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Artin–Mazur–Milne duality for fppf cohomology
Cyril Demarche and David Harari

We provide a complete proof of a duality theorem for the fppf cohomology of either a curve over a finite
field or a ring of integers of a number field, which extends the classical Artin–Verdier Theorem in étale
cohomology. We also prove some finiteness and vanishing statements.

1. Introduction

Let K be a number field or the function field of a smooth, projective, geometrically integral curve X
over a finite field. In the number field case, set X := SpecOK , where OK is the ring of integers of K .
Let U be a nonempty Zariski open subset of X and denote by N a commutative, finite and flat group
scheme over U with Cartier dual N D . Assume that the order of N is invertible on U (in particular N is
étale). The classical “étale” Artin–Verdier Theorem [Milne 1986, Corollary II.3.3] is a duality statement
between étale cohomology H •

ét(U, N ) and étale cohomology with compact support H •

ét,c(U, N D). It
has been known for a long time that this theorem is especially useful in view of concrete arithmetic
applications: for example it yields a very nice method to prove deep results like Cassels–Tate duality for
abelian varieties and schemes [Milne 1986, Section II.5] and their generalizations to 1-motives [Harari
and Szamuely 2005, Section 4]; Artin–Verdier’s Theorem also provides a “canonical” path to prove the
Poitou–Tate’s Theorem and its extension to complex of tori [Demarche 2011b], which in turn turns out
to be very fruitful to deal with local-global questions for (not necessarily commutative) linear algebraic
groups [Demarche 2011a].

It is of course natural to try to remove the condition that the order of N is invertible on U . A good
framework to do this is provided by fppf cohomology of finite and flat commutative group schemes
over U , as introduced by J.S. Milne in the third part of his book [1986]. This includes the case of group
schemes of order divisible by p := Char K in the function field case.

Such an fppf duality theorem was first announced by B. Mazur [1972, Proposition 7.2],1 relying on
work by M. Artin and himself. Special cases have also been proved by M. Artin and Milne [1976]. The
precise statement of the theorem is as follows (see [Milne 1986], Corollary III.3.2 for the number field
case and Theorem III.8.2 for the function field case):

MSC2010: primary 11G20; secondary 14H25.
Keywords: fppf cohomology, arithmetic duality, Artin approximation theorem.

1Thanks to A. Schmidt for having pointed this out to us.
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Theorem 1.1. Let j :U ↪→ X be a nonempty open subscheme of X. Let N be a finite flat commutative
group scheme over U with Cartier dual N D . For all integers r with 0≤ r ≤ 3, the canonical pairing

H 3−r
c (U, N )× H r (U, N D)→ H 3

c (U, Gm)∼=Q/Z

(where H r (U, N D) is an fppf cohomology group and H 3−r
c (U, N ) an fppf cohomology group with

compact support) induces a perfect duality between the profinite group H 3−r
c (U, N ) and the discrete

group H r (U, N D). Besides, these groups are finite in the number field case, and they are trivial for r ≥ 4
and r < 0 (resp. for r = 3 if U 6= X ) in the function field case.

For example, this extension of the étale Artin–Verdier Theorem is needed to prove the Poitou–Tate
exact sequence over global fields of characteristic p [González-Avilés 2009, Theorems 4.8 and 4.11]
as well as the Poitou–Tate Theorem over a global field without restriction on the order ([Česnavičius
2015a, Theorem 5.1], which in turn is used in [Rosengarten 2018, Sections 5.6 and 5.7]). Results of
[Milne 1986, Section III.9] (which rely on the fppf duality Theorem) are also a key ingredient in the
proof of some cases of the Birch and Swinnerton-Dyer conjecture for abelian varieties over global fields
of positive characteristic, in [Bauer 1992, Section 4] and [Kato and Trihan 2003, Section 2] for instance.
Our initial interest in Theorem 1.1 was to try to extend it to complexes of tori in the function field case,
following the same method as in the number field case [Demarche 2011b]. Such a generalization should
then provide results (known in the number field case) about weak and strong approximation for linear
algebraic groups defined over a global field of positive characteristic.

However, as K. Česnavičius pointed out to us,2 it seems necessary to add details to the proof in [Milne
1986], Sections III.3. and III.8, for two reasons:

• The functoriality of flat cohomology with compact support and the commutativity of several diagrams
are not explained in [Milne 1986]. Even in the case of an imaginary number field, a definition of H r

c (U,F)
as H r (X, j!F) for an fppf sheaf F (which works for the étale Artin–Verdier Theorem) would not be the
right one, because it does not provide the key exact sequence [loc. cit., Proposition III.0.4.a] in the fppf
setting: indeed the proof of this exact sequence relies on [loc. cit., Lemma II.2.4], which in turn uses
[loc. cit., Proposition II.1.1]; but the analogue of the latter does not stand anymore with étale cohomology
replaced by fppf cohomology, see also Remark 2.2 of the present paper.

It is therefore necessary to work with an ad hoc definition of compact support cohomology as in
[loc. cit., Section III.0]. Since this definition involves mapping cones, commutativities of some diagrams
have to be checked in the category of complexes and not in the derived category (where there is no good
functoriality for the mapping cones). Typically, the isomorphisms that compute C •(b), C •(b ◦ a) and
C •(c◦b◦a) in [loc. cit., Proposition III.0.4.c] are not canonical a priori. Hence the required compatibilities
in [loc. cit., proof of Theorem III.3.1. and Lemma III.8.4] have to be checked carefully.

2In particular, he observed that the analogue of [Milne 1986, Proposition III.0.4.c] is by no means obvious when henselizations
are replaced by completions. This analogue is actually false without additional assumptions, as shown by T. Suzuki [2018,
Remark 2.7.9]
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• In the positive characteristic case, it is necessary (as explained in [Milne 1986, Section III.8]) to work
with a definition of cohomology with compact support involving completions of the local rings of points in
X\U instead of their henselizations. The reason is that a local duality statement [loc. cit., Theorem III.6.10]
is needed and this one only works in the context of complete valuation fields, in particular because the
H 1 groups involved have to be locally compact (so that Pontryagin duality makes sense). It turns out that
some properties of compact support cohomology (in particular [loc. cit., Proposition III.0.4.c]) are more
difficult to establish in this context: for example the comparison between cohomology of the completion
Ôv and of the henselization Ov is not as straightforward as in the étale case.

The goal of this article is to present a detailed proof of Theorem 1.1 with special regards to the
two issues listed above. Section 2 is devoted to general properties of fppf cohomology with compact
support (Proposition 2.1), which involves some homological algebra (Lemma 2.3) as well as comparison
statements between cohomology of Ov and Ôv (Lemma 2.6); besides, we make the link to classical étale
cohomology with compact support (Lemma 2.10).

We also define a natural topology on the fppf compact support cohomology groups (see Section 3) and
prove its basic properties. In Section 4, we follow the method of [Milne 1986, Section III.8] to prove
Theorem 1.1 in the function field case. As a corollary, we get a finiteness statement (Corollary 4.9),
which apparently has not been observed before this paper. The case of a number field is simpler once the
functorial properties of Section 2 have been proved; it is treated in Section 5. Finally, we include two
useful results in homological algebra in the Appendix.

One week after the first draft of this article was released, Takashi Suzuki kindly informed us that in his
preprint [Suzuki 2018], he obtained (essentially at the same time as us) fppf duality results similar to
Theorem 1.1 in a slightly more general context.3 His methods are somehow more involved than ours,
they use the rational étale site, which he developed in earlier papers.

Notation. Let X be either a smooth projective curve over a finite field k of characteristic p, or the
spectrum of the ring of integers OK of a number field K . Let K := k(X) be the function field of X .
Throughout the paper, schemes S are endowed with a big fppf site (Sch /S)fppf in the sense of [Stacks
2005–, Tag 021R, Tag 021S, Tag 03XB]. By construction, the underlying category in (Sch /S)fppf is small
and the family of coverings for this site is a set. The corresponding topos is independent of the choices
made thanks to [Stacks 2005–, Tag 00VY]. In contrast with [SGA 41 1972], the construction of the site
(Sch /S)fppf in [Stacks 2005–] does not require the existence of universes. The reader who is ready to
accept this axiom can replace the site (Sch /S)fppf by the big fppf site from [SGA 41 1972].

Unless stated otherwise, cohomology is fppf cohomology with respect to this site.
For any closed point v ∈ X , let Ov (resp. Ôv) be the henselization (resp. the completion) of the local ring

OX,v of X at v. Let Kv (resp. K̂v) be the fraction field of Ov (resp. Ôv). Let U be a nonempty Zariski open
subset of X and denote by j :U→ X the corresponding open immersion. By [Matsumura 1970, Section 34],

3Note, however, that there is still some work to do to obtain our Theorem 1.1 from the very general Theorem 3.1.3 of [Suzuki
2018]; compare with Section 4.2 of [loc. cit.], where a similar task is fulfilled for abelian schemes instead of finite group schemes.
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the local ring OX,v of X at v is excellent (indeed OX,v is either of mixed characteristic or the localization of
a ring of finite type over a field); hence so are Ov (by [EGA IV4 1967, Corollary 18.7.6]) as the henselization
of an excellent ring, and Ôv as a complete Noetherian local ring [Matsumura 1970, Section 34].

The piece of notation “v 6∈U” means that we consider all places v corresponding to closed points of
X \U plus the real places in the number field case. If v is a real place, we set Kv = K̂v =Ov = Ôv for
the completion of K at v, and we denote by H∗(Kv,M) the Tate (or modified) cohomology groups of a
Gal(Kv/Kv)-module M .

If F is an fppf sheaf of abelian groups on U , define the Cartier dual FD to be the fppf sheaf FD
:=

Hom(F, Gm). Notation as 0(U,F) stands for the group of sections of F over U , and 0Z (U,F) for the
group of sections that vanish over U \ Z . If E is a field (e.g., E = Kv or E = K̂v) and i : Spec E→U is
an E-point of U , we will frequently write H r (E,F) for H r (Spec E, i∗F). Similarly for an open subset
V ⊂U , the piece of notation H r (V,F) (resp. H r

c (V,F)) stands for H r (V,F|V ) (resp. H r
c (V,F|V )).

A finite group scheme N over a field E of characteristic p> 0 is local (or equivalently infinitesimal, as
in [Demazure and Gabriel 1970, II.4.7.1]) if it is connected (in particular this implies H 0(E ′, N )= 0 for
every field extension E ′ of E). Examples of such group schemes are µp (defined by the affine equation
y p
= 1) and αp (defined by the equation y p

= 0).
Let S be an Fp-scheme. A finite S-group scheme N is of height 1 if the relative Frobenius map FN/S

[Milne 1986, Section III.0] is trivial.
For any topological abelian group A, let A∗ :=Homcont.(A,Q/Z) be the group of continuous homomor-

phisms from A to Q/Z (where Q/Z is considered as a discrete group) equipped with the compact-open
topology. A morphism f : A→ B of topological groups is strict if it is continuous, and the restriction f :
A→ f (A) is an open map (where the topology on f (A) is induced by B). This is equivalent to saying that
f induces an isomorphism of the topological quotient A/ ker f with the topological subspace f (A)⊂ B.

Concerning sign conventions in homological algebra, we tried to follow the conventions in [Stacks
2005–] throughout the text.

