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We prove functorial weak factorization of projective birational morphisms of regular quasiexcellent
schemes in characteristic 0 broadly based on the existing line of proof for varieties. From this general
functorial statement we deduce factorization results for algebraic stacks, formal schemes, complex
analytic germs, Berkovich analytic and rigid analytic spaces, answering a present need in nonarchimedean
geometry. Techniques developed for this purpose include a method for functorial factorization of toric
maps, variation of GIT quotients relative to general noetherian qe schemes, and a GAGA theorem for
Stein compacts.
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1. Introduction

1.1. The class of qe schemes (originally “quasiexcellent schemes”) is the natural class of schemes on
which problems around resolution of singularities are of interest. They can also be used as a bridge for
studying the same type of problems in other geometric categories; see [Temkin 2008, Section 5]. In this
paper we address the problem of functorial factorization of birational morphisms between regular qe
schemes of characteristic 0 into blowings up and down of regular schemes along regular centers. We rely
on general foundations developed in [Abramovich and Temkin 2017; 2018] and the approach for varieties
of [Włodarczyk 2000; Abramovich et al. 2002]. As a consequence of both this generality of qe schemes
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and of functoriality, we are able to deduce factorization of birational or bimeromorphic morphisms in
other geometric categories of interest.

Theorem 1.3.3 below answers a question in [Simons 2015] in characteristic 0 unconditionally, and in
positive and mixed characteristics conditionally on resolution. It provides a complete proof of a key result,
Proposition 3 in [Gillet and Soulé 2000], using the argument of Section 3.4 of that paper for general base
ring 3 and not relying on results of J. Franke yet unpublished after 25 years. It justifies [Kontsevich and
Soibelman 2006, Theorem 9].

1.2. Blowings up and weak factorizations. We start with a morphism of noetherian qe regular schemes
φ : X1→ X2 given as the blowing up of a coherent sheaf of ideals I on the qe scheme X2. In addition, we
provide φ with a boundary (D1, D2), where each Di is a normal crossings divisor in X i and D1= φ

−1 D2.
Let U = X2 r (D2 ∪ V (I )) be the maximal open subscheme of X2 such that I is the unit ideal on U and
the boundary is disjoint from U. The restriction of φ on U is the trivial blowing up (i.e., the blowing up
of the empty center); in particular, we canonically have an isomorphism φ−1U →U. We often keep the
ideal I implicit in the notation, even though it determines φ (but see Section 2.1.8 for a construction in
the reverse direction). The reader may wish to focus on the following two cases of interest: (i) D2 =∅;
(ii) V (I )⊆ D2.

A weak factorization of a blowing up φ : X1→ X2 is a diagram of regular qe schemes

X1 = V0
ϕ1
// V1

ϕ2
// · · ·

ϕl−1
// Vl−1

ϕl
// Vl = X2

along with regular schemes Zi for i = 1, . . . , l and ideal sheaves Ji for i = 1, . . . , l − 1 satisfying the
following conditions:

(1) φ = ϕl ◦ϕl−1 ◦ · · · ◦ϕ2 ◦ϕ1.

(2) The maps Vi // X2 are morphisms; these maps as well as ϕi induce isomorphisms on U.

(3) For every i = 1, . . . , l either ϕi : Vi−1 // Vi or ϕ−1
i : Vi // Vi−1 is a morphism given as the blowing

up of Zi , which is respectively a subscheme of Vi or Vi−1 disjoint from U.

(4) The inverse image DVi ⊂ Vi of D2 ⊂ X2 is a normal crossings divisor and Zi has normal crossings
with DVi .

(5) For every i = 1, . . . , l − 1, the morphism Vi → X2 is given as the blowing up of the corresponding
coherent ideal sheaf Ji on X2, which is the unit ideal on U.

To include V0→ X2, we define J0 = I. The ideals Ji are a convenient way to encode functoriality,
especially when we later pass to other geometric categories.

These conditions are the same as (1)–(5) in [Abramovich et al. 2002, Theorem 0.3.1], except that here
the centers of blowing up and ideal sheaves are specified. Condition (2) is formulated for convenience;
it is a consequence of (3) and (5). Note that here, as in [loc. cit., Theorem 0.3.1], the centers are not
assumed irreducible, in contrast with [loc. cit., Theorem 0.1.1]. With these conditions, the most basic
form of our main theorem is as follows:
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Theorem 1.2.1 (weak factorization). Every birational blowing up φ : X1→ X2 of a noetherian qe regular
Q-scheme has a weak factorization X1 = V0 // V1 // · · · // Vl−1 // Vl = X2.

The adjective “weak” serves to indicate that blowings up and down may alternate arbitrarily among
the maps ϕi , as opposed to a strong factorization, where one has a sequence of blowings up followed by
a sequence of blowings down. We note that at present strong factorization is not known even for toric
threefolds.

Theorem 1.2.1 generalizes [Włodarczyk 2003, 0.0.1; Abramovich et al. 2002, Theorem 0.1.1], where
the case of varieties is considered. But we wish to prove a more precise theorem.

1.3. Functorial weak factorization. The class of data (X2, I, D2), namely morphisms φ : X1→ X2 of
noetherian qe regular schemes given as blowings up of ideals I, with divisor D2 as in Section 1.2, can be
made into the regular surjective category of blowings up, denoted by Bl, by defining arrows as follows:

Definition 1.3.1. An arrow from the blowing up φ′ : X ′1 = BlI ′(X ′2)→ X ′2 to φ : X1 = BlI (X2)→ X2

is a regular and surjective morphism g : X ′2→ X2 such that g∗ I = I ′ and g−1 D2 = D′2. In particular, g
induces a canonical isomorphism X ′1→ X1×X2 X ′2 and D′1 is the preimage of D1 under X ′1→ X1.

Similarly, weak factorizations can be made into the regular surjective category of weak factorizations,
denoted by Fact, by defining arrows as follows:

Definition 1.3.2. A morphism in Fact from a weak factorization

X ′1 = V ′0 // V ′1 // · · · // V ′l−1
// V ′l = X ′2

of φ′ : X ′1→ X ′2, with centers Z ′i and ideals J ′i, to a weak factorization

X1 = V0 // V1 // · · · // Vl−1 // Vl = X2

of φ : X1→ X2, with centers Zi and ideals Ji , consists of a regular surjective morphism g : X ′2→ X2

such that g∗ I = I ′, g∗ Ji = J ′i, inducing gi : V ′i → Vi such that Z ′i = g−1
i Zi or g−1

i−1 Zi as appropriate. In
particular ϕi ◦ gi−1 = gi ◦ϕi and g−1

i DVi = DV ′i .

Note that given a factorization of φ, any morphism from a factorization of φ′ is uniquely determined
by g : X ′2→ X2.

If we wish to restrict to schemes in a given characteristic p we denote the categories Bl(char = p)
and Fact(char = p) respectively. If we wish to restrict the dimension we write Bl(char = p, dim ≤d) and
Fact(char = p, dim ≤d).

There is an evident forgetful functor Fact→Bl taking a weak factorization X1= V0 // V1 // · · · //

Vl−1 // Vl = X2 to its composition φ : X1→ X2. The weak factorization theorem provides a section,
when strong resolution of singularities holds:

Theorem 1.3.3. (1) Functorial weak factorization: There is a functor

Bl(char =0)→ Fact(char =0)
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assigning to a blowing up φ : X1→ X2 in characteristic 0 a weak factorization

X1 = V0 // V1 // · · · // Vl−1 // Vl = X2,

so that the composite Bl(char =0)→ Fact(char =0)→ Bl(char =0) is the identity.

(2) Conditional factorization in positive and mixed characteristics: If functorial embedded resolution of
singularities applies in characteristic p for schemes of dimension ≤ d + 1, then there is a functor

Bl(char = p, dim ≤d)→ Fact(char = p, dim ≤d)

which is a section of Fact(char = p, dim ≤d)→Bl(char = p, dim ≤d). If functorial embedded resolution
of singularities applies over Z for schemes of dimension ≤ d + 1, then there is a functor

Bl(dim ≤d)→ Fact(dim ≤d)

which is a section of Fact(dim ≤d)→ Bl(dim ≤d).

This generalizes a theorem for varieties in characteristic 0 [Abramovich et al. 2002, Theorem 0.3.1 and
Remark (3) thereafter; Włodarczyk 2006, Theorem 1.1, 2009, Theorem 0.0.1], where the factorization is
only shown to be functorial for isomorphisms. The precise statements we need for part (2) are spelled out
below as Hypothetical Statements 2.2.13 and 2.3.6.

Remark 1.3.4 (preservation of G-normality). Borisov and Libgober [2005, Definition 3.1] introduced G-
normal divisors and in Theorem 3.8 of the same paper they showed that this condition can be preserved in
the algorithm of [Abramovich et al. 2002]. The same holds true here, using the same argument of [Borisov
and Libgober 2005, Theorem 3.8], by performing the sequence of blowings up associated to the barycentric
subdivision on the schemes W res

i± obtained in Section 5.4. Details are left to the interested reader.

1.4. Applications of functoriality. We need to justify the somewhat heavy functorial treatment. Of
course functoriality may be useful if one wants to make sure the factorization is equivariant under group
actions and separable field extensions; this has been of use already in the case of varieties. But it also
serves as a tool to transport our factorization result to other geometric spaces.

Blowings up of regular objects is a concept which exists in categories other than schemes, for instance,
in Artin stacks, qe formal schemes, complex semianalytic germs (see Appendix B), Berkovich k-analytic
spaces, rigid k-analytic spaces. For brevity we denote the full subcategory of qe noetherian objects in any
of these categories by Sp. Functoriality, as well as the generality of qe schemes, is crucial in proving the
following:

Theorem 1.4.1 (factorization in other categories). Any blowing up X1 → X2 of either noetherian qe
regular algebraic stacks, or regular objects of Sp, in characteristic 0 has a weak factorization X1 =

V0 // V1 // · · · // Vl−1 // Vl = X2. The same holds in positive and mixed characteristics (when
relevant) if functorial embedded resolution of singularities for qe schemes applies in positive and mixed
characteristics.
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See Theorem 6.1.3 for the case of stacks and Theorem 6.4.5 for other categories, where functoriality is
also shown; in other words Theorem 1.3.3 applies in each of the categories Sp. In addition, the argument
deducing Theorem 6.1.3 from Theorem 1.3.3 is a formal one based on functoriality, so the same argument
can be used to extend Theorem 6.4.5 to stacks in the categories of formal schemes, Berkovich spaces,
etc., once an appropriate theory of stacks is constructed; see for instance [Simpson 1996; Noohi 2005;
Ulirsch 2015; Yu 2018; Porta and Yu 2016].

1.5. The question of stronger functoriality. It is natural to replace the category Bl by the category Blr
with the same objects but where arrows g : X ′2→ X2 as in Definition 1.3.1 are not required to be surjective,
only regular. In a similar way one can replace the category Fact by a category Factr . As explained
in [Temkin 2008, §2.3.3] for resolution of singularities, removing the surjectivity assumption requires
imposing an equivalence relation on factorizations in which two factorizations which differ by a step
which is the blowing up of the unit ideal are considered equivalent. It is conceivable that the analogue of
Theorem 1.3.3 may hold for Factr → Blr .

1.6. Factorization of birational and bimeromorphic maps. Our results for projective morphisms imply
results for birational and bimeromorphic maps. We start with the case of schemes. By a proper birational
map f : X1 // X2 of reduced schemes we mean an isomorphism f0 :U1→U2 of dense open subschemes
such that the closure Y ⊂ X1× X2 of the graph of f0 is proper over each X i . Assume that X1 and X2

are regular. The factorization problem for the birational map f reduces to factorization of the proper
morphisms Y res

→ X i , where Y res is a resolution of Y. Assume, now, that f : X1→ X2 is a proper birational
morphism. By a blow-up version of Chow’s lemma (e.g., it follows from the flattening of Raynaud–
Gruson) there exists a blowing up Y =BlI (X2)→ X2 that factors through X1. Then Y =Bl f −1 I (X1) and
hence the resolution Y res, which is a blowing up of Y, is also a blowing up of both X i . Thus, factorization
of f reduces to the factorization for blowings up, which was dealt with in Theorem 1.3.3.

Now, assume that Sp is any geometric category. The definition of a proper bimeromorphic map
f : X1→ X2 is similar to the definition of a proper birational map with two addenda: in the case of stacks

we require that the morphisms Y → X i are representable, and in the case of analytic spaces or formal
schemes we require that U is open in Y (in particular, Y → X i are bimeromorphic). Then the general
factorization problem immediately reduces to the case when f is a proper morphism. Furthermore, if
objects of Sp are compact and if Chow’s lemma holds in Sp then the problem reduces further to the case
when f is a blowing up. For complex analytic spaces, Chow’s lemma was proved by Hironaka [1975,
Corollary 2]. It extends immediately to the complex analytic germs we consider in this paper, and these
are indeed compact. Most probably, it also holds in all other categories Sp we mentioned, but this does
not seem to be worked out so far.

2. qe schemes and functoriality

2.1. Projective morphisms and functorial constructions. In our method, it will be important to describe
certain morphisms we will obtain as the blowing up of a concrete ideal or an explicitly described
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projective morphism, since further constructions will depend on these data. Moreover, this should be
done functorially with respect to surjective regular morphisms. In the current section we develop a few
basic functorial constructions of this type.

There are a few ways to describe a projective morphism: using Proj, using ample sheaves, or using
projective fibrations, but each approach involves choices. Neither description is “more natural” than the
others, and we will have to switch between them. Similarly to [EGA II 1961] we choose the language of
projective fibrations to be the basic one and we will show how other descriptions are canonically reduced
to projective fibrations.

2.1.1. Projective fibrations. Let X be a scheme. For a coherent OX -module E consider the projective
fibration P(E)=PX (E) := ProjX Sym•(E) associated with E . It has a canonical twisting sheaf OP(E)(1),
and E→ π∗O(1) is an isomorphism. This construction is functorial for all morphisms: if φ : X ′→ X is
any morphism and E ′ = φ∗E then PX ′(E ′)= X ′×X PX (E), and OP(E ′)(1) is the pullback of OP(E)(1).

2.1.2. Projective morphisms. By the usual definition [EGA II 1961, 5.5.2], a morphism f : Y → X is
projective if it factors through a closed immersion i : Y ↪→ PX (E) for a coherent OX -module E . In
this paper, we will use the convention that by saying “ f is projective” we fix E and i . In particular,
Y acquires a canonical relatively very ample sheaf OY (1)= OP(E)(1)|Y . The base change or pullback
f ′ : Y ′ = Y ×X X ′→ X ′ of f with respect to a morphism φ : X ′→ X is projective via the embedding
Y ′ ↪→PX ′(E ′), where E ′= φ∗E . We will use the notation f ′= φ∗( f ). Also, we say that f is projectively
the identity over an open U of X if E |U =OU and Y |U =U.

2.1.3. Relation to Proj. For a projective morphism f : Y→ X we also obtain a canonical description of Y
as a Proj. Namely, if IY ⊆OP(E) denotes the ideal defining Y then Y = ProjX A, where A•= Sym•(E)/IY

is a quasicoherent OX -algebra with coherent graded components, generated over A0
=OX by its degree-1

component A1. Again this structure is functorial for all morphisms: if φ : X ′→ X is any morphism and
A′ = φ∗A then ProjX ′ A′ = X ′×X ProjX A.

Conversely, if a graded OX -algebra A• has coherent components and is generated over A0
=OX by

A1 then Sym•(A1)� A• and we obtain a closed immersion i : ProjX A ↪→ PX (A1). Thus, Y = ProjX A
is projective over X , and the associated graded quasicoherent algebra is A itself. This construction is also
functorial for all morphisms.

Remark 2.1.4. We note that the construction of a projective morphism from Proj is right inverse to
the construction of Proj from a projective morphism, but they are not inverse: going from a projective
morphism to Proj and back to a projective morphism usually changes the projective fibration.

Remark 2.1.5. In this paper we use superscripts to denote degrees of homogeneous components of a
graded object, as in Ai

⊂ A•. When considering weights of a given Gm-action we will use subscripts. We
hope this will not cause confusion.

2.1.6. General Proj. Consider now a general quasicoherent graded OX -algebra with coherent graded
components, which is only assumed to be generated over A0 = OX in finitely many degrees. Writing
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AM•
=
⊕

j AM j for a positive integer M, we have a canonical isomorphism Y = ProjX A• ' ProjX AM•.
For a suitable M the algebra AM• is generated in degree 1 by AM. If we take the minimal M0 such
that AM• is generated in degree 1, then L is not functorial for all morphisms. Rather it is functorial
for all flat surjective morphisms X ′→ X : if AM• is generated in degree 1 then (A′)M• is generated in
degree 1, and the opposite is true whenever X ′→ X is flat surjective; this follows since surjectivity of
((A′)1)⊗n

→ (A′)n implies surjectivity of (A1)⊗n
→ An by flat decent. Combining this construction with

the previous one we obtain an interpretation of Y → X as a projective morphism, and this construction is
functorial for all flat surjective morphisms.

