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We study G-valued Galois deformation rings with prescribed properties, where G is an arbitrary (not
necessarily connected) reductive group over an extension of Zl for some prime l. In particular, for the
Galois groups of p-adic local fields (with p possibly equal to l) we prove that these rings are generically
regular, compute their dimensions, and show that functorial operations on Galois representations give
rise to well-defined maps between the sets of irreducible components of the corresponding deformation
rings. We use these local results to prove lower bounds on the dimension of global deformation rings with
prescribed local properties. Applying our results to unitary groups, we improve results in the literature on
the existence of lifts of mod l Galois representations, and on the weight part of Serre’s conjecture.
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1. Introduction

The study of Galois deformation rings was initiated in [Mazur 1989], and was crucial to the proof of
Fermat’s last theorem in [Wiles 1995], and in particular to the modularity lifting theorems proved in [Wiles
1995; Taylor and Wiles 1995]. Many generalisations of these modularity lifting theorems have been
proved over the last 25 years, and it has become increasingly important to consider Galois representations
valued in reductive groups other than GLn . From the point of view of the Langlands program, it is
particularly important to be able to use disconnected groups, as the L-groups of nonsplit groups are
always disconnected. In particular, it is important to study the structure of local deformation rings for
general reductive groups, and to prove lifting results for global deformation rings. We briefly review the
history of such results in Section 1.1, but we firstly explain the main theorems of this paper.
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We begin with a result about local deformation rings. Let K/Qp be a finite extension, let O be the
ring of integers in a finite extension E of Ql with residue field F, where l is possibly equal to p, and let
G be a (not necessarily connected) reductive group over O. Given a representation ρ̄ : GalK → G(F), we
consider liftings of ρ̄ of some inertial type τ , and in the case l = p, some p-adic Hodge type v. There is
a corresponding universal framed deformation ring R�,τ,vρ̄ , and we prove the following result (as well as a
variant for “fixed determinant ψ” deformations).

Theorem A (Theorem 3.3.2). Fix an inertial type τ , and if l = p then fix a p-adic Hodge type v. Then
R�,τ,vρ̄ [1/ l] is generically regular. In addition, R�,τ,vρ̄ is equidimensional of dimension

1+ dimE G+ δl=p dimE(ResE⊗K/E G)/Pv,

and R�,τ,v,ψρ̄ is equidimensional of dimension

1+ dimE Gder
+ δl=p dimE(ResE⊗K/E G)/Pv.

(We are abusing notation here; Pv is a (ResE⊗K/E G)◦
E

-conjugacy class of parabolic subgroups of
ResE⊗K/E G, and we choose a representative defined over E to compute the dimension of the quotient.)
We are also able to describe the regular locus of R�,τ,vρ̄ [1/ l] precisely in terms of the corresponding
Weil–Deligne representations; see Corollary 3.3.4. In the case that G =GLn and l = p this is a theorem of
Kisin [2008], and results for general groups (but with more restrictive hypotheses than those of Theorem A)
were previously proved by Balaji [2013] and Bellovin [2016].

Combining Theorem A with results of [Balaji 2013], we obtain the following result (see Section 4 for any
unfamiliar notation or terminology — in particular, g0

F denotes the F-points of the Lie algebra of the derived
subgroup of G); in the case of potentially crystalline representations, this is the main result of [loc. cit.].

Theorem B (Proposition 4.2.6). Let F be totally real, assume that l > 2, let S be a finite set of places of F
containing all places dividing l∞, and let ρ̄ : GalF,S→ G(Fl) be a representation admitting a universal
deformation ring. Fix inertial types at all places v ∈ S, and Hodge types at all places v | l, in such a way
that the corresponding local deformation rings are nonzero, and let Runiv denote the corresponding fixed
determinant universal deformation ring for ρ̄.

Assume that ρ̄ is odd, and that H 0(GalF,S, (g
0
F)
∗(1)) = 0. Suppose also that for each place v | l the

corresponding Hodge type is regular. Then Runiv has Krull dimension at least 1.

We use this result to improve on some results about automorphic forms on unitary groups proved using
the methods of [Barnet-Lamb et al. 2014]. Beginning with [Clozel et al. 2008], Galois deformations were
considered for representations valued in a certain disconnected group Gn , whose connected component
is GLn ×GL1 (this group is related to the L-group of a unitary group, see [Buzzard and Gee 2014, §8]).
In the case that G = Gn , Theorem B generalises [Barnet-Lamb et al. 2014, Proposition 1.5.1], removing
restrictions on the places in S (which were chosen to split in the splitting field of the corresponding
unitary group, in order to reduce the local deformation theory to the GLn case).
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We deduce corresponding improvements to a number of results proved using the methods of [loc. cit.],
such as the following general result about Serre weights for rank-2 unitary groups, which removes a “split
ramification” hypothesis on the ramification of r̄ at places away from l.

Theorem C (Theorem 5.2.2). Let F be an imaginary CM field with maximal totally real subfield F+,
and suppose that F/F+ is unramified at all finite places, that each place of F+ above l splits in F, and
that [F+ : Q] is even. Suppose that l is odd, that r̄ : G F+ → G2(Fl) is irreducible and modular, and
that r̄(G F(ζl )) is adequate.

Then the set of Serre weights for which r̄ is modular is exactly the set of weights given by the
sets W (r̄ |G Fv

), v | l.

(See Remark 5.2.3 for a discussion of further improvements to this result that could be made by
techniques orthogonal to those of this paper.) These results are also crucially applied in [Calegari et al.
2018], where they are used to construct lifts of representations valued in Gn which have prescribed
ramification at certain inert places.

1.1. A brief historical overview. We now give a very brief overview of some of the developments in the
deformation theory of Galois representations, which was introduced for representations valued in GLn in
[Mazur 1989]; we apologise for the many important papers that we do not discuss here for reasons of space.
The abstract parts of this deformation theory were generalised to arbitrary reductive groups in [Tilouine
1996]. However, for applications to the Langlands program (and in particular to proving automorphy
lifting theorems), one needs to study conditions on Galois deformations coming from p-adic Hodge theory.

This was initially done in a somewhat ad hoc fashion, mostly for the group GL2 and mostly for
conditions coming from p-divisible groups, culminating in [Breuil et al. 2001], which used a detailed
study of some particular such deformation rings to complete the proof of the Taniyama–Shimura–Weil
conjecture. This situation changed with [Kisin 2008], which proved the existence of local deformation
rings for GLn corresponding to general p-adic Hodge theoretic conditions (namely being potentially
crystalline or semistable of a given inertial type), and determined the structure of their generic fibres, in
particular showing that they are generically regular, and computing their dimensions.

The results of [Kisin 2008] were generalised in [Balaji 2013] to the case of general reductive groups G
under the hypothesis of being potentially crystalline, and in [Bellovin 2016] to the case that G is
connected, and the inertial type is totally ramified. In the potentially crystalline case the generic fibres
of the deformation rings can easily be shown to be regular, whereas in the potentially semistable case,
one has to gain some control of the singularities, which is why there are additional restrictions in the
theorems of [loc. cit.]. Our Theorem A is a common generalisation of these results to the case that G is
possibly disconnected, and the representation is potentially semistable with no condition on the inertial
type. (We also simultaneously handle the case that p 6= l.)

Another important application of Galois deformation theory to the Langlands program is to prove results
showing that mod l representations of the Galois groups of number fields admit lifts to characteristic 0 with
prescribed local properties; for example, such results were an important part of Khare and Wintenberger’s
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proof of Serre’s conjecture. The first such results were proved in [Ramakrishna 2002] for GL2, and this
method has now been generalised to a wide class of reductive groups; see in particular [Patrikis 2016;
Booher 2019a; 2019b]. However, it has two disadvantages: it loses control of the local properties at a
finite set of places, and it only applies in cases where formally smooth deformation rings exist.

A different approach was found in [Khare and Wintenberger 2009], which observed that in conjunction
with the theory of potential modularity, such lifting results can be deduced from a lower bound on the
Krull dimension of a global deformation ring, which was provided by the results of [Böckle 1999].
Kisin [2007] improved on the results of [Böckle 1999], proving a result about presentations of global
deformation rings over local ones for GLn , and deducing a lower bound on the dimensions of global
deformation rings. These results were generalised to general reductive groups by Balaji [2013], and given
our Theorem A, results such as Theorem B are essentially immediate from Balaji’s.

Finally, [Booher and Patrikis 2017] (independently and contemporaneously) proved similar results to
those of this paper in the case l 6= p by a related but different method; rather than constructing a large
enough supply of unobstructed points, as in this paper, they instead show that all points can be path
connected to unobstructed points. We refer to the introduction to [loc. cit.] for a fuller discussion of the
difference between the approaches.

1.2. Some details. We now explain our local results (and their proofs) in more detail. Theorem A is a
generalisation of [Kisin 2008, Theorem 3.3.4], which proves the result in the case l = p and G =GLn . It
was previously adapted to the (much easier) case G=GLn and l 6= p in [Gee 2011] by using Weil–Deligne
representations in place of the filtered (ϕ, N )-modules employed in [Kisin 2008]. It was also generalised
in [Bellovin 2016] to the case that G is connected, l = p, and τ is totally ramified. Our approach is in
some sense a synthesis of the approaches of [Gee 2011; Bellovin 2016], in that we treat the cases l 6= p
and l = p essentially simultaneously, by using Weil–Deligne representations.

We briefly explain our approach, which in broad outline follows that of [Kisin 2008]. It is relatively
straightforward (by passing from Galois representations to Weil–Deligne representations using Fontaine’s
constructions in the case l = p, and Grothendieck’s monodromy theorem if l 6= p) to reduce Theorem A
to analogous statements about moduli spaces of Weil–Deligne representations over l-adic fields. These
moduli spaces admit an explicit tangent-obstruction theory given by an analogue of Herr’s complex
computing Galois cohomology in terms of (ϕ, 0)-modules, and the key problem is to prove that the H 2

of this complex generically vanishes. We can think of this H 2 as a coherent sheaf over the moduli space,
so by considering its support, we can reduce to the problem of exhibiting sufficiently many points at
which the H 2 vanishes (which turn out to be precisely the regular points, which in a standard abuse of
terminology we refer to as “smooth points”).

Our approach to exhibiting these points is related to that taken in [Bellovin 2016], in that it makes use of
the theory of associated cocharacters (see Section 2.3), but it is more streamlined and conceptual (for exam-
ple, we do not need to consider the case N = 0 separately, as was done in [loc. cit.]). Surprisingly (at least
to us), it is possible to construct all the smooth points that we need by considering the single Weil–Deligne
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representation WK → SL2(Ql) which is trivial on IK , takes an arithmetic Frobenius element of WK to(q1/2 0
0 q−1/2

)
,

where q is the order of the residue field of K , and has

N =
(0 1

0 0

)
.

It is easy to check that this gives a smooth point of the moduli space of Weil–Deligne representations
(while the point with the same representation of WK but with N = 0 is not smooth).

Returning to the case of general G, suppose that the inertial type τ is trivial. If we consider a nilpotent
element N ∈Lie G, the theory of associated cocharacters allows us to construct a particular homomorphism
SL2→G taking

( 0
0

1
0

)
to N, and an elementary calculation using the representation theory of sl2 shows that

the composition of our fixed representation WK → SL2(Ql) with this homomorphism defines a smooth
point. We obtain further smooth points by multiplication by elements of G(Ql) of finite order, and this
turns out to give us all the smooth points we need (even when G is not connected). (See Remark 2.3.10
for an interpretation of this construction in terms of the SL2 version of the Weil–Deligne group.)

In the case of general τ we reduce to the same situation by replacing G by the normaliser in G of τ ,
which is also a reductive group. This use of Weil–Deligne representations is what allows us to remove
the assumption made in [Bellovin 2016] that the inertial type is totally ramified, which was used in order
to choose coordinates so that the inertial type τ was invariant under Frobenius. (Similarly, it clarifies the
calculations made for GLn in [Kisin 2008], as the semilinear algebra becomes linear algebra.) Under this
assumption, when studying the structure of the moduli space of G-valued (ϕ, N, τ )-modules one could
exploit the fact that 8 was in the centraliser ZG(τ ) and N was in Lie ZG(τ ). Passing to Weil–Deligne
representations r lets us argue similarly for general τ : a generator8 of the unramified quotient of the Weil
group normalises the inertial type and N is centralised by the inertial type. Since ZG(r |IL/K ) has finite index
in the normaliser NG(r |IL/K ), we see that N is again in the Lie algebra of the algebraic group containing8.

In view of the functorial nature of our construction of smooth points, we are able to produce points
on each irreducible component of the generic fibre of the deformation ring which are furthermore “very
smooth” in the sense that they give rise to smooth points after restriction to any finite extension K ′/K
(these points were called “robustly smooth” in [Barnet-Lamb et al. 2014] when p 6= l). In particular,
the images of such points on the corresponding deformation rings for GalK ′ lie on only one irreducible
component, so that we obtain a well-defined “base change” map between irreducible components. We
prove a similar result for the maps between deformation rings induced by morphisms of algebraic groups
G→ G ′ (see Section 3.5 for this, and for the case of base change). In particular, this allows one to talk
about taking tensor products of components of deformation rings, which is frequently convenient when
applying the Harris tensor product trick; see for example [Calegari et al. 2018].

We end this introduction by explaining the structure of the paper. In Section 2, we prove our main
results about the structure of the moduli spaces of Weil–Deligne representations; we explain the tangent-
obstruction theory and exhibit smooth points, and study the relationship with Galois representations. In
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doing so we remove the connectedness hypothesis on G made in [Bellovin 2016], by studying exact
tensor-filtrations on fibre functors for disconnected reductive groups. We do this via a functor of points
approach, using the dynamic approach to parabolic subgroups discussed in [Conrad et al. 2010, §I.2.1]. In
Section 3 we deduce our results on the local structure of Galois deformation rings, which we then combine
with the results of [Balaji 2013] to prove our lower bound on the dimension of a global deformation ring
in Section 4. Finally, in Section 5 we specialise these results to the case of unitary groups.

1.3. Notation and conventions. All representations considered in this paper are assumed to be continuous
with respect to the natural topologies, and we will never draw attention to this.

If K is a field then we write GalK := Gal(K/K ) for its absolute Galois group, where K is a fixed
choice of algebraic closure; we will regard all algebraic extensions of K as subfields of K without further
comment, so that in particular we can take the compositum of any two such extensions. If L/K is a
Galois extension then we write GalL/K :=Gal(L/K ), a quotient of GalK . If K is a number field and v is
a place of K then we fix an embedding K ↪→ K v , so that we have a homomorphism GalKv

→GalK . If S
is a finite set of places of a number field K , then we let K (S) be the maximal extension of K (inside K )
which is unramified outside S, and write GalK ,S := Gal(K (S)/K ).

If K/Qp is a finite extension for some prime p then we write IK for the inertia subgroup of GalK ,
WK for the Weil group, and fK for the inertial degree of K/Qp. We let ϕ denote the arithmetic Frobenius
on Fp, so that we have an exact sequence

1→ IK →WK → 〈ϕ
fK 〉 → 1,

and we let v :WK → Z be the function such that v(g)= i if the image of g modulo IK is ϕi fK. Recall that
a Weil–Deligne representation of WK is a pair (r, N ) consisting of a finite-dimensional representation
r :WK → End(V ) and a (necessarily nilpotent) endomorphism N ∈ End(V ) satisfying

ρ(g)N = pv(g) fK Nρ(g)

for all g ∈WK .

1.3.1. Parabolic subgroups. If G is a finite-type affine group scheme over A, and λ : Gm → G is a
cocharacter of G, then there is a subgroup PG(λ) of G associated to λ as follows. Following [Conrad
et al. 2010, §I.2.1], for any A-algebra A′ we define the functors

PG(λ)(A′)= {g ∈ G(A′) | limt→0 λ(t)gλ(t)−1 exists},

UG(λ)(A′)= {g ∈ PG(λ)(A′) | limt→0 λ(t)gλ(t)−1
= 1}.

We also let ZG(λ) denote the scheme-theoretic centraliser of λ. All of these functors are representable by
subgroup schemes of G, and they are smooth if G is smooth. By construction, the formation of PG(λ),
UG(λ), and ZG(λ) commutes with base change on A.

The cocharacter λ induces a grading on the Lie algebra g :=Lie G. Let gn := {v∈g |Ad(λ(t))(v)= tnv}

and let g≥0 :=
⊕

n≥0 gn . Then Lie PG(λ)= g≥0, Lie UG(λ)= g≥1, and Lie ZG(λ)= g0.
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The multiplication map ZG(λ)nUG(λ)→ PG(λ) is an isomorphism. Furthermore, the fibres of UG(λ)

are unipotent and connected. If the morphism G→ Spec A has connected reductive fibres, then PG(λ) is a
parabolic subgroup scheme with connected fibres, UG(λ) is its unipotent radical, and ZG(λ) is connected
and reductive.

1.3.2. Deformation rings. Let l be prime, and let O be the ring of integers in a finite extension E/Ql

with residue field F. Write CNLO for the category of complete local noetherian O-algebras with residue
field F.

Let 0 be either the absolute Galois group GalK of a finite extension K of Ql for some p (possibly
equal to l), or a group GalK ,S where S is a finite set of places of a number field K .

