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The elliptic KZB connection and algebraic de Rham
theory for unipotent fundamental groups of elliptic

curves
Ma Luo

We develop an algebraic de Rham theory for unipotent fundamental groups of once punctured elliptic
curves over a field of characteristic zero using the universal elliptic KZB connection of Calaque, Enriquez
and Etingof (2009) and Levin and Racinet (2007). We use it to give an explicit version of Tannaka duality
for unipotent connections over an elliptic curve with a regular singular point at the identity.
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Introduction

A once punctured elliptic curve is an elliptic curve with its identity removed. In this paper, we describe an
algebraic de Rham theory for unipotent fundamental groups of once punctured elliptic curves by explicit
computations.

The analytic version of this story is described by Calaque, Enriquez and Etingof [Calaque et al. 2009]
and by Levin and Racinet [2007]. For a family X → T where each fiber X t over t ∈ T is a once punctured
elliptic curve,

X t ⊂ X

t ∈ T

there is a vector bundle P of prounipotent groups over X , endowed with a flat connection. For a point
x ∈X that lies over t , i.e., x ∈ X t , the fiber of P over x is the unipotent fundamental group πun

1 (X t , x).
We are particularly interested in the case when X = E ′ and T =M1,1. In this case, the flat connection is
called the universal elliptic KZB1 connection.2 The bundle P extends naturally by Deligne’s canonical
extension P to E , and the universal elliptic KZB connection on P has regular singularities around boundary
divisors: the identity section of the universal elliptic curve E →M1,1 and the nodal cubic. One can
restrict the bundle P to a single fiber of E ′→M1,1, i.e., a once punctured elliptic curve E ′ := E \ {id},
and obtain Deligne’s canonical extension P of it to E . It is endowed with a unipotent connection on E ,
having regular singularity at the identity. We call this the elliptic KZB connection on E .

Working algebraically, Levin and Racinet have shown that there is a K-structure on the bundle P over
a punctured elliptic curve X defined over a field K of characteristic zero, and a Q-structure for the bundle
P over M1,2/Q. However, their algebraic formulas for the (universal) elliptic KZB connection is neither
explicit nor having regular singularity at the identity (section). By resolving these issues for the case of
M1,2, we will prove:

Theorem. There is an explicit Q-de Rham structure PdR on the bundle P over M1,2 with the universal
elliptic KZB connection, which has regular singularities along boundary divisors, the identity section and
the nodal cubic.

Restricting to a single elliptic curve, we get:

Corollary. If E is an elliptic curve defined over a field K of characteristic zero, then there is an explicit
K-de Rham structure PdR on the bundle P over E with an elliptic KZB connection, which has regular
singularity at the identity.

1Named after physicists Knizhnik, Zamoldchikov and Bernard.
2The general universal elliptic KZB connection is the flat connection on the bundle P over M1,n+1 whose fiber over

[E; 0, x1, . . . , xn] is the unipotent fundamental group of the configuration space of n points on E ′ with base point (x1, . . . , xn).
Calaque et al. [2009] write down the universal elliptic KZB connection for all n ≥ 1.
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It is well known that these de Rham structures exist and can be constructed via Tannaka duality. But
the explicit nature allows us to compute the image of these de Rham structures on the complexification of
the Betti ones.

In the classical case of P1
\ {0, 1,∞}, there is a trivial vector bundle P on it with fiber C〈〈e0, e1〉〉,

formal power series in noncommuting generators e0, e1, and with the KZ connection

∇ = d −
dz
z

e0+
dz

1− z
e1,

where e0, e1 act on the fiber by left multiplication. This bundle extends via Deligne’s canonical extension
to a trivial bundle P over P1 with the same connection having regular singularities at 0, 1,∞. One can
view this bundle as a universal object of the tannakian category

CQ :=

{
unipotent vector bundles V over P1 defined over Q with a flat connection ∇

that has regular singularities at 0, 1,∞ with nilpotent residue

}
,

and interpret the KZ connection as a universal unipotent connection on P1
/Q. Moreover, classical

polylogarithms

Lik(z) :=
∑
n>0

zn

nk , k ≥ 1

and their generalizations

Lik1,...,kr (z) :=
∑

n1>···>nr>0

zn1

nk1
1 · · · n

kr
r
, r > 0, ki > 0,

interpreted [Beilinson and Deligne 1994] as periods of unipotent variations of mixed Hodge structures
on P1

− {0, 1,∞}, can be expressed as (regularized) iterated integrals of algebraic 1-forms dz/z and
dz/(1− z) that appear in the KZ connection.

It is important to note from [Deligne 1989, Section 12] that in the “good” case when a smooth variety
X is defined over a field K, and its compactification X satisfies the conditions of

H 0(X ,O)= K and H 1(X ,O)= 0,

Deligne’s canonical extension to X of a unipotent vector bundle V over X , V , is a trivial bundle. Clearly
this works for X =P1

\{0, 1,∞}, and allows one to define a global fiber functor on the tannakian category
CQ of unipotent connections over P1

/Q with regular singularities at 0, 1,∞. However, this does not work
for punctured elliptic curves.

The tricky part in our elliptic case is that Deligne’s canonical extension of PdR, PdR, is not a trivial
bundle as the corresponding monodromy representation fails a Hodge theoretic restriction (see [Hain
1986]). We trivialize the bundle PdR on two open subsets of the (universal) elliptic curve, and write down
algebraic connection formulas according to these trivializations, with suitable gauge transformation on
their intersection. These two opens are E ′ and E ′′ (correspondingly, E ′ and E ′′ for the universal elliptic
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curve E), where E ′′, containing the identity, is the complement of three nontrivial 2-torsion points of E
(the trivial one being the identity).

For a single elliptic curve E/K, this bundle PdR is a universal object of the tannakian category

CdR
K :=

{
unipotent vector bundles V over E defined over K with a flat connection ∇

that has regular singularity at the identity with nilpotent residue

}
.

This allows us to compute the tannakian fundamental group π1(CdR
K , ω) of this category, where the fiber

functor ω is the fiber over a K-rational point of E . It is a free pronilpotent group of rank 2 defined over K.
This tannakian formalism implies that the elliptic KZB connection that we have computed explicitly on
the algebraic vector bundle PdR can be viewed as a universal unipotent connection over E/K. Similar
results have been recently obtained by Enriquez and Etingof [2018] for the configuration space of n points
in an elliptic curve E with ground field C.

The elliptic KZB connection enables us to construct closed3 iterated integrals of algebraic 1-forms of
any lengths on E , so that one can compute the (regularized) periods of πun

1 (E
′, Ev), where Ev is a tangential

base point at the identity. This leads naturally to elliptic polylogarithms [Beilinson and Levin 1994;
Brown and Levin 2011; Levin and Racinet 2007]. Note that it is not known in general how to construct
closed iterated integrals of algebraic 1-forms of lengths 3 or more. In Section 7A, we show that the naive
elliptic analogue of the KZ connection

∇ = d −
xdx

y
T+

dx
y
S,

which we call the naive connection, is somewhat different than the elliptic KZB connection, see
Proposition 7.2 for the precise statement. However, one can show that the elliptic KZB connection
on E is algebraically gauge equivalent to the naive connection up to degree 5, see Remark 7.3. Therefore,
periods constructed from both connections, as iterated integrals of algebraic 1-forms of lengths at most 5,
are the same.

Part I. Background

1. Moduli spaces of elliptic curves

Here we quickly review the construction of moduli spaces of elliptic curves and their Deligne–Mumford
compactifications. Full details can be found in [Katz and Mazur 1985; Hain 2011], or the first section of
[Hain 2013].

1A. Moduli spaces as algebraic stacks. Denote the moduli stack over Q of elliptic curves with n marked
points and r nonzero tangent vectors by M1,n+Er . The Deligne–Mumford compactification of M1,n will
be denoted by M1,n .

3i.e., homotopy invariant.
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One can view M1,n+1 as the stack quotient of M1,n+E1 by the Gm-action

λ : [E; x1, . . . , xn;ω] 7→ [E; x1, . . . , xn; λω],

where a moduli point [E; x1, . . . , xn;ω] ∈M1,n+E1 is represented by tuples

(E; x1, . . . , xn;ω),

an elliptic curve E with n marked points and the differential form ω that is dual to the marked tangent
vector.

For example, the moduli space M1,E1 over Q can be described explicitly as the scheme

M1,E1 = A2
Q \ D,

where D is the discriminant locus {(u, v)∈A2
:1=u3

−27v2
=0}, see [Katz and Mazur 1985, Section 2.2].

The point (u, v) corresponds to the once punctured elliptic curve (the plane cubic) y2
= 4x3

− ux − v
with the abelian differential dx/y. The moduli stack M1,1 can be defined as the quotient of M1,E1 by the
Gm-action

λ · (u, v)= (λ−4u, λ−6v).

Its compactification, the moduli stack M1,1, is the quotient of Y :=A2
−{(0, 0)}4 by the same Gm-action

above.
Similarly, define the moduli stack M1,2 over Q to be the quotient of the scheme

M1,1+E1 := {(x, y, u, v) ∈ A2
×A2

: y2
= 4x3

− ux − v, and u3
− 27v2

6= 0}

by the Gm-action
λ : (x, y, u, v) 7→ (λ−2x, λ−3 y, λ−4u, λ−6v).

Here the point (x, y, u, v) ∈M1,1+E1 corresponds to the point (x, y) on the punctured elliptic curve
y2
= 4x3

− ux − v with the abelian differential dx/y. Note that M1,2 is E ′, the universal elliptic curve E
over M1,1 with its identity section removed. We define its compactification M1,2 as the quotient of the
scheme

{(x, y, u, v) ∈ A2
×A2

: y2
= 4x3

− ux − v, (u, v) 6= (0, 0)}

by the same Gm-action above. Note that M1,2 is the compactification E of the universal elliptic curve E
whose restriction to the q-disk is the Tate curve ETate→ Spec Z[[q]] (see [Silverman 1994, Chapter V]).

1B. Moduli spaces as complex analytic orbifolds. Working complex analytically, we can define moduli
spaces as complex orbifolds

Man
1,1 := Gm\\Man

1,E1
, Man

1,2 := Gm\\Man
1,1+E1

,

where Man
1,E1
:=M1,E1(C) and Man

1,1+E1
:=M1,1+E1(C) are complex analytic manifolds.

4One may regard Y as a partial compactification of M1,E1.
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The moduli space Man
1,1 can also be defined as the orbifold quotient SL2(Z)\\h of the upper half plane

h by the standard SL2(Z) action

γ =

(
a b
c d

)
: τ 7→ γ τ =

aτ + b
cτ + d

where γ ∈ SL2(Z) and τ ∈ h. The map

h→Man
1,E1
= {(u, v) ∈ C2

: u3
− 27v2

6= 0}

τ 7→
(
20G4(τ ),

7
3 G6(τ )

)
induces an isomorphism of orbifolds SL2(Z)\\h∼=Gm\\Man

1,E1
, where G2n(τ ) is the normalized Eisenstein

series of weight 2n (see Section 3A for a definition).
A point τ ∈ h corresponds to the framed elliptic curve Eτ := C/3τ where 3τ := Z⊕Zτ , with a basis

a, b of H1(Eτ ;Z) that corresponds to 1, τ of the lattice 3τ via the identification H1(Eτ ;Z)∼=3τ .
There is a canonical family of elliptic curves Eh over the upper half plane h, called the universal framed

family of elliptic curves in [Hain 2011], whose fiber over τ ∈ h is Eτ . It is the quotient of the trivial
bundle C× h→ h by the Z2-action:

(m, n) : (ξ, τ ) 7→
(
ξ + (m, n)

(
τ

1

)
, τ
)
.

The universal elliptic curve Ean over Man
1,1 is the orbifold quotient of C× h by the semidirect product5

SL2(Z)nZ2, where Z2 acts on C× h as above, and γ ∈ SL2(Z) acts as follows:

γ : (ξ, τ ) 7→ ((cτ + d)−1ξ, γ τ).

The universal elliptic curve Ean can also be obtained as the orbifold quotient of Eh→ h by SL2(Z). It
is an orbifold family of elliptic curves whose fiber over a moduli point [E] ∈M1,1 is an elliptic curve
isomorphic to E . If we remove all the lattice points 3h := {(ξ, τ ) ∈ C× h : ξ ∈ 3τ } from C× h, then
take the orbifold quotient of the same SL2(Z)nZ2-action above, we obtain another analytic description
of the moduli space Man

1,2. To relate the two descriptions, there is a map

(C× h)−3h→Man
1,1+E1
= {(x, y, u, v) ∈ C2

×C2
: y2
= 4x3

− ux − v, (u, v) 6= (0, 0)}

(ξ, τ ) 7→
(
P2(ξ, τ ),−2P3(ξ, τ ), 20G4(τ ),

7
3 G6(τ )

)
that induces an isomorphism SL2(Z)nZ2

\\((C× h)−3h)∼=Gm\\Man
1,1+E1

, where P2(ξ, τ ) and P3(ξ, τ )

are, up to a constant, the Weierstrass ℘-function ℘τ (ξ) and its derivative ℘ ′τ (ξ) (see Section 3B for the
definition).

5The semiproduct structure is induced from the right action of SL2(Z) on Z2:
( a

c
b
d
)
: (m n) 7→ (m n)

( a
c

b
d
)
.
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2. The local system H with its Betti and Q-de Rham realizations

The local system H over M1,1 is a “motivic local system”, which has a set of compatible realizations:
Betti, Q-de Rham, Hodge and l-adic described in [Hain and Matsumoto 2018, Section 5]. In this section
we will follow [loc. cit., Section 5] closely and describe its Betti realization HB and Q-de Rham realization
HdR, and the comparison between these two.

We will denote the pullback of H (resp. HB, HdR) to M1,n+Er by Hn+Er (resp. HB
n+Er , HdR

n+Er ), so that H1

(resp. HB
1 , HdR

1 ) is the same as H (resp. HB, HdR).

2A. Betti realization HB. The Betti realization HB is the local system R1π an
∗

Q over Man
1,1 associated

to the universal elliptic curve π an
: Ean
→Man

1,1. We identify it, via Poincaré duality H 1(E)→ H1(E)
fiberwise, with the local system over Man

1,1 whose fiber over [E] ∈M1,1 is H1(E;Q).
There is a natural SL2(Z) action

γ =

(
a b
c d

)
:

(
b
a

)
7→

(
a b
c d

)(
b
a

)
,

where a, b is the basis of H1(Eτ ;Z) that corresponds to the basis 1, τ of 3τ . The sections a, b trivialize
the pullback Hh of HB to h.

Denote the dual basis of H 1(Eτ ;Q)∼= Hom(H1(Eτ ),Q) by ǎ, b̌. Then, under Poincaré duality,

ǎ =−b and b̌= a.

And the corresponding SL2(Z) action on this dual basis is

γ :
(
a −b

)
7→
(
a −b

) (a b
c d

)
.

One can construct the local system HB by taking the orbifold quotient of the local system Hh→ h by the
above SL2(Z)-action.

2B. Q-de Rham realization HdR. The Q-de Rham realization HdR is an algebraic vector bundle
H 1(E/M1,1) over Q, defined by relative cohomology, on M1,1/Q equipped with the Gauss–Manin
connection. By our definition M1,1 := Gm\\M1,E1, to work with M1,1 is to work Gm-equivariantly
with M1,E1. We first construct the corresponding algebraic vector bundle on M1,E1. Define a vector bundle

HdR
E1
:=OM1,E1

S⊕OM1,E1
T

over M1,E1 with a Gm-action:

λ · S= λ−1S and λ ·T= λT,

where the sections S and T represent algebraic differential forms xdx/y and dx/y respectively. This
Gm-action extends the action on M1,E1 to the bundle HdR

E1
over it.
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The Gauss–Manin connection is explicitly given by

∇0 = d +
(
−

1
12

d1
1

T+
3α
21

S

)
∂

∂T
+

(
−

uα
81

T+
1
12

d1
1

S

)
∂

∂S
, (1)

where α = 2udv− 3vdu, 1= u3
− 27v2 and ∂/∂S, ∂/∂T a dual basis for S,T (see [Hain 2013, Propo-

sition 19.6]). This connection is Gm-invariant, and defined over Q. Therefore, the bundle HdR
E1

with
connection ∇0 over M1,E1 descends to a bundle HdR over M1,1.

The canonical extension HdR
E1

of HdR
E1

to Y := A2
Q
\ {(0, 0)} is a vector bundle

HdR
E1
:=OYS⊕OYT

with the same connection ∇0 above. Since the connection has regular singularities along the discriminant
locus D = {1= 0}, and recall that M1,1 = Gm\\Y from Section 1A, the bundle HdR

E1
→ Y descends to a

bundle HdR over M1,1 with regular singularity and nilpotent residue at the cusp. It is an extension of
HdR over M1,1 to M1,1.

2C. The flat vector bundle Han and the comparison between Han and HdR. Define the holomorphic
vector bundle

Han
:= HB

⊗OMan
1,1

over Man
1,1. The pullback of Han to h (using the quotient map h→Man

1,1= SL2(Z)\\h) is the vector bundle

Han
h =Oha⊕Ohb,

where the sections a and b are flat.
Define a holomorphic section w of Han

h by

w(τ )= wτ = 2π i(ǎ+ τ b̌)= 2π i(τ a− b),

where wτ is the class in H 1(Eτ ;C) represented by the holomorphic differential 2π i dξ .
The sections a and w trivialize the pullback

Han
D∗ :=OD∗a⊕OD∗w

of Han to D∗ via the map

h→ D∗, τ 7→ q := e2π iτ ,

as they are invariant under γ : τ 7→ τ +1
(
with γ being ±

( 1
0

1
1

))
, and thus invariant under the monodromy

action on the punctured q-disk D∗.
An easy computation [Hain and Matsumoto 2018, Section 5.2] shows that the connection on Han

D∗ in
terms of this framing is

∇
an
0 = d + a

∂

∂w

dq
q
.
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Since this connection has a regular singularity at the cusp q = 0, we can extend Han
D∗ to the q-disk D by

defining

Han
D :=ODa⊕ODw.

Therefore, we obtain Deligne’s canonical extension Han of Han to Man
1,1, endowed with a connection ∇an

0

that has a regular singularity at the cusp.
To relate Betti and de Rham sections of Han, we pull back the bundle Han

E1
to h via the map h→Man

1,E1
in Section 1B, and compare it with Han

h .

Proposition 2.1. There is a natural isomorphism

(Han,∇an
0 )
∼= (HdR,∇0)⊗OM1,1/Q

OMan
1,1

induced from the pullback. The sections T and S that correspond to dx/y and xdx/y respectively, after
being pulled back, become

T=
w

2π i
and S=

a− 2G2(τ )w

2π i
.

Remark 2.2. Our formulas for T and S differ from those in Proposition 5.2 of [Hain and Matsumoto
2018] by a factor of 2π i . The reason is that the cup product of dx/y and xdx/y is 2π i , and we have
multiplied their Poincaré duals by (2π i)−1 to obtain a Q-de Rham basis of the first homology [Hain 2013,
Section 20], such that T= Š and S=−Ť. More explanations are provided in Section 2D below.

2D. The fiber of H at the cusp. To better understand various Betti and de Rham sections of Han, we
observe the fiber H := H∂/∂q at the cusp associated to the tangent vector ∂/∂q . One can compute the limit
mixed Hodge structure on H (computed in [Hain and Matsumoto 2018, Section 5.4]), which is isomorphic
to Q(0)⊕Q(−1), with Betti realization H B

= Qa⊕Qb, and de Rham realization H dR
= Qa⊕Qw.

Note that on H , −b= ǎ = w/2π i spans Q(−1) and a = b̌ spans Q(0).
One can think of H as the cohomology H 1(E∂/∂q). It is better to work with first homology, which is

the abelian quotient of the fundamental group. We use Poincaré duality to identify H1(E) with H 1(E)(1).
Therefore, we have H1(E∂/∂q) = H(1) = Q(1)⊕Q(0), with Betti realization Qa⊕Qb and de Rham
realization QA⊕QT, where

A :=
a

2π i
and T :=

w

2π i
.

Note that on H(1), a = 2π iA spans Q(1) and −b= T spans Q(0).
By Proposition 2.1, we can write S in terms of this de Rham framing A, T of H (or in fact H(1))

S= A− 2G2(τ )T.

We will use these sections A, S and T to write down the universal elliptic KZB connection in later sections.
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3. Eisenstein elliptic functions and the Jacobi form F(ξ, η, τ)

3A. Eisenstein series. A modular form6 of weight k is a holomorphic function f (τ ) on the upper half
plane h that satisfies

f (γ τ)= (cτ + d)k f (τ ), where γ =
(

a b
c d

)
∈ SL2(Z), τ ∈ h, and γ τ =

aτ + b
cτ + d

,

and it extends to a holomorphic function on the q-disk.
Since f (τ + 1)= f (τ ), it has a Fourier expansion of the form

f (τ )=
∑
n∈Z

anqn where q = e2π iτ .

Since a modular form is holomorphic at the cusp, this q-series starts with terms of nonnegative q powers.
Moreover, a modular form is called a cusp form if the leading coefficient a0 of its q-series is 0.

Example 3.1 (weight k Eisenstein Series ek). For integer k > 0, τ ∈ h, define

ek(τ ) :=
∑
n,m

(n,m) 6=(0,0)

(nτ +m)−k .

Note that ek = 0 if k is odd. For k ≥ 4, the series for ek is absolutely convergent. For k = 2, it has to be
summed in a certain way, called Eisenstein summation [Weil 1976, Chapter III].

Example 3.2 (normalized Weight k Eisenstein Series Gk). We will normalize the Eisenstein series
following Zagier [1991]. Define Gk to be zero when k is odd. For k ≥ 1, define

G2k(τ ) :=
1
2
(2k− 1)!
(2π i)2k e2k(τ ).

It has Fourier expansion

G2k(τ )=−
B2k

4k
+

∞∑
n=1

σ2k−1(n)qn

where the Bk are Bernoulli numbers7 and σk(n)=
∑

d|n dk , with

G2k |q=0 =−
B2k

4k
=
(2k− 1)!
(2π i)2k ζ(2k).

When k > 2 is even, Gk is holomorphic on the upper half plane, satisfying Gk(γ τ)= (cτ + d)k Gk(τ ),
and it is holomorphic at the cusp. Therefore, it is a modular form of weight k. When k = 2, we have that
G2 satisfies (see [Zagier 1991])

G2(γ τ)= (cτ + d)2G2(τ )+
ic(cτ + d)

4π
.

It is well known that the ring of all modular forms is the polynomial ring Q[G4,G6].

6We will only consider modular forms of level one, i.e., those with respect to the entire modular group SL2(Z).
7One can define Bernoulli numbers Bn by x/(ex

− 1)=
∑
∞
n=0 Bn xn/n!. Note that B0 = 1, B1 =−

1
2 and that B2k+1 = 0

when k > 0.



Algebraic de Rham theory for unipotent fundamental groups of elliptic curves 2253

3B. Eisenstein elliptic functions. For k > 0, τ ∈ h and ξ ∈ C, define Eisenstein elliptic functions [Weil
1976] by

Ek(ξ, τ ) :=
∑
n,m

(ξ + nτ +m)−k .

Note that Ek is absolutely convergent for k ≥ 3. For k = 1, 2, Ek is summed by Eisenstein summation
[loc. cit., Chapter III]. We will need the following formula, which is adapted from (9) of Chapter IV in
[loc. cit.].

Formula 3.3. 2π i
∂E1

∂τ
= E3− E1 E2.

Now we define functions Pk(ξ, τ ) for k ≥ 2:

Pk(ξ, τ ) := (2π i)−k(Ek(ξ, τ )− ek(τ )).

Note that up to a scalar, P2 and P3 are the Weierstrass ℘-function ℘τ (ξ) and its derivative respectively.
These Pk satisfy recurrence relations [Weil 1976]: for m ≥ 3, n ≥ 3,

Pm Pn − Pm+n =
(−1)n

(n− 1)!

m−2∑
h=1

2
h!

Gn+h Pm−h +
(−1)m

(m− 1)!

n−2∑
k=1

2
k!

Gm+k Pn−k + (−1)m
2(m+ n)

m!n!
Gm+n

The same relation also holds for m = 2, n ≥ 2.
By these relations, we know that the algebra generated by Eisenstein elliptic functions is the ring

K[P2, P3] with coefficients in K :=Q[G4,G6].

Remark 3.4. If variable τ is fixed, one can use P2, P3 to embed the elliptic curve Eτ into a cubic in P2

(see Section 6), then Pk’s are algebraic functions on this elliptic curve. In particular, if the elliptic curve
Eτ is defined over a field K of characteristic 0, then there is an embedding with G4,G6 ∈ K, so that
Gk ∈ K for all k ≥ 4. Therefore, Pk’s are polynomials of P2, P3 with coefficients in K, i.e., Pk’s are in
the coordinate ring O(Eτ/K), which is a K-algebra generated by P2, P3.

3C. The Jacobi forms F(ξ, η, τ) and FZag(u, v, τ). There are two different versions of the Jacobi
form F : one F(ξ, η, τ ) used by Levin and Racinet [2007] and another FZag(u, v, τ ) used by Zagier
[1991]. They are related to each other by

F(ξ, η, τ )= 2π i FZag(2π iξ, 2π iη, τ).

In this paper, we will use FZag exclusively. We list some properties of FZag here and leave the most relevant
ones to the next subsection. These properties all follow from the theorem in [Zagier 1991, Section 3].

Proposition 3.5. The function FZag(u, v, τ ) has the following properties:

(1) FZag(u, v, τ )= FZag(v, u, τ ).

(2) FZag(u+ 2π i, v, τ )= FZag(u, v, τ ).

(3) FZag(u+ 2π iτ, v, τ )= exp(−v)FZag(u, v, τ ).

(4) FZag(u/(cτ + d), v/(cτ + d), γ τ) = (cτ + d) exp(cuv/(2π i(cτ + d)))FZag(u, v, τ ), where γ =(a
c

b
d

)
∈ SL2(Z) and γ τ = (aτ + b)/(cτ + d).
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3D. Some useful formulas. In this section, we provide some formulas that will be used in later sections.
First, we express the Jacobi form FZag in terms of Eisenstein elliptic functions Pk = (2π i)−k(Ek− ek)

for k ≥ 2 and (2π i)−1(E1− e1)= (2π i)−1 E1. This is well-known, stated as Proposition-Definition(4.iii)
in [Brown and Levin 2011, Section 3.4], also stated as (13) in [Levin and Racinet 2007] but with a typo.8

Formula 3.6. T FZag(2π iξ, T, τ )= exp
(
−

∞∑
k=1

(−T )k

k
Pk(ξ, τ )

)
.

Proof. By [Zagier 1991, page 456, (viii)]

FZag(u, v, τ )=
u+ v

uv
exp

(∑
k>0

2
k!
[uk
+ vk
− (u+ v)k]Gk(τ )

)
.

Multiplying by v, then take logarithm on both sides, we get

log(vFZag(u, v, τ ))= log
(

1+
v

u

)
+

∑
k>0

2
k!
[uk
+ vk
− (u+ v)k]Gk(τ )

=−

∞∑
k=1

(−v/u)k

k
+

∞∑
k=1

2vk

k!

[
1+

(
u
v

)k

−

(
1+

u
v

)k]
Gk(τ )

Let u = 2π iξ , v = T , and rescale Gk back to ek , we have

log(T FZag(2π iξ, T, τ ))=−
∞∑

k=1

(−T/2π iξ)k

k
+

∞∑
k=1

2T k

k!

[
1+
(

2π iξ
T

)k

−

(
1+

2π iξ
T

)k]1
2
(k−1)!
(2π i)k

ek(τ )

=−

∞∑
k=1

(−T )k

k
(2π iξ)−k

−

∞∑
l=1

T l

l
(2π i)−l

l−1∑
k=1

(
l
k

)(
2π iξ

T

)l−k

el(τ )

=−

∞∑
k=1

(−T )k

k
(2π i)−k 1

ξ k−

∞∑
k=1

T k

k
(2π i)−k

∞∑
l=k+1

k
l

(
l
k

)
ξ l−kel(τ )

=−

∞∑
k=1

(−T )k

k
(2π i)−k 1

ξ k−

∞∑
k=1

(−T )k

k
(2π i)−k(−1)k

∞∑
l=k+1

(
l−1
k−1

)
ξ l−kel(τ )

=−

∞∑
k=1

(−T )k

k
(2π i)−k

[
1
ξ k+(−1)k

∞∑
l=k+1

(
l−1
k−1

)
ξ l−kel(τ )

]

=−

∞∑
k=1

(−T )k

k
(2π i)−k(Ek−ek)

=−

∞∑
k=1

(−T )k

k
Pk(ξ, τ )

8Equation (13) in [Levin and Racinet 2007] is missing a ξ on the left-hand side.
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where the last line follows from (10) of Chapter III in [Weil 1976], and the facts that
(l−1

k−1

)
= 0 for l < k

and that ek(τ )= 0 for odd k. After taking exponential on both sides, Formula 3.6 follows. �

Taking partial derivative with respect to T , we have

Formula 3.7. T
∂FZag

∂T
(2π iξ, T, τ )= exp

(
−

∞∑
k=1

(−T )k

k
Pk(ξ, τ )

)( ∞∑
k=1

(−T )k−1 Pk(ξ, τ )−
1
T

)
.

4. Unipotent completion of a group and its Lie algebra

Suppose we are given a finitely generated group 0, and a field K of characteristic 0. The group algebra
K0 is naturally a Hopf algebra with coproduct, antipode and augmentation given by

1 : g 7→ g⊗ g, i : g 7→ g−1, ε : g 7→ 1.

Note that it is cocommutative but not necessarily commutative, and thus does not correspond to the
coordinate ring of a (pro-)algebraic group. It is natural to consider its (continuous) dual, which is
commutative. We define the unipotent completion 0un of 0 over K, a (pro-)algebraic group, by its
coordinate ring

O(0un
/K)= Homcts(K0,K) := lim

−−→
n

Hom(K0/I n,K),

where we give K0 a topology by powers of its augmentation ideal I := ker ε. The set of its K-rational
points 0un(K) is in one-to-one correspondence with the set of

{ring homomorphisms O(0un
/K)→ K}.

For example, any γ ∈ 0 gives a ring homomorphism O(0un
/K)→ K by evaluating O(0un

/K) at γ , thus
determines a K-point γ ∈ 0un(K).

For the purpose of this paper, we only need to consider the case of 0 being a free group.

4A. The unipotent completion of a free group. Suppose that 0 is the free group 〈x1, . . . , xn〉 generated
by the set {x1, . . . , xn}. The coordinate ring O(0un) of its unipotent completion 0un over K is a K vector
space spanned by a basis {aI } indexed by tuples I = (i1, i2, . . . , ir ), where i j ∈ {1, 2, . . . , n}. If the index
is empty, then a∅ ≡ 1; if the index tuple only consists of one number I = (i), we will simply write aI

as ai . The product structure on O(0un) is induced by shuffle product X and linearity

aI · aJ =
∑

K∈ IXJ

aK .

For each K-point γ ∈ 0un(K), “coordinate function” aI takes value aI (γ ) in K, and

aI (γ ) · aJ (γ )=
∑

K∈ IXJ

aK (γ ). (2)

Note that it is natural to define {a1, . . . , an} as the dual basis of {x1, . . . , xn}, so that ai (x j )= δi j .
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To determine the structure of 0un, consider the ring K〈〈X1, . . . , Xn〉〉 of formal power series in the
noncommuting indeterminants X j . It is a Hopf algebra with each X j being primitive, and its augmentation
ideal is the maximal ideal I = (X1, . . . , Xn).

There is a unique group homomorphism

θ : 0→ K〈〈X1, . . . , Xn〉〉

γ 7→
∑

I

aI (γ )X I

that takes x j to exp(X j ), where for I = (i1, i2, . . . , ir ), define X I := X i1 X i2 · · · X ir .
For any K-point γ ∈ 0un(K), the element

∑
I aI (γ )X I is group-like by (2). This induces a continuous

isomorphism
θ̂ : 0un(K)→ {group-like elements in K〈〈X1, . . . , Xn〉〉

∧
},

where K〈〈X1, . . . , Xn〉〉
∧ is completed from K〈〈X1, . . . , Xn〉〉 with respect to its augmentation ideal.

It is easy to use universal mapping properties to prove:

Proposition 4.1. The homomorphism θ̂ is an isomorphism of complete Hopf algebras. �

Corollary 4.2. The restriction of θ̂ induces a natural isomorphism

d θ̂ : Lie(0un(K))→ LK(X1, . . . , Xn)
∧

of topological Lie algebras.

Proof. This follows immediately from the fact that θ̂ induces an isomorphism on primitive elements and
the well known fact that the set of primitive elements of the power series algebra K〈〈X1, . . . , Xn〉〉 is the
completed free Lie algebra LK(X1, . . . , Xn)

∧. �

Remark 4.3. By the Baker–Campbell–Hausdorff formula, the exponential map

exp : LK(X1, . . . , Xn)
∧
→ {group-like elements in K〈〈X1, . . . , Xn〉〉

∧
},

is a group isomorphism. Therefore, 0un(K) and its Lie algebra Lie(0un(K)) are isomorphic as groups.

5. Universal elliptic KZB connection — analytic formula

In this section, we describe the main object to be studied in this paper, working complex analytically.
There is a canonical vector bundle P (resp. p) over M1,2 whose fiber over a moduli point [E ′, x] is the
unipotent fundamental group πun

1 (E
′, x) (resp. Lie(πun

1 (E
′, x))).9 This vector bundle comes with an

integrable connection, which is called the universal elliptic KZB connection. Analytic formulas for this
connection have been given in different forms by Levin and Racinet [2007] and by Calaque, Enriquez
and Etingof [2009].

9From Remark 4.3, the unipotent completion of a group and its Lie algebra are isomorphic, we will regard this bundle as a
local system of both unipotent fundamental groups and Lie algebras, whichever is appropriate.



Algebraic de Rham theory for unipotent fundamental groups of elliptic curves 2257

The universal elliptic KZB connection for the bundle P over E ′ actually lives on E , even E . Since
P over E ′ is a unipotent vector bundle, using Deligne’s canonical extension, we obtain P over E by
extending P across the boundary divisors, the identity section and the nodal cubic. The universal elliptic
KZB connection has regular singularities around these divisors, as is shown in [Hain 2013, Sections 12
and 13].

By Section 4A, the fiber of P over a point [E ′, x] is the Lie algebra Lie(πun
1 (E

′, x)) of its unipotent
fundamental group πun

1 (E
′, x), which can be identified with LC(A,T)

∧, where A and T are the sections
of H defined in Section 2D. Note that these sections, when pulled back to h, trivialize the vector bundle
Hh, with a factor of automorphy.10 This factor of automorphy lifts to a general one on the bundle P over
C× h.11

We now write the connection form in terms of analytic coordinates (ξ, τ ) on C× h. It is shown to
be SL2(Z)nZ2-invariant in terms of the factor of automorphy we just described and flat in [Hain 2013,
Section 9]. Therefore, it descends to a flat connection on the bundle P over the orbifold E .

The connection is defined by
∇

an f = d f +ω f,

with a 1-form
ω ∈�1((C× h) log3h)⊗Der LC(A,T)

∧,

whose analytic formula is given by

ω = 2π i dτ ⊗A
∂

∂T
+ψ + ν,

with

ψ =
∑
m≥1

(
G2m+2(τ )

(2m)!
2π i dτ ⊗

∑
j+k=2m+1

j,k>0

(−1) j
[ad j

T(A), adk
T(A)]

∂

∂A

)
,

and

ν = ν1+ ν2 = TFZag(2π iξ,T, τ ) ·A⊗ 2π i dξ +
(

1
T
+T

∂FZag

∂T
(2π iξ,T, τ )

)
·A⊗ 2π i dτ.

Here, we view LC(A,T)
∧ as a Lie subalgebra of Der LC(A,T)

∧ via the adjoint action, and Tn denotes the
n-time adjoint action adn

T on LC(A,T)
∧; since every derivation δ ∈ Der LC(A,T)

∧ is determined by its
values on A and T, it can be written uniquely in the form

δ = δ(A)
∂

∂A
+ δ(T)

∂

∂T
.

10The factor of automorphy on Hh is easily computed to be Mγ (τ )=
( (cτ+d)−1

c
0

cτ+d
)

for γ =
( a

c
b
d
)
∈ SL2(Z), cf. [Hain

2013, Example 3.4].
11The general factor of automorphy on P is

M̃γ (ξ, τ )=

{
Mγ (τ ) ◦ exp(cξT/(2π i(cτ + d))) γ =

( a
c

b
d
)
∈ SL2(Z)

exp(−mT) (m, n) ∈ Z2

[Hain 2013, Section 6, (6.2)].
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Part II. KZB Connection on a single elliptic curve

In this part, we describe an algebraic de Rham structure PdR on the restriction of the canonical bundle
P to a single elliptic curve E . We essentially reproduce and then complete the unfinished work of Levin
and Racinet [2007, Section 5]. In particular, their connection, though being algebraic, has an irregular
singularity at the identity of the elliptic curve. Moreover, their formula is not explicit.

We compute explicitly the restriction of the universal elliptic KZB connection to a single elliptic curve
in terms of its algebraic coordinates. We resolve the issue of irregular singularities at the identity in
the connection formula by trivializing the bundle PdR on two open subsets of E , one of which contains
a neighborhood of the identity where the connection has a regular singularity. Therefore, we have
constructed a de Rham structure PdR on P over E . Trivializing it on different open subsets is necessary
because Deligne’s canonical extension P of P from E ′ (elliptic curve E punctured at the identity) to E ,
unlike the genus zero case (of P1), is not trivial as an algebraic vector bundle.

6. Elliptic curves as algebraic curves

Fix τ ∈ h and an elliptic curve E = Eτ . Using the Weierstrass ℘-function

℘τ (ξ) := E2(ξ, τ )− e2(τ ),

we can embed a punctured elliptic curve E ′ into P2 as follows:

ξ 7→ [(2π i)−2℘τ (ξ), (2π i)−3℘ ′τ (ξ), 1].12

This satisfies an affine equation

y2
= 4x3

− ux − v,

where u = g2(τ )= 20G4(τ ), v = g3(τ )=
7
3 G6(τ ). It is defined over K :=Q(u, v). The identity of E is

at the infinity. The equation y = 0 picks out three nontrivial order 2 elements in E (the trivial one being
the identity), we define

E ′′ := E −{y = 0}.

Note that id ∈ E ′′, and {E ′, E ′′} form an open cover of E .
By pulling back through the above embedding, one can identify algebraic functions and forms with

their analytic counterparts, which is how we will turn the analytic formula of the connection into an
algebraic formula. For example, coordinate functions x,−y/2 pull back to P2, P3 defined in Section 3B,
and the differential dx/y pulls back to 2π i dξ . Note from Remark 3.4 that for k ≥ 2, Pk can be expressed
by a polynomial of P2, P3, i.e., Pk = Pk(x, y) ∈ K[x, y].

12We choose this embedding so that powers of 2π i will not appear in our algebra formulas of KZB connections later.
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7. Algebraic connection formula over E′

Fix τ ∈ h, an elliptic curve E = Eτ defined over a field K of characteristic zero, and its algebraic
embedding as in the last section. The elliptic KZB connection restricted from the universal one to the
once punctured elliptic curve E ′ = E \ {id} is

∇
an
= d + ν1 = d +TFZag(2π iξ,T, τ ) ·A⊗ 2π i dξ. (3)

Note that when described in terms of sections A and T, the bundle P has factors of automorphy [Hain
2013, Section6]. We would like to make sections of P elliptic (i.e., periodic with respect to the lattice 3τ )
by a gauge transformation so that the factor of automorphy is absorbed into it and become trivial. The
connection form would also be elliptic and can be expressed in terms of algebraic coordinate functions
x , y, and Pk’s. Following Levin and Racinet [2007, Section 5] and using Formula 3.6, the connection
transforms under the gauge galg(ξ)= exp

(
−

1
2π i E1T

)
into ∇ = d + νalg

1 , with 1-form

ν
alg
1 =−dgalg · g−1

alg + galgν1g−1
alg

=−
1

2π i
E2T dξ + exp

(
−

E1

2π i
T

)
exp

(
−

∞∑
k=1

(−T)k

k
Pk(ξ, τ )

)
·A⊗ 2π i dξ

=−(2π i)−2(E2− e2)T⊗ 2π idξ + exp
(
−

∞∑
k=2

(−T)k

k
Pk(ξ, τ )

)
· (A− (2π i)−2e2T)⊗ 2π i dξ

=−
xdx

y
T+ exp

(
−

∞∑
k=2

(−T)k

k
Pk(x, y)

)
· S⊗ 2π i dξ

=−
xdx

y
T+

dx
y
S+

∞∑
n=2

qn(x, y)
dx
y
Tn
· S.

Here νalg
1 ∈�

1(E ′/K)⊗ LK(S,T)
∧, Tn is the action adn

T on LK(S,T)
∧ that repeats the adjoint action of T

for n times, and

qn(x, y)=
∑

2a2+3a3+···+nan=n

1
a2!a3! · · · an!

n∏
k=2

(
(−1)k+1 Pk(x, y)

k

)ak

∈O(E ′/K),

where O(E ′/K) = K[x, y]/(y2
− 4x3

+ ux + v). Note that the above sum is indexed by the partitions
of integer n with summands at least 2. For example, 5 has 2 such partitions: 5 and 2+ 3, so q5 =
P5
5 +

(
−

P2
2

)
·

P3
3 =

1
5 P5 −

1
6 P2 P3. Written as polynomials in K[x, y], we have q2 = −

P2
2 = −

1
2 x ,

q3 =
P3
3 =−

1
6 y, and q4 =

(
−

P4
4

)
+

1
2

(
−

P2
2

)2
=

u
40 −

x2

8 .

Remark 7.1. One can use the recurrence relations of the Pk described in Section 3B to find relations
among the qn .

Note that the form ν
alg
1 is defined over K, so we have constructed an algebraic vector bundle (PdR,∇)

over E ′ whose fibers can be identified with LK(S,T)
∧. This algebraic bundle is defined over K, with its
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connection ∇ also defined over K. It provides us with a K-structure PdR on P over E ′. Since the form
ν

alg
1 has irregular singularity (xdx/y having a double pole) at the identity, we cannot extend it naively

across the identity to obtain Deligne’s canonical extension. To construct the canonical extension, we have
to change gauge on a Zariski open neighborhood E ′′ of the identity. We do this in Section 8.

7A. The naive connection versus the elliptic KZB connection. Before we do this, we consider the naive
connection on the trivial bundle

LK(S,T)
∧
× E ′→ E ′

which is defined by ∇ ′ = d + νnaive
1 , where

νnaive
1 =−

xdx
y

T+
dx
y
S.13

This flat connection is defined over K, whose monodromy is a homomorphism ρnaive
: π1(E ′, x)→

L(S,T)∧ that induces an isomorphism

I naive
: Lieπun

1 (E
′, x)→ L(S,T)∧.

Since the elliptic KZB connection ∇ = d + νalg
1 agrees with the naive connection up to degree 2, its

monodromy ρKZB
: π1(E ′, x)→ L(S,T)∧ also induces an isomorphism

I KZB
: Lieπun

1 (E
′, x)→ L(S,T)∧.

Although both I naive and I KZB are isomorphisms of prounipotent groups, they can not be algebraically
transferred from one to the other while preserving the group structure on L(S,T)∧.

Proposition 7.2. Fix a field K of characteristic zero. Between the elliptic KZB connection ∇ = d + νalg
1

and the naive connection ∇ ′ = d + νnaive
1 , there are no algebraic gauge transformation over any Zariski

open subset of E/K that preserves the group structure on the fiber L(S,T)∧.

Proof. Suppose there were such a change of gauge g that preserves the group structure, its value would
lie in the subgroup exp L(S,T)∧ of Aut L(S,T)∧, acting on the fiber L(S,T)∧ by conjugation. In other
words, we would have g : E 99K exp L(S,T)∧, with coefficients in K(E), field of fractions of O(E ′/K),
such that

ν
alg
1 =−dg · g−1

+ gνnaive
1 g−1,

or equivalently
dg = gνnaive

1 − ν
alg
1 g. (4)

This is an equation of 1-forms on E with values in Der L(S,T)∧. Now let

g=1+αT+βS+γT2
+λST+µTS+δS2

+σT3
+ζT2S+ηTST+ξTS2

+τST2
+κSTS+εS2T+ιS3

+· · ·

13The “−” sign appears as we regard −T and S as a basis for H1(E), dual to S = xdx/y and T = dx/y in H1(E), see
Remark 2.2 before Section 2D.
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where coefficients α, β, γ, . . . ∈ K(E) should be regarded as rational functions on the elliptic curve
E/K. We substitute g into (4). Now we equate the coefficients up to the third degree of derivations in
Der L(S,T)∧. We have

dα = 0, dβ = 0, dγ = 0, dδ = 0, dσ = 0 (5)

dµ= α
dx
y
+β

x dx
y

(6)

dλ=−β
x dx

y
−α

dx
y

(7)

dζ = γ
dx
y
+µ

x dx
y
+

1
2

x dx
y

(8)

dη =−µ
x dx

y
+ λ

x dx
y

(9)

dξ = µ
dx
y
+ δ

x dx
y

(10)

· · · (11)

From (5), we know that α and β are constants. Taking cohomology classes on both sides of (6), we have

α

[
dx
y

]
+β

[
x dx

y

]
= 0,

and easily get α = β = 0. Thus dµ= 0, and µ is a constant. For the same reason, λ is a constant.
Now taking cohomology classes on both sides of (8) and of (9), we get γ = 0, and λ = µ = −1

2 .
Similarly, taking cohomology classes on both sides of (10), we get µ= δ = 0. However, µ cannot be − 1

2
and 0 at the same time! �

Remark 7.3. If we forget about the group structure on the fiber L(S,T)∧, we expect that there is an
algebraic gauge transformation, defined over K and meromorphic at the identity when working over C,
between the elliptic KZB connection and the naive connection. The reason is that one expects to be able
to solve the above (4), if the gauge transformation g is allowed to take value in Aut L(S,T)∧. This would
indicate that periods of (regularized) iterated integrals constructed from both connections are the same.
For some evidence of this, up to degree 5, one can take g to be

g : S 7→ S− 29
960 u[T, [T, [T, [T, S]]]] − 1

6 x[S, [T, [T, [T, S]]]] + · · ·

T 7→ T+ 1
2 [T, [T, S]] −

1
6 x[T, [T, [T, [T, S]]]] − 1

6 [S, [T, [T, [T, S]]]] + · · ·

The form of this seems to suggest that there are (cohomological) obstructions in degrees 3, 5, . . . to gauge
transform between the elliptic KZB connection and the naive connection while preserving the group
structure on L(S,T)∧.
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8. Algebraic connection formula over E′′

Recall that we have an analytic local system (P,∇an) of (Lie algebras of) unipotent fundamental groups
over E ′. The elliptic KZB connection ∇an is obtained by restricting the universal elliptic KZB connection
to E ′. Note that the analytic formula of the elliptic KZB connection ∇an has regular singularity at the
identity with pronilpotent residue. The elliptic KZB connection thus extends naturally from E ′ to E , and
we obtain Deligne’s canonical extension (P,∇an) of (P,∇an). It is not immediately clear that (P,∇an)

has an algebraic de Rham structure. The question is to determine whether this canonical extension is
defined over K, the field of definition of E . In this section, we show that the elliptic KZB connection ∇an is
gauge equivalent to its algebraic counterpart ∇ defined over K, which has regular singularity at the identity
with pronilpotent residue. It follows that Deligne’s canonical extension P of P to E is defined over K.

We start with the algebraic connection ∇ = d + νalg
1 , which is defined to be gauge equivalent to the

analytic one ∇an in the last section. Since νalg
1 has irregular singularities at the identity of E , we would like

to apply another gauge transformation to make it regular. The reason νalg
1 has irregular singularity is that

we introduced a gauge transformation involving E1, which has a pole at the identity. To cancel this effect
and make the connection regular at the identity, we apply a gauge transformation greg = exp(−(2x2/y)T).
Then the connection becomes ∇ = d + νreg

1 , with 1-form

ν
reg
1 =−dgreg · g−1

reg + gregν
alg
1 g−1

reg

=

(
d
(

2x2

y

)
−

xdx
y

)
T+ exp

(
−

2x2

y
T−

∞∑
k=2

(−T)k

k
Pk(x, y)

)
· S⊗ 2π i dξ

=

(
d
(

2x2

y

)
−

xdx
y

)
T+

dx
y
S+

∞∑
n=1

rn(x, y)
dx
y
Tn
· S.

Here νreg
1 ∈�

1(E ′′ log{id})⊗ LK(S,T)
∧ and we get, by direct calculation, rational functions

rn(x, y)=
∑

a1+2a2+3a3+···+nan=n

1
a1!a2!a3! · · · an!

n∏
k=1

(
(−1)k+1 Pk(x, y)

k

)ak

∈O(E ′′ \ {id}),

where P1(x, y) :=−2x2/y and O(E ′′ \{id})=O(E ′y)=O(E ′)[y−1
]. Note that the sum for rn is indexed

by the partitions of integer n with no restrictions of the summands. For example, 4 has 5 partitions: 4,
3+ 1, 2+ 2, 2+ 1+ 1, 1+ 1+ 1+ 1, so

r4 =

(
−

P4

4

)
+

1
1!1!

(
P3

3

)
·

(
P1

1

)
+

1
2!

(
−

P2

2

)2

+
1

2!1!

(
P1

1

)2

·

(
−

P2

2

)
+

1
4!

(
P1

1

)4

=−
1
4

P4+
1
3

P3 P1+
1
8

P2
2 −

1
4

P2 P2
1 +

1
24

P4
1

Remark 8.1. One can use the recurrence relations of the Pk described in Section 3B to find relations
among the rn .

In the next section, we will check that:
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Lemma 8.2. The connection ∇ = d + νreg
1 has a regular singularity at the identity with pronilpotent

residue.

Therefore, this connection a priori living on E ′′ \ {id}, can be extended naturally across the identity. It
is an algebraic connection defined over K on an algebraic vector bundle PdR|E ′′ over the open subset E ′′

of E . This is one part of a vector bundle PdR over E . The other part PdR|E ′ = PdR was constructed using
the connection ∇ = d + νalg

1 in the last section. Now we have trivialized PdR on an open cover of two
different subsets of E . By gluing two trivializations together in terms of the gauge transformation, we
have constructed an algebraic vector bundle PdR over E .

Summarizing results in this part, we get:

Theorem 8.3 (the algebraic de Rham structure PdR on P over E). Suppose that K is a field of character-
istic 0, embeddable in C. Let E be an elliptic curve defined over K. Then for each embedding σ :K ↪→ C,
we have an algebraic vector bundle PdR over E/K endowed with connection ∇, and an isomorphism

(PdR,∇)⊗K,σ C≈ (P,∇an).

The algebraic bundle PdR and its connection ∇ are both defined over K. The K-de Rham structure
(PdR,∇) on (P,∇an) is explicitly given by the connection formulas for νalg

1 on E ′ and νreg
1 on E ′′ above.

In particular, the connection ∇ has a regular singularity at the identity.

9. Regular singularity and residue at the identity

In this section, we prove Lemma 8.2 by showing that νreg
1 has regular singularity at the identity, and we

compute its residue there.
It is easy to check that analytically d(2x2/y)− xdx/y is holomorphic at the identity. So we are left to

check that

1+
∞∑

n=1

rn(x, y)Tn
= exp

(
−

∞∑
k=1

(−T)k

k
Pk(x, y)

)
(12)

has a regular singularity at the identity.
Let ξ be the complex coordinate near the identity. Analytically, we need to calculate (in terms of ξ )

the principal parts of P1 =−2x2/y and Pk’s (k ≥ 2). The principal part of P1 =−2x2/y is 1/(2π iξ);
the principal part of Pk (k ≥ 2) is 1/(2π iξ)k , since

Pk = (2π i)−k(Ek − ek)

= (2π i)−k
∑
m,n

(ξ +mτ + n)−k
−

∑
m,n

′

(mτ + n)−k

=
1

(2π i)kξ k + (2π i)−k
′∑

m,n

(
1

(ξ +mτ + n)k
−

1
(mτ + n)k

)
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=
1

(2π i)kξ k + (2π i)−k
∑
m,n

′ 1
(mτ + n)k

∞∑
l=1

(−1)l
(

l + k− 1
k− 1

)
ξ l

(mτ + n)l

=
1

(2π iξ)k
+

∞∑
l=1

(−1)l
(

l + k− 1
k− 1

)
(2π i)−(k+l)ek+l (2π iξ)l .

Therefore, (12) is of the following form near ξ = 0,

exp
(
−

∞∑
k=1

(−T/(2π iξ))k

k
+ holomorphic in ξ

)
= exp

(
ln
(

1+
T

2π iξ

))
exp

( ∞∑
n=0

an(T)(2π iξ)n
)

=

(
1+

T

2π iξ

)
exp

( ∞∑
n=1

an(T)(2π iξ)n
)
,

which has a regular singularity at the identity. Here ∀n ≥ 0, an(T) ∈ K[T] and a0(T)= 0.
Now it’s easy to calculate the residue. Note that 2x2/y is an odd function in ξ , and when expressed in

terms of ξ , it has constant term 0 in the holomorphic part; so does each of the Pk’s according to their
expansions above. Therefore, we know that the holomorphic part in ξ also has constant term 0, and the
residue at the identity we are looking for is then

T

2π i
exp(0) · S(2π i)= T · S= ad[T,S],

which is in Der L(S,T)∧. Note that (2π i) at the end of the first expression above comes from dx/y =
2π idξ .

10. Tannaka theory and a universal unipotent connection over E

Recall that a unipotent object in a tensor category C with the identity object 1C is an object V with a
filtration in C

0= V0 ⊆ · · · ⊆ Vn = V

such that each quotient V j/V j−1 is isomorphic to 1
⊕k j
C for some k j ∈ N.

Let E be an elliptic curve defined over K, and fix an embedding σ : K ↪→ C. Let E ′ = E − {id}.
Consider the following tensor categories:

(1) Unipotent Local Systems

CB
F := {unipotent local systems VF over E ′(C)},

where F is a field of characteristic 0, and the identity object 1CB
F

is the constant sheaf FE ′ on E ′(C).

(2) Algebraic de Rham

CdR
K :=

{
unipotent vector bundles V over E/K defined over K with a flat connection ∇

that has regular singularity at the identity with nilpotent residue

}
,
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where the identity object 1CdR
K

is the trivial vector bundle OE with the trivial connection given by the
exterior differential d.

(3) Analytic de Rham

Can
:=

{
unipotent vector bundles Van over Ean with a flat connection that is holomorphic over E ′(C),

meromorphic over E(C) and has regular singularity at the identity with nilpotent residue

}
,

where Ean
= E(C) is the analytic variety associated to E/K, and the identity object 1Can is the trivial

vector bundle OEan with the trivial connection given by the exterior differential d .

One can define fiber functors for these tensor categories so that they become neutral tannakian categories.
Taking the fiber over x ∈ E ′(C) of any object in CB

F provides a fiber functor ωx of CB
F . By Tannaka duality

and the universal property of unipotent completion, the tannakian fundamental group of CB
F with respect

to the fiber functor ωx , which we denote by π1(CB
F , ωx), is the unipotent fundamental group πun

1 (E
′, x)F

over F . We will denote πun
1 (E

′, x)Q simply by πun
1 (E

′, x).
In the same way, one can define a fiber functor ωx of Can for any x ∈ E(C), and a fiber functor ωx of CdR

K

for any x ∈ E(K). Note that we can take x to be the identity id ∈ E(K). We denote their corresponding
tannakian fundamental groups by π1(Can, ωx) and π1(CdR

K , ωx) respectively. Our objective is to establish
a natural comparison isomorphism between π1(Can, ωx) and π1(CdR

K , ωx)×K C for any x ∈ E(K).

10A. Extension groups in CB
F , Can and CdR

K
. We start with a general setting. Let K be a field of

characteristic zero. Let C be a neutral tannakian category over K with a fiber functor ω all of whose
objects are unipotent. Denote its identity object by 1C . The tannakian fundamental group of C with
respect to ω, which we denote by U , is a prounipotent group defined over K . Denote its Lie algebra by u,
viewed as a topological Lie algebra. Since the category of U-modules is equivalent to the category of
continuous u-modules, we have

H m
cts(u)

∼= H m(U)∼= ExtmC (1C,1C).

The following is standard.

Proposition 10.1. Let u be a pronilpotent Lie algebra, and denote its abelianization by H1(u). Then

H1(u)∼= Hom(H 1
cts(u), K ).

If H 2(u)= 0, then u is a free Lie algebra.

Therefore, if Ext2C(1C,1C)= 0, then the Lie algebra u of the tannakian fundamental group of C is freely
generated by Ext1C(1C,1C)

∗, the K -dual of Ext1C(1C,1C).
Now we compute extension groups in categories CB

F , Can and CdR
K .

Lemma 10.2. Ext1C(1C,1C)∼=


H 1(E(C); F) when C = CB

F ,
H 1(E(C);C) when C = Can,
H 1

dR(E/K) when C = CdR
K .
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Proof. The first two cases are well known. The third case can be easily obtained by tensoring CdR
K with C

via the fixed embedding σ : K ↪→ C and invoking Grothendieck’s algebraic de Rham theorem, which
provides an isomorphism

H 1
dR(E/K)⊗K C ∼

−→ H 1(E(C);C);

instead, we provide another proof, explicitly constructing extensions by using our algebraic connection
formulas on PdR. Given a global 1-form ω on E , we can define a connection

∇ = d +
(

0 ω

0 0

)
,

on the trivial bundle OE ⊕OE . This defines an extension in Ext1CdR
K

(1CdR
K
,1CdR

K
) and gives rise to a map

e : H 0(E, �1
E)→ Ext1CdR

K

(1CdR
K
,1CdR

K
),

which is injective. To see this, we first tensor with C on both sides of this map. One can then identify the
complexified extension group on the right with H 1(E;C) by using monodromy. And the map becomes
the inclusion of holomorphic 1-forms on E into H 1(E;C), which is injective.

Suppose we have a vector bundle (V,∇) ∈ CdR
K , which is an extension of (OE , d) by (OE , d). By

forgetting the connections on all these bundles, this extension determines a class in Ext1E(OE ,OE) ∼=

H 1(E,OE). This gives rise to a map f and the following sequence

0→ H 0(E, �1
E)

e
−→ Ext1CdR

K

(1CdR
K
, 1CdR

K
)

f
−→ H 1(E,OE)→ 0.

The result follows if this is a short exact sequence.
Suppose a vector bundle (V,∇) represents a class in ker f , then we have a split extension (without

connection)

0→OE → V→OE → 0.

Fixing a splitting on V , the connection can be written as

∇ = d +
(

0 ω

0 0

)
,

where ω is a global 1-form on E . So we have

ker f = im e.

To show f is surjective, we provide here explicitly a vector bundle with connection that corresponds
to a nontrivial extension class in H 1(E,OE). Recall that the connection ∇ on PdR is given by algebraic
connection formulas

∇ =

{
d + νalg

1 = d − xdx
y T+ dx

y S+ · · · on E ′,

d + νreg
1 = d +

(
d
( 2x2

y

)
−

xdx
y

)
T+ dx

y S+ · · · on E ′′.
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The leading terms recorded here provides a connection on the abelianization of PdR. This gives a nontrivial
extension of OE by OE , thus corresponds to a nontrivial class in H 1(E,OE). �

10B. The de Rham tannakian fundamental group π1(CdR
K
, ωx). It is well known that there is an equiv-

alence of categories
CB

C � Can.

The right arrow is the functor that takes a unipotent local system V over E ′ to Deligne’s canonical
extension (V,∇) of V⊗Oan

E ′ , where

∇ : V→ V ⊗�1
E(log{id}).

