bjD(K2, R)→
⊕

i

δn̄iD(N 2, R), (δn̄i bjµi j )i, j 7→

(
δn̄i

∑
j

κ(bj )ϕ(µi j )

)
i
.

By a computation similar to that in the first part of the proof in the case p 6= 2 (using additionally the
equality of the two norms on D(N 2, R) asserted above) the norm ‖−‖quot

r agrees with the norm ‖−‖sub
r ,

as desired. �

Remark 3.3.8. It might happen that N 1 is uniform when p = 2 (e.g., when G = ResF
Q GL2/F ). In this

case, the norm ‖−‖sub
r is bounded-equivalent to ‖−‖r1/2 on D(N 1, R).

Definition 3.3.9. Write rκ for the minimal r ∈ [1/p, 1) such that |κ(t)− 1| ≤ r for all t ∈ Tε . When
r ≥ rκ , we write ‖−‖r for the norm ‖−‖sub

r = ‖−‖
quot
r on Dκ (we will never consider these norms when

r < rκ ).
Let r ≥ rκ . We define Dr

κ to be the completion of Dκ with respect to ‖−‖r , and let Dκ = lim
←−−r D

r
κ .

Dr
κ is a Banach R-module with respect to its induced norm, and carries a left I -action (since I acts on

Dκ by ‖−‖r -isometries, the action extends to the completion). When R is a Banach Qp-algebra, it follows
from Proposition 3.2.9 that Dκ is the locally analytic distribution module used in [Ash and Stevens 2008;
Hansen 2017]. We will also need to extend the action of 6+ to these modules, and prove that elements of
6cpt give compact operators. For this, it is convenient to use the definition of ‖−‖r as ‖−‖sub

r . We have a
natural identification Dr

κ
∼=Dr (N 1, R) when p 6= 2; when p= 2 we have Dr

κ
∼=
⊕

n̄i∈N 1/N 2
δn̄iDr (N 2, R).

Corollary 3.3.10. If t ∈6+, then the action of t on Dκ is norm-decreasing with respect to ‖−‖r for any
r ≥ rκ , and hence the action of t extends to Dr

κ . If t ∈ 6cpt, then t acts compactly on Dr
κ . Moreover, in

this case the action of t is given by the composition of a norm-decreasing map

Dr
κ → Dr1/p

κ

with the compact (norm-decreasing) inclusion

Dr1/p

κ ↪→ Dr
κ .

Proof. We use the identification Dκ ∼= D(N 1, R), with regards to which t acts by the map induced from
the homomorphism N 1 → N 1 given by n̄ 7→ t n̄t−1. First assume p 6= 2. The first assertion follows
directly from Lemma 3.2.4. The second assertion follows from the third, so it remains to prove the third
assertion. If t ∈6cpt we have t N 1t−1

⊆ N 2 = (N 1)
p by the definition of 6cpt and Remark 3.3.5, so the

third assertion follows from Lemmas 3.2.3 and 3.2.4.
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Now assume p= 2 and let (n̄i )i be a set of coset representatives of N 1/N 2. We have t N 2t−1
⊆ N 2 and

n̄ 7→ t n̄t−1 induces a map N 1/N 2→ N 1/N 2; moreover if t ∈6cpt then t N 2t−1
⊆ N 3, by Remark 3.3.5.

Writing D(N 1, R) =
⊕

i δn̄iD(N 2, R) we see that t acts by a sum of maps of the form D(N 2, R)→
D(N 2, R) induced by n̄ 7→ t n̄t−1, and the proof now proceeds as in the case when p 6= 2. �

Continue to assume r ≥ rκ . In the rest of this subsection, for simplicity of notation we will assume
p 6= 2 in the discussion, but everything we do works for p = 2 as well after minor adjustments, writing
Dr
κ
∼=
⊕

i δn̄iDr (N 2, R). Let n̄1, . . . , n̄t be a topological basis of N 1 and set ni = [n̄i ]− 1 ∈Dκ as usual.
Then the description

Dr (N 1, R)=
⊕̂
α

R.$−n(r,$,α)nα

gives us an explicit description of Dr
κ via the identification Dr

κ
∼= Dr (N 1, R). In particular we remark

that the Dr
κ are potentially ON-able with a countable potential ON-basis that we can actually write down.

This is in contrast with the compact distribution modules considered in [Ash and Stevens 2008], which
are potentially ON-able but one cannot write down an explicit basis (and the dimension is uncountable),
as well as the distribution modules considered in [Hansen 2017], which are not known to be potentially
ON-able in general. Our next goal is to introduce variants of the modules Dr

κ , as well as modules Ar
κ ⊆Aκ ,

which are analogous to those considered in [loc. cit.].
Let r > rκ and pick s ∈ [rκ , r). The unit ball Dr,◦

κ of Dr
κ is 1-stable since 1 acts by norm-decreasing

operators. The natural map Dr
κ→D s

κ is injective, and may naturally be thought of as an inclusion. Doing
so, we define D<r,◦

κ to be the closure of Dr,◦
κ inside D s

κ . It is a $ -torsion free R0-module and we set
D<r
κ = D<r,◦

κ [1/$ ]; this is an R-module which naturally embeds into D s
κ . Since Dr,◦

κ ⊆ D s
κ is 1-stable

we see that D<r,◦
κ and D<r

κ are as well. We may then define

A<r,◦
κ = { f ∈Aκ | |µ( f )| ≤ 1 for all µ ∈ Dκ ∩Dr,◦

κ }

and A<r
κ = A<r,◦

κ [1/$ ] ⊆ Aκ . Then A<r
κ is the dual space of Dr

κ . We equip it with the norm dual to
‖−‖r , and define Ar

κ ⊆A<r
κ to be the closure of A<s

κ ⊆A<r
κ with respect to this norm. These spaces are

1-stable since Dκ ∩Dr,◦
κ is. Note that we have natural identifications

D<r
κ
∼= D<r (N 1, R), A<r

κ
∼= C<r (N 1, R), Ar

κ
∼= Cr (N 1, R),

so the discussion in Section 3.2 applies to give explicit descriptions of these spaces, and show that they
are independent of the choice of s.

4. Overconvergent cohomology and eigenvarieties

In this section we establish the basic results on overconvergent cohomology needed to construct and
analyze eigenvarieties. We retain the notation from Section 3.3, but we will change our point of view
slightly, from a functional-analytic point of view to a geometric one. Instead of working with Banach–Tate
Zp-algebras, we will work with complete Tate Zp-algebras, which we will always assume to have a
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Noetherian ring of definition. A weight will therefore be a continuous homomorphism κ : T0→ R×, where
R is a complete Tate Zp-algebra with a Noetherian ring of definition. We follow the strategy of [Hansen
2017, §3–4] to construct our eigenvarieties. A similar construction was also carried out in [Xiang 2012].

4.1. Eigenvarieties. We retain the global setup from the beginning of Section 3.3. To construct our
eigenvarieties, we will need some more notation as well as some concepts from [Ash and Stevens 2008;
Hansen 2017]. First, let us fix a compact open subgroup K` = K` ⊆ G(Q`), for each prime ` 6= p, which
is hyperspecial for all but finitely many `, and set K p

=
∏
`6=p K` (the tame level) and K = K p I. We

assume that K is neat (which is the case when K p is sufficiently small).4 Let Z denote the centre of G
and put Z(K )= Z(Q)∩ K . All weights in this section will be assumed to be trivial on Z(K )⊆ T0.

We also fix a monoid 1` ⊆ G(Q`) containing K`, which is equal to G(Q`) when K` is hyperspecial,
such that (1`, K`) is a Hecke pair and the `-Hecke algebra T(1`, K`) (defined over Zp) is commutative.
Set 1p

=
∏
′
1` (restricted product with respect to the K`) and 1 = 1p1p (recall that 1p = I6+ I ).

Next, as in [Hansen 2017, §2.1], we fix a choice C•(K ,−) of an augmented Borel–Serre complex and for
any left 1-module M we define C •(K ,M). Note that C •(K ,M) carries an action of the Hecke algebra
T(1, K ). In general, if C • is a cochain complex we let C∗ =

⊕
i∈Z C i and, similarly, we use H∗ to

denote the direct sum of all cohomology groups when cohomology makes sense.
Fix once and for all an element t ∈ 6cpt. Let κ : T0→ R× be a weight, and choose a Banach–Tate

Zp-algebra norm on R which is adapted to κ . We let Ũκ,r = Ũt,κ,r denote the corresponding Hecke
operator on C •(K ,Dr

κ ) (here r ≥ rκ ). This operator is compact and we let

Fr
κ (T )= det(1− T Ũκ,r | C∗(K ,Dr

κ ))

denote its Fredholm determinant, which exists since C∗(K ,Dr
κ ) is potentially ON-able (by basic properties

of Borel–Serre complexes). Before proceeding, let us recall the definition of weight space.

Definition 4.1.1. Suppose (A, A+) is a complete sheafy affinoid (Zp,Zp)-algebra. The functor

(A, A+) 7→ Homcts(T0/Z(K ), A×)

from complete sheafy affinoid (Zp,Zp)-algebras (A, A+) to sets is representable by the affinoid ring
(Zp[[T0/Z(K )]],Zp[[T0/Z(K )]]), and we let W denote the corresponding adic space. We remark that any
continuous homomorphism T0/Z(K )→ A× automatically lands in (A+)×. To see this, note that T0 is
noncanonically isomorphic to F ×Zr

p as a p-adic Lie group, where F is a finite group and r ∈ Z≥0. The
image of F lands in the roots of unity µ∞(A) in A, and the image of Zr

p lands in 1+ A◦◦. Since A+ is
open and integrally closed in A (which is complete), µ∞(A) and 1+ A◦◦ are both subsets of (A+)×.

We let W denote the analytic locus of W; this is an open subset. For any weight κ : T0→ R× and ring of
integral elements R+⊆ R◦, we obtain a map U = Spa(R, R+)→W . If this map is an open immersion (so
in particular we have R+= R◦, by Corollary A.6), we will conflate the weight κ and the open subset U⊆W
and refer to U as an open weight. In this case, we will also replace κ by U in our notation, writing DU etc.

4In fact it suffices to assume that K contains a neat open normal subgroup with index prime to p.
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Proposition 4.1.2. Let κ be a weight and choose an adapted Banach–Tate Zp-algebra norm on R. Then
Fr
κ is independent of r ≥ rκ .

Proof. Let rκ ≤ r < s; we wish to prove that Fr
κ = F s

κ . Note that the general case follows from the case
s ≤ r1/p, so we may assume this. Then, by Corollary 3.3.10, Ũκ,r factors as

C∗(K ,Dr
κ )

8
−→C∗(K ,D s

κ)
ι
−→C∗(K ,Dr

κ ),

where ι is induced by the natural compact inclusion D s
κ ↪→Dr

κ . We have Ũκ,s =8◦ ι, so the result follows
from [Buzzard 2007, Lemma 2.7]. �

In light of this we will from now on drop r from the notation and simply write Fκ . We remark that it
currently depends on a choice of norm on R.

Proposition 4.1.3. Let κ : T0→ R× be a weight and choose an adapted Banach–Tate Zp-algebra norm
on R. Let $ be a multiplicative pseudouniformizer in R:

(1) Assume that Fκ has a factorization Fκ = QS, where Q is a multiplicative polynomial, S is a Fredholm
series, and Q and S are relatively prime. Let s > r ≥ rκ . The inclusion C •(K ,D s

κ)⊆ C •(K ,Dr
κ ) induces

an equality Ker• Q∗(Ũκ,s)= Ker• Q∗(Ũκ,r ) (here and elsewhere we write Ker• Q∗(Ũκ,r ) for the complex
with i-th term being the kernel of Q∗(Ũκ,r ) acting on C i (K ,Dr

κ )).

(2) Let R′ be a complete Tate ring with a Noetherian ring of definition, which we assume to be equipped
with a Banach–Tate Zp-algebra norm | − |′ which induces the topology. Assume that we have a bounded
homomorphism φ : R→ R′ such that | − |′ is adapted to κ ′ = κ ◦φ and φ($) is multiplicative for | − |′.
Then Fκ ′ = φ(Fκ).

If we assume moreover that Fκ has a factorization as in the previous part, we have a canonical
isomorphism (Ker• Q∗(Ũκ,r ))⊗R R′ ∼= Ker• Q∗(Ũκ ′,r ).

Proof. For assertion (1), we note that the general case follows from the case s ≤ r1/p, and then writing
Ũκ,r and Ũκ,s as in the proof of Proposition 4.1.2 the result follows from Lemma 2.2.3. For part (2), the
first assertion follows from Lemma 3.2.5 and [Buzzard 2007, Lemma 2.13], and the second assertion
follows from Lemma 3.2.5 upon writing C •(K ,Dr

κ ) = Ker• Q∗(Ũκ,r )⊕ N • as in Theorem 2.2.2 since
Q∗(Ũκ,r ) is invertible on N •. �

We can now prove that Fκ is independent of the choice of norm on R.

Proposition 4.1.4. Fκ is independent of the choice of adapted Banach–Tate Zp-algebra norm on R.

Proof. Let | − | and | − |′ be two different such norms on R and denote the constructions coming from
| − | as usual and the constructions coming from | − |′ by adding a prime. By Lemma 2.1.6, we may
find constants C1,C2, s1, s2 > 0 such that C1|a|s1 ≤ |a|′ ≤ C2|a|s2 for all a ∈ R, which, as in the proof
of Proposition 3.2.6, implies that Dr1/s2

κ ⊆ Dr,′
κ ⊆ Dr1/s1

κ for r suitably close to 1. Assume first that
s2/s1< p, or in other words that r p/s2 < r1/s1 . Then Ũκ,r1/s1 factors through Dr1/s2

κ , and hence through Dr,′
κ .

Decreasing s1 if necessary (still making sure that s2/s1 ≤ p), the inclusion Dr,′
κ ⊆ Dr1/s1

κ is compact, and
we may now argue as in the proof of Proposition 4.1.2.
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We now do the general case. Choose multiplicative pseudouniformizers $ and $ ′ for | − | and | − |′

respectively. Put X = Spa(R, R◦) and let U ⊆ X be a rational subdomain. Write RU :=OX (U ) and φU

for the natural map R→ RU . Then it is easy to see, by (the proof of) Lemma 3.3.1, that we may find a
Banach–Tate norm |−|U on RU such that φU : (R, |−|)→ (RU , |−|U ) is bounded, $ is a multiplicative
pseudouniformizer for | − |U , and for all tU sufficiently large, | − |tUU is a Banach–Tate Zp-algebra norm
on RU which is adapted for κU := φU ◦κ . We may find a norm |− |′U with the same properties in relation
to |− |′ etc. By Proposition 4.1.3(2) we then have FκU = φU (Fκ) and F ′κ = φU (F ′κ), using that changing a
norm by raising it to a real positive power only reindexes the Dr, and hence does not change the Fredholm
determinant by Proposition 4.1.2. We also remark that raising | − | and | − |′ to the same power t > 0
does not change the quantity s2/s1. Thus, we aim to find an open cover (Ui )i of Spa(R, R◦) consisting
of rational subdomains, such that, writing Ri =O(Ui ) and equipping with norms of the form described
above, the quantity s1/s2 is < p for each i . This would then finish the proof.

It remains to construct the cover (Ui )i . We recall from the proof of Lemma 2.1.6 that we may take

s1 =
log |$m

|
′

log |$m |
, s2 =

log |($ ′)m |′

log |($ ′)m |

for any m sufficiently large that |$m
|
′, |($ ′)m |< 1. Let δ > 0 be small, and choose m sufficiently large

that (|$m
|
′)1/m
− |$ |′sp ≤ δ and |($ ′)m |1/m

− |$ ′|sp ≤ δ. There is a continuous real-valued function 8
on M(R) given by

x 7→8(x)=
log |$ ′|′ log |$ |

log |$ ′|x log |$ |′x
=

log |$ ′|′x log |$ |x
log |$ ′|x log |$ |′x

.

Note the similarity between s2/s1 and 8. We recall here that M(R) is the maximal Hausdorff quotient
of Spa(R, R◦), and hence it does not depend on whether we used | − | or | − |′ to construct it (though
of course the functions x 7→ |− |x and x 7→ |− |′x are in general different). We compose this function
with the projection Spa(R, R◦)→M(R) to get a function on Spa(R, R◦). We claim that it is constant
and equal to 1. To see this, fix x and note that there is an s > 0 such that | − |′x = |− |

s
x ; one then checks

easily that 8(x)= 1. Fix x ∈ Spa(R, R◦). Let U be a rational subdomain containing x and give O(U )
two norms |− | and |− |′ constructed as for Ri above. If U is small, |$ |′sp = supy∈M(O(U ))⊆M(R) |$ |

′
y is

close to |$ |′x , and similarly for |$ ′|sp. Choosing δ small, we may then ensure that the quantity s2/s1 is
close to 8(x)= 1 for U small; in particular it is < p as desired. Picking such a U for every x gives the
desired cover. �

From the preceding two propositions, we can immediately deduce the following corollary.

Corollary 4.1.5. Let U1 ⊆ U2 be open weights and let φ :OW(U2)→OW(U1) be the induced map. Then
φ(FU2)= FU1 . Therefore, the Fredholm determinants (FU )U , where U ranges over all open weights, glue
together to a Fredholm series FW ∈O(W){{T }} =O(A1

W).

We write Ũκ for the Hecke operator on C •(K ,Dκ) coming from our fixed t ∈6cpt.
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Proposition 4.1.6. Let κ : T0→ R× be a weight. Assume that Fκ has a factorization Fκ = QS, where
Q is a multiplicative polynomial, S is a Fredholm series, and Q and S are relatively prime. Then
Ker• Q∗(Ũκ) is a complex of projective R-modules. If φ : R→ R′ is a continuous homomorphism, where
R′ is a complete Tate ring with a Noetherian ring of definition, then we have a canonical isomorphism
(Ker• Q∗(Ũκ))⊗R R′ ∼= Ker• Q∗(Ũκ ′), where κ ′ = κ ◦φ.

Proof. We have C •(K ,Dκ) = lim
←−−r≥rκ C •(K ,Dr

κ ). Since Ũκ = lim
←−−r≥rκ Ũκ,r the result follows from

Proposition 4.1.3 upon noting that we may choose a topologically nilpotent unit $ ∈ R and norms on R
and R′ such that φ and $ satisfies the assumptions of that proposition. �

Next we study what happens when the factorization of Fκ changes. Keep the notation of Proposition 4.1.6.
We make Ker• Q∗(Ũκ) into a complex of R[T ]/(Q(T ))-modules by letting T act as Ũ−1

κ .

Proposition 4.1.7. Let κ : T0→ R× be a weight. Assume that Fκ has two factorizations Fκ = Q1S1 =

Q2S2, where the Qi are multiplicative polynomials, the Si are Fredholm series, and for each i the Qi and
Si are relatively prime. Assume further that Q1 | Q2. Then we have a canonical isomorphism

Ker• Q∗2(Ũκ)⊗R[T ]/(Q2) R[T ]/(Q1)∼= Ker•(Q∗1(Ũκ)).

Proof. Let P be such that Q2 = P Q1; P is then a multiplicative polynomial and one checks that
it is relatively prime to Q1, so we may find polynomials A, B ∈ R[T ] such that P A + Q1 B = 1.
We then have R[T ]/(Q2) ∼= R[T ]/(Q1)× R[T ]/(P) and P A ∈ R[T ]/(Q2) corresponds to (1, 0) ∈
R[T ]/(Q1)×R[T ]/(P). The proposition now amounts to showing that P A.Ker• Q∗2(Ũκ)=Ker• Q∗1(Ũκ).
If x ∈ Ker• Q∗2(Ũκ), then

Q∗1(Ũκ).P Ax = Ũ deg Q1
κ AQ2x = 0,

which gives us one inclusion. For the other, assume that y ∈Ker• Q∗1(Ũκ). Note that deg P A= deg Q1 B.
Then

y = Ũ− deg P A
κ

(
P∗(Ũκ)A∗(Ũκ)+ B∗(Ũκ)Q∗1(Ũκ)

)
y = P∗(Ũκ)A∗(Ũκ)Ũ− deg P A

κ y,

which gives us the other inclusion. �

We now return to the Fredholm series FW from Corollary 4.1.5. Let Z ⊆ A1
W denote its Fredholm

hypersurface. Consider Cov(Z ), the set of all open affinoid V ⊆ Z such that π(V )⊆ X is open affinoid,
O(π(V )) is Tate, and the map π |V : V → π(V ) is finite of constant degree, where π : Z →W is the
projection map. For V ∈ Cov(Z ), let us write FW = QV SV for the associated factorization of FW from
Theorem 2.3.3.

Corollary 4.1.8. The assignment V 7→ Ker• Q∗V (Ũπ(V )), with V ∈ Cov(Z ), defines a bounded complex
of coherent sheaves K • on Z .

Proof. Cov(Z ) is an open cover of Z so we need to prove that whenever V1⊆V2 are elements of Cov(Z ),
we have (Ker• Q∗V2

(Ũπ(V2)))⊗O(V2) O(V1) ∼= Ker• Q∗V1
(Ũπ(V1)) canonically. Define V3 = π |

−1
V2
(π(V1)).

Then we have V1 ⊆ V3 ⊆ V2, so it suffices to treat the inclusions V1 ⊆ V3 and V3 ⊆ V2. In the first case
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we have π(V1)= π(V3) and the result follows from Proposition 4.1.7, since V1 ⊆ V3 forces QV1 | QV3 .
For the second we have V3 = V2×π(V2) π(V1) and the result follows from Proposition 4.1.6. �

This allows us to finish the construction of the eigenvariety. We define H ∗
= H∗(K •); this is a

coherent sheaf on Z . Since the projectors C •(K ,Dπ(V ))→ Ker• Q∗V (Ũπ(V )) commute with the action
of T(1p, K p) (by construction, using the assertion about the projectors in Theorem 2.2.2), we get an
induced action T(1p, K p)→ E ndZ (H

∗). Let T ⊆ E ndZ (H
∗) denote the sub-presheaf generated over

OZ by the image of T(1p, K p). It is a sheaf by flatness of rational localization, hence a coherent sheaf
of OZ -algebras, and we define the eigenvariety X =XG,K p to be the relative Spa(T ,T ◦)→Z (note
that the sheaf of integral elements is determined by Lemma A.3). The morphism q :X →Z is finite by
construction, and we have

O(q−1(V ))= Im
(
T(1p, K p)⊗Zp O(V )→ EndO(V )(H∗(Ker• Q∗V ))

)
for all V ∈Cov(Z ). In particular, if (U, h) is a slope datum for (W, FW), we write TU,h =O(q−1(ZU,h))

and have

TU,h = Im
(
T(1p, K p)⊗Zp O(ZU,h)→ EndO(ZU,h)(H

∗(K ,DU )≤h)
)
.

Remark 4.1.9. Our eigenvariety X contains the eigenvariety constructed in [Hansen 2017, §4] as the
open subset {p 6= 0}. Indeed, our construction specializes to his over Banach Qp-algebras, with the minor
difference that we use the complexes C •(K ,Dr

U ) to construct the auxiliary Fredholm hypersurface Z ,
whereas the complexes C•(K ,A r

U ) (in our notation) are used in [loc. cit.], giving a different auxiliary
Fredholm hypersuface. However, working over the union of the two Fredholm hypersurfaces, one sees
that the coherent sheaf H ∗ on A1

W rig , with its T(1p, K p)-action, is equal to the sheaf M ∗ on A1
W rig (in

the notation of [loc. cit., §4.3]), with its T(1p, K p)-action (here we have used W rig to denote the locus
{p 6= 0} ⊆W).

Remark 4.1.10. Like the other constructions, our construction of overconvergent cohomology and
eigenvarieties has numerous variations, which are sometimes useful to keep in mind. For example, one
may use compactly supported cohomology, homology or Borel–Moore homology instead (see [loc. cit.,
§3.3]), and/or one could use the modules Aκ instead of the Dκ . One can also add (or remove) Hecke
operators, or work over some restricted family of weights, rather than the universal one.

4.2. The Tor-spectral sequence. We now give the analogue of the Tor spectral sequence in [Hansen
2017, Theorem 3.3.1], which is a key tool in analyzing the eigenvarieties. We phrase it in terms of slope
decompositions and Banach–Tate rings, though we could have formulated it more generally for elements
in Cov(Z ).

Theorem 4.2.1. Let h ∈Q≥0 and let κ : T0→ R× be a weight. We fix an adapted Banach–Tate Zp-algebra
norm on R, and suppose that C •(K ,Dr

κ ) has a slope ≤ h-decomposition for some r ≥ rκ . Let R→ S be a
bounded homomorphism of Banach–Tate Zp-algebras with adapted norms and write κS for the induced
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weight T0→ S×. Then there is a convergent Hecke-equivariant (cohomological) second quadrant spectral
sequence

E i j
2 = TorR

−i (H
j (K ,Dκ)≤h, S)=⇒ H i+ j (K ,DκS )≤h .

Proof. We follow the proof of [Hansen 2017, Theorem 3.3.1]. Define a chain complex C• by Ci =

C−i (K ,Dκ)≤h and the obvious differentials (i.e., we are just reindexing and viewing C •(K ,Dκ)≤h as a
chain complex). This is a bounded chain complex of finite projective R-modules. Thus

TorR
i+ j (C•, S)= Hi+ j (C•⊗R S),

where Tor denotes hyper-Tor. The hyper-Tor spectral sequence then gives us a homological spectral
sequence

E2
i j = TorR

i (Hj (C•), S)=⇒ Hi+ j (C•⊗R S)

which is concentrated in the fourth quadrant. Reindexing we may turn this into a cohomological spectral
sequence (see [Weibel 1994, Dual definition 5.2.3])

E i j
2 = TorR

−i (H− j (C•), S)=⇒ H−i− j (C•⊗R S)

which is concentrated in the second quadrant. Since H− j (C•) = H j (K ,Dκ)≤h (by definition) and
H−i− j (C•⊗R S)∼= H i+ j (K ,DκS )≤h (canonically, by our previous results) this gives the desired spectral
sequence. Finally, Hecke-equivariance follows from the functoriality of the hyper-Tor spectral sequence. �

As an application, we prove the following analogue of [Hansen 2017, Theorem 4.3.3]. We will use it
in the next section when we construct Galois representations.

Proposition 4.2.2. Let (U, h) be a slope datum and let m⊆OW(U) be a maximal ideal corresponding to
a weight κ : T0→ L×, where L =OW(U)/m; this is a local field by Lemma A.12. Fix an absolute value on
L with |p| ≤ p−1 (i.e., an adapted Banach–Tate Zp-algebra norm). Let T⊆ T(1, K ) be a Zp-subalgebra
and put

Tκ,h = Im(T⊗Zp L→ EndL(H∗(K ,Dκ)≤h)),

TU,h = Im(T⊗Zp OW(U)→ EndOW (U)(H
∗(K ,DU )≤h)).

Then there is a natural isomorphism (TU,h ⊗OW (U) L)red ∼= Tred
κ,h .

Proof. By the Tor-spectral sequence we see that, if T ∈ T acts as 0 on H∗(K ,DU )≤h , then it acts
nilpotently on H∗(K ,Dκ)≤h . It follows that we have a surjection TU,h ⊗OW (U) L � Tred

κ,h of finite-
dimensional commutative L-algebras. To finish the proof it suffices to show that if q is a maximal ideal of
TU,h ⊗O(U) L then the localization (Tκ,h)q is nonzero. Let j be maximal such that (H j (K ,DU )≤h)q 6= 0
and localize the entire Tor-spectral sequence with respect to q. Then the entry (E0, j

2 )q is stable (i.e.,
(E0, j

2 )q= (E
0, j
∞ )q) and it follows that (H j (K ,Dκ)≤h)q 6= 0. Thus we must have (Tκ,h)q 6= 0 as desired. �

Corollary 4.2.3. We retain the notation of Proposition 4.2.2. If we let Ut be the double coset operator
[K t K ]∈T(1, K ) for our fixed t ∈6cpt, consider the commutative subalgebra T(1p, K p)[Ut ]⊆T(1, K ).
Then we have a natural isomorphism (TU,h ⊗O(U) L)red ∼= T(1p, K p)[Ut ]

red
κ,h .
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Proof. By Proposition 4.2.2 we have a natural isomorphism

(T(1p, K p)[Ut ]U,h ⊗O(U) L)red ∼= T(1p, K p)[Ut ]
red
κ,h

so it suffices to show that TU,h ∼= T(1p, K p)[Ut ]U,h , which is clear from the definitions (note that
EndO(ZU,h)(H

∗(K ,DU )≤h)⊆ EndO(U)(H∗(K ,DU )≤h)). �

5. Galois representations

We continue to assume that all weights are trivial on Z(K ). Let G = ResF
Q GLn/F , with F a totally real

or CM field. In this section we construct a Galois determinant (in the language of [Chenevier 2014])
valued in the global sections of the reduced extended eigenvariety, satisfying the expected compatibility
between Hecke eigenvalues and the characteristic polynomial of Frobenius at all unramified primes. The
construction is an adaptation of a construction due to the first author and David Hansen, to appear in
[Hansen and Johansson ≥ 2019] (in a slightly refined form), which produces a Galois determinant over
the reduced rigid eigenvariety as constructed in [Hansen 2017]. The key step is to produce the desired
Galois determinant for all “points” of the extended eigenvariety. In the rigid analytic setting one can
then glue these individual determinants together by an argument due to Bellaïche and Chenevier; we
prove a version of this gluing technique in our setting. We will not assume that G = ResF

Q GLn/F until
Section 5.3.

5.1. Filtrations. Let κ : T0→ L× be a weight, where L is a local field equipped with an adapted absolute
value; we let $ be a uniformizer of L . Let r > rκ and choose an auxiliary s ∈ (rκ , r). In this subsection,
we construct a filtration on the unit ball D<r,◦

κ of D<r
κ with finite graded pieces, generalizing the filtrations

constructed in [Hansen 2015]. We define

Fil j D<r,◦
κ := D<r,◦

κ ∩$ jD s,◦
κ .

When κ and r are clear from the context we will simply write Fil j for Fil j D<r,◦
κ (we will always omit the

choice of s). By the definitions the Fil j are open and closed in the subspace topology on D<r,◦
κ coming

from D s
κ (we recall that D<r,◦

κ is compact with respect to this subspace topology since OL is compact).
Therefore the D<r,◦

κ /Fil j are finite discrete OL -torsion modules and we have D<r,◦
κ = lim

←−− j D
<r,◦
κ /Fil j

topologically. Note that Fil j is 1-stable (being the intersection of two 1-stable subsets in D s
κ ), so the OL -

torsion modules D<r,◦
κ /Fil j inherit a 1-action and the equality in the previous sentence is 1-equivariant.

We also record the following lemma.

Lemma 5.1.1. We have

H i (K ,D<r,◦
κ )= lim

←−−
j

H i (K ,D<r,◦
κ /Fil j ) for all i.

Proof. On Borel–Serre complexes we have C •(K ,D<r,◦
κ )= lim

←−− j C •(K ,D<r,◦
κ /Fil j ) and these are bounded

complexes of compact abelian Hausdorff groups. This category is abelian and has exact inverse limits
(e.g., by [Neukirch 1999, Proposition IV.2.7]), which gives us the result. �
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We remark that C •(K ,D<r
κ ) has a slope ≤ h-decomposition for any h ∈Q≥0 (since we are working

over the field L) and C •(K ,D<r
κ )≤h = C •(K ,Dr

κ )≤h (since it is sandwiched between C •(K ,Dr
κ )≤h and

C •(K ,D s
κ)≤h , and these are equal). Thus, we may use the D<r

κ instead of the Dr
κ to define overconvergent

cohomology. We will do this to define Galois representations because of the fact that D<r,◦
κ is profinite

with respect to topology coming from the Fil j.

5.2. A morphism of Hecke algebras. We continue with the notation of the previous subsection. In this
subsection we will fix a Zp-subalgebra T ⊆ T(1, K ) and, if A is any Zp-algebra, we will write TA for
T⊗Zp A. Then TOL acts on H∗(K ,D<r,◦

κ /Fil j ) for all r and j and we set

Tr
κ, j = Im

(
TOL → EndOL (H

∗(K ,D<r,◦
κ /Fil j ))

)
,

Tr
κ,Fil = Im

(
TOL →

∏
j

Tr
κ, j

)
.

We equip each Tr
κ, j with the discrete topology (they are finite rings) and give

∏
j Tr

κ, j the product topology;
we then give Tr

κ,Fil the subspace topology. We let T̂r
κ,Fil denote the completion of Tr

κ,Fil in
∏

j Tr
κ, j ; this is

a compact Hausdorff ring.
Fix h ∈Q≥0. We have natural maps H∗(K ,D<r,◦

κ )→ H∗(K ,D<r
κ )→ H∗(K ,D<r

κ )≤h and we define
H∗(K ,D<r,◦

κ )≤h to be the image of the composition.

Lemma 5.2.1. H∗(K ,D<r,◦
κ )≤h is an open and bounded OL -submodule of H∗(K ,D<r

κ )≤h (and hence a
finite free OL -module).

Proof. It is an OL -submodule which spans H∗(K ,D<r
κ )≤h essentially by construction, so it suffices to

show that it is finitely generated. The morphisms H∗(K ,D<r,◦
κ )→ H∗(K ,D<r

κ )→ H∗(K ,D<r
κ )≤h are

induced by the morphisms

C •(K ,D<r,◦
κ )→ C •(K ,D<r

κ )→ C •(K ,D<r
κ )≤h

of complexes. Let C •(K ,D<r,◦
κ )≤h denote the image of the composition. Note that each C i (K ,D<r,◦

κ )

is bounded in C i (K ,D<r
κ ), so C i (K ,D<r,◦

κ )≤h is bounded in C i (K ,D<r
κ )≤h by continuity of the projec-

tion. Thus C •(K ,D<r,◦
κ )≤h is a bounded complex of finite free OL -modules. Since H∗(K ,D<r,◦

κ )≤h ⊆

Im(H∗(C •(K ,D<r,◦
κ )≤h)→ H∗(K ,D<r

κ )≤h), finite generation of the former follows. �

We define
T

r,◦
κ,≤h = Im(TOL → EndOL (H

∗(K ,D<r,◦
κ )≤h));

by the above lemma this is a finite OL -algebra and hence naturally a compact Hausdorff ring. Note that
if T ∈ TOL is 0 in Tr

κ,Fil, i.e., acts as 0 on all H∗(K ,D<r,◦
κ /Fil j ), then it acts as 0 on H∗(K ,D<r,◦

κ )≤h

and so is 0 in T
r,◦
κ,≤h . In other words we have a natural (surjective) map Tr

κ,Fil→ T
r,◦
κ,≤h . The goal of this

section is to show that this map is continuous and so extends to the completion T̂r
κ,Fil.

To do this we introduce some special open sets. Let prj : T
r
κ,Fil→ Tr

κ, j denote the projection. We put
Uj = Ker(prj ); this is an open ideal of Tr

κ,Fil. On T
r,◦
κ,≤h the opens that we will use are more delicate to



Extended eigenvarieties for overconvergent cohomology 137

construct. We have a commutative diagram

H∗(K ,D<r,◦
κ ) //

��

H∗(K ,D<r
κ )≤h

��

H∗(K ,D s,◦
κ ) // H∗(K ,D s

κ)≤h

where the right vertical map is an isomorphism, which we think of as an equality (the reader may trace
through the definitions and see that this is a natural thing to do). Defining H∗(K ,D s,◦

κ )≤h to be the image
of H∗(K ,D s,◦

κ )→ H∗(K ,D s
κ)≤h we see that H∗(K ,D<r,◦

κ )≤h ⊆ H∗(K ,D s,◦
κ )≤h are both open lattices

in H∗(K ,D<r
κ )≤h = H∗(K ,D s

κ)≤h (Lemma 5.2.1 holds for H∗(K ,D s,◦
κ )≤h as well, with the same proof).

Lemma 5.2.2. The ideals

Vj = {T ∈ T
r,◦
κ,≤h | T (H

∗(K ,D<r,◦
κ )≤h)⊆$

j H∗(K ,D s,◦
κ )≤h}

form a basis of open neighbourhoods of 0 in T
r,◦
κ,≤h .

Proof. It’s easy to check that the Vj are ideals. By the preceding remarks the subgroups$ j H∗(K ,D s,◦
κ )≤h

form a basis of neighborhoods of 0 in H∗(K ,D<r,◦
κ )≤h (for j� 0). Using this the lemma is elementary. �

We may now prove continuity. Denote the map Tr
κ,Fil→ T

r,◦
κ,≤h by φ.

Proposition 5.2.3. We have φ(Uj ) ⊆ Vj . Thus φ is continuous and extends to a continuous map
T̂r
κ,Fil→ T

r,◦
κ,≤h .

Proof. The second statement follows directly from the first (by general properties of linearly topologized
groups and the fact that T

r,◦
κ,≤h is complete). The first statement amounts, by the definitions, to proving

that if T acts as 0 on H∗(K ,D<r,◦
κ /Fil j ), then it maps H∗(K ,D<r,◦

κ )≤h into $ j H∗(K ,D s,◦
κ )≤h , or in

other words that T acts as 0 on

Im(H∗(K ,D<r,◦
κ )≤h→ H∗(K ,D s,◦

κ )≤h/$
j ).

By definition this image is equal to

Im(H∗(K ,D<r,◦
κ )→ H∗(K ,D s,◦

κ )≤h/$
j ).

Assume now that T acts as 0 on H∗(K ,D<r,◦
κ /Fil j ). We may factor H∗(K ,D<r,◦

κ )→H∗(K ,D s,◦
κ )≤h/$

j

through H∗(K ,D s,◦
κ )/$ j so it suffices to prove that T acts as 0 on

Im(H∗(K ,D<r,◦
κ )→ H∗(K ,D s,◦

κ )/$ j ).

From the long exact sequence attached to the short exact sequence

0→ D s,◦
κ

$ j
−→D s,◦

κ → D s,◦
κ /$ j

→ 0

we see that
H∗(K ,D s,◦

κ )/$ j ↪→ H∗(K ,D s,◦
κ /$ j ).