Let G be a smooth affine group scheme over O whose geometric fibres are reductive (but not necessarily
connected), and fix a homomorphism ρ̄ : 0→ G(F). A framed deformation of ρ̄ to a ring A ∈ CNLO

is a homomorphism ρ : 0→ G(A) whose reduction modulo mA is equal to ρ̄. The functor of framed
deformations is represented by the universal framed deformation O-algebra R�ρ̄ , an object of CNLO

[Balaji 2013, Theorem 1.2.2].
Suppose from now on for the rest of the paper that the centre ZG of G is smooth over O. Write gF and zF

for the F-points of the Lie algebras of G and ZG respectively; 0 acts on gF via the adjoint action composed
with ρ̄. A deformation of ρ̄ to A is a (ker(G(A)→ G(F)))-conjugacy class of framed deformations
of ρ̄ to A. If H 0(0, gF) = zF, then the functor of deformations is represented by the universal framed
deformation O-algebra Rρ̄ , an object of CNLO; see [Balaji 2013, Theorem 1.2.2] or [Tilouine 1996,
Theorem 3.3], together with Comment (2) following [loc. cit., Theorem 3.3].

We will also consider “fixed determinant” versions of these (framed) deformations rings. Let Gab

and Gder respectively denote the abelianisation and derived subgroup of G, and write ab : G→ Gab for
the natural map. Write g0

F for the F-points of the Lie algebra of Gder. Fix a homomorphism ψ : 0→

Gab(O) such that ab ◦ ρ̄ = ψ̄ . We let R�,ψρ̄ denote the quotient of R�ρ̄ corresponding to deformations ρ
with ab◦ρ=ψ and Rψρ̄ denote the quotient of Rρ̄ corresponding to framed deformations ρ with ab◦ρ=ψ .

We write G◦ for the connected component of G containing the identity. We will always consider
representations up to G◦-conjugacy, rather than G-conjugacy; note that this is compatible with our
definition of deformations, as an element of (ker(G(A)→ G(F))) is necessarily contained in G◦(A).

We for the most part allow any coefficient field E , although for some constructions in p-adic Hodge
theory we need to allow it to be sufficiently large; we will comment when we do this. The effect
of replacing E with a finite extension E ′ with ring of integers O′ is simply to replace R�ρ̄ and Rρ̄
with R�ρ̄ ⊗O O′ and Rρ̄ ⊗O O′ respectively.

2. Moduli of Weil–Deligne representations

Let K/Qp be a finite extension, and let l be a prime, possibly equal to p. In this section we prove
analogues for l-adic Weil–Deligne representations of some results on moduli spaces of weakly admissible
modules from [Kisin 2008; Bellovin 2016], and remove some hypotheses imposed in those papers; in
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particular, we allow our groups to be disconnected, and we work with arbitrary inertial types (rather than
totally ramified types). In the case that l = p we relate our moduli spaces to those for weakly admissible
modules. In Section 3 we will use these results to study the generic fibres of deformation rings in both
the case l = p and the case l 6= p.

2.1. Moduli of Weil–Deligne representations. Let K/Qp be a finite extension, and let L/K be a finite
Galois extension. As in Section 1.3, we let E/Ql be a finite extension for some prime l, with ring of
integers O. We also continue to let G be a (not necessarily connected) reductive group over O; in fact,
throughout this section we will be working with l inverted, and we will write G for G E without further
comment. We write gE for the Lie algebra of G.

A morphism of G-torsors f : D → D′ over an E-scheme X is a morphism of the underlying X -
schemes which is equivariant for the action of G X . Such a morphism is necessarily an isomorphism. The
G-equivariant automorphisms of D, which we denote by AutG(D), form a group, and it makes sense
to talk about homomorphisms r : WK → AutG(D). We also define a sheaf of automorphism groups
AutG(D) over X ; if X ′ is an X -scheme, its X ′-points are given by AutG(D)(X ′) := AutG(DX ′). This
is a representable functor, since AutG(D) is étale-locally isomorphic to G X , which is affine. We abuse
notation by writing AutG(D) for the group scheme, as well.

Definition 2.1.1. Let G- WDE(L/K ) be the category cofibred in groupoids over E-Alg whose fibre over
an E-algebra A is a G-torsor D over A together with a pair (r, N ), where now r :WK → AutG(D) is a
representation of the Weil group such that r |IL is trivial, N ∈Lie AutG(D), and N = p−v(g) fK Ad(r(g))(N )
for all g ∈WK .

Requiring D to be a trivial G-torsor equipped with a trivialising section lets us define a representable
functor covering G- WDE(L/K ), as follows. The exact sequence

0→ IK →WK → 〈ϕ
fK 〉 ∼= Z→ 0

is noncanonically split, and choosing a splitting is the same as choosing a lift g0 ∈WK of ϕ fK. Thus, to
specify a representation r :WK →AutG(D), it suffices to specify r |IK and r(g0) (which we denote by 8).
Since we are interested in representations which are trivial on IL , we may replace r |IK with r |IL/K . For
an E-algebra A, we let RepA IL/K denote the set of A-linear representations of IL/K on G(A).

Definition 2.1.2. Choose g0 ∈ WK lifting ϕ fK. We let YL/K ,ϕ,N be the functor on the category of
E-algebras whose A-points are triples

(8, N, τ ) ∈ G(A)× gE(A)×RepA IL/K

which satisfy

• N = p− fK Ad(8)(N ),

• 8 ◦ τ(g) ◦8−1
= τ(g0gg−1

0 ) for all g ∈ IL/K , and

• N = Ad(τ (g))(N ) for all g ∈ IL/K .
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To go from YL/K ,ϕ,N to G- WDE(L/K ), we need to forget the trivialising section and also forget g0;
the representation associated to (8, N, τ ) is given by

r(gn
0 h)=8nτ(h),

where n ∈ Z and h ∈ IK .
The functor YL/K ,ϕ,N is visibly represented by a finite-type affine scheme over E , and there is an

action of G on YL/K ,ϕ,N given by changing the trivialising section; explicitly,

a · (8, N, {τ(g)}g∈IL/K ) := (a8a−1,Ad(a)(N ), {aτ(g)a−1
}g∈IL/K ).

Recall that if Z is an E-scheme equipped with a left-action of an algebraic group H over E , then for any
E-scheme S, the groupoid [Z/H ](S) over S is the category

[Z/H ](S) := {Left H -bundle D→ S and H -equivariant morphism D→ Z}.

A morphism f : D→ D′ in this fibre category is a morphism of H -torsors over S.

Lemma 2.1.3. The quotient stack [YL/K ,ϕ,N /G] is equivalent to the groupoid G- WDE(L/K ).

Proof. We choose g0 ∈ WK lifting ϕ fK. Given an A-valued point of G- WDE(L/K ) with underlying
G-torsor D, the base change D×A D→ D (which is projection on the first factor) is a trivial G-torsor
(with G acting on the second factor). The identity morphism D −→∼ D induces a canonical trivialising
section D→ D×A D, namely the diagonal. Pulling back r and N to D×A D, writing them in coordinates
(with respect to the trivialising section), and writing τ := r |IL/K and 8 := r(g0) gives us a morphism
D→ YL/K ,ϕ,N .

We need to check that the morphism D → YL/K ,ϕ,N is G-equivariant. If A′ is an A-algebra, the
morphism D→ YL/K ,ϕ,N carries x ∈ D(A′) to the fibre of (8, N, τ ) over x . The fibre of D×A D→ D
over x is a copy of DA′ , together with a section (defined by taking the fibre of the diagonal over x). If
g ∈ G(A′), the fibre of D×A D→ D over g · x is also a copy of DA′ , but the section has been multiplied
by g. Thus, our “change-of-basis” formula for triples (8, N, τ ) implies that the morphism D→ YL/K ,ϕ,N

is G-equivariant, as required. �

Similarly, we let YL/K ,N denote the functor on the category of E-algebras parametrising pairs

(N, τ ) ∈ gE(A)×RepA IL/K

such that N =Ad(τ (g))(N ) for all g ∈ IL/K ; and we let YL/K be the functor on the category of E-algebras,
whose A-points are RepA IL/K .

Let K ′/K be a finite extension, and write L ′/K ′ for the compositum of K ′ and L . Then L ′/K ′ is
Galois, with Galois group GalL ′/K ′ ⊂ GalL/K . There are versions of the above functors for L ′/K ′ which
we write YL ′/K ′,ϕ,N , YL ′/K ′,N , and YL ′/K ′ . Restriction of Weil–Deligne representations from WK to WK ′

induces morphisms YL/K ,ϕ,N → YL ′/K ′,ϕ,N , YL/K ,N → YL ′/K ′,N and YL/K → YL ′/K ′ .



342 Rebecca Bellovin and Toby Gee

2.2. A tangent-obstruction theory for G- WDE(L/K ). Choose an object DA ∈ G- WDE(L/K ) with
coefficients in an E-algebra A, and let ad DA denote the Weil–Deligne module induced on Lie AutG DA.
Choose g0 ∈ WK which lifts ϕ fK and write 8 := r(g0), let Ad(8) denote the action on ad DA given
by differentiating the homomorphism AutG DA→ AutG DA given by g 7→ 8g8−1, and let adN act by
x 7→ [N, x]. If G = GLn and DA is the trivial torsor, these actions become x 7→ 8 ◦ x ◦ 8−1 and
x 7→ N ◦ x − x ◦ N, respectively. Then we have an anticommutative diagram:

(ad DA)
IL/K

adN
��

1−Ad(8)
// (ad DA)

IL/K

adN
��

(ad DA)
IL/K

p− fK Ad(8)−1
// (ad DA)

IL/K

Here g ∈ IL/K acts on ad DA via Ad(τ (g)); note that the minus sign in p− fK arises because g0 is a lift of
arithmetic Frobenius. This diagram does not depend on our choice of g0, because any two lifts of ϕ fK

differ by an element of IL/K , which acts trivially on (ad DA)
IL/K.

The total complex C •(DA) of this double complex controls the deformation theory of objects of
G- WDE(L/K ). We write H i (ad DA) for the cohomology groups of C •(DA). The following result will
be proved in a very similar way to [Kisin 2008, Proposition 3.1.2], which is an analogous result for
semilinear representations in the case G = GLn .

Proposition 2.2.1. Let A be a local E-algebra with maximal ideal mA and let I ⊂ A be an ideal
with ImA = (0). Let DA/I be an object of G- WDE(L/K ) with coefficients in A/I, with Weil–Deligne
representation (r̄ , N ). Then:

(1) If H 2(ad DA/mA)= 0, then there exists an object DA in G- WDE(L/K ) with coefficients in A, such
that (A/I )⊗A DA ∼= DA/I .

(2) The set of isomorphism classes of liftings of DA/I to DA is either empty or a torsor under I ⊗A/mA

H 1(ad DA/mA).

We begin by proving a preliminary lemma.

Lemma 2.2.2. Let DA be a G-torsor over A, and suppose there is a representation r̄ :WK→AutG(DA/I )

such that r̄ |IL is trivial. Then there is a representation r :WK → AutG(DA) such that r |IL is trivial and r
lifts r̄ . Moreover, the set of infinitesimal automorphisms of r (as a lift of r̄ ) is a torsor under

H 0(WK /IL , I ⊗A/mA ad D IL
A/mA

)= I ⊗A/mA ad DWK
A/mA

,

and the set of lifts of r̄ is a torsor under

H 1(WK /IK , I ⊗A/mA ad D IL/K
A/mA

).

Proof. An isomorphism f̄ : DA/I → DA/I lifts to an isomorphism f : DA→ DA, and the set of such lifts
is a torsor under either a left- or right-action of H 0(A, I ⊗A/mA DA/mA) by [Bellovin 2016, Lemma 3.5].
Thus, for each g ∈WK , we can lift the map r̄(g) : DA/I → DA/I to an isomorphism r(g) : DA→ DA.
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The assignment
(g1, g2) 7→ r(g1)r(g2)r(g1g2)

−1

is a 2-cocycle of WK /IL valued in I ⊗A/mA ad DA/mA . Since we are in characteristic 0, and IL/K is a
finite group, the Hochschild–Serre spectral sequence implies that for each i > 0, we have an isomorphism

H i (WK /IK , I ⊗A/mA ad D IL/K
A/mA

)−→∼ H i (WK /IL , I ⊗A/mA ad DA/mA).

In particular,

H 2(WK /IL , I ⊗A/mA ad DA/mA)
∼= H 2(Ẑ, I ⊗A/mA ad D IL/K

A/mA
)= 0,

so r̄ lifts to a representation r :WK → AutG(DA) with r |IL = 0, as claimed.
An isomorphism f : DA→ DA is an infinitesimal automorphism of r if and only if it is the identity

modulo I and r(g) ◦ f = f ◦ r(g) for all g ∈ WK . Equivalently, f is an element of I ⊗A/mA ad DA/mA

fixed by WK , and since I is a vector space over A/mA, this is equivalent to f ∈ I ⊗A/mA ad DWK
A/mA

, as
desired.

Finally, if r ′ : WK → AutG(D) is another such lift, then g 7→ r ′(g)r(g)−1 is a 1-cocycle of WK /IL

valued in I ⊗A/mA ad DA/mA . But

H 1(WK /IL , I ⊗A/mA ad DA/mA)
∼= H 1(WK /IK , I ⊗A/mA ad D IL/K

A/mA
),

so we are done. �

Proof of Proposition 2.2.1. By [Bellovin 2016, Lemma 3.4], the underlying G-torsor DA/I lifts to
a G-torsor DA over Spec A, and DA is unique up to isomorphism, and by Lemma 2.2.2, r̄ lifts to a
representation r : WK → AutG(DA). Moreover, by [loc. cit., Lemma 3.7], N ∈ ad DA/I lifts to some
N ∈ ad DA such that Ad(r(g))(N ) = N for all g ∈ IL/K , and any two lifts differ by an element of
I ⊗A/mA (ad DA/mA)

IL/K .
Now DA, together with r and N, is an object of G- WDE(L/K ) if and only if N = p− fK Ad(8)(N ),

where 8 := r(ϕ fK ). We define

h := N − p− fK Ad(8)(N ) ∈ I ⊗A/mA ad D IL/K
A/mA

.

If H 2(ad DA/mA) = 0, then by definition there exist f, g ∈ I ⊗A/mA ad D IL/K
A/mA

such that h = adN ( f )+
(p− fK Ad(8)− 1)(g). We can view f and g either as elements of AutG(DA) (congruent to the identity
modulo I ) or as elements of its tangent space. Thus we claim that if we define Ñ := N + g and
8̃ := f −1

◦8, then Ñ = p− fK Ad(8̃)(Ñ ). Indeed,

Ñ − p− fK Ad(8̃)(Ñ )

= N + g− p− fK (Ad(1− f ) ◦Ad(8))(N + g)

= N + g− p− fK Ad(8)(N )− p− fK Ad(8)(g)+ p− fK [ f,Ad(8)(N )] + p− fK [ f,Ad(8)(g)]

= adN ( f )+ p− fK [ f,Ad(8)(N )]

= [h, f ] = 0.
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Here we have used that f, g, h∈ I⊗A/mA ad DGalL/K
A/mA

and I · I ⊂ ImA=0, so the Lie brackets [ f,Ad(8)(g)]
and [h, f ] vanish. This proves part (1).

Now suppose that Ñ = p− fK Ad(8̃)(Ñ ), and let f, g ∈ I ⊗A/mA ad D IL/K
A/mA

. Define Ñ ′ := N + g and
8̃′ := f −1

◦ 8̃. Then

Ñ ′− p− fK Ad(8̃′)(Ñ ′)

= Ñ + g− p− fK Ad(8̃)(Ñ )− p− fK Ad(8̃)(g)+ p− fK [ f,Ad(8̃)(Ñ )] + p− fK [ f,Ad(8̃)(g)]

= (1− p− fK Ad(8̃))(g)+ [ f, Ñ ]

= −(p− fK Ad(8)− 1)(g)− adN ( f ).

Thus, 8̃′, Ñ ′ give another lift if and only if ( f, g) ∈ ker(d1).
Moreover, if (8̃′, Ñ ′) is another lift, it is isomorphic to (8̃, Ñ ) if and only if there is some j ∈

I ⊗A/mA D IL/K
A/mA

such that

Ñ ′ = Ad(1+ j)(Ñ ) and (1+ j)8̃= 8̃′(1+ j).

This is equivalent to

Ñ − Ñ ′ = adN ( j) and 8̃(8̃′)−1
= 1− (1−Ad(8))( j).

In other words, (8̃, Ñ ) and (8̃′, Ñ ′) differ by an element of im(d0), as required. �

2.3. Construction of smooth points. We wish to show that “most” points of YL/K ,ϕ,N are smooth, and so
are their images in YL ′/K ′,ϕ,N for any finite extension K ′/K . In this section we will consider a single fixed
extension K ′/K , and in Section 2.4 below we will deduce a result for all extensions K ′/K simultaneously.

We begin by fixing an inertial type τ : IL/K → G(E). This amounts to considering the fibre of
YL/K ,ϕ,N→ YL/K over the point corresponding to τ . Next, we observe that if we can find r :WK→G(E)
such that r |IK = τ , then 8 := r(g0) is an element of the algebraic group defined over E

NG(τ ) := {h ∈ G | hr(g)h−1
∈ r(IL/K ) for all g ∈ IL/K }.

Note that 8 is not necessarily an element of the centraliser

ZG(τ ) := {h ∈ G | hr(g)h−1
= r(g) for all g ∈ IL/K }.

