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To the memory of my father

This paper studies universal families of stable genus-2 curves with level structure. Among other things, it
is shown that the (1, 1)-part is spanned by divisor classes, and that there are no cycles of type (2, 2) in the
third cohomology of the first direct image of C under projection to the moduli space of curves. Using this,
it shown that the Hodge and Tate conjectures hold for these varieties.

One of the goals of this article is to extend some results from Shioda’s study [1972] of elliptic modular
surfaces to families of genus-2 curves. We recall that elliptic modular surfaces f : C1,1[n] → M1,1[n]
are the universal families of elliptic curves over modular curves. Among other things, Shioda showed
that C1,1[n] has maximal Picard number in the sense that H 1,1(C1,1[n]) is spanned by divisors. He also
showed that the Mordell–Weil rank is zero. A related property, observed later by Viehweg and Zuo [2004],
is that a certain Arakelov inequality becomes equality. As they observe, this is equivalent to the map

f∗ωC1,1[n]/M1,1[n]→�1
M1,1[n]

(log D)⊗ R1 f∗OC1,1[n]

induced by the Kodaira–Spencer class being an isomorphism. The divisor D is the discriminant of f .
In this paper, we study universal curves f ′ : C2[0] → M2[0] over the moduli space of stable genus-2

curves with generalized level structure. The level 0 is a finite-index subgroup of the mapping class
group 02. The classical level n-structures correspond to the case where 0 is the preimage 0̃(n) of the
principal congruence subgroup 0(n)⊂ Sp4(Z). We fix a suitable nonsingular birational model f : X→ Y
for f ′. Let D ⊂ Y be the discriminant, and U = Y − D. We show that, as before, for a classical level, the
Mordell–Weil rank of Pic0(X)→ Y is zero and H 1,1(X) is spanned by divisors. These results are deduced
from Raghunathan’s vanishing theorem [1967]. We also prove an analogue of Viehweg–Zuo that the map

�1
Y (log D)⊗ f∗ωX/Y →�2

Y (log D)⊗ R1 f∗OX

is an isomorphism. We will see that this implies that there are no cycles of type (2, 2) in the mixed Hodge
structure H 3(U, R1 f∗C). As an application, we deduce that the Hodge conjecture holds for X. We also
show that the Tate conjecture holds for X for a classical level using, in addition, Faltings’ p-adic Hodge
theorem [1988] and Weissauer’s work [1988] on Siegel modular threefolds.
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If X is a complex variety, then unless indicated otherwise, sheaves should be understood as sheaves on
the associated analytic space X an.

1. Hodge theory of semistable maps

We start with some generalities. By a log pair X = (X, E), we mean a smooth variety X together with
a divisor with simple normal crossings E . We usually denote log pairs by the symbols X ,Y, . . . with
corresponding varieties X, Y, . . . . Given X , set

�1
X =�

1
X (log E) and TX = (�

1
X )
∨.

Recall that a semistable map f : (X, E)→ (Y, D) of log pairs is a morphism f : X → Y such that
f −1 D = E and étale locally it is given by

y1 = x1 · · · xr1,
...

yk = xrk−1+1 · · · xrk ,

yk+1 = xrk+1,
...

where y1 · · · yk = 0 and x1 · · · xrk = 0 are local equations for D and E respectively. We will say f is log
étale if it is semistable of relative dimension zero. (This is a bit more restrictive than the usual definition).

Fix a projective semistable map f : (X, E)→ (Y, D). The map restricts to a smooth projective map
f o from Ũ = X − E to U = Y − D. Let

�i
X/Y =�

i
X/Y (log E).

The sheaf Lm
= Rm f o

∗
Q is a local system, which is part of a variation of Hodge structure. Let

V m
= Rm f∗�•X/Y with filtration F induced by the stupid filtration Rm f∗�

≥p
X/Y . It carries an integrable

logarithmic connection
∇ : V m

→�1
Y ⊗ V m

such that ker∇|U = CU ⊗Lm. Griffiths transversality

∇(F p)⊆�1
Y ⊗ F p−1

holds. The relative de Rham to Hodge spectral sequence

E1 = R j f∗�i
X/Y ⇒ Ri+ j f∗�•X/Y

degenerates at E1 by [Illusie 1990, Corollaire 2.6; Fujisawa 1999, Theorem 6.10]. Therefore

Gr p
F V m ∼= Rm−p f∗�

p
X/Y .