2. Fppf cohomology with compact support

Define

Z := X \U and Z ′ :=
∐
v∈Z

Spec(K̂v) (disjoint union).

Then we have a natural morphism i : Z ′→U . Let F be a sheaf of abelian groups on (Sch /U )fppf. Let
I •(F) be an injective resolution of F over U . Denote by Fv and I •(F)v their respective pullbacks to
Spec Kv, for v /∈U .

Given a morphism of schemes f : T → S, the fppf pullback functor f ∗ is exact (see [Stacks 2005–,
Tag 021W, Tag 00XL]) and it admits an exact left adjoint f! (see [Stacks 2005–, Tag 04CC]), hence f ∗

maps injective (resp. flasque) objects to injective (resp. flasque) objects. Therefore I •(F)v is an injective
resolution of Fv.
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As noticed by A. Schmidt, the definition of the modified fppf cohomology groups in the number field
case in [Milne 1986, III.0.6(a)] has to be written more precisely, because of the noncanonicity of the
mapping cone in the derived category. We are grateful to him for the following alternative definition.

Let �R denote the set of real places of K . For v ∈�R, let av : (Sch /Spec(Kv))fppf→ Spec(Kv)ét be
the natural morphism of sites, where Sét denotes the small étale site on a scheme S. Since Kv is a perfect
field, the direct image functor av

∗
associated to av is exact. Hence, by [SGA 42 1972, V, Remark 4.6

and Proposition 4.9], the functor av
∗

maps I •(F)v to a flasque resolution av
∗

I •(F)v of av
∗
Fv. Following

[Geisser and Schmidt 2018, Section 2], there is a natural acyclic resolution D•(av
∗
Fv)→ av

∗
Fv of the

Gal(Kv/Kv)= Z/2Z-module av
∗
Fv (identified with Fv(Spec(Kv))). Splicing the resolutions D•(av

∗
Fv)

and av
∗

I •(F)v together, one gets a complete acyclic resolution Î •(Fv) of the Gal(Kv/Kv)-module av
∗
Fv,

which computes the Tate cohomology of av
∗
Fv. And by construction, there is a natural morphism

îv : av∗ I •(F)v→ Î •(Fv).
As suggested by [Milne 1986, Section III.0], define 0c(U, I •(F)) to be the following object in the

category of complexes of abelian groups:

0c(U, I •(F)) := Cone
(
0(U, I •(F))→ 0(Z ′, i∗ I •(F))⊕

⊕
v∈�R

0(Kv, Î •(Fv))
)
[−1],

and H r
c (U,F) := H r (0c(U, I •(F))). We will also denote by R0c(U,F) the complex 0c(U, I •(F))

viewed in the derived category of fppf sheaves. Observe that in the number field case the groups
H r

c (U,F) may be nonzero even for negative r . In the function field case we have H r
c (U,F) = 0 for

r < 0, and also (by Proposition 2.1 below) H 0
c (U,F) = 0 if we assume further U 6= X (the map

H 0(U,F)→ H 0(K̂v,F) being injective for each v 6∈U ).
From now on, we will abbreviate Cone(· · · ) by C(· · · ).

Proposition 2.1. (1) Let F be a sheaf of abelian groups on Ufppf. There is a natural exact sequence, for
all r ≥ 0,

· · · → H r
c (U,F)→ H r (U,F)→

⊕
v 6∈U

H r (K̂v,F)→ H r+1
c (U,F)→ · · · .

(2) For any short exact sequence

0→ F ′→ F→ F ′′→ 0

of sheaves of abelian groups on U , there is a long exact sequence

· · · → H r
c (U,F

′)→ H r
c (U,F)→ H r

c (U,F
′′)→ H r+1

c (U,F ′)→ · · · .

(3) For any flat affine commutative group scheme F of finite type over U , and any nonempty open
subscheme V ⊂U , there is a canonical exact sequence

· · · → H r
c (V,F)→ H r

c (U,F)→
⊕
v∈U\V

H r (Ôv,F)→ H r+1
c (V,F)→ · · · ,
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and the following natural diagram commutes:

⊕
v /∈V H r−1(K̂v,F)

��

⊕
v /∈U H r−1(K̂v,F)

i2
oo

��⊕
v∈U\V H r−1(Ôv,F) //

i1
55

H r
c (V,F) //

��

H r
c (U,F) //

��

⊕
v∈U\V H r (Ôv,F)

H r (V,F)

��

H r (U,F)

��

Res
oo

55

⊕
v /∈V H r (K̂v,F)

π
//
⊕

v /∈U H r (K̂v,F)

where i1 (resp. i2) is obtained by putting 0 at the places v 6∈U (resp. v ∈U \ V ) and π is the natural
projection.

(4) If F is represented by a smooth group scheme, then H r
c (U,F)∼= H r

ét,c(U,F) for r 6= 1, where H∗ét,c

stands for modified étale cohomology with compact support (as defined in [Geisser and Schmidt
2018, Section 2]). In particular for such F we have H r

c (U,F)∼= H r
ét(X, j!F) in the function field

case. If in addition the generic fiber FK is a finite K -group scheme, then H 1
c (U,F)∼= H 1

ét,c(U,F)
(which is identified with H 1

ét(X, j!F) in the function field case).

Remark 2.2. Unlike what happens in étale cohomology, the groups H 1(Ov,F) and H 1(Ôv,F) cannot
in general be identified with the group H 1(k(v), F(v)), where k(v) is the residue field at v and F(v) the
fiber of F over k(v). For example this already fails for F =µp and Ôv = Fp[[t]], because by the Kummer
exact sequence

0→ µp→ Gm
.p
−→ Gm→ 0

in fppf cohomology, the group H 1(Ôv,F)= Ô∗v/Ô∗
p

v is an infinite dimensional Fp-vector space, while
H 1(k(v), F(v)) = k(v)∗/k(v)∗

p
= 0. The situation is better for r ≥ 2 by [Toën 2011, Corollary 3.4]:

namely the natural maps from H r (Ov,F) and H r (Ôv,F) to H r (k(v), F(v)) are isomorphisms.

Before proving Proposition 2.1, we need the following lemmas. We start with a lemma in homological
algebra.

Lemma 2.3. Let A be an abelian category with enough injectives and let C(A) (resp. D(A)) denote the
category (resp. the derived category) of bounded below cochain complexes in A. Consider a commutative
diagram in C(A):

A

f
��

α
// B⊕ E

(id,g)
��

A′ α′
// B⊕ E ′

and denote by πB (resp. π ′B) the projection B⊕ E→ B (resp. B⊕ E ′→ B).
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Assume that the natural morphism C( f )→ C(g) in C(A) is a quasi-isomorphism. Then there exists a
canonical commutative diagram in D(A):

(B⊕ E ′)[−1]

��

B[−1]
i ′B

oo

��

B⊕ E
(id,g)

// B⊕ E ′

��

C(α′)[−1] //

��

C(πB ◦α)[−1] //

��

E //

iE

OO

C(α′)

A′

α′

��

A

πB◦α

��

f
oo

α
// B⊕ E

πE

OO

B⊕ E ′
π ′B

// B

where the second row and the first two columns are exact triangles.

Proof. The assumption that C( f )→C(g)∼=C(Id⊕g) is a quasi-isomorphism implies that C(α)→C(α′)
is a quasi-isomorphism (see for instance Proposition 1.1.11 in [Beilinson et al. 1982] or Corollary A.14
in [Peters and Steenbrink 2008]).

Functoriality of the mapping cone in the category C(A) gives the following diagram in C(A), where
the second row (by [Milne 1986, Proposition II.0.10], or [Kashiwara and Schapira 2006, proof of
Theorem 11.2.6]) and the columns are exact triangles in the derived category:

(B⊕ E)[−1]
(id,g)

vv ��

B[−1]
iB

oo

��

=
// B[−1]

��

(B⊕ E ′)[−1]

��

C(α)[−1]

vv ��

// C(πB ◦α)[−1]

��

// C(πB)[−1]

��

//

%%

?

C(α)

C(α′)[−1]

��

A
f

vv

α

��

=
// A

πB◦α

��

α
// B⊕ E

πB

��

πE
// E

iE
// B⊕ E

cc

A′

α′

��

B⊕ E
(id,g)

vv

πB
// B =

// B

B⊕ E ′ .

As usual, notation as πB , πE denotes projections and iB , iE are given by putting 0 at the missing piece.
Note also that due to our sign conventions, the horizontal map C(πB)[−1]→C(α) is given by the natural
map with a (−1)-sign.

This diagram is commutative in C(A), except the square ? which is commutative up to homotopy.
Indeed, this square defines two maps f, g : C(πB)[−1] → C(α), which are given in degree n by
two maps f n, gn

: Bn−1
⊕ (Bn

⊕ En) → (Bn
⊕ En) ⊕ An+1, where f n(b′, b, e) := −(b, e, 0) and
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gn(b′, b, e) :=−(0, e, 0). Consider now the maps sn
: Bn−1

⊕ (Bn
⊕En)→ (Bn−1

⊕En−1)⊕ An defined
by sn(b′, b, e) := (b′, 0, 0). Then the collection (sn) is a homotopy between f and g. Hence the square ?
is commutative up to the homotopy (sn).

Since the map C(α)→ C(α′) is a quasi-isomorphism, and since the natural map C(πB)[−1] → E is
a homotopy equivalence, the lemma follows from the commutativity and the exactness of the previous
diagram. �

We now need the following result, for which we did not find a suitable reference:

Lemma 2.4. Let A be a henselian valuation ring with fraction field K . Let Â be the completion of A for
the valuation topology and K̂ := Frac Â. Assume that K̂ is separable over K :

(1) Let G be a K -group scheme locally of finite type. Then the map H 1(K ,G)→ H 1(K̂ ,G) has dense
image.

(2) Assume that Â is henselian. Let G be a flat A-group scheme locally of finite presentation. Then the
map H 1(A,G)→ H 1( Â,G) has dense image.

Here the topology on the pointed sets H 1( Â,G) and H 1(K̂ ,G) is provided by [Česnavičius 2015b,
Section 3].

Remarks 2.5. • The assumption that K̂ is separable over K is satisfied if A is an excellent discrete
valuation ring.

• In the second statement, the assumption that Â is henselian is satisfied if the valuation on A has
height 1 (special case of [Ribenboim 1968, Section F, Theorem 4]). This assumption is used in the
proof below to apply [Česnavičius 2015b, Theorem B.5]. Note also that in general, Â is not the
same as the completion of A for the m-adic topology (where m denotes the maximal ideal of A).

Proof of Lemma 2.4. We prove both statements at the same time. Let E be either A or K , set S = Spec E .
Let BG denote the classifying E-stack of G-torsors. We need to prove that BG(E) is dense in BG(Ê). It
is a classical fact that BG is an algebraic stack [Stacks 2005–, Tag 0CQJ and Tag 06PL]. Let x ∈ BG(Ê)
and U ⊂ BG(Ê) be an open subcategory (in the sense of [Česnavičius 2015b, 2.4]) containing x . We
need to find an object x ′ ∈ BG(E) that maps to U ⊂ BG(Ê). Using [Česnavičius 2015b, Theorem B.5
and Remark B.6] (applied to the S-scheme Spec R := Spec Ê), there exists an affine scheme Y , a smooth
S-morphism π : Y → BG and y ∈ Y (Ê) such that πÊ(y) = x , where πÊ : Y (Ê)→ BG(Ê) is the
map induced by π . In particular, Y → S is smooth because so are π and BG → S (the latter by
[Česnavičius 2015b, Proposition A.3]). Hence Y is locally of finite presentation over S. By assumption,
π−1

Ê
(U ) ⊂ Y (Ê) is an open subset containing y. Hence [Moret-Bailly 2012, Corollary 1.2.1] (in the

discrete valuation ring case, it is Greenberg’s approximation theorem) implies that Y (E)∩π−1
Ê
(U ) 6=∅.