The left arrow is the functor obtained by taking locally flat sections of V over E ′. By this equivalence, we
obtain an isomorphism between their tannakian fundamental groups

compan,B : π1(Can, ωx)
∼=−→ π1(CB

C, ωx)= π
un
1 (E

′, x)×Q C (13)

for each x ∈ E ′(C). By Section 4A, as an abstract group, the unipotent fundamental group πun
1 (E

′, x)C
can be identified with its Lie algebra LC(A,T)

∧, which is the same as LC(S,T)
∧, where A, S and T are

the sections defined in Section 2D.
The local system P over E ′ is a pro-object in CB

C
, which is equivalent to an action

π1(CB
C, ωx)→ Aut LC(A,T)

∧ (14)

of the tannakian fundamental group on the fiber of P over x . This corresponds to the adjoint action of
LC(A,T)

∧ on itself
ad : LC(A,T)

∧
→ Der LC(A,T)

∧. (15)

There is another equivalence of categories

CdR
C � Can,

where the right arrow is the obvious one, and the left arrow exists by GAGA: since Ean
= E(C) is

projective, the category of analytic sheaves over Ean is equivalent to its algebraic counterpart over C. By
this equivalence, we have an isomorphism of tannakian fundamental groups

π1(Can, ωx)→ π1(CdR
C , ωx)

for any x ∈ E(C). Although it is well known that for each x ∈ E(K) one can get a canonical K-structure
π1(CdR

K , ωx) on π1(CdR
C
, ωx), we provide an elaborate proof to set up the discussion of universal connection

in the next subsection.

Proposition 10.3. There is a natural comparison isomorphism

compan,dR : π1(Can, ωx)→ π1(CdR
K , ωx)×K C

for any x ∈ E(K).
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Proof. This map compan,dR is induced from the functor of tensoring with C by using the fixed embedding
σ : K ↪→ C:

CdR
K ⊗C→ CdR

C ' Can.

We study it by working with a special object. In Section 8, we constructed such an object: an algebraic
vector bundle (PdR,∇) over E with a connection ∇ defined over K. It is a pro-object in CdR

K , and
corresponds to an action

π1(CdR
K , ωx)→ Aut LK(S,T)

∧ (16)

of the tannakian fundamental group on the fiber over x . Recall from Theorem 8.3 that

(PdR,∇)⊗K C≈ (P,∇an),

where P is Deligne’s canonical extension of P over E ′ to E . Therefore, after tensoring with C, we obtain
the object P in Can, which, by (13) and (14), is equivalent to an action

π1(Can, ωx)→ Aut LC(S,T)
∧.

This action factors through the action given by (16)×K C, that is, we have a diagram

π1(Can, ωx) π1(CdR
K , ωx)×K C

Aut LC(S,T)
∧

compan,dR

Note that the functor that takes a unipotent group to its Lie algebra is an equivalence of categories between
the category of unipotent K-groups and the category of nilpotent Lie algebras over K. The above diagram
is thus equivalent to the following diagram

LC(A,T)
∧ u(CdR

K , ωx)⊗K C

Der LC(A,T)
∧

ad

where u(CdR
K , ωx) denotes the Lie algebra of π1(CdR

K , ωx). Since the adjoint action ad : LC(A,T)
∧
→

Der LC(A,T)
∧ from (15) is injective, the top row of the previous diagram

compan,dR : π1(Can, ωx)→ π1(CdR
K , ωx)×K C

must also be injective. The surjectivity of this map follows from the fact that the Lie algebra u(CdR
K , ωx)

is generated by the K-dual H 1
dR(E/K)

∗ of H 1
dR(E/K), see discussion in Section 10A. �

Remark 10.4. One can choose x to be a tangential base point. For example, one can take the fiber functor
to be the fiber at the unit tangent vector Ev at the identity of E . We will denote this fiber functor by ωEv.
For an admissible variation of Hodge structures, this amounts to taking the limit mixed Hodge structure
associated to the tangent vector, see the natural definition given in [Hain 1987]. See also [Deligne 1989,
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Sections 15.3–15.12] for tangential base points and [Hain 2013, Section 16] for their relations to limit
mixed Hodge structures.

Corollary 10.5. There is an isomorphism of groups over K

π1(CdR
K , ωx)∼= exp LK(S,T)

∧

for any x ∈ E(K).

Remark 10.6. One can establish the isomorphism in a different way. By Deligne [1989, Corollary 10.43],
in the unipotent case, the tannakian fundamental groupoid is compatible with extension of scalars. In
particular, for our category CdR

K , given any x ∈ E(K), restricting its tannakian fundamental groupoid to a
diagonal point (x, x) gives a tannakian fundamental group defined over K, which is also compatible with
extension of scalars, i.e., π1(CdR

K )×K C∼= π1(CdR
C
). Therefore, one obtains an isomorphism

π1(Can, ωx)→ π1(CdR
K , ωx)×K C.

10C. Universal unipotent connection over an elliptic curve E/K. Using the explicit universal connec-
tion ∇ on PdR, we provide an explicit construction of the K-connection that has regular singularity at
the identity of E/K on a unipotent vector bundle V 14 in CdR

K which, by Corollary 10.5, corresponds to a
unipotent representation

ρ : exp LK(S,T)
∧
→ Aut(V ).

This is achieved by composing the universal connection forms with the representation ρ.
Given a unipotent vector bundle V over E/K in CdR

K . Choose the fiber functor ωEv over the unit tangent
vector Ev at the identity of E and denote by V := VEv the fiber over the tangent vector Ev at the identity (see
Remark 10.4). This vector bundle V corresponds to a unipotent representation

ρ : exp LK(S,T)
∧
→ Aut(V ),

and equivalently a Lie algebra homomorphism

log ρ : LK(S,T)
∧
→ End(V ).

Recall that we have defined 1-forms

ν
alg
1 ∈�

1(E ′)⊗ LK(S,T)
∧ and ν

reg
1 ∈�

1(E ′′ log{id})⊗ LK(S,T)
∧

in Section 7 and Section 8, respectively. They are gauge equivalent on E ′ ∩ E ′′ via the transformation

greg : E ′ ∩ E ′′→ exp LK(S,T)
∧
⊂ Aut LK(S,T)

∧.

Define 1-forms
�′V := (1⊗ log ρ) ◦ νalg

1 ∈�
1(E ′)⊗End(V )

14One should think of this bundle as Deligne’s canonical extension to E of V over E ′.
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and

�′′V := (1⊗ log ρ) ◦ νreg
1 ∈�

1(E ′′ log{id})⊗End(V ).

Over E ′ and E ′′, we endow trivial bundles

V × E ′ and V × E ′′

E ′ E ′′

with connections ∇ = d +�′V and ∇ = d +�′′V , respectively. Define

gV : E ′ ∩ E ′′→ Aut(V )

by gV := exp(log ρ ◦ log greg), then �′V and �′′V are gauge equivalent on E ′ ∩ E ′′ via gV . After gluing
these two trivial bundles by the gauge transformation gV , we obtain a connection ∇ on V defined over K

such that

∇ : V→ V ⊗�1
E(log{id}).

Part III. Universal elliptic KZB connection — algebraic formula

Levin and Racinet [2007, Section 5] sketched a proof to show that the bundle P over E and its
connection, the universal elliptic KZB connection, are defined over Q. However, just as in the case of a
single elliptic curve, their work is incomplete in that their connection formula has irregular singularities
along the identity section of E .

We show that after an algebraic change of gauge, the universal elliptic KZB connection has regular
singularities along the identity section of E and the nodal cubic. Since all these data are defined over Q,
we have completed the work.

Similar to the previous part, we compute explicitly the connection formula in terms of algebraic
coordinates on E . We resolve the issue of irregular singularities by trivializing the bundle on two open
subsets E ′ and E ′′ of E , where E ′ is obtained from E by removing the identity section,15 and E ′′ is obtained
from E by removing three sections that correspond to three nontrivial order 2 elements on each fiber. On
both open subsets, the algebraic connection formulas are defined over Q, and the one on E ′′ has regular
singularities along the identity section. Note that the singularities around the nodal cubic are regular on
both open subsets, and the gauge transformation on their intersection is compatible with the canonical
extension P of P over E to E . One can think of the universal elliptic KZB connection as an algebraic
connection on an algebraic vector bundle PdR over E , which is defined over Q with regular singularities
along boundary divisors. Therefore, we have constructed a Q-de Rham structure PdR on P over E .

15It is M1,2 as defined in Section 1B.
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11. Algebraic connection formula over E ′

In Section 5, we defined the universal elliptic KZB connection ∇an on the bundle P over E ′ analytically.
This bundle P can be pulled back to a bundle over Man

1,1+E1
with connection, which we also denote by ∇an.

In this section, we will write this connection in terms of algebraic coordinates x , y, u, v on M1,1+E1
(defined in Section 1A). The connection is Gm-invariant, and is trivial on each fiber of M1,1+E1→M1,2,
thus descends to a connection on M1,2 = E ′.

As in the case of a single elliptic curve, fiber by fiber, we apply the gauge transformation of

galg(ξ, τ )= exp
(
−

E1

2π i
T

)
with both galg and E1 having the extra variable τ . After the gauge transformation, the connection

∇
an
= d +ω

transforms into

∇ = d +ωalg = d − dgalg · g−1
alg + galgωg−1

alg .

So using Formulas 3.3, 3.6 and 3.7 and Lemma 9.3 in [Hain 2013] we have

ωalg =−dgalg · g−1
alg + galg ·

(
2π i dτ ⊗A

∂

∂T

)
+ galgψg−1

alg + galgνg−1
alg

=
1

2π i

(
∂E1

∂ξ
dξ +

∂E1

∂τ
dτ
)
T+ 2π i dτ ⊗A

∂

∂T
+ψ

+
1− exp(−E1/(2π i)T)

T
·A⊗ 2π idτ + exp

(
−

E1T

2π i

)
TFZag(2π iξ,T, τ ) ·A⊗ dξ

+ exp
(
−

E1T

2π i

)(
1
T
+T

∂FZag

∂T
(2π iξ,T, τ )

)
·A⊗ 2π idτ

=
1

2π i

(
−E2dξ +

1
2π i

(E3− E1 E2)dτ
)
T+ 2π i dτ ⊗A

∂

∂T
+ψ

+
1− exp(−E1/(2π i)T)

T
·A⊗ 2π idτ + exp

(
−

∞∑
k=2

(−T)k

k
Pk(ξ, τ )

)
·A⊗ 2π idξ

+ 2π idτ ⊗
[

exp(−E1/(2π i)T)
T

+ exp
(
−

∞∑
k=2

(−T)k

k
Pk(ξ, τ )

)( ∞∑
k=1

(−T)k−1 Pk(ξ, τ )−
1
T

)]
·A

=

(
−(2π i)−2(E2− e2)T+ exp

(
−

∞∑
k=2

(−T)k

k
Pk(ξ, τ )

)
· S

)
⊗ 2π i

(
dξ +

1
2π i

E1dτ
)

+ (2π i)−3 E3T⊗ 2π idτ + 2π i dτ ⊗A
∂

∂T
+ψ

+

[
exp

(
−

∞∑
k=2

(−T)k

k
Pk(ξ, τ )

)( ∞∑
k=2

(−T)k−1 Pk(ξ, τ )−
1
T

)
+

1
T

]
· S⊗ 2π idτ
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Recall the map from Section 1B

(C× h)−3h→Man
1,1+E1
= {(x, y, u, v) ∈ C2

×C2
: y2
= 4x3

− ux − v, (u, v) 6= (0, 0)}

(ξ, τ ) 7→
(
P2(ξ, τ ),−2P3(ξ, τ ), 20G4(τ ),

7
3 G6(τ )

)
that induces an isomorphism SL2(Z)nZ2

\\((C× h)−3h)∼=Gm\\Man
1,1+E1

. By pulling back through this
map, we identify some algebraic forms with their analytic counterparts appeared in the formula above in
the following

Lemma 11.1. Set α = 2udv− 3vdu, 1= u3
− 27v2. Then

2π i dτ =
3α
21

and 2π i
(

dξ +
1

2π i
E1dτ

)
=

dx
y
−

6x2
− u

y
α

21
−

1
6

d1
1

x
y
.

Proof. Direct computation from [Levin and Racinet 2007, Proposition 5.2.3]. �

Recall from Remark 3.4 that Pk(ξ, τ )= (2π i)−k(Ek−ek), k ≥ 2 can be written as rational polynomials
of x = P2(ξ, τ ), y =−2P3(ξ, τ ), u = 20G4(τ ) and v = 7

3 G6(τ ), i.e., for all k ≥ 2, it can be written as
Pk(x, y, u, v) ∈Q[x, y, u, v]. Combining this with Lemma 11.1, we only need to show that in terms of
basis elements T and S,

d + 2π i dτ ⊗A
∂

∂T
+ψ

is algebraic. But with respect to the above framing, d + 2π i dτ ⊗ A∂/∂T transforms to [Hain 2013,
Proposition 19.6]

d +
(
−

1
12

d1
1

T+
3α
21

S

)
∂

∂T
+

(
−

uα
81

T+
1
12

d1
1

S

)
∂

∂S
, (17)

and ψ transforms to

∑
m≥1

(
1

(2m)!
3α
21

p2m+2(u, v)⊗
∑

j+k=2m+1
j,k>0

(−1) j
[ad j

T(S), adk
T(S)]

∂

∂S

)
, (18)

where G2m+2 is replaced by p2m+2(u, v) ∈Q[u, v] (p2m(u, v)’s are polynomials defined by G2m(τ )=

p2m(20G4(τ ), 7G6(τ )/3), where G2m is a normalized Eisenstein series of weight 2m), and ad j
T denotes

the operation that takes the adjoint action of T repeatedly for j times. Note that every derivation
δ ∈ Der LQ(S,T)

∧ can be written uniquely in the form

δ = δ(S)
∂

∂S
+ δ(T)

∂

∂T
,

as it is determined by its values on S and T.
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So the algebraic 1-form of the universal elliptic KZB connection is given by

ωalg =

(
−

1
12

d1
1

T+
3α
21

S

)
∂

∂T
+

(
−

uα
81

T+
1
12

d1
1

S

)
∂

∂S
+

(
−

xdx
y
+

1
4
α

1

ux + 3v
y
+

1
6

d1
1

x2

y

)
T

+ exp
(
−

∞∑
k=2

(−T)k

k
Pk(x, y, u, v)

)
· S

(
dx
y
−

6x2
− u

y
α

21
−

1
6

d1
1

x
y

)
+

[
exp

(
−

∞∑
k=2

(−T)k

k
Pk(x, y, u, v)

)( ∞∑
k=2

(−T)k−1 Pk(x, y, u, v)−
1
T

)
+

1
T

]
· S

3α
21

+

∑
m≥1

(
1

(2m)!
3α
21

p2m+2(u, v)⊗
∑

j+k=2m+1 j,k>0

(−1) j
[ad j

T(S), adk
T(S)]

∂

∂S

)

=

(
−

1
12

d1
1

T+
3α
21

S

)
∂

∂T
+

(
−

uα
81

T+
1
12

d1
1

S

)
∂

∂S

+

(
−

xdx
y
+

1
4
α

1

ux + 3v
y
+

1
6

d1
1

x2

y

)
T+

(
dx
y
−

6x2
− u

y
α

21
−

1
6

d1
1

x
y

)
S

+

∑
n≥2

(
dx
y
−

6x2
− u

y
α

21
−

1
6

d1
1

x
y
+ (n− 1)

3α
21

)
qn(x, y, u, v) Tn

· S

+

∑
m≥1

(
1

(2m)!
3α
21

p2m+2(u, v)⊗
∑

j+k=2m+1 j,k>0

(−1) j
[T j
· S,Tk

· S]
∂

∂S

)

where 1= u3
− 27v2, α = 2udv− 3vdu, qn(x, y, u, v) ∈Q[x, y, u, v] (n ≥ 2) are essentially the same

polynomials as in Section 7 but with two more variables u, v (previously u, v are fixed as the elliptic
curve is fixed) and p2m(u, v) ∈ Q[u, v] are polynomials we just defined. This 1-form takes value in
Der LQ(S,T)

∧. We view LQ(S,T)
∧ as a Lie subalgebra of Der LQ(S,T)

∧ via the adjoint action, and Tn

acts on LQ(S,T)
∧ as adn

T.

12. Algebraic connection formula over E ′′

As in the single elliptic curve case, we apply the gauge transformation greg = exp(−(2x2/y)T) to the
previous formula for the algebraic 1-form, and obtain the algebraic 1-form

ωreg =−dgreg · g−1
reg + gregωalgg−1

reg

=

(
−

1
12

d1
1

T+
3α
21

S

)
∂

∂T
+

(
−

uα
81

T+
1
12

d1
1

S

)
∂

∂S

+

[(
d
(

2x2

y

)
−

xdx
y

)
+

1
4
α

1

ux + 3v
y

]
T+

(
dx
y
+

1
y

uα
21
−

1
6

d1
1

x
y

)
S

+

∑
n≥1

(
dx
y
+

1
y

uα
21
−

1
6

d1
1

x
y
+ (n− 1)

3α
21

)
rn(x, y, u, v)Tn

· S

+

∑
m≥1

(
1

(2m)!
3α
21

p2m+2(u, v)⊗
∑

j+k=2m+1 j,k>0

(−1) j
[T j
· S,Tk

· S]
∂

∂S

)
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where rn(x, y, u, v) ∈Q(x, y, u, v) (n ≥ 2) are essentially the same rational functions as in Section 8 but
with two more variables u, v.

Note that the Gm-action of λ multiplies T by λ, and S by λ−1. It is easy to check that both connection
forms ωalg and ωreg are Gm-invariant. One can also show that the latter connection form ωreg has regular
singularity along the identity section, and along the nodal cubic; the residue of the connection around the
identity section is ad[T,S], which is pronilpotent.

Just like the single elliptic curve case, we can use both connections ωalg and ωreg with the gauge
transformation greg between them to construct a vector bundle PdR over E/Q. Since both connection forms
are defined over Q and have regular singularities along the nodal cubic, we can extend PdR to E/Q and
obtain an algebraic vector bundle PdR.

Let (P,∇an) be Deligne’s canonical extension to E of the bundle P of (Lie algebras of) unipotent
fundamental groups over E ′. We have

Theorem 12.1 (the Q-de Rham structure PdR on P over E). There is an algebraic vector bundle PdR

over E/Q endowed with connection ∇, and an isomorphism

(PdR,∇)⊗Q C≈ (P,∇an).

The algebraic bundle PdR and its connection ∇ are both defined over Q. The Q-de Rham structure
(PdR,∇) on (P,∇an) is explicitly given by the connection formulas for ωalg on E ′ and ωreg on E ′′ above.
In particular, the connection ∇ has regular singularities along boundary divisors, the identity section and
the nodal cubic.
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Moments of random multiplicative functions,
II: High moments

Adam J Harper

We determine the order of magnitude of E
∣∣∑

n≤x f (n)
∣∣2q up to factors of size eO(q2), where f (n) is a

Steinhaus or Rademacher random multiplicative function, for all real 1≤ q ≤ c log x/ log log x .
In the Steinhaus case, we show that E

∣∣∑
n≤x f (n)

∣∣2q
= eO(q2)xq(log x/(q log(2q)))(q−1)2 on this whole

range. In the Rademacher case, we find a transition in the behavior of the moments when q ≈ (1+
√

5)/2,
where the size starts to be dominated by “orthogonal” rather than “unitary” behavior. We also deduce
some consequences for the large deviations of

∑
n≤x f (n).

The proofs use various tools, including hypercontractive inequalities, to connect E
∣∣∑

n≤x f (n)
∣∣2q with

the q-th moment of an Euler product integral. When q is large, it is then fairly easy to analyze this integral.
When q is close to 1 the analysis seems to require subtler arguments, including Doob’s L p maximal
inequality for martingales.

1. Introduction

In this sequence of papers, we are interested in the moments E
∣∣∑

n≤x f (n)
∣∣2q of random multiplicative

functions f (n).
We consider two different models for f (n), a Steinhaus random multiplicative function and a Rade-

macher random multiplicative function. We obtain a Steinhaus random multiplicative function by letting
( f (p))p prime be a sequence of independent Steinhaus random variables (i.e., distributed uniformly on the
unit circle {|z|= 1}), and then setting f (n) :=

∏
pa ‖ n f (p)a for all natural numbers n, where pa

‖ n means
that pa is the highest power of the prime p that divides n. We obtain a Rademacher random multiplicative
function by letting ( f (p))p prime be independent Rademacher random variables (i.e., taking values ±1
with probability 1

2 each), and then setting f (n) :=
∏

p | n f (p) for all squarefree n, and f (n)= 0 when n
is not squarefree.

Random multiplicative functions have attracted quite a lot of attention as models for functions of
number theoretic interest: for example, Rademacher random multiplicative functions were introduced
by Wintner [1944] as a model for the Möbius function µ(n). There are also probabilistic and analytic

When this work was started, the author was supported by a research fellowship at Jesus College, Cambridge. The work continued
while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California (supported by the
National Science Foundation under Grant No. DMS-1440140), during the Spring 2017 semester.
MSC2010: primary 11N56; secondary 11K65, 11L40.
Keywords: random multiplicative functions, random Euler products, moments, orthogonal behavior, unitary behavior,

martingales.
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motivations for studying them, see Saksman and Seip’s open problems paper [2016], for example. The
introduction to the previous paper [Harper 2017] in this sequence contains a more extensive discussion of
some of these connections.

Harper [2017] showed that for Steinhaus or Rademacher random multiplicative f (n), for all large x
we have

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

�

(
x

1+ (1− q)
√

log log x

)q

∀0≤ q ≤ 1.

In particular, taking q= 1
2 this implies that E

∣∣∑
n≤x f (n)

∣∣�√x/(log log x)1/4, which proved a conjecture
of Helson [2010] that the first absolute moment should be o(

√
x).

Our goal here is to investigate the case where q ≥ 1. When q ∈ N is fixed, one can expand the
2q-th power and reduce the calculation of E

∣∣∑
n≤x f (n)

∣∣2q to a number theoretic counting problem. For
example, in the Steinhaus case one has

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

= #
{

n1, . . . , n2q ≤ x :
q∏

i=1

ni =

2q∏
i=q+1

ni

}
.

Starting from this, one can obtain an asymptotic for the moment as x→∞, which was carried out by
Harper, Nikeghbali and Radziwiłł [Harper et al. 2015], and also independently by Heap and Lindqvist
[2016], and (in the Steinhaus case) in unpublished work of Granville and Soundararajan. The result is
that, for fixed q ∈ N and Steinhaus random multiplicative f (n), one has

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

∼ CSt(q)xq log(q−1)2 x as x→∞, (1-1)

where the constant CSt(q) satisfies CSt(q)= e−q2 log q−q2 log log q+O(q2) for large q . For Rademacher random
multiplicative f (n), when q = 1 we have that E

∣∣∑
n≤x f (n)

∣∣2 =∑n≤x,n squarefree 1∼ (6/π2)x , and for
fixed integer q ≥ 2 we have

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

∼ CRad(q)xq logq(2q−3) x as x→∞,

where the constant CRad(q) satisfies CRad(q)= e−2q2 log q−2q2 log log q+O(q2) for large q. As described in
[Harper et al. 2015; Heap and Lindqvist 2016], we actually have much more precise information about
the constants CSt(q),CRad(q) (for example they factor into explicit “arithmetic” and “geometric” parts),
but this will not be important for our purposes here.

We would like to have information about E
∣∣∑

n≤x f (n)
∣∣2q when q ≥ 1 is not necessarily integral, and

that allows q to vary as a function of x rather than being fixed.
Regarding uniformity in q, Theorem 4.1 of [Granville and Soundararajan 2001] implies that for

Steinhaus random multiplicative f (n), and uniformly for all large x and integers q ≥ 1 such that qeq
≤ x ,
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we have

e−q2 log q−q2 log log(2q)
(

log
(

log x
q log 2q

))−O(q2)

≤
E
∣∣∑

n≤x f (n)
∣∣2q

xq log(q−1)2 x
≤ e−q2 log q+O(q2).

This range of q is essentially the largest on which one could expect a result of a similar shape to (1-1).
Indeed, if q ≥ A log x/log log x for some A ≥ 1 (say) then we have

e−q2 log q−q2 log log(2q)xq log(q−1)2 x ≤ ((1+ o(1))A)−q2
xq ,

which becomes incompatible with the lower bound E
∣∣∑

n≤x f (n)
∣∣2q
≥
(
E
∣∣∑

n≤x f (n)
∣∣2)q =bxcq coming

from Hölder’s inequality.1 But the bounds of Granville and Soundararajan are imperfect, as the upper
bound doesn’t include the factor e−q2 log log(2q) that we expect to appear, and the lower bound features
the extraneous factor (log(log x/(q log 2q)))−O(q2). They also remain restricted to integer q. There are
various other results in the literature that study the Steinhaus moments E

∣∣∑
n≤x f (n)

∣∣2q , and variants of
them, for integer q, especially for small integers where one can try to obtain lower order terms in the
known asymptotics. See e.g., the preprint of Shi and Weber [2016]. However, the author is not aware of
any work giving sharp moment bounds for noninteger q , nor improving the dependence on q in Granville
and Soundararajan’s bounds [2001] for the large integer case.

We shall prove the following uniform estimate for all real q.

Theorem 1.1. There exists a small absolute constant c > 0 such that the following is true. If f (n) is a
Steinhaus random multiplicative function, then uniformly for all large x and real 1≤q≤c log x/(log log x)
we have

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

= e−q2 log q−q2 log log(2q)+O(q2)xq log(q−1)2 x .

To avoid any confusion, we restate this first result more explicitly: on the stated range of q and x , we
always have

e−q2 log q−q2 log log(2q)−Cq2
≤

E
∣∣∑

n≤x f (n)
∣∣2q

xq log(q−1)2 x
≤ e−q2 log q−q2 log log(2q)+Cq2

,

for a certain absolute constant C . We do not know how to prove an asymptotic like (1-1) when q is not a
fixed natural number.

1In this paper we are not particularly concerned with the case where q ≥ log x/log log x , but for completeness we make a
few indicative remarks. Section 6 of Granville and Soundararajan [2001] contains various results on this range of q. Setting
v = log(2q(log q)/ log x) � 1, and redoing the calculations on page 2293 with the Rankin shift 1 + q/log x replaced by
1+ v/log(q log x) and with q2-smooth numbers replaced by q log x-smooth numbers, one can show that E

∣∣∑
n≤x f (n)

∣∣2q
≤

xq(1+v/log(q log x)+o(1)) uniformly for q ≥ log x/log log x . In particular, if q = log1+a x for any fixed a ≥ 0 then we have
E
∣∣∑

n≤x f (n)
∣∣2q
≤ xq(1+a/(a+2)+o(1)). By only considering the contribution to the expectation from the event that f (p)

is very close to 1 for all primes p ≤ q log x/log log x = log2+a x/log log x , one can obtain a comparable lower bound for
E
∣∣∑

n≤x f (n)
∣∣2q (as in Corollary 6.3 of Granville and Soundararajan [2001]).
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In the Rademacher case, even conjecturally the behavior of E
∣∣∑

n≤x f (n)
∣∣2q is perhaps not obvious.

On a wide range of real q ≥ 2, we might expect that

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

= e−2q2 log q−2q2 log log(2q)+O(q2)xq logq(2q−3) x

as in the known asymptotics. But this certainly cannot be the answer for all 1≤ q ≤ 2, since on some of
that range the exponent q(2q − 3) of the logarithm would be negative. (And, by Hölder’s inequality, we
must at least have E

∣∣∑
n≤x f (n)

∣∣2q
≥
(
E
∣∣∑

n≤x f (n)
∣∣2)q � xq .)

Theorem 1.2. Let q0 = (1+
√

5)/2≈ 1.618. There exists a small absolute constant c > 0 such that the
following is true. If f (n) is a Rademacher random multiplicative function, then uniformly for all large x
and real 1≤ q ≤ c log x/log log x we have

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

= e−2q2 log q−2q2 log log(2q)+O(q2)
(
1+min

{
log log x, 1

|q−q0|

})
xq logmax{(q−1)2,q(2q−3)} x .

With hindsight, the exponent of log x we obtain in Theorem 1.2 is perhaps quite natural, since one
doesn’t expect slower growth in the Rademacher than the Steinhaus case (where there is “more room”
for the complex valued random variables to cancel), and we expect q(2q − 3) to be the correct exponent
eventually. Notice that the golden ratio q0 is the value at which q(2q−3) becomes larger than (q−1)2. But
the additional factor min{log log x, 1/|q − q0|} that appears for q close to q0 seems genuinely unexpected,
and hard to understand except through an inspection of the proof of the theorem.

Next we shall discuss the proofs. Once q is moderately large, namely when q ≥ log log x , we can
prove the upper bounds in Theorems 1.1 and 1.2 by fairly simple arguments. See Section 3. This is
because, for such q, terms like logO(q) x can be absorbed into the factor eO(q2) in our theorems, so we
can afford to use simple techniques that are a bit wasteful (e.g., involving Hölder’s inequality to reduce to
the case of integer q) to reduce matters to a counting problem. Then Rankin’s trick is almost sufficient to
perform the relevant counts. To obtain the terms e−q2 log log(2q) and e−2q2 log log(2q) in the theorems, we use
Rankin’s trick along with a slightly more careful treatment of small prime factors.

Our main work is to prove Theorems 1.1 and 1.2 for 1 ≤ q ≤ log log x , and also the lower bounds
for larger q. Let F(s)=

∑
∞

n=1,p | n⇒p≤x f (n)/ns denote the Dirichlet series corresponding to f (n), on
x-smooth numbers (i.e., numbers with all their prime factors ≤ x). We can also write F(s) as an Euler
product, namely F(s)=

∏
p≤x(1− f (p)/ps)−1 in the Steinhaus case and F(s)=

∏
p≤x(1+ f (p)/ps)

in the Rademacher case. In the author’s treatment [Harper 2017] of low moments, the first step was to
show (roughly) that E

∣∣∑
n≤x f (n)

∣∣2q
≈ xqE

( 1
log x

∫ 1/2
−1/2

∣∣F(1
2 + i t

)∣∣2 dt
)q when 2

3 ≤ q ≤ 1. Similarly, our
first step here is to show that

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

≈ eO(q2)xqE

(
1

log x

∫ 1/2

−1/2

∣∣F(1
2 +

q
log x + i t

)∣∣2 dt
)q

. (1-2)
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Note the shift by q/ log x in the integral, which is analogous to the use of Rankin’s trick in our elementary
upper bound argument for q ≥ log log x . The basic strategy for proving something like (1-2) is the same
as in [Harper 2017], namely conditioning on the behavior of f (n) on smaller primes; using fairly standard
moment inequalities, like Khintchine’s inequality, to show the conditional expectation behaves like a
power of a mean square average; and using Parseval’s identity to relate the mean square to an integral
average of the Euler product. In [Harper 2017] one could bound terms by using Hölder’s inequality to
pass to the second moment, whereas here we need suitable rough bounds for high moments. These are
supplied by a pair of hypercontractive inequalities, see Probability Result 2.3 in Section 2. Applying the
hypercontractive inequalities introduces various divisor functions ddqe(n), d2dqe−1(n) into our calculations,
requiring a bit more number theoretic work as compared with the low moments argument of [Harper
2017]. We refer to the beginning of Section 4 for a rigorous formulation of (1-2), and more technical
comparison of this part of the argument with the low moments case [Harper 2017].

Next, we observe that the right-hand side of (1-2) is

≈ eO(q2)xqE

(
1

log2 x

∑
|n|≤(log x)/2

∣∣F(1
2 +

q
log x + i

n
log x

)∣∣2)q

, (1-3)

since heuristically the value of
∣∣F( 1

2 +
q

log x + i t
)∣∣ doesn’t change much on t intervals of length 1/ log x .

One can obtain rigorous statements of this kind using Hölder’s inequality in the upper bound arguments,
and Jensen’s inequality in the lower bound arguments, see Sections 5 and 6. Now we can see heuristically
why Theorems 1.1 and 1.2 might hold. In the Steinhaus case, the Euler product F(s) behaves on average
like an L-function from a unitary family, and then since we have q ≥ 1 (and very differently than in the
low moments case [Harper 2017]) the sum over n essentially gives us log x independent tries at obtaining
a large value of F(s). So the right-hand side of (1-3) is ≈ eO(q2)xq 1

log2q x
log xE

∣∣F( 1
2 +

q
log x

)∣∣2q
≈

eO(q2)xq 1
log2q−1 x

( log x
q log(2q)

)q2

, as in Theorem 1.1. In the Rademacher case, F
( 1

2+
q

log x + i t
)

behaves like an
L-function from an orthogonal family when t≈0, and like an L-function from a unitary family2 when t≈1.
Thus, thanks to those (log x)/4≤|n|≤ (log x)/2 (say) we get a contribution eO(q2)xq 1

log2q−1 x

( log x
q log(2q)

)q2

to

the right-hand side of (1-3), and thanks to the n = 0 term we get a contribution ≈ eO(q2)xq 1
log2q x

E
∣∣F( 1

2 +

q
log x

)∣∣2q
≈ eO(q2)xq 1

log2q x

( log x
q log(2q)

)2q2
−q . The factor (1 + min{log log x, 1/|q − q0|}) in Theorem 1.2

arises because of the contribution from intermediate values of n.
To prove the lower bounds in Theorems 1.1 and 1.2 rigorously, as we do in Section 6, roughly speaking

it suffices to note that (1-3) is ≥ eO(q2)xq 1
log2q x

E
∑
|n|≤(log x)/2

∣∣F( 1
2 +

q
log x + i n

log x

)∣∣2q , and then compute

E
∣∣F( 1

2+
q

log x + i n
log x

)∣∣2q . In practice the details are slightly more complicated because the precise version
of (1-3) involves some other terms, including subtracted error terms that must be upper bounded. However,

2At first glance, one might expect F
( 1

2 +
q

log x + i t
)

to behave like a symplectic L-function when t ≈ 0, because averaging
over Rademacher f (n) models averaging over quadratic Dirichlet characters. The reason we actually have orthogonal behavior
is because we restrict our sums

∑
n≤x f (n) to squarefree terms. For some other contexts where a transition from orthogo-

nal/symplectic to unitary behavior arises, as for large t here, see the papers of Florea [2017], Keating and Odgers [2008], and
Soundararajan and Young [2010], for example.
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we can obtain suitable upper bounds from our main Section 5 argument for proving the upper bounds in
Theorems 1.1 and 1.2.

To prove those upper bounds rigorously, we need to capture the fact that typically there will only be a
few large terms in the sum over n in (1-3). When q ≥ 2, a careful application of Hölder’s inequality lets us
bound (1-3) by estimating terms of the form E

∣∣F( 1
2 +

q
log x + i n

log x

)∣∣2∣∣F( 1
2 +

q
log x + i m

log x

)∣∣2(q−1). These
decrease in size quite rapidly as |m− n| becomes large (and, in the Rademacher case, as |m|, |n| become
large), because the parts of the two Euler products over primes > x1/|m−n| become decorrelated rather
than reinforcing one another. This indeed says that one doesn’t expect large contributions from many
different m, n. When 1 < q < 2, such a direct argument doesn’t seem to succeed, so we need a more
subtle approach. The rough idea is to treat parts of the Euler products over “small” and “large” primes
differently, so after a (different) careful application of Hölder’s inequality, one is led to expectations
where different parts of the Euler product appear to different exponents, to maximize the decorrelation
we capture. The most difficult situation is where q is very close to 1 (i.e., q = 1+ o(1) as x→∞). To
handle this without picking up any terms that blow up as q approaches 1, we use a martingale maximal
inequality (see Probability Result 2.5 in Section 2) that essentially lets us maximize over several different
splittings of the Euler product simultaneously.

As just described, we go to quite a lot of trouble to prove Theorems 1.1 and 1.2 when q is just a little
larger than 1. It is satisfying to have a uniform result (and a method capable of proving one), but in
addition this range of q turns out to be relevant for deducing the following corollary.

Corollary 1.3. Let x be large, and let f (n) be a Steinhaus or Rademacher random multiplicative function.
For all 2≤ λ≤

√
log x , say, we have

P

(∣∣∣∣∑
n≤x

f (n)
∣∣∣∣≥ λ√x

)
�

1
λ2 e−(log2 λ)/ log log x .

Proof of Corollary 1.3. For any 1≤ q ≤ 3
2 , say, Theorems 1.1 and 1.2 imply that

P

(∣∣∣∣∑
n≤x

f (n)
∣∣∣∣≥ λ√x

)
≤

E
∣∣∑

n≤x f (n)
∣∣2q

(λ
√

x)2q
�

log(q−1)2 x
λ2q =

1
λ2 e(q−1)2 log log x−2(q−1) log λ.

Calculus implies that the right-hand side is minimized if we choose q − 1= log λ
log log x , and inserting this

choice proves Corollary 1.3. �

In the paper [Harper 2017] on low moments, by considering E
∣∣∑

n≤x f (n)
∣∣2q with q a little smaller

than 1 the author showed that P
(∣∣∑

n≤x f (n)
∣∣ ≥ z
√

x/(log log x)1/4
)
� min{log z,

√
log log x}/z2 for

all z ≥ 2. Corollary 1.3 is weaker than this when λ≤ e
√

log log x , but stronger for larger λ. In [loc. cit.]
the author also showed (see Corollary 2 there, and the subsequent discussion) that P

(∣∣∑
n≤x f (n)

∣∣ ≥
z
√

x/(log log x)1/4
)
� e−(log2 z)/ log log x/z2(log log x)O(1) on a wide range of z. Together all these results

give a fairly complete description of the tail behavior of
∑

n≤x f (n), up to factors (log log x)O(1).
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We end this introduction with a few remarks on other possible approaches to Theorems 1.1 and 1.2,
and connections with the wider literature.

The quantity 1
log x

∫ 1/2
−1/2

∣∣F( 1
2+

q
log x +i t

)∣∣2 dt in (1-2) is closely related to (the total mass of a truncation
of) a probabilistic object called critical multiplicative chaos. This connection is discussed extensively in
the introduction to the low moments paper [Harper 2017], since in that case the techniques for analyzing
E
( 1

log x

∫ 1/2
−1/2

∣∣F( 1
2+

q
log x+i t

)∣∣2 dt
)q are heavily motivated by ideas from the multiplicative chaos literature.

When q>1 the analogous problem does not seem to have been investigated for critical multiplicative chaos,
since the q-th moment of the integral will diverge as x→∞ and this seems to be all the information that was
wanted in that case (where the usual interest is in letting x→∞ and obtaining a limiting measure whose
properties can be investigated). Theorems 1.1 and 1.2 show very different behavior in the Steinhaus and
Rademacher cases when q is large, whereas in the usual problems of multiplicative chaos one finds rather
universal behavior (and indeed the Steinhaus and Rademacher moments are of the same order when q ≤ 1).

Assuming the generalized Riemann hypothesis for Dirichlet L-functions, Munsch [2017] proved
almost sharp upper bounds for the 2k-th moment of theta functions θ(1, χ) as the character χ varies over
nonprincipal Dirichlet characters mod q , for each fixed k ∈ N. He did this by writing θ(1, χ) as a Perron
integral involving the L-function L(s, χ), and then expanding the 2k-th power and bounding the averages
of products

∏2k
j=1

∣∣L( 1
2 + i t j , χ

)∣∣ that emerge. This is interesting here because for even characters χ ,
θ(1, χ) behaves roughly like

∑
n≤
√

q χ(n), which is modeled by the sum
∑

n≤
√

q f (n) of a Steinhaus
random multiplicative function. In our case, using Perron’s formula we have

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

≈ E

∣∣∣∣ 1
2π

∫ √x

−
√

x
F
( 1

2 +
q

log x + i t
) x1/2+q/ log x+i t

1/2+ q/ log x + i t
dt
∣∣∣∣2q

≤ xqeO(q2)E

(∫ √x

−
√

x

∣∣F( 1
2 +

q
log x + i t

)∣∣ dt
|1/2+ q/ log x + i t |

)2q

,

say. We already have asymptotics for E
∣∣∑

n≤x f (n)
∣∣2q for fixed q ∈ N, but we might hope to get an

alternative proof of sharp upper bounds for q /∈ N by using Hölder’s inequality in some way. A direct
application, producing a term

∣∣F( 1
2+

q
log x + i t

)∣∣2q , cannot give sharp bounds because it doesn’t recognize
that the size of the expectation will be dominated by the integral of F

( 1
2 +

q
log x + i t

)
over a very short

(random) t interval. To detect this, one could pull out a few (say d) copies of the bracket before applying
Hölder’s inequality to the remaining ones. This would produce a multiple integral of terms of the form
E
(∏d

j=1

∣∣F( 1
2 +

q
log x + i t j

)∣∣)∣∣F( 1
2 +

q
log x + iu

)∣∣2q−d , and the biggest contribution comes when all of the
t j are approximately equal to u, so indeed we would capture the localization of the largest contributions.
Based on a few rough calculations, it appears this alternative method can prove sharp upper bounds if we
take d = 3 (we need to pull out enough terms to adequately detect the localization), and if q ≥ 5, say. But
for smaller q this kind of argument doesn’t seem operable to prove sharp bounds, indeed one has already
lost too much information in applying the triangle inequality to the Perron integral. Nevertheless, it might
permit a relatively straightforward extension of Munsch’s results [2017] to noninteger k ≥ 5.
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A standard strategy for proving lower bounds is to calculate

E

(∑
n≤x

f (n)
)

Rx,q( f ) and E|Rx,q( f )|2q/(2q−1),

where Rx,q( f ) is some function that is chosen as a proxy for
(∑

n≤x f (n)
)2q−1 that is easier to understand.

Then Hölder’s inequality gives

E

∣∣∣∣∑
n≤x

f (n)
∣∣∣∣2q

≥

∣∣E(∑n≤x f (n)
)
Rx,q( f )

∣∣2q

(E|Rx,q( f )|2q/(2q−1))2q−1 .

If we can estimate the expectations in the numerator and denominator, and Rx,q( f ) is well chosen so that
both of them do behave like E

∣∣∑
n≤x f (n)

∣∣2q (up to scaling factors that would cancel out), then one obtains
a sharp lower bound for the 2q-th moment. Munsch and Shparlinski [2016] proved sharp lower bounds for
the 2k-th moments of theta functions θ(1, χ), for fixed k ∈N, by implementing this strategy with a power
of a short character sum chosen as the “proxy” object. Our analysis shows that for Rademacher random
multiplicative functions, we can imagine heuristically that

∣∣∑
n≤x f (n)

∣∣ ≈ √
x

log x

∣∣F( 1
2 +

q
log x

)∣∣ (when
studying 2q-th moments with q>q0). Motivated by this, we could try taking Rx,q( f )=

∣∣F( 1
2+

q
log x

)∣∣2q−1,
or perhaps a small variant of this where primes smaller than q O(1) are excluded from the Euler product. In
the Rademacher case, rough calculations suggest this will indeed yield the lower bound E

∣∣∑
n≤x f (n)

∣∣2q
≥

eO(q2)xq(log x/(q log(2q)))q(2q−3), which is sharp when q > q0. For smaller q, and in the Steinhaus
case, our analysis suggests taking Rx,q( f )=

∑
|m|≤log x

∣∣F( 1
2 +

q
log x + i m

log x

)∣∣2q−1. This choice actually
won’t quite work, but rough calculations suggest that comparing E

∣∣∑
n≤x f (n)

∣∣2∑
|m|≤log x

∣∣F( 1
2 +

q
log x + i m

log x

)∣∣2(q−1) and E(
∑
|m|≤log x

∣∣F(1
2 +

q
log x + i m

log x

)∣∣2(q−1)
)q/(q−1) will yield sharp lower bounds

for E
∣∣∑

n≤x f (n)
∣∣2q . This does not seem simpler than our original proofs of the lower bounds in

Theorems 1.1 and 1.2, however.

Notation and references. We will say a number n is y-smooth if all prime factors of n are ≤ y. We
will generally use p to denote primes. Unless mentioned otherwise, the letters c,C will denote positive
constants, c usually being a small constant and C a large one. We write f (x)= O(g(x)) and f (x)� g(x),
both of which mean that there exists C such that | f (x)| ≤ Cg(x), for all x . Sometimes this notation
will be adorned with a subscript parameter (e.g., Oε(·) and�δ), meaning that the implied constant C is
allowed to depend on that parameter. We write f (x)� g(x) to mean that g(x)� f (x)� g(x), in other
words that cg(x)≤ | f (x)| ≤ Cg(x) for some c,C , for all x .

The books of Gut [2013] and of Montgomery and Vaughan [2007] may be consulted as excellent
general references for probabilistic and number theoretic background for this paper.

2. Preliminary results

Random Euler products. We begin with some “two point” estimates for the expectation of the 2α-th
power of a random Euler product, multiplied by the 2β-th power of an imaginary shift of that product.
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These estimates, and small variants of them, will be basic tools throughout our work. The calculations are
closely related to computations of shifted moments of L-functions, as in the papers of Chandee [2011]
and of Soundararajan and Young [2010], for example.

Euler Product Result 2.1. If f is a Steinhaus random multiplicative function, then for any real α, β ≥ 0,
any real 100(1+max{α2, β2

})≤ x ≤ y, and any real σ ≥−1/ log y and t , we have

E
∏

x<p≤y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2α∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−2β

= exp
{ ∑

x<p≤y

α2
+β2
+ 2αβ cos(t log p)

p1+2σ + O
(

max{α, β, α3, β3
}

√
x log x

)}
.

If we also have σ ≤ 1/ log y, then the above is

= eO(max{α,β,α2,β2
}(1+|t |/ log100 x))

(
log y
log x

)α2
+β2(

1+min
{

log y
log x

,
1

|t | log x

})2αβ

.

In particular, for any real α ≥ 0, any real 100(1+α2)≤ x ≤ y, and any real σ ≥−1/ log y, we have

E
∏

x<p≤y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2α

= exp
{ ∑

x<p≤y

α2

p1+2σ + O
(

max{α, α3
}

√
x log x

)}
,

and if σ ≤ 1/ log y as well then this is = eO(max{α,α2
})(log y/log x)α

2
.

Proof of Euler Product Result 2.1. For concision in writing the proof, let us temporarily set M =
M(α, β) :=max{α, β, α3, β3

}.
Firstly, using the Taylor expansion of the logarithm we may rewrite∣∣∣∣1− f (p)

p1/2+σ

∣∣∣∣−2α∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−2β

= exp
{
−2α< log

(
1−

f (p)
p1/2+σ

)
− 2β< log

(
1−

f (p)
p1/2+σ+i t

)}
= exp

{
2α< f (p)

p1/2+σ +
α< f (p)2

p1+2σ +
2β< f (p)p−i t

p1/2+σ +
β< f (p)2 p−2i t

p1+2σ + O
(

max{α, β}
p3/2+3σ

)}
.

Next, if y ≥ p > x ≥ 100 max{α2, β2
} then every term in the exponential here has size at most

2 max{α, β}/p1/2+σ
= 2 max{α, β}e−σ log p/p1/2

≤ e/5. Therefore we may apply the series expansion of
the exponential function, finding the above is

= 1+
2(α< f (p)+β< f (p)p−i t)

p1/2+σ +
(α< f (p)2+β< f (p)2 p−2i t)

p1+2σ +
2(α< f (p)+β< f (p)p−i t)2

p1+2σ

+ O
(

M
p3/2+3σ

)
.
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Now taking expectations, by symmetry we have E< f (p) = E< f (p)2 = 0, similarly for E< f (p)p−i t

and E< f (p)2 p−2i t . A simple trigonometric calculation also shows that E(< f (p))2 = 1
2 , and similarly

E< f (p)< f (p)p−i t
= cos(t log p)/2. So we get

E

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2α∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−2β

= 1+
2E(α< f (p)+β< f (p)p−i t)2

p1+2σ + O
(

M
p3/2+3σ

)
= 1+

2(α2E(< f (p))2+ 2αβE< f (p)< f (p)p−i t
+β2E(< f (p)p−i t)2)

p1+2σ + O
(

M
p3/2+3σ

)
= 1+

α2
+β2
+ 2αβ cos(t log p)

p1+2σ + O
(

M
p3/2+3σ

)
= exp

{
α2
+β2
+ 2αβ cos(t log p)

p1+2σ + O
(

M
p3/2+3σ

)}
.

Combining the above calculation with the independence of f on distinct primes, and using that, for
p ≤ y,

p3/2+σ
= eσ log p p3/2

≥ e−1 p3/2 and
∑
p>x

1
p3/2 �

1
√

x log x
,

we deduce that the quantity

E
∏

x<p≤y

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2α∣∣∣∣1− f (p)
p1/2+σ+i t

∣∣∣∣−2β

in the statement of the result is

= exp
{ ∑

x<p≤y

(
α2
+β2
+ 2αβ cos(t log p)

p1+2σ + O
(

M
p3/2+3σ

))}

= exp
{ ∑

x<p≤y

α2
+β2
+ 2αβ cos(t log p)

p1+2σ + O
(

max{α.β, α3, β3
}

√
x log x

)}
.

To deduce the second part of Euler Product Result 2.1, we can use standard estimates from prime
number theory. Indeed, the Chebychev and Mertens estimates for sums over primes imply that∑

x<p≤y

α2
+β2

p1+2σ = (α
2
+β2)

∑
x<p≤y

1
p
+ (α2

+β2)
∑

x<p≤y

e−2σ log p
− 1

p

= (α2
+β2) log

(
log y
log x

)
+ O(max{α2, β2

}),

using that e−2σ log p
−1�|σ | log p� log p/log y for |σ | ≤ 1/ log y. We may remove the nuisance factor

p2σ from the sum
∑

x<p≤y(2αβ cos(t log p))/p1+2σ with the same error term. Then using the prime
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number theorem in the form π(z) := #{p ≤ z : p prime} =
∫ z

2 1/log u du+ O(z/(log100 z)), we have∑
x<p≤y

cos(t log p)
p

=

∫ y

x

cos(t log z)
z

dπ(z)

=

∫ y

x

cos(t log z)
z log z

dz+ O
(

1+ |t |

log100 x

)
=

∫ log y

log x

cos(tu)
u

du+ O
(

1+ |t |

log100 x

)
.

Now if |t | log y ≤ 1, then the estimate cos(tu) = 1 + O((tu)2) shows the integral is log log y −
log log x + O((t log y)2) = log(log y/log x)+ O(1). If instead we have |t | log x ≤ 1 but |t | log y > 1,
then we can evaluate the part of the integral with u ≤ 1/|t | using the estimate cos(tu)= 1+ O((tu)2),
and estimate the rest using integration by parts, yielding an overall estimate log(1/(|t | log x))+ O(1). If
|t | log x > 1 then integration by parts shows the whole integral is O(1). In any case, the second part of
Euler Product Result 2.1 is proved.

The third part follows by setting β = 0 in the preceding statements. �

We will need a version of the above result for Rademacher random multiplicative functions. Unlike in
the Steinhaus case, the distribution of f (n)n−i t is not the same for all real t in the Rademacher case, so
our general statement must allow two different imaginary shifts in our two Euler product factors.

Euler Product Result 2.2. If f is a Rademacher random multiplicative function, then for any real
α, β ≥ 0, any real 100(1+max{α2, β2

})≤ x ≤ y, and any real σ ≥−1/ log y and t1, t2, we have

E
∏

x<p≤y

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2α∣∣∣∣1+ f (p)
p1/2+σ+i t2

∣∣∣∣2β
= exp

{ ∑
x<p≤y

α2
+β2
+ (α2

−α) cos(2t1 log p)+ (β2
−β) cos(2t2 log p)

p1+2σ

+

∑
x<p≤y

2αβ(cos((t1+ t2) log p)+ cos((t1− t2) log p))
p1+2σ + O

(
max{α, β, α3, β3

}
√

x log x

)}
.

If we also have σ ≤ 1/ log y, then the above is

= e
O(max{α,β,α2,β2

}(1+ |t1|+|t2|
log100 x

))
(

1+min
{

log y
log x

,
|t1|−1

log x

})α2
−α(

1+min
{

log y
log x

,
|t2|−1

log x

})β2
−β

·

(
log y
log x

)α2
+β2((

1+min
{

log y
log x

,
|t1+ t2|−1

log x

})(
1+min

{
log y
log x

,
|t1− t2|−1

log x

}))2αβ

.

As an upper bound, we may replace the error term eO(max{α,β,α2,β2
}(1+(|t1|+|t2|)/(log100 x))) by

eO(max{α,β,α2,β2
}) min

{
log y
log x

, 1+
(|t1| + |t2|)1/100

log x

}|α2
−α|+|β2

−β|+4αβ

,
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and as a lower bound we may replace it by

eO(max{α,β,α2,β2
}) min

{
log y
log x

, 1+
(|t1| + |t2|)1/100

log x

}−(|α2
−α|+|β2

−β|+4αβ)

.

The estimation of the error terms here is rather crude, but will be sufficient as they only depend quite
mildly on the ti .

Proof of Euler Product Result 2.2. The proof is a fairly straightforward adaptation of the proof of
Euler Product Result 2.1. We again temporarily set M = M(α, β) :=max{α, β, α3, β3

}. In the first place
we have∣∣∣∣1+ f (p)

p1/2+σ+i t1

∣∣∣∣2α∣∣∣∣1+ f (p)
p1/2+σ+i t2

∣∣∣∣2β
= exp

{
2α< log

(
1+

f (p)
p1/2+σ+i t1

)
+ 2β< log

(
1+

f (p)
p1/2+σ+i t2

)}
= exp

{
2α< f (p)p−i t1

p1/2+σ −
α< f (p)2 p−2i t1

p1+2σ +
2β< f (p)p−i t2

p1/2+σ −
β< f (p)2 p−2i t2

p1+2σ + O
(

max{α, β}
p3/2+3σ

)}
= 1+

2(α< f (p)p−i t1 +β< f (p)p−i t2)

p1/2+σ −
(α< f (p)2 p−2i t1 +β< f (p)2 p−2i t2)

p1+2σ +

+
2(α< f (p)p−i t1 +β< f (p)p−i t2)2

p1+2σ + O
(

M
p3/2+3σ

)
.

Furthermore, in the Rademacher case we have f (p)2 ≡ 1, whilst still

E< f (p)p−i t
= cos(t log p)E f (p)= 0.

So we get

E

∣∣∣∣1+ f (p)
p1/2+σ+i t1

∣∣∣∣2α∣∣∣∣1+ f (p)
p1/2+σ+i t2

∣∣∣∣2β
= 1−

(α cos(2t1 log p)+β cos(2t2 log p))
p1+2σ +

2(α cos(t1 log p)+β cos(t2 log p))2

p1+2σ + O
(

M
p3/2+3σ

)
,

and using standard cosine identities this is all

= 1+
α2
+β2
+ (α2

−α) cos(2t1 log p)+ (β2
−β) cos(2t2 log p)

p1+2σ +

+
2αβ(cos((t1+ t2) log p)+ cos((t1− t2) log p))

p1+2σ + O
(

M
p3/2+3σ

)
= exp

{
α2
+β2
+ (α2

−α) cos(2t1 log p)+ (β2
−β) cos(2t2 log p)

p1+2σ +

+
2αβ(cos((t1+ t2) log p)+ cos((t1− t2) log p))

p1+2σ + O
(

M
p3/2+3σ

)}
.
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The first two conclusions of Euler Product Result 2.2 now follow exactly as in the proof of Euler Product
Result 2.1.

For the final claimed inequalities, we note that the source of the unwanted error term

O
(

max{α, β, α2, β2
}
|t1| + |t2|

log100 x

)
in the exponent lies in our using the prime number theorem to estimate the various sums∑

x<p≤y

(α2
−α) cos(2t1 log p)

p1+2σ ,

∑
x<p≤y

(β2
−β) cos(2t2 log p)

p1+2σ ,

∑
x<p≤y

2αβ cos((t1+ t2) log p)
p1+2σ ,

∑
x<p≤y

2αβ cos((t1− t2) log p)
p1+2σ .

Instead, if |t1| ≥ log100 x (which is the only case where it might produce a large error term) we can upper
bound

∑
x<p≤y(α

2
−α) cos(2t1 log p)/p1+2σ by

∑
x<p≤min{e|t1|1/100

,y}

|α2
−α|

p1+2σ +
∑

min{e|t1|1/100
,y}<p≤y

(α2
−α) cos(2t1 log p)

p1+2σ .

As in the proof of Euler Product Result 2.1, the second sum here is�max{α, α2
} (we can use the prime

number theorem to estimate it, since the lower end point is now sufficiently large that we don’t pick up a
big error term), and the first sum is

|α2
−α|

( ∑
x<p≤min{e|t1|1/100

,y}

1
p
+ O(1)

)
= |α2

−α|

(
min

{
log
(

log y
log x

)
, log

(
|t1|1/100

log x

)}
+ O(1)

)
.

We can handle the other sums similarly when t2, t1+ t2, t1− t2 are large. In the worst case, as an upper
bound this will produce an extra multiplicative factor

exp
{
(|α2
−α| + |β2

−β| + 4αβ)min
{

log
(

log y
log x

)
, log

(
1+

(|t1| + |t2|)1/100

log x

)}}
.

An exactly similar argument gives a lower bound with (|α2
−α|+|β2

−β|+4αβ) replaced by−(|α2
−α|+

|β2
−β| + 4αβ). �

Probabilistic preparations. Next we record some moment estimates, mostly fairly simple yet interesting,
that will be input to our arguments in various places.
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Probability Result 2.3 (Rough hypercontractive inequalities). For any real q ≥ 1, the following is true.
If f (n) is a Steinhaus random multiplicative function, then for any sequence of complex numbers

(an)n≤N we have

E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2q

≤

(∑
n≤N

|an|
2ddqe(n)

)q

,

where dk(·) denotes the k-fold divisor function (i.e., the number of k-tuples of natural numbers whose
product is ·, or equivalently the Dirichlet series coefficient of ζ(s)k), and dqe denotes the ceiling of q.

If f (n) is a Rademacher random multiplicative function, then for any sequence of complex numbers
(an)n≤N we have

E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2q

≤

(∑
n≤N

|an|
2d2dqe−1(n)

)q

.

Proof of Probability Result 2.3. By Hölder’s inequality, for any real q ≥ 1 we have

E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2q

≤

(
E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2dqe)q/dqe

,

so (replacing q by dqe) it suffices to treat the case where q is a natural number.
For Steinhaus f (n), expanding the 2q-th power and taking expectations we get

E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2q

=

∑
n1,...,,nq≤N

an1 · · · anq

∑
m1,...,mq≤N

am1 · · · amq 1∏q
i=1 ni=

∏q
i=1 mi

,

where 1 denotes the indicator function. Using the upper bound

|an1 · · · anq am1 · · · amq | ≤
( 1

2

)
(|an1 · · · anq |

2
+ |am1 · · · amq |

2),

together with the symmetry of the ni and the mi , we deduce that

E

∣∣∣∣∑
n≤N

an f (n)
∣∣∣∣2q

≤

∑
n1,...,nq≤N

|an1 · · · anq |
2

∑
m1,...,mq≤N

1∏q
i=1 ni=

∏q
i=1 mi
≤

∑
n1,...,nq≤N

|an1 · · · anq |
2dq

( q∏
i=1

ni

)
.

Finally, since the function dq(·) is submultiplicative we find the above is

≤

∑
n1,...,nq≤N

|an1 · · · anq |
2dq(n1) · · · dq(nq)=

(∑
n≤N

|an|
2dq(n)

)q

.

