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Betti numbers of Shimura curves
and arithmetic three-orbifolds

Mikołaj Frączyk and Jean Raimbault

We show that asymptotically the first Betti number b1 of a Shimura curve satisfies the Gauss–Bonnet
equality 2π(b1− 2)= vol where vol is hyperbolic volume; equivalently 2g− 2= (1+ o(1))vol where g
is the arithmetic genus. We also show that the first Betti number of a congruence hyperbolic 3-orbifold
asymptotically vanishes relatively to hyperbolic volume, that is b1/vol→ 0. This generalizes previous
results obtained by Frączyk, on which we rely, and uses the same main tool, namely Benjamini–Schramm
convergence.

1. Introduction

1A. Benjamini–Schramm convergence. Let G be a semisimple Lie group, K ⊂ G a maximal compact
subgroup and X = G/K the associated symmetric space. Benjamini–Schramm convergence of locally
symmetric orbifolds 0\X of finite volume was introduced in [Abert et al. 2017]. The Benjamini–Schramm
convergence of a sequence of finite volume locally symmetric spaces (0i\X)i∈N to the symmetric space
X is equivalent to the following simple geometric condition:

∀R > 0, lim
i→∞

vol((0i\X)<R)

vol(0i\X)
= 0, (1-1)

where M<R denotes the R-thin part of a Riemannian orbifold M (which we take to include the full
singular set, see (3-1) below).

In addition to X there are other possible limits in the Benjamini–Schramm topology. In order to
describe them it is convenient to pass to the language of invariant random subgroups (IRS) of the group G.
These are the Borel probability measures on the Chabauty space SubG of closed subgroups which are
invariant under conjugation by elements of G. For every lattice 0 of G there is a unique G-invariant
probability measure on G/0 and its pushforward by the map g0 7→ g0g−1 gives an IRS denoted µ0.
It was observed in [Abert et al. 2017] that (0i\X) converges to X if and only if µ0i converge weakly-*
to the trivial IRS δ{1}. In general a sequence (0i\X) converges Benjamini–Schramm if and only if µ0
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converges weakly-* to some IRS ν. The limit IRS ν is always supported on discrete subgroups and the
Benjamini–Schramm limit is the random locally symmetric space X/3 where 3 is a ν-random subgroup
of G.

It was proven in [Abert et al. 2017], as a consequence of the Nevo–Stück–Zimmer theorem, that if G
is semisimple of higher rank, with all factors having property (T) then any sequence of irreducible locally
symmetric spaces converges in the Benjamini–Schramm sense to X . This was extended to all nontrivial
products in [Levit 2017] (see also [Matz 2019] for more precise results in a very specific case).

This statement is known to be false when G = SO(n, 1) or SU(n, 1), because in those cases there are
lattices 0 ⊂ G such that H 1(0,R) 6= 0 (see [Millson 1976; Li and Millson 1993; Kazhdan 1977]). On
the other hand restricting attention to the family of arithmetic congruence lattices in G (see Section 1D
below for a short description) Fraczyk [2016] proved that for G = SO(2, 1) or SO(3, 1) the symmetric
space X = H2 or H3, respectively, is the only possible limit in the Benjamini–Schramm topology for a
sequence of torsion-free congruence lattices. Previously Raimbault [2017] proved a similar result for the
family of nonuniform, not necessarily torsion-free lattices (nonuniformity makes them much easier to
deal with algebraically). In this paper we remove the torsion-free hypothesis in general.

Theorem A. If G = PGL2(R) or PGL2(C) and 0n is a sequence of irreducible arithmetic lattices in G,
which are either all congruence and pairwise distinct, or pairwise noncommensurable, then the sequence
of locally symmetric spaces 0n\X converges in the Benjamini–Schramm sense to X .

In [Fraczyk 2016] the torsion free assumption was necessary because the methods only allowed control
of the volume of the subset of thin part consisting of the collars of short geodesics. For a sequence of
general arithmetic congruence orbifolds (0n\X)n∈N it could a priori happen that the vast majority of
the thin part comes from the cusps or the conical singularities so the sequence does not converge to X .
Theorem A excludes this possibility. For the proof we use the estimates developed in [Fraczyk 2016] to
show that any weak-* limit of the sequence µ0n is supported on elementary subgroups. By [Osin 2017]
the only IRS supported on this set is the trivial IRS, hence the theorem. We carry out the second step of
this scheme of proof in detail in Proposition A.4, which is valid for all sequences of lattices in proper
Gromov-hyperbolic spaces.

We note that because we are using a soft method our approach does not indicate the rate of decay of
vol(0n\X)<R)/ vol(0n\X) as opposed to [Fraczyk 2016].

1B. Genus of Shimura curves. One application of Theorem A is to determine the asymptotic genus of
congruence surfaces of large volume. For compact surfaces without singularities the genus and volume
are essentially linearly related by the Gauss–Bonnet formula. However for 2-orbifolds terms coming
from cone points and cusps appear in the formula, and it is easy to see that there exists sequences
of hyperbolic orbifolds with underlying space a sphere and volume going to infinity. This also has
an algebraic interpretation: if S is isomorphic as a Riemann surface to the C-points of an algebraic
variety defined over a number field, which is the case for orbifolds obtained from congruence groups
(so-called Shimura curves [1971]), then its arithmetic genus is given by the Riemann–Hurwitz formula
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and essentially proportional to the volume while its geometric genus equals the topological genus of the
underlying surface and can be arbitrarily smaller than the former.

It is known that this phenomenon cannot occur for congruence orbifolds: using the uniform spectral gap
for congruence quotients (see [Clozel 2003] for a more general result) and a theorem of P. Zograf [1991]
it follows that there is a lower bound of the form g ≥ c vol for congruence subgroups (see also [Long et al.
2006]). As a consequence of Theorem A we obtain the following asymptotically more precise result (we
note that it was known for congruence covers of the modular surface by a result of J. G. Thompson [1980]).

Theorem B. Let 0n be a sequence of congruence lattices in PSL2(R), and let gn be the topological genus
of the orbifold On = 0n\H

2. Then, assuming the 0n are not pairwise conjugated, we have

lim
n→+∞

gn

vol On
=

1
4π
.

1C. Betti numbers of 3-orbifolds. Theorem B is equivalent to the statement that b1(0n)/ vol(0n\H
2)

converges to 1/2π for a sequence of congruence lattices. Indeed, the rank of abelianization is essentially
equal to twice the genus in a BS-convergent sequence. This can be proven more directly by analytical
means, as 1/2π is the first L2-Betti number of the hyperbolic plane. While more complicated, the analytic
approach generalizes to the dimension 3 and where obtain the following result.

Theorem C. Let 0n be a sequence of congruence lattices in PSL2(C). Then

lim
n→+∞

b1(0n)

vol(0n\H3)
= 0.

This was proven in [Raimbault 2017] for nonuniform lattices, and in [Fraczyk 2016] for the case of
all torsion-free lattices. Our proof is very similar to the proof for hyperbolic 3–manifolds appearing in
[Abert et al. 2017].

1D. Congruence lattices. For completeness we give an explicit description of the congruence arithmetic
latices in G = PGL(2,R),PGL(2,C), though we will not directly use this structure theory in the rest of
the paper. Let K=R,C. We start by choosing a number field k with Archimedean places ν1, . . . , νd such
that kν1 'K and kνi 'R for i ≥ 2. In what follows A and A f stand for the ring of adèles and, respectively,
finite adèles of k. We will write k 3 x 7→ (x)ν ∈ kν for the embedding of k in its completion kν . Let
a, b ∈ k× be such that (a)νi , (b)νi are positive for i ≥ 2 and (a)ν1 or (b)ν1 is negative if K'R. We define
the quaternion algebra A as

A = k+ ik+ jk+ i jk,

subject to the relations i2
=−a, j2

=−b, i j =− j i . By our choice of a, b we have A⊗k kν1 ' M(2,K)

and for i ≥ 2 the algebra A⊗k kνi is isomorphic to the Hamilton’s quaternions. We form an algebraic
group PA× = A×/k×. It is an adjoint simple group of type A1 defined over k. Note that PA×(A) =
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PA×(k⊗Q R)×PA×(A f ) and

PA×(k⊗Q R)=

d∏
i=1

PA×(kνi )' PGL(2,K)×PO(3)d−1.