138 Christian Johansson and James Newton

By definition, we have a natural map D<r,◦
κ /Fil j

→ D s,◦
κ /$ j. Assembling the last few sentences, we

have a commutative diagram

H∗(K ,D<r,◦
κ ) //

��

H∗(K ,D s,◦
κ )/$ j

��

H∗(K ,D<r,◦
κ /Fil j ) // H∗(K ,D s,◦

κ /$ j )

where the right vertical map is injective. By assumption T acts as 0 on H∗(K ,D<r,◦
κ /Fil j ); hence it acts

as 0 on Im(H∗(K ,D<r,◦
κ )→ H∗(K ,D s,◦

κ /$ j )). But, since the right vertical map is injective, this image
is isomorphic to Im(H∗(K ,D<r,◦

κ )→ H∗(K ,D s,◦
κ )/$ j ). Thus T acts as 0 on this, which is what we

wanted to prove. �

5.3. Galois representations. We now specialize to the case G = ResF
Q GLn/F , where F is a totally real

or CM number field, and n ≥ 2. When discussing Galois representations we will, for simplicity of
referencing, use the same conventions as in [Scholze 2015, §5]. Let S′ denote the set of places w of Q

such that either w =∞, or if w is finite then Kw is not hyperspecial. This is a finite set containing p and
the primes which ramify in F. We let S denote the set of places in F lying above those in S′. We set

T =
⊗
v /∈S

Tv,

where Tv = Zp[GLn(Fv)//GLn(OFv )] is the usual spherical Hecke algebra (we assume that K ⊆
GLn(OF ⊗Z Ẑ)). We have T ⊆ T(1, K ) and we will use the notation and results of the previous
subsection for this choice of T. Let qv be the size of the residue field at v. We have the (unnormalized)
Satake isomorphism

Tv[q1/2
v ]
∼= Zp[q1/2

v ][x
±1
1 , . . . , x±1

n ]
Sn ,

where Sn is the symmetric group on {1, . . . , n} permuting the variables x1, . . . , xn . If we let Ti,v denote
the i-th elementary symmetric polynomial in x1, . . . , xn , then q i(n+1)/2

v Ti,v ∈ Tv and we define

Pv(X)= 1− q(n+1)/2
v T1,vX + qn+1

v T2,vX2
− · · ·+ (−1)nqn(n+1)/2

v Tn,vXn
∈ Tv[X ]. (5.3.1)

The following theorem is essentially a special case of [Scholze 2015, Theorem 5.4.1]. We let GF,S denote
the Galois group of the maximal algebraic extension of F unramified outside S. For the notion of a
determinant we refer to [Chenevier 2014].

Theorem 5.3.1. (Scholze) There exists an integer M depending only on [F : Q] and n such that the
following is true: for any j and r there exists an ideal I r

κ, j ⊆ Tr
κ, j with (I r

κ, j )
M
= 0 and an n-dimensional

continuous determinant D of GF,S with values in Tr
κ, j/I r

κ, j such that

D(1− X Frobv)= Pv(X)

for all v /∈ S.
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We remark that the local systems corresponding to the D<r,◦
κ /Fil j are not necessarily included in

the formulation of [Scholze 2015, Theorem 5.4.1], but the proof works the same: one first applies the
Hochschild–Serre spectral sequence to reduce to the case of a trivial local system.

Corollary 5.3.2. Keep the notation of Theorem 5.3.1:

(1) There exists a closed ideal I ⊆ T̂r
κ,Fil such that I M

= 0 and an n-dimensional continuous determinant
D of GF,S with values in T̂r

κ,Fil/I such that D(1− X Frobv)= Pv(X) for all v /∈ S.

(2) Let h ∈ Q≥0. Then there exists a closed ideal J ⊆ T
r,◦
κ,≤h such that J M

= 0 and an n-dimensional
continuous determinant D of GF,S with values in T

r,◦
κ,≤h/J such that D(1− X Frobv) = Pv(X) for

all v /∈ S.

Proof. Part (1) follows from the theorem and the definition and compactness of T̂r
κ,Fil via [Chenevier 2014,

Example 2.32]; one sets I = T̂r
κ,Fil∩

∏
j I r
κ, j . Assertion (2) then follows from (1) and Proposition 5.2.3. �

5.4. Gluing over the reduced eigenvariety. We now finish our construction of a Galois determinant over
the reduced eigenvariety X red

=X red
G . See Definition A.10 for the definition of the reduced subspace.

Keep the notation of the previous subsection. Let (U, h) be a slope datum. We have a corresponding open
affinoid XU,h ⊆X . If mκ is a maximal ideal of O(U) corresponding to the weight κ : T0→ L× with
L =O(U)/mκ a local field, then Corollary 4.2.3 gives us a natural identification

(O(XU,h)/mκ)
red
= (O(X red

U,h)/mκ)
red ∼= T(1p, K p)[Ut ]

red
κ,h .

Fix r . Note that Tr
κ,≤h = T

r,◦
κ,≤h[1/$ ] is naturally a closed L-subalgebra of T(1p, K p)[Ut ]κ,h . From

Corollary 5.3.2 it follows that we have a Galois determinant into T(1p, K p)[Ut ]
red
κ,h and therefore into

(O(X red
U,h)/mκ)

red. We record this discussion in the following convenient form:

Lemma 5.4.1. Let (U, h) be a slope datum and let m be a maximal ideal of O(X red
U,h). Then there exists an

n-dimensional continuous determinant D of GF,S with values in O(X red
U,h)/m such that D(1− X Frobv)=

Pv(X) for all v /∈ S.

Proof. This follows from the discussion above since the map SpecO(X red
U,h)→ SpecO(U) sends maximal

ideals to maximal ideals (the map is finite). �

Before we can glue we need some preparations. Let A be a reduced Zp-algebra which is finite
and free as a Zp-module; we equip it with the p-adic topology. Consider the adic space Z an

= A1
San ,

where S=Spa(A[[X1, . . . , Xd ]], A[[X1, . . . , Xd ]]); here A[[X1, . . . , Xd ]] carries the (p, X1, . . . , Xd)-adic
topology. Fix an index i ∈ {1, . . . , d}. Let T be a coordinate on A1

San . We are interested in the open
affinoid subsets Vm = {|pm

|, |Xm
1 |, . . . , |X

m
d | ≤ |X i | 6= 0, |Xm

i T | ≤ 1} of Z an for m ∈ Z≥1. Note that the
union of the Vm is the locus V = {|X i | 6= 0} ⊆ Z an. The ring O(Vm) has a ring of definition

Rm = A[[X1, . . . , Xd ]]

〈
pm

X i
,

Xm
1

X i
, . . . ,

Xm
d

X i

〉
〈Xm

i T 〉
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(with the X i -adic topology), and we have natural maps Rm+1→ Rm for all m. Note that O(Vm)= Rm[1/X i ]

and that O+(Vm) is the integral closure of Rm in O(Vm). By Theorem A.5 (and its proof), in fact we have
O+(Vm)=O(Vm)

◦ and O(Vm)
◦ is a finite Rm-algebra.

Lemma 5.4.2. The image of Rm+1 in Rm/Xn
i is finite for all m and n. More generally, if M is a finitely

generated Rm+1-module, then the image of M in M ⊗Rm+1 Rm/Xn
i is finite.

Proof. Fix m and n. We start with the first assertion. It suffices to check that the kernel contains the ideal

I =
(

pmn, Xmn
1 , . . . , Xmn

d ,

(
pm+1

X i

)mn

,

(
Xm+1

1

X i

)mn

, . . . ,

(
Xm+1

d

X i

)mn

, (Xm+1
i T )n

)
since it’s straightforward to check that Rm+1/I is finite. It’s also straightforward to check that the given
generators of I are in the kernel. This finishes the (sketch of) proof of the first assertion. For the second,
there is an integer q ≥ 0 and a surjection Rq

m+1 � M of Rm+1-modules, which gives us a commuting
diagram

Rq
m+1

//

��

Rq
m/Xn

i

��

M // M ⊗Rm+1 Rm/Xn
i

where the vertical maps are surjections, and the second assertion then follows from the first. �

Proposition 5.4.3. With notation as above, let Y → V = {|X i | 6= 0} ⊂ Z an be a finite morphism of adic
spaces, and assume that Y is reduced. Then O+(Y ) is compact.

Proof. Write Ym for the pullback of Vm ; these form an increasing cover of Y consisting of open affinoids.
Since Ym → Vm is finite and O+(Vm) = O(Vm)

◦ we know that O+(Ym) is integral over O(Vm)
◦ (by

definition of a finite morphism). Since O(Ym) is reduced and O(Vm)
◦ is Nagata (it is finite over Rm , which

is Nagata by the proof of Theorem A.5) it follows that O+(Ym) is finite over O(Vm)
◦. In particular, O+(Ym)

is finite over Rm , and hence Noetherian. We may also deduce from Lemma A.2 that O+(Ym)=O(Ym)
◦.

For any n the map O+(Ym+1)→ O+(Ym)/Xn
i factors through O+(Ym+1)⊗Rm+1 Rm/Xn

i and hence
the image is finite by Lemma 5.4.2. It follows that O+(Ym+1), when equipped with the weak topology
with respect to the map O+(Ym+1)→ O+(Ym), is compact. We deduce that O+(Y )= lim

←−−m O+(Ym) is
compact, as desired. �

Corollary 5.4.4. Assume that X→ Z an is a finite morphism of adic spaces, with X reduced. Then O+(X)
is compact.

Proof. For each i ∈ {1, . . . , d} consider the locus Zi ={|X i | 6= 0}⊆ Z an (i.e., what was previously denoted
by V ) and set Z0 = {|p| 6= 0}. Let X i , for i ∈ {0, . . . , d}, denote the corresponding pullbacks to X. Then
we have a strict inclusion O+(X)⊆

∏d
i=0 O

+(X i ) with closed image and the O+(X i ) are compact (for
i = 1, . . . , d this is Proposition 5.4.3 and for i = 0 this is [Bellaïche and Chenevier 2009, Lemma 7.2.11];
note that X0 is nested in the terminology of that paper), so O+(X) is compact as well. �
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We may then prove the main result of this section.

Theorem 5.4.5. There is an n-dimensional continuous determinant D of GF,S with values in O+(X red)

such that
D(1− X Frobv)= Pv(X)

for all v /∈ S.

Proof. Fix a collection {(U, h)} of slope data such that the X red
U,h cover X red. We then have injections

O+(X red) ↪→
∏
(U,h)

O(X red
U,h) ↪→

∏
(U,h)

∏
m

O(X red
U,h)/m,

where the m range over all maximal ideals of O(X red
U,h). Note that we have an injection O(X red

U,h) ↪→∏
m O(X red

U,h)/m by Lemma A.1, so the second morphism really is an injection. Then note that O+(X red)

is compact; since X red is finite over Spa(Zp[[T0]],Zp[[T0]])
an
×A1 this follows from Corollary 5.4.4. To

see that Zp[[T0]] is of the form A[[X1, . . . , Xd ]], we write T0 ∼= T tor
0 × T free

0 , where T tor
0 is the torsion

subgroup of T0 (which is finitely generated) and T free
0
∼= Z

dim T0
p is a free complement (see, e.g., [Neukirch

1999, Proposition II.5.7]). Set A = Zp[T tor
0 ]; then

Zp[[T0]] ∼= A⊗Zp Zp[[T free
0 ]]
∼= A[[X1, . . . , Xd ]].

Thus we may glue the determinants from Lemma 5.4.1 into the desired determinant using [Chenevier
2014, Example 2.32]. �

6. The Coleman–Mazur eigencurve

In this section we give a short discussion of the special case of the Coleman–Mazur eigencurve and the
relationship between our work and that of Andreatta, Iovita and Pilloni [Andreatta et al. 2018] and Liu,
Wan and Xiao [Liu et al. 2017].

6.1. The case G = GL2/Q. Let us consider the special case G = GL2/Q. We begin by fixing choices of
groups and Hecke algebras/operators. Let B be the upper triangular Borel, I the corresponding Iwahori
and T the diagonal torus. We use the element t =

(1
0

0
p

)
∈6cpt; the corresponding Hecke operator is the

Up-operator. We choose the tame level

K1(N )=
{

g ∈ GL2(Ẑ
p)

∣∣∣∣ g ≡
(
∗ ∗

0 1

)
mod N

}
,

with N ∈ Z≥5 prime to p. Put

1` =

{
GL2(Q`) if ` -N ,
GL2(Z`) if ` | N.

With these choices, everything else is determined and we use the notation of the main part of the paper.
In this case, overconvergent modular symbols were first constructed in [Stevens 1994], and the

corresponding eigencurve was constructed and shown to agree with the Coleman–Mazur eigencurve
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in [Bellaïche 2010]. Stevens and Bellaïche worked with the compactly supported cohomology H 1
c ,

which admits a very explicit description in this case (it is given by the functor denoted by Symb in
[Bellaïche 2010; Stevens 1994]). Ordinary cohomology was first considered in [Hansen 2017]. For
ordinary cohomology, one has

H∗(K ,Dκ)= H 1(K ,Dκ)

for all weights κ , upon noting that the H i vanish automatically for all i ≥ 2 and that H 0 vanishes by (a
simpler version of) the argument in the proof of [Chojecki et al. 2017, Lemma 5.4]. A consequence is the
following lemma:

Lemma 6.1.1. Let κ : T0→ R× be a weight, and assume that Fκ has a slope ≤ h-factorization for some
h ∈Q≥0 (slopes with respect to some multiplicative pseudouniformizer $ ∈ R). Then H 1(K ,Dκ)≤h is a
finite projective R-module and is compatible with arbitrary base change.

Proof. Let f : R → S be a continuous homomorphism of complete Tate rings and equip S with a
Banach–Tate Zp-algebra norm such that f ($) is a multiplicative pseudouniformizer. Put κS = f ◦ κ . By
the vanishing of the H i for i 6= 1 the Tor-spectral sequence collapses and gives us that

H 1(K ,Dκ)≤h ⊗R S = H 1(K ,DκS )≤h,

TorR
1 (H

1(K ,Dκ)≤h, S)= 0.

The first line is compatibility with base change. Putting S= R/J for an arbitrary ideal J ⊆ R (automatically
closed) we see from the second line that H 1(K ,Dκ)≤h is a finite flat R-module, and hence is finite
projective. �

If κ : T0→ R× is a weight, we write κi , i = 1, 2, for the characters Z×p → R× defined by

κ

((
a 0
0 d

))
= κ1(a)κ2(d)

and we identify N 1 with pZp via
( 1

x
0
1

)
7→ x . If we consider the eigenvariety X rig

=X
rig

G constructed
in [Hansen 2017], then it is equidimensional of dimension 2 by Proposition B.1 of that paper since
H∗ = H 1. This object is usually referred to as the “eigensurface”. If we instead do the eigenvariety
construction over the part W rig

0 of weight space where κ2 = 1, we obtain an eigenvariety that turns out
to equal the Coleman–Mazur eigencurve; it is in particular reduced, equidimensional of dimension 1,
and flat over W rig

0 . Let us denote this eigenvariety by E rig; the properties of E rig stated in the previous
sentence are presumably well known to experts but we will give a brief sketch of the proofs below. To
begin with, it is equidimensional of dimension 1 (by the same argument as above for X rig). For weights
with κ2 = 1 we conflate κ and κ1, and we may write the action on Aκ explicitly as

( f.γ )(x)= κ(a+ bx) f
(

c+ dx
a+ bx

)
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for γ =
(a

c
b
d

)
∈ M2(Zp) such that a ∈ Z×p, c ∈ pZp (this defines the submonoid 1p,0 of 1p generated by

I and t), and x ∈ pZp [Hansen 2017, §2.2]. Using the anti-involution(
a b
c d

)
7→

(
a c/p
pb d

)
on 1p,0 and rescaling f by p−1 in the argument to a function on Zp one sees this right action corresponds
to the left action defined in [Stevens 1994]. To prove that E rig is reduced one uses a criterion of [Chenevier
2005, Proposition 3.9]; see [Bellaïche 2010, Theorem IV.2.1] for the analogous statement for the H 1

c .
Unfortunately, the notion of a “classical structure” in [Chenevier 2005] is based on the input data for the
eigenvariety construction in [Buzzard 2007] and is therefore not directly applicable to the situation in
[Hansen 2017]. Let us state a version of [Chenevier 2005, Proposition 3.9] applicable to the situation in
[Hansen 2017, Definition 4.2.1]. We use the notation and terminology of [Hansen 2017, §4–5] freely; in
particular we use the language of classical rigid geometry for this proposition.

Proposition 6.1.2. Let O = (W ,Z ,M , T , ψ) be an eigenvariety datum. If (U, h) is a slope datum,
assume that M (ZU,h) is a projective O(U )-module. Assume moreover that there exists a very Zariski
dense set W cl

⊆ W such that, if (U, h) is a slope datum, there is a Zariski open and dense subset WU,h of
W cl
∩U such that M (ZU,h)x is a semisimple T [T−1

]-module. Here T is the parameter on A1
W , which

naturally acts invertibly on M (ZU,h), and the set W cl is given the Zariski topology. Then the eigenvariety
XO is reduced.

The proof is virtually identical to that of [Chenevier 2005, Proposition 3.9]; we omit it. Using this,
one proves that E rig is reduced in the same way as in the proof of [Bellaïche 2010, Theorem IV.2.1(i)],
using the control theorem of Stevens (see [Hansen 2017, Theorem 3.2.5]); recall that our Hecke algebra
T(1p, K p) contains no Hecke operators at primes dividing N. That E rig is equal to the Coleman–Mazur
eigencurve is then proved using the control theorems of Coleman and Stevens and the Eichler–Shimura
isomorphism together with [Hansen 2017, Theorem 5.1.2] (this type of argument is well known to experts;
see for example the proof of [Bellaïche 2010, Theorem IV.2.1(i)]). The argument for flatness will be
given below. This finishes our review of the basic properties of E rig.

Let us now return to the constructions of this paper. Our eigenvariety construction gives an extension E

of E rig defined over the locus W0 ⊆W where κ2 = 1. Another such extension E ′ was constructed by
Andreatta, Iovita and Pilloni [Andreatta et al. 2018]. Note that W0 is naturally the analytic locus of the
formal weight space W0 with κ2 = 1. We have

W0 ∼= Spa(Zp[[Z
×

p ]],Zp[[Z
×

p ]]).

When p 6= 2, Zp[[Z
×
p ]] is a regular ring. When p = 2 this is no longer the case; we have Z2[[Z

×

2 ]]
∼=

Z2[Z/2][[X ]] and Z2[Z/2] is not regular. We will instead work over the normalization A of Z2[[Z
×

2 ]],
which is isomorphic to Z2[[X ]]×Z2[[X ]]. The normalization map

Z2[Z/2][[X ]] → Z2[[X ]]×Z2[[X ]]
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is explicitly given by ∑
n≥0

(an + bng)Xn
7→

(∑
n≥0

(an + bn)Xn,
∑
n≥0

(an − bn)Xn
)
,

where an, bn ∈Z2 and g ∈Z/2 is the nontrivial element. Using this map we get a weight into A, and we let
W̃0= Spa(A, A) and put W̃0= W̃an

0 . We remark that W̃ rig
0
∼=W rig

0 canonically via the normalization map.
To make our notation uniform, we set W̃0 =W0 when p 6= 2. We may perform our construction over W̃0,
and one may pull back the Banach modules that are used to construct the eigencurve in [Andreatta et al.
2018] to W̃0, and construct the eigencurve over W̃0 instead. Let us denote the corresponding eigenvarieties
by Ẽ and Ẽ

′
, though we hasten to remark that these should not be thought of as normalizations of E

and E ′.

Lemma 6.1.3. Let U ⊂ W̃0 be a connected open affinoid subset such that O(U ) is a Tate ring. Then
O(U) is a Dedekind domain.

Proof. We first show that O(U) is regular of Krull dimension 1. The connected components of W̃0 are iso-
morphic to Spa(Zp[[X ]],Zp[[X ]]) so we may take U to be an open affinoid subset of Spa(Zp[[X ]],Zp[[X ]]).
Let q be a maximal ideal of O(U) and let p be its preimage in A = Zp[[X ]]. By Proposition A.15 the
natural map Ap→O(U)q induces an isomorphism on completions. By Lemma A.13 p defines a closed
point of Spec A \ {(p, X)}. Since A is a regular local ring of dimension 2, it follows that Ap is a regular
local ring of dimension 1, and hence the same is true for O(U)q (since if R is a Noetherian local ring with
completion R̂, then R is regular if and only if R̂ is regular, and dim R = dim R̂). It follows that O(U) is a
product of regular integral domains of dimension 1. Since U is connected O(U) does not contain any
nontrivial idempotents, so O(U) is an integral domain. �

Let (U, h) be a connected slope datum for Ẽ (by which we mean a slope datum for the construction
that produces Ẽ such that U is connected; we will use the terminology “(connected) slope datum for Ẽ

′
”

similarly). Then O(Ẽ U,h) is, by definition, an O(U)-submodule of EndO(U)(H 1(K ,DU )≤h). The latter is
projective by Lemma 6.1.1, so the former is also projective since O(U) is Dedekind. Thus the natural
map Ẽ U,h→ U is finite flat, and hence Ẽ → W̃0 is flat. The same applies to Ẽ

′
.

Now let (U, h) be a slope datum for Ẽ and Ẽ
′
. Let (Ui )i∈I be an open affinoid cover of U rig. Then the

natural map O(U)→
∏

i∈I O(Ui ) is an injection (since U \U rig does not contain any open subset of U)
so tensoring with the finite projective O(U)-module O(Ẽ U,h) we get an injection

O(Ẽ U,h) ↪→

(∏
i∈I

O(Ui )

)
⊗O(U)O(Ẽ U,h)∼=

∏
i∈I

O(Ẽ Ui ,h),

which in particular shows that O(Ẽ U,h) is reduced. The image of O(Ẽ U,h) inside
∏

i∈I O(Ẽ Ui ,h) is equal
to the O(U)-span of the image of T(1p, K p)[Up] in

∏
i∈I O(Ẽ Ui ,h). The same holds replacing Ẽ by Ẽ

′
,

so since we have canonical isomorphisms

O(Ẽ Ui ,h)
∼=O(Ẽ ′Ui ,h),
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we obtain a canonical isomorphism O(Ẽ U,h)∼=O(Ẽ ′U,h), compatible with the way the eigencurves are built.
As a result we have a canonical isomorphism Ẽ ∼= Ẽ

′
extending the canonical isomorphism Ẽ

rig ∼= (Ẽ
′
)rig.

We summarize the discussion above in the following theorem:

Theorem 6.1.4. The eigenvariety Ẽ is reduced and flat over W̃0. Moreover, it is canonically isomorphic
to the eigencurve Ẽ

′
constructed by Andreatta, Iovita and Pilloni [Andreatta et al. 2018].

Remark 6.1.5. In fact, it is possible to show that E and E ′ are isomorphic for all p (i.e., including p= 2),
using the interpolation theorem [Johansson and Newton 2017, Theorem 3.2.1], since both E and E ′ are
reduced with Zariski dense sets of classical points which naturally match up.

Fix a character η : (Z/q)×→ F×p (recall that q = 4 if p = 2 and q = p otherwise). We have a natural
isomorphism Z×p

∼= (Z/q)×× (1+qZp) defined by z 7→ (z̄, z/ω(z̄)), where an overline denotes reduction
modulo q and ω denotes the Teichmüller lift. Let us write 〈z〉 := z/ω(z̄). Then we may define a character
κη : Z

×
p → Zp[[X ]]× by

κη(z)= ω(η(z̄))
∞∑
n=0

(
p−1 log〈z〉

n

)
Xn.

We let κ̄η denote its reduction modulo p. This is a character Z×p → Fp((X))× which we may think of as a
character T0→ Fp((X))× with κ2 = 1. We remark that if p = 2 then η, and hence κ̄η, is unique.

Corollary 6.1.6. There are infinitely many (nonordinary) finite-slope Up-eigenvectors in H 1(K ,Dκ̄η).

Proof. By Corollary 4.2.3, its analogue for Ẽ
′

(which is simpler, and is essentially [Buzzard 2007,
Lemma 5.9]) and Theorem 6.1.4 we see that H 1(K ,Dκ̄η) and the module M†

κ̄η
(N ) of overconvergent

modular forms of weight κ̄η and tame level N constructed in [Andreatta et al. 2018] contain the same
finite-slope systems of Hecke eigenvalues. By [Bergdall and Pollack 2016, Corollary A.1], M†

κ̄η
(N ) has

infinitely many finite-slope Up-eigenvectors, so we are done. �

Remark 6.1.7. It is possible to prove Corollary 6.1.6 directly from [Bergdall and Pollack 2016, Theo-
rem A] (using the observation in the remark following [loc. cit., Corollary A.2]) without any reference to
[Andreatta et al. 2018].

6.2. Estimates for the Newton polygon of Up. In this and the following section we give a short proof of
the estimates obtained in [Liu et al. 2017, Theorem 3.16] for the Newton polygon of Up acting on spaces
of overconvergent automorphic forms for a definite quaternion algebra over Q.

We fix an odd prime p and assume that we are in the setting of Section 3.3. Suppose that N 1 ∼= Zp

and fix a topological generator n̄. Let f be a norm-decreasing R-linear map

f :
t⊕

i=1

Dr
κ→

t⊕
i=1

Dr1/p

κ

and recall that we have a compact inclusion

ι :

t⊕
i=1

Dr1/p

κ ↪→

t⊕
i=1

Dr
κ .
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We set U = ι ◦ f . Then U is a compact endomorphism of M =
⊕t

i=1 D
r
κ . Recall that we have a potential

ON-basis for Dr
κ given by the elements er,α :=$

−n(r,$,α)n̄α for α ∈ Z≥0.
We consider the potential ON-basis for M given by

e1
r,0 = (er,0, 0, . . . , 0), . . . , et

r,0 = (0, . . . , 0, er,0), e1
r,1 = (er,1, 0, . . . , 0), . . . .

Lemma 6.2.1. Assume that there is no x ∈ R with 1< |x |< |$ |−1. Then U maps ei
r,α to a sum

∑
j,β a j

βe j
r,β

with

|a j
β | ≤ |$ |

n(r,$,β)−n(r1/p,$,β).

If we define

λ(0)= 0, λ(i + 1)= λ(i)+ n(r,$, bi/tc)− n(r1/p,$, bi/tc),

the Fredholm series

det(1− T U |M)=
∑
n≥0

cnT n
∈ R{{T }}

satisfies |cn| ≤ |$ |
λ(n).

Proof. We first prove the estimate on the matrix coefficients of U. Apply f to ei
r,α. We get a sum∑

j,β b j
βe j

r1/p,β
, and the fact that f is norm-decreasing is equivalent to

|b j
β | ≤ |$ |

n(r1/p,$,β)−n(r,$,α)r |α|−|β|/p

for all j, β. Since |$ | < |$ |−n(r,$,α)r |α|, |$ |−n(r1/p,$,β)r |β|/p
≤ 1 by construction, we deduce that

|b j
β |< |$ |

−1 for all j, β. By our assumption on R, it follows that |b j
β | ≤ 1 for all j, β. We then have

e j
r1/p,β

=$−n(r1/p,$,β)n̄β =$ n(r,$,β)−n(r1/p,$,β)e j
r,β

so we conclude that
Uei

r,α =
∑
j,β

a j
βe j

r,β,

where a j
β =$

n(r,$,β)−n(r1/p,$,β)b j
β , and therefore

|a j
β | ≤ |$ |

n(r,$,β)−n(r1/p,$,β).

In other words, the i-th row of the matrix for U (we begin indexing rows at i = 0) has entries with
norm ≤ |$ |n(r,$,bi/tc)−n(r1/p,$,bi/tc). We deduce immediately that |cn| ≤ |$ |

λ(n), since cn is an alternating
sum of products of matrix entries coming from n distinct rows [Serre 1962, Proposition 7], and each of
these products has norm ≤ |$ |λ(n). �

6.3. Definite quaternion algebras over Q. As an application of Lemma 6.2.1, we give a new proof of
[Liu et al. 2017, Theorem 3.16]. In this section we assume that p is odd. We need to set up things so that
we can apply the machinery of Sections 3.3 and 4. Let D/Q be a definite quaternion algebra, split at p,
and let G be the reductive group over Q defined by G(R)= (D⊗Q R)×, for Q-algebras R. We fix an
isomorphism Dp ∼= M2(Qp) and henceforth identify Dp with M2(Qp) via this isomorphism. Let GZp be
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the Zp-model for G given by GZp(R) = (M2(Zp)⊗Zp R)× for Zp-algebras R. We let B be the upper
triangular Borel in GZp and let T be the diagonal maximal torus.

Fix a tame level K p
=
∏

l 6=p Kl with Kl ⊂ G(Ql) compact open, let K = K p I, and assume that K is
neat.

Fix a character η : Z×p → F×p and let 3 = Zp[[Z
×
p ]]. We have an induced map πη : 3→ Fp and we

denote its kernel by mη. We write 3η for the localization 3mη . We have a universal character

[ · ]η : Z
×

p →3×η .

We give the complete local ring 3η the mη-adic topology. Fixing a topological generator γ of 1+ pZp

gives an isomorphism
Zp[[X ]] →3η, X 7→ [γ ]η− 1.

Let Wη = Spa(3η,3η), denote its analytic locus by Wη and let U1 ⊂Wη be the rational subdomain
of Wη

U1 = {|p| ≤ |X | 6= 0}.

Pulling back U1 to the open unit disc W rig
η gives the “boundary annulus” |X |p ≥ p−1.

We let Rη =O(U1). More explicitly, Rη = R◦η[1/X ], where R◦η is a ring of definition for Rη, given by
the X -adic completion of Zp[[X ]][p/X ], with the X -adic topology.

Even more explicitly, we can describe the elements of R◦η as formal power series{∑
n∈Z

an Xn
∣∣∣∣ an ∈ Zp, |an|p p−n

≤ 1, |an|p p−n
→ 0 as n→−∞

}
X is a topologically nilpotent unit in Rη and so equipping Rη with the norm

|r | = inf{p−n
| r ∈ Xn R◦η, n ∈ Z}

makes Rη into a Banach–Tate Zp-algebra. This norm has the explicit description∣∣∣∣∑
n∈Z

an Xn
∣∣∣∣= sup{|an|p p−n

}. (6.3.1)

Note that if r ∈3η, we have |r | = inf{p−n
| r ∈mn

η, n ∈ Z}.
We now define a continuous character

κη : T0→ R×η
by

κη

(
a 0
0 d

)
= [a]η.

Lemma 6.3.1. The norm we have defined on Rη is adapted to κη. Moreover, for t ∈ T1 we have
|κη(t)− 1| ≤ 1/p.

Proof. If t ∈ T1 we have κ(t)−1= (1+X)α−1=
∑

n≥1
(
α
n

)
Xn for some α ∈Zp. So |κη(t)−1| ≤ 1/p. �
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We can now apply the theory of Section 4 to the space of overconvergent automorphic forms
H 0(K ,D1/p

κη ). Note that we have the concrete description

H 0(K ,D1/p
κη
)= { f : D×\(D⊗A f )×/K p

→ D1/p
κη
| f (gk)= k−1 f (g) for k ∈ I }

and H 0(K ,D1/p
κη ) is a Banach Rη-module with norm | f | = supg∈(D⊗A f )×‖ f (g)‖1/p.

In particular, we consider the action on H 0(K ,D1/p
κη ) of the Hecke operator Uκη attached to the element( 1

0
0
p

)
∈6cpt. As a simple consequence of our results, we obtain the following theorem, which is essentially

due to Liu–Wan–Xiao — compare with [Liu et al. 2017, Theorem 3.16, §5.4].

Theorem 6.3.2. The Hecke operator Uκη is compact. Consider the Fredholm series

Fκη(T )=
∑
n≥0

cnT n
= det(1− T Uκη |H

0(K ,D1/p
κη
)).

Let t = |D×\(D⊗A f )×/K |. We have cn ∈3η and moreover we have

cn ∈m
λ(n)
η for n ∈ Z≥0,

where λ(0)= 0, λ(1), . . . is a sequence of integers determined by

λ(0)= 0, λ(i + 1)= λ(i)+bi/tc− bi/ptc.

Proof. Compactness of Uκη follows from Corollary 3.3.10. The fact that cn ∈ 3η follows from
Corollary 4.1.5, since Fκη(T ) extends to a Fredholm series over Wη, and O(Wη)=3η.

The rest of the theorem follows from Lemma 6.2.1 (note that the norm on Rη satisfies the assump-
tion of that lemma), using the fact that if we choose representatives g1, . . . , gt for the double cosets
D×\(D⊗A f )×/K and r ∈ [p−1, 1) we have an isomorphism of potentially ON-able Rη-modules:

H 0(K ,Dr
κη
)∼=

t⊕
i=1

Dr
κη
, f 7→ ( f (gi ))

t
i=1.

We take $ = X, and compute that

n(p−1, X, bi/tc)= bi/tc,

n(p−1/p, X, bi/tc)= b1/pbi/tcc = bi/ptc. �

As in Section 6.1, our eigenvariety construction, applied to the modules H 0(K ,Dr
κ) with κ2 = 1, gives

an eigenvariety Eη which is flat over Wη. The open subspace E
rig
η defined by |p| 6= 0 is the eigenvariety

constructed in [Buzzard 2004].
We end this section with our interpretation of [Liu et al. 2017, Theorems 1.3 and 1.5]. First we need

some extra notation. For m ≤ n positive integers we define

Um/n = {|pm
| ≤ |Xn

| 6= 0} ⊆Wη.

We set U = U1.
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For a real number α ∈ (0, 1] we denote by W>p−α
η the open subspace of Wη obtained as the union of

open affinoids
W>p−α
η =

⋃
m/n<α

Um/n.

Note that X is a topologically nilpotent unit in O(Um/n) for all m, n. We denote the pullback of Eη to
W>p−α
η by E

>p−α
η . The eigenvariety Eη comes equipped with a map to the spectral variety Z(Fκη), and

therefore it comes equipped with a map to A1
U . For h = m/n ∈Q with m ∈ Z and n ∈ Z≥1 we define an

affinoid subspace BU,=h ⊂ A1
U by

BU,=h = {|T n
| = |X−m

|}.

Similarly, if h = m/n ≤ h′ = m′/n are rational numbers, we define

BU,[h,h′] = {|X−m
| ≤ |T n

| ≤ |X−m′
|}.

Lemma 6.3.3. Let L/Qp be a finite extension and let x ∈ L with |x |p = p−α, where 0< α ≤ 1. Consider
the closed immersion ι : Spa(L ,OL) ↪→ U induced by the continuous Zp-algebra map Rη→ L sending
X to x. Let Bx,=h be the pullback of BU,=h along ι. Then Bx,=h ↪→ A1

L is the affinoid open defined by

Bx,=h = {|T |p = p−αh
}.

Proof. The affinoid Bx,=h is given by {|T n
| = |x−m

| = |pαm
|} ⊂ A1

L . �

Theorem 6.3.4 [Liu et al. 2017]. The space E
>p−1

η is a disjoint countable union of adic spaces finite and
flat over W>p−1

η .
Moreover, there is an explicit α depending only on K p, with 0< α < 1, such that

E >p−α
η =

∐
i≥0

Xη,i

with Xη,i finite flat over W>p−α
η and each piece Xη,i of the eigenvariety has constant slope, in the sense

that each map Xη,i → A1
U factors through the affinoid subspace BU,=hi ⊂ A1

U for some hi ∈ Q≥0. In
particular, if we measure slopes on X

rig
η,i with the usual p-adic valuation, then the slope of a point in X

rig
η,i

is given by hivp(T ).

Proof. This follows from Theorems 1.3, 1.5 and Remark 3.25 of [Liu et al. 2017]. Remark 3.25 shows
that, after restricting to W>p−1

η , the Fredholm series Fκη factorizes as a countable product of multiplicative
polynomials

∏
i≥0 Pi , with each finite product

∏N
i≥0 Pi a factor in a slope factorization over every affinoid

subspace of W>p−1

η . This establishes the claim about E
>p−1

η . Theorem 1.5 shows moreover that (for
some explicit α) the restriction of Fκη to W>p−α

η factorizes as
∏

i≥0 Qi , such that the specialization of
Qi at every classical rigid analytic point of W>p−α

η has constant slope equal to hi for some hi ∈ Q≥0

(independent of the specialization). We obtain a decomposition of Z(Fκη) as a disjoint union of spaces Zi ,
finite flat over W>p−α

η , such that every classical rigid analytic point of Zi is contained in BU,=hi . The
space Xη,i is defined to be the inverse image of Zi in E

>p−α
η . It now remains to show that every point
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of Zi is contained in BU,=hi . First we check this for rank-1 points: a rank-1 point of Zi which is not in
BU,=hi is contained in BU,[h,h′] for some interval [h, h′] which does not contain hi . But then BU,[h,h′]∩ Zi

is a nonempty open subset in Zi which contains no classical rigid analytic point, which is impossible
since Zi is finite flat over W>p−α

η (in particular the map Zi →W>p−α
η is open). Let V be an affinoid

open in W>p−α
η . Then Zi |V ∩BU,=hi is an affinoid open in Zi |V such that the complement contains no

rank-1 point. We have Zi |V = Spa(A, A◦) for some Tate ring A with a Noetherian ring of definition. So
[Huber 1993, Lemma 3.4] (see the proof of Corollary 4.2 of that paper) implies that rank-1 points are
dense in the constructible topology of Spa(A, A◦) and we deduce that Zi |V ∩BU,=hi = Zi |V . Therefore
Zi is contained in BU,=hi , as desired. The final sentence of the theorem follows from Lemma 6.3.3. �

Note that [Liu et al. 2017] proves moreover that the slopes appearing in the above theorem (with
multiplicities) are given by a finite union of arithmetic progressions.

Appendix: Some algebraic properties of Tate rings

In this section we prove some properties of the kinds of Tate rings and adic spaces that we need. We start
with a ring-theoretic lemma.

Lemma A.1. Let R be a complete Tate ring with a Noetherian ring of definition R0. Then R is Jacobson.

Proof. Let $ ∈ R0 be a topologically nilpotent unit in R. Because R0 is a Zariski ring when equipped
with its $ -adic topology (since it is complete), Spec R0 \ {$ = 0} is a Jacobson scheme by [EGA IV3

1966, (10.5.7)]. But Spec R0 \ {$ = 0} = Spec R, so R is Jacobson as desired. �

We record another simple lemma that will prove to be useful.

Lemma A.2. Let R be a complete Tate ring with a Noetherian ring of definition R0. If S ⊆ R is an open
and bounded subring (i.e., a ring of definition) containing R0, then S is a finitely generated R0-module,
hence Noetherian, and integral over R0. Moreover, R◦ is the integral closure of R0 in R.

Proof. Pick a topologically nilpotent unit$ ∈ R contained in R0. Since S is bounded we have S⊆$−N R0

for some N, and hence S is an R0-submodule of the cyclic R0-module $−N R0. The lemma now follows
since R0 is Noetherian. For the last assertion, first note that the integral closure is contained in R◦. Since
R◦ is the union of all open and bounded subrings and any two open bounded subrings are contained in a
third, the assertion follows from the first part. �

One consequence of the above lemma is a version for Tate rings (with our Noetherian hypothesis) of
[Bosch et al. 1984, 6.3.4/Proposition 1]:

Lemma A.3. Let R be a complete Tate ring with a Noetherian ring of definition. Let S be a finite R-
algebra, equipped with the natural R-module topology. Then S is a complete Tate ring with a Noetherian
ring of definition.