In the Rademacher case, one needs a bit more involved argument. We refer the reader to Lemma 2
of Halász [1983], where this result is proved by induction on the exponent 2q. We may remark that,
since Rademacher f (n) is only supported on squarefree n, we may assume that an is only nonzero for
squarefree n, and then d2dqe−1(n)= (2dqe− 1)�(n) where �(n) is the number of prime factors of n. The
ultimate source of the factors d2dqe−1(n) is that, when one expands the expectation in the inductive proof,
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the only surviving terms are those where the product n1 · · · n2q is a perfect square, so all the prime factors
of n2q must be repeated somewhere amongst the other terms n1, . . . , n2q−1. �

We describe the inequalities in Probability Result 2.3 as “rough hypercontractive inequalities” because
(if we take 2q-th roots of both sides) they upper bound an L2q -norm by a weighted L2 norm without any
other terms, but the weights ddqe(n), d2dqe−1(n) will not generally be the sharpest possible unless q is an
integer. One can prove more precise results for noninteger q using more subtle interpolation techniques,
see Section 2 of Bondarenko, Brevig, Saksman, Seip and Zhao [Bondarenko et al. 2018] for the Steinhaus
case, and Chapitre III of Bonami [1970] for the Rademacher case (expressed in rather different notation).
However, for our applications the extra precision in these inequalities will not be needed.

Probability Result 2.4. Let (εn)n≤N be a sequence of independent random variables, each satisfying
Eεn = 0 and E|εn|

2
= 1, and let (an)n≤N be a sequence of complex numbers. Then for any real q ≥ 1, we

have

E

∣∣∣∣∑
n≤N

anεn

∣∣∣∣2q

≥

(∑
n≤N

|an|
2
)q

.

Proof of Probability Result 2.4. Since we assume that q ≥ 1, simply applying Hölder’s inequality we get(∑
n≤N

|an|
2
)q

=

(
E

∣∣∣∣∑
n≤N

anεn

∣∣∣∣2)q

≤ E

∣∣∣∣∑
n≤N

anεn

∣∣∣∣2q

. �

If the εn are Rademacher or Steinhaus random variables,3 then Khintchine’s inequality (see e.g.,
Lemma 3.8.1 of Gut [2013]) in fact implies that E

∣∣∑
n≤N anεn

∣∣2q
�q

(∑
n≤N |an|

2
)q for all real q ≥ 0.

For our purposes here we will only require the simple lower bound in Probability Result 2.4, but it is
useful to keep Khintchine’s inequality in mind since it means that when we apply the lower bound, we
are doing something sharp.

The final result we shall record is more sophisticated, and requires some terminology before we can
state it. Suppose that (�,F,P) is a probability space, and (Fn)n≥0 is a filtration on F , in other words
a sequence of sub-σ -algebras satisfying F0 ⊆ F1 ⊆ · · · ⊆ F . We say a sequence of random variables
(Xn)n≥0 on (�,F,P) is a submartingale (relative to (Fn)n≥0 and P) if it satisfies:

(i) (adapted) Xn is measurable with respect to Fn , for all n ≥ 0.

(ii) (integrable) E|Xn| is finite, for all n ≥ 0;

(iii) (nondecreasing on average) For all n ≥ 1, the conditional expectation E(Xn |Fn−1)≥ Xn−1 almost
surely.

Condition (iii) says that a submartingale is nondecreasing on average, in quite a strong sense: for any
given value of Xn−1 (or, informally speaking, any other “information” from the sigma algebra Fn−1), the
conditional expectation of Xn will be at least as large. One can apply this property to partition the sample

3We emphasize that here we are referring to ordinary Rademacher or Steinhaus random variables, not random multiplicative
functions.
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space � in useful ways, and prove that the moments of the random variables comprising a submartingale
satisfy the following useful bound. We will use this as an ingredient in proving our 2q-th moment upper
bounds when q is close to 1.

Probability Result 2.5 (Doob’s L p maximal inequality, see Theorem 9.4 of Gut [2013]). Let (Xn)n≥0 be
a nonnegative submartingale (on some probability space and with respect to some filtration). Then for
any p > 1, we have

E( max
0≤k≤n

Xk)
p
≤

(
p

p− 1

)p

EX p
n .

Some miscellaneous lemmas. As in the first paper [Harper 2017] in this sequence, we will need the
following version of Parseval’s identity for Dirichlet series to help with relating E

∣∣∑
n≤x f (n)

∣∣2q to an
Euler product average.

Harmonic Analysis Result 2.6 (See (5.26) in Section 5.1 of [Montgomery and Vaughan 2007]). Let
(an)

∞

n=1 be any sequence of complex numbers, and let A(s) :=
∑
∞

n=1 an/ns denote the corresponding
Dirichlet series, and σc denote its abscissa of convergence. Then for any σ >max{0, σc}, we have

∫
∞

0

∣∣∑
n≤x an

∣∣2
x1+2σ dx =

1
2π

∫
∞

−∞

∣∣∣∣ A(σ + i t)
σ + i t

∣∣∣∣2 dt.

We will use the following estimate to handle sums of divisor-type functions that appear in our
calculations.

Number Theory Result 2.7. Let 0< δ < 1, let m ≥ 1, and suppose that max{3, 2m} ≤ y ≤ z ≤ y10 and
that 1< u ≤ v(1− y−δ). As usual, let �(d) denote the total number of prime factors of d (counted with
multiplicity). Then ∑

u≤d≤v,
p | d⇒y≤p≤z

m�(d)
�δ

(v− u)m
log y

∏
y≤p≤z

(
1−

m
p

)−1

.

This is a slight generalization of a result of Lau, Tenenbaum and Wu [2013, Lemma 2.1] (see also
[Halász 1983, Lemma 3]). See [Harper 2017, Section 2.1 ] for the full (short) proof.

3. Easier cases of the theorems

As remarked in the Introduction, since we allow a multiplicative error term eO(q2) in our theorems, it
turns out that proving our claimed upper bounds when log log x ≤ q ≤ c log x/log log x is somewhat
straightforward. We present these arguments in this section. Some of the techniques involved, including
the use of Rankin’s trick with an exponent roughly like 1+ q/ log x , and a special treatment of prime
factors that are� q2, will recur later when we develop our main arguments.
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The upper bound in the Steinhaus case, for very large q. For q ≥ log log x we have log(q−1)2 x =
logq2

+O(q) x = eO(q2) logq2
x . Thus to establish the upper bound part of Theorem 1.1 for log log x ≤ q ≤

c log x/log log x , it will suffice to show that∥∥∥∥∑
n≤x

f (n)
∥∥∥∥

2q
≤ e−(q/2) log q−(q/2) log log(2q)+O(q)√x logq/2 x,

where as usual we write ‖·‖r := (E|·|r )1/r .
To prove this, we first apply Minkowski’s inequality to obtain that∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
=

∥∥∥∥ ∑
m≤x,

m is q2 smooth

f (m)
∑

n≤x/m,
p|n⇒p>q2

f (n)
∥∥∥∥

2q
≤

∑
m≤x,

m is q2 smooth

∥∥∥∥ ∑
n≤x/m,

p|n⇒p>q2

f (n)
∥∥∥∥

2q
.

Recall here that a number is said to be q2-smooth if all of its prime factors are ≤ q2. Using the first part of
Probability Result 2.3, and then using Rankin’s trick of upper bounding 1n≤x/m by (x/(nm))1+q/ log x (and
recalling that the divisor function ddqe(n) is the Dirichlet series coefficient of ζ(s)dqe=

∑
∞

n=1 ddqe(n)/ns
=∏

p(1− 1/ps)−dqe), we get∥∥∥∥ ∑
n≤x/m,

p|n⇒p>q2

f (n)
∥∥∥∥

2q
≤

( ∑
n≤x/m,

p|n⇒p>q2

ddqe(n)
)1/2

≤

((
x
m

)1+q/ log x ∑
n≤x/m,

p|n⇒p>q2

ddqe(n)
n1+q/ log x

)1/2

≤

√
x
m

eO(q)
∏
p>q2

(
1−

1
p1+q/ log x

)−dqe/2
.

Finally, the product over primes here is ζ(1+ q/log x)dqe/2
∏

p≤q2(1− 1/p1+q/ log x)dqe/2. Using the
fact that the zeta function has a simple pole at 1, this equals eO(q)(log x/q)dqe/2e−

∑
p≤q2 (dqe/2)/(p1+q/ log x )

=

eO(q)(log x/q log q)q/2 on our range log log x ≤ q ≤ c log x/log log x . And when we sum over m we have∑
m≤x,m is q2 smooth 1/

√
m ≤ e

∑
p≤q2 O(1/

√
p)
≤ eO(q), so putting everything together we get an acceptable

upper bound for ‖
∑

n≤x f (n)‖2q .
�

The upper bound in the Rademacher case, for very large q. Similarly as in the Steinhaus case, to prove
the upper bound part of Theorem 1.2 for log log x ≤ q ≤ c log x/log log x it will suffice to show that, for
Rademacher random multiplicative f (n), we have∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
≤ e−q log q−q log log(2q)+O(q)√x logq x .
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Using Minkowski’s inequality, the second part of Probability Result 2.3, and then Rankin’s trick, we
get ∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
≤

∑
m≤x,

m is q2 smooth

∥∥∥∥ ∑
n≤x/m,

p|n⇒p>q2

f (n)
∥∥∥∥

2q

≤

∑
m≤x,

m is q2 smooth

( ∑
n≤x/m,

p|n⇒p>q2

d2dqe−1(n)
)1/2

≤

∑
m≤x,

m is q2 smooth

√
x
m

eO(q)
∏
p>q2

(
1−

1
p1+q/ log x

)−(2dqe−1)/2

.

We can estimate the product over primes as in the Steinhaus case, finding it is

eO(q)
(

log x
q

)(2dqe−1)/2

e−
∑

p≤q2 ((2dqe−1)/2)/p1+q/ log x
= eO(q)

(
log x

q log q

)q

on our range log log x ≤ q ≤ c log x/log log x . And when we sum over m we again have∑
m≤x,

m is q2 smooth

1
√

m
≤ e

∑
p≤q2 O(1/

√
p)
≤ eO(q),

so putting everything together we get an acceptable upper bound for
∥∥∑

n≤x f (n)
∥∥

2q . �

4. The reduction to Euler products

In this section we shall prove four propositions that make precise the assertion in (1-2) that E
∣∣∑

n≤x f (n)
∣∣2q

may be bounded by studying integrals of Euler products.

Upper bounds: statement of the propositions. We will need a little notation, which is exactly the same
as in the author’s previous paper [Harper 2017] dealing with low moments. Given a random multiplicative
function f (n) (either Steinhaus or Rademacher, depending on the context), and an integer 0≤ k≤ log log x ,
let Fk denote the partial Euler product of f (n) over xe−(k+1)

-smooth numbers. Thus for all complex s with
<(s) > 0, we have

Fk(s)=
∏

p≤xe−(k+1)

(
1−

f (p)
ps

)−1

=

∞∑
n=1,

n is xe−(k+1)
smooth

f (n)
ns

in the Steinhaus case, and

Fk(s)=
∏

p≤xe−(k+1)

(
1+

f (p)
ps

)
=

∞∑
n=1,

n is xe−(k+1)
smooth

f (n)
ns
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in the Rademacher case (the product taking a different form because f (n) is only supported on squarefree
numbers in that case).

Proposition 4.1. Let f (n) be a Steinhaus random multiplicative function, let x be large, and set L :=
b(log log x)/10c. Uniformly for all 1≤ q ≤ log0.05 x , we have∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
≤

√
x

log x
eO(q)

∑
0≤k≤L

∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q
+ eO(q)

√
x

log x
.

In the low moments case, Proposition 1 of [Harper 2017] gives an analogous upper bound for all
2
3 ≤ q ≤ 1, but with the quantity L replaced by the smaller quantity K = blog log log xc, and the shift
(q − k)/ log x in the Euler product replaced by −k/log x .

The additional shift by q/log x here corresponds to applying Rankin’s trick with exponent 1+q/ log x
in our treatment of very large q in Section 3. We can introduce this at the acceptable cost of a prefactor
eO(q) in the proposition, and it means that when we analyze the Euler product we can restrict attention to
numbers that are x1/q -smooth, which is crucial to obtaining the desired factor e−q2 log q in Theorem 1.1.
The significant contribution from very smooth numbers, when q becomes large, also explains why we
must let k run over a wider range than in the low moments case to obtain acceptable bounds. Finally, we
remark that the range 1≤ q ≤ log0.05 x allowed in Proposition 4.1 is somewhat artificial, but more than
sufficient since we already proved the Theorem 1.1 upper bound for all log log x ≤ q ≤ c log x/log log x
in Section 3. It could be increased somewhat, but it seems hard to obtain an upper bound of a similar
shape to Proposition 4.1 on the full range 1≤ q ≤ c log x/log log x , since for very large q the significant
contribution from very smooth numbers changes the behavior in parts of the proof.

Proposition 4.2. Let f (n) be a Rademacher random multiplicative function, let x be large, and set
L := b(log log x)/10c. Uniformly for all 1≤ q ≤ log0.05 x , we have∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q

≤

√
x

log x
eO(q)

∑
0≤k≤L

max
N∈Z

1
(|N | + 1)1/8

∥∥∥∥ ∫ N+1/2

N−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q
+ eO(q)

√
x

log x
.

One has to deal with translates by N in the Rademacher case because, unlike in the Steinhaus case, the
distribution of ( f (n)ni t) is not the same (for t 6= 0) as the distribution of ( f (n)) for Rademacher random
multiplicative f (n). However, as in the low moments argument in [Harper 2017], the main contribution
will come from small N .

Lower bounds: statement of the propositions. For our work on lower bounds, we again connect the
size of

∥∥∑
n≤x f (n)

∥∥
2q with a certain integral average, and thence with random Euler products. Let F

denote the partial Euler product of f (n), either Steinhaus or Rademacher, over x-smooth numbers. (Thus
F = F−1, if we slightly abuse our earlier notation).
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Proposition 4.3. If f (n) is a Steinhaus random multiplicative function, and x is large, then uniformly for
all q ≥ 1 we have ∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
�

√
x

log x

∥∥∥∥ ∫ x1/4

1

∣∣∣∣∑
m≤z

f (m)
∣∣∣∣2 dz

z2

∥∥∥∥1/2

q
.

In particular, for any large quantity V ≤ (log x)/q we have that
∥∥∑

n≤x f (n)
∥∥

2q is

�

√
x

log x

(∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q
−

C
eV q/2

∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣F(1
2
+

2V q
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q

)
,

where C > 0 is an absolute constant.

Notice that we don’t need to impose any upper bound on q here (although, for the second statement,
there is an implicit upper bound q� log x in order that we can choose large V ≤ (log x)/q). This means
we can use Proposition 4.3 to prove the lower bound in Theorem 1.1 on the full range of q there.

Proposition 4.4. If f (n) is a Rademacher random multiplicative function, then the first bound in
Proposition 4.3 continues to hold, and the second bound may be replaced by the statement that∥∥∥∥∑

n≤x

f (n)
∥∥∥∥

2q
�

√
x

log x

(∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q

−
C

eV q/2 max
N∈Z

1
(|N | + 1)1/8

∥∥∥∥ ∫ N+1/2

N−1/2

∣∣∣∣F(1
2
+

2V q
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q

)
.

These results are again of the same general shape as the corresponding Propositions 3 and 4 of [Harper
2017] from the low moments case. In fact, the propositions here are a little simpler as they don’t involve
an additional subtracted error term −C

√
x/log x . This is accomplished by some reorganization of the

proof, and shrinking the range of integration over z to [1, x1/4
] rather than [1,

√
x] from the low moments

case, which makes no difference when applying the results. The other difference, similarly as in Section 3
and in our discussion of upper bounds, is that here we introduce shifts of the shape 4V q/log x in our
Euler products, as opposed to 4V/log x in the low moments analogues.

Proof of Propositions 4.1 and 4.2. We begin with Proposition 4.1. Let P(n) denote the largest prime
factor of n, and recall that a number n is said to be y-smooth if P(n) ≤ y. Recall also that the divisor
function ddqe(n) is the Dirichlet series coefficient of ζ(s)dqe =

∏
p(1− 1/ps)−dqe. By Minkowski’s

inequality, we have∥∥∥∥∑
n≤x

f (n)
∥∥∥∥

2q
≤

∑
0≤k≤L

∥∥∥∥ ∑
n≤x,

xe−(k+1)
<P(n)≤xe−k

f (n)
∥∥∥∥

2q
+

∥∥∥∥ ∑
n≤x,

P(n)≤xe−(L+1)

f (n)
∥∥∥∥

2q
.
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Furthermore, the first part of Probability Result 2.3, followed by Rankin’s trick with exponent 1−1/log0.9 x(
bounding 1n≤x by

( x
n

)1−1/ log0.9 x
= xe− log0.1 x 1

n1−1/ log0.9 x

)
, implies that∥∥∥∥ ∑

n≤x,
P(n)≤xe−(L+1)

f (n)
∥∥∥∥

2q
≤

[ ∑
n≤x,

P(n)≤xe−(L+1)

ddqe(n)
]1/2

≤

[
xe− log0.1 x

∑
n≤x,

P(n)≤xe−(L+1)

ddqe(n)

n1−1/ log0.9 x

]1/2

.

Here the sum over n is ≤
∏

p≤xe−(L+1) (1− 1/p1−1/ log0.9 x)−dqe, and recalling that L := b(log log x)/10c
this is ≤

∏
p≤elog0.9 x (1− 1/p1−1/ log0.9 x)−dqe, which is = eO(q)∏

p≤elog0.9 x (1− 1/p)−dqe = logO(q) x by
standard Chebychev and Mertens estimates for sums over primes. Since we assume in Proposition 4.1
that q ≤ log0.05 x , this whole contribution is�

√
xe−c log0.1 x , which is more than acceptable.

Next, if we let E(k) denote expectation conditional on ( f (p))p≤xe−(k+1) , then the first part of Probability Re-
sult 2.3 applied, after conditioning on ( f (p))p≤xe−(k+1) , with

am = 1p |m⇒xe−(k+1)
<p≤xe−k ·

∑
n≤x/m,

n is xe−(k+1)
-smooth

f (n)

implies∑
0≤k≤L

∥∥∥∥ ∑
n≤x,

xe−(k+1)
<P(n)≤xe−k

f (n)
∥∥∥∥

2q
=

∑
0≤k≤L

∥∥∥∥ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

f (m)
∑

n≤x/m,
n is xe−(k+1)

-smooth

f (n)
∥∥∥∥

2q

=

∑
0≤k≤L

(
EE(k)

∣∣∣∣ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

f (m)
∑

n≤x/m,
n is xe−(k+1)

-smooth

f (n)
∣∣∣∣2q)1/2q

≤

∑
0≤k≤L

(
E

( ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
∣∣∣∣ ∑

n≤x/m,
n is xe−(k+1)

-smooth

f (n)
∣∣∣∣2)q)1/2q

.

To proceed further, we want to replace
∣∣∑

n≤x/m, n is xe−(k+1) -smooth f (n)
∣∣2 in the above by a smoothed

version. Set X = e
√

log x , say, and note that (uniformly for any 1≤ q ≤ log0.05 x) the above is∑
0≤k≤L

∥∥∥∥ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
∣∣∣∣ ∑

n≤x/m,
n is xe−(k+1)

-smooth

f (n)
∣∣∣∣2∥∥∥∥1/2

q

�

∑
0≤k≤L

∥∥∥∥ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
X
m

∫ m(1+1/X)

m

∣∣∣∣ ∑
n≤x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

∥∥∥∥1/2

q

+

∑
0≤k≤L

∥∥∥∥ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
X
m

∫ m(1+1/X)

m

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

∥∥∥∥1/2

q
.

(4-1)
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We next want to show that the second term in (4-1) may be discarded as an error term. Using
Minkowski’s inequality again, followed by Hölder’s inequality with exponent q applied to the normalized
integral X

m

∫ m(1+1/X)
m dt , this second term is

≤

∑
0≤k≤L

[ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
∥∥∥∥ X

m

∫ m(1+1/X)

m

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

∥∥∥∥
q

]1/2

≤

∑
0≤k≤L

[ ∑
1<m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
(

X
m

∫ m(1+1/X)

m
E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2q

dt
)1/q]1/2

.

The length of the sum over n here is x(t −m)/(mt)≤ x/(m X), so when x/X ≤ m ≤ x there will be at
most one term in the sum, and we simply have

E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2q

≤ 1.

When xe−(k+1)
< m < x/X , we take a fairly crude approach and use the Cauchy–Schwarz inequality,

obtaining that

E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2q

≤

[
E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2(2q−1)]1/2

�

[
x

m X
E

∣∣∣∣ ∑
x/t<n≤x/m,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2(2q−1)]1/2

�

[
x

m X

(
x
m

)2q−1

logO(q2) x
]1/2

=

(
x
m

)q logO(q2) x
X1/2 .

Here the crude upper bound (x/m)2q−1 logO(q2) x for the 2(2q−1)-th moment may be proved as in
Section 3.

Putting things together, we find that the second term in (4-1) is

�

∑
0≤k≤L

[
x logO(q) x

X1/2q

∑
1<m<x/X,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
m

+

∑
x/X≤m≤x,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
]1/2

.
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To bound the first of these sums we use the simple estimate

∑
1<m<x/X,

p |m⇒xe−(k+1)
<p≤xe−k

ddqe(m)
m

≤

∏
xe−(k+1)

<p≤xe−k

(
1− 1

p

)−dqe
,

which is = eO(q) by the Mertens estimate for products over primes. To bound the second sum, by
submultiplicativity of ddqe(·) we always have ddqe(m) ≤ dqe�(m), where �(m) is the total number of
prime factors of m. And we note (to obtain good dependence on k) that if m ≥ x/X only has prime
factors from the interval (xe−(k+1)

, xe−k
], then we must have �(m)≥ ek/2, say. So we get that∑

x/X≤m≤x,
p |m⇒xe−(k+1)

<p≤xe−k

ddqe(m)

is at most

5−ek/2
∑

x/X≤m≤x,
p |m⇒xe−(k+1)

<p≤xe−k

(5dqe)�(m)� 5−ek/2 ekqx
log x

∏
xe−(k+1)

<p≤xe−k

(
1−

5dqe
p

)−1

�
eO(q)2−ek

x
log x

,

where the first inequality uses Number Theory Result 2.7. Recalling that we have

q ≤ log0.05 x, L= b(log log x)/10c and X = e
√

log x ,

the second term in (4-1) is

≤

∑
0≤k≤L

[
x logO(q) x

X1/2q + eO(q)2−ek x
log x

]1/2

≤ eO(q)
√

x
log x

,

which is an acceptable contribution for Proposition 4.1.
Turning to the remaining first sum in (4-1), this is equal to

∑
0≤k≤L

∥∥∥∥ ∫ x

xe−(k+1)

∣∣∣∣ ∑
n≤x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 ∑

t/(1+1/X)≤m≤t,
p |m⇒xe−(k+1)

<p≤xe−k

X
m ddqe(m) dt

∥∥∥∥1/2

q
.

Now we set u = u(k, t) := ek(log t)/ log x , and notice that (by submultiplicativity) ddqe(m)≤ dqe�(m),
and if m ≥ t/(1 + 1/X) only has prime factors from the interval (xe−(k+1)

, xe−k
] then we must have

�(m) ≥ u− 1. So using Number Theory Result 2.7 (whose conditions are satisfied since X = e
√

log x

isn’t too large, and k ≤ (log log x)/10) we get
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∑
t/(1+1/X)≤m≤t,

p |m⇒xe−(k+1)
<p≤xe−k

X
m

ddqe(m)�
X
t

5−u
∑

t/(1+1/X)≤m≤t,
p |m⇒xe−(k+1)

<p≤xe−k

(5dqe)�(m)

�
qek5−u

log x

∏
xe−(k+1)

<p≤xe−k

(
1−

5dqe
p

)−1

�
eO(q)

log t
,

provided x is sufficiently large. Consequently, the first sum in (4-1) is

≤ eO(q)
∑

0≤k≤L

∥∥∥∥ ∫ x

xe−(k+1)

∣∣∣∣ ∑
n≤x/t,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dt

log t

∥∥∥∥1/2

q

= eO(q)
∑

0≤k≤L

√
x
∥∥∥∥ ∫ x1−e−(k+1)

1

∣∣∣∣ ∑
n≤z,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dz

z2 log(x/z)

∥∥∥∥1/2

q
,

where the second line follows from making the substitution z = x/t .
To obtain a satisfactory dependence on k in our final estimations, we now note that if z ≤

√
x we have

log(x/z)� log x , whereas if
√

x < z ≤ x1−e−(k+1)
we have log(x/z)� e−k log x . Thus in any case we

have log(x/z)� z−2k/ log x log x . As discussed earlier, we also want to introduce a Rankin style shift,
which we will achieve by adding a factor (x/z)2q/ log x

= eO(q)z−2q/ log x into the integral. Inserting these
estimates, we find the first sum in (4-1) is

≤

√
xeO(q)√
log x

∑
0≤k≤L

∥∥∥∥ ∫ x1−e−(k+1)

1

∣∣∣∣ ∑
n≤z,

xe−(k+1)
-smooth

f (n)
∣∣∣∣2 dz

z2+2q/ log x−2k/ log x

∥∥∥∥1/2

q
.

Finally, using Harmonic Analysis Result 2.6 and then Minkowski’s inequality, all of the above is

≤

√
x

log x
eO(q)

∑
0≤k≤L

∥∥∥∥ ∫ ∞
−∞

|Fk
(
1/2+ q/ log x − k/ log x + i t

)
|
2

|1/2+ q/ log x − k/ log x + i t |2
dt
∥∥∥∥1/2

q

≤

√
x

log x
eO(q)

∑
0≤k≤L

[∑
n∈Z

1
n2+ 1

∥∥∥∥ ∫ n+1/2

n−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥
q

]1/2

,

where Fk denotes the partial Euler product of f (n) over xe−(k+1)
-smooth numbers. In the Steinhaus case,

since the law of the random function f (n) is the same as the law of f (n)ni t for any fixed t ∈ R we have∥∥∥∥ ∫ n+1/2

n−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥
q
=

∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥
q
∀n.

Proposition 4.1 now follows on putting everything together. �
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The proof of Proposition 4.2, covering the Rademacher case, is very similar to the Steinhaus case.
We use the Rademacher part of Probability Result 2.3, producing various terms d2dqe−1(n) in place of
ddqe(n), but this doesn’t alter the analysis. The only nontrivial change comes at the very end of the proof,
where (since it is no longer the case that the law of the random function f (n) is the same as the law of
f (n)ni t ) we apply the bound[∑

n∈Z

1
n2+ 1

∥∥∥∥ ∫ n+1/2

n−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥
q

]1/2

�

[
max
N∈Z

1
(|N | + 1)1/4

∥∥∥∥ ∫ N+1/2

N−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥
q

]1/2

. �

Proof of Propositions 4.3 and 4.4. We proceed somewhat similarly to Section 2.5 of [Harper 2017] or
Section 2.2 of [Harper et al. 2015].

Again we let P(n) denote the largest prime factor of n, and we introduce an auxiliary Rademacher
random variable ε that is independent of everything else. Then we find that∥∥∥∥ ∑

n≤x,
P(n)>x3/4

f (n)
∥∥∥∥

2q
=

1
2

∥∥∥∥ ∑
n≤x,

P(n)>x3/4

f (n)+
∑
n≤x,

P(n)≤x3/4

f (n)+
∑
n≤x,

P(n)>x3/4

f (n)−
∑
n≤x,

P(n)≤x3/4

f (n)
∥∥∥∥

2q

≤
1
2

(∥∥∥∥ ∑
n≤x,

P(n)>x3/4

f (n)+
∑
n≤x,

P(n)≤x3/4

f (n)
∥∥∥∥

2q
+

∥∥∥∥ ∑
n≤x,

P(n)>x3/4

f (n)−
∑
n≤x,

P(n)≤x3/4

f (n)
∥∥∥∥

2q

)

≤

∥∥∥∥ε ∑
n≤x,

P(n)>x3/4

f (n)+
∑
n≤x,

P(n)≤x3/4

f (n)
∥∥∥∥

2q

=

∥∥∥∥∑
n≤x

f (n)
∥∥∥∥

2q
.

Here the first inequality is Minkowski’s inequality; the second is Hölder’s inequality (with exponent 2q)
applied only to the averaging over ε; and the final equality follows since the law of

ε
∑
n≤x,

P(n)>x3/4

f (n)= ε
∑

x3/4<p≤x

f (p)
∑

m≤x/p

f (m)

conditional on the values ( f (p))p≤x3/4 is the same as the law of
∑

n≤x, P(n)>x3/4 f (n).
Now in the decomposition ∑

n≤x, P(n)>x3/4

f (n)=
∑

x3/4<p≤x

f (p)
∑

m≤x/p

f (m),

the inner sums are determined by the values ( f (p))p≤x3/4 (and in fact by the values ( f (p))p≤x1/4), which
are independent of the outer random variables ( f (p))x3/4<p≤x . So conditioning on the values ( f (p))p≤x3/4
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determining the inner sums and applying Probability Result 2.4 with ap =
∑

m≤x/p f (m), it follows that∥∥∥∥ ∑
n≤x,

P(n)>x3/4

f (n)
∥∥∥∥

2q
≥

∥∥∥∥ ∑
x3/4<p≤x

∣∣∣∣ ∑
m≤x/p

f (m)
∣∣∣∣2∥∥∥∥1/2

q
≥

1√
log x

∥∥∥∥ ∑
x3/4<p≤x

log p
∣∣∣∣ ∑

m≤x/p

f (m)
∣∣∣∣2∥∥∥∥1/2

q
.

Next we want to replace the sum over p by an integral average. We can rewrite

∑
x3/4<p≤x

log p
∣∣∣∣ ∑

m≤x/p

f (m)
∣∣∣∣2 = ∑

r≤x1/4

∑
x/(r+1)<p≤x/r

log p
∣∣∣∣∑

m≤r

f (m)
∣∣∣∣2,

and noting that x/r − x/(r + 1) = x/(r(r + 1))� (x/r)2/3 on our range of r , a Hoheisel-type prime
number theorem in short intervals (see, e.g., Theorem 12.8 of [Ivić 2003]) implies that

∑
x3/4<p≤x

log p
∣∣∣∣ ∑

m≤x/p

f (m)
∣∣∣∣2� ∑

r≤x1/4

(∫ x/r

x/(r+1)
1 dt

)∣∣∣∣∑
m≤r

f (m)
∣∣∣∣2 ≥ ∫ x

x3/4

∣∣∣∣ ∑
m≤x/t

f (m)
∣∣∣∣2 dt.

Making a substitution z = x/t , we see this integral is the same as x
∫ x1/4

1

∣∣∑
m≤z f (m)

∣∣2 dz
z2 . Checking

back, this completes the proof of the first part of Proposition 4.3.
To deduce the second part of Proposition 4.3, we note that for any large V and any q ≥ 1 we have∥∥∥∥ ∫ x1/4

1

∣∣∣∣∑
m≤z

f (m)
∣∣∣∣2 dz

z2

∥∥∥∥
q

≥

∥∥∥∥ ∫ x1/4

1

∣∣∣∣ ∑
m≤z,

x-smooth

f (m)
∣∣∣∣2 dz

z2+8V q/ log x

∥∥∥∥
q

≥

∥∥∥∥ ∫ ∞
1

∣∣∣∣ ∑
m≤z,

x-smooth

f (m)
∣∣∣∣2 dz

z2+8V q/ log x

∥∥∥∥
q
−

∥∥∥∥ ∫ ∞
x1/4

∣∣∣∣ ∑
m≤z,

x-smooth

f (m)
∣∣∣∣2 dz

z2+8V q/ log x

∥∥∥∥
q

≥

∥∥∥∥ ∫ ∞
1

∣∣∣∣ ∑
m≤z,

x-smooth

f (m)
∣∣∣∣2 dz

z2+8V q/ log x

∥∥∥∥
q
−

1
eV q

∥∥∥∥ ∫ ∞
1

∣∣∣∣ ∑
m≤z,

x-smooth

f (m)
∣∣∣∣2 dz

z2+4V q/ log x

∥∥∥∥
q
.

By Harmonic Analysis Result 2.6, provided that V ≤ (log x)/q (so that V q/log x is uniformly bounded) the
first term here is�

∥∥ ∫ 1/2
−1/2

∣∣F( 1
2+

4V q
log x+i t

)∣∣2 dt
∥∥

q and the subtracted second term is�e−V q
∥∥ ∫∞
−∞

∣∣F( 1
2+

2V q
log x + i t

)∣∣2/∣∣ 1
2 +

2V q
log x + i t

∣∣2 dt
∥∥

q , which in the Steinhaus case is� e−V q
∥∥ ∫ 1/2
−1/2

∣∣F(1
2+

2V q
log x + i t

)∣∣2dt
∥∥

q
by “translation invariance in law”. Putting everything together, this finishes the proof of Proposition 4.3.

�

The arguments in the Rademacher case are exactly the same until the final line, where we don’t have
“translation invariance” so we must upper bound

∥∥ ∫∞
−∞

∣∣F( 1
2 +

2V q
log x + i t

)∣∣2/∣∣1
2 +

2V q
log x + i t

∣∣2 dt
∥∥

q by

maxN∈Z
1

(|N |+1)1/4
∥∥ ∫ N+1/2

N−1/2

∣∣F(1
2 +

2V q
log x + i t

)∣∣2 dt
∥∥

q , say. �
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5. Proofs of the upper bounds in Theorems 1.1 and 1.2

In view of Proposition 4.1, the key to obtaining the upper bound in Theorem 1.1 will lie in proving the
following. Recall here that Fk(s) denotes the partial Euler product of f (n) over xe−(k+1)

-smooth numbers,
and in the special case where k = −1 we usually write F(s) (rather than F−1(s)) for the partial Euler
product over x-smooth numbers.

Key Proposition 5.1. Let f (n) be a Steinhaus random multiplicative function. For all large x , and uni-
formly for 1≤q≤ log100 x (say) and−1≤ k≤L=b(log log x)/10c and−ek/log x≤σ ≤1/(100 log(2q))
(say), we have

E

(∫ 1/2

−1/2

∣∣∣∣Fk

(
1
2
+ σ + i t

)∣∣∣∣2 dt
)q

�
eO(q2)

logq−1 x

(
log x

log 2q

)q2

min
{

1
ek+1 ,

1
|σ | log x

}q2
−q+1

.

Key Proposition 5.1 is actually much more general, in terms of the allowed range of q and σ , than we
immediately need (and the proof would let us extend the range of q quite a lot further if we wished, all it
really requires is something like ek/log x ≤ 1/(100 log(2q))). The increased generality will be useful
in Section 6, where Key Proposition 5.1 will play an auxiliary role, and also in clarifying the essential
features of the proof.

Proof of the upper bound in Theorem 1.1, assuming Key Proposition 5.1. In view of the discussion in
Section 3, it will suffice to prove the Theorem 1.1 upper bound for 1≤ q ≤ log log x . And to do that, in
view of Proposition 4.1 it will suffice to show that

∑
0≤k≤L

∥∥∥∥ ∫ 1/2

−1/2

∣∣Fk
( 1

2 +
q−k
log x + i t

)∣∣2 dt
∥∥∥∥1/2

q
≤ e−(q/2) log q−(q/2) log log(2q)+O(q) logq/2−1/2+1/2q x .

Applying Key Proposition 5.1 with σ = (q − k)/ log x (which is indeed ≤ 1/(100 log(2q)) on our
range of q), we find the left-hand side is

≤

∑
0≤k≤L

(
eO(q2)

logq−1 x

(
log x

log 2q

)q2

min
{

1
ek+1 ,

1
|q − k|

}q2
−q+1)1/2q

=

∑
0≤k≤L

(
eO(q2)

(
log x

log 2q
min

{
1

ek+1 ,
1
q

})q2
−q+1)1/2q

.

It is easy to see that this satisfies our desired bound. �

For Theorem 1.2, we need a Rademacher analogue of the above.

Key Proposition 5.2. Let f (n) be a Rademacher random multiplicative function. For all large x ,
and uniformly for 1 ≤ q ≤ log100 x (say) and −1 ≤ k ≤ L = b(log log x)/10c and −ek/log x ≤ σ ≤
1/(100 log(2q)) (say), we have
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E

(∫ 1/2

−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

)q

�
eO(q2)

logq x

(
1+min

{
log log x,

1
|q − q0|

})(
log x

log 2q

)max{2q2
−q,q2

+1}

min
{

1
ek+1 ,

1
|σ | log x

}max{2q2
−2q,q2

−q+1}

,

where q0 = (1+
√

5)/2.
Furthermore, for any |N | ≥ 1 we have

E

(∫ N+ 1
2

N− 1
2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

)q

�min
{
|N |1/100,

log x
ek+1 log 2q

,
1

|σ | log 2q

}q(q+1) eO(q2)

logq−1 x

(
log x

log 2q

)q2

min
{

1
ek+1 ,

1
|σ | log x

}q2
−q+1

.

Proof of the upper bound in Theorem 1.2, assuming Key Proposition 5.2. Similarly as in the Steinhaus
case, in view of Proposition 4.2 and the discussion in Section 3 it will suffice to show that for all
1≤ q ≤ log log x , we have

∑
0≤k≤L

max
N∈Z

1
(|N | + 1)1/8

∥∥∥∥ ∫ N+1/2

N−1/2

∣∣∣∣Fk

(
1
2
+

q − k
log x

+ i t
)∣∣∣∣2 dt

∥∥∥∥1/2

q

≤ e−q log q−q log log(2q)+O(q)
(

1+min
{

log log x,
1

|q − q0|

})1/2q

(log x)max{q−1,q/2−1/2+1/2q}.

We apply Key Proposition 5.2 with σ = (q − k)/ log x (which is indeed ≤ 1/(100 log(2q)) on our
range of q). When q ≤ 15, say, we have min{|N |1/100, log x/(ek+1 log 2q), 1/(|σ | log 2q)}q(q+1)

≤

|N |q/5 ≤ |N |2q/8, so (on taking 2q-th roots in Key Proposition 5.2 and then multiplying by the prefactor
1/(|N | + 1)1/8) we see the contribution from |N | ≥ 1 to maxN∈Z will never exceed the contribution from
the N = 0 term. So overall, when 1≤ q ≤ 15 the left-hand side will be

≤

∑
0≤k≤L

(
eO(q2)

logq x
min

{
log log x,

1
|q − q0|

}(
log x

log 2q

)max{2q2
−q,q2

+1}( 1
ek+1

)max{2q2
−2q,q2

−q+1})1/2q

�

∑
0≤k≤L

(
min

{
log log x,

1
|q − q0|

}(
log x
ek+1

)max{2q(q−1),q2
−q+1})1/2q

.

This certainly gives our desired bound for 1≤ q ≤ 15.
When 15 ≤ q ≤ log log x , we note first that max{2q2

− 2q, q2
− q + 1} = 2q2

− 2q. (In fact this is
true as soon as q ≥ q0.) So using the bound

min
{
|N |1/100,

log x
ek+1 log 2q

,
1

|σ | log 2q

}q(q+1)

≤ |N |(2q+1)/100 min
{

log x
ek+1 log 2q

,
1

|σ | log 2q

}q2
−q−1

,
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we again find that the contribution from |N | ≥ 1 to maxN∈Z will never exceed the contribution from the
N = 0 term. Overall, in this case we get a bound

�

∑
0≤k≤L

(
eO(q2)

(
log x

log 2q
min

{
1

ek+1 ,
1
q

})2q2
−2q)1/2q

�

(
eO(q2)

(
log x

q log 2q

)2q2
−2q)1/2q

,

as desired. �

We shall prove Key Propositions 5.1 and 5.2 in several steps over the course of this section. For
convenience in the writing we set X :=min{log x/ek+1, 1/|σ |}, and note that under our hypotheses this
is always ≥ 100 log(2q). The point of this definition is that the contribution from primes p > eX in our
Euler products will ultimately contribute only to the eO(q2) term.

Preliminary maneuvres. We begin with a few manipulations to discretize and set up the problem, in
both the Steinhaus and Rademacher cases. For any q ≥ 1, we have∥∥∥∥ ∫ 1/2

−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

∥∥∥∥
q
≤

∥∥∥∥ ∫ 1/(2X )

−1/(2X )

∑
|n|≤X/2+1

∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2 dt
∥∥∥∥

q

=
1
X

∥∥∥∥ ∫ 1/2X

−1/2X
X

∑
|n|≤X/2+1

∣∣Fk
(1

2 + σ + i
( n
X + t

))∣∣2 dt
∥∥∥∥

q
.

Applying Hölder’s inequality with exponent q to the normalized integral
∫ 1/(2X )
−1/(2X ) X dt , we see the

right-hand side is

≤
1
X

(∫ 1/(2X )

−1/(2X )
XE

( ∑
|n|≤X/2+1

∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2)q

dt
)1/q

.

In the Steinhaus case, where
∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2 has the same distribution for any given shift t ,
we can simplify the above to give the bound∥∥∥∥ ∫ 1/2

−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

∥∥∥∥
q
≤

1
X

∥∥∥∥ ∑
|n|≤X/2+1

∣∣Fk
( 1

2 + σ +
in
X
)∣∣2∥∥∥∥

q
,

so we have indeed passed to studying a discrete sum rather than an integral. Finally, we rewrite the
right-hand side as

1
X

(
E

∑
|n|≤X/2+1

∣∣Fk
( 1

2 + σ +
in
X
)∣∣2( ∑

|m|≤X/2+1

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1)1/q

�
1
X

(
XE
∣∣Fk
( 1

2 + σ
)∣∣2( ∑

|m|≤X

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1)1/q

, (5-1)

where the inequality again uses the distributional “translation invariance” (shifting n to zero in the outer
sum, and replacing m by m− n in the second sum).
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In the case of Rademacher f (n), if we mimic the above calculations we obtain that∥∥∥∥ ∫ N+1/2

N−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

∥∥∥∥
q

≤
1
X

(∫ 1/2X

−1/2X
XE

∑
|n|≤X/2+1

∣∣Fk
( 1

2+σ+i
( n
X+N+t

))∣∣2( ∑
|m|≤X/2+1

∣∣Fk
( 1

2+σ+i
(m
X+N+t

))∣∣2)q−1

dt
)1/q

. (5-2)

Proof of Key Proposition 5.1, for q ≥ 2. When q ≥ 2, we are helped by the fact that we can use Hölder’s
inequality again to analyze

(∑
|m|≤X

∣∣Fk
( 1

2+σ+
im
X
)∣∣2)q−1 in (5-1). If we let µ :=

∑
|m|≤X 1/(|m| + 1)2,

so that µ� 1, then first we have( ∑
|m|≤X

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

= µq−1
(

1
µ

∑
|m|≤X

1
(|m| + 1)2

(|m| + 1)2
∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

.

Using Hölder’s inequality with exponent q − 1, we deduce( ∑
|m|≤X

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

≤ µq−1
·

1
µ

∑
|m|≤X

1
(|m| + 1)2

(
(|m| + 1)2

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

= eO(q)
∑
|m|≤X

1
(|m| + 1)2

(|m| + 1)2(q−1)∣∣Fk
( 1

2 + σ +
im
X
)∣∣2(q−1)

.

(5-3)
We remark that the choice of weights 1/(|m| + 1)2 that we introduced is fairly arbitrary. The key point
is that we expect, in (5-1), that the only significant contribution should come from small m (for which∣∣Fk
( 1

2 + σ +
im
X
)∣∣2 will be highly correlated with the outer term

∣∣Fk
( 1

2 + σ
)∣∣2), so we don’t want to pick

up a factor like X (inefficiently reflecting the total length of the sum) in our application of Hölder’s
inequality.

In view of the above computation, to bound the right-hand side of (5-1) when q ≥ 2 we need to bound
terms of the form

(|m| + 1)2(q−1)E
∣∣Fk
( 1

2 + σ
)∣∣2∣∣Fk

( 1
2 + σ +

im
X
)∣∣2(q−1)

.

Recall that −ek/log x ≤ σ ≤ 1/100 log(2q) here. Inserting the definition of Fk(s), and using a trivial
bound eO

(∑
p≤100q2 q/p1/2+σ

)
= eO

(∑
p≤100q2 q/

√
p
)
= eO(q2/ log q) for the parts of the Euler products over

primes ≤ 100q2, this is

eO(q2/ log q)(|m| + 1)2(q−1)E
∏

100q2<p≤xe−(k+1)

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2∣∣∣∣1− f (p)
p1/2+σ+im/X

∣∣∣∣−2(q−1)

.

Now if ek+1/log x ≤ σ ≤ 1/100 log(2q), (and so X :=min{log x/ek+1, 1/|σ |} = 1/σ ), then the first part
of Euler Product Result 2.1 implies that the expectation of the part of the Euler product over primes
e1/σ < p≤ xe−(k+1)

is equal to exp{O(
∑

e1/σ<p≤xe−(k+1) q2/p1+2σ
+q3/e1/2σ )}, which is all eO(q2). Using
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this fact, as well as the independence of f (p) for different primes p, we find the above is always equal to

eO(q2)(|m| + 1)2(q−1)E
∏

100q2<p≤eX

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2∣∣∣∣1− f (p)
p1/2+σ+im/X

∣∣∣∣−2(q−1)

.

Notice that our size assumptions on σ, k, q guarantee that eX is larger than 100q2. Finally, the second
part of Euler Product Result 2.1 implies this is all equal to

eO(q2)(|m| + 1)2(q−1)
(

X
log q

)1+(q−1)2(
1+

X
(|m| + 1) log q

)2(q−1)

= eO(q2)

(
X

log q

)q2

.

Putting this together with (5-3) and (5-1), we find∥∥∥∥ ∫ 1/2

−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

∥∥∥∥
q
�

1
X

(
X · eO(q2)

∑
|m|≤X

1
(|m| + 1)2

(
X

log q

)q2)1/q

=
1
X

(
X · eO(q2)

(
X

log q

)q2)1/q

.

Raising everything to the power q and inserting the fact that X =min{log x/ek+1, 1/|σ |}, this gives the
statement of Key Proposition 5.1. �

Proof of Key Proposition 5.2, for q ≥ 2. We begin with the second part of Key Proposition 5.2, where
|N | ≥ 1. Then similarly as in the deduction of (5-3) in the Steinhaus case, for any |n| ≤ X/2+ 1 and any
|t | ≤ 1/(2X ) we can use Hölder’s inequality to show( ∑
|m|≤X

2 +1

∣∣Fk
( 1

2 + σ + i
(m
X + N + t

))∣∣2)q−1

≤ eO(q)
∑

|m|≤X
2 +1

1
(|m− n| + 1)2

(|m− n| + 1)2(q−1)∣∣Fk
( 1

2 + σ + i
(m
X + N + t

))∣∣2(q−1)
.

So to bound the right-hand side of (5-2), we need to bound terms of the form

(|m− n| + 1)2(q−1)E
∣∣Fk
( 1

2 + σ + i
( n
X + N + t

))∣∣2∣∣Fk
( 1

2 + σ + i
(m
X + N + t

))∣∣2(q−1)
.

As in the Steinhaus case, the contribution from primes p≤ 100q2 to this expectation is trivially eO(q2/ log q).
Using the first part of Euler Product Result 2.2, the contribution from primes eX < p ≤ xe−(k+1)

is eO(q2),
and overall (noting that the imaginary shifts n/X + N + t,m/X + N + t are� |N | � 1 and also� |N |)
the above expression is at most

eO(q2) min
{

X
log q

, |N |
1

100

}(q−1)2+3(q−1)

(|m−n|+1)2(q−1)
(

X
log q

)1+(q−1)2( X
(|m− n| + 1) log q

)2(q−1)

.

Apart from the factor min{X/log q, |N |1/100
}
(q−1)(q+2), this is precisely analogous to the estimate we

had in the Steinhaus case, so when |N | ≥ 1 we indeed get the same bound as in the Steinhaus case apart
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from a multiplier

min
{

X
log q

, |N |1/100
}(q−1)(q+2)

≤min
{

X
log q

, |N |1/100
}q(q+1)

=min
{

log x
ek+1 log q

,
1

|σ | log q
, |N |1/100

}q(q+1)

.

It remains to address the first part of Key Proposition 5.2, where N = 0. In this case, when q ≥ 2 we
expect the main contribution to (5-2) to come from terms with n,m ≈ 0, so rather than splitting up the
sum over m according to the size of |m−n| we shall just split it up according to the size of m. Proceeding
in this way, using Hölder’s inequality as in the Steinhaus case we find for any |t | ≤ 1/(2X ) that

∑
|n|≤X

2 +1

∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2( ∑
|m|≤X/2+1

∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2)q−1

≤eO(q)
∑

|n|≤X/2+1

∣∣Fk
( 1

2+σ+i
( n
X+t

))∣∣2 ∑
|m|≤X/2+1

1
(|m| + 1)2

(|m|+1)2(q−1)∣∣Fk
( 1

2+σ+i
(m
X+t

))∣∣2(q−1)
. (5-4)

So to bound the right-hand side of (5-2), we again need to bound terms of the form

(|m| + 1)2(q−1)E
∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2(q−1)
.

Using the second part of Euler Product Result 2.2, this is

eO(q2)(|m| + 1)2(q−1)
(

1+
X

(|m| + 1) log q

)(q−1)2−(q−1)( X
log q

)1+(q−1)2

·

((
1+

X
(|m− n| + 1) log q

)(
1+

X
(|m+ n| + 1) log q

))2(q−1)

.

Now depending on the signs of m, n, one of the terms |m− n|, |m+ n| will be equal to
∣∣|m| − |n|∣∣ and

the other will equal |m| + |n| ≥ |m|. So the above is always

≤ eO(q2)(|m| + 1)2(q−1)
(

1+
X

(|m| + 1) log q

)q(q−1)( X
log q

)1+(q−1)2( X(∣∣|m| − |n|∣∣+ 1
)

log q

)2(q−1)

.

Putting this together with (5-4) and (5-2), if we first perform the sum over |n| ≤ X/2+ 1 we get that∥∥ ∫ 1/2
−1/2

∣∣Fk
( 1

2 + σ + i t
)∣∣2 dt

∥∥
q is at most

eO(q)

X

( ∑
|m|≤X/2+1

(|m| + 1)2(q−1)

(|m| + 1)2

(
1+

X
(|m| + 1) log q

)q(q−1)( X
log q

)1+(q−1)2+2(q−1))1/q

.

Finally performing the sum over m, the dominant contribution comes from small terms (note that for
terms with |m|> X/log q we have (1+X/((|m| + 1) log q))q(q−1)

= eO(q2), so overall these contribute
at most eO(q2)X 2q−3(X/log q)1+(q−1)2+2(q−1)

= eO(q2)(X/log q)q
2
+2q−3 inside the bracket), and gives

us a bound� [eO(q)/X ](X/log q)(2q2
−q)/q . Raising everything to the power q ≥ 2 and inserting the fact

that X =min{log x/ek+1, 1/|σ |}, this gives the bound claimed in Key Proposition 5.2. �
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Proof of Key Proposition 5.1, for 1 < q < 2. When 1 < q < 2, it is not immediately obvious how
to analyze the term E

∣∣Fk
( 1

2 + σ
)∣∣2(∑

|m|≤X
∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1 in (5-1). We may begin by letting

C = C(q)= e1/(q−1), and noting that E
∣∣Fk
( 1

2 + σ
)∣∣2(∑

|m|≤X
∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1 is

≤ E
∣∣Fk
( 1

2 + σ
)∣∣2( ∑

d≤(q−1) logX+1

∑
Cd−1≤|m|≤Cd

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

.

Here we adopt the convention that the term m = 0 is included in
∑

Cd−1≤|m|≤Cd when d = 1, and that any
terms with |m|> X are omitted from all sums (so the imaginary shift in the second copy of Fk always
has size |m/X | ≤ 1). The motivation for splitting things up like this is that we expect our estimates for all
terms with

∑
Cd−1≤|m|≤Cd to be roughly the same, up to a factor C O(1). And, when everything is raised to

the power q − 1, this factor simply becomes a constant multiplier. Next, if we let D = D(q) ∈ N be a
parameter, to be fixed later, we can split things up further and find

E
∣∣Fk
( 1

2 + σ
)∣∣2( ∑

|m|≤X

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

≤

∑
r≤(q−1) logX/D+1

E
∣∣Fk
(1

2 + σ
)∣∣2( ∑

(r−1)D<d≤r D

∑
Cd−1≤|m|≤Cd

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

� Dq−1
∑

r≤(q−1) logX/D+1

E max
(r−1)D<d≤r D

∣∣Fk
( 1

2 + σ
)∣∣2( ∑

Cd−1≤|m|≤Cd

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2)q−1

. (5-5)

Notice that we may further assume that all terms d for which Cd−1 > X are omitted here, since for those
the sum over m is empty (by our earlier convention).

Now in the sum over m, we expect (thinking about Euler Product Result 2.1) that the part of the Euler
product Fk

( 1
2 + σ +

im
X
)

on primes ≤ eX/Cd
will be roughly the same size for all Cd−1

≤ |m| ≤ Cd , and
indeed roughly the same size as the corresponding part of Fk

( 1
2 + σ

)
. To simplify our writing about this,

for each d ≥ 1 and |m| ≤ X let us set

Gd(m) :=
∏

p≤eX/Cd

∣∣∣∣1− f (p)
p1/2+σ+im/X

∣∣∣∣−2

, and Hd(m) :=

∣∣Fk
( 1

2 + σ +
im
X
)∣∣2

Gd(m)
.

(These quantities of course depend on x, k, σ as well, but we suppress that in our notation.) We will also
set Gd := Gd(0) and Hd := Hd(0). Then the expectation in (5-5) may be written as

E max
(r−1)D<d≤r D

Gd Hd

( ∑
Cd−1≤|m|≤Cd

Gd(m)Hd(m)
)q−1

.

We want to apply Hölder’s inequality to this expectation, in such a way that the bracketed sum is raised
to the power 1/(q − 1), and so we can connect up the expectation with the terms inside. Prior to doing
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this, we rewrite the expectation again as

E max
(r−1)D<d≤r D

G1−(q−1)2
d H 1−(q−1)

d C2(q−1)(2−q)d
(

Gq−1
d Hd

C2(2−q)d

∑
Cd−1≤|m|≤Cd

Gd(m)Hd(m)
)q−1

.

Simplifying the various exponents, this is all

≤ E

(
max

(r−1)D<d≤r D
Gq(2−q)

d H 2−q
d C2(q−1)(2−q)d

)(
max

(r−1)D<d≤r D

Gq−1
d Hd

C2(2−q)d

∑
Cd−1≤|m|≤Cd

Gd(m)Hd(m)
)q−1

,

and now using Hölder’s inequality with exponents 1/(2− q) and 1/(q − 1), we get a bound

≤

(
E max
(r−1)D<d≤r D

Gq
d HdC2(q−1)d

)2−q(
E max
(r−1)D<d≤r D

Gq−1
d Hd

C2(2−q)d

∑
Cd−1≤|m|≤Cd

Gd(m)Hd(m)
)q−1

≤

(
E max
(r−1)D<d≤r D

Gq
d HdC2(q−1)d

)2−q( ∑
(r−1)D<d≤r D

E
Gq−1

d Hd

C2(2−q)d

∑
Cd−1≤|m|≤Cd

Gd(m)Hd(m)
)q−1

.

We remark that the motivation for the uneven splitting of the Euler products here (moving G(q−1)2
d and

Hq−1
d into the second bracket) is that, as noted above, EGq−1

d Gd(m) will behave in approximately the
same way as EGq

d , but on the large primes the shifts im/X provide extra cancellation in EHd Hd(m). So
the best way to split up the Gd terms is “evenly”, i.e., such that the total exponent of Gd terms in both
brackets after Hölder’s inequality remains q , whereas for the Hd terms it is better to move a larger piece
inside the second bracket (with the sum over m) to maximize the cancellation we pick up. As we shall
see, the powers of C that we have introduced will serve to balance the final sizes of all the terms.

Using the independence of f (p) for different primes, together with Euler Product Result 2.1, the sums
inside the second bracket are∑
(r−1)D<d≤r D

1
C2(2−q)d

∑
Cd−1≤|m|≤Cd

EGq−1
d Gd(m)EHd Hd(m)

�

∑
(r−1)D<d≤r D

1
C2(2−q)d

∑
Cd−1≤|m|≤Cd

(
1+

X
Cd

)1+(q−1)2( X
1+ |m|

)2(q−1)

(min{X ,Cd
})2
(

min{X ,Cd
}

1+ |m|

)2

�

∑
(r−1)D<d≤r D

C O(1)

C2(2−q)d X
q2

C (3−q2)d

= C O(1)X q2 ∑
(r−1)D<d≤r D

C−(q−1)2d
= C O(1)X q2

C−(q−1)2(r−1)D.

When performing this calculation, we noted that the contribution to EHd Hd(m) from primes p > eX is
uniformly bounded (by the first part of Euler Product Result 2.1), similarly as in our analysis of the case
q ≥ 2. Some of our estimates here were a bit crude, but there seems to be no way to avoid losing some
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factors C O(1), which further explains why our choice of C = e1/(q−1) is essentially the largest we can
make without incurring unacceptable losses.

To bound E max(r−1)D<d≤r D Gq
d HdC2(q−1)d , where we need to handle the maximum in a nontrivial

way rather than replacing it by a sum (because this term will not be raised to the small power q − 1), we
will use Probability Result 2.5. To do this, we first rewrite E max(r−1)D<d≤r D Gq

d HdC2(q−1)d as

E
∣∣Fk
( 1

2 + σ
)∣∣2 max

(r−1)D<d≤r D
(GdC2d)q−1

= E
∣∣Fk
( 1

2 + σ
)∣∣2Ẽ max

(r−1)D<d≤r D

∏
p≤eX/Cd

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2(q−1)

C2(q−1)d,

where Ẽ is expectation under the “tilted” measure defined by P̃(A)= E
∣∣Fk
( 1

2 + σ
)∣∣21A

/
E
∣∣Fk
( 1

2 + σ
)∣∣2

for each event A (and 1 denotes the indicator function). We note, for use in a little while, that if A is an
event not involving certain primes then those terms factor out from the expectation and cancel between
numerator and denominator in the definition of P̃(A). Furthermore, the random variables f (p) are still
independent under the measure P̃, since if A, B are events involving disjoint sets of primes then we
can split up the Euler product

∣∣Fk
( 1

2 + σ
)∣∣2 into subproducts over the corresponding sets, and then the

expectation E will split up correspondingly.
Now Euler Product Result 2.1 implies that E

∣∣Fk
( 1

2 + σ
)∣∣2 � X . Furthermore, if we write

Ld :=
∏

p≤eX/Cd

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2(q−1)/1.01

(say), and λd := ẼLd , then Euler Product Result 2.1 and the independence of the f (p) imply that

λd =
E
∏

p≤eX/Cd |1− f (p)/p1/2+σ
|
−2(1+(q−1)/1.01)

E
∏

p≤eX/Cd |1− f (p)/p1/2+σ |−2 �

(
1+

X
Cd

)2(q−1)/1.01+(q−1)2/1.012

.