The Kodaira–Spencer class
κ :OY →�1

Y ⊗ R1 f∗TX/Y (1)
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is given as the transpose of the map
TY→ R1 f∗TX/Y

induced by the sequence
0→ TX/Y→ TX → f ∗TY→ 0.

Proposition 1.1. The associated graded

Gr(∇) : Rm−p f∗�
p
X/Y→�1

Y ⊗ Rm−p+1 f∗�
p−1
X/Y

coincides with cup product and contraction with κ .

Proof. In the nonlog setting, this is stated in [Katz 1970, Theorem 3.5], and the argument indicated there
extends to the general case. �

By [Arapura 2005], we can give H i (U, R j f∗Q) a mixed Hodge structure by identifying it with the
associated graded of H i+ j (Ũ ,Q) with respect to the Leray filtration. It can also be defined intrinsically
using mixed Hodge module theory, but the first description is more convenient for us. We will need a
more precise description of the Hodge filtration. We define a complex

KX/Y(m, p)= [Rm−p f∗�
p
X/Y

κ
−→�1

Y ⊗ Rm−p+1 f∗�
p−1
X/Y

κ
−→�2

Y ⊗ Rm−p+2 f∗�
p−2
X/Y · · · ].

Proposition 1.2. Gr p
F H i (U, R j f∗C)∼= H i (KX/Y( j, p)).

Proof. (Compare with [Zucker 1979, 2.16].) Define a filtration

L i�•X = im f ∗�i
Y ⊗�

•

X .

Then
Gri

L �
•

X = f ∗�i
Y ⊗�

•

X/Y [−i]

from which we deduce that
Gri

L R f∗�•X ∼=�
i
Y ⊗ R f∗�•X/Y [−i]. (2)

Therefore, we obtain a spectral sequence

L E i, j
1 =Hi+ j (Gri

L R f∗�•X )∼=�
i
Y ⊗ R j f∗�•X/Y =�

i
Y ⊗ V j

⇒ Ri+ j f∗�•X

Recall that to L we can associate a new filtration Dec(L) [Deligne 1971] such that

Dec(L)E
i, j
0
∼= L E2i+ j,−i

1 .

Therefore we obtain a quasiisomorphism

Gri
Dec(L) R f∗�•X −→∼ �•Y ⊗ V−i

[i]. (3)

This becomes a map of filtered complexes with respect to the filtration induced by Hodge filtration
F p
=�

≥p
X . On the right of (3), it becomes

F p�•Y ⊗ V−i
= F pV−i

→�1
Y ⊗ F p−1V−i

→ · · · .
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The relative de Rham to Hodge spectral sequence

F E1 = R j f∗�i
X ⇒ Ri+ j f∗�•X/Y

degenerates at E1 [Illusie 1990, Corollaire 2.6; Fujisawa 1999, Theorem 6.10]. Therefore by [Deligne
1971, 1.3.15], we can conclude that (3) is a filtered quasiisomorphism.

The spectral sequence associated to the filtration induced by Dec(L) on R0(R f∗�•X )

Dec(L)E
i, j
1 = H 2i+ j (Y, �•Y ⊗ V−i )= H 2i+ j (U, R−i f∗C)

coincides with Leray after reindexing. Therefore this degenerates at the first page by [Deligne 1968]. The
above arguments plus [Deligne 1971, 1.3.17] show that F-filtration on the H 2i+ j (Y, �•Y⊗V−i ) coincides
with the filtration on Dec(L)E∞, which is the Hodge filtration on H 2i+ j (U, R−i f∗C). The proposition
follows immediately from this. �

One limitation of the notion of semistability is that it is not stable under base change. In order to handle
this, we need to work in the broader setting of log schemes [Kato 1989]. We recall that a log scheme
consists of a scheme X and a sheaf of monoids M on Xét together with a multiplicative homomorphism
α : M→OX such that α induces an isomorphism α−1(O∗X )∼=O∗X . A log pair (X, E) gives rise to a log
scheme where M is the sheaf of functions invertible outside of E . If f : (X, E)→ (Y, D) is semistable,
and π : (Y ′, D′)→ (Y, D) is log étale in our sense, then X ′ = X ×Y Y ′ can be given the log structure
pulled back from Y ′. Then X ′→ Y ′ becomes a morphism X ′→ Y ′ of log schemes, which is log smooth
and exact. Logarithmic differentials can be defined for log schemes [Kato 1989], so the complexes
KX ′/Y ′(m, p) can be constructed exactly as above. Since π is log étale, we easily obtain:

Lemma 1.3. With the above notation, π∗KX/Y(m, p)∼= KX ′/Y ′(m, p).