However, since IL/K is finite (and in particular has only finitely many automorphisms), ZG(τ )⊂ NG(τ )

has finite index; so we have ZG(τ )
◦
= NG(τ )

◦ and Lie ZG(τ ) = Lie NG(τ ). In particular, this implies
that NG(τ ) and ZG(τ ) are reductive:

Theorem 2.3.1. The normaliser NG(τ ) := {h ∈ G | hr(g)h−1
∈ r(IL/K ) for all g ∈ IL/K } of τ(IL/K ) is

a reductive group.

Proof. Since we are working over a field of characteristic 0, it is enough to prove that the connected
component of the identity NG(τ )

◦
= ZG(τ )

◦
= ZG◦(τ )

◦ is reductive. But reductivity for the latter group
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follows from [Prasad and Yu 2002, Theorem 2.1], which states that when a finite group acts on a connected
reductive group, the connected component of the identity of the fixed points is reductive. �

Remark 2.3.2. Prasad and Yu prove their result under the assumption that the characteristic of the ground
field does not divide the order of the group. Conrad, Gabber, and Prasad prove a more general result
[Conrad et al. 2010, Proposition A.8.12], assuming only that the algebraic group acting is geometrically
linearly reductive.

Our hypotheses imply that N ∈ Lie ZG(τ ) and 8 ∈ NG(τ ). However, if (r, N ) exists and has the
correct inertial type, the set of 8 ∈ G(E) compatible with r |IL/K and N is a torsor under ZG(τ )∩ ZG(N ).

We now briefly recall the theory of associated cocharacters over a field of characteristic 0; we refer the
reader to [Jantzen 2004] (in particular Section 5) for further details and proofs. We will not draw attention
to the assumption that our ground field has characteristic 0 below (but we will frequently use it); on the
other hand, we do explain why the results that we are recalling hold over arbitrary fields of characteristic 0.

If N ∈ g is nilpotent, a cocharacter λ : Gm→ G is said to be associated to N if

• Ad(λ(t))(N )= t2 N, and

• λ takes values in the derived subgroup of a Levi subgroup L ⊂ G for which N ∈ l := Lie L is
distinguished (that is, every torus contained in ZL(N ) is contained in the centre of L).

By [McNinch 2004, Theorem 26], for any N there exists a cocharacter associated to N which is defined
over the same field as N. Any two cocharacters associated to N are conjugate under the action of ZG(N )◦.

An sl2-triple is as usual a nonzero triple (X, H, Y ) of elements of g such that [H, X ] = 2X , [H, Y ] =
−2Y, and [X, Y ]= H. The Jacobson–Morozov theorem [Bourbaki 2005, Chapter VIII, §11, Proposition 2]
states that for a nonzero nilpotent element N in a semisimple Lie algebra, an sl2-triple (N, H, Y ) always
exists, and any two such triples (N, H, Y ) and (N, H ′, Y ′) are conjugate under the action of ZG(N )◦

[loc. cit., Chapter VIII, §11, Proposition 1]. Given a pair (N, H) such that [H, N ] = 2N and H ∈ [N, g],
it is possible to construct an sl2-triple (N, H, Y ) [loc. cit., Chapter VIII, §11, Lemme 6] (or the zero triple
if N = H = 0). Since SL2 is simply connected, this implies that there is a homomorphism SL2→ G
which sends the “standard” basis for sl2 to (N, H, Y ).

If we let λ :Gm→SL2→G be the composition of the cocharacter t 7→
( t

0
0

t−1

)
with this homomorphism

SL2→ G, then λ is associated to N. Moreover, the association λ 7→ dλ(1) sends cocharacters associated
to N to elements H such that [H, N ] = 2N and H ∈ [N, g], and this is an injective map [Jantzen 2004,
Proposition 5.5] (this reference assumes that the ground field is algebraically closed, but this hypothesis
is not used). Thus (in characteristic 0) associated cocharacters are a group-theoretic analogue of the
Jacobson–Morozov theorem.

We use the following properties of associated cocharacters; the given reference assumes the ground
field is algebraically closed, but these statements can all be checked after extension of the ground field.

Proposition 2.3.3 [Jantzen 2004, 5.9–11]. Let G be a connected reductive group, let N ∈ g be a nilpotent
element, and let λ : Gm→ G be an associated cocharacter for N. Then:
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(1) The associated parabolic PG(λ) depends only on N, not on the choice of associated cocharacter.

(2) We have ZG(N )⊂ PG(λ). In particular, ZG(N )= Z PG(λ)(N ).

(3) ZG(N )= (UG(λ)∩ ZG(N ))o (ZG(λ)∩ ZG(N )).

(4) ZG(λ)∩ ZG(N ) is reductive.

In particular, by Proposition 2.3.3(3), the disconnectedness of ZG(N ) is entirely accounted for by the
disconnectedness of ZG(λ)∩ ZG(N ). The connectedness assumption on G for that part is removed in
[Bellovin 2016, Proposition 4.9], so we may apply it to groups such as ZG(τ ) (which is reductive but not
necessarily connected).

We will use the following lemma in the proof of Theorem 2.3.6 below.

Lemma 2.3.4. If λ is an associated cocharacter of N, then the weight-2 part of g for the adjoint action
of λ is in the image of adN .

Proof. If N = 0, then λ is the constant cocharacter and the corresponding weight-2 subspace is trivial.
Otherwise, we may find an sl2-triple of the form (N, dλ(1), Y ) and view g as a representation of sl2.
Then the result follows by the representation theory of sl2: if T ∈ g is in the weight-2 part, then 1

2 [Y, T ]
is in the weight-0 part and [

N, 1
2 [Y, T ]

]
=

1
2 [[N, Y ], T ] = 1

2 [dλ(1), T ] = T,

so T is in the image of adN . �

Let f : G → G ′ be a morphism of reductive groups over E , inducing a morphism g→ g′ on Lie
algebras, which we also denote by f . We use the following lemma in the proof of Theorem 2.3.8 below.

Lemma 2.3.5. If λ is an associated cocharacter for N ∈ g, then f ◦ λ is an associated cocharacter
for f (N ).

Proof. It is clear that dλ(1) is semisimple. Then there exists some Y ∈ g such that (N, dλ(1), Y )
is an sl2-triple, and therefore there is a homomorphism SL2 → G such that the precomposition with
the diagonal is λ. The composition Gm → SL2 → G → G ′ is f ◦ λ. Moreover, if we consider the
composition SL2→ G→ G ′ and differentiate, we get a map sl2→ g′ sending the “standard” basis of sl2
to ( f (N ), f (dλ(1)), f (Y )). This shows that [ f (dλ(1)), f (N )] = 2 f (N ) and f (dλ(1)) is in the image
of ad f (N ). Since f (dλ(1))= d( f ◦ λ)(1), this shows that f ◦ λ is associated to f (N ), by [Jantzen 2004,
Proposition 5.5]. �

If K ′/K is a finite extension, we write H 2
L ′/K ′ for the coherent sheaf on YL/K ,ϕ,N given by the

cokernel of

(adD)IL′/K ′ ⊕ (adD)IL′/K ′
adNL′

−(p− fK ′ Ad(8 fK ′ / fK )−1)
−−−−−−−−−−−−−−−−−−→ (adD)IL′/K ′ ,

where (D,8, N, τ ) is the universal object over YL/K ,ϕ,N , the operator adNL′
acts on the first factor and

(p− fK ′ Ad(8 fK ′/ fK )−1) acts on the second factor. Then the fibre of H 2
L ′/K ′ at a closed point of YL/K ,ϕ,N

controls the obstruction theory of the restriction to WK ′ of the corresponding Weil–Deligne representation.
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Theorem 2.3.6. Let K ′/K be a finite extension. Then there is a dense open subscheme U ⊂ YL/K ,ϕ,N

(possibly depending on K ′) such that H 2
L ′/K ′ |U = 0.

Proof. Since the support of H 2
L ′/K ′ is closed, it suffices to show that if we consider the map YL/K ,ϕ,N →

YL/K ,N , then each component of the fibre over some point N ∈ YL/K ,N contains a point (8, N ) whose
corresponding H 2 vanishes (when viewed as a point of YL ′/K ′,ϕ,N ).

To do this, we consider a new moduli problem ỸL/K ,ϕ,N , which by definition is the functor on the
category of E-algebras whose A-points are triples

(8, N, τ ) ∈ NG(τ )×Lie ZG(τ )×RepA IL/K

which satisfy N = p− fK Ad(8)(N ).
This is representable by an affine scheme which we also write as ỸL/K ,ϕ,N , and there is a natural

morphism ỸL/K ,ϕ,N → YL/K ,N . Indeed, the map YL/K ,ϕ,N → YL/K ,N factors through the natural
inclusion YL/K ,ϕ,N ↪→ ỸL/K ,ϕ,N , and the fibres of YL/K ,ϕ,N → YL/K ,N are closed and open in the fibres
of ỸL/K ,ϕ,N → YL/K ,N . Thus, it suffices to study the fibres of the map ỸL/K ,ϕ,N → YL/K ,N . (Note that
the tangent-obstruction complex for objects of G- WDE(L/K ) makes sense over ỸL/K ,ϕ,N as well.)

Choose an associated cocharacter λ : Gm→ ZG(τ )
◦ for N, so that in particular Ad(λ(t))(N )= t2 N,

and let 8 := λ(p fK /2). Then (8, N, τ ) is a point of ỸL/K ,ϕ,N , and we wish to study the restriction
(8 fK ′/ fK , NL ′, τ |IL′/K ′

).
If D denotes the underlying G-torsor for (8, N, τ ), and ad D denotes its pushout via the adjoint

representation, then Ad(8) and Ad(8 fK ′/ fK ) are semisimple operators on (ad D)IL/K and (ad D)IL′/K ′ ,
respectively. Therefore, p− fK Ad(8)− 1 and p fK ′ Ad(8 fK ′/ fK )− 1 are semisimple as well (since they
are the difference of commuting semisimple operators in characteristic 0).

Thus, to compute the cokernel of p− fK ′ Ad(8 fK ′/ fK ) − 1, it suffices to compute its kernel. Now
(ad D)IL′/K ′ is graded by the adjoint action of λ :Gm→ ZG(τ )⊂ ZG(τ |IL′/K ′

), and if (ad D)
IL′/K ′

k denotes
the weight-k subspace, then p− fK ′ Ad(8 fK ′/ fK )− 1 preserves it, so it suffices to compute

ker(p− fK ′ Ad(8 fK ′/ fK )− 1)|
(ad D)

IL′/K ′
k

for each k. But p− fK ′ Ad(8 fK ′/ fK )− 1 acts invertibly unless k = 2 (in which case it acts by 0), so the
cokernel of p− fK ′ Ad(8 fK ′/ fK )−1 is exactly (ad D)

IL′/K ′

2 . By Lemma 2.3.4, the weight-2 part of gIL′/K ′ is
in the image of adN , so we conclude that H 2

L ′/K ′ vanishes at (8, N ), and at its image in YL ′/K ′,ϕ,N .
We need to find similar points on every connected component of the fibre of ỸL/K ,ϕ,N → YL/K ,N over

N ∈ YL/K ,N . This fibre is a torsor under NG(τ )∩ ZG(N ), and the disconnectedness of NG(τ )∩ ZG(N )
is entirely accounted for by the disconnectedness of NG(τ ) ∩ ZG(λ) ∩ ZG(N ), by [Bellovin 2016,
Proposition 4.9] (applied with G ′ = NG(τ )). On each component of NG(τ )∩ ZG(N ), we may therefore
by [loc. cit., Lemma 5.3] choose a finite-order element c ∈ NG(τ ) ∩ ZG(λ) ∩ ZG(N ). (Note that
NG(τ )∩ ZG(λ)∩ ZG(N )= Z NG(τ )(N )∩ Z NG(τ )(λ) is reductive by Proposition 2.3.3.)
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We now check that H 2
L/K and H 2

L ′/K ′ vanish at the points of ỸL/K ,ϕ,N and ỸL ′/K ′,ϕ,N , respectively,
corresponding to (8 · c, N ).

Firstly, we claim that p− fK ′ Ad((8 · c) fK ′/ fK )−1 is semisimple, or equivalently, that Ad((8 · c) fK ′/ fK )

is semisimple. For this, it suffices to check that some iterate of Ad((8 · c) fK ′/ fK ) is semisimple (since we
are in characteristic 0). Let n be the order of c. Since c and 8= λ(p fK /2) commute,

Ad(8 fK ′/ fK · c)n = Ad(8n fK ′/ fK · cn)= Ad(8n fK ′/ fK ).

But since Ad(8) is semisimple by construction, so is Ad(8n fK ′/ fK ), as claimed.
Thus, to compute the cokernel of p− fK ′ Ad((8 · c) fK ′/ fK )− 1, it suffices to compute its kernel, which

is contained in the kernel of p−n fK ′ Ad(8n fK ′/ fK )− 1. Since p−n fK ′ Ad(8n fK ′/ fK )− 1 acts invertibly on
each weight space (ad D)IL/K

k unless k = 2, the cokernel of p− fK ′ Ad(8 fK ′/ fK · c)− 1 is contained in
(ad D)IL/K

2 . Since (ad D)IL/K
2 is again in the image of adN by Lemma 2.3.4, we are done. �

Corollary 2.3.7. The stack G- WDE(L/K ) is generically smooth, and is equidimensional of dimension 0;
equivalently, the scheme YL/K ,ϕ,N is generically smooth, and is equidimensional of dimension dim G. The
nonsmooth locus is precisely the locus of Weil–Deligne representations D with H 2(ad D) 6= 0. Moreover,
YL/K ,ϕ,N is locally a complete intersection and reduced.

Proof. It is enough to prove the statement for YL/K ,ϕ,N . Let U ⊂ YL/K ,ϕ,N be the dense open subscheme
provided by Theorem 2.3.6 (with K ′= K ). Then at each closed point x of U, it follows from Lemma 2.2.2
and Proposition 2.2.1 that YL/K ,ϕ,N is formally smooth at x . Furthermore, for any closed point x
of YL/K ,ϕ,N with corresponding Weil–Deligne representation Dx , the dimension of the tangent space
at x is dim G− dim H 0(Dx)+ dim H 1(Dx). Since the Euler characteristic of C •(Dx) is 0, this is equal
to dim G+ dim H 2(ad Dx)= dim G, and the claim about H 2(ad D) follows immediately.

To see that YL/K ,ϕ,N is reduced and locally a complete intersection, we proceed as in the proof
of [Bellovin 2016, Corollary 5.4]. We have morphisms YL/K ,ϕ,N → YL/K ,N → YL/K , and the fibre
above a point τ ∈ YL/K is defined by the relation N = p− fK Ad(8)(N ), where 8 ∈ ZG(τ ) and N ∈
Lie ZG(τ ). In other words, the fibre YL/K ,ϕ,N |τ is cut out of the smooth (2 dim ZG(τ ))-dimensional space
ZG(τ )×Lie ZG(τ ) by dim ZG(τ ) equations.

The quotient map G → G/ZG(τ ) ∼= YL/K admits sections étale locally. Thus, there is an étale
neighborhood U→YL/K of τ such that the U -pullback YL/K ,ϕ,N×YL/K U is isomorphic to U×YL/K ,ϕ,N |τ .
Since YL/K ,ϕ,N ×YL/K U is étale over YL/K ,ϕ,N , it is equidimensional of dimension dim G. On the other
hand, it is cut out of the smooth (dim U + 2 dim ZG(τ ))-dimensional space U × ZG(τ )×Lie ZG(τ ) by
dim ZG(τ ) equations.

Since dim U = dim YL/K = dim G − dim ZG(τ ) and being locally a complete intersection can be
checked étale locally, it follows that YL/K ,ϕ,N is locally a complete intersection. Moreover, schemes
which are local complete intersections are Cohen–Macaulay, by [Matsumura 1989, Theorem 21.3],
and Cohen–Macaulay schemes which are generically reduced are reduced everywhere, by [loc. cit.,
Theorem 17.3], so we are done. �
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If G→ G ′ is a morphism of reductive groups over E , then for any family of G-torsors D over Spec A,
we can push out to a family D′ of G ′-torsors. Therefore, the moduli space YL/K ,ϕ,N of (framed) G-valued
Weil–Deligne representations carries a family D′ of G ′-torsors, and ad D′ := Lie AutG ′(D′) is a coherent
sheaf on YL/K ,ϕ,N . Since D is a trivial G-torsor, D′ is a trivial G ′-torsor. Since pushing out G-torsors to
G ′-torsors is functorial, D′ is a family of G ′-valued Weil–Deligne representations and we can construct
the complex C •(D′). We let H 2

G ′ denote its cohomology in degree 2.

Theorem 2.3.8. Let f : G→ G ′ be a morphism of reductive groups over E. Then there is a dense open
subset U ⊂ YL/K ,ϕ,N (possibly depending on G ′) such that H 2

G ′ |U = 0.