We similarly get that ẼL1.01
d � (1+X/Cd)2(q−1)+(q−1)2 . So we have shown that

E max
(r−1)D<d≤r D

Gq
d HdC2(q−1)d

� X · Ẽ max
(r−1)D<d≤r D

(
Ld

λd

)1.01

(Cd
+X )2(q−1)

(
1+

X
Cd

)(q−1)2/1.01

� X 1+2(q−1)
(

1+
X

C (r−1)D+1

)(q−1)2/1.01

Ẽ max
(r−1)D<d≤r D

(
Ld

λd

)1.01

,

where we used the fact that Cd
≤ CX (given our convention that those d for which Cd−1 > X are

omitted) and C2(q−1)
� 1. Finally, since the f (p) are independent under the measure P̃ (and so the

“increments” of different primes in the Euler product are independent), the sequence of random variables
(Lr D/λr D), (Lr D−1/λr D−1), . . . , (L(r−1)D+1/λ(r−1)D+1) (taken in that order) form a nonnegative sub-
martingale relative to P̃ and to the sigma algebras generated by ( f (p))p≤eX/Cr D , ( f (p))p≤eX/Cr D−1 , . . . ,
( f (p))p≤eX/C(r−1)D+1 . For example, we may calculate the conditional expectation
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Ẽ

((
Lr D−1

λr D−1

)
| ( f (p))p≤eX/Cr D

)
=

Lr D

λr D−1
Ẽ

( ∏
eX/Cr D

<p≤eX/Cr D−1

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2(q−1)/1.01

| ( f (p))p≤eX/Cr D

)

=
Lr D

λr D−1
Ẽ

( ∏
eX/Cr D

<p≤eX/Cr D−1

∣∣∣∣1− f (p)
p1/2+σ

∣∣∣∣−2(q−1)/1.01)

=
Lr D

λr D
,

which gives the “nondecreasing on average” property from the definition of a submartingale. Thus
Probability Result 2.5 is applicable, and gives that Ẽ max(r−1)D<d≤r D(Ld/λd)

1.01 is

� Ẽ

(
L(r−1)D+1

λ(r−1)D+1

)1.01

�

(
1+ X

C (r−1)D+1

)2(q−1)+(q−1)2

λ1.01
(r−1)D+1

�

(
1+

X
C (r−1)D+1

)(q−1)2− (q−1)2
1.01

.

Putting together (5-1), (5-5), and the above calculations, we get that∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣Fk
( 1

2 + σ + i t
)∣∣∣∣2 dt

∥∥∥∥
q

�
1
X

(
X Dq−1

∑
r≤((q−1) logX )/D+1

(
X q2

C (r−1)D(q−1)2

)2−q

(C O(1)X q2
C−(q−1)2(r−1)D)q−1

)1/q

.

Recalling that C = e1/(q−1) and collecting terms together, we find this is all

�
1
X

(
X 1+q2

Dq−1
∑

r≤(q−1) logX/D+1

C−(r−1)D(q−1)2
)1/q

=
1
X

(
X 1+q2

Dq−1
∑

r≤(q−1) logX/D+1

e−(r−1)D(q−1)
)1/q

.

So if we finally choose D := b1/(q − 1)c, then both the sum over r and the term Dq−1 will be � 1.
Recalling that X =min{(log x)/ek+1, 1/|σ |}, we see this bound is as claimed in Key Proposition 5.1.

�

Proof of Key Proposition 5.2, for 1 < q < 2. We again begin with the second part of the proposition,
where |N | ≥ 1. In this case we can analyze the terms E

∣∣Fk(
1
2 +σ + i( n

X + N + t))
∣∣2(∑

|m|≤X
2 +1

∣∣Fk
( 1

2 +

σ + i
(m
X + N + t

))∣∣2)q−1 in (5-2) by splitting the sum over m into subsums where Cd−1
≤ |m− n| ≤ Cd ,

and otherwise following the argument from the Steinhaus case. We obtain the same estimates as there,
except the error term in Euler Product Result 2.2 produces an additional factor

min
{
1+ X

Cd , |N |
1/100}|(q−1)2−(q−1)|+4(q−1) min

{
Cd ,X , 1+

|N |1/100

1+X/Cd

}4

�min{X , |N |1/100
}

4

when estimating (the analogue of) the terms EGq−1
d Gd(m)EHd Hd(m), and an additional factor min{1+

X/C (r−1)D+1, |N |1/100
}

q(q−1)
� min{X , |N |1/100

}
q(q−1) when estimating (the analogue of) the term

E max(r−1)D<d≤r D Gq
d HdC2(q−1)d . So overall we get the same bound as in the Steinhaus case, apart from
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a factor

(min{X , |N |1/100
}

q(q−1))2−q(min{X , |N |1/100
}

4)(q−1)
�min{X , |N |1/100

}
(q−1)(4+2q−q2).

A small calculation shows that for 1≤ q ≤ 2, we have (q−1)(4+2q−q2)≤ 5(q−1)≤ q(q+1), giving
the factor min{X , |N |1/100

}
q(q+1)

=min{(log x)/ek+1, 1/|σ |, |N |1/100
}

q(q+1) claimed in the second part
of Key Proposition 5.2.

When N = 0, to prove Key Proposition 5.2 we need to bound∑
|n|≤X/2+1

E
∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2( ∑
|m|≤X/2+1

∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2)q−1

in (5-2). Following the same argument that led to the bound (5-5) in the Steinhaus case, but now splitting
the sum over m according to the size of |m| − |n| rather than the size of |m|, one obtains that∑
|n|≤X/2+1

E
∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2( ∑
|m|≤X/2+1

∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2)q−1

� Dq−1
∑

|n|≤X/2+1

∑
r≤(q−1) logX/D+1

E max
(r−1)D<d≤r D

∣∣Fk
( 1

2 + σ + i
( n
X + t

))∣∣2
·

( ∑
|m|≤X/2+1,

Cd−1
≤||m|−|n||≤Cd

∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2)q−1

. (5-6)

Here we again have C = e1/(q−1), and D = D(q) ∈N is a parameter, and we adopt our usual conventions
(analogously to the Steinhaus case) about including the |m| = |n| term when d = 1 and omitting overly
large terms from all sums.

Now for each d ≥ 1 and |m| ≤ X/2+ 1, and treating t as fixed, we shall set

Gd(m) :=
∏

p≤eX/Cd

∣∣∣∣1+ f (p)
p1/2+σ+i(m/X+t)

∣∣∣∣2, and Hd(m) :=

∣∣Fk
( 1

2 + σ + i
(m
X + t

))∣∣2
Gd(m)

.

This is the same notation that we used in the Steinhaus case, but with the Euler products now replaced
by their Rademacher versions (supported on squarefree numbers only). Splitting the expectation and
applying Hölder’s inequality as in the Steinhaus case, it follows that (5-6) is

� Dq−1
∑

|n|≤X/2+1

∑
r≤(q−1) logX/D+1

(
E max
(r−1)D<d≤r D

Gd(n)q Hd(n)C2(q−1)d
)2−q

·

·

( ∑
(r−1)D<d≤r D

E
Gd(n)q−1 Hd(n)

C2(2−q)d

∑
|m|≤X/2+1,

Cd−1
≤||m|−|n||≤Cd

Gd(m)Hd(m)
)q−1

.

Continuing to follow the argument from the Steinhaus case, but using Euler Product Result 2.2 in place
of Euler Product Result 2.1, we can bound these terms further. Proceeding to do this, and noting that one
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of the terms |m− n|, |m+ n| that arise in Euler Product Result 2.2 will always equal
∣∣|m| − |n|∣∣ and the

other will equal |m| + |n| ≥ |n|, we find the sums in the second bracket are

∑
(r−1)D<d≤r D

1
C2(2−q)d

∑
|m|≤X/2+1,

Cd−1
≤||m|−|n||≤Cd

EGd(n)q−1Gd(m)EHd(n)Hd(m)

�

∑
(r−1)D<d≤r D

1
C2(2−q)d

∑
Cd−1≤||m|−|n||≤Cd

min
{
X
Cd ,

X
|n|

}(q−1)2−(q−1)(
1+

X
Cd

)1+(q−1)2

·

(
X

1+
∣∣|m| − |n|∣∣ min

{
X
Cd ,

X
|n|

})2(q−1)

(min{X ,Cd
})2
(

min{X ,Cd
}

1+
∣∣|m| − |n|∣∣

(
1+

min{X ,Cd
}

1+ |m| + |n|

))2

.

Collecting terms together, and then upper bounding min{X/Cd ,X/|n|}q(q−1) by (X/(1+|n|))q(q−1) and
upper bounding min{X ,Cd

} everywhere else by Cd , the above is

�

(
X

1+ |n|

)q(q−1) ∑
(r−1)D<d≤r D

C O(1)

C2(2−q)d X
q2

C (3−q2)d
=

(
X

1+ |n|

)q(q−1)

C O(1)X q2
C−(q−1)2(r−1)D.

We can also adapt the Steinhaus argument to bound E max(r−1)D<d≤r D Gd(n)q Hd(n)C2(q−1)d . In this
case we again have E

∣∣Fk
( 1

2+σ+i
( n
X +t

))∣∣2�X , and we may define the “tilted” measure P̃ and set Ld :=∏
p≤eX/Cd |1+ f (p)/p1/2+σ+i(n/X+t)

|
2(q−1)/1.01 analogously to the Steinhaus case. Then Euler Product

Result 2.2 implies that ẼLd �min{X/Cd ,X/|n|}(1+(q−1)/1.01)(q−1)/1.01(1+X/Cd)2(q−1)/1.01+(q−1)2/1.012

and ẼL1.01
d �min{X/Cd ,X/|n|}q(q−1)(1+X/Cd)2(q−1)+(q−1)2 . So the same submartingale argument as

in the Steinhaus case shows that

E max
(r−1)D<d≤r D

Gd(n)q Hd(n)C2(q−1)d
� X 1+2(q−1)

(
1+

X
C (r−1)D+1

)(q−1)2

min
{

X
C (r−1)D+1 ,

X
|n|

}q(q−1)

�
X q2

C (r−1)D(q−1)2

(
X

1+ |n|

)q(q−1)

.

Putting everything together, recalling that C = e1/(q−1) and choosing D := b1/(q − 1)c, we deduce
that (5-6) is

� Dq−1
∑

|n|≤X
2 +1

∑
r≤ (q−1) logX

D +1

X q2

C (r−1)D(q−1)2

(
X

1+ |n|

)q(q−1)

� X q2 ∑
|n|≤X

2 +1

(
X

1+ |n|

)q(q−1)

.

Since q0 = (1 +
√

5)/2 ≈ 1.618 satisfies q0(q0 − 1) = 1, and we have 1 < q < 2, the sum over
n here is � Xmax{1,q(q−1)}min{logX , 1/|q − q0|}. Substituting into (5-2), and recalling that X :=
min{log x/ek+1, 1/|σ |}, this gives the first (N = 0) bound claimed in Key Proposition 5.2 when 1< q < 2.

�
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6. Proofs of the lower bounds in Theorems 1.1 and 1.2

Recall that F(s) denotes the Euler product of f (n) over x-smooth numbers.

The lower bound in the Steinhaus case. To prove the lower bound part of Theorem 1.1, in view of
Proposition 4.3 our main work will be to prove a suitable lower bound for

∥∥ ∫ 1/2
−1/2

∣∣F( 1
2+

4V q
log x +i t

)∣∣2 dt
∥∥

q ,
where V is a large fixed constant. (We also need an upper bound for the subtracted quantity

∥∥ ∫ 1/2
−1/2

∣∣F( 1
2+

2V q
log x + i t

)∣∣2 dt
∥∥

q , but this will follow directly from Key Proposition 5.1.)
To obtain our lower bound, we note first that for any q ≥ 1 we have

(∫ 1/2

−1/2

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

≥

( ∑
|k|≤(log x−1)/2

∫ (k+1/2)/ log x

(k−1/2)/ log x

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

≥

∑
|k|≤(log x−1)/2

(∫ (k+1/2)/ log x

(k−1/2)/ log x

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

.

This step could be wasteful if many of the pieces
∫ (k+1/2)/ log x
(k−1/2)/ log x

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt made substantial
contributions to the full integral. But for large q we expect instead that the dominant contribution should
come from just a few large (and therefore rare) contributions, so we will not lose too much. In the
Steinhaus case, since the distribution of

∫ (k+1/2)/ log x
(k−1/2)/ log x

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt is independent of k we get
the simpler lower bound

E

( ∫ 1/2

−1/2

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

� log x · E
(∫ 1/(2 log x)

−1/(2 log x)

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

.

Now we want to remove the remaining short integral over t , which is a technical obstacle to connecting
up the expectation with the random product F . Heuristically, since the Euler product shouldn’t vary
much on intervals of length 1/ log x we should simply obtain something like

( 1
log x

∣∣F( 1
2 +

4V q
log x

)∣∣2)q in
the bracket. It turns out that a neat way to handle this issue is using Jensen’s inequality (applied to the
normalized integral

∫ 1/2 log x
−1/2 log x log x dt), which implies that

E

(∫ 1/(2 log x)

−1/(2 log x)

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

=
1

logq x
E

(∫ 1/(2 log x)

−1/(2 log x)
log x · e2 log|F(1/2+4V q/ log x+i t)| dt

)q

≥
1

logq x
E

(
exp

{∫ 1/(2 log x)

−1/(2 log x)
log x · 2 log

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣ dt

})q

=
1

logq x
E exp

{
2q
∫ 1/(2 log x)

−1/(2 log x)
log x · log

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣ dt

}
.
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Here the exponential, inside the expectation, may be rewritten as

∏
p≤x

exp
{
−2q

∫ 1/(2 log x)

−1/(2 log x)
log x · < log

(
1−

f (p)
p1/2+4V q/ log x+i t

)
dt
}

=

∏
p≤x

exp
{

2q log x<
(

f (p)
p1/2+4V q/log x

∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt

+
f (p)2

2p1+8V q/log x

∫ 1/(2 log x)

−1/(2 log x)
e−2i t log p dt

)
+ O

(
q

p3/2

)}
=eO(q)

∏
p≤x

exp
{

2q<
(

f (p)
p1/2+4V q/ log x log x

∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt+

f (p)2

2p1+8V q/ log x

)}
.

The first equality here uses the Taylor expansion of the logarithm, and the second equality uses the
estimate ∫ 1/(2 log x)

−1/(2 log x)
e−2i t log p dt =

∫ 1/(2 log x)

−1/(2 log x)
(1+ O(|t | log p)) dt =

1
log x

+ O
(

log p

log2 x

)
and also the fact that ∑

p≤x

log p
p1+8V q/ log x � log x .

Putting things together, using the independence of f (p) for different primes p to move the expectation
inside the product, we have shown that our original object

E

(∫ 1/2

−1/2

∣∣∣∣F(1
2
+

4V q
log x

+ i t
)∣∣∣∣2 dt

)q

≥
eO(q)

logq−1 x

∏
p≤x

E exp
{

2q<
(

f (p)
p1/2+4V q/ log x log x

∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt +

f (p)2

2p1+8V q/ log x

)}
. (6-1)

It will be convenient to note some simple bounds for the quantity inside the exponential, which we will
use shortly. Firstly, this quantity is always trivially bounded by O(q/

√
p). Secondly, using our previous

calculation that ∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt =

1
log x

+ O
(

log p

log2 x

)
,

we can obtain that

2q<
(

f (p)
p1/2+4V q/log x log x

∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt +

f (p)2

2p1+8V q/log x

)
=

2q< f (p)
p1/2+4V q/log x + O

(
q log p

p1/2+4V q/log x log x
+

q
p

)
.
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To conclude, we note that certainly when 100q2
≤ p ≤ x we have, in view of the Taylor expansion of

the exponential and the simple bounds noted above and the fact that E(< f (p))2 = 1
2 , that

E exp
{

2q<
(

f (p)
p1/2+4V q/ log x log x

∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt +

f (p)2

2p1+8V q/ log x

)}
= E

(
1+ 2q<

(
f (p)

p1/2+4V q/log x log x
∫ 1/(2 log x)

−1/(2 log x)
e−i t log p dt +

f (p)2

2p1+8V q/log x

)
+

2q2(< f (p))2

p1+8V q/log x

+ O
(

q2 log p
p1+8V q/log x log x

+
q3

p3/2

))
= 1+

q2

p1+8V q/ log x + O
(

q2 log p
p1+8V q/ log x log x

+
q3

p3/2

)
.

When p < 100q2, we shall instead use the trivial bound exp{O(q/
√

p)}. Inserting these into (6-1), we
get an overall lower bound

E

(∫ 1/2

−1/2

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q

≥
eO(q)

logq−1 x

∏
p<100q2

exp
{

O
(

q
√

p

)} ∏
100q2≤p≤x

exp
{

q2

p1+8V q/ log x + O
(

q2 log p
p1+8V q/ log x log x

+
q3

p3/2

)}

=
eO(q2/ log(2q))

logq−1 x

∏
100q2≤p≤x

exp
{

q2

p1+8V q/ log x

}

=
eO(q2)

logq−1 x

(
log x

V q log(2q)

)q2

.

Here the final equality follows because, similarly as in the calculations in Section 3, we have

∏
100q2≤p≤x

exp
{

q2

p1+8V q/ log x

}
= eO(q2)ζ

(
1+

8V q
log x

)q2

e
−
∑

p<100q2
q2

p1+8V q/ log x .

Then

ζ

(
1+

8V q
log x

)q2

= eO(q2)

(
log x
V q

)q2

and e
−
∑

p<100q2
q2

p1+8V q/ log x
=

eO(q2)

logq2
(2q)

by Mertens’ estimates for sums over primes.
Inserting this into Proposition 4.3 we find that

∥∥∑
n≤x

f (n)
∥∥

2q�

√
x

log x

(
eO(q)

log(q−1)/2q x

(
log x

V q log(2q)

)q/2

−
C

eV q/2

∥∥∥∥ ∫ 1/2

−1/2

∣∣∣∣F(1
2
+

2V q
log x
+i t

)∣∣∣∣2 dt
∥∥∥∥1/2

q

)
.

And using Key Proposition 5.1 with k =−1 to control the subtracted term, provided that 2V q/log x ≤
1/(100 log(2q)) we can bound everything below by
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x

log x

(
eO(q)

log(q−1)/2q x

(
log x

V q log(2q)

)q/2

−
CeO(q)

eV q/2

(V q)(q−1)/2q

log(q−1)/2q x

(
log x

V q log(2q)

)q/2)
.

If we set V to be a sufficiently large fixed constant, the subtracted term will be negligible compared with
the first term, and our Theorem 1.1 lower bound will be proved. It only remains to note that the condition
2V q/log x ≤ 1/(100 log(2q)) is then satisfied provided q ≤ (c log x)/ log log x , for a sufficiently small
fixed constant c > 0. �

The lower bound in the Rademacher case. To prove the lower bound part of Theorem 1.2, we shall invoke
Proposition 4.4 and adapt the argument from the previous subsection to lower bound

∥∥ ∫ 1/2
−1/2

∣∣F( 1
2+

4V q
log x +

i t
)∣∣2 dt

∥∥
q , where V is a large fixed constant and now F(s) denotes the Rademacher random Euler product.

Indeed, exactly the same argument as on page 2315 gives, for any q ≥ 1, that

E

(∫ 1/2

−1/2

∣∣F(1
2 +

4V q
log x + i t

)∣∣2 dt
)q

≥

∑
|k|≤(log x−1)/2

E

(∫ (k+1/2)/ log x

(k−1/2)/ log x

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q

.

Using Jensen’s inequality, also as on page 2315, shows this is all

≥
1

logq x

∑
|k|≤(log x−1)/2

E exp
{

2q
∫ (k+1/2)/ log x

(k−1/2)/ log x
log x · log

∣∣F( 1
2 +

4V q
log x + i t

)∣∣ dt
}
.

And recalling that in the Rademacher case we have F(s)=
∏

p≤x(1+ f (p)/ps), with f (p) ∈ {±1}, we
find this is all

=
1

logq x

∑
|k|≤(log x−1)/2

∏
p≤x

E exp
{

2q
∫ (k+1/2)/ log x

(k−1/2)/ log x
log x · < log

(
1+

f (p)
p1/2+4V q/ log x+i t

)
dt
}

=
1

logq x

∑
|k|≤(log x−1)/2

∏
p≤x

E exp
{

2q
∫ (k+1/2)/ log x

(k−1/2)/ log x
log x ·

(
f (p) cos(t log p)

p1/2+4V q/ log x −
cos(2t log p)
2p1+8V q/ log x

+ O
(

1
p3/2

))
dt
}
.

At this stage we cannot efficiently remove the integral of cos(t log p) in the first term, but for the second
term we can write cos(2t log p) = cos(2k log p/log x)+ O(log p/log x). The total contribution from
these “big Oh” terms for all p, as well as from the O(1/p3/2) term, is a multiplicative factor eO(q). So
we obtain that

E

(∫ 1/2

−1/2

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q

≥
eO(q)

logq x

∑
|k|≤(log x−1)/2

∏
p≤x

E exp
{

2q
(

f (p)
p1/2+4V q/ log x log x∫ (k+1/2)/ log x

(k−1/2)/ log x
cos(t log p) dt −

cos(2k log p/log x)
2p1+8V q/ log x

)}
, (6-2)

which is the Rademacher analogue of (6-1) from the Steinhaus case.



Moments of random multiplicative functions, II 2319

Next, when 100q2
≤ p ≤ x we have, in view of the Taylor expansion of the exponential (and the fact

that f (p)2 ≡ 1), that

E exp
{

2q
(

f (p)
p1/2+4V q/ log x log x

∫ (k+1/2)/ log x

(k−1/2)/ log x
cos(t log p) dt −

cos(2k log p/log x)
2p1+8V q/ log x

)}
= E

(
1+ 2q

(
f (p)

p1/2+4V q/log x log x
∫ (k+1/2)/ log x

(k−1/2)/ log x
cos(t log p) dt −

cos(2k log p/log x)
2p1+8V q/log x

)
+

2q2 cos2(k log p/log x)
p1+8V q/log x + O

(
q2 log p

p1+8V q/log x log x
+

q3

p3/2

))
.

Using the cosine identity cos2(k log p/log x)=
( 1

2

)
(1+cos(2k log p/log x)), and the fact that E f (p)= 0,

we find the above is

= 1+
q2
+ (q2

− q) cos(2k log p/log x)
p1+8V q/ log x + O

(
q2 log p

p1+8V q/ log x log x
+

q3

p3/2

)
.

When p < 100q2, we shall instead use the trivial bound exp{O(q/
√

p)}. Inserting these into (6-2), we
get

E

(∫ 1/2

−1/2

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q

≥
eO(q2/log(2q))

logq x

∑
|k|≤(log x−1)/2

∏
100q2≤p≤x

exp
{

q2
+ (q2

− q) cos(2k log p/log x)
p1+8V q/log x

}
.

Now when 2≤ q ≤ c log x/log log x , say, we can afford to discard all the terms in this lower bound
except the k = 0 term, which gives us that

E

(∫ 1/2

−1/2

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q

≥
eO(q2/log(2q))

logq x

∏
100q2≤p≤x

exp
{

2q2
− q

p1+8V q/log x

}

=
eO(q2)

logq x

(
log x

V q log(2q)

)2q2
−q

.

Inserting this into Proposition 4.4, and applying Key Proposition 5.2 with k =−1 and σ = 2V q/ log x to
control the subtracted term there, we find that

∥∥∑
n≤x f (n)

∥∥
2q is

�

√
x

log x

(
eO(q)

log1/2 x

(
log x

V q log(2q)

)q−1/2

−
CeO(q)

eV q/2

(V q)1/2

log1/2 x

(
log x

V q log(2q)

)q−1/2)
.

If V is a sufficiently large constant, the subtracted term is negligible compared with the first term and we
obtain the lower bound claimed in Theorem 1.2.

When 1≤ q < 2 (or really when 1≤ q ≤ q0 = (1+
√

5)/2), we cannot afford to take quite such a crude
approach. Using Chebychev’s estimates and the prime number theorem as in the proof of Euler Product
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Result 2.1, we have∑
100q2≤p≤x

cos(2k log p/log x)
p1+8V q/log x =

∑
2≤p≤x1/V

cos(2k log p/log x)
p

+ O(1)

=

∫ log(x1/V )

log 2

cos((2k/log x)u)
u

du+ O(1)

= log min{log(x1/V ), log(x1/(1+|k|))}+ O(1).

Using this estimate, we get a lower bound for E
( ∫ 1/2
−1/2

∣∣F( 1
2 +

4V q
log x + i t

)∣∣2 dt
)q that is

�
1

logq x

(
log x

V

)q2 ∑
|k|≤(log x−1)/2

min
{

log x
V

,
log x

1+ |k|

}q2
−q

,

and (remembering that q0 satisfies q2
0 − q0 = 1) this is

�
1

logq x

(
log x

V

)q2
+max{1,q2

−q}

min
{

log log x,
1

|q − q0|

}
.

Again, inserting this in Proposition 4.4 produces the lower bound claimed in Theorem 1.2. �

Acknowledgements

The author would like to thank the anonymous referee, for helpful comments and suggestions.

References

[Bonami 1970] A. Bonami, “Étude des coefficients de Fourier des fonctions de L p(G)”, Ann. Inst. Fourier (Grenoble) 20:2
(1970), 335–402. MR Zbl

[Bondarenko et al. 2018] A. Bondarenko, O. F. Brevig, E. Saksman, K. Seip, and J. Zhao, “Pseudomoments of the Riemann zeta
function”, Bull. Lond. Math. Soc. 50:4 (2018), 709–724. MR Zbl

[Chandee 2011] V. Chandee, “On the correlation of shifted values of the Riemann zeta function”, Q. J. Math. 62:3 (2011),
545–572. MR Zbl

[Florea 2017] A. Florea, “The fourth moment of quadratic Dirichlet L-functions over function fields”, Geom. Funct. Anal. 27:3
(2017), 541–595. MR Zbl

[Granville and Soundararajan 2001] A. Granville and K. Soundararajan, “Large character sums”, J. Amer. Math. Soc. 14:2
(2001), 365–397. MR Zbl

[Gut 2013] A. Gut, Probability: a graduate course, 2nd ed., Springer, 2013. MR Zbl

[Halász 1983] G. Halász, “On random multiplicative functions”, pp. 74–96 in Hubert Delange colloquium (Orsay, France, 1982),
Publ. Math. Orsay 83, Univ. Paris XI, 1983. MR Zbl

[Harper 2017] A. J. Harper, “Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation,
and critical multiplicative chaos”, preprint, 2017. To appear in Forum of Mathematics, Pi. arXiv

[Harper et al. 2015] A. J. Harper, A. Nikeghbali, and M. Radziwiłł, “A note on Helson’s conjecture on moments of random
multiplicative functions”, pp. 145–169 in Analytic number theory, edited by C. Pomerance and M. T. Rassias, Springer, 2015.
MR Zbl

[Heap and Lindqvist 2016] W. P. Heap and S. Lindqvist, “Moments of random multiplicative functions and truncated character-
istic polynomials”, Q. J. Math. 67:4 (2016), 683–714. MR Zbl

http://dx.doi.org/10.5802/aif.357
http://msp.org/idx/mr/0283496
http://msp.org/idx/zbl/0195.42501
http://dx.doi.org/10.1112/blms.12183
http://dx.doi.org/10.1112/blms.12183
http://msp.org/idx/mr/3870953
http://msp.org/idx/zbl/06930200
http://dx.doi.org/10.1093/qmath/haq008
http://msp.org/idx/mr/2825471
http://msp.org/idx/zbl/1290.11117
http://dx.doi.org/10.1007/s00039-017-0409-8
http://msp.org/idx/mr/3655956
http://msp.org/idx/zbl/06748174
http://dx.doi.org/10.1090/S0894-0347-00-00357-X
http://msp.org/idx/mr/1815216
http://msp.org/idx/zbl/0983.11053
http://dx.doi.org/10.1007/978-1-4614-4708-5
http://msp.org/idx/mr/2977961
http://msp.org/idx/zbl/1267.60001
http://msp.org/idx/mr/728404
http://msp.org/idx/zbl/0522.10033
http://msp.org/idx/arx/1703.06654
http://dx.doi.org/10.1007/978-3-319-22240-0_11
http://dx.doi.org/10.1007/978-3-319-22240-0_11
http://msp.org/idx/mr/3467397
http://msp.org/idx/zbl/1391.11140
http://dx.doi.org/10.1093/qmath/haw026
http://dx.doi.org/10.1093/qmath/haw026
http://msp.org/idx/mr/3609852
http://msp.org/idx/zbl/06718402


Moments of random multiplicative functions, II 2321

[Helson 2010] H. Helson, “Hankel forms”, Studia Math. 198:1 (2010), 79–84. MR Zbl
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Artin–Mazur–Milne duality for fppf cohomology
Cyril Demarche and David Harari

We provide a complete proof of a duality theorem for the fppf cohomology of either a curve over a finite
field or a ring of integers of a number field, which extends the classical Artin–Verdier Theorem in étale
cohomology. We also prove some finiteness and vanishing statements.

1. Introduction

Let K be a number field or the function field of a smooth, projective, geometrically integral curve X
over a finite field. In the number field case, set X := SpecOK , where OK is the ring of integers of K .
Let U be a nonempty Zariski open subset of X and denote by N a commutative, finite and flat group
scheme over U with Cartier dual N D . Assume that the order of N is invertible on U (in particular N is
étale). The classical “étale” Artin–Verdier Theorem [Milne 1986, Corollary II.3.3] is a duality statement
between étale cohomology H •

ét(U, N ) and étale cohomology with compact support H •

ét,c(U, N D). It
has been known for a long time that this theorem is especially useful in view of concrete arithmetic
applications: for example it yields a very nice method to prove deep results like Cassels–Tate duality for
abelian varieties and schemes [Milne 1986, Section II.5] and their generalizations to 1-motives [Harari
and Szamuely 2005, Section 4]; Artin–Verdier’s Theorem also provides a “canonical” path to prove the
Poitou–Tate’s Theorem and its extension to complex of tori [Demarche 2011b], which in turn turns out
to be very fruitful to deal with local-global questions for (not necessarily commutative) linear algebraic
groups [Demarche 2011a].

It is of course natural to try to remove the condition that the order of N is invertible on U . A good
framework to do this is provided by fppf cohomology of finite and flat commutative group schemes
over U , as introduced by J.S. Milne in the third part of his book [1986]. This includes the case of group
schemes of order divisible by p := Char K in the function field case.

Such an fppf duality theorem was first announced by B. Mazur [1972, Proposition 7.2],1 relying on
work by M. Artin and himself. Special cases have also been proved by M. Artin and Milne [1976]. The
precise statement of the theorem is as follows (see [Milne 1986], Corollary III.3.2 for the number field
case and Theorem III.8.2 for the function field case):

MSC2010: primary 11G20; secondary 14H25.
Keywords: fppf cohomology, arithmetic duality, Artin approximation theorem.

1Thanks to A. Schmidt for having pointed this out to us.

2323

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2019.13-10
http://dx.doi.org/10.2140/ant.2019.13.2323


2324 Cyril Demarche and David Harari

Theorem 1.1. Let j :U ↪→ X be a nonempty open subscheme of X. Let N be a finite flat commutative
group scheme over U with Cartier dual N D . For all integers r with 0≤ r ≤ 3, the canonical pairing

H 3−r
c (U, N )× H r (U, N D)→ H 3

c (U, Gm)∼=Q/Z

(where H r (U, N D) is an fppf cohomology group and H 3−r
c (U, N ) an fppf cohomology group with

compact support) induces a perfect duality between the profinite group H 3−r
c (U, N ) and the discrete

group H r (U, N D). Besides, these groups are finite in the number field case, and they are trivial for r ≥ 4
and r < 0 (resp. for r = 3 if U 6= X ) in the function field case.

For example, this extension of the étale Artin–Verdier Theorem is needed to prove the Poitou–Tate
exact sequence over global fields of characteristic p [González-Avilés 2009, Theorems 4.8 and 4.11]
as well as the Poitou–Tate Theorem over a global field without restriction on the order ([Česnavičius
2015a, Theorem 5.1], which in turn is used in [Rosengarten 2018, Sections 5.6 and 5.7]). Results of
[Milne 1986, Section III.9] (which rely on the fppf duality Theorem) are also a key ingredient in the
proof of some cases of the Birch and Swinnerton-Dyer conjecture for abelian varieties over global fields
of positive characteristic, in [Bauer 1992, Section 4] and [Kato and Trihan 2003, Section 2] for instance.
Our initial interest in Theorem 1.1 was to try to extend it to complexes of tori in the function field case,
following the same method as in the number field case [Demarche 2011b]. Such a generalization should
then provide results (known in the number field case) about weak and strong approximation for linear
algebraic groups defined over a global field of positive characteristic.

However, as K. Česnavičius pointed out to us,2 it seems necessary to add details to the proof in [Milne
1986], Sections III.3. and III.8, for two reasons:

• The functoriality of flat cohomology with compact support and the commutativity of several diagrams
are not explained in [Milne 1986]. Even in the case of an imaginary number field, a definition of H r

c (U,F)
as H r (X, j!F) for an fppf sheaf F (which works for the étale Artin–Verdier Theorem) would not be the
right one, because it does not provide the key exact sequence [loc. cit., Proposition III.0.4.a] in the fppf
setting: indeed the proof of this exact sequence relies on [loc. cit., Lemma II.2.4], which in turn uses
[loc. cit., Proposition II.1.1]; but the analogue of the latter does not stand anymore with étale cohomology
replaced by fppf cohomology, see also Remark 2.2 of the present paper.

It is therefore necessary to work with an ad hoc definition of compact support cohomology as in
[loc. cit., Section III.0]. Since this definition involves mapping cones, commutativities of some diagrams
have to be checked in the category of complexes and not in the derived category (where there is no good
functoriality for the mapping cones). Typically, the isomorphisms that compute C •(b), C •(b ◦ a) and
C •(c◦b◦a) in [loc. cit., Proposition III.0.4.c] are not canonical a priori. Hence the required compatibilities
in [loc. cit., proof of Theorem III.3.1. and Lemma III.8.4] have to be checked carefully.

2In particular, he observed that the analogue of [Milne 1986, Proposition III.0.4.c] is by no means obvious when henselizations
are replaced by completions. This analogue is actually false without additional assumptions, as shown by T. Suzuki [2018,
Remark 2.7.9]
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• In the positive characteristic case, it is necessary (as explained in [Milne 1986, Section III.8]) to work
with a definition of cohomology with compact support involving completions of the local rings of points in
X\U instead of their henselizations. The reason is that a local duality statement [loc. cit., Theorem III.6.10]
is needed and this one only works in the context of complete valuation fields, in particular because the
H 1 groups involved have to be locally compact (so that Pontryagin duality makes sense). It turns out that
some properties of compact support cohomology (in particular [loc. cit., Proposition III.0.4.c]) are more
difficult to establish in this context: for example the comparison between cohomology of the completion
Ôv and of the henselization Ov is not as straightforward as in the étale case.

The goal of this article is to present a detailed proof of Theorem 1.1 with special regards to the
two issues listed above. Section 2 is devoted to general properties of fppf cohomology with compact
support (Proposition 2.1), which involves some homological algebra (Lemma 2.3) as well as comparison
statements between cohomology of Ov and Ôv (Lemma 2.6); besides, we make the link to classical étale
cohomology with compact support (Lemma 2.10).

We also define a natural topology on the fppf compact support cohomology groups (see Section 3) and
prove its basic properties. In Section 4, we follow the method of [Milne 1986, Section III.8] to prove
Theorem 1.1 in the function field case. As a corollary, we get a finiteness statement (Corollary 4.9),
which apparently has not been observed before this paper. The case of a number field is simpler once the
functorial properties of Section 2 have been proved; it is treated in Section 5. Finally, we include two
useful results in homological algebra in the Appendix.

One week after the first draft of this article was released, Takashi Suzuki kindly informed us that in his
preprint [Suzuki 2018], he obtained (essentially at the same time as us) fppf duality results similar to
Theorem 1.1 in a slightly more general context.3 His methods are somehow more involved than ours,
they use the rational étale site, which he developed in earlier papers.

Notation. Let X be either a smooth projective curve over a finite field k of characteristic p, or the
spectrum of the ring of integers OK of a number field K . Let K := k(X) be the function field of X .
Throughout the paper, schemes S are endowed with a big fppf site (Sch /S)fppf in the sense of [Stacks
2005–, Tag 021R, Tag 021S, Tag 03XB]. By construction, the underlying category in (Sch /S)fppf is small
and the family of coverings for this site is a set. The corresponding topos is independent of the choices
made thanks to [Stacks 2005–, Tag 00VY]. In contrast with [SGA 41 1972], the construction of the site
(Sch /S)fppf in [Stacks 2005–] does not require the existence of universes. The reader who is ready to
accept this axiom can replace the site (Sch /S)fppf by the big fppf site from [SGA 41 1972].

Unless stated otherwise, cohomology is fppf cohomology with respect to this site.
For any closed point v ∈ X , let Ov (resp. Ôv) be the henselization (resp. the completion) of the local ring

OX,v of X at v. Let Kv (resp. K̂v) be the fraction field of Ov (resp. Ôv). Let U be a nonempty Zariski open
subset of X and denote by j :U→ X the corresponding open immersion. By [Matsumura 1970, Section 34],

3Note, however, that there is still some work to do to obtain our Theorem 1.1 from the very general Theorem 3.1.3 of [Suzuki
2018]; compare with Section 4.2 of [loc. cit.], where a similar task is fulfilled for abelian schemes instead of finite group schemes.
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the local ring OX,v of X at v is excellent (indeed OX,v is either of mixed characteristic or the localization of
a ring of finite type over a field); hence so are Ov (by [EGA IV4 1967, Corollary 18.7.6]) as the henselization
of an excellent ring, and Ôv as a complete Noetherian local ring [Matsumura 1970, Section 34].

The piece of notation “v 6∈U” means that we consider all places v corresponding to closed points of
X \U plus the real places in the number field case. If v is a real place, we set Kv = K̂v =Ov = Ôv for
the completion of K at v, and we denote by H∗(Kv,M) the Tate (or modified) cohomology groups of a
Gal(Kv/Kv)-module M .

If F is an fppf sheaf of abelian groups on U , define the Cartier dual FD to be the fppf sheaf FD
:=

Hom(F, Gm). Notation as 0(U,F) stands for the group of sections of F over U , and 0Z (U,F) for the
group of sections that vanish over U \ Z . If E is a field (e.g., E = Kv or E = K̂v) and i : Spec E→U is
an E-point of U , we will frequently write H r (E,F) for H r (Spec E, i∗F). Similarly for an open subset
V ⊂U , the piece of notation H r (V,F) (resp. H r

c (V,F)) stands for H r (V,F|V ) (resp. H r
c (V,F|V )).

A finite group scheme N over a field E of characteristic p> 0 is local (or equivalently infinitesimal, as
in [Demazure and Gabriel 1970, II.4.7.1]) if it is connected (in particular this implies H 0(E ′, N )= 0 for
every field extension E ′ of E). Examples of such group schemes are µp (defined by the affine equation
y p
= 1) and αp (defined by the equation y p

= 0).
Let S be an Fp-scheme. A finite S-group scheme N is of height 1 if the relative Frobenius map FN/S

[Milne 1986, Section III.0] is trivial.
For any topological abelian group A, let A∗ :=Homcont.(A,Q/Z) be the group of continuous homomor-

phisms from A to Q/Z (where Q/Z is considered as a discrete group) equipped with the compact-open
topology. A morphism f : A→ B of topological groups is strict if it is continuous, and the restriction f :
A→ f (A) is an open map (where the topology on f (A) is induced by B). This is equivalent to saying that
f induces an isomorphism of the topological quotient A/ ker f with the topological subspace f (A)⊂ B.

Concerning sign conventions in homological algebra, we tried to follow the conventions in [Stacks
2005–] throughout the text.

2. Fppf cohomology with compact support

Define

Z := X \U and Z ′ :=
∐
v∈Z

Spec(K̂v) (disjoint union).

Then we have a natural morphism i : Z ′→U . Let F be a sheaf of abelian groups on (Sch /U )fppf. Let
I •(F) be an injective resolution of F over U . Denote by Fv and I •(F)v their respective pullbacks to
Spec Kv, for v /∈U .

Given a morphism of schemes f : T → S, the fppf pullback functor f ∗ is exact (see [Stacks 2005–,
Tag 021W, Tag 00XL]) and it admits an exact left adjoint f! (see [Stacks 2005–, Tag 04CC]), hence f ∗

maps injective (resp. flasque) objects to injective (resp. flasque) objects. Therefore I •(F)v is an injective
resolution of Fv.
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As noticed by A. Schmidt, the definition of the modified fppf cohomology groups in the number field
case in [Milne 1986, III.0.6(a)] has to be written more precisely, because of the noncanonicity of the
mapping cone in the derived category. We are grateful to him for the following alternative definition.

Let �R denote the set of real places of K . For v ∈�R, let av : (Sch /Spec(Kv))fppf→ Spec(Kv)ét be
the natural morphism of sites, where Sét denotes the small étale site on a scheme S. Since Kv is a perfect
field, the direct image functor av

∗
associated to av is exact. Hence, by [SGA 42 1972, V, Remark 4.6

and Proposition 4.9], the functor av
∗

maps I •(F)v to a flasque resolution av
∗

I •(F)v of av
∗
Fv. Following

[Geisser and Schmidt 2018, Section 2], there is a natural acyclic resolution D•(av
∗
Fv)→ av

∗
Fv of the

Gal(Kv/Kv)= Z/2Z-module av
∗
Fv (identified with Fv(Spec(Kv))). Splicing the resolutions D•(av

∗
Fv)

and av
∗

I •(F)v together, one gets a complete acyclic resolution Î •(Fv) of the Gal(Kv/Kv)-module av
∗
Fv,

which computes the Tate cohomology of av
∗
Fv. And by construction, there is a natural morphism

îv : av∗ I •(F)v→ Î •(Fv).
As suggested by [Milne 1986, Section III.0], define 0c(U, I •(F)) to be the following object in the

category of complexes of abelian groups:

0c(U, I •(F)) := Cone
(
0(U, I •(F))→ 0(Z ′, i∗ I •(F))⊕

⊕
v∈�R

0(Kv, Î •(Fv))
)
[−1],

and H r
c (U,F) := H r (0c(U, I •(F))). We will also denote by R0c(U,F) the complex 0c(U, I •(F))

viewed in the derived category of fppf sheaves. Observe that in the number field case the groups
H r

c (U,F) may be nonzero even for negative r . In the function field case we have H r
c (U,F) = 0 for

r < 0, and also (by Proposition 2.1 below) H 0
c (U,F) = 0 if we assume further U 6= X (the map

H 0(U,F)→ H 0(K̂v,F) being injective for each v 6∈U ).
From now on, we will abbreviate Cone(· · · ) by C(· · · ).

Proposition 2.1. (1) Let F be a sheaf of abelian groups on Ufppf. There is a natural exact sequence, for
all r ≥ 0,

· · · → H r
c (U,F)→ H r (U,F)→

⊕
v 6∈U

H r (K̂v,F)→ H r+1
c (U,F)→ · · · .

(2) For any short exact sequence

0→ F ′→ F→ F ′′→ 0

of sheaves of abelian groups on U , there is a long exact sequence

· · · → H r
c (U,F

′)→ H r
c (U,F)→ H r

c (U,F
′′)→ H r+1

c (U,F ′)→ · · · .

(3) For any flat affine commutative group scheme F of finite type over U , and any nonempty open
subscheme V ⊂U , there is a canonical exact sequence

· · · → H r
c (V,F)→ H r

c (U,F)→
⊕
v∈U\V

H r (Ôv,F)→ H r+1
c (V,F)→ · · · ,
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and the following natural diagram commutes:

⊕
v /∈V H r−1(K̂v,F)

��

⊕
v /∈U H r−1(K̂v,F)

i2
oo

��⊕
v∈U\V H r−1(Ôv,F) //

i1
55

H r
c (V,F) //

��

H r
c (U,F) //

��

⊕
v∈U\V H r (Ôv,F)

H r (V,F)

��

H r (U,F)

��

Res
oo

55

⊕
v /∈V H r (K̂v,F)

π
//
⊕

v /∈U H r (K̂v,F)

where i1 (resp. i2) is obtained by putting 0 at the places v 6∈U (resp. v ∈U \ V ) and π is the natural
projection.

(4) If F is represented by a smooth group scheme, then H r
c (U,F)∼= H r

ét,c(U,F) for r 6= 1, where H∗ét,c

stands for modified étale cohomology with compact support (as defined in [Geisser and Schmidt
2018, Section 2]). In particular for such F we have H r

c (U,F)∼= H r
ét(X, j!F) in the function field

case. If in addition the generic fiber FK is a finite K -group scheme, then H 1
c (U,F)∼= H 1

ét,c(U,F)
(which is identified with H 1

ét(X, j!F) in the function field case).

Remark 2.2. Unlike what happens in étale cohomology, the groups H 1(Ov,F) and H 1(Ôv,F) cannot
in general be identified with the group H 1(k(v), F(v)), where k(v) is the residue field at v and F(v) the
fiber of F over k(v). For example this already fails for F =µp and Ôv = Fp[[t]], because by the Kummer
exact sequence

0→ µp→ Gm
.p
−→ Gm→ 0

in fppf cohomology, the group H 1(Ôv,F)= Ô∗v/Ô∗
p

v is an infinite dimensional Fp-vector space, while
H 1(k(v), F(v)) = k(v)∗/k(v)∗

p
= 0. The situation is better for r ≥ 2 by [Toën 2011, Corollary 3.4]:

namely the natural maps from H r (Ov,F) and H r (Ôv,F) to H r (k(v), F(v)) are isomorphisms.

Before proving Proposition 2.1, we need the following lemmas. We start with a lemma in homological
algebra.

Lemma 2.3. Let A be an abelian category with enough injectives and let C(A) (resp. D(A)) denote the
category (resp. the derived category) of bounded below cochain complexes in A. Consider a commutative
diagram in C(A):

A

f
��

α
// B⊕ E

(id,g)
��

A′ α′
// B⊕ E ′

and denote by πB (resp. π ′B) the projection B⊕ E→ B (resp. B⊕ E ′→ B).
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Assume that the natural morphism C( f )→ C(g) in C(A) is a quasi-isomorphism. Then there exists a
canonical commutative diagram in D(A):

(B⊕ E ′)[−1]

��

B[−1]
i ′B

oo

��

B⊕ E
(id,g)

// B⊕ E ′

��

C(α′)[−1] //

��

C(πB ◦α)[−1] //

��

E //

iE

OO

C(α′)

A′

α′

��

A

πB◦α

��

f
oo

α
// B⊕ E

πE

OO

B⊕ E ′
π ′B

// B

where the second row and the first two columns are exact triangles.

Proof. The assumption that C( f )→C(g)∼=C(Id⊕g) is a quasi-isomorphism implies that C(α)→C(α′)
is a quasi-isomorphism (see for instance Proposition 1.1.11 in [Beilinson et al. 1982] or Corollary A.14
in [Peters and Steenbrink 2008]).

Functoriality of the mapping cone in the category C(A) gives the following diagram in C(A), where
the second row (by [Milne 1986, Proposition II.0.10], or [Kashiwara and Schapira 2006, proof of
Theorem 11.2.6]) and the columns are exact triangles in the derived category:

(B⊕ E)[−1]
(id,g)

vv ��

B[−1]
iB

oo

��

=
// B[−1]

��

(B⊕ E ′)[−1]

��

C(α)[−1]

vv ��

// C(πB ◦α)[−1]

��

// C(πB)[−1]

��

//

%%

?

C(α)

C(α′)[−1]

��

A
f

vv

α

��

=
// A

πB◦α

��

α
// B⊕ E

πB

��

πE
// E

iE
// B⊕ E

cc

A′

α′

��

B⊕ E
(id,g)

vv

πB
// B =

// B

B⊕ E ′ .

As usual, notation as πB , πE denotes projections and iB , iE are given by putting 0 at the missing piece.
Note also that due to our sign conventions, the horizontal map C(πB)[−1]→C(α) is given by the natural
map with a (−1)-sign.

This diagram is commutative in C(A), except the square ? which is commutative up to homotopy.
Indeed, this square defines two maps f, g : C(πB)[−1] → C(α), which are given in degree n by
two maps f n, gn

: Bn−1
⊕ (Bn

⊕ En) → (Bn
⊕ En) ⊕ An+1, where f n(b′, b, e) := −(b, e, 0) and
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gn(b′, b, e) :=−(0, e, 0). Consider now the maps sn
: Bn−1

⊕ (Bn
⊕En)→ (Bn−1

⊕En−1)⊕ An defined
by sn(b′, b, e) := (b′, 0, 0). Then the collection (sn) is a homotopy between f and g. Hence the square ?
is commutative up to the homotopy (sn).

Since the map C(α)→ C(α′) is a quasi-isomorphism, and since the natural map C(πB)[−1] → E is
a homotopy equivalence, the lemma follows from the commutativity and the exactness of the previous
diagram. �

We now need the following result, for which we did not find a suitable reference:

Lemma 2.4. Let A be a henselian valuation ring with fraction field K . Let Â be the completion of A for
the valuation topology and K̂ := Frac Â. Assume that K̂ is separable over K :

(1) Let G be a K -group scheme locally of finite type. Then the map H 1(K ,G)→ H 1(K̂ ,G) has dense
image.

(2) Assume that Â is henselian. Let G be a flat A-group scheme locally of finite presentation. Then the
map H 1(A,G)→ H 1( Â,G) has dense image.

Here the topology on the pointed sets H 1( Â,G) and H 1(K̂ ,G) is provided by [Česnavičius 2015b,
Section 3].

Remarks 2.5. • The assumption that K̂ is separable over K is satisfied if A is an excellent discrete
valuation ring.

• In the second statement, the assumption that Â is henselian is satisfied if the valuation on A has
height 1 (special case of [Ribenboim 1968, Section F, Theorem 4]). This assumption is used in the
proof below to apply [Česnavičius 2015b, Theorem B.5]. Note also that in general, Â is not the
same as the completion of A for the m-adic topology (where m denotes the maximal ideal of A).

Proof of Lemma 2.4. We prove both statements at the same time. Let E be either A or K , set S = Spec E .
Let BG denote the classifying E-stack of G-torsors. We need to prove that BG(E) is dense in BG(Ê). It
is a classical fact that BG is an algebraic stack [Stacks 2005–, Tag 0CQJ and Tag 06PL]. Let x ∈ BG(Ê)
and U ⊂ BG(Ê) be an open subcategory (in the sense of [Česnavičius 2015b, 2.4]) containing x . We
need to find an object x ′ ∈ BG(E) that maps to U ⊂ BG(Ê). Using [Česnavičius 2015b, Theorem B.5
and Remark B.6] (applied to the S-scheme Spec R := Spec Ê), there exists an affine scheme Y , a smooth
S-morphism π : Y → BG and y ∈ Y (Ê) such that πÊ(y) = x , where πÊ : Y (Ê)→ BG(Ê) is the
map induced by π . In particular, Y → S is smooth because so are π and BG → S (the latter by
[Česnavičius 2015b, Proposition A.3]). Hence Y is locally of finite presentation over S. By assumption,
π−1

Ê
(U ) ⊂ Y (Ê) is an open subset containing y. Hence [Moret-Bailly 2012, Corollary 1.2.1] (in the

discrete valuation ring case, it is Greenberg’s approximation theorem) implies that Y (E)∩π−1
Ê
(U ) 6=∅.

Applying πE , we get that the image of BG(E) meets U , which proves the required result. �

The previous lemma is useful to prove the following crucial (in the function field case) statement. For
a local integral domain A with maximal ideal m, fraction field K and residue field κ , and F an fppf sheaf



Artin–Mazur–Milne duality for fppf cohomology 2331

on Spec A with an injective resolution I •(F), define

0m(A, I •(F)) := Cone(0(Spec A, I •(F))→ 0(Spec K , I •(F)))[−1]

and H r
m(A,F) := H r (0m(A, I •(F))) (the cohomology with support in Spec κ). We have a localization

long exact sequence [Milne 1986, Proposition III.0.3]

· · · → H r
m(A,F)→ H r (A,F)→ H r (K ,F)→ H r+1

m (A,F)→ · · · .

Lemma 2.6. Let A be an excellent henselian discrete valuation ring, with maximal ideal m. Let F be
a flat affine commutative group scheme of finite type over Spec A. Then for all r ≥ 0, the morphism
H r
m(A,F)→ H r

m( Â,F) is an isomorphism.

Remark 2.7. Let I •(F) be an injective resolution of F viewed as an fppf sheaf. Another formulation
of Lemma 2.6 is that the natural morphism 0m(A, I •(F))→ 0m( Â, I •(F)) is an isomorphism in the
derived category. The injective resolution I •(F) can be replaced by any complex of flasque fppf sheaves
that is quasi-isomorphic to F (indeed the fppf pullback functor f ∗ associated to f : Spec Â→ Spec A
sends flasque resolutions to flasque resolutions, because f ∗ is exact and preserves flasque sheaves).

Also note that Lemma 2.6 is a variant of [Suzuki 2018, Proposition 2.6.2]: our result is slightly more
general in the affine case, while the notion of cohomological approximation in [Suzuki 2018] is a priori a
little stronger than the conclusion of Lemma 2.6. In addition, this lemma answers a variant of a question
raised after [loc. cit., Proposition 2.6.2] (under a flatness assumption).

Proof of Lemma 2.6. (r = 0). Since F is separated (as an affine scheme), the morphisms H 0(A,F)→
H 0(K ,F) and H 0( Â,F)→ H 0(K̂ ,F) are injective, which implies that

H 0
m(A,F)= H 0

m( Â,F)= 0.

(r = 1). Consider the following commutative diagram with exact rows:

H 0(A,F) //

��

H 0(K ,F) //

��

H 1
m(A,F) //

��

H 1(A,F) //

��

H 1(K ,F)

��

H 0( Â,F) // H 0(K̂ ,F) // H 1
m( Â,F) // H 1( Â,F) // H 1(K̂ ,F)

(1)

Since A is excellent, Artin approximation [1969, Theorem 1.12] implies that the morphism H 1(A,F)→
H 1( Â,F) is injective: indeed, given a (Spec A)-torsor P under F , P is locally of finite presentation, and
Artin approximation ensures that P( Â) 6=∅ implies that P(A) 6=∅.

The affine A-scheme of finite type F is of the form Spec(A[x1, . . . , xn]/( f1, . . . , fr )), where f1, . . . , fr

are polynomials. Since the discrete valuation ring A satisfies A= K ∩ Â⊂ K̂ , the square on the left-hand
side in (1) is cartesian.

Hence an easy diagram chase implies that H 1
m(A,F)→ H 1

m( Â,F) is injective.
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By Proposition A.6 in [Gille and Pianzola 2008], the right-hand side square in (1) is cartesian. In
addition, H 0( Â,F) ⊂ H 0(K̂ ,F) is open [Gabber et al. 2014, Proposition 3.3.4], and H 0(K ,F) ⊂
H 0(K̂ ,F) is dense by [Gabber et al. 2014, Proposition 3.5.2] (weak approximation for F).

Therefore, an easy diagram chase implies that the map H 1
m(A,F)→ H 1

m( Â,F) is surjective.

(r = 2). Consider the commutative diagram with exact rows:

H 1(A,F) //

��

H 1(K ,F) //

��

H 2
m(A,F) //

��

H 2(A,F) //

��

H 2(K ,F)

��

H 1( Â,F) // H 1(K̂ ,F) // H 2
m( Â,F) // H 2( Â,F) // H 2(K̂ ,F)

(2)

By [Toën 2011, Corollary 3.4], the map H 2(A,F)→ H 2( Â,F) is an isomorphism. And we already
explained (in the case r = 1) that the left-hand side square in (2) is cartesian. Hence a diagram chase
proves that the map H 2

m(A,F)→ H 2
m( Â,F) is injective.

Using [Gabber et al. 2014, Proposition 3.5.3.(3)], the map H 2(K ,F)→ H 2(K̂ ,F) is also an isomor-
phism. By [Česnavičius 2015b, Proposition 2.9(e)], the map H 1( Â,F)→ H 1(K̂ ,F) is open. Lemma 2.4
implies that the map H 1(K ,F)→ H 1(K̂ ,F) has dense image. By diagram chase, we get that the map
H 2
m(A,F)→ H 2

m( Â,F) is surjective.

(r ≥ 3). Corollary 3.4 in [Toën 2011] implies that the morphisms H r−1(A,F)→ H r−1( Â,F) and
H r (A,F)→ H r ( Â,F) are isomorphisms. Proposition 3.5.3(3) in [Gabber et al. 2014] implies that
the maps H r−1(K ,F)→ H r−1(K̂ ,F) and H r (K ,F)→ H r (K̂ ,F) are isomorphisms. Therefore, the
five-lemma proves that H r

m(A,F)→ H r
m( Â,F) is an isomorphism. �

Remark 2.8. We will apply the previous lemma to a finite and flat commutative group scheme N . As was
pointed out to us by K. Česnavičius, it is then possible to argue without using Corollary 3.4 in [Toën 2011]
(whose proof is quite involved): indeed there exists [Milne 1986, Theorem III.A.5] an exact sequence

0→ N → G1→ G2→ 0

of affine A-group schemes such that G1 and G2 are smooth. Now for i > 0 we have H i (A,G j ) ∼=

H i ( Â,G j ) ( j = 1, 2) by [Milne 1980, Remark III.3.11], because A and Â are henselian, and fppf
cohomology coincides with étale cohomology for smooth group schemes. It remains to apply the five-
lemma to get H i (A, N )∼= H i ( Â, N ) for i ≥ 2, which is the input from [Toën 2011] that we used in the
proof.

The following lemma is a version of the excision property for fppf cohomology with respect to étale
morphisms:

Lemma 2.9. Let X, X ′ be schemes, Z ↪→ X (resp. Z ′ ↪→ X ′) be closed subschemes, π : X ′→ X be an
étale morphism. Assume that π restricted to Z ′ is an isomorphism from Z ′ to Z and that π(X ′\Z ′)⊂ X \Z.
Let F be a sheaf on (Sch /X)fppf. Then for all r ≥ 0, the natural morphism H r

Z (X,F)→ H r
Z ′(X

′, π∗F)
is an isomorphism.
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Proof. Since π∗ is exact and maps injective objects to injective objects, the proof is exactly the same as
the proof of [Milne 1980, Proposition III.1.27]. �

We continue with a lemma comparing the definition of modified étale cohomology with compact
support in [Geisser and Schmidt 2018] and our definition of modified fppf cohomology with compact
support. For any scheme T , consider the morphisms of sites

(Sch /T )fppf

aT

88

εT
// (Sch /T )ét

πT
// Tét,

where (Sch /T )ét denotes the big étale site of T . Recall that Z := X \U , Z ′ :=
∐
v∈Z Spec(K̂v), j :U→ X

is the open immersion and i : Z ′→U is the natural morphism. Set a := aU and ε := εU .
Let F be a sheaf on Uét, and let π∗X j!F→ J •(F) be an injective resolution in the big étale topos of X .

By [Stacks 2005–, Tag 0758 and Tag 04BT], the restriction J •(F)ét of J •(F) to the small étale site of X
is an injective resolution of j!F . For every place v 6∈U of K , let Fv be the pull-back of F to (Spec Kv)ét.
As in the fppf case (explained in the beginning of Section 2), we have for v real a complete resolution
Ĵ •(Fv) of the Gal(Kv/Kv)-module Fv, which computes its Tate cohomology. Following [Geisser and
Schmidt 2018, Section 2], we define

0ét,c(U, J •(F)) := Cone
(
0(X, J •(F)ét)→

⊕
v∈�R

0(Kv, Ĵ •(Fv))
)
[−1],

and H r
ét,c(U,F) := H r (0ét,c(U, J •(F))).

Denote by R0ét,c(U,F) the complex 0ét,c(U, J •(F)) (viewed in the derived category of abelian
groups); similarly for v real, set R̂0ét(Kv,F) (resp. R̂0(Kv, a∗F)) for the complex 0(Kv, Ĵ •(Fv))
(resp. 0(Kv, Î •((a∗F)v)), where I •(a∗F) is a flasque resolution of a∗F , compare to the beginning
of Section 2) in the derived category of étale sheaves (resp. fppf sheaves) over Spec Kv. Finally, let
R0ét,Z (X, j!F) denote the complex

0ét,Z (X, J •(F)) := Cone(0(X, J •(F)ét)→ 0(U, J •(F)ét))[−1].