Let us spell things out for curves. Suppose that f : X → Y is semistable with relative dimension 1.
From

0→�1
Y→�1

X →�1
X/Y→ 0

we get an isomorphism
�1

X/Y = det�1
X ⊗ (det�1

Y)
−1 ∼= ωX/Y .

The complex KX/Y(1, i) satisfies

KX/Y(1, i)= [�i−1
Y ⊗ f∗ωX/Y →�i

Y ⊗ R1 f∗OX ],

where the first term sits in degree i − 1. We note that this complex, which we now denote by K X/Y (1, i),
can be defined when X/Y is a semistable curve in the usual sense (a proper flat map of relative dimension 1
with reduced connected nodal geometric fibres). In general, any such curve carries a natural log structure
[Kato 2000], and the differential of this complex can be interpreted as a cup product with the associated
Kodaira–Spencer class. Consequently, given a map π : X ′→ X of curves over Y, we get an induced map
of complexes π∗ : K X/Y (1, i)→ K X ′/Y ′(1, i). Finally, we note that these constructions can be extended
to Deligne–Mumford stacks, such as the moduli stack of stable curves Mg, without difficulty.
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2. Consequences of Raghunathan’s vanishing

Let Mg be the moduli space of smooth projective curves of genus g, let Mg,n be the moduli space of
smooth genus-g curves with n marked points, and let A2 be the moduli space of principally polarized
g-dimensional abelian varieties. The symbols Mg,Ag etc. will be reserved for the corresponding moduli
stacks. We note that dim M2 = 3. The Torelli map τ : M2→ A2 is injective and the image of M2 is the
complement of the divisor parametrizing products of two elliptic curves. As an analytic space, Man

2 is
a quotient of the Teichmüller space T2 by the mapping class group 02. Given a finite-index subgroup
0 ⊂ 02, let M2[0] = T2/0. We view this as the moduli space of curves with generalized level structure.
When 0= 0̃(n) is the preimage of the principal congruence subgroup 0(n)⊆ Sp4(Z) under the canonical
map 02→ Sp4(Z), the space M2[n] := M2[0̃(n)] is the moduli space of curves with classical (or abelian
or Jacobi) level n-structure. It is smooth and fine as soon as n ≥ 3, and defined over the cyclotomic field
Q(e2π i/n). More generally M2[0] is smooth, and defined over a number field, as soon as 0 ⊆ 0̃(n) with
n ≥ 3. We refer to 0 as fine, when the last condition holds. Torelli extends to a map M2[n] → A2[n] to
the moduli space of abelian varieties with level n-structure.

Let M2 denote the Deligne–Mumford compactification of M2. The boundary divisor 1 consists of a
union of two components 10 ∪11. The generic point of 10 corresponds to an irreducible curve with a
single node, and the generic point of11 corresponds to a union of two elliptic curves meeting transversally.
Let π : M2[0] → M2 denote the normalization of M2 in the function field of M2[0]. When 0 = 0̃(n),
we denote this by M2[n]. On the other side A2[n] has a unique smooth toroidal compactification, first
constructed by Igusa, and τ extends to an isomorphism between M2[n] and the Igusa compactification
[Namikawa 1980, §9]. The space M2[0] is smooth, when 0 = 0̃(n), n ≥ 3, and in some other cases
[Pikaart and de Jong 1995]. Suppose that n≥3. The boundary D=M2[n]−M2[n] is a divisor with normal
crossings. Let Di = π

−11i . Since D1 parametrizes unordered pairs of (generalized) elliptic curves with
level structure, its irreducible components are isomorphic to symmetric products M1,1[n] ×M1,1[n]/S2

of the modular curve of full level n. Let C1,m[n]/M1,m[n] denote the pullback of the universal elliptic
curve under the canonical map M1,m[n] →M1,m . The components of D0 are birational to the elliptic
modular surfaces C1,1[n] [Oda and Schwermer 1990, §1.4].

Given a fine level structure 0, let C2[0] → M2[0] be the pullback of the universal curve from M2.
The space C2[0] will be singular [Boggi and Pikaart 2000, Proposition 1.4], so we will replace it with a
suitable birational model f : X→ Y whose construction we now explain. If 0 = 0̃[n], we set Y = M2[n].
As noted above, Y is smooth. For other 0’s, we choose a desingularization Y → M2[0] which is an
isomorphism over M2[0] and such that boundary divisor D has simple normal crossings. We have a
morphism Y →M2 to the moduli stack, which is log étale. It follows in particular that �1

M2
(log1) pulls

back to �1
Y (log D). The space Y will carry a stable curve X ′→ Y obtained by pulling back the universal

family over M2. The space X ′ will be singular, however:

Lemma 2.1. (a) X ′ will have rational singularities.