Proof. As in the proof of Theorem 2.3.6, it suffices to construct a point on each connected component
of each fibre of the map YL/K ,ϕ,N → YL/K ,N where H 2

G ′ vanishes. In fact, the same points work: by
Lemma 2.3.5 the composition f ◦ λ is an associated cocharacter for f∗(N ). Therefore, H 2

G ′ vanishes
at the point corresponding to (λ(p fK /2), N ). Similarly, if c ∈ NG(τ )∩ ZG(λ)∩ ZG(N ) is a finite-order
point, then H 2

G ′ vanishes at the point corresponding to (λ(p fK /2) · c, N ). �

Remark 2.3.9. The proofs of Theorems 2.3.6 and 2.3.8 justify the claim we made in the Introduction,
that all of the smooth points that we explicitly construct arise from pushing out a single “standard” smooth
point for SL2. Indeed, as discussed above, given an associated cocharacter λ for N, the map λ 7→ dλ(1)
allows us to determine a homomorphism SL2→ G, and we see that the choice of 8, N made in the proof
of Theorem 2.3.6 is the image under this homomorphism of the elements 8, N for SL2 discussed in the
Introduction.

Remark 2.3.10. The Jacobson–Morozov theorem allows one to think of semisimple Weil–Deligne
representations as representations of WK × SL2; see [Gross and Reeder 2010, Proposition 2.2] for a
precise statement. From this perspective, our construction of smooth points from associated cocharacters
can be summarised as follows: given a nilpotent N ∈ Lie G, we obtain a map SL2 → G, and the
corresponding Weil–Deligne representation is obtained by composing with the map

WK ×SL2→ SL2

which on the first factor is unramified and takes an arithmetic Frobenius to the matrix(
p fK 0
0 p− fK

)
,

and is the identity on the second factor.

2.4. Tate local duality for Weil–Deligne representations. If D is a G-valued Weil–Deligne representa-
tion over a field E , we can also prove an analogue of Tate local duality for the complex C •(D). In addition
to allowing us to compute with either kernels or cokernels, this pairing allows us to give an explicit
characterisation of the smooth locus (see Corollary 2.4.2). Since we only need the pairing between H 0

and H 2, we have not worked out the details of the pairing on H 1s, which for reasons of space we leave to
the interested reader.
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To construct pairings H i ((ad D)∗(1))× H 2−i (ad D)→ E(1), we use the evaluation pairing

ev : (ad D)∗× ad D→ E .

Here the “(1)” means that we multiply the action of Ad(8) by p fK ; since (ad D)∗ and (ad D)∗(1) have the
same underlying vector space (as do E and E(1)), we have an induced pairing ev(1) : (ad D)∗(1)×ad D→
E(1). Note that if X ∈ (ad D)∗, Y ∈ ad D, then

ev(Ad(8)(X),Ad(8)(Y ))= ev(X, Y ),

and if X ∈ (ad D)∗(1), Y ∈ ad D, then

ev(1)(Ad(8)(X),Ad(8)(Y ))= ev(p fK Ad(8)(X),Ad(8)(Y ))= p fK ev(X, Y )=Ad(8)(ev(1)(X, Y )).

Proposition 2.4.1. Let D be as above. Then the evaluation pairing induces a perfect pairing

H 0((ad D)∗(1))× H 2(ad D)→ E(1).

Proof. We first check that the pairing ev(1) : (ad D)∗(1)×ad D→ E(1) descends to a well-defined pairing
H 0((ad D)∗(1))× H 2(ad D)→ E(1). If X ∈ (ad D)∗(1)IL/K is in the kernel of adN and the kernel of
1−Ad(8), and Y ∈ (ad D)IL/K, then

ev(1)(X, Y + adN (Z))= ev(1)(X, Y )+ ev(1)(X, adN (Z))

= ev(1)(X, Y )− ev(1)(adN (X), Z)

= ev(1)(X, Y ),
and

ev(1)(X, Y+(p− fK Ad(8)−1)(Z))= ev(1)(X, Y )+ev(1)(X, p− fK Ad(8)(Z))−ev(1)(X, Z)

= ev(1)(X, Y )+p− fK ev(1)(Ad(8)(X),Ad(8)(Z))−ev(1)(X, Z)

= ev(1)(X, Y )+ev(1)(X, Z)−ev(1)(X, Z)

= ev(1)(X, Y ),

so the pairing is indeed well-defined.
Next, we need to check that this pairing is perfect. Suppose X ∈ H 0((ad D)∗(1)) and ev(1)(X, Y )= 0

for all Y ∈ H 2(ad D). Then ev(1)(X, Y ) = 0 for all Y ∈ (ad D)IL/K, so X = 0. This implies that the
natural map H 0((ad D)∗(1))→ (H 2(ad D)∗)(1) is injective.

On the other hand, let f : H 2(ad D)→ E(1) be an element of (H 2(ad D)∗)(1). By composition, we
have a linear functional

f : (ad D)IL/K → H 2(ad D)→ E(1).

This is an element of ((ad D)IL/K )∗(1); we need to show that adN ( f )= (1−Ad(8))( f )= 0. But for any
Y ∈ (ad D)IL/K,

ev(1)(adN ( f ), Y )= ev( f,− adN (Y ))= 0
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since f factors through H 2(ad D). Similarly, for any Y ∈ (ad D)IL/K,

ev(1)((1−Ad(8))( f ), Y )= ev(1)( f, Y )− ev(1)(Ad(8)( f ), Y )

= ev(1)( f, Y )− ev(1)( f, p− fK Ad(8)−1(Y ))

= ev(1)( f, (1− p− fK Ad(8)−1)(Y ))

= ev(1)
(

f, (p fK Ad(8)− 1)(p− fK Ad(8−1)(Y ))
)
= 0

Since Ad(8) : (ad D)IL/K → (ad D)IL/K is an isomorphism, this suffices. �

Corollary 2.4.2. The nonsmooth locus of the stack G- WDE(L/K ) is precisely the locus of Weil–Deligne
representations D with H 0((ad D)∗(1)) 6= 0.

Proof. This is immediate from Corollary 2.3.7 and Proposition 2.4.1. �

We now use Corollary 2.4.2 to deduce that there is a dense set of points of YL/K ,ϕ,N which give smooth
points for every finite extension K ′/K .

Definition 2.4.3. A point x ∈ YL/K ,ϕ,N is very smooth if its image in YL ′/K ′,ϕ,N is smooth for every finite
extension K ′/K .

Lemma 2.4.4. Fix a finite extension E ′/E. There is a finite extension K ′/K (which depends only on E ′)
such that H 2

L ′/K ′ vanishes at x ∈ YL/K ,ϕ,N (E ′) if and only if x is very smooth.

Proof. Suppose (D,8, N, τ ) corresponds to a point of YL/K ,ϕ,N such that H 2
L ′′/K ′′ does not vanish at its

image in YL ′′/K ′′,ϕ,N . By Corollary 2.4.2, this holds if and only if H 0((ad D)∗(1)) does not vanish.
Thus, it suffices to consider the injectivity of

1− p fK ′′ Ad(8 fK ′′/ fK )∗ : (ad D)IL′′/K ′′ → (ad D)IL′′/K ′′

on ker(adN ), where Ad(8 fK ′′/ fK )∗denotes the dual of Ad(8 fK ′′/ fK ). If this map is not injective, this
implies that p fK Ad(8)∗ has a generalised eigenvalue λ satisfying λ fK ′′/ fK = 1. But the characteristic
polynomial of Ad(8) acting on ad D has degree dim ad D = dim G and there are only finitely many roots
of unity with minimal polynomial of bounded degree over E ′. It follows that there are only a finite number
of possibilities for λ.

In other words, to check whether 1− p fK ′′ Ad(8 fK ′′/ fK )∗ has a nontrivial kernel for any finite extension
K ′′/K , it suffices to consider some fixed K ′ such that fK ′/ fK is divisible by all n such that φ(n)≤ dim G
and such that τ |IL′/K ′

is trivial (where φ(n) denotes Euler’s totient function), as required. �

Corollary 2.4.5. The set of closed points of G- WDE(L/K ) which are very smooth is Zariski dense.

Proof. Let E ′/E be a finite extension such that YL/K ,ϕ,N (E ′) is Zariski dense in YL/K ,ϕ,N . By
Lemma 2.4.4, there is a finite extension K ′/K such that x ∈ YL/K ,ϕ,N (E ′) is very smooth if H 2

L ′/K ′

vanishes at x . By Theorem 2.3.6, there is a Zariski dense open subscheme U ⊂ YL/K ,ϕ,N such that
H 2

L ′/K ′ |U = 0. But then the intersection U ∩YL/K ,ϕ,N (E ′) is a Zariski dense subset of YL/K ,ϕ,N consisting
of very smooth points, so we are done. �
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2.5. l-adic Hodge theory. We suppose in this subsection that l 6= p. We briefly recall some results
from [Fontaine 1994], which will allow us to relate l-adic representations of GalK to Weil–Deligne
representations.

Recall that by a theorem of Grothendieck, a continuous representation ρ : GalK → GLd(E) is au-
tomatically potentially semistable, in the sense that there is a finite extension L/K such that ρ|IL is
unipotent. After making a choice of a compatible system of l-power roots of unity in K , we see from
[loc. cit., Propositions 1.3.3, 2.3.4] that there is an equivalence of Tannakian categories between the
category of E-linear representations of GalK which become semistable over L , and the full subcategory
of Weil–Deligne representations (r, N ) of WK over E with the properties that r |IL is trivial and the roots
of the characteristic polynomial of any arithmetic Frobenius element of WL are l-adic units (such an
equivalence is given by the functor ŴD pst of [loc. cit., §2.3.7]).

2.6. The case l = p: (ϕ, N)-modules. In this section we let l = p, and we explain the relationship
between Weil–Deligne representations and (ϕ, N )-modules. Let K0, L0 be the maximal unramified
subfields of K , L respectively, of respective degrees fK , fL over Qp. Let E/Qp be a finite extension,
which is large enough that it contains the image of all embeddings L0 ↪→ E , so that we may identify
E ⊗Qp L0 with

⊕
L0↪→E E . Let ϕ denote the arithmetic Frobenius.

If D is a ResE⊗Qp L0/E G-torsor over Spec A, we may also view D as a G-torsor over A⊗Qp L0. Then
any automorphism g : L0→ L0 extends to an automorphism of A⊗Qp L0, and we may pull D back
to a G-torsor g∗D over A⊗Qp L0. Then we may view g∗D as a ResE⊗Qp L0/E G-torsor over Spec A,
which we also denote by g∗D. In particular, we may pull D back by Frobenius and obtain another
ResE⊗Qp L0/E G-torsor ϕ∗D over Spec A.

This motivates us to define the following groupoid on E-algebras.

Definition 2.6.1. The category of G-valued (ϕ, N,GalL/K )-modules, which we denote by G-ModL/K ,ϕ,N ,
is the groupoid whose fibre over an E-algebra A consists of a ResE⊗L0/E G-torsor D over A, equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D, and

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D.

These are required to satisfy the following compatibilities:

(1) Ad8(N )= 1
p N.

(2) Adτ(g)(N )= N for all g ∈ GalL/K .

(3) τ(g1g2)= τ(g1) ◦ g∗1τ(g2) for all g1, g2 ∈ GalL/K .

(4) τ(g) ◦ g∗8=8 ◦ϕ∗τ(g) for all g ∈ GalL/K .

Here Ad8 and Adτ(g) are “twisted adjoint” actions on Lie AutG D; after pushing out Y by a represen-
tation σ ∈ RepE(G), they are given by M 7→8σ ◦M ◦8−1

σ and M 7→ τ(g)σ ◦M ◦ τ(g)−1
σ , respectively.
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Note that the action of GalL/K on scalars factors through the abelian quotient 〈ϕ fK 〉, which also commutes
with ϕ, so (g1g2)

∗
= g∗1 ◦ g∗2 and g∗ϕ∗ = ϕ∗g∗.

Requiring D to be a trivial ResE⊗L0/E -torsor equipped with a trivialising section lets us define a
representable functor which covers G-ModL/K ,ϕ,N,τ , as follows.

Definition 2.6.2. Let X L/K ,ϕ,N denote the functor on the category of E-algebras whose A-points are
triples

(8, N, τ ) ∈ (ResE⊗L0/E G)(A)× (ResE⊗L0/E gE)(A)×RepA⊗L0
GalL/K

which satisfy

• N = pAd(8)(N ),

• τ(g) ◦8=8 ◦ τ(g), and

• Ad(τ (g))(N )= N for all g ∈ GalL/K .

This functor is visibly representable by a finite-type affine scheme over E , which we also denote
by X L/K ,ϕ,N . Moreover, there is a left action of ResE⊗L0/E G on X L/K ,ϕ,N coming from changing the
choice of trivialising section. Explicitly,

a · (8, N, {τ(g)}g∈GalL/K )= (a8ϕ(a)
−1,Ad(a)(N ), {aτ(g)(g · a)−1

}g∈GalL/K ).

As in Lemma 2.1.3, we have the following:

Lemma 2.6.3. The stack quotient [X L/K ,ϕ,N /ResE⊗L0/E G] is isomorphic to G-ModL/K ,ϕ,N .

Proof. The proof follows as in Lemma 2.1.3. �

Given a (ϕ, N,GalL/K )-module, there is a standard recipe due to Fontaine for constructing a Weil–
Deligne representation, and there is an analogous construction for ResE⊗L0/E G-torsors. Indeed, let A be
an E-algebra. Given a ResE⊗L0/E G-torsor D over A, and an embedding σ : L0 ↪→ E , the σ -isotypic
part is a G-torsor over A which we denote by Dσ . Moreover, if Nσ denotes the σ -isotypic component
of N, then Nσ ∈ Lie AutG(Dσ ) is nilpotent.

Given an isomorphism 8 : ϕ∗D−→∼ D, the composition 8 fL :=8◦ϕ∗(8)◦ · · ·◦ (ϕ fL−1)∗(8) restricts
to an isomorphism Dσ → Dσ for each σ .

Lemma 2.6.4. For any σ and any E-algebra A, the association (D,8) (Dσ ,8
fL ) defines an equiva-

lence of categories between ResE⊗L0/E G-torsors D over A equipped with an isomorphism8 :ϕ∗D−→∼ D,
and G-torsors Dσ over A equipped with an isomorphism 8′σ : Dσ −→

∼ Dσ .

Proof. Write the embeddings σi : L0 ↪→ E , i ∈ Z/ fLZ, with the numbering chosen so that σ1 = σ , and 8
induces isomorphisms σi : Di+1 −→

∼ Di for each i (where we write Di for Dσi ).
Let A→ A′ be an fpqc cover trivialising D, so that DA′ is a trivial torsor and we may choose a section.

Then we can write 8= (81, . . . , 8 fL ).
We define

a := (1, (82 · · ·8 fL )
−1, (83 · · ·8 fL )

−1, . . . , 8−1
fL
).
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Then if we multiply our choice of trivialising section by a, we replace 8 by

a8ϕ(a)−1
= (81 · · ·8 fL , 1, . . . , 1).

Thus, we can recover (DA′,8) from ((Dσ )A′,8
fL ).

Furthermore, DA′ is equipped with a descent datum, since it is the base change of D. Therefore, (Di )A′

has a descent datum, and since (Di )A′→ Spec A′ is affine, it is effective.
Now suppose that f = ( f1, . . . , f fL ) : D −→∼ D′ is an isomorphism of ResE⊗L0/E G-torsors equipped

with isomorphisms 8 : ϕ∗D −→∼ D and 8′ : ϕ∗D′ −→∼ D′. We obtain a corresponding isomorphism
f A′ : DA′ −→

∼ D′A′ , together with a covering datum. Then each fi : Di −→
∼ D′i is an isomorphism of

G-torsors, and we have

fi ◦8i =8
′

i ◦ fi+1 : Di+1→ D′i .

Multiplying the trivialising section of DA′ by a and multiplying the trivialising section of DA′ by a′ has
the effect of replacing f with a′ ◦ f ◦ a−1. Then if we let a and a′ be as above, f becomes ( f1, . . . , f1).
Thus, we can also recover morphisms of pairs (D,8)→ (D′,8′) from the associated morphisms of pairs
(Di ,8

fL )→ (D′i, (8
′) fL ), as required. �

Now suppose that D is a ResE⊗L0/E G-torsor equipped with an isomorphism 8 : ϕ∗D −→∼ D, and
suppose in addition that D is equipped with a semilinear action τ of GalL/K , compatible with 8 in the
sense that 8 ◦ϕ∗τ(g)= τ(g) ◦ g∗(8) for all g ∈ GalL/K . For each σ , we will construct a Weil–Deligne
representation on Dσ which is trivial on IL .

There is a surjective map WK � GalL/K which restricts to a surjection IK � IL/K . If g ∈ WK , we
write ḡ for its image in GalL/K . For g ∈WK , we have an isomorphism

τ(ḡ) : g∗D −→∼ D

and we have an isomorphism

8−v(g) fK := D 8−1
−→ϕ∗D ϕ∗8−1

−−→· · ·
(gϕ−1)∗8−1
−−−−−→ g∗D.

Accordingly, we define r(g) : Dσ −→
∼ Dσ to be the restriction of

r(g) := τ(ḡ) ◦8−v(g) fK : D −→∼ D.

Note that r |IL is trivial.

Lemma 2.6.5. Let D be a G-torsor and let r : WK → AutG(D) be a homomorphism such that r |IL is
trivial. Then r(WL) centralises r(WK ).

Proof. Let g ∈WK and let h ∈WL . Then v(ghg−1h−1)= 0, so ghg−1h−1
∈ IK . Moreover, WL ⊂WK is

a normal subgroup, so that ghg−1h−1
∈WL . But IK ∩WL = IL , so r(ghg−1h−1)= 1, as required. �

We now prove the equivalence between Weil–Deligne representations and (ϕ, N )-modules. In the case
that G = GLn , the following lemma is [Breuil and Schneider 2007, Proposition 4.1].