Lemma 2.10. (1) Let F be a sheaf of abelian groups over Uét. Then there is a canonical commutative
diagram in the derived category of abelian groups, where the rows are exact triangles:

R0ét,c(U,F) //

��

R0ét(U,F) //

∼

��

R0ét,Z (X, j!F)[1]⊕
⊕

v∈�R
R̂0ét(Kv,F) //

��

R0ét,c(U,F)[1]

��

R0c(U, a∗F) // R0(U, a∗F) // R0(Z ′, i∗a∗F)⊕
⊕

v∈�R
R̂0(Kv, a∗F) // R0c(U, a∗F)[1]

Besides, the complex R0ét,Z (X, j!F)[1] is quasi-isomorphic to
⊕

v∈Z R0ét(Kv,F).
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(2) Let G be a smooth commutative group scheme over U. Let G denote the fppf sheaf associated to G
and Gét := a∗G. Then there is a canonical commutative diagram in the derived category of abelian
groups, where the rows are exact triangles:

R0ét,c(U,Gét) //

��

R0ét(U,Gét) //

∼

��

R0ét,Z (X, j!Gét)[1]⊕
⊕

v∈�R
R̂0ét(Kv,Gét) //

��

R0ét,c(U,Gét)[1]

��

R0c(U,G) // R0(U,G) // R0(Z ′, i∗G)⊕
⊕

v∈�R
R̂0(Kv,G) // R0c(U,G)[1]

Besides, the complex R0ét,Z (X, j!Gét)[1] is quasi-isomorphic to
⊕

v∈Z R0ét(Kv,Gét).

Proof. (1) Set J := J •(F). Since j!F → Jét := J •(F)ét is an injective resolution, we get an injective
resolution F = j∗ j!F→ j∗ Jét in Uét. The functor ε∗ is an exact functor that maps flasque étale sheaves to
flasque fppf sheaves (see [Stacks 2005–, Tag 0DDU]), we get a flasque resolution a∗F→ I := ε∗ j∗ Jét. Let
Ĵv := Ĵ •(Fv); define Îv = Î •((ε∗F)v) (associated to the flasque resolution I of ε∗F) as in the beginning
of Section 2.

Consider now the following commutative diagram of complexes, where 0̃ét,Z (U, J ) and 0̃ét,c(U, J )
are mapping cones defined such that the third and fourth rows are exact triangles:

0ét,c(U, Jét) // 0ét(U, j∗ Jét) // 0ét,Z (X, Jét)[1]⊕
⊕

v∈�R
0ét(Kv, Ĵét,v) // 0ét,c(U, Jét)[1]

0ét,c(U, J ) //

ϕc

OO

d ′

��

0ét(U, j∗ J ) //

ϕ

OO

=

��

0ét,Z (X, J )[1]⊕
⊕

v∈�R
0ét(Kv, Ĵv) //

ϕ′

OO

d
��

0ét,c(U, J )[1]

��

OO

0̃ét,Z (U, J ) // 0ét(U, j∗ J ) //
⊕

v∈Z 0ét,v(Ov, J )[1]⊕
⊕

v∈�R
0ét(Kv, Ĵv) // 0̃ét,Z (U, J )[1]

0̃ét,c(U, J ) //

b′

OO

��

0ét(U, j∗ J ) //

=

OO

c

��

⊕
v∈Z 0ét(Kv, J )⊕

⊕
v∈�R

0ét(Kv, Ĵv) //

b

OO

��

0̃ét,c(U, J )[1]

OO

��

0c(U, I ) // 0(U, I ) // 0(Z ′, i∗ I )⊕
⊕

v∈�R
0(Kv, Îv) // 0c(U, I )[1]

In this diagram, the rows are exact triangles (by definition for the last three rows, using the proof
of Lemma 2.7 in [Geisser and Schmidt 2018] for the first ones). The maps ϕ, ϕ′ and ϕc are quasi-
isomorphisms by [Stacks 2005–, Tag 0DDH]. In addition, the maps d and b (hence also d ′ and b′) are
quasi-isomorphisms: for the map d , this is the excision property for étale cohomology (see [Milne 1980,
Proposition III.1.27]); for the map b, this is exactly [Milne 1986, Proposition II.1.1.(a)]. In addition, the
map c is a quasi-isomorphism, using [Stacks 2005–, Tag 0DDU]. This proves the lemma.



Artin–Mazur–Milne duality for fppf cohomology 2335

(2) Consider the following commutative diagram of exact triangles in the derived category:

R0ét,c(U,Gét) //

��

R0ét(U,Gét) //

��

R0ét,Z (X, j!Gét)[1]⊕
⊕
v∈�R

R̂0ét(Kv,Gét) //

��

R0ét,c(U,Gét)[1]

��

R0c(U, a∗Gét)
//

��

R0(U, a∗Gét)
//

��

R0(Z ′, i∗a∗Gét)⊕
⊕
v∈�R

R̂0(Kv, a∗Gét) //

��

R0c(U, a∗Gét)[1]

��

R0c(U,G) // R0(U,G) // R0(Z ′, i∗G)⊕
⊕
v∈�R

R̂0(Kv,G) // R0c(U,G)[1]

where the vertical maps between the first two rows come from the first point of this lemma, and the
ones between the last two rows come from the adjunction morphism a∗Gét = a∗a∗G→ G and from the
functoriality of the triangle defining the complexes R0c(U, ·). Now [Grothendieck 1968, Theorem 11.7],
ensures that the composed vertical morphism R0ét(U,Gét)→ R0(U,G) is an isomorphism. Whence
the required result. �

Proof of Proposition 2.1. (1) This is immediate from the definitions.

(2) The claim follows from the definitions, from the exactness of the functors i∗, av
∗

and D•(·) at the
beginning of Section 2, and from the exactness of the cone functor on the category of complexes of
abelian groups (see also [Milne 1986, III, Proposition 0.4.a and Remark 0.6.b]).

(3) As in the proof of [Milne 1986, III, Proposition 0.4.c], let I •(F) be an injective resolution of F . In
the number field case, the piece of notation 0(K̂v, I •(F)) will stand for 0(Kv, Î •(Fv)) when v is a real
place of K , where Î •(Fv) is the modified resolution constructed in the beginning of Section 2.

Consider the following commutative diagram of complexes in the category of bounded below complexes
of abelian groups, where the maps are the natural ones:

0(U, I •(F)) α
//

f

��

⊕
v /∈U 0(K̂v, I •(F))⊕

⊕
v∈U\V 0(Ôv, I •(F))

(id,g)
��

πO
//
⊕

v /∈U 0(K̂v, I •(F))

0(V, I •(F)) α′
//
⊕

v /∈U 0(K̂v, I •(F))⊕
⊕

v∈U\V 0(K̂v, I •(F))

πK

33

Functoriality of the mapping cone in the category of complexes gives morphisms

0U\V (U, I •(F))→
⊕
v∈U\V

0v(Ov, I •(F))→
⊕
v∈U\V

0v(Ôv, I •(F)),

where
0U\V (U, I •(F)) := C( f )[−1], 0v(Ov, I •(F)) := 0mv (Ov, I •(F))

and
0v(Ôv, I •(F)) := 0mv (Ôv, I •(F)).

The excision property (Lemma 2.9) implies that the first morphism above 0U\V (U, I •(F)) →⊕
v∈U\V 0v(Ov, I •(F)) is a quasi-isomorphism.
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Since for all v ∈ X , the ring Ov is an excellent henselian discrete valuation ring, Lemma 2.6 ensures
that the second map ⊕

v∈U\V

0v(Ov, I •(F))→
⊕
v∈U\V

0v(Ôv, I •(F))

is a quasi-isomorphism. Therefore, the natural morphism C( f )→ C(g) is a quasi-isomorphism.
Apply now Lemma 2.3 to get a commutative diagram in the derived category of abelian groups, where

the second row and the first two columns are exact triangles:

( ⊕
v /∈V

0(K̂v , I•(F))
)
[−1]

��

( ⊕
v /∈U

0(K̂v , I•(F))
)
[−1]

iK
oo

��

⊕
v /∈U

0(K̂v , I•(F))⊕
⊕

v∈U\V
0(Ôv , I•(F))

(id,g)
//
⊕
v /∈V

0(K̂v , I•(F))

��

0c(V, I•(F)) //

��

0c(U, I•(F)) //

��

⊕
v∈U\V

0(Ôv , I•(F))

i ′O

OO

// 0c(V, I•(F))[1]

0(V, I•(F))

α′

��

0(U, I•(F))

πO◦α

��

f
oo

α
// ⊕
v /∈U

0(K̂v , I•(F))⊕
⊕

v∈U\V
0(Ôv , I•(F))

π ′O

OO

⊕
v /∈V

0(K̂v , I•(F))
πK

// ⊕
v /∈U

0(K̂v , I•(F))

(3)

Now the cohomology of this diagram gives the following canonical commutative diagram, with an
exact second row (and the two first columns exact):

⊕
v /∈V

H r−1(K̂v,F)

��

⊕
v /∈U

H r−1(K̂v,F)oo

��

⊕
v /∈U

H r (K̂v,F)⊕
⊕

v∈U\V
H r (Ôv,F) //

⊕
v /∈V

H r (K̂v,F)

��

· · · // H r
c (V,F) //

��

H r
c (U,F) //

��

⊕
v∈U\V

H r (Ôv,F)

OO

// H r+1
c (V,F) // · · ·

H r (V,F)

��

H r (U,F)

��

Res
oo //

⊕
v /∈U

H r (K̂v,F)⊕
⊕

v∈U\V
H r (Ôv,F)

OO

⊕
v /∈V

H r (K̂v,F) //
⊕
v /∈U

H r (K̂v,F)

which proves the required exactness and commutativity.
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(4) Lemma 2.10 gives a commutative diagram with exact rows:

H r−1
ét (U,F) //

∼

��

⊕
v /∈U H r−1

ét (Kv,F) //

��

H r
ét,c(U,F) //

��

H r
ét(U,F) //

∼

��

⊕
v /∈U H r

ét(Kv,F)

��

H r−1(U,F) //
⊕

v /∈U H r−1(K̂v,F) // H r
c (U,F) // H r (U,F) //

⊕
v /∈U H r (K̂v,F)

Here Hét stands for étale cohomology (modified over Kv for v real) and Hét,c for (modified) étale
cohomology with compact support (as defined in [Geisser and Schmidt 2018, Section 2], or before
Lemma 2.10; recall also that in the number field case, the piece of notation v 6∈U means that we consider
the places corresponding to closed points of Spec(OK ) \U and the real places).

By [Gabber et al. 2014, Lemma 3.5.3] and [Milne 1980, III.3], we have

H r
ét(Kv,F)∼= H r

ét(K̂v,F) ∼−→ H r (K̂v,F)

for all r ≥ 1 (resp. for all integers r if FK is finite; indeed Kv and K̂v have the same absolute Galois group
via [Bourbaki 2006, Section 8, Corollary 4 to Theorem 2], and [Ribenboim 1968, Section F, Corollary 2
to Theorem 2]) and all places v of K . Therefore the five-lemma gives the result. �

Remark 2.11. The definition of fppf compact support cohomology and its related properties are specific
to schemes of dimension 1. To the best of our knowledge, there is no good analogue in higher dimension,
unlike what happens for étale cohomology.

We will need the following complement to Proposition 2.1:

Proposition 2.12. Let F be a flat affine commutative group scheme of finite type over U. Let V ⊂U be a
nonempty open subset. Then there is a long exact sequence

· · · →

⊕
v∈U\V

H r
v (Ôv,F)→ H r (U,F)→ H r (V,F)→

⊕
v∈U\V

H r+1
v (Ôv,F)→ · · · (4)

Proof. The map
⊕

v∈U\V H r
v (Ôv,F)→ H r (U,F) is given by the identification of the first group with

H r
Z (U,F), where Z =U \ V , via Lemmas 2.6 and 2.9. By the localization exact sequence [Milne 1986,

Proposition III.0.3.c], this identification yields the required long exact sequence. �

3. Topology on cohomology groups with compact support

With the previous notation, let us define a natural topology on the groups H∗c (U, N ), where N is a finite
flat commutative U -group scheme. Theorem 1.1 actually immediately implies that H 2

c (U, N ) is profinite,
but this duality theorem will not be used in this paragraph. The “a priori” approach we adopt in this
section answers a question raised by Milne [1986, Problem III.8.8].

We restrict ourselves to the function field case, because when K is a number field the groups involved
are finite (see [Milne 1986, Theorem III.3.2]; see also Section 5 of this article). Recall that as usual (see
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for example [Milne 1986, Section III.8]), the groups H∗(U, N ) are endowed with the discrete topology.
Our first goal in this section is to define a natural topology on the groups H∗c (U, N ).

Given an exact sequence of abelian groups

0→ A→ B→ C→ 0,

such that A is a topological group, there exists a unique topology on B such that B is a topological group,
A is an open subgroup of B, and C is discrete when endowed with the quotient topology. Indeed, the
topology on B is generated by the subsets b+U , where b ∈ B and U is an open subset of A. In addition,
given another abelian group B ′ with a subgroup A′ ⊂ B ′ that is a topological group, and a commutative
diagram of abelian groups

A �
�

//

f
��

B
g
��

A′ �
�

// B ′

then f is continuous if and only if g is continuous, for the aforementioned topologies. And f is open if
and only if g is.

We can therefore topologize the groups H i
c (U, N ) for i 6= 2, using the exact sequence (see

Proposition 2.1(1)) ⊕
v 6∈U

H i−1(K̂v, N )→ H i
c (U, N )→ H i (U, N ).

Since the groups H i−1(K̂v, N ) are finite for i 6= 2 [Milne 1986, Section III.6] and H i (U, N ) is discrete,
all groups H i

c (U, N ) are discrete if i 6= 2.
Let us now focus on the case i = 2. Consider the exact sequence (Proposition 2.1(1))

H 1(U, N )→
⊕
v /∈U

H 1(K̂v, N )→ H 2
c (U, N )→ H 2(U, N ). (5)

For i = 1, 2, set

Di (U, N )= Im[H i
c (U, N )→ H i (U, N )] = Ker[H i (U, N )→

⊕
v 6∈U

H i (K̂v, N )].

By Proposition 2.1(1), there is an exact sequence⊕
v 6∈U

H i−1(K̂v, N )→ H i
c (U, N )→ Di (U, N )→ 0. (6)

The following result has been proved by Česnavičius [2017, Theorem 2.9].4

4Proposition 2.3 of [loc. cit.] uses the fppf duality Theorem 1.1, but this proposition is actually not needed to prove
Theorem 3.1 because a discrete subgroup of a Hausdorff topological group is automatically closed by [Bourbaki 2007, Section 2,
Proposition 5]
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Theorem 3.1 (Česnavičius). The map H 1(U, N )→
⊕

v /∈U H 1(K̂v, N ) is a strict morphism of topological
groups, that is: the image of H 1(U, N ) is a discrete subgroup of

⊕
v /∈U H 1(K̂v, N ). Besides, the group

D1(U, N ) is finite.

Corollary 3.2. The group H 1
c (U, N ) is finite.

Proof. The group
⊕

v /∈U H 0(K̂v, N ) is finite (N being a finite U -group scheme). Thus the finiteness of
H 1

c (U, N ) is equivalent to the finiteness of D1(U, N ) by (6). �

Put the quotient topology on (
⊕

v 6∈U H 1(K̂v, N ))/ Im H 1(U, N ). Using Theorem 3.1, the previous
facts define a natural topology on H 2

c (U, N ), so that morphisms in the exact sequence (5) are continuous
(and even strict). This topology makes H 2

c (U, N ) a Hausdorff and locally compact group [Bourbaki 2007,
Section 2, Proposition 18(a)].

To say more about the topology of H 2
c (U, N ), we need a lemma.

Lemma 3.3. (1) Let r : N → N ′ be a morphism of finite flat commutative U-group schemes. Then
the corresponding map s : H 2

c (U, N )→ H 2
c (U, N ′) is continuous. If we assume further that r is

surjective, then s is open. If

0→ N ′→ N → N ′′→ 0

is an exact sequence of finite flat commutative U-group schemes, then the connecting map
H 2

c (U, N ′′)→ H 3
c (U, N ′) is continuous.

(2) Let V ⊂ U be a nonempty open subset. Then the natural map u : H 2
c (V, N ) → H 2

c (U, N ) is
continuous.

Proof. (1) By definition of the topology on the groups H 2
c , it is sufficient to prove that for v 6∈U , the map

H 1(K̂v, N )→ H 1(K̂v, N ′) is continuous (resp. open if r is surjective). Continuity follows from [Česnav-
ičius 2015b, Proposition 4.2] and the openness statement from [Česnavičius 2015b, Proposition 4.3(d)].
Similarly, the last assertion follows from the continuity of the connecting map H 1(Kv, N ′′)→H 2(Kv, N ′)
[Česnavičius 2015b, Proposition 4.2] .

(2) Since (by definition of the topology) the image I of A :=
⊕

v 6∈V H 1(K̂v, N ) is an open subgroup
of H 2

c (V, N ), it is sufficient to show that the restriction of u to I is continuous. As I is equipped with
the quotient topology (induced by the topology of A), this is equivalent to showing that the natural map
s : A→ H 2

c (U, N ) is continuous. Now we observe that A is the direct sum of A1 :=
⊕

v 6∈U H 1(K̂v, N )
and A2 :=

⊕
v∈U\V H 1(K̂v, N ). The restriction of s to A1 is continuous by the commutative diagram

of Proposition 2.1(3). Therefore it only remains to show that the restriction s2 of s to A2 is continuous.
By [loc. cit.], the restriction of s2 to

⊕
v∈U\V H 1(Ôv, N ) is zero. Since

⊕
v∈U\V H 1(Ôv, N ) is an open

subgroup of
⊕

v∈U\V H 1(K̂v, N ) [Česnavičius 2015b, Proposition 3.10], the result follows. �

Recall also the following (probably well-known) lemma:
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Lemma 3.4. Let f : A→ B be a continuous morphism of topological groups, with B Hausdorff :

(1) Assume that A is profinite. Then f is strict.

(2) Assume that f is injective and A is compact. Then f is strict.

(3) Let
0→ A i

−→ B π
−→ C→ 0

be an exact sequence of topological groups with i strict and π continuous. If A and C are completely
disconnected, then so is B.

Proof. (1) Since f is continuous and B Hausdorff, the image of f is a compact subspace of B, so we
can assume that B is compact and f is onto. The topology of A has a basis consisting of open subgroups,
so it is sufficient to show that the image of such a subgroup U is open. As U is closed (hence compact)
and of finite index in A, its image f (U ) is also compact and of finite index in B, hence it is an open
subgroup of B.

(2) Since A is compact and B is Hausdorff, we get that i is a closed map (because the image of a compact
subspace of A is compact), hence it induces a homeomorphism from i onto the subspace i(A)⊂ B. This
means that i is strict.

(3) Let D be a connected subset of B. Then π(D) is connected, hence is a singleton. Thus, by translating,
one can assume that D ⊂ i(A); as i is strict, the subset i−1(D) ⊂ A is connected, so it is reduced to a
point, hence D is a singleton. This proves the statement. �

Proposition 3.5. For every integer i with 0≤ i ≤ 3, the topology on H i
c (U, N ) is profinite.

Proof. The only nontrivial case is i = 2. We first observe that if there is an exact sequence of finite flat
commutative U -group schemes

0→ N ′→ N → N ′′→ 0,

then it is sufficient to prove that H 2
c (U, N ′) and H 2

c (U, N ′′) are profinite to get the same result for
H 2

c (U, N ). Indeed by Proposition 2.1, 3., there is an exact sequence

H 1
c (U, N ′′)→ H 2

c (U, N ′)→ H 2
c (U, N )→ H 2

c (U, N ′′).

The group H 1
c (U, N ′′) is finite by Corollary 3.2; besides, all maps are continuous and the map H 2

c (U, N )→
H 2

c (U, N ′′) is open (in particular it is strict, and its image is profinite as soon as H 2
c (U, N ′′) is) by

Lemma 3.3(1). Therefore if H 2
c (U, N ′) and H 2

c (U, N ′′) are profinite, then H 2
c (U, N ) is profinite as an

extension
0 i
−→ A→ H 2

c (U, N ) π
−→ B→ 0

of two profinite groups A, B such that the map π is open (the map i is strict by Lemma 3.4, 2.; the group
H 2

c (U, N ) is completely disconnected by Lemma 3.4 3., and its compactness follows from the fact that π
is a proper map by [Bourbaki 2007, Section 4, Corollary 2 to Proposition 2]).
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This being said, note now that Proposition 2.1(4) implies the result when the order of N is prime to
p by [Milne 1986, Corollary II.3.3] (in this case H 2

c (U, N ) is even finite). One can therefore assume
by devissage that the order of N is a power of p. The generic fiber NK of N is a finite commutative
group scheme over K . By [Demazure and Gabriel 1970, IV, Section 3.5], NK admits a composition series
whose quotients are étale (with a dual of height one), local (of height one) with étale dual, or αp. The
schematic closure in N of this composition series provides a composition series defined over U . Thus,
using the same devissage argument as above, one reduces to the case where the generic fiber NK or its
dual N D

K has height one.
Proposition III.B.4 and Corollary III.B.5 in [Milne 1986] now imply that there exists a nonempty open

subset V ⊂U such that N|V extends to a finite flat commutative group scheme Ñ over the proper k-curve X .
Then Proposition 2.1(3) gives an exact sequence

H 1
c (X, Ñ )→

⊕
v∈X\V

H 1(Ôv, Ñ )→ H 2
c (V, N )→ H 2

c (X, Ñ ) (7)

and since we are in the function field case with X proper over k, we have H i
c (X, Ñ ) = H i (X, Ñ ) for

every positive integer i .
By Proposition 2.1(3), the map

⊕
v∈X\V H 1(Ôv, Ñ )→H 2

c (V, N ) factors through
⊕

v∈X\V H 1(K̂v, N ),
hence it is continuous. By Lemma 3.3, all maps in (7) are continuous. In addition, the groups
H 1

c (X, Ñ )= H 1(X, Ñ ) and H 2
c (X, Ñ )= H 2(X, Ñ ) are finite by [Milne 1986, Lemma III.8.9]. Besides,⊕

v∈X\V H 1(Ôv, Ñ ) is profinite by [loc. cit, Section III.7]; hence H 2
c (V, N ) is profinite as an extension

(the maps being strict by Lemma 3.4(2)) of a finite group by a profinite group.
Since H 2(Ôv, N )= 0 for every v ∈U [Milne 1986, Section III.7], Proposition 2.1(3) gives an exact

sequence of groups ⊕
v∈U\V

H 1(Ôv, N )→ H 2
c (V, N )→ H 2

c (U, N )→ 0,

which implies that H 2
c (U, N ) is profinite, the map H 2

c (V, N ) → H 2
c (U, N ) being continuous by

Lemma 3.3(2), hence strict by Lemma 3.4(1), because H 2
c (V, N ) is profinite and H 2

c (U, N ) is Hausdorff.
�

The following statement will be useful in the next section:

Proposition 3.6. Assume that F = N , F ′ = N ′ and F ′′ = N ′′ are finite and flat commutative group
schemes over U. Then all the maps in Proposition 2.1 are strict (in particular continuous).

Proof. For the maps in assertion 1 of Proposition 2.1, this follows from the definition of the topology and
Theorem 3.1.

Let us consider the maps in assertion 2. The finiteness of the H 1
c groups (Corollary 3.2) implies that

it only remains to deal with the maps between H 2
c ’s and the connecting map H 2

c (U,F ′′)→ H 3
c (U,F ′).

All these maps are continuous by Lemma 3.3, hence strict by Lemma 3.4 1. and Proposition 3.5.
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Finally, it has already been proven (see the proof of Proposition 3.5) that the maps in the exact sequence
of assertion 3 are continuous. They are strict via Lemma 3.4(1) because H 1

c (U,F) is finite, H 2
c (U,F)

(resp.
⊕

v∈U\V H 1(Ôv,F)) is profinite, and the other groups are discrete. �

4. Proof of Theorem 1.1 in the function field case

In this section K is the function field of a projective, smooth and geometrically integral curve X defined
over a finite field k of characteristic p. The proof follows the same lines as the proof of [Milne 1986,
Theorem III.8.2], replacing Proposition III.0.4 in [Milne 1986] by Proposition 2.1 and using the results of
Section 2.

For every nonempty open subset V ⊂U , the natural map H 3
c (V, Gm)

s
−→ H 3

c (U, Gm) is an isomor-
phism, and the trace map identifies H 3

c (U, Gm) with Q/Z (this identification being compatible with s).
Indeed since Gm is a smooth group scheme we can apply Proposition 2.1(4) and [Milne 1986, Section II.3].

For an fppf sheaf F on U , let us first define the pairing of abelian groups

H 3−r
c (U,F)× H r (U,FD)→ H 3

c (U, Gm)∼=Q/Z.

Since the cohomology groups with compact support are defined via a mapping cone construction,
we need to construct this pairing carefully at the level of complexes in order to be able to prove the
compatibilities that follow (see Lemmas 4.3 and 4.7 for instance).

Lemma 4.1. Let A and B be two fppf sheaves of abelian groups on U. Then there exists a canonical
pairing in the derived category of abelian groups

R0c(U, A)⊗L R0(U, B)→ R0c(U, A⊗ B).

Moreover, this pairing is functorial in A and B.

Proof. For any complex C of fppf sheaves, let G(C) denote the Godement resolution of C (see for
instance [SGA 43 1973, XVII, 4.2.9]; Godement resolutions exist on the big fppf site because this site has
enough points, see Remark 1.6 of [Gabber and Kelly 2015] or [Stacks 2005–, Tag 06VX]).

Then there is a commutative diagram of complexes of sheaves (see [Godement 1958, II.6.6] or
[Friedlander and Suslin 2002, Appendix A]):

A⊗ B

((��

Tot(G(A)⊗G(B)) // G(A⊗ B)

The horizontal morphism induces a morphism of complexes of abelian groups

Tot(0(U,G(A))⊗0(U,G(B)))→ 0(U,G(A⊗ B))
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hence a canonical morphism in the derived category of abelian groups

0(U,G(A))⊗L 0(U,G(B))→ 0(U,G(A⊗ B)).

Considering the local versions of the previous pairings, one gets a commutative diagram of complexes
of abelian groups

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(A⊗ B))

��∏
v /∈U Tot(0(K̂v,G(A))⊗0(U,G(B))) //

∏
v /∈U 0(K̂v,G(A⊗ B))

and functoriality of cones gives a canonical morphism of complexes (via Proposition A.1 in the Appendix)

Tot(0c(U,G(A))⊗0(U,G(B)))→ 0c(U,G(A⊗ B)). (8)

Since Godement resolutions are acyclic (see [SGA 43 1973, XVII, Proposition 4.2.3]), we know that
R0(U,C)∼= 0(U,G(C)) in the derived category, for any fppf sheaf C . Hence the pairing (8) gives the
required morphism in the derived category

R0c(U, A)⊗L R0(U, B)→ R0c(U, A⊗ B).

The functoriality of Godement resolutions implies the functoriality of the pairing in A and B. �

Using Lemma 4.1, [Stacks 2005–, Tag 068G] gives a natural pairing

H r
c (U, A)× H s(U, B)→ H r+s

c (U, A⊗ B),

whence we deduce the required canonical pairings, for any sheaf F on (Sch /U )fppf

H r
c (U,F)× H s(U,FD)→ H r+s

c (U, Gm), (9)

using the canonical map F ⊗FD
= F ⊗Hom(F, Gm)→ Gm .

Let us describe explicitly the pairing above: the map

Tot(0c(U,G(A))⊗0(U,G(B)))→ 0c(U,G(A⊗ B))

is given by maps(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗0(U,Gs(B))→

∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

(ar−1, ar )⊗ bs 7→ (ar−1 ∪β(bs), ar ∪ bs),

where the maps denoted by ∪ are the natural pairings, and β : 0(U,Gs(B))→
∏
v /∈U 0(K̂v,Gs(B)) is

the localization map.
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In the following, we will need an alternative version of the above pairing: with the same notation as
above, one defines a pairing in the derived category

R0(U, A)⊗L R0c(U, B)→ R0c(U, A⊗ B).

The definition is similar to the one in Lemma 4.1: the commutative diagram of complexes

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(A⊗ B))

��∏
v /∈U Tot(0(U,G(A))⊗0(K̂v,G(B))) //

∏
v /∈U 0(K̂v,G(A⊗ B))

and Proposition A.1 in the Appendix gives a morphism of complexes

Tot(0(U,G(A))⊗0c(U,G(B)))→ 0c(U,G(A⊗ B)). (10)

Taking into account the signs in Proposition A.1, one can describe the pairing Tot(0(U,G(A))⊗
0c(U,G(B)))→ 0c(U,G(A⊗ B)) explicitly as follows:

0(U,Gr (A))⊗
(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)
→

∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

ar ⊗ (bs−1, bs) 7→ ((−1)rα(ar )∪ bs−1, ar ∪ bs),

where α : 0(U,Gr (A))→
∏
v /∈U 0(K̂v,Gr (A)) is the localization map.

We now compare the two pairings defined above:

Lemma 4.2. The following diagram of complexes commutes up to homotopy:

Tot(0c(U,G(A))⊗0(U,G(B))) // 0c(U,G(A⊗ B))

=

��

Tot(0c(U,G(A))⊗0c(U,G(B)))

��

=

OO

=

��

OO

Tot(0(U,G(A))⊗0c(U,G(B))) // 0c(U,G(A⊗ B))

Proof. Using the explicit descriptions above, one needs to prove that the map ϕr,s from(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗

(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)

to ∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

given by

(ar−1, ar )⊗ (bs−1, bs) 7→ ((−1)rα(ar )∪ bs−1− ar−1 ∪β(bs), 0)



Artin–Mazur–Milne duality for fppf cohomology 2345

is homotopically trivial. To prove this, consider the maps(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗

(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)

hr,s
−→

∏
v /∈U

0(K̂v,Gr+s−2(A⊗ B))⊕0(U,Gr+s−1(A⊗ B))

given by hr,s : (ar−1, ar )⊗ (bs−1, bs) 7→ (0, (−1)r ar−1 ∪ bs−1). Then these maps define an homotopy
equivalence between the map

⊕
r+s=n ϕr,s and the zero map, proving the lemma. �

We now prove that the pairing is compatible with coboundary maps in cohomology coming from short
exact sequences:

Lemma 4.3. Let 0→ A→ B→ C→ 0 and 0→ C ′→ B ′→ A′→ 0 be two exact sequences of fppf
sheaves on U , and let B⊗ B ′→ D be a morphism of fppf sheaves. Assume that the induced morphism
A⊗C ′→ D is trivial.

Consider the following diagram

H r
c (U,C)× H s+1(U,C ′) ∪

//

∂r
��

H r+s+1
c (U, D)

=

��

H r+1
c (U, A)× H s(U, A′) ∪

//

∂ ′s

OO

H r+s+1
c (U, D)

where the horizontal morphisms are induced by the pairings in Lemma 4.1 and by the morphism B⊗B ′→
D, and the vertical maps are the coboundary morphisms.

Then for all c ∈ H r
c (U,C) and a′ ∈ H s(U, A′), we have

∂r (c)∪ a′+ (−1)r c∪ ∂ ′s(a
′)= 0.

Proof. For all fppf sheaves E , let ∂E
i : Gi (E)→ Gi+1(E) denote the coboundary map in the Godement

complex G(E).
Consider the diagram induced by B⊗ B ′→ D

0(U,Gr (B))⊗0(U,Gs+1(B ′))
∪
//

∂B
r
��

0(U,Gr+s+1(D))

=

��

0(U,Gr+1(B))⊗0(U,Gs(B ′))
∪
//

∂B′
s

OO

0(U,Gr+s+1(D))

together with the similar diagrams over Spec K̂v, for all v /∈ S.
By compatibility of the Godement resolution with tensor product [Friedlander and Suslin 2002,

Appendix A], the pairing Tot(G(B)⊗ G(B ′))→ G(D) is a morphism of complexes. Hence for all
b ∈ 0(U,Gr (B)) and b′ ∈ 0(U,Gs(B ′)), we have

∂ B
r (b)∪ b′+ (−1)r b∪ ∂ B ′

s (b
′)= ∂D

r+s(b∪ b′).
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This formula, its analogue over Spec K̂v for v /∈ S, together with the definition of the connecting maps in
cohomology via Godement resolutions (recall that for all n, the functor F 7→Gn(F) is exact, see [SGA 43

1973, XVII, Proposition 4.2.3]), implies Lemma 4.3. �

Lemma 4.4. Let N be a finite flat commutative U-group scheme of order n, then the pairings (9)

H r
c (U, N )× H s(U, N D)→ H r+s

c (U, µn)

are continuous.

Proof. The pairings (9) are defined via the cup-product on U and the local duality pairings Ha(K̂v, N )×
H b(K̂v, N D)→ Ha+b(K̂v, µn). These local pairings are continuous [Česnavičius 2015b, Theorems 5.11
and 6.5]. Hence the lemma follows from the definition of the topologies on the cohomology groups (see
Section 3). �

Remark 4.5. In [Milne 1986] (see for example Theorem III.3.1), the pairings are defined via the Ext
groups, which is quite convenient for the definition itself but makes the required commutativities of
diagrams more difficult to check. Nevertheless, Proposition V.1.20 in [Milne 1980] provides a similar
comparison between both definitions: see the details in Proposition A.2 of the Appendix.

In order to prove Theorem 1.1, we now need to show that the induced map H 3−r
c (U, N )→H r (U, N D)∗

is an isomorphism (of topological groups) for every finite flat commutative group scheme N over U and
every r ∈ {0, 1, 2, 3} (recall that the groups H r (U, N D) are equipped with the discrete topology).

We first recall the following lemma [Milne 1986, Lemma III.8.3]:

Lemma 4.6. Let

0→ N ′→ N → N ′′→ 0

be an exact sequence of finite flat commutative group schemes over U. If Theorem 1.1 is true for N ′

and N ′′, then it is true for N.

Proof. Using Proposition 2.1(2), the exactness of Pontryagin duality for discrete groups and the pairing in
Lemma 4.1, one gets a diagram of long exact sequences:

· · ·

?

// H 3−r
c (U, N ′) //

��

H 3−r
c (U, N ) //

��

H 3−r
c (U, N ′′) //

��

?

· · ·

· · · // H r (U, N ′D)∗ // H r (U, N D)∗ // H r (U, N ′′D)∗ // · · ·

The functoriality of the pairing (see Lemma 4.1) implies that both central squares in the diagram are
commutative. Lemma 4.3 implies that both extreme squares (denoted ?) are commutative up to sign. By
Lemma 3.4(1), Proposition 3.6 and Lemma 4.4, all the maps in this diagram are continuous. Hence the
lemma follows from the five-lemma. �
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We now want to show that it is sufficient to prove Theorem 1.1 for a smaller open subset V ⊂U . To
do this, we need to check the compatibility of the pairing in Theorem 1.1 with restriction to an open
subset of U and with the local duality pairing (see Lemma 4.7 below).

We first define the maps that appear in this lemma. Let F be a flat affine commutative U -group
scheme of finite type and let V ⊂ U be a nonempty open subset. Let W denote U \ V . In diagram
(11) below, the first column is the long exact sequence of Proposition 2.1(3), and the second column
is the localization exact sequence from Proposition 2.12. The horizontal pairings are either the local
duality pairings from [Milne 1986, Theorem III.7.1] (first and last rows), using the same sign convention
as in the pairing (10), or the global pairings from Lemma 4.1 (second and third rows). The proof of
Proposition 2.12 provides an isomorphism H 3

W (U, Gm)∼=
⊕

v∈W H 3
v (Ôv, Gm), and the natural morphism

of complexes 0W (U, I •(Gm))→ 0c(V, I •(Gm)) gives a morphism H 3
W (U, Gm)→ H 3

c (V, Gm), whence
natural morphisms

⊕
v∈W H 3

v (Ôv, Gm)→ H 3
c (V, Gm)→ H 3

c (U, Gm).

Lemma 4.7. Let F , G be flat affine commutative group schemes of finite type on U , together with a
pairing F ⊗G→ Gm . Let V ⊂U be a nonempty open subscheme and W :=U \ V . Then the following
diagram is commutative:

⊕
v∈W H 2−r (Ôv,F)×

⊕
v∈W H r+1

v (Ôv,G)

��

//
⊕

v∈W H 3
v (Ôv, Gm)

��

H 3−r
c (V,F)× H r (V,G) //

��

OO

H 3
c (V, Gm)

∼

��

H 3−r
c (U,F)× H r (U,G) //

OO

��

H 3
c (U, Gm)

⊕
v∈W H 3−r (Ôv,F)×

⊕
v∈W H r

v (Ôv,G)

OO

//
⊕

v∈W H 3
v (Ôv, Gm)

OO

(11)

In addition, if F and G are finite and flat group schemes, then all the maps in the diagram are continuous.

Proof. (1) We first prove the commutativity of the top rectangle. It is sufficient to prove that the following
diagram commutes:

Tot
(⊕

v∈W 0(Ôv,G(F))[−1]⊗
⊕

v∈W 0v(Ôv,G(G))[1]
)

//

��

⊕
v∈W 0v(Ôv,G(Gm))

Tot
(⊕

v∈W 0(K̂v,G(F))[−1]⊗
⊕

v∈W 0(K̂v,G(G))
)

//

��

OO

⊕
v∈W 0(K̂v,G(Gm))[−1]

OO

��

Tot(0c(V,G(F))⊗0(V,G(G))) //

OO

0c(V,G(Gm))
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where the vertical maps are the natural ones and the horizontal pairings are defined earlier. The top
rectangle is commutative because of the definition of the pairing involving cohomology with support in a
closed subscheme, taking into account the sign conventions in Proposition A.1 in the Appendix. The
bottom one is commutative by definition of the pairing involving compact support cohomology.

Assume now that F and G are finite flat group schemes. Then the following maps are continu-
ous: the pairing H 2

c (V,F) × H 1(V,G) → H 3
c (V, Gm) (see Lemma 4.4), the pairing H 1(Ôv,F) ×

H 2
v (Ôv,G)→ H 3

v (Ôv, Gm) [Milne 1986, Theorem III.7.1] and the map
⊕

v∈W H 1(Ôv,F)→ H 2
c (V,F)

(see Proposition 3.6).

(2) We now prove the commutativity of the rectangle in the middle. Let

0̃(U,G(F)) := Cone(0(U,G(F))→
⊕
v /∈U

0(K̂v,G(F))⊕
⊕
v∈U\V

0(Ôv,G(F)))[−1].

Then functoriality of the cone gives a commutative diagram (similar to (3), where I •(F) is replaced by
G(F) and by G(Gm)) of complexes of abelian groups:

Tot(0c(V,G(F))⊗0(V,G(G))) // 0c(V,G(Gm))

Tot(0̃(U,G(F))⊗0(U,G(G))) //

OO

=

��

q

OO

��

0̃(U,G(Gm))

��

q

OO

Tot(0c(U,G(F))⊗0(U,G(G))) // 0c(U,G(Gm))

Here the maps denoted by q are quasi-isomorphisms (see Remark 2.7 and the proof of the third point
in Proposition 2.1, which uses Lemma 2.4). This diagram gives a commutative diagram in the derived
category of abelian groups (where all the maps are either the natural ones or the ones constructed above):

0c(V,G(F))⊗L 0(V,G(G)) //

��

0c(V,G(Gm))

��

0c(U,G(F))⊗L 0(U,G(G)) //

OO

0c(U,G(Gm))

Taking cohomology of this diagram gives a commutative diagram of abelian groups:

H r
c (V,F)× H s(V,G) //

��

H r+s
c (V, Gm)

��

H r
c (U,F)× H s(U,G) //

OO

H r+s
c (U, Gm)

which implies the required commutativity.
The continuity of the maps in the case where F and G are finite flat group schemes is a consequence

of Lemma 4.4 and of Lemma 3.3.
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(3) We now need to prove the commutativity of the bottom rectangle. By Lemma 4.2, the following
diagram commutes in the derived category:

0c(U,G(F))⊗L 0(U,G(G)) //

��

0c(U,G(Gm))

=

��

0(U,G(F))⊗L 0c(U,G(G)) //

OO

0c(U,G(Gm))

Computing cohomology gives a commutative diagram of abelian groups:

H r
c (U,F)× H s(U,G) //

��

H r+s
c (U, Gm)

=

��

H r (U,F)× H s
c (U,G) //

OO

H r+s
c (U, Gm)

Let 0W (U,G(G)) := Cone(0(U,G(G))→ 0(V,G(G)))[−1]. In order to prove the required commu-
tativity, it is enough to prove that the natural diagram

0(U,G(F))⊗L 0c(U,G(G)) // 0c(U,G(Gm))

0(U,G(F))⊗L 0W (U,G(G)) //

=

OO OO

0W (U,G(Gm))

OO

commutes in the derived category, where the pairing on the bottom row is defined in a similar way as the
pairing (10). Consider the following diagram in the category of complexes:

Tot(0(U,G(F))⊗0(U,G(G))) //

��

++

0(U,G(Gm))

��

((

Tot(0(U,G(F))⊗0(V,G(G)))

ss

// 0(V,G(Gm))

vv∏
v /∈U Tot(0(U,G(F))⊗0(K̂v,G(G))) //

∏
v /∈U 0(K̂v,G(Gm))

This diagram is commutative, hence, using Proposition A.1, it induces a commutative diagram of
complexes at the level of cones:

Tot(0(U,G(F))⊗0c(U,G(G))) //

��

0c(U,G(Gm))

��

Tot(0(U,G(F))⊗0W (U,G(G))) //

33

++

0W (U,G(Gm))

((

66

Tot(0(U,G(F))⊗0(U,G(G))) // 0(U,G(Gm))

The commutativity of the upper face of this last diagram concludes the proof.
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Assume now that F and G are finite flat group schemes. The only possibly nondiscrete groups in
the diagram are H 2

c (U,F) (in the case r = 1) and H 1(Ôv,F) (in the case r = 2). If r = 1, the pairing
H 2

c (U,F)× H 1(U,G)→ H 3
c (U, Gm) is continuous by Lemma 4.4 and H 2(Ôv,F) = 0 for all v ∈ W

(see for instance [Milne 1986, Lemma 1.1]), hence all maps are continuous in this case. If r = 2, then the
local pairings H 1(Ôv,F)×H 2

v (Ôv,G)→ H 3
v (Ôv, Gm) are continuous by [Milne 1986, Theorem III.7.1].

All the other maps are obviously continuous.

This finishes the proof of Lemma 4.7. �

We can now prove the following lemma [Milne 1986, Lemma III.8.4]:

Lemma 4.8. Let V ⊂U be a nonempty open subscheme. Let N be a finite flat commutative group scheme
over U. Then Theorem 1.1 holds for N over U if and only if it holds for N|V over V .

Proof. Propositions 2.1(3), 2.12, and 3.6 and Lemma 4.7 give a commutative diagram of long exact
sequences of topological groups

· · · // H 3−r
c (V, N ) //

��

H 3−r
c (U, N ) //

��

⊕
v∈U\V H 3−r (Ôv, N ) //

��

· · ·

· · · // H r (V, N D)∗ // H r (U, N D)∗ //
⊕

v∈U\V H r
v (Ôv, N D)∗ // · · ·

where the vertical maps are defined via the pairings (9) and the local duality pairings of [Milne 1986,
III.7.1]. In particular, the maps H 3−r (Ôv, N ) → H r

v (Ôv, N D)∗ are isomorphisms by [Milne 1986,
Theorem III.7.1]. The middle vertical map is strict by Lemmas 4.4 and 3.4. Therefore the five-lemma
gives the result. �

The end of the proof of Theorem 1.1 (which implies in particular that by duality the groups H r (U, N D)

are zero for r ≥ 4, resp. for r = 3 if U 6= X ) is exactly the same as the end of the proof of Theorem III.8.2
in [Milne 1986]. Let U ⊂ X be a nonempty open subset and N be a finite flat commutative group scheme
over U :

• If the order of N is prime to p, then Theorem 1.1 is a consequence of Proposition 2.1(4) and étale
Artin–Verdier duality (Corollary II.3.3 in [Milne 1986] or Theorem 4.6 in [Geisser and Schmidt 2018]).
Note that it requires to compare the pairing defined in Lemma 4.1 with the Artin–Verdier pairing using
Ext groups as defined in [Milne 1986] or [Geisser and Schmidt 2018] : this is explained for instance in
Proposition A.2 of the Appendix. Hence by Lemma 4.6, it is sufficient to prove Theorem 1.1 when the
order of N is a power of p.

• If the order of N is a power of p, the proof of Proposition 3.5 implies that N admits a composition
series such that the generic fiber of each quotient is either of height one or the dual of a group of height
one. By Lemma 4.6, it is therefore sufficient to prove Theorem 1.1 in the case NK or N D

K have height one.

• If NK or N D
K have height one, Proposition B.4 and Corollary B.5 in [Milne 1986] imply that there

exists a nonempty open subset V ⊂U such that N|V extends to a finite flat commutative group scheme Ñ
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over the proper k-curve X , such that Ñ or Ñ D have height one. Using Lemma 4.8 twice, it is enough to
prove Theorem 1.1 when U = X and N or N D have height one.

• Lemma III.8.5 in [Milne 1986] proves Theorem 1.1 for U = X and N (resp. N D) of height one, by
reduction to the classical Serre duality for vector bundles over the smooth projective curve X . Indeed,
Proposition V.1.20 in [Milne 1980] proves that the pairings R0(X,FD)⊗L R0(X,F)→ R0(X, Gm)

defined via Godement resolutions in the proof of Lemma 4.1 are compatible with the classical pairings
using Ext groups that appear in Serre duality.

As observed in [Milne 1986, Section III.8] (remark before Lemma 8.9), the group H 1(U, N ) is in
general infinite if U 6= X and by duality, the same is true for H 2

c (U, N ). However, the situation is better
for H 2 and H 1

c .

Corollary 4.9. Let N be a finite and flat commutative group scheme over a nonempty Zariski open subset
U of X. Then the groups H 2(U, N ) and H 1

c (U, N ) are finite.

Proof. The statement about H 1
c (U, N ) is Corollary 3.2. The finiteness of H 2(U, N ) follows by the duality

Theorem 1.1. �

The previous corollary can be refined in some cases.

Proposition 4.10. Let N be a finite and flat commutative group scheme over a nonempty affine open
subset U ⊂ X , such that the generic fiber NK is local. Then H 1

c (U, N )= 0.

Proof. By the valuative criterion of properness, the restriction map H 1(U, N )→ H 1(K , N ) is injective.
It is sufficient to show that if we choose v 6∈U , the restriction map H 1(K , N )→ H 1(K̂v, N ) is injective
when NK is local. Indeed this implies that D1(U, N )= 0, hence H 1

c (U, N )= 0 by exact sequence (6)
because H 0(K̂v, N )= 0 for every completion K̂v of K .

We also reduce to showing that for every finite subextension L/K of K̂v/K , the restriction map
r : H 1(K , N )→ H 1(L , N ) is injective (indeed a K -torsor under the finite K -group scheme NK is of
finite type over K , hence it has a point over an extension K ′ of K if and only if it has a point over a
finite subextension of K ′). To do this, we argue as in [Česnavičius 2015b, Lemma 5.7(a)]. Since by
[Ribenboim 1968, Section F, Theorem 2], L is a separable extension of K , the K -algebra E := L ⊗K L
is reduced. As NK is finite and connected, the group N (E) is trivial. Let C1

:= RE/K (N ×K E) (where
R denotes Weil’s restriction of scalars) be the scheme of 1-cochains with respect to L/K , we obtain that
C1(K ) is trivial, which in turn implies that ker r is trivial by [Česnavičius 2015b, Section 5.1]. �

Remark 4.11. The finiteness of H 1
c (U, N ) (Corollary 3.2) relies on the finiteness of D1(U, N ) proven

in [Česnavičius 2017, Theorem 2.9]. An alternative argument is actually available. By [Milne 1986,
Lemma III.8.9], we can assume that U 6= X , namely that U is affine. By [loc. cit., Theorem II.3.1]
and Proposition 2.1(4), we can also assume that the order of N is a power of p. Let NK be the generic
fiber of N , it is a finite group scheme over K . By [Demazure and Gabriel 1970, IV, Section3.5], and
Proposition 2.1(2), it is sufficient to prove the required finiteness in the following cases: NK is étale, NK is
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local with étale dual, NK =αp. The last two cases are taken care of by Proposition 4.10, so we can suppose
that NK is étale. Let V ⊂U be a nonempty open subset. By Proposition 2.1, we have an exact sequence

H 1
c (V, N )→ H 1

c (U, N )→
⊕
v∈U\V

H 1(Ôv, N ).

Since the generic fiber of N is étale, the group H 1(Ôv, N ) is finite by [Milne 1986, Remark III.7.6]
(this follows from the fact that H 1(Ôv, N ) is a compact subgroup of the discrete group H 1(Kv, N )),
hence the finiteness of H 1

c (U, N ) is equivalent to the finiteness of H 1
c (V, N ), which in turn is equivalent

to the finiteness of D1(V, N ). The latter holds for V sufficiently small: either apply [González-Avilés
2009, Lemma 4.3] (which relies on an embedding of NK into an abelian variety) or reduce (as in [Milne
1986, Lemma III.8.9]) to the case when N D is of height one. Indeed by [loc. cit., Corollary III.B.5], the
assumption that N D is of height one implies that for V sufficiently small, the restriction of N to V extends
to a finite and flat commutative group scheme Ñ over X . Then the finiteness of H 1

c (X, Ñ ) implies the
finiteness of H 1

c (V, Ñ )= H 1
c (V, N ) by Proposition 2.1(3), because the groups H 0(Ôv, Ñ ) are finite.

5. The number field case

Assume now that K is a number field and set X = SpecOK . Let U be a nonempty Zariski open subset
of X . Let n be the order of the finite and flat commutative group scheme N . To prove Theorem 1.1 in this
case, one follows exactly the same method as in [Milne 1986, Theorem III.3.1 and Corollary III.3.2], once
Proposition 2.1 has been proved. Namely Proposition 2.1(4) shows that on U [1/n], Theorem 1.1 reduces
to the étale Artin–Verdier Theorem [Milne 1986, II.3.3] or [Geisser and Schmidt 2018, Theorem 4.6].
Here we can use a definition of the pairings similar to Lemma 4.1, or a definition via the Ext pairings
as in [loc. cit.] (the two definitions coincide, the argument being the same as in Proposition A.2 of the
Appendix). Now Proposition 2.1(3) gives a commutative diagram as in the end of the proof of [Milne
1986, Theorem III.3.1] (with completions Ôv instead of henselizations Ov). Theorem 1.1 follows by the
five-lemma, using the result on U [1/n] and the local duality statement [Milne 1986, Theorem III.3.1].

Remark 5.1. In the number field case, one can as well (as in [Milne 1986, Section III.3]) work from the
very beginning with henselizations Ov and not with completions Ôv to define cohomology with compact
support. Indeed the local theorem [loc. cit., Theorem III.3.1] still holds with henselian (not necessarily
complete) discrete valuation ring with finite residue field when the fraction field is of characteristic zero.
Hence the only issue here is commutativity of diagrams. Nevertheless, we felt that it was more convenient
to have a uniform statement (Proposition 2.1) in both characteristic 0 and characteristic p situations.

Appendix

A.1. Cone and tensor products.

Proposition A.1. Let A be the category of fppf sheaves over a scheme T . Let A, B and C be three
complexes in A. Let f : A→ B be a morphism of complexes. Then there are commutative diagrams
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(where ⊗ denotes the total tensor product of complexes) such that the vertical maps are isomorphisms of
complexes

A⊗C
f⊗1
//

=

��

B⊗C

=

��

i⊗1
// Cone( f )⊗C

∼

��

−π⊗1
// A[1]⊗C

∼

��

A⊗C
f⊗1
// B⊗C i ′

// Cone( f ⊗ 1)
−π
// (A⊗C)[1]

where the vertical isomorphisms involve no signs, and

C ⊗ A
1⊗ f

//

=

��

C ⊗ B

=

��

1⊗i
// C ⊗Cone( f )

∼

��

−1⊗π
// C ⊗ A[1]

∼

��

C ⊗ A
1⊗ f

// C ⊗ B i ′
// Cone(1⊗ f )

−π
// (C ⊗ A)[1]

where the two last vertical maps involve a sign (−1)r on the factor Cr ⊗ As .

Proof. In the first diagram, define the nonobvious map Cone( f )⊗C→ Cone( f ⊗ 1) (resp. A[1]⊗C→
(A⊗C)[1]) by the isomorphism (Br ⊕ Ar+1)⊗Cs → (Br ⊗Cs)⊕ (Ar+1⊗Cs) (resp. by the identity
of Ar+1 ⊗ Cs). In the second diagram, the nonobvious map C ⊗ Cone( f ) → Cone(1 ⊗ f ) (resp.
C⊗ A[1]→ (C⊗ A)[1]) is given by the isomorphism Cr ⊗ (Bs⊕ As+1)→ (Cr ⊗ Bs)⊕ (Cr ⊗ As+1) that
maps c⊗(b, a) to (c⊗b, (−1)r c⊗a) (resp. by the automorphism of Cr⊗As+1 given by c⊗a 7→(−1)r c⊗a).
The proposition is then straightforward. �

A.2. Comparison of two pairings. Let U be a nonempty Zariski open subset of a smooth, projective,
geometrically integral curve defined over a finite field.

Proposition A.2. Let A, B and C be three fppf sheaves on U , endowed with a pairing A⊗ B→ C. Then
there is a commutative diagram

H r (U, A)⊗ H s
c (U, B) //

��

H r+s
c (U,C)

=

��

ExtrU (B,C)⊗ H s
c (U, B) // H r+s

c (U,C)

where the top pairing is the one from (10) and the bottom one is the pairing from [Milne 1986, Proposi-
tion III.0.4.e]. The same holds for étale sheaves instead of fppf sheaves if we replace fppf cohomology
(resp. compact support fppf cohomology) by étale cohomology (resp. compact support étale cohomology);
in the étale case the bottom pairing is the one from [loc. cit., Proposition II.2.5] (or [Geisser and Schmidt
2018]).

Proof. We prove the statement for fppf sheaves (the étale case is similar). Consider the natural morphisms
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of complexes
Tot(G(A)⊗G(B))→ G(A⊗ B)→ G(C).

Using [Stacks 2005–, Tag 0A90], one gets a natural morphism of complexes G(A)→Hom•(G(B),G(C))
and a commutative diagram of complexes

Tot(G(A)⊗G(B)) //

��

G(A⊗ B) // G(C)

=

��

Tot(Hom•(G(B),G(C))⊗G(B)) // G(C)

where the second pairing is the natural one. All morphisms in this diagram involve no extra-sign.
Let G(C)→ I be an injective resolution. Then one gets a commutative diagram:

Tot(G(A)⊗G(B)) //

��

G(A⊗ B) // G(C)

��

Tot(Hom•(G(B), I )⊗G(B)) // I

Taking global sections, one gets a commutative diagram:

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(C))

∼

��

Tot(Hom•U (G(B), I )⊗0(U,G(B))) // 0(U, I )

(1)

Taking cohomology, one gets a commutative diagram comparing the pairing from the beginning of
Section 4 to the classical Ext-pairing:

H r (U, A)⊗ H s(U, B) //

��

H r+s(U,C)

=

��

ExtrU (B,C)⊗ H s(U, B) // H r+s(U,C)

Applying functoriality of cone to (1) and to the similar pairing over completions of K , one gets a
commutative diagram of complexes:

Tot(0(U,G(A))⊗0c(U,G(B))) //

��

0c(U,G(C))

∼

��

Tot(Hom•U (G(B), I )⊗0c(U,G(B))) // 0c(U, I )

Taking cohomology, we get the required commutative diagram. �
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Remarks A.3. (1) A similar diagram holds with compact support cohomology groups on the left and
Ext-groups on the right. In this case, one gets a commutative diagram:

H r
c (U, A)⊗ H s(U, B) //

��

H r+s
c (U,C)

=

��

H r
c (U, A)⊗ExtsU (A,C) // H r+s

c (U,C)

where the first pairing is the one from Lemma 4.1, while the vertical map and the bottom pairing both
involve a (−1)rs sign.

(2) Similar commutative diagrams hold over an arbitrary basis, with compact support cohomology
replaced by cohomology with support in a closed subscheme (with a similar proof).
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We thank K. Česnavičius, C. Pépin, A. Schmidt and T. Szamuely for enlightening comments on the first
draft of this paper. We also thank T. Suzuki for sharing his preprint [Suzuki 2018]. We warmly thank
the anonymous referee for his/her very thorough reading of the article and for having made numerous
interesting suggestions.

References

[Artin 1969] M. Artin, “Algebraic approximation of structures over complete local rings”, Inst. Hautes Études Sci. Publ. Math.
36 (1969), 23–58. MR Zbl

[Artin and Milne 1976] M. Artin and J. S. Milne, “Duality in the flat cohomology of curves”, Invent. Math. 35 (1976), 111–129.
MR Zbl

[Bauer 1992] W. Bauer, “On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in character-
istic p > 0”, Invent. Math. 108:2 (1992), 263–287. MR Zbl

[Beilinson et al. 1982] A. A. Beilinson, J. Bernstein, and P. Deligne, “Faisceaux pervers”, pp. 5–171 in Analysis and topology on
singular spaces, I (Luminy, France, 1981), Astérisque 100, Soc. Math. France, Paris, 1982. MR Zbl

[Bourbaki 2006] N. Bourbaki, Algèbre commutative, Chapitres V–VII, chapter VI, Springer, 2006. Definitive edition (chapters
V–VII) published by Hermann, Paris, 1964; translated as Commutative algebra, Addison-Wesley, Reading, MA, 1972.

[Bourbaki 2007] N. Bourbaki, Topologie générale, Chapitres I–IV, chapter III, Springer, 2007. Definitive edition (chapters I–IV)
published by Hermann, Paris, 1960; translated as General topology, Springer, 1971.
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Betti numbers of Shimura curves
and arithmetic three-orbifolds

Mikołaj Frączyk and Jean Raimbault

We show that asymptotically the first Betti number b1 of a Shimura curve satisfies the Gauss–Bonnet
equality 2π(b1− 2)= vol where vol is hyperbolic volume; equivalently 2g− 2= (1+ o(1))vol where g
is the arithmetic genus. We also show that the first Betti number of a congruence hyperbolic 3-orbifold
asymptotically vanishes relatively to hyperbolic volume, that is b1/vol→ 0. This generalizes previous
results obtained by Frączyk, on which we rely, and uses the same main tool, namely Benjamini–Schramm
convergence.

1. Introduction

1A. Benjamini–Schramm convergence. Let G be a semisimple Lie group, K ⊂ G a maximal compact
subgroup and X = G/K the associated symmetric space. Benjamini–Schramm convergence of locally
symmetric orbifolds 0\X of finite volume was introduced in [Abert et al. 2017]. The Benjamini–Schramm
convergence of a sequence of finite volume locally symmetric spaces (0i\X)i∈N to the symmetric space
X is equivalent to the following simple geometric condition:

∀R > 0, lim
i→∞

vol((0i\X)<R)

vol(0i\X)
= 0, (1-1)

where M<R denotes the R-thin part of a Riemannian orbifold M (which we take to include the full
singular set, see (3-1) below).

In addition to X there are other possible limits in the Benjamini–Schramm topology. In order to
describe them it is convenient to pass to the language of invariant random subgroups (IRS) of the group G.
These are the Borel probability measures on the Chabauty space SubG of closed subgroups which are
invariant under conjugation by elements of G. For every lattice 0 of G there is a unique G-invariant
probability measure on G/0 and its pushforward by the map g0 7→ g0g−1 gives an IRS denoted µ0.
It was observed in [Abert et al. 2017] that (0i\X) converges to X if and only if µ0i converge weakly-*
to the trivial IRS δ{1}. In general a sequence (0i\X) converges Benjamini–Schramm if and only if µ0
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converges weakly-* to some IRS ν. The limit IRS ν is always supported on discrete subgroups and the
Benjamini–Schramm limit is the random locally symmetric space X/3 where 3 is a ν-random subgroup
of G.

