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The construction problem for Hodge numbers
modulo an integer

Matthias Paulsen and Stefan Schreieder

For any integer m ≥ 2 and any dimension n ≥ 1, we show that any n-dimensional Hodge diamond with
values in Z/mZ is attained by the Hodge numbers of an n-dimensional smooth complex projective variety.
As a corollary, there are no polynomial relations among the Hodge numbers of n-dimensional smooth
complex projective varieties besides the ones induced by the Hodge symmetries, which answers a question
raised by Kollár in 2012.

1. Introduction

Hodge theory allows one to decompose the k-th Betti cohomology of an n-dimensional compact Kähler
manifold X into its (p, q)-pieces for all 0≤ k ≤ 2n:

H k(X,C)=
⊕

p+q=k
0≤p,q≤n

H p,q(X), H p,q(X)= Hq,p(X).

The C-linear subspaces H p,q(X) are naturally isomorphic to the Dolbeault cohomology groups Hq(X, �p
X ).

The integers h p,q(X) = dimC H p,q(X) for 0 ≤ p, q ≤ n are called Hodge numbers. One usually
arranges them in the so called Hodge diamond:

hn,n

hn,n−1 hn−1,n

. .
. ...

. . .

hn,1 h1,n

hn,0 hn−1,1
· · · h1,n−1 h0,n

hn−1,0 h0,n−1

. . .
... . .

.

h1,0 h0,1

h0,0

The sum of the k-th row of the Hodge diamond equals the k-th Betti number. We always assume that a
Kähler manifold is compact and connected, so we have h0,0

= hn,n
= 1.

MSC2010: primary 32Q15; secondary 14C30, 14E99, 51M15.
Keywords: Hodge numbers, Kähler manifolds, construction problem.

2427

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2019.13-10
http://dx.doi.org/10.2140/ant.2019.13.2427


2428 Matthias Paulsen and Stefan Schreieder

Complex conjugation and Serre duality induce the symmetries

h p,q
= hq,p

= hn−p,n−q for all 0≤ p, q ≤ n. (1)

Additionally, we have the Lefschetz inequalities

h p,q
≤ h p+1,q+1 for p+ q < n. (2)

While Hodge theory places severe restrictions on the geometry and topology of Kähler manifolds,
Simpson [2004] points out that very little is known to which extent the theoretically possible phenomena
actually occur. This leads to the following construction problem for Hodge numbers:

Question 1. Let (h p,q)0≤p,q≤n be a collection of nonnegative integers with h0,0
= 1 obeying the Hodge

symmetries (1) and the Lefschetz inequalities (2). Does there exist a Kähler manifold X such that
h p,q(X)= h p,q for all 0≤ p, q ≤ n?

After results in dimensions two and three (see e.g., [Hunt 1989]), significant progress has been made
by Schreieder [2015]. For instance, it is shown in [loc. cit., Theorem 3] that the above construction
problem is fully solvable for large parts of the Hodge diamond in arbitrary dimensions. In particular,
the Hodge numbers in a given weight k may be arbitrary (up to a quadratic lower bound on h p,p if
k = 2p is even) and so the outer Hodge numbers can be far larger than the inner Hodge numbers (see
[loc. cit., Theorem 1]), contradicting earlier expectations formulated in [Simpson 2004]. Weaker results
with simpler proofs, concerning the possible Hodge numbers in a given weight, have later been obtained
by Arapura [2016].

In [Schreieder 2015], it was also observed that one cannot expect a positive answer to Question 1
in its entirety. For example, any 3-dimensional Kähler manifold X with h1,1(X) = 1 and h2,0(X) ≥ 1
satisfies h2,1(X) < 126

· h3,0(X), see [loc. cit., Proposition 28]. Therefore, a complete classification of all
possible Hodge diamonds of Kähler manifolds or smooth complex projective varieties seems hopelessly
complicated.