G-valued local deformation rings and global lifts 355

Lemma 2.6.6. The map r :WK →AutG(Dσ ) is a homomorphism, and (D,8, N, τ ) (Dσ , r, Nσ ) is an
equivalence of categories between G-ModL/K ,ϕ,N and G- WDE(L/K ).

Proof. Since τ(ḡ) ◦ g∗(8)=8 ◦ϕ∗(τ (ḡ)), we have 8−1
◦ τ(ḡ)= ϕ∗(τ (ḡ)) ◦ g∗(8−1) as isomorphisms

g∗D −→∼ ϕ∗D. It follows that

r(g1)r(g2)= (τ (ḡ1) ◦8
−v(g1) fK ) ◦ (τ (ḡ2) ◦8

−v(g2) fK )

= τ(ḡ1) ◦ (ϕ
v(g1) fK )∗(τ (ḡ2) ◦8

−v(g1g2) fK )

= τ(g1g2) ◦8
−v(g1g2) fK = r(g1g2)

and r is a homomorphism. Another short computation shows that

Nσ = p−v(g) fK Ad(r(g))(Nσ ),

so that (Eσ , r, Nσ ) is a G-valued Weil–Deligne representation.
The association (D,8, N, τ )  (Dσ , r, Nσ ) is clearly functorial. Moreover, if f : D → D′ is a

morphism of G-valued (ϕ, N,GalL/K )-modules, then 8′ ◦ ϕ∗( f ) = f ◦ 8. This implies that f is
determined by its restriction f |Dσ

to the σ -isotypic piece, and therefore, the functor is fully faithful.
We need to check that this functor is essentially surjective. In other words, we need to check that we

can construct (D,8, N, τ ) from (Dσ , r, Nσ ). To do so, we number the embeddings as σi , as in the proof
of Lemma 2.6.4. For each element h ∈ IL/K , we fix a lift to an element h̃ ∈ IK ; note that since r |IL is
trivial, r(h̃) is independent of the choice of h̃.

To construct 8 fL |Di from r , we observe that if g0 ∈ WK lifts ϕ fK and (Di , r, Ni ) is in the essential
image of our functor, then

r(g fL/ fK
0 )= τ(ḡ fL/ fK

0 )8− fL .

But ḡ fL/ fK
0 ∈ IL/K , so we can define 8 fL |Di := r(g fL/ fK

0 )−1r(˜̄g fL/ fK
0 ).

We need to check that 8 fL |Di does not depend on our choice of g0. Indeed, if h ∈ IK , then

(g0h) fL/ fK = h1 · · · h fL/ fK−1g fL/ fK
0 ,

where hi := gi
0hg−i

0 ∈ IK , so we may write (g0h) fL/ fK = h′g fL/ fK
0 for some h′ ∈ IK . Then r( ˜h′)= r(h′), so

r((g0h) fL/ fK )−1r( ˜g0h fL/ fK )= r(g fL/ fK
0 )−1r(h′)−1r( ˜h′)r(˜̄g fL/ fK

0 )= r(g fL/ fK
0 )−1r(˜̄g fL/ fK

0 ),

as required.
Lemma 2.6.4 now implies that we can construct (D,8) from (Di ,8

fL |Di ). Since WK → GalL/K is
surjective, we define for g ∈ GalL/K

τ(g) := r(g̃) ◦8v(g̃) fK = r(g̃) ◦ (8 ◦ · · · ◦ (ϕ−1)∗g∗8)

as a map Di+v(g) fK→Di . We need to check that this is well-defined. Note that the kernel of WK→GalL/K

is WL , and if h ∈WL , then v(h)= ( fL/ fK ) · i for some i ∈ Z. Thus, for any h ∈WL ,

r(g̃h) ◦8v(g̃h) fK = r(g̃)r(h) ◦8i · fL ◦8v(g̃) fK ,
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so it suffices to show that r(h) ◦8i · fL = 1. Since r |IL is trivial, it suffices to consider the case i = 1, i.e.,
h generates the unramified quotient of WL . But then

r(h) ◦8 fL = r(h)r(g fL/ fK
0 )−1r(˜̄g fL/ fK

0 );

on the one hand hg− fL/ fK
0 ∈ IK and ˜̄g fL/ fK

0 ∈ IK , and on the other hand g− fL/ fK
0

˜̄g fL/ fK
0 ∈WL . It follows that

hg− fL/ fK
0

˜̄g fL/ fK
0 ∈ IK ∩WL = IL

and the result follows.
We can also construct τ(g) : D j+v(g̃) fK −→

∼ D j for the remaining σ j -isotypic factors. Indeed, the
desired compatibility between 8 and τ forces us to set

ϕ∗τ(g) :=8−1
◦ τ(g) ◦ g∗8 : Di+v(g̃) fK+1 −→

∼ Di+1 (2-6-1)

(and we proceed inductively).
We need to check that this is well-defined. More precisely, we need to check that (ϕ fL )∗τ(g)= τ(g)

for all g ∈ GalL/K . In other words, we need to check that

τ(g) ◦ (g∗8 ◦ϕ∗g∗8 ◦ · · · ◦ (ϕ fL−1)∗g∗8)= (8 ◦ϕ∗8 ◦ · · · ◦ (ϕ fL−1)∗8) ◦ τ(g)

as isomorphisms Di+v(g̃) fK −→
∼ Di , or equivalently that

τ(g) ◦ g∗8 fL =8 fL ◦ τ(g).

But
τ(g) ◦ g∗8 fL = (r(g̃) ◦8v(g̃) fK ) ◦ g∗(8 fL )

= r(g̃) ◦8 fL ◦8v(g̃) fK

= r(g̃) · r(g− fL/ fK
0

˜̄g fL/ fK
0 ) ◦8v(g̃) fK

= r(g− fL/ fK
0

˜̄g fL/ fK
0 ) · r(g̃) ◦8v(g̃) fK

=8 fL ◦ τ(g).

Here we used Lemma 2.6.5 and the fact that g− fL/ fK
0

˜̄g fL/ fK
0 ∈WL .

It remains to show that τ is a semilinear representation, or more precisely, that τ(g1g2)= τ(g1)◦g∗1τ(g2)

for all g1, g2 ∈ GalL/K . Now by (2-6-1) we see that

τ(g1) ◦ g∗1τ(g2)= τ(g1) ◦
(
((g1ϕ

−1)∗8−1
◦ · · · ◦8−1) ◦ τ(g2) ◦ (g∗28 ◦ · · · ◦ (g1ϕ

−1)∗g∗28)
)

= τ(g1) ◦ ((g1ϕ
−1)∗8−1

◦ · · · ◦8−1) ◦ τ(g2) ◦ g∗2(8 ◦ · · · ◦ (g1ϕ
−1)∗8)

= r(g̃1) ◦ r(g̃2) ◦8
v(g̃2) fK ◦ g∗28

v(g̃1) fK

= r(g̃1)r(g̃2) ◦8
v(g̃1 g̃2) fK

= τ(g1g2),

as required.
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Finally, we construct N. We have Ni , and we use the desired relation N = pAd(8)(N ) to construct
the Frobenius-conjugates of Ni . It then follows that for any g ∈ GalL/K

Ad(τ (g))(N )= Ad(r(g̃) ◦8v(g) fK )(N )

= Ad(r(g̃) ◦8v(g) fK )(p−v(g) fK Ad(8−v(g) fK )(N ))

= Ad(r(g̃))(N )= N
so we are done.

The assignment (Di , r, Ni ) (D,8, N, τ ) is clearly functorial and quasi-inverse to (D,8, N, τ ) 
(Di , r, Ni ). �

2.7. Exact ⊗-filtrations for disconnected groups. In this section we prove some results on tensor filtra-
tions that we will apply to the Hodge filtration in p-adic Hodge theory.

Let G be an affine group scheme over a field k of characteristic 0, let A be a k-algebra, and let η
be a fibre functor from Repk(G) to ProjA. More precisely, Repk(G) is the category of k-linear finite-
dimensional representations of G, ProjA is the category of finite projective A-modules (which we will
also think of as being vector bundles on Spec A), and by a “fibre functor” we mean that:

(1) η is k-linear, exact, and faithful.

(2) η is a tensor functor; that is, η(V1⊗k V2)= η(V1)⊗A η(V2).

(3) If 1 denotes the trivial representation of G, then η(1) is the trivial A-module of rank 1.

Given a fibre functor η : Repk(G) → ProjA and an A-algebra A′, there is a natural fibre functor
η′ :Repk(G)→ ProjA′ given by composing η with the natural base extension functor ιA′ : ProjA→ ProjA′

sending M to M ⊗A A′.

Definition 2.7.1. Let ω, η : Repk(G)⇒ ProjA be fibre functors. Then Hom⊗(ω, η) is the functor on
A-algebras given by

Hom⊗(ω, η)(A′) := Hom⊗(ιA′ ◦ω, ιA′ ◦ η).

Here Hom⊗ refers to natural transformations of functors which preserve tensor products.

Theorem 2.7.2 [Deligne and Milne 1982, Theorem 3.2]. Let ω :Repk(G)→Veck be the natural forgetful
functor:

(1) For any fibre functor η :Repk(G)→ ProjA, the functor Hom⊗(ιA ◦ω, η) is representable by an affine
scheme faithfully flat over Spec A; it is therefore a G-torsor.

(2) The functor η  Hom⊗(ιA ◦ ω, η) is an equivalence between the category of fibre functors η :
Repk(G)→ ProjA and the category of G-torsors over Spec A. The quasi-inverse assigns to any
G-torsor X over A the functor η sending any ρ : G→ GL(V ) to the M ∈ ProjA associated to the
push-out of X over A.

Corollary 2.7.3. Let η : Repk(G)→ ProjA be a fibre functor, corresponding to a G-torsor X→ Spec A.
Then the functor Aut⊗(η) is representable by the A-group scheme AutG(X). This is a form of GA.
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We now assume that η is equipped with an exact ⊗-filtration; i.e., for each V ∈ Repk(G), we have a
decreasing filtration F •(η(V )) of vector sub-bundles on each η(V ) such that:

(1) The specified filtrations are functorial in V.

(2) The specified filtrations are tensor-compatible, in the sense that

Fnη(V ⊗k V ′)=
∑

p+q=n

F pη(V )⊗A Fqη(V ′)⊂ η(V )⊗A η(V ′).

(3) Fn(η(1))= η(1) if n ≤ 0 and Fn(η(1))= 0 if n ≥ 1.

(4) The associated functor from Repk(G) to the category of graded projective A-modules is exact.

Equivalently, an exact ⊗-filtration of η is the same as a factorisation of η through the category of filtered
vector bundles over Spec A.

We define two auxiliary subfunctors of Aut⊗(η):

• PF = Aut⊗F (η) is the functor on A-algebras such that

PF (A′)= {λ ∈ Aut⊗(η)(A′) | λ(Fnη(V ))⊂ Fnη(V ) for all V ∈ Repk(G) and n ∈ Z}.

• UF = Aut⊗!F (η) is the functor on A-algebras such that

UF (A′)= {λ ∈ Aut⊗(η)(A′) | (λ− id)(Fnη(V ))⊂ Fn+1η(V ) for all V ∈ Repk(G) and n ∈ Z}.

By [Saavedra Rivano 1972, Chapter IV, 2.1.4.1], these functors are both representable by closed subgroup
schemes of AutG(X), and they are smooth if G is. This holds for any affine group G over k (since
it is automatically flat); there is no need for reductivity or connectedness hypotheses. Furthermore,
Lie PF = F 0(Lie Aut⊗(η)) and Lie UF = F1(Lie Aut⊗(η)), by the same result.

We also have a notion of a ⊗-grading on η: a ⊗-grading of η is the specification of a grading
η(V )=

⊕
n∈Z η(V )n of vector bundles on each η(V ) such that:

(1) The specified gradings are functorial in V.

(2) The specified grading are tensor-compatible, in the sense that

η(V ⊗k V ′)n =
⊕

p+q=n

(η(V )p⊗A η(V ′)q).

(3) η(1)0 = η(1).

Equivalently, a ⊗-grading of η is a factorisation of η through the category of graded vector bundles on
Spec A. A ⊗-grading induces a homomorphism of A-group schemes Gm→ Aut⊗(η).

Given a ⊗-grading of η, we may construct a ⊗-filtration of η, by setting

Fnη(V )=
⊕
n′≥n

η(V )n′ .

We say that a ⊗-filtration F • is splittable if it arises in this way, and we say that F • is locally splittable if
fpqc-locally on Spec A it arises in this way. A splitting of F • is a ⊗-grading on η giving rise to F •.
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Given an exact ⊗-filtration F • on η, we may define a fibre functor gr(η) equipped with a ⊗-grading
by setting

gr(η)(V )n := Fn(V )/Fn+1(V ).

Thus, a splitting of F • is equivalent to an isomorphism of filtered fibre functors gr(η)∼= η.
In fact, by a theorem of Deligne (proved in [Saavedra Rivano 1972, Chapter IV, 2.4]), every ⊗-

filtration is locally splittable (in fact, splittable Zariski-locally on Spec A), because G is smooth and
A has characteristic 0 (this result also holds under various other sets of hypotheses on G and A).
Again, this does not require G to be reductive or connected. If λ : Gm → Aut⊗(η) is a cocharacter
splitting the filtration, then PF =UF o ZG(λ), by [loc. cit., Chapter IV, 2.1.5.1]. In particular, λ factors
through PF .

If F • is a splittable filtration on η, we may consider the functor Scin(η,F •) of splittings. Then
Scin(η,F •) is the same as the functor Isom⊗!F (grF (η), η), which is the subset of Isom⊗F (grF (η), η)
inducing the identity grF (η)→ grF (η). Thus, Scin(η,F •) is a left torsor under UF . It follows that the
composition λ : Gm→ PF → PF/UF is independent of the choice of splitting.

In other words, PF and UF depend only on the filtration, and if it is locally splittable, there is a
homomorphism λ̄ :Gm→ PF/UF which also only depends on the filtration. If the filtration is actually
splittable, a choice of splitting lets us lift λ̄ to a cocharacter λ : Gm → PF . In that case, since both
Scin(η,F) and the set of lifts of cocharacters from PF/UF to PF are torsors under UF (in the latter
case, UF acts by conjugation), they are isomorphic. In particular, any two cocharacters λ, λ′ :Gm ⇒ PF

splitting the ⊗-filtration F are conjugate by UF .
Let G := Aut⊗(η), so that the geometric fibres of G are isomorphic to G k̄ . Then for any geometric

point x ∈ Spec A, the G◦(κ(x))-conjugacy class of F •x induces a unique G◦(κ(x))-conjugacy class of
cocharacters, and this conjugacy class is Zariski-locally constant on Spec A.

Recall that when λ :Gm→ G is a cocharacter, we defined subgroups UG(λ)⊂ PG(λ)⊂ G in Section 1.3.

Proposition 2.7.4. Suppose that G is a (possibly disconnected) algebraic group. Let η :Repk(G)→ProjA

be a fibre functor equipped with a splittable exact⊗-filtration F •, and let λ :Gm→Aut⊗(η) be a splitting.
Let G denote the group scheme representing Aut⊗(η). Then PF = PG(λ), UF =UG(λ), and the fibres of
UF are connected.

Proof. We consider the map µ : Gm × PF → Aut⊗(η) defined by µ(t, g) := λ(t)gλ(t−1), and for
g ∈ PF (A′), we let µg : (Gm)A′ → (Aut⊗(η))A′ be the restriction µ|Gm×{g}. Let σ : G→ GL(V ) be a
representation of G. Then the pushout η(V ) is a filtered vector bundle, and if g ∈ PF (A′), the action
of g preserves the filtration on η(V ). The choice of a splitting in particular specifies an isomorphism
gr•(η(V ))−→∼ η(V ), and t ∈ Gm(A′) acts via tn on (η(V ))n .

Let σ∗(λ) denote the corresponding cocharacter σ∗(λ) :Gm→AutGL(V )(η(V )). Since this cocharacter
induces the filtration on η(V ), we see that the morphism

σ∗(µg) := σ∗(λ)(t)gσ∗(λ)(t−1) : Gm→ PAutGL(V )(η(V ))(σ∗(λ))
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extends uniquely to a morphism

σ̃∗(µg) : A
1
→ PAutGL(V )(η(V ))(σ∗(λ)).

We claim that the collection {σ̃∗(µg)}σ is functorial in σ and tensor-compatible. Indeed, since the
collection {σ̃∗(µg)|Gm }σ is functorial in σ and tensor-compatible, and the extensions to A1 are unique, it
follows that {σ̃∗(µg)}σ is functorial in σ and tensor-compatible. Thus, there is a morphism µ̃g : A

1
→

Aut⊗F (η) whose restriction to Gm is µg. It follows that g ∈ PG(λ)(A′).
Suppose in addition that g ∈UF (A′). Then for every representation σ : G→ GL(V ), g induces the

identity map from gr•(σ (F •)) to itself. It follows that σ̃∗(µg)(0)= 1 for all σ , and therefore µ̃g(0)= 1.
On the other hand, if g ∈ PG(λ)(A′), then the morphism µg : (Gm)A′ → Aut⊗(η)A′ defined by

t 7→ λ(t)gλ(t−1) extends to a morphism µ̃g : (A
1)A′ → Aut⊗(η)A′ . It therefore induces a family of

morphisms
σ∗(µ̃g) : (A

1)A′→ GL(V )A′

and so σ∗(g) ∈ PAutGL(V )(η(V ))(σ∗(λ)). But then σ∗(g) preserves the filtration on η(V ) induced by σ∗(λ);
since this holds for all V ∈Repk(G), we have g∈ PF (A′). A similar argument shows that if g∈UG(λ)(A′),
then g ∈UF (A′).