Remark 2.1.7. This construction applies to the following situation: assume f : Y → X is a proper
morphism of noetherian schemes and L is an f -ample sheaf. Then A• =OX ⊕

⊕
∞

k=1 f∗(Lk) is generated
in finitely many degrees and Y = ProjX A. Therefore, L gives rise to an interpretation of f as a projective
morphism functorially for all surjective flat morphisms.

2.1.8. Blowings up. An important variant is that of blowings up. Consider a coherent ideal sheaf I on X .
The Rees algebra RX (I ) =

⊕
∞

k=0 I k is generated in degree 1, and we define BlI (X) = ProjX RX (I ).
In particular, BlI (X) is projective over X with the closed immersion BlI (X) ↪→ PX (I ), and if I is the
unit ideal on an open U of X then BlI (X)→ X is projectively the identity on U. If φ : X ′→ X is a
morphism, then I kOX ′ = (IOX ′)

k
= (I ′)k and φ∗(I k)→ I kOX ′ is surjective, giving a canonical morphism

φ′ : BlI ′(X ′)→ BlI (X) over φ. Clearly (φ′)∗L = L ′. So a blowing up is functorially projective. If
moreover X ′→ X is flat, then BlI ′(X ′)= X ′×X BlX I.

We will need an opposite construction, using a variant of [Hartshorne 1977, Theorem II.7.17] for
regular schemes. Assume X is regular and f : Y → X is a proper birational morphism with a relatively
ample sheaf L (e.g., if Y → X is projective we can take L =OY (1)). Then after replacing L by a positive
power which is functorial for flat surjective morphisms, we have Y = ProjX A•, where A• is generated
over A0 =OX by its degree-1 component, and Ak

= f∗Lk.
Locally on X , write Lk as a fractional ideal on Y, giving it as a fractional ideal FL ,k on X since Y→ X is

birational. Since A• is generated in degree 1, we have FL ,k = Fk
L ,1; see [loc. cit., Theorem II.7.17, Step 5].

Since X is factorial, there is a unique expression FL ,1=M I, where M is an invertible fractional ideal and I
is an ideal sheaf without invertible factors. Explicitly, F∗L ,1 is invertible, so we can write I = F∗L ,1 FL ,1 and
M = F∗∗L ,1. It follows that FL ,k = Mk I k. Note that while the construction is local on X and depends on an
embedding of L in the fraction field, the ideal sheaf I glues canonically. Locally on X we have a canonical
isomorphism Y 'BlI (X), which evidently glues canonically. We have obtained that a projective birational
morphism f : Y → X with X regular is a blowing up, functorially for flat surjective morphisms X ′→ X
of regular schemes. In addition, if f is projectively the identity on U ⊆ X then I is the unit ideal on U.

For future reference we record the following well-known result that follows from the universal property
of blowings up.

Lemma 2.1.9. If X is an integral scheme and a blowing up Y = BlI (X)→ X factors through a proper
birational morphism Z→ X then Y = BlIOZ (Z).
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2.1.10. Sequences of projective morphisms. Now assume Z g
−→ Y f

−→ X is a sequence of projective
morphisms of noetherian schemes, say Z ↪→PY (F) and Y ↪→PX (E) for a coherent OY -module F and a
coherent OX -module E . For a large enough n the map f ∗ f∗(F(n)) α

−→F(n) is surjective; hence PY (F)=
PY (F(n)) embeds into PX (E ⊗ f∗F(n)) and we obtain a closed immersion Z ↪→ PX (E ⊗ f∗F(n)).
Choosing the minimal n such that α is surjective we obtain a construction that realizes composition of
projective morphisms as a projective morphism functorially for flat surjective morphisms X ′→ X .

If X is regular we can combine this with the previous statements, so if Ym → · · · → Y1 → X is a
sequence of birational projective morphisms which are projectively the identity over an open U ⊆ X , then
Ym→ X is a blowing up of an ideal sheaf which is the unit ideal on U, and this is functorial for flat and
surjective morphisms of regular schemes.

Remark 2.1.11. We will not use this, but blowings up can also be composed in terms of ideals. One can
show that if X is normal then the composition of Y = BlI (X)

f
−→ X and BlJ (Y )→ Y is of the form

Bl f∗( f −1(I n)J )(X)→ X for a large enough n.

2.2. qe schemes and resolution of pairs.

2.2.1. qe schemes. The class of quasiexcellent schemes was introduced by Grothendieck as the natural
class where problems related to resolution of singularities behave well. The name “quasiexcellent” is
perhaps not very elegant (it was not introduced by Grothendieck), and we feel it harmless to refer to them
as qe schemes.

First recall that regular morphisms are a generalization of smooth morphisms in situations of morphisms
which are not necessarily of finite type. Following [EGA IV2 1965, 6.8.1] a morphism of schemes
f : Y → X is said to be regular if

• the morphism f is flat and

• all geometric fibers of f : Y → X are regular.

A locally noetherian scheme X is a qe scheme if the following two conditions hold:

• For any scheme Y of finite type over X , the regular locus Yreg is open.

• For any point x ∈ X , the completion morphism Spec ÔX,x → SpecOX,x is regular.

It is a known, but nontrivial fact, that a scheme Y of finite type over a qe scheme is also a qe scheme;
see, for example, [Matsumura 1980, 34.A]. A ring A is a qe ring if Spec A is a qe scheme.

2.2.2. Resolution of pairs. Consider a pair (X, Z), where X is a reduced qe scheme and Z is a nowhere
dense closed subset of X . By a resolution of (X, Z) we mean a birational projective morphism f : X ′→ X
such that X ′ is regular, Z ′ = f −1(Z) is a simple normal crossings divisor, and f is projectively the
identity outside of the union of Z and the singular locus Xsing of X . Since [EGA IV2 1965, 7.9.6], it is
universally hoped that every qe scheme admits a good resolution of singularities; the same should also
hold for pairs; see Remark 2.2.3 below. If X is noetherian of characteristic 0 then (X, Z) can be resolved
by [Temkin 2012, Theorem 1.1].
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Remark 2.2.3. (i) Usually, resolution of pairs is constructed in two steps:

(1) Resolve X by a projective morphism f : X ′→ X . Usually, this is achieved by a sequence of blowings
up Xl→ · · · → X0 = X . One can also achieve that the centers are regular, though this requires an
additional effort.

(2) Resolve Z ′ = f −1(Z) by a further projective morphism f ′ : X ′′→ X ′. Usually, this is achieved by a
sequence of blowings up X ′′ = X ′n→ · · · → X ′0 = X ′ whose centers are regular and have simple
normal crossings with the accumulated exceptional divisor, so that all schemes X ′i remain regular
and exceptional divisors E ′i are simple normal crossings. In addition, one achieves a principalization
of Z ′ as a subscheme; i.e., Z ′×X ′ X ′n is a divisor supported on E ′n .

(ii) The best known results for general noetherian qe schemes beyond characteristic 0 are resolution of qe
threefolds, see [Cossart and Piltant 2014], and principalization of surfaces in regular qe schemes, see
[Cossart et al. 2009]. In particular, a noetherian qe pair (X, Z) can be resolved whenever dim(X)≤ 3.

2.2.4. Compatibility with morphisms. By a morphism of pairs φ : (Y, T )→ (X, Z) we will always mean
a morphism φ : Y → X such that T = φ−1(Z). We say that resolutions fX : X ′→ X and fY : Y ′→ Y of
(X, Z) and (Y, T ) are compatible with φ if fY = φ

∗( fX ).

Remark 2.2.5. As we mentioned, often resolution of pairs has a natural structure of a composition of
blowings up. The definition of compatibility in this case is similar with the only difference that the
blowing up sequence of Y is obtained from the pullback of the blowing up sequence of X by removing all
blowings up with empty centers. The latter contraction procedure is only needed when f is not surjective.

2.2.6. Functorial resolution. Let C be a class of pairs (X, Z), where X is a reduced noetherian qe scheme
and Z is a closed subscheme. Throughout this paper, by a functorial resolution on C we mean a rule
that assigns to any pair (X, Z) ∈ C a resolution (X ′, Z ′)→ (X, Z) in a way compatible with arbitrary
surjective regular morphisms between pairs in C. In addition, we always make the following assumption
on the resolution of normal crossings pairs, i.e., pairs (X, Z) with regular X and normal crossings Z (not
necessarily simple):

Assumption 2.2.7. For any normal crossings pair (X, Z) in C its resolution X ′→ X can be functorially
represented as a composition of blowings up whose centers are regular and have normal crossings with
the union of the preimage of Z and the accumulated exceptional divisor.

Remark 2.2.8. (i) This definition provides the minimal list of properties we will use. As we remarked
earlier, usually one proves finer desingularization results obtaining, in particular, that Z ×X X ′ is a divisor
and the resolution is functorial for nonsurjective morphisms as well.

(ii) It seems that any reasonable resolution should satisfy the assumption. In fact, most (if not any)
algorithms appearing in the literature apply to normal crossings pairs (X, Z) via the following standard
algorithm: first one blows up the maximal multiplicity locus of Z , then one blows up the maximal
multiplicity locus of the strict transform of Z , etc. It is easy to see that the standard algorithm satisfies
the assumption.
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2.2.9. Resolution of singularities of qe schemes: characteristic 0. Functorial resolution of pairs is known
in characteristic 0:

Theorem 2.2.10. There exists a functorial resolution, satisfying Assumption 2.2.7, on the class Cchar=0

whose elements are pairs (X, Z) with X a reduced noetherian qe scheme over Q.

Proof. By [Temkin 2018, Theorem 1.1.7] there exists a blowing up sequence

Fprinc(X, Z) : X ′→ · · · → X

whose centers lie over Z ∪ Xsing and such that X ′ is regular and Z ′= f −1(Z) is a simple normal crossings
divisor. Moreover, this sequence is functorial in regular morphisms. By Section 2.1.10, the morphism
X ′→ X is a projective morphism functorially in surjective regular (even flat) morphisms. Finally, a direct
(but tedious) inspection shows that the algorithm Fprinc of [loc. cit.] resolves normal crossings pairs via
the standard algorithm. �

Remark 2.2.11. Functoriality of this resolution implies that one also gets a functorial way to resolve an
arbitrary qe pair over Q (locally noetherian but not necessarily noetherian) by a morphism f : X ′→ X . In
general, there is no natural way to provide f with an appropriate structure, neither as a single blowing up
nor a sequence of blowings up. However, f can be realized as an infinite composition whose restrictions
onto noetherian open subschemes of X are finite; e.g., the case of Z =∅ is worked out in [Temkin 2008,
Theorem 5.3.2].

2.2.12. Positive and mixed characteristics hypothesis. In Theorem 1.3.3 (3), the precise hypothetical
statement we need about resolutions of pairs is the following analogue of Theorem 2.2.10:

Hypothetical Statement 2.2.13. (1) Functorial resolution: The classes Cchar=p,dim≤d+1 and Cdim≤d+1 of
pairs (X, Z), where X is a reduced noetherian qe Fp-scheme or Z-scheme, respectively, of dimension
≤ d + 1, each admit a functorial resolution f(X,Z) : X ′→ X satisfying Assumption 2.2.7.

(2) Equivariance: Moreover, the resolution is compatible with any G-action on (X, Z), where G = Gm

or G = (Ga)
d, in the sense that a∗( f(X,Z))= p∗X ( f(X,Z)), where a : G× X→ X is the action morphism

and pX : G× X→ X is the projection.

In mixed characteristics we will also need:

(3) Functoriality of toroidal charts: assume that X is a toroidal scheme (see [Abramovich and Temkin
2017, §2.3.4]) of dimension at most d + 1 and j : X→ Y = Spec Z[M] is a toroidal chart (see [loc. cit.,
§2.3.17]), T is a toric subscheme of Y and Z = X ×Y T. Then j∗( f(Y,T ))= f(X,Z).

We note that the equivariance statement (2) in dimension d+1 follows from statement (1) in dimension
d + 2, but here we wish to only make assumptions up to dimension d + 1. It is conceivable that a version
of (2) sufficient for our needs follows from (1) by taking slices, but we will not pursue this question.

Let us say that a pair (X, Z) is locally monoidal if locally X admits a logarithmic structure making it
into a logarithmically regular logarithmic scheme so that the ideal of Z is monoidal. It is expected that
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there should exist a canonical resolution of such pairs of combinatorial nature, which is, in particular,
independent of the characteristics. Our statement (3) asserts such independence in mixed characteristics; in
pure characteristics it is a consequence of equivariance. It is analogous to Hypothetical Statement 2.3.6(3)
below. Similarly to Hypothetical Statement 2.3.6, proving statements (1)–(3) for locally monoidal pairs
is expected to be easier than the general case. For example, it is proved in [Illusie and Temkin 2014,
Theorem 3.4.9] for logarithmically regular logarithmic schemes (with a single logarithmic structure), but
the known functoriality [loc. cit., Theorem 3.4.15] is not enough to extend it to locally monoidal schemes.
In addition, very recently Buonerba [2015] resolved certain locally monoidal varieties.

2.3. Principalization of ideal sheaves. In addition to resolution of pairs, we will need a version of
functorial principalization of coherent ideal sheaves on a qe regular scheme X with a simple normal
crossings divisor D, which will often be called the boundary. In fact, we will only need a particular case
of locally monoidal ideals as introduced below.

2.3.1. Permissible sequences. A blowing up sequence Xn→ · · ·→ X0 = X will be called permissible if
its centers Vi ⊂ X i are regular and have simple normal crossings with Di ⊂ X i , which is defined to be
the union of the preimage of D and the accumulated exceptional divisor. Note that in such case each X i

is regular and each Di is a boundary.

2.3.2. Principalization. We consider the category of triples (X, D, I ), where (X, D) is a noetherian
regular qe scheme with a boundary, I is a coherent ideal sheaf, and arrows are regular morphisms
f : X ′→ X such that IOX ′ = I ′ and f −1 D = D′. A principalization of I is a permissible sequence of
blowings up φ(X,D,I ) : Xn→ · · · → X0 = X such that:

(1) Each center Vi lies in the union of Di with the locus where I is not the unit ideal.

(2) In = IOXn is a divisorial ideal supported on Dn . In particular, V (In) is a divisor with a simple
normal crossings reduction.

Principalizations form a category again, and functorial principalization provides a functor from triples
(X, I, D) to principalizations φX : X ′→ X . As we do not require the morphism f to be surjective, we
have to use the equivalence relation mentioned in Section 1.5. However, we will only apply the result in
the context of surjective morphisms, so this equivalence will not figure in any of our applications.

2.3.3. Known results. Functorial principalization of ideal sheaves for varieties over a field of characteris-
tic 0 is known; e.g., see [Bierstone and Milman 1997, Sections 11,13] or [Kollár 2007, Theorem 3.26].
The second author is in the process of writing a general functorial principalization of ideal sheaves on
noetherian regular qe schemes over Q with the methods of [Temkin 2018]; we will manage not to use
this result. For general qe schemes, the best known result is principalization on threefolds; see [Cossart
and Piltant 2014].

Remark 2.3.4. (i) Classically, one only blows up centers over the locus where I is not trivial. On the
other hand, usually one works with ordered boundaries D =

⋃n
i=0 Di , where Di are smooth components.
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Ordering the boundary restricts functoriality and, in fact, it is not critical. For example, the boundaries in
[Cossart et al. 2009] are not ordered.

(ii) Since we allow blowings up that modify the whole D, we can freely use the classical results to resolve
(X, D, I ): first apply the standard principalization f : Xn → · · · → X to (X, D); then Dn is a simple
normal crossings divisor ordered by the history of blowings up, and we can apply a classical algorithm to
(Xn, Dn, IOXn ).

2.3.5. Locally monoidal ideals. A triple (X, D, I ) with X regular, D a boundary and I an ideal sheaf
on X is said to be locally monoidal if there is an open covering

∐
Uα → X , logarithmically regular

structures (Uα,Mα) in the sense of [Kato 1994; Abramovich and Temkin 2017, §2.3.1] such that D is
part of the toroidal divisor, and monoid ideals Iα ⊂ Mα such that IUα

is generated by the image of Iα
under Mα→OUα

.

Hypothetical Statement 2.3.6. (1) Each locally monoidal Fp-triple or Z-triple (X, D, I ) of dimension
≤ d admits a principalization

φ(X,D,I ) : X̃→ · · · → X

in a manner functorial for regular morphisms X ′→ X.