(b) There exists a desingularization π : X→ X ′ such that X→ Y is semistable.
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(c) The map π : X→ X ′ can be chosen so as to have the following additional property. After extending
scalars to Q, let E be a component of an exceptional divisor of π . Then:

(i) If π(E) is a point, E is a rational variety.
(ii) If π(E)= C is a curve, there is a map E→ C such that the pullback under a finite map C̃→ C

is birational to P2
× C̃.

(iii) If π(E) is a surface, there is a map E→ Di , for some i , such that the pullback of E to an étale
cover D̃i → Di is birational to P1

× D̃i .
(iv) If dimπ(E)= 3, then E→ π(E) is birational.

(d) K X/Y (1, i)∼= K X ′/Y (1, i).

Proof. The singularities of X ′ are analytically of the form xy = ta
1 tb

2 tc
3 . These are toroidal singularities, in

the sense that is local analytically, or étale locally, isomorphic to a toric variety. (This is a bit weaker
than the notion of toroidal embedding in [Kempf et al. 1973], but it is sufficient for our needs.) Such
singularities are well known to be rational; see [Kempf et al. 1973; Viehweg 1977]. Item (b) follows from
[de Jong 1996, Proposition 3.6].

To prove (c), we need to recall some details of the construction of X from [de Jong 1996]. First, as
explained in the proof of [loc. cit., Lemma 3.2], one blows up a codimension-2 component T ⊂ X ′sing.
The locus T is an étale cover of some component Di . Furthermore, from the description in [loc. cit.] we
can see that T is compatible with the toroidal structure. Consequently, we can find a toric variety V with
torus fixed point 0, and an étale local isomorphism between X ′ and V × T, over the generic point of T,
which takes T to {0}× T. This shows that, over the generic point, the exceptional divisor E to T is étale
locally a product of T with a toric curve. So we get case (iii). Note that this step is repeated until the
X ′sing has codimension at least 3. One does further blow ups to obtain X. An examination of the proof of
[loc. cit., Proposition 3.6] shows that the required blow ups are also compatible with the toroidal structure
in the previous sense. If the centre of the blow up is a point, then the exceptional divisor is toric and we
have case (i). If the centre is a smooth curve C , we obtain case (ii). The last item (iv) is automatic for
blow ups.

By the remarks at the end of the last section, there is a commutative diagram marked with solid arrows

�i−1
Y ⊗ f∗ωX/Y //

π∗

��

�i
Y ⊗ R1 f∗OX

π∗

��

�i−1
Y ⊗ f∗ωX ′/Y //

π∗

OO

�i
Y ⊗ R1 f∗OX ′

π∗

OO

Since X ′ has rational singularities, the dotted arrows labelled with π∗ are isomorphisms, and these are
left inverse to the arrows labelled with π∗. Therefore π∗ are also isomorphisms, and this proves (d). �

We refer to f : X → Y constructed in Lemma 2.1 as a good model of C2[0] → M2[0]. We let
U = Y − D, E = f −1 D, and Ũ = X − E as above.
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Corollary 2.2. After extending scalars to Q, let E1 be an irreducible component of E for a classical fine
level 0̃(n). Then there exists a dominant rational map Ẽ1 99K E1, where Ẽ1 is one of

(1) C1,1[n]×M1,1[n],

(2) C1,2[n],

(3) C1,1[m]×P1 for some n |m,

(4) M1,1[m]×M1,1[m]×P1 for some n |m,

(5) a product of P2 with a curve,

(6) P3.

Proof. The preimage of D1 in C2[n] parametrizes a union of pairs of (generalized) elliptic curves with
level structure together with a point on the union. It follows that a component of E dominating D1 is
dominated by C1,1[n]×M1,1[n]. The preimage of D0 in C2[n] is a family of nodal curves over D0; its
normalization is C1,2[n]. Therefore a component of E dominating D0 is birational to C1,2[n]. Case (3)
follows from Lemma 2.1(ciii) once we observe that an étale cover of C1,1[n] is dominated by C1,1[m]
for some n |m. This is because we have a surjection of étale fundamental groups

π ét
1 (M1,1[n])∼= π ét

1 (C1,1[n])→ π ét
1 (C1,1[n])

[Cox and Zucker 1979, Theorem 1.36], and {M1,1[m]}n |m is cofinal in the set of étale covers of M1,1[n].
Case (4) is similar. The remaining cases follow immediately from the lemma. �

Proposition 2.3. When 0 = 0̃(n), with n ≥ 3, H 1(U, R1 f∗C)= 0.