Finally, since µ̃g : A
1
→ Aut⊗(η) is a morphism from a connected scheme such that µ̃g(0)= 1 and

µ̃g(1)= g, we see that g is in the connected component of the identity for all g ∈UF (A′). �

Lemma 2.7.5. Let F • be a locally splittable exact ⊗-filtration on η. Then the geometric fibres of PF are
parabolic subgroups of G k̄ .

Proof. We may work locally on Spec A and assume that we have a cocharacter λ : Gm → GA splitting
the exact ⊗-filtration. Then PF ∼= PG(λ). Since the formation of PG(λ) commutes with base change
on A, we may assume that A = k = k̄ and G = G = G k̄ . Then PG◦(λ)⊂ G◦ is a parabolic subgroup, so
G◦/PG◦(λ) is proper. There is a sequence of maps

G◦/PG◦(λ)→ G/PG◦(λ)� G/PG(λ).

Since G◦ ⊂ G has finite index, the properness of G◦/PG◦(λ) implies the properness of G/PG◦(λ). This
implies that G/PG(λ) is proper, so PG(λ)⊂ G is a parabolic subgroup. �

We will also need the following result:

Theorem 2.7.6 [SGA 3 II 1970, Exposé IX, Théorème 3.6]. Let S be an affine scheme, S0 a subscheme
defined by a nilpotent ideal J, H a group of multiplicative type over S, G a smooth group scheme over S,
and µ0 : H ×S S0→ G×S S0 a homomorphism of S0-groups.

Then there exists a homomorphism µ : H → G of S-groups which lift µ0, and any two such lifts are
conjugate by an element of G(S) which reduces to the identity modulo J.

Corollary 2.7.7. Let A be an artin local k-algebra with maximal ideal mA, and let I ⊂ A be an ideal
such that ImA = (0). Then if DA is a G-torsor over A such that the reduction DA/I := DA ⊗A A/I is
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equipped with an exact ⊗-filtration F •A/I , then the set of lifts of F •A/I to an exact ⊗-filtration on DA is
nonempty, and is a torsor under I ⊗A/mA (ad DA/mA/F 0

A/mA
(ad DA/mA)).

Proof. Suppose that DA/I is a G-torsor over Spec A/I, equipped with an exact ⊗-filtration F •A/I . Since
A/I is local, F •A/I is split, so it is induced by a cocharacter λA/I :Gm→AutG(DA/I ). By Theorem 2.7.6,
λA/I lifts to a cocharacter λA :Gm→AutG(DA). Then λA induces an exact ⊗-filtration F •A on DA which
lifts that on DA/I .

Suppose there are two exact ⊗-filtrations, F •A and F ′A
• on DA lifting F •A/I , induced by cocharacters λA

and λ′A, respectively, which lift λA/I . Then λA and λ′A are conjugate by an element of AutG(DA) which is
the identity modulo I. In other words, there is some j ∈ ad DA/mA⊗A/mA I such that λ′A= (1+ j)λA(1− j).
This implies that F •A and F ′A

• are conjugate.
On the other hand, conjugation by 1+ j preserves F •A if and only if 1+ j ∈ PFA(AutG(DA)). This

holds if and only if j ∈ F 0
A/mA

Lie AutG(DA/mA)⊗A/mA I = F 0
A/mA

ad DA/mA ⊗A/mA I. �

2.8. p-adic Hodge theory. Our goal is to study deformations of potentially semistable Galois represen-
tations. That is, we wish to consider deformations of representations ρ : GalK → G(E) such that ρ|GalL

is semistable. Such representations can be described by linear algebra. Briefly, for every representation
σ : G→ GLd , σ ◦ ρ is a potentially semistable representation, and DL

st(σ ◦ ρ) is a weakly admissible
filtered (ϕ, N,GalL/K )-module. The formation of DL

st(σ ◦ ρ) is exact and tensor-compatible in σ , and if
1 denotes the trivial representation of G, then DL

st(1◦ρ) is the trivial filtered (ϕ, N,GalL/K )-module with
coefficients in E .

Therefore, as in [Bellovin 2016, §A.2.8–9], σ 7→DL
st(σ◦ρ) is a fibre functor η :RepE(G)→ProjE⊗Qp

L0,
and we obtain from ρ a G-torsor D = DL

st(ρ) over E ⊗ L0 equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D,

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D,

• a GalL/K -stable exact ⊗-filtration on DL , or equivalently (by Galois descent), an exact ⊗-filtration
on the ResE⊗K/E G-torsor DGalL/K

L over K .

These satisfy the requisite compatibilities such that forgetting the filtration on DL
st(ρ) gives us an object

of G-ModL/K ,ϕ,N .

Definition 2.8.1. The category of G-valued filtered (ϕ, N,GalL/K )-modules, which we denote by
G-ModL/K ,ϕ,N,Fil, is the category cofibred in groupoids over E-Alg whose fibre over an E-algebra A
consists of a ResE⊗L0/E G-torsor D over A, equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D,

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D,
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• a GalL/K -stable exact ⊗-filtration on DL , or equivalently, an exact ⊗-filtration on the ResE⊗K/E G-
torsor DGalL/K

L over A.

The ResE⊗L0/E G-torsor D, together with 8, N, and {τ(g)}g∈GalL/K , is required to be an object of
G-ModL/K ,ϕ,N .

Definition 2.8.2. Suppose that ρ : GalK → G(E) is a potentially semistable Galois representation which
becomes semistable when restricted to GalL . The p-adic Hodge type v of ρ is the (ResE⊗K/E G)◦(E)-
conjugacy class of cocharacters λ : Gm→ (ResE⊗K/E G)E which split the ⊗-filtration on DL

st(ρ)
GalL/K
L .

We let Pv denote the (ResE⊗K/E G)◦(E)-conjugacy class of PResE⊗K/E G(λ) for λ ∈ v.

While we do not need it, for completeness we record the following definition and result, which control
the deformation theory of filtered (ϕ, N,GalL/K )-modules. Given an object DA ∈ G-ModL/K ,ϕ,N,Fil, we
consider the diagram

(ad DA)
GalL/K //

��

(ad DA)
GalL/K ⊕ (ad DA)

GalL/K // (ad DA)
GalL/K

(ad DA,L/Fil0ad DA,L)
GalL/K

where the top line is the total complex of

(ad DA)
GalL/K

1−Ad(8)
//

adN
��

(ad DA)
GalL/K

adN
��

(ad DA)
GalL/K

pAd(8)−1
// (ad DA)

GalL/K

and the vertical map is the natural quotient map. We let C •Fil denote its total complex. Then C •Fil controls
the deformation theory of DA:

Proposition 2.8.3. Let A be an artin local E algebra with maximal ideal mA and let I ⊂ A be an ideal such
that ImA = (0). Let DA/I be an object of G-ModL/K ,ϕ,N,Fil(A/I ) and set DA/mA := DA/I ⊗A/I A/mA:

(1) If H 2
Fil(DA/I )= 0, then there exists an object DA ∈ G-ModL/K ,ϕ,N,Fil(A) lifting DA/I .

(2) The set of isomorphism classes of lifts of DA/I to DA ∈ G-ModL/K ,ϕ,N,Fil(A) is either empty or a
torsor under H 1

Fil(DA/mA)⊗A/mA I.

Proof. This follows by combining [Bellovin 2016, Proposition 3.2] and Corollary 2.7.7. �

3. Local deformation rings

As in Section 1.3.2, we let K/Qp be a finite extension for some prime p, possibly equal to l, and let
ρ̄ :GalK →G(F) be a continuous representation. We have a universal framed deformation O-algebra R�ρ̄ ,
and if we fix a homomorphism ψ : 0→ Gab(O) such that ab ◦ ρ̄ = ψ̄ , we also have the quotient R�,ψρ̄

corresponding to framed deformations ρ with ab ◦ ρ = ψ . When we define quotients of R�ρ̄ , there are
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corresponding quotients of R�,ψρ̄ , which we will not explicitly define, but will denote by a superscript ψ .
An inertial type is by definition a G◦(E)-conjugacy class of representations τ : IK → G(E) with open
kernel which admit extensions to GalK ; any such τ is defined over some finite extension of E . We choose
a finite Galois extension L/K for which τ |IL is trivial. If E ′/E is a finite extension, and ρ :GalK→G(E ′)
is a representation, which we assume to be potentially semistable if l = p, then we say that ρ has type τ if
the restriction to IK (forgetting N ) of the corresponding Weil–Deligne representation WD(ρ) is equivalent
to τ .

3.1. The case l 6= p. Suppose firstly that l 6= p. The proof of [Balaji 2013, Proposition 3.0.12] shows
that for each τ we may define a Zl-flat quotient R�,τρ̄ of R�ρ̄ whose characteristic-0 points correspond
to representations of type τ . The usual construction of the Weil–Deligne representation associated to a
Galois representation makes sense over R�ρ̄ [1/ l], so we have a natural morphism

Spec R�,τρ̄ [1/ l] → G- WDE(L/K ).

3.2. The case l = p. Now suppose that l = p. If we fix a p-adic Hodge type v in the sense of
Definition 2.8.2 (that is, a (ResE⊗K/E G)◦(E)-conjugacy class of cocharacters λ :Gm→ (ResE⊗K/E G)E ),
and an inertial type τ , then by [Balaji 2013, Proposition 3.0.12] there is a unique Zl-flat quotient R�,τ,vρ̄

of R�ρ̄ with the property that if B is a finite local E-algebra, then a morphism R�ρ̄ → B factors through
R�,τ,vρ̄ if and only if the corresponding representation ρ : GalK → G(B) is potentially semistable with
Hodge type v and inertial type τ . For each finite-dimensional representation V of G, we may compose
with the representation GalK →G(R�,τ,vρ̄ [1/p]) to obtain a representation GalK →GL(V )(R�,τ,vρ̄ [1/p]).
Then exactly as in [Kisin 2008, Theorem 2.5.5] we obtain a corresponding (GL(V )-valued) filtered
(ϕ, N,GalL/K )-module over R�,τ,vρ̄ [1/p] (note that we have been working with covariant functors in this
paper, while Kisin uses contravariant functors; it is necessary to dualise the construction in [loc. cit.,
§2.4]). As these filtered (ϕ, N,GalL/K )-modules are exact and tensor-compatible, we obtain a G-valued
filtered (ϕ, N,GalL/K )-module over R�,τ,vρ̄ [1/p]. By Lemma 2.6.6, we again have a natural morphism

Spec R�,τ,vρ̄ [1/ l] → G- WDE(L/K ).

3.3. Denseness of very smooth points. We continue to fix an inertial type τ and (if p = l) a p-adic
Hodge type v. For convenience, if l 6= p then for the rest of this section we write R�,τ,vρ̄ for R�,τρ̄ ; this
notational convention allows us to treat the cases l 6= p and l = p simultaneously. We study the generic
fibre R�,τ,vρ̄ [1/ l] via the morphism

Spec R�,τ,vρ̄ [1/ l] → G- WDE(L/K ). (3-3-1)

In a standard abuse of terminology, we say that a closed point x ∈ Spec R�,τ,vρ̄ [1/ l] is smooth if the
(completed) local ring at x is regular. We will see in the proof of Theorem 3.3.2 that these are the points
whose images in G- WDE(L/K ) are smooth points, which perhaps justifies this terminology. Similarly,
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we say that x is very smooth if for any finite extension K ′/K , the image of x in (with obvious notation)
Spec R

�,τ |IK ′
,vK ′

ρ̄|G K ′
[1/ l] is smooth.

As in [Kisin 2009, Proposition 2.3.5], if x ∈ Spec R�,τ,vρ̄ [1/ l] is a closed point corresponding to a
representation ρx , then the completed local ring Ax at x pro-represents framed deformations of ρx which
are potentially semistable of p-adic Hodge type v (if l = p), and have inertial type τ .

Proposition 3.3.1. (1) If x is a closed point of the Jacobson scheme Spec R�,τ,vρ̄ [1/ l], then the comple-
tion at x of the morphism (3-3-1) is formally smooth.

(2) The morphism (3-3-1) is flat.

Proof. The formal smoothness follows from the proofs of [Kisin 2008, Lemma 3.2.1, Proposition 3.3.1],
which carries over verbatim to our setting (since the morphism of groupoids from framed deformations to
unframed deformations is formally smooth). Part (2) then follows from the fact that formally smooth
morphisms between locally noetherian schemes are flat, which in turn follows from [EGA IV1 1964, §0
Théorème 19.7.1]. �

Theorem 3.3.2. Assume that R�,τ,vρ̄ 6= 0. There is a dense open subscheme U ⊂ Spec R�,τ,vρ̄ [1/ l] which
is regular, and there is a Zariski dense subset of Spec R�,τ,vρ̄ [1/ l] consisting of very smooth points. Fur-
thermore, Spec R�,τ,vρ̄ [1/ l] is equidimensional of dimension dim G+ δl=p dim ResE⊗K/E G/Pv, locally
a complete intersection, and reduced.

Similarly, Spec R�,τ,v,ψρ̄ [1/ l] contains a regular dense open subscheme and a Zariski dense subset of
very smooth points, and is equidimensional of dimension dim Gder

+ δl=p dim(ResE⊗K/E G)/Pv.

Remark 3.3.3. In contrast to previous work (in particular [Kisin 2008; Gee 2011; Bellovin 2016]), we
only claim that U is regular, not formally smooth over Qp. We are grateful to Jeremy Booher and Stefan
Patrikis [2017] for drawing our attention to this.

Proof. Since the formation of scheme-theoretic images is compatible with flat base change, the existence of
a dense open subscheme U consisting of smooth points follows from Corollary 2.3.7 and Proposition 3.3.1.
The existence of a Zariski dense subset of very smooth points follows from Corollary 2.4.5. We claim
that if x ∈ Spec R�,τ,vρ̄ [1/ l] is a closed point in U, then the completion Ax of R�,τ,vρ̄ [1/ l] at x is a
formally smooth Qp-algebra, and is in particular regular. Indeed, if mx is the maximal ideal of Ax ,
then Spec Ax/m

n
x ⊂ U for all n ≥ 1 (since U is open). Let B be a local Qp-algebra with maximal

ideal mB and let I ⊂ B be an ideal such that ImB = (0). If there is a local homomorphism Ax→ B/I, let
DB/I be the induced object of G- WDE(L/K )(B/I ). Then H 2(ad DB/I )= 0, since the homomorphism
Ax → B/I factors through A/mn

x for some n. It follows that DB/I lifts to DB ∈ G- WDE(L/K )(B).
Since Spf Ax→G- WDE(L/K ) is formally smooth, DB is induced from a map Ax→ B lifting A→ B/I.
Since R�,τ,vρ̄ [1/ l] is Noetherian, it follows that the localisation of R�,τ,vρ̄ [1/ l] at x is regular [Stacks
2005–, Tag 07NY], so U is regular by [loc. cit., Tag 02IT], as claimed.

Thus, to compute the dimension of Spec R�,τ,vρ̄ [1/ l], it is enough to compute the dimension of the
tangent spaces at closed points in U. Let x be such a closed point, let E ′ be its residue field, and write

http://stacks.math.columbia.edu/tag/07NY
http://stacks.math.columbia.edu/tag/02IT
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Ax for the completion of R�,τ,vρ̄ [1/ l] at x . Since the morphism Spf Ax → G- WDE(L/K ) is formally
smooth by Proposition 3.3.1, it is versal at x . More precisely, in the case that l 6= p we see (by the
equivalence between Galois representations and Weil–Deligne representations recalled in Section 2.5)
that the induced map Spf Ax → G- WDE(L/K )∧x (with the right-hand side denoting the completion of
the target at x) is a Ĝ-torsor, where Ĝ is the completion of G E along the closed subgroup given by the
centraliser of the representation corresponding to x , in the sense that there is an evident isomorphism

Spf Ax × Ĝ −→∼ Spf Ax ×G- WDE (L/K )∧x Spf Ax .

In particular, we have dim Ax ×G- WDE (L/K )∧x Ax = dim Ax + dim Ĝ, and the claim about the dimension
then follows from [Emerton and Gee 2017, Lemma 2.40] and Corollary 2.4.5.

If l = p, let Dx := DL
st(ρx); it is equipped with a filtration F •x . We consider the set (Spf Ax)(E ′[ε]).