(2) Moreover, if a : G × X → X is an action of G = (Ga)
d such that I and D are equivariant, that is,

a−1 I = p−1
X I and a−1 D= p−1

X D, where pX :G×X→ X is the projection, then X̃→ X is G-equivariant
as well.

Again in mixed characteristics we also need:

(3) Functoriality of toroidal charts: assume that (X, D, I ) is locally monoidal of dimension ≤ d and
j : (X, D)→ (Y = Spec Z[M], DY ) is a toroidal chart such that I = j−1 I0 for a toric ideal I0 on Y. Then
the sequence φ(X,D,I ) is the pullback of φ(Y,DY ,I0).

Remark 2.3.7. (i) In fact, the hypothesis asserts that toric ideals on schemes Spec Z[M] can be princi-
palized so canonically that given a locally monoidal triple (X, D, I ) any toroidal chart induces the same
principalization of I.

(ii) The results of [Illusie and Temkin 2014, Section 3.1.14] suggest that this statement may be within
reach: in that paper the local nonfunctorial problem is solved, and the problem reduces to making the
process functorial even if one changes the logarithmic structure Mα on Uα.

(iii) Here and below, given a morphism f : Y → X and ideal I ⊂OX we use the common notation f −1 I
for the ideal sheaf more precisely denoted by ( f ∗ I )OY , hoping this notation will not confuse the reader.
We find the notation (a∗ I )OG×X too heavy, and writing more simply IOG×X would not work in (2) above.

2.3.8. The characteristic-0 case. To make our results unconditional in characteristic 0 we should prove
that parts (1) and (2) of Hypothetical Statement 2.3.6 hold for schemes over Q. In fact, we will even
deal with a larger class of triples using the case of varieties and methods of [Illusie and Temkin 2014,
Theorem 2.4.1, p. 95].



Functorial factorization of birational maps for qe schemes in characteristic 0 391

A triple (X, D, I ) is said to be Q-absolute if there exists an open covering
∐

Uα → X , regular
Q-varieties Zα, regular morphisms fα : Uα→ Zα, ideal sheaves Iα on Zα and divisors Dα ⊂ Zα such
that f −1

α Iα = I |Uα
and f −1

α Dα = D|Uα
. The collection of Q-absolute triples forms a full subcategory of

the category of triples. Functorial principalization of Q-absolute triples (X, D, I ) is a functor from this
subcategory to principalizations of the corresponding ideals.

The statement we need is the following:

Proposition 2.3.9. There exists a functorial principalization φX : X̃→ X of Q-absolute triples (X, D, I ).

Proof. We may replace
∐

Uα by a finite covering, since X is noetherian. We write Uαβ = Uα ×X Uβ .
Now, we will use the ideas from the proof of [Illusie and Temkin 2014, Theorem 2.4.3].

First we construct a principalization. It suffices to construct a principalization of
∐
(Uα, D|Uα

, I |Uα
)

whose two pullbacks to the fiber product W :=
∐

Uαβ coincide. The triple (Z , DZ , IZ ) :=
∐
(Zα, Dα, Iα)

has a principalization compatible with Dα coming from the principalization functor for Q-varieties.
This pulls back to a principalization of

∐
(Uα, D|Uα

, I |Uα
) and we need to show that the two pullbacks

to W coincide. We have two regular morphisms f, g : W → Z . By Popescu’s theorem [1986], see
also [Spivakovsky 1999], f is the limit of smooth morphisms fγ : Wγ → Z . By [EGA IV3 1966,
Proposition 8.13.1], g factors through a morphism gγ :Wγ → Z for a large enough γ and then [Illusie
and Temkin 2014, Proposition 2.4.3] implies that replacing Wγ by a neighborhood of the image of W we
can achieve that gγ is also smooth. Since the two pullbacks of IZ and DZ to W coincide, there is some γ
such that the two pullbacks of IZ and DZ to Wγ coincide. It follows by functoriality of principalization
for varieties that the two principalizations on Wγ coincide, and therefore they coincide on W, as required.

We now demonstrate that this principalization is functorial. Consider a regular surjective morphism
f : (X1, D1, I1)→ (X2, D2, I2) with coverings

∐
U1α and

∐
U2β and Q varieties Z1α and Z2α. Then

composing U2β → Z2β with f we get another covering
∐

f −1U2β with regular maps to Z2β , so it is
enough to show that the resulting principalizations on X1 coincide. We now write W =

∐
U1α×X1 f −1U2β ,

which maps to Z1=
∐

Z1α and Z2=
∐

Z2β . By the same argument as earlier we have that W→ Z1× Z2

is the limit of a family Wγ → Z1× Z2, where the two maps Wγ → Zi are smooth. As above we conclude
that the ideals and divisors coincide on some Wγ and the two principalizations coincide on W and
therefore on X1. �

3. Functorial toroidal factorization

3.1. Statement. We follow the treatment of toroidal schemes in [Abramovich and Temkin 2017, Sec-
tion 2.3], in particular they carry logarithmic structures in the Zariski topology. A toroidal ideal I on a
toroidal scheme X with logarithmic structure M is the ideal generated by the image of a monomial ideal
in M through M→OX . We define a category TorBlrs of toroidal blowings up, similar to Bl:

(1) An object is a birational transformation X1 → X2 where X1, X2 are toroidal and regular, and
X1→ X2 is given as the normalized blowing up of a toroidal ideal I ⊂OX2 .
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(2) An arrow from X ′1→ X ′2 to X1→ X2 consists of a regular surjective morphism g : X ′2→ X2 such
that UX2 = g−1UX2 and I ′ = IOX ′2 .

We similarly define a toroidal weak factorization X1 = V0 // V1 // · · · // Vl−1 // Vl = X2 of a
toroidal blowing up X1→ X2, where the schemes Vi , ideals Ji and centers Zi are toroidal. These form
the regular surjective category TorFactrs of toroidal weak factorizations in a manner similar to the above.

Proposition 3.1.1. Let X1→ X2 be a toroidal morphism of toroidal schemes obtained by normalized blow-
ing up a toroidal ideal. Then there is a toroidal weak factorization X1=V0 // V1 // · · · // Vl−1 // Vl=

X2 in a functorial manner: there is a section TorBlrs→ TorFactrs of the forgetful functor TorFactrs→ Bl.

Remark 3.1.2. Jarosław Włodarczyk informed us that one can prove a stronger result: a factorization
procedure which is functorial for all regular strict morphisms g : X ′2→ X2, not required to be surjective.
His proposed argument involves subtle modifications at the heart of the algorithm in [Włodarczyk 2009,
Sections 4 and 5]. The proof we provide at the end of this section shows that any procedure for toric
factorization gives rise to a functorial procedure.

3.2. Cone complexes. Before proving Proposition 3.1.1 we need to discuss a generalization of the
polyhedral cone complexes with integral structure of [Kempf et al. 1973] which was introduced in
[Abramovich et al. 2015, 2.5] to accommodate any toroidal embedding in the sense of [Kempf et al.
1973], allowing for self-intersections and monodromy. In this paper we only assign polyhedral cone
complexes to Zariski toroidal schemes, without self-intersections or monodromy, but the generalized
polyhedral cone complexes are used as a combinatorial tool to achieve functoriality.

Fix a toroidal scheme X . Recall that the polyhedral complex of [Kempf et al. 1973] or the equivalent
Kato fan of [Kato 1994] assigns a polyhedral cone σZ with integral structure to each toroidal stratum
Z ⊂ X ; each inclusion Z ′ ↪→ Z ⊂ X gives rise to a linear map ν : σZ→ σZ ′ , which identifies σZ as a face
of σZ ′ in such a way that the integral structure on σZ is the restriction of the integral structure of σZ ′ : this
is called a face map. The diagram ({σZ }, {ν}) is a poset, defining a polyhedral cone complex 6(X) as in
[Abramovich et al. 2015, Section 2.2]. Anticipating Section 3.3 we denote it by 6(X)= lim

−−→
({σZ }, {ν}),

where the colimit is taken in the category of generalized cone complexes of [loc. cit., Section 2.6]. This
polyhedral cone complex is similar to the fan of a toric variety, but is not embedded in a space NR and
the intersection of two cones may be the union of faces rather than just one face.

A map of polyhedral cone complexes lim
−−→
({σ ′i }, {ν

′

k})→ lim
−−→
({σj }, {νl}) is defined to be a collection of

cone maps σ ′i → σ j (i) compatible with the face maps ν ′k and νk . A toroidal map X ′→ X gives rise to a
map of cone complexes; here are a few well-known relationships:

(1) A proper birational toroidal morphism gives rise to a subdivision, and there is an equivalence
of categories between proper toroidal birational morphisms and subdivisions. Blowings up of ideals
correspond to subdivisions determined by piecewise linear continuous integral functions which are convex
on each cone; following [Kempf et al. 1973] we call these projective subdivisions (in the combinatorial
literature they are coherent subdivisions).
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(2) A regular morphism g : X ′2 → X2 such that UX ′2 = g−1UX2 gives rise to a map of complexes
6(g) : 6(X ′)→ 6(X) where all the maps σ ′i → σ j (i) are face maps — this is called a face map of
complexes.

(3) If the map g : X ′2→ X2 is also surjective then 6(g) is surjective.

(4) The scheme X is regular if and only if all the cones σi ⊂ 6(X) are nonsingular in the usual toric
sense.

(5) If X is regular then the closure of a stratum is always regular (this would fail if we allowed self-
intersections); we call such subschemes toroidal centers.

(6) The blowing up X ′ → X of an irreducible toroidal center Z on a regular X corresponds to the
star subdivision 6′→ 6(X) at the barycenter of σZ . The blowing up X ′→ X of any regular toroidal
subscheme W corresponds to the simultaneous star subdivision 6′→6(X) at the barycenters of all the
cones corresponding to the connected components of W.

Thus Proposition 3.1.1 would follow if the projective subdivision 6(X1)→6(X2) can be factored as a
composition of such simultaneous star subdivisions and their inverses, in such a way that the intermediate
steps are projective subdivisions of 6(X2), in a functorial manner with respect to surjective face maps.
This will be our Lemma 3.5.1 below.

Morelli’s π-desingularization lemma of fan cobordisms [Włodarczyk 2003, Lemma 10.4.3] gives a
nonfunctorial result in the case of fans; this was generalized in [Abramovich et al. 1999] to polyhedral
cone complexes. In [Abramovich et al. 2002] it is made functorial under automorphisms, which is not
sufficient for our purposes here.

Consider the category whose objects are projective subdivisions 61 → 62 of nonsingular cone
complexes given by a fixed piecewise linear continuous integral function f : 62→ R convex on each
cone and arrows (6′2, f ′)→ (62, f ) induced by surjective face maps h : 6′2 → 62 with f ′ = f ◦ h.
Functoriality would be easily achieved if the connected component of any object 61 → 62 in this
category had a final object, as we show below in Lemma 3.5.1. Indeed, this would mean that applying
Morelli’s lemma to the final object would induce a factorization for the whole component, giving the
result. Unfortunately final objects usually do not exist in the category of cone complexes. Our next goal
is to enlarge this category so that final objects do exist; see Lemma 3.3.1 below.

3.3. Generalized cone complexes and existence of final objects. A generalized cone complex is given
by any finite diagram ({σj }, {νl}) of cones and face maps. We allow for more than one face map σj → σl ,
including nontrivial self-face maps σj → σj . We think of a generalized cone complex 6 as a structure
imposed on the topological space 6 = lim

−−→
({σj }, {νl}). Thus an arrow of generalized cone complexes

({σ ′i }, {ν
′

k})→ ({σj }, {νl}) is given by compatible cone maps as above; an arrow is a face map if it is
given by compatible face maps; and an arrow is declared to be an isomorphism if it is a face map inducing
a bijection of sets lim

−−→
({σ ′i }, {ν

′

k})→ lim
−−→
({σj }, {νl}). See [Abramovich et al. 2015, §2.6].
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Cone complexes are a full subcategory of generalized cone complexes. They are distinguished by
the property that, for any cones τ, σ of 6, a face map ν : τ → σ in 6 is unique if it exists. Thus
Proposition 3.1.1 would again follow if any projective subdivision 61→62 of generalized nonsingular
cone complexes can be factored as a composition of simultaneous star subdivisions and their inverses, in
a functorial manner with respect to surjective cone maps. The advantage of working with generalized
cone complexes is the following:

Lemma 3.3.1. The connected component of the projective subdivision 61 → 62 of generalized cone
complexes in the category induced by surjective face maps 6′2→62 has a final object.

Proof. The projective subdivision 61→62 is induced by an implicit piecewise linear convex integral
function f : 62→ R. Write 62 = ({σj }, {νl}). Then νl : σi → σj has the property that fσi = fσj ◦ νl .
Let {µk} be the collection of all face maps µk : σm → σn with the property that fσm = fσn ◦ µk .
Then 1 := ({σj }, {µk}) is a generalized cone complex, the maps fσj glue to give a piecewise linear
integral function f̃ :1→ R, and since {νl} ⊂ {µk} we have a map of diagrams g : 62→1 such that
f = f̃ ◦ g.

It is convenient to have another presentation of1. Choose one representative σ̄ from each isomorphism
class of cones in 1. Given two such representatives τ̄ and σ̄ , consider all maps ν̄l : τ̄ → σ̄ in 1. Clearly
1̄= ({σ̄ }, {ν̄l}) maps as a subdiagram to 1, and the map is an isomorphism since it is clearly a bijection
on set-theoretic limits.

We claim that (1, f̃ ) is a final object in the component of (62, f ) in the category of generalized cone
complexes with piecewise linear integral function. For this it suffices to show that if (6′2, f ′) is an object
and h : 62→ 6′2 is a surjective face map such that f ′ ◦ h = f then g = g′′ ◦ h, where g′′ : 6′2→1 is
a morphism so that f ′ = f̃ ◦ g′′.

First, if we apply the construction of 1 to 6′2 we get a map g′ :6′2→1′ which sits in a commutative
diagram:

62
g

//

h

��

f
**

1

h̃

��

f̃

  

R

6′2 g′
//

f ′
55

1′
f̃ ′

??

On the other hand 1̄ ' 1 and 1̄′ ' 1′, and the map 1̄ → 1̄′ induced by h̃ is an isomorphism
of diagrams: since h is a surjective face map, any cone in 6′2 is isomorphic to a cone of 61 via an
isomorphism compatible with f and vice versa. So h̃ gives a bijection between the isomorphism classes
of cones, and the maps ν̄ between cones are determined by the compatibility of the function f̃ = f̃ ′ on
them. So 1→1′ is an isomorphism, giving the requisite map of generalized complexes g′′= h̃−1

◦g′. �
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3.4. Barycentric subdivisions and factorization for generalized cone complexes. We proceed to extend
the factorization of subdivisions of cone complexes to generalized cone complexes. We do it by a reduction
step using barycentric subdivisions:

Lemma 3.4.1. (1) [Abramovich et al. 2015, 2.5] The barycentric subdivision B(1) of a generalized cone
complex 1 is a projective subdivision obtained by a sequence of simultaneous star subdivisions. If 1 is
nonsingular then the star subdivisions are smooth. The generalized cone complex B(1) is in fact a cone
complex.

(2) [Abramovich et al. 1999, Lemma 8.7] The barycentric subdivision B(1) of a nonsingular cone
complex 1 is a projective subdivision obtained by a sequence of simultaneous smooth star subdivisions.
The nonsingular cone complex B(1) is in fact isomorphic to a fan.

Proof. (1) Write 1= ({σj }, {µk}). We need to show that if τB, σB are cones in B(1), then a face map
τB→ σB in B(1) is unique if it exists. Suppose the minimal cone containing the image of τB is τ and
the corresponding cone for σB is σ . Then it suffices to show that the restriction to τB of a face map
ψ : τ→ σ in 1 carrying τB into σB is unique if it exists. We can write σB = 〈b(σi1), . . . b(σik )〉 uniquely
as the cone generated by the barycenters b(σir ) of faces σir of σ of dimensions i1 < · · ·< ik , and similarly
τB = 〈b(τ j1), . . . b(τ jl )〉. So ψ must carry b(τ js ) to the barycenter of a cone of σ of dimension js ; in
other words ψ(b(τ js ))= b(σ js ). Since {b(τ j1), . . . , b(τ jl )} spans τB this means that the restriction of ψ
is unique if it exists.