Applying πE , we get that the image of BG(E) meets U , which proves the required result. �

The previous lemma is useful to prove the following crucial (in the function field case) statement. For
a local integral domain A with maximal ideal m, fraction field K and residue field κ , and F an fppf sheaf
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on Spec A with an injective resolution I •(F), define

0m(A, I •(F)) := Cone(0(Spec A, I •(F))→ 0(Spec K , I •(F)))[−1]

and H r
m(A,F) := H r (0m(A, I •(F))) (the cohomology with support in Spec κ). We have a localization

long exact sequence [Milne 1986, Proposition III.0.3]

· · · → H r
m(A,F)→ H r (A,F)→ H r (K ,F)→ H r+1

m (A,F)→ · · · .

Lemma 2.6. Let A be an excellent henselian discrete valuation ring, with maximal ideal m. Let F be
a flat affine commutative group scheme of finite type over Spec A. Then for all r ≥ 0, the morphism
H r
m(A,F)→ H r

m( Â,F) is an isomorphism.

Remark 2.7. Let I •(F) be an injective resolution of F viewed as an fppf sheaf. Another formulation
of Lemma 2.6 is that the natural morphism 0m(A, I •(F))→ 0m( Â, I •(F)) is an isomorphism in the
derived category. The injective resolution I •(F) can be replaced by any complex of flasque fppf sheaves
that is quasi-isomorphic to F (indeed the fppf pullback functor f ∗ associated to f : Spec Â→ Spec A
sends flasque resolutions to flasque resolutions, because f ∗ is exact and preserves flasque sheaves).

Also note that Lemma 2.6 is a variant of [Suzuki 2018, Proposition 2.6.2]: our result is slightly more
general in the affine case, while the notion of cohomological approximation in [Suzuki 2018] is a priori a
little stronger than the conclusion of Lemma 2.6. In addition, this lemma answers a variant of a question
raised after [loc. cit., Proposition 2.6.2] (under a flatness assumption).

Proof of Lemma 2.6. (r = 0). Since F is separated (as an affine scheme), the morphisms H 0(A,F)→
H 0(K ,F) and H 0( Â,F)→ H 0(K̂ ,F) are injective, which implies that

H 0
m(A,F)= H 0

m( Â,F)= 0.

(r = 1). Consider the following commutative diagram with exact rows:

H 0(A,F) //

��

H 0(K ,F) //

��

H 1
m(A,F) //

��

H 1(A,F) //

��

H 1(K ,F)

��

H 0( Â,F) // H 0(K̂ ,F) // H 1
m( Â,F) // H 1( Â,F) // H 1(K̂ ,F)

(1)

Since A is excellent, Artin approximation [1969, Theorem 1.12] implies that the morphism H 1(A,F)→
H 1( Â,F) is injective: indeed, given a (Spec A)-torsor P under F , P is locally of finite presentation, and
Artin approximation ensures that P( Â) 6=∅ implies that P(A) 6=∅.

The affine A-scheme of finite type F is of the form Spec(A[x1, . . . , xn]/( f1, . . . , fr )), where f1, . . . , fr

are polynomials. Since the discrete valuation ring A satisfies A= K ∩ Â⊂ K̂ , the square on the left-hand
side in (1) is cartesian.

Hence an easy diagram chase implies that H 1
m(A,F)→ H 1

m( Â,F) is injective.
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By Proposition A.6 in [Gille and Pianzola 2008], the right-hand side square in (1) is cartesian. In
addition, H 0( Â,F) ⊂ H 0(K̂ ,F) is open [Gabber et al. 2014, Proposition 3.3.4], and H 0(K ,F) ⊂
H 0(K̂ ,F) is dense by [Gabber et al. 2014, Proposition 3.5.2] (weak approximation for F).

Therefore, an easy diagram chase implies that the map H 1
m(A,F)→ H 1

m( Â,F) is surjective.

(r = 2). Consider the commutative diagram with exact rows:

H 1(A,F) //

��

H 1(K ,F) //

��

H 2
m(A,F) //

��

H 2(A,F) //

��

H 2(K ,F)

��

H 1( Â,F) // H 1(K̂ ,F) // H 2
m( Â,F) // H 2( Â,F) // H 2(K̂ ,F)

(2)

By [Toën 2011, Corollary 3.4], the map H 2(A,F)→ H 2( Â,F) is an isomorphism. And we already
explained (in the case r = 1) that the left-hand side square in (2) is cartesian. Hence a diagram chase
proves that the map H 2

m(A,F)→ H 2
m( Â,F) is injective.

Using [Gabber et al. 2014, Proposition 3.5.3.(3)], the map H 2(K ,F)→ H 2(K̂ ,F) is also an isomor-
phism. By [Česnavičius 2015b, Proposition 2.9(e)], the map H 1( Â,F)→ H 1(K̂ ,F) is open. Lemma 2.4
implies that the map H 1(K ,F)→ H 1(K̂ ,F) has dense image. By diagram chase, we get that the map
H 2
m(A,F)→ H 2

m( Â,F) is surjective.

(r ≥ 3). Corollary 3.4 in [Toën 2011] implies that the morphisms H r−1(A,F)→ H r−1( Â,F) and
H r (A,F)→ H r ( Â,F) are isomorphisms. Proposition 3.5.3(3) in [Gabber et al. 2014] implies that
the maps H r−1(K ,F)→ H r−1(K̂ ,F) and H r (K ,F)→ H r (K̂ ,F) are isomorphisms. Therefore, the
five-lemma proves that H r

m(A,F)→ H r
m( Â,F) is an isomorphism. �

Remark 2.8. We will apply the previous lemma to a finite and flat commutative group scheme N . As was
pointed out to us by K. Česnavičius, it is then possible to argue without using Corollary 3.4 in [Toën 2011]
(whose proof is quite involved): indeed there exists [Milne 1986, Theorem III.A.5] an exact sequence

0→ N → G1→ G2→ 0

of affine A-group schemes such that G1 and G2 are smooth. Now for i > 0 we have H i (A,G j ) ∼=

H i ( Â,G j ) ( j = 1, 2) by [Milne 1980, Remark III.3.11], because A and Â are henselian, and fppf
cohomology coincides with étale cohomology for smooth group schemes. It remains to apply the five-
lemma to get H i (A, N )∼= H i ( Â, N ) for i ≥ 2, which is the input from [Toën 2011] that we used in the
proof.

The following lemma is a version of the excision property for fppf cohomology with respect to étale
morphisms:

Lemma 2.9. Let X, X ′ be schemes, Z ↪→ X (resp. Z ′ ↪→ X ′) be closed subschemes, π : X ′→ X be an
étale morphism. Assume that π restricted to Z ′ is an isomorphism from Z ′ to Z and that π(X ′\Z ′)⊂ X \Z.
Let F be a sheaf on (Sch /X)fppf. Then for all r ≥ 0, the natural morphism H r

Z (X,F)→ H r
Z ′(X

′, π∗F)
is an isomorphism.
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Proof. Since π∗ is exact and maps injective objects to injective objects, the proof is exactly the same as
the proof of [Milne 1980, Proposition III.1.27]. �

We continue with a lemma comparing the definition of modified étale cohomology with compact
support in [Geisser and Schmidt 2018] and our definition of modified fppf cohomology with compact
support. For any scheme T , consider the morphisms of sites

(Sch /T )fppf

aT

88

εT
// (Sch /T )ét

πT
// Tét,

where (Sch /T )ét denotes the big étale site of T . Recall that Z := X \U , Z ′ :=
∐
v∈Z Spec(K̂v), j :U→ X

is the open immersion and i : Z ′→U is the natural morphism. Set a := aU and ε := εU .
Let F be a sheaf on Uét, and let π∗X j!F→ J •(F) be an injective resolution in the big étale topos of X .

By [Stacks 2005–, Tag 0758 and Tag 04BT], the restriction J •(F)ét of J •(F) to the small étale site of X
is an injective resolution of j!F . For every place v 6∈U of K , let Fv be the pull-back of F to (Spec Kv)ét.
As in the fppf case (explained in the beginning of Section 2), we have for v real a complete resolution
Ĵ •(Fv) of the Gal(Kv/Kv)-module Fv, which computes its Tate cohomology. Following [Geisser and
Schmidt 2018, Section 2], we define

0ét,c(U, J •(F)) := Cone
(
0(X, J •(F)ét)→

⊕
v∈�R

0(Kv, Ĵ •(Fv))
)
[−1],

and H r
ét,c(U,F) := H r (0ét,c(U, J •(F))).

Denote by R0ét,c(U,F) the complex 0ét,c(U, J •(F)) (viewed in the derived category of abelian
groups); similarly for v real, set R̂0ét(Kv,F) (resp. R̂0(Kv, a∗F)) for the complex 0(Kv, Ĵ •(Fv))
(resp. 0(Kv, Î •((a∗F)v)), where I •(a∗F) is a flasque resolution of a∗F , compare to the beginning
of Section 2) in the derived category of étale sheaves (resp. fppf sheaves) over Spec Kv. Finally, let
R0ét,Z (X, j!F) denote the complex

0ét,Z (X, J •(F)) := Cone(0(X, J •(F)ét)→ 0(U, J •(F)ét))[−1].

Lemma 2.10. (1) Let F be a sheaf of abelian groups over Uét. Then there is a canonical commutative
diagram in the derived category of abelian groups, where the rows are exact triangles:

R0ét,c(U,F) //

��

R0ét(U,F) //

∼

��

R0ét,Z (X, j!F)[1]⊕
⊕

v∈�R
R̂0ét(Kv,F) //

��

R0ét,c(U,F)[1]

��

R0c(U, a∗F) // R0(U, a∗F) // R0(Z ′, i∗a∗F)⊕
⊕

v∈�R
R̂0(Kv, a∗F) // R0c(U, a∗F)[1]

Besides, the complex R0ét,Z (X, j!F)[1] is quasi-isomorphic to
⊕

v∈Z R0ét(Kv,F).
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(2) Let G be a smooth commutative group scheme over U. Let G denote the fppf sheaf associated to G
and Gét := a∗G. Then there is a canonical commutative diagram in the derived category of abelian
groups, where the rows are exact triangles:

R0ét,c(U,Gét) //

��

R0ét(U,Gét) //

∼

��

R0ét,Z (X, j!Gét)[1]⊕
⊕

v∈�R
R̂0ét(Kv,Gét) //

��

R0ét,c(U,Gét)[1]

��

R0c(U,G) // R0(U,G) // R0(Z ′, i∗G)⊕
⊕

v∈�R
R̂0(Kv,G) // R0c(U,G)[1]

Besides, the complex R0ét,Z (X, j!Gét)[1] is quasi-isomorphic to
⊕

v∈Z R0ét(Kv,Gét).