Choose an open compact subgroup U of PA×(A f ). Let 0U = PA×(k)∩(PA×(k⊗Q R)×PA×(A f )). By a
classical result of Borel and Harish-Chandra [1962] the group 0U is a lattice in PA×(k⊗QR)×PA×(A f )'

PGL(2,K)×PO(3)d−1
×U . The projection of 0U to the factor PGL(2,K) is a congruence arithmetic

lattice in PGL(2,K). Every congruence arithmetic lattice of PGL(2,K) arises in this way.

1E. Outline of the paper. In Section 2 we apply a “soft” criterion for Benjamini–Schramm convergence,
together with the estimates from [Fraczyk 2016], to deduce Theorem A. The criterion is proven, in a
general form including lattices in the isometry group of any proper Gromov-hyperbolic space, in Appendix
A Next, in Section 3 we give a precise metric description of the singular locus of hyperbolic 2- and
3-orbifolds, and (in the 3-dimensional case) a way to smooth the boundary of the thick part while keeping
control of the geometry (the technical details of which are left to a second Appendix B). We use this
description of singularities and Theorem A to deduce Theorem B in Section 4. In Section 5 we use
heat kernel methods (for which we need the precise description of the smoothed thick part) to deduce
Theorem C from Theorem A.

2. Benjamini–Schramm convergence of quotients of hyperbolic spaces

2A. A criterion for convergence. Let G be a semisimple Lie group and γ a semisimple element of G.
Let Gγ be the centralizer in G of 0, then for any sufficiently decreasing (for example compactly supported)
continuous function on G the following integral makes sense.

O f (γ )=

∫
G/Gγ

f (γ−1xγ ) dx (2-1)

The following proposition is a generalization of [Raimbault 2017, Proposition 2.2]. We provide a self-
contained proof (along the same lines as that of [loc. cit.]) of a much more general result valid for all
Gromov-hyperbolic spaces in Proposition A.4 below.

Proposition 2.1. Let 0n be a sequence of lattices in either PGL2(R) or PGL2(C) and d= 2, 3 accordingly.
Let U be the subset of loxodromic elements in G. If for every smooth compactly supported function f on
G the limit

lim
n→+∞

∑
[γ ]0n⊂U vol((0n)γ \Gγ )O f (γ )

vol(0n\G)
= 0 (2-2)

holds, then 0n\H
d is BS-convergent to Hd .

This is essentially tautological if the 0n are torsion-free; the nontrivial part is that it allows us to avoid
studying the elliptic conjugacy classes (and the parabolic classes if the 0n are noncompact) in order to
establish BS-convergence of a sequence of orbifolds.
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2B. Proof of Theorem A. If X is a rank-one irreducible symmetric space such as H2 or H3 and G =
Isom(X) then G is a simple Lie group of noncompact type and its elliptic radical is trivial. Theorem A
thus follows immediately from Proposition 2.1 and the following result extracted from [Fraczyk 2016].

Theorem 2.2. Let G = PGL2(R) or PGL2(C) and let U be the set of hyperbolic elements of G. Let 0n a
sequence of arithmetic congruence lattices in G, such that vol(0n\G)→+∞ or any sequence of pairwise
noncommensurable arithmetic lattices. Then for any f ∈ C∞0 (G) we have

1
vol(0n\G)

∣∣∣∣ ∑
[γ ]⊂U

vol((0n)γ \Gγ )O f (γ )

∣∣∣∣ n→+∞
−−−→ 0. (2-3)

Proof. If 0 is an arithmetic lattice in PGL2(R) or PGL2(C) then an element γ ∈ 0 is hyperbolic if and
only if it is semisimple and of infinite order. In the proof of [Fraczyk 2016, Theorem 1.8], starting form
the lines (10.7–10.9) the author bounds the sum∑

[γ ]0
nontorsion

vol(0γ \Gγ )Oγ ( f ) (2-4)

for congruence arithmetic lattices. The line (10.7) of [loc. cit., page 67] is the adèlic version of the
last sum where we group together the classes conjugate over PA×(k), where PA× is the group used to
construct the lattice 0 as explained in Section 1D. The passage between the adèlic and classical trace
formula is explained in [loc. cit., Theorem 4.21]. Proceeding as in [loc. cit., pages 67–69] we obtain the
bound ∑

[γ ]0
nontorsion

vol(0γ \Gγ )Oγ ( f )� vol(0\G)0.986.

Any hyperbolic conjugacy class [γ ]0 is nontorsion so we can deduce the that the sum (2-3) converges to
0 as vol(0\X)→∞ and 0 is a congruence arithmetic lattice. In order to establish the convergence for
sequences of pairwise noncommensurable arithmetic lattices (0n)n∈N we choose for each n a maximal
arithmetic lattice 3n containing 0n . It is always a congruence arithmetic lattice. We have

1
vol(0n\X)

∣∣∣∣ ∑
[γ ]0n∈U

vol((0n)γ \Gγ )O f (γ )

∣∣∣∣≤ 1
vol(0n\X)

∑
[γ ]0n∈U

vol((0n)γ \Gγ )O| f |(γ )

≤
1

vol(3n\X)

∑
[γ ]3n∈U

vol((3n)γ \Gγ )O| f |(γ )

= o(1). �

3. Structure of the singular locus of closed hyperbolic orbifolds

To be able to deduce from the sole Benjamini–Schramm convergence of a sequence of orbifolds further
asymptotic results on topological invariants we need a fine metric description of the singular locus. The
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results in this section provide it; they are not really original but precise statements such as we need are
not easily found in the literature. As usual our main tool is the Margulis lemma.

Theorem 3.1. For every n ≥ 2 there exists ε= ε(n) > 0 such that the following holds. Let 0 be a discrete
subgroup of isometries of Hn , then for any x ∈ Hn the subgroup

0ε := 〈γ ∈ 0 : d(x, γ x)≤ ε〉

is virtually abelian.

In the sequel we will only work in 2 or 3-dimensional hyperbolic space, and we let ε denote a Margulis
constant which is valid for both cases. Recall that O≤ε stands for the ε-thin part of an orbifold O , for
which we use the following definition: if O = 0\X where X is the orbifold universal cover and we
assume X to be CAT(0) then

O≤ε = 0\{x̃ ∈ X : ∃γ ∈ 0 \ {Id}, d(x̃, γ x̃)≤ ε} (3-1)

which includes the singular locus of O — note that in the literature, e.g., in [Boileau et al. 2003], a
different convention is often used where only points with large stabilizers are included. The closure of
the complement of O≤ε (the ε-thick part) will be denoted by O≥ε.

In fact we need to tweak a bit the definition of the thin part around that part of the singular locus where
the cone angle is π : around these vertices or geodesics we put a collar whose width is ε/6 (instead of
ε/2).

3A. 2-dimensional orbifolds. In PGL2(R)
+ all the virtually abelian discrete subgroups are given by the

following list:

(1) An infinite cyclic group generated by an hyperbolic or parabolic isometry.

(2) A finite cyclic group generated by an elliptic isometry.

(3) An infinite dihedral group generated by two elliptic isometries of order 2.

As a first consequence we see that the singular locus of an orientable hyperbolic 2-orbifold consists only
of cone points, that is all nonmanifold points have a neighborhood which is isometric to the quotient of a
disc by a finite cyclic group.

In addition we can deduce from this classification a metric description of the singular locus. We need
the following notation: given an elliptic isometry γ with fixed point x and rotation angle θ , let `(θ, ε)
be the smallest ` such that d(y, γ y) ≥ ε for d(x, y) = `. Similarly, given a hyperbolic isometry γ of
minimal displacement ` we define r(`, ε) to be the minimal distance from its axis at which an hyperbolic
isometry translates of at least ε.