(2) Consider the vector space V =
⊕

σ∈1 Rσ with one basis element for each cone of σ . Assume 1 is a
cone complex. In [Abramovich et al. 1999, Lemma 8.7] it is shown that B(1) has a real embedding in V,
and the image is the real support of a fan. The embedding is obtained by sending b(σ ) to the unit vector
eσ ∈ Rσ ⊂ V. Here we assume that 1 is nonsingular, and we need to check that the embedding gives
an isomorphism of cone complexes, namely that the integral structures coincide. Note that the lattice in
any cone 〈b(σi1), . . . , b(σik )〉 in B(1) is generated by the elements b(σi1), . . . , b(σik ). The image of this
lattice in V is precisely generated by e(σi1), . . . , e(σik ), and coincides with the intersection of the cone
〈e(σi1), . . . , e(σik )〉 with

⊕
σ∈1 Zσ . So the image of B(1) is indeed a fan, as required. �

Lemma 3.4.2. Let 1 be a nonsingular generalized cone complex and f : 1→ R a piecewise linear
function, convex and integral on each cone, such that the corresponding subdivision11→1 is nonsingular.
Then 11 → 1 admits a factorization into nonsingular star subdivisions and their inverses, with all
intermediate steps projective over 1.

Proof. By Lemma 3.4.1 we may replace 11 by its second barycentric subdivision, so we may assume 11

is isomorphic to a fan. The common subdivision of B(B(11)) and B(B(1)) is a projective subdivision
of B(B(11)), so there is a sequence of star subdivisions 1′1→ B(B(11)) such that 1′1→ 1 factors
through a projective subdivision 1′1→ 1′ := B(B(1)). Since 1′ is isomorphic to a fan and 1′1 is a
projective subdivision, Morelli’s π -desingularization lemma applies, see [Morelli 1996] or [Włodarczyk
2003, Lemma 10.4.3], giving a factorization by star subdivisions and their inverses, all projective over 1′.
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Combining these transformation, we obtain the desired factorization, with all steps projective over 1:

1′1

star subdivision sequence
zz

factorized
// 1′

B(B(11))

star subdivision sequence
zz

B(B(1))

star subdivision sequence
$$

11 projective subdivision
// 1 �

3.5. Functoriality for generalized cone complexes.

Lemma 3.5.1. The factorization in Lemma 3.4.2 can be made functorial for surjective face maps: we can
associate to (1, f ) a factorization so that, given a surjective face map φ :6→1, the factorization of
(6, f ◦φ) is the pullback of the factorization of (1, f ) along φ.

Proof. For each connected component of the category of pairs (1, f ) with face maps between them
choose a final object (1̃, f̃ ). By Lemma 3.4.2 there is a factorization 1̃1 // · · · // 1̃ of (1̃, f̃ ). Given
an arbitrary (1, f ) it has a morphism ψ1 :1→ 1̃ to the final object (1̃, f̃ ), so that f = f ◦ψ1. The
pullback 11 // · · · //1 of 1̃1 // · · · // 1̃ along ψ1 is a factorization of (1, f ), and its pullback
along φ is simply the pullback 61 // · · · //6 along ψ1 ◦φ = ψ6 of 1̃1 // · · · // 1̃, so the process
is functorial. �

3.6. Functoriality for toroidal factorization.

Proof of Proposition 3.1.1. The toroidal morphism X1→ X2 corresponds to a subdivision6(X1)→6(X2)

induced by a piecewise linear function f :6(X2)→R convex and integral on each cone. This is functorial:
a surjective regular morphism X ′2→ X2 gives rise to a surjective face map φ : 6(X2)

′
→ 6(X2) such

that X ′1→ X ′2 corresponds to f ◦φ.
By Lemma 3.5.1 we have a factorization 6(X1) // · · · //6(X2), functorial for surjective face maps,

into nonsingular star subdivisions and their inverses, with all intermediate steps functorially projective over
6(X2). This gives rise to a toroidal factorization X1 // · · · // X2 into blowings up and down, which
is functorial for surjective regular morphisms, where the terms are functorially projective over X2. �

4. Birational cobordisms

A key tool in the factorization algorithm is the notion of birational cobordism, introduced in [Włodarczyk
2000], where it is motivated by analogy with Morse theory. In this paper we adopt the approach of
[Abramovich et al. 2002], which relies on geometric invariant theory and variation of linearizations; see
[Brion and Procesi 1990; Thaddeus 1996; Dolgachev and Hu 1998].

4.1. Geometric Invariant Theory of P(E). Given a nonzero coherent sheaf E on X2, the data of a Gm-
action ρ :Gm→Aut E on E is equivalent to the data of a Z-grading E =

⊕
a∈Z Ea , which is necessarily
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a finite sum: E =
⊕amax

a=amin
Ea . The homogeneous factor Ea is characterized by

ρ(t)v = tav for all v ∈ Ea.

Here and later we use the informal notation v ∈ Ea to indicate that v is a local section of Ea . Given such
data, there is a resulting action of Gm on Sym•(E) and a linearized action on P(E)= PX2(E).

We require the following:

Assumption 4.1.1. The sheaves Eamin and Eamax are everywhere nonzero, so the morphisms P(Eamin)→ X2

and P(Eamax)→ X2 are surjective.

Given an integer a viewed as a character of Gm , we define a new action of Gm on E by

ρa(t)v = t−aρ(t)(v).

This induces an action on Sym•(E) and on (P(E),OP(E)(1)) which we also denote by ρa . Writing
(Sym•(E))ρa for the ring of invariants under this action, we define

P(E)//aGm := ProjX2
(Sym•(E))ρa .

As customary, we unwind this as follows: we define the unstable locus of ρa to be the closed subscheme

P(E)un
a := P

(⊕
b<a

Eb

)⊔
P

(⊕
b>a

Eb

)
, (1)

and the semistable locus to be the complementary open

P(E)sst
a := P(E)rP(E)un

a .

We have the following well-known facts:

Lemma 4.1.2. (1) The semistable locus P(E)sst
a is nonempty precisely when amin ≤ a ≤ amax.

(2) Consider the rational map qa : P(E) → P(E)//aGm induced by the inclusion (Sym•(E))ρa ⊂

(Sym•(E)). Then qa restricts to an affine Gm-invariant morphism P(E)sst
a → P(E)//aGm which is a

submersive universal categorical quotient; thus P(E)//aGm = P(E)sst
a //Gm .

(3) For amin ≤ a1 < a2 ≤ amax we have P(E)sst
a1
⊂ P(E)sst

a2
precisely when

⊕a2−1
a=a1

Ea = 0, and similarly
P(E)sst

a1
⊃ P(E)sst

a2
precisely when

⊕a2
a=a1+1 Ea = 0. In particular P(E)sst

a1
= P(E)sst

a2
precisely when⊕a2

a=a1
Ea = 0.

(4) If amin≤ a1< a2≤ amax and
⊕a2−1

a=a1
Ea = 0, then the inclusion P(E)sst

a1
⊂P(E)sst

a2
induces a projective

morphism

P(E)sst
a1
//Gm→ P(E)sst

a2
//Gm .

Similarly if
⊕a2

a=a1+1 Ea = 0 we have a projective morphism

P(E)sst
a1
//Gm← P(E)sst

a2
//Gm .
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Proof. (1) We have a≤amax if and only if P
(⊕

b<a Eb
)
6=P(E), and amin≤a if and only if P

(⊕
b>a Eb

)
6=

P(E).

(2a) Affine cover of the quotient: The scheme P(E)//aGm = ProjX2
(Sym•(E))ρa is covered by principal

open sets

D0
f := (P(E)//aGm)r ZP(E)//aGm ( f ) (2)

associated to nonzero homogeneous invariant elements of the form f =
∏s

j=1 f j , where f j ∈ Ea+δj with∑
δj = 0.

(2b) Common zero locus of { f }: We note that the common zero locus of elements of Ec is P(E/Ec)=

P
(⊕

b 6=c Eb
)
. Now observe that any element f =

∏s
j=1 f j as above has a factor f j with δj ≥ 0 and a

factor f j with δj ≤ 0. This means that f vanishes on P
(⊕

b<a Eb
)

and on P
(⊕

b>a Eb
)
, so f vanishes

on P(E)un
a a.

Conversely if x /∈P(E)un
a a then we have some coordinates f1 ∈ Ea+δ1 , δ1 ≤ 0 and f2 ∈ Ea+δ2 , δ2 ≥ 0,

which do not vanish: f1(x) 6= 0 6= f2(x). Taking any positive r, s so that rδ1 + sδ2 = 0 we can form
f = f r

1 f s
2 , and f (x) 6= 0. This implies that the common zero locus of the elements f =

∏s
j=1 f j above

in P(E) is precisely P(E)un
a a.

(2c) Compatible affine cover of P(E)sst
a : It follows that P(E)sst

a is covered by principal open sets

Df = P(E)r ZP(E)( f ), (3)

the inverse image of the affine open D0
f of equation (2) is the affine open Df of equation (3), and

P(E)sst
a → P(E)//aGm is an affine morphism.

(2d) Coordinates and invariants: The coordinate ring of D0
f is the degree-0 component of (Sym•(E))ρa

[ 1
f

]
,

which is the ρa-invariant summand of the degree-0 component of (Sym•(E))
[ 1

f

]
. The latter is the

coordinate ring of Df . In particular, D0
f = Df //Gm is a submersive universal categorical quotient; see

[Abramovich and Temkin 2018, Lemma 4.2.6 and Corollary 4.2.11]. It follows from the definition, see
[Mumford et al. 1994, Remark 5, p. 8], that P(E)sst

a → P(E)//aGm is a submersive universal categorical
quotient.

(3) The situation is symmetric, so we only address the first statement. If
⊕a2−1

a=a1
Ea=0 then P

(⊕
b<a2

Eb
)
=

P
(⊕

b<a1
Eb
)
⊂ P(E)un

a a1 and certainly P
(⊕

b>a2
Eb
)
⊂ P

(⊕
b>a1

Eb
)
⊂ P(E)un

a a1, so P(E)un
a a1 ⊂

P(E)un
a a2 as needed.

Conversely, if v ∈ P
(⊕a2−1

a=a1
Ea
)

over x ∈ X2 and we take w ∈ P(Eamin) also over x , then either
v∈P(Ea1)⊂P(E)sst

a1
or else (v+w)∈P(E)sst

a1
. In either case, if

⊕a2−1
a=a1

Ea 6=0 we have P(E)sst
a1
6⊂P(E)sst

a2
,

as needed.

(4) The situation is symmetric, so we only address the first case, where amin ≤ a1 < a2 ≤ amax and⊕a2−1
a=a1

Ea = 0, so that P(E)sst
a1
⊂ P(E)sst

a2
by (3). Since P(E)sst

ai
→ P(E)//ai Gm are categorical quotients,

we have a canonical morphism ϕa1/a2 making the following diagram commutative:
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P(E)sst
a1

� � //

��

P(E)sst
a2

��

P(E)//a1Gm
ϕa1/a2

// P(E)//a2Gm .

But P(E)//ai Gm are projective over X2; hence ϕa1/a2 is projective. �

This lemma gives the familiar “wall and chamber decomposition” of the interval [amin, amax] in the
character lattice Z into segments where the quotients P(E)sst

a1
//Gm are constant.

All the constructions above are compatible with arbitrary morphisms X ′2→ X2, except that the values
of amin and amax and the ample sheaf for φa1/a2 are only compatible with surjective morphisms X ′2→ X2.

Remark 4.1.3. One can show that the quotient morphism P(E)sst
a → P(E)sst

a //Gm is in fact universally
submersive. If in addition Ea = 0, it can be shown that the quotient morphism is a universal geometric
quotient P(E)sst

a → P(E)sst
a /Gm . These facts follow from [Mumford et al. 1994, Theorem 1.1 and

Amplification 1.3], which are stated for schemes over a field in characteristic 0 but apply here since Gm

is a linearly reductive group-scheme over Z. Since we do not need these facts, we will not provide a
detailed proof, though we will use the notation P(E)sst

a /Gm when Ea = 0.

4.2. Geometric invariant theory of B ⊂ P(E). Continuing the discussion, let B ⊂ P(E) be a closed
reduced Gm-stable subscheme. It is the zero locus of a homogeneous and Gm-homogeneous ideal
IB ⊂ Sym• E . We define Bun

a a := B ∩ P(E)un
a a and Bsst

a := B ∩ P(E)sst
a . The image of qa : Bsst

a →

P(E)//aGm is denoted by B//aGm . We have canonically B//aGm = ProjX2
((Sym• E/IB)

ρa ). We write
amin(B)=min{a | B ∩P(Ea) 6=∅} and similarly amax(B)=max{a | B ∩P(Ea) 6=∅}. We deduce the
analogous, still well-known, facts, which follow immediately from Lemma 4.1.2:

Lemma 4.2.1. (1) The semistable locus Bsst
a is nonempty precisely when amin(B)≤ a ≤ amax(B).

(2) The map qa : Bsst
a →P(E)//aGm is an affine Gm-invariant morphism, inducing a categorical quotient

Bsst
a → Bsst

a //Gm = B//aGm .

(3) For a1 < a2 we have Bsst
a1
⊂ Bsst

a2
precisely when B∩P

(⊕a2−1
a=a1

Ea
)
=∅, and similarly Bsst

a1
⊃ Bsst

a2
pre-

cisely when B∩P
(⊕a2

a=a1+1 Ea
)
=∅. In particular Bsst

a1
= Bsst

a2
precisely when B∩P

(⊕a2
a=a1

Ea
)
=∅.

(4) If a1 < a2 and B ∩P
(⊕a2−1

a=a1
Ea
)
=∅, then the inclusion Bsst

a1
⊂ Bsst

a2
induces a projective morphism

Bsst
a1
//Gm → Bsst

a2
//Gm . Similarly if B ∩ P

(⊕a2
a=a1+1 Ea

)
= ∅ we have a projective morphism

Bsst
a1
//Gm← Bsst

a2
//Gm .

This time we obtain a “wall and chamber decomposition” of the interval [amin(B), amax(B)]. We denote
the “walls”, namely the values of a for which B∩P(Ea) 6=∅, by amin(B)= a0< a1< · · ·< am = amax(B).

By replacing the embedding B ⊂ P(E) by the Veronese re-embedding B ⊂ P(Sym2 E) we may, and
will, assume:

Assumption 4.2.2. ai + 1< ai+1.
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We set Bsst
ai+
= Bsst

ai+1 and Bsst
ai−
= Bsst

ai−1, and note that Bsst
ai+
= Bsst

ai+1−
. Assumption 4.2.2 implies that

now we always have projective morphisms ϕai±:

Bsst
ai−
/Gm

ϕai−
''

ϕi
// Bsst

ai+
/Gm

ϕai+
ww

Bsst
ai+1−

/Gm ϕai+1−

((

· · ·

Bsst
ai
//Gm Bsst

ai+1
//Gm

(4)

Finally, we will assume the following:

Assumption 4.2.3. Each irreducible component of B meets both P(Eamin(B)) and P(Eamax(B)).

Under this assumption the quotients Bsst
a //Gm are all birational to each other, as long as amin(B) <

a < amax(B). For the extreme values we have isomorphisms

B ∩P(Eamin(B))→ Bsst
amin(B)//Gm,

B ∩P(Eamax(B))→ Bsst
amax(B)//Gm .

Remark 4.2.4. As in Remark 4.1.3, it can be shown that Bsst
a → Bsst

a //Gm is universally submersive, and
if B ∩P(Ea)=∅ we have a universal geometric quotient Bsst

a → Bsst
a /Gm .

4.3. Definition of a birational cobordism. The notion of a birational cobordism for a blowing up we
use in this paper extends the notion of compactified relatively projective embedded birational cobordism
of [Abramovich et al. 2002, 2.4] by allowing a nonempty boundary. Ignoring the issue of the boundary,
it is far more restrictive than the notion introduced in [Włodarczyk 2000].

Let φ : X1→ X2 be an object of the category Bl (Definition 1.3.1). A birational cobordism for φ is a
scheme B which is the blowing up of a Gm-invariant ideal on P1

X2
, and embedded, in a manner satisfying

Assumptions 4.2.2 and 4.2.3, as a Gm-stable subscheme in P(E) for a Gm-sheaf E on X2, such that

(1) X ′1 = Bsst
a0+
/Gm = Bsst

a0
//Gm is obtained from X1 by principalizing D1,

(2) X ′2 = Bsst
am−

/Gm = Bsst
am
//Gm is obtained from X2 by principalizing D2, and

(3) the following diagram of rational maps commutes:

Bsst
a0

qa0
//

α

��

X ′1 // X1

φ

��

Bsst
am

qam
// X ′2 // X2

where α is the birational map induced by the open dense inclusions

Bsst
a0
⊂ B ⊃ Bsst

am
.