Moreover, the integral closure of R◦ in S is equal to S◦. In particular, the morphism (R, R◦)→ (S, S◦)
is a finite morphism of affinoid rings (see [Huber 1996, 1.4.2]) and Spa(S, S◦)→ Spa(R, R◦) is a finite
morphism of adic spaces (see [loc. cit., 1.4.4]).
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Proof. We let R0 denote a Noetherian ring of definition for R, let $ denote a topologically nilpotent unit
in R and let s1, . . . , sn denote R-module generators of S. Each si is integral over R, and multiplying by
a large enough power of $ we may assume that each si is integral over R0. Let S0 be the subring of
S generated by R0 and s1, . . . , sn . Now S0 is a finite R0-module and is in particular a Noetherian ring.
Moreover S0 with the $ -adic topology is an open subring of S. In particular, S is an f-adic topological
ring, and since $ is a topologically nilpotent unit we see that S is a Tate ring with a Noetherian ring of
definition. Completeness of S follows from completeness of finitely generated modules over Noetherian
adic rings (this is [Huber 1994, Lemma 2.3(ii)]).

Finally we show that the integral closure R◦ in S is equal to S◦. It is clear from the definition of the
topology on S that R◦ maps to S◦ so the integral closure of R◦ in S is contained in S◦. Conversely, by
Lemma A.2, S◦ is the integral closure of S0 in S. Since S0 is integral over R0, we see that S◦ is integral
over R0, and therefore it is integral over R◦. �

Next we recall the notion of uniformity. If R is a normed ring, then the spectral seminorm |−|sp on R is
defined by |r |sp= limn→∞ |rn

|
1/n. It is well known that this limit exists and defines a power-multiplicative

seminorm. Whenever it is a norm, we will refer to it as the spectral norm on R. Conversely, if we mention
“the spectral norm of R”, we are implicitly stating (or assuming) that the spectral seminorm is a norm.

Definition A.4. Let R be a complete Tate ring. We say that R is uniform if the set of power-bounded
elements R◦ is bounded. We say that R is stably uniform if any rational localization of R is also uniform.
If R is a Banach–Tate ring, we say that R is uniform if the norm is power-multiplicative.

Note that, if R is Banach–Tate ring whose underlying complete Tate ring is uniform, then the given
norm on R is equivalent to the corresponding spectral norm, which is power-multiplicative. In this case,
[Berkovich 1990, Theorem 1.3] says that the spectral norm is equal to the Gelfand norm supx∈M(R) |− |x .
If R is in addition stably uniform, then if $ ∈ R is a multiplicative pseudouniformizer and U ⊆ X =
Spa(R, R+) is a rational subdomain, we may equate M(OX (U )) with the rank-1 points in U using $
and equip OX (U ) with the corresponding Gelfand norm.

We may extend the definition of stable uniformity to arbitrary analytic adic spaces, i.e., those that
are locally the adic spectra of complete Tate rings. We say that such an X is stably uniform if there is
a cover of open affinoid subsets Ui ⊆ X such that OX (U ) is stably uniform. We remark that if R is a
complete sheafy Tate ring such that Spa(R, R+) is stably uniform, then R is stably uniform (this is a
short argument; see [Kedlaya and Liu 2015, Remark 2.8.12]). When R has a Noetherian ring of definition,
many naturally occurring complete Tate rings are stably uniform. Below we will prove some results in
this direction.

Theorem A.5. Let A be a reduced quasiexcellent ring. Let I be an ideal of A and give A the I -adic
topology. If U is a rational subdomain of X = Spa(A, A) and OX (U ) is Tate, then OX (U ) is uniform. In
other words, the analytic locus X an

⊆ X is stably uniform. We also have O+X (U )=OX (U )◦.
Moreover, if U ⊂ X an is an arbitrary open affinoid then O+X an(U )=OX an(U )◦ and OX an(U )◦ is bounded

in OX an(U ).
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Proof. Let f1, . . . , fn, g ∈ A such that f1, . . . , fn generate an open ideal and let

U = {| f1|, . . . , | fn| ≤ |g| 6= 0}.

Put R = OX (U ); recall that R may be constructed as completion of the f-adic ring T = A[1/g] with
ring of definition T0 = A[ f1/g, . . . , fn/g] ⊆ T and ideal of definition J = I [ f1/g, . . . , fn/g] ⊆ T0. Let
R0 be the J -adic completion of T0; this is a ring of definition of R, with ideal of definition J R0. Since
A is reduced, so is T and hence T0; moreover T0 is quasiexcellent since it is finitely generated over A.
Recall that a Noetherian ring is reduced if and only if Serre’s conditions R0 and S1 hold (we apologize
for the unfortunate clash of notations). By [EGA IV2 1965, (7.8.3.1)], R0 inherits these properties from
T0 and is therefore reduced. Moreover, T0, and hence T0/J = R0/J R0, are Nagata (since they are finitely
generated over A, which is quasiexcellent, and hence Nagata). By [Marot 1975, Proposition 2.3], R0 is
Nagata (note that there is a trivial misprint in the reference).

Pick a topologically nilpotent unit $ ∈ R (recall that R is Tate by assumption); without loss of
generality assume $ ∈ R0. Then R = R0[1/$ ], so R is contained in the total ring of fractions Q(R0)

of R0. Since R0 is reduced and Nagata, it follows that the integral closure R′ of R0 in R is a finitely
generated R0-module, and hence is bounded. Now R′ = R◦ by Lemma A.2, so R◦ is bounded as desired.

For the assertion about O+X (U ), let T+ denote the integral closure of T0 in T. By definition, the
completion of T+ is R+ :=O+X (U ). In particular, R+ contains R0 and the assertion now follows from
Lemma A.2.

To check the assertion about an open affinoid U = Spa(OX (U ),O+X (U )), note that U has a finite cover
by Tate rational subdomains (Ui )i∈I of X. Since the maps O(U )→O(Ui ) are bounded (the Ui are also
rational subdomains of U ), the strict embedding

O(U ) ↪→
∏
i∈I

O(Ui )

induces an embedding

O(U )◦ ↪→O(U )∩
∏
i∈I

O(Ui )
◦

but the right-hand side equals

O(U )∩
∏
i∈I

O+(Ui )=O+(U )

by the first part of the theorem, so we are done because by definition O+(U )⊆O(U )◦, which implies that
we have equality. Finally, the boundedness of OX an(U )◦ follows from the boundedness of the O(Ui )

◦. �

Corollary A.6. Let O be a complete discrete valuation ring and let A be a reduced complete Noetherian
adic ring formally of finite type over O, i.e., such that A/A◦◦ is a finitely generated O-algebra. Then
the analytic locus X an

⊆ X is stably uniform. Moreover, if U ⊂ X an is an open affinoid subspace then
O+X an(U )=OX an(U )◦ and OX an(U )◦ is bounded in OX an(U ).
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Proof. A is excellent by [Valabrega 1975, Proposition 7; 1976, Theorem 9] (see [Conrad 1999], near the
end of the Introduction). Thus, Theorem A.5 applies. �

We also note that the proof of Theorem A.5 applies essentially verbatim to prove the following similar
result.

Theorem A.7. Let R be a complete Tate ring and assume that R has a ring of definition R0 which is
quasiexcellent and reduced. Then R is stably uniform. Moreover, if X = Spa(R, R◦), and U ⊂ X is
an open affinoid subspace, then O+X (U ) = OX (U )◦ and OX (U )◦ is bounded in OX (U ). In particular,
OX (U ) is reduced.

This theorem also allows us to develop the theory of the nilreduction of an adic space. We only give a
sketch here — one can check that everything in [Bosch et al. 1984, §9.5.1] works in our setting.

Definition A.8. Let X be an adic space. Define the nilradical radOX to be the sheaf associated to the
presheaf U 7→ rad(OX (U )), where rad(OX (U )) is the nilradical of the ring OX (U ).

Proposition A.9. Let R be a complete Tate ring and assume that R has a ring of definition R0 which is
quasiexcellent. Let X = Spa(R, R◦). Then radOX ⊂OX is a coherent OX -ideal, associated to the ideal
rad(R) of R.

More generally, if X is an adic space which is locally of the form Spa(R, R◦) where R is a complete
Tate ring with a quasiexcellent ring of definition, then radOX is a coherent OX -ideal.

Proof. The key point is that if U ⊂ X = Spa(R, R◦) is a rational subdomain, then

Spa
(
OX (U )/ rad(R), (OX (U )/ rad(R))◦

)
→ Spa(Rred, (Rred)◦)

is a rational subdomain, so Theorem A.7 implies that OX (U )/ rad(R) is reduced, which implies that
rad(OX (U ))= rad(R)OX (U ). �

Definition A.10. Let X be an adic space which is locally of the form Spa(R, R◦), where R is a complete
Tate ring with a quasiexcellent ring of definition. Then we define X red to be the closed subspace of X cut
out by radOX (see [Huber 1996, 1.4]).

In this paper the analytic adic spaces encountered will locally be of the form Spa(R, R◦), where R is a
complete Tate ring with a ring of definition R0 which is formally of finite type over Zp. We will need
a few properties of these rings, all of which follow from the material in [Abbes 2010]. We recall the
following definition from that paper, specialized to our Noetherian situation.

Definition A.11. A Noetherian adic ring B is called a 1-valuative order if it is an integral domain which
is local of Krull dimension 1, and has no J -torsion, where J is an ideal of definition (this is independent
of the choice of ideal of definition).

This is [Abbes 2010, Definition 1.11.1], except that we demand that B is Noetherian. If B is a
1-valuative order, then the integral closure B in L = Frac(B) is finite over B and is a complete discrete
valuation ring, so L is a complete discrete valuation field [loc. cit., Proposition 1.11.4]. If A is any



154 Christian Johansson and James Newton

Noetherian adic ring with an ideal of definition I and p ∈ Spec A, then A/p is a 1-valuative order if and
only if p is a closed point in Spec A \ V (I ) [loc. cit., Proposition 1.11.8].

Lemma A.12. Let R be a complete Tate ring with a ring of definition R0 which is formally of finite type
over Zp, and let m⊆ R be a maximal ideal. Then R/m is a local field.

Proof. Let p = R0 ∩m and let $ ∈ R0 be a topologically nilpotent unit. Then p is a closed point in
Spec R0 \V (($))= Spec R, so R0/p is a 1-valuative order and hence its fraction field R/m is a complete
discrete valuation field. It remains to prove that the residue field is finite. For this, it suffices to show
that the residue field of the local ring R0/p is finite since the integral closure of R0/p in R/m is finite
over R0/p. Pick an adic surjection A = Zp[[T1, . . . , Tm]]〈X1, . . . , Xn〉� R0 for some m, n ∈ Z≥0. The
maximal ideal of R0/p is open and so corresponds to an open maximal ideal of A, and hence to a maximal
ideal of Fp[X1, . . . , Xn] in a way that preserves residue fields. It follows that R0/p is finite as desired. �

Lemma A.13. Let f : A→ B be a morphism of topologically finite type between Noetherian adic rings.
Let I be an ideal of definition of A and assume that A/I is Jacobson. Let J = I B; this is an ideal of
definition of B. If q ∈ Spec B \V (J ) is a closed point, then p= f −1(q) is a closed point in Spec A\V (I ).

Proof. The morphism A→ B/q is topologically of finite type and B/q is a 1-valuative order, so by
[Abbes 2010, Proposition 1.11.2] A→ B/q is finite. It is then easy to check that this forces A/p to be a
1-valuative order as well, and hence p to be closed in Spec A \ V (I ) by [loc. cit., Proposition 1.11.8]. �

Corollary A.14. Let g : R→ S be a continuous morphism between two complete Tate rings with a ring
of definition that is formally of finite type over Zp. Then g is topologically of finite type5 and pulls back
maximal ideals to maximal ideals.

Proof. Choose a ring of definition R0 for R which is formally of finite type over Zp. By [Huber 1993,
Proposition 1.10] g is adic, and therefore g(R0) is contained in a ring of definition for S. Since any two
rings of definition are contained in another, we can find a ring of definition S0 for S such that g(R0)⊆ S0

and S0 contains a ring of definition S1 which is formally of finite type over Zp. It follows from Lemma A.2
that S0 is finite over S1, and hence S0 is also formally of finite type over Zp.

Let $ ∈ R0 be a topologically nilpotent unit in R. Then I = $ R0 and J = g($)S0 are ideals of
definition, and R0/I → S0/J is of finite type. Therefore R0→ S0 is topologically of finite type; hence
so is g. This proves the first assertion. The second then follows from Lemma A.13, since maximal
ideals of R and S correspond to closed points in Spec R = Spec R0 \ V (I ) and Spec S = Spec S0 \ V (J ))
respectively. �

Proposition A.15. Let S be a complete Tate ring with a Noetherian ring of definition S0 and a topologi-
cally nilpotent unit π ∈ S0 such that S0/π S0 is Jacobson:

(1) Let A be a Noetherian adic ring with an ideal of definition I such that A/I is Jacobson. Let f : A→ S
be a continuous morphism such that the induced map Spa(S, S◦)→ Spa(A, A) is an open immersion,

5That is, g factors through a surjective, continuous and open morphism R〈X1, . . . , Xn〉 → S; see [Huber 1994, Lemma 3.3].
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and let q be a maximal ideal of S with preimage p= f −1(q) in A. Then the natural map Ap→ Sq induces
an isomorphism on completions (with respect to the maximal ideals).

(2) Let R be a complete Tate ring with a Noetherian ring of definition R0 and a topologically nilpotent
unit $ ∈ R0 such that R0/$ is Jacobson. Let h : R→ S be a continuous morphism such that the induced
map Spa(S, S◦)→ Spa(R, R◦) is an open immersion, and let q′ be a maximal ideal of S with preimage
p′ = h−1(q′) in R. Then the natural map Rp′→ Sq′ induces an isomorphism on completions (with respect
to the maximal ideals).

Proof. We prove part (1); the proof of part (2) is virtually identical. Since S/q is a complete discretely
valued field it defines a point v in Spa(S, S◦)⊆ Spa(A, A); let U ={| f1|, . . . , | fn| ≤ |g| 6= 0} be a rational
subdomain of Spa(A, A) which contains this point and is contained in Spa(S, S◦). Let

T = A[ f1/g, . . . , fn/g] ⊆ A[1/g]

and let T̂ be the I T -adic completion of T. Since T̂ [1/g] =O(U ) we see that the valuation v extends to
a valuation w on T̂ [1/g], and hence q extends to a maximal ideal r= Kerw of T̂ [1/g]. We will abuse
notation and let r denote its preimage in any of the rings T, T [1/g] and T̂ as well; then r is a closed point
in Spec T̂ \ V (I T̂ ).

By [Abbes 2010, Proposition 1.12.18], the natural map Tr→ T̂r induces an isomorphism of completions.
We claim that the natural maps Ap→ Tr and T̂r→ T̂ [1/g]r are isomorphisms. For the second map this is
clear (by the general fact that if B is any ring, f ∈ B, and P ∈ Spec B[1/ f ] ⊆ Spec B, then the natural
map BP→ B[1/ f ]P is an isomorphism). For the first map, we have natural maps Ap→ Tr→ T [1/g]r =
A[1/g]r and it is clear that the second map and the composite are isomorphisms, so the first map is an
isomorphism as well. Summing up, we see that the natural map Ap→O(U )r induces an isomorphism
on completions. By an almost identical argument, the natural map Sq→O(U )r induces an isomorphism
on completions. It then follows that the natural map Ap→ Sq induces an isomorphism on completions,
as desired. �
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A tubular variant of Runge’s method
in all dimensions, with applications to

integral points on Siegel modular varieties
Samuel Le Fourn

Runge’s method is a tool to figure out integral points on algebraic curves effectively in terms of height.
This method has been generalized to varieties of any dimension, but unfortunately the conditions needed
to apply it are often too restrictive. We provide a further generalization intended to be more flexible while
still effective, and exemplify its applicability by giving finiteness results for integral points on some Siegel
modular varieties. As a special case, we obtain an explicit finiteness result for integral points on the Siegel
modular variety A2(2).
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Introduction

One of the major motivations of number theory is the description of rational or integral solutions of
diophantine equations, which from a geometric perspective amounts to understanding the behavior of
rational or integral points on algebraic varieties. In dimension one, several fundamental results provide
a good overview of the situation, including the famous Faltings’ theorem (for genus ≥ 2 and algebraic
points) or Siegel’s theorem (for integral points and a function with at least three poles). Nevertheless,
the quest for general effectivity (meaning a bound on the height on these points, or hopefully complete
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determination of the points) is still ongoing, and effective methods are quite different from these two
powerful theoretical theorems.

On the other hand, there is major interest in the study of algebraic torsion points of elliptic curves,
or more generally abelian varieties, defined over a given number field. In many situations, it amounts
to understanding the algebraic points of so-called modular spaces, parametrizing isomorphism classes
of abelian varieties with additional datum. For modular curves (i.e., modular spaces of elliptic curves),
the existing techniques are numerous and far-reaching (for example, with Merel’s uniform boundedness
theorem [1996] or Mazur’s isogeny theorem [1977]), but the world of higher-dimensional abelian varieties
is far less known.

We thus focus in this paper on a method for integral points on curves called Runge’s method, and its
generalizations to algebraic varieties and applications for Siegel modular varieties. This introduction is
twofold: first, we give the guiding principles behind our approach and second, we flesh out the precise
structure of the article and indicate where to find the details for each claim made.

Runge’s method for algebraic varieties. On a smooth algebraic projective curve C over a number field K ,
Runge’s method proceeds as follows. Let φ ∈ K (C) be a nonconstant rational function on C . For any
finite extension L/K , we denote by ML the set of places of L (and by M∞L the archimedean ones). For SL ,
a finite set of places of L containing M∞L , we denote the ring of SL -integers of L by

OL ,SL = {x ∈ L : |x |v ≤ 1 for all v ∈ ML\SL}.

Now, let rL be the number of orbits of poles of φ under the action of Gal(L/L). The Runge condition on
a pair (L , SL) is the inequality

|SL |< rL . (1)

Then, Bombieri’s generalization [Bombieri and Gubler 2006, paragraph 9.6.5 and Theorem 9.6.6] of
Runge’s old theorem [1887] states that given such C and φ, there is an absolute bound B such that for
every pair (L , SL) satisfying the Runge condition and every point P ∈ C(L) such that φ(P) ∈OL ,SL ,

h(φ(P))≤ B,

where h is the Weil height. In short, as long as the point φ(P) has few nonintegrality places (the exact
condition being (1)), there is an absolute bound on the height of φ(P). When applicable, this method has
two important assets: it gives good bounds and is uniform in the pairs (L , SL), which for example is not
true for Baker’s method [Bilu 1995].

Our first goal was to transpose the ideas for Runge’s method on curves to higher-dimensional varieties.
First, let us recall a previous generalization of Bombieri’s theorem in higher dimensions obtained by
Levin [2008, Theorem 4] under a simplified form. On a projective smooth variety X , the analogues of
poles of φ are effective divisors D1, . . . , Dr . We have to fix a smooth integral model X of X on OK , and
denote by D1, . . . ,Dr the Zariski closures of the divisors in this model, of union D, so our integral points
here are the points of (X\D)(OL ,SL ). There are two major changes in higher dimension. Firstly, the
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divisors have to be ample (or at least big) to obtain finiteness results (this was automatic for dimension 1).
Secondly, instead of the condition |SL |< r as for curves, the higher-dimensional Runge condition is

m|SL |< r, (2)

where m is the smallest number such that any (m+1) divisors amongst D1, . . . , Dr have empty common
intersection. Levin’s theorem states in particular that when the divisors are ample,( ⋃

(L ,SL )
m|SL |<r

(X\D)(OL ,SL )

)
is (effectively) finite.

The issue with (2) is that the maximal number |SL | satisfying this condition is lowered by m, since
the ample (or big) hypothesis tends to give a lower bound on m, condition (2) is impossible to satisfy
(remember that SL contains archimedean places, so |SL | ≥ [L :Q]/2). This was the initial motivation for
a generalization of this theorem, called “tubular Runge’s theorem”, designed to be more flexible in terms
of the Runge condition. Let us explain its principle below.

In addition to X and D1, . . . , Dr , we fix a closed subvariety Y of X which is meant to be “where the
divisors D1, . . . , Dr intersect a lot”. More precisely, let mY be the smallest number such that for any
(mY + 1) distinct divisors amongst D1, . . . , Dr , their common intersection is included in Y . In particular,
mY ≤ m, and the goal is to have mY as small as possible without asking Y to be too large. Now, we fix a
“tubular neighborhood” of Y , which is the datum of a family V = (Vv)v where v goes through the places v
of K , every Vv is a neighborhood of Y in the v-adic topology, and this family is uniformly not too small
in some sense. As the main example, if Y is the Zariski closure of Y in X , we can define at a finite place
v the neighborhood Vv to be the set of points of X (Kv) reducing in Y modulo v. A point P ∈ X (K ) does
not belong to V if P /∈ Vv for every place v of K , and intuitively, this means that P is v-adically far away
from Y for every place v of K . Now, assume our integral points are not in V . It implies that at most mY

divisors amongst D1, . . . , Dr can be v-adically close to them, hence using the same principles of proof
as Levin, this gives the tubular Runge condition

mY |SL |< r. (3)

With this additional data, one can now sketch our tubular Runge’s theorem.

Theorem (simplified version of the “tubular Runge’s theorem” (Theorem 5.1)). For X , X , D1, . . . , Dr ,
Y , mY and a tubular neighborhood V of Y as in the paragraph above, let (X\D)(OL ,SL )\V be the set of
points of (X\D)(OL ,SL ) which do not belong to V . Then, if D1, . . . , Dr are ample, for every such tubular
neighborhood, the set ( ⋃

(L ,SL )
mY |SL |<r

(X\D)(OL ,SL )\V
)

is finite,

and bounded in terms of some auxiliary height.
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As the implicit bound on the height is parametrized by the tubular neighborhood V , this theorem
can be seen as a concentration result rather than a finiteness one; essentially, it states that the points
of (X\D)(OL ,SL ) concentrate near the closed subset Y . As such, we have compared it to theorems of
[Corvaja et al. 2009], notably Autissier’s theorem and the CLZ theorem, in Section 5 (in particular, our
version is made to be effective, whereas these results are based on Schmidt’s subspace theorem, of which
no effective proof is known yet). On the other hand, there is an interesting (and genuine finiteness result)
variant only using the tubular neighborhood at finite places: under all above assumptions, we also have
finiteness of the union of all the (X\D)(OL ,SL ) minus all the points reducing in Y at some finite place,
where the pairs (L , SL) satisfy the mixed tubular Runge condition

m|M∞L | +mY |SL\M∞L |< r, (4)

and this will be straightforward given the proof of the theorem.
In the second part of our paper, we apply the method to Siegel modular varieties, both as a proof

of principle and because integral points on these varieties are not very well understood, apart from the
Shafarevich conjecture proved by Faltings. As we will see below, this is also a case where a candidate for
Y presents itself, thus giving tubular neighborhoods a natural interpretation.

For n≥ 2, the variety denoted by A2(n) is the variety over Q(ζn) parametrizing triples (A, λ, αn) where
(A, λ) is a principally polarized abelian variety of dimension 2 and αn is a symplectic level n structure
on (A, λ). It is a quasiprojective algebraic variety of dimension 3, and its Satake compactification (which
is a projective algebraic variety) is denoted by A2(n)S , the boundary being ∂A2(n)= A2(n)S

\A2(n). The
extension of scalars A2(n)C is the quotient of the half-superior Siegel space H2 by the natural action of the
symplectic congruence subgroup 02(n) of Sp4(Z)made up with the matrices congruent to the identity mod-
ulo n. Now, we consider some divisors (n4/2+2 of them) defined by the vanishing of some modular forms,
specifically theta functions. One finds that they intersect a lot on the boundary ∂A2(n) (m comparable
to n4), but when we fix Y = ∂A2(n), we get mY ≤ (n2

− 3) hence giving the tubular Runge condition

(n2
− 3)|SL |<

1
2 n4
+ 2.

The application of our tubular Runge’s theorem gives for every even n ≥ 2 a finiteness result for the
integral points for these divisors and some tubular neighborhoods associated to potentially bad reduction
for the finite places; this is Theorem 7.12. In the special case n = 2, we made this result completely
explicit in Theorem 8.2. A simplified case of this theorem (using (4)) is the following result.

Theorem (Theorem 8.2, simplified case). Let K be either Q or a quadratic imaginary field.
Let A be a principally polarized abelian surface defined over K , whose full 2-torsion is also defined

over K and having potentially good reduction at all finite places of K .
Then, if the semistable reduction of A is a product of elliptic curves at most at 3 finite places of K , we

have the explicit bound

hF (A)≤ 828,

where hF is the stable Faltings height. In particular, there are only finitely many such abelian surfaces.
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Let us finally explain the structure of the paper.

1

�� ''2

��

6

��
3

��

// 5

��

// 7

��
4 8

Section 1 is devoted to the notations used throughout the paper, including heights, MK -constants and
bounded sets. We advise the reader to pay particular attention to its reading as it introduces notations
which are ubiquitous in the rest of the paper. Section 2 is where the exact definition and basic properties
of tubular neighborhoods are given. In Section 3, we prove the key result for the tubular Runge’s theorem
(Proposition 3.1), essentially relying on a well-applied Nullstellensatz. In Section 4, we reprove Bombieri’s
theorem for curves with Bilu’s idea, as it is not yet published to our knowledge (although this is exactly
the principle behind Runge’s method in [Bilu and Parent 2011] for example). Finally, we prove and
discuss our tubular Runge’s theorem (Theorem 5.1) in Section 5.

For the applications to Siegel modular varieties, Section 6 gathers the necessary notations and reminders
on these varieties (Section 6A), their integral models and their properties (Section 6B) and the key notion
of theta divisors on abelian varieties and their link with classical theta functions (Section 6C). The theta
functions are essential because they define the divisors we use in our applications of the tubular Runge’s
theorem.

In Section 7, we focus on the case of abelian surfaces (the one we are interested in), especially regarding
the behavior of theta divisors (Section 7A) and state in Section 7B the applications of our tubular Runge’s
theorem for the varieties A2(n)S and the divisors mentioned above (Theorems 7.11 and 7.12).

Finally, in Section 8, we make explicit Theorem 7.11 by computations on the ten fourth powers of
even characteristic theta constants. To do this, the places need to be split into three categories. The finite
places not above 2 are treated by the theory of algebraic theta functions in Section 8A, the archimedean
places by estimates of Fourier expansions in Section 8B and the finite places above 2 (the hardest case)
by the theory of Igusa invariants and with polynomials built from our ten theta constants in Section 8C.
The final estimates are given as Theorem 8.2 in Section 8D, both in terms of a given embedding of A2(2)
and in terms of Faltings height.

The main results of this paper have been announced in the recently published note [Le Fourn 2017], and
apart from Section 8 and some improvements can be found in the author’s thesis manuscript [Le Fourn
2015] (both in French).
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1. Notations and preliminary notions

The following notations are classical and given below for clarity. They will be used throughout the paper.

• K is a number field, MK and M∞K are the set of places and archimedean places of K , respectively. We
also denote by MK the set of places of K .

• |·|∞ is the usual absolute value on Q, and |·|p is the place associated to p prime, whose absolute value
is normalized by

|x |p = p− ordp(x),

where ordp(x) is the unique integer such that x = pordp(x) a
b with p -ab (by convention, |0|p=0). Similarly,

|·|v is the absolute value on K associated to v ∈ MK , normalized to extend |·|v0 when v is above v0 ∈ MQ,
and the local degree is nv = [Kv :Qv0]. For every x ∈ K ∗, one has the classical product formula∏

v∈MK

|x |nvv = 1.

When v comes from a prime ideal p of OK , we indifferently write |·|v and |·|p.

• For any place v of K , one defines the sup norm on K n+1 by

‖(x0, . . . , xn)‖v = max
0≤i≤n
|xi |v.

• Every set of places S ⊂ MK considered is finite and contains M∞K . The ring of S-integers is

OK ,S = {x ∈ K : |x |v ≤ 1 for every v ∈ MK \S}.

• For every P ∈ Pn(K ), we denote by xP = (xP,0, . . . , xP,n) ∈ K n+1 any possible choice of projective
coordinates for P , this choice being of course fixed for consistency when used in a formula or a proof.
The logarithmic Weil height of P is defined by

h(P)=
1

[K :Q]

∑
v∈MK

nv log‖xP‖v, (1-1)

this does not depend on the choice of xP nor on the number field, and satisfies the Northcott property.

• For every n ≥ 1 and every i ∈ {0, . . . , n}, the i-th coordinate open subset Ui of Pn is the affine subset
defined as

Ui = {(x0 : · · · : xn) | xi 6= 0}. (1-2)

The normalization function ϕi :Ui → An+1 is then defined by

ϕi (x0 : · · · : xn)=

(
x0

xi
, . . . , 1, . . .

xn

xi

)
. (1-3)

For most of our results, we need to formalize the notion that some families of sets indexed by the
places v ∈ MK are “uniformly bounded”. To this end, we recall some classical definitions (see [Bombieri
and Gubler 2006, §2.6]).
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Definition 1.1 (MK -constants and MK -bounded sets). • An MK -constant is a family C= (cv)v∈MK of real
numbers such that cv= 0 except for a finite number of places v ∈MK . The set of MK -constants is stable by
finite sum and finite maximum on each coordinate, a fact which we will often use without further mention.

• Let L/K be a finite extension. For an MK -constant (cv)v∈MK , we define (with abuse of notation) an
ML -constant (cw)w∈ML by cw := cv if w | v. Conversely, if (cw)w∈ML is an ML -constant, we define (again
with abuse of notation) (cv)v∈MK by cv :=maxw | v cw, and get in both cases the inequality

1
[L :Q]

∑
w∈ML

nwcw ≤
1

[K :Q]

∑
v∈MK

nvcv. (1-4)

• If U is an affine variety over K and E ⊂U (K )×MK , a regular function f ∈ K [U ] is MK -bounded
on E if there is a MK -constant C = (cv)v∈MK such that for every (P, w) ∈ E with w above v in MK ,

log| f (P)|w ≤ cv.

• An MK -bounded subset of U is, by abuse of definition, a subset E of U (K )× MK such that every
regular function f ∈ K [U ] is MK -bounded on E .

Remark 1.2. (a) In the projective space Pn
K , for every i ∈ {0, . . . , n}, consider the set

Ei = {(P, w) ∈ Pn(K )×MK : |xP,i |w = ‖xP‖w}. (1-5)

The regular functions x j/xi ( j 6= i) on K [Ui ] (notation (1-2)) are trivially MK -bounded (by the zero
MK -constant) on Ei , hence Ei is MK -bounded in Ui . Notice that the Ei cover Pn(K )×MK .

(b) With notations (1-1), (1-2) and (1-3), for a subset E of Ui (K ), if the coordinate functions of Ui

are MK -bounded on E ×MK , the height h ◦ϕi is straightforwardly bounded on E in terms of the
involved MK -constants. This simple observation will be the basis of our finiteness arguments.

The following lemma allows us to split MK -bounded sets in an affine cover.

Lemma 1.3. Let U be an affine variety and E an MK -bounded set. If (U j ) j∈J is a finite affine open
cover of U , there exists a cover (E j ) j∈J of E such that every E j is MK -bounded in U j .

Proof. This is Lemma 2.2.10 together with Remark 2.6.12 of [Bombieri and Gubler 2006]. �

Let us now recall some notions about integral points on schemes and varieties.
For a finite extension L of K , a point P ∈ Pn(L) and a nonzero prime ideal P of OL of residue field

k(P)=OL/P, the point P extends to a unique morphism SpecOL ,P→Pn
OK

, and the image of its special
point is the reduction of P modulo P, denoted by PP ∈ Pn(k(P)). More explicitly, after normalization
of the coordinates xP of P so that they all belong to OL ,P and one of them to O∗L ,P, one has

PP = (xP,0 mod P : · · · : xP,n mod P) ∈ Pn
k(P). (1-6)

The following (easy) proposition expresses scheme-theoretic reduction in terms of functions (there
will be another in Proposition 3.4). We write it below as it is the inspiration behind the notion of tubular
neighborhood in Section 2.
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Proposition 1.4. Let S be a finite set of places of K containing M∞K , and X be a projective scheme on
OK ,S , seen as a closed subscheme of Pn

OK ,S
.

Let Y be a closed sub-OK ,S-scheme of X .
Consider g1, . . . , gs ∈ OK ,S[X0, . . . , Xn] homogeneous generators of the ideal of definition of Y in

Pn
OK ,S0

. For every nonzero prime P of OL not above S and every point P ∈ X (L), the reduction PP

belongs to Yp(k(P)) (with p=P∩OK ) if and only if ∀ j ∈ {1, . . . , s}

|g j (xP)|P < ‖xP‖
deg g j
P . (1-7)

Proof. For every j ∈ {1, . . . , s}, by homogeneity of g j , for a choice xP of coordinates for P belonging to
OL ,P with one of them in O∗L ,P, the inequality (1-7) amounts to

g j (xP,0, . . . , xP,n)= 0 mod P.

On the other hand, the reduction of P modulo P belongs to Yp(k(P)) if and only if its coordinates satisfy
the equations defining Yp in Xp, but these are exactly the equations g1, . . . , gs modulo p. This remark
immediately gives the proposition by (1-6). �

2. Definition and properties of tubular neighborhoods

The explicit expression (1-7) is the motivation for our definition of tubular neighborhood, at the core of
our results. This definition is meant to be used by exclusion; with the same notations as Proposition 1.4,
we want to say that a point P ∈ X (L) is not in some tubular neighborhood of Y if it never reduces in Y ,
whatever the prime ideal P of OL is.

The main interest of this notion is that it provides us with a convenient alternative to the reduction
assumption for the places in S (which are the places where the reduction is not well defined, including
the archimedean places), and also allows us to loosen up this reduction hypothesis in a nice fashion.
Moreover, as the definition is function-theoretic, we only need to consider the varieties over a base field,
keeping in mind that Proposition 1.4 makes the link with reduction at finite places.

Definition 2.1 (tubular neighborhood). Let X be a projective variety over K and Y be a closed K -
subscheme of X .

We choose an embedding X ⊂ Pn
K , a set of homogeneous generators g1, . . . , gs in K [X0, . . . , Xn] of

the homogeneous ideal defining Y in Pn and an MK -constant C = (cv)v∈MK .
The tubular neighborhood of Y in X associated to C and g1, . . . , gs (the embedding made implicit) is

the family V = (Vw)w∈MK
of subsets of X (K ) defined as follows.

For every w ∈ MK above some v ∈ MK , Vw is the set of points P ∈ X (K ) such that, ∀ j ∈ {1, . . . , s},

log|g j (xP)|w < deg(g j ) · log‖xP‖w + cv. (2-1)

As we said before, this definition will be ultimately used by exclusion:

Definition 2.2. Let X be a projective variety over K and Y be a closed K -subscheme of X .
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For any tubular neighborhood V = (Vw)w∈MK
of Y , we say that a point P ∈ X (K ) does not belong to

V (and we denote it by P /∈ V) if, ∀w ∈ MK ,

P /∈ Vw.

Remark 2.3. (a) A tubular neighborhood of Y can also be seen as a family of open subsets defined
by bounding strictly a global height function relative to Y coming from arithmetic distance functions
(see [Vojta 1987], paragraph 2.5 or the original article [Silverman 1987] for more details on arithmetic
distance functions). In particular, functoriality of global height functions (Theorem 2.1(h) of [Vojta 1987]
for example) implies that if one fixes a second embedding X ⊂ Pm

K , any tubular neighborhood of Y
defined using this embedding can be put between two tubular neighborhoods defined using the original
embedding, and conversely. The notion of tubular neighborhood is thus essentially independent of the
choice of embedding (which is there to make things as explicit as needed).

(b) Comparing (1-7) and (2-1), for the MK -constant C = 0 and with the notations of Proposition 1.4,
at the finite places w not above S, the tubular neighborhood Vw is exactly the set of points P ∈ X (K )
reducing in Y modulo w.

(c) If Y is an ample divisor of X and V is a tubular neighborhood of Y , one easily sees that if P /∈ V
then h(ψ(P)) is bounded for some embedding ψ associated to Y , from which we get the finiteness of the
set of points P of bounded degree outside of V . This illustrates why such an assumption is only really
relevant when Y is of small dimension.

Example 2.4. We have drawn in Figures 1, 2 and 3 three different pictures of tubular neighborhoods in
P2(R), at the usual archimedean norm. The coordinates are x, y, z, the affine open subset Uz defined
by z 6= 0, and Ex , Ey, Ez the respective sets such that |x |, |y|, |z| = max(|x |, |y|, |z|). These different
tubular neighborhoods are drawn in Uz , and the contribution of the different parts Ex , Ey and Ez is made
clear.

3. Key results

We will now prove the key result for Runge’s method, as a consequence of the Nullstellensatz. We only
use the projective case in the rest of the paper but the affine case is both necessary for its proof and
enlightening for the method we use.

Proposition 3.1 (key proposition). (a) (Affine version) Let U be an affine variety over K , Y a closed
subset of U , g1, . . . , gr ∈ K [U ] whose set of common zeroes is Y and h1, . . . , hs ∈ K [U ] all vanishing
on Y . For every MK -bounded set E of U and every MK -constant C0, there is an MK -constant C such that
for every (P, w) ∈ E with w above v ∈ MK , one has the following dichotomy:

max
1≤`≤r

log|g`(P)|w ≥ cv or max
1≤ j≤s

log|h j (P)|w < c0,v. (3-1)
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Figure 1. Tubular neighborhood of the point P = (3 : 3 : 1) associated to the inequality
max(|x − 3y, y− 3z|) < 1

2 max(|x |, |y|, |z|).

(b) (Projective version) Let X be a normal projective variety over K and φ1, . . . , φr ∈ K (X). Let Y be
the closed subset of X defined as the intersection of the supports of the (Weil) divisors of poles of the φi .
For every tubular neighborhood V of Y (Definition 2.1), there is an MK -constant C depending on V such
that for every w ∈ MK (above v ∈ MK ) and every P ∈ X (K ),

min
1≤`≤r

log|φ`(P)|w ≤ cv or P ∈ Vw. (3-2)

This result has an immediate corollary when Y =∅:

Corollary 3.2 [Levin 2008, Lemma 5]. Let X be a normal projective variety over K and φ1, . . . , φr ∈

K (X) having globally no common pole. Then, there is an MK -constant C such that for every w ∈ MK

(above v ∈ MK ) and every P ∈ X (K ),

min
1≤`≤r

log|φ`(P)|w ≤ cv. (3-3)

Remark 3.3. (a) As will become clear in the proof, part (b) is actually part (a) applied to a good cover of
X by MK -bounded subsets of affine open subsets of X (inspired by the natural example of Remark 1.2(a)).