Lemma 3.2. Let O = 0\H2 be an orientable hyperbolic 2-orbifold and x a point in its singular locus.
Then x is an isolated cone point and one of the following possibilities hold:
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(1) If its angle is 2π/m with m ≥ 3 then there is no other singular point in the ball BO(x, `) where
`= `(2π/m, ε).

(2) If the angle is equal to π then either there is no other singular point within distance `(π, ε), or there
is one (and its cone angle is also π) at distance `x < `(π, ε) but no other within distance r(`x , ε)

of x.

Proof. Let 0x ∈ O be as in the statement, with x ∈ H2. Then x is a fixed point of a nontrivial element
of 0, and it follows that the subgroup

0εx = {γ ∈ 0 : d(x, γ x)≤ ε}

must be one of those described in (2) or (3) at the beginning of this section; let γ0 be a generator (with
minimal rotation angle) of the cyclic subgroup fixing x and m > 1 its order.

In any case x lies above a conical point in O . Assume now that m ≥ 3; then 0x = 〈γ0〉 and by the
Margulis lemma there is no other fixed point of a nontrivial element in 0 within the set

C = {y ∈ H2
: d(y, γ0 y)≤ ε)}.

By definition the ball BH2(x, `(2π/m, ε)) is contained in C , so it contains no other singular point.
If m = 2 and there is another elliptic fixed point x ′ ∈H2 with d(x, x ′)≤ `(π, ε) then we might assume

that x ′ is the closest such point. By the previous paragraph any nontrivial γ ′0 ∈ 0 fixing x ′ must be
of order 2. Let η = γ0γ

′

0. It is a hyperbolic isometry with axis containing the geodesic α joining x to
x ′ and translation distance 2d(x, x ′). Write 0α for the setwise stabilizer of α in 0. For every γ ∈ 0α
not fixing x we will have d(x, γ x) ≥ 2d(x, x ′) as otherwise γ0γ would have a fixed point closer to x
than x ′. We deduce that 0α = 〈γ0, γ

′

0〉. The former is a maximal virtually abelian subgroup of 0 (it is an
intersection of 0 with the normalizer of a split torus). The Margulis lemma now implies that within the
ball BH2(x, `(π, ε)) (resp. BH2(x, r(`x , ε))) any other elliptic fixed point must be a translate of either x
or x ′ by a power of η, as any such point is moved by at most ε by γ0 (resp. η) and hence its stabilizer in
0 must belong to 0α. �

3B. 3-dimensional orbifolds.

3B1. Description of the singular locus. The list of discrete virtually abelian subgroups of PGL2(C)

is long enough to make us avoid giving a complete description. Rather, we will assume that 0 is a
cocompact lattice in PGL2(C) and 3 a maximal virtually abelian subgroup of 0 which contains torsion
elements (which is all we need to prove Theorem C). If 3 contains a hyperbolic element γ then it must
normalize 〈γ 〉, so it is contained in the normalizer of a maximal torus. Any such normalizer is isomorphic
to C×oZ/2. Otherwise 3 contains only elements of finite order and so by Burnside’s theorem it must
be a finite subgroup of the maximal compact PU(2). It follows that 3 is one of the following groups:

(1) 〈γ, η〉 ∼= Z×Z/m where γ, η are respectively hyperbolic and elliptic isometries sharing the same
axis.
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(2) 〈γ, η, ρ〉 ∼= (Z×Z/m)oZ/2 where η, γ are as above (with η possibly trivial) and ρ is an elliptic of
order 2 with axis orthogonal to that of γ or η.

(3) One of the finitely many nondihedral finite subgroups of PU(2).

We see from this description that the singular locus of an hyperbolic 3-orbifold consists of closed geodesics
(which we will call singular geodesics), which can intersect each other. A singular point not on the
intersection of two singular geodesics has a neighborhood isometric to the quotient of a ball by a rotation;
the angle of the latter we will call the cone angle of the singular geodesic. We will call a vertex which is
at the intersection of two or more singular geodesics a vertex of the singular locus.

Together with the Margulis lemma the list above allows us to give the following metric description
of the singular locus (see also [Boileau et al. 2003, Corollary 6.3] for a more geometric description,
and [loc. cit., Figure 5 on page 33] for illustrations). This description is analogous to the situation from
Lemma 3.2; we recall that ` and r were defined there.

Lemma 3.3. Let O be a compact orientable 3-dimensional hyperbolic orbifold and 6 its singular locus.
Let x ∈6 be a vertex. Then one of the two following possibilities hold:

(1) The ε/2-neighborhood of x is isometric to one of a finite list of orbifolds, whose singular locus has
only one vertex and all singular geodesics go through x.

(2) There is at most one other singular vertex x ′ within distance ε/2 of x ; x and x ′ are joined by a
singular geodesic c of length ` and cone angle 2π/m, there are two singular geodesics with cone
angle π and orthogonal to c each going through one of x or x ′. There are no further components of
the singular locus within distance max(`(2π/m, ε), r(`, ε)) of x and x ′.

Moreover if two nonintersecting singular geodesics of O are within distance ε/2 of each other then both
have angle π .

Proof. Let O = 0\H3 a closed hyperbolic 3-orbifold. Let x be a vertex in the singular locus of O and
5 the subgroup of 0 fixing a lift x̃ of x to H3. Then 5 is either a dihedral group Z/m oZ/2 or one of
finitely many finite nondihedral subgroups of PU(2), according to the list of virtually abelian subgroups
of 0 above.

If the vertex is as in (1) and η ∈ 0, η 6∈5 is an elliptic isometry of order m then as (by the Margulis
lemma) 5 contains all isometries moving x̃ by at most ε any fixed point of η must be at distance at least
`(2π/m, ε) ≥ `(π, ε) = ε/2 of x̃ . Similarly any hyperbolic isometry in 0 must move x̃ by at least ε.
Hence the quotient 5\B(x̃, ε/2) embeds into O .

If the vertex has a dihedral stabilizer as in (2) let η be a generator of the Z/m-subgroup and γ a
generator of the Z-subgroup commuting with η. We might assume that either `< ε/2 or m > 5 (otherwise
we can add its neighborhood to the finite list in (1)). Then any elliptic element of 0 which does not
normalize 〈η〉 cannot fix a point in B(x̃, ε) (otherwise it and η would generate a subgroup moving a point
by less than ε but not in the list given above, which is not possible by the Margulis lemma). Similarly it
cannot fix a point within r(`, ε) of the axis of γ . �
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3B2. Smoothing the thick part. Let C = (C0,C1, . . .)∈ [0,+∞[N. As (a slight variation of) the definition
in [Lück and Schick 1999] we say that a Riemannian manifold has C-bounded geometry if its injectivity
radius is at least C0, the normal geodesic flow up to C0 gives coordinates for a collar neighborhood of the
boundary, and the k-th derivatives of the metric tensor and its inverse (in normal coordinates) are bounded
in sup norm by Ck . In this section we prove the following lemma.

Lemma 3.4. There exists C such that for any hyperbolic 3-orbifold O there exists a smooth submanifold
O ′ such that:

• O≥ε ⊂ O ′ and this is an homotopy equivalence.

• O ′ is of C-bounded geometry.

We will deduce the lemma from the description of the singular locus and the following general
proposition, the proof of which we give in Appendix B.

Proposition 3.5. Let X be a Riemannian d-manifold and H1, H2 two open subsets whose closures have
smooth boundary. Assume the following hold:

• They intersect transversally in a compact subset; let α0 such that the dihedral angles at the intersection
stay within the interval ]α0, π −α0[.

• Both manifolds X \ Hi are of bounded geometry.

Then for any δ > 0 there exists an open subset H of X such that:

(1) H ⊃ H1 ∪ H2 and they are equal outside of the δ-neighborhood of H1 ∩ H2.