The birational cobordism is said to respect the open set U ⊂ X2 if U is contained in the image of
(Bsst

a0+
∩ Bsst

am−
)/Gm . This happens whenever the ideal on P1

X2
whose blowing up is B restricts to the unit
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ideal on P1
U . We say that a birational cobordism B of φ is regular if B is regular and the preimage DB of

D2 is a simple normal crossings divisor.

4.4. Construction of regular birational cobordism. We claim that one can associate a regular birational
cobordism to any blowing up in Bl functorially, and we formalize this claim as follows. There is an
evident category Cobrs of regular birational cobordisms of blowings up φ : X1 → X2 in Bl, with an
evident forgetful functor Cobrs→ Bl. A morphism of regular birational cobordisms B ′→ B is uniquely
determined by a regular surjective morphism g : X ′2→ X2.

Proposition 4.4.1. The functor Cobrs→ Bl has a section Bl→ Cobrs.

We provide a sketch of proof here, and more detail in Appendix A.

Sketch of proof. Following the construction of [Abramovich et al. 2002, Theorem 2.3.1], consider the
blowing up of the ideal I ⊗OP1

X2
+ I{0}. This is a birational cobordism BI for φ, but it may be singular.

Let DBI ⊂ BI be the preimage of D2. Applying resolution of pairs to (BI , DBI ) we obtain a regular
birational cobordism (B, DB) for φ. Here we use Theorem 2.2.10 if the characteristic is 0, and parts (1)
and (2) with G = Gm of the Hypothetical Statement 2.2.13 otherwise. �

5. Factoring the map

Throughout this section “functorial” means “functorial in X1→ X2 with respect to surjective regular
morphisms”. By total transform of a divisor D ⊂ X under a (normalized) blowing up BlJ (X)→ X we
mean the union of the preimage of D and the total transform of J.

5.1. Initial factorization. Proposition 4.4.1 provides a functorial birational cobordism (B, DB) of φ.
Departing slightly from the notation of [Abramovich et al. 2002, Theorem 2.6.2], we write Wi±= Bsst

ai±
/Gm ,

and Wi = Bsst
ai
//Gm . Since Wi+ 'W(i+1)− we have a functorial factorization

W1−
ϕ0+ ϕ1−

""

W2−
ϕ1+

||

ϕ2−

��

Wm−
ϕm−ϕ(m−1)+

��X ′1 W0 W1 · · · Wm X ′2

(5)

with all terms functorially projective over X2. Since the cobordism is compatible with U, the morphisms
Wi±→ X2 and Wi → X2 and hence also the morphisms ϕi± are isomorphisms on U. Note that since
Wm−1 //Wm is a morphism it follows that ϕ(m−1)+ is an isomorphism, but this fact does not feature in
our arguments. In general the terms Wi and Wi± in this factorization are singular, but we will use them
to construct a nonsingular factorization.

5.2. Blowing up torific ideals.

5.2.1. Torific ideals. Let Di ⊂Wi , Di±⊂Wi±, Dai ⊂ Bsst
ai

and Dai±⊂ Bsst
ai±

denote the preimages of D2.
We will show how main results of [Abramovich and Temkin 2017] imply that since (Wi , Di ) is given as
a quotient of (Bsst

ai
, Dai ), it can be made toroidal by a canonical torific blowing up. Since B is regular and
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DB is a simple normal crossings divisor, (Bsst
ai
, Dai ) is a toroidal scheme with a relatively affine Gm-action.

In [loc. cit., §5.4.1] one functorially associates to (Bsst
ai
, Dai ) a Gm-equivariant normalized torific ideals

J B
i and Ji on Bsst

ai
and Wi , respectively. By abuse of language, the ideal sheaves Ji± = JiOWi± will also

be called normalized torific ideals.

Theorem 5.2.2. For every 1≤ i ≤ m− 1 the ideal sheaves Ji and Ji± are functorial and restrict to the
unit ideal on U. Furthermore, let W tor

i = BlJi Wi and W tor
i± = BlJi± Wi±, and denote by Dtor

i ⊂W tor
i and

Dtor
i± ⊂W tor

i± the total transforms of Di and Di±, respectively. Then

(1) (W tor
i , Dtor

i ) and (W tor
i± , Dtor

i±) are toroidal, and

(2) the morphisms ϕi± induce toroidal morphisms

ϕtor
i± : (W

tor
i± , Dtor

i±)→ (W tor
i , Dtor

i )

that restrict to isomorphisms on U.

Proof. The ideals Ji are functorial by [Abramovich and Temkin 2017, Theorem 1.1.2(iii)]; hence Ji±

are functorial too. Since the action of Gm on Bsst
ai

is already toroidal on P1
U , we know by [loc. cit.,

Theorem 1.1.2(iv)] that the Ji restrict to the unit ideal of U.
By [loc. cit., Lemma 4.2.12] Gm acts in a relatively affine way on B tor

ai
:= BlJ B

i
(Bsst

ai
). Let Dtor

ai
⊂ B tor

ai

be the total transform of Dai ; then by [loc. cit., Theorem 1.1.2], (B tor
ai
, Dtor

ai
) is a toroidal scheme with

toroidal action of Gm , and W tor
i = B tor

ai
//Gm . Note that Dtor

i is the image of Dtor
ai

; hence (W tor
i , Dtor

i ) is
toroidal by [loc. cit., Theorem 1.1.3(i)].

By [loc. cit., Lemma 5.5.5], W tor
i± = (B

tor
ai
)±//Gm . Set (Dtor

ai
)± = Dtor

ai
|(B tor

ai
)± ; then Gm acts toroidally

on ((B tor
ai
)±, (Dtor

ai
)±) and hence the quotient (W tor

i± , Dtor
i±) is toroidal by [loc. cit., Theorem 1.1.3(i)]. Note

also that ϕi± induce toroidal morphisms ϕtor
i± by [loc. cit., Proposition 5.5.2]. �

We note that in general W tor
i+ 6= W tor

(i+1)−. The steps Wi−→ Wi ← Wi+ in the factorization (5) now
look as follows:

W tor
i− ϕtor

i−

&&

��

W tor
i+ϕtor

i+

xx

��

W tor
i

��

W(i−1)+ Wi− ϕi−

**

Wi+ϕi+

tt

W(i+1)−

Wi

(6)

Remark 5.2.3. In [Abramovich et al. 2002, Lemma 3.2.8] it is stated with a sketch of proof that the
ideals Ji can be chosen so that ϕtor

i± are isomorphisms. We will not use this statement. We note however
that this follows from [Thaddeus 1996, Theorem 3.5]: if the l-torific ideal Il generates all IMl , M ≥ 1,
and also I−l generates all I−Ml , M ≥ 1, then once l,−l ∈ Si , where Si is the ample set of characters on
Bsst

ai
used to determine J B

i in [Abramovich and Temkin 2017], we have ϕtor
i± are isomorphisms. One can

choose such l in a manner functorial for regular surjective morphisms.
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5.3. Resolution and local charts.

5.3.1. Canonical resolution. Extending the notation of [Abramovich et al. 2002, Section 4.2] to qe
schemes with a boundary, we write W res

i± → Wi± for the resolution of the pair (Wi±, Di±) and denote
the preimage of D2 in W res

i± by Dres
i± . This morphism is functorially projective and is projectively

the identity on U. In characteristic 0 we use Theorem 2.2.10, and otherwise we invoke Hypothetical
Statement 2.2.13(1). Thus, W res

i± is regular and Dres
i± is a simple normal crossings divisor.

Note that the resolution process is independent of the toroidal structures and hence coincides for
(W(i−1)+, D(i−1)+) = (Wi−, Di−). Thus, (W res

(i−1)+, Dres
(i−1)+) = (W

res
i− , Dres

i−) and this provides a bridge
between W tor

(i−1)+ and W tor
i− :

W tor
(i−1)+

// W res
(i−1)+ =W res

i− W tor
i−

oo

Remark 5.3.2. Since W1− = X ′1 is regular, X ′′1 := W res
1− is obtained from X ′1 by principalization of D′1

and similarly X ′′2 := W res
m− is obtained from X ′2 by principalization of D′2. Both D′1 and D′2 are simple

normal crossings divisors, so we could alternatively take W res
1− = X ′1 and W res

m− = X ′m . Our choice above
helps to make notation uniform, though it results in a slightly longer factorization.

Remark 5.3.3. The singularities requiring resolution in this step are far from general: it is shown in
the proof of Lemma 5.3.7 below that Zariski locally one can obtain a toroidal scheme from (Wi±, Di±)

simply by enlarging the divisor Di±. At least over an algebraically closed field they admit resolution
of singularities, see [Włodarczyk 2003, Theorem 8.3.2], and it seems reasonable to expect the same in
general, and in a functorial manner.

5.3.4. Localization. In Section 5.4 we will connect W res
i± and W tor

i± by principalizing the ideal J res
i± :=

Ji±OW res
i±

, but to use our principalization conjectures in positive and mixed characteristics we should
first check that J res

i± is locally monoidal, so we start with defining local toroidal charts of all our con-
structions. We will work locally at a point x ∈ Wi±, so consider the localization Wx := SpecOWi±,x .
We set W res

x = W res
i± ×Wi± Wx and similarly for W tor

x and other Wi±-schemes we will introduce later.
For brevity, we also set Bx = Bsst

ai±
×Wi± Wx , DBx = Dai± ×Bsst

ai±
Wx , and Dx = Di± ×Wi± Wx . We

use the terminology of [Abramovich and Temkin 2018] regarding strictly local actions and strongly
equivariant morphisms, and of [Abramovich and Temkin 2017] regarding simple actions and toroidal
actions.

5.3.5. Local toroidal charts. The action of Gm on Bx is simple since Gm is connected and local since
Bx//Gm = Wx . Let O be the closed orbit of Bx and GO = Spec(Z[LO ]) its stabilizer. Note that O is a
torsor under the k(x)-group-scheme DKO := Spec k(x)[KO ] with KO = Ker(Z � LO). We have two
possibilities: (1) O is a point (i.e., the action is strictly local), GO = Gm , and LO = Z, or (2) the orbit
is a torus, GO = µn , and LO = Z/nZ. For a toric monoid P we will use the notation AP = Spec Z[P]
and E P = AP r APgp . By [Abramovich and Temkin 2017, Theorem 3.6.11] there exists a strongly
equivariant strict morphism h : (Bx , DBx )→ (AP , EP), with a suitable Z-graded toric monoid of the
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form P = M O ⊕ KO ⊕NσO and EP = AP r AMgp
O⊕KO⊕NσO . Note that the action on (AP , EP) is not

toroidal, but it becomes toroidal if we enlarge the toroidal structure to E P .

5.3.6. The quotient charts. Let M = P0 be the trivially graded part of P. Then Y := AM = AP//Gm and
we consider the divisor E = EP//Gm on Y, which is a subdivisor of the toroidal divisor E M = E P//Gm .
The Gm-action on (AP , EP) gives rise to the normalized torific ideal JY on Y, and let Y tor

→ Y be the
blowing up along JY . By [Abramovich and Temkin 2017, Theorem 1.1.2(iii)], the torifications of Y
and Wx are compatible with respect to the quotient morphism h//G : Wx → Y ; namely, JWx = Ji±|Wx

coincides with JYOWx and W tor
x =Wx ×Y Y tor.

In addition, consider the resolution Y res
→ Y of the pair (Y, E) as defined in Theorem 2.2.10 and

Hypothetical Statement 2.2.13(1). Since the resolution is AMgp-equivariant, Y res is a toric scheme too.
Recall that the resolution is compatible with toroidal charts: this follows from the functoriality if X is
defined over a field, and we use Hypothetical Statement 2.2.13(3) in mixed characteristics. Therefore,
W res

x =Wx ×Y Y res and the ideal J res
i± = Ji±OW res

x
= JYOW res

x
comes from the ideal J res

Y = JYOY res on Y res.

Lemma 5.3.7. The ideal J res
i± is locally monoidal.

Proof. We will work locally at x ∈Wi±. Let DBx ⊂ Bx and Dx ⊂Wx be the preimages of E P and E M ,
respectively. Since h is strongly equivariant, the induced morphism h̄ : (Bx , DBx )→ (AP , E P) is a
strongly equivariant toroidal chart. The action on the target of h̄ is toroidal; hence the action on the source
is toroidal by [Abramovich and Temkin 2017, Lemma 3.1.9(iv)] and h̄//G : (Wx , Dx)→ (Y, E M) is a
toroidal chart by [loc. cit., Theorem 1.1.3(iii)].

The resolution Y res
→ Y is AMgp-equivariant; hence it is obtained by blowing up a toroidal ideal, and if

E res denotes the total transform of E M then the morphism (Y res, E res)→ (Y, E M) is toroidal. In addition,
the pullback of h̄//G gives rise to a toroidal chart g : (W res

x , Dres
x )→ (Y res, E res) with Dres

x ⊆ Dres
x . Since

the action on (Y, E M) is toroidal, the ideal JY is toroidal with respect to E M by [loc. cit., Lemma 4.4.5(i)].
Thus, J res

Y is toroidal with respect to E res and hence its pullback J res
i± is toroidal with respect to Dres

x . The
lemma follows. �

5.4. Tying the maps together.

5.4.1. Principalization of torific ideals. Thanks to Lemma 5.3.7 we can define W can
i± to be the canonical

principalization of J res
i± in the sense of Section 2.3. It is obtained by a functorial sequence of blowings up

of nonsingular centers disjoint from U starting from W res
i± ; see Proposition 2.3.9. In positive and mixed

characteristics we require Hypothetical Statement 2.3.6.
By the universal property of blowing up, the maps W can

i±
//W tor

i± are morphisms. The map W can
i± →Wi

is a composition of maps given functorially by blowing up ideals restricting to the unit ideal on U. By
Section 2.1.10 the morphism W can

i± →Wi itself is given by blowing up a functorial ideal J̃ can
i± restricting

to the unit ideal on U. So, by Lemma 2.1.9 the morphism W can
i± → W tor

i± is given by blowing up the
functorial ideal J can

i± = J̃ can
i± OW tor

i±
. By Dcan

i± we denote the total transform of Dtor
i±. Diagram (6) now looks
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as follows:
W can

i−

�� ��

W can
i+

����

W res
(i−1)+

��

W res
i−

��

W tor
i− ϕtor

i−

&&

��

W tor
i+ϕtor

i+

xx

��

W res
i+

��

W res
(i+1)−

��

W tor
i

��

W(i−1)+ Wi− ϕi−

++

Wi+ϕi+

ss

W(i+1)−

Wi

(7)

Lemma 5.4.2. The ideal J can
i± is toroidal. Thus, (W can

i± , Dcan
i± )→ (W tor

i± , Dtor
i±) is a functorial toroidal

blowing up.

Proof. Step 1: reduction to toric case. We will work locally at x ∈Wi±. We already used in Section 5.3.6
that torification and resolution are compatible with toroidal charts to show, in the notation introduced there,
that W tor

x =Wx×Y Y tor, W res
x =Wx×Y Y res and J res

x = J res
Y OW res

x
. Let Y can

→ Y res be the principalization
of J res

Y . Then by the same functoriality argument W can
x =Wx ×Y Y can.

By the universal property of blowings up, Y can
→ Y factors through Y tor. We have Y can

=Bl J̃ can
Y
(Y ) for

a functorial ideal J̃ can on Y ; hence by Lemma 2.1.9, Y can
= BlJ can

Y
(Y tor), where J can

Y = J̃ can
Y OY tor . Again,

the construction of the ideals J can
±

is compatible with charts. So J can
i± OW can

x
is the pullback of J can

Y . Thus,
it suffices to prove that the ideal J can

Y is toroidal.

Step 2: proof in the toric case. It is shown in [Abramovich et al. 2002, Proposition 4.2.1] that
(Y can, Ecan)→ (Y tor, E tor) is toroidal: here we produce this morphism by blowing up the normalized
toroidal ideals of [Abramovich and Temkin 2018] instead of the torific ideal of [Abramovich et al. 2002],
but these morphisms have the same equivariance properties. In [Abramovich et al. 2002] the ideal blown
up is not shown to be toroidal. This can be shown as follows. As in [loc. cit., Proposition 4.2.2] one
constructs an action of Gk

a on (Y, E). One shows that the morphism Y tor
→ Y of charts is equivariant

under this action, as well as the normalized torific ideal JY ; the scheme Y tor is written as a product of Gk
a

with a toric scheme providing its toroidal structure. It suffices to show that the ideal defining the blowing
up Y can

→ Y tor is a Gk
a-equivariant monomial ideal, since then its generating monomials are not divisible

by the coordinates of the Gk
a factor.