(b) Besides the fact that the results must be uniform in the places (hence the MK -constants), the principle
of (a) and (b) is simple. For (a), we would like to say that if the first part of the dichotomy is not satisfied,
the point P must be close to each set of zeroes of the g` hence to their intersection Y . Consequently, the
functions vanishing on Y must be small at P (second part of the dichotomy). This is not immediately
true yet (take for example functions vanishing respectively on one hyperbola and one of its axes on the



A tubular variant of Runge’s method in all dimensions 169

•

(−4,−4)

(−4/3,4/3)

(4,4)

•

•

•

(−1,1/2)

• (−1/2,1)

L

Ez

Ey Ey

Ex

Ex

Figure 2. Tubular neighborhood of the line D : y−x+2z= 0 associated to the inequality
max(|x − y+ 2z|) < 1

2 max(|x |, |y|, |z|). The boundary of the neighborhood is made up
with segments between the indicated points.

affine plane). Indeed, one needs to restrict to bounded sets to compactify the situation, which is also why
it works in the projective case as the closed sets are then compact.

(c) Corollary 3.2 is the key for Runge’s method in the case of curves in Section 4. Notice that Lemma 5
of [Levin 2008] assumed X smooth, but the proof is actually exactly the same for X normal. Moreover,
the argument below follows the structure of Levin’s proof.

(d) If we replace Y by Y ′ ⊃ Y and V by a tubular neighborhood V ′ of Y ′, the result remains true with
the same proof, which is not surprising because tubular neighborhoods of Y ′ are larger than tubular
neighborhoods of Y .

Proof of Proposition 3.1.

(a) By the Nullstellensatz applied to K [U ], there are p ∈ N≥1 and regular functions f`,m ∈ K [U ] such
that for every m ∈ {1, . . . , s}, ∑

1≤`≤r

g` f`,m = h p
m .
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Figure 3. Tubular neighborhood of the hyperbola H : xy−z2
= 0 given by the inequality

|xy−z2
|< 1

2 max(|x |, |y|, |z|). The boundary is made up with arcs of hyperbola between
the indicated points.

As E is MK -bounded on U , all the f`,m are MK -bounded on E hence there is an auxiliary MK -constant
C1 such that for all (P, w) ∈ E ,

max
1≤`≤r
1≤m≤s

log| f`,m(P)|w ≤ c1,v,

therefore

|hm(P)p
|w =

∣∣∣∣ ∑
1≤`≤r

g`(P) f`,m(P)
∣∣∣∣
w

≤ r δvec1,v max
1≤`≤r
|g`(P)|w,

where δv is 1 if v is archimedean and 0 otherwise. For fixed w and P , either log|hm(P)|w < c0,v for all
m ∈ {1, . . . , s} (second part of dichotomy (3-1)) or the above inequality applied to some m ∈ {1, . . . , s}
gives

p · c0,v ≤ δv log(r)+ c1,v + max
1≤`≤r

log|g`, j (P)|w,

which is equivalent to

max
1≤`≤r

log|g`(P)|w ≥ p · c0,v − δv log(r)− c1,v

and taking the MK -constant defined by cv := c1,v + δv log(r)− p · c0,v for every v ∈ MK gives exactly
the first part of (3-1).
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(b) We consider X as embedded in some Pn
K so that V is exactly the tubular neighborhood of Y in X

associated to an MK -constant C0 and generators g1, . . . , gs for this embedding. Let us define X i := X∩Ui

for every i ∈ {0, . . . , n} (see notations (1-2), (1-3) and (1-5)). The following argument is designed to
make Y appear as a common zero locus of regular functions built from the φ`.

For every `∈{1, . . . , r}, let D` be the positive Weil divisor of zeroes of φ` on X . For every i ∈{0, . . . , n},
let I`,i be the ideal of K [X i ] made up with the regular functions h on the affine variety X i such that
div(h)≥ (D`)|X i , and we choose generators h`,i,1, . . . , h`,i, j`,i of this ideal. The functions h`,i, j/(φ`)|X i

are then regular on X i and ∀ j ∈ {1, . . . , j`,i },

div
(

h`,i, j

(φ`)|X i

)
≥ (φ`,i )∞

(the divisor of poles of φ` on X i ). By construction of I`,i , the minimum (prime Weil divisor by prime
Weil divisor) of the div(h`,i, j ) is exactly (D`)|X i ; indeed, for every finite family of distinct prime Weil
divisors D′1, . . . , D′s, D′′ on X i , there is a uniformizer h for D′′ of order 0 for each of the D′k , otherwise
the prime ideal associated to D′′ in X i would be included in the finite union of the others. This allows
us to build for every prime divisor D′ of X i not in the support of (D`)|X i a function h ∈ I`,i of order 0
along D′ (and of the proper order for every D′ in the support of (D`)|X i ). Consequently, the minimum
of the divisors of the h`,i, j/(φ`)|X i , being naturally the minimum of the divisors of the h/(φ`)|X i (for
h ∈ K [X i ]), is exactly (φ`,i )∞.

Thus, by definition of Y , for fixed i , the set of common zeroes of the regular functions h`,i, j/(φ`)|X i

(for 1 ≤ ` ≤ r and 1 ≤ j ≤ j`,i ) on X i is Y ∩ X i , so they generate an ideal whose radical is the ideal
of definition of Y ∩ X i . We apply part (a) of this proposition to the h`,i, j/(φ`)|X i (for 1 ≤ ` ≤ r and
1≤ j ≤ j`,i ), the g j ◦ϕi (for 1≤ j ≤ s) and the MK -constant C0, which gives us an MK -constant C′i and
the following dichotomy on X i for every (P, w) ∈ Ei :

max
1≤`≤r
1≤ j≤si

log
∣∣∣∣h`,i, j

φ`
(P)

∣∣∣∣
w

≥ c′i,v or max
1≤ j≤s

log|g j ◦ϕi (P)|w < c0,v.

Now, the h`,i, j are regular on X i hence MK -bounded on Ei , therefore there is a second MK -constant C′′i
such that for every (P, w) ∈ Ei

max
1≤`≤r
1≤ j≤si

log
∣∣∣∣h`,i, j

φ`
(P)

∣∣∣∣
w

≥ c′i,v H⇒ min
1≤`≤r

log|φ`(P)|w ≤ c′′i,v.

Taking C as the maximum of the MK -constants C′′i , 0≤ i ≤ n, for every (P, w)∈ X (K )×MK , we choose i
such that (P, w)∈ Ei and then we have the dichotomy (3-2) by definition of the tubular neighborhood Vw.

�

To finish this section, we will give the explicit link between integral points on a projective scheme
(relative to a divisor) and integral points relative to rational functions on the scheme. This will also tie
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our notion of integer points with that of [Levin 2008, Section 2], showing that the two can be treated
exactly in the same way.

Proposition 3.4. Let X be a normal projective scheme over OK ,S .

(a) If Y is an effective Cartier divisor on X such that YK is an ample (Cartier) divisor of XK , there is a
projective embedding ψ :XK →Pn

K and an MK -constant C such that the pullback by ψ of the hyperplane
of equation x0 = 0 in Pn

K is YK , and for any finite extension L of K and any w ∈ ML not above S,
∀P ∈ (X\Y)(OL ,w),

log‖xψ(P)‖w ≤ cv + log|xψ(P),0|w. (3-4)

(b) If Y is an effective Cartier divisor on X such that YK is a big (Cartier) divisor of XK , there is a strict
Zariski closed subset Z K of XK , a closed immersion ψ : XK \Z K → Pn

K \{x0 = 0} and an MK -constant C
such that for any finite extension L of K and any w ∈ ML not above S, formula (3-4) holds outside Z K .

Proof of Proposition 3.4. (a) and (b) come from the classical link between integral points in terms of a
scheme and integral points in terms of local heights (proven in Lemma 1.4.6 and Proposition 1.4.7 of
[Vojta 1987] for instance), combined with the properties of the morphisms associated to (very) ample
or big divisors. �

Remark 3.5. (a) This proposition is formulated to avoid the use of local heights, but the idea is exactly
that under the hypotheses above, if P ∈ (X\Y)(OL ,w), the local height at w of P for the divisor Y is
strictly bounded.

(b) The hypotheses on ampleness (or “bigness”) are only necessary at the generic fiber. Once again, the
auxiliary functions replace the need for a complete understanding of what happens at the finite places.

4. The case of curves revisited

In this section, we reprove the generalization of an old theorem of Runge [1887], obtained by Bombieri
[1983, p. 305] (also rewritten as [Bombieri and Gubler 2006, Theorem 9.6.6]), following an idea explained
by Bilu in an unpublished note and mentioned for the case K = Q by [Schoof 2008, Chapter 5]. The
aim of this section is to give a general understanding of this idea (quite different from the original proof
of Bombieri), as well as explain how it actually gives a method to bound heights of integral points on
curves. It is also a good start to understand how the intuition behind this result can be generalized to
higher dimension, which will be done in the next section.

Proposition 4.1 (Bombieri, 1983). Let C be a smooth projective algebraic curve defined over a number
field K and φ ∈ K (C) not constant.

For any finite extension L/K , let rL be the number of orbits of the natural action of Gal(L/L) over
the poles of φ. For any set of places SL of L containing M∞L , we say that (L , SL) satisfies the Runge
condition if

|SL |< rL . (4-1)
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Then, the union ⋃
(L ,SL )

{P ∈ C(L) | φ(P) ∈OL ,SL }, (4-2)

where (L , SL) runs through all the pairs satisfying the Runge condition, is finite and can be explicitly
bounded in terms of the height h ◦φ.

Example 4.2. As a concrete example, consider the modular curve X0(p) for p prime and the j -invariant
function. This curve is defined over Q and j has two rational poles (which are the cusps of X0(p)), hence
rL = 2 for any choice of L , and we need to ensure |M∞L | ≤ |SL |< 2. The only possibilities satisfying the
Runge condition are thus imaginary quadratic fields L with SL = {|·|∞}.

We proved in [Le Fourn 2016] that for any imaginary quadratic field L and any P ∈ X0(p)(L) such
that j (P) ∈OL , one has

log| j (P)| ≤ 2π
√

p+ 6 log(p)+ 8.

The method for general modular curves is carried out in [Bilu and Parent 2011] and gives explicit estimates
on the height for integral points satisfying the Runge condition. This article uses the theory of modular
units and implicitly the same proof of Bombieri’s result as the one we explain below.

Remark 4.3. (a) The claim of an explicit bound deserves a clarification: it can actually be made explicit
when one knows well enough the auxiliary functions involved in the proof below (which is possible in
many cases, e.g., for modular curves thanks to the modular units). Furthermore, even as the theoretical
proof makes use of MK -constants and results of Section 3, they are frequently implicit in practical cases.

(b) Despite the convoluted formulation of the proof below and the many auxiliary functions to obtain the
full result, its principle is as described in the introduction. It also gives the framework to apply Runge’s
method to a given couple (C, φ).

Proof of Proposition 4.1. We fix K ′ a finite Galois extension of K on which every pole of φ is defined. For
any two distinct poles Q and Q′ of φ, we choose by the Riemann–Roch theorem a function gQ,Q′ ∈ K ′(C)
whose only pole is Q and which vanishes at Q′. For every point P of C(K ) which is not a pole of φ,
one has ordP(gQ,Q′)≥ 0 thus gQ,Q′ belongs to the intersection of the discrete valuation rings of K (C)
containing φ and K [Hartshorne 1977, proof of Lemma I.6.5], which is exactly the integral closure of
K [φ] in K (C) [Atiyah and Macdonald 1969, Corollary 5.22]. Hence, the function gQ,Q′ is integral on
K [φ] and up to multiplication by some nonzero integer, we can and will assume it is integral on OK [φ].

For any fixed finite extension L of K included in K , we define fQ,Q′,L ∈ L(C) the product of the
conjugates of gQ,Q′ by Gal(L/L). If Q and Q′ belong to distinct orbits of poles for Gal(L/L), the set
of poles of fQ,Q′,L is exactly the orbit of Q by Gal(K/L), and its set of zeroes contains all the orbit of
Q′ by Gal(K/L). Notice that we thus built only finitely many different functions (even with L running
through all finite extensions of K ) because each gQ,Q′ only has finitely many conjugates in Gal(K ′/K ).

Now, let O1, . . . ,OrL be the orbits of poles of φ and denote for any i ∈ {1, . . . , rL} by fi,L a product
of fQi ,Q′j ,L where Qi ∈Oi and Q′j runs through representatives of the orbits (except Oi ). Again, there is
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a finite number of possible choices, and we obtain a function fi,L ∈ L(C) having for only poles the orbit
Oi and vanishing at all the other poles of φ.

We apply Corollary 3.2 to fi,L/φ
k and fi,L (for any i) for some k such that fi,L/φ

k does not have poles
at Oi , and take the maximum of the induced MK -constants (Definition 1.1) for any L and 1 ≤ i ≤ rL .
This gives an MK -constant C0 independent of L such that ∀i ∈ {1, . . . , rL}, ∀w ∈ MK and ∀P ∈ C(K ),

log min
(∣∣∣∣ fi,L

φk (P)
∣∣∣∣
w

, | fi,L(P)|w

)
≤ c0,v (w | v ∈ MK ).

In particular, the result interesting us in this case is that ∀i ∈ {1, . . . , rL}, ∀w ∈ MK and ∀P ∈ C(K ),

|φ(P)|w ≤ 1⇒ log| fi,L(P)|w ≤ c0,v, (4-3)

and we can assume c0,v is 0 for any finite place v by integrality of the fi,L over OK [φ].
Given our construction, we also fix n such that for every i ∈ {1, . . . , rL}, the φ f n

i,L have poles at Oi and
vanish at all other poles of φ. We reapply Corollary 3.2 for every pair (φ f n

i,L , φ f n
j,L) with 1≤ i < j ≤ rL ,

which again by taking the maximum of the induced MK -constants for all the possible combinations
(Definition 1.1) gives an MK -constant C1 such that for every v ∈ MK and every (P, w) ∈ C(K )×MK

with w | v, the inequality

log|(φ · f n
i,L)(P)|w ≤ c1,v (4-4)

is true for all indices i except at most one (depending on the choice of P and w).
Let us now suppose that (L , SL) is a pair satisfying the Runge condition and P ∈ C(L) with φ(P) ∈

OL ,SL . By integrality on OK [φ], for every i ∈ {1, . . . , rL}, | fi,L(P)|w ≤ 1 for every place w ∈ ML\SL .
For every place w ∈ SL , there is at most one index i not satisfying (4-4) hence by the Runge condition
and the pigeon-hole principle, there remains one index i (depending on P) such that ∀w ∈ ML ,

log|φ(P) f n
i,L(P)|w ≤ c1,v. (4-5)

With (4-3) and (4-5), we have obtained all the auxiliary results we need to finish the proof. By the product
formula,

0=
∑
w∈ML

nw log| fi,L(P)|w

=

∑
w∈ML
|φ(P)|w>1

nw log| fi,L(P)|w +
∑

w∈M∞L |φ(P)|w≤1

nw log| fi,L(P)|w +
∑

w∈ML\M∞L
|φ(P)|w≤1

nw log| fi,L(P)|w.

Here, the first sum on the right side will be linked to the height h ◦φ and the third sum is negative by
integrality of the fi,L , so we only have to bound the second sum. From (4-3) and (1-4), we obtain∑

w∈M∞L
|φ(P)|w≤1

nw log| fi,L(P)|w ≤
∑
w∈M∞L
|φ(P)|w≤1

nwc0,v ≤ [L : K ]
∑
v∈M∞K

nvc0,v.
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On another side, by (4-5) (and (1-4) again), we have

n ·
∑
w∈ML
|φ(P)|w>1

nw log| fi,L(P)|w =
∑
w∈ML
|φ(P)|w>1

nw log|φ f n
i,L(P)|w −

∑
w∈ML
|φ(P)|w>1

nw log|φ(P)|w

≤

(
[L : K ]

∑
v∈MK

nvc1,v

)
− [L :Q]h(φ(P)).

Hence, we obtain

0≤ [L : K ]
∑
v∈MK

nvc1,v − [L :Q]h(φ(P))+ [L : K ]n
∑
v∈M∞K

nvc0,v,

which is equivalent to

h(φ(P))≤
1

[K :Q]

∑
v∈MK

nv(c1,v + nc0,v).

We thus obtained a bound on h(φ(P)) independent on the choice of (L , SL) satisfying the Runge condition,
and together with the bound on the degree [L :Q] ≤ 2|SL |< 2rL ≤ 2r , we get the finiteness. �

5. The main result: tubular Runge’s theorem

We will now present our version of Runge theorem with tubular neighborhoods, which generalizes
Theorem 4(b) and (c) of [Levin 2008]. As its complete formulation is quite lengthy, we indicated the
different hypotheses by the letter H and the results by the letter R. The key condition for integral points
(generalizing the Runge condition of Proposition 4.1) is indicated by the letters TRC.

We recall that the crucial notion of tubular neighborhood is explained in Definitions 2.1 and 2.2, and
we advise the reader to look at the simplified version of this theorem stated in the Introduction to get
more insight if necessary.

Theorem 5.1 (tubular Runge’s theorem). (H0) Let K be a number field, S0 a set of places of K containing
M∞K and O the integral closure of OK ,S0 in some finite Galois extension K ′ of K .

(H1) Let X be a normal projective scheme over OK ,S0 and D1, . . . , Dr be effective Cartier divisors on
XO = X ×OK ,S0

O such that DO =
⋃r

i=1 Di is the scalar extension to O of some Cartier divisor D on X ,
and that Gal(K ′/K ) permutes the generic fibers (Di )K ′ . For every extension L/K , we denote by rL the
number of orbits of (D1)K ′, . . . , (Dr )K ′ for the action of Gal(K ′L/L).

(H2) Let Y be a closed subscheme of XK and V be a tubular neighborhood of Y in XK . Let mY ∈ N

be the minimal number such that the intersection of any (mY + 1) of the divisors (Di )K ′ amongst the r
possible ones is included in YK ′ .

TRC The tubular Runge condition for a pair (L , SL), where L/K is finite and SL contains all the
places above S0, is

mY |SL|< rL .
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Under these hypotheses and notations, the results are the following:

(R1) If (D1)K ′, . . . , (Dr )K ′ are ample divisors, the set⋃
(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V}, (5-1)

where (L , SL) goes through all the pairs satisfying the tubular Runge condition, is finite.

(R2) If (D1)K ′, . . . , (Dr )K ′ are big divisors, there exists a proper closed subset Z K ′ of XK ′ such that the
set ( ⋃

(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V}
)
\Z K ′(K ),

where (L , SL) goes through all the pairs satisfying the tubular Runge condition, is finite.

Remark 5.2 explains the hypotheses and results of this theorem, and Remark 5.3 compares it with
other theorems.

Remark 5.2. (a) The need for the extensions of scalars to K ′ and O in (H0) and (H1) is the analogue of
the fact that the poles of φ are not necessarily K -rational in the case of curves, hence the assumption
that the (Di )K ′ are all conjugates by Gal(K ′/K ) and the definition of rL given in (H1). It will induce
technical additions of the same flavor as the auxiliary functions fQ,Q′,L in the proof of Proposition 4.1.

(b) The motivation for the tubular Runge condition is the following: imitating the principle of proof for
curves (Remark 4.3(b)), if P ∈ (X\D)(OL ,SL ), we can say that at the places w of ML\SL , this point is
“w-adically far” from D. Now, the divisors (D1)K ′, . . . , (Dr )K ′ can intersect (which does not happen for
distinct points on curves), so for w ∈ SL , this point P can be “w-adically close” to many divisors at the
same time. More precisely, it can be “w-adically close” to at most m such divisors, where m = m∅, i.e.,
the largest number such that there are m divisors among D1, . . . , Dr whose set-theoretic intersection is
nonempty. This number is also defined in [Levin 2008] but we found that for our applications, it often
makes the Runge condition too strict. Therefore, we allow the use of the closed subset Y in (H2), and if
we assume that our point P is never too close to Y (i.e., P /∈ V), this m goes down to mY by definition.
Thus, we only need to take out mY divisors for each place w in SL , hence the tubular Runge condition
mY |SL |< rL . Actually, one can even mix the Runge conditions, i.e., assume that P is close to Y exactly
at s1 places, and close to one of the divisors (but not from Y ) at s2 places: following along the lines of
the proof below, we obtain finiteness given the Runge condition s1m∅+ s2mY < rL (this is exactly what
we do for Theorem 8.2(a)).

(c) The last main difference with the case of curves is the assumption of ample or big divisors, respectively
in (R1) and (R2). In both cases, such an assumption is necessary twice. First, we need it to translate by
Proposition 3.4 the integrality condition on schemes to an integrality expression on auxiliary functions (such
as in Section 2 of [Levin 2008]) to use the machinery of MK -constants and the key result (Proposition 3.1).
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Then, we need it to ensure that after obtaining a bound on the heights associated to the divisors, it implies
finiteness (implicit in Proposition 3.4, see also Remark 3.5(a)).

Remark 5.3. (a) This theorem has some resemblance to the CLZ theorem of [Corvaja et al. 2009] (where
our closed subset Y would be the analogue of the Y in that article), let us point out the differences. In
the CLZ theorem, there is no hypothesis of the set of places SL , no additional hypothesis of integrality
(appearing for us under the form of a tubular neighborhood), and the divisors are assumed to be normal
crossing divisors, which is replaced in our case by the tubular Runge condition. As for the results
themselves, the finiteness formulated by CLZ depends on the set SL (that is, it is not clear how it would
prove that (5-1) is finite). Finally, the techniques employed are greatly different: the CLZ theorem uses
Schmidt’s subspace theorem (which has not been made effective yet), whereas our method can be made
effective if one knows the involved auxiliary functions. It might be possible (and worthy of interest) to
build some bridges between the two results, and the techniques involved.

(b) Theorem 5.1 can be seen as a stratification of Runge-like results depending on the dimension of
the intersection of the involved divisors: at one extreme, the intersection is empty, and we get back
Theorem 4(b) and (c) of [Levin 2008]. At the other extreme, the intersection is a divisor (ample or big),
and the finiteness is automatic by (Remark 2.3). Of course, this stratification is not relevant in the case of
curves. In another perspective, for a fixed closed subset Y , Theorem 5.1 is more a concentration result of
integral points than a finiteness result, as it means that even if we choose a tubular neighborhood V of Y
as small as possible around Y , there is only a finite number of integral points in the set (5-1), i.e., these
integral points (ignoring the hypothesis P /∈ V) must concentrate around Y (at least at one of the places
w ∈ ML ). Specific examples are given in Sections 7 and 8.

Let us now prove Theorem 5.1, following the ideas outlined in Remark 5.2.

Proof of Theorem 5.1. (R1) Let us first build the embeddings we need. For every subextension K ′′ of K ′/K ,
the action of Gal(K ′/K ′′) on the divisors (D1)K ′, . . . , (Dr )K ′ has orbits denoted by OK ′′,1, . . . , OK ′′,rK ′′

.
Notice that any mY + 1 such orbits still have their global intersection included in Y .

For each such orbit, the sum of its divisors is ample by hypothesis and coming from an effective Cartier
divisor on XK ′′ , One can then choose by Proposition 3.4 an appropriate embedding ψK ′′,i : XK ′′→ P

ni
K ′′ ,

whose coordinate functions (denoted by φK ′′,i, j = (x j/x0)◦ψK ′′,i (1≤ j ≤ ni )) satisfy Proposition 3.4 on
all points of (XO\OK ′′,i ) (where OK ′′,i denotes the Zariski closure of OK ′′,i in XO). We will denote by
C0 the maximum of the (induced) MK -constants obtained from Proposition 3.4 for all possible K ′′/K
and orbits OK ′′,i (1≤ i ≤ rK ′′). The important point is that for any extension L/K , any v ∈ MK \S0, any
place w ∈ ML above v and any P ∈ (X\D)(OL ,w), choosing L ′ = K ′ ∩ L , one has

max
1≤i≤rL
1≤ j≤ni

log|φL ′,i, j (P)|w ≤ c0,v. (5-2)

This is the first step to obtain a bound on the height of one of the ψK ′′,i (P). For fixed P , we only have
to do so for one of the i ∈ {1, . . . , rL} as long as the bound is uniform in the choice of (L , SL) (and P),
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to obtain finiteness as each ψK ′′,i is an embedding. To this end, one only needs to bound the coordinate
functions on the places w of SL , which is what we will do now.

For a subextension K ′′ of K ′/K again, by (H2) (see the definition of mY ), taking any set I of
mY + 1 couples (i, j), 1≤ i ≤ rK ′′, j ∈ {1, . . . , ni } with mY + 1 different indices i and considering the
rational functions φK ′′,i, j , (i, j) ∈ I, whose common poles are included in Y by hypothesis, we can
apply Proposition 3.1 to these functions and the tubular neighborhood V = (Vw)w∈MK

. Naming as C1 the
maximum of all the (induced) obtained MK -constants (also for all the possible K ′′), we just proved that
for every subextension K ′′ of K ′/K , every place w ∈ MK (above v ∈ MK ) and any P ∈ X (K )\Vw, the
inequality

max
1≤ j≤ni

log|φK ′′,i, j (P)|w ≤ c1,v (5-3)

is true except for at most mY different indices i ∈ {1, . . . , rK ′′}.
Now, let us consider (L , SL) a pair satisfying the tubular Runge condition mY |SL |< rL and denote

L ′ = K ′ ∩ L again. For P ∈ (X\D)(OL ,SL ) not belonging to V , by (5-2), (5-3) and the tubular Runge
condition, there remains an index i ∈ {1, . . . , rL} (dependent on P) such that ∀w ∈ ML ,

max
1≤ j≤ni

log|φL ′,i, j (P)|w ≤max(c0,v, c1,v) (w | v ∈ MK ).

This immediately gives a bound on the height of ψL ′,i (P) independent of the choice of pair (L , SL)

(except the fact that L ′ = K ′ ∩ L). As ψL ′,i is an embedding and [L :Q] ≤ 2|SL |< 2r , by Northcott’s
property, P belongs to a finite family of points (depending on i but not on (L , SL)), and taking the union
of these families for i ∈ {1, . . . , rL}, we have proven the finiteness of the set of points⋃

(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V},

where (L , SL) goes through all the pairs satisfying the tubular Runge condition.

(R2) The proof is the same as for (R1) except that we have to exclude a closed subset of XK ′ for every
big divisor involved, and their union will be denoted by Z K ′ . The arguments above hold for every point
P /∈ Z K ′(K ) (both for the expression of integrality by auxiliary functions, and for the conclusion and
finiteness outside of this closed subset), using again Propositions 3.4 and 3.1. �

6. Reminders on Siegel modular varieties

In this section, we recall the classical constructions and results for the Siegel modular varieties, parametriz-
ing principally polarized abelian varieties with a level structure. Most of those results are extracted (or
easily deduced) from these general references: Chapter V of [Cornell and Silverman 1986] for the basic
notions on abelian varieties, [Debarre 1999] for the complex tori, their line bundles, theta functions and
moduli spaces, Chapter II of [Mumford 2007] for the classical complex theta functions, [Mumford 1984]
for their links with theta divisors, and Chapter V of [Faltings and Chai 1990] for abelian schemes and
their moduli spaces.
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Unless specified, all the vectors of Zg,Rg and Cg are assumed to be row vectors.

6A. Abelian varieties and Siegel modular varieties.

Definition 6.1 (abelian varieties and polarization). • An abelian variety A over a field k is a projective
algebraic group over k. Each abelian variety A/k has a dual abelian variety denoted by Â = Pic0(A/k)
[Cornell and Silverman 1986, §V.9].

• A principal polarization is an isomorphism λ : A→ Â such that there exists a line bundle L on Ak

with dim H 0(Ak, L)= 1 and λ is the morphism

λ : Ak→ Âk

x 7→ T ∗x L ⊗ L−1

[Cornell and Silverman 1986, §V.13].

• Given a pair (A, λ), for every n ≥ 1 prime to char(k), we can define the Weil pairing

A[n]× A[n] → µn(k),

where A[n] is the n-torsion of A(k) and µn the group of n-th roots of unity in k. It is alternating and
nondegenerate [Cornell and Silverman 1986, §V.16].

• Given a pair (A, λ), for n ≥ 1 prime to char(k), a symplectic level n structure on A[n] is a basis αn of
A[n] in which the matrix of the Weil pairing is

J =
(

0 Ig

−Ig 0

)
.

• Two triples (A, λ, αn) and (A′, λ′, α′n) of principally polarized abelian varieties over K with level
n-structures are isomorphic if there is an isomorphism of abelian varieties φ : A→ A′ such that φ∗λ′ = λ
and φ∗α′n = αn .

In the case of complex abelian varieties, the previous definitions can be made more explicit.

Definition 6.2 (complex abelian varieties and symplectic group). Let g ≥ 1.
• The half-superior Siegel space of order g, denoted by Hg, is the set of matrices

Hg := {τ ∈ Mg(C) |
tτ = τ and Im τ > 0}, (6-1)

where Im τ > 0 means that this symmetric matrix of Mg(R) is positive definite. This space is an open
subset of Mg(C).

• For any τ ∈Hg, we define

3τ := Zg
+Zgτ and Aτ := Cg/3τ . (6-2)

Let Lτ be the line bundle on Aτ made up as the quotient of Cg
×C by the action of3τ defined ∀p,q∈Zg, by

(pτ + q) · (z, t)= (z+ pτ + q, e−iπpτ t p−2iπpt zt). (6-3)
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Then, Lτ is an ample line bundle on Aτ such that dim H 0(Aτ , Lτ )= 1, hence Aτ is a complex abelian
variety and Lτ induces a principal polarization denoted by λτ on Aτ (see for example [Debarre 1999,
Theorem VI.1.3]). We also denote by πτ : Cg

→ Aτ the quotient morphism.

• For every n ≥ 1, the Weil pairing wτ,n associated to (Aτ , λτ ) on Aτ [n] is defined by

wτ,n : Aτ [n]× Aτ [n] → µn(C)

(x, y) 7→ e2iπnwτ (x,y)

where x, y ∈ Cg have images x and y by πτ , and wτ is the R-bilinear form on Cg
× Cg (so that

wτ (3τ ×3τ )= Z) defined by

wτ (x, y) := Re(x) · Im(τ )−1
·

t Im(y)−Re(y) · Im(τ )−1
·

t Im(x)

(also readily checked by making explicit the construction of the Weil pairing).

• Let (e1, . . . , eg) be the canonical basis of Cg. The family

(πτ (e1/n), . . . , πτ (eg/n), πτ (e1 · τ/n), . . . , πτ (eg · τ/n)) (6-4)

is a symplectic level n structure on (Aτ , λτ ), denoted by ατ,n .

• Let J =
( 0
−1

1
0

)
∈M2g(Z). For any commutative ring A, the symplectic group of order g over A, denoted

by Sp2g(A), is the subgroup of GL2g(A) defined by

Sp2g(A) := {M ∈ GL2g(A) | t M J M = J }, J :=
(

0 Ig

−Ig 0

)
. (6-5)

For every n ≥ 1, the symplectic principal subgroup of degree g and level n, denoted by 0g(n), is the
subgroup of Sp2g(Z) made up by the matrices congruent to I2g modulo n. For every γ =

( A
C

B
D

)
∈ Sp2g(R)

and every τ ∈Hg, we define

jγ (τ )= Cτ + D ∈ GLg(C) and γ · τ = (Aτ + B)(Cτ + D)−1, (6-6)

which defines a left action by biholomorphisms of Sp2g(R) on Hg, and (γ, τ ) 7→ jγ (τ ) is a left cocycle
for this action [Klingen 1990, Proposition I.1].

• For every g ≥ 2, n ≥ 1 and k ≥ 1, a Siegel modular form of degree g, level n and weight k is an
holomorphic function f on Hg such that ∀γ ∈ 0g(n),

f (γ · z)= det( jγ (z))k f (z). (6-7)

The reason for this description of the complex abelian varieties is that the (Aτ , λτ ) defined above make
up all the principally polarized complex abelian varieties up to isomorphism. The following results can
be found in Chapter VI of [Debarre 1999] except the last point which is straightforward.
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Definition-Proposition 6.3 (uniformization of complex abelian varieties). • Every principally polarized
complex abelian variety of dimension g with symplectic structure of level n is isomorphic to some triple
(Aτ , λτ , ατ,n) where τ ∈Hg.

• For every n ≥ 1, two triples (Aτ , λτ , ατ,n) and (Aτ ′, λτ ′, ατ ′,n) are isomorphic if and only if there exists
γ ∈ 0g(n) such that γ · τ = τ ′, and then such an isomorphism is given by

Aτ → Aτ ′

z mod3τ 7→ z · jγ (τ )−1 mod3τ ′
.

• The Siegel modular variety of degree g and level n is the quotient Ag(n)C := 0g(n)\Hg. From the
previous result, it is the moduli space of principally polarized complex abelian varieties of dimension g
with a symplectic level n structure. As a quotient, it also inherits a structure of normal analytic space
(with finite quotient singularities) of dimension g(g+ 1)/2, because 0g(n) acts properly discontinuously
on Hg.

• For every positive divisor m of n, the natural morphism Ag(n)C→ Ag(m)C induced by the identity of
Hg corresponds in terms of moduli to multiplying the symplectic basis ατ,n by n/m, thus obtaining ατ,m .

• For every g ≥ 1 and n ≥ 1, the quotient of Hg ×C by the action of 0g(n) defined as

γ · (τ, t)= (γ · τ, t/ det( jγ (z))) (6-8)

is a variety over Hg denoted by L . For a large enough power of k (or if n ≥ 3), L⊗k is a line bundle over
Ag(n)C, hence L is a Q-line bundle over Ag(n)C called line bundle of modular forms of weight one over
Ag(n)C. By definition (6-7), for every k ≥ 1, the global sections of L⊗k are the Siegel modular forms of
degree g, level n and weight k.

Let us now present the compactification of Ag(n)C we will use, that is the Satake compactification (for
a complete description of it, see Section 3 of [Namikawa 1980]).

Definition-Proposition 6.4 (Satake compactification). Let g ≥ 1 and n ≥ 1. The normal analytic space
Ag(n)C admits a compactification called Satake compactification and denoted by Ag(n)S

C
, satisfying the

following properties.

(a) Ag(n)S
C

is a compact normal analytic space (of dimension g(g+1)/2, with finite quotient singularities)
containing Ag(n)C as an open subset and the boundary ∂Ag(n)C := Ag(n)S

C
\Ag(n)C is of codimension g

(see [Satake and Cartan 1957] for details).

(b) As a normal analytic space, Ag(n)S
C

is a projective algebraic variety. More precisely, for Mg(n)
the graded ring of Siegel modular forms of degree g and level n, Ag(n)S

C
is canonically isomorphic to

ProjC Mg(n) [Cartan 1957, Théorème fondamental].
In particular, one can naturally obtain Ag(n)S

C
by fixing for some large enough weight k a basis of

modular forms of Mg(n) of weight k and evaluating them all on Ag(n)C to embed it in a projective space,
so that Ag(n)S

C
is the closure of the image of the embedding in this projective space.
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(c) The Q-line bundle L of modular forms of weight 1 on Ag(n)C extends naturally to an ample Q-line
bundle on Ag(n)S

C
(which is also denoted L); this is a direct consequence of (b).

6B. Further properties of Siegel modular varieties. As we are interested in the reduction of abelian
varieties on number fields, one needs to have a good model of Ag(n)C over integer rings, as well as
some knowledge of the geometry of Ag(n)C. The integral models below and their properties are given in
Chapter V of [Faltings and Chai 1990].

Definition 6.5 (abelian schemes). (a) An abelian scheme A→ S is a smooth proper group scheme whose
fibers are geometrically connected. It also has a natural dual abelian scheme Â = Pic0(A/S), and it is
principally polarized if it is endowed with an isomorphism λ : A→ Â such that at every geometric point
s of S, the induced isomorphism λs : As→ Âs is a principal polarization of As .

(b) A symplectic structure of level n≥1 on a principally polarized abelian scheme (A, λ) over a Z[ζn, 1/n]-
scheme S is the datum of an isomorphism of group schemes A[n]→ (Z/nZ)2g, which is symplectic with
respect to λ and the canonical pairing on (Z/nZ)2g given by the matrix J (as in (6-5)).

Definition-Proposition 6.6 (algebraic moduli spaces). For every integers g ≥ 1 and n ≥ 1:

(a) The Satake compactification Ag(n)S
C

has an integral model Ag(n)S on Z[ζn, 1/n] which contains as a
dense open subscheme the (coarse, if n ≤ 2) moduli space Ag(n) over Z[ζn, 1/n] of principally polarized
abelian schemes of dimension g with a symplectic structure of level n. This scheme Ag(n)S is normal,
proper and of finite type over Z[ζn, 1/n] [Faltings and Chai 1990, Theorem V.2.5].

(b) For every divisor m of n, we have canonical degeneracy morphisms Ag(n)S
→Ag(m)S extending

the morphisms of Definition-Proposition 6.3.

Before tackling our own problem, let us give some context on the divisors on Ag(n)S
C

to give a taste of
the difficulties to overcome.

Definition 6.7 (rational Picard group). For every normal algebraic variety X over a field K , the rational
Picard group of X is the Q-vector space

Pic(X)Q := Pic(X)⊗Z Q.

Proposition 6.8 (rational Picard groups of Siegel modular varieties). Let g ≥ 2 and n ≥ 1.

(a) Every Weil divisor on Ag(n)C or Ag(n)S
C

is up to some multiple a Cartier divisor, hence their rational
Picard group is also their Weil class divisor group tensored by Q.

(b) For g = 3, the Picard rational groups of A3(n)S
C

and A3(n)C are equal to Q · L for every n ≥ 1.

(c) For g = 2, one has PicQ(A2(1)S
C
)=Q · L.

This result has the following immediate corollary, because L is ample on Ag(n)S
C

for every g ≥ 2 and
every n ≥ 1 (Definition-Proposition 6.4(c)).



A tubular variant of Runge’s method in all dimensions 183

Corollary 6.9 (ample and big divisors on Siegel modular varieties). A Q-divisor on Ag(n)C or Ag(n)S
C

with g=3 (or g=2 and n=1) is ample if and only if it is big if and only if it is equivalent to a · L with a > 0.

Remark 6.10. We did not mention the case of modular curves (also difficult, but treated by different
methods): the point here is that the cases g ≥ 3 are surprisingly much more uniform because then
Pic(Ag(n)S

C
) = Pic(Ag(1)S

C
). The reason is that some rigidity appears from g ≥ 3 (essentially by the

general arguments of [Borel 1981]), whereas for g = 2, the situation seems very complex already for the
small levels (see for example n = 3 in [Hoffman and Weintraub 2001]).