Proof. As explained above, Y = M2[n] = A2[n] and U = A2[n] − Do
1 , where Do

1 = D1 − D0. Let
g : Pic0(X/Y )→ Y denote the relative Picard scheme. Then R1 f∗C = R1g∗C|U . We have an exact
sequence

H 1(A2[n], R1g∗C)→ H 1(U, R1 f∗C)→ H 0(Do
1, R1g∗C).

The group on the left vanishes by Raghunathan [1967, p. 423, Corollary 1]. The local system R1g∗C|Do
1

decomposes into a sum of two copies of the standard representation of the congruence group0(n)⊂SL2(Z).
Therefore it has no invariants. Consequently, H 1(U, R1 f∗C)= 0 as claimed. �

Lemma 2.4. Let η denote the generic point of Y. Then we have an exact sequence

0→ Pic(U ) s
−→ Pic(Ũ ) r

−→ Pic(Xη)→ 0,

where r and s are the natural maps.

Proof. Consider the diagram

1 // C(U )∗ //

div
��

C(U )∗⊕C(Ũ )∗ //

div+div
��

C(Ũ )∗ //

div
��

1

0 // Div(U ) s′
// Div(Ũ ) r ′

// Div(Xη) // 0



218 Donu Arapura

The map r ′ is surjective because any codimension-1 point of Xη is the restriction of its scheme-theoretic
closure. A straightforward argument also shows that s ′ is injective and ker r ′ = im s ′. The lemma now
follows from the snake lemma. �

Lemma 2.5. The first Chern class map induces injections

Pic(Ũ )/Pic0(X)⊗Q ↪→ H 2(Ũ ,Q), (4)

Pic(U )/Pic0(Y )⊗Q ↪→ H 2(U,Q). (5)

Proof. To prove (4), we observe that there is a commutative diagram with exact lines

Pic(Ũ )/Pic0(X)⊗Q

��

Pic(Ũ )⊗Q
c1

//

66

H 2(Ũ ,Q)

Pic0(X)⊗Q

77

// Pic(X)⊗Q
c1

//

OOOO

H 2(X,Q)

OOOO

⊕
QEi

OO

⊕
Q[Ei ]

OO

The existence and injectivity of the dotted arrow follows from this diagram. Existence and injectivity of
the map of (5) is proved similarly. �

We refer to the group of C(Y ) rational points of Pic0(Xη) as the Mordell–Weil group of X/Y.

Theorem 2.6. Let f : X→ Y be a good model of C2[n] → M2[n], where n ≥ 3:

(a) The space H 1,1(X) is spanned by divisors.

(b) The rank of the Mordell–Weil group of X/Y is zero.

Proof. We have an sequence ⊕
Q[Ei ] → H 2(X)→ GrW

2 H 2(Ũ )→ 0

of mixed Hodge structures. So for (a), it suffices to show that the (1, 1)-part of rightmost Hodge structure
is spanned by divisors. The Leray spectral sequence together with Proposition 2.3 gives an exact sequence

0→ H 2(U, f∗Q)→ H 2(Ũ )→ H 0(U, R2 f∗Q)→ 0

of mixed Hodge structures. Therefore, we get an exact sequence

0→ GrW
2 H 2(U, f∗Q)→ GrW

2 H 2(Ũ )→ GrW
2 H 0(U, R2 f∗Q)→ 0.
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The space on the right is 1-dimensional and spanned by the class of any horizontal divisor. We can
identify

GrW
2 H 2(U, f∗Q)= GrW

2 H 2(U,Q)

with a quotient of H 2(Y ). Weissauer [1988, p. 101] showed that H 1,1(Y ) is spanned by divisors. This
proves (a).