(2) The closure of H has a smooth boundary.

(3) X \ H is of bounded geometry; the bounds depend only on δ, on the bounds on the geometry of X
and X \ Hi and on α0.

Proof of Lemma 3.4. Observe first that the boundary of the thin part is smooth away from the geodesics
with cone angle π and the vertices of the singular locus, as follows from the third part of Lemma 3.3. Thus
the nonsmooth part of ∂O≥ε comes from intersecting tubular neighborhoods of singular geodesics and
short geodesics. There are finitely many possible configurations where the geodesics are not orthogonal
to each other (corresponding to case (1) of Lemma 3.3); we do not need to deal in detail with these, so the
only problem left to deal with is the following: at all points in the intersection of the tubular neighborhood
N1 (with varying radius) of one geodesic, and the ε/6-tubular neighborhood N2 of another geodesic
orthogonal to the first, the dihedral angle between ∂N1 and ∂N2 stays bounded away from 0 and from π .1

To prove this note that the maximum and minimum values for these angles both are continuous functions
of the radius 0 ≤ r < +∞ of N1. It can be continuously extended to r = +∞, the values then being
those of the angle (in a conformal model of H3) between ∂N1 and the boundary at infinity of H3. As N1

1Note that the neighborhoods corresponding to two geodesics orthogonal to a third one cannot intersect each other, because
we took their radius to be ε/3 and the distance between the geodesics outside the ε-thin part is at least ε/2
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and N2 are never tangent to each other we see by compactness that the maximal and minimal values stay
bounded away from 0 and π . �

4. The genus of congruence orbifolds

In this section we prove Theorem B. Let O be an hyperbolic orbifold of dimension 2, which is a quotient
of the hyperbolic plane H2 by a lattice of PSL2(R). Then the underlying topological space |O| is a surface
of finite type, that is it is homeomorphic to a compact surface S with a finite number of points removed.
The genus of O is defined to be the genus of S.

Suppose that O has genus g, k punctures and r conical singularities with angles 2π/m1, . . . , 2π/mr

(the tuple (g, k,m1, . . . ,mr ) is then called the signature of O). Then, computing the volume of a
well-chosen fundamental polygon we get the following equality (see [Beardon 1983, Theorem 10.4.2]):

vol O = 2π
(

2g− 2+ k+
r∑

i=1

(
1−

1
mi

))
. (4-1)

From this equation we obtain the bound:∣∣∣∣g− vol(O)
4π

∣∣∣∣≤ k+ r + 2
4π

.

We now see that Theorem B follows from Theorem A together with the following proposition.

Proposition 4.1. Let On be a sequence of hyperbolic 2–orbifolds which is Benjamini–Schramm convergent
to H2. Let kn, rn be the numbers of cusps and conical points of On , respectively. Then kn+rn = o(vol On).

Proof. To prove that rn = o(vol On) we associate to each conical point x with angle θ the region

�x = B(x, `(θ, ε))

if there is no other singular point within distance `(θ, ε). Otherwise let `x be the distance to the nearest
singular point and put

�x = B(x, r(`x , ε)).

We will check below the following facts:

(1) There exists c > 0 such that vol�x > c for all n and x ∈ On .

(2) Any point p ∈ On is covered by at most two distinct sets �x .

(3) For all conical points x ∈ On we have �x ⊂ (On)≤ε.

It follows from these that

rn ≤
1
c

∑
x∈6On

vol�x ≤
2
c

vol
( ⋃

x∈6On

�x

)
≤

2
c

vol(On)≤ε

and as the right-hand side is o(vol On) in a BS-convergent sequence we get that rn = o(vol On).
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That (3) holds follows immediately from the definitions of `(θ, ε) and r(`, ε). Point (2) follows from
the Margulis lemma combined with Lemma 3.2.

It remains to prove (1). Let x ∈ On be a singularity with cone angle 2π/m with m > 2, let x̃ be a lift
of x to H2 and `= `(2π/m, ε). Then we have

vol(BOn (x, `))=
1
m

BH2(x̃, `)�
e`

m

so we need to prove that e`� m. This follows easily from distance computations in the disk model: by
definition of `(θ, ε) we have that `(θ, ε)= log((1+r)/(1−r)) where 0< r < 1 is such that d(r, reiθ )= ε.
It follows that

cosh(ε)= 1+
2r2
|1− eiθ

|
2

(1− r2)2

and by standard computations we get that

r = 1−
θ

√
2 sinh(ε)

+ O(θ2)

whence it follows that

`(θ, ε)=− log(θ)− c+ O(θ)

for some constant c depending on ε. We finally get that `� elog(m/2π)
� m.

Assume now that m = 2 and that there is another singular point x ′ within `(2, ε) of x . In this case
the volume of �x is half that of a collar around a closed geodesic of length r(`x , ε)� ε; as the latter is
bounded from below (see [Halpern 1981]) so is that of �x .

The proof that kn = o(vol On) is similar: by the Margulis lemma the regions of the ε-thin part where a
given conjugacy class of parabolic isometries realizes the injectivity radius are pairwise disjoint, and an
easy hyperbolic area computation shows that the volume of such a region is bounded below. �

5. Betti numbers of arithmetic 3-orbifolds

Recall that ε is the Margulis constant for H3. Let O be a 3-orbifold, then we will write O ′ for the manifold
with boundary obtained by Lemma 3.4. We write 11

abs for the maximal self-adjoint extension of the
Hodge–Laplace operator on O ′ with absolute boundary condition. The goal of this section is to prove
the following proposition, which we do by extending the analysis at the end of section 7 in [Abert et al.
2017] to the orbifold case.

Proposition 5.1. Let On be a sequence of closed hyperbolic 3-orbifolds which BS-converge to H3, and
let O ′n be the smoothings described in Lemma 3.4. Then for all t > 0 we have that

lim sup
t→+∞

lim
n→+∞

Tr(e−t11
abs[O

′
n])

vol On
= 0.
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Before giving the proof we explain how this implies Theorem C: let On = 0n\H
3. By Hodge theory

we have b1(O ′n)≤ Tr(e−t11
abs[O

′
n]) for all t , and so Proposition 5.1 implies that

lim
n→+∞

b1(O ′n)
vol On

= 0.

On the other hand we have that the orbifold fundamental group 0n is a quotient of π1(O ′n). Indeed,
the universal cover of (On)≥ε is a cover of the connected subset (Ôn)≥ε of those x ∈ H3 which are not
displaced by less than ε by some nontrivial element of 0n , and (On)≥ε is homotopy equivalent to O ′n .
Moreover H1(O ′n) is the abelianization of π1(O ′n). From these two facts it follows that b1(0n)≤ b1(O ′n),
so that b1(0n)= o(vol On) as well.

The proof of Proposition 5.1 is done in four steps: first we prove an analogue of Proposition 4.1 and
then deduce the convergence of the part of the trace formula for On coming from the ε-thick part: see
(5-1). The two next steps together imply that the trace of the heat kernel on O ′n is asymptotically the
same as that computed in (5-1): first we analyze the integral of the difference on the R-thick part and
show that it limit superior is o(R) (see (5-6), then we prove that the integral on the R-thin part of O ′n
asymptotically vanishes (see (5-7)). Altogether these three steps imply that

lim
n→+∞

Tr(e−t11
abs[O

′
n])

vol On
= tr e−t11

[H3
]

where we denoted tr e−t11
[H3
]
= tr e−t11

[H3
](x̃, x̃) for any x̃ ∈ H3. The proposition now follows from

the vanishing of the first L2-Betti number of H3, which means that limt→+∞ tr e−t11
[H3
]
= 0 (see [Lück

2002]).

5A. Upper bound on the total length of singular geodesics. Let 6n be the set of singular geodesics
of On . To prove Proposition 5.1 we will need to control the total length

∑
c∈6n

`n in terms of the volume
of the thin part of On . This is problematic for 3-orbifolds because of an issue with singular geodesics
corresponding to order-2 elements. For these geodesics we will need to replace the lengths in the sum by
another quantity. To make it precise let us introduce some notations.