Forgetting the framing on liftings is a formally smooth morphism of groupoids and makes the tangent
space at x into a Lie G-torsor over the groupoid of unframed deformations. But since E ′[ε] is an artin
local E-algebra, by [Bellovin 2016, Proposition 2.4] the category of (unframed) potentially semistable rep-
resentations of GalK over E ′[ε] deforming ρx is equivalent to the subcategory of G-ModL/K ,ϕ,N,Fil(E ′[ε])
deforming DL

st(ρx).
There is a natural morphism of groupoids

G-ModL/K ,ϕ,N,Fil→ G-ModL/K ,ϕ,N

and therefore a commutative diagram:

G-ModL/K ,ϕ,N,Fil(E ′[ε]) //

��

G-ModL/K ,ϕ,N (E ′[ε])

��

G-ModL/K ,ϕ,N,Fil(E ′) // G-ModL/K ,ϕ,N (E ′)

By Corollary 2.7.7, the fibres of

G-ModL/K ,ϕ,N,Fil(E ′[ε])→ G-ModL/K ,ϕ,N (E ′[ε])

over the filtered G-torsor Dx are torsors under (ad Dx/F 0(ad Dx))
GalL/K. Since G-ModL/K ,ϕ,N ∼=

G- WDE(L/K ) is equidimensional of dimension 0 and x ∈ Spec R�,τ,vρ̄ [1/ l] is a smooth point, we
conclude that

dim Ax = dim Lie G+ dim(ad Dx/F 0(ad Dx))
GalL/K

= dim G+ dim ResE⊗K/E G/Pv

as desired.
To prove that R�,τ,vρ̄ [1/ l] is reduced and locally a complete intersection, we consider the fibre prod-

uct Spec R�,τ,vρ̄ [1/ l] ×G- WDE (L/K ) YL/K ,ϕ,N . This is a G-torsor, hence smooth, over Spec R�,τ,vρ̄ [1/ l],
so it suffices to prove that this fibre product is reduced and locally a complete intersection. But by
Proposition 3.3.1, the natural morphism Spec R�,τ,vρ̄ [1/ l]×G- WDE (L/K )YL/K ,ϕ,N → YL/K ,ϕ,N is formally
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smooth, so completed local rings at points of Spec R�,τ,vρ̄ [1/ l]×G- WDE (L/K ) YL/K ,ϕ,N are power series
rings over completed local rings of YL/K ,ϕ,N . Since the latter are reduced and complete intersections (by
Corollary 2.4.5), the same holds for the former.

The corresponding statements for R�,τ,v,ψρ̄ can be proved in the same way; we leave the details to the
reader. �

The following is a generalisation of [Allen 2016a, Theorem D] (which treats the case that l = p and
G = GLn). We let x be a closed point of R�,τ,vρ̄ [1/ l] with residue field Ex (a finite extension of E), and
write ρx : GalK → G(Ex) for the corresponding representation.

Corollary 3.3.4. The point x is a formally smooth point of R�,τ,vρ̄ [1/ l] if and only if

H 0((ad WD(ρx))
∗(1))= 0.

Proof. Corollary 2.4.2 implies that the formally smooth points of G- WDE(L/K ) are precisely those
points x for which H 0((ad Dx)

∗(1)). Thus, we need to show that x ∈ Spec R�,τ,vρ̄ [1/ l] is formally smooth
if and only if its image in G- WDE(L/K ) is formally smooth.

We have a morphism
Spec R�,τ,vρ̄ [1/ l]∧x → G- WDE(L/K )∧x ,

which is formally smooth by Proposition 3.3.1. But this implies that for any Qp-finite artin local ring B,
the map

Spec R�,τ,vρ̄ [1/ l]∧x (B)→ G- WDE(L/K )∧x (B)

is surjective. Hence, Spec R�,τ,vρ̄ [1/ l]∧x is formally smooth if and only if G- WDE(L/K )∧x is formally
smooth. �

Remark 3.3.5. If G is the L-group of a quasisplit reductive group over K , then it seems plausible that
the condition of Corollary 3.3.4 could be equivalent to the condition that the (conjectural) L-packet of
representations associated to the Frobenius semisimplification of WD(ρx) contains a generic element. In
the case that G = GLn (where the L-packets are singletons) and WD(ρx) is Frobenius semisimple, this
is proved in [Allen 2016a, §1], and in the general case it is closely related to [Gross and Prasad 1992,
Conjecture 2.6] (which relates genericity to poles at s = 1 of the adjoint L-function).

Remark 3.3.6. In the case that l 6= p, the equivalence between Galois representations and Weil–Deligne
representations means that we can rewrite the condition in Corollary 3.3.4 as H 0(GalK , ad ρ∗x (1))= 0.

We can also consider the quotient R�,τ,v,N=0
ρ̄ , corresponding to the union of the irreducible components

of R�,τ,vρ̄ [1/ l] for which the monodromy operator N vanishes identically (if l = p, this is the locus of
potentially crystalline representations, and if l 6= p, it is the locus of potentially unramified representations).

Theorem 3.3.7. Fix an inertial type τ , and if l = p then fix a p-adic Hodge type v. Assume that
R�,τ,v,N=0
ρ̄ 6= 0. Then R�,τ,v,N=0

ρ̄ [1/ l] is regular, and is equidimensional of dimension

dimE G+ δl=p dimE(ResE⊗K/E G)/Pv.
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Similarly R�,τ,v,N=0,ψ
ρ̄ [1/ l] is regular and equidimensional of dimension

dimE Gder
+ δl=p dimE(ResE⊗K/E G)/Pv.

Proof. This can be proved in exactly the same way as Theorem 3.3.2, replacing the use of the three term
complex C•(D) considered in Proposition 2.2.1 with the two term complex

(ad DA)
IL/K 1−Ad(8)
−−−−→ (ad DA)

IL/K

concentrated in degrees 0 and 1; see [Kisin 2008, Theorem 3.3.8] for more details in the case that l = p
and G = GLn . �

3.4. Components of deformation rings. We now prove the following reassuring lemma, which shows that
the components of universal deformation rings are invariant under G(O)-conjugacy. It is a generalisation
of [Barnet-Lamb et al. 2014, Lemma 1.2.2], which treats the case G = GLn; the proof there is by an
explicit homotopy, while we use the theory of reductive group schemes over O to construct less explicit
homotopies.

Lemma 3.4.1. Let h ∈ G(O′) be an element which reduces to the identity modulo the maximal ideal,
where O′ is the ring of integers in a finite extension of E. Then conjugation by h induces a map
Spec(R�,τ,vρ̄ ⊗O O′)[1/ l] → Spec(R�,τ,vρ̄ ⊗O O′)[1/ l], and it fixes each irreducible component.

Before we prove it, we record a preliminary lemma on irreducible components of the generic fibre
of R�,τ,vρ̄ :

Lemma 3.4.2. Let A :=O[[X1, . . . , Xn]]/I be the quotient of a power series ring. If x, x ′ ∈ (Spf A)rig lie
on the same irreducible component, then they lie on the same irreducible component of Spec A[1/ l].

Proof. If x = x ′ as points of (Spf A)rig, then by [de Jong 1995, Lemma 7.1.9], x = x ′ as points of
Spec A[1/ l]. Thus, we may assume that x 6= x ′. Let A→ Ã denote the normalisation of A. Then by
[Conrad 1999, Theorem 2.1.3], (Spf Ã)rig→ (Spf A)rig is a normalisation of the rigid space (Spf A)rig, and
x, x ′ lift to points x̃, x̃ ′ ∈ (Spf Ã)rig on the same connected component. By [de Jong 1995, Lemma 7.1.9],
x̃ and x̃ ′ correspond to distinct closed points of Spec Ã[1/ l].

If x̃ and x̃ ′ lie on distinct connected components of Spec Ã[1/ l], there are idempotents ex , ex ′ ∈ Ã[1/ l]
such that ex is 1 at x̃ and 0 at x̃ ′ and ex ′ is 1 at x̃ ′ and 0 at x̃ . Again by [loc. cit., Lemma 7.1.9], the natural
map (Spf Ã)rig→ Spec Ã[1/ l] induces isomorphisms on residue fields of closed points. It follows that
the pullbacks of ex and ex ′ to (Spf Ã)rig are again idempotents (in the global sections of the structure
sheaf of (Spf Ã)rig) such that ex is 1 at x̃ and 0 at x̃ ′ and ex ′ is 1 at x̃ ′ and 0 at x̃ . But this would contradict
the fact that x̃ and x̃ ′ lie on the same connected component of (Spf Ã)rig, so they must actually lie on the
same connected component of Spec Ã[1/ l]. This in turn implies that they lie on the same irreducible
component of Spec A[1/ l]. �

Proof of Lemma 3.4.1. Let R�,τ,vρ̄ ⊗O O′′→O′′ be a homomorphism corresponding to a lift ρ : GalK →

G(O′′), where O′′ is the ring of integers in a finite extension of E and contains O′. We continue to write
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h for the image of h in G(O′′). There is a finite surjective morphism

Spec(R�,τ,vρ̄ ⊗O O′′)[1/ l] → Spec(R�,τ,vρ̄ ⊗O O′)[1/ l],

so to show that conjugation by h preserves irreducible components of Spec(R�,τ,vρ̄ ⊗O O′)[1/ l], it
suffices to show that conjugation by h preserves irreducible components of Spec(R�,τ,vρ̄ ⊗O O′′)[1/ l].
Moreover, by Lemma 3.4.2, it suffices to work with the rigid analytic generic fibre Spf(R�,τ,vρ̄ ⊗O O′′)rig

of R�,τ,vρ̄ ⊗O O′′.
After possibly extending O′′, we may assume that G splits over O′′. Since h is residually the identity

element of G, it is a point of G◦. After possibly further increasing O′′, there is some Borel subgroup
BO′′[1/ l] ⊂ G◦O′′[1/ l] containing the image of h; it extends to a Borel subgroup B ⊂ G◦O′′ which contains h.
Since O′′ is local, by [Conrad 2014, Proposition 5.2.3] there is a cocharacter λ : (Gm)O′′→G◦O′′ such that
B = PG◦(λ)=UG◦(λ)o ZG◦(λ). Write hz for the projection of h to ZG◦(λ) and hu for the projection to
UG◦(λ). Since this decomposition is unique, both hz and hu reduce to the identity modulo $ (where $
is a uniformiser of O′′).

Since ZG◦(λ) is a split torus, there is a map zt : (Gm)O′′ → G◦O′′ which specialises to both hz and
the identity. After analytifying this map, hz and the identity lie in the same residue disk. Choosing
coordinates on this residue disk, and rescaling them if necessary, we obtain a Galois representation
ρ̃ : GalK → G(O′′[[T ]]) by considering the conjugation map ztρz−1

t : GalK → G(O′′[T ]). This in-
duces a homomorphism R�,τ,vρ̄ ⊗O O′′→ O′′[[T ]], which in turn induces a morphism of rigid spaces
Spf(O′′[[T ]])rig→ Spf(R�,τ,vρ̄ ⊗O O′′)rig. Since the source is irreducible and its image contains points
corresponding to both ρ and hzρh−1

z , they lie on the same irreducible component of Spf(R�,τ,vρ̄ ⊗OO′′)rig.
Thus, we may assume that h ∈UG◦(λ). By definition, if A is an O′-algebra,

UG◦(λ)(A)= {g ∈ G◦(A) | limt→0 λ(t)gλ(t)−1
= 1},

so conjugating h by λ induces a map ut :A
1
O′′→GO′′ with u1= h and u0= 1. We therefore obtain a Galois

representation ρ̃ ′ : GalK → G(O′′〈T 〉) by l-adically completing the map utρu−1
t : GalK → G(O′′[T ]).

Since ut is the identity modulo $ , ρ̃ ′ in fact lands in G(O′′〈$T 〉), and therefore in G(O′′[[$T ]]). This
induces a map R�,τ,vρ̄ ⊗OO′′→O′′[[$T ]], and therefore a morphism of rigid spaces Spf(O′′[[$T ]])rig→
Spf(R�,τ,vρ̄ ⊗O O′′)rig. Since the source is irreducible and its image contains points corresponding to both
ρ and huρh−1

u , they lie on the same irreducible component of Spf(R�,τ,vρ̄ ⊗O O′′)rig, as required. �

3.5. Tensor products of components, and base change. By a “component for ρ̄” we mean a choice
of τ and v (in the case l = p) such that R�,τ,vρ̄ [1/ l] 6= 0, and a choice of an irreducible component
of Spec R�,τ,vρ̄ [1/ l].

Let r̄ : GalK → GLn(F) and s̄ : GalK → GLm(F) be representations, let C be a component for r̄ and
let D be a component for s̄. Let K ′/K be a finite extension. The following lemma will be useful in
Section 5.

Lemma 3.5.1. There is a unique component C⊗D for r̄⊗ s̄ with the property that, if r :GalK→GLn(Ql)

and s : GalK → GLm(Ql) correspond to closed points of C and D respectively, then r ⊗ s corresponds
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to a closed point of C ⊗ D. Similarly, there is a unique component C |K ′ for r̄ |GalK ′
such that for all r ,

r |GalK ′
corresponds to a closed point of C |K ′ .

Proof. If a point of Spec R�,τ,vr̄ [1/ l] or a point of Spec R�,τ,vr̄⊗s̄ [1/ l] is smooth, then it lies on a unique
irreducible component. Then the first part follows as in the proof of Theorem 3.3.2, replacing the appeal
to Corollary 2.4.5 with one to Theorem 2.3.8, applied to the tensor product map

GLn ×GLm→ GLnm .

The second part follows from Theorem 3.3.2 (more precisely, from the existence of very smooth points
on each irreducible component). �

In the setting of the previous lemma, we will sometimes say that the component C ⊗ D is the tensor
product of the components C and D, and that C |K ′ is the base change to K ′ of the component C .

4. Global deformation rings

4.1. A result of Balaji. In this section we recall one of the main results of [Balaji 2013], which we will
then combine with the results of Section 3 to prove Proposition 4.2.6, which gives a lower bound for the
dimension of certain global deformation rings. In [loc. cit., §4.2] the group G is assumed to be connected,
but this is unnecessary. Indeed, the assumption is only made in order to use the results of [Tilouine 1996,
§5], where it is also assumed that G is connected; however, this assumption is never used in any of the
arguments of [loc. cit., §5], which apply unchanged to general G. Accordingly, we will freely use the
results of [Balaji 2013, §4.2] without assuming that G is connected. We assume in this section that E is
taken large enough that G E is quasisplit.

Let F be a number field, and let S be a finite set of places of F containing all of the places dividing l∞.
We work in the fixed determinant setting, and accordingly we fix homomorphisms ρ̄ : GalF,S→ G(F)
and ψ : GalF,S→ Gab(O) such that ab ◦ ρ̄ = ψ̄ .

Write R�,ψF,S ∈CNLO for the universal fixed determinant framed deformation O-algebra of ρ̄. Let6⊂ S
be a subset containing all of the places lying over l. For each v ∈6, we let R�,ψv denote the universal
fixed determinant framed deformation O-algebra of ρ̄|GalFv

, and we set

R�,ψ6 :=

⊗̂
v∈6,O

R�,ψv .

The following result is a special case of [Balaji 2013, Proposition 4.2.5].

Proposition 4.1.1. Suppose that H 0(GalF,S, (g
0
F)
∗(1))= 0, and let

s := (|6| − 1) dimF g
0
F+

∑
v |∞,v /∈6

dimF H 0(GalFv , g
0
F).

Then for some r ≥ 0 there is a presentation

R�,ψF,S −→
∼ R�,ψ6 [[x1, . . . , xr ]]/( f1, . . . , fr+s).
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4.2. Global deformation rings of fixed type. We now combine our local results with Proposition 4.1.1
to prove a lower bound for the Krull dimension of a global deformation ring, following Balaji. This lower
bound will only be nontrivial in the following setting.

Definition 4.2.1. If l > 2 then we say that ρ̄ is discrete series and odd if F is totally real, and if for all
places v |∞ of F we have dimF H 0(GalFv , g

0
F)= dimE G− dimE B, where B is a Borel subgroup of G.

Remark 4.2.2. Recall that we chose E to be large enough that G E is quasisplit, so this definition makes
sense. The condition that ρ̄ is discrete series and odd is needed to make the usual Taylor–Wiles method
work; see the introduction to [Clozel et al. 2008]. If G is the L-group of a simply connected group then
one can check that this condition is equivalent to F being totally real and ρ̄ being odd in the sense of
[Gross 2007] (cf. [Balaji 2013, Lemma 4.3.1]). We use the term “discrete series” because the (conjectural)
Galois representations associated to tempered automorphic representations which are discrete series at
infinite places are expected to satisfy this property; see Section 5 for an example of this, and [Gross 2007]
for a more general discussion.

Definition 4.2.3. We say that a p-adic Hodge type v is regular if the conjugacy class Pv consists of
parabolic subgroups of ResE⊗K/E G whose connected components are Borel subgroups of (ResE⊗K/E G)◦.

Remark 4.2.4. If G = GLn then Definition 4.2.3 is equivalent to the usual definition, that for each
embedding K ↪→ E the Hodge–Tate weights are pairwise distinct.

Remark 4.2.5. If E ′/E is a field extension, then

(ResE⊗K/E G)E ′ ∼= ResE ′⊗K/E ′ G.

Furthermore, the formation of PResE⊗K/E G(λ) is compatible with extension of scalars from E to E ′. Thus,
if v is regular after extending scalars, it was regular over E (and ResE⊗K/E G is automatically quasisplit).