This is why the ampleness (or bigness) is in general hard to figure out for given divisors of A2(n), n> 1.
We consider specific divisors in the following (namely, divisors of zeroes of theta functions), whose
ampleness will not be hard to prove.

Proof of Proposition 6.8.

(a) This is true for the Ag(n)S
C

by [Artal Bartolo et al. 2014] as they only have finite quotient singularities
(this result actually seems to have been generally assumed a long time ago). Now, as ∂Ag(n)S

C
is of

codimension at least 2, the two varieties Ag(n)S
C

and Ag(n)C have the same Weil and Cartier divisors,
hence the same rational Picard groups.

(b) This is a consequence of general results of [Borel 1981] further refined in [Weissauer 1992] (it can
even be generalized to every g ≥ 3).

(c) This comes from the computations of Section III.9 of [Mumford 1983] (for another compactification,
called toroidal), from which we extract the result for A2(1)C by a classical restriction theorem [Hartshorne
1977, Proposition II.6.5] because the boundary for this compactification is irreducible of codimension 1.
The result for A2(1)S

C
is then the same because the boundary is of codimension 2. �

6C. Theta divisors on abelian varieties and moduli spaces. We will now define the useful notions for
our integral points problem.

Definition 6.11 (theta divisor on an abelian variety). Let k be an algebraically closed field and A an
abelian variety over k.

Let L be an ample symmetric line bundle on A inducing a principal polarization λ on A. A theta
function associated to (A, L) is a nonzero global section ϑA,L of L . The theta divisor associated to
(A, L), denoted by 2A,L , is the divisor of zeroes of ϑA,L , well-defined and independent of our choice
because dim H 0(A, L)= deg(λ)2 = 1.

The theta divisor is in fact determined by the polarization λ itself up to a finite ambiguity, as the result
below makes precise.

Proposition 6.12. Let k be an algebraically closed field and A an abelian variety over k.
Two ample symmetric line bundles L and L ′ on A inducing a principal polarization induce the same

one if and only if L ′ ∼= T ∗x L for some x ∈ A|2], and then

2A,L ′ =2A,L + x .
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Proof. This is a well-known result relying on the properties of the map

L 7→ (φL : x 7→ T ∗x L ⊗ L−1)

from Pic(A) to Hom(A, Â) [Mumford 1970, Corollary 4 p. 60 and Theorem 1 p. 77], and of ample
symmetric line bundles. �

When char(k) 6= 2, adding to a principally polarized abelian variety (A, λ) of dimension g the datum
α2 of a symplectic structure of level 2, we can determine an unique ample symmetric line bundle L with
the following process called the Igusa correspondence, devised in [Igusa 1967]. To any ample symmetric
Weil divisor D defining a principal polarization, one can associate bijectively a quadratic form qD from
A[2] to {±1} called even, which means that the sum of its values on A[2] is 2g [loc. cit., Theorem 2 and
the previous arguments]. On the other hand, the datum α2 also determines an even quadratic form qα2 , by
associating to a x ∈ A[2] with coordinates (a, b) ∈ (Z/2Z)2g in the basis α2 of A[2] the value

qα2(x)= (−1)a
t b. (6-9)

We now only have to choose the unique ample symmetric divisor D such that qD = qα2 and the line
bundle L associated to D.

By construction of this correspondence [loc. cit., p. 823], a point x ∈ A[2] of coordinates (a, b) ∈
(Z/2Z)2g in α2 automatically belongs to 2A,L (with L associated to (A, λ, α2)) if at b = 1 mod 2. A
point of A[2] with coordinates (a, b) such that at b = 0 mod 2 can also belong to 2A,L but with even
multiplicity.

This allows us to get rid of the ambiguity of choice of an ample symmetric L in the following, as
soon as we have a symplectic level 2 structure (or finer) (this result is a reformulation of Theorem 2 of
[loc. cit.]).

Definition-Proposition 6.13 (theta divisor canonically associated to a symplectic even level structure).
Let n ≥ 2 even and k algebraically closed such that char(k) does not divide n.

For (A, λ, αn) a principally polarized abelian variety of dimension g with symplectic structure of
level n (Definition 6.2), there is up to isomorphism an unique ample symmetric line bundle L inducing λ
and associated by the Igusa correspondence to the symplectic basis of A[2] induced by αn . The theta
divisor associated to (A, λ, αn), denoted by 2A,λ,αn , is then the theta divisor associated to (A, L).

The Runge-type theorem we give in Section 7 (Theorem 7.12) focuses on principally polarized abelian
surfaces (A, λ) on a number field K whose theta divisor does not contain any n-torsion point of A (except
2-torsion points, as we will see it is automatic). This will imply (Proposition 7.5) that A is not a product of
elliptic curves, but this is not a sufficient condition, as pointed out for example in [Boxall and Grant 2000].

We will once again start with the complex case to figure out how such a condition can be formulated
on the moduli spaces, using complex theta functions [Mumford 2007, Chapter II].
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Definition-Proposition 6.14 (complex theta functions). Let g ≥ 1.
The holomorphic function2 on Cg

×Hg is defined by the series (uniformly convergent on any compact
subset)

2(z, τ )=
∑
n∈Zg

eiπnτ t n+2iπnt z. (6-10)

For any a, b ∈ Rg, we also define the holomorphic function 2a,b by

2a,b(z, τ )=
∑
n∈Zg

eiπ(n+a)τ t (n+a)+2iπ(n+a)t (z+b). (6-11)

For a fixed τ ∈Hg, one defines 2τ : z 7→2(z, τ ) and similarly for 2a,b,τ . These functions have the
following properties.

(a) For every a, b ∈ Zg,

2a,b,τ (z)= eiπaτ t a+2iπat (z+b)2τ (z+ aτ + b). (6-12)

(b) For every p, q ∈ Zg,

2a,b,τ (z+ pτ + q)= e−iπpτ t p−2iπpt z+2iπ(at q−bt p)2a,b,τ (z). (6-13)

(c) Let us denote by ϑ and ϑa,b the normalized theta-constants, which are the holomorphic functions on
Hg defined by

ϑ(τ) :=2(0, τ ) and ϑa,b(τ ) := e−iπat b2a,b(0, τ ). (6-14)

These theta functions satisfy the following modularity property: with the notations of Definition 6.2
and ∀γ ∈ 0g(2),

ϑa,b(γ · τ)= ζ8(γ )eiπ(a,b)t Vγ
√

jγ (τ )ϑ(a,b)γ (τ ), (6-15)

where ζ8(γ ) (an 8-th root of unity) and Vγ ∈ Zg only depend on γ and the determination of the square
root of jγ (τ ).

In particular, for every even n ≥ 2, if (na, nb) ∈ Z2g, the function ϑ8n
a,b is a Siegel modular form of

degree g, level n and weight 4n, which only depends on (a, b) mod Z2g.

Proof. The convergence of these series as well as their functional equations (6-12) and (6-13) are classical
and can be found in Section II.1 of [Mumford 2007].

The modularity property (6-15) (also classical) is a particular case of the computations of Section II.5
of [Mumford 2007] (we do not need here the general formula for γ ∈ Sp2g(Z)).

Finally, by natural computations of the series defining 2a,b, one readily obtains that

ϑa+p,b+q = e2iπ(at q−bt p)ϑa,b.

Therefore, if (na, nb) ∈ Z2g, the function ϑn
a,b only depends on (a, b) mod Z2g. Now, putting the

modularity formula (6-15) to the power 8n, one eliminates the eight root of unity and if γ ∈ 0g(n), one
has (a, b)γ = (a, b) mod Zg hence ϑ8n

a,b is a Siegel modular form of weight 4n for 0g(n). �
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There is of course an explicit link between the theta functions and the notion of theta divisor, which
we explain now with the notations of Definition 6.2.

Proposition 6.15 (theta divisor and theta functions). Let τ ∈Hg.
The line bundle Lτ is ample and symmetric on Aτ , and defines a principal polarization on Aτ . It

is also the line bundle canonically associated to the 2-structure ατ,2 and its polarization by the Igusa
correspondence (Definition-Proposition 6.13).

Furthermore, the global sections of Lτ canonically identify to the multiples of 2τ , hence the theta
divisor associated to (Aτ , λτ , ατ,2) is exactly the divisor of zeroes of 2τ modulo 3τ .

Thus, for every a, b ∈ Rg, the projection of πτ (aτ + b) belongs to 2Aτ ,λτ ,ατ,2 if and only if ϑa,b(τ )= 0.

Remark 6.16. The proof below that the Lτ is the line bundle associated to (Aτ , λτ , ατ,2) is a bit technical,
but one has to suspect that Igusa normalized its correspondence by (6-9) exactly to make it work.

Proof. One can easily see that Lτ is symmetric by writing [−1]∗Lτ as a quotient of Cg
×C by an action

of 3τ , then figuring out it is the same as (6-3). Then, by simple connectedness, the global sections of Lτ
lift by the quotient morphism Cg

×C→ Lτ into functions z 7→ (z, f (z)), and the holomorphic functions
f thus obtained are exactly the functions satisfying functional equation (6-13) for a = b = 0 because of

(6-3), hence the same functional equation as 2τ . This identification is also compatible with the associated
divisors, hence 2Aτ ,Lτ is the divisor of zeroes of 2τ modulo 3τ . For more details on the theta functions
and line bundles, see [Debarre 1999, Chapters IV, V and Section VI.2].

We now have to check that the Igusa correspondence indeed associates Lτ to (Aτ , λτ , ατ,2). With the
notations of the construction of this correspondence [Igusa 1967, pp. 822, 823 and 833], one sees that the
meromorphic function ψx on Aτ (depending on Lτ ) associated to x ∈ Aτ [2] has divisor [2]∗T ∗x 2Aτ ,Lτ −

[2]∗2Aτ ,Lτ , hence it is (up to a constant) the meromorphic function induced on Aτ by

fx(z)=
2a,b,τ (2z)
2τ (2z)

,

where x = aτ + b mod3τ . Now, the quadratic form q associated to Lτ is defined by the identity

fx(−z)= q(x) fx(z)

for every z ∈ Cg, but 2τ is even hence

fx(−z)= e4iπat b fx(z)

by (6-12). Now, the coordinates of x in ατ,2 are exactly (2b, 2a) mod Z2g by definition, hence q = qατ,2 .
Let us finally make the explicit link between zeroes of theta-constants and theta divisors; using the

argument above, the divisor of zeroes of 2τ modulo 3τ is exactly 2Aτ ,Lτ , hence 2Aτ ,λτ ,ατ,2 by what we
just proved for the Igusa correspondence. This implies that for every z ∈ Cg, 2τ (z)= 0 if and only if
πτ (z) belongs to 2Aτ ,λτ ,ατ,2 , and as ϑa,b(τ ) is a nonzero multiple of 2(aτ + b, τ ), we finally have that
ϑa,b(τ )= 0 if and only if πτ (aτ + b) belongs to 2Aτ ,λτ ,ατ,2 . �
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7. Applications of the main result on a family of Siegel modular varieties

We now have almost enough definitions to state the problem which we will consider for our Runge-type
result (Theorem 7.12). We consider theta divisors on abelian surfaces, and their torsion points.

To make their indexation easier, we use the following notation.

Notation. Until the end of this article, the expression “a couple (a, b) ∈ (Z/nZ)4 (resp. Z4,Q4 )” is a
shorthand to designate the row vector with four coefficients where a ∈ (Z/nZ)2 (resp. Z2, Q2 ) make up
the first two coefficients and b the last two coefficients.

7A. The specific situation for theta divisors on abelian surfaces. As an introduction and a preliminary
result, let us treat first the case of theta divisors on elliptic curves.

Lemma 7.1 (theta divisor on an elliptic curve). Let E be an elliptic curve on an algebraically closed field
k with char(k) 6= 2 and L an ample symmetric line bundle defining the principal polarization on E.

The effective divisor 2E,L is a 2-torsion point of E with multiplicity one. More precisely, if (e1, e2) is
the basis of E[2] associated by Igusa correspondence to L (Definition-Proposition 6.13),

2E,L = [e1+ e2]. (7-1)

Remark 7.2. In the complex case, this can simply be obtained by proving that 21/2,1/2,τ is odd for
every τ ∈H1 hence cancels at 0, and has no other zeroes (by a residue theorem for example), then using
Proposition 6.15.

Proof. By the Riemann–Roch theorem on E , the divisor 2E,L is of degree 1 because h0(E, L)= 1 (and
effective). Now, as explained before when discussing the Igusa correspondence, for a, b ∈ Z, ae1+ be2

automatically belongs to 2E,L if ab = 1 mod 2Z, hence 2E,L = [e1+ e2]. �

This allows one to describe the theta divisor of a product of two elliptic curves.

Proposition 7.3 (theta divisor on a product of two elliptic curves). Let k be an algebraically closed field
with char(k) 6= 2.

Let (A, L) with A= E1× E2 a product of elliptic curves over k and L an ample symmetric line bundle
on A inducing the product principal polarization on A. The divisor 2A,L is then of the shape

2A,L = {x1}× E2+ E1×{x2}, (7-2)

with xi ∈ Ei [2] for i = 1, 2. In particular, this divisor has a (unique) singular point of multiplicity two at
(x1, x2), and:

(a) There are exactly seven 2-torsion points of A belonging to 2A,L : the six points given by the
coordinates (a, b) ∈ (Z/2Z)4 such that at b = 1 in a basis giving 2A,L by the Igusa correspondence,
and the seventh point (x1, x2).

(b) For every even n ≥ 2 which is nonzero in k, the number of n-torsion (but not 2-torsion) points of A
belonging to 2A,L is exactly 2(n2

− 4).
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Proof. By construction of (A, L), a global section of (A, L) corresponds to a tensor product of global
sections of E1 and E2 (with their principal polarizations), hence the shape of 2A,L is a consequence of
Lemma 7.1.

We readily deduce (a) and (b) from this shape, using that the intersection of the two components of2A,L

is a 2-torsion point of even multiplicity for the quadratic form hence different from the six other ones. �

Regarding abelian surfaces which are not products of elliptic curves, we recall below a fundamental
result (proven in [Oort and Ueno 1973]).

Proposition 7.4 (shapes of principally polarized abelian surfaces). Let k be any field.
A principally polarized abelian surface (A, λ) over k is, after a finite extension of scalars, either the

product of two elliptic curves (with its natural product polarization), or the jacobian J of an hyperelliptic
curve C of genus 2 (with its canonical principal polarization). In the second case, for the Albanese
embedding φx : C→ J with base-point x and an ample symmetric line bundle L over K inducing λ, the
divisor 2J,L is irreducible, and it is actually a translation of φx(C) by some point of J (k).

Let us now fix an algebraically closed field k with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2, and ι its hyperelliptic involution. This curve has exactly six

Weierstrass points (the fixed points of ι, by definition), and we fix one of them, denoted by∞. For the
Albanese morphism φ∞, the divisor φ∞(C) is stable by [−1] because the divisor [x] + [ι(x)] − 2[∞]
is principal for every x ∈ C . As 2J,L is also symmetric and a translation of φ∞(C), we know that
2J,L = T ∗x (φ∞(C)) for some x ∈ J [2].

This tells us that understanding the points of 2J,L amounts to understanding how the curve C behaves
when embedded in its jacobian (in particular, how its points add). It is a difficult problem to know which
torsion points of J belong to the theta divisor (see [Boxall and Grant 2000] for example), but we will
only need to bound their quantity here, with the following result.

Proposition 7.5. Let k an algebraically closed field with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2 over k with jacobian J , and∞ a fixed Weierstrass point

of C. We denote by C̃ the image of C in J by the associated embedding φ∞ : x 7→ [x] − [∞].

(a) The set C̃ is stable by [−1], and the application

Sym2(C̃)→ J

{P, Q} 7→ P + Q

is the blow-up of J at the origin, in particular it is injective outside the fiber above 0.

(b) There are exactly six 2-torsion points of J belonging to C̃ , and they are equivalently the images of
the Weierstrass points and the points of coordinates (a, b) ∈ ((Z/2Z)2)2 such that at b = 1 in a basis
giving C̃ by the Igusa correspondence.

(c) For any n ≥ 2 which is nonzero in k, the number of n-torsion points of J belonging to C̃ is bounded
by
√

2n2
+

1
2 .
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Remark 7.6. This proposition is not exactly a new result, and its principle can be found (with slightly
different formulations) in Theorem 1.3 of [Boxall and Grant 2000] or in Lemma 5.1 of [Pazuki 2013].
The problem of counting (or bounding) torsion points on the theta divisor has interested many people,
e.g., [Boxall and Grant 2000] and very recently [Auffarth et al. 2017] in general dimension. Notice that
the results above give the expected bound in the case g = 2, but we do not know how much we can lower
the bound

√
2n2 in the case of jacobians.

Proof. (a) is a well-known consequence of the Riemann–Roch theorem in genus 2. (b) comes from the
construction of the Igusa correspondence, and the definition of Weierstrass points as points P such that
2[P] is a canonical divisor. Now, for any n ≥ 2, let us denote C̃[n] := C̃ ∩ J [n]. The summing map from
C̃[n]2 to J [n] has a fiber of cardinal |C̃[n]| above 0 and at most 2 above any other point of J [n] by (a),
hence the inequality of degree two

|C̃[n]|2 ≤ |C̃[n]| + 2(n4
− 1),

from which we directly obtain (c). �

We can now define the divisors we will consider for our Runge-type theorem.

Definition-Proposition 7.7 (theta divisors on A2(n)S
C

). Let n ∈ N≥2 even.

(a) A couple (a, b) ∈ (Z/nZ)4 is called regular if it is not of the shape ((n/2)a′, (n/2)b′) with (a′, b′) ∈
((Z/2Z)2)2 such that a′t b′ = 1 mod 2. There are exactly 6 couples (a, b) not satisfying this condition,
which we call singular.

(b) If (a, b) ∈ (Z/nZ)4 is regular, for every lift (ã, b̃) ∈ Z4 of (a, b), the function ϑ8n
ã/n,b̃/n

is a nonzero
Siegel modular form of degree 2, weight 4n and level n, independent of the choice of lifts. The theta
divisor associated to (a, b), denoted by (Dn,a,b)C, is the Weil divisor of zeroes of this Siegel modular
form on A2(n)S

C
.

Remark 7.8. The singular couples correspond to what are called odd characteristics by Igusa.
The proof below uses Fourier expansions to figure out which theta functions are nontrivial. One can

also prove through Fourier expansions that the Weil divisors (Dn,a,b)C and (Dn,a′,b′)C are distinct (unless
(a, b)=±(a′, b′) of course) and it is likely true that they are even set-theoretically pairwise distinct (i.e.,
even without counting the multiplicities). This is not very important for us since Proposition 7.3 and 7.5
are not modified if some of the divisors taken into account are equal.

Proof of Definition-Proposition 7.7. (a) By construction, for any even n ≥ 2, the number of singular
couples (a, b) ∈ (Z/nZ)4 is the number of couples (a′, b′) ∈ (Z/2Z)4 such that a′t b′ = 1 mod 2, and we
readily see there are exactly six of them, namely

(0101), (1010), (1101), (1110), (1011) and (0111).

For (b) and (c), the modularity of the function comes from Definition-Proposition 6.14(c) hence we only
have to prove that it is nonzero when (a, b) is regular. To do this, we will use the Fourier expansion of
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this modular form (for more details on Fourier expansions of Siegel modular forms, see chapter 4 of
[Klingen 1990]), and simply prove that it has nonzero coefficients. This is also how we will prove the
ϑa,b are distinct.

To shorten the notations, given (a, b) ∈ (Z/nZ)4, we consider instead (ã/n, b̃/n) ∈Q4 for some lift
(ã, b̃) of (a, b) in Z4) and by abuse of notation we denote it (a, b) for simplicity. Regularity of the couple
translates into the fact that (a, b) is different from six possibles values modulo Z4, namely(

0, 1
2 , 0, 1

2

)
,
( 1

2 , 0, 1
2 , 0

)
,
( 1

2 ,
1
2 , 0, 1

2

)
,
( 1

2 ,
1
2 ,

1
2 , 0

)
,
( 1

2 , 0, 1
2 ,

1
2

)
,
(
0, 1

2 ,
1
2 ,

1
2

)
by (a), which we will assume now. We also fix n ∈ N even such that (na, nb) ∈ Z4.

Recall that

ϑa,b(τ )= eiπat b
∑
k∈Z2

eiπ(k+a)τ t (k+a)+2iπkt b (7-3)

by (6-12) and (6-14). Therefore, for any symmetric matrix S ∈ M2(Z) such that S/(2n2) is half-integral
(i.e., with integer coefficients on the diagonal, and half-integers otherwise), we have ∀τ ∈H2,

ϑa,b(τ + S)= ϑa,b(τ ),

because for every k ∈ Z2,

(k+ a)St(k+ a) ∈ 2Z.

Hence, the function ϑa,b admits a Fourier expansion of the form

ϑa,b(τ )=
∑

T

aT e2iπ Tr(T τ),

where T runs through all the matrices of S2(Q) such that (2n2)T is half-integral. This Fourier expansion
is unique, because for any τ ∈H2 and any T , we have

(2n2)aT =

∫
[0,1]4

ϑa,b(τ + x)e−2iπ Tr(T (τ+x)) dx .

In particular, the function ϑa,b is zero if and only if all its Fourier coefficients aT are zero, hence
we will directly compute those, which are almost directly given by (7-3). For a = (a1, a2) ∈ Q2 and
k = (k1, k2) ∈ Z2, let us define

Ta,k =

(
(k1+ a1)

2 (k1+ a1)(k2+ a2)

(k1+ a1)(k2+ a2) (k2+ a2)
2

)
,

so that

ϑa,b(τ )= eiπat b
∑
k∈Z2

e2iπkt beiπ Tr(Ta,kτ) (7-4)
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by construction. It is not yet exactly the Fourier expansion, because we have to gather the Ta,k giving the
same matrix T (and this is where we will use regularity). Clearly,

Ta,k = Ta′,k′ ⇐⇒ (k+ a)=±(k ′+ a′).

If 2a /∈ Z2, the function k 7→ Ta,k is injective, so (7-4) is the Fourier expansion of ϑa,b, with clearly
nonzero coefficients, hence ϑa,b is nonzero.

If 2a = A ∈ Z2, for every k, k ′ ∈ Z2, we have (k+ a)=±(k ′+ a) if and only if k = k ′ or k+ k ′ = A,
so the Fourier expansion of ϑa,b is

ϑa,b(τ )=
eiπat b

2

∑
T

∑
k,k′∈Z2

Tk,a=Tk′,a=T

(e2iπkt b
+ e2iπ(−A−k)t b)eiπ Tr(T τ). (7-5)

Therefore, the coefficients of this Fourier expansion are all zero if and only if, for every k ∈ Z2,

e2iπ(2k+A)t b
=−1,

i.e., if and only if b ∈ (1/2)Z and (−1)4at b
=−1, and this is exactly singularity of the couple (a, b) which

proves (b). �

These divisors have the following properties.

Proposition 7.9 (properties of the (Dn,a,b)C). Let n ∈ N≥2 even.

(a) For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is ample.

(b) For n = 2, the ten divisors (D2,a,b)C are set-theoretically pairwise disjoint outside the boundary
∂A2(2)C := A2(2)S

C
\A2(2)C, and their union is exactly the set of moduli of products of elliptic curves

(with any symplectic basis of the 2-torsion).

(c) For (A, λ, αn) a principally polarized complex abelian surface with symplectic structure of level n:

– If (A, λ) is a product of elliptic curves, the moduli of (A, λ, αn) belongs to exactly n2
−3 divisors

(Dn,a,b)C.
– Otherwise, the point (A, λ, αn) belongs to at most (

√
2/2)n2

+ 1/4 divisors (Dn,a,b)C.

Proof. (a) The divisor (Dn,a,b)C is by definition the Weil divisor of zeroes of a Siegel modular form
of order 2, weight 4n and level n, hence of a section of L⊗4n on A2(n)S

C
. As L is ample on A2(n)S

C

(Definition-Proposition 6.4(c)), the divisor (Dn,a,b)C is ample.
Now, we know that every complex pair (A, λ) is isomorphic to some (Aτ , λτ ) with τ ∈H2 (Definition-

Proposition 6.3). If (A, λ) is a product of elliptic curves, the theta divisor of (A, λ, α2) contains exactly
seven 2-torsion points (Proposition 7.3), only one of comes from a regular pair, i.e., (A, λ, α2) is
contained in exactly one of the ten divisors. If (A, λ) is not a product of elliptic curves, it is a jacobian
(Proposition 7.4) and the theta divisor of (A, λ, α2) only contains the six points coming from singular
pairs (Proposition 7.5) i.e., (A, λ, α2) does not belong to any of the ten divisors, which proves (b).
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To prove (c), we use the same propositions for general n, keeping in mind that we only count as one the
divisors coming from opposite values of (a, b): for products of elliptic curves, this gives 2(n2

− 4)/2+ 1
divisors (the 1 coming from the even 2-torsion), and for jacobians, this gives (

√
2/2)n2

+
1
4 (there are no

nontrivial 2-torsion points to consider here). �

We will now give the natural divisors extending (Dn,a,b)C on the integral models A2(n) (Definition-
Proposition 6.6).

Definition 7.10. Let n ∈ N≥2 even.
For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is the geometric fiber at C of an effective

Weil divisor Dn,a,b on A2(n), such that the moduli of a triple (A, λ, αn) (on a field k of characteristic
prime to n) belongs to Dn,a,b(k) if and only if the point of A[n](k) of coordinates (a, b) for αn belongs
to the theta divisor 2A,λ,αn (Definition-Proposition 6.13).

Proof. This amounts to giving an algebraic construction of the Dn,a,b satisfying the wanted properties.
The following arguments are extracted from Remark I.5.2 of [Faltings and Chai 1990]. Let π : A→ S an
abelian scheme and L a symmetric invertible sheaf on A, relatively ample over S and inducing a principal
polarization on A. If s : S → A is a section of A over S, the evaluation at s induces an OS-module
isomorphism between π∗L and s∗L. Now, if s is of n-torsion in A, for e : S→ A the zero section, the sheaf
(s∗L)⊗2n is isomorphic to (e∗L)⊗2n , i.e., trivial. We denote by ωA/S the invertible sheaf on S obtained as
the determinant of the sheaf of invariant differential forms on A, and the computations of Theorem I.5.1
and Remark I.5.2 of [Faltings and Chai 1990] give 8π∗L = −4ωA/S in Pic(A/S). Consequently, the
evaluation at s defines (after a choice of trivialization of (e∗L)⊗2n and putting to the power 8n) a section
of ω⊗4n

A/S . Applying this result on the universal abelian scheme (stack if n ≤ 2) X2(n) on A2(n), for
every (a, b) ∈ (Z/nZ)4, the section defined by the point of coordinate (a, b) for the n-structure on X2(n)
induces a global section sa,b of ω⊗4n

X2(n)/A2(n), and we define Dn,a,b as the Weil divisor of zeroes of this
section. It remains to check that it satisfies the correct properties.

Let (A, λ, αn) be a triple over a field k of characteristic prime to n, and L the ample line bundle
associated to it by Definition-Proposition 6.13. By construction, its moduli belongs to Dn,a,b if and only
if the unique (up to constant) nonzero section vanishes at the point of A[n] of coordinates (a, b) in αn ,
hence if and only if this point belongs to 2A,λ,αn .

Finally, we see that the process described above applied to the universal abelian variety X2(n)C
of A2(n)C (by means of explicit description of the line bundles as quotients) gives (up to invertible
holomorphic functions) the functions ϑ8n

ã/n,b̃/n
, which proves that (Dn,a,b)C is indeed the geometric fiber

of Dn,a,b (it is easier to see that their complex points are the same, by Proposition 7.9(c) and the above
characterization applied to the field C).

If one does not want to use stacks for n = 2, one can consider for (a, b) ∈ (Z/2Z)4 the divisor D4,2a,2b

which is the pullback of D2,a,b by the degeneracy morphism A2(4)→ A2(2). �

7B. Tubular Runge theorems for abelian surfaces and their theta divisors. We can now prove a family
of tubular Runge theorems for the theta divisors Dn,a,b (for even n ≥ 2).
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We will state the case n = 2 first because its moduli interpretation is easier but the proofs are the same,
as we explain below.

In the following results, the boundary of A2(n)S
C

is defined as ∂A2(n)S
C
:= A2(n)S

C
\A2(n)C.

Theorem 7.11 (tubular Runge for products of elliptic curves on A2(2)S). Let U be an open neighborhood
of ∂A2(2)S

C
in A2(2)S

C
for the natural complex topology.

For any such U , we define E(U ) the set of moduli P of triples (A, λ, α2) in A2(2)(Q) such that
(choosing L a number field of definition of the moduli):

– The abelian surface A has potentially good reduction at every finite placew ∈ML (tubular condition
for finite places).

– For any embedding σ : L→ C, the image Pσ of P in A2(2)C is outside of U (tubular condition for
archimedean places).

– The number sL of nonintegrality places of P , i.e., places w ∈ ML such that

– either w is above M∞L or 2,
– or the semistable reduction modulo w of (A, λ) is a product of elliptic curves

satisfies the tubular Runge condition

sL < 10.

Then, for every choice of U , the set E(U ) is finite.

Theorem 7.12 (tubular Runge for theta divisors on A2(n)S). Let n ≥ 4 even.
Let U be an open neighborhood of ∂A2(n)S

C
in A2(n)S

C
for the natural complex topology.

For any such U , we define E(U ) the set of moduli P of triples (A, λ, αn) in A2(n)(Q) such that
(choosing L ⊃Q(ζn) a number field of definition of the triple):

– The abelian surface A has potentially good reduction at every place w ∈ M∞L (tubular condition for
finite places).

– For any embedding σ : L→ C, the image Pσ of P in A2(n)C is outside of U (tubular condition for
archimedean places).

– The number sL of nonintegrality places of P , i.e., places w ∈ ML such that

– either w is above M∞L or a prime factor of n,
– or the theta divisor of the semistable reduction modulo w of (A, λ, αn) contains an n-torsion

point which is not one of the six points coming from odd characteristics,

satisfies the tubular Runge condition

(n2
− 3)sL <

n4

2
+ 2.

Then, for every choice of U , the set of points E(U ) is finite.
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Remark 7.13. We put an emphasis on the conditions given in the theorem to make it easier to identify
how it is an application of our main result, Theorem 5.1. The tubular conditions (archimedean and
finite) mean that our points P do not belong to some tubular neighborhood V of the boundary. We of
course chose the boundary as our closed subset to exclude because of its modular interpretation for
finite places. The places above M∞L or a prime factor of n are automatically of nonintegrality for our
divisors because the model A2(n) is not defined at these places. Finally, the second possibility to be
a place of nonintegrality straightforwardly comes from the moduli interpretation of the divisors Dn,a,b

(Definition 7.10). All this is detailed in the proof below.
To give an example of how we can obtain an explicit result in practice, we prove in Section 8 an

explicit (and even theoretically better) version of Theorem 7.11.
It would be more satisfying (and easier to express) to give a tubular Runge theorem for which the

divisors considered are exactly the irreducible components parametrizing the products of elliptic curves.
Unfortunately, except for n = 2, there is a serious obstruction because those divisors are not ample, and
there are even reasons to suspect they are not big. We have explained in Remark 6.10 why proving the
ampleness for general divisors on A2(n)S

C
is difficult.

It would also be morally satisfying to give a better interpretation of the moduli of the union of all the
Dn,a,b (for a fixed n > 2), i.e., not in terms of the theta divisor, but maybe of the structure of the abelian
surface if possible (nontrivial endomorphisms? isogenous to products of elliptic curves?). As far as the
author knows, the understanding of abelian surfaces admitting some nontrivial torsion points on their
theta divisor is still very limited.

Finally, to give an idea of the margin the tubular Runge condition gives for n > 2 (in terms of the
number of places which are not “taken” by the automatic bad places), we can easily see that the number
of places of Q(ζn) which are archimedean or above a prime factor of n is less than n/2. Hence, we can
find examples of extensions L of Q(ζn) of degree n such that some points defined on it still can satisfy the
tubular Runge condition. This is also where using the full strength of tubular Runge theorem is crucial:
for n = 2, one can compute that some points of the boundary are contained in 6 different divisors D2,a,b,
and for general even n, a similar analysis gives that the intersection number m∅ is quartic in n, which
leaves a lot less margin for the places of nonintegrality (or even none at all).

Proof of Theorems 7.11 and 7.12. As announced, this result is an application of the tubular Runge theorem
(Theorem 5.1) to A2(n)S

Q(ζn)
(Definition-Proposition 6.6) and the divisors Dn,a,b (Definition 7.10), whose

properties will be used without specific mention. We reuse the notations of the hypotheses of Theorem 5.1
to explain carefully how it is applied.

(H0) The field of definition of A2(n)S
C

is Q(ζn), and the ring over which our model A2(n)S is built is
Z[ζn, 1/n], hence S0 is made up with all the archimedean places and the places above prime factors of n.
There is no need for a finite extension here as all the Dn,a,b are divisors on A2(n)S .

(H1) The model A2(n)S
C

is indeed normal projective, and we know that the Dn,a,b are effective Weil
divisors hence Cartier divisors up to multiplication by some constant by Proposition 6.8. For any finite
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extension L of Q(ζn), the number of orbits rL is the number of divisors Dn,a,b (as they are divisors on
the base model), i.e., n4/2+ 2 (Proposition 7.9(c)).

(H2) The chosen closed subset Y of A2(n)S
Q
(ζn) is the boundary, namely

∂A2(n)S
Q(ζn)
=A2(n)S

Q(ζn)
\A2(n)Q(ζn).

We have to prove that the tubular conditions given above correspond to a tubular neighborhood. To do this,
let Y be the boundary A2(n)S

\A2(n) and g1, . . . , gs homogeneous generators of the ideal of definition of
Y after having fixed a projective embedding of A2(n). Let us find an MQ(ζn)-constant such that E(U ) is
included in the tubular neighborhood of ∂A2(n)S

Q
(ζn) in A2(n)S

Q(ζn)
associated to C and g1, . . . , gk . For

the places w not above M∞L or a prime factor of n, the fact that P = (A, λ, αn) does not reduce in Y
modulo w is exactly equivalent to A having potentially good reduction at w hence we can choose cv = 0
for the places v of Q(ζn) not archimedean and not dividing n. For archimedean places, belonging to U
for an embedding σ : L→ C implies that g1, . . . , gn are small, and we just have to choose cv strictly
larger than the maximum of the norms of the gi (U ∩ V j ) (in the natural affine covering (V j ) j of the
projective space), independent of the choice of v ∈ M∞

Q(ζn)
. Finally, we have to consider the case of places

above a prime factor of n. To do this, we only have to recall that having potentially good reduction can
be given by integrality of some quotients of the Igusa invariants at finite places, and these invariants are
modular forms on 02(1). We can add those who vanish on the boundary to the homogeneous generators
g1, . . . , gn and consider cv = 0 for these places as well. This is explicitly done in Section 8C for A2(2).

(TRC) As said before, there are n4/2+ 2 divisors considered, and their generic fibers are ample by
Proposition 7.9. Furthermore, by Propositions 7.3 and 7.5, outside the boundary, at most (n2

−3) can have
nonempty common intersection, and this exact number is attained only for products of elliptic curves.

This gives the tubular Runge condition

(n2
− 3)sL <

n4

2
+ 2,

which concludes the proof.
For n = 2, the union of the ten D2,a,b is made up with the moduli of products of elliptic curves, and

they are pairwise disjoint outside ∂A2(2) (Proposition 7.9(b)), hence the simply expressed condition
sL < 10 in this case. �

8. The explicit Runge result for level two

To finish this paper, we improve and make explicit the finiteness result of Theorem 7.11, as a proof of
principle of the method.

Before stating Theorem 8.2, we need some notations. In level two, the auxiliary functions are deduced
from the ten even theta constants of characteristic two, namely the functions 2m/2(τ ) (notation (6-11)),
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with the quadruples m going through

E = {(0000), (0001), (0010), (0011), (0100), (0110), (1000), (1001), (1100), (1111)} (8-1)

(see Sections 6C and 7A for details). We recall [van der Geer 1982, Theorem 5.2] that these functions
define an embedding

ψ : A2(2)→ P9

τ 7→ (24
m/2(τ ))m∈E

(8-2)

which induces an isomorphism between A2(2)S
C

and the subvariety of P9 (with coordinates indexed by
m ∈ E) defined by the linear equations

x1000− x1100+ x1111− x1001 = 0 (8-3)

x0000− x0001− x0110− x1100 = 0 (8-4)

x0110− x0010− x1111+ x0011 = 0 (8-5)

x0100− x0000+ x1001+ x0011 = 0 (8-6)

x0100− x1000+ x0001− x0010 = 0 (8-7)

(which makes it a subvariety of P4) together with the quartic equation(∑
m∈E

x2
m

)2

− 4
∑
m∈E

x4
m = 0. (8-8)

Remark 8.1. For the attentive reader, the first linear equation has sign (+1) in x1111 whereas it is (−1) in
[van der Geer 1982], as there seems to be a typographic mistake there: we found the mistake during our
computations in Sage in Section 8C and found the correct sign using Igusa’s relations [1964, Lemma 1
combined with the proof of Theorem 1].

There is a natural definition for a tubular neighborhood of Y = ∂A2(2): for a finite place v, as in
Theorem 7.11, we choose Vv as the set of triples P = (A, λ, α2) where A has potentially bad reduction
modulo v. To complete it with archimedean places, we use the classical fundamental domain for the
action of Sp4(Z) on H2 denoted by F2 (see [Klingen 1990, §I.2], for details). Given some parameter
t ≥
√

3/2, the neighborhood V (t) of ∂A2(2)S
C

in A2(2)S
C

is made up with the points P whose lift τ in
F2 (for the usual quotient morphism H2 → A2(1)C) satisfies Im(τ4) ≥ t , where τ4 is the lower-right
coefficient of τ . We choose V (t) as the archimedean component of the tubular neighborhood for every
archimedean place. The reader knowledgeable with the construction of Satake compactification will have
already seen such neighborhoods of the boundary.

Notice that for a point P = (A, λ, α2) ∈ A2(2)(K ), the abelian surface A is only defined over a finite
extension L of K , but for prime ideals P1 and P2 of OL above the same prime ideal P of OK , the
reductions of A modulo P1 and P2 are of the same type because P ∈ A2(2)(K ). This justifies what we
mean by “semistable reduction of A modulo P” below.
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Theorem 8.2. Let K be a number field and P = (A, λ, α2) ∈ A2(2)(K ) where A has potentially good
reduction at every finite place.