Let O by a finite volume hyperbolic 3-orbifold and let 6 be the set of singular geodesics on O . For
c ∈6 we will write c̃ for a lift of c to H3; in our arguments below we will clarify the choice of c̃ whenever
it matters. Let 0 be the orbifold fundamental group of O . Let c ∈ 6 and write 0c̃ for the pointwise
stabilizer of its lift c̃. Then 0c̃ is a lattice inside a maximal torus of PGL(2,C), so is it is of the form
Z×Z/mc for an integer mc ≥ 2. We write `c for the length of c.

Let M be the maximal order of a finite nondihedral subgroup of PU(2). The relevance of M to the
arguments below comes from the fact that finite subgroups of PGL(2,C) either stabilize a geodesic
in H3 or are conjugate to a nondihedral subgroup of PU(2). Accordingly, we divide 6 into three sets
61, 62, 63 defined as follows:

61
= {c ∈6 | mc = 2}, 62

= {c ∈6 | 2< mc ≤ M}, 63
= {c ∈6 | M < mc}.
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The sets do not depend on the choice of c̃. Let c∈61. A point p∈ c will be called a type I vertex if there ex-
ists a closed geodesic a 6∈63 on O (not necessarily singular) such that p∈c∩a and `a≤ε. A point p∈c is a
type II vertex if there exists b ∈63 such that p ∈ c∩b. Write T I(c), T II(c) for the sets of type I and type II
vertices. For p ∈ T I(c), T II(c) we let rp := max{r(`a, ε), `(2π/ma, ε)},max{r(`b, ε), `(2π/mb, ε)}

respectively. Define `′c := `c−
∑

p∈T II(c) 2rp.

Proposition 5.2. For any hyperbolic 3-orbifold O we have∑
c∈6\61

`c+
∑
c∈61

(`′c+ |T
II(c)|)� vol(O≤ε).

Proof. As in the proof of Proposition 4.1 we will construct sets �c, �
II
p ⊂ O attached to each singular

geodesic c ∈6 and to p ∈ T II(c) for c ∈61 satisfying the following properties:

(1) For c ∈ 6 \ 61 we have vol(�c) � `c; for c ∈ 61 we have vol(�c) � `′c and for p ∈ T II(c)
vol(�II

p)� 1.

(2) Any point x ∈ O is covered by at most M distinct sets �c, �
II
p .

(3) �c, �
II
p ⊂ O≤ε.

If A ⊂ H3 write [A] for the image of A in O under the covering map. The subset 61 is the most
problematic so let us first define the sets �c for c ∈62, 63:

• For c ∈63 let �c := [BH3(c̃, `(2π/mc, ε))].

• For c ∈62 let �c := [BH3(c̃, ε/2)].

Now let c ∈61. We construct sets �I
p, �

II
p for p ∈ T I(c), T II(c) respectively:

• �I
p = [BH3(ã, r(`a, ε))].

• �II
p = [BH3(b̃, rp)] (recall that max{r(`b, ε), `(2π/mb, ε)}).

The Margulis lemma and the description of nilpotent subgroups from Section 3B1 imply that �I
p, �

II
q are

pairwise disjoint if p ∈ T I (c), q ∈ T II(c). We define

�c := [BH3(c̃, ε/2)] ∪
⋃

p∈T I(c)

�I
p \

⋃
p∈T II(c)

�II
p .

5A1. Step 1. We verify condition (1). Recall that in the proof of Proposition 4.1 we showed that
e`(2π/m,ε)

�m. For c ∈63 the formula for integration in cylindrical coordinates [Fenchel 1989, page 205]
yields

vol(0c̃\BH3(c̃, `(2π/mc, ε))� e2`(2π/mc,ε)`cm−1
c � `c.

Using the Margulis lemma and the description of nilpotent subgroups from Section 3B1 we can show
that the map

0c̃\BH3(c̃, `(2π/mc, ε))→ [0c̃\BH3(c̃, `(2π/mc, ε))] =�c

is at most 2-to-1, so vol(�c)� `c.
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For c ∈62 we similarly get

vol(0c̃\BH3(c̃, `(2π/mc, ε))� `c.

By Lemma 3.3 and the Margulis lemma the map

0c̃\BH3(c̃, ε/2)→ [0c̃\BH3(c̃, ε/2)]

is at most M-to-one. Hence vol(�c)� `c.
Now let c ∈61. Since the sets �I

p, �
II
q for p ∈ T I (c), q ∈ T II(c) are pairwise disjoint we can write

`c = `
′

c+
∑

p∈T II(c)

2rp and `′c = `
′′

c +
∑

p∈T I (c)

2rp

where `′′c ≥ 0. Let p ∈ T I (c). Let γ be an element of 0ã translating ã by `a . Integration in cylindrical
coordinates yields

vol(〈γ 〉\BH3(ã, rp)� `−1
a � rp.

Note that we implicitly used here the fact that ma is bounded. The Margulis lemma implies that the
quotient map from the last set to [BH3(ã, r(`a, ε))] is at most M-to-1 so we deduce vol(�I

p) � rp.
Reasoning as in the previous cases we get vol(�c)� `′′c +

∑
p∈T I (c) rp� `′c.

Finally let p ∈ T II(c). Integrating in cylindrical coordinates we get

vol(0b\BH3(b̃,max{r(`b, ε), `(2π/mb, ε))�
`b

mb
max{m2

b, `
−2
b } � 1.

As before we deduce vol(�II
p)� 1. This concludes the first step.

5A2. Step 2. We verify condition (2). For c ∈63 the sets �c are pairwise disjoint. Indeed let c1, c2 ∈6
3

and assume �c1∩�c2 6=∅. By the Margulis lemma, for some lifts c̃1, c̃2 the torsion parts of the stabilizers
0c̃1, 0c̃2 generate a nilpotent subgroup. By discussion in Section 3B1 it is either contained in a normalizer
of geodesic or in a finite nondihedral subgroup of PU(2), and the definition of 63 excludes the second
option so 0c̃1, 0c̃2 both normalize the same geodesic. This can happen only if c̃1 = c̃2.

A similar argument shows that for c1 ∈6
2, c2 ∈6

3 the sets �c1, �c2 are disjoint.
By Lemma 3.3 and the Margulis lemma the sets �II

p are pairwise disjoint or equal. It is not hard to
verify that we can have at most two different p ∈ T II(c), p′ ∈ T II(c′) such that �II

p =�
II
p′ . By construction

�II
p contains exactly one set of form �c with c ∈63. By Lemma 3.3 together with the Margulis lemma

�II
p are disjoint from �c if c ∈61, 62. Again by the Margulis lemma and Lemma 3.3, every point x ∈ O

can be covered by at most M sets �c with c ∈61, 62. We conclude that any point is covered by at most
M distinct sets of form �c, c ∈6 and �II

p, p ∈ T II(c), c ∈63.

5A3. Last step. Property (3) holds by construction. We get∑
c∈6

vol(�c)+
∑
c∈63

∑
p∈T II(c)

vol(�II
p)� M vol(O≤ε).
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By the first step we conclude that∑
c∈6\61

`c+
∑
c∈61

(
`′c+ |T

II(c)|
)
� vol(O≤ε). �

5B. Trace formula on the thick part. Let On be a sequence as in Proposition 5.1. We prove here that∫
(On)≥ε

tr e−t11
[On](x, x) dx − tr e−t11

[H3
]
· vol On = o(vol On). (5-1)

Let Cn,e and Cn,h be the sets of conjugacy classes of respectively elliptic and hyperbolic elements in 0n .
For γ ∈ 0 let Fγ be a fundamental domain for the centralizer 0γ of γ in 0 and F≥εγ the part of it on
which the nontrivial elements of 0 displace by at least ε. The proof of the Selberg trace formula then
gives that∫
(On)≥ε

tr e−t11
[On](x, x) dx = vol(On)≥ε tr e−t11

[H3
]
+

∑
[γ ]∈Cn,e∪Cn,h

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx . (5-2)

Because of Benjamini–Schramm convergence we have vol On − vol(On)≥ε = o(vol On). Then (5-1) will
follow from (5-2) together with the following limit:∑

[γ ]∈Cn,e∪Cn,h

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx = o(vol On). (5-3)

We proceed to prove (5-3). The proof for the hyperbolic part is exactly the same as in [Abert et al. 2017,
Section 7].