It was proven in [Abert et al. 2017], as a consequence of the Nevo–Stück–Zimmer theorem, that if G
is semisimple of higher rank, with all factors having property (T) then any sequence of irreducible locally
symmetric spaces converges in the Benjamini–Schramm sense to X . This was extended to all nontrivial
products in [Levit 2017] (see also [Matz 2019] for more precise results in a very specific case).

This statement is known to be false when G = SO(n, 1) or SU(n, 1), because in those cases there are
lattices 0 ⊂ G such that H 1(0,R) 6= 0 (see [Millson 1976; Li and Millson 1993; Kazhdan 1977]). On
the other hand restricting attention to the family of arithmetic congruence lattices in G (see Section 1D
below for a short description) Fraczyk [2016] proved that for G = SO(2, 1) or SO(3, 1) the symmetric
space X = H2 or H3, respectively, is the only possible limit in the Benjamini–Schramm topology for a
sequence of torsion-free congruence lattices. Previously Raimbault [2017] proved a similar result for the
family of nonuniform, not necessarily torsion-free lattices (nonuniformity makes them much easier to
deal with algebraically). In this paper we remove the torsion-free hypothesis in general.

Theorem A. If G = PGL2(R) or PGL2(C) and 0n is a sequence of irreducible arithmetic lattices in G,
which are either all congruence and pairwise distinct, or pairwise noncommensurable, then the sequence
of locally symmetric spaces 0n\X converges in the Benjamini–Schramm sense to X .

In [Fraczyk 2016] the torsion free assumption was necessary because the methods only allowed control
of the volume of the subset of thin part consisting of the collars of short geodesics. For a sequence of
general arithmetic congruence orbifolds (0n\X)n∈N it could a priori happen that the vast majority of
the thin part comes from the cusps or the conical singularities so the sequence does not converge to X .
Theorem A excludes this possibility. For the proof we use the estimates developed in [Fraczyk 2016] to
show that any weak-* limit of the sequence µ0n is supported on elementary subgroups. By [Osin 2017]
the only IRS supported on this set is the trivial IRS, hence the theorem. We carry out the second step of
this scheme of proof in detail in Proposition A.4, which is valid for all sequences of lattices in proper
Gromov-hyperbolic spaces.

We note that because we are using a soft method our approach does not indicate the rate of decay of
vol(0n\X)<R)/ vol(0n\X) as opposed to [Fraczyk 2016].

1B. Genus of Shimura curves. One application of Theorem A is to determine the asymptotic genus of
congruence surfaces of large volume. For compact surfaces without singularities the genus and volume
are essentially linearly related by the Gauss–Bonnet formula. However for 2-orbifolds terms coming
from cone points and cusps appear in the formula, and it is easy to see that there exists sequences
of hyperbolic orbifolds with underlying space a sphere and volume going to infinity. This also has
an algebraic interpretation: if S is isomorphic as a Riemann surface to the C-points of an algebraic
variety defined over a number field, which is the case for orbifolds obtained from congruence groups
(so-called Shimura curves [1971]), then its arithmetic genus is given by the Riemann–Hurwitz formula
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and essentially proportional to the volume while its geometric genus equals the topological genus of the
underlying surface and can be arbitrarily smaller than the former.

It is known that this phenomenon cannot occur for congruence orbifolds: using the uniform spectral gap
for congruence quotients (see [Clozel 2003] for a more general result) and a theorem of P. Zograf [1991]
it follows that there is a lower bound of the form g ≥ c vol for congruence subgroups (see also [Long et al.
2006]). As a consequence of Theorem A we obtain the following asymptotically more precise result (we
note that it was known for congruence covers of the modular surface by a result of J. G. Thompson [1980]).

Theorem B. Let 0n be a sequence of congruence lattices in PSL2(R), and let gn be the topological genus
of the orbifold On = 0n\H

2. Then, assuming the 0n are not pairwise conjugated, we have

lim
n→+∞

gn

vol On
=

1
4π
.

1C. Betti numbers of 3-orbifolds. Theorem B is equivalent to the statement that b1(0n)/ vol(0n\H
2)

converges to 1/2π for a sequence of congruence lattices. Indeed, the rank of abelianization is essentially
equal to twice the genus in a BS-convergent sequence. This can be proven more directly by analytical
means, as 1/2π is the first L2-Betti number of the hyperbolic plane. While more complicated, the analytic
approach generalizes to the dimension 3 and where obtain the following result.

Theorem C. Let 0n be a sequence of congruence lattices in PSL2(C). Then

lim
n→+∞

b1(0n)

vol(0n\H3)
= 0.

This was proven in [Raimbault 2017] for nonuniform lattices, and in [Fraczyk 2016] for the case of
all torsion-free lattices. Our proof is very similar to the proof for hyperbolic 3–manifolds appearing in
[Abert et al. 2017].

1D. Congruence lattices. For completeness we give an explicit description of the congruence arithmetic
latices in G = PGL(2,R),PGL(2,C), though we will not directly use this structure theory in the rest of
the paper. Let K=R,C. We start by choosing a number field k with Archimedean places ν1, . . . , νd such
that kν1 'K and kνi 'R for i ≥ 2. In what follows A and A f stand for the ring of adèles and, respectively,
finite adèles of k. We will write k 3 x 7→ (x)ν ∈ kν for the embedding of k in its completion kν . Let
a, b ∈ k× be such that (a)νi , (b)νi are positive for i ≥ 2 and (a)ν1 or (b)ν1 is negative if K'R. We define
the quaternion algebra A as

A = k+ ik+ jk+ i jk,

subject to the relations i2
=−a, j2

=−b, i j =− j i . By our choice of a, b we have A⊗k kν1 ' M(2,K)

and for i ≥ 2 the algebra A⊗k kνi is isomorphic to the Hamilton’s quaternions. We form an algebraic
group PA× = A×/k×. It is an adjoint simple group of type A1 defined over k. Note that PA×(A) =



2362 Mikołaj Frączyk and Jean Raimbault

PA×(k⊗Q R)×PA×(A f ) and

PA×(k⊗Q R)=

d∏
i=1

PA×(kνi )' PGL(2,K)×PO(3)d−1.

Choose an open compact subgroup U of PA×(A f ). Let 0U = PA×(k)∩(PA×(k⊗Q R)×PA×(A f )). By a
classical result of Borel and Harish-Chandra [1962] the group 0U is a lattice in PA×(k⊗QR)×PA×(A f )'

PGL(2,K)×PO(3)d−1
×U . The projection of 0U to the factor PGL(2,K) is a congruence arithmetic

lattice in PGL(2,K). Every congruence arithmetic lattice of PGL(2,K) arises in this way.

1E. Outline of the paper. In Section 2 we apply a “soft” criterion for Benjamini–Schramm convergence,
together with the estimates from [Fraczyk 2016], to deduce Theorem A. The criterion is proven, in a
general form including lattices in the isometry group of any proper Gromov-hyperbolic space, in Appendix
A Next, in Section 3 we give a precise metric description of the singular locus of hyperbolic 2- and
3-orbifolds, and (in the 3-dimensional case) a way to smooth the boundary of the thick part while keeping
control of the geometry (the technical details of which are left to a second Appendix B). We use this
description of singularities and Theorem A to deduce Theorem B in Section 4. In Section 5 we use
heat kernel methods (for which we need the precise description of the smoothed thick part) to deduce
Theorem C from Theorem A.

2. Benjamini–Schramm convergence of quotients of hyperbolic spaces

2A. A criterion for convergence. Let G be a semisimple Lie group and γ a semisimple element of G.
Let Gγ be the centralizer in G of 0, then for any sufficiently decreasing (for example compactly supported)
continuous function on G the following integral makes sense.

O f (γ )=

∫
G/Gγ

f (γ−1xγ ) dx (2-1)

The following proposition is a generalization of [Raimbault 2017, Proposition 2.2]. We provide a self-
contained proof (along the same lines as that of [loc. cit.]) of a much more general result valid for all
Gromov-hyperbolic spaces in Proposition A.4 below.

Proposition 2.1. Let 0n be a sequence of lattices in either PGL2(R) or PGL2(C) and d= 2, 3 accordingly.
Let U be the subset of loxodromic elements in G. If for every smooth compactly supported function f on
G the limit

lim
n→+∞

∑
[γ ]0n⊂U vol((0n)γ \Gγ )O f (γ )

vol(0n\G)
= 0 (2-2)

holds, then 0n\H
d is BS-convergent to Hd .

This is essentially tautological if the 0n are torsion-free; the nontrivial part is that it allows us to avoid
studying the elliptic conjugacy classes (and the parabolic classes if the 0n are noncompact) in order to
establish BS-convergence of a sequence of orbifolds.
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2B. Proof of Theorem A. If X is a rank-one irreducible symmetric space such as H2 or H3 and G =
Isom(X) then G is a simple Lie group of noncompact type and its elliptic radical is trivial. Theorem A
thus follows immediately from Proposition 2.1 and the following result extracted from [Fraczyk 2016].

Theorem 2.2. Let G = PGL2(R) or PGL2(C) and let U be the set of hyperbolic elements of G. Let 0n a
sequence of arithmetic congruence lattices in G, such that vol(0n\G)→+∞ or any sequence of pairwise
noncommensurable arithmetic lattices. Then for any f ∈ C∞0 (G) we have

1
vol(0n\G)

∣∣∣∣ ∑
[γ ]⊂U

vol((0n)γ \Gγ )O f (γ )

∣∣∣∣ n→+∞
−−−→ 0. (2-3)

Proof. If 0 is an arithmetic lattice in PGL2(R) or PGL2(C) then an element γ ∈ 0 is hyperbolic if and
only if it is semisimple and of infinite order. In the proof of [Fraczyk 2016, Theorem 1.8], starting form
the lines (10.7–10.9) the author bounds the sum∑

[γ ]0
nontorsion

vol(0γ \Gγ )Oγ ( f ) (2-4)

for congruence arithmetic lattices. The line (10.7) of [loc. cit., page 67] is the adèlic version of the
last sum where we group together the classes conjugate over PA×(k), where PA× is the group used to
construct the lattice 0 as explained in Section 1D. The passage between the adèlic and classical trace
formula is explained in [loc. cit., Theorem 4.21]. Proceeding as in [loc. cit., pages 67–69] we obtain the
bound ∑

[γ ]0
nontorsion

vol(0γ \Gγ )Oγ ( f )� vol(0\G)0.986.

Any hyperbolic conjugacy class [γ ]0 is nontorsion so we can deduce the that the sum (2-3) converges to
0 as vol(0\X)→∞ and 0 is a congruence arithmetic lattice. In order to establish the convergence for
sequences of pairwise noncommensurable arithmetic lattices (0n)n∈N we choose for each n a maximal
arithmetic lattice 3n containing 0n . It is always a congruence arithmetic lattice. We have

1
vol(0n\X)

∣∣∣∣ ∑
[γ ]0n∈U

vol((0n)γ \Gγ )O f (γ )

∣∣∣∣≤ 1
vol(0n\X)

∑
[γ ]0n∈U

vol((0n)γ \Gγ )O| f |(γ )

≤
1

vol(3n\X)

∑
[γ ]3n∈U

vol((3n)γ \Gγ )O| f |(γ )

= o(1). �

3. Structure of the singular locus of closed hyperbolic orbifolds

To be able to deduce from the sole Benjamini–Schramm convergence of a sequence of orbifolds further
asymptotic results on topological invariants we need a fine metric description of the singular locus. The



2364 Mikołaj Frączyk and Jean Raimbault

results in this section provide it; they are not really original but precise statements such as we need are
not easily found in the literature. As usual our main tool is the Margulis lemma.

Theorem 3.1. For every n ≥ 2 there exists ε= ε(n) > 0 such that the following holds. Let 0 be a discrete
subgroup of isometries of Hn , then for any x ∈ Hn the subgroup

0ε := 〈γ ∈ 0 : d(x, γ x)≤ ε〉

is virtually abelian.

In the sequel we will only work in 2 or 3-dimensional hyperbolic space, and we let ε denote a Margulis
constant which is valid for both cases. Recall that O≤ε stands for the ε-thin part of an orbifold O , for
which we use the following definition: if O = 0\X where X is the orbifold universal cover and we
assume X to be CAT(0) then

O≤ε = 0\{x̃ ∈ X : ∃γ ∈ 0 \ {Id}, d(x̃, γ x̃)≤ ε} (3-1)

which includes the singular locus of O — note that in the literature, e.g., in [Boileau et al. 2003], a
different convention is often used where only points with large stabilizers are included. The closure of
the complement of O≤ε (the ε-thick part) will be denoted by O≥ε.

In fact we need to tweak a bit the definition of the thin part around that part of the singular locus where
the cone angle is π : around these vertices or geodesics we put a collar whose width is ε/6 (instead of
ε/2).

3A. 2-dimensional orbifolds. In PGL2(R)
+ all the virtually abelian discrete subgroups are given by the

following list:

(1) An infinite cyclic group generated by an hyperbolic or parabolic isometry.

(2) A finite cyclic group generated by an elliptic isometry.

(3) An infinite dihedral group generated by two elliptic isometries of order 2.

As a first consequence we see that the singular locus of an orientable hyperbolic 2-orbifold consists only
of cone points, that is all nonmanifold points have a neighborhood which is isometric to the quotient of a
disc by a finite cyclic group.

In addition we can deduce from this classification a metric description of the singular locus. We need
the following notation: given an elliptic isometry γ with fixed point x and rotation angle θ , let `(θ, ε)
be the smallest ` such that d(y, γ y) ≥ ε for d(x, y) = `. Similarly, given a hyperbolic isometry γ of
minimal displacement ` we define r(`, ε) to be the minimal distance from its axis at which an hyperbolic
isometry translates of at least ε.

Lemma 3.2. Let O = 0\H2 be an orientable hyperbolic 2-orbifold and x a point in its singular locus.
Then x is an isolated cone point and one of the following possibilities hold:
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(1) If its angle is 2π/m with m ≥ 3 then there is no other singular point in the ball BO(x, `) where
`= `(2π/m, ε).

(2) If the angle is equal to π then either there is no other singular point within distance `(π, ε), or there
is one (and its cone angle is also π) at distance `x < `(π, ε) but no other within distance r(`x , ε)

of x.

Proof. Let 0x ∈ O be as in the statement, with x ∈ H2. Then x is a fixed point of a nontrivial element
of 0, and it follows that the subgroup

0εx = {γ ∈ 0 : d(x, γ x)≤ ε}

must be one of those described in (2) or (3) at the beginning of this section; let γ0 be a generator (with
minimal rotation angle) of the cyclic subgroup fixing x and m > 1 its order.

In any case x lies above a conical point in O . Assume now that m ≥ 3; then 0x = 〈γ0〉 and by the
Margulis lemma there is no other fixed point of a nontrivial element in 0 within the set

C = {y ∈ H2
: d(y, γ0 y)≤ ε)}.

By definition the ball BH2(x, `(2π/m, ε)) is contained in C , so it contains no other singular point.
If m = 2 and there is another elliptic fixed point x ′ ∈H2 with d(x, x ′)≤ `(π, ε) then we might assume

that x ′ is the closest such point. By the previous paragraph any nontrivial γ ′0 ∈ 0 fixing x ′ must be
of order 2. Let η = γ0γ

′

0. It is a hyperbolic isometry with axis containing the geodesic α joining x to
x ′ and translation distance 2d(x, x ′). Write 0α for the setwise stabilizer of α in 0. For every γ ∈ 0α
not fixing x we will have d(x, γ x) ≥ 2d(x, x ′) as otherwise γ0γ would have a fixed point closer to x
than x ′. We deduce that 0α = 〈γ0, γ

′

0〉. The former is a maximal virtually abelian subgroup of 0 (it is an
intersection of 0 with the normalizer of a split torus). The Margulis lemma now implies that within the
ball BH2(x, `(π, ε)) (resp. BH2(x, r(`x , ε))) any other elliptic fixed point must be a translate of either x
or x ′ by a power of η, as any such point is moved by at most ε by γ0 (resp. η) and hence its stabilizer in
0 must belong to 0α. �

3B. 3-dimensional orbifolds.

3B1. Description of the singular locus. The list of discrete virtually abelian subgroups of PGL2(C)

is long enough to make us avoid giving a complete description. Rather, we will assume that 0 is a
cocompact lattice in PGL2(C) and 3 a maximal virtually abelian subgroup of 0 which contains torsion
elements (which is all we need to prove Theorem C). If 3 contains a hyperbolic element γ then it must
normalize 〈γ 〉, so it is contained in the normalizer of a maximal torus. Any such normalizer is isomorphic
to C×oZ/2. Otherwise 3 contains only elements of finite order and so by Burnside’s theorem it must
be a finite subgroup of the maximal compact PU(2). It follows that 3 is one of the following groups:

(1) 〈γ, η〉 ∼= Z×Z/m where γ, η are respectively hyperbolic and elliptic isometries sharing the same
axis.
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(2) 〈γ, η, ρ〉 ∼= (Z×Z/m)oZ/2 where η, γ are as above (with η possibly trivial) and ρ is an elliptic of
order 2 with axis orthogonal to that of γ or η.

(3) One of the finitely many nondihedral finite subgroups of PU(2).

We see from this description that the singular locus of an hyperbolic 3-orbifold consists of closed geodesics
(which we will call singular geodesics), which can intersect each other. A singular point not on the
intersection of two singular geodesics has a neighborhood isometric to the quotient of a ball by a rotation;
the angle of the latter we will call the cone angle of the singular geodesic. We will call a vertex which is
at the intersection of two or more singular geodesics a vertex of the singular locus.

Together with the Margulis lemma the list above allows us to give the following metric description
of the singular locus (see also [Boileau et al. 2003, Corollary 6.3] for a more geometric description,
and [loc. cit., Figure 5 on page 33] for illustrations). This description is analogous to the situation from
Lemma 3.2; we recall that ` and r were defined there.

Lemma 3.3. Let O be a compact orientable 3-dimensional hyperbolic orbifold and 6 its singular locus.
Let x ∈6 be a vertex. Then one of the two following possibilities hold:

(1) The ε/2-neighborhood of x is isometric to one of a finite list of orbifolds, whose singular locus has
only one vertex and all singular geodesics go through x.

(2) There is at most one other singular vertex x ′ within distance ε/2 of x ; x and x ′ are joined by a
singular geodesic c of length ` and cone angle 2π/m, there are two singular geodesics with cone
angle π and orthogonal to c each going through one of x or x ′. There are no further components of
the singular locus within distance max(`(2π/m, ε), r(`, ε)) of x and x ′.

Moreover if two nonintersecting singular geodesics of O are within distance ε/2 of each other then both
have angle π .

Proof. Let O = 0\H3 a closed hyperbolic 3-orbifold. Let x be a vertex in the singular locus of O and
5 the subgroup of 0 fixing a lift x̃ of x to H3. Then 5 is either a dihedral group Z/m oZ/2 or one of
finitely many finite nondihedral subgroups of PU(2), according to the list of virtually abelian subgroups
of 0 above.

If the vertex is as in (1) and η ∈ 0, η 6∈5 is an elliptic isometry of order m then as (by the Margulis
lemma) 5 contains all isometries moving x̃ by at most ε any fixed point of η must be at distance at least
`(2π/m, ε) ≥ `(π, ε) = ε/2 of x̃ . Similarly any hyperbolic isometry in 0 must move x̃ by at least ε.
Hence the quotient 5\B(x̃, ε/2) embeds into O .

If the vertex has a dihedral stabilizer as in (2) let η be a generator of the Z/m-subgroup and γ a
generator of the Z-subgroup commuting with η. We might assume that either `< ε/2 or m > 5 (otherwise
we can add its neighborhood to the finite list in (1)). Then any elliptic element of 0 which does not
normalize 〈η〉 cannot fix a point in B(x̃, ε) (otherwise it and η would generate a subgroup moving a point
by less than ε but not in the list given above, which is not possible by the Margulis lemma). Similarly it
cannot fix a point within r(`, ε) of the axis of γ . �
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3B2. Smoothing the thick part. Let C = (C0,C1, . . .)∈ [0,+∞[N. As (a slight variation of) the definition
in [Lück and Schick 1999] we say that a Riemannian manifold has C-bounded geometry if its injectivity
radius is at least C0, the normal geodesic flow up to C0 gives coordinates for a collar neighborhood of the
boundary, and the k-th derivatives of the metric tensor and its inverse (in normal coordinates) are bounded
in sup norm by Ck . In this section we prove the following lemma.

Lemma 3.4. There exists C such that for any hyperbolic 3-orbifold O there exists a smooth submanifold
O ′ such that:

• O≥ε ⊂ O ′ and this is an homotopy equivalence.

• O ′ is of C-bounded geometry.

We will deduce the lemma from the description of the singular locus and the following general
proposition, the proof of which we give in Appendix B.

Proposition 3.5. Let X be a Riemannian d-manifold and H1, H2 two open subsets whose closures have
smooth boundary. Assume the following hold:

• They intersect transversally in a compact subset; let α0 such that the dihedral angles at the intersection
stay within the interval ]α0, π −α0[.

• Both manifolds X \ Hi are of bounded geometry.

Then for any δ > 0 there exists an open subset H of X such that:

(1) H ⊃ H1 ∪ H2 and they are equal outside of the δ-neighborhood of H1 ∩ H2.

(2) The closure of H has a smooth boundary.

(3) X \ H is of bounded geometry; the bounds depend only on δ, on the bounds on the geometry of X
and X \ Hi and on α0.

Proof of Lemma 3.4. Observe first that the boundary of the thin part is smooth away from the geodesics
with cone angle π and the vertices of the singular locus, as follows from the third part of Lemma 3.3. Thus
the nonsmooth part of ∂O≥ε comes from intersecting tubular neighborhoods of singular geodesics and
short geodesics. There are finitely many possible configurations where the geodesics are not orthogonal
to each other (corresponding to case (1) of Lemma 3.3); we do not need to deal in detail with these, so the
only problem left to deal with is the following: at all points in the intersection of the tubular neighborhood
N1 (with varying radius) of one geodesic, and the ε/6-tubular neighborhood N2 of another geodesic
orthogonal to the first, the dihedral angle between ∂N1 and ∂N2 stays bounded away from 0 and from π .1

To prove this note that the maximum and minimum values for these angles both are continuous functions
of the radius 0 ≤ r < +∞ of N1. It can be continuously extended to r = +∞, the values then being
those of the angle (in a conformal model of H3) between ∂N1 and the boundary at infinity of H3. As N1

1Note that the neighborhoods corresponding to two geodesics orthogonal to a third one cannot intersect each other, because
we took their radius to be ε/3 and the distance between the geodesics outside the ε-thin part is at least ε/2
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and N2 are never tangent to each other we see by compactness that the maximal and minimal values stay
bounded away from 0 and π . �

4. The genus of congruence orbifolds

In this section we prove Theorem B. Let O be an hyperbolic orbifold of dimension 2, which is a quotient
of the hyperbolic plane H2 by a lattice of PSL2(R). Then the underlying topological space |O| is a surface
of finite type, that is it is homeomorphic to a compact surface S with a finite number of points removed.
The genus of O is defined to be the genus of S.

Suppose that O has genus g, k punctures and r conical singularities with angles 2π/m1, . . . , 2π/mr

(the tuple (g, k,m1, . . . ,mr ) is then called the signature of O). Then, computing the volume of a
well-chosen fundamental polygon we get the following equality (see [Beardon 1983, Theorem 10.4.2]):

vol O = 2π
(

2g− 2+ k+
r∑

i=1

(
1−

1
mi

))
. (4-1)

From this equation we obtain the bound:∣∣∣∣g− vol(O)
4π

∣∣∣∣≤ k+ r + 2
4π

.

We now see that Theorem B follows from Theorem A together with the following proposition.

Proposition 4.1. Let On be a sequence of hyperbolic 2–orbifolds which is Benjamini–Schramm convergent
to H2. Let kn, rn be the numbers of cusps and conical points of On , respectively. Then kn+rn = o(vol On).

Proof. To prove that rn = o(vol On) we associate to each conical point x with angle θ the region

�x = B(x, `(θ, ε))

if there is no other singular point within distance `(θ, ε). Otherwise let `x be the distance to the nearest
singular point and put

�x = B(x, r(`x , ε)).

We will check below the following facts:

(1) There exists c > 0 such that vol�x > c for all n and x ∈ On .

(2) Any point p ∈ On is covered by at most two distinct sets �x .

(3) For all conical points x ∈ On we have �x ⊂ (On)≤ε.

It follows from these that

rn ≤
1
c

∑
x∈6On

vol�x ≤
2
c

vol
( ⋃

x∈6On

�x

)
≤

2
c

vol(On)≤ε

and as the right-hand side is o(vol On) in a BS-convergent sequence we get that rn = o(vol On).
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That (3) holds follows immediately from the definitions of `(θ, ε) and r(`, ε). Point (2) follows from
the Margulis lemma combined with Lemma 3.2.

It remains to prove (1). Let x ∈ On be a singularity with cone angle 2π/m with m > 2, let x̃ be a lift
of x to H2 and `= `(2π/m, ε). Then we have

vol(BOn (x, `))=
1
m

BH2(x̃, `)�
e`

m

so we need to prove that e`� m. This follows easily from distance computations in the disk model: by
definition of `(θ, ε) we have that `(θ, ε)= log((1+r)/(1−r)) where 0< r < 1 is such that d(r, reiθ )= ε.
It follows that

cosh(ε)= 1+
2r2
|1− eiθ

|
2

(1− r2)2

and by standard computations we get that

r = 1−
θ

√
2 sinh(ε)

+ O(θ2)

whence it follows that

`(θ, ε)=− log(θ)− c+ O(θ)

for some constant c depending on ε. We finally get that `� elog(m/2π)
� m.

Assume now that m = 2 and that there is another singular point x ′ within `(2, ε) of x . In this case
the volume of �x is half that of a collar around a closed geodesic of length r(`x , ε)� ε; as the latter is
bounded from below (see [Halpern 1981]) so is that of �x .

The proof that kn = o(vol On) is similar: by the Margulis lemma the regions of the ε-thin part where a
given conjugacy class of parabolic isometries realizes the injectivity radius are pairwise disjoint, and an
easy hyperbolic area computation shows that the volume of such a region is bounded below. �

5. Betti numbers of arithmetic 3-orbifolds

Recall that ε is the Margulis constant for H3. Let O be a 3-orbifold, then we will write O ′ for the manifold
with boundary obtained by Lemma 3.4. We write 11

abs for the maximal self-adjoint extension of the
Hodge–Laplace operator on O ′ with absolute boundary condition. The goal of this section is to prove
the following proposition, which we do by extending the analysis at the end of section 7 in [Abert et al.
2017] to the orbifold case.

Proposition 5.1. Let On be a sequence of closed hyperbolic 3-orbifolds which BS-converge to H3, and
let O ′n be the smoothings described in Lemma 3.4. Then for all t > 0 we have that

lim sup
t→+∞

lim
n→+∞

Tr(e−t11
abs[O

′
n])

vol On
= 0.
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Before giving the proof we explain how this implies Theorem C: let On = 0n\H
3. By Hodge theory

we have b1(O ′n)≤ Tr(e−t11
abs[O

′
n]) for all t , and so Proposition 5.1 implies that

lim
n→+∞

b1(O ′n)
vol On

= 0.

On the other hand we have that the orbifold fundamental group 0n is a quotient of π1(O ′n). Indeed,
the universal cover of (On)≥ε is a cover of the connected subset (Ôn)≥ε of those x ∈ H3 which are not
displaced by less than ε by some nontrivial element of 0n , and (On)≥ε is homotopy equivalent to O ′n .
Moreover H1(O ′n) is the abelianization of π1(O ′n). From these two facts it follows that b1(0n)≤ b1(O ′n),
so that b1(0n)= o(vol On) as well.

The proof of Proposition 5.1 is done in four steps: first we prove an analogue of Proposition 4.1 and
then deduce the convergence of the part of the trace formula for On coming from the ε-thick part: see
(5-1). The two next steps together imply that the trace of the heat kernel on O ′n is asymptotically the
same as that computed in (5-1): first we analyze the integral of the difference on the R-thick part and
show that it limit superior is o(R) (see (5-6), then we prove that the integral on the R-thin part of O ′n
asymptotically vanishes (see (5-7)). Altogether these three steps imply that

lim
n→+∞

Tr(e−t11
abs[O

′
n])

vol On
= tr e−t11

[H3
]

where we denoted tr e−t11
[H3
]
= tr e−t11

[H3
](x̃, x̃) for any x̃ ∈ H3. The proposition now follows from

the vanishing of the first L2-Betti number of H3, which means that limt→+∞ tr e−t11
[H3
]
= 0 (see [Lück

2002]).

5A. Upper bound on the total length of singular geodesics. Let 6n be the set of singular geodesics
of On . To prove Proposition 5.1 we will need to control the total length

∑
c∈6n

`n in terms of the volume
of the thin part of On . This is problematic for 3-orbifolds because of an issue with singular geodesics
corresponding to order-2 elements. For these geodesics we will need to replace the lengths in the sum by
another quantity. To make it precise let us introduce some notations.

Let O by a finite volume hyperbolic 3-orbifold and let 6 be the set of singular geodesics on O . For
c ∈6 we will write c̃ for a lift of c to H3; in our arguments below we will clarify the choice of c̃ whenever
it matters. Let 0 be the orbifold fundamental group of O . Let c ∈ 6 and write 0c̃ for the pointwise
stabilizer of its lift c̃. Then 0c̃ is a lattice inside a maximal torus of PGL(2,C), so is it is of the form
Z×Z/mc for an integer mc ≥ 2. We write `c for the length of c.

Let M be the maximal order of a finite nondihedral subgroup of PU(2). The relevance of M to the
arguments below comes from the fact that finite subgroups of PGL(2,C) either stabilize a geodesic
in H3 or are conjugate to a nondihedral subgroup of PU(2). Accordingly, we divide 6 into three sets
61, 62, 63 defined as follows:

61
= {c ∈6 | mc = 2}, 62

= {c ∈6 | 2< mc ≤ M}, 63
= {c ∈6 | M < mc}.
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The sets do not depend on the choice of c̃. Let c∈61. A point p∈ c will be called a type I vertex if there ex-
ists a closed geodesic a 6∈63 on O (not necessarily singular) such that p∈c∩a and `a≤ε. A point p∈c is a
type II vertex if there exists b ∈63 such that p ∈ c∩b. Write T I(c), T II(c) for the sets of type I and type II
vertices. For p ∈ T I(c), T II(c) we let rp := max{r(`a, ε), `(2π/ma, ε)},max{r(`b, ε), `(2π/mb, ε)}

respectively. Define `′c := `c−
∑

p∈T II(c) 2rp.

Proposition 5.2. For any hyperbolic 3-orbifold O we have∑
c∈6\61

`c+
∑
c∈61

(`′c+ |T
II(c)|)� vol(O≤ε).

Proof. As in the proof of Proposition 4.1 we will construct sets �c, �
II
p ⊂ O attached to each singular

geodesic c ∈6 and to p ∈ T II(c) for c ∈61 satisfying the following properties:

(1) For c ∈ 6 \ 61 we have vol(�c) � `c; for c ∈ 61 we have vol(�c) � `′c and for p ∈ T II(c)
vol(�II

p)� 1.

(2) Any point x ∈ O is covered by at most M distinct sets �c, �
II
p .

(3) �c, �
II
p ⊂ O≤ε.

If A ⊂ H3 write [A] for the image of A in O under the covering map. The subset 61 is the most
problematic so let us first define the sets �c for c ∈62, 63:

• For c ∈63 let �c := [BH3(c̃, `(2π/mc, ε))].

• For c ∈62 let �c := [BH3(c̃, ε/2)].

Now let c ∈61. We construct sets �I
p, �

II
p for p ∈ T I(c), T II(c) respectively:

• �I
p = [BH3(ã, r(`a, ε))].

• �II
p = [BH3(b̃, rp)] (recall that max{r(`b, ε), `(2π/mb, ε)}).

The Margulis lemma and the description of nilpotent subgroups from Section 3B1 imply that �I
p, �

II
q are

pairwise disjoint if p ∈ T I (c), q ∈ T II(c). We define

�c := [BH3(c̃, ε/2)] ∪
⋃

p∈T I(c)

�I
p \

⋃
p∈T II(c)

�II
p .

5A1. Step 1. We verify condition (1). Recall that in the proof of Proposition 4.1 we showed that
e`(2π/m,ε)

�m. For c ∈63 the formula for integration in cylindrical coordinates [Fenchel 1989, page 205]
yields

vol(0c̃\BH3(c̃, `(2π/mc, ε))� e2`(2π/mc,ε)`cm−1
c � `c.

Using the Margulis lemma and the description of nilpotent subgroups from Section 3B1 we can show
that the map

0c̃\BH3(c̃, `(2π/mc, ε))→ [0c̃\BH3(c̃, `(2π/mc, ε))] =�c

is at most 2-to-1, so vol(�c)� `c.
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For c ∈62 we similarly get

vol(0c̃\BH3(c̃, `(2π/mc, ε))� `c.

By Lemma 3.3 and the Margulis lemma the map

0c̃\BH3(c̃, ε/2)→ [0c̃\BH3(c̃, ε/2)]

is at most M-to-one. Hence vol(�c)� `c.
Now let c ∈61. Since the sets �I

p, �
II
q for p ∈ T I (c), q ∈ T II(c) are pairwise disjoint we can write

`c = `
′

c+
∑

p∈T II(c)

2rp and `′c = `
′′

c +
∑

p∈T I (c)

2rp

where `′′c ≥ 0. Let p ∈ T I (c). Let γ be an element of 0ã translating ã by `a . Integration in cylindrical
coordinates yields

vol(〈γ 〉\BH3(ã, rp)� `−1
a � rp.

Note that we implicitly used here the fact that ma is bounded. The Margulis lemma implies that the
quotient map from the last set to [BH3(ã, r(`a, ε))] is at most M-to-1 so we deduce vol(�I

p) � rp.
Reasoning as in the previous cases we get vol(�c)� `′′c +

∑
p∈T I (c) rp� `′c.

Finally let p ∈ T II(c). Integrating in cylindrical coordinates we get

vol(0b\BH3(b̃,max{r(`b, ε), `(2π/mb, ε))�
`b

mb
max{m2

b, `
−2
b } � 1.

As before we deduce vol(�II
p)� 1. This concludes the first step.

5A2. Step 2. We verify condition (2). For c ∈63 the sets �c are pairwise disjoint. Indeed let c1, c2 ∈6
3

and assume �c1∩�c2 6=∅. By the Margulis lemma, for some lifts c̃1, c̃2 the torsion parts of the stabilizers
0c̃1, 0c̃2 generate a nilpotent subgroup. By discussion in Section 3B1 it is either contained in a normalizer
of geodesic or in a finite nondihedral subgroup of PU(2), and the definition of 63 excludes the second
option so 0c̃1, 0c̃2 both normalize the same geodesic. This can happen only if c̃1 = c̃2.

A similar argument shows that for c1 ∈6
2, c2 ∈6

3 the sets �c1, �c2 are disjoint.
By Lemma 3.3 and the Margulis lemma the sets �II

p are pairwise disjoint or equal. It is not hard to
verify that we can have at most two different p ∈ T II(c), p′ ∈ T II(c′) such that �II

p =�
II
p′ . By construction

�II
p contains exactly one set of form �c with c ∈63. By Lemma 3.3 together with the Margulis lemma

�II
p are disjoint from �c if c ∈61, 62. Again by the Margulis lemma and Lemma 3.3, every point x ∈ O

can be covered by at most M sets �c with c ∈61, 62. We conclude that any point is covered by at most
M distinct sets of form �c, c ∈6 and �II

p, p ∈ T II(c), c ∈63.

5A3. Last step. Property (3) holds by construction. We get∑
c∈6

vol(�c)+
∑
c∈63

∑
p∈T II(c)

vol(�II
p)� M vol(O≤ε).
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By the first step we conclude that∑
c∈6\61

`c+
∑
c∈61

(
`′c+ |T

II(c)|
)
� vol(O≤ε). �

5B. Trace formula on the thick part. Let On be a sequence as in Proposition 5.1. We prove here that∫
(On)≥ε

tr e−t11
[On](x, x) dx − tr e−t11

[H3
]
· vol On = o(vol On). (5-1)

Let Cn,e and Cn,h be the sets of conjugacy classes of respectively elliptic and hyperbolic elements in 0n .
For γ ∈ 0 let Fγ be a fundamental domain for the centralizer 0γ of γ in 0 and F≥εγ the part of it on
which the nontrivial elements of 0 displace by at least ε. The proof of the Selberg trace formula then
gives that∫
(On)≥ε

tr e−t11
[On](x, x) dx = vol(On)≥ε tr e−t11

[H3
]
+

∑
[γ ]∈Cn,e∪Cn,h

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx . (5-2)

Because of Benjamini–Schramm convergence we have vol On − vol(On)≥ε = o(vol On). Then (5-1) will
follow from (5-2) together with the following limit:∑

[γ ]∈Cn,e∪Cn,h

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx = o(vol On). (5-3)

We proceed to prove (5-3). The proof for the hyperbolic part is exactly the same as in [Abert et al. 2017,
Section 7].

We deal now with the elliptic part; similar computations are done in [Elstrodt et al. 1998, pages 193
and following]. To simplify the computations we integrate over a subset E≥εγ of Fγ which is slightly
larger than F≥εγ .

If [γ ] is an elliptic conjugacy class let c be the singular geodesic on On corresponding to γ and c̃ the
lift of c to H3 which is fixed by γ . Let `c be the length of c and mc the order of the torsion subgroup of
0γ . If mc > 2 we put

E≥εγ = Fγ \ BH3(c̃,max{r(`c, ε), `(2π/mc, ε)}).

The definition for γ with mc = 2 is bit more involved. Recall from Proposition 5.2 that we call a point
p ∈ c a type II vertex if there exists a singular geodesic b in On such that p ∈ c∩b and the torsion part of
0b̃ is of order at least M (a constant defined there). Write T II(c) for the set of type II vertices on c. For
each point p ∈ T II(c) the geodesic b is unique so the values `b,mb are well defined. To shorten notation
we will write rc :=max{r(`c, ε), `(2π/mc)} and rp :=max{r(`b, ε), `(2π/mb)}. Let T II(c̃)⊂ c̃ be the
set of lifts of p ∈ T II(c). Set T II(c̃) is 0γ invariant. Define

E≥εγ := Fγ \
(

BH3(c̃, rc)∪
⋃

p̃∈T II(c̃)

BH( p̃, rp)

)
.
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We are ready to bound the integrals in (5-3) corresponding to the elliptic elements. For γ with mc > 2 we
have

e ·
∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx =

2π
mc
`c

∫
+∞

max(`(2π/mc,ε),r(`γ ,ε))
fθ (r) dr

where fθ (r)= sinh(r) cosh(r) tr(γ ∗e−t1[H3
](x, γ x)) for a point x at distance r from the axis, and e = 1

or 1
2 according to whether 0γ ∼= Z×Z/m or (Z×Z/m)oZ/2 (see 3B1 for the geometric significance of

this). This is a consequence of disintegration of hyperbolic volume in cylindrical coordinates [Fenchel
1989, page 205]. By the Gaussian estimate of the heat kernel of H3 (which can be seen from its explicit
expression; see [Taylor 2011, Proposition 2.2 on page 425] for a more general statement) we have that

f2π/mc(r)� C(t)e−c(t)r2

uniformly for r ≥ `(2π/mc, ε). We get∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

`c

mc
. (5-4)

Now let γ be an elliptic element of order 2. The singular geodesic c can be identified with its lift
to Fγ . Let pr : Fγ → c be the “closest point projection” to c. By triangle inequality, for every point
y ∈ E≥εγ we have d(y, pr(y)) ≥ max{rc, rp − d(pr(y), p) | p ∈ T II(c)}. Let `′c be as in Proposition 5.2
and let rp :=max{`(2π/mb, ε), r(`b, ε)} where b is the singular geodesic of O such that p ∈ c∩ b (see
the definition of type II vertices). Write c0 = c \

⋃
p∈T II(c) B(p, rp) and c1 := c \ c0. Note that `′c is the

length of c0. We will split the integral over E≥εγ according to whether pr(y) falls into c0 or c1:

e ·
∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx =

∫
pr−1(c0)∩E≥εγ

fπ (d(y, pr(y))) dy+
∫

pr−1(c1)∩E≥εγ
fπ (d(y, pr(y))) dy

≤ π`′c

∫
+∞

max(`(2π/mc,ε),r(`c,ε))

fπ (r) dr +π
∑

p∈T II(c)

2
∫ rp

0

∫
+∞

s
fπ (r) dr ds.

Using the estimate for the heat kernel we get∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx � `′c+ |T

II(c)|. (5-5)

Let 6n be the set of singular geodesics in On (so each is the image of an axis of an elliptic conjugacy
class in 0n) with subsets 61

n, 6
2
n, 6

3
n defined as in Section 5A. If γ is an elliptic isometry of order m,

primitive in 0, there are m− 1 elliptic elements in 0γ sharing the same axis. We have F≥εγ ⊂ E≥εγ so by
(5-4) and (5-5) we get that∑

[γ ]∈Cn,e

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

∑
c∈62

n ,6
3
n

`c
mc− 1

mc
+

∑
c∈61

n

(`′c+ |T
II(c)|).
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It follows that ∑
[γ ]∈Cn,e

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

∑
c∈6n\61

n

`c+
∑
c∈61

n

(`′c+ |T
II(c)|).

By Proposition 5.2 the right hand side is of order O(vol((On)≤ε)). The sequence converges Benjamini–
Schramm to H3 so vol((On)≤ε)= o(vol(On)). Estimate (5-3) follows.

5C. Comparison between heat kernels. We prove here that

lim
R→+∞

lim sup
n→+∞

1
vol On

∫
(On)≥R

tr(e−t11
[On]− e−t11

abs[O
′
n])(x, x) dx = 0. (5-6)

To do this we let Un be the subset of H3 covering O ′n and choose a fundamental domain Dn for 0 acting
in the subset of Un covering (On)≥R (we assume R is large enough so that (On)≥R ⊂ O ′n). Then we can
write ∫

(On)≥R

tr(e−t11
[On]− e−t11

abs[O
′
n])(x, x) dx =

∫
Dn

∑
γ∈0

tr γ ∗(e−t11
[H3
]
− e−t1abs[Un])(x, γ x) dx

� e−
R2
Ct

∫
Dn

∑
γ∈0

e−d(x,γ x)2/(Ct) dx

where 1abs[Un] is the Laplacian with absolute boundary conditions on the complete manifold Un , and
the second line follows from [Lück and Schick 1999, Theorem 2.26]. By the same arguments as used
above to demonstrate (5-1) the integral is O(vol On) (with a constant independent of R as the domain of
integration shrinks when we take R to infinity). In the end we get that

lim sup
n→+∞

1
vol On

∫
(On)≥R

tr(e−t11
abs[On]− e−t11

[O ′n])(x, x) dx � e−R2/(Ct)

from which (5-6) follows immediately.

5D. Heat kernel near the boundary. Here we prove the final ingredient for the proof of Proposition 5.1:
for all R > 0 we have ∫

O ′n\(On)≥R

tr e−t11
abs[O

′
n](x, x) dx = o(vol On). (5-7)

By Benjamini–Schramm convergence we have that vol(O ′n \ (On)≥R)= o(vol On). So to prove (5-6) it
suffices to see that tr e−t11

abs[O
′
n](x, x)= Ot(1) for x ∈ O ′n . As in [Abert et al. 2017, (7.19.4)] this follows

from [Lück and Schick 1999, Theorem 2.35]; the latter is applicable with a uniform constant in our
context by Lemma 3.4.

Appendix A: Benjamini–Schramm convergence in Gromov-hyperbolic spaces

AA. Orbital integrals on hyperbolic spaces. Let X be a proper Gromov-hyperbolic space and G =
Isom(X). With the compact-open topology G is a locally compact second countable topological group.
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For γ ∈ G we denote by Gγ its centralizer. The following lemma is a slight generalization of [Bridson
and Haefliger 1999, Corollary 3.10(2) on page 463] — the latter dealing only with discrete groups. It
might be possible to straightforwardly adapt the arguments in [loc. cit.] to our case, but we give a different,
mostly self-contained proof.

Lemma A.1. Let γ ∈ G be an hyperbolic isometry. Then Gγ /〈γ 〉 is compact.

For the proof we use the following lemma, which should be standard but we could not find in the
literature. The proof is a bit long and technical so we put it at the end of this appendix (see Section AC).

Lemma A.2. Let γ be an hyperbolic isometry of X. For any x ∈ X there exists constants C = C(x, γ, δ)
and A = A(x, γ, δ) such that for any y ∈ X and any k sufficiently large (depending on γ, x, δ) we have

d(y, γ k y)≥ Ck+ 2d(y, 〈γ 〉x)− A.

Proof of Lemma A.1. Let τ = d(γ ) := inf{d(y, γ y) | y ∈ X} be the minimal displacement of γ . Fix x ∈ X ,
let k, A,C as given by Lemma A.2 and define:

D = {y ∈ X | d(y, γ k y)≤ kτ + 1}.

It is a nonempty (by definition of τ ) closed Gγ -invariant subset of X . Given that the action of Gγ on D
is proper, the lemma will follow once we prove that 〈γ 〉\D is compact. The previous lemma implies that

D ⊂ {y ∈ X : d(y, 〈γ 〉x)≤ (τ −C)k+ A+ 1}

so that D ⊂ γ Z B(x, R) for some sufficiently large R, and as X is proper this in turn implies that 〈γ 〉\D
is compact. �

Let dg be a fixed Haar measure on G. According to the lemma above the subgroup Gγ admits a lattice
so it is unimodular and we have a decomposition dg = dxdh where dx is a G-invariant measure on
G/Gγ and dh a Haar measure on Gγ , both depending only on the original choice of dg. For a function
f ∈ C0(G) we can then define the orbital integral associated to γ by

O f (γ )=

∫
G/Gγ

f (γ−1xγ ) dx (A-1)

which depends only on the G-conjugacy class [γ ]G .

AB. General criterion for Benjamini–Schramm convergence. Here again X is always a proper Gromov-
hyperbolic space and G = Isom(X). We assume that the action of G on X is nonelementary. The elliptic
radical of G can then be defined as its unique maximal normal compact subgroup (see [Osin 2017,
Proposition 3.4]; in our context, by properness of X bounded elements are the same as compact ones).
The following lemma is a special case of [Osin 2017, Theorem 1.5].

Lemma A.3. Let µ be an invariant random subgroup of G. Then either µ is supported on the elliptic
radical or it has full limit set.
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Recall from [Gelander 2019, Section 3] that there is a “Benjamini–Schramm topology” on the set
of Borel probability measures on the Gromov–Hausdorff space of pointed proper metric spaces (up
to isometry). The set of measures supported on spaces locally isometric to X is precompact in this
topology. Moreover, if X is a locally symmetric space then (1-1) is equivalent to 0i\X converging in the
Benjamini–Schramm topology to X .

There is a continuous injective map from the space of invariant random subgroups of G to the Benjamini–
Schramm space. If 0i are lattices in G then the sequence of uniformly pointed spaces 0i\X converges to
X if and only if the IRSs µ0i converge to the trivial IRS. We will use this to prove the following criterion
for convergence, which is a more general version of Proposition 2.1.

Proposition A.4. Let U the set of hyperbolic isometries in G. Assume that the elliptic radical of G is
trivial. If 0n is a sequence of lattices in G which satisfies

lim
n→+∞

∑
[γ ]0n⊂U vol((0n)γ \Gγ )O f (γ )

vol(0n\G)
= 0 (A-2)

then the sequence of metric spaces 0n\X converges to X in the Benjamini–Schramm topology.

Proof. Let µn be the invariant random subgroup of G supported on the conjugacy class of 0n . We want
to prove that any weak limit µ of a subsequence of (µn) is equal to the trivial IRS δe. By Lemma A.3
and the fact that a subgroup of G containing no hyperbolic isometries has at most one limit point (see
[Gromov 1987, Section 8.2]) it suffices to prove that any such µ contains no hyperbolic isometries.

To prove this choose a covering U =
⋃

C∈C C of U where C is countable and every C ∈ C is compact.
We can do this since SubG is metrizable [de la Harpe 2008, Proposition 2]. Let WC =3 :3∩C 6=∅; this
is a Chabauty-closed subset of SubG . If ν is a nontrivial IRS then by Lemma A.3 and previous paragraph
it almost surely contains a hyperbolic element. Hence, there is C ∈ C such that ν(WC) > 0. We need to
prove the opposite for µ, which amounts to the following: for every C there exists a nonnegative Borel
function F on SubG which is positive on WC and such that

∫
SubG

F(3) dµ(3)= 0.
Let us fix C ∈ C and prove this. There exists an open relatively compact subset V with C ⊂ V and

V ⊂U . Choose any f ∈ C∞(G) such that f > 0 on C and f = 0 on G \ V and define

F(3)=


∑

λ∈3 f (λ) if 3 is discrete,
1 if 3 is not discrete and intersects C,
0 otherwise.

Then F is lower semicontinuous on SubG , nonnegative and positive on WC . On the other hand we have∫
SubG

F(3) dµn(3)=
1

vol(0n\G)

∫
G/0n

∑
γ∈g0n g−1

f (γ ) dg

=
1

vol(0n\G)

∑
[γ ]0n⊂U

vol((0n)γ \Gγ )Oγ ( f ).
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By the so-called “portemanteau theorem” [Klenke 2014, Theorem 13.16] the limit inferior of the left-hand
side is larger or equal to

∫
SubG

F(3) dµ(3). By (A-2) we have that the right-hand side converges to 0. It
follows that ∫

SubG

F(3) dµ(3)= 0

which finishes the proof. �

AC. Proof of Lemma A.2. Let us recall the statement. We have a proper hyperbolic geodesic space
X and an hyperbolic isometry γ of X . We fix x ∈ X and we want to show that there exists constants
C = C(x, γ, δ) and A = A(x, γ, δ) such that for any y ∈ X and any k sufficiently large (depending on
γ, x, δ) we have

d(y, γ k y)≥ Ck+ 2d(y, 〈γ 〉x)− A. (A-3)

Let x, y ∈ X . As γ is hyperbolic there exists a, c such that L = 〈γ 〉x is a (c, a)-quasigeodesic.
Regarding the conclusion of the proposition it does not change anything if we assume that x is the
approximate projection of y on L , meaning that any point x ′ of L within distance d(y, L) of y, satisfies
d(x ′, x)≤ K (where K depends only on the hyperbolicity constant δ).

Let `= d(x, γ x). Note first that if k is large enough so that

k > 100c`−1K log(k)+ ac (A-4)

holds, and y is close enough to L so that

d(y, x) > c2`−1 log(k)+ cK (2+ log(2+ k))+ ca (A-5)

does not then we see immediately that (A-3) holds, by the triangle inequality. Thus from now on we will
assume that both inequalities above hold for y and k.

Let xi = γ
i x , yi = γ

i y for 0≤ i ≤ k. Let F be the finite set

F = {x0, x1, . . . , xk} ∪ {y0, yk};

by [Bowditch 1991, Proposition 7.3.1] there exists a choice of a “spanning tree” on F (that is, a tree
whose edges are a subset of all pairs of geodesics segment between points of F) such that

∀p, q ∈ F : d(p, q)≥ dTF (p, q)− (1+ log(2+ k))K (A-6)

where K depends only on δ (so we take it equal to the K introduced above to simplify notation). One of
y0, yk must be connected to one of the xi in TF ; we may assume that [y0, xi ] is an edge in TF for some i .
We claim that this i must be unique, and we must have

i < c`−1((log(k+ 2)+ 2)K + a). (A-7)

Indeed, let i be the smallest integer such that [xi , y0] ⊂ TF . Then, because

dTF (x0, y0)≤ d(x0, y0)+ (log(k+ 2)+ 1)K
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and

dTF (x0, y0)≥ d(x0, xi )+ d(xi , y0)≥
i`
c
− a+ d(x0, y0)− K

we see that i must verify (A-7). Now assume that there is a j > i such that [x j , y0] ⊂ TF , and take it to be
the smallest such; we want to reach a contradiction. Consider i ≤ l < j to be maximal such that the path in
TF from xl to xi does not go through y0. Then the path in TF from xl to xl+1 must go through y0 (otherwise
we would have a path from xl+1 to xi via xl avoiding y0). We have thus dTF (xl, xl+1) ≥ d(x0, y0)− K
which together with (A-5) and (A-6) contradicts the fact that d(xl, xl+1)= `.

We now want to prove that [y0, yk] is not an edge in TF . To do so we must consider two possibilities.
Assume first that [yk, x j ] ⊂ TF for some j . Then reasoning as above we see that j is the only such index,
and j > k− c`−1((log(k+2)+2)K +a) > i . In this case we reach a contradiction in the same way as in
the previous paragraph: considering a maximal i ≤ l < j such that the path from xl to xi does not go
through y0 we see that dTF (xl, xl+1) is too large.

If there is no edge [yk, x j ] in TF then the path from xk to yk must go first to xi , then to y0 and
finally to yk . But as d(xk, xi ) > (log(k + 2)+ 1)K by (A-7) and (A-4) we see that this contradicts
d(x0, y0)= d(xk, yk).

So we get that there must be a unique edge [yk, x j ] in TF , and the path in TF from y0 to yk must go
through x j and xi . As before we must have

j > k− c`−1((log(k+ 2)+ 2)K + a)

and we finally get using first (A-6), then the fact that (x0, . . . , xk) is a quasigeodesic, and finally the
above together with (A-7) that:

d(y0, yk)≥ d(y0, xi )+ d(xi , x j )+ d(x j , yk)− K − K log(2+ k)

≥ 2d(x0, y0)+ c−1( j − i)`− a− 3K − K log(2+ k)

≥ 2d(x0, y0)+ c−1`k− B− b log(k)

where B, b depend only on x, γ, δ. From the last inequality and (A-4) we can conclude that (A-3) holds.

Appendix B: Smoothing corners

In this appendix we prove Proposition 3.5; as the argument is technical but has no subtleties we will be
quite sketchy in presenting it.

Recall that we have the following situation: X is a manifold with bounded geometry, H1, H2 ⊂ X
such that X \ Hi both have bounded geometry, meet transversally and the dihedral angle between them is
bounded away from 0 and π . We remark that constructing a smoothing of Y = X \ (H1 ∪ H2) satisfying
the conclusions of Proposition 3.5 is immediate in the case where the intersection I = H1 ∩ H2 has a
neighborhood in Y which is isometric to the product [0, δ[2× I . In general we will prove the following
statement: there exists a diffeomorphism ϕ from [0, δ[2 × I to a neighborhood of I in Y such that ϕ
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and ϕ−1 have all their derivatives uniformly bounded. In view of the preceding remark this proves the
proposition.

To define ϕ we need some more auxiliary notation: for a vector field V and t ≥ 0 we let 8t
V be its flow

at time t ; if H ⊂ Z is open with smooth boundary we denote by N Z
H the normal field of H in Z . We put

ϕ1(x, t, s)=8t
N X

H1
(8s

N
H1
I

(x)) and ϕ2(x, t, s)=8s
N X

H2
(8t

N
H2
I

(x))

We fix a smooth nondecreasing function h : R→ [0, 1[ such that h is zero on negative numbers, and
at infinity it tends to 1 and all its derivatives vanish at all orders. Let 0 < a < 1 such that the convex
hull of all ϕ1(x, t, s) and ϕ2(x, t, s) for as ≤ t ≤ a−1s is contained in Y . For x, y ∈ X and u ∈ [0, 1] let
ux + (1− u)y denote the barycenter of x, y on the geodesic segment between them.2 With this notation
we define

ϕ(x, t, s)= h
(

at − s
as− t

)
ϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
ϕ2(x, t, s)

and we claim that ϕ has the desired properties. It is smooth as a composition of smooth maps. To deduce
the remaining properties we will use the following lemma.

Lemma B.1. For i = 1, 2 there is c depending only on the bounds on the geometry of Hi such that the
following properties hold:

(1) Let z ∈ ∂Hi and 0 ≤ t ≤ δ. The linear map Dz8
t
N X

Hi

is c-Lipschitz on angles. The same holds for

x ∈ I and Dx8
t
N

Hi
I

.

(2) For all x ∈ I and all 0≤ s, t <δ, let y=8t
N X

Hi

(8s
N

Hi
I

(x)). Let γ be the geodesic (in X ) from x to y, ui

the parallel transport along γ of the outward normal vector to Hi at x and vi=
∂
∂τ

∣∣
τ=t8

τ

N X
Hi

(8s
N

Hi
I

(x)).
Then the angle between ui and vi is at most cδ.

Proof. (1) follows from the boundedness of coefficients of the metric tensor and its inverse in normal
exponential coordinates (in both I ⊂ Hi and ∂Hi ⊂ X ). (2) follows from (1), together with the fact that
parallel transport along a closed curve stays close to the identity within the δ-neighborhood. �

Let Vi be the vector fields given by the vectors vi defined in the lemma. As for any x ∈ I we have that
the angle between V1(x) and V2(x) lies in [α0, π −α0] it follows from (2) that if we choose δ < c−1α0/2
we have that the angle between V1 and V2 at any point x in the δ-neighborhood of I lies in [α0/2, π−α0/2].
In particular V1, V2 define a plane field, and we define J to be its orthogonal.

Let πJ be orthogonal projection on J . The block decomposition of Dϕ according to T X = J⊕(V1+V2)

is

D(x,t,s)ϕ =

(
πJ Dxϕ C

(1−πJ )Dxϕ B

)
.

2This is well-defined for those pairs of points in X that we consider, as long as we take δ� inj(X).
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We need to prove that:

(1) Dxϕ, B and C have bounded coefficients (in terms of the bounds on the geometry).

(2) πJ Dxϕ and B are everywhere invertible and their inverses are bounded.

(3) ‖(1−πJ )Dxϕ‖� δ.

Indeed, this shows that the map ϕ has a derivative which everywhere invertible. In particular, it is a local
diffeomorphism and as it is the identity on I it is also a global diffeomorphism. This also implies that its
derivative is uniformly bounded in terms of the geometry of Hi and α0, and so is its inverse.

We deal first with Dxϕ. We note that

(Dxϕ)(x,t,s) = h
(

at − s
as− t

)
Dxϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
Dxϕ2(x, t, s)+ O(δ)

because of bounded geometry and the fact that to obtain ϕ we move ϕ1 and ϕ2 by at most δ. It follows that
Dxϕ is bounded. By point (1) of the lemma we have that at all points the angle between the image of Dxϕ

and Vi is at most cδ; it follows that ‖(1−πJ )Dxϕ‖� δ. Moreover Dxϕ is everywhere invertible with
bounded inverse, because both A1= Dxϕ1 and A2= Dxϕ2 are, and for w ∈ Tx I the vectors A1(w), A2(w)

have an angle ≤ cδ between them by (1).
We also have

Dtϕ = h
(

at − s
as− t

)
Dtϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
Dtϕ2(x, t, s)+ O(δ)

and similarly for Dsϕ, so the coefficients of B,C are bounded.
It remains to prove that B is invertible and det(B) is bounded away from zero. At a point x ∈ I we

have Dtϕ and Dsϕ belong to two disjoint open convex cones in Tx X/Jx ; by (2) and (1) this remains
true in the δ-neighborhood and the angle between the cones remains bounded away from zero, hence the
matrix B is invertible with uniformly bounded inverse.
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Combinatorial identities and Titchmarsh’s
divisor problem for multiplicative functions

Sary Drappeau and Berke Topacogullari

Given a multiplicative function f which is periodic over the primes, we obtain a full asymptotic expansion
for the shifted convolution sum

∑
|h|<n≤x f (n)τ (n−h), where τ denotes the divisor function and h∈Z\{0}.