While these inequalities aggravate the construction problem for Hodge numbers, one might ask whether
there also exist number theoretic obstructions for possible Hodge diamonds. For example, the Chern
numbers of Kähler manifolds satisfy certain congruences due to integrality conditions implied by the
Hirzebruch–Riemann–Roch theorem.

For an arbitrary integer m≥ 2, let us consider the Hodge numbers of a Kähler manifold in Z/mZ, which
forces all inequalities to disappear. The purpose of this paper is to show that Question 1 is modulo m
completely solvable even for smooth complex projective varieties.

Theorem 2. Let m ≥ 2 be an integer. For any integer n ≥ 1 and any collection of integers (h p,q)0≤p,q≤n

such that h0,0
= 1 and h p,q

= hq,p
= hn−p,n−q for 0≤ p, q ≤ n, there exists a smooth complex projective

variety X of dimension n such that

h p,q(X)≡ h p,q (mod m)

for all 0≤ p, q ≤ n.
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Therefore, the Hodge numbers of Kähler manifolds do not follow any number theoretic rules, and the
behavior of smooth complex projective varieties is the same in this aspect.

As a consequence of Theorem 2, we show:

Corollary 3. Up to the Hodge symmetries (1), there are no polynomial relations among the Hodge
numbers of smooth complex projective varieties of the same dimension.

In particular, there are no polynomial relations in the strictly larger class of Kähler manifolds, which
was a question raised by Kollár after a colloquium talk of Kotschick at the University of Utah in fall
2012. For linear relations among Hodge numbers, this question was settled in work of Kotschick and
Schreieder [2013].

We call the Hodge numbers h p,q(X) with p ∈ {0, n} or q ∈ {0, n} (i.e., the ones placed on the border
of the Hodge diamond) the outer Hodge numbers of X and the remaining ones the inner Hodge numbers.
Note that the outer Hodge numbers are birational invariants and are thus determined by the birational
equivalence class of X .

Our proof shows (see Theorem 5 below) that any smooth complex projective variety is birational to a
smooth complex projective variety with prescribed inner Hodge numbers in Z/mZ. As a corollary, there
are no polynomial relations among the inner Hodge numbers within a given birational equivalence class.
This is again a generalization of the corresponding result for linear relations obtained in [Kotschick and
Schreieder 2013, Theorem 2].

The proof of Theorem 2 can thus be divided into two steps: First we solve the construction problem
modulo m for the outer Hodge numbers. This is done in Section 2. Then we show the aforementioned
result that the inner Hodge numbers can be adjusted arbitrarily in Z/mZ via birational equivalences (in
fact, via repeated blow-ups). This is done in Section 3. Finally, in Section 4 we deduce that no nontrivial
polynomial relations between Hodge numbers exist, thus answering Kollár’s question.

2. Outer Hodge numbers

We prove the following statement via induction on the dimension n ≥ 1.

Proposition 4. For any collection of integers (h p,0)1≤p≤n , there exists a smooth complex projective
variety Xn of dimension n together with a very ample line bundle Ln on Xn such that

h p,0(Xn)≡ h p,0 (mod m)

for all 1≤ p ≤ n and

χ(L−1
n )≡ 1 (mod m).

Proof. We take X1 to be a curve of genus g where g ≡ h1,0 (mod m). Further, we take L1 to be a
line bundle of degree d on X1 where d > 2g and d ≡−g (mod m). Then L1 is very ample and by the
Riemann–Roch theorem we have χ(L−1

1 )≡ 1 (mod m).
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Now let n > 1. We define a collection of integers (k p,0)−1≤p≤n−1 recursively via

k−1,0
= 0, k0,0

= 1, k p,0
= h p,0

− 2k p−1,0
− k p−2,0 for 1≤ p ≤ n− 1.

We choose Xn−1 and Ln−1 by induction hypothesis such that h p,0(Xn−1)≡ k p,0 (mod m) for all 1≤ p ≤
n− 1.

Let E be a smooth elliptic curve and let L be a very ample line bundle of degree d on E such that
d ≡ 1 (mod m). Let e be a positive integer such that

e ≡ 1+
n∑

p=1

(−1)ph p,0 (mod m).