We deal now with the elliptic part; similar computations are done in [Elstrodt et al. 1998, pages 193
and following]. To simplify the computations we integrate over a subset E≥εγ of Fγ which is slightly
larger than F≥εγ .

If [γ ] is an elliptic conjugacy class let c be the singular geodesic on On corresponding to γ and c̃ the
lift of c to H3 which is fixed by γ . Let `c be the length of c and mc the order of the torsion subgroup of
0γ . If mc > 2 we put

E≥εγ = Fγ \ BH3(c̃,max{r(`c, ε), `(2π/mc, ε)}).

The definition for γ with mc = 2 is bit more involved. Recall from Proposition 5.2 that we call a point
p ∈ c a type II vertex if there exists a singular geodesic b in On such that p ∈ c∩b and the torsion part of
0b̃ is of order at least M (a constant defined there). Write T II(c) for the set of type II vertices on c. For
each point p ∈ T II(c) the geodesic b is unique so the values `b,mb are well defined. To shorten notation
we will write rc :=max{r(`c, ε), `(2π/mc)} and rp :=max{r(`b, ε), `(2π/mb)}. Let T II(c̃)⊂ c̃ be the
set of lifts of p ∈ T II(c). Set T II(c̃) is 0γ invariant. Define

E≥εγ := Fγ \
(

BH3(c̃, rc)∪
⋃

p̃∈T II(c̃)

BH( p̃, rp)

)
.
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We are ready to bound the integrals in (5-3) corresponding to the elliptic elements. For γ with mc > 2 we
have

e ·
∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx =

2π
mc
`c

∫
+∞

max(`(2π/mc,ε),r(`γ ,ε))
fθ (r) dr

where fθ (r)= sinh(r) cosh(r) tr(γ ∗e−t1[H3
](x, γ x)) for a point x at distance r from the axis, and e = 1

or 1
2 according to whether 0γ ∼= Z×Z/m or (Z×Z/m)oZ/2 (see 3B1 for the geometric significance of

this). This is a consequence of disintegration of hyperbolic volume in cylindrical coordinates [Fenchel
1989, page 205]. By the Gaussian estimate of the heat kernel of H3 (which can be seen from its explicit
expression; see [Taylor 2011, Proposition 2.2 on page 425] for a more general statement) we have that

f2π/mc(r)� C(t)e−c(t)r2

uniformly for r ≥ `(2π/mc, ε). We get∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

`c

mc
. (5-4)

Now let γ be an elliptic element of order 2. The singular geodesic c can be identified with its lift
to Fγ . Let pr : Fγ → c be the “closest point projection” to c. By triangle inequality, for every point
y ∈ E≥εγ we have d(y, pr(y)) ≥ max{rc, rp − d(pr(y), p) | p ∈ T II(c)}. Let `′c be as in Proposition 5.2
and let rp :=max{`(2π/mb, ε), r(`b, ε)} where b is the singular geodesic of O such that p ∈ c∩ b (see
the definition of type II vertices). Write c0 = c \

⋃
p∈T II(c) B(p, rp) and c1 := c \ c0. Note that `′c is the

length of c0. We will split the integral over E≥εγ according to whether pr(y) falls into c0 or c1:

e ·
∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx =

∫
pr−1(c0)∩E≥εγ

fπ (d(y, pr(y))) dy+
∫

pr−1(c1)∩E≥εγ
fπ (d(y, pr(y))) dy

≤ π`′c

∫
+∞

max(`(2π/mc,ε),r(`c,ε))

fπ (r) dr +π
∑

p∈T II(c)

2
∫ rp

0

∫
+∞

s
fπ (r) dr ds.

Using the estimate for the heat kernel we get∫
E≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx � `′c+ |T

II(c)|. (5-5)

Let 6n be the set of singular geodesics in On (so each is the image of an axis of an elliptic conjugacy
class in 0n) with subsets 61

n, 6
2
n, 6

3
n defined as in Section 5A. If γ is an elliptic isometry of order m,

primitive in 0, there are m− 1 elliptic elements in 0γ sharing the same axis. We have F≥εγ ⊂ E≥εγ so by
(5-4) and (5-5) we get that∑

[γ ]∈Cn,e

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

∑
c∈62

n ,6
3
n

`c
mc− 1

mc
+

∑
c∈61

n

(`′c+ |T
II(c)|).
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It follows that ∑
[γ ]∈Cn,e

∫
F≥εγ

tr(γ ∗e−t11
[H3
](x, γ x)) dx �

∑
c∈6n\61

n

`c+
∑
c∈61

n

(`′c+ |T
II(c)|).

By Proposition 5.2 the right hand side is of order O(vol((On)≤ε)). The sequence converges Benjamini–
Schramm to H3 so vol((On)≤ε)= o(vol(On)). Estimate (5-3) follows.

5C. Comparison between heat kernels. We prove here that

lim
R→+∞

lim sup
n→+∞

1
vol On

∫
(On)≥R

tr(e−t11
[On]− e−t11

abs[O
′
n])(x, x) dx = 0. (5-6)

To do this we let Un be the subset of H3 covering O ′n and choose a fundamental domain Dn for 0 acting
in the subset of Un covering (On)≥R (we assume R is large enough so that (On)≥R ⊂ O ′n). Then we can
write ∫

(On)≥R

tr(e−t11
[On]− e−t11

abs[O
′
n])(x, x) dx =

∫
Dn

∑
γ∈0

tr γ ∗(e−t11
[H3
]
− e−t1abs[Un])(x, γ x) dx

� e−
R2
Ct

∫
Dn

∑
γ∈0

e−d(x,γ x)2/(Ct) dx

where 1abs[Un] is the Laplacian with absolute boundary conditions on the complete manifold Un , and
the second line follows from [Lück and Schick 1999, Theorem 2.26]. By the same arguments as used
above to demonstrate (5-1) the integral is O(vol On) (with a constant independent of R as the domain of
integration shrinks when we take R to infinity). In the end we get that

lim sup
n→+∞

1
vol On

∫
(On)≥R

tr(e−t11
abs[On]− e−t11

[O ′n])(x, x) dx � e−R2/(Ct)

from which (5-6) follows immediately.

5D. Heat kernel near the boundary. Here we prove the final ingredient for the proof of Proposition 5.1:
for all R > 0 we have ∫

O ′n\(On)≥R

tr e−t11
abs[O

′
n](x, x) dx = o(vol On). (5-7)

By Benjamini–Schramm convergence we have that vol(O ′n \ (On)≥R)= o(vol On). So to prove (5-6) it
suffices to see that tr e−t11

abs[O
′
n](x, x)= Ot(1) for x ∈ O ′n . As in [Abert et al. 2017, (7.19.4)] this follows

from [Lück and Schick 1999, Theorem 2.35]; the latter is applicable with a uniform constant in our
context by Lemma 3.4.

Appendix A: Benjamini–Schramm convergence in Gromov-hyperbolic spaces

AA. Orbital integrals on hyperbolic spaces. Let X be a proper Gromov-hyperbolic space and G =
Isom(X). With the compact-open topology G is a locally compact second countable topological group.
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For γ ∈ G we denote by Gγ its centralizer. The following lemma is a slight generalization of [Bridson
and Haefliger 1999, Corollary 3.10(2) on page 463] — the latter dealing only with discrete groups. It
might be possible to straightforwardly adapt the arguments in [loc. cit.] to our case, but we give a different,
mostly self-contained proof.

