Vol. 13, No. 10, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Combinatorial identities and Titchmarsh's divisor problem for multiplicative functions

Sary Drappeau and Berke Topacogullari

Vol. 13 (2019), No. 10, 2383–2425
Abstract

Given a multiplicative function f which is periodic over the primes, we obtain a full asymptotic expansion for the shifted convolution sum |h|<nxf(n)τ(n h), where τ denotes the divisor function and h {0}. We consider in particular the special cases where f is the generalized divisor function τz with z , and the characteristic function of sums of two squares (or more generally, ideal norms of abelian extensions). As another application, we deduce a full asymptotic expansion in the generalized Titchmarsh divisor problem |h|<nx,ω(n)=kτ(n h), where ω(n) counts the number of distinct prime divisors of n, thus extending a result of Fouvry and Bombieri, Friedlander and Iwaniec.

We present two different proofs: The first relies on an effective combinatorial formula of Heath-Brown’s type for the divisor function τα with α , and an interpolation argument in the z-variable for weighted mean values of τz. The second is based on an identity of Linnik type for τz and the well-factorability of friable numbers.

Keywords
shifted convolution, divisor function, combinatorial identity
Mathematical Subject Classification 2010
Primary: 11N37
Secondary: 11N25
Milestones
Received: 17 December 2018
Revised: 1 July 2019
Accepted: 31 July 2019
Published: 6 January 2020
Authors
Sary Drappeau
Institut de Mathématiques de Marseille
Aix-Marseille Université, CNRS, Centrale Marseille
Faculté des sciences de Luminy
Marseille
France
Berke Topacogullari
EPFL SB MATH TAN
Station 8
1015 Lausanne
Switzerland