By Lemma 2.4, we have isomorphisms

Pic(Xη)⊗Q∼=
Pic(Ũ )
Pic(U )

⊗Q∼=
Pic(Ũ )/Pic0(X)

Pic(U )/Pic0(Y )
⊗Q

and, by Lemma 2.5, the last group embeds into H 2(Ũ ,Q)/H 2(U,Q). Therefore, Pic0(Xη)⊗Q embeds
into

ker[H 2(Ũ ,Q)→ H 2(X t ,Q)]

H 2(U,Q)
∼= H 1(U, R1 f∗Q)= 0,

where t ∈U. For the first isomorphism, we use the fact the Leray spectral sequence over U degenerates
by [Deligne 1968]; the second is Proposition 2.3. �

3. Key vanishing

Let us fix a fine level structure 0 ⊆ 02. We do not assume that it is classical. Choose a good model
f : X → Y for C2[0] → M2[0], with U, E, Ũ as above. Our goal in this section is to establish the
vanishing of Gr2

F H 3(U, R1 f∗C). This is the key fact which, when combined with Lemma 4.3 proved
later on, will allow us to prove the Hodge conjecture for X.

Theorem 3.1. K X/Y (1, 2) is quasiisomorphic to 0.

Proof. The moduli stack M2 is smooth and proper, the boundary divisor has normal crossings, and the
universal curve is semistable. So we can define an analogue of K (1, 2) on it. Since the canonical map
Y →M2 is log étale, K X/Y (1, 2) is the pullback of the corresponding complex on the moduli stack. So
we replace Y by M2 and X by the universal curve M2,1.

Set
H = f∗ωX/Y .

By duality, we have an isomorphism
H ∼= R1 f∗O∨X .

Thus the Kodaira–Spencer map
H →�1

Y ⊗ H∨

induces an adjoint map
(H)⊗2

→�1
Y .

This factors through the symmetric power to yield a map

S2 H →�1
Y . (6)
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After identifying M2 ∼= A2, and Pic0(X/Y ) with the universal semiabelian variety, we see that (6) is an
isomorphism by [Faltings and Chai 1990, Chapter IV, Theorem 5.7].

With the above notation K (1, 2) can be written as

�1
Y ⊗ H →�2

Y ⊗ H∨.

We need to show that the map in this complex is an isomorphism. It is enough to prove that the map is
surjective, because both sides are locally free of the same rank. To do this, it suffices to prove that the
adjoint map

κ ′ :�1
Y ⊗ (H)

⊗2
→�2

Y

is surjective. Let κ ′′ denote the restriction of κ ′ to �1
Y ⊗ S2 H. We can see that we have a commutative

diagram

�1
Y ⊗ S2 H κ ′′

//

∼=

��

�2
Y

=

��

�1
Y ⊗�

1
Y

∧
// �2

Y

This implies that κ ′′, and therefore κ ′, is surjective. �

From Proposition 1.2, we obtain:

Corollary 3.2. Gr2
F H∗(U, R1 f∗C)= 0.

Remark 3.3. The referee has pointed out that for a classical level, a short alternative proof of the corollary
can be deduced using Faltings’ BGG resolution as follows. It suffices to prove Gr2

F H∗(A2[0], R1 f ′
∗
C)=0,

where f ′ is the universal abelian variety, because the restriction map to Gr2
F H∗(U, R1 f∗C) can be seen

to be surjective. By [Faltings and Chai 1990, Chapter VI, Theorem 5.5] (see also [Petersen 2015,
Theorem 2.4] for a more explicit statement) Gra

F H∗(A2[0], R1 f∗C) is zero unless a ∈ {0, 1, 3, 4}.

4. Hodge and Tate

Given a smooth projective variety X defined over C, a Hodge cycle of degree 2p is an element of
HomHS(Q(−p), H 2p(X,Q)), and given a smooth projective variety X defined over a finitely generated
field K , an `-adic Tate cycle of degree 2p is an element of

∑
H 2p

ét (X ⊗ K ,Q`(p))Gal(K/L) as L/K runs
over finite extensions. The image of the cycle maps from C H p(X)⊗Q or C H p(X ⊗ K )⊗Q` lands in
these spaces. We say that the Hodge or Tate conjecture holds for X (in a given degree) if the space of
Hodge or Tate cycles (of the given degree) are spanned by algebraic cycles. Here is the main result of the
paper:

Theorem 4.1. Let f : X→ Y be a good model of C2[0] → M2[0], where 0 ⊆ 02 is a fine level:

(A) The Hodge conjecture holds for X.
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(B) When 0 = 0̃(n) is a classical level, the Tate conjecture holds for X.

We deduce this with the help of the following lemmas.

Lemma 4.2. Let X1 and X2 be smooth projective varieties defined over a finitely generated field:

(1) If X1 and X2 are birational, then the Tate conjecture holds in degree 2 for X1 if and only if it holds
for X2.