Let sP be the number of prime ideals P of OK such that the semistable reduction of A modulo P is a
product of elliptic curves. We denote by hF the stable Faltings height of A.

(a) If K =Q or an imaginary quadratic field and

|sP |< 4

then

h(ψ(P))≤ 10.75, hF (A)≤ 828.

(b) Let t ≥
√

3/2 be a real number. If for every embedding σ : K → C, the point Pσ ∈ A2(2)C does not
belong to V (t), and

|sP | + |M∞K |< 10

then

h(ψ(P))≤ 4π t + 8.44, hF (A)≤ 2π t + 5+ 533 log(π t + 5)

Remark 8.3. Previous versions gave a bound hF (A) ≤ 1070. This was actually due to an error in
comparing the height of ψ(P) and the Faltings height, and this error worsened the bounds, hence the
slightly better new bound.

The Runge condition for (b) is a straightforward application of our tubular Runge theorem. For (a), we
did not assume anything on the point P at the (unique) archimedean place, which eliminates six divisors
when applying Runge’s method here, hence the different Runge condition here (see Remark 5.2(b)).

The principle of proof is very simple: we apply Runge’s method to bound the height of ψ(P) when P
satisfies the conditions of Theorem 7.11, and using the link between this height and Faltings height given
in [Pazuki 2012, Corollary 1.3], we know we will obtain a bound of the shape

hF (P)≤ f (t)

where f is an explicit function of t , for every point P satisfying the conditions of Theorem 7.11.
At the places of good reduction not dividing 2, the contribution to the height is easy to compute thanks

to the theory of algebraic theta functions devised in [Mumford 1966; 1967]. The theory will be sketched
in Section 8A, resulting in Proposition 8.4.

For the archimedean places, preexisting estimates due to Streng for Fourier expansions on each of the
ten theta functions allow us to make explicit how only one of them can be too small compared to the
others, when we are outside of V (t). This is the topic of Section 8B.

For the places above 2, the theory of algebraic theta functions cannot be applied. To bypass the problem,
we use Igusa invariants (which behave in a well-known fashion for reduction in any characteristic) and
prove that the theta functions are algebraic and “almost integral” on the ring of these Igusa invariants,
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with explicit coefficients. Combining these two facts in Section 8C, we will obtain Proposition 8.7, a
less-sharp avatar of Proposition 8.4, but explicit nonetheless.

Finally, we put together these estimates in Section 8D and obtain the stated bounds on h ◦ψ and the
Faltings height.

8A. Algebraic theta functions and the places of potentially good reduction outside of 2. The goal of
this part is the following result.

Proposition 8.4. Let K be a number field and P a maximal ideal of OK , of residue field k(P) with
characteristic different from 2. Let P = (A, λ, α2) ∈ A2(2)(K ). Then, ψ(P) ∈ P9(K ) and:

(a) If the semistable reduction of A modulo P is a product of elliptic curves, the reduction of ψ(P)
modulo P has exactly one zero coordinate, in other words every coordinate of ψ(P) has the same
P-adic norm except one which is strictly smaller.

(b) If the semistable reduction of A modulo P is a jacobian of hyperelliptic curve, the reduction of ψ(P)
modulo P has no zero coordinate, in other words every coordinate of ψ(P) has the same P-adic
norm.

To link ψ(P) with the intrinsic behavior of A, we use the theory of algebraic theta functions, devised
in [Mumford 1966; 1967] (see also [David and Philippon 2002; Pazuki 2012]). As it is not very useful
nor enlightening to go into detail or repeat known results, we only mention them briefly here. In the
following, A is an abelian variety of dimension g over a field k and L an ample symmetric line bundle on
A inducing a principal polarization λ. We also fix n ≥ 2 even, assuming that all the points of 2n-torsion
of A are defined over k and char(k) does not divide n (in particular, we always assume char(k) 6= 2). Let
us denote formally the Heisenberg group G(n) as the set

G(n) := k∗× (Z/nZ)g × (Z/nZ)g

equipped with the group law

(α, a, b) · (α′, a′, b′) := (αα′e(2iπ/n)at b′, a+ a′, b+ b′)

(contrary to the convention of [Mumford 1966, p. 294], we identified the dual of (Z/nZ)g with itself).
Recall that A[n] is exactly the group of elements of A(k) such that T ∗x (L

⊗n) ∼= L⊗n; indeed, it is by
definition the kernel of the morphism φL⊗n = nφL from A to Â (see the references mentioned in the proof
of Proposition 6.12).

Proof. Given the datum of a theta structure on L⊗n , i.e., an isomorphism β : G(L⊗n) ∼= G(n) which is
the identity on k∗ (see [Mumford 1966, p. 289] for the definition of G(L⊗n)), one has a natural action
of G(n) on 0(A, L⊗n) (a consequence of Proposition 3 and Theorem 2 of [Mumford 1966]), hence for
n ≥ 4 the following projective embedding of A:

ψβ : A→ Pn2g
−1

k

x 7→ (((1, a, b) · (s⊗n
0 ))(x))a,b∈(Z/nZ)g ,

(8-9)
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where s0 is a nonzero section of 0(A, L), hence unique up to multiplicative scalar (therefore ψβ only
depends on β). This embedding is not exactly the same as the one defined in [Mumford 1966, p. 298 ] (it
has more coordinates), but the principle does not change at all. One calls Mumford coordinates of (A, L)
associated to β the projective point ψβ(0) ∈ Pn2g

−1(k).
Now, one has the following commutative diagram whose rows are canonical exact sequences [Mumford

1966, Corollary of Theorem 1],

0 // k∗

=

��

// G(L⊗n) //

β

��

A[n]

αn
��

// 0

0 // k∗ // G(n) // (Z/nZ)2g // 0,

where αn is a symplectic level n structure on A[n] (Definition 6.1), called the symplectic level n structure
induced by β. Moreover, for every x ∈ A(k), the coordinates of ψβ(x) are (up to constant values for each
coordinate, only depending on β) the ϑA,L([n]x +α−1

n (a, b)) (see Definition 6.11). In particular, for any
a, b ∈ (Z/nZ)g,

ψβ(0)a,b = 0⇔ α−1
n (a, b) ∈2A,L . (8-10)

Furthermore, for two theta structures β and β ′ on [n]∗L inducing αn , one sees that β ′ ◦ β−1 is of the
shape (α, a, b) 7→ (α · f (a, b), a, b), where f has values in n-th roots of unity, hence ψβ and ψβ ′ only
differ multiplicatively by n-th roots of unity.

Conversely, given the datum of a symplectic structure α2n on A[2n], there exists an unique symmetric
theta structure on [n]∗L which is compatible with some symmetric theta structure on [2n]∗L inducing α2n

[Mumford 1966, p. 317 and Remark 3 p. 319]. We call it the theta structure on [n]∗L induced by α2n .
Thus, we just proved that the datum of a symmetric theta structure on [n]∗L is intermediary between a
level 2n symplectic structure and a level n symplectic structure (the exact congruence group is easily
identified as 0g(n, 2n) with the notations of [Igusa 1966]).

Now, for a triple (A, L , α2n) (notations of Section 6A), when A is a complex abelian variety, there
exists τ ∈ Hg such that this triple is isomorphic to (Aτ , Lτ , ατ,2n) (Definition-Proposition 6.3). By
definition of Lτ as a quotient (6-3), the sections of L⊗n

τ canonically identify to holomorphic functions ϑ
on Cg such that, ∀p, q ∈ Zg and ∀z ∈ Cg,

ϑ(z+ pτ + q)= e−iπnτ t n−2iπnt zϑ(z), (8-11)

and through this identification one sees (after some tedious computations) that the symmetric theta
structure βτ on L⊗n

τ induced by ατ,2n acts by

((α, a, b) ·ϑ)(z)= α exp
(

iπ
n

ãτ ã+ 2iπ
n

ãt(z+ b̃)
)
ϑ

(
z+ ã

n
τ +

b̃
n

)
,

where ã and b̃ are lifts of a and b in Zg (the result does not depend on this choice by (8-11)). Therefore, by
ψβ and the theta functions with characteristic (formula (6-12)), the Mumford coordinates of (A, L , α2n)
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(with the induced theta structure β on L⊗n) are exactly the projective coordinates

(2n
ã/n,b̃/n(τ )

(τ ))a,b∈ 1
n Z2g/Z2g ∈ Pn2g

−1(C),

where the choices of lifts ã and b̃ for a and b still do not matter.
In particular, for every τ ∈H2, the point ψ(τ) can be intrinsically given as the squares of Mumford

coordinates for βτ , where the six odd characteristics (whose coordinates vanish everywhere) are taken
out. The result only depends on the isomorphism class of (Aτ , Lτ , ατ,2), as expected.

Finally, as demonstrated in paragraph 6 of [Mumford 1967] (especially the theorem on page 83), the
theory of theta structures (and the associated Mumford coordinates) can be extended to abelian schemes
(Definition 6.5) (still outside characteristics dividing 2n), and the Mumford coordinates in this context
lead to an embedding of the associated moduli space in a projective space as long as the type of the sheaf
is a multiple of 8 (which for us amounts to 8 | n). Here, fixing a principally polarized abelian variety A
over a number field K and P a prime ideal of OK not above 2, this theory means that given a symmetric
theta structure on (A, L) for L⊗n where 8 | n, if A has good reduction modulo P, this theta structure has a
natural reduction to a theta structure on the reduction (AP, LP) for L⊗n

P , and this reduction is compatible
with the reduction of Mumford coordinates modulo P. To link this with the reduction of coordinates
of ψ , one just has to extend the number field K of definition of A so that all 8-torsion points of A are
defined over K (in particular, the reduction of A modulo P is semistable), and consider a symmetric theta
structure on L⊗8. The associated Mumford coordinates then reduce modulo P, and making use of (8-10)
and Propositions 7.3 and 7.5 over the residue field, one of the Mumford coordinates coming from the
2-torsion does not vanish. We can now consider only the coordinates coming from the 2-torsion and it
yields Proposition 8.4 (not forgetting the six ever-implicit odd characteristics). �

8B. Evaluating the theta functions at archimedean places. We denote by H2 the Siegel half-space of
degree 2, and by F2 the usual fundamental domain of this half-space for the action of Sp4(Z) (see [Klingen
1990, §I.2] for details). For τ ∈H2, we denote by y4 the imaginary part of the lower-right coefficient of τ .

Proposition 8.5. For every τ ∈H2 and a fixed real parameter t ≥
√

3/2, one has:

(a) Amongst the ten even characteristics m of E , at most six of them can satisfy

|2m/2(τ )|< 0.42 max
m′∈E
|2m′/2(τ )|.

(b) If the representative of the orbit of τ in the fundamental domain F2 satisfies y4 ≤ t , at most one of
the ten even characteristics m of E can satisfy

|2m/2(τ )|< 0.747e−π t max
m′∈E
|2m′/2(τ )|.

Proof. First, we can assume that τ ∈F2 as the inequalities (a) and (b) are invariant by the action of Sp4(Z),
given the complete transformation formula of these theta functions [Mumford 2007, §II.5]. Now, using the
Fourier expansions of the ten theta constants (mentioned in the proof of Definition-Proposition 7.7) and
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isolating their respective dominant terms (such as in [Klingen 1990], proof of Proposition IV.2), we obtain
explicit estimates. More precisely, Proposition 7.7 of [Streng 2010] states that, for every τ =

(
τ1
τ2

τ2
τ4

)
∈ B2

(which is a domain containing F2), one has

|2m/2(τ )− 1|< 0.405, m∈{(0000)(0001),(0010),(0011)}.∣∣∣∣2m/2(τ )

2eiπτ1/2
− 1

∣∣∣∣< 0.348, m∈{(0100),(0110)}.∣∣∣∣2m/2(τ )

2eiπτ4/2
− 1

∣∣∣∣< 0.348, m∈{(1000),(1001)}.∣∣∣∣ 2m/2(τ )

2(εm + e2iπτ2)eiπ(τ1+τ4−2τ2)/2
− 1

∣∣∣∣< 0.438, m∈{(1100),(1111)},

with εm = 1 if m = (1100) and −1 if m = (1111).
Under the assumption that y4 ≤ t (which induces the same bound for Im τ1 and 2 Im τ2), we obtain

0.595< |2m/2(τ )|< 1.405, m∈{(0000)(0001),(0010),(0011)}.

1.304e−π t/2 < |2m/2(τ )|< 0.692, m∈{(0100),(0110),(1000),(1001)}.

1.05e−π t < |2m/2(τ )|< 0.855, m=(1100).

|2m/2(τ )|< 0.855, m=(1111)

Thus, we get (a) with 0.595
1.405 > 0.42, and (b) with 1.05

1.405 e−π t > 0.747e−π t . �

8C. Computations with Igusa invariants for the places above 2 case. In this case, as emphasized before,
it is not possible to use Proposition 8.4, as the algebraic theory of theta functions does not work.

We have substituted it in the following way.

Definition 8.6 (auxiliary polynomials). For every i ∈ {1, . . . , 10}, let6i be the i-th symmetric polynomial
in the ten modular forms 28

m/2, m ∈ E (notation (8-1)). This is a modular form of level 4i for the whole
modular group Sp4(Z).

Indeed, each 28
m/2 is a modular form for the congruence subgroup 02(2) of weight 4, and they are

permuted by the modular action of 02(1) [Mumford 2007, §II.5]. The important point is that the 6i are
then polynomials in the four Igusa modular forms ψ4, ψ6, χ10 and χ12 [Igusa 1967, pp. 848–849]. We can
now explain the principle of this paragraph: these four modular forms are linked explicitly with the Igusa
invariants (for a given jacobian of an hyperelliptic curve C over a number field K ), and the semistable
reduction of the jacobian at some place v | 2 is determined by the integrality (or not) of some quotients of
these invariants, hence rational fractions of the modular forms. Now, with the explicit expressions of the
6i in terms of ψ4, ψ6, χ10 and χ12, we can bound these 6i by one of the Igusa invariants, and as every
28

m/2 is a root of the polynomial

P(X)= X10
−61 X9

+62 X8
−63 X7

+64 X6
−65 X5

+66 X4
−67 X4

+68 X2
−69 X +610,
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we can infer an explicit bound above on the 28
m/2/λ, with a well-chosen normalizing factor λ such that

these quotients belong to K . Actually, we will even give an approximate shape of the Newton polygon of
the polynomial λ10 P(X/λ), implying that its slopes (except maybe the first one) are bounded above and
below, thus giving us a lower bound for each of the |2m/2|v/maxm′∈E |2m′/2|v , except maybe for one m.
The explicit result is the following.

Proposition 8.7. Let K be a number field, (A, L) a principally polarized jacobian of dimension 2 over
K and τ ∈H2 such that (Aτ , Lτ )∼= (A, L).

Let P be a prime ideal of K above 2 such that A has potentially good reduction at P, and the reduced
(principally polarized abelian surface) is denoted by (AP, LP). By abuse of notation, we forget the
normalizing factor ensuring that the coordinates 2m/2(τ )

8 belong to K .

(a) If (AP, LP) is the jacobian of a smooth hyperelliptic curve, all the m ∈ E satisfy

|2m/2(τ )
8
|P

maxm′∈E |2m′/2(τ )8|P
≥ |2|12

P .

(b) If (AP, LP) is a product of elliptic curves, all the m ∈ E except at most one satisfy

|2m/2(τ )
8
|P

maxm′∈E |2m′/2(τ )8|P
≥ |2|21

P .

Proof. The most technical part is computing the 6i as polynomials in the four Igusa modular forms.
To do this, we worked with Sage in the formal algebra generated by some sums of 24

m/2 with explicit
relations (namely, y0, . . . , y4 in the notations of [Igusa 1964, pp. 396–397]). The total computation time,
done on a laptop PC, was approximately twelve hours (including the verification of the results). The
algorithms and details of their construction is available on a Sage worksheet (in Jupyter format).1 An
approach based on Fourier expansions might be more efficient, but as there is no clear closed formula for
the involved modular forms, we privileged computations in this formal algebra. For easier reading, we
slightly modified the Igusa modular forms into h4, h6, h10, h12 defined as

h4 = 2 ·ψ4 =
1
2

∑
m∈E

28
m/2

h6 = 22
·ψ6 =

∑
{m1,m2,m3}⊂E

syzygous

±(2m1/22m2/22m3/2)
4

h10 = 215
·χ10 = 2

∏
m∈E

22
m/2

h12 = 216
· 3 ·χ12 =

1
2

∑
C⊂E

C Göpel

∏
m∈E\C

24
m/2

(8-12)

([Igusa 1967, p. 848] for details on these definitions, notably syzygous triples and Göpel quadruples).
The third expression is not explicitly a polynomial in y0, . . . , y4, but there is such an expression, given

1This worksheet can be found at http://msp.org/ant/2019/13-1/ant-v13-n1-x01-Igusainvariants.ipynb.

http://msp.org/ant/2019/13-1/ant-v13-n1-x01-Igusainvariants.ipynb
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on page 397 of [Igusa 1964]. We also used to great benefit (both for understanding and computations)
Section I.7.1 of [Streng 2010].

Now, the computations in Sage gave us the following formulas (the first and last one being trivial given
(8-12), were not computed by the algorithm)

61 = 2h4 (8-13)

62 =
3
2

h2
4 (8-14)

63 =
29

2·33 h3
4−

1
2·33 h2

6+
1

2·3
h12 (8-15)

64 =
43

24 ·33 h4
4−

1
2·33 h4h2

6+
23
2·3

h4h12+
2
3

h6h10 (8-16)

65 =
1

22 ·33 h5
4−

1
23 ·33 h2

4h2
6+

25
23 ·3

h2
4h12−

1
2·3

h4h6h10+
123
22 h2

10 (8-17)

66 =
1

22 ·36 h6
4−

1
22 ·36 h3

4h2
6+

7
2·33 h3

4h12−
1

22 ·3
h2

4h6h10

+
47
2·3

h4h2
10+

1
24 ·36 h4

6−
5

23 ·33 h2
6h12+

43
24 ·3

h2
12 (8-18)

67 =
1

2·34 h2
4h12−

1
2·34 h3

4h6h10+
41

2332 h2
4h2

10−
1

22 ·34 h4h2
6h12

+
11

22 ·32 h4h2
12+

1
22 ·34 h3

6h10−
19

22 ·32 h6h10h12 (8-19)

68 =
1

22 ·33 h3
4h2

10+
1

22 ·32 h2
4h2

12−
1

2·32 h4h6h10h12+
5

23 ·33 h2
6h2

10−
11
23 h2

10h12 (8-20)

69 =
−5

22 ·32 h4h2
10h12+

7
22 ·33 h6h3

10+
1
33 h3

12 (8-21)

610 =
1
24 h4

10. (8-22)

Remark 8.8. The denominators are always products of powers of 2 and 3. This was predicted by Ichikawa
[2009], as all Fourier expansions of 2m/2 (therefore of the 6i ) have integral coefficients. Surprisingly,
the result of [Ichikawa 2009] would actually be false for a Z[1/3]-algebra instead of a Z[1/6]-algebra,
as the expression of 63 (converted as a polynomial in ψ4, ψ6, χ12) shows, but this does not provide a
counterexample for a Z[1/2]-algebra.

Now, let C be a hyperelliptic curve of genus 2 on a number field K and P a prime ideal of OK

above 2. We will denote by |·| the norm associated to P to lighten the notation. Let A be the jacobian
of C and J2, J4, J6, J8, J10 the homogeneous Igusa invariants of the curve C , defined as in [Igusa 1960,
pp. 621–622] up to a choice of hyperelliptic equation for C . We fix τ ∈H2 such that Aτ is isomorphic
to A, which will be implicit in the following (i.e., h4 denotes h4(τ ) for example). By [Igusa 1967, p. 848]
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applied with our normalization, there is an hyperelliptic equation for C (and we fix it) such that

J2 =
1
2

h12

h10
(8-23)

J4 =
1

25 · 3

(
h2

12

h2
10
− 2h4

)
(8-24)

J6 =
1

27 · 33

(
h3

12

h3
10

− 6
h4h12

h10
+ 4h6

)
(8-25)

J8 =
1

212 · 33

(
h4

12

h4
10
− 12

h4h2
12

h2
10
+ 16

h6h12

h10
− 12h2

4

)
(8-26)

J10 =
1

213 h10. (8-27)

Let us now figure out the Newton polygons allowing us to bound our theta constants.

(a) If A has potentially good reduction at P, and this reduction is also a jacobian, by Proposition 3 of
[Igusa 1960], the quotients J 5

2 /J10, J 5
4 /J 2

10, J 5
6 /J 3

10 and J 5
8 /J 4

10 are all integral at P. Translating it into
quotients of modular forms, this gives∣∣∣∣ J 5

2

J10

∣∣∣∣= |2|8∣∣∣∣h5
12

h6
10

∣∣∣∣≤ 1∣∣∣∣ J 5
4

J 2
10

∣∣∣∣= |2|3∣∣∣∣ h2
12

h12/5
10

− 2
h4

h2/5
10

∣∣∣∣5 ≤ 1

∣∣∣∣ J 5
6

J 3
10

∣∣∣∣= |2|4∣∣∣∣ h3
12

h18/5
10

− 6
h4h12

h8/5
10

+ 4
h6

h3/5
10

∣∣∣∣5 ≤ 1

∣∣∣∣ J 5
8

J 4
10

∣∣∣∣= |2|−8
∣∣∣∣ h4

12

h24/5
10

− 12
h4h2

12

h14/5
10

+ 16
h6h12

h9/5
10

− 12
h2

4

h4/5
10

∣∣∣∣5 ≤ 1.

By successive bounds on the three first lines, we obtain∣∣∣∣ h4

h2/5
10

∣∣∣∣≤ |2|−21/5,

∣∣∣∣ h6

h3/5
10

∣∣∣∣≤ |2|−34/5,

∣∣∣∣ h12

h6/5
10

∣∣∣∣≤ |2|−8/5. (8-28)

Using the expressions of the 6i ((8-13)–(8-22)), we compute that for every i ∈ {1, . . . , 10}, one has∣∣6i/h2i/5
10

∣∣≤ |2|λi with the following values of λi :

i 10 9 8 7 6 5 4 3 2 1

λi −
20
5 −

44
5 −

83
5 −

112
5 −

156
5 −

125
5 −

104
5 −

73
5 −

47
5 −

16
5

and for i = 10, it is an equality. Therefore, the highest slope of the Newton polygon is at most 26
5 · vP(2),

whereas the lowest one is at least −34
5 · vP(2), which gives part (a) of Proposition 8.7 by the theory of

Newton polygons.
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(b) If A has potentially good reduction at P and the semistable reduction is a product of elliptic curves,
defining

I4 = J 3
2 − 25J4 =

h4
2

(8-29)

I12 =−8J 3
4 + 9J2 J4 J6− 27J 2

6 − J 2
2 J8 =

1
210 · 33 (2h3

4− h2
6), (8-30)

P48 = 212
· 33h4

10 J8 = h4
12− 12h4h2

12h2
10+ 16h6h12h3

10− 12h2
4h4

10 (8-31)

(which as modular forms are of respective weights 4, 12 and 48), by Theorem 1 (parts (V∗) and (V )) of
[Liu 1993], we obtain in the same fashion that∣∣∣∣ h4

P1/12
48

∣∣∣∣≤ |2|−13/3,

∣∣∣∣ h6

P1/8
48

∣∣∣∣≤ |2|−3,

∣∣∣∣ h10

P5/24
48

∣∣∣∣≤ |2|−4/3. (8-32)

Using the Newton polygon for the polynomial of (8-31) defining P48, one deduces quickly that∣∣∣∣ h12

P1/4
48

∣∣∣∣≤ |2|−7/2. (8-33)

As before, with the explicit expression of the 6i , one obtains that the |6i/P i/12
48 | are bounded by |2|λi

with the following values of λ:

i 10 9 8 7 6 5 4 3 2 1

λi −
28
3 −

71
6
−53

3
−55

3
−84

3
−71

3
−64

3 −14 −29
3
−10

3

(8-34)

This implies directly that the highest slope of the Newton polygon is at most 16
3 · vP(2). Now, for the

lowest slope, there is no immediate bound which was expected; in this situation, 610 = 2−4h4
10 can be

relatively very small compared to P5/6
48 .

As P48 is in the ideal generated by h10, h12 (in other words, is cuspidal) and dominates all modular
forms h4, h6, h10, h12, one of h10 and h12 has to be relatively large enough compared to P48. In practice,
we get (with (8-32), (8-33) and (8-31))∣∣∣∣ h12

P1/4
48

∣∣∣∣≥ 1 or
∣∣∣∣ h10

P5/24
48

∣∣∣∣≥ |2|13/6.

Now, if h10 is relatively very small (for example, |h10/P5/24
48 | ≤ |2|

19/6
|h12/P1/4

48 |), we immediately get
|h12/P1/4

48 | = 1 and |69/P3/4
48 | = 1. Computing again with these estimates for h10 and h12, we obtain that

the |6i/P i/12
48 | are bounded by |2|λi with the following slightly improved values of λ,

i 9 8 7 6 5 4 3 2 1

λi 0 −32
3 −

51
3
−84

3
−71

3
−64

3 −14 −29
3
−10

3

The value at i = 9 is exact, hence the second lowest slope is then at least − 32
3 · vP(2).
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vP

610−i/h2(10−i)/5
10

•
(0, 0)

•
(10, 0)

Figure 4. When the reduction of A is a jacobian.

If it is not so small, we have a bound on vP(610/P6/5
48 ), hence the Newton polygon itself is bounded

(and looks like the first situation). In practice, one finds that the lowest slope is at least − 47
3 ·vP(2), hence

all others slopes are at least this value, and this concludes the proof of Proposition 8.7(b). �

Remark 8.9. In characteristics 6= 2, 3, Theorem 1 of [Liu 1993] and its precise computations on pages 4
and 5 give the following exact shapes of Newton polygons (notice the different normalization factors).

In particular, when A reduces to a jacobian, the theta coordinates all have the same P-adic norm and
when A reduces to a product of elliptic curves, exactly one of them has smaller norm; in other words, we
reproved Proposition 8.4, and the Newton polygons have a very characteristic shape.

The idea behind the computations above is that in cases (a) and (b) (with other normalization factors),
the Newton polygons have a shape close to these ones, therefore estimates can be made. It would be
interesting to see what the exact shape of the Newton polygons is, to maybe obtain sharper results.

8D. Wrapping up the estimates and end of the proof. We can now prove the explicit refined version of
Theorem 7.11, namely Theorem 8.2.

Proof of Theorem 8.2. In case (a), one can avoid the tubular assumption for the archimedean place
of K ; indeed, amongst the ten theta coordinates, there remain 4 which are large enough with no further
assumption. As |sP |< 4, there remains one theta coordinate which is never too small (at any place). In
practice, normalizing the projective point ψ(P) by this coordinate, one obtains with Propositions 8.5(a)
(archimedean places) 8.4 (finite places not above 2) and 8.7 (finite places above 2)

h(ψ(P))≤−4 log(0.42)+
21/2
[K :Q]

∑
v | 2

nv log(2)≤ 10.75

after approximation.

610−i/h(10−i)/3
12

vP
•

• •

Figure 5. When the reduction of A is a product of elliptic curves.
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In case (b), one has to use the tubular neighborhood implicitly given by the parameter t , namely
Proposition 8.5(b) for archimedean places, again with Propositions 8.4 and 8.7 for the finite places, hence
we get

h(ψ(P))≤ 4 log(eπ t/0.747)+
21/2
[K :Q]

∑
v | 2

nv log(2)≤ 4π t + 8.44

after approximation.
Finally, we deduce from there the bounds on the stable Faltings height by Corollary 1.3 of [Pazuki

2012] (with its notations, h2(A, L)= h(ψ(P))/4). �

It would be interesting to give an analogous result for Theorem 7.12, and the estimates for archimedean
and finite places not above 2 should not give any particular problem. For finite places above 2, the method
outlined above can only be applied if, taking the symmetric polynomials 61, . . . , 6 f (n) in well-chosen
powers 2ã/n,b̃/n(τ ) for ã, b̃ ∈ Zg, we can figure out by other arguments the largest rank k0 for which 6k0

is cuspidal but not in the ideal generated by h10. Doing so, we could roughly get back the pictured shape
of the Newton polygon when h10 is relatively very small (because then 6k is relatively very small for
k > k0 by construction). Notice that for this process, one needs some way to theoretically bound the
denominators appearing in the expressions of the 6i in h4, h6, h10, h12, but if this works, the method can
again be applied.
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Algebraic cycles on genus-2 modular fourfolds
Donu Arapura

To the memory of my father

This paper studies universal families of stable genus-2 curves with level structure. Among other things, it
is shown that the (1, 1)-part is spanned by divisor classes, and that there are no cycles of type (2, 2) in the
third cohomology of the first direct image of C under projection to the moduli space of curves. Using this,
it shown that the Hodge and Tate conjectures hold for these varieties.

One of the goals of this article is to extend some results from Shioda’s study [1972] of elliptic modular
surfaces to families of genus-2 curves. We recall that elliptic modular surfaces f : C1,1[n] → M1,1[n]
are the universal families of elliptic curves over modular curves. Among other things, Shioda showed
that C1,1[n] has maximal Picard number in the sense that H 1,1(C1,1[n]) is spanned by divisors. He also
showed that the Mordell–Weil rank is zero. A related property, observed later by Viehweg and Zuo [2004],
is that a certain Arakelov inequality becomes equality. As they observe, this is equivalent to the map

f∗ωC1,1[n]/M1,1[n]→�1
M1,1[n]

(log D)⊗ R1 f∗OC1,1[n]

induced by the Kodaira–Spencer class being an isomorphism. The divisor D is the discriminant of f .
In this paper, we study universal curves f ′ : C2[0] → M2[0] over the moduli space of stable genus-2

curves with generalized level structure. The level 0 is a finite-index subgroup of the mapping class
group 02. The classical level n-structures correspond to the case where 0 is the preimage 0̃(n) of the
principal congruence subgroup 0(n)⊂ Sp4(Z). We fix a suitable nonsingular birational model f : X→ Y
for f ′. Let D ⊂ Y be the discriminant, and U = Y − D. We show that, as before, for a classical level, the
Mordell–Weil rank of Pic0(X)→ Y is zero and H 1,1(X) is spanned by divisors. These results are deduced
from Raghunathan’s vanishing theorem [1967]. We also prove an analogue of Viehweg–Zuo that the map

�1
Y (log D)⊗ f∗ωX/Y →�2

Y (log D)⊗ R1 f∗OX

is an isomorphism. We will see that this implies that there are no cycles of type (2, 2) in the mixed Hodge
structure H 3(U, R1 f∗C). As an application, we deduce that the Hodge conjecture holds for X. We also
show that the Tate conjecture holds for X for a classical level using, in addition, Faltings’ p-adic Hodge
theorem [1988] and Weissauer’s work [1988] on Siegel modular threefolds.

Partially supported by a grant from the Simons foundation.
MSC2010: 14C25.
Keywords: Hodge conjecture, Tate conjecture, moduli of curves.
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If X is a complex variety, then unless indicated otherwise, sheaves should be understood as sheaves on
the associated analytic space X an.

1. Hodge theory of semistable maps

We start with some generalities. By a log pair X = (X, E), we mean a smooth variety X together with
a divisor with simple normal crossings E . We usually denote log pairs by the symbols X ,Y, . . . with
corresponding varieties X, Y, . . . . Given X , set

�1
X =�

1
X (log E) and TX = (�

1
X )
∨.

Recall that a semistable map f : (X, E)→ (Y, D) of log pairs is a morphism f : X → Y such that
f −1 D = E and étale locally it is given by

y1 = x1 · · · xr1,
...

yk = xrk−1+1 · · · xrk ,

yk+1 = xrk+1,
...

where y1 · · · yk = 0 and x1 · · · xrk = 0 are local equations for D and E respectively. We will say f is log
étale if it is semistable of relative dimension zero. (This is a bit more restrictive than the usual definition).

Fix a projective semistable map f : (X, E)→ (Y, D). The map restricts to a smooth projective map
f o from Ũ = X − E to U = Y − D. Let

�i
X/Y =�

i
X/Y (log E).

The sheaf Lm
= Rm f o

∗
Q is a local system, which is part of a variation of Hodge structure. Let

V m
= Rm f∗�•X/Y with filtration F induced by the stupid filtration Rm f∗�

≥p
X/Y . It carries an integrable

logarithmic connection
∇ : V m

→�1
Y ⊗ V m

such that ker∇|U = CU ⊗Lm. Griffiths transversality

∇(F p)⊆�1
Y ⊗ F p−1

holds. The relative de Rham to Hodge spectral sequence

E1 = R j f∗�i
X/Y ⇒ Ri+ j f∗�•X/Y

degenerates at E1 by [Illusie 1990, Corollaire 2.6; Fujisawa 1999, Theorem 6.10]. Therefore

Gr p
F V m ∼= Rm−p f∗�

p
X/Y .

The Kodaira–Spencer class
κ :OY →�1

Y ⊗ R1 f∗TX/Y (1)



Algebraic cycles on genus-2 modular fourfolds 213

is given as the transpose of the map
TY→ R1 f∗TX/Y

induced by the sequence
0→ TX/Y→ TX → f ∗TY→ 0.

Proposition 1.1. The associated graded

Gr(∇) : Rm−p f∗�
p
X/Y→�1

Y ⊗ Rm−p+1 f∗�
p−1
X/Y

coincides with cup product and contraction with κ .

Proof. In the nonlog setting, this is stated in [Katz 1970, Theorem 3.5], and the argument indicated there
extends to the general case. �

By [Arapura 2005], we can give H i (U, R j f∗Q) a mixed Hodge structure by identifying it with the
associated graded of H i+ j (Ũ ,Q) with respect to the Leray filtration. It can also be defined intrinsically
using mixed Hodge module theory, but the first description is more convenient for us. We will need a
more precise description of the Hodge filtration. We define a complex

KX/Y(m, p)= [Rm−p f∗�
p
X/Y

κ
−→�1

Y ⊗ Rm−p+1 f∗�
p−1
X/Y

κ
−→�2

Y ⊗ Rm−p+2 f∗�
p−2
X/Y · · · ].

Proposition 1.2. Gr p
F H i (U, R j f∗C)∼= H i (KX/Y( j, p)).

Proof. (Compare with [Zucker 1979, 2.16].) Define a filtration

L i�•X = im f ∗�i
Y ⊗�

•

X .

Then
Gri

L �
•

X = f ∗�i
Y ⊗�

•

X/Y [−i]

from which we deduce that
Gri

L R f∗�•X ∼=�
i
Y ⊗ R f∗�•X/Y [−i]. (2)

Therefore, we obtain a spectral sequence

L E i, j
1 =Hi+ j (Gri

L R f∗�•X )∼=�
i
Y ⊗ R j f∗�•X/Y =�

i
Y ⊗ V j

⇒ Ri+ j f∗�•X

Recall that to L we can associate a new filtration Dec(L) [Deligne 1971] such that

Dec(L)E
i, j
0
∼= L E2i+ j,−i

1 .

Therefore we obtain a quasiisomorphism

Gri
Dec(L) R f∗�•X −→∼ �•Y ⊗ V−i

[i]. (3)

This becomes a map of filtered complexes with respect to the filtration induced by Hodge filtration
F p
=�

≥p
X . On the right of (3), it becomes

F p�•Y ⊗ V−i
= F pV−i

→�1
Y ⊗ F p−1V−i

→ · · · .
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The relative de Rham to Hodge spectral sequence

F E1 = R j f∗�i
X ⇒ Ri+ j f∗�•X/Y

degenerates at E1 [Illusie 1990, Corollaire 2.6; Fujisawa 1999, Theorem 6.10]. Therefore by [Deligne
1971, 1.3.15], we can conclude that (3) is a filtered quasiisomorphism.

The spectral sequence associated to the filtration induced by Dec(L) on R0(R f∗�•X )

Dec(L)E
i, j
1 = H 2i+ j (Y, �•Y ⊗ V−i )= H 2i+ j (U, R−i f∗C)

coincides with Leray after reindexing. Therefore this degenerates at the first page by [Deligne 1968]. The
above arguments plus [Deligne 1971, 1.3.17] show that F-filtration on the H 2i+ j (Y, �•Y⊗V−i ) coincides
with the filtration on Dec(L)E∞, which is the Hodge filtration on H 2i+ j (U, R−i f∗C). The proposition
follows immediately from this. �

One limitation of the notion of semistability is that it is not stable under base change. In order to handle
this, we need to work in the broader setting of log schemes [Kato 1989]. We recall that a log scheme
consists of a scheme X and a sheaf of monoids M on Xét together with a multiplicative homomorphism
α : M→OX such that α induces an isomorphism α−1(O∗X )∼=O∗X . A log pair (X, E) gives rise to a log
scheme where M is the sheaf of functions invertible outside of E . If f : (X, E)→ (Y, D) is semistable,
and π : (Y ′, D′)→ (Y, D) is log étale in our sense, then X ′ = X ×Y Y ′ can be given the log structure
pulled back from Y ′. Then X ′→ Y ′ becomes a morphism X ′→ Y ′ of log schemes, which is log smooth
and exact. Logarithmic differentials can be defined for log schemes [Kato 1989], so the complexes
KX ′/Y ′(m, p) can be constructed exactly as above. Since π is log étale, we easily obtain:

Lemma 1.3. With the above notation, π∗KX/Y(m, p)∼= KX ′/Y ′(m, p).

Let us spell things out for curves. Suppose that f : X → Y is semistable with relative dimension 1.
From

0→�1
Y→�1

X →�1
X/Y→ 0

we get an isomorphism
�1

X/Y = det�1
X ⊗ (det�1

Y)
−1 ∼= ωX/Y .