Since the blowing up Y res
→ Y is the canonical resolution of singularities of (Y, E), the ideal defining

this blowing up on a toric chart is monomial and Gk
a-equivariant. Also the torific ideal on Y res is

monomial and Gk
a-equivariant; therefore the same is true for the ideal defining its functorial principalization

Y can
→ Y res, as required. Note that in the case of nonzero characteristic we have used Gk

a-equivariance
from Hypothetical Statements 2.2.13 and 2.3.6. �

The above lemma implies that the composition W can
i± →W tor

i is a toroidal morphism given by blowing up
a functorial toroidal ideal we denote by J can

i± . Let W ′i →W tor
i be the normalized blowing up of the product
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ideal J can
i− J can

i+ , giving rise to toroidal morphisms W ′i→W can
i± . By [Illusie and Temkin 2014, Theorem 3.4.9]

there is a functorial toroidal resolution of singularities W tor res
i →W ′i . This gives the following:

Lemma 5.4.3. There is a toroidal nonsingular modification W tor res
i → W tor

i obtained by blowing up a
functorial ideal such that the maps W tor res

i
//W can

i± are both toroidal morphisms.

Note that these latter maps are again blowings up of the pullbacks of the ideal defining W tor res
i →W tor

i ,
which is functorial as well. Since the morphism is toroidal, it induces the identity on U, and the toroidal
ideal blown up is the unit ideal on U.

We now have pieces of the diagram above looking as follows:

W tor res
i

(TorBlrs)
zz

(TorBlrs)
$$

W can
i−

(blow-up sequence)

|| $$

W can
i+

zz

(blow-up sequence)

""

W res
(i−1)+

��

W res
i−

��

W tor
i

��

W res
i+

��

W res
(i+1)−

��

W(i−1)+ Wi−

))

Wi+

uu

W(i+1)−

Wi

All maps are functorially the blowings up of ideals. The top diamond is at the same time toroidal, with
maps given by blowings up of functorial toroidal ideals, so the toroidal structure is functorial in X1→ X2.
By Proposition 3.1.1, the two top maps W tor res

i → W can
i± have a functorial toroidal weak factorization;

since it is toroidal it induces isomorphisms on U. This gives a factorization of the top diamond of the
diagram above as follows:

W tor res
i

(TorFactrs)
zz

(TorFactrs)
$$

W can
i−

$$

W can
i+

zz

W tor
i

Note that W res
1− = X ′′1 and W res

m− = X ′′2 by Remark 5.3.2. By construction, X ′′i → X ′i and X ′i → X i

are resolutions of normal crossings pairs (X ′i , D′i ) and (X i , Di ), respectively; hence X ′′i → X i factor as
sequences of blowings up of regular centers compatible with Ui and Di thanks to Assumption 2.2.7.
Putting these together we functorially obtain a diagram:

X ′′1

(Fact)

��

W tor res
1

(Fact)

��

(Fact)

��

W tor res
m−1

(Fact)

��

(Fact)

��

X ′′2

(Fact)

��

X1 // W res
1− ϕ1

// W res
2− ϕ2

// · · ·
ϕm−1
// W res

(m−1)− ϕm
// W res

m−
// X2.
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Note that Wi are given by blowing up of functorial ideals on X2, and that W res
i± are obtained by blowing

up functorial ideals on Wi , all restricting to the identity on U. Similarly, the terms appearing in the
diagonal arrows are given by blowing up of functorial ideals on W res

i± . By the result of Section 2.1.10
all terms appearing are obtained by blowing up of functorial ideals on X2 restricting to the unit ideal
on U. In the case X i rU are normal crossings divisors, we have guarantees that the same holds for W res

i± .
It follows that the same holds for all terms in the sequence forming W can

i± →W res
i± by the properties of

canonical principalization, and for the terms in a factorization of W tor res
i → W can

i± since these are all
nonsingular toroidal schemes. Renaming all these terms Vi , i = 1, . . . , l, Theorem 1.3.3 follows. �

5.5. Summary of resolution steps. Results around resolution of singularities were used in several steps
in the proof of Theorem 1.3.3. We recall here these steps and what they require. While our main theorem
requires the procedures to be functorial, we emphasize the equivariance and functoriality properties
necessary for the factorization theorem to hold even without requiring the factorization to be functorial.

The first resolution process appears in the construction of the birational cobordism in Proposition 4.4.1.
This appears explicitly in Step 3a in Appendix A, where we resolve the pair (BI , DBI ), which has
dimension dim X2+ 1. It is crucial that the process be Gm-equivariant.

In Section 5.3.1 we apply resolution of singularities to Wi±, which has dimension dim X2. The
singularities of Wi± are all locally monomial. Similarly, in Section 5.4 we apply principalization of the
ideals J res

i± , which are locally monoidal ideals. On the other hand these two steps require the resolution and
principalization to be equivariant in a strong sense: Lemma 5.4.2 requires the process to be compatible
with toric charts, and the process on the toric schemes must be both torus equivariant and Gk

a-equivariant.
Finally, Lemma 5.4.3 requires toroidal resolution of singularities, which is as functorial as one could wish.

6. Extending the factorization to other categories

In this section we use the factorization for schemes to construct an analogous factorization for blowings
up of formal schemes, complex and nonarchimedean analytic spaces, and stacks. We follow the general
outline of the argument in [Temkin 2008, Sections 5.1–5.2], though we decided to elaborate more details
related to the relative GAGA issues. In fact, for this construction to work one only needs to have a
reasonable comparison theory between algebraic blowing ups and their analytifications, but some of these
results do not seem to be covered by the literature, especially in the complex analytic case.

6.1. Stacks. Once functorial factorization for schemes is established, it extends to stacks straightforwardly.

6.1.1. Basic notions. Our terminology concerning stacks follows that of [Temkin 2008, §5.1]. In par-
ticular, by a stack we mean an Artin stack X and X is qe (respectively, regular) if it admits a smooth
covering W → X with W a qe (respectively, a regular) scheme. The definition of blowing up along a
closed subscheme is compatible with flat morphisms and hence extends to stacks. We define the regular
surjective category of blowings up of stacks BlSt

rs and the regular surjective category of weak factorizations
of blowings up of stacks FactSt

rs as in Definitions 1.3.1 and 1.3.2.
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6.1.2. Factorization for stacks. We are now in position to extend the factorization to stacks.

Theorem 6.1.3. There is a functor BlSt
rs (char= 0)→ FactSt

rs (char= 0) from the regular surjective cate-
gory of blowings up f : X′→ X in characteristic 0 to the regular surjective category of factorizations

X′ = X0 //X1 // · · · //Xl−1 //Xl = X

in characteristic 0 such that the composite

BlSt
rs (char= 0)→ FactSt

rs (char= 0)→ BlSt
rs (char= 0)

is the identity. The same holds in positive and mixed characteristics if Hypothetical Statements 2.2.13 and
2.3.6 hold true.

Proof. Choose a smooth covering of X by a qe scheme W. Then W and R = W ×X W are regular qe
schemes and the projections p1,2 : R ⇒ W are surjective and smooth. The pullbacks W ′→W and R′→ R
of X′→ X are objects of Bl; hence Theorem 1.3.3 provides their regular factorizations (W•) and (R•).
By the functoriality, these factorizations are compatible with both p1 and p2. Since both pullbacks of
the factorization (W•) to R coincide, flat descent implies that (W•) comes from a factorization (X•) of
X′→ X.

To see that the factorization (X•) is independent of a smooth covering W→X, we note that any smooth
covering W ′→ X that factors through W induces the same factorization of X′→ X, as follows from the
functoriality of factorization with respect to the morphism W ′→W.

Finally, assume that (Y′→Y)→ (X′→X) is a morphism in BlSt
rs . Then there exist smooth coverings

by qe schemes W→X and T →Y such that the morphism Y→X lifts to a regular surjective morphism
T → W. It then follows easily from the functoriality of factorization with respect to T → W that the
factorization for stacks we constructed is compatible with Y→ X. Thus, the factorization for stacks is
functorial. �

6.2. Geometric spaces.

6.2.1. Categories. We will work with the geometric spaces of the following four classes, that will simply
be called spaces:

(1) qe formal schemes as defined in [Temkin 2008, Section 2.4.3].

(2) Semianalytic germs of complex analytic spaces; see Appendix B.

(3) k-analytic spaces of Berkovich for a complete nonarchimedean field k; see [Berkovich 1993, Sec-
tion 1].

(3′) Rigid k-analytic spaces, where k is as above and nontrivially valued.

To make notation uniform, the category of all such spaces will be denoted by Sp in each of the four
cases.
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Remark 6.2.2. (i) The case (3′) is added for the sake of completeness. It is essentially included in (3)
because the category of qcqs (i.e., quasicompact and quasiseparated) rigid spaces is equivalent to the
category of compact strictly analytic Berkovich spaces, and all our arguments will be “local enough”.

(ii) Probably, there exist other contexts where our methods apply, e.g., semialgebraic geometry. We do
not explore this direction here, but we will deal with the above four cases in a uniform way that should
make it simpler for the interested reader to extend our results to other possible settings.

6.2.3. Affinoid spaces. We say that a space X is affinoid if it is of the following type:

(1) X = Spf(A) is affine.

(2) (X , X) is an affinoid germ of a complex analytic space; see Section B.6.

(3) X =M(A) is an affinoid k-analytic space.

(3′) X = Sp(A) is an affinoid rigid space over k.

6.2.4. Admissible affinoid coverings. To simplify the discussion we consider only affinoid coverings
X =

⋃
i∈I X i of a qcqs space by its affinoid domains. Such a covering is called admissible if it possesses

a finite refinement. Here is the main property of admissible coverings, which may fail for nonadmissible
ones (e.g., the covering of a germ (X , X) by one-pointed subgerms (X , x) with x ∈ X ).

Lemma 6.2.5. Assume that X =
⋃

i∈I X i is an admissible covering of an affinoid space. Then for any
coherent OX -module F the Čech complex

0→ F(X)→
∏

i

F(X i )→
∏
i, j

F(X i ∩ X j )→ · · ·

is acyclic.

Proof. For formal schemes this is classical, and for nonarchimedean geometry this is Tate’s acyclicity
theorem and its extension to Berkovich spaces. It remains to deal with complex germs. It suffices to deal
with the case of finite coverings, and then we can replace the direct products with direct sums. Choosing
a small enough representative X of X we can assume that X is Hausdorff. Choose families of Stein
domains V0 ⊃ V1 · · · and V0i ⊃ V1i · · · for each i ∈ I such that X =

⋂
∞

n=0 Vn and X i =
⋂
∞

n=0 Vni . For
each n ∈N the union

⋃
i∈I Vni is a neighborhood of X and hence it contains some Vm . Let m = m(n) be

the minimal number for which the latter happens. The intersections Uni = Vm ∩ Vni are Stein domains
since X is Hausdorff; hence Vm is covered by Stein domains Uni and we obtain the acyclic Čech complex

0→ F(Vm)→
⊕

i

F(Uni )→
⊕
i, j

F(Uni ∩Unj )→ · · · .

Since limn→∞m(n)=∞ and X i =
⋂

n Uni , passing to the limit on n we obtain the sequence from the
formulation of the lemma. It remains to use that the filtered colimit is an exact functor. �
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6.2.6. Regular spaces. Each category of spaces possesses a natural notion of regular spaces; see [Temkin
2008, Section 5.2.2]. In fact, a space X is regular if it possesses an admissible affinoid covering X =

⋃
i X i

such that the rings Ai =OX (X i ) are regular. In particular, it follows from Lemma B.6.1 that a germ of
analytic space (X , X) is regular if and only if X is smooth in a neighborhood of X .

By Spreg we denote the full subcategory of Sp consisting of quasicompact regular objects, and we do
not impose any separatedness assumption.

6.2.7. Smooth and regular morphisms. Also, the category Sp has a natural notion of smooth morphisms.
In cases (1), (2) and (3′) this is the classical notion (with the obvious adjustment in (2)) and in (3) this is
the notion of quasismooth morphisms as defined in [Ducros 2018, Section 5].

In cases (2), (3) and (3′) any morphism is of finite type, so we identify the notions of smooth and
regular morphisms. Regular morphisms of qe formal schemes were defined in [Temkin 2008, 2.4.12]: a
morphism f : Y → X is called regular if it admits an open covering of the form fi : Spf(Bi )→ Spf(Ai )

such that the homomorphisms Ai → Bi are regular.

Lemma 6.2.8. If Y → X is a regular morphism of affinoid spaces in Sp then the homomorphism
OX (X)→OY (Y ) is regular.

Proof. Case (1) is covered by [Temkin 2008, Lemma 2.4.6]. Case (3), and hence also case (3′), follows
from [Ducros 2009, Theorem 3.3; 2018, Theorem 5.5.3] and the fact that for any affinoid space Z =M(C)
the map Z→Spec(C) is surjective by [Berkovich 1993, Proposition 2.1.1]. Case (2) is dealt with similarly
using that if Z is an affinoid germ, z ∈ Z and f : Z→ T = Spec(OZ (Z)) is the natural map then f (Z)
is the set of all closed points and the homomorphism OT, f (z)→OZ ,z is regular by Lemma B.6.1. �

6.3. Relative GAGA. Assume that X is an affinoid space, A=OX (X) and X = Spec A. Relative GAGA
relates the theory of X -schemes and X -spaces.

6.3.1. Analytification functor. There exists an analytification/formal completion functor from X -schemes
of finite type to X -spaces. For uniformity, we will usually call this functor analytification and set
Y 7→ Y = Yan. It is constructed as follows:

(i) The analytification of An
X is An

X .

(ii) If Y is X -affine, say Y = Spec B with B = A[t1, . . . , tn]/( f1, . . . , fm), then Yan is the vanishing
locus of f1, . . . , fm in An

X . It is easily seen to be independent of the A-presentation of B.

(iii) The construction in (ii) is compatible with localizations, so in general one covers Y by X -affine
schemes Yi and glues Yan from Yan

i .

6.3.2. The analytification map. There exist natural analytification maps πY : Yan
→ Y which can be

constructed through the steps (i)–(iii), or directly (ii) and (iii). Let us describe them in the affine case
Y = Spec B:

(1) The map is Spf B ↪→ Spec B. It is injective and the image is the set of open prime ideals of B.
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(2)/(3′) The map Yan
→ Y is injective and its image is the set of maximal ideals of B.

(3) The map Yan
→ Y is surjective; see [Berkovich 1993, Proposition 2.6.2].

6.3.3. Sheaves. The analytification functor also extends to coherent sheaves: for any X -scheme Y of
finite type there exists an analytification functor Coh(Y)→ Coh(Yan) given by Fan

= π∗YF.

6.3.4. Properties. For each X -proper scheme Y the analytification functor Coh(Y) −→∼ Coh(Y ) is an
equivalence of categories. In particular, the analytification functor induces an equivalence between the
categories of projective X -schemes and X -spaces. The references are:

(1) Grothendieck’s existence theorem [EGA III1 1961, 5.1.4].

(2) Theorem C.1.1 below.

(3) The analytification was introduced in [Berkovich 1993, Section 2.6], and comparison of coherent
sheaves can be found in [Poineau 2010, Theorem A.1].

(3′) Köpf’s theorem [1974, Sections 5 and 6]; see also [Conrad 2006, Example 3.2.6].

6.3.5. Analytification and regularity. Various properties are respected by analytification, but for our
needs we only need to study the situation with regularity.

Proposition 6.3.6. Assume that X is an affinoid space with A = OX (X), X = Spec(A), and Y is an
X -scheme of finite type with Y = Yan, then:

(i) If Y is regular then Y is regular.

(ii) Conversely, assume that Y is regular. Then
(a) in cases (2), (3) and (3′), Y is regular,
(b) in case (1) assume also that Y is X -proper, and then Y is regular.

Proof. Note that case (3′) follows from (3) since a qcqs rigid space can be enhanced to an analytic space,
and the regularity is preserved. We will study cases (1), (2) and (3) separately, but let us first make a
general remark. The claims (i) and (iia) are local on Y , so we can assume that Y = Spec B for a finitely
generated A-algebra B in these cases.

Case (1): In this case, A is an I -adic ring and X = Spf A. Since A is qe, B is qe and so the I -adic
completion homomorphism B→ B̂ is regular. This implies (i) since if B is regular then B̂ is regular, and
so Spf B̂ is regular.

Let us prove (ii). Since A is I -adic, I is contained in the Jacobson radical of A, see [Atiyah and
Macdonald 1969, Proposition 10.15(iv)], and so any point of X has a specialization in Xs := V (I ). By
the properness of f : Y→ X , any point of Y has a specialization in Ys := f −1(Xs); hence it suffices to
prove the following claim: if Y is of finite type over X and Y is regular, then Y is regular at any point
y ∈ Ys .