(2) If the Tate conjecture holds in degree 2 for X1 and there is a dominant rational map X1 99K X2, then
the Tate conjecture holds in degree 2 for X2; if the Tate conjecture holds in degree 2d for X1 and
there is a surjective regular map X1 99K X2, then the Tate conjecture holds in degree 2d for X2.

(3) If the Tate conjecture holds in degree 2 for X i , then the Tate conjecture holds in degree 2 for X1×X2.

Proof. See [Tate 1994, Theorem 5.2]. �

Lemma 4.3. Let f : (X, E)→ (Y, D) be a semistable map of smooth projective varieties with dim Y = 3
and dim X = 4. Suppose that

Gr2
F H 3(U, R1 f∗C)= 0,

where U = Y − D. Then the Hodge conjecture holds for X.

Proof. Also let Ũ = X − E . Since X is a fourfold, it is enough to prove that Hodge cycles in H 4(X) are
algebraic. The other cases follow from the Lefschetz (1, 1) and hard Lefschetz theorems. Using the main
theorems of [Deligne 1968; Arapura 2005], and the semisimplicity of the category of polarizable Hodge
structures, we have a noncanonical isomorphism of Hodge structures

GrW
4 H 4(Ũ )∼= GrW

4 H 4(U, f∗Q)︸ ︷︷ ︸
I

⊕GrW
4 H 3(U, R1 f∗Q)︸ ︷︷ ︸

II

⊕GrW
4 H 2(U, R2 f∗Q)︸ ︷︷ ︸

III

. (7)

The first summand I can be identified with

im[H 4(Y )→ H 4(U )] ∼=
H 4(Y )∑

im H 2(Di )(−1)
∼= L

(
H 2(Y )∑

L−1 im H 2(Di )(−1)

)
,

where L is the Lefschetz operator with respect to an ample divisor on Y. The Lefschetz (1, 1) theorem
shows that the Hodge cycles in I are algebraic.

We have an isomorphism QU ∼= R2 f o
∗

Q, under which 1∈ H 0(U,Q) maps to the class of a multisection
[σ ] ∈ H 0(U, R2 f o

∗
Q). Thus the summand III can be identified with

[σ ] ∪ im[H 2(Y )→ H 2(U )] ∼=
[σ ] ∪ H 2(Y )∑
[σ ] ∪ [Di ]

.

It follows again, by the Lefschetz (1, 1) theorem, that any Hodge cycle in the summand III is al-
gebraic. This is also vacuously true for II because, by assumption, there are no Hodge cycles in
GrW

4 H 3(U, R1 f∗Q).
From the sequence ⊕

H 2(Ei )(−1)→ H 4(X)→ GrW
4 H 4(Ũ )→ 0
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we deduce that

H 4(X)∼=
⊕

im H 2(Ei )(−1)⊕GrW
4 H 4(Ũ ) (noncanonically).

Therefore all the Hodge cycles in H 4(X) are algebraic. �

Lemma 4.4. Let f : (X, E)→ (Y, D) be a semistable map of smooth projective varieties defined over a
finitely generated subfield K ⊂ C with dim Y = 3 and dim X = 4. Let U = Y − D. Suppose that

Gr2
F H 3(U, R1 f∗C)= 0,

that H 1,1(Y ) is spanned by algebraic cycles, and that the Tate conjecture holds in degree 2 for the
components Ei of E. Then the Tate conjecture holds for X in degree 4.

Proof. By the Hodge index theorem

〈α, β〉 = ± tr(α ∪β)

gives a positive definite pairing on the primitive part of H 4(X), and this can be extended to the whole of
H 4 by hard Lefschetz. Let

SB =
∑

im H 2(Ei (C),C)(1)⊆ H 4(X (C),C)(2),

SHdg =
∑

im H 1(Ei , �
1
Ei
)⊆ H 2(X, �2

X ),

S` =
∑

im H 2
ét(Ei ⊗ K ,Q`(1))⊆ H 4

ét(X ⊗ K ,Q`(2)),

where the images above are with respect to the Gysin maps. Set

VB = H 4(X (C),C)(2)/SB,

VHdg = H 2(X, �2
X )/SHdg,

V` = H 4
ét(X ⊗ K ,Q`(2))/S`.