Proof. (1) Set J := J •(F). Since j!F → Jét := J •(F)ét is an injective resolution, we get an injective
resolution F = j∗ j!F→ j∗ Jét in Uét. The functor ε∗ is an exact functor that maps flasque étale sheaves to
flasque fppf sheaves (see [Stacks 2005–, Tag 0DDU]), we get a flasque resolution a∗F→ I := ε∗ j∗ Jét. Let
Ĵv := Ĵ •(Fv); define Îv = Î •((ε∗F)v) (associated to the flasque resolution I of ε∗F) as in the beginning
of Section 2.

Consider now the following commutative diagram of complexes, where 0̃ét,Z (U, J ) and 0̃ét,c(U, J )
are mapping cones defined such that the third and fourth rows are exact triangles:

0ét,c(U, Jét) // 0ét(U, j∗ Jét) // 0ét,Z (X, Jét)[1]⊕
⊕

v∈�R
0ét(Kv, Ĵét,v) // 0ét,c(U, Jét)[1]

0ét,c(U, J ) //

ϕc

OO

d ′

��

0ét(U, j∗ J ) //

ϕ

OO

=

��

0ét,Z (X, J )[1]⊕
⊕

v∈�R
0ét(Kv, Ĵv) //

ϕ′

OO

d
��

0ét,c(U, J )[1]

��

OO

0̃ét,Z (U, J ) // 0ét(U, j∗ J ) //
⊕

v∈Z 0ét,v(Ov, J )[1]⊕
⊕

v∈�R
0ét(Kv, Ĵv) // 0̃ét,Z (U, J )[1]

0̃ét,c(U, J ) //

b′

OO

��

0ét(U, j∗ J ) //

=

OO

c

��

⊕
v∈Z 0ét(Kv, J )⊕

⊕
v∈�R

0ét(Kv, Ĵv) //

b

OO

��

0̃ét,c(U, J )[1]

OO

��

0c(U, I ) // 0(U, I ) // 0(Z ′, i∗ I )⊕
⊕

v∈�R
0(Kv, Îv) // 0c(U, I )[1]

In this diagram, the rows are exact triangles (by definition for the last three rows, using the proof
of Lemma 2.7 in [Geisser and Schmidt 2018] for the first ones). The maps ϕ, ϕ′ and ϕc are quasi-
isomorphisms by [Stacks 2005–, Tag 0DDH]. In addition, the maps d and b (hence also d ′ and b′) are
quasi-isomorphisms: for the map d , this is the excision property for étale cohomology (see [Milne 1980,
Proposition III.1.27]); for the map b, this is exactly [Milne 1986, Proposition II.1.1.(a)]. In addition, the
map c is a quasi-isomorphism, using [Stacks 2005–, Tag 0DDU]. This proves the lemma.
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(2) Consider the following commutative diagram of exact triangles in the derived category:

R0ét,c(U,Gét) //

��

R0ét(U,Gét) //

��

R0ét,Z (X, j!Gét)[1]⊕
⊕
v∈�R

R̂0ét(Kv,Gét) //

��

R0ét,c(U,Gét)[1]

��

R0c(U, a∗Gét) //

��

R0(U, a∗Gét) //

��

R0(Z ′, i∗a∗Gét)⊕
⊕
v∈�R

R̂0(Kv, a∗Gét) //

��

R0c(U, a∗Gét)[1]

��

R0c(U,G) // R0(U,G) // R0(Z ′, i∗G)⊕
⊕
v∈�R

R̂0(Kv,G) // R0c(U,G)[1]

where the vertical maps between the first two rows come from the first point of this lemma, and the
ones between the last two rows come from the adjunction morphism a∗Gét = a∗a∗G→ G and from the
functoriality of the triangle defining the complexes R0c(U, ·). Now [Grothendieck 1968, Theorem 11.7],
ensures that the composed vertical morphism R0ét(U,Gét)→ R0(U,G) is an isomorphism. Whence
the required result. �

Proof of Proposition 2.1. (1) This is immediate from the definitions.

(2) The claim follows from the definitions, from the exactness of the functors i∗, av
∗

and D•(·) at the
beginning of Section 2, and from the exactness of the cone functor on the category of complexes of
abelian groups (see also [Milne 1986, III, Proposition 0.4.a and Remark 0.6.b]).

(3) As in the proof of [Milne 1986, III, Proposition 0.4.c], let I •(F) be an injective resolution of F . In
the number field case, the piece of notation 0(K̂v, I •(F)) will stand for 0(Kv, Î •(Fv)) when v is a real
place of K , where Î •(Fv) is the modified resolution constructed in the beginning of Section 2.

Consider the following commutative diagram of complexes in the category of bounded below complexes
of abelian groups, where the maps are the natural ones:

0(U, I •(F)) α
//

f

��

⊕
v /∈U 0(K̂v, I •(F))⊕

⊕
v∈U\V 0(Ôv, I •(F))

(id,g)
��

πO
//
⊕

v /∈U 0(K̂v, I •(F))

0(V, I •(F)) α′
//
⊕

v /∈U 0(K̂v, I •(F))⊕
⊕

v∈U\V 0(K̂v, I •(F))

πK

33

Functoriality of the mapping cone in the category of complexes gives morphisms

0U\V (U, I •(F))→
⊕
v∈U\V

0v(Ov, I •(F))→
⊕
v∈U\V

0v(Ôv, I •(F)),

where
0U\V (U, I •(F)) := C( f )[−1], 0v(Ov, I •(F)) := 0mv (Ov, I •(F))

and
0v(Ôv, I •(F)) := 0mv (Ôv, I •(F)).

The excision property (Lemma 2.9) implies that the first morphism above 0U\V (U, I •(F)) →⊕
v∈U\V 0v(Ov, I •(F)) is a quasi-isomorphism.



2336 Cyril Demarche and David Harari

Since for all v ∈ X , the ring Ov is an excellent henselian discrete valuation ring, Lemma 2.6 ensures
that the second map ⊕

v∈U\V

0v(Ov, I •(F))→
⊕
v∈U\V

0v(Ôv, I •(F))

is a quasi-isomorphism. Therefore, the natural morphism C( f )→ C(g) is a quasi-isomorphism.
Apply now Lemma 2.3 to get a commutative diagram in the derived category of abelian groups, where

the second row and the first two columns are exact triangles:

( ⊕
v /∈V

0(K̂v , I•(F))
)
[−1]

��

( ⊕
v /∈U

0(K̂v , I•(F))
)
[−1]

iK
oo

��

⊕
v /∈U

0(K̂v , I•(F))⊕
⊕

v∈U\V
0(Ôv , I•(F))

(id,g)
//
⊕
v /∈V

0(K̂v , I•(F))

��

0c(V, I•(F)) //

��

0c(U, I•(F)) //

��

⊕
v∈U\V

0(Ôv , I•(F))

i ′O

OO

// 0c(V, I•(F))[1]

0(V, I•(F))

α′

��

0(U, I•(F))

πO◦α

��

f
oo

α
// ⊕
v /∈U

0(K̂v , I•(F))⊕
⊕

v∈U\V
0(Ôv , I•(F))

π ′O

OO

⊕
v /∈V

0(K̂v , I•(F))
πK

// ⊕
v /∈U

0(K̂v , I•(F))

(3)

Now the cohomology of this diagram gives the following canonical commutative diagram, with an
exact second row (and the two first columns exact):

⊕
v /∈V

H r−1(K̂v,F)

��

⊕
v /∈U

H r−1(K̂v,F)oo

��

⊕
v /∈U

H r (K̂v,F)⊕
⊕

v∈U\V
H r (Ôv,F) //

⊕
v /∈V

H r (K̂v,F)

��

· · · // H r
c (V,F) //

��

H r
c (U,F) //

��

⊕
v∈U\V

H r (Ôv,F)

OO

// H r+1
c (V,F) // · · ·

H r (V,F)

��

H r (U,F)

��

Res
oo //

⊕
v /∈U

H r (K̂v,F)⊕
⊕

v∈U\V
H r (Ôv,F)

OO

⊕
v /∈V

H r (K̂v,F) //
⊕
v /∈U

H r (K̂v,F)

which proves the required exactness and commutativity.
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(4) Lemma 2.10 gives a commutative diagram with exact rows:

H r−1
ét (U,F) //

∼

��

⊕
v /∈U H r−1

ét (Kv,F) //

��

H r
ét,c(U,F) //

��

H r
ét(U,F) //

∼

��

⊕
v /∈U H r

ét(Kv,F)

��

H r−1(U,F) //
⊕

v /∈U H r−1(K̂v,F) // H r
c (U,F) // H r (U,F) //

⊕
v /∈U H r (K̂v,F)

Here Hét stands for étale cohomology (modified over Kv for v real) and Hét,c for (modified) étale
cohomology with compact support (as defined in [Geisser and Schmidt 2018, Section 2], or before
Lemma 2.10; recall also that in the number field case, the piece of notation v 6∈U means that we consider
the places corresponding to closed points of Spec(OK ) \U and the real places).

By [Gabber et al. 2014, Lemma 3.5.3] and [Milne 1980, III.3], we have

H r
ét(Kv,F)∼= H r

ét(K̂v,F) ∼−→ H r (K̂v,F)

for all r ≥ 1 (resp. for all integers r if FK is finite; indeed Kv and K̂v have the same absolute Galois group
via [Bourbaki 2006, Section 8, Corollary 4 to Theorem 2], and [Ribenboim 1968, Section F, Corollary 2
to Theorem 2]) and all places v of K . Therefore the five-lemma gives the result. �

Remark 2.11. The definition of fppf compact support cohomology and its related properties are specific
to schemes of dimension 1. To the best of our knowledge, there is no good analogue in higher dimension,
unlike what happens for étale cohomology.

We will need the following complement to Proposition 2.1:

Proposition 2.12. Let F be a flat affine commutative group scheme of finite type over U. Let V ⊂U be a
nonempty open subset. Then there is a long exact sequence

· · · →

⊕
v∈U\V

H r
v (Ôv,F)→ H r (U,F)→ H r (V,F)→

⊕
v∈U\V

H r+1
v (Ôv,F)→ · · · (4)

Proof. The map
⊕

v∈U\V H r
v (Ôv,F)→ H r (U,F) is given by the identification of the first group with

H r
Z (U,F), where Z =U \ V , via Lemmas 2.6 and 2.9. By the localization exact sequence [Milne 1986,

Proposition III.0.3.c], this identification yields the required long exact sequence. �

3. Topology on cohomology groups with compact support

With the previous notation, let us define a natural topology on the groups H∗c (U, N ), where N is a finite
flat commutative U -group scheme. Theorem 1.1 actually immediately implies that H 2

c (U, N ) is profinite,
but this duality theorem will not be used in this paragraph. The “a priori” approach we adopt in this
section answers a question raised by Milne [1986, Problem III.8.8].

We restrict ourselves to the function field case, because when K is a number field the groups involved
are finite (see [Milne 1986, Theorem III.3.2]; see also Section 5 of this article). Recall that as usual (see
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for example [Milne 1986, Section III.8]), the groups H∗(U, N ) are endowed with the discrete topology.
Our first goal in this section is to define a natural topology on the groups H∗c (U, N ).