The complex KX/Y(1, i) satisfies

KX/Y(1, i)= [�i−1
Y ⊗ f∗ωX/Y →�i

Y ⊗ R1 f∗OX ],

where the first term sits in degree i − 1. We note that this complex, which we now denote by K X/Y (1, i),
can be defined when X/Y is a semistable curve in the usual sense (a proper flat map of relative dimension 1
with reduced connected nodal geometric fibres). In general, any such curve carries a natural log structure
[Kato 2000], and the differential of this complex can be interpreted as a cup product with the associated
Kodaira–Spencer class. Consequently, given a map π : X ′→ X of curves over Y, we get an induced map
of complexes π∗ : K X/Y (1, i)→ K X ′/Y ′(1, i). Finally, we note that these constructions can be extended
to Deligne–Mumford stacks, such as the moduli stack of stable curves Mg, without difficulty.
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2. Consequences of Raghunathan’s vanishing

Let Mg be the moduli space of smooth projective curves of genus g, let Mg,n be the moduli space of
smooth genus-g curves with n marked points, and let A2 be the moduli space of principally polarized
g-dimensional abelian varieties. The symbols Mg,Ag etc. will be reserved for the corresponding moduli
stacks. We note that dim M2 = 3. The Torelli map τ : M2→ A2 is injective and the image of M2 is the
complement of the divisor parametrizing products of two elliptic curves. As an analytic space, Man

2 is
a quotient of the Teichmüller space T2 by the mapping class group 02. Given a finite-index subgroup
0 ⊂ 02, let M2[0] = T2/0. We view this as the moduli space of curves with generalized level structure.
When 0= 0̃(n) is the preimage of the principal congruence subgroup 0(n)⊆ Sp4(Z) under the canonical
map 02→ Sp4(Z), the space M2[n] := M2[0̃(n)] is the moduli space of curves with classical (or abelian
or Jacobi) level n-structure. It is smooth and fine as soon as n ≥ 3, and defined over the cyclotomic field
Q(e2π i/n). More generally M2[0] is smooth, and defined over a number field, as soon as 0 ⊆ 0̃(n) with
n ≥ 3. We refer to 0 as fine, when the last condition holds. Torelli extends to a map M2[n] → A2[n] to
the moduli space of abelian varieties with level n-structure.

Let M2 denote the Deligne–Mumford compactification of M2. The boundary divisor 1 consists of a
union of two components 10 ∪11. The generic point of 10 corresponds to an irreducible curve with a
single node, and the generic point of11 corresponds to a union of two elliptic curves meeting transversally.
Let π : M2[0] → M2 denote the normalization of M2 in the function field of M2[0]. When 0 = 0̃(n),
we denote this by M2[n]. On the other side A2[n] has a unique smooth toroidal compactification, first
constructed by Igusa, and τ extends to an isomorphism between M2[n] and the Igusa compactification
[Namikawa 1980, §9]. The space M2[0] is smooth, when 0 = 0̃(n), n ≥ 3, and in some other cases
[Pikaart and de Jong 1995]. Suppose that n≥3. The boundary D=M2[n]−M2[n] is a divisor with normal
crossings. Let Di = π

−11i . Since D1 parametrizes unordered pairs of (generalized) elliptic curves with
level structure, its irreducible components are isomorphic to symmetric products M1,1[n] ×M1,1[n]/S2

of the modular curve of full level n. Let C1,m[n]/M1,m[n] denote the pullback of the universal elliptic
curve under the canonical map M1,m[n] →M1,m . The components of D0 are birational to the elliptic
modular surfaces C1,1[n] [Oda and Schwermer 1990, §1.4].

Given a fine level structure 0, let C2[0] → M2[0] be the pullback of the universal curve from M2.
The space C2[0] will be singular [Boggi and Pikaart 2000, Proposition 1.4], so we will replace it with a
suitable birational model f : X→ Y whose construction we now explain. If 0 = 0̃[n], we set Y = M2[n].
As noted above, Y is smooth. For other 0’s, we choose a desingularization Y → M2[0] which is an
isomorphism over M2[0] and such that boundary divisor D has simple normal crossings. We have a
morphism Y →M2 to the moduli stack, which is log étale. It follows in particular that �1

M2
(log1) pulls

back to �1
Y (log D). The space Y will carry a stable curve X ′→ Y obtained by pulling back the universal

family over M2. The space X ′ will be singular, however:

Lemma 2.1. (a) X ′ will have rational singularities.

(b) There exists a desingularization π : X→ X ′ such that X→ Y is semistable.
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(c) The map π : X→ X ′ can be chosen so as to have the following additional property. After extending
scalars to Q, let E be a component of an exceptional divisor of π . Then:

(i) If π(E) is a point, E is a rational variety.
(ii) If π(E)= C is a curve, there is a map E→ C such that the pullback under a finite map C̃→ C

is birational to P2
× C̃.

(iii) If π(E) is a surface, there is a map E→ Di , for some i , such that the pullback of E to an étale
cover D̃i → Di is birational to P1

× D̃i .
(iv) If dimπ(E)= 3, then E→ π(E) is birational.

(d) K X/Y (1, i)∼= K X ′/Y (1, i).

Proof. The singularities of X ′ are analytically of the form xy = ta
1 tb

2 tc
3 . These are toroidal singularities, in

the sense that is local analytically, or étale locally, isomorphic to a toric variety. (This is a bit weaker
than the notion of toroidal embedding in [Kempf et al. 1973], but it is sufficient for our needs.) Such
singularities are well known to be rational; see [Kempf et al. 1973; Viehweg 1977]. Item (b) follows from
[de Jong 1996, Proposition 3.6].

To prove (c), we need to recall some details of the construction of X from [de Jong 1996]. First, as
explained in the proof of [loc. cit., Lemma 3.2], one blows up a codimension-2 component T ⊂ X ′sing.
The locus T is an étale cover of some component Di . Furthermore, from the description in [loc. cit.] we
can see that T is compatible with the toroidal structure. Consequently, we can find a toric variety V with
torus fixed point 0, and an étale local isomorphism between X ′ and V × T, over the generic point of T,
which takes T to {0}× T. This shows that, over the generic point, the exceptional divisor E to T is étale
locally a product of T with a toric curve. So we get case (iii). Note that this step is repeated until the
X ′sing has codimension at least 3. One does further blow ups to obtain X. An examination of the proof of
[loc. cit., Proposition 3.6] shows that the required blow ups are also compatible with the toroidal structure
in the previous sense. If the centre of the blow up is a point, then the exceptional divisor is toric and we
have case (i). If the centre is a smooth curve C , we obtain case (ii). The last item (iv) is automatic for
blow ups.

By the remarks at the end of the last section, there is a commutative diagram marked with solid arrows

�i−1
Y ⊗ f∗ωX/Y //

π∗

��

�i
Y ⊗ R1 f∗OX

π∗

��

�i−1
Y ⊗ f∗ωX ′/Y //

π∗

OO

�i
Y ⊗ R1 f∗OX ′

π∗

OO

Since X ′ has rational singularities, the dotted arrows labelled with π∗ are isomorphisms, and these are
left inverse to the arrows labelled with π∗. Therefore π∗ are also isomorphisms, and this proves (d). �

We refer to f : X → Y constructed in Lemma 2.1 as a good model of C2[0] → M2[0]. We let
U = Y − D, E = f −1 D, and Ũ = X − E as above.
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Corollary 2.2. After extending scalars to Q, let E1 be an irreducible component of E for a classical fine
level 0̃(n). Then there exists a dominant rational map Ẽ1 99K E1, where Ẽ1 is one of

(1) C1,1[n]×M1,1[n],

(2) C1,2[n],

(3) C1,1[m]×P1 for some n |m,

(4) M1,1[m]×M1,1[m]×P1 for some n |m,

(5) a product of P2 with a curve,

(6) P3.

Proof. The preimage of D1 in C2[n] parametrizes a union of pairs of (generalized) elliptic curves with
level structure together with a point on the union. It follows that a component of E dominating D1 is
dominated by C1,1[n]×M1,1[n]. The preimage of D0 in C2[n] is a family of nodal curves over D0; its
normalization is C1,2[n]. Therefore a component of E dominating D0 is birational to C1,2[n]. Case (3)
follows from Lemma 2.1(ciii) once we observe that an étale cover of C1,1[n] is dominated by C1,1[m]
for some n |m. This is because we have a surjection of étale fundamental groups

π ét
1 (M1,1[n])∼= π ét

1 (C1,1[n])→ π ét
1 (C1,1[n])

[Cox and Zucker 1979, Theorem 1.36], and {M1,1[m]}n |m is cofinal in the set of étale covers of M1,1[n].
Case (4) is similar. The remaining cases follow immediately from the lemma. �

Proposition 2.3. When 0 = 0̃(n), with n ≥ 3, H 1(U, R1 f∗C)= 0.

Proof. As explained above, Y = M2[n] = A2[n] and U = A2[n] − Do
1 , where Do

1 = D1 − D0. Let
g : Pic0(X/Y )→ Y denote the relative Picard scheme. Then R1 f∗C = R1g∗C|U . We have an exact
sequence

H 1(A2[n], R1g∗C)→ H 1(U, R1 f∗C)→ H 0(Do
1, R1g∗C).

The group on the left vanishes by Raghunathan [1967, p. 423, Corollary 1]. The local system R1g∗C|Do
1

decomposes into a sum of two copies of the standard representation of the congruence group0(n)⊂SL2(Z).
Therefore it has no invariants. Consequently, H 1(U, R1 f∗C)= 0 as claimed. �

Lemma 2.4. Let η denote the generic point of Y. Then we have an exact sequence

0→ Pic(U ) s
−→ Pic(Ũ ) r

−→ Pic(Xη)→ 0,

where r and s are the natural maps.

Proof. Consider the diagram

1 // C(U )∗ //

div
��

C(U )∗⊕C(Ũ )∗ //

div+div
��

C(Ũ )∗ //

div
��

1

0 // Div(U ) s′
// Div(Ũ ) r ′

// Div(Xη) // 0
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The map r ′ is surjective because any codimension-1 point of Xη is the restriction of its scheme-theoretic
closure. A straightforward argument also shows that s ′ is injective and ker r ′ = im s ′. The lemma now
follows from the snake lemma. �

Lemma 2.5. The first Chern class map induces injections

Pic(Ũ )/Pic0(X)⊗Q ↪→ H 2(Ũ ,Q), (4)

Pic(U )/Pic0(Y )⊗Q ↪→ H 2(U,Q). (5)

Proof. To prove (4), we observe that there is a commutative diagram with exact lines

Pic(Ũ )/Pic0(X)⊗Q

��

Pic(Ũ )⊗Q
c1

//

66

H 2(Ũ ,Q)

Pic0(X)⊗Q

77

// Pic(X)⊗Q
c1

//

OOOO

H 2(X,Q)

OOOO

⊕
QEi

OO

⊕
Q[Ei ]

OO

The existence and injectivity of the dotted arrow follows from this diagram. Existence and injectivity of
the map of (5) is proved similarly. �

We refer to the group of C(Y ) rational points of Pic0(Xη) as the Mordell–Weil group of X/Y.

Theorem 2.6. Let f : X→ Y be a good model of C2[n] → M2[n], where n ≥ 3:

(a) The space H 1,1(X) is spanned by divisors.

(b) The rank of the Mordell–Weil group of X/Y is zero.

Proof. We have an sequence ⊕
Q[Ei ] → H 2(X)→ GrW

2 H 2(Ũ )→ 0

of mixed Hodge structures. So for (a), it suffices to show that the (1, 1)-part of rightmost Hodge structure
is spanned by divisors. The Leray spectral sequence together with Proposition 2.3 gives an exact sequence

0→ H 2(U, f∗Q)→ H 2(Ũ )→ H 0(U, R2 f∗Q)→ 0

of mixed Hodge structures. Therefore, we get an exact sequence

0→ GrW
2 H 2(U, f∗Q)→ GrW

2 H 2(Ũ )→ GrW
2 H 0(U, R2 f∗Q)→ 0.
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The space on the right is 1-dimensional and spanned by the class of any horizontal divisor. We can
identify

GrW
2 H 2(U, f∗Q)= GrW

2 H 2(U,Q)

with a quotient of H 2(Y ). Weissauer [1988, p. 101] showed that H 1,1(Y ) is spanned by divisors. This
proves (a).

By Lemma 2.4, we have isomorphisms

Pic(Xη)⊗Q∼=
Pic(Ũ )
Pic(U )

⊗Q∼=
Pic(Ũ )/Pic0(X)

Pic(U )/Pic0(Y )
⊗Q

and, by Lemma 2.5, the last group embeds into H 2(Ũ ,Q)/H 2(U,Q). Therefore, Pic0(Xη)⊗Q embeds
into

ker[H 2(Ũ ,Q)→ H 2(X t ,Q)]

H 2(U,Q)
∼= H 1(U, R1 f∗Q)= 0,

where t ∈U. For the first isomorphism, we use the fact the Leray spectral sequence over U degenerates
by [Deligne 1968]; the second is Proposition 2.3. �

3. Key vanishing

Let us fix a fine level structure 0 ⊆ 02. We do not assume that it is classical. Choose a good model
f : X → Y for C2[0] → M2[0], with U, E, Ũ as above. Our goal in this section is to establish the
vanishing of Gr2

F H 3(U, R1 f∗C). This is the key fact which, when combined with Lemma 4.3 proved
later on, will allow us to prove the Hodge conjecture for X.

Theorem 3.1. K X/Y (1, 2) is quasiisomorphic to 0.

Proof. The moduli stack M2 is smooth and proper, the boundary divisor has normal crossings, and the
universal curve is semistable. So we can define an analogue of K (1, 2) on it. Since the canonical map
Y →M2 is log étale, K X/Y (1, 2) is the pullback of the corresponding complex on the moduli stack. So
we replace Y by M2 and X by the universal curve M2,1.

Set
H = f∗ωX/Y .

By duality, we have an isomorphism
H ∼= R1 f∗O∨X .

Thus the Kodaira–Spencer map
H →�1

Y ⊗ H∨

induces an adjoint map
(H)⊗2

→�1
Y .

This factors through the symmetric power to yield a map

S2 H →�1
Y . (6)
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After identifying M2 ∼= A2, and Pic0(X/Y ) with the universal semiabelian variety, we see that (6) is an
isomorphism by [Faltings and Chai 1990, Chapter IV, Theorem 5.7].

With the above notation K (1, 2) can be written as

�1
Y ⊗ H →�2

Y ⊗ H∨.

We need to show that the map in this complex is an isomorphism. It is enough to prove that the map is
surjective, because both sides are locally free of the same rank. To do this, it suffices to prove that the
adjoint map

κ ′ :�1
Y ⊗ (H)

⊗2
→�2

Y

is surjective. Let κ ′′ denote the restriction of κ ′ to �1
Y ⊗ S2 H. We can see that we have a commutative

diagram

�1
Y ⊗ S2 H κ ′′

//

∼=

��

�2
Y

=

��

�1
Y ⊗�

1
Y

∧
// �2

Y

This implies that κ ′′, and therefore κ ′, is surjective. �

From Proposition 1.2, we obtain:

Corollary 3.2. Gr2
F H∗(U, R1 f∗C)= 0.

Remark 3.3. The referee has pointed out that for a classical level, a short alternative proof of the corollary
can be deduced using Faltings’ BGG resolution as follows. It suffices to prove Gr2

F H∗(A2[0], R1 f ′
∗
C)=0,

where f ′ is the universal abelian variety, because the restriction map to Gr2
F H∗(U, R1 f∗C) can be seen

to be surjective. By [Faltings and Chai 1990, Chapter VI, Theorem 5.5] (see also [Petersen 2015,
Theorem 2.4] for a more explicit statement) Gra

F H∗(A2[0], R1 f∗C) is zero unless a ∈ {0, 1, 3, 4}.

4. Hodge and Tate

Given a smooth projective variety X defined over C, a Hodge cycle of degree 2p is an element of
HomHS(Q(−p), H 2p(X,Q)), and given a smooth projective variety X defined over a finitely generated
field K , an `-adic Tate cycle of degree 2p is an element of

∑
H 2p

ét (X ⊗ K ,Q`(p))Gal(K/L) as L/K runs
over finite extensions. The image of the cycle maps from C H p(X)⊗Q or C H p(X ⊗ K )⊗Q` lands in
these spaces. We say that the Hodge or Tate conjecture holds for X (in a given degree) if the space of
Hodge or Tate cycles (of the given degree) are spanned by algebraic cycles. Here is the main result of the
paper:

Theorem 4.1. Let f : X→ Y be a good model of C2[0] → M2[0], where 0 ⊆ 02 is a fine level:

(A) The Hodge conjecture holds for X.
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(B) When 0 = 0̃(n) is a classical level, the Tate conjecture holds for X.

We deduce this with the help of the following lemmas.

Lemma 4.2. Let X1 and X2 be smooth projective varieties defined over a finitely generated field:

(1) If X1 and X2 are birational, then the Tate conjecture holds in degree 2 for X1 if and only if it holds
for X2.

(2) If the Tate conjecture holds in degree 2 for X1 and there is a dominant rational map X1 99K X2, then
the Tate conjecture holds in degree 2 for X2; if the Tate conjecture holds in degree 2d for X1 and
there is a surjective regular map X1 99K X2, then the Tate conjecture holds in degree 2d for X2.

(3) If the Tate conjecture holds in degree 2 for X i , then the Tate conjecture holds in degree 2 for X1×X2.

Proof. See [Tate 1994, Theorem 5.2]. �

Lemma 4.3. Let f : (X, E)→ (Y, D) be a semistable map of smooth projective varieties with dim Y = 3
and dim X = 4. Suppose that

Gr2
F H 3(U, R1 f∗C)= 0,

where U = Y − D. Then the Hodge conjecture holds for X.

Proof. Also let Ũ = X − E . Since X is a fourfold, it is enough to prove that Hodge cycles in H 4(X) are
algebraic. The other cases follow from the Lefschetz (1, 1) and hard Lefschetz theorems. Using the main
theorems of [Deligne 1968; Arapura 2005], and the semisimplicity of the category of polarizable Hodge
structures, we have a noncanonical isomorphism of Hodge structures

GrW
4 H 4(Ũ )∼= GrW

4 H 4(U, f∗Q)︸ ︷︷ ︸
I

⊕GrW
4 H 3(U, R1 f∗Q)︸ ︷︷ ︸

II

⊕GrW
4 H 2(U, R2 f∗Q)︸ ︷︷ ︸

III

. (7)

The first summand I can be identified with

im[H 4(Y )→ H 4(U )] ∼=
H 4(Y )∑

im H 2(Di )(−1)
∼= L

(
H 2(Y )∑

L−1 im H 2(Di )(−1)

)
,

where L is the Lefschetz operator with respect to an ample divisor on Y. The Lefschetz (1, 1) theorem
shows that the Hodge cycles in I are algebraic.

We have an isomorphism QU ∼= R2 f o
∗

Q, under which 1∈ H 0(U,Q) maps to the class of a multisection
[σ ] ∈ H 0(U, R2 f o

∗
Q). Thus the summand III can be identified with

[σ ] ∪ im[H 2(Y )→ H 2(U )] ∼=
[σ ] ∪ H 2(Y )∑
[σ ] ∪ [Di ]

.

It follows again, by the Lefschetz (1, 1) theorem, that any Hodge cycle in the summand III is al-
gebraic. This is also vacuously true for II because, by assumption, there are no Hodge cycles in
GrW

4 H 3(U, R1 f∗Q).
From the sequence ⊕

H 2(Ei )(−1)→ H 4(X)→ GrW
4 H 4(Ũ )→ 0
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we deduce that

H 4(X)∼=
⊕

im H 2(Ei )(−1)⊕GrW
4 H 4(Ũ ) (noncanonically).

Therefore all the Hodge cycles in H 4(X) are algebraic. �

Lemma 4.4. Let f : (X, E)→ (Y, D) be a semistable map of smooth projective varieties defined over a
finitely generated subfield K ⊂ C with dim Y = 3 and dim X = 4. Let U = Y − D. Suppose that

Gr2
F H 3(U, R1 f∗C)= 0,

that H 1,1(Y ) is spanned by algebraic cycles, and that the Tate conjecture holds in degree 2 for the
components Ei of E. Then the Tate conjecture holds for X in degree 4.

Proof. By the Hodge index theorem

〈α, β〉 = ± tr(α ∪β)

gives a positive definite pairing on the primitive part of H 4(X), and this can be extended to the whole of
H 4 by hard Lefschetz. Let

SB =
∑

im H 2(Ei (C),C)(1)⊆ H 4(X (C),C)(2),

SHdg =
∑

im H 1(Ei , �
1
Ei
)⊆ H 2(X, �2

X ),

S` =
∑

im H 2
ét(Ei ⊗ K ,Q`(1))⊆ H 4

ét(X ⊗ K ,Q`(2)),

where the images above are with respect to the Gysin maps. Set

VB = H 4(X (C),C)(2)/SB,

VHdg = H 2(X, �2
X )/SHdg,

V` = H 4
ét(X ⊗ K ,Q`(2))/S`.

Observe that VB is a Hodge structure and V` is a Galois module. Let us say that a class in any one of
these spaces is algebraic if it lifts to an algebraic cycle in H 4(X) or H 2(X, �2

X ). Let us write

Tate(−)=
∑

[L:K ]<∞

(−)Gal(K/L),

where (−) can stand for V` or any other Galois module. Clearly

dim(space of algebraic classes in V`)≤ dim Tate(V`). (8)

We also claim that

dim Tate(V`)≤ dim VHdg. (9)

This will follow from the Hodge–Tate decomposition. After passing to a finite extension, we can
assume that all elements of Tate(H 4(X,Q`(2))) and Tate(V`) are fixed by Gal(K/K ). Let K` denote
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the completion of K at a prime lying over `, and let C` = K̂ `. By [Faltings 1988] there is a Hodge–Tate
decomposition, i.e., a functorial isomorphism of Gal(K `/K`)-modules

H 4
ét(X ⊗ K ,Q`(2))⊗Q`

C` ∼=
⊕

a+b=4

Ha(X, �b
X )⊗K C`(2− b).

This is compatible with products, Poincaré/Serre duality, and cycle maps. Since we can decompose
H 4

ét(X ⊗ K ,Q`(2))= S`⊕ S⊥` as an orthogonal direct sum, and this is a decomposition of Gal(K/K )-
modules, an element of γ ∈ Tate(V`) can be lifted to γ1 ∈ Tate(H 4

ét(X ⊗ K ,Q`(2))). This gives a
Gal(K `/K`)-invariant element of H 4

ét(X⊗K ,Q`(2))⊗C`, and thus an element of γ2 ∈ H 2(X, �2
X )⊗K`.

Let γ3 ∈ VHdg ⊗ K` denote the image. One can check that γ 7→ γ3 is a well-defined injection of
Tate(V`)⊗ K`→ VHdg⊗ K`. This proves that (9) holds.

As in the proof of Lemma 4.3, we can split VB(−2) as

VB(−2)= I ⊕ II ⊕ III,

where the summands are defined as in (7). Arguing as above, but with the stronger assumption that H 1,1(Y )
is algebraic, we can see that the (not necessarily rational) (2, 2)-classes in I and III are algebraic, and
that II has no such classes. Therefore VHdg is spanned by algebraic classes. Combined with inequalities
(8) and (9), we find that every element of Tate(V`) is an algebraic class. Therefore given a Tate cycle
γ ∈ Tate(H 4

ét(X ⊗ K ,Q`(2))), there is an algebraic cycle γ ′ so that γ − γ ′ ∈ S`. This means that γ − γ ′

is the sum of images of Tate cycles in H 2(Ei ). By assumption, this is again algebraic. �

Lemma 4.5. Let X be a smooth projective variety defined over a finitely generated subfield K ⊂ C. If
H 1,1(X) is spanned by divisors, the Tate conjecture holds for X in degree 2.

Proof. This is similar to the previous proof. We have inequalities

rank NS(X)≤ dim Tate(H 2
ét(X ⊗ K ,Q`(1)))≤ h1,1(X),

where the second follows from Hodge–Tate. Since H 1,1(X) is spanned by divisors, we must have equality
above. �

Proof of Theorem 4.1. The statement (A) about the Hodge conjecture follows immediately from
Corollary 3.2 and Lemma 4.3.

We now turn to part (B) on the Tate conjecture. We break the analysis into cases. Tate in degree 2
follows from Theorem 2.6 and Lemma 4.5. Hard Lefschetz then implies Tate in degree 6. In degree 4,
by Lemmas 4.2 and 4.4, it is enough to verify that H 1,1(Y ) is spanned by divisors and that the Tate
conjecture holds in degree 2 for varieties rationally dominating components of the divisor E . The first
condition for Y is due to [Weissauer 1988, p. 101]. By Corollary 2.2, irreducible components of E are
dominated by C1,1[n]×M1,1[n], C1,2[n], C1,1[m]×P1, M1,1[m]×M1,1[m], P2 times a curve, or P3.
The Tate conjecture in degree 2 is trivially true for the last two cases. The Tate conjecture in degree 2 for
the other cases follows from [Gordon 1993, Theorem 5] and Lemma 4.2. �
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Part (B) of the previous theorem can be extended slightly. Suppose that 0 ⊆ 02 is the preimage of
a finite-index subgroup of Sp4(Z) such that M2[0] is smooth. With this assumption, we may choose a
good model X→ Y of C2[0] → M2[0], with Y = M2[0].

Corollary 4.6. The Tate conjecture holds for X as above.

Proof. We first note that 0 contains some 0̃(n), because the congruence subgroup problem has a positive
solution for Sp4(Z) [Bass et al. 1967]. Therefore the good model X [n] for 0̃(n) surjects onto X. Since
we know that Tate holds for X [n], it holds for X by Lemma 4.2. �
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Average nonvanishing of Dirichlet L-functions
at the central point

Kyle Pratt

The generalized Riemann hypothesis implies that at least 50% of the central values L
( 1

2 , χ
)

are nonvan-
ishing as χ ranges over primitive characters modulo q . We show that one may unconditionally go beyond
GRH, in the sense that if one averages over primitive characters modulo q and averages q over an interval,
then at least 50.073% of the central values are nonvanishing. The proof utilizes the mollification method
with a three-piece mollifier, and relies on estimates for sums of Kloosterman sums due to Deshouillers
and Iwaniec.

1. Introduction

It is widely believed that no primitive Dirichlet L-function L(s, χ) vanishes at the central point s = 1
2 .

Most of the progress towards this conjecture has been made by working with various families of Dirichlet
L-functions. Balasubramanian and Murty [1992] showed that, in the family of primitive characters
modulo q , a positive proportion of the L-functions do not vanish at the central point. Iwaniec and Sarnak
[1999] later improved this lower bound, showing that at least 1

3 of the L-functions in this family do not
vanish at the central point. Bui [2012] improved this further to 34.11%, and Khan and Ngo [2016] showed
at least 3

8 of the central values are nonvanishing1 for prime moduli. Soundararajan [2000] worked with a
family of quadratic Dirichlet characters, and showed that 7

8 of the family do not vanish at s = 1
2 . These

proofs all proceed through the mollification method, which we discuss in Section 2 below.
If one assumes the generalized Riemann hypothesis, one can show that at least half of the primitive

characters χ (mod q) satisfy L
( 1

2 , χ
)
6= 0 [Balasubramanian and Murty 1992; Sica 1998; Miller and

Takloo-Bighash 2006, Exercise 18.2.8]. One uses the explicit formula, rather than mollification, and the
proportion 1

2 arises from the choice of a test function with certain positivity properties.
It seems plausible that one may obtain a larger proportion of nonvanishing by also averaging over

moduli q. Indeed, Iwaniec and Sarnak [1999] already claimed that by averaging over moduli one can
prove at least half of the central values are nonzero. This is striking, in that it is as strong, on average, as
the proportion obtained via GRH.

MSC2010: primary 11M06; secondary 11M26.
Keywords: Dirichlet L-function, nonvanishing, central point, mollifier, sums of Kloosterman sums.

1A clear preference for “non-vanishing” or “nonvanishing” has not yet materialized in the literature. We exclusively use the
latter term throughout this work.
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A natural question is whether, by averaging over moduli, one can breach the 50% barrier, thereby
going beyond the immediate reach of GRH. We answer this question in the affirmative.

Let
∑
∗

χ(q) denote a sum over the primitive characters modulo q , and define ϕ∗(q) to be the number of
primitive characters modulo q .

Theorem 1.1. Let 9 be a fixed, nonnegative smooth function, compactly supported in
[1

2 , 2
]
, which

satisfies ∫
R

9(x) dx > 0.

Then for Q sufficiently large we have∑
q

9

(
q
Q

)
q
ϕ(q)

∑∗

χ(q)
L( 1

2 ,χ)6=0

1≥ 0.50073
∑

q

9

(
q
Q

)
q
ϕ(q)

ϕ∗(q).

Thus, roughly speaking, a randomly chosen central value L
( 1

2 , χ
)

is more likely nonzero than zero.
We remark also that the appearance of the arithmetic weight q/ϕ(q) is technically convenient, but not
essential.

2. Mollification and a sketch for Theorem 1.1

The proof of Theorem 1.1 relies on the powerful technique of mollification. For each character χ we
associate a function ψ(χ), called a mollifier, that serves to dampen the large values of L

( 1
2 , χ

)
. By the

Cauchy–Schwarz inequality we have∣∣∑
q�Q

∑
∗

χ(q) L
( 1

2 , χ
)
ψ(χ)

∣∣2∑
q�Q

∑
∗

χ(q)

∣∣L( 1
2 , χ

)
ψ(χ)

∣∣2 ≤∑
q�Q

∑∗

χ(q)
L( 1

2 ,χ) 6=0

1. (2-1)

The better the mollification by ψ , the larger proportion of nonvanishing one can deduce.
It is natural to choose ψ(χ) such that

ψ(χ)≈
1

L
( 1

2 , χ
) .

Since L
( 1

2 , χ
)

can be written as a Dirichlet series

L
( 1

2 , χ
)
=

∞∑
n=1

χ(n)
n1/2 , (2-2)

this suggests the choice

ψ(χ)≈
∑
`≤y

µ(`)χ(`)

`1/2 . (2-3)

We have introduced a truncation y in anticipation of the need to control various error terms that will arise.
We write y = Qθ , where θ > 0 is a real number. At least heuristically, larger values of θ yield better
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mollification by (2-3). Iwaniec and Sarnak [1999] made this choice (2-3) (up to some smoothing), and
found that the proportion of nonvanishing attained was

θ

1+ θ
. (2-4)

When θ = 1 we see (2-4) is exactly 1
2 , so we need θ > 1 in order to conclude Theorem 1.1. This seems

beyond the range of present technology. Without averaging over moduli we may take θ = 1
2 − ε, and the

asymptotic large sieve of Conrey, Iwaniec, and Soundararajan [Conrey et al. 2011] allows one to take
θ = 1− ε if one averages over moduli. This just falls short of our goal.

Thus, a better mollifier than (2-3) is required. Part of the problem is that (2-2) is an inefficient
representation of L

( 1
2 , χ

)
. A better representation of L

( 1
2 , χ

)
may be obtained through the approximate

functional equation, which states

L
(1

2 , χ
)
≈

∑
n≤q1/2

χ(n)
n1/2 + ε(χ)

∑
n≤q1/2

χ(n)
n1/2 . (2-5)

Here ε(χ) is the root number, which is a complex number of modulus 1 defined by

ε(χ)=
1

q1/2

∑
h (mod q)

χ(h)e
(

h
q

)
. (2-6)

Inspired by (2-5), Michel and VanderKam [2000] chose a mollifier

ψ(χ)≈
∑
`≤y

µ(`)χ(`)

`1/2 + ε(χ)
∑
`≤y

µ(`)χ(`)

`1/2 . (2-7)

We note that Soundararajan [1995] earlier used a mollifier of this shape in the context of the Riemann
zeta function.

For y = Qθ , Michel and VanderKam found that (2-7) gives a nonvanishing proportion of

2θ
1+ 2θ

. (2-8)

Thus, we need θ = 1
2+ε in order for (2-8) to imply a proportion of nonvanishing greater than 1

2 . However,
the more complicated nature of the mollifier (2-7) means that, without averaging over moduli, only the
choice θ = 3

10 − ε is acceptable [Khan and Ngo 2016].
As we allow ourselves to average over moduli, however, one might hope to obtain (2-8) for θ = 1

2 + ε.
Again we fall just short of our goal. Using a powerful result of Deshouillers and Iwaniec on cancellation
in sums of Kloosterman sums (see Lemma 5.1 below) we shall show that θ = 1

2 − ε is acceptable, but
increasing θ any further seems very difficult. It follows that we need any extra amount of mollification in
order to obtain a proportion of nonvanishing strictly greater than 1

2 .
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The solution is to attach yet another piece to the mollifier ψ(χ), but here we wish for the mollifier to
have a very different shape from (2-7). Such a mollifier was utilized by Bui [2012], who showed that

ψB(χ)≈
1

log q

∑∑
bc≤y

3(b)µ(c)χ(b)χ(c)
(bc)1/2

(2-9)

is a mollifier for L
( 1

2 , χ
)
. It turns out that adding (2-9) to (2-7) gives a sufficient mollifier to conclude

Theorem 1.1.
One may roughly motivate a mollifier of the shape (2-9) as follows. Working formally,

1

L
( 1

2 , χ
) = L

(1
2 , χ

)
L
( 1

2 , χ
)
L
( 1

2 , χ
) =∑∑∑

r,s,v

χ(r)µ(s)χ(s)µ(v)χ(v)
(rsv)1/2

≈

∑∑∑
r,s,v

log r
log q

χ(r)µ(s)χ(s)µ(v)χ(v)
(rsv)1/2

=
1

log q

∑∑
u,v

(µ ? log)(u)χ(u)µ(v)χ(v)
(uv)1/2

.

One might wonder what percentage of nonvanishing one can obtain using only a mollifier of the
shape (2-9). The analysis for Bui’s mollifier is more complicated, and it does not seem possible to write
down simple expressions like (2-4) or (2-8) that give a percentage of nonvanishing for (2-9) in terms of θ .
If one assumes, perhaps optimistically, that averaging over moduli allows one to take any θ < 1 in (2-9),
then some numerical computation indicates that the nonvanishing percentage does not exceed 27%, say.

We remark that, in the course of the proof, the main terms are easily extracted and we have no need
here for the averaging over moduli. We require the averaging over moduli in order to estimate some of
the error terms.

The structure of the remainder of the paper is as follows. In Section 3 we reduce the proof of
Theorem 1.1 to two technical results, Lemmas 3.3 and 3.4, which give asymptotic evaluations of certain
mollified sums. In Section 4 we extract the main term of Lemma 3.3, and in Section 5 we use estimates
on sums of Kloosterman sums to complete the proof of this lemma. Section 6 similarly proves the main
term of Lemma 3.4, but this derivation is longer than that given in Section 4 because the main terms are
more complicated. In the final section, Section 7, we bound the error term in Lemma 3.4, again using
results on sums of Kloosterman sums.

3. Proof of Theorem 1.1: first steps

Let us fix some notation and conventions that shall hold for the remainder of the paper.
The notation a ≡ b(q) means a ≡ b (mod q), and when a(q) occurs beneath a sum it indicates a

summation over residue classes modulo q .
We denote by ε an arbitrarily small positive quantity that may vary from one line to the next, or even

within the same line. Thus, we may write X2ε
≤ X ε with no reservations.
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We need to treat separately the even primitive characters and odd primitive characters. We focus
exclusively on the even primitive characters, since the case of odd characters is nearly identical. We write∑
+

χ(q) for a sum over even primitive characters modulo q, and we write ϕ+(q) for the number of such
characters. Observe that ϕ+(q)= 1

2ϕ
∗(q)+ O(1).

We shall encounter the Ramanujan sum cq(n) (see the proof of Proposition 5.2), defined by

cq(n)=
∑
a(q)

(a,q)=1

e
(

an
q

)
.

We shall only need to know that cq(1)= µ(q) and |cq(n)| ≤ (q, n), where (q, n) is the greatest common
divisor of q and n.

We now fix a smooth function 9 as in the statement of Theorem 1.1, and allow all implied constants
to depend on 9. We let Q be a large real number, and set yi = Qθi for i ∈ {1, 2, 3}, where 0< θi <

1
2 are

fixed real numbers. We further define L = log Q. The notation o(1) denotes a quantity that goes to zero
as Q goes to infinity.

Let us now begin the proof of Theorem 1.1 in earnest. As discussed in Section 2, we choose our
mollifier ψ(χ) to have the form

ψ(χ)= ψIS(χ)+ψB(χ)+ψMV(χ), (3-1)

where

ψIS(χ)=
∑
`≤y1

µ(`)

`1/2 P1

(
log(y1/`)

log y1

)
,

ψB(χ)=
1
L

∑∑
bc≤y2

3(b)µ(c)χ(b)χ(c)
(bc)1/2

P2

(
log(y2/bc)

log y2

)
,

ψMV(χ)= ε(χ)
∑
`≤y3

µ(`)χ(`)

`1/2 P3

(
log(y3/`)

log y3

)
.

(3-2)

The smoothing polynomials Pi are real and satisfy Pi (0)= 0. For notational convenience we write

Pi

(
log(yi/x)

log yi

)
= Pi [x].

There is some ambiguity in this notation because of the yi -dependence in the polynomials, and this needs
to be remembered in calculations.

Now define sums S1 and S2 by

S1 =
∑

q

9

(
q
Q

)
q
ϕ(q)

∑+

χ(q)

L
( 1

2 , χ
)
ψ(χ),

S2 =
∑

q

9

(
q
Q

)
q
ϕ(q)

∑+

χ(q)

∣∣L( 1
2 , χ

)
ψ(χ)

∣∣2. (3-3)
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We apply Cauchy–Schwarz as in (2-1) and get∑
q

9

(
q
Q

)
q
ϕ(q)

∑+

χ(q)
L( 1

2 ,χ) 6=0

1≥
S2

1

S2
. (3-4)

The proof of Theorem 1.1 therefore reduces to estimating S1 and S2. We obtain asymptotic formulas for
these two sums.

Lemma 3.1. Suppose 0< θ1, θ2 < 1 and 0< θ3 <
1
2 . Then

S1 =

(
P1(1)+ P3(1)+

θ2

2
P̃2(1)+ o(1)

)∑
q

9

(
q
Q

)
q
ϕ(q)

ϕ+(q),

where

P̃2(x)=
∫ x

0
P2(u) du.

Lemma 3.2. Let 0< θ1, θ2, θ3 <
1
2 with θ2 < θ1, θ3. Then

S2 =

(
2P1(1)P3(1)+ P3(1)2+

1
θ3

∫ 1

0
P ′3(x)

2 dx + κ + λ+ o(1)
)∑

q

9

(
q
Q

)
q
ϕ(q)

ϕ+(q),

where

κ = 3θ2 P3(1)P̃2(1)− 2θ2

∫ 1

0
P2(x)P3(x) dx

and

λ= P1(1)2+
1
θ1

∫ 1

0
P ′1(x)

2 dx − θ2 P1(1)P̃2(1)+ 2θ2

∫ 1

0
P1

(
1−

θ2(1− x)
θ1

)
P2(x) dx

+
θ2

θ1

∫ 1

0
P ′1

(
1−

θ2(1− x)
θ1

)
P2(x) dx + θ2

2

∫ 1

0
(1− x)P2(x)2 dx

+
θ2

2

∫ 1

0
(1− x)2 P ′2(x)

2 dx −
θ2

2

4
P̃2(1)2+

θ2

4

∫ 1

0
P2(x)2 dx .

Proof of Theorem 1.1. Lemmas 3.1 and 3.2 give the evaluations of S1 and S2 for even characters. The
identical formulas hold for odd characters. Theorem 1.1 then follows from (3-4) upon choosing θ1= θ3=

1
2 ,

θ2 = 0.163, and
P1(x)= 4.86x + 0.29x2

− 0.96x3
+ 0.974x4

− 0.17x5,

P2(x)=−3.11x − 0.3x2
+ 0.87x3

− 0.18x4
− 0.53x5,

P3(x)= 4.86x + 0.06x2.