The latter claim is local around y; hence we can assume, again, that Y = Spec B. Let m ⊂ B be the
ideal corresponding to y; then the m-adic completion B→ B̂m factors through the I -adic completion



412 Dan Abramovich and Michael Temkin

B→ B̂, and so B̂m is the completion of B̂ along m B̂. Since X is qe, B̂ is qe and so B̂→ B̂m is regular.
By our assumption B̂ is regular; hence B̂m is regular too. The homomorphism Bm→ B̂m is faithfully flat;
hence Bm is regular and we win.

Case (3): In this case, A is k-affinoid and X =M(A). Consider a point y ∈ Y and set y= πY(y) ∈ Y . By
[Ducros 2018, Lemma 2.4.6(1)], Y is regular at y if and only if Y is regular at y. Since πY is surjective
this implies that Y is regular if and only if Y is regular.

Case (2): If y ∈ Y and y = πY(y) then it follows easily from Lemma B.6.1 that the homomorphism
fy :OY, y→OY,y induces an isomorphism of the completions. A local ring is regular if and only if its
completion is regular; hence OY, y is regular if and only if OY,y is regular. Since the image of πY contains
all closed points, we obtain that Y is regular if and only if Y is regular. �

6.4. The factorization theorem.

6.4.1. Blowings up. Each of the categories Sp has a natural notion of blowings up f : X ′→ X along
ideals; e.g., see [Temkin 2008, Sections 2.4.4 and 5.1.2]. In fact, BlI (X) can be described as follows: if
Y ⊂ X is an affinoid domain, Y = Spec(OX (Y )) and I ⊂OY is induced by I, then the restriction of f
onto Y is the analytification of the blowing up BlI(Y)→ Y . We will only consider blowings up with
nowhere-dense centers.

6.4.2. Weak factorization. By a weak factorization of X1→ X2 we mean a diagram

X1 = V0
φ1
// V1

φ2
// · · ·

φl−1
// Vl−1

φl
// Vl = X2

along with subspaces Zi and ideal sheaves Ji satisfying conditions (1)–(5) of Section 1.2, where in (2)
and (4) the word “scheme” is replaced with “space”. For brevity of notation, such a datum will be denoted
by (V•, φ•, Z•).

We define the regular surjective category of blowings up BlSp
rs in Sp and the regular surjective category

of weak factorizations FactSp
rs on Sp as in Definitions 1.3.1 and 1.3.2. By definition, these categories are

fibered over the category of regular spaces with regular morphisms, and the fibers over a regular space X
will be denoted by Bl(X) and Fact(X). Thus, Bl(X) is the set of blowings up X ′→ X with regular X
and Fact(X) is the set of all regular factorizations of blowings up of X .

Lemma 6.4.3. Let X be an affinoid space, A=OX (X) and X = Spec A. Then the analytification functor
Y 7→ Yan induces bijections Bl(X)−→∼ Bl(X ) and Fact(X)−→∼ Fact(X ).

Proof. By the relative GAGA, see Section 6.3.4, analytification induces a bijection between the blowings
up X ′ → X and X ′ → X . By Proposition 6.3.6, X ′ is regular if and only if X ′ is regular; hence
Bl(X)−→∼ Bl(X ). The second bijection is proved similarly, but this time one also relates regularity of the
centers in the factorizations. �

6.4.4. The main theorem. We are now in position to prove the following analogue of Theorem 1.3.3.
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Theorem 6.4.5. There is a functor BlSp
rs (char =0)→ FactSp

rs (char =0) from the regular surjective cate-
gory of blowings up f : X ′→ X in characteristic 0 to the regular surjective category of factorizations

X ′ = V0 // V1 // · · · // Vl−1 // Vl = X

in characteristic 0 such that the composite

BlSp
rs (char =0)→ FactSp

rs (char =0)→ BlSp
rs (char =0)

is the identity. The same holds in positive and mixed characteristics if Hypothetical Statements 2.2.13 and
2.3.6 hold true.

Proof. First, let us construct a factorization of f : X ′ → X . Fix an admissible affinoid covering
X =

⋃n
i=1 X i and set X ′i = X i ×X X ′. The rings Ai =OX (X i ) are qe, see [Temkin 2008, Section 5.2.3],

so the scheme X =
∐n

i=1 Xi with Xi = Spec(Ai ) is noetherian and qe. Let I be the ideal defining f and
let Ii ⊂ Ai be its restrictions. Consider the blowings up Fi :X ′i →Xi defined by Ii . The analytification of
Fi is the restriction fi of f over X i by the relative GAGA; hence X ′i is regular by Proposition 6.3.6(ii).

Set X ′ =
∐n

i=1 X
′

i and consider the factorization (V•,8•,Z•) of the blowing up F : X ′ → X . For
each i , it induces a factorization (Vi,•,8i,•,Zi,•) of Fi : X ′i → Xi and the analytification of the latter is a
factorization of fi : X ′i → X i that will be denoted by (Vi,•, φi,•, Zi,•).

We claim that the latter factorizations glue to a factorization of f . It suffices to prove that for any i, j
and an affinoid domain Y ⊂ X i∩X j , the restrictions of (Vi,•, φi,•, Zi,•) and (V j,•, φ j,•, Z j,•) onto Y coincide.
Set B =OX (Y ) and Y = Spec(B), and let G : Y ′→ Y be the blowing up along the ideal induced by I. In
particular, the analytification g : Y ′→ Y of G is the restriction of f . The regular homomorphisms Ai→ B
and Aj → B induce regular morphisms hi , h j : Y→ X such that G is the pullback of F with respect to
either of these morphisms. The factorizations of G induced from (V•,8•,Z•) via hi and h j coincide by
Lemma 6.4.6 below. It remains to note that the factorizations of g induced from the factorizations of fi

and f j are the analytifications of these factorizations of G.
We have constructed a factorization of f . The same argument as was used to glue local factorizations

to a global one shows that the construction is independent of the affinoid covering. Finally, compatibility
of factorization with a regular morphism h : Y → X is deduced in the same way from Lemma 6.2.8 and
compatibility with regular morphisms of factorization for schemes. �

The following result is an analogue of [Temkin 2008, Lemma 2.3.1].

Lemma 6.4.6. Assume that F : Bl→ Fact is a factorization functor, f : X ′→ X and g : Y ′→ Y are two
blowings up with regular source and target and hi : Y → X with i = 1, 2 are two regular morphisms such
that h∗i ( f )= g. Then the pullbacks of F( f ) to a factorization of g via h1 and h2 coincide.

Proof. Extend hi to morphisms φi : Y
∐

X → X so that the map on X is the identity. Each φi is a
surjective regular morphism; hence the pullback of F( f ) to Y

∐
X via φi coincides with the factorization

of the blowing up Y ′
∐

X ′→ Y
∐

X . Restricting the latter onto Y coincides with h∗i (F( f )). �
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Remark 6.4.7. (i) An analogue of Lemma 6.4.6 holds true in any category Sp and the above proof
applies verbatim.

(ii) Although h∗i (F( f )) coincide, they can differ from F(g) when hi are not surjective. See also [Temkin
2008, Remark 2.3.2(ii)].

Appendix A: Construction of a birational cobordism via deformation to the normal cone

Proof of Proposition 4.4.1. We follow the construction of [Abramovich et al. 2002, Theorem 2.3.1] word
for word, except we make it even more explicit and check functoriality.

Step 1: cobordism BO for trivial blowing up. We start with

BO = P1
X2
= P(OX2 · T0⊕OX2 · T1)=: PX2(EO),

with its projection π0 : BO → X2. Providing the generators T0 and T1 with Gm-weights 0 and 1, the
scheme BO is a birational cobordism for the identity morphism with the trivial ideal (1), with the standard
action of Gm linearized, except that it does not satisfy Assumption 4.2.2. But that may be achieved after
the fact by taking the symmetric square. The construction is clearly functorial.

Step 2a: construction of a singular cobordism BI . Assume X1 is given as the blowing up of the ideal I
on X2. We blow up the Gm-equivariant ideal I B

:= I ⊗OBO + I{0} on BO, where I{0} is the defining ideal
of {0}× X2. The ideal is clearly the unit ideal on P1

U . This blowing up gives rise to a Gm-scheme BI and
projective morphism πI : BI→ BO; this is evidently functorial in φ. The arguments of Section 2.1.10 show
that π BI /X2 := π0 ◦πI : BI → X2 is projective, again in a functorial manner. In particular BI ⊂ P(E I )

for some functorial Gm-sheaf E I .

Step 2b: coordinates of BI . Let us make the construction of the previous step explicit: write FI =

π0 ∗ I B(1)= I ·U0⊕OX2 ·U1 with U0,U1 having corresponding Gm-weights 0 and 1. Let

E I = FI ⊗ EO = I ·U0T0⊕ (OX2 ·U1T0⊕ I ·U0T1)⊕OX2 ·U1T1,

with corresponding Gm-weights 0, 1 and 2. Again it does not satisfy Assumption 4.2.2, but again that
may be achieved after the fact by taking the symmetric square.

We have a surjection π∗0 FI → I B(1) where the first coordinate sends f ·U0 7→ f T0 and the second
sends U1 7→ T1. We thus have Gm-equivariant closed embeddings

BI = BlI B (BO)= BlI B(1)(BO)⊂ PBO(π
∗

0 FI )= PX2(FI )×X2 BO = PX2(FI )×X2 PX2(EO)

⊂ PX2(FI ⊗ EO)= PX2(E I ),

where BlI B(1)(BO) denotes the blowing up of the fractional ideal I B(1) and the last inclusion is the Segre
embedding.

We describe BI = ProjX2
A as follows. The algebra

A :=
⊕

d

(I d
· T 2d

0 ⊕ I d−1
· T 2d−1

0 T1⊕ · · ·⊕OX2 · T0T 2d−1
1 ⊕OX2 · T

2d
1 ),
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with terms I d−k
· T j

0 T k
1 when j > k and OX2 · T

j
0 T k

1 when j ≤ k, is a graded Gm-weighted quotient
Sym• E I � A, where we set Uj = T j and map I⊗d � I d.

We note that BI admits an equivariant projection morphism BI → BO = PX2(EO) which is an
isomorphism away from the divisor (T 2

1 ), and an equivariant projection morphism BI →PX2(FI ), whose
image is the closed subscheme we denote by

PX2(FI )
′
:= ProjX2

⊕
n≥0

( n⊕
j=0

I j
)
.

The morphism BI→PX2(FI )
′ is an isomorphism away from the zero section ProjX2

⊕
n≥0 OX2⊂PX2(FI )

′,
whose complement is the total space Spec Sym((I OX1)

−1) of the invertible sheaf IOX1 on X1.

Step 2c: stable and unstable loci for weight 1. The homogeneous Cartier divisor (T0T1) is the union
of two regular subschemes: X1 = ProjX2

⊕
n≥0(I

n
· T 2n

0 ), which is the zero locus of (T0T1, T 2
1 ), and

X2 = ProjX2

⊕
n≥0(OX2 · T

2n
1 ), which is the zero locus of (T0T1, I · T 2

0 ). Since the zero locus of the
“irrelevant ideal” (I · T 2

0 , T0T1, T 2
1 ) is empty, these two subschemes are disjoint. In particular each is a

regular Cartier divisor. It follows that both X1 and X2 lie in the regular locus Breg
I , which is open since

BI is of finite type over the qe scheme X2.
We have X1 = BI ∩PX2((E I )0) and X2 = BI ∩PX2((E I )2), where the indices 0 and 2 denote the

components with given Gm-weight (the variable a in Section 4.2). Their union (T0T1) is the unstable
locus (BI )

un
a 1. The complement is affine, explicitly

(BI )
sst
1 = SpecX2

A[(T0T1)
−1
]degree=0

= SpecX2

(
· · · ⊕ I 2

(
T0

T1

)2

⊕ I
(

T0

T1

)
⊕OX2 ⊕OX2

(
T1

T0

)
⊕OX2

(
T1

T0

)2

⊕ · · ·

)
.

This scheme is in general singular, but the quotient is simpler:

(BI )
sst
1 //Gm = SpecX2

OX2 = X2.

Step 2d: stable and unstable loci for weight 2. The projective Cartier divisor (T 2
1 ) can be identified as

(BI )
un
a 2= PX2(I · T

2
0 )∪PZ(I )(I/I 2

· T 2
0 ⊕O · T0T1)= X1 ∪C(Z(I )),

where C(Z(I )) is the normal cone. The complement is again affine, of the form

(BI )
sst
2 = SpecX2

A[T−1
1 ]degree=0

= SpecX2

(
· · · ⊕OX2

(
T0

T1

)2

⊕OX2

(
T0

T1

)
⊕OX2

)
= A1

X2
.

Thus,
(BI )

sst
2 //Gm = SpecX2

OX2 = X2

and the morphism (BI )
sst
2 → X2 is smooth. Another way to see this is to notice that the map BI → BO

restricts to an open embedding on (BI )
sst
2 , and the image is the complement of {0}× X2.



416 Dan Abramovich and Michael Temkin

Step 2e: stable and unstable loci for weight 0. The projective zero locus of (I · T0)
2 can be identified as

(BI )
un
a 0= PX2(OX2 · T

2
1 )∪PZ(I )(OX2 · T0T1⊕OX2 · T

2
1 )= X2 ∪P1

Z(I ).

The complement is not necessarily affine, as I is not necessarily principal. However, recalling the sheaf FI

from Step 2b, the morphism (BI )
sst
0 →PX2(FI ) is an open embedding, whose image is the complement of

the zero section. So (BI )
sst
0 is the total space of the invertible sheaf IOX1 on X1. Thus, (BI )

sst
0 //Gm = X1

and the morphism (BI )
sst
0 → X1 is smooth.

Step 3a: resolving (BI , DBI ). Let DBI ⊂ BI be the preimage of D2. Applying resolution of pairs to
(BI , DBI ) we obtain a functorial projective Gm-equivariant morphism B→ BI such that B is regular and
the preimage DB ⊂ B of D2 is a simple normal crossings divisor. Here we use Theorem 2.2.10 if the
characteristic is 0. In positive and mixed characteristic we may use parts (1) and (2) of Hypothetical
Statement 2.2.13 since dim B = dim X2+ 1. In addition, B→ BI is projectively the identity outside of
the union of DBI and the singular locus of BI , which is included in the preimage of

PX2((E I )1)= PX2(OX2 ·U1T0⊕ I ·U0T1).

It follows that (B, DB) is a regular birational cobordism for φ.

Step 3b: embedding. By the arguments of Section 2.1.10, the composition B→ BI → BO is functorially
a single blowing up of an ideal J. Write J̃ = JOBI so that B = Bl J̃ BI . There is a functorially defined
integer d such that J̃ (d) is globally generated on BI relative to X2. Using [Hartshorne 1977, II.7.10(b)]
we have an equivariant embedding of B inside

PX2(Ẽ) := PX2(π
BI /X2
∗

J̃ (d)).

We claim that amin(B)=0 and amax(B)=2d . First, since E I has weights amin(E I )=0 and amax(E I )=2,
we have amin(Symd(E I ))= 0 and amax(Symd(E I ))= 2d. Second, the weights 0 and 2d survive in the
homogeneous coordinate ring of BI with respect to O(d) as described in the steps above. Third, the
weights in π BI /X2

∗ J̃ (d) necessarily lie among those of Symd(E I ), so amin(B)≥ 0 and amax(B)≤ 2d . To
show that the weights 0 and 2d survive in B it suffices to show this over a dense open set in X2. Since
B→ BI is projectively the identity over U, the weight-0 and weight-2d components of π BI /X2

∗ J̃ (d) are
everywhere nonzero, as needed.

Inspecting the description of unstable loci in Section 4.1, equation (1) we note that Bsst
0 = B×BI (BI )

sst
0

and Bsst
2d = B×BI (BI )

sst
2 .

Step 3c: B is a cobordism for φ that respects U. We have shown in Steps 2d and 2e that the morphisms
q2 : (BI )

sst
2 → X2 and q1 : (BI )

sst
0 → X1 are smooth. Functoriality of resolution of pairs with respect to qi

implies that, once restricted to (BI )
sst
2 , the morphism B→ BI is the pullback of the resolution X ′2→ X2 of

(X2, D2), and once restricted to (BI )
sst
0 , the morphism B→ BI is the pullback of the resolution X ′1→ X1

of (X1, D1). It follows that B ×BI (BI )
sst
2 //Gm = X ′2 and B ×BI (BI )

sst
0 //Gm = X ′1 and hence B is a

cobordism for φ. Also, we note that B∩P(Ẽ0)= X ′1 and B∩P(Ẽ2d)= X ′2, so Assumption 4.2.3 applies.
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To show that B is compatible with U it suffices to show that both B→ BI and BI→ BO are projectively
the identity over U. This is so for the blowing up BI → P1

X2
because I + I{0} is the unit ideal on P1

U , and
this is so for the resolution B→ BI because P1

U is regular and disjoint from the preimage of D2. �

Appendix B: Germs of complex analytic spaces

In this section we use germs to extend the category of complex analytic spaces to include certain Stein
compacts. This will be used later to establish a tight connection between scheme theory and complex
analytic geometry. In particular, this is needed to develop a relative GAGA theory.