Given an exact sequence of abelian groups

0→ A→ B→ C→ 0,

such that A is a topological group, there exists a unique topology on B such that B is a topological group,
A is an open subgroup of B, and C is discrete when endowed with the quotient topology. Indeed, the
topology on B is generated by the subsets b+U , where b ∈ B and U is an open subset of A. In addition,
given another abelian group B ′ with a subgroup A′ ⊂ B ′ that is a topological group, and a commutative
diagram of abelian groups

A �
�

//

f
��

B
g
��

A′ �
�

// B ′

then f is continuous if and only if g is continuous, for the aforementioned topologies. And f is open if
and only if g is.

We can therefore topologize the groups H i
c (U, N ) for i 6= 2, using the exact sequence (see

Proposition 2.1(1)) ⊕
v 6∈U

H i−1(K̂v, N )→ H i
c (U, N )→ H i (U, N ).

Since the groups H i−1(K̂v, N ) are finite for i 6= 2 [Milne 1986, Section III.6] and H i (U, N ) is discrete,
all groups H i

c (U, N ) are discrete if i 6= 2.
Let us now focus on the case i = 2. Consider the exact sequence (Proposition 2.1(1))

H 1(U, N )→
⊕
v /∈U

H 1(K̂v, N )→ H 2
c (U, N )→ H 2(U, N ). (5)

For i = 1, 2, set

Di (U, N )= Im[H i
c (U, N )→ H i (U, N )] = Ker[H i (U, N )→

⊕
v 6∈U

H i (K̂v, N )].

By Proposition 2.1(1), there is an exact sequence⊕
v 6∈U

H i−1(K̂v, N )→ H i
c (U, N )→ Di (U, N )→ 0. (6)

The following result has been proved by Česnavičius [2017, Theorem 2.9].4

4Proposition 2.3 of [loc. cit.] uses the fppf duality Theorem 1.1, but this proposition is actually not needed to prove
Theorem 3.1 because a discrete subgroup of a Hausdorff topological group is automatically closed by [Bourbaki 2007, Section 2,
Proposition 5]



Artin–Mazur–Milne duality for fppf cohomology 2339

Theorem 3.1 (Česnavičius). The map H 1(U, N )→
⊕

v /∈U H 1(K̂v, N ) is a strict morphism of topological
groups, that is: the image of H 1(U, N ) is a discrete subgroup of

⊕
v /∈U H 1(K̂v, N ). Besides, the group

D1(U, N ) is finite.

Corollary 3.2. The group H 1
c (U, N ) is finite.

Proof. The group
⊕

v /∈U H 0(K̂v, N ) is finite (N being a finite U -group scheme). Thus the finiteness of
H 1

c (U, N ) is equivalent to the finiteness of D1(U, N ) by (6). �

Put the quotient topology on (
⊕

v 6∈U H 1(K̂v, N ))/ Im H 1(U, N ). Using Theorem 3.1, the previous
facts define a natural topology on H 2

c (U, N ), so that morphisms in the exact sequence (5) are continuous
(and even strict). This topology makes H 2

c (U, N ) a Hausdorff and locally compact group [Bourbaki 2007,
Section 2, Proposition 18(a)].

To say more about the topology of H 2
c (U, N ), we need a lemma.

Lemma 3.3. (1) Let r : N → N ′ be a morphism of finite flat commutative U-group schemes. Then
the corresponding map s : H 2

c (U, N )→ H 2
c (U, N ′) is continuous. If we assume further that r is

surjective, then s is open. If

0→ N ′→ N → N ′′→ 0

is an exact sequence of finite flat commutative U-group schemes, then the connecting map
H 2

c (U, N ′′)→ H 3
c (U, N ′) is continuous.

(2) Let V ⊂ U be a nonempty open subset. Then the natural map u : H 2
c (V, N ) → H 2

c (U, N ) is
continuous.

Proof. (1) By definition of the topology on the groups H 2
c , it is sufficient to prove that for v 6∈U , the map

H 1(K̂v, N )→ H 1(K̂v, N ′) is continuous (resp. open if r is surjective). Continuity follows from [Česnav-
ičius 2015b, Proposition 4.2] and the openness statement from [Česnavičius 2015b, Proposition 4.3(d)].
Similarly, the last assertion follows from the continuity of the connecting map H 1(Kv, N ′′)→H 2(Kv, N ′)
[Česnavičius 2015b, Proposition 4.2] .

(2) Since (by definition of the topology) the image I of A :=
⊕

v 6∈V H 1(K̂v, N ) is an open subgroup
of H 2

c (V, N ), it is sufficient to show that the restriction of u to I is continuous. As I is equipped with
the quotient topology (induced by the topology of A), this is equivalent to showing that the natural map
s : A→ H 2

c (U, N ) is continuous. Now we observe that A is the direct sum of A1 :=
⊕

v 6∈U H 1(K̂v, N )
and A2 :=

⊕
v∈U\V H 1(K̂v, N ). The restriction of s to A1 is continuous by the commutative diagram

of Proposition 2.1(3). Therefore it only remains to show that the restriction s2 of s to A2 is continuous.
By [loc. cit.], the restriction of s2 to

⊕
v∈U\V H 1(Ôv, N ) is zero. Since

⊕
v∈U\V H 1(Ôv, N ) is an open

subgroup of
⊕

v∈U\V H 1(K̂v, N ) [Česnavičius 2015b, Proposition 3.10], the result follows. �

Recall also the following (probably well-known) lemma:
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Lemma 3.4. Let f : A→ B be a continuous morphism of topological groups, with B Hausdorff :

(1) Assume that A is profinite. Then f is strict.

(2) Assume that f is injective and A is compact. Then f is strict.

(3) Let
0→ A i

−→ B π
−→ C→ 0

be an exact sequence of topological groups with i strict and π continuous. If A and C are completely
disconnected, then so is B.

Proof. (1) Since f is continuous and B Hausdorff, the image of f is a compact subspace of B, so we
can assume that B is compact and f is onto. The topology of A has a basis consisting of open subgroups,
so it is sufficient to show that the image of such a subgroup U is open. As U is closed (hence compact)
and of finite index in A, its image f (U ) is also compact and of finite index in B, hence it is an open
subgroup of B.

(2) Since A is compact and B is Hausdorff, we get that i is a closed map (because the image of a compact
subspace of A is compact), hence it induces a homeomorphism from i onto the subspace i(A)⊂ B. This
means that i is strict.

(3) Let D be a connected subset of B. Then π(D) is connected, hence is a singleton. Thus, by translating,
one can assume that D ⊂ i(A); as i is strict, the subset i−1(D) ⊂ A is connected, so it is reduced to a
point, hence D is a singleton. This proves the statement. �

Proposition 3.5. For every integer i with 0≤ i ≤ 3, the topology on H i
c (U, N ) is profinite.

Proof. The only nontrivial case is i = 2. We first observe that if there is an exact sequence of finite flat
commutative U -group schemes

0→ N ′→ N → N ′′→ 0,

then it is sufficient to prove that H 2
c (U, N ′) and H 2

c (U, N ′′) are profinite to get the same result for
H 2

c (U, N ). Indeed by Proposition 2.1, 3., there is an exact sequence

H 1
c (U, N ′′)→ H 2

c (U, N ′)→ H 2
c (U, N )→ H 2

c (U, N ′′).

The group H 1
c (U, N ′′) is finite by Corollary 3.2; besides, all maps are continuous and the map H 2

c (U, N )→
H 2

c (U, N ′′) is open (in particular it is strict, and its image is profinite as soon as H 2
c (U, N ′′) is) by

Lemma 3.3(1). Therefore if H 2
c (U, N ′) and H 2

c (U, N ′′) are profinite, then H 2
c (U, N ) is profinite as an

extension
0 i
−→ A→ H 2

c (U, N ) π
−→ B→ 0

of two profinite groups A, B such that the map π is open (the map i is strict by Lemma 3.4, 2.; the group
H 2

c (U, N ) is completely disconnected by Lemma 3.4 3., and its compactness follows from the fact that π
is a proper map by [Bourbaki 2007, Section 4, Corollary 2 to Proposition 2]).
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This being said, note now that Proposition 2.1(4) implies the result when the order of N is prime to
p by [Milne 1986, Corollary II.3.3] (in this case H 2

c (U, N ) is even finite). One can therefore assume
by devissage that the order of N is a power of p. The generic fiber NK of N is a finite commutative
group scheme over K . By [Demazure and Gabriel 1970, IV, Section 3.5], NK admits a composition series
whose quotients are étale (with a dual of height one), local (of height one) with étale dual, or αp. The
schematic closure in N of this composition series provides a composition series defined over U . Thus,
using the same devissage argument as above, one reduces to the case where the generic fiber NK or its
dual N D

K has height one.
Proposition III.B.4 and Corollary III.B.5 in [Milne 1986] now imply that there exists a nonempty open

subset V ⊂U such that N|V extends to a finite flat commutative group scheme Ñ over the proper k-curve X .
Then Proposition 2.1(3) gives an exact sequence

H 1
c (X, Ñ )→

⊕
v∈X\V

H 1(Ôv, Ñ )→ H 2
c (V, N )→ H 2

c (X, Ñ ) (7)

and since we are in the function field case with X proper over k, we have H i
c (X, Ñ ) = H i (X, Ñ ) for

every positive integer i .
By Proposition 2.1(3), the map

⊕
v∈X\V H 1(Ôv, Ñ )→H 2

c (V, N ) factors through
⊕

v∈X\V H 1(K̂v, N ),
hence it is continuous. By Lemma 3.3, all maps in (7) are continuous. In addition, the groups
H 1

c (X, Ñ )= H 1(X, Ñ ) and H 2
c (X, Ñ )= H 2(X, Ñ ) are finite by [Milne 1986, Lemma III.8.9]. Besides,⊕

v∈X\V H 1(Ôv, Ñ ) is profinite by [loc. cit, Section III.7]; hence H 2
c (V, N ) is profinite as an extension

(the maps being strict by Lemma 3.4(2)) of a finite group by a profinite group.
Since H 2(Ôv, N )= 0 for every v ∈U [Milne 1986, Section III.7], Proposition 2.1(3) gives an exact

sequence of groups ⊕
v∈U\V

H 1(Ôv, N )→ H 2
c (V, N )→ H 2

c (U, N )→ 0,

which implies that H 2
c (U, N ) is profinite, the map H 2

c (V, N ) → H 2
c (U, N ) being continuous by

Lemma 3.3(2), hence strict by Lemma 3.4(1), because H 2
c (V, N ) is profinite and H 2

c (U, N ) is Hausdorff.
�

The following statement will be useful in the next section:

Proposition 3.6. Assume that F = N , F ′ = N ′ and F ′′ = N ′′ are finite and flat commutative group
schemes over U. Then all the maps in Proposition 2.1 are strict (in particular continuous).

Proof. For the maps in assertion 1 of Proposition 2.1, this follows from the definition of the topology and
Theorem 3.1.

Let us consider the maps in assertion 2. The finiteness of the H 1
c groups (Corollary 3.2) implies that

it only remains to deal with the maps between H 2
c ’s and the connecting map H 2

c (U,F ′′)→ H 3
c (U,F ′).