Write S∞ for the set of finite places in S. For each place v ∈ S∞, we fix an inertial type τv, and
if v | l then we fix a Hodge type vv. If v - l (resp. if v | l), we let Rv be a quotient of the corresponding
fixed determinant framed deformation ring R�,τv,ψρ̄|GalFv

(resp. R�,τv,vv,ψρ̄|GalFv
) corresponding to a nonempty union

of irreducible components of the generic fibre. Set

R�,univ
:= R�,ψF,S ⊗R�,ψ

6 ,O

⊗̂
v∈S∞

Rv;

this is nonzero, because we are assuming that each Rv is nonzero.
Assume that H 0(GalF,S, gF)= zF, so that ρ̄ admits a universal fixed determinant deformation O-algebra

RψF,S ∈ CNLO, and write Runiv for the quotient of RF,S corresponding to R�,univ (as in the discussion
preceding [Barnet-Lamb et al. 2014, Lemma 1.3.3], this quotient exists by Lemma 3.4.1). In the case
that we fix potentially crystalline types at the places v | l, and do not fix types at places away from l, the
following result is [Balaji 2013, Theorem 4.3.2]; the general case follows from the same arguments as
those of Balaji, given the input of our local results.
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Proposition 4.2.6. Assume that l > 2, that ρ̄ is a discrete series and odd (so that in particular F is totally
real), and that H 0(GalF,S, (g

0
F)
∗(1))= 0. Maintain our assumption that the local deformation rings Rv

are nonzero.
Suppose that for each place v | l the Hodge type vv is regular. Then Runiv has Krull dimension at least 1.

Proof. By Proposition 4.1.1 (taking 6 = S∞) we see that for some r ≥ dimF g
0
F we have a presentation

R�,univ
−→∼

(⊗̂
v∈S∞

Rv

)
[[x1, . . . , xr ]]/( f1, . . . , fr+s),

where

s = (|S∞| − 1) dimF g
0
F+

∑
v |∞

dimF H 0(GalFv , g
0
F).

Since R�,univ is formally smooth over Runiv of relative dimension dimF g
0
F, it follows that the Krull

dimension of Runiv is at least

dim
⊗̂

v∈S∞,O
Rv − |S∞| dimF g

0
F−

∑
v |∞

dimF H 0(GalFv , g
0
F),

which by Theorem 3.3.2, and our assumption that each Hodge type vv is regular, is equal to

1+
∑
v | p

[Fv :Qp] dimE G/B−
∑
v |∞

dimF H 0(GalFv , g
0
F),

which in turn (by the assumption that ρ̄ is discrete series and odd) equals 1, as required. �

5. Unitary groups

5.1. The group Gn. Let F be a CM field with maximal totally real subfield F+. In this section we
generalise some results of [Barnet-Lamb et al. 2014] on the deformation theory of Galois representations
associated to polarised representations of GalF , by allowing ramification at primes of F+ which are
inert or ramified in F. This allows us to make cleaner statements, and is also useful in applications; for
example, in Theorem 5.2.2 we remove a “split ramification” condition in the proof of the weight part of
Serre’s conjecture for rank-2 unitary groups. Our results are also needed in [Calegari et al. 2018], where
they are used to construct lifts with specified ramification at certain places of F+ which are inert in F.

Recall from [Clozel et al. 2008] the reductive group Gn over Z given by the semidirect product of
G0

n = GLn ×GL1 by the group {1, }, where

 (g, a)−1
= (a(gt)−1, a).

We let ν : Gn → GL1 be the character which sends (g, a) to a and sends  to −1. Our results in this
section are for the most part a straightforward application of the results of the earlier sections to the
particular case G = Gn , but we need to begin by comparing our definitions to those of [loc. cit.]; we will
follow the notation of that paper where possible.
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Fix a place v |∞. By [Clozel et al. 2008, Lemma 2.1.1], for any ring R there is a natural bijection
between the set of homomorphisms ρ :GalF+→Gn(R) inducing an isomorphism GalF+ /GalF −→

∼ Gn/G0
n ,

and the set of triples (r, µ, 〈 · , · 〉) where r :GalF→GLn(R), µ :GalF+→ R×, and 〈 · , · 〉 : Rn
×Rn

→ R
is a perfect R-linear pairing such that 〈x, y〉 = −µ(cv)〈y, x〉, and 〈r(δ)x, r cv (δ)y〉 = µ(δ)〈x, y〉 for
all δ ∈ GalF . We refer to such a triple as a µ-polarised representation of GalF , and we will sometimes
denote it as a pair (r, µ), the pairing being implicit.

This bijection is given by setting r := ρ|GalF (more precisely, the projection of ρ|GalF to GLn(R)),
µ := ν ◦ ρ, and 〈x, y〉 = x t A−1 y, where ρ(cv) = (A,−µ(cv)) . If v is a finite place of F+ which is
inert or ramified in F, then we have an induced bijection between representations GalF+v → Gn(R) and
µ-polarised representations GalFv → GLn(R).

There is an isomorphism GL1→ ZGn given by g 7→ (g, g2) ∈ GL1→ GL1 ⊂ GLn ×GL1, and we
have Gder

n =GLn ×1, and Gab
n =GL1×{1, }. (It is easy to check by direct calculation that Gder

n ⊂ G◦n , and
indeed Gder

n ⊂GLn ×1. Since GLder
n =SLn , we have SLn ×1⊂Gder

n , and since  (1, a)−1(1, a−1)= (a, 1),
we also have GL1×1⊂ Gder

n , whence GLn ×1⊂ Gder
n . Similarly, one checks easily that ZGn ⊂ G◦n , so that

ZGn ⊂ GL1×GL1. If (g, a) ∈ GL1×GL1 then  (g, a)−1
= (ag−1, a), so we see that (g, a) ∈ ZGn if

and only if a = g2, as required.)
We fix a prime l > 2 and a representation ρ̄ : GalF+ → Gn(F) with ρ̄−1(G0

n(F)) = GalF . We fix a
character µ :GalF+→O× with ν ◦ ρ̄ = µ̄. Write ψ :GalF+→ Gab

n (O) for the character taking g ∈GalF

to (µ(g), 1) and g ∈ GalF+ \GalF to (−µ(g), ).
Note that if R ∈ CNLO then a deformation ρ : GalF+ → Gn(R) of ρ̄ has ab ◦ ρ = ψ if and only if

ν ◦ ρ = µ, in which case we say that it is µ-polarised. By [Allen 2016b, Proposition 2.2.3], restriction
to GalF gives an equivalence between the µ-polarised (framed) deformations of ρ̄ and the µ-polarised
(framed) deformations r of r̄ := ρ̄|GalF : GalF → GLn(F), the latter by definition being those r which
satisfy r c ∼= r∨µ (where we are writing c for cv, as r c is independent of the choice of v |∞).

The same equivalence pertains to deformations of ρ̄|GalF+v
, where v is inert or ramified in F. On the

other hand, if v splits as ṽṽc in F, then restriction to GalFṽ gives an equivalence between µ-polarised
(framed) deformations of ρ̄|GalF+v

and (framed) deformations of r̄ |GalFṽ
; thus at such places the deformation

theory of representations valued in Gn is reduced to the case of GLn . It is for this reason that [Clozel et al.
2008] and its sequels only permit ramification at places which split in F.

By [loc. cit., Lemma 2.1.3], ρ̄ is discrete series and odd in the sense of Definition 4.2.1 if and only if
for each place v |∞ of F+ with corresponding complex conjugation cv ∈ GalF+ we have µ̄(cv)=−1.
This is by definition equivalent to the corresponding polarised representation (ρ̄|GalF , µ̄) being totally
odd in the sense of [Barnet-Lamb et al. 2014, §2.1].

Let S be a finite set of places of F+, including all the places where r̄ or µ are ramified, all the infinite
places, and all the places dividing l. The following is a generalisation of [loc. cit., Proposition 1.5.1] (which
is the case that every finite place in S splits in F, and is actually proved in [Clozel et al. 2008]); note that
the assumption that ρ̄|GalF(ζl )

is absolutely irreducible is missing from the statement of [Barnet-Lamb et al.
2014, Proposition 1.5.1], but should have been included there. Note also that this assumption implies that ρ̄
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admits a universal deformation ring; indeed, we have H 0(GalF+, gF)= H 0(GalF+, gln,F× gl1,F)= gl1,F
by Schur’s lemma (note that Gal(F/F+) acts by −1 on the scalar matrices in gln,F).

Corollary 5.1.1. Let l > 2 be prime, and let ρ̄ : GalF+ → Gn(F) be such that ρ̄|GalF(ζl )
is absolutely

irreducible. Assume that ρ̄ is discrete series and odd.
Let µ be a de Rham lift of µ̄, and let S be a finite set of places of F+ including all the places at which

either r̄ or µ is ramified, and all the places dividing l∞. For each finite place v ∈ S, fix an inertial type τv ,
and if v | l, fix a regular Hodge type vv. Fix quotients of the corresponding local µ-polarised framed
deformation rings which correspond to a (nonempty) union of irreducible components of the generic fibre.

Let Runiv be the universal deformation ring for µ-polarised deformations of ρ̄ which are unramified
outside S, and lie on the given union of irreducible components for each finite place v ∈ S. Then Runiv

has Krull dimension at least 1.

Proof. By Proposition 4.2.6, we need only check that H 0(GalF+,S, (gln,F)
∗(1)) vanishes, where gln,F is

the Lie algebra of Gder
n . By inflation-restriction this group injects into

H 0(GalF(ζl ), (gln,F)
∗(1))Gal(F(ζl )/F+)

= H 0(GalF(ζl ), (gln,F))
Gal(F(ζl )/F+).

Since ρ̄|GalF(ζl )
is absolutely irreducible by assumption, this group vanishes by Schur’s lemma (noting

again that Gal(F/F+) acts by −1 on the scalar matrices in gln,F). �

5.2. Existence of lifts and the weight part of Serre’s conjecture. We now prove a strengthening of
[Barnet-Lamb et al. 2013, Theorem A.4.1], removing the condition that the places at which our Galois
representations are ramified are split in F. We refer the reader to [Barnet-Lamb et al. 2014] for any
unfamiliar terminology; in particular, potential diagonalisability is defined in [loc. cit., §1.4], while
adequacy and the notion of a polarised Galois representation being potentially diagonalisably automorphic
are defined in [loc. cit., §2.1].

Theorem 5.2.1. Let l be an odd prime not dividing n, and suppose that ζl /∈ F. Let ρ̄ :GalF+→ Gn(F) be
such that ρ̄|GalF(ζl )

is absolutely irreducible. Assume that ρ̄ is discrete series and odd. Let S be a finite set
of places of F+, including all places dividing l∞.

Let µ be a de Rham lift of µ̄, and let S be a finite set of places of F+ including all the places at which
either r̄ or µ is ramified, and all the places dividing l∞. For each finite place v ∈ S, fix an inertial type τv ,
and if v | l, fix a regular Hodge type vv. Fix quotients of the corresponding local µ-polarised framed
deformation rings which correspond to an irreducible component of the generic fibre; if v | l, assume also
that this component is potentially diagonalisable

Assume further that there is a finite extension of CM fields F ′/F such that F ′ does not contain ζl ,
all finite places of (F ′)+ above S split in F, and ρ̄(GalF ′(ζl )) is adequate, and assume that there exists
a lift ρ ′ : GalF+,S → Gn(O) of ρ̄|Gal(F ′)+,S with ν ◦ ρ ′ = µ|GalF+,S

, with the further property that ρ ′ is
potentially diagonalisably automorphic.
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Then there is a lift

ρ : GalF+,S→ Gn(O)
of ρ̄ such that:

(1) ν ◦ ρ = µ.

(2) If v ∈ S is a finite place, then ρ|G F+v
corresponds to a point on our chosen component of the local

deformation ring.

(3) ρ|Gal(F ′)+,S is potentially diagonalisably automorphic.

Proof. Let Runiv be the universal deformation ring for µ-polarised deformations of ρ̄ which are unramified
outside S, and lie on the given irreducible component for each finite place v ∈ S. Then Runiv has Krull
dimension at least 1 by Corollary 5.1.1. We claim that Runiv is a finite O-algebra. Admitting this claim,
we can choose a homomorphism Runiv

→ E , and let ρ be the corresponding representation. This satisfies
properties (1) and (2) by construction.

Let Runiv
F ′ be the universal deformation ring for µ|G(F ′)+,S

-polarised deformations of r̄ |G F ′,S
which lie

on the base changes of our chosen components. By [Barnet-Lamb et al. 2014, Lemma 1.2.3(1)], Runiv is
a finite Runiv

F ′ -algebra, so in order to prove the claim it is enough to show that Runiv
F ′ is a finite O-algebra.

By [Barnet-Lamb et al. 2013, Theorem A.4.1] (with F there taken to equal F ′), there is a represen-
tation ρ ′′ : G(F ′)+,S → Gn(O) corresponding to an O-point of Runiv

F ′ , which is furthermore potentially
diagonalisably automorphic. Then Runiv

F ′ is a finite O-algebra by [Barnet-Lamb et al. 2014, Theorem 2.3.2].
as required. Finally, property (3) holds by [loc. cit., Theorem 2.3.2] (applied to ρ ′′ and ρ|G(F ′)+,S

). �

We now apply this result to the weight part of Serre’s conjecture for unitary groups. We restrict
ourselves to the case n= 2, where the existing results in the literature are strongest; our results should also
allow the removal of the hypothesis of “split ramification” from results in the literature for higher-rank
unitary groups, such as the results of [Barnet-Lamb et al. 2018]. We recall that if K/Ql is a finite
extension, there is associated to any representation ρ̄ : GalK → GL2(F) a set W (ρ̄) of Serre weights.
A definition of W (ρ̄) was first given in [Buzzard et al. 2010] in the case that K/Ql is unramified, and
various generalisations and alternative definitions have subsequently been proposed. As a result of the
main theorems of [Gee et al. 2015; Calegari et al. 2017], all of these definitions are equivalent; we refer
the reader to the introductions to those papers for a discussion of the various definitions.

Suppose that F is an imaginary CM field with maximal totally real subfield F+ such that F/F+

is unramified at all finite places, that each place of F+ above l splits in F, and that [F+ : Q] is even.
Then as in [Barnet-Lamb et al. 2013] we have a unitary group G/F+ which is quasisplit at all finite
places and compact at all infinite places. If r̄ : GalF+ → G2(Fl) is irreducible, the notion of r̄ being
modular of a Serre weight is defined in [loc. cit., Definition 2.1.9]. This definition (implicitly) insists
that r̄ is only ramified at places which split in F, and we relax it as follows: we change the definition
of a good compact open subgroup U ⊂ G(A∞F+) in [loc. cit., Definition 2.1.5] to require only that at all
places v | l we have Uv = G(OF+v ), and at all places v - l we have Uv ⊂ G(OF+v ). (Consequently, we
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are now considering automorphic forms of arbitrary level away from l, whereas in [loc. cit.] the level is
hyperspecial at all places which do not split in F.)

Having made this change, everything in [loc. cit., §2] goes through unchanged, except that all mentions
of “split ramification” can be deleted. The following theorem strengthens [Gee et al. 2014, Theorem A],
removing a hypothesis on the ramification away from l (and also a hypothesis on the ramification at l,
although that could already have been removed thanks to the results of [Gee et al. 2015]).

Theorem 5.2.2. Let F be an imaginary CM field with maximal totally real subfield F+, and suppose
that F/F+ is unramified at all finite places, that each place of F+ above l splits in F, and that [F+ :Q]
is even. Suppose that l is odd, that r̄ : G F+→ G2(Fl) is irreducible and modular, and that r̄(G F(ζl )) is
adequate.

Then the set of Serre weights for which r̄ is modular is exactly the set of weights given by the
sets W (r̄ |G Fv

), v | l.

Proof. We begin by observing that the proof of [Barnet-Lamb et al. 2013, Theorem 5.1.3] goes through
in our more general context (that is, without assuming “split ramification”). Indeed, we have already
observed that the results of [loc. cit., §2] are valid in our context, and chasing back through the references,
we see that the only change that needs to be made is to relax the hypotheses in [loc. cit., Theorem 3.1.3]
by no longer requiring that the places v ∈ S, v - l, split in F. This follows by replacing the citation of
[loc. cit., Theorem A.4.1] in the proof of [loc. cit., Theorem 3.1.3] with a reference to Theorem 5.2.1
above (after making a further extension of F ′ to arrange that all of the places of (F ′)+ lying over S split
in F ′).

This shows that r̄ is modular of every weight given by the W (r̄ |G Fv
), v | l. For the converse, observe

that [loc. cit., Corollary 4.1.8] also holds in our context (again, since the results of [loc. cit., §2] go
through); the result then follows immediately from [Gee et al. 2015, Theorem 6.1.8]. �

Remark 5.2.3. It is presumably possible to prove in the same way a further strengthening of Theorem 5.2.2
where we allow our unitary group to be ramified at some finite places (and thus allow [F+ : Q] to be
odd, and F/F+ to be ramified at some finite places), but to do so would involve a lengthier discussion of
automorphic representations on unitary groups, which would take us too far afield.

Remark 5.2.4. We have assumed that the places of F+ above l split in F, because the weight part of
Serre’s conjecture has not been considered in the literature for unitary groups which do not split above l
(although if l is unramified in F, and we are in the generic semisimple case, such a conjecture is a special
case of the conjectures of [Gee et al. 2018]). However, it seems likely that it is possible to formulate and
prove a generalisation of Theorem 5.2.2 which removes this assumption, following the ideas of [Gee
and Kisin 2014; Gee and Geraghty 2015] (that is, using the Breuil–Mézard conjecture for potentially
Barsotti–Tate representations). Again, this would take us too far afield from the main concerns of this
paper, so we do not pursue this; and in any case we understand that this will be carried out in forthcoming
work of Koziol and Morra.
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