B.1 Semianalytic sets. We follow the setup of [Frisch 1967]. A subset X of an analytic space X is called
semianalytic if its local germs belong to the minimal class of germs, stable under finite unions and comple-
ments, generated by inequalities of the form f (x) < 0 for real analytic f ; see [loc. cit., p. 120]. It is called
a Stein if X has a fundamental system of neighborhoods of Stein subspaces of X ; see [loc. cit., p. 123].

B.2 The category of germs. A germ of a complex analytic space (or, simply, a germ) is a pair (X , X)
consisting of an analytic space X and a semianalytic subset X ⊂ X . We call X the support of (X , X) and
we call X a representative of (X , X). Sometimes, we will use the shorter notation X = (X , X).

A morphism φ : (X , X)→ (Y, Y ) consists of a neighborhood X ′ of X and an analytic map f :X ′→Y
taking X to Y. We say that f is a representative of φ. Note that a morphism (X , X)→ (Y, Y ) is an
isomorphism if it induces a bijection of X and Y and an isomorphism of their neighborhoods.

We identify an analytic space X with the germ (X, X). In particular, the category of analytic spaces
becomes a full subcategory of the category of germs.

B.3 The structure sheaf. Given a germ (X , X) we provide its support with the structure sheaf OX :=

OX |X = i∗OX , where i : X ↪→X is the embedding. In particular, we obtain a functor F : (X , X) 7→ (X,OX )

from the category of germs to the category of locally ringed spaces.

Remark B.3.1. We do not aim to develop a complete theory of semianalytic germs, so we do not study
the natural question of whether F is fully faithful.

B.4 Closed polydiscs and convergent power series. Consider an analytic affine space X = An
C

with
coordinates t1, . . . , tn . For any tuple r of numbers r1, . . . , rn ∈ [0,∞), by the closed polydisc D = Dr

of radius r we mean the subset of X given by the inequalities |ti | ≤ ri . Note that ri can be zero. By
C{t1, . . . , tn}†r we denote the ring of overconvergent series in t1, . . . , tn of radius r . It is a noetherian
regular excellent ring of dimension n; see [Matsumura 1980, Theorem 102].

Lemma B.4.1. Let D = Dr ⊂ X = An
C

be a polydisc and A =OX (D)= 0(OD). Then:

(i) C{t1, . . . , tn}†r −→∼ A.

(ii) 0(D, · ) induces an equivalence between the categories of coherent OD-modules and finitely gener-
ated A-modules, and higher cohomology of coherent OD-modules vanish.
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(iii) For any a ∈ D the ideal ma = (t1− a1, . . . , tn − an)⊂ A is maximal, and any maximal ideal of A is
of this form.

(iv) The completion of A along ma is C[[t1− a1, . . . , tn − an]].

Proof. The first claim is a classical result of analysis of several complex variables. Assertion (ii) follows
from the fact that D is the intersection of open polydiscs containing it, and the latter are Stein spaces.
Assertion (iv) follows easily from (iii), so we will only prove (iii).

For any f ∈ A the quotient

g1 = ( f (t1, . . . , tn)− f (a1, t2, . . . , tn))/(t1− a1)

lies in A, so f = (t1− a1)g1+ f1(t2, . . . , tn) with f1 = f (a1, t2, . . . , tn). Applying the same argument
to t2 and f1, etc., we will obtain in the end a representation f = f (a1, . . . , an)+

∑n
i=1(ti − ai )gi . In

particular, A/ma = C and hence ma is maximal.
Conversely, assume that m ⊂ A is maximal. The norm ‖ f ‖ =maxx∈D | f (x)| on A induces a norm on

the field κ = A/m; hence the completion K = κ̂ is a Banach C-field. Thus, K =C by the Gel’fand–Mazur
theorem, and we obtain that ti − ai ∈ m for some ai ∈ C. Finally, |ai | ≤ ri as otherwise ti − ai ∈ A×. �

B.5 Classes of morphisms. Let φ : (Y, Y )→ (X , X) be a morphism of germs. We say that φ is without
boundary if there exists a representative f :Y ′→X such that Y = f −1(X). Let P be one of the following
properties: smooth, open immersion, closed immersion. We say that φ is P if it is without boundary
and has a representative which is P. We say that φ is an embedding of a subdomain if it possesses a
representative which is an open immersion and we say that φ is quasismooth if it possesses a representative
which is smooth.

Remark B.5.1. The above terminology is chosen to match its nonarchimedean analogue as much as
possible.

B.6 Affinoid germs. A germ X is called affinoid if it admits a closed immersion into a germ of the form
(Cn, D) where D is a closed polydisc. Such a germ is controlled by the ring OX (X) very tightly.

Lemma B.6.1. Assume that X is an affinoid germ and let A =OX (X) and f : (X,OX )→ Y = Spec(A)
be the corresponding map of locally ringed spaces. Then:

(i) A is a quotient of a ring C{t1, . . . , tn}†r ; in particular it is an excellent noetherian ring.

(ii) 0(X, · ) induces an equivalence between the categories of coherent OX -modules and finitely generated
A-modules, and higher cohomology of coherent OX -modules vanish.

(iii) f establishes a bijection between X and the closed points of Y.

(iv) For any point x ∈ X with y = f (x) the homomorphism OY,y→OX,x is regular and its completion
ÔY,y→ ÔX,x is an isomorphism.
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Proof. In the case of a closed polydisc the assertion was proved in Lemma B.4.1. In general, we fix a
closed embedding i : X ↪→ D into a closed polydisc. So, OX becomes a coherent OD-algebra such that the
homomorphism φ :OD→OX is surjective, and then all assertions except the first half of (iv) follow easily
from the case of a polydisc. For example, 0(X,OX ) is a quotient of 0(D,OD) since H 1(D,Kerφ)= 0,
thereby proving (i).

The only new assertion is that φ : OY,y → OX,x is regular. This follows from the facts that φ̂ is an
isomorphism and the local ring OY,y is excellent (since it is a localization of the excellent ring A). �

Appendix C: The complex relative GAGA theorem

C.1 Statement of the theorem. Let (X , X) be an affinoid germ as in Appendix B with ring of global
analytic functions A, and r ≥ 0 an integer. Set Pr

X = CPr
× X and endow it with a locally ringed space

structure using the sheaf OPr
X
=OPr

X
|Pr

X
. We have a germ (Pr

X ,Pr
X ) and a morphism of locally ringed

spaces h : Pr
X → Pr

A. The aim of this appendix is to prove the following extension of Lemma B.6.1:

Theorem C.1.1 (Serre’s Théorème 3). Let (X , X) be an affinoid germ with ring of global analytic
functions A, and r ≥ 0 an integer. Then the pullback functor h∗ : Coh(Pr

A)→ Coh(Pr
X ) is an equivalence

which induces isomorphisms on cohomology groups.

Since (X , X) is closed in (Cn, D) it suffices to consider the case (X , X)= (Cn, D). So from now on
we make this assumption, and write A for the ring of holomorphic functions on X = D.

We follow the steps of Serre’s original proof [1956, §3] in some detail, to alleviate our skepticism that
this generalization might actually work. See also [Kedlaya 2009], which sketches Serre’s proof. One
difficulty is that we do not know if D×Cr is Stein in the sense of [Frisch 1967] or [Grauert and Remmert
1979]. The problem is that if {Di } are the open polydiscs containing D then {Di ×Cr

} do not form a
fundamental family of neighborhoods of D×Cr, while functions on D×Cr are only guaranteed to extend
to some member of a fundamental family of neighborhoods. This is circumvented in Lemma C.2.2, which
is the only point where we differ from the original arguments.

C.2 Cohomology.

Proposition C.2.1 (Serre’s Théorème 1). Let F be a coherent sheaf on Pr
A. The homomorphism h∗ :

H i (Pr
A,F)→ H i (Pr

D, h∗F) is an isomorphism.

Lemma C.2.2. (1) We have H i (Pr
A,F)= H i (Pr

D, h∗F)= 0 for i > r and all F.

(2) Proposition C.2.1 holds for F =OPr
A

for all r ≥ 0.

Proof. (1) For H i (Pr
A,F)= 0 use the standard Čech covering of Pr

A, which has only r + 1 elements. We
need to show H i (Pr

D, h∗F)= 0.
On the analytic side we mimic the standard argument for vanishing using Čech cocycles of a covering

by closed polydiscs instead of affine spaces. Let h∗F→ S• be the standard flabby resolution of h∗F by
discontinuous sections, so H i (Y, h∗F |Y ) = H i (0(Y, S•)) for any subset Y ⊂ Pr

D. Let Cr
' Ui ⊂ CPr
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be the standard open sets and let Di ⊂ Ui be the standard closed polydisc of fixed radius > 1. Set
X i = D × Di ⊂ Pr

D and for each subset I ⊂ {0, . . . , n} let XI =
⋂

i∈I X i . Then the XI are complex
affinoids for I 6=∅; hence H i (XI , h∗F |XI )= 0= H i (0(XI , S•)) for i > 0 and I 6=∅.

On the other hand

C•({X i }, S j )=

[⊕
|I |=1

S j
XI
→

⊕
|I |=2

S j
XI
→ · · ·

]
is a flabby resolution of S j so H 0(0(Pr

D, C
•({X i }, S j )))= 0(Pr

D, S j ) and for i > 0 we have

H i (0(Pr
D, C

•({X i }, S j )))= 0.

Consider the double complex C p,q
=
⊕
|I |=p 0(XI , Sq) and its two edges 0(Pr , S•) and Č p

=

⊕|I |=p0(XI , h∗F). We obtain

H i (Pr
D, h∗F)= H i (0(Pr , S•))= Hi (C •,•)= H i (Č •).

The latter is trivial in degrees > r .

(2) We have 0(OPr
A
)= A and H i (OPr

A
)= 0 for i > 0 by [Hartshorne 1977, Theorem III.5.1]. It suffices

to show that π∗OPr
D
=OD and Riπ∗OPr

D
= 0 for i > 0, where π : Pr

D→ D is the projection, since D is
Stein. For this note that OPr

D
= j−1

r OPr
CPn , where jr : Pr

D→ Pr
CPn is the inclusion

Pr
D

π
��

jr
// Pr

CPn

$
��

D
j0
// CPn.

By the topological proper push-forward theorem [Iversen 1986, Corollary VII.1.5] we have

Riπ∗OPr
D
= j−1

0 Ri$∗OPr
CPn ,

and the result follows from Serre’s original GAGA theorems. �

Lemma C.2.3. The proposition holds for F =OPr
A
(n) for all r ≥ 0 and all integers n.

Proof. Induction identical to [Serre 1956, Section 13, Lemme 5]: the result holds for r = 0 since D is
Stein. Supposing it holds for r − 1 and all n, we have the exact sequence 0→OPr

D
(n− 1)→OPr

D
(n)→

OPr−1
D
(n)→ 0 and the corresponding sequence for Pr

A. We obtain a canonical homomorphism of long
exact sequences:

H i−1(Pr−1
A ,O(n)) //

��

H i (Pr
A,O(n− 1)) //

��

H i (Pr
A,O(n)) //

��

H i (Pr−1
A ,O(n))

��

H i−1(Pr−1
D ,O(n)) // H i (Pr

D,O(n− 1)) // H i (Pr
D,O(n)) // H i (Pr−1

D ,O(n)).

The vertical arrows on the right and left are isomorphisms by the inductive assumption. It follows that
the result holds for r and O(n− 1) if and only if it holds for O(n). Since we have proven that it holds
for O, it holds for all n. �
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Proof of the proposition. The proof is identical to Serre’s Théorème 1. We apply descending induction
on i for all coherent Pr

A modules F. The case of i > r is proved by the lemma. Since F is coherent, there
is an epimorphism E→ F with E =

⊕m
i=1 OPr

A
(−ki ). Denoting by G the kernel, G is coherent and we

have a short exact sequence
0→ G→ E→ F→ 0.

Since the map h is flat we have an exact sequence

0→ h∗G→ h∗E→ h∗F→ 0.

In the commutative diagram of cohomologies with exact rows

H i (Pr
A, E) //

��

H i (Pr
A,F) //

��

H i+1(Pr
A,G) //

��

H i+1(Pr
A, E)

��

H i (Pr
D, h∗E) // H i (Pr

D, h∗F) // H i+1(Pr
D, h∗G) // H i+1(Pr

D, h∗E)

the vertical arrows on the left and right are isomorphisms by Lemma C.2.3. By the induction hypothesis
H i+1(Pr

A,G)→ H i+1(Pr
D, h∗G) is an isomorphism as well. By the five lemma the result holds for

H i (Pr
A,F)→ H i (Pr

D, h∗F) as required. �

C.3 Homomorphisms.

Proposition C.3.1 (Serre’s Théorème 2). For any coherent Pr
A-modules F,G the natural homomorphism

HomPr
A
(F,G)→ HomPr

D
(h∗F, h∗G)

is an isomorphism. In particular the functor h∗ is fully faithful.

Lemma C.3.2. The sheaf homomorphism

h∗HomPr
A
(F,G)→HomPr

D
(h∗F, h∗G)

is an isomorphism.

Proof. This follows since OPr
D

is a flat OPr
A
-module. Indeed, for a closed point x ∈ Pr

D corresponding to
a point x ′ = h(x) ∈ Pr

A we have

(h∗HomPr
A
(F,G))x =HomOx ′

(Fx ′,Gx ′)⊗Ox ′
Ox

=HomOx (Fx ′ ⊗Ox ′
Ox ,Gx ′ ⊗Ox ′

Ox)=HomPr
D
(h∗F, h∗G)x . �

Proof of the proposition. By Serre’s Théorème 1, h∗ preserves cohomology of coherent sheaves. Taking
H 0 in the lemma the result follows. �

C.4 The equivalence. It remains to show:

Proposition C.4.1. The functor h∗ is essentially surjective.

Proof. This is an inductive argument on r identical to Serre’s Théorème 3 which we repeat below. The
case r = 0 follows from Lemma B.6.1. Assume the result is known for r − 1 and let F be a coherent
sheaf on Pr

D. By Lemma C.4.2 below there is an epimorphism φ : O(−n0)
k0 → F, and applying this
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again to Ker(φ) we get a resolution O(−n1)
k1 ψ
−→O(−n0)

k0 → F → 0. By Serre’s Théorème 2 the
homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ ′, so the cokernel F of ψ
is also the analytification of the cokernel of ψ ′. �

Lemma C.4.2. Assume the proposition holds for r − 1. Then for any coherent sheaf F on Pr
D there is n0

so that F(n) is globally generated whenever n > n0.

Proof. By compactness it suffices to show that global sections of F(n) generate F(n)x for fixed x . By
Nakayama it suffices to show that global sections of F(n) generate the fiber F(n)x ⊗OD,x Cx .

Picking a hyperplane Pr−1
D ' H 3 x we obtain an exact sequence 0→ O(−1)→ O→ OH → 0,

giving an exact sequence F(−1) ϕ1
−→F ϕ0

−→FH → 0. Writing P for Ker(ϕ0) = Im(ϕ1) we have two
exact sequences

0→ G→ F(−1)→ P→ 0 and 0→ P→ F→ FH → 0,

noting that G and FH are coherent sheaves on H. Twisting by O(n) gives

0→ G(n)→ F(n− 1)→ P(n)→ 0 and 0→ P(n)→ F(n)→ FH (n)→ 0.

The long exact cohomology sequence gives

H 1(Pr
D,F(n− 1))→ H 1(Pr

D,P(n))→ H 2(H,G(n))
and

H 1(Pr
D,P(n))→ H 1(Pr

D,F(n))→ H 1(H,FH (n)).

By the assumption FH and G are analytifications of algebraic sheaves, so for large n the terms on the right
vanish by Serre’s Théorème 1. It follows that dim H 1(Pr

D,F(n)) stabilizes for large n, and when it does
the exact sequences above imply that H 1(Pr

D,P(n))→ H 1(Pr
D,F(n)) is bijective so H 0(Pr

D,F(n))→
H 0(H,FH (n)) is surjective. Since the result holds for analytifications of algebraic sheaves, FH (n) is
globally generated for large n, implying that F(n)x⊗OD,x Cx is generated by global sections, as needed. �
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