We consider in particular the special cases where f is the generalized divisor function τz with z ∈ C, and
the characteristic function of sums of two squares (or more generally, ideal norms of abelian extensions).
As another application, we deduce a full asymptotic expansion in the generalized Titchmarsh divisor
problem

∑
|h|<n≤x,ω(n)=k τ(n− h), where ω(n) counts the number of distinct prime divisors of n, thus

extending a result of Fouvry and Bombieri, Friedlander and Iwaniec.
We present two different proofs: The first relies on an effective combinatorial formula of Heath-Brown’s

type for the divisor function τα with α ∈Q, and an interpolation argument in the z-variable for weighted
mean values of τz . The second is based on an identity of Linnik type for τz and the well-factorability of
friable numbers.

1. Introduction

Understanding correlations of arithmetic functions is a fundamental question in analytic number theory.
In an explicit form, the problem can be stated as determining the asymptotic behavior of the sum∑

1<n≤x

f (n)g(n− 1), (1-1)

where f, g :N→C are arithmetic functions of multiplicative nature. Many important problems in number
theory can be rephrased in terms of correlations of arithmetic functions, the twin prime conjecture or the
Goldbach conjecture being two famous examples (see e.g., [Elliott 1994, Chapter 1]). Sums of the form
(1-1) also come up prominently in the study of growth properties of L-functions in the critical strip. In
this context, the problem is known as the shifted convolution problem and has a long and rich history
(see [Michel 2007] for an overview).

In general, determining the precise asymptotic behavior of the unweighted correlation (1-1) is a difficult
task and only very few unconditional results are known in this direction, all of them requiring at least one

We thank O. Ramaré, H. L. Montgomery, R. C. Vaughan, R. de la Bretèche, É. Fouvry, G. Tenenbaum and the anonymous referee
for helpful discussions and remarks on the present work. In particular we thank É. Fouvry and G. Tenenbaum for remarks which
led to the second proof presented here. Part of this work was done during a visit of BT to Aix-Marseille university, supported by
the French-Austrian joint project MuDeRa (FWF I-1751-N26, ANR-14-CE34-0009).
MSC2010: primary 11N37; secondary 11N25.
Keywords: shifted convolution, divisor function, combinatorial identity.

2383

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2019.13-10
http://dx.doi.org/10.2140/ant.2019.13.2383


2384 Sary Drappeau and Berke Topacogullari

of the involved functions to be very close — in the convolution sense — to the constant function 1, the
divisor function τ(n) or to Fourier coefficients of GL2-automorphic forms. Note that when f and g are
bounded, the logarithmically weighted correlation∑

1<n≤x

f (n)g(n− 1)
n

has been the object of a recent breakthrough of Tao [2016]. The case of higher-order correlations of
bounded functions with logarithmic weight was also recently settled in [Tao and Teräväinen 2019].

In the present paper, we focus on the particularly important case g(n) = τ(n) of the unweighted
problem (1-1), which is at the edge of current techniques. If the average value of f is not too small, it
was already observed by Vinogradov [1965] (in the case of primes; see also [Rodriquez 1965; Halberstam
1967]) that simple asymptotic equivalences for the sum∑

1<n≤x

f (n)τ (n− 1) (1-2)

can be obtained from analogues of the Bombieri–Vinogradov and Brun–Titchmarsh inequalities. We
refer to [Green 2018; Granville and Shao 2018; Fouvry and Radziwiłł 2018] for recent works on this
topic. In particular, Corollary 1.3 in [Fouvry and Radziwiłł 2018] leads to a partial asymptotic formula
for (1-2) (including all terms with nonnegative exponent of log x) for a large set of arithmetic functions f ,
including the generalized divisor function τz which we discuss further below.

It is a considerably more difficult problem to obtain full asymptotic expansions for (1-2), say, with an
error term of the form O(x(log x)−N ) where N > 0 is fixed but can be chosen arbitrarily large. The gap
in difficulty is related to the “x1/2”-barrier for primes in arithmetic progressions on average over moduli.
To our knowledge full asymptotic expansions are known for only very few specific examples of functions
f of arithmetic interest:

• The indicator function of primes [Fouvry 1985; Bombieri et al. 1986].

• The indicator function of integers without large prime factors [Fouvry and Tenenbaum 1990; Drappeau
2015].

• The k-fold divisor functions τk(n), k ∈ N, k ≥ 2 [Motohashi 1980; Topacogullari 2016; 2018].

The methods from the last example can also be used to handle the case where f is given by Fourier
coefficients of GL2-automorphic forms, although this does not seem to be worked out explicitly in the
literature.

The purpose of the present paper is to introduce two new methods which lead to an asymptotic
expansion for (1-2) for a wide class of multiplicative functions. Let A, D ≥ 1 be fixed integers. Define
FD(A) to be the set of all multiplicative functions f : N→ C which are D-periodic over the primes in
the sense that

f (p1)= f (p2) for any primes p1 and p2 with p1 ≡ p2 mod D,
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and which satisfy the growth condition,

| f (n)| ≤ τA(n) for all n ∈ N,

where τA(n) denotes the generalized divisor function. Our main result is the following preliminary
asymptotic formula for the sum (1-2) for f ∈ FD(A).

Theorem 1.1. Let A, D, N ≥ 1. For all f ∈ FD(A) and all x ≥ 2, we have∑
1<n≤x

f (n)τ (n− 1)= 2
∑

χ primitive
cond(χ) | D

∑
q≤
√

x
cond(χ) | q

1
ϕ(q)

∑
q2
≤n≤x

(n,q)=1

f (n)χ(n)+O
(

x
(log x)N

)
, (1-3)

where the implied constant depends only on A, D and N.

Remarks. • The main term in (1-3) can be evaluated asymptotically by classical methods, for instance
the Selberg–Delange method [Tenenbaum 1995, Chapter II.5]. The ensuing expression will in general
take the form

x
∑
κ∈K f

(log x)κ
N∑
`=0

cκ,`
(log x)`

+ O
(

x
(log x)N−max(K f )+1

)
, (1-4)

for some finite set K f ⊂ C and some sequences (cκ,`)N
`=0 of complex numbers. We spell this out in detail

in three particular cases below.

• If f satisfies a Siegel–Walfisz estimate in the sense that∑
n≤x

f (n)χ(n)= OA(x(log x)−A),

uniformly for all primitive characters of conductor 1 < q ≤ (log x)A, then only the trivial character
contributes to the main term in (1-3), and the formula simplifies to∑

1<n≤x

f (n)τ (n− 1)= 2
∑

q≤
√

x

1
ϕ(q)

∑
q2
≤n≤x

(n,q)=1

f (n)+O
(

x
(log x)N

)
.

For the main term one then has an expansion as in (1-4) with K f = {κ f }, where κ f is the average value
of f (p) over all primes p.

• We stress that the implied constant is uniform in all f ∈ FD(A), and depends only on A, D and N .
This feature can be useful in applications (see Section 1C).

• On the other hand, our result is badly behaved with respect to D, partly due to the use of the Siegel–
Walfisz theorem. The arguments presented here do not seem sufficient to obtain an improvement in this
aspect, although this does not affect our applications.

• The error term in (1-3) corresponds to an application of the Siegel–Walfisz theorem. If the Riemann
hypothesis is true for all Dirichlet L-functions, then it can be improved to O(x1−δ) for some absolute
constant δ > 0.
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Theorem 1.1 may also be interpreted as a result of Bombieri–Vinogradov type “beyond
√

x” for the
average of f ∈ FD(A) in the residue classes of a fixed integer and without absolute values. By a slight
modification of the method presented here, it is possible to show that for f ∈ FD(A),∑

q≤
√

x

( ∑
1<n≤x

n≡1 mod q

f (n)−
1

ϕ(q)

∑
χ primitive

cond(χ) | (D,q)

∑
1<n≤x
(n,q)=1

f (n)χ(n)
)
=OA,D,N

(
x

(log x)N

)
.

We refer to [Green 2018; Granville and Shao 2018] for recent works related to this point of view.
In many applications correlation sums with more general shifts appear and it is important to have

results which are uniform in large ranges of the involved parameters. Our methods are robust enough to
be applied to these cases as well, and Theorem 1.1 is in fact the special case a = h = 1 of the following
more general result.

Theorem 1.2 (general shifts). Let A, D, N ≥ 1. There exists an absolute constant δ > 0, such that, for
all f ∈ FD(A), all x ≥ 2 and all a, h ∈ Z satisfying 1≤ a, |h| ≤ xδ, we have∑

|h|/a<n≤x

f (n)τ (an− h)= M f (x; h, a)+O
(
τ((a, h))

x
(log x)N

)
,

where M f (x; a, h) is given by

M f (x; a, h) := 2
∑

χ primitive
cond(χ) | D

∑
q≤
√

ax
cond(χ) | q

(q,h)

χ
( h
(h,q)

)
ϕ
( q
(h,q)

) ∑
q2/a≤n≤x
(an,q)=(h,q)

f (n)χ
( an
(an,q)

)
,

and where the implied constant depends only on A, D and N.

Unfortunately, the range of uniformity in h in Theorem 1.2 is comparatively short. This is due to a
known uniformity issue of arguments based on exponential sums estimates underlying our bilinear sums
estimate (see [Fouvry and Iwaniec 1983, page 200]). Out of the same reason, the methods used here are
not able to address the dual problem

N−1∑
n=1

f (n)τ (N − n)

(for which results are available for instance when f = τ or f = τ3, see [Motohashi 1994; Topacogullari
2016]).

We mention that results are known for affine correlations whose linear parts are pairwise independent
[Matthiesen 2012; 2016], or when there is an additional, long enough average over the shift [Mikawa
1992; Matomäki et al. 2019a; 2019b]. See also [Andrade et al. 2015; Bary-Soroker and Fehm 2019] for a
function field analogue in the large q limit.

Finally, we mention the work of Pitt [2013]. He considered an analogue of the Titchmarsh divisor
problem (see Section 1C) with the divisor function replaced by Fourier coefficients of holomorphic
cusp forms. In many situations, these Fourier coefficients and the divisor function exhibit a similar
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behavior, since the latter can also be viewed as the Fourier coefficients of an Eisenstein series (see e.g.,
[Iwaniec 2002, Chapter 3.4]). Remarkably, Pitt obtained an estimate with a power saving in the error
term unconditionally, something which is not known for the original Titchmarsh divisor problem. It
seems possible that his ideas can be adapted to our setting, and that one might obtain an analogue of
Theorem 1.2 with the divisor function replaced by Fourier coefficients of holomorphic cusp forms and
with a power saving in the error term. We do not pursue this here.

We apply Theorem 1.2 to three functions f of particular arithmetic interest:

(1) The generalized divisor functions τz(n) with z ∈ C.

(2) The indicator function of integers n which are norms of an integral ideal in an abelian extension.

(3) The indicator function of integers n with exactly k different prime factors.

1A. Correlations of divisor functions. Our first application is related to the generalized additive divisor
problem, which asks for an asymptotic evaluation of

Dk,`(x, h) :=
∑
|h|<n≤x

τk(n)τ`(n+ h)

for integers k, `≥ 2. This problem has received a lot of attention, partly motivated by its connection to
the 2k-th moment of the Riemann zeta function (see [Ivić 1991, Chapter 4] or [Conrey and Keating 2016;
Ng and Thom 2019]).

It is conjectured that for some constant Ck,`(h) > 0,

Dk,`(x, h)∼ Ck,`(h)x(log x)k+`−2,

and it is known [Henriot 2012] that this is the correct order of magnitude. However, this has been proven
only for the cases where either k = 2 or `= 2. In these cases, the best-known results in the literature are
of the form

Dk,2(x, h)= x Pk,h(log x)+O(xθk+ε) for h� xηk ,

where Pk,h is a degree k polynomial depending on h, with:

• θ2 =
2
3 and η2 =

2
3 [Deshouillers and Iwaniec 1982a; Motohashi 1994].

• θ3 =
8
9 and η3 =

2
3 [Friedlander and Iwaniec 1985; Topacogullari 2016].

• θk = max
(
1− 4

15k−9 ,
56
57

)
and ηk =

15
19 (k ≥ 4 fixed) [Linnik 1963; Fouvry and Tenenbaum 1985;

Topacogullari 2018].

In the case k = ` = 2, a similar asymptotic formula holds in a much larger range of uniformity for h,
although with a weaker error term (see [Meurman 2001] for the currently best results in this direction).
For k, `≥ 3 the problem remains completely open.
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The functions τk are special cases of coefficients of the Dirichlet series
∞∑

n=1

τz(n)
ns := ζ(s)

z for z ∈ C and Re(s) > 1.

On prime powers, they are given explicitly by

τz(p`)=
(

z+ `− 1
`

)
. (1-5)

The functions τz for z 6∈ N have a more complicated behavior than those for z ∈ N. When z = −1 for
instance, we recover the Möbius function τ−1(n)= µ(n).

Theorem 1.2 leads to an asymptotic expansion of Dz,2(x, h) for arbitrary z ∈C, uniformly in any fixed
disk |z| � 1.

Theorem 1.3. Let A, N ≥ 1 and ε > 0. There exist a constant δ > 0 and holomorphic functions
λh,` : C→ C, such that, for |z| ≤ A, x ≥ 2 and 1≤ |h| ≤ xδ,∑

|h|<n≤x

τz(n)τ (n+ h)= x(log x)z
N∑
`=0

λh,`(z)
(log x)`

+O
(

x(log x)Re(z)

(log x)N+1−ε

)
, (1-6)

where the implicit constant only depends on A, N and ε.

The coefficients λh,`(z) can be computed explicitly; see (8-4) infra for an expression of the leading
coefficient. If z is a nonpositive integer, all the coefficients λh,`(z) vanish and (1-6) effectively becomes
an upper bound.

Our method leads to a power saving error term in Theorem 1.3 when z = k ∈ N. This is solely due to
the fact that in these cases the k-th power of Dirichlet L-functions L(s, χ)k can be continued analytically
to a strip Re(s) ≥ 1− δ for some δ > 0 (excluding the possible pole at s = 1). We do not focus of the
case z ∈ N here, since the works mentioned above then give quantitatively stronger estimates.

1B. Norms of integral ideals. Let K/Q be a Galois extension with discriminant 1K . We define

NK := {N (α) : α ideal of OK , α 6= 0}.

This set has a rich multiplicative structure, described by the Artin reciprocity law. When the extension is
abelian, the Dedekind function ζK (s) factorizes into Dirichlet L-functions mod 1K , so that the integers
in NK can be detected by looking at the congruence classes of their prime factors mod 1K . Theorem 1.2
eventually applies and leads to the following result.

Theorem 1.4. Let K/Q be an abelian field extension. Let N ≥ 1 and ε > 0. There exist a constant δ > 0
and real numbers κh,`(K ), such that, for x ≥ 2 and 1≤ |h| ≤ xδ,∑

|h|<n≤x
n∈NK

τ(n− h)= x(log x)1−1/[K :Q]
N∑
`=0

κh,`(K )
(log x)`

+O
(

x
(log x)N+1/[K :Q]−ε

)
, (1-7)

where the implicit constant depends only on K , N and ε.
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An interesting special case is given by the extension Q(i)/Q. In this case, NQ(i) is simply the set of
integers which can be written as a sum of two squares, and Theorem 1.4 takes the following form.

Corollary 1.5. Let B be the set of all integers which can be written as a sum of two squares. Let N ≥ 1
and ε > 0. There exist a constant δ > 0 and real numbers βh,`, such that, for x ≥ 2 and 1≤ |h| ≤ xδ,

∑
|h|<n≤x

n∈B

τ(n− h)= x(log x)1/2
N∑
`=0

βh,`

(log x)`
+O

(
x

(log x)N+1/2−ε

)
. (1-8)

where the implicit constant depends only on N and ε.

The first term in the asymptotic formula for the left-hand side of (1-8) can also be obtained using a
recent extension of the Bombieri–Vinogradov theorem due to Granville and Shao [2018], along with the
Brun–Titchmarsh inequality. The coefficients κh,`(K ) and βh,` can be computed explicitly; see (8-5) infra
for an evaluation of the leading coefficient βh,0 in (1-8). Note that, since the indicator function b(n) of
the set B correlates with both the principal and the nonprincipal character mod 4, there are two genuine
contributions on the right-hand side in (1-3) when f (n) = b(n). This also explains the discrepancy
between the conjectures made in [Iwaniec 1976] and [Freiberg et al. 2017] on autocorrelations of b(n).

We stress that the multiplicity of representations as ideal norms in Corollary 1.5 is not taken into
account. Thus the estimate (1-8) is more difficult to obtain than an estimate for the correlation sum∑

|h|<n≤x

r2(n)τ (n− h) with r2(n) := |{(r, s) ∈ Z2
: r2
+ s2
= n}|,

for which classical methods suffice.

1C. Integers with k prime divisors. The Titchmarsh divisor problem [1930] asks for an asymptotic
evaluation of the sum ∑

|h|<p≤x

τ(p− h), (1-9)

where p runs over all primes up to x . Following the initial works by Titchmarsh [1930] and Linnik
[1963], the best known result was obtained independently by Fouvry [1985] and Bombieri, Friedlander
and Iwaniec [Bombieri et al. 1986]: For any fixed N > 0, we have, for 1≤ |h| ≤ (log x)N ,∑

|h|<p≤x

τ(p− h)= Ch x +C ′h li(x)+O
(

x
(log x)N

)
, (1-10)

where

Ch =
ζ(2)ζ(3)
ζ(6)

∏
p | h

(
1−

p
p2− p+ 1

)
, C ′h =

(
γ −

∑
p

log p
p2− p+ 1

+

∑
p | h

p2 log p
(p− 1)(p2− p+ 1)

)
Ch .
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An interesting generalization of this problem concerns the sum∑
|h|<n≤x
ω(n)=k

τ(n− h), (1-11)

where ω(n) denotes the number of distinct prime divisors of an integer n. An asymptotic equivalence for
this sum was proven by Khripunova [1998, Theorem 3], uniformly for k� log log x and h� x .

Our methods allow to obtain a full asymptotic expansion for (1-11), at least for small shifts h. In order
to circumvent the obstacle that the indicator function for integers n with ω(n)= k is not multiplicative,
we use a classical method due to Selberg [1954], which allows us to reduce the evaluation of (1-11) to
the evaluation of the correlation sum of the divisor function with the multiplicative function n 7→ zω(n).
This eventually leads to the following result.

Theorem 1.6. Let N ≥ 1 and ε > 0. There exist a constant δ > 0 and polynomials Pk
h,`(X) of degree

k− 1 such that, for 1≤ k� log log x and |h| ≤ xδ,∑
|h|<n≤x
ω(n)=k

τ(n− h)= x
∑

0≤`≤N

Pk
h,`(log log x)

(log x)`
+O

(
x(log log x)k

k!(log x)N+1−ε

)
, (1-12)

where the implicit constants depend only on N and ε.

The case k = 1 recovers the best-known asymptotic formula (1-10) for the Titchmarsh divisor problem.
As before, the polynomials Pk

h,` can be computed explicitly; in particular, the leading coefficient in the
asymptotic expansion is given by Ch/(k− 1)!.

This result is nontrivial throughout the range k � log log x . The case k/ log log x → +∞ is an
interesting question which would require different tools, due to the sparsity of the set of integers under
consideration (not unlike the situation for friable integers [Harper 2012]). We do not address this here.

1D. Overview of the proof of Theorem 1.2. For the sake of clear exposition, we will focus here on the
case D = 1, as our arguments extend without much difficulty to the case of general moduli and the arising
complications are mainly of technical nature. Note that any f ∈ F1(A) can be approximated (in the
convolution sense) by a suitable generalized divisor function, so that it suffices to consider the case f = τz

with z ∈ C.
We will give two distinct proofs of Theorem 1.2. They are based on two different kinds of combinatorial

identities for the generalized divisor function τz , both of which we believe are of independent interest.
Our first approach relies on an effective combinatorial formula of Heath-Brown’s type for the divisor
function τα with α ∈ Q, and an interpolation argument in the z-variable for weighted mean values of
τz . Our second approach, which is more direct and avoids the interpolation step, is instead based on an
identity of Linnik type for τz and the well-factorability of friable numbers1.

1The second proof was found only after a preliminary version of the present manuscript was uploaded online.
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1D.1. Proof by Heath-Brown’s identity and interpolation. Our first proof of Theorem 1.2 divides into
two parts: We first prove the theorem for rational z, and then extend this result to all z ∈ C.

For z ∈ Q, the general structure of the proof of Theorem 1.2 follows the setup of [Fouvry 1985;
Bombieri et al. 1986] (see also [Fouvry 1984]). The strategy naturally splits into two steps:

(1) We decompose the function f into convolutions with either large smooth components (type I) or
suitably localized components (type II).

(2) We solve the question for both types of sums.

The bulk of the present work concerns the first step. Combinatorial decompositions for prime numbers
have a long history since the works of Vinogradov [1937] (we refer to the survey [Ramaré 2013] for
an account and further references). Yet, it was not until recently that analogous identities emerged
for generalized divisor functions. Montgomery and Vaughan (private communication) have recently
developed a combinatorial identity of Vaughan’s type [1975] for τ1/2, which initially motivated largely
the present work. Unfortunately, as for primes, the bilinear sums coming from a raw application of this
identity are not quite localized enough to be effective for Titchmarsh’s problem, and even though this can
sometimes be fixed by iterating the formula [Fouvry 1981], our early attempts were unsuccessful. Instead
we follow the more flexible approach of Heath-Brown [1982] (which is related to [Gallagher 1968]).

Our first result (Theorem 3.2 below) is a uniform combinatorial formula of Heath-Brown’s type for the
divisor function τ u

v
with u/v ∈Q. In the simplest case 0< u < v, it reads

τu/v(n)=
K∑
`=1

c`,K ,u/v
∑
· · ·

∑
m1···m`n1···n`v−u=n

n1,...,n`v−u≤x1/K

τ−1/v(n1) · · · τ−1/v(n`v−u) for n ≤ x, (1-13)

where K ∈ N>0 is arbitrary and where c`,K ,u/v ∈ Q. A more general formula holds for any rational
number u/v (see Theorem 3.2). A crucial property of this formula is that it is sensitive almost only to the
archimedean size of u/v. Indeed, for |u/v| ≤ A, the coefficients c`,K ,u/v, the length of the `-sum and
the value at primes n = p of each `-summand on the right-hand side are bounded in terms of A and K
only (but not of v). Thus, the only loss due to the size of v comes from the number O(v) of terms in the
convolution, which has essentially no effect on what follows.

In the same way, we can express any rational convolution power ∗u/v f of a multiplicative function in
terms of higher convolutions ∗k f with 1≤ k ≤ K and a bilinear term with one component supported on
the interval [xε, x1/K

]. However, to our knowledge asymptotic formulae for the correlation sums∑
n≤x

(∗
k f )(n)τ (n+ 1), (1-14)

for k ≥ 2 are currently known for only very few functions f (essentially constant functions and Dirichlet
characters). This is the main obstacle towards using decompositions of this form to prove Theorem 1.2
for complex-fold convolutions of multiplicative functions.
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Regarding the second step, we are mostly able to use the harmonic analysis arguments underlying
[Fouvry 1985; Bombieri et al. 1986]. They are based on bounds on Kloosterman sums on average
[Deshouillers and Iwaniec 1982b], along with Voronoi summation (for type I) and Linnik’s dispersion
method (for type II). We will follow the treatment made in [Drappeau 2017; Topacogullari 2018], although
some work is needed in order to cast the main terms from these works in a form suitable for us.

Eventually, the arguments described above yield a proof of Theorem 1.2 for f = τ u
v

uniformly in the
range v ≤ (log x)N . As it turns out, this is already sufficient information to be able to conclude.

To see why, we return to the correlation sum

D(z) :=
∑

|h|/a<n≤x

τz(n)τ (an− h)

with z ∈ C, |z| � 1. The main observation is that this expression is a polynomial in z, and that we know
how to evaluate it on rational numbers with small denominators. Even though D(z) initially has degree of
the order of log x , we can use large deviation bounds on the function ω(n) (and a convolution argument)
to approximate it, up to an admissible error, by the polynomial

D̃(z) :=
∑

|h|/a<n≤x
ω(n)�log log x

zω(n)τ(an− h),

which has degree at most O(log log x). This enables us to use Lagrange interpolation on a suitably chosen
set of rational sample points to transfer our estimates for z ∈Q to estimates of the same quality for z ∈ C.
Indeed, this process introduces an error which grows exponentially in the degree of the polynomial. As
our estimates for D(z) for z ∈Q save an arbitrarily large power of log x , we are still able to obtain an
asymptotic formula at the end.

Note that for the above arguments to work it is crucial that estimates with a saving of a large power
of log x for D(z) for z ∈Q are available, which we can fortunately obtain here from the Siegel–Walfisz
bound (an unfortunate consequence of the last fact, however, is that most of our results are not effective).

We mention that, as in Heath-Brown’s work [1982], the arguments sketched above can be used to
obtain asymptotic formulae for short sums ∑

x<n≤x+y

f (n)

for y ≥ x7/12+ε and f ∈ FD(A), as well as theorems of Bombieri–Vinogradov type. However, unlike
Titchmarsh’s divisor problem, such results could in principle also be obtained by zero-density estimates
for Dirichlet L-functions (see [Iwaniec and Kowalski 2004, Chapter 10.5; Bombieri 1965]).

1D.2. Proof by Linnik’s identity. Our second proof uses a different decomposition for τz , which has
the major advantage that it holds uniformly for all z in a fixed bounded subset of C. This avoids the
interpolation step necessary in the first proof, although the resulting combinatorial identity is not as
elegant as the identity of Heath-Brown’s type described above.
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A naive attempt to find a combinatorial formula for τz which is uniform in z might start with Linnik’s
formula [Iwaniec and Kowalski 2004, Section 13.3], which relies on the Taylor series expansion

ζ(s)z = (1+ (ζ(s)− 1))z =
∑
j≥0

( z
j

)
(ζ(s)− 1) j .

The main technical difficulty at this point is to truncate the sum over j . In the context of Linnik’s formula,
this truncation is performed by restricting to almost-primes from the outset (or inserting a sieve weight),
see [Linnik 1963, page 21], but unfortunately this approach is not available in our situation.

Instead we write ζ(s)= ζy(s)My(s), where

ζy(s) :=
∏
p≤y

(
1−

1
ps

)−1

and My(s) :=
ζ(s)
ζy(s)

,

with y = x1/K for some K ∈ N, and then apply the Taylor series expansion only on the second factor
My(s), so that

ζ(s)z = ζy(s)z
∑
j≥0

( z
j

)
(My(s)− 1) j .

This expression has the advantage that the j-th summand has no coefficient for n ≤ y j in its Dirichlet
series expansion. After expanding and comparing the Dirichlet coefficients on both sides, we are therefore
led to the following “raw” combinatorial decomposition (see Theorem 3.3),

τz(n)=
∑

0≤`<K

c`
∑

n=n1n2
n1 is y-friable

τz−`(n1)τ`(n2) for n ≤ x,

where the c` are some complex numbers which depend on z, but which can be bound uniformly for z� 1
(we recall that an integer is said to be y-friable if all of its prime factors are bounded by y).

In order to apply this formula, it is of course necessary to be able to control the factors τz−`(n1).
However, the characteristic function of y-friable numbers has good factorability properties (see [Vaughan
1989, page 66; Fouvry and Tenenbaum 1996, Lemme 3.1]): we can essentially replace them in the formula
above by convolutions of sequences supported on [1, y] (see Lemma 3.4). This in turn enables us to apply
estimates of type I and type II, leading eventually to the desired asymptotic formula.

Plan. In Section 2, we introduce our main notations and the subsets of functions of FD(A) we will
mainly work with. In Section 3, we present the combinatorial decompositions for τz , on which our proofs
are based. In Section 4, we state some auxiliary computations in order to use the results of [Topacogullari
2018; Drappeau 2017]. In Sections 5 and 6, we proof Theorem 1.2 using the combinatorial identity of
Heath-Brown’s type, first by treating the case of rational parameters, and then by interpolating the obtained
results to all functions in FD(A). In Section 7, we sketch an alternative proof using the combinatorial
identity of Linnik’s type. Finally, in Section 8, we estimate the main terms and prove Theorems 1.3, 1.4
and 1.6.
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2. First reductions

2A. Statement of the main proposition. For n, h ∈ Z with n ≥ 1 and n− h ≥ 1, let

τ̃h(n; R) := 2
∑

q≤
√

n−h
(n,q)=(h,q)

1
ϕ
( q
(h,q)

) ∑
χ (mod q/(h,q))

cond(χ)≤R

χ
( h
(h,q)

)
χ
( n
(h,q)

)
. (2-1)

Note that τ̃h(n; R)= τ(n−h) if R >
√

n− h and n−h is not a perfect square. We will eventually choose
R of size (log n)O(1). We have a trivial bound

τ̃h(n; R)�ε nεR1+ε. (2-2)

The function τ̃h(n; R) should be thought of as an approximation to τ(n− h) on average. The main
work in proving Theorem 1.2 consists in showing that, for any f ∈ FD(A), we have∑

n≤x

f (n)τ (an− h)∼
∑
n≤x

f (n)τ̃h(an; Rx) for x→∞, (2-3)

where Rx is some slowly growing function in x (some appropriate power of log x). Once this is established,
we can evaluate the sum on the right by standard methods. In view of this, it is convenient to define

1h(n; R) := τ(n− h)− τ̃h(n; R) and 6 f (I ; a, h; R) :=
∑
n∈I

f (n)1h(an; R),

for any interval I ⊆R+. The main part of this article is concerned with proving the following proposition,
which puts the statement (2-3) into precise terms, and from which the results described in the introduction
can be deduced easily (see Section 8).

Proposition 2.1. Let A, D≥ 1 be fixed. Then we have, for x ≥ 3, I ⊂[x/2, x] an interval and f ∈FD(A),
the following estimate,

|6 f (I ; a, h; R)| ≤ Cτ((a, h))
x(log x)B

R1/3 for 1≤ a, |h|, R ≤ xδ, (2-4)

where δ > 0 is some absolute constant and where B,C > 0 are constants which depend only on A and D.

2B. Restricting the set of functions. It is known in multiplicative number theory that, to a certain degree
of precision, the magnitude of the mean value of a multiplicative function f depends mostly on the values
f (p), p prime. The following lemma quantifies the analogous phenomenon in our case.

Lemma 2.2. Let f, g : N→ C be multiplicative functions, which satisfy the following conditions:

(i) |g(n)| ≤ τM(n) for some M ≥ 1 and all n ∈ N.

(ii) H :=
∑

n≥1|( f ∗ g−1)(n)|/nσ <+∞ for some σ < 1, where g−1 denotes the Dirichlet convolution
inverse of g.
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Furthermore, assume there are constants %, δ ∈ (0, 1] and B,C ≥ 1 such that, for all x ≥ 1 and all
intervals I ⊂ [x/2, x],

|6g(I ; a, h; R)| ≤ Cτ((a, h))
x(log x)B

R%
for 1≤ a, |h|, R ≤ xδ. (2-5)

Then there exists C ′, δ′ > 0 depending only on %, δ, σ and M , such that, for all x ≥ 1 and all intervals
I ⊂ [x/2, x],

|6 f (I ; a, h; R)| ≤ HCC ′τ((a, h))
x(log x)B

R%
for 1≤ a, |h|, R ≤ xδ

′

. (2-6)

Proof. Let h := f ∗ g−1. We have

6 f (I ; a, h; R)=
∑

n1n2∈I

g(n1)h(n2)1h(an1n2; R)

=

∑
n2≤T

h(n2)6g(I/n2; an2, h; R)+
∑

n2>T

h(n2)6g(I/n2; an2, h; R),

for some parameter T ≥ 1. For the sum on the left we use the assumption (2-5), so that

∑
n2≤T

h(n2)6g(I/n2; an2, h; R)�σ C Hτ((a, h))
x(log x)B

R%
,

provided that the parameters a, h and R satisfy

1≤ a ≤
xδ

T 1+δ and 1≤ |h|, R ≤
xδ

T δ
.

For the sum on the right we use the trivial bound 6g(I/n2; an2, h; R)�ε,M Rx1+ε/n2, and get∑
n2>T

h(n2)6g(I/n2; an2, h; R)�ε,M x1+εRT−1+σ H.

The lemma follows on setting T = xδ/3 and δ′ =min(δ/3, δ(1− σ)/(4(1+ ρ))). �

In view of this, in order to prove Proposition 2.1, we will restrict to the following two subsets of
FD(A). The first subset, denoted by Fτ

D(A), consists of functions f : N→ C, which are the coefficients
of Dirichlet series of the form

∞∑
n=1

f (n)
ns =

∏
χ mod D

L(s, χ)bχ , (2-7)

where the parameters bχ are complex numbers such that |bχ | ≤ A. Note that τz ∈ Fτ
D(A) for |z| ≤ A. A

particularly important role will be played by the subset FτQ

D (A) ⊂ Fτ
D(A) formed by functions of this

form where all the parameters bχ are rational.
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The second subset Fω
D(A) is defined to be the set of functions f :N→C, which are the coefficients of

Dirichlet series of the form

∞∑
n=1

f (n)
ns =

∏
r∈(Z/DZ)×

∏
p≡r mod D

(
1+

zr

ps − 1

)
, (2-8)

where the coefficients zr are complex numbers such that |zr | ≤ A. This includes the functions n 7→ zω(n)

for all |z| ≤ A.

Lemma 2.3. For any f ∈ FD(A), there exist g1 ∈ Fτ
D(A) and g2 ∈ Fω

D(A) which satisfy the conditions
(i)–(ii) stated in Lemma 2.2 for σ = 2

3 , and M, H bounded only in terms of A and D.

Proof. We first prove the lemma with respect to the set Fτ
D(A). Let f ∈FD(A) be fixed, and let v f :Z→C

be the D-periodic function defined by

v f (r)=
{

f (p) if there exists a prime p such that (p, D)= 1 and p ≡ r mod D,
0 if (r, D) > 1.

(2-9)

We then set

bχ :=
1

ϕ(D)

∑
r (mod D)

v f (r)χ(r) for any character χ mod D,

and define g1 as the coefficients of the following Dirichlet series,

∞∑
n=1

g1(n)
ns :=

∏
χ (mod D)

L(s, χ)bχ . (2-10)

We have ( f ∗g−1
1 )(p)= 0 if p -D. Moreover, since |bχ | ≤ A, we get |g1(n)| ≤ τAD(n) for all n. Therefore,

∑
n≥1

|( f ∗ g−1
1 )(n)|

n2/3 =

∏
p | D

(
1+OA,D

(
1

p2/3

))∏
p -D

(
1+OA,D

(
1

p4/3

))
=OA,D(1).

This proves the first part of the lemma.
For the second part, we define g2 by its Dirichlet series

∞∑
n=1

g2(n)
ns :=

∏
r∈(Z/DZ)×

∏
p prime

p≡r mod D

(
1+

v f (r)
ps − 1

)
.

The fact that g2 satisfies the required conditions can be shown using similar computations as above. �

Let us at this point also note the following result, which is an easy consequence of the proofs of
Lemmas 2.2 and 2.3, and which will become useful later on.
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Lemma 2.4. Let f ∈FD(A) and letψ mod q be a Dirichlet character. Then the Dirichlet series associated
to ψ f is given by

∞∑
n=1

ψ(n) f (n)
ns = Hψ(s)

∏
χ mod D

L(s, ψχ)bχ for Re(s) > 1,

where Hψ(s) is some holomorphic function defined in Re(s) > 1
2 and where

bχ :=
1

ϕ(D)

∑
r mod D

v f (r)χ(r),

with v f (n) as defined in (2-9). Moreover, for any fixed σ0 >
1
2 , we have Hψ(s) � 1 uniformly in

Re(s) > σ0, with the implicit constant depending at most on σ0, A and D.

From Lemmas 2.2 and 2.3, we deduce the following statement.

Lemma 2.5. To prove Proposition 2.1 in full generality, it suffices to prove it under either one of the
additional hypotheses f ∈ Fτ

D(A) or f ∈ Fω
D(A).

3. Combinatorial identities for τz(n)

In this section we describe the two combinatorial identities for the generalized divisor function τz on
which the proofs of Theorem 1.2 are based.

3A. A generalization of Heath-Brown’s identity. We first derive a combinatorial decomposition analo-
gous to [Heath-Brown 1982] for the function n 7→ τα(n) in the case α ∈Q. Our argument is based on the
following polynomial identity.

Lemma 3.1. Let u and v be integers such that v > u ≥ 0. Let K ≥ 1 and N ≥ 0. Then there exist rational
coefficients am and b` such that there holds∑

K≤m≤(K+N )v−u

am(X − 1)m = 1+ X Nv
∑

1≤`≤K

b`X`v−u . (3-1)

The coefficients (b`) are unique and given explicitly by

b` =
(−1)`

(`− 1)!(K − `)!

∏
1≤ j≤K

j 6=`

(
j + N −

u
v

)
. (3-2)

Proof. An identity of the form (3-1) exists if and only if we can find b1, . . . , bK such that the first K − 1
derivatives of the polynomial on the right hand side of (3-1) vanish at X = 1. This is equivalent to saying
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that the b1, . . . , bK solve the equation
1 · · · 1

v+ Nv− u · · · Kv+ Nv− u
...

. . .
...

(v+ Nv− u)K−1
· · · (Kv+ Nv− u)K−1




b1

b2
...

bK

=

−1
0
...

0

 . (3-3)

Let C be the matrix on the left, and B` the same matrix but with the upper row and the `-th column
removed. Note that C is a Vandermonde matrix, and B` is a product of a Vandermonde matrix with a
diagonal matrix. Hence, we deduce

det C =
∏

1≤i< j≤K

( jv− iv)= 2!3! · · · (K − 1)!vK (K−1)/2,

det B` =
∏

1≤i< j≤K
i, j 6=`

( jv− iv)
∏

1≤ j≤K
j 6=`

( jv+ Nv− u).

Since det C 6= 0, we obtain by Cramer’s rule that there is a unique solution (b`), given by

b` = (−1)`
det B`
det C

, (3-4)

which yields (3-2). �

Theorem 3.2. Let v > 0 and r be integers such that v > u ≥ 0 and r ≥ 0. Let K ≥ 1 and x ≥ 1. Then for
any n ≤ x , we have

τr+u/v(n)=
K∑
`=1

c+`
∑
· · ·

∑
m1···m`+r n1···n`v−u=n

n1,...,n`v−u≤x1/K

τ−1/v(n1) · · · τ−1/v(n`v−u), (3-5)

and, for r ≥ 1,

τ−r+u/v(n)=
K∑
`=1

c−`
∑
· · ·

∑
m1···m`−1n1···n`v+(r−1)v−u=n

n1,...,n`v+(r−1)v−u≤x1/K

τ−1/v(n1) · · · τ−1/v(n`v+(r−1)v−u), (3-6)

where the c+` and c−` are certain rational numbers, which can be bounded by

c+` , c−` � 1 for 1≤ `≤ K ,

the implicit constant depending only on K and r.

Proof. Let

G(s) :=
∞∑

n=1

τ−1/v(n)g(n)
ns with g(n) :=

{
1 if n ≤ x1/K ,

0 otherwise.
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We first look at (3-5). Here we use Lemma 3.1 with N = 0 and X = ζ(s)
1
v G(s), and then multiply both

sides by ζ(s)r+u/v, which leads to the identity∑
K≤m≤Kv−u

am(ζ(s)1/vG(s)− 1)mζ(s)r+u/v
= ζ(s)r+u/v

+

∑
1≤`≤K

b`ζ(s)r+`G(s)`v−u .

Then (3-5) follows by comparing the Dirichlet coefficients on both sides and noting that, by construction,
the left-hand side has no Dirichlet coefficient for n ≤ x .

In order to show (3-6), we use Lemma 3.1 with the same X as before and with N = r − 1, and then
multiply both sides by ζ(s)−r+ u

v . This gives∑
K≤m≤(K+r−1)v−u

am

(
ζ(s)1/vG(s)− 1

)m

ζ(s)−r+u/v
= ζ(s)−r+u/v

+

∑
1≤`≤K

b`ζ(s)`−1G(s)`v+(r−1)v−u,

and (3-6) follows again by comparing the Dirichlet coefficients on both sides. �

Remark. With r = v = 1 and u = 0, the identity (3-6) leads to the decomposition of µ(n) described in
[Iwaniec and Kowalski 2004, (13.38)].

3B. A combinatorial identity of Linnik’s type. Here we derive a combinatorial decomposition for τz

using an approach analogous to [Linnik 1963].
We denote by P+(n) the largest, and by P−(n) the smallest prime factor of an integer n > 1, with the

convention that P+(1)= 1 and P−(1)=∞. Given an arbitrary multiplicative function f and a complex
number z ∈ C, we define the z-fold convolution of f as the multiplicative function given by

f (∗z)(pν) :=
∑

1≤r≤ν

( z
r

) ∑
λ1,...,λr≥1
λ1+···+λr=ν

f (pλ1) · · · f (pλr )(ν ≥ 1).

The notation is motivated by the fact that if F(s) :=
∑

n≥1 f (n)n−s is the Dirichlet series associated to f ,
then for Re(s) large enough the function log F(s) is well defined and we have F(s)z =

∑
n f (∗z)(n)n−s .

Indeed, by expressing F(s) as an Euler product, we see immediately that

F(s)z =
∏

p

(
1+

∑
ν≥1

f (pν)
pνs

)z

=

∏
p

(
1+

∑
r≥1

( z
r

)(∑
ν≥1

f (pν)
pνs

)r)
=

∏
p

(
1+

∑
ν≥1

f (∗z)(pν)
pνs

)
.

Note that f (∗z)(p)= z f (p), and that for ` ∈N the `-fold convolution as defined here coincides with the
`-fold convolution defined in the traditional sense. We will be eventually interested in the case when
f = χ is a Dirichlet character, in which case we have f (∗z) = τχz .

Theorem 3.3. Let K ∈ N>0 and A, x ≥ 1. Then for all z ∈ C there exist complex numbers (c`)0≤`≤K ,
such that for all x ≥ 1 and all multiplicative functions f , we have the following identity for n ≤ x ,

f (∗z)(n)=
∑

0≤`<K

c`
∑

n=n1n2
P+(n1)≤x1/K

f (∗(z−`))(n1) f (∗`)(n2), (3-7)

where the coefficients c` can be bound by c` = OK ,A(1) uniformly for |z| ≤ A.
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Proof. Let y := x1/K . As before we set F(s) :=
∑

n≥1 f (n)n−s . We may certainly assume that f (pk)

vanishes if p > x . Let

F(s, y)=
∏
p≤y

(∑
k≥0

f (pk)

pks

)
, G(s, y)=

∏
p>y

(∑
k≥0

f (pk)

pks

)
.

For Re(s) > 0, the decomposition F(s)= F(s, y)G(s, y) yields

F(s)z = F(s, y)z(1+ (G(s, y)− 1))z

= F(s, y)z
∑
k≥0

(
z
k

)
(G(s, y)− 1)k

= F(s, y)z
∑

0≤k<K

(
z
k

)
(G(s, y)− 1)k + R(s)

with

R(s) := F(s, y)z
∑
k≥K

(
z
k

)
(G(s, y)− 1)k .

Note that the series converge absolutely if Re(s) is large enough in terms of f . By expanding, we get

F(s)z = F(s, y)z
∑

0≤`<K

c`G(s, y)`+ R(s),

with

c` := (−1)`
∑

`≤k<K

(−1)k
( z

k

)(k
`

)
.

We read the coefficients of n−s , for n ≤ x , on each side. Note that for k ≥ K , the series (G(s, y)− 1)k

has no corresponding Dirichlet coefficients, so there is no contribution from R(s). The claimed equality
follows on writing G(s, x1/K )= F(s)F(s, x1/K )−1. �

Remarks. • Compared with (3-5)–(3-6), this identity has the significant advantage that it is uniform for
z� 1 complex.

• The case K = 2 only involves the exponents ` ∈ {0, 1}. It follows, for instance, that if f (∗z) satisfies a
Siegel–Walfisz estimate (in the sense of [Granville and Shao 2018, equation (1.2)]), and if f satisfies a
Bombieri–Vinogradov theorem, then f (∗z) satisfies a Bombieri–Vinogradov theorem as well.

• The case K = 2, f = 1 leads to Eratosthenes’ sieve identity: for all n ∈ (
√

x, x], we have

1n prime =
∑
d | n

p | d⇒p≤
√

x

µ(d).

For any η ∈ (0, 1/2), either we have d ≤ xη (which corresponds to type I sums), or d > xη, in which case
we can localize a factor of d in the interval [xη, x1/2+η

] (and this corresponds to type II sums).
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The main property which allows Theorem 3.3 to be used in our arguments is the following factorization
lemma, in the spirit of Lemma 3.1 of [Vaughan 1989, page 29]; see [Hmyrova 1964] for an early use of
this property, and [Fouvry and Tenenbaum 1996] for an application in a context similar to ours.

Lemma 3.4. For any multiplicative function f : N→ R, any compactly supported function g :N→ C,
and all y, w ≥ 2, we have ∑

P+(n)≤y

f (n)g(n)=6triv+6I+O(6II), (3-8)

where

6I =
∑
n≤w

P+(n)≤y

f (n)g(n), 6triv =
∑
n>w

P+(n)≤y
∃pν ‖ n,pν>y

f (n)g(n), 6II = (log y) sup
α,β

∣∣∣∣ ∑
w<m≤yw

∑
n

αmβng(mn)
∣∣∣∣,

the supremum in 6II being taken over all sequences (αm), (βn) of complex numbers satisfying

|αm | ≤ | f (m)|, |βn| ≤ (| f | ∗ | f |)(n).

Proof. If an integer n with P+(n)≤ y is not counted in the first two sums on the right-hand side, then
n >w and all prime powers pν ‖ n satisfy pν ≤ y. By incorporating these prime powers as p increases,
we may factor n = n1n2 uniquely in such a way that

P+(n1) < P−(n2), w < n1 ≤ wQ+(n1),

where Q+(n1) is the prime power corresponding to the largest prime of n1: Q+(n1)= P+(n1)
ν
‖ n1. Note

that this implies (n1, n2)= 1. Our statement follows after separating variables [Iwaniec and Kowalski
2004, Lemma 13.11] in the condition P+(n1) < P−(n2). �

4. Auxiliary estimates

In this section we collect some estimates on 1h(n, R), which will be needed in the following sections.

4A. The second moment of1h(n; R). On several occasions, we will require the following rough upper-
bound for the “main terms”.

Lemma 4.1. For x ≥ 3, R ≥ 1 and (a, h) ∈ Z2 such that 1 ≤ a, |h|, R ≤ x1/4, the following estimate
holds, ∑

x/2<n≤x

|1h(an; R)|2� τ((a, h))2x(log x)4.

Proof. We have∑
x/2<n≤x

|1h(an; R)|2�
∑

x/2<n≤x

τ(an− h)2+
∑

x/2<n≤x

|τ̃h(an; R)|2 =: G1+G2,

and we now proceed to estimate the two sums G1 and G2 separately.
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We first look at G1. For notational convenience, let

a′ :=
a

(a, h)
, h′ :=

h
(a, h)

and t := (a, h).

We start by splitting the sum according to the size of t∗ = (an− h, t∞) as follows,

G1 =
∑

t∗ | t∞
(t∗,a′)=1
t∗≤x1/2

∑
x/2<n≤x

a′n≡h′ mod t∗
((a′n−h′)/t∗,t)=1

τ(an− h)2+
∑

t∗ | t∞
(t∗,a′)=1
t∗>x1/2

∑
x/2<n≤x

a′n≡h′ mod t∗
((a′n−h′)/t∗,t)=1

τ(an− h)2 =: G1a+G1b.

In order to estimate G1a we choose b, y ∈ Z such that a′b = 1+ yt∗ and write

G1a =
∑

t∗ | t∞
(t∗,a′)=1
t∗≤x1/2

τ(t∗t)2
∑

(x−2bh′)/2t∗<n′≤(x−bh′)/t∗
(yh′+n′a′,t)=1

τ(yh′+ n′a′)2

≤

∑
t∗ | t∞
(t∗,a′)=1
t∗≤x1/2

τ(t∗t)2
∑

(a′x−2h′)/2t∗<m≤(a′x−h′)/t∗
m≡yh′ mod a′

τ(m)2.

The sum over m can now be estimated via [Shiu 1980, Theorem 2] or [Barban and Vehov 1969, Theorem 1],
which leads to

G1a� x log3 x
∑

t∗ | t∞

t∗≤x1/2

τ(t∗t)2

t∗
� τ((a, h))2x log4 x . (4-1)

In G1b we bound all the summands trivially and get

G1b�
∑

t∗ | t∞
(t∗,a′)=1
t∗>x1/2

∑
x/2<n≤x

a′n≡h′ mod t∗

τ(t (a′n− h′))2� x1+ε
∑

t∗ | t∞

x1/2<t∗≤2a′x

1
t∗
� x3/4+ε,

so that together with (4-1) we deduce

G1� τ((a, h))2x log4 x .

Next we look at G2. Here we first rewrite τ̃h(an; R) as

τ̃h(an; R) := 2
∑

α | (a,h)

∑
δ | (h/α,n)
(δ,a/α)=1

∑
q≤
√

an−h/(αδ)

1
ϕ(q)

∑
χ (mod q)

cond(χ)≤R

χ
( h
αδ

)
χ
(an
αδ

)
,

so that after expanding the square we are led to

G2 ≤ 4
∑

α1,α2 | (a,h)
δ1 | h/α1,δ2 | h/α2

∑
q1≤
√

ax−h/(α1δ1)

q2≤
√

ax−h/(α2δ2)

1
ϕ(q1)ϕ(q2)

∑
χ1 (mod q1)
χ2 (mod q2)

cond(χ1),cond(χ2)≤R

S(χ1χ2,
x

[δ1,δ2]
),
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with

S(χ, y) := max
y/2≤y0<y

∣∣∣∣ ∑
y0<n≤y

χ(n)
∣∣∣∣.

If χ1 and χ2 are induced by the same primitive character, we use the trivial bound S(χ1χ2, y) ≤ y.
Otherwise, the Pólya–Vinogradov bound applies and S(χ1χ2, y) � τ(q1q2)R log R. Inserting these
bounds, we eventually obtain

G2� τ((a, h))2x log4 x + xεR3
� τ((a, h))2x log4 x

by our assumption R ≤ x1/4. This concludes the proof. �

4B. Comparison of main terms. We begin by two technical lemmas related to the main terms that will
appear later. Let X ≥ 1, and let f and v be two smooth functions which are both compactly supported
inside R∗

+
. We assume that supp f ⊂ [C1 X,C2 X ] and supp v ⊂ [C1,C2], where C1 and C2 are some

positive constants, and that for some � ∈ (0, 1], we have

‖v( j)
‖∞� j 1, ‖ f ( j)

‖∞� j (�X)− j ,

∫
R

| f ( j+1)
| � (�X)− j , (4-2)

for all j ≥ 0. Furthermore, we define

M f,v(b, h;M) :=
1
b

∑
d | b

cd(h)
d

∫
(log(ξ − h)+ 2γ − 2 log d) f (ξ)v

(
ξ

bM

)
dξ, (4-3)

where
cd(h) :=

∑
ν(mod∗d)

e(νh/d)=
∑
δ | (h,d)

δµ(d/δ)

denotes the Ramanujan sum.

Lemma 4.2. For (b, h) ∈ Z2, b,M ≥ 1, and R ≥ 1, we have∑
m

f (bm)v
(

m
M

)
τ̃h(bm; R)= M f,v(b, h;M)+O

(
X εR3/2

+ X1/2+ε (h, b)
b

)
,

where the implied constant depends on ε, C1,C2 and on the implied constants in (4-2).

Proof. By partial summation and the Pólya–Vinogradov inequality, given a character χ (mod q/(q, h))
of conductor 1< r ≤ R, we have∑

n

f (bm)v
(

m
M

)
χ

(
bm
(h, q)

)
= χ

(
b

(b, q)

)∫∫
f ′(t1)v′(t2)

∑
m≥ h+q2

(h,q)/(b,q)

m≤ t1/b+Mt2
(h,q)/(b,q)

χ(m)dt1dt2� R1/2qε.

By definition (2-1), we deduce∑
m

f (bm)v
(

m
M

)
τ̃h(bm; R)= 2

∑
m

f (bm)v
(

m
M

) ∑
q≤
√

bm−h
(bm,q)=(h,q)

1
ϕ(q/(q, h))

+O(X εR3/2).
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The condition (bm, q)= (h, q) in the sum on the right-hand side is equivalent to

(b, q) | h,
(h, q)
(b, q)

∣∣∣∣m,
(

m(b, q)
(h, q)

,
q

(h, q)

)
= 1.

Using Möbius inversion and our hypotheses on f and v, we can replace the m-sum by the corresponding
integral and obtain∑

m

f (bm)v
(

m
M

)
τ̃h(bm; R)=

2
b

∫
f (ξ)v

(
ξ

bM

) ∑
q≤
√
ξ−h

(b,q) | h

(b, q)
q

dξ +O(X εR3/2).

The main term on the right-hand side may be rewritten as

2
b

∑
d | b

cd(h)
d

∫
f (ξ)v

(
ξ

bM

)
H
(√

ξ − h
d

)
dξ +O(X εR3/2)

where H(x)=
∑

q≤x 1/q = log x + γ +O(x−1). This gives the claimed estimate. �

Next, we define

Mχ

f,v(b, h;M) :=
∑

a mod D
(a,D)=1

χ(a)M fab,va/M (bD, h− ab;M/D) (4-4)

where fab(ξ) := f (ξ + ab) and va/M(ξ) := v(ξ + a/M).

Lemma 4.3. If b = b◦b∗ with b◦ | D∞ and (b∗, D)= 1, then

Mχ

f,v(b, h;M)=
1

bD
χ

(
h

(h, b)

)
χ

(
b

(h, b)

)∑
d | b∗

cd(h)
d

∫ (
log
(

ξ − h
(Db◦d)2

)
+ 2γ

)
f (ξ)v

(
ξ

bM

)
dξ.

(4-5)
Moreover, if χ mod D is primitive, we have∑

m

f (bm)v
(

m
M

)
χ(m)τ̃h(bm; R)

= Mχ

f,v(b, h;M)+O
(

1D>R(b, h)
X (log X)3

bD
+ X εD1/2 R3/2

+ X1/2+ε (h, b∗)
b∗

)
where 1D>R = 1 if D > R and 0 otherwise.

Proof. We rewrite

Mχ

f,v(b, h;M)=
1

bD

∑
a (mod D)
(a,D)=1

χ(a)
∑

d | bD

cd(h− ab)
d

∫
(log(ξ − h)+ 2γ − 2 log d) f (ξ)v

(
ξ

bM

)
dξ.
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Using Gauss sums, ∑
a (mod D)
(a,D)=1

χ(a)cd(h− ab)= G(χ)χ
(
−bD

d

) ∑
ν(mod∗d)

χ(ν)e
(

hν
d

)
.

This last expression vanishes unless D(b, D∞) | d. Denoting b◦ = (b, D∞) and b∗ = b/b◦, we obtain
for d | b∗ ∑

a (mod D)
(a,D)=1

χ(a)cDb◦d(h− ab)= G(χ)χ(−b∗/d)G(χ)
∑

δ | (b◦d,h)

δχ(h/δ)µ(b◦d/δ)χ(b◦d/δ)

= b◦D1b◦ | hχ(b∗)χ(h/b◦)cd(h)

= b◦Dχ
(

h
(h, b)

)
χ

(
b

(h, b)

)
cd(h).

This yields our first claim.
For the second, the computations are similar to the previous lemma. If D > R, we get∑

m

f (bm)v
(

m
M

)
χ(m)τ̃h(bm; R)� X εD1/2 R3/2, (4-6)

while on the other hand Mχ

f,v(b, h;M)� (b, h)(bD)−1 X (log X)2 by a simple computation from (4-5).
If D ≤ R, the bound (4-6) applies to all the characters involved in the definition of τ̃h(bm; R), except all
those which are induced by χ . We obtain∑

m

f (bm)v
(

m
M

)
χ(m)τ̃h(bm; R)

= 2
∑

D | q/(q,h)

χ(h/(b, q))χ(b/(b, q))
ϕ(q/(h, q))

∑
(bm,q)=(h,q)

q2
≤bm−h

f (bm)v
(

m
M

)
+O(X εD1/2 R3/2).

Similarly as above, the main term in the right-hand side can be rewritten

2
b
χ

(
h

(h, b)

)
χ

(
b

(h, b)

)∫
f (ξ)v

(
ξ

bM

) ∑
q≤
√
ξ−h

(b,q) | h, D | q/(h,q)
(D,(b,h)/(b,q))=1

(q, b)
q

dξ +O(X ε)

The χ -factors impose the conditions b◦ | h and (D, h/b◦)= 1. We rewrite the q-sum as∑
q≤
√
ξ−h

(b,q) | h, D | q/(h,q)
(D,(b,h)/(b,q))=1

(b, q)
q
=

1
D

∑
q≤
√
ξ−h/(Db◦)
(b∗,q) | h

(q, b∗)
q
=

1
D

∑
d | b∗

cd(h)
d

H
(√

ξ − h
Db◦d

)

whence the claimed expression. �
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4C. Type τ1 estimates. The following estimate is relevant for convolutions with one smooth component
of size � x1/3+ε. It can be viewed as a generalization of a result of Selberg [1991, page 235] on the
equidistribution of τ2 in arithmetic progressions.

Lemma 4.4. Let ε > 0, let C2 > C1 > 0, let v : (0,∞)→ R be a smooth and compactly supported
function, and let χ mod D be a Dirichlet character of modulus D ≥ 1. Then we have, for any X,M ≥ 1
and R ≥ D, any 1≤ bD, |h| � X1−ε, and any interval I ⊂ [C1 X,C2 X ],∑

m:bm∈I

χ(m)v
(

m
M

)
1h(bm; R)� X ε(DX1/3

+ (b, h D∞)M X−1/2
+ D1/2 R3/2). (4-7)

The implied constants depend only on the function v and the constants ε, C1 and C2.

Proof. Note that we can always assume bM � X , since otherwise the sums in consideration are empty.
Let f : (0,∞) → [0,∞) be a smooth weight function, which is compactly supported in supp f ⊂
[C1 X/2, 2C2 X ], which has value f (ξ)= 1 for all ξ ∈ I , and whose derivatives satisfy

f (ν)(ξ)�
1

(�X)ν
for ν ≥ 0 and

∫
| f (ν)(ξ)| dξ �

1
(�X)ν−1 for ν ≥ 1,

for some constant �≤ 1. We can then encode the condition bm ∈ I by using the function f (ξ) via∑
m:bm∈I

χ(m)v
(

m
M

)
1h(bm; R)=

∑
m

f (bm)v
(

m
M

)
χ(m)1h(bm; R)+O(�X1+εb−1), (4-8)

so that it suffices to consider the smoothed sum on the right-hand side.
Assume first that χ is the trivial character. In [Topacogullari 2018, Section 3] it is shown that∑

m

f (bm)v
(

m
M

)
τ(bm− h)= M f,v(b, h;M)+O(X εb1/2�−1/2), (4-9)

where the main term M f,v(b, h;M) is given by (4-3). By Lemma 4.2, we obtain∑
m

f (bm)v
(

m
M

)
τ̃h(bm; R)= M f,v(b, h;M)+O(X εR3/2

+ (b, h)b−1 X1/2+ε). (4-10)

The estimate (4-7), in the case D = 1 and χ = 1, now follows from (4-8) with the choice �= bX−2/3.
Now assume that χ is a primitive character modulo D, where D ≤ R and bD� X1−ε. We write∑

m

f (bm)v
(

m
M

)
χ(m)τ (bm− h)=

∑
a (mod D)
(a,D)=1

χ(a)
(∑

m

f̃ (b̃m)ṽ
(

m

M̃

)
τ(b̃m− h̃)

)
,

with

b̃ := Db, M̃ := M/D, h̃ := h− ab, f̃ (ξ) := f (ξ + ab) and ṽ(ξ) := v

(
ξ +

a
M

)
,
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so that we can use our former result (4-9) to get∑
m

f (bm)v
(

m
M

)
χ(m)τ (bm− h)= Mχ

f,v(b, h;M)+O(X εD3/2b1/2�−1/2),

where Mχ

f,v(b, h;M) is defined in (4-4). By Lemma 4.3, we obtain∑
m

f (bm)v
(

m
M

)
χ(m)τ (bm− h)

=

∑
m

f (bm)v
(

m
M

)
χ(m)τ̃h(bm; R)+ Oε

(
X εD3/2b1/2�−1/2

+ X εD1/2 R3/2
+ X1/2+ε (h, b∗)

b∗

)
We choose �= bDX−2/3, and hence get (4-7) also in this case.