All these maps are continuous by Lemma 3.3, hence strict by Lemma 3.4 1. and Proposition 3.5.
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Finally, it has already been proven (see the proof of Proposition 3.5) that the maps in the exact sequence
of assertion 3 are continuous. They are strict via Lemma 3.4(1) because H 1

c (U,F) is finite, H 2
c (U,F)

(resp.
⊕

v∈U\V H 1(Ôv,F)) is profinite, and the other groups are discrete. �

4. Proof of Theorem 1.1 in the function field case

In this section K is the function field of a projective, smooth and geometrically integral curve X defined
over a finite field k of characteristic p. The proof follows the same lines as the proof of [Milne 1986,
Theorem III.8.2], replacing Proposition III.0.4 in [Milne 1986] by Proposition 2.1 and using the results of
Section 2.

For every nonempty open subset V ⊂U , the natural map H 3
c (V, Gm)

s
−→ H 3

c (U, Gm) is an isomor-
phism, and the trace map identifies H 3

c (U, Gm) with Q/Z (this identification being compatible with s).
Indeed since Gm is a smooth group scheme we can apply Proposition 2.1(4) and [Milne 1986, Section II.3].

For an fppf sheaf F on U , let us first define the pairing of abelian groups

H 3−r
c (U,F)× H r (U,FD)→ H 3

c (U, Gm)∼=Q/Z.

Since the cohomology groups with compact support are defined via a mapping cone construction,
we need to construct this pairing carefully at the level of complexes in order to be able to prove the
compatibilities that follow (see Lemmas 4.3 and 4.7 for instance).

Lemma 4.1. Let A and B be two fppf sheaves of abelian groups on U. Then there exists a canonical
pairing in the derived category of abelian groups

R0c(U, A)⊗L R0(U, B)→ R0c(U, A⊗ B).

Moreover, this pairing is functorial in A and B.

Proof. For any complex C of fppf sheaves, let G(C) denote the Godement resolution of C (see for
instance [SGA 43 1973, XVII, 4.2.9]; Godement resolutions exist on the big fppf site because this site has
enough points, see Remark 1.6 of [Gabber and Kelly 2015] or [Stacks 2005–, Tag 06VX]).

Then there is a commutative diagram of complexes of sheaves (see [Godement 1958, II.6.6] or
[Friedlander and Suslin 2002, Appendix A]):

A⊗ B

((��

Tot(G(A)⊗G(B)) // G(A⊗ B)

The horizontal morphism induces a morphism of complexes of abelian groups

Tot(0(U,G(A))⊗0(U,G(B)))→ 0(U,G(A⊗ B))
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hence a canonical morphism in the derived category of abelian groups

0(U,G(A))⊗L 0(U,G(B))→ 0(U,G(A⊗ B)).

Considering the local versions of the previous pairings, one gets a commutative diagram of complexes
of abelian groups

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(A⊗ B))

��∏
v /∈U Tot(0(K̂v,G(A))⊗0(U,G(B))) //

∏
v /∈U 0(K̂v,G(A⊗ B))

and functoriality of cones gives a canonical morphism of complexes (via Proposition A.1 in the Appendix)

Tot(0c(U,G(A))⊗0(U,G(B)))→ 0c(U,G(A⊗ B)). (8)

Since Godement resolutions are acyclic (see [SGA 43 1973, XVII, Proposition 4.2.3]), we know that
R0(U,C)∼= 0(U,G(C)) in the derived category, for any fppf sheaf C . Hence the pairing (8) gives the
required morphism in the derived category

R0c(U, A)⊗L R0(U, B)→ R0c(U, A⊗ B).

The functoriality of Godement resolutions implies the functoriality of the pairing in A and B. �

Using Lemma 4.1, [Stacks 2005–, Tag 068G] gives a natural pairing

H r
c (U, A)× H s(U, B)→ H r+s

c (U, A⊗ B),

whence we deduce the required canonical pairings, for any sheaf F on (Sch /U )fppf

H r
c (U,F)× H s(U,FD)→ H r+s

c (U, Gm), (9)

using the canonical map F ⊗FD
= F ⊗Hom(F, Gm)→ Gm .

Let us describe explicitly the pairing above: the map

Tot(0c(U,G(A))⊗0(U,G(B)))→ 0c(U,G(A⊗ B))

is given by maps(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗0(U,Gs(B))→

∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

(ar−1, ar )⊗ bs 7→ (ar−1 ∪β(bs), ar ∪ bs),

where the maps denoted by ∪ are the natural pairings, and β : 0(U,Gs(B))→
∏
v /∈U 0(K̂v,Gs(B)) is

the localization map.
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In the following, we will need an alternative version of the above pairing: with the same notation as
above, one defines a pairing in the derived category

R0(U, A)⊗L R0c(U, B)→ R0c(U, A⊗ B).

The definition is similar to the one in Lemma 4.1: the commutative diagram of complexes

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(A⊗ B))

��∏
v /∈U Tot(0(U,G(A))⊗0(K̂v,G(B))) //

∏
v /∈U 0(K̂v,G(A⊗ B))

and Proposition A.1 in the Appendix gives a morphism of complexes

Tot(0(U,G(A))⊗0c(U,G(B)))→ 0c(U,G(A⊗ B)). (10)

Taking into account the signs in Proposition A.1, one can describe the pairing Tot(0(U,G(A))⊗
0c(U,G(B)))→ 0c(U,G(A⊗ B)) explicitly as follows:

0(U,Gr (A))⊗
(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)
→

∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

ar ⊗ (bs−1, bs) 7→ ((−1)rα(ar )∪ bs−1, ar ∪ bs),

where α : 0(U,Gr (A))→
∏
v /∈U 0(K̂v,Gr (A)) is the localization map.

We now compare the two pairings defined above:

Lemma 4.2. The following diagram of complexes commutes up to homotopy:

Tot(0c(U,G(A))⊗0(U,G(B))) // 0c(U,G(A⊗ B))

=

��

Tot(0c(U,G(A))⊗0c(U,G(B)))

��

=

OO

=

��

OO

Tot(0(U,G(A))⊗0c(U,G(B))) // 0c(U,G(A⊗ B))

Proof. Using the explicit descriptions above, one needs to prove that the map ϕr,s from(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗

(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)

to ∏
v /∈U

0(K̂v,Gr+s−1(A⊗ B))⊕0(U,Gr+s(A⊗ B))

given by

(ar−1, ar )⊗ (bs−1, bs) 7→ ((−1)rα(ar )∪ bs−1− ar−1 ∪β(bs), 0)
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is homotopically trivial. To prove this, consider the maps(∏
v /∈U

0(K̂v,Gr−1(A))⊕0(U,Gr (A))
)
⊗

(∏
v /∈U

0(K̂v,Gs−1(B))⊕0(U,Gs(B))
)

hr,s
−→

∏
v /∈U

0(K̂v,Gr+s−2(A⊗ B))⊕0(U,Gr+s−1(A⊗ B))

given by hr,s : (ar−1, ar )⊗ (bs−1, bs) 7→ (0, (−1)r ar−1 ∪ bs−1). Then these maps define an homotopy
equivalence between the map

⊕
r+s=n ϕr,s and the zero map, proving the lemma. �

We now prove that the pairing is compatible with coboundary maps in cohomology coming from short
exact sequences:

Lemma 4.3. Let 0→ A→ B→ C→ 0 and 0→ C ′→ B ′→ A′→ 0 be two exact sequences of fppf
sheaves on U , and let B⊗ B ′→ D be a morphism of fppf sheaves. Assume that the induced morphism
A⊗C ′→ D is trivial.

Consider the following diagram

H r
c (U,C)× H s+1(U,C ′) ∪

//

∂r
��

H r+s+1
c (U, D)

=

��

H r+1
c (U, A)× H s(U, A′) ∪

//

∂ ′s

OO

H r+s+1
c (U, D)

where the horizontal morphisms are induced by the pairings in Lemma 4.1 and by the morphism B⊗B ′→
D, and the vertical maps are the coboundary morphisms.

Then for all c ∈ H r
c (U,C) and a′ ∈ H s(U, A′), we have

∂r (c)∪ a′+ (−1)r c∪ ∂ ′s(a
′)= 0.

Proof. For all fppf sheaves E , let ∂E
i : Gi (E)→ Gi+1(E) denote the coboundary map in the Godement

complex G(E).
Consider the diagram induced by B⊗ B ′→ D

0(U,Gr (B))⊗0(U,Gs+1(B ′))
∪
//

∂B
r
��

0(U,Gr+s+1(D))

=

��

0(U,Gr+1(B))⊗0(U,Gs(B ′))
∪
//

∂B′
s

OO

0(U,Gr+s+1(D))

together with the similar diagrams over Spec K̂v, for all v /∈ S.
By compatibility of the Godement resolution with tensor product [Friedlander and Suslin 2002,

Appendix A], the pairing Tot(G(B)⊗ G(B ′))→ G(D) is a morphism of complexes. Hence for all
b ∈ 0(U,Gr (B)) and b′ ∈ 0(U,Gs(B ′)), we have

∂ B
r (b)∪ b′+ (−1)r b∪ ∂ B ′

s (b
′)= ∂D

r+s(b∪ b′).
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This formula, its analogue over Spec K̂v for v /∈ S, together with the definition of the connecting maps in
cohomology via Godement resolutions (recall that for all n, the functor F 7→Gn(F) is exact, see [SGA 43

1973, XVII, Proposition 4.2.3]), implies Lemma 4.3. �

Lemma 4.4. Let N be a finite flat commutative U-group scheme of order n, then the pairings (9)

H r
c (U, N )× H s(U, N D)→ H r+s

c (U, µn)

are continuous.

Proof. The pairings (9) are defined via the cup-product on U and the local duality pairings Ha(K̂v, N )×
H b(K̂v, N D)→ Ha+b(K̂v, µn). These local pairings are continuous [Česnavičius 2015b, Theorems 5.11
and 6.5]. Hence the lemma follows from the definition of the topologies on the cohomology groups (see
Section 3). �

Remark 4.5. In [Milne 1986] (see for example Theorem III.3.1), the pairings are defined via the Ext
groups, which is quite convenient for the definition itself but makes the required commutativities of
diagrams more difficult to check. Nevertheless, Proposition V.1.20 in [Milne 1980] provides a similar
comparison between both definitions: see the details in Proposition A.2 of the Appendix.

In order to prove Theorem 1.1, we now need to show that the induced map H 3−r
c (U, N )→H r (U, N D)∗

is an isomorphism (of topological groups) for every finite flat commutative group scheme N over U and
every r ∈ {0, 1, 2, 3} (recall that the groups H r (U, N D) are equipped with the discrete topology).

We first recall the following lemma [Milne 1986, Lemma III.8.3]:

Lemma 4.6. Let

0→ N ′→ N → N ′′→ 0

be an exact sequence of finite flat commutative group schemes over U. If Theorem 1.1 is true for N ′

and N ′′, then it is true for N.

Proof. Using Proposition 2.1(2), the exactness of Pontryagin duality for discrete groups and the pairing in
Lemma 4.1, one gets a diagram of long exact sequences:

· · ·

?

// H 3−r
c (U, N ′) //

��

H 3−r
c (U, N ) //

��

H 3−r
c (U, N ′′) //

��

?