Let Xn ⊂ Xn−1× E × E be a hypersurface defined by a general section of the very ample line bundle

Pn = pr∗1 Ln−1⊗ pr∗2 Lm−1
⊗ pr∗3 Le

on Xn−1× E × E . By Bertini’s theorem, we may assume Xn to be smooth and irreducible. Let Ln be the
restriction to Xn of the very ample line bundle

Qn = pr∗1 Ln−1⊗ pr∗2 L ⊗ pr∗3 L

on Xn−1× E × E . Then Ln is again very ample.
By the Lefschetz hyperplane theorem, we have

h p,0(Xn)= h p,0(Xn−1× E × E)

for all 1≤ p ≤ n− 1. Since the Hodge diamond of E × E is

1
2 2

1 4 1
2 2

1

,

Künneth’s formula yields

h p,0(Xn)= h p,0(Xn−1)+ 2h p−1,0(Xn−1)+ h p−2,0(Xn−1)≡ k p,0
+ 2k p−1,0

+ k p−2,0
= h p,0 (mod m)

for all 1≤ p ≤ n− 1. Therefore, it only remains to show that hn,0(Xn)≡ hn,0 (mod m) and χ(L−1
n )≡

1 (mod m). Since

χ(OXn )= 1+
n∑

p=1

(−1)ph p,0(Xn),

the congruence hn,0(Xn)≡ hn,0 (mod m) is equivalent to χ(OXn )≡ e (mod m).
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By definition of Xn , the ideal sheaf on Xn−1×E×E of regular functions vanishing on Xn is isomorphic
to the sheaf of sections of the dual line bundle P−1

n . Hence, there is a short exact sequence

0→ P−1
n →OXn−1×E×E → i∗OXn → 0 (3)

of sheaves on Xn−1×E×E where i : Xn→ Xn−1×E×E denotes the inclusion. Together with Künneth’s
formula and the Riemann–Roch theorem, we obtain

χ(OXn )= χ(OXn−1×E×E)−χ(P−1
n )= χ(OXn−1) χ(OE)

2︸ ︷︷ ︸
=0

−χ(L−1
n−1)︸ ︷︷ ︸
≡1

χ(L1−m)︸ ︷︷ ︸
≡1

χ(L−e)︸ ︷︷ ︸
≡−e

≡ e (mod m).

Tensoring (3) with Q−1
n yields the short exact sequence

0→ P−1
n ⊗ Q−1

n → Q−1
n → i∗i∗Q−1

n → 0

and thus

χ(L−1
n )= χ(Q−1

n )−χ(P−1
n ⊗ Q−1

n )= χ(L−1
n−1)︸ ︷︷ ︸
≡1

χ(L−1)2︸ ︷︷ ︸
≡1

−χ(L−2
n−1) χ(L

−m)︸ ︷︷ ︸
≡0

χ(L−e−1)≡ 1 (mod m).

This finishes the induction step. �

3. Inner Hodge numbers

We now show the following result, which significantly improves [Kotschick and Schreieder 2013, Theo-
rem 2].

Theorem 5. Let X be a smooth complex projective variety of dimension n and let (h p,q)1≤p,q≤n−1 be any
collection of integers such that h p,q

= hq,p
= hn−p,n−q for 1 ≤ p, q ≤ n− 1. Then X is birational to a

smooth complex projective variety X ′ such that

h p,q(X ′)≡ h p,q (mod m)

for all 1≤ p, q ≤ n− 1.

Together with Proposition 4, this will complete the proof of Theorem 2.
Let us recall the following result on blow-ups, see e.g., [Voisin 2002, Theorem 7.31]: If X̃ denotes the

blow-up of a Kähler manifold X along a closed submanifold Z ⊂ X of codimension c, we have

H p,q(X̃)∼= H p,q(X)⊕
c−1⊕
i=1

H p−i,q−i (Z).