Lemma A.1. Let γ ∈ G be an hyperbolic isometry. Then Gγ /〈γ 〉 is compact.

For the proof we use the following lemma, which should be standard but we could not find in the
literature. The proof is a bit long and technical so we put it at the end of this appendix (see Section AC).

Lemma A.2. Let γ be an hyperbolic isometry of X. For any x ∈ X there exists constants C = C(x, γ, δ)
and A = A(x, γ, δ) such that for any y ∈ X and any k sufficiently large (depending on γ, x, δ) we have

d(y, γ k y)≥ Ck+ 2d(y, 〈γ 〉x)− A.

Proof of Lemma A.1. Let τ = d(γ ) := inf{d(y, γ y) | y ∈ X} be the minimal displacement of γ . Fix x ∈ X ,
let k, A,C as given by Lemma A.2 and define:

D = {y ∈ X | d(y, γ k y)≤ kτ + 1}.

It is a nonempty (by definition of τ ) closed Gγ -invariant subset of X . Given that the action of Gγ on D
is proper, the lemma will follow once we prove that 〈γ 〉\D is compact. The previous lemma implies that

D ⊂ {y ∈ X : d(y, 〈γ 〉x)≤ (τ −C)k+ A+ 1}

so that D ⊂ γ Z B(x, R) for some sufficiently large R, and as X is proper this in turn implies that 〈γ 〉\D
is compact. �

Let dg be a fixed Haar measure on G. According to the lemma above the subgroup Gγ admits a lattice
so it is unimodular and we have a decomposition dg = dxdh where dx is a G-invariant measure on
G/Gγ and dh a Haar measure on Gγ , both depending only on the original choice of dg. For a function
f ∈ C0(G) we can then define the orbital integral associated to γ by

O f (γ )=

∫
G/Gγ

f (γ−1xγ ) dx (A-1)

which depends only on the G-conjugacy class [γ ]G .

AB. General criterion for Benjamini–Schramm convergence. Here again X is always a proper Gromov-
hyperbolic space and G = Isom(X). We assume that the action of G on X is nonelementary. The elliptic
radical of G can then be defined as its unique maximal normal compact subgroup (see [Osin 2017,
Proposition 3.4]; in our context, by properness of X bounded elements are the same as compact ones).
The following lemma is a special case of [Osin 2017, Theorem 1.5].

Lemma A.3. Let µ be an invariant random subgroup of G. Then either µ is supported on the elliptic
radical or it has full limit set.
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Recall from [Gelander 2019, Section 3] that there is a “Benjamini–Schramm topology” on the set
of Borel probability measures on the Gromov–Hausdorff space of pointed proper metric spaces (up
to isometry). The set of measures supported on spaces locally isometric to X is precompact in this
topology. Moreover, if X is a locally symmetric space then (1-1) is equivalent to 0i\X converging in the
Benjamini–Schramm topology to X .

There is a continuous injective map from the space of invariant random subgroups of G to the Benjamini–
Schramm space. If 0i are lattices in G then the sequence of uniformly pointed spaces 0i\X converges to
X if and only if the IRSs µ0i converge to the trivial IRS. We will use this to prove the following criterion
for convergence, which is a more general version of Proposition 2.1.

Proposition A.4. Let U the set of hyperbolic isometries in G. Assume that the elliptic radical of G is
trivial. If 0n is a sequence of lattices in G which satisfies

lim
n→+∞

∑
[γ ]0n⊂U vol((0n)γ \Gγ )O f (γ )

vol(0n\G)
= 0 (A-2)

then the sequence of metric spaces 0n\X converges to X in the Benjamini–Schramm topology.

Proof. Let µn be the invariant random subgroup of G supported on the conjugacy class of 0n . We want
to prove that any weak limit µ of a subsequence of (µn) is equal to the trivial IRS δe. By Lemma A.3
and the fact that a subgroup of G containing no hyperbolic isometries has at most one limit point (see
[Gromov 1987, Section 8.2]) it suffices to prove that any such µ contains no hyperbolic isometries.

To prove this choose a covering U =
⋃

C∈C C of U where C is countable and every C ∈ C is compact.
We can do this since SubG is metrizable [de la Harpe 2008, Proposition 2]. Let WC =3 :3∩C 6=∅; this
is a Chabauty-closed subset of SubG . If ν is a nontrivial IRS then by Lemma A.3 and previous paragraph
it almost surely contains a hyperbolic element. Hence, there is C ∈ C such that ν(WC) > 0. We need to
prove the opposite for µ, which amounts to the following: for every C there exists a nonnegative Borel
function F on SubG which is positive on WC and such that

∫
SubG

F(3) dµ(3)= 0.
Let us fix C ∈ C and prove this. There exists an open relatively compact subset V with C ⊂ V and

V ⊂U . Choose any f ∈ C∞(G) such that f > 0 on C and f = 0 on G \ V and define

F(3)=


∑

λ∈3 f (λ) if 3 is discrete,
1 if 3 is not discrete and intersects C,
0 otherwise.

Then F is lower semicontinuous on SubG , nonnegative and positive on WC . On the other hand we have∫
SubG

F(3) dµn(3)=
1

vol(0n\G)

∫
G/0n

∑
γ∈g0n g−1

f (γ ) dg

=
1

vol(0n\G)

∑
[γ ]0n⊂U

vol((0n)γ \Gγ )Oγ ( f ).
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By the so-called “portemanteau theorem” [Klenke 2014, Theorem 13.16] the limit inferior of the left-hand
side is larger or equal to

∫
SubG

F(3) dµ(3). By (A-2) we have that the right-hand side converges to 0. It
follows that ∫

SubG

F(3) dµ(3)= 0

which finishes the proof. �

AC. Proof of Lemma A.2. Let us recall the statement. We have a proper hyperbolic geodesic space
X and an hyperbolic isometry γ of X . We fix x ∈ X and we want to show that there exists constants
C = C(x, γ, δ) and A = A(x, γ, δ) such that for any y ∈ X and any k sufficiently large (depending on
γ, x, δ) we have

d(y, γ k y)≥ Ck+ 2d(y, 〈γ 〉x)− A. (A-3)

Let x, y ∈ X . As γ is hyperbolic there exists a, c such that L = 〈γ 〉x is a (c, a)-quasigeodesic.
Regarding the conclusion of the proposition it does not change anything if we assume that x is the
approximate projection of y on L , meaning that any point x ′ of L within distance d(y, L) of y, satisfies
d(x ′, x)≤ K (where K depends only on the hyperbolicity constant δ).

Let `= d(x, γ x). Note first that if k is large enough so that

k > 100c`−1K log(k)+ ac (A-4)

holds, and y is close enough to L so that

d(y, x) > c2`−1 log(k)+ cK (2+ log(2+ k))+ ca (A-5)

does not then we see immediately that (A-3) holds, by the triangle inequality. Thus from now on we will
assume that both inequalities above hold for y and k.

Let xi = γ
i x , yi = γ

i y for 0≤ i ≤ k. Let F be the finite set

F = {x0, x1, . . . , xk} ∪ {y0, yk};

by [Bowditch 1991, Proposition 7.3.1] there exists a choice of a “spanning tree” on F (that is, a tree
whose edges are a subset of all pairs of geodesics segment between points of F) such that

∀p, q ∈ F : d(p, q)≥ dTF (p, q)− (1+ log(2+ k))K (A-6)

where K depends only on δ (so we take it equal to the K introduced above to simplify notation). One of
y0, yk must be connected to one of the xi in TF ; we may assume that [y0, xi ] is an edge in TF for some i .
We claim that this i must be unique, and we must have

i < c`−1((log(k+ 2)+ 2)K + a). (A-7)

Indeed, let i be the smallest integer such that [xi , y0] ⊂ TF . Then, because

dTF (x0, y0)≤ d(x0, y0)+ (log(k+ 2)+ 1)K
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and

dTF (x0, y0)≥ d(x0, xi )+ d(xi , y0)≥
i`
c
− a+ d(x0, y0)− K

we see that i must verify (A-7). Now assume that there is a j > i such that [x j , y0] ⊂ TF , and take it to be
the smallest such; we want to reach a contradiction. Consider i ≤ l < j to be maximal such that the path in
TF from xl to xi does not go through y0. Then the path in TF from xl to xl+1 must go through y0 (otherwise
we would have a path from xl+1 to xi via xl avoiding y0). We have thus dTF (xl, xl+1) ≥ d(x0, y0)− K
which together with (A-5) and (A-6) contradicts the fact that d(xl, xl+1)= `.