· · ·

· · · // H r (U, N ′D)∗ // H r (U, N D)∗ // H r (U, N ′′D)∗ // · · ·

The functoriality of the pairing (see Lemma 4.1) implies that both central squares in the diagram are
commutative. Lemma 4.3 implies that both extreme squares (denoted ?) are commutative up to sign. By
Lemma 3.4(1), Proposition 3.6 and Lemma 4.4, all the maps in this diagram are continuous. Hence the
lemma follows from the five-lemma. �
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We now want to show that it is sufficient to prove Theorem 1.1 for a smaller open subset V ⊂U . To
do this, we need to check the compatibility of the pairing in Theorem 1.1 with restriction to an open
subset of U and with the local duality pairing (see Lemma 4.7 below).

We first define the maps that appear in this lemma. Let F be a flat affine commutative U -group
scheme of finite type and let V ⊂ U be a nonempty open subset. Let W denote U \ V . In diagram
(11) below, the first column is the long exact sequence of Proposition 2.1(3), and the second column
is the localization exact sequence from Proposition 2.12. The horizontal pairings are either the local
duality pairings from [Milne 1986, Theorem III.7.1] (first and last rows), using the same sign convention
as in the pairing (10), or the global pairings from Lemma 4.1 (second and third rows). The proof of
Proposition 2.12 provides an isomorphism H 3

W (U, Gm)∼=
⊕

v∈W H 3
v (Ôv, Gm), and the natural morphism

of complexes 0W (U, I •(Gm))→ 0c(V, I •(Gm)) gives a morphism H 3
W (U, Gm)→ H 3

c (V, Gm), whence
natural morphisms

⊕
v∈W H 3

v (Ôv, Gm)→ H 3
c (V, Gm)→ H 3

c (U, Gm).

Lemma 4.7. Let F , G be flat affine commutative group schemes of finite type on U , together with a
pairing F ⊗G→ Gm . Let V ⊂U be a nonempty open subscheme and W :=U \ V . Then the following
diagram is commutative:

⊕
v∈W H 2−r (Ôv,F)×

⊕
v∈W H r+1

v (Ôv,G)

��

//
⊕

v∈W H 3
v (Ôv, Gm)

��

H 3−r
c (V,F)× H r (V,G) //

��

OO

H 3
c (V, Gm)

∼

��

H 3−r
c (U,F)× H r (U,G) //

OO

��

H 3
c (U, Gm)

⊕
v∈W H 3−r (Ôv,F)×

⊕
v∈W H r

v (Ôv,G)

OO

//
⊕

v∈W H 3
v (Ôv, Gm)

OO

(11)

In addition, if F and G are finite and flat group schemes, then all the maps in the diagram are continuous.

Proof. (1) We first prove the commutativity of the top rectangle. It is sufficient to prove that the following
diagram commutes:

Tot
(⊕

v∈W 0(Ôv,G(F))[−1]⊗
⊕

v∈W 0v(Ôv,G(G))[1]
)

//

��

⊕
v∈W 0v(Ôv,G(Gm))

Tot
(⊕

v∈W 0(K̂v,G(F))[−1]⊗
⊕

v∈W 0(K̂v,G(G))
)

//

��

OO

⊕
v∈W 0(K̂v,G(Gm))[−1]

OO

��

Tot(0c(V,G(F))⊗0(V,G(G))) //

OO

0c(V,G(Gm))
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where the vertical maps are the natural ones and the horizontal pairings are defined earlier. The top
rectangle is commutative because of the definition of the pairing involving cohomology with support in a
closed subscheme, taking into account the sign conventions in Proposition A.1 in the Appendix. The
bottom one is commutative by definition of the pairing involving compact support cohomology.

Assume now that F and G are finite flat group schemes. Then the following maps are continu-
ous: the pairing H 2

c (V,F) × H 1(V,G) → H 3
c (V, Gm) (see Lemma 4.4), the pairing H 1(Ôv,F) ×

H 2
v (Ôv,G)→ H 3

v (Ôv, Gm) [Milne 1986, Theorem III.7.1] and the map
⊕

v∈W H 1(Ôv,F)→ H 2
c (V,F)

(see Proposition 3.6).

(2) We now prove the commutativity of the rectangle in the middle. Let

0̃(U,G(F)) := Cone(0(U,G(F))→
⊕
v /∈U

0(K̂v,G(F))⊕
⊕
v∈U\V

0(Ôv,G(F)))[−1].

Then functoriality of the cone gives a commutative diagram (similar to (3), where I •(F) is replaced by
G(F) and by G(Gm)) of complexes of abelian groups:

Tot(0c(V,G(F))⊗0(V,G(G))) // 0c(V,G(Gm))

Tot(0̃(U,G(F))⊗0(U,G(G))) //

OO

=

��

q

OO

��

0̃(U,G(Gm))

��

q

OO

Tot(0c(U,G(F))⊗0(U,G(G))) // 0c(U,G(Gm))

Here the maps denoted by q are quasi-isomorphisms (see Remark 2.7 and the proof of the third point
in Proposition 2.1, which uses Lemma 2.4). This diagram gives a commutative diagram in the derived
category of abelian groups (where all the maps are either the natural ones or the ones constructed above):

0c(V,G(F))⊗L 0(V,G(G)) //

��

0c(V,G(Gm))

��

0c(U,G(F))⊗L 0(U,G(G)) //

OO

0c(U,G(Gm))

Taking cohomology of this diagram gives a commutative diagram of abelian groups:

H r
c (V,F)× H s(V,G) //

��

H r+s
c (V, Gm)

��

H r
c (U,F)× H s(U,G) //

OO

H r+s
c (U, Gm)

which implies the required commutativity.
The continuity of the maps in the case where F and G are finite flat group schemes is a consequence

of Lemma 4.4 and of Lemma 3.3.
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(3) We now need to prove the commutativity of the bottom rectangle. By Lemma 4.2, the following
diagram commutes in the derived category:

0c(U,G(F))⊗L 0(U,G(G)) //

��

0c(U,G(Gm))

=

��

0(U,G(F))⊗L 0c(U,G(G)) //

OO

0c(U,G(Gm))

Computing cohomology gives a commutative diagram of abelian groups:

H r
c (U,F)× H s(U,G) //

��

H r+s
c (U, Gm)

=

��

H r (U,F)× H s
c (U,G) //

OO

H r+s
c (U, Gm)

Let 0W (U,G(G)) := Cone(0(U,G(G))→ 0(V,G(G)))[−1]. In order to prove the required commu-
tativity, it is enough to prove that the natural diagram

0(U,G(F))⊗L 0c(U,G(G)) // 0c(U,G(Gm))

0(U,G(F))⊗L 0W (U,G(G)) //

=

OO OO

0W (U,G(Gm))

OO

commutes in the derived category, where the pairing on the bottom row is defined in a similar way as the
pairing (10). Consider the following diagram in the category of complexes:

Tot(0(U,G(F))⊗0(U,G(G))) //

��

++

0(U,G(Gm))

��

((

Tot(0(U,G(F))⊗0(V,G(G)))

ss

// 0(V,G(Gm))

vv∏
v /∈U Tot(0(U,G(F))⊗0(K̂v,G(G))) //

∏
v /∈U 0(K̂v,G(Gm))

This diagram is commutative, hence, using Proposition A.1, it induces a commutative diagram of
complexes at the level of cones:

Tot(0(U,G(F))⊗0c(U,G(G))) //

��

0c(U,G(Gm))

��

Tot(0(U,G(F))⊗0W (U,G(G))) //

33

++

0W (U,G(Gm))

((

66

Tot(0(U,G(F))⊗0(U,G(G))) // 0(U,G(Gm))

The commutativity of the upper face of this last diagram concludes the proof.
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Assume now that F and G are finite flat group schemes. The only possibly nondiscrete groups in
the diagram are H 2

c (U,F) (in the case r = 1) and H 1(Ôv,F) (in the case r = 2). If r = 1, the pairing
H 2

c (U,F)× H 1(U,G)→ H 3
c (U, Gm) is continuous by Lemma 4.4 and H 2(Ôv,F) = 0 for all v ∈ W

(see for instance [Milne 1986, Lemma 1.1]), hence all maps are continuous in this case. If r = 2, then the
local pairings H 1(Ôv,F)×H 2

v (Ôv,G)→ H 3
v (Ôv, Gm) are continuous by [Milne 1986, Theorem III.7.1].

All the other maps are obviously continuous.

This finishes the proof of Lemma 4.7. �

We can now prove the following lemma [Milne 1986, Lemma III.8.4]:

Lemma 4.8. Let V ⊂U be a nonempty open subscheme. Let N be a finite flat commutative group scheme
over U. Then Theorem 1.1 holds for N over U if and only if it holds for N|V over V .

Proof. Propositions 2.1(3), 2.12, and 3.6 and Lemma 4.7 give a commutative diagram of long exact
sequences of topological groups

· · · // H 3−r
c (V, N ) //

��

H 3−r
c (U, N ) //

��

⊕
v∈U\V H 3−r (Ôv, N ) //

��

· · ·

· · · // H r (V, N D)∗ // H r (U, N D)∗ //
⊕

v∈U\V H r
v (Ôv, N D)∗ // · · ·

where the vertical maps are defined via the pairings (9) and the local duality pairings of [Milne 1986,
III.7.1]. In particular, the maps H 3−r (Ôv, N ) → H r

v (Ôv, N D)∗ are isomorphisms by [Milne 1986,
Theorem III.7.1]. The middle vertical map is strict by Lemmas 4.4 and 3.4. Therefore the five-lemma
gives the result. �

The end of the proof of Theorem 1.1 (which implies in particular that by duality the groups H r (U, N D)

are zero for r ≥ 4, resp. for r = 3 if U 6= X ) is exactly the same as the end of the proof of Theorem III.8.2
in [Milne 1986]. Let U ⊂ X be a nonempty open subset and N be a finite flat commutative group scheme
over U :

• If the order of N is prime to p, then Theorem 1.1 is a consequence of Proposition 2.1(4) and étale
Artin–Verdier duality (Corollary II.3.3 in [Milne 1986] or Theorem 4.6 in [Geisser and Schmidt 2018]).
Note that it requires to compare the pairing defined in Lemma 4.1 with the Artin–Verdier pairing using
Ext groups as defined in [Milne 1986] or [Geisser and Schmidt 2018] : this is explained for instance in
Proposition A.2 of the Appendix. Hence by Lemma 4.6, it is sufficient to prove Theorem 1.1 when the
order of N is a power of p.

• If the order of N is a power of p, the proof of Proposition 3.5 implies that N admits a composition
series such that the generic fiber of each quotient is either of height one or the dual of a group of height
one. By Lemma 4.6, it is therefore sufficient to prove Theorem 1.1 in the case NK or N D

K have height one.

• If NK or N D
K have height one, Proposition B.4 and Corollary B.5 in [Milne 1986] imply that there

exists a nonempty open subset V ⊂U such that N|V extends to a finite flat commutative group scheme Ñ
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over the proper k-curve X , such that Ñ or Ñ D have height one. Using Lemma 4.8 twice, it is enough to
prove Theorem 1.1 when U = X and N or N D have height one.

• Lemma III.8.5 in [Milne 1986] proves Theorem 1.1 for U = X and N (resp. N D) of height one, by
reduction to the classical Serre duality for vector bundles over the smooth projective curve X . Indeed,
Proposition V.1.20 in [Milne 1980] proves that the pairings R0(X,FD)⊗L R0(X,F)→ R0(X, Gm)

defined via Godement resolutions in the proof of Lemma 4.1 are compatible with the classical pairings
using Ext groups that appear in Serre duality.