Therefore,

h p,q(X̃)= h p,q(X)+
c−1∑
i=1

h p−i,q−i (Z). (4)

In order to prove Theorem 5, we first show that we may assume that X contains certain subvarieties,
without modifying its Hodge numbers modulo m.
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Lemma 6. Let X be a smooth complex projective variety of dimension n. Let r, s ≥ 0 be integers such that
r + s ≤ n− 1. Then X is birational to a smooth complex projective variety X ′ of dimension n such that
h p,q(X ′)≡ h p,q(X) (mod m) for all 0 ≤ p, q ≤ n and such that X ′ contains at least m disjoint smooth
closed subvarieties that are all isomorphic to a projective bundle of rank r over Ps .

Proof. We first blow up X in a point and denote the result by X̃ . The exceptional divisor is a subvariety
in X̃ isomorphic to Pn−1. In particular, X̃ contains a copy of Ps

⊂Pn−1. Now we blow up X̃ along Ps to
obtain X̂ . The exceptional divisor in X̂ is the projectivization of the normal bundle of Ps in X̃ . Since Ps

is contained in a smooth closed subvariety of dimension r + s+ 1 in X̃ (choose either Pr+s+1
⊂ Pn−1

if r + s < n − 1 or X̃ if r + s = n − 1), the normal bundle of Ps in X̃ contains a vector subbundle of
rank r + 1, and hence its projectivization contains a projective subbundle of rank r . Therefore, X̂ admits
a subvariety isomorphic to the total space of a projective bundle of rank r over Ps .

By (4), the above construction only has an additive effect on the Hodge diamond, i.e., the differences
between respective Hodge numbers of X̂ and X are constants independent of X . Hence, we may apply
the above construction m− 1 more times to obtain a smooth complex projective variety X ′ containing m
disjoint copies of the desired projective bundle and satisfying h p,q(X ′)≡ h p,q(X) (mod m). �

In the following, we consider the primitive Hodge numbers

l p,q(X)= h p,q(X)− h p−1,q−1(X)

for p+ q ≤ n. Clearly, it suffices to show Theorem 5 for a given collection (l p,q)(p,q)∈I of primitive
Hodge numbers instead, where

I = {(p, q) | 1≤ p ≤ q ≤ n− 1 and p+ q ≤ n}.

This is because one can get back the original Hodge numbers from the primitive Hodge numbers via the
relation

h p,q(X)= h0,q−p(X)+
p∑

i=1

l i,q−p+i (X)

for p ≤ q and p+ q ≤ n, and h0,q−p(X) is a birational invariant.
We define a total order ≺ on I via

(r, s)≺ (p, q)⇐⇒ r + s < p+ q or (r + s = p+ q and s < q).

Proposition 7. Let X be a smooth complex projective variety of dimension n. Let (r, s) ∈ I . Then X is
birational to a smooth complex projective variety X ′ of dimension n such that

lr,s(X ′)≡ lr,s(X)+ 1 (mod m) and l p,q(X ′)≡ l p,q(X) (mod m)

for all (p, q) ∈ I with (r, s)≺ (p, q).

Proof. By Lemma 6, we may assume that X contains m disjoint copies of a projective bundle of rank r−1
over Ps−r+1. Therefore, it is possible to blow up X along a projective bundle Bd of rank r − 1 over
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smooth hypersurfaces Yd ⊂ Ps−r+1 of degree d (in case of r = s, Yd just consists of d distinct points
in P1) and we may repeat this procedure m times and with different values for d . The Hodge numbers of
Bd are the same as for the trivial bundle Yd ×Pr−1, see e.g., [Voisin 2002, Lemma 7.32].

By the Lefschetz hyperplane theorem, the Hodge diamond of Yd is the sum of the Hodge diamond of
Y1 ∼= Ps−r , having nonzero entries only in the middle column, and of a Hodge diamond depending on d ,
having nonzero entries only in the middle row. It is well known (e.g., by computing Euler characteristics
as in Section 2) that the two outer entries of this middle row are precisely

( d−1
s−r+1

)
.