Observe that VB is a Hodge structure and V` is a Galois module. Let us say that a class in any one of
these spaces is algebraic if it lifts to an algebraic cycle in H 4(X) or H 2(X, �2

X ). Let us write

Tate(−)=
∑

[L:K ]<∞

(−)Gal(K/L),

where (−) can stand for V` or any other Galois module. Clearly

dim(space of algebraic classes in V`)≤ dim Tate(V`). (8)

We also claim that

dim Tate(V`)≤ dim VHdg. (9)

This will follow from the Hodge–Tate decomposition. After passing to a finite extension, we can
assume that all elements of Tate(H 4(X,Q`(2))) and Tate(V`) are fixed by Gal(K/K ). Let K` denote
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the completion of K at a prime lying over `, and let C` = K̂ `. By [Faltings 1988] there is a Hodge–Tate
decomposition, i.e., a functorial isomorphism of Gal(K `/K`)-modules

H 4
ét(X ⊗ K ,Q`(2))⊗Q`

C` ∼=
⊕

a+b=4

Ha(X, �b
X )⊗K C`(2− b).

This is compatible with products, Poincaré/Serre duality, and cycle maps. Since we can decompose
H 4

ét(X ⊗ K ,Q`(2))= S`⊕ S⊥` as an orthogonal direct sum, and this is a decomposition of Gal(K/K )-
modules, an element of γ ∈ Tate(V`) can be lifted to γ1 ∈ Tate(H 4

ét(X ⊗ K ,Q`(2))). This gives a
Gal(K `/K`)-invariant element of H 4

ét(X⊗K ,Q`(2))⊗C`, and thus an element of γ2 ∈ H 2(X, �2
X )⊗K`.

Let γ3 ∈ VHdg ⊗ K` denote the image. One can check that γ 7→ γ3 is a well-defined injection of
Tate(V`)⊗ K`→ VHdg⊗ K`. This proves that (9) holds.

As in the proof of Lemma 4.3, we can split VB(−2) as

VB(−2)= I ⊕ II ⊕ III,

where the summands are defined as in (7). Arguing as above, but with the stronger assumption that H 1,1(Y )
is algebraic, we can see that the (not necessarily rational) (2, 2)-classes in I and III are algebraic, and
that II has no such classes. Therefore VHdg is spanned by algebraic classes. Combined with inequalities
(8) and (9), we find that every element of Tate(V`) is an algebraic class. Therefore given a Tate cycle
γ ∈ Tate(H 4

ét(X ⊗ K ,Q`(2))), there is an algebraic cycle γ ′ so that γ − γ ′ ∈ S`. This means that γ − γ ′

is the sum of images of Tate cycles in H 2(Ei ). By assumption, this is again algebraic. �

Lemma 4.5. Let X be a smooth projective variety defined over a finitely generated subfield K ⊂ C. If
H 1,1(X) is spanned by divisors, the Tate conjecture holds for X in degree 2.

Proof. This is similar to the previous proof. We have inequalities

rank NS(X)≤ dim Tate(H 2
ét(X ⊗ K ,Q`(1)))≤ h1,1(X),

where the second follows from Hodge–Tate. Since H 1,1(X) is spanned by divisors, we must have equality
above. �

Proof of Theorem 4.1. The statement (A) about the Hodge conjecture follows immediately from
Corollary 3.2 and Lemma 4.3.

We now turn to part (B) on the Tate conjecture. We break the analysis into cases. Tate in degree 2
follows from Theorem 2.6 and Lemma 4.5. Hard Lefschetz then implies Tate in degree 6. In degree 4,
by Lemmas 4.2 and 4.4, it is enough to verify that H 1,1(Y ) is spanned by divisors and that the Tate
conjecture holds in degree 2 for varieties rationally dominating components of the divisor E . The first
condition for Y is due to [Weissauer 1988, p. 101]. By Corollary 2.2, irreducible components of E are
dominated by C1,1[n]×M1,1[n], C1,2[n], C1,1[m]×P1, M1,1[m]×M1,1[m], P2 times a curve, or P3.
The Tate conjecture in degree 2 is trivially true for the last two cases. The Tate conjecture in degree 2 for
the other cases follows from [Gordon 1993, Theorem 5] and Lemma 4.2. �
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Part (B) of the previous theorem can be extended slightly. Suppose that 0 ⊆ 02 is the preimage of
a finite-index subgroup of Sp4(Z) such that M2[0] is smooth. With this assumption, we may choose a
good model X→ Y of C2[0] → M2[0], with Y = M2[0].

Corollary 4.6. The Tate conjecture holds for X as above.

Proof. We first note that 0 contains some 0̃(n), because the congruence subgroup problem has a positive
solution for Sp4(Z) [Bass et al. 1967]. Therefore the good model X [n] for 0̃(n) surjects onto X. Since
we know that Tate holds for X [n], it holds for X by Lemma 4.2. �
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