These choices actually yield a proportion2

≥ 0.50073004 . . . ,

which allows us to state Theorem 1.1 with a clean inequality. �

2A Mathematica file with this computation is included with this paper on arXiv at https://arxiv.org/e-print/1804.01445v1.

https://arxiv.org/e-print/1804.01445v1
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We note without further comment the curiosity in the proof of Theorem 1.1 that the largest permissible
value of θ2 is not optimal.

We can dispense with S1 quickly.

Proof of Lemma 3.1. Apply [Bui 2012, Theorem 2.1] and the argument of [Michel and VanderKam 2000,
§3], using the facts L = log q + O(1) and yi = qθi+o(1). �

The analysis of S2 is much more involved, and we devote the remainder of the paper to this task. We
first observe that (3-1) yields

|ψ(χ)|2 = |ψIS(χ)+ψB(χ)|
2
+ 2 Re{ψIS(χ)ψMV(χ)+ψB(χ)ψMV(χ)}+ |ψMV(χ)|

2.

By [Bui 2012, Theorem 2.2] we have∑+

χ(q)

∣∣L(1
2 , χ

)∣∣2|ψIS(χ)+ψB(χ)|
2
= λϕ+(q)+ O(q L−1+ε),

where λ is as in Lemma 3.2. We also have

1
ϕ+(q)

∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2|ψMV(χ)|
2
=

1
ϕ+(q)

∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2∣∣∣∣∑
`≤y3

µ(`)χ(`)P3[`]

`1/2

∣∣∣∣2
= P3(1)2+

1
θ3

∫ 1

0
P ′3(x)

2 dx + O(L−1+ε),

by the analysis of the Iwaniec–Sarnak mollifier [Bui 2012, §2.3].
Therefore, in order to prove Lemma 3.2 it suffices to prove the following two results.

Lemma 3.3. For 0< θ1, θ3 <
1
2 we have∑

q

9

(
q
Q

)
q
ϕ(q)

∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2ψIS(χ)ψMV(χ)= (P1(1)P3(1)+ o(1))
∑

q

9

(
q
Q

)
q
ϕ(q)

ϕ+(q).

Lemma 3.4. Let 0< θ2 < θ3 <
1
2 . Then∑

q

9

(
q
Q

)
q
ϕ(q)

∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2ψB(χ)ψMV(χ)

=

(
3θ2

2
P3(1)P̃2(1)− θ2

∫ 1

0
P2(x)P3(x) dx + o(1)

)∑
q

9

(
q
Q

)
q
ϕ(q)

ϕ+(q).

4. Lemma 3.3: main term

The goal of this section is to extract the main term in Lemma 3.3. The main term analysis is given in
[Michel and VanderKam 2000, §6], but as the ideas also appear in the proof of Lemma 3.4 we give details
here.

We begin with two lemmas.
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Lemma 4.1. Let χ be a primitive even character modulo q. Let G(s) be an even polynomial satisfying
G(0)= 1, and which vanishes to second order at 1

2 . Then we have∣∣L( 1
2 , χ

)∣∣2 = 2
∑∑

m,n

χ(m)χ(n)
(mn)1/2

V
(

mn
q

)
,

where

V (x)=
1

2π i

∫
(1)

02
(1

2 s+ 1
4

)
02
( 1

4

) G(s)
s
π−s x−s ds. (4-1)

Proof. See [Iwaniec and Sarnak 1999, (2.5)]. The result follows along the lines of [Iwaniec and Kowalski
2004, Theorem 5.3]. �

We remark that V satisfies V (x)�A (1+ x)−A, as can be seen by moving the contour of integration
to the right. We also note that the choice of G(s) in Lemma 4.1 is almost completely free. In particular,
we may choose G to vanish at whichever finite set of points is convenient for us (see (4-6) below for an
application).

Lemma 4.2. Let (mn, q)= 1. Then∑+

χ(q)

χ(m)χ(n)=
1
2

∑∑
vw=q
w|m±n

µ(v)ϕ(w).

Proof. See [Bui and Milinovich 2011, Lemma 4.1], for instance. �

We do not need the averaging over q in order to extract the main term of Lemma 3.3. We insert
the definitions of the mollifiers ψIS(χ) and ψMV(χ), then apply Lemma 4.1, and interchange orders of
summation. We obtain∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2ψIS(χ)ψMV(χ)

= 2
∑∑
`1≤y1
`3≤y3

(`1`3,q)=1

µ(`1)µ(`3)P1[`1]P3[`3]

(`1`3)1/2

∑∑
(mn,q)=1

1
(mn)1/2

V
(

mn
q

) ∑+

χ(q)

ε(χ)χ(m`1`3)χ(n). (4-2)

Opening ε(χ) using (2-6) and applying Lemma 4.2, we find after some work [Iwaniec and Sarnak 1999,
(3.4) and (3.7)] that∑+

χ(q)

ε(χ)χ(m`1`3)χ(n)=
1

q1/2

∑∑
vw=q
(v,w)=1

µ2(v)ϕ(w) cos
2πnm`1`3v

w
. (4-3)

The main term comes from m`1`3 = 1. With this constraint in place we apply character orthogonality in
reverse, obtaining that the main term MIS,MV of Lemma 3.3 is

MIS,MV = 2P1(1)P3(1)
∑+

χ(q)

ε(χ)
∑

n

χ(n)
n1/2 V

(
n
q

)
.

We have the following proposition.
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Proposition 4.3. Let χ be a primitive even character modulo q , and let T > 0 be a real number. Let V be
defined as in (4-1). Then∑

n

χ(n)
n1/2 V

(
T n
q

)
= L

( 1
2 , χ

)
− ε(χ)

∑
n

χ(n)
n1/2 F

(
n
T

)
,

where

F(x)=
1

2π i

∫
(1)

0
( 1

2 s+ 1
4

)
0
(
−

1
2 s+ 1

4

)
02
(1

4

) G(s)
s

x−s ds. (4-4)

Before proving Proposition 4.3, let us see how to use it to finish the evaluation of MIS,MV. Proposition 4.3
gives

MIS,MV = 2P1(1)P3(1)
∑+

χ(q)

ε(χ)L
( 1

2 , χ
)
− 2P1(1)P3(1)

∑+

χ(q)

∑
n

χ(n)
n1/2 F(n),

and by the first moment analysis (see [Michel and VanderKam 2000, §3] and also Section 6 below) we
have

2P1(1)P3(1)
∑+

χ(q)

ε(χ)L
(1

2 , χ
)
= (1+ o(1))2P1(1)P3(1)ϕ+(q). (4-5)

For the other piece, we apply Lemma 4.2 to obtain

−2P1(1)P3(1)
∑+

χ(q)

∑
n

χ(n)
n1/2 F(n)=−P1(1)P3(1)

∑
w|q

ϕ(w)µ(q/w)
∑

n≡±1(w)
(n,q)=1

1
n1/2 F(n).

We choose G to vanish at all the poles of

0
( 1

2 s+ 1
4

)
0
(
−

1
2 s+ 1

4

)
in the disc |s| ≤ A, where A > 0 is large but fixed. By moving the contour of integration to the right
we see

F(x)�
1

(1+ x)100 , (4-6)

say, and therefore, the contribution from n > q1/10 is negligible. By trivial estimation the contribution
from w ≤ q1/4 is also negligible. For w > q1/4 and n ≤ q1/10, we can only have n ≡ ±1 (mod w) if
n = 1. Adding back in the terms with n ≤ q1/4, the contribution from these terms is therefore

−(1+ o(1))2P1(1)P3(1)F(1)ϕ+(q). (4-7)

Since the integrand in F(1) is odd, we may evaluate F(1) through a residue at s = 0. We shift the line of
integration in (4-4) to Re s =−1, picking up a contribution from the simple pole at s = 0. In the integral
on the line Re s =−1 we change variables s→−s. This yields the relation F(1)= 1− F(1), whence
F(1)= 1

2 . Combining (4-5) and (4-7), we obtain

MIS,MV = (1+ o(1))P1(1)P3(1)ϕ+(q),

as desired. This yields the main term of Lemma 3.3.
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Proof of Proposition 4.3. We write V using its definition and interchange orders of summation and
integration to get

∑
n

χ(n)
n1/2 V

(
T n
q

)
=

1
2π i

∫
(1)

02
( 1

2 s+ 1
4

)
02
( 1

4

) G(s)
s

(
q
π

)s

T−s L
( 1

2 + s, χ
)

ds.

We move the line of integration to Re s =−1, picking up a contribution of L
( 1

2 , χ
)

from the pole at s = 0.
Observe that we do not get any contribution from the double pole of 02

( 1
2 s+ 1

4

)
at s =− 1

2 because of
our assumption that G vanishes at s =± 1

2 to second order.
Now, for the integral on the line Re s =−1, we apply the functional equation for L

( 1
2 + s, χ

)
and then

change variables s→−s to obtain

−ε(χ)
1

2π i

∫
(1)

0
( 1

2 s+ 1
4

)
0
(
−

1
2 s+ 1

4

)
02
( 1

4

) G(s)
s

T s L
( 1

2 + s, χ
)

ds.

The desired result follows by expanding L
( 1

2 + s, χ
)

in its Dirichlet series and interchanging the order of
summation and integration. �

5. Lemma 3.3: error term

Here we show that the remainder of the terms in (4-2) (those with m`1`3 6= 1) contribute only to the error
term of Lemma 3.3. Here we must avail ourselves of the averaging over q.

Inserting (4-3) into (4-2) and averaging over moduli, we wish to show that

E1 =
∑∑
(v,w)=1

µ2(v)
v

ϕ(v)

w1/2

v1/2 9

(
vw

Q

) ∑∑
`1≤y1
`3≤y3

(`1`3,vw)=1

µ(`1)µ(`3)P1[`1]P3[`3]

(`1`3)1/2

×

∑∑
(mn,vw)=1

1
(mn)1/2

Z
(

mn
vw

)
cos

2πnm`1`3v

w
� Q2−ε+o(1), (5-1)

where m`1`3 6= 1, but we do not indicate this in the notation. The function Z is actually just V in (4-1),
but we do not wish to confuse the function V with the scale V that shall appear shortly.

Observe that the arithmetic weight q/ϕ(q) has become (v/ϕ(v))(w/ϕ(w)) by multiplicativity, and
that this factor of ϕ(w) has canceled with ϕ(w) in (4-3), making the sum on w smooth.

The main tool we use to bound E′1 is the following result, due to Deshouillers and Iwaniec, on
cancellation in sums of Kloosterman sums.

Lemma 5.1. Let C, D, N , R, S be positive numbers, and let bn,r,s be a complex sequence supported in
(0, N ]× (R, 2R]× (S, 2S] ∩N3. Let g0(ξ, η) be a smooth function having compact support in R+×R+,
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and let g(c, d)= g0(c/C, d/D). Then

∑
c

∑
d

∑
n

∑
r

∑
s

(rd,sc)=1

bn,r,s g(c, d)e
(

n
rd
sc

)
�ε,g0 (C DN RS)εK (C, D, N , R, S)‖bN ,R,S‖2,

where

‖bN ,R,S‖2 =

(∑
n

∑
r

∑
s

|bn,r,s |
2
)1/2

and

K (C, D, N , R, S)2 = C S(RS+ N )(C + RD)+C2 DS
√
(RS+ N )R+ D2 N RS−1.

Proof. This is essentially [Bombieri et al. 1986, Lemma 1], which is an easy consequence of [Deshouillers
and Iwaniec 1982, Theorem 12]. �

We need to massage (5-1) before it is in a form where an application of Lemma 5.1 is appropriate.
Let us briefly describe our plan of attack. We apply partitions of unity to localize the variables and
then separate variables with integral transforms. By using the orthogonality of multiplicative characters
we will be able to assume that v is quite small, which is advantageous when it comes time to remove
coprimality conditions involving v. We next reduce to the case in which n is somewhat small. This is due
to the fact that the sum on n is essentially a Ramanujan sum, and Ramanujan sums experience better than
square-root cancellation on average. We next use Möbius inversion to remove the coprimality condition
between n and w. This application of Möbius inversion introduces a new variable, call it f , and another
application of character orthogonality allows us to assume f is small. We then remove the coprimality
conditions on m. We finally apply Lemma 5.1 to get the desired cancellation, and it is crucial here that f
and v are no larger than Qε .

Let us turn to the details in earnest. We apply smooth partitions of unity (see [Blomer et al. 2017,
Lemma 1.6], for instance) in all variables, so that E1 can be written∑

· · ·

∑
M,N ,L1,L3,V,W

E1(M, N , L1, L3, V,W ), (5-2)

where

E1(M, N , L1, L3, V,W )=
∑∑
(v,w)=1

µ2(v)
v

ϕ(v)

w1/2

v1/2 9

(
vw

Q

)
G
(
v

V

)
G
(
w

W

)

×

∑∑
`1≤y1
`3≤y3

(`1`3,vw)=1

µ(`1)µ(`3)P1[`1]P3[`3]

(`1`3)1/2
G
(
`1

L1

)
G
(
`3

L3

)

×

∑∑
(mn,vw)=1

1
(mn)1/2

Z
(

mn
vw

)
G
(

m
M

)
G
(

n
N

)
cos

2πnm`1`3v

w
.
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Here G is a smooth, nonnegative function supported in
[ 1

2 , 2
]
, and the numbers M, N , L i , V,W in (5-2)

range over powers of two. We may assume

M, N , L1, L3, V,W � 1, V W � Q, L i � y.

Furthermore, by the rapid decay of Z we may assume M N ≤ Q1+ε . Thus, the number of summands
E1(M, . . . ,W ) in (5-2) is� Qo(1).

Up to changing the definition of G, we may rewrite E1(M, . . . ,W ) as

E1(M, N , L1, L3, V,W )=
W 1/2

(M N L1L3V )1/2
∑∑
(v,w)=1

α(v)G
(
v

V

)
G
(
w

W

)
9

(
vw

Q

)

×

∑∑
`i≤yi

(`i ,vw)=1

β(`1)γ (`3)G
(
`1

L1

)
G
(
`3

L3

)

×

∑∑
(mn,vw)=1

Z
(

mn
vw

)
G
(

m
M

)
G
(

n
N

)
cos

2πnm`1`3v

w
,

where α, β, γ are sequences satisfying |α(v)|, |β(`1)|, |γ (`3)| � Qo(1).
We separate the variables in Z by writing Z using its definition as an integral (4-1) and moving the

line of integration to Re s = L−1. By the rapid decay of the 0 function in vertical strips we may restrict
to |Im s| ≤ Qε . We similarly separate the variables in 9 using the inverse Mellin transform. Therefore,
up to changing the definition of some of the functions G, it suffices to prove that

E′1(M, N , L1, L3, V,W )=
W 1/2

(M N L1L3V )1/2
∑∑
(v,w)=1

α(v)G
(
v

V

)
G
(
w

W

)

×

∑∑
`i≤yi

(`i ,vw)=1

β(`1)γ (`3)G
(
`3

L3

)
G
(
`3

L3

)

×

∑∑
(mn,vw)=1

G
(

m
M

)
G
(

n
N

)
e
(

nm`1`3v

w

)
� Q2−ε+o(1). (5-3)

Our smooth functions G all satisfy G( j)(x)� j Q jε for j ≥ 0. To save on space we write the left side of
(5-3) as simply E′1.

Observe that the trivial bound for E′1 is

E′1� V 1/2W 3/2(M N )1/2(L1L3)
1/2 Qo(1)

�
Q2+ε(y1 y3)

1/2

V
. (5-4)

This bound is worst when V is small. Since yi will be taken close to Q1/2, we therefore need to save
≈ Q1/2 in order to obtain (5-1). The trivial bound does show, however, that the contribution from
V > Q1/2+2ε is acceptably small, and we may therefore assume that V ≤ Q1/2+2ε . Note this implies
W � Q1/2−ε .
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We now reduce to the case V � Qε . We accomplish this by reintroducing multiplicative characters.
The orthogonality of multiplicative characters yields

e
(

nm`1`3v

w

)
=

1
ϕ(w)

∑
χ(w)

τ(χ)χ(n)χ(m`1`3v). (5-5)

Using the Gauss sum bound |τ(χ)| � w1/2 we then arrange E′1 as

E′1�
W

(M N L1L3V )1/2
∑
w�W

1
ϕ(w)

∑
v�V

∣∣∣∣∑∑
(mn,v)=1

χ(n)χ(m)
∣∣∣∣∣∣∣∣∑∑
(`1`3,v)=1

χ(`1`3)

∣∣∣∣,
where we have suppressed some things in the notation for brevity. By Cauchy–Schwarz and character
orthogonality we obtain∑

χ(w)

∣∣∣∣∑∑
m,n

∣∣∣∣∣∣∣∣∑∑
`1,`3

∣∣∣∣� Qo(1)(M N L1L3)
1/2(M N +W )1/2(L1L3+W )1/2,

which yields a bound of

Q−o(1)E′1�
Q(M N )1/2(y1 y3)

1/2

V 1/2 +
Q3/2(M N )1/2

V
+

Q3/2(y1 y3)
1/2

V
+

Q2

V 3/2 . (5-6)

We observe that (5-6) is acceptable for V ≥ Q3ε , say. We may therefore assume V ≤ Qε .
We next show that E′1 is small provided N is somewhat large.

Proposition 5.2. Assume the hypotheses of Lemma 3.3. If N ≥ M Q−2ε and m`1`3 6= 1, then E′1 �

Q2−ε+o(1).

Proof. We make use only of cancellation in the sum on n, say

6N =
∑

(n,vw)=1

G
(

n
N

)
e
(

nm`1`3v

w

)
.

We use Möbius inversion to detect the condition (n, v)= 1, and then break n into primitive residue classes
modulo w. Thus,

6N =
∑
d|v

µ(d)
∑

(a,w)=1

e
(

adm`1`3v

w

) ∑
n≡a(w)

G
(

dn
N

)
.

We apply Poisson summation to each sum on n, and obtain

6N =
∑
d|v

µ(d)
∑

(a,w)=1

e
(

adm`1`3v

w

)
N

dw

∑
|h|≤W 1+εd/N

e
(

ah
w

)
Ĝ
(

hN
dw

)
+ Oε(Q−100),

say. The contribution of the error term is, of course, negligible. The contribution of the zero frequency
h = 0 to 6N is

Ĝ(0)
N
w

∑
d|v

µ(d)
d

∑
(a,w)=1

e
(

adm`1`3v

w

)
= Ĝ(0)µ(w)

N
w

ϕ(v)

v
,
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and upon summing this contribution over the remaining variables, the zero frequency contributes

� V 1/2W 1/2(M N )1/2(y1 y3)
1/2 Qo(1)

� Q3/2

to E′1, and this contribution is sufficiently small.
It takes just a bit more work to bound the contribution of the nonzero frequencies |h|> 0. We rearrange

the sum as ∑
d|v

µ(d)
N

dw

∑
|h|≤W 1+εd/N

Ĝ
(

hN
dw

) ∑
(a,w)=1

e
(

adm`1`3v

w
+

ah
w

)
.

By a change of variables the inner sum is equal to the Ramanujan sum cw(hm`1`3v + d). Note that
hm`1`3v+ d 6= 0 because m`1`3 6= 1. The nonzero frequencies therefore contribute to E′1 an amount

� Qε (V W L1L3 M)1/2

N 1/2 sup
0<|k|�QO(1)

∑
w�W

|cw(k)|.

Since |cw(k)| ≤ (k, w) the sum on w is�W 1+o(1). It follows that

E′1� Q3/2
+ Q3/2+ε(y1 y3)

1/2 M1/2

N 1/2 .

Since yi = Qθi and θi <
1
2 − 3ε, say, this bound for E′1 is acceptable provided N ≥ M Q−2ε . �

By Proposition 5.2 we may assume N ≤ M Q−2ε . Since M N ≤ Q1+ε , the condition N ≤ M Q−2ε

implies N ≤ Q1/2.
We now pause to make a comment on the condition m`1`3 6= 1, which we have assumed throughout this

section but not indicated in the notation for E′1. Observe that this condition is automatic if M L1L3 > 2019
(say). If M L1L3� 1, then we may use the trivial bound (5-4) along with the bound N ≤ Q1/2

≤ Q1−ε

to obtain

E′1� Q2−ε .

We may therefore assume M L1L2� 1, so that the condition m`1`3 6= 1 is satisfied.
We now remove the coprimality condition (n, w)= 1. By Möbius inversion we have

1(n,w)=1 =
∑
f |n
f |w

µ( f ).

We move the sum on f to be the outermost sum, and note f � N . We then change variables n→ n f
and w → w f . If a∗, say, is any lift of the multiplicative inverse of m`1`3v modulo w f , then a∗ ≡
m`1`3v (mod w), and therefore,

n f m`1`3v

w f
≡

nm`1`3v

w
(mod 1).



Average nonvanishing of Dirichlet L-functions at the central point 241

It follows that

E′1 =
W 1/2

(M N L1L3V )1/2
∑
f�N

µ( f )
∑∑
(v,w f )=1

α(v)G
(
v

V

)
G
(
w f
W

)

×

∑∑
`i≤yi

(`i , f vw)=1

β(`1)γ (`3)G
(
`1

L1

)
G
(
`3

L3

) ∑∑
(m, f vw)=1
(n,v)=1

G
(

m
M

)
G
(

n f
N

)
e
(

nm`1`3v

w

)
.

We next reduce the size of f by a similar argument to the one that let us impose the condition V ≤ Qε .
We obtain by transitioning to multiplicative characters (recall (5-5)) that the sum over v,w,m, n, `1, `3

is bounded by

�
W 1/2+o(1)V 1/2

f 1/2

∑
w�W/ f

1
w1/2

(
(M N )1/2

f 1/2 +w1/2
)
((L1L3)

1/2
+w1/2)�

Q2+ε

f 3/2 ,

and therefore, the contribution from f > Q4ε is negligible.
Now the only barrier to applying Lemma 5.1 is the conditions (m, f )= 1 and (m, v)= 1. We remove

both of these conditions with Möbius inversion, obtaining

∑
f�min(N ,Qε)

µ( f )
∑
h| f

µ(h)
∑
t�V

µ(t)
W 1/2

(M N L1L3V )1/2
∑∑
(v,w f )=1
(w,ht)=1

α(v)G
(
vt
V

)
G
(
w f
W

)

×

∑∑
`i≤yi

(`i , f vw)=1

β(`1)γ (`3)G
(
`1

L1

)
G
(
`3

L3

)∑∑
(m,w)=1
(n,v)=1

G
(

mht
M

)
G
(

n f
N

)
e
(

nmht2`1`3v

w

)
.

We set

bn,ht2k = 1(n,v)=1G
(

n f
N

)∑
`1

∑
`3

∑
v

`1`3v=k
(`1`3,v)=1

β(`1)γ (`3)α(v)G
(
vt
V

)
G
(
`1

L1

)
G
(
`3

L3

)

if (k, f ) = 1, and for integers r not divisible by ht2 we set bn,r = 0. It follows that if bn,r 6= 0, then
n � N/ f and r � ht L1L3V with r ≡ 0(ht2). The sum over n, r,m, w is therefore a sum of the form to
which Lemma 5.1 may be applied. We note that

‖bN ,R‖2�
Qo(1)

( f t)1/2
(N L1L3V )1/2,
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and therefore, by Lemma 5.1 we have

E′1� Qε
∑

f�Qε

1
f 1/2

∑
h| f

∑
t�Qε

1
t1/2

W 1/2

M1/2

×

{
W 1/2

f 1/2 ((ht L1L3V )1/2+
N 1/2

f 1/2 )(
W 1/2

f 1/2 + (M L1L3V )1/2)

+
W
f

M1/2

(ht)1/2
((ht L1L3V )1/2+ (ht L1L3 N V )1/4)+

M
ht
(ht L1L3 N V )1/2

}
� Qε

(
W 3/2(y1 y3)

1/2

M1/2 +W y1 y3+W 3/2 N 1/2

M1/2 +W (y1 y3)
1/2 N 1/2

+W 3/2(y1 y3)
1/2

+W 3/2(y1 y3)
1/4 N 1/4

+W 1/2 Q1/2(y1 y3)
1/2
)
� Q2−ε,

upon recalling the bounds W � Q and yi ≤ Qθi with θi <
1
2 , and N ≤ Q1−ε . This completes the proof

of Lemma 3.3.

6. Lemma 3.4: main term

In this section we obtain the main term of Lemma 3.4. We allow ourselves to recycle some notation from
Sections 4 and 5.

Recall that we wish to asymptotically evaluate

∑+

χ(q)

∣∣L( 1
2 , χ

)∣∣2ψB(χ)ψMV(χ).

We begin precisely as in Section 4. Inserting the definitions of ψB(χ) and ψMV(χ), we must asymp-
totically evaluate

2
L

∑∑
bc≤y2
(bc,q)=1

3(b)µ(c)P2[bc]
(bc)1/2

∑
`≤y3
(`,q)=1

µ(`)P3[`]

`1/2

∑∑
(mn,q)=1

1
(mn)1/2

V
(

mn
q

) ∑+

χ(q)

ε(χ)χ(c`m)χ(bn). (6-1)

The main term of Lemma 3.3 arose from m`1`3 = 1. In the present case, the main term contains more
than just c`m = 1; the main term arises from those c`m which divide b. The support of the von Mangoldt
function constrains b to be a prime power, so the condition c`m | b is straightforward, but tedious, to
handle.

There are three different cases to consider. The first case is c`m = 1. In the second case we have
c`m = p and b = p. Both of these cases contribute to the main term. The third case is everything else
(b = p j with j ≥ 2 and c`m | b with c`m ≥ p), and this case contributes only to the error term.
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First case: c`m = 1. If c`m is equal to 1, then certainly c`m divides b for every b. The contribution
from c`m = 1 is equal to

M =
2P3(1)

L

∑+

χ(q)

ε(χ)
∑
b≤y2

3(b)χ(b)P2[b]
b1/2

∑
n

χ(n)
n1/2 V

(
n
q

)
.

By an application of Proposition 4.3,

M = M1+M2, (6-2)

where

M1 =
2P3(1)

L

∑
b≤y2
(b,q)=1

3(b)P2[b]
b1/2

∑+

χ(q)

ε(χ)χ(b)L
( 1

2 , χ
)
,

M2 =−
2P3(1)

L

∑∑
b≤y2

(bn,q)=1

3(b)P2[b]
(bn)1/2

F(n)
∑+

χ(q)

χ(n)χ(b),

and F is the rapidly decaying function given by (4-4). A main term arises from M1, and M2 contributes
only to the error term.

Let us first investigate M2. By Lemma 4.2 we have

M2 =−
P3(1)

L

∑
w|q

ϕ(w)µ(q/w)
∑∑

b≤y2
b≡±n(w)
(bn,q)=1

3(b)P2[b]
(bn)1/2

F(n).

By the rapid decay of F (recall (4-6)) we may restrict n to n ≤ q1/10. The contribution from w≤ q1/2+ε is
then trivially� q1−ε , since y2� q1/2−ε . For the remaining terms, the congruence condition b ≡±n(w)
becomes b = n, and thus,

M2� q1−ε
+

1
L

∑
w|q

w>q1/2+ε

ϕ(w)
∑

b≤q1/10

3(b)P2[b]
b

F(b)� q L−1.

Let us turn to M1. We use the following lemma to represent the central value L
( 1

2 , χ
)
.

Lemma 6.1. Let χ be a primitive even character modulo q. Then

L
( 1

2 , χ
)
=

∑
n

χ(n)
n1/2 V1

(
n

q1/2

)
+ ε(χ)

∑
n

χ(n)
n1/2 V1

(
n

q1/2

)
,

where

V1(x)=
1

2π i

∫
(1)

0
(1

2 s+ 1
4

)
0
( 1

4

) G1(s)
s

π−s/2x−s ds

and G1(s) is an even polynomial satisfying G1(0)= 1.

Proof. See [Iwaniec and Sarnak 1999, (2.2)]. �
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Applying Lemma 6.1, the main term M1 naturally splits as M1 = M1,1+M1,2, where

M1,1 =
2P3(1)

L

∑∑
b≤y2

(bn,q)=1

3(b)P2[b]
(bn)1/2

V1

(
n

q1/2

) ∑+

χ(q)

ε(χ)χ(bn),

M1,2 =
2P3(1)

L

∑∑
b≤y2

(bn,q)=1

3(b)P2[b]
(bn)1/2

V1

(
n

q1/2

) ∑+

χ(q)

χ(n)χ(b).

Applying character orthogonality to M1,1 we arrive at

M1,1 =
2P3(1)
Lq1/2

∑∑
vw=q
(v,w)=1

µ2(v)ϕ(w)
∑∑

b≤y2
(bn,q)=1

3(b)P2[b]
(bn)1/2

V1

(
n

q1/2

)
cos

2πbnv
w

,

and a trivial estimation shows
M1,1� q1−ε .

Let us lastly examine M1,2, from which a main term arises. By character orthogonality we have

M1,2 =
P3(1)

L

∑
w|q

ϕ(w)µ(q/w)
∑∑

b≤y2
b≡±n(w)
(b,q)=1

3(b)P2[b]
(bn)1/2

V1

(
n

q1/2

)
.

By trivial estimation, the contribution from w ≤ q1/2+ε is

�

∑
w|q

w≤q1/2+ε

ϕ(w)
∑
b≤y2

1
b1/2

∑
n≤q1/2+ε

n≡±b(w)

1
n1/2 � y1/2

2

∑
w|q

w≤q1/2+ε

ϕ(w)

(
q1/4+ε

w
+ O(1)

)
� q3/4+ε .

By the rapid decay of V1, for w > q1/2+ε the congruence b≡±n(w) becomes b= n. Adding back in the
terms w ≤ q1/2+ε , we have

M1,2 =
2P3(1)

L
ϕ+(q)

∑
b≤y2
(b,q)=1

3(b)P2[b]
b

V1

(
b

q1/2

)
+ O(q1−ε).

For x � 1 we see by a contour shift that

V1(x)= 1+ O(x1/3),

and we have bq−1/2
� q−ε . It follows that

M1,2 = O(q1−ε)+
2P3(1)

L
ϕ+(q)

∑
b≤y2
(b,q)=1

3(b)P2[b]
b

.

We have ∑
(b,q)>1

3(b)
b
� 1+

∑
p|q

log p
p
� log log q,
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and therefore, we may remove the condition (b, q) = 1 at the cost of an error O(q L−1+ε). From the
estimate ∑

n≤x

3(n)
n
= log x + O(1),

summation by parts, and elementary manipulations, we obtain∑
b≤y2

3(b)P2[b]
b

= (log y2)

∫ 1

0
P2(u) du+ O(1).

Therefore, the contribution to the main term of Lemma 3.4 from c`m = 1 is

(2θ2 P3(1)P̃2(1)+ o(1))ϕ+(q). (6-3)

Second case: c`m = p, b = p. Another main term which contributes to Lemma 3.4 comes from c`m= p
and b = p. There are three subcases: (c, `,m)= (p, 1, 1), (1, p, 1), or (1, 1, p). These three cases give
(compare with (6-1))

N1 =−
2P3(1)

L

∑
p≤y1/2

2
(p,q)=1

(log p)P2(log(y1/2
2 /p)/log(y1/2

2 ))

p

∑+

χ(q)

ε(χ)
∑

n

χ(n)
n1/2 V

(
n
q

)
,

N2 =−
2
L

∑
p≤y2

(p,q)=1

(log p)P2[p]P3[p]
p

∑+

χ(q)

ε(χ)
∑

n

χ(n)
n1/2 V

(
n
q

)
,

N3 =
2P3(1)

L

∑
p≤y2

(p,q)=1

(log p)P2[p]
p

∑+

χ(q)

ε(χ)
∑

n

χ(n)
n1/2 V

(
pn
q

)
.

The first two are somewhat easier to handle than the last one. We apply Proposition 4.3 and then argue as
in Section 4 and the c`m = 1 case to obtain∑+

χ(q)

ε(χ)
∑

n

χ(n)
n1/2 V

(
n
q

)
=

1
2ϕ
+(q)+ O(q1−ε).

It follows that

N1 =−

(
θ2

2
P3(1)P̃2(1)+ o(1)

)
ϕ+(q),

N2 =−

(
θ2

∫ 1

0
P2(u)P3(u) du+ o(1)

)
ϕ+(q).

(6-4)

Combining (6-3) and (6-4) gives the main term of Lemma 3.4.
The final term N3 is more difficult because the inner sum now depends on p. However, M3 contributes

only to the error term. By Proposition 4.3 with T = p,∑
n

χ(n)
n1/2 V

(
pn
q

)
= L

( 1
2 , χ

)
−

∑
n

χ(n)
n1/2 F

(
n
p

)
. (6-5)
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The first term on the right side of (6-5) contributes to N3 an amount

(2θ2 P3(1)P̃2(1)+ o(1))ϕ+(q). (6-6)

For the second term on the right side of (6-5) we use character orthogonality and get

−
2P3(1)

L

∑
p≤y2

(p,q)=1

(log p)P2[p]
p

1
2

∑
w|q

ϕ(w)µ(q/w)
∑

n≡±1(w)

1
n1/2 F

(
n
p

)
.

By the rapid decay of F the contribution from n > p11/10, say, is O(q L−1). We next estimate trivially
the contribution from w ≤ q3/5, say. We have the bound∑

n≡±1(w)
n≤p11/10

1
n1/2 F

(
n
p

)
� qε

(
p11/20

w
+ 1

)
,

and this contributes to N3 an amount

� q3/5+ε
+ qε

∑
p≤y2

p−9/20
� q3/5+ε,

since y2� q1/2. For w > q3/5 and n ≤ p11/10 the congruence n ≡±1(w) becomes n = 1. By a contour
shift we have

F
(

1
p

)
= 1+ O(p−1/2).

Thus, the second term on the right side of (6-5) contributes to N3 an amount

−(2θ2 P3(1)P̃2(1)+ o(1))ϕ+(q), (6-7)

and (6-6) and (6-7) together imply N3 is negligible.

Third case: everything else. This case is the contribution from b = p j with j ≥ 2 and c`m | b with
c`m ≥ p. This case contributes an error of size O(q L−1+ε), essentially because the sum∑

pk

k≥2

log(pk)

pk

converges. There are four different subcases to consider, since the Möbius functions attached to c and `
imply c, ` ∈ {1, p}. The same techniques we have already employed allow one to bound the resulting
sums, so we leave the details for the interested reader. This completes the proof of Lemma 3.4.

7. Lemma 3.4: error term

After the results of the previous section, it remains to finish the proof of Lemma 3.4 by showing the
error term of (6-1) is negligible. The argument is very similar to that given in Section 5, and, indeed, the
arguments are identical after a point.
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The error term has the form

E2 =
∑∑
(v,w)=1

µ2(v)
v

ϕ(v)

w1/2

v1/2 9

(
vw

Q

) ∑
`≤y3

(`,vw)=1

µ(`)P3[`]

`1/2

×

∑∑
bc≤y2

(bc,vw)=1

3(b)µ(c)P2[bc]
(bc)1/2

∑∑
(mn,vw)=1

1
(mn)1/2

V
(

mn
vw

)
cos

2πbnc`mv
w

,

where we also have the condition c`m - b, which we do not indicate in the notation. This condition is
awkward, but turns out to be harmless.

We note that we may separate the variables b and c from one another in P2[bc] by linearity, the
additivity of the logarithm, and the binomial theorem. Thus, it suffices to study E1 with P2[bc] replaced
by (log b) j1(log c) j2 , for ji some fixed nonnegative integers. Arguing as in the reduction to (5-3), we may
bound E2 by� Qo(1) instances of E′2 = E′2(B,C, L ,M, N , V,W ), where

E′2=
W 1/2

(BC L M N V )1/2
∑∑
(v,w)=1

α(v)G
(
v

V

)
G
(
w

W

) ∑
`≤y3

(`,vw)=1

β(`)G
(
`

L

) ∑∑
bc≤y2

(bc,vw)=1

γ (b)δ(c)G
(

b
B

)
G
(

c
C

)

×

∑∑
(mn,vw)=1

G
(

m
M

)
G
(

n
N

)
e
(

bnc`mv
w

)
, (7-1)

the function G is smooth as before, and α, β, γ, δ are sequences f satisfying | f (z)| � Qo(1). We also
have the conditions

V W � Q, M N ≤ Q1+ε, BC � y2, L � y3, B,C, L ,M, N , V,W � 1.

By the argument that gave (5-6) we may also assume V ≤ Qε . Lastly, we may remove the condition
bc ≤ y2 by Mellin inversion, at the cost of changing γ and δ by bi t0 and ci t0 , respectively, where t0 ∈ R is
arbitrary (see [Duke et al. 1997, Lemma 9], for instance).

Recall the condition c`m - b. This condition is unnecessary if C L M > 2019 B, so it is only in the
case C L M � B where we need to deal with it. However, the case C L M � B is exceptional, since B is
bounded by y2� Q1/2, but generically we would expect C L M to be much larger than Q1/2.

Indeed, we now show that when C L M � B it suffices to get cancellation from the n variable alone.
The proof is essentially Proposition 5.2, so we just remark upon the differences. By Möbius inversion
and Poisson summation we have∑
(n,vw)=1

G
(

n
N

)
e
(

bnc`mv
w

)
= µ(w)

N
w

ϕ(v)

v

+

∑
d|v

µ(d)
N

dw

∑
|h|≤W 1+εd/N

Ĝ
(

hN
dw

) ∑
(a,w)=1

e
(

abdc`mv
w

+
ah
w

)
+ O(Q−100).
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The first and third terms contribute acceptable amounts, so consider the second term. The sum over a is
the Ramanujan sum cw(hc`mv+ bd), and since c`m does not divide b the argument of the Ramanujan
sum is nonzero. Following the proof of Proposition 5.2, we therefore obtain a bound of

E′2�
Q3/2+ε(BC L M)1/2

N 1/2 . (7-2)

By the reasoning immediately after Proposition 5.2, the bound (7-2) allows us to assume N ≤ M Q−2ε ,
so that N ≤ Q1/2, regardless of whether C L M � B. In the case C L M � B, the bound (7-2) becomes

E′2�
Q3/2+εB

N 1/2 � Q3/2+εB� Q3/2+θ2+ε � Q2−ε,

which of course is acceptable.
At this point we can follow the rest of the proof in Section 5. We change variables bn→ n, and the

rest follows mutatis mutandis (it is important that with N � Q1/2 we have B N � Q1−ε). This completes
the proof of Lemma 3.4.
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