We now want to prove that [y0, yk] is not an edge in TF . To do so we must consider two possibilities.
Assume first that [yk, x j ] ⊂ TF for some j . Then reasoning as above we see that j is the only such index,
and j > k− c`−1((log(k+2)+2)K +a) > i . In this case we reach a contradiction in the same way as in
the previous paragraph: considering a maximal i ≤ l < j such that the path from xl to xi does not go
through y0 we see that dTF (xl, xl+1) is too large.

If there is no edge [yk, x j ] in TF then the path from xk to yk must go first to xi , then to y0 and
finally to yk . But as d(xk, xi ) > (log(k + 2)+ 1)K by (A-7) and (A-4) we see that this contradicts
d(x0, y0)= d(xk, yk).

So we get that there must be a unique edge [yk, x j ] in TF , and the path in TF from y0 to yk must go
through x j and xi . As before we must have

j > k− c`−1((log(k+ 2)+ 2)K + a)

and we finally get using first (A-6), then the fact that (x0, . . . , xk) is a quasigeodesic, and finally the
above together with (A-7) that:

d(y0, yk)≥ d(y0, xi )+ d(xi , x j )+ d(x j , yk)− K − K log(2+ k)

≥ 2d(x0, y0)+ c−1( j − i)`− a− 3K − K log(2+ k)

≥ 2d(x0, y0)+ c−1`k− B− b log(k)

where B, b depend only on x, γ, δ. From the last inequality and (A-4) we can conclude that (A-3) holds.

Appendix B: Smoothing corners

In this appendix we prove Proposition 3.5; as the argument is technical but has no subtleties we will be
quite sketchy in presenting it.

Recall that we have the following situation: X is a manifold with bounded geometry, H1, H2 ⊂ X
such that X \ Hi both have bounded geometry, meet transversally and the dihedral angle between them is
bounded away from 0 and π . We remark that constructing a smoothing of Y = X \ (H1 ∪ H2) satisfying
the conclusions of Proposition 3.5 is immediate in the case where the intersection I = H1 ∩ H2 has a
neighborhood in Y which is isometric to the product [0, δ[2× I . In general we will prove the following
statement: there exists a diffeomorphism ϕ from [0, δ[2 × I to a neighborhood of I in Y such that ϕ



2380 Mikołaj Frączyk and Jean Raimbault

and ϕ−1 have all their derivatives uniformly bounded. In view of the preceding remark this proves the
proposition.

To define ϕ we need some more auxiliary notation: for a vector field V and t ≥ 0 we let 8t
V be its flow

at time t ; if H ⊂ Z is open with smooth boundary we denote by N Z
H the normal field of H in Z . We put

ϕ1(x, t, s)=8t
N X

H1
(8s

N
H1
I

(x)) and ϕ2(x, t, s)=8s
N X

H2
(8t

N
H2
I

(x))

We fix a smooth nondecreasing function h : R→ [0, 1[ such that h is zero on negative numbers, and
at infinity it tends to 1 and all its derivatives vanish at all orders. Let 0 < a < 1 such that the convex
hull of all ϕ1(x, t, s) and ϕ2(x, t, s) for as ≤ t ≤ a−1s is contained in Y . For x, y ∈ X and u ∈ [0, 1] let
ux + (1− u)y denote the barycenter of x, y on the geodesic segment between them.2 With this notation
we define

ϕ(x, t, s)= h
(

at − s
as− t

)
ϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
ϕ2(x, t, s)

and we claim that ϕ has the desired properties. It is smooth as a composition of smooth maps. To deduce
the remaining properties we will use the following lemma.

Lemma B.1. For i = 1, 2 there is c depending only on the bounds on the geometry of Hi such that the
following properties hold:

(1) Let z ∈ ∂Hi and 0 ≤ t ≤ δ. The linear map Dz8
t
N X

Hi

is c-Lipschitz on angles. The same holds for

x ∈ I and Dx8
t
N

Hi
I

.

(2) For all x ∈ I and all 0≤ s, t <δ, let y=8t
N X

Hi

(8s
N

Hi
I

(x)). Let γ be the geodesic (in X ) from x to y, ui

the parallel transport along γ of the outward normal vector to Hi at x and vi=
∂
∂τ

∣∣
τ=t8

τ

N X
Hi

(8s
N

Hi
I

(x)).
Then the angle between ui and vi is at most cδ.

Proof. (1) follows from the boundedness of coefficients of the metric tensor and its inverse in normal
exponential coordinates (in both I ⊂ Hi and ∂Hi ⊂ X ). (2) follows from (1), together with the fact that
parallel transport along a closed curve stays close to the identity within the δ-neighborhood. �

Let Vi be the vector fields given by the vectors vi defined in the lemma. As for any x ∈ I we have that
the angle between V1(x) and V2(x) lies in [α0, π −α0] it follows from (2) that if we choose δ < c−1α0/2
we have that the angle between V1 and V2 at any point x in the δ-neighborhood of I lies in [α0/2, π−α0/2].
In particular V1, V2 define a plane field, and we define J to be its orthogonal.

Let πJ be orthogonal projection on J . The block decomposition of Dϕ according to T X = J⊕(V1+V2)

is

D(x,t,s)ϕ =

(
πJ Dxϕ C

(1−πJ )Dxϕ B

)
.

2This is well-defined for those pairs of points in X that we consider, as long as we take δ� inj(X).
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We need to prove that:

(1) Dxϕ, B and C have bounded coefficients (in terms of the bounds on the geometry).

(2) πJ Dxϕ and B are everywhere invertible and their inverses are bounded.

(3) ‖(1−πJ )Dxϕ‖� δ.

Indeed, this shows that the map ϕ has a derivative which everywhere invertible. In particular, it is a local
diffeomorphism and as it is the identity on I it is also a global diffeomorphism. This also implies that its
derivative is uniformly bounded in terms of the geometry of Hi and α0, and so is its inverse.

We deal first with Dxϕ. We note that

(Dxϕ)(x,t,s) = h
(

at − s
as− t

)
Dxϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
Dxϕ2(x, t, s)+ O(δ)

because of bounded geometry and the fact that to obtain ϕ we move ϕ1 and ϕ2 by at most δ. It follows that
Dxϕ is bounded. By point (1) of the lemma we have that at all points the angle between the image of Dxϕ

and Vi is at most cδ; it follows that ‖(1−πJ )Dxϕ‖� δ. Moreover Dxϕ is everywhere invertible with
bounded inverse, because both A1= Dxϕ1 and A2= Dxϕ2 are, and for w ∈ Tx I the vectors A1(w), A2(w)

have an angle ≤ cδ between them by (1).
We also have

Dtϕ = h
(

at − s
as− t

)
Dtϕ1(x, t, s)+

(
1− h

(
at − s
as− t

))
Dtϕ2(x, t, s)+ O(δ)

and similarly for Dsϕ, so the coefficients of B,C are bounded.
It remains to prove that B is invertible and det(B) is bounded away from zero. At a point x ∈ I we

have Dtϕ and Dsϕ belong to two disjoint open convex cones in Tx X/Jx ; by (2) and (1) this remains
true in the δ-neighborhood and the angle between the cones remains bounded away from zero, hence the
matrix B is invertible with uniformly bounded inverse.
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