As observed in [Milne 1986, Section III.8] (remark before Lemma 8.9), the group H 1(U, N ) is in
general infinite if U 6= X and by duality, the same is true for H 2

c (U, N ). However, the situation is better
for H 2 and H 1

c .

Corollary 4.9. Let N be a finite and flat commutative group scheme over a nonempty Zariski open subset
U of X. Then the groups H 2(U, N ) and H 1

c (U, N ) are finite.

Proof. The statement about H 1
c (U, N ) is Corollary 3.2. The finiteness of H 2(U, N ) follows by the duality

Theorem 1.1. �

The previous corollary can be refined in some cases.

Proposition 4.10. Let N be a finite and flat commutative group scheme over a nonempty affine open
subset U ⊂ X , such that the generic fiber NK is local. Then H 1

c (U, N )= 0.

Proof. By the valuative criterion of properness, the restriction map H 1(U, N )→ H 1(K , N ) is injective.
It is sufficient to show that if we choose v 6∈U , the restriction map H 1(K , N )→ H 1(K̂v, N ) is injective
when NK is local. Indeed this implies that D1(U, N )= 0, hence H 1

c (U, N )= 0 by exact sequence (6)
because H 0(K̂v, N )= 0 for every completion K̂v of K .

We also reduce to showing that for every finite subextension L/K of K̂v/K , the restriction map
r : H 1(K , N )→ H 1(L , N ) is injective (indeed a K -torsor under the finite K -group scheme NK is of
finite type over K , hence it has a point over an extension K ′ of K if and only if it has a point over a
finite subextension of K ′). To do this, we argue as in [Česnavičius 2015b, Lemma 5.7(a)]. Since by
[Ribenboim 1968, Section F, Theorem 2], L is a separable extension of K , the K -algebra E := L ⊗K L
is reduced. As NK is finite and connected, the group N (E) is trivial. Let C1

:= RE/K (N ×K E) (where
R denotes Weil’s restriction of scalars) be the scheme of 1-cochains with respect to L/K , we obtain that
C1(K ) is trivial, which in turn implies that ker r is trivial by [Česnavičius 2015b, Section 5.1]. �

Remark 4.11. The finiteness of H 1
c (U, N ) (Corollary 3.2) relies on the finiteness of D1(U, N ) proven

in [Česnavičius 2017, Theorem 2.9]. An alternative argument is actually available. By [Milne 1986,
Lemma III.8.9], we can assume that U 6= X , namely that U is affine. By [loc. cit., Theorem II.3.1]
and Proposition 2.1(4), we can also assume that the order of N is a power of p. Let NK be the generic
fiber of N , it is a finite group scheme over K . By [Demazure and Gabriel 1970, IV, Section3.5], and
Proposition 2.1(2), it is sufficient to prove the required finiteness in the following cases: NK is étale, NK is
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local with étale dual, NK =αp. The last two cases are taken care of by Proposition 4.10, so we can suppose
that NK is étale. Let V ⊂U be a nonempty open subset. By Proposition 2.1, we have an exact sequence

H 1
c (V, N )→ H 1

c (U, N )→
⊕
v∈U\V

H 1(Ôv, N ).

Since the generic fiber of N is étale, the group H 1(Ôv, N ) is finite by [Milne 1986, Remark III.7.6]
(this follows from the fact that H 1(Ôv, N ) is a compact subgroup of the discrete group H 1(Kv, N )),
hence the finiteness of H 1

c (U, N ) is equivalent to the finiteness of H 1
c (V, N ), which in turn is equivalent

to the finiteness of D1(V, N ). The latter holds for V sufficiently small: either apply [González-Avilés
2009, Lemma 4.3] (which relies on an embedding of NK into an abelian variety) or reduce (as in [Milne
1986, Lemma III.8.9]) to the case when N D is of height one. Indeed by [loc. cit., Corollary III.B.5], the
assumption that N D is of height one implies that for V sufficiently small, the restriction of N to V extends
to a finite and flat commutative group scheme Ñ over X . Then the finiteness of H 1

c (X, Ñ ) implies the
finiteness of H 1

c (V, Ñ )= H 1
c (V, N ) by Proposition 2.1(3), because the groups H 0(Ôv, Ñ ) are finite.

5. The number field case

Assume now that K is a number field and set X = SpecOK . Let U be a nonempty Zariski open subset
of X . Let n be the order of the finite and flat commutative group scheme N . To prove Theorem 1.1 in this
case, one follows exactly the same method as in [Milne 1986, Theorem III.3.1 and Corollary III.3.2], once
Proposition 2.1 has been proved. Namely Proposition 2.1(4) shows that on U [1/n], Theorem 1.1 reduces
to the étale Artin–Verdier Theorem [Milne 1986, II.3.3] or [Geisser and Schmidt 2018, Theorem 4.6].
Here we can use a definition of the pairings similar to Lemma 4.1, or a definition via the Ext pairings
as in [loc. cit.] (the two definitions coincide, the argument being the same as in Proposition A.2 of the
Appendix). Now Proposition 2.1(3) gives a commutative diagram as in the end of the proof of [Milne
1986, Theorem III.3.1] (with completions Ôv instead of henselizations Ov). Theorem 1.1 follows by the
five-lemma, using the result on U [1/n] and the local duality statement [Milne 1986, Theorem III.3.1].

Remark 5.1. In the number field case, one can as well (as in [Milne 1986, Section III.3]) work from the
very beginning with henselizations Ov and not with completions Ôv to define cohomology with compact
support. Indeed the local theorem [loc. cit., Theorem III.3.1] still holds with henselian (not necessarily
complete) discrete valuation ring with finite residue field when the fraction field is of characteristic zero.
Hence the only issue here is commutativity of diagrams. Nevertheless, we felt that it was more convenient
to have a uniform statement (Proposition 2.1) in both characteristic 0 and characteristic p situations.

Appendix

A.1. Cone and tensor products.

Proposition A.1. Let A be the category of fppf sheaves over a scheme T . Let A, B and C be three
complexes in A. Let f : A→ B be a morphism of complexes. Then there are commutative diagrams
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(where ⊗ denotes the total tensor product of complexes) such that the vertical maps are isomorphisms of
complexes

A⊗C
f⊗1
//

=

��

B⊗C

=

��

i⊗1
// Cone( f )⊗C

∼

��

−π⊗1
// A[1]⊗C

∼

��

A⊗C
f⊗1
// B⊗C i ′

// Cone( f ⊗ 1)
−π
// (A⊗C)[1]

where the vertical isomorphisms involve no signs, and

C ⊗ A
1⊗ f

//

=

��

C ⊗ B

=

��

1⊗i
// C ⊗Cone( f )

∼

��

−1⊗π
// C ⊗ A[1]

∼

��

C ⊗ A
1⊗ f

// C ⊗ B i ′
// Cone(1⊗ f )

−π
// (C ⊗ A)[1]

where the two last vertical maps involve a sign (−1)r on the factor Cr ⊗ As .

Proof. In the first diagram, define the nonobvious map Cone( f )⊗C→ Cone( f ⊗ 1) (resp. A[1]⊗C→
(A⊗C)[1]) by the isomorphism (Br ⊕ Ar+1)⊗Cs → (Br ⊗Cs)⊕ (Ar+1⊗Cs) (resp. by the identity
of Ar+1 ⊗ Cs). In the second diagram, the nonobvious map C ⊗ Cone( f ) → Cone(1 ⊗ f ) (resp.
C⊗ A[1]→ (C⊗ A)[1]) is given by the isomorphism Cr ⊗ (Bs⊕ As+1)→ (Cr ⊗ Bs)⊕ (Cr ⊗ As+1) that
maps c⊗(b, a) to (c⊗b, (−1)r c⊗a) (resp. by the automorphism of Cr⊗As+1 given by c⊗a 7→(−1)r c⊗a).
The proposition is then straightforward. �

A.2. Comparison of two pairings. Let U be a nonempty Zariski open subset of a smooth, projective,
geometrically integral curve defined over a finite field.

Proposition A.2. Let A, B and C be three fppf sheaves on U , endowed with a pairing A⊗ B→ C. Then
there is a commutative diagram

H r (U, A)⊗ H s
c (U, B) //

��

H r+s
c (U,C)

=

��

ExtrU (B,C)⊗ H s
c (U, B) // H r+s

c (U,C)

where the top pairing is the one from (10) and the bottom one is the pairing from [Milne 1986, Proposi-
tion III.0.4.e]. The same holds for étale sheaves instead of fppf sheaves if we replace fppf cohomology
(resp. compact support fppf cohomology) by étale cohomology (resp. compact support étale cohomology);
in the étale case the bottom pairing is the one from [loc. cit., Proposition II.2.5] (or [Geisser and Schmidt
2018]).

Proof. We prove the statement for fppf sheaves (the étale case is similar). Consider the natural morphisms
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of complexes
Tot(G(A)⊗G(B))→ G(A⊗ B)→ G(C).

Using [Stacks 2005–, Tag 0A90], one gets a natural morphism of complexes G(A)→Hom•(G(B),G(C))
and a commutative diagram of complexes

Tot(G(A)⊗G(B)) //

��

G(A⊗ B) // G(C)

=

��

Tot(Hom•(G(B),G(C))⊗G(B)) // G(C)

where the second pairing is the natural one. All morphisms in this diagram involve no extra-sign.
Let G(C)→ I be an injective resolution. Then one gets a commutative diagram:

Tot(G(A)⊗G(B)) //

��

G(A⊗ B) // G(C)

��

Tot(Hom•(G(B), I )⊗G(B)) // I

Taking global sections, one gets a commutative diagram:

Tot(0(U,G(A))⊗0(U,G(B))) //

��

0(U,G(C))

∼

��

Tot(Hom•U (G(B), I )⊗0(U,G(B))) // 0(U, I )

(1)

Taking cohomology, one gets a commutative diagram comparing the pairing from the beginning of
Section 4 to the classical Ext-pairing:

H r (U, A)⊗ H s(U, B) //

��

H r+s(U,C)

=

��

ExtrU (B,C)⊗ H s(U, B) // H r+s(U,C)

Applying functoriality of cone to (1) and to the similar pairing over completions of K , one gets a
commutative diagram of complexes:

Tot(0(U,G(A))⊗0c(U,G(B))) //

��

0c(U,G(C))

∼

��

Tot(Hom•U (G(B), I )⊗0c(U,G(B))) // 0c(U, I )

Taking cohomology, we get the required commutative diagram. �
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Remarks A.3. (1) A similar diagram holds with compact support cohomology groups on the left and
Ext-groups on the right. In this case, one gets a commutative diagram:

H r
c (U, A)⊗ H s(U, B) //

��

H r+s
c (U,C)

=

��

H r
c (U, A)⊗ExtsU (A,C) // H r+s

c (U,C)

where the first pairing is the one from Lemma 4.1, while the vertical map and the bottom pairing both
involve a (−1)rs sign.

(2) Similar commutative diagrams hold over an arbitrary basis, with compact support cohomology
replaced by cohomology with support in a closed subscheme (with a similar proof).
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