Now we blow up X once along Bs−r+2 and m − 1 times along B1 and denote the resulting smooth
complex projective variety by X ′. Due to (4) and Künneth’s formula, this construction affects the Hodge
numbers modulo m in the same way as if we would blow up a single subvariety Z ×Pr−1

⊂ X , where Z
is a (formal) (s− r)-dimensional Kähler manifold whose Hodge diamond is concentrated in the middle
row and has outer entries equal to

(s−r+2−1
s−r+1

)
= 1. In particular, we have h p,q(Z × Pr−1) = 0 unless

s − r ≤ p+ q ≤ s + r − 2 (and p+ q has the same parity as s − r) and |p− q| ≤ s − r . On the other
hand, h p,q(Z ×Pr−1)= 1 if s− r ≤ p+ q ≤ s+ r − 2 and |p− q| = s− r .

Taking differences in (4), it follows that

l p,q(X ′)≡ l p,q(X)+ h p−1,q−1(Z ×Pr−1)− h p−n+s−1,q−n+s−1(Z ×Pr−1) (mod m)

for all p+ q ≤ n. But we have

(p− n+ s− 1)+ (q − n+ s− 1)= p+ q − 2n+ 2s− 2≤ 2s− n− 2≤ s− r − 2

and hence h p−n+s−1,q−n+s−1(Z ×Pr−1)= 0 for all (p, q) ∈ I by the above remark.
Further,

lr,s(X ′)≡ lr,s(X)+ hr−1,s−1(Z ×Pr−1)= lr,s(X)+ 1 (mod m)

since s− r ≤ (r − 1)+ (s− 1)≤ s+ r − 2 and |r − s| = s− r .
Finally, r + s < p+ q implies (p− 1)+ (q − 1) > s + r − 2, while r + s = p+ q and s < q imply
|p− q|> s− r , so we have h p−1,q−1(Z ×Pr−1)= 0 in both cases and thus

l p,q(X ′)≡ l p,q(X)+ h p−1,q−1(Z ×Pr−1)= l p,q(X) (mod m)

for all (p, q) ∈ I with (r, s)≺ (p, q). �

Proof of Theorem 5. The statement is an immediate consequence of applying Proposition 7 inductively
tp,q times to each (p, q)∈ I in the descending order induced by≺, where tp,q ≡ l p,q

−l p,q(X p,q) (mod m)
and X p,q is the variety obtained in the previous step. �

4. Polynomial relations

The following principle seems to be classical.

Lemma 8. Let N ≥ 1 and S ⊂ ZN be a subset such that its reduction modulo m is the whole of (Z/mZ)N

for infinitely many integers m ≥ 2. If f ∈ C[x1, . . . , xN ] is a polynomial vanishing on S, then f = 0.
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Proof. Let f ∈ C[x1, . . . , xN ] be a nonzero polynomial vanishing on S. By choosing a Q-basis of C and
a Q-linear projection C→Q which sends a nonzero coefficient of f to 1, we see that we may assume
that the coefficients of f are rational, hence even integral. Since f 6= 0, there exists a point z ∈ ZN

such that f (z) 6= 0. Choose an integer m ≥ 2 from the assumption which does not divide f (z). Then
f (z) 6≡ 0 (mod m). However, we have z≡ s (mod m) for some s ∈ S and thus f (z)≡ f (s)= 0 (mod m),
because f ∈ Z[x1, . . . , xN ]. This is a contradiction. �

Proof of Corollary 3. This follows by applying Lemma 8 to the set S of possible Hodge diamonds, where
we consider only a nonredundant quarter of the diamond to take the Hodge symmetries into account.
Theorem 2 guarantees that the reductions of S modulo m are surjective even for all integers m ≥ 2. �

In the same way Theorem 2 implies Corollary 3, Theorem 5 yields the following.

Corollary 9. There are no nontrivial polynomial relations among the inner Hodge numbers of all smooth
complex projective varieties in any given birational equivalence class.
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