The case when χ is not necessarily primitive follows at once using Möbius inversion. �

4D. Type τ2 estimates. The following estimate is a uniform version of the τ2− τ2 shifted convolution
problem obtained recently by the second author.

Lemma 4.5. Let ε > 0, let C2 > C1 > 0, let v1, v2 : (0,∞)→ R be smooth and compactly supported
weight functions, and let χ1 and χ2 be Dirichlet characters mod D. Then for any X, b≥ 1 and R ≥ D, any
M1 ≥ M2 ≥ 1 with X1/2

≤ M1 M2, any h ∈ Z with 1≤ |h|, D ≤ X1/4 and any interval I ⊂ [C1 X/2,C2 X ],
we have∑

m1,m2:
bm1m2∈I

v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)1h(bm1m2; R)

� b◦D5/2(X M1 M2)
1/3+ε

(
1+

(
|h|M1 M2

X D

)1/4)
+ X−1/2+εR3/2b◦(h, b)M1 M2

2 . (4-11)

The implied constant depends only on the constants ε, C1 and C2, and the functions v1 and v2.

Proof. Note that we can make the assumption b � X
M1 M2

, as otherwise the sum in consideration is empty.
Also, as in Lemma 4.4, we can exchange the original sum by its smoothed version,∑

m1,m2

f (bm1m2)v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)1h(bm1m2; R),

with an error of the size of O(�X1+εb−1).
Let χ0 := χ1χ2. The results of [Topacogullari 2018] cannot be quoted as a black box, however, the

computations of [Topacogullari 2017] on which they are based may be adapted with little change. We write∑
m1,m2

f (bm1m2)v1

(
m1

M1

)
v2

(
m2

M2

)
χ1(m1)χ2(m2)τ (bm1m2− h)=

∑
a (mod D)

χ1(a)D(a),

where D(a) is the defined as

D(a) :=
∑

n

w1

(
r1n+ f1

x1

)
w2

(
r2n+ f2

x2

)
τ(r1n+ f1)

∑
n1,n2

n1n2=r2n+ f2

χ0(n2)hM2 M1(n1, n2),
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with

r1 := bD, r2 := D, f1 := ab− h, f2 := a, x1 := X, x2 :=
X
b
,

and

w1(ξ) :=
√

f (Xξ + h), w2(ξ) :=
√

f (Xξ), hM2 M1(n1, n2) := v2

(
n1

M2

)
v1

(
n2

M1

)
.

The sum D(a) is now of the same shape as the sum DAB(x1, x2) defined in [Topacogullari 2017, page 157],
with the function f̃ (a, b) there replaced by χ0(a) f̃ (a, b). The computations of Section 3 of [loc. cit.] can
then be adapted with the following changes. In Section 3.1 of [loc. cit.] the expressions 60

AB and 6±AB

have an additional factor χ0(au2/u∗2) in the summands. In the sums in the definition of R±AB , [loc. cit.,
page 159], the summand has to be multiplied by an additional factor χ0(c), and the altered relation

6±AB =
∑

u∗2 | u2
r∗2 | r2

χ0

(
u2

u∗2

) ∑
d

(d,r∗1 s2u∗2)=1

χ0(d)
R±AB

d

holds. Consequently, the relationship between R±AB(N ;χ) and K±AB(N ;χ) becomes

R±AB(N ;χ)=
∑

N<n≤2N

τ(n)Ŝv(χ; n)K±AB(χχ0; n).

The rest of the argument of [loc. cit.] is adapted with the only change that the Kuznetsov formula is
applied with nebentypus χχ0 instead of χ . This has no effect on the error terms, since the bounds in
Theorem 2.6 and Lemmas 2.7, 2.8 and 2.9 of [loc. cit.] are uniform with respect to the nebentypus.

By the bound (3.4) of [loc. cit.], with b◦ = (b, D∞), r0← Db◦ and h← h D, we obtain

D(a)=
∑
m2

(m2,D)=1

χ0(m2)v2
(m2

M2

)
bDm2

∑
d | bDm2

cd(abm2m2− h)
d

×

∫
(log(ξ − h)+ 2γ − 2 log d) · f (ξ)v1

(
ξ

bM1m2

)
dξ

+O
(

b◦D3/2 X1/2+ε
(

1
�1/2 +

(
(b, h)X

Db2

)θ{
1+

(
|h|
bD

)1/4}))
,

where m2 denotes any integer such that m2 ·m2 ≡ 1 mod D. We sum over a (mod D), exchange the a-
and m2-sums, and change variables a← am2. We obtain∑
a (mod D)

χ1(a)D(a)

=

∑
m2

v

(
m2

M2

)
χ2(m2)M

χ1
f,v1
(m2b, h;M1)+O

(
b◦D5/2 X1/2+ε

(
1
�1/2+

(
(b, h)X

Db2

)θ{
1+
(
|h|
bD

)1/4}))
,

with Mχ1
f,v1
(m2b, h;M1) defined as in (4-4), for which we can use Lemma 4.3. The bound (4-11) follows

after choosing �= X1/3(M1 M2)
−2/3. �
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4E. Type II estimates. The following estimate, the first version of which was obtained in [Fouvry 1985],
concerns convolutions with one component supported inside [xε, x1/3−ε

].

Lemma 4.6. For all η, A > 0, there exist δ, B > 0 such that the following holds. Whenever X, R ≥ 1,
(a, h) ∈ Z2, an interval I ⊂ [X/2, X ], and two sequences (βn), (γn) are given, under the conditions
1≤ R, |a|, |h| ≤ X δ, and

|βn| ≤ τA(n), |γn| ≤ τA(n), γn 6= 0=⇒ n ∈ [Xη, X
1
3−η],

we have ∑
n∈I

(β ∗ γ )(n)1h(an; R)�A,η τ((a, h))R−1/2 X (log X)B . (4-12)

Proof. Recall that 1h(an; R)� R X ε. In the left-hand side of (4-12), the contribution of those n such
that (n, (ah)∞) > X δ is therefore at most

R X ε
∑
n�X

(n,(ah)∞)>X δ

1� R X1−δ+ε.

Next, we have∑
d | (ah)∞

d≤X δ

∑
n∈I
d | n

(n/d,ah)=1

(β ∗ γ )(n)1h(an; R)=
∑

λ1,λ2 | (ah)∞

λ1λ2≤X δ

∑
mn∈(λ1λ2)

−1 I
(mn,ah)=1
(m,λ2)=1

βλ1mγλ2n1h(aλ1λ2mn; R).

Finally, we note that there are at most O(X1/2+ε) tuples (λ1, λ2,m, n) with λ1λ2mn ∈ I for which the
expression aλ1λ2mn− h is a perfect square, and

1h(aλ1λ2mn; R)= 2
∑

λ3 | (h,aλ1λ2)

∑
q≤
√

aλ1λ2mn−h/λ3
(q,aλ1λ2h/λ2

3)=1

uR
(
mn aλ1λ2

λ3

h
λ3
; q
)
+O(1aλ1λ2mn−h is a square),

where the notation uR(n; q) is defined in formula (5.1) of [Drappeau 2017]. Now, for each (λ1, λ2, λ3),
the sum

S(λ1, λ2, λ3)=
∑

q≤
√

aλ1λ2mn−h/λ3
(q,aλ1λ2h/λ2

3)=1

∑
mn∈(λ1λ2)

−1 I
(mn,ah)=1
(m,λ2)=1

uR
(
mn aλ1λ2

λ3

h
λ3
; q
)

is of the same shape as in formula (5.6) of [Drappeau 2017], with three differences:

(1) The quantity τA(λ1)τA(λ2) has to be factored out for the condition (5.4) of [loc. cit.] to hold.

(2) The sums over m and n must be restricted to dyadic intervals, which is done at the cost of an
additional factor (log x)2.

(3) The sums over m, n and q are not separated.
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The last point can be implemented by a standard argument (see e.g., page 720 of [loc. cit.]), cutting the
(m, n) sums into intervals of type [M, (1+ ξ)M]× [N , (1+ ξ)N ] with ξ � R−1/2. Assuming δ is small
enough in terms of η, we obtain

S(λ1, λ2, λ3)� τA(λ1)τA(λ2)(λ1λ2)
−1 X (log X)B(ξ + ξ−1 R−1)

� τA(λ1)τA(λ2)(λ1λ2)
−1 R−1/2 X (log X)B .

We sum this over (λ1, λ2, λ3) satisfying

λ1λ2 | (ah)∞, λ1λ2 ≤ xδ, λ3 | (h, aλ1λ2).

Since
∑

λ | (ah)∞ τ2A(λ)τ (λ)λ
−1
�A (log log x)OA(1), we obtain∑

n∈I

(β ∗ γ )(n)1h(an; R)� τ((a, h)){R X1−δ/2
+ R−1/2 X (log X)B+1

},

which yields our claim by reinterpreting δ and B. �

5. The case of rational parameters

Let χ1, . . . , χT be distinct Dirichlet characters mod D, and the function f ∈ FτQ

D (A) be defined by

∞∑
n=1

f (n)
ns :=

T∏
j=1

L(s, χ j )
b j , (5-1)

with b1, . . . , bT ∈Q, which we write in the form

b j = r j +
u j

v j
with r j ∈ Z and u j , v j ∈ N such that 0≤ u j < v j .

For notational convenience we also define

‖r‖1 :=
∑

1≤ j≤T

|r j |, ‖v‖1 :=
∑

1≤ j≤T

v j .

Our goal is to prove estimate (2-4) for the function f defined in (5-1). In fact, we will prove a result
which is slightly more precise in term of uniformity in D and T .

Proposition 5.1. Let A, D, T ≥ 1 be fixed. Then we have, for x ≥ 3, I ⊂ [x/2, x] and f ∈ FτQ

D (A) as
described above, the following estimate,

|6 f (I ; a, h; R)| ≤ Cτ((a, h))D5/2 x(log x)B+ω(D)

R1/2 ‖v‖1 for 1≤ a, |h|, R ≤ xδ, (5-2)

where δ > 0 is some absolute constant, and where B,C > 0 are constants which depend only on A and T .

The rest of this section is now concerned with proving Proposition 5.1.
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5A. Application of the combinatorial identity. Denote τχz (n) := τz(n)χ(n), so that

f (n)= τχ1
b1
∗ · · · ∗ τ

χT
bT
. (5-3)

The expression on the left-hand side of (5-2) now reads

6 f (I ; a, h; R)=
∑

m1···mT∈I

τ
χ1
b1
(m1) · · · τ

χT
bT
(mT )1h(am1 · · ·mT ; R). (5-4)

By Theorem 3.2 with K = 4 we can write τχ j
b j
(m j ) as

τ
χ j
b j
(m j )=

4∑
`=1

c`, j

∑
· · ·

∑
m1···mk`, j n1···nk′

`, j
=m j

n1,...,nk′
`, j
≤x1/4

χ j (m1) · · ·χ j (mk`, j )τ
χ j
−1/v j

(n1) · · · τ
χ j
−1/v j

(nk′`, j
), (5-5)

where (k`, j )
4
`=1 and (k ′`, j )

4
`=1 are two sequences of integers satisfying

0≤ k`, j ≤ |r j | + 4, 1≤ k ′`, j ≤ (|r j | + 4)v j ,

and where (c`, j )
4
`=1 is a set of complex numbers whose moduli are bounded in terms of A. We replace

each factor τχ j
b j
(m j ) in (5-4) by its decomposition, and after expanding the resulting expression, we end

up with a linear combination (whose coefficients are bounded by OA(1)) of OT (1) sums of the form

4 :=
∑

m1···mkn1···nk′∈I
n1,...,nk′≤x1/4

σ1(m1) · · · σk(mk)%1(n1) · · · %k′(nk′)1(am1 · · ·mkn1 · · · n′k; R), (5-6)

where each function σi is some Dirichlet character mod D, where each function %i is equal to τχ j
−1/v j

for
some j , and where k and k ′ are integers bounded by

0≤ k ≤ 4T +‖r‖1 and 1≤ k ′ ≤ 4‖v‖1+
∑

1≤ j≤T

|r j |v j .

We consider each sum 4 separately.
For technical reasons, it will be necessary to use a smooth dyadic decomposition for the variables

m1, . . . ,mk . Let u : (0,∞)→ R be a smooth and compactly supported function, which satisfies

supp u ⊂
[ 1

4 , 2
]

and
∑
`∈Z

u
(
ξ

2`

)
= 1 for all ξ ∈ (0,∞),

and define

u0(ξ) :=
∑
`≤0

u
(
ξ

M`

)
and u`(ξ) := u

(
ξ

M`

)
for ` > 0,

where we have set

M` := x1/4+η2`,
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with 0< η < 1
24 an arbitrary, but fixed constant. For a k-tuple `= (`1, . . . , `k) ∈ Nk , we then define

4` :=
∑

m1···mkn1···nk′∈I
n1,...,nk′≤x1/4

u`1(m1)σ1(m1) · · · u`k (mk)σk(mk)%1(n1) · · · %k′(nk′)1(am1 · · ·mkn1 · · · n′k; R),

so that the sum 4 can be split as

4=
∑
`∈Nk

4`.

Note that this last sum is in fact finite, since 4` becomes empty if the coordinates of ` are large enough,
namely if `1, . . . , `k � log x . We will now estimate the sums 4` in different ways, depending on the
sizes of the supports of the variables mi .

5B. Case I. First assume that ` has at least one coordinate, say `1, satisfying M`1 ≥ x1/3+η. Let
m0 := m2 · · ·mkn1 · · · nk′ . Denoting σ1 = χ j for some j , we can use Lemma 4.4 with X = ax , b = am0

and M = M`1 to get

∑
m1:m0m1∈I

u`1(m1)σ1(m1)1h(am0m1; R)�ε,A xε
(

Da1/3x1/3
+ (am0, h D∞)

M`1

x1/2 + D1/2 R3/2
)
.

This leads to

4`�ε xε(Da1/3x1−η
+ (a, h D∞)(log x)ω(D)x1/2

+ x2/3−ηD1/2 R3/2), (5-7)

where we have made use of the fact that∑
m0≤x/M`1

(m0, h D∞)≤
∑

D∗ | D∞
D∗≤x

D∗
∑

m0≤x/(D∗M`1 )

(m0, h)�ε hε
x

M`1

∑
D∗ | D∞
D∗≤x

1�ε

(log x)ω(D)x1+ε

M`1

.

5C. Case II. Next assume that ` has at least two nonzero coordinates, say `1 ≥ `2 ≥ 1. We can also
assume that x1/4+η

� M`1,M`2 � x1/3+η, since the case of larger M`1 and M`2 is already treated above.
Let m0 := m3 · · ·mkn1 · · · nk′ . We use Lemma 4.5 with X = ax and b = am0, which gives∑

m1,m2:
m0m1m2∈I

u`1(m1)σ1(m1)u`1(m1)σ2(m2)1h(am0m1m2; R)

�ε,A (am0, D∞)xε
(

D5/2(ax M`1 M`2)
1/3
+ (h, am0)R3/2 M`1 M`2

a1/2x1/2

)
,

so that altogether we are led to

4`�ε,A (a, h)(a, D∞)(log x)ω(D)xε(D5/2a1/3x1−4/3η
+ (a, h)R3/2x1/2). (5-8)
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5D. Case III. Finally, we need to consider the case, where ` has at most one nonzero coordinate, say `1,
for which we have M`1 � x

1
3+η. We split the sum 4` into two parts,

4 j =:4
(1)
` +4

(2)
` ,

according to whether n1 · · · nk′ > xη or n1 · · · nk′ ≤ xη.
We look first at 4(1)` . We split this sum according to the value of

µ=min{1≤ µ′ ≤ k ′ : n1 · · · nµ′ > xη},

and write accordingly

4
(1)
` =:

k′∑
µ=1

4
(1)
` (µ).

After defining

βm :=
∑

m1···mknµ+1···nk′=m
nµ+1,...,nk′≤x1/4

u`1(m1)σ1(m1) · · · u0(mk)σk(mk)%µ+1(nµ+1) · · · %k′(nk′),

and
γn :=

∑
n1···nµ=n

n1···nµ−1≤xη,n1,...,nµ≤x1/4

%1(n1) · · · %µ(nµ),

and renaming n← n1 · · · nµ and m← m1 · · ·mknµ+1 · · · nk′ , we can write 4(1)` (µ) as

4
(1)
` (µ)=

∑
m,n: mn∈I

xη<n≤x1/4+η

βmγn1h(amn; R).

Note that γn = 0 if n > x1/4+η. Moreover, we can bound the quantities βm and γn by

|βm | ≤ τ2‖r‖1+8T (m), |γn| ≤ τ‖r‖1+4T (n).

Hence we can apply Lemma 4.6 with A← 2‖r‖1+ 8T , and we see that

4
(1)
` (µ)� τ((a, h))R−1/2x(log x)B1 for 1≤ a, |h|, R ≤ xδ1,

where δ1, B1 > 0 are certain constants which depend solely on η and A. Summing over µ, we deduce

4
(1)
` �A τ((a, h))R−1/2x(log x)B1‖v‖1 for 1≤ a, |h|, R ≤ xδ1 . (5-9)

The other sum 4
(2)
` can be estimated similarly — the role of the variables n1, . . . , nk′ is now played by

the variables m2, . . . ,mk . Eventually, we get

4
(2)
` �A τ((a, h))R−1/2x(log x)B2 for 1≤ a, |h|, R ≤ xδ2, (5-10)

where δ2, B2 > 0 are certain constants which again depend solely on η and A.
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5E. Conclusion. Grouping the different bounds (5-7)–(5-10), setting B :=max(B1, B2) and choosing
δ > 0 small enough, we get

4� τ((a, h))D5/2 R−1/2x(log x)B+ω(D)
‖v‖1 for 1≤ a, |h|, R ≤ xδ,

with the implicit constant depending only on A and T . This finally proves Proposition 5.1.

6. Interpolation to complex parameters

Let r1, . . . , rϕ(D) be the residues mod D which are relatively prime to D. Any f ∈ Fω
D(A) is given by

∞∑
n=1

f (n)
ns =

ϕ(D)∏
j=1

∏
p≡r j mod D

(
1+

z j

ps − 1

)
, (6-1)

for z= (z1, . . . , zϕ(D)) ∈ Cϕ(D), with |z j | ≤ A. After setting

ωr (n) := #{p prime : p | n, p ≡ r mod D}, (6-2)

we can also write

f (n)=
∑

n1···nϕ(D)=n

ϕ(D)∏
j=1

z j
ωr j (n j ).

Our aim here is to show that the bound (2-4) holds for 6 f (I ; a, h; R), for all f ∈Fω
D(A). By Lemma 2.5

this will imply Proposition 2.1.
Let χ1, . . . , χϕ(D) be the Dirichlet characters mod D, let Q be the unitary matrix

Q :=
1

√
ϕ(D)


χ1(r1) χ2(r1) · · · χϕ(D)(r1)

χ1(r2) χ2(r2) · · · χϕ(D)(r2)
...

...
. . .

...

χ1(rϕ(D)) χ2(rϕ(D)) · · · χϕ(D)(rϕ(D))

 ,
and let MQ : C

ϕ(D)
→ Cϕ(D) be the bijective linear map associated to Q.

Let K ≥ 1. We define Fω
D(A, K ) to be the set of functions f ∈ Fω

D(A) of the same form as in (6-1),
but with the additional property that the parameters z are given by

z= MQ(b)

for a tuple of rational numbers b= (b1, . . . , bϕ(D)) ∈Qϕ(D) satisfying

|b j | ≤ A and b j =
u j

v j
with u j , v j ∈ Z and |v j | ≤ K ,

for all j = 1, . . . , ϕ(D). By Proposition 5.1, Lemma 2.2 and Lemma 2.3, we deduce that the bound (2-4)
holds for all f ∈ Fω

D(A, K ) in the following form.
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Proposition 6.1. Let A, D ≥ 1 be fixed. For K ≥ 1, x ≥ 3, I ⊂ [x/2, x] and f ∈ Fω
D(A, K ), we have

|6 f (I ; a, h; R)| ≤ C K τ((a, h))
x(log x)B

R1/2 for 1≤ a, |h|, R ≤ xδ, (6-3)

where δ > 0 is some absolute constant, and where B,C > 0 are constants which depend only on A and D.

Our goal is to interpolate this result to all functions in Fω
D(A). Let f ∈ Fω

D(A) be fixed, with z as in
(6-1). For L ∈ [1,∞], we define two polynomials in the variables Z = (Z1, . . . , Zϕ(D)) as follows,

PL(Z) :=
∑
n∈I

∀ j,ωr j (n)≤L

∑
n1···nϕ(D)=n

ϕ(D)∏
j=1

Z j
ωr j (n j )1h(an; R), P̃L(Z) := PL(MQ(Z)).

By definition, both these polynomials have degree at most L in each variable. Furthermore, let

b := M−1
Q (Z),

and note that ‖b‖∞ ≤ D1/2 A. Using this notation, we can now write the sum 6 f (I ; a, h; R) simply as∑
n∈I

f (n)1h(an; R)= P̃∞(b).

In order to have better control over the degree of P̃∞(Z), we cut off all the terms of degree larger
than some fixed real number L ≥ 1. For a tuple ζ = (ζ1, . . . , ζϕ(D)) satisfying |ζ j | ≤ AD1/2 and any real
number E ≥ 1, this leads to an error term of the following form,

|P̃∞(ζ )− P̃L(ζ )| ≤
∑
n∈I

ω(n)>L

τD(n)(AD)ω(n)|1h(an; R)|

≤ E−L
∑
n≤x

τD(n)(ADE)ω(n)|1h(an; R)|

≤ E−L
(∑

n≤x

τAD2 E(n)
2
)1/2(∑

n≤x

|1h(an; R)|2
)1/2

.

The different factors can be estimated via [Tenenbaum 1995, Theorem II.6.1], and Lemma 4.1, and we
get

|P̃∞(ζ )− P̃L(ζ )| � E−L(x(log x)(ADE)4−1)1/2(x(log x)4τ((a, h))2)1/2

� E−Lτ((a, h))x(log x)(ADE)4/2+2, (6-4)

where the implicit constants depend at most on A, E and D.
Next, we set

β` :=
2(`+ 1)bAD1/2

c

L + 1
−bAD1/2

c for `= 0, . . . , L .
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Obviously, all these numbers are bounded by |β`| ≤ AD1/2, and are rational numbers with denominators
not larger than L + 1. Furthermore, we have the bound

|β`1 −β`2 | ≥
AD1/2

2L
|`1− `2| for `1 6= `2.

For any tuple `= (`1, . . . , `ϕ(D)) ∈ {0, . . . , L}ϕ(D), denote β` = (β`1, . . . , β`ϕ(D)). The value P̃∞(β`) can
be interpreted as an instance of the sum 6 f̃ (I ; a, h; R) for an appropriate function f̃ ∈ Fω

D(AD, L + 1),

P̃∞(β`)=6 f̃ (I ; a, h; R).

Hence, by Proposition 6.1 and the estimate in (6-4) we can deduce

P̃L(β`)�A,D τ((a, h))x(log x)(ADE)4/2+B
(

L
R1/2 +

1
E L

)
, (6-5)

uniformly for 1≤ a, |h|, R ≤ xδ.
By Lagrange interpolation, we bring P̃L(b) into the following shape,

P̃L(b)=
∑

`∈{0,...,L}ϕ(D)

P̃L(β`)

ϕ(D)∏
j=1

∏
0≤i≤L
i 6=` j

b j −βi

β` j −βi
,

which is allowed since the Vandermonde determinant associated to (β`) does not vanish. We can now
estimate P̃L(b) via the already known bound (6-5) for the expressions P̃L(β`). Namely, we have

|P̃L(b)| ≤
∑

`∈{0,...,L}ϕ(D)

|P̃L(β`)|

ϕ(D)∏
j=1

∏
0≤i≤L
i 6=` j

|b j −βi |

|β` j −β`i |

� τ((a, h))x(log x)(ADE)4/2+B
(

L
R1/2 +

1
E L

)
(4L)Lϕ(D)

∑
`∈{0,...,L}ϕ(D)

ϕ(D)∏
j=1

∏
0≤i≤L
i 6=` j

1
|` j − i |

� τ((a, h))x(log x)(ADE)4/2+B
(

L
R1/2 +

1
E L

)
(8L)Lϕ(D)

(L!)ϕ(D)
,

which after using Stirling’s approximation for the gamma function simplifies to

|P̃L(b)| � τ((a, h))x(log x)(ADE)4/2+B
(

1
R1/2 +

1
E L

)
(4e)2DL ,

with the implicit constant depending at most on A, E and D.
After adding all the terms we had cut off earlier, we are finally led to

6 f (I ; a, h; R)�A,D,E τ((a, h))x(log x)(ADE)4/2+B
(

1
R1/2 +

1
E L

)
(4e)2DL .
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With the choices

L :=
log R

12D log(4e)
and E := (4e)6D,

and after reinterpreting the constant B, we get

6 f (I ; a, h; R)�A,D τ((a, h))
x(log x)B

R1/3 for 1≤ a, |h|, R ≤ xδ,

which is exactly the statement we wanted to prove.

7. Proof of Theorem 1.2 using Linnik’s identity

We now sketch how Theorem 1.2 can alternatively be proven using Theorem 3.3. The details of the
computations being very similar, we will restrict to discussing the main differences in the arguments.

As mentioned above, it is enough to consider the case f ∈ Fτ
D(A), or in other words we can assume

that f = τχ1
b1
∗ · · · ∗ τ

χT
bT

, where χ1, . . . , χT are distinct Dirichlet characters mod D, and where b1, . . . , bT

are complex numbers whose moduli are bounded by A. The sum in consideration is then given by

6 f (I ; a, h; R)=
∑

m1···mT∈I

τ
χ1
b1
(m1) · · · τ

χT
bT
(mT )1h(am1 · · ·mT ; R).

Here we replace each τχ j
b j
(m j ) by its decomposition as given in Theorem 3.3 with K = 4, and after

expanding the resulting expression, we end up with a linear combination of sums of the form

4 :=
∑

m1···mkn1···nT∈I
P+(n1···nT )≤x1/4

σ1(m1) · · · σk(mk)ρ1(n1) · · · ρT (nT )1(am1 · · ·mkn1 · · · nT ; R),

where each function σ j is some Dirichlet character mod D, where each function ρ j is equal to τχ j
b j−`

for
some j and ` ∈ [0, 3], and where k ≤ 3T . We consider each sum 4 separately.

To each factor ρ j in the sum 4 we apply Lemma 3.4 with y = x1/4 and w = xη for some arbitrary, but
fixed η ∈

(
0, 1

24

)
. By compacity, it follows that for each j = 1, . . . , T there exist arithmetic functions α j

and β j , such that the sum 4 can be written as

4=

T∑
j=1

4
(1)
j +

T∑
j=1

4
(2)
j +4

(3),

with

4
(1)
j :=

∑
mn1···nT∈I

P+(n1···nT )≤x1/4

n1,...,n j−1≤xη,n j>x1/η

∃pk
‖ n j ,pk>x1/4

(σ1 ∗ · · · ∗ σk)(m)ρ1(n1) · · · ρT (nT )1(amn1 · · · nT ; R),



2418 Sary Drappeau and Berke Topacogullari

4
(2)
j :=

∑
mn1···n j1 n′j n

′′

j n j+1···nT∈I
P+(n1···n j1 n′j n

′′

j n j+1···nT )≤x1/4

n1,...,n j−1≤xη,xη<n′j≤x1/4+η

(σ1 ∗ · · · ∗ σk)(m)
( ∏

1≤k≤T
k 6= j

ρk(nk)

)
α j (n′j )β j (n′′j )1(amn1 · · · nT ; R),

4(3) :=
∑

mn1···nT∈I
n1,...,nT≤xη

(σ1 ∗ · · · ∗ σk)(m)ρ1(n1) · · · ρT (nT )1(amn1 · · · nT ; R).

The sums 4(1)j can be bound trivially. Indeed, we note that if a prime power pk > y divides n, then
since P+(n j )≤ y we must have k ≥ 2. Hence

4
(1)
j ≤

∑
n∈I

∃pk
| n:pk>x1/4, k≥2

τ(A+6)T (n)|1(an; R)|

�ε

(∑
n∈I

|1(an; R)|2
)1/2( ∑

n∈I
∃pk
| n:pk>x1/4, k≥2

1
)1/2

�A,T x1−1/17τ((a, h)),

which is an acceptable error term.
Concerning the sums 4(2)j , we can bound them following the arguments of Case III, Section 5D, since

we have a variable localized in [xη, x1/4+η
], and since 1

4 + η <
1
3 . The remaining sum 4(3), which is

analogous to (5-6), can be estimated for all sufficiently small η > 0 by the arguments of Sections 5B, 5C
and 5D, according to the size of the involved variables. As a result, we get for these sums the estimate

4
(2)
j , 4

(3)
�A,T τ((a, h))

x(log x)O(1)

R1/2 .

Together with the bound for 4(1)j , this eventually proves Theorem 1.2.

8. Proof of Theorems 1.2, 1.3, 1.4 and 1.6

In this section we want to deduce Theorem 1.2 from Proposition 2.1, and afterwards apply this result to
the problems mentioned in the introduction. Before doing so, we first need to prove an auxiliary result,
which is concerned with bounds on average for functions in FD(A) twisted by a Dirichlet character.

Lemma 8.1. Let f ∈ FD(A) and let B ≥ 1. Then there exists a constant c> 0, such that, for all Dirichlet
characters χ mod q satisfying cond(χ) -D and q ≤ (log x)B , we have∑

n≤x

χ(n) f (n)� xe−c
√

log x . (8-1)

Both the constant c and the implicit constant depend at most on A, B and D.
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Proof. Let Fχ (s) be the Dirichlet series associated to the function χ(n) f (n). By Lemma 2.4 we know
that Fχ (s) can be written as

Fχ (s)= Hχ (s)
∏

ψ mod D

L(s, χψ)bψ for Re(s) > 1,

where Hχ (s) is a holomorphic function in Re(s)≥ 1
2 + ε, bounded in terms of A, D only.

Due to the assumption cond(χ) -D we know that none of the characters χψ is principal, which means
that none of the L-functions L(s, χψ) has a pole at s = 1. It follows from Siegel’s theorem that for
any δ > 0 there exists a constant c(δ) such that all L(s, χψ) are zero-free in the region defined by the
condition Re(s) > 1− γ (Im(s)), where

γ (t) :=min
{

c(δ)
log(q D(|t | + 2))

,
c(δ)
(q D)δ

}
. (8-2)

Using this zero-free region, the bound (8-1) follows using a standard contour integration argument; see
e.g., [Montgomery and Vaughan 2007, Section 11.3]. �

We now proceed to prove Theorem 1.2. We set R = (log x)L where L ≥ 1 is some constant which
depends only on A, B and D, and which we will determine at the very end. Note that in any case we can
assume x to be large enough so that D ≤ R is satisfied.

We start by splitting the sum D f (x; a, h) into two parts as follows,

D f (x; a, h)= D f (
√

x; a, h)+
∑
√

x<n≤x

f (n)τ (an− h).

While the first sum can be estimated by trivial means, we can use Proposition 2.1 to evaluate the second
(after first dividing the range of summation into dyadic intervals). This eventually shows that there exists
an absolute constant δ > 0, and a constant B depending only on A and D, such that, for all 1≤ a, |h| ≤ xδ ,

D f (x; a, h)= M̃ f (x; a, h)+O
(
τ((a, h))

x(log x)B

R1/3

)
,

with

M̃ f (x; a, h) :=
∑

|h|/a<n≤x

f (n)τ̃h(an; R).

It remains to evaluate this last sum.
After expanding τ̃h(an; R), it can be written as

M̃ f (x; a, h)= 2
∑

q≤
√

ax

1
ϕ
( q
(h,q)

) ∑
χ mod q/(h,q)

condχ≤R

χ
( h
(h,q)

) ∑
q2/a≤n≤x
(an,q)=(h,q)

f (n)χ
( an
(h,q)

)
+O(xδ+ε).

We now split the remaining sum into two parts, denoted by M̃ (1)
f (x; a, h) and M̃ (2)

f (x; a, h), depending
on whether cond(χ) | D or not. A simple reordering of the sums shows that the first part is equal to
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M f (x; a, h) as given in Theorem 1.2. The second part can be written as

M (2)
f (x; a, h)= 2

∑
t | (a,h)

∑
u | h/t

(u,a/t)=1

∑
q≤
√

ax/(tu)

1
ϕ(q)

∑
χ mod q

condχ≤R
cond(χ)-D

χ
( h

tu

)
χ
(a

t

)(
S f,χ (x, u)− S f,χ

( tu2q2

a , u
))
,

with S f,χ (x, u) given by

S f,χ (x, u) :=
∑

n≤x/u

f (un)χ(n).

This last sum can be estimated via Lemma 8.1, namely we have

S f,χ (x, u)=
∑

u∗ | u∞

u∗≤
√

x

f (uu∗)χ(u∗)
∑

n≤x/(uu∗)
(n,u)=1

f (n)χ(n)+O(x1/2+ε)

� xe−c
√

log x
∑

u∗≤
√

x

τA(uu∗)
uu∗

+ x1/2+ε

�
τA(u)

u
x(log x)Ae−c

√
log x ,

for some constant c > 0 depending on A, D and L . Hence

M (2)
f (x; a, h)� τ((a, h))Rx(log x)A+2e−c

√
log x
� τ((a, h))xe−(c/2)

√
log x .

Eventually, we get

D f (x; a, h)= M f (x; a, h)+O
(
τ((a, h))x

(
(log x)B

R1/3 + e−(c/2)
√

log x
))
,

and Theorem 1.2 follows with the choice L = 3N + 3B.

8A. Proof of Theorems 1.3, 1.4 and 1.6. The applications mentioned in the introduction are essentially
all immediate corollaries of Theorem 1.2, except for the fact that it remains to evaluate the main terms.
This is a rather tedious task, but can be done using standard techniques from analytic number theory, in
particular the Selberg–Delange method, which is for example described in detail in [Tenenbaum 1995,
Chapter II.5]. In order to not further lengthen this article, we only want to indicate very briefly the main
steps of the procedure.

In the case of Theorem 1.3, the main term takes the form

Mτz (x; 1, h)= 2
∑

q≤
√

x

1
ϕ
( q
(h,q)

) ∑
q2
≤n≤x

(n,q)=(h,q)

τz(n),
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which after a few simple transformations can be written as

Mτz (x; 1, h)=
∑

u | h,v | u∞

v≤
√

x

τz(uv)
∑

q≤
√

x/u
(q,vh/u)=1

D(x; uq, uv)− D(u2q2
; uq, uv)

ϕ(q)
+O(x1/2+ε), (8-3)

where

D(y; r, t) :=
∑

n≤y/t
(n,r)=1

τz(n).

This sum has been studied in detail in [Tenenbaum 1995, Chapter II.5]. In particular, following the proof
of [loc. cit., Theorem II.5.2], we see that there exist complex numbers µz

`(r, t) such that

D(y; r, t)=
1

2π i

L∑
`=0

µz
`(r, t)

0(z− `)
y(log y)z

(log y)`+1 +O
(
(log t)L+1

t
y(log y)z

(log y)L+2−ε

)
,

where

µz
`(r, t) :=1`s

(
ψ z

s (r)
t s

(s− 1)zζ(s)z

s

)
with ψ z

s (r) :=
∏
p | r

(
1−

1
ps

)z

,

and where the differential operator 1`s is defined as

1`s :=
1
`!

∂`

∂s`

∣∣∣∣
s=1
.

By Leibniz’s rule and the Taylor expansion of (s− 1)ζ(s) at 1, it remains to evaluate the sums∑
q≤
√

x/u
(q,vh/u)=1

1`sψ
z
s (uq)

ϕ(q)
and

∑
q≤
√

x/u
(q,vh/u)=1

1`sψ
z
s (uq)

ϕ(q)
q2(2 log(uq))z

(2 log(uq))`−1 .

For the first sum this is a standard exercise in using counter integration, the result being∑
q≤
√

x/u
(q,vh/u)=1

1`sψ
z
s (uq)

ϕ(q)
=1`sRes

w=0

(
C z

s,w
ψ z

s (u)ρw
(
vh
u

)
γ z

s,w(h)
xw/2

uw
ζ(w+ 1)

w

)
+O

(
1

x2/3−ε

)
,

with

C z
s,w :=

∏
p

(
1+

1
(p− 1)pw+1 +

ψ z
s (p)− 1

(p− 1)pw

)
,

and

γ z
s,w(n) :=

∏
p | n

(
1+

p(ψ z
s (p)− 1)

pw+2− pw+1+ 1

)
and ρw(n) :=

∏
p | n

(
1−

p
pw+2− pw+1+ 1

)
.

An asymptotic formula for the second sum now follows via partial summation. After putting the resulting
formulae back in (8-3) and completing the sum over v, this eventually leads to the main term described in
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Theorem 1.3. In particular, the first coefficient is given by

λh,0(z)=
1
0(z)

∏
(p,h)=1

(
1+

(1− 1/p)z−1
− 1

p

)

·

∏
p`‖h

(
1−

1
p
+

(
1−

1
p

)z+1 `−1∑
j=1

(`− j)τz(p j )

p j +

(
1−

1
p

)z−1
τz(p`)
p`+1

)
. (8-4)

For Corollary 1.5, we have from [Narkiewicz 2004, Proposition 8.4, Theorem 8.6] that the characteristic
function n 7→ bK (n) of the set NK is multiplicative with b(p) = 1 if and only if

∑
χ∈X (K ) χ(p) > 0,

where X (K ) is a subgroup of the Dirichlet characters modulo the discriminant D = Disc(K ) and p -D.
The subgroup of residue classes a mod D such that

∑
χ∈X (K ) χ(a) > 0, corresponding to the subgroup H

in [Narkiewicz 2004, Theorem 8.2], has density 1/[K :Q] inside (Z/DZ)×. Thus we have a factorization∑
n≥1

bK (n)
ns = ζ(s)1/[K :Q]H(s)

where H is holomorphic and bounded in the strip Re(s)≥ 2
3 . The rest of the argument the follows the

path described above. We leave the details to the reader.
In the case K =Q(i), the first coefficient is given by βh,0 = B0 B(h), where

B0 :=
1
√

2

∏
p≡3 mod 4

(
1−

1
p2

)−1/2

, (8-5)

and

B(h) :=
(

1+
χ4(h∗)

4h◦

) ∏
p` ‖ h

p≡3 mod 4

(
1−

1
p+ 1

+
(−1)`

p`(p+ 1)

) ∏
p≡3 mod 4

(
1+

1
p2

)
,

with h◦ := (h, 2∞), h∗ := h
h◦ and χ4 the nonprincipal character mod 4.

Finally, the proof of Theorem 1.6 rests upon the fact that∑
|h|<n≤x
ω(n)=k

τ(n− h)=
1
k!
∂k

∂zk4x,h(0) with 4x,h(z) :=
∑
|h|<n≤x

zω(n)τ(n− h).

Since the function n 7→ zω(n) is an element of F1(A) for |z| ≤ A, Theorem 1.2 can again be applied in
this case. After evaluating the arising main term in the same manner as described above, we see that there
exist functions γh,`(z), which are holomorphic in a neighborhood of z, such that

4x,h(z)= x(log x)z
L∑
`=0

γh,`(z)
(log x)`

+O
(

x(log x)Re(z)

(log x)L+1−ε

)
.

At this point Theorem 1.6 essentially follows by taking derivatives with respect to z on both sides. The
procedure is however not completely straightforward, since we also need to have control over the error
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term on the right hand side. In our case we can simply cite [Tenenbaum 1995, Theorem II.6.3], where a
result of this type is proven in very large generality.
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The construction problem for Hodge numbers
modulo an integer

Matthias Paulsen and Stefan Schreieder

For any integer m ≥ 2 and any dimension n ≥ 1, we show that any n-dimensional Hodge diamond with
values in Z/mZ is attained by the Hodge numbers of an n-dimensional smooth complex projective variety.
As a corollary, there are no polynomial relations among the Hodge numbers of n-dimensional smooth
complex projective varieties besides the ones induced by the Hodge symmetries, which answers a question
raised by Kollár in 2012.

1. Introduction

Hodge theory allows one to decompose the k-th Betti cohomology of an n-dimensional compact Kähler
manifold X into its (p, q)-pieces for all 0≤ k ≤ 2n:

H k(X,C)=
⊕

p+q=k
0≤p,q≤n

H p,q(X), H p,q(X)= Hq,p(X).

The C-linear subspaces H p,q(X) are naturally isomorphic to the Dolbeault cohomology groups Hq(X, �p
X ).

The integers h p,q(X) = dimC H p,q(X) for 0 ≤ p, q ≤ n are called Hodge numbers. One usually
arranges them in the so called Hodge diamond:

hn,n

hn,n−1 hn−1,n

. .
. ...

. . .

hn,1 h1,n

hn,0 hn−1,1
· · · h1,n−1 h0,n

hn−1,0 h0,n−1

. . .
... . .

.

h1,0 h0,1

h0,0

The sum of the k-th row of the Hodge diamond equals the k-th Betti number. We always assume that a
Kähler manifold is compact and connected, so we have h0,0

= hn,n
= 1.

MSC2010: primary 32Q15; secondary 14C30, 14E99, 51M15.
Keywords: Hodge numbers, Kähler manifolds, construction problem.
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Complex conjugation and Serre duality induce the symmetries

h p,q
= hq,p

= hn−p,n−q for all 0≤ p, q ≤ n. (1)

Additionally, we have the Lefschetz inequalities

h p,q
≤ h p+1,q+1 for p+ q < n. (2)

While Hodge theory places severe restrictions on the geometry and topology of Kähler manifolds,
Simpson [2004] points out that very little is known to which extent the theoretically possible phenomena
actually occur. This leads to the following construction problem for Hodge numbers:

Question 1. Let (h p,q)0≤p,q≤n be a collection of nonnegative integers with h0,0
= 1 obeying the Hodge

symmetries (1) and the Lefschetz inequalities (2). Does there exist a Kähler manifold X such that
h p,q(X)= h p,q for all 0≤ p, q ≤ n?

After results in dimensions two and three (see e.g., [Hunt 1989]), significant progress has been made
by Schreieder [2015]. For instance, it is shown in [loc. cit., Theorem 3] that the above construction
problem is fully solvable for large parts of the Hodge diamond in arbitrary dimensions. In particular,
the Hodge numbers in a given weight k may be arbitrary (up to a quadratic lower bound on h p,p if
k = 2p is even) and so the outer Hodge numbers can be far larger than the inner Hodge numbers (see
[loc. cit., Theorem 1]), contradicting earlier expectations formulated in [Simpson 2004]. Weaker results
with simpler proofs, concerning the possible Hodge numbers in a given weight, have later been obtained
by Arapura [2016].

In [Schreieder 2015], it was also observed that one cannot expect a positive answer to Question 1
in its entirety. For example, any 3-dimensional Kähler manifold X with h1,1(X) = 1 and h2,0(X) ≥ 1
satisfies h2,1(X) < 126

· h3,0(X), see [loc. cit., Proposition 28]. Therefore, a complete classification of all
possible Hodge diamonds of Kähler manifolds or smooth complex projective varieties seems hopelessly
complicated.

While these inequalities aggravate the construction problem for Hodge numbers, one might ask whether
there also exist number theoretic obstructions for possible Hodge diamonds. For example, the Chern
numbers of Kähler manifolds satisfy certain congruences due to integrality conditions implied by the
Hirzebruch–Riemann–Roch theorem.

For an arbitrary integer m≥ 2, let us consider the Hodge numbers of a Kähler manifold in Z/mZ, which
forces all inequalities to disappear. The purpose of this paper is to show that Question 1 is modulo m
completely solvable even for smooth complex projective varieties.

Theorem 2. Let m ≥ 2 be an integer. For any integer n ≥ 1 and any collection of integers (h p,q)0≤p,q≤n

such that h0,0
= 1 and h p,q

= hq,p
= hn−p,n−q for 0≤ p, q ≤ n, there exists a smooth complex projective

variety X of dimension n such that

h p,q(X)≡ h p,q (mod m)

for all 0≤ p, q ≤ n.
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Therefore, the Hodge numbers of Kähler manifolds do not follow any number theoretic rules, and the
behavior of smooth complex projective varieties is the same in this aspect.

As a consequence of Theorem 2, we show:

Corollary 3. Up to the Hodge symmetries (1), there are no polynomial relations among the Hodge
numbers of smooth complex projective varieties of the same dimension.

In particular, there are no polynomial relations in the strictly larger class of Kähler manifolds, which
was a question raised by Kollár after a colloquium talk of Kotschick at the University of Utah in fall
2012. For linear relations among Hodge numbers, this question was settled in work of Kotschick and
Schreieder [2013].

We call the Hodge numbers h p,q(X) with p ∈ {0, n} or q ∈ {0, n} (i.e., the ones placed on the border
of the Hodge diamond) the outer Hodge numbers of X and the remaining ones the inner Hodge numbers.
Note that the outer Hodge numbers are birational invariants and are thus determined by the birational
equivalence class of X .

Our proof shows (see Theorem 5 below) that any smooth complex projective variety is birational to a
smooth complex projective variety with prescribed inner Hodge numbers in Z/mZ. As a corollary, there
are no polynomial relations among the inner Hodge numbers within a given birational equivalence class.
This is again a generalization of the corresponding result for linear relations obtained in [Kotschick and
Schreieder 2013, Theorem 2].

The proof of Theorem 2 can thus be divided into two steps: First we solve the construction problem
modulo m for the outer Hodge numbers. This is done in Section 2. Then we show the aforementioned
result that the inner Hodge numbers can be adjusted arbitrarily in Z/mZ via birational equivalences (in
fact, via repeated blow-ups). This is done in Section 3. Finally, in Section 4 we deduce that no nontrivial
polynomial relations between Hodge numbers exist, thus answering Kollár’s question.

2. Outer Hodge numbers

We prove the following statement via induction on the dimension n ≥ 1.

Proposition 4. For any collection of integers (h p,0)1≤p≤n , there exists a smooth complex projective
variety Xn of dimension n together with a very ample line bundle Ln on Xn such that

h p,0(Xn)≡ h p,0 (mod m)

for all 1≤ p ≤ n and

χ(L−1
n )≡ 1 (mod m).

Proof. We take X1 to be a curve of genus g where g ≡ h1,0 (mod m). Further, we take L1 to be a
line bundle of degree d on X1 where d > 2g and d ≡−g (mod m). Then L1 is very ample and by the
Riemann–Roch theorem we have χ(L−1

1 )≡ 1 (mod m).
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Now let n > 1. We define a collection of integers (k p,0)−1≤p≤n−1 recursively via

k−1,0
= 0, k0,0

= 1, k p,0
= h p,0

− 2k p−1,0
− k p−2,0 for 1≤ p ≤ n− 1.

We choose Xn−1 and Ln−1 by induction hypothesis such that h p,0(Xn−1)≡ k p,0 (mod m) for all 1≤ p ≤
n− 1.

Let E be a smooth elliptic curve and let L be a very ample line bundle of degree d on E such that
d ≡ 1 (mod m). Let e be a positive integer such that

e ≡ 1+
n∑

p=1

(−1)ph p,0 (mod m).

Let Xn ⊂ Xn−1× E × E be a hypersurface defined by a general section of the very ample line bundle

Pn = pr∗1 Ln−1⊗ pr∗2 Lm−1
⊗ pr∗3 Le

on Xn−1× E × E . By Bertini’s theorem, we may assume Xn to be smooth and irreducible. Let Ln be the
restriction to Xn of the very ample line bundle

Qn = pr∗1 Ln−1⊗ pr∗2 L ⊗ pr∗3 L

on Xn−1× E × E . Then Ln is again very ample.
By the Lefschetz hyperplane theorem, we have

h p,0(Xn)= h p,0(Xn−1× E × E)

for all 1≤ p ≤ n− 1. Since the Hodge diamond of E × E is

1
2 2

1 4 1
2 2

1

,

Künneth’s formula yields

h p,0(Xn)= h p,0(Xn−1)+ 2h p−1,0(Xn−1)+ h p−2,0(Xn−1)≡ k p,0
+ 2k p−1,0

+ k p−2,0
= h p,0 (mod m)

for all 1≤ p ≤ n− 1. Therefore, it only remains to show that hn,0(Xn)≡ hn,0 (mod m) and χ(L−1
n )≡

1 (mod m). Since

χ(OXn )= 1+
n∑

p=1

(−1)ph p,0(Xn),

the congruence hn,0(Xn)≡ hn,0 (mod m) is equivalent to χ(OXn )≡ e (mod m).
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By definition of Xn , the ideal sheaf on Xn−1×E×E of regular functions vanishing on Xn is isomorphic
to the sheaf of sections of the dual line bundle P−1

n . Hence, there is a short exact sequence

0→ P−1
n →OXn−1×E×E → i∗OXn → 0 (3)

of sheaves on Xn−1×E×E where i : Xn→ Xn−1×E×E denotes the inclusion. Together with Künneth’s
formula and the Riemann–Roch theorem, we obtain

χ(OXn )= χ(OXn−1×E×E)−χ(P−1
n )= χ(OXn−1) χ(OE)

2︸ ︷︷ ︸
=0

−χ(L−1
n−1)︸ ︷︷ ︸
≡1

χ(L1−m)︸ ︷︷ ︸
≡1

χ(L−e)︸ ︷︷ ︸
≡−e

≡ e (mod m).

Tensoring (3) with Q−1
n yields the short exact sequence

0→ P−1
n ⊗ Q−1

n → Q−1
n → i∗i∗Q−1

n → 0

and thus

χ(L−1
n )= χ(Q−1

n )−χ(P−1
n ⊗ Q−1

n )= χ(L−1
n−1)︸ ︷︷ ︸
≡1

χ(L−1)2︸ ︷︷ ︸
≡1

−χ(L−2
n−1) χ(L

−m)︸ ︷︷ ︸
≡0

χ(L−e−1)≡ 1 (mod m).

This finishes the induction step. �

3. Inner Hodge numbers

We now show the following result, which significantly improves [Kotschick and Schreieder 2013, Theo-
rem 2].

Theorem 5. Let X be a smooth complex projective variety of dimension n and let (h p,q)1≤p,q≤n−1 be any
collection of integers such that h p,q

= hq,p
= hn−p,n−q for 1 ≤ p, q ≤ n− 1. Then X is birational to a

smooth complex projective variety X ′ such that

h p,q(X ′)≡ h p,q (mod m)

for all 1≤ p, q ≤ n− 1.

Together with Proposition 4, this will complete the proof of Theorem 2.
Let us recall the following result on blow-ups, see e.g., [Voisin 2002, Theorem 7.31]: If X̃ denotes the

blow-up of a Kähler manifold X along a closed submanifold Z ⊂ X of codimension c, we have

H p,q(X̃)∼= H p,q(X)⊕
c−1⊕
i=1

H p−i,q−i (Z).

Therefore,

h p,q(X̃)= h p,q(X)+
c−1∑
i=1

h p−i,q−i (Z). (4)

In order to prove Theorem 5, we first show that we may assume that X contains certain subvarieties,
without modifying its Hodge numbers modulo m.
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Lemma 6. Let X be a smooth complex projective variety of dimension n. Let r, s ≥ 0 be integers such that
r + s ≤ n− 1. Then X is birational to a smooth complex projective variety X ′ of dimension n such that
h p,q(X ′)≡ h p,q(X) (mod m) for all 0 ≤ p, q ≤ n and such that X ′ contains at least m disjoint smooth
closed subvarieties that are all isomorphic to a projective bundle of rank r over Ps .

Proof. We first blow up X in a point and denote the result by X̃ . The exceptional divisor is a subvariety
in X̃ isomorphic to Pn−1. In particular, X̃ contains a copy of Ps

⊂Pn−1. Now we blow up X̃ along Ps to
obtain X̂ . The exceptional divisor in X̂ is the projectivization of the normal bundle of Ps in X̃ . Since Ps

is contained in a smooth closed subvariety of dimension r + s+ 1 in X̃ (choose either Pr+s+1
⊂ Pn−1

if r + s < n − 1 or X̃ if r + s = n − 1), the normal bundle of Ps in X̃ contains a vector subbundle of
rank r + 1, and hence its projectivization contains a projective subbundle of rank r . Therefore, X̂ admits
a subvariety isomorphic to the total space of a projective bundle of rank r over Ps .

By (4), the above construction only has an additive effect on the Hodge diamond, i.e., the differences
between respective Hodge numbers of X̂ and X are constants independent of X . Hence, we may apply
the above construction m− 1 more times to obtain a smooth complex projective variety X ′ containing m
disjoint copies of the desired projective bundle and satisfying h p,q(X ′)≡ h p,q(X) (mod m). �

In the following, we consider the primitive Hodge numbers

l p,q(X)= h p,q(X)− h p−1,q−1(X)

for p+ q ≤ n. Clearly, it suffices to show Theorem 5 for a given collection (l p,q)(p,q)∈I of primitive
Hodge numbers instead, where

I = {(p, q) | 1≤ p ≤ q ≤ n− 1 and p+ q ≤ n}.

This is because one can get back the original Hodge numbers from the primitive Hodge numbers via the
relation

h p,q(X)= h0,q−p(X)+
p∑

i=1

l i,q−p+i (X)

for p ≤ q and p+ q ≤ n, and h0,q−p(X) is a birational invariant.
We define a total order ≺ on I via

(r, s)≺ (p, q)⇐⇒ r + s < p+ q or (r + s = p+ q and s < q).

Proposition 7. Let X be a smooth complex projective variety of dimension n. Let (r, s) ∈ I . Then X is
birational to a smooth complex projective variety X ′ of dimension n such that

lr,s(X ′)≡ lr,s(X)+ 1 (mod m) and l p,q(X ′)≡ l p,q(X) (mod m)

for all (p, q) ∈ I with (r, s)≺ (p, q).

Proof. By Lemma 6, we may assume that X contains m disjoint copies of a projective bundle of rank r−1
over Ps−r+1. Therefore, it is possible to blow up X along a projective bundle Bd of rank r − 1 over
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smooth hypersurfaces Yd ⊂ Ps−r+1 of degree d (in case of r = s, Yd just consists of d distinct points
in P1) and we may repeat this procedure m times and with different values for d . The Hodge numbers of
Bd are the same as for the trivial bundle Yd ×Pr−1, see e.g., [Voisin 2002, Lemma 7.32].

By the Lefschetz hyperplane theorem, the Hodge diamond of Yd is the sum of the Hodge diamond of
Y1 ∼= Ps−r , having nonzero entries only in the middle column, and of a Hodge diamond depending on d ,
having nonzero entries only in the middle row. It is well known (e.g., by computing Euler characteristics
as in Section 2) that the two outer entries of this middle row are precisely

( d−1
s−r+1

)
.

Now we blow up X once along Bs−r+2 and m − 1 times along B1 and denote the resulting smooth
complex projective variety by X ′. Due to (4) and Künneth’s formula, this construction affects the Hodge
numbers modulo m in the same way as if we would blow up a single subvariety Z ×Pr−1

⊂ X , where Z
is a (formal) (s− r)-dimensional Kähler manifold whose Hodge diamond is concentrated in the middle
row and has outer entries equal to

(s−r+2−1
s−r+1

)
= 1. In particular, we have h p,q(Z × Pr−1) = 0 unless

s − r ≤ p+ q ≤ s + r − 2 (and p+ q has the same parity as s − r) and |p− q| ≤ s − r . On the other
hand, h p,q(Z ×Pr−1)= 1 if s− r ≤ p+ q ≤ s+ r − 2 and |p− q| = s− r .

Taking differences in (4), it follows that

l p,q(X ′)≡ l p,q(X)+ h p−1,q−1(Z ×Pr−1)− h p−n+s−1,q−n+s−1(Z ×Pr−1) (mod m)

for all p+ q ≤ n. But we have

(p− n+ s− 1)+ (q − n+ s− 1)= p+ q − 2n+ 2s− 2≤ 2s− n− 2≤ s− r − 2

and hence h p−n+s−1,q−n+s−1(Z ×Pr−1)= 0 for all (p, q) ∈ I by the above remark.
Further,

lr,s(X ′)≡ lr,s(X)+ hr−1,s−1(Z ×Pr−1)= lr,s(X)+ 1 (mod m)

since s− r ≤ (r − 1)+ (s− 1)≤ s+ r − 2 and |r − s| = s− r .
Finally, r + s < p+ q implies (p− 1)+ (q − 1) > s + r − 2, while r + s = p+ q and s < q imply
|p− q|> s− r , so we have h p−1,q−1(Z ×Pr−1)= 0 in both cases and thus

l p,q(X ′)≡ l p,q(X)+ h p−1,q−1(Z ×Pr−1)= l p,q(X) (mod m)

for all (p, q) ∈ I with (r, s)≺ (p, q). �

Proof of Theorem 5. The statement is an immediate consequence of applying Proposition 7 inductively
tp,q times to each (p, q)∈ I in the descending order induced by≺, where tp,q ≡ l p,q

−l p,q(X p,q) (mod m)
and X p,q is the variety obtained in the previous step. �

4. Polynomial relations

The following principle seems to be classical.

Lemma 8. Let N ≥ 1 and S ⊂ ZN be a subset such that its reduction modulo m is the whole of (Z/mZ)N

for infinitely many integers m ≥ 2. If f ∈ C[x1, . . . , xN ] is a polynomial vanishing on S, then f = 0.
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Proof. Let f ∈ C[x1, . . . , xN ] be a nonzero polynomial vanishing on S. By choosing a Q-basis of C and
a Q-linear projection C→Q which sends a nonzero coefficient of f to 1, we see that we may assume
that the coefficients of f are rational, hence even integral. Since f 6= 0, there exists a point z ∈ ZN

such that f (z) 6= 0. Choose an integer m ≥ 2 from the assumption which does not divide f (z). Then
f (z) 6≡ 0 (mod m). However, we have z≡ s (mod m) for some s ∈ S and thus f (z)≡ f (s)= 0 (mod m),
because f ∈ Z[x1, . . . , xN ]. This is a contradiction. �

Proof of Corollary 3. This follows by applying Lemma 8 to the set S of possible Hodge diamonds, where
we consider only a nonredundant quarter of the diamond to take the Hodge symmetries into account.
Theorem 2 guarantees that the reductions of S modulo m are surjective even for all integers m ≥ 2. �

In the same way Theorem 2 implies Corollary 3, Theorem 5 yields the following.

Corollary 9. There are no nontrivial polynomial relations among the inner Hodge numbers of all smooth
complex projective varieties in any given birational equivalence class.
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