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Lovász–Saks–Schrijver ideals and
coordinate sections of determinantal varieties

Aldo Conca and Volkmar Welker

Motivated by questions in algebra and combinatorics we study two ideals associated to a simple graph G:
• the Lovász-Saks-Schrijver ideal defining the d-dimensional orthogonal representations of the graph

complementary to G, and
• the determinantal ideal of the (d+1)-minors of a generic symmetric matrix with 0 in positions

prescribed by the graph G.

In characteristic 0 these two ideals turn out to be closely related and algebraic properties such as
being radical, prime or a complete intersection transfer from the Lovász–Saks–Schrijver ideal to the
determinantal ideal. For Lovász–Saks–Schrijver ideals we link these properties to combinatorial properties
of G and show that they always hold for d large enough. For specific classes of graphs, such a forests,
we can give a complete picture and classify the radical, prime and complete intersection Lovász–Saks–
Schrijver ideals.

1. Introduction

Let k be a field, n ≥ 1 be an integer and set [n] = {1, . . . , n}. For a simple graph G = ([n], E) with vertex
set [n] and edge set E we study the following two classes of ideals associated to G.

• Lovász–Saks–Schrijver ideals: For an integer d ≥ 1 we consider the polynomial ring

S = k
[
yi` : i ∈ [n], ` ∈ [d]

]
.

For every edge e = {i, j} ∈
(
[n]
2

)
we set

f (d)e =

d∑
`=1

yi`y j`.

The ideal
Lk

G(d)= ( f (d)e : e ∈ E )⊆ S

is called the Lovász–Saks–Schrijver ideal, LSS-ideal for short, of G with respect to k. The ideal
Lk

G(d) defines the variety of orthogonal representations of the graph complementary to G. We refer
the reader to [Lovász et al. 1989; Lovász 2009] for background on orthogonal representations and
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results on the geometry of the variety of orthogonal representations which provided intuition for
some of our results.

• Coordinate sections of generic (symmetric) determinantal ideals: Consider the polynomial ring
S = k[xi j : 1 ≤ i ≤ j ≤ n] and let X be the generic n × n symmetric matrix, that is, the (i, j)-th
entry of X is xi j if i ≤ j and x j i if i > j . Let X sym

G be the matrix obtained from X by replacing
the entries in positions (i, j) and ( j, i) for {i, j} ∈ E with 0. For an integer d let I k

d (X
sym
G ) ⊆ S

be the ideal of d-minors of X sym
G . The ideal I k

d (X
sym
G ) defines a coordinate hyperplane section

of the generic symmetric determinantal variety. Similarly, we consider ideals defining coordinate
hyperplane sections of the generic determinantal varieties and the generic skew-symmetric Pfaffian
varieties.

We observe in Section 7 that the ideal I k
d+1(X

sym
G ) and the ideal Lk

G(d) are closely related. Indeed, if k

has characteristic 0, classical results from invariant theory can be employed to show that I k
d+1(X

sym
G ) is

radical (resp. is prime, has the expected height) provided Lk
G(d) is radical (resp. is prime, is a complete

intersection). We also exhibit similar relations between variants of Lk
G(d) and ideals defining coordinate

sections of determinantal and Pfaffian ideals.
These facts turn the focus on algebraic properties of the LSS-ideals Lk

G(d). In particular, we analyze
the questions: When is Lk

G(d) a radical ideal? When is it a complete intersection? When is it a prime
ideal? Other properties of ideals such as defining a normal ring or a UFD are interesting as well but will
not be treated here. In Section 4 we prove the following:

Theorem 1.1. Let G = ([n], E) be a graph. Then:

(1) If Lk
G(d) is prime then Lk

G(d) is a complete intersection.

(2) If Lk
G(d) is a complete intersection then Lk

G(d + 1) is prime.

As an immediate consequence we have:

Corollary 1.2. Let G = ([n], E) be a graph. Then:

(1) If Lk
G(d) is prime (resp. complete intersection) then Lk

G(d+ 1) is prime (resp. complete intersection).

(2) If Lk
G(d) is prime (resp. complete intersection) then Lk

G ′(d) is prime (resp. complete intersection) for
every subgraph G ′ of G.

In Section 5 we use these results to show that for d large enough Lk
G(d) is prime and complete

intersection. To this end, for a graph G = ([n], E) we define a graph theoretic invariant pmd(G) ∈ N,
called the positive matching decomposition number of G. We prove in Lemma 5.4 that pmd(G) ≤
min{2n− 3, |E |} and that pmd(G)≤min{n− 1, |E |} if G is bipartite. We show the following:

Theorem 1.3. Let G = ([n], E) be a graph. Then for d ≥ pmd(G) the ideal Lk
G(d) is a radical complete

intersection. In particular, Lk
G(d) is prime if d ≥ pmd(G)+ 1.



Lovász–Saks–Schrijver ideals and coordinate sections of determinantal varieties 457

The fact that Lk
G(d) is a complete intersection for large d also follows from [Sam and Weyman 2015,

Theorems 3.5 and 3.8] or using the theory of strength from results in [Ananyan and Hochster 2016]. To
have an explicit bound in Theorem 1.3 is crucial in order to use this result and the connection between
I k
d+1(X

sym
G ) and Lk

G(d). Indeed, for deducing meaningful results, we need to single out cases where we
can say something about Lk

G(d) for d ≤ n− 1. The results described in the following paragraph can be
seen as steps in this direction.

Already in Section 4 we give necessary conditions for Lk
G(d) to be prime in terms of subgraphs of G,

see Proposition 4.4. In particular, we prove that if Lk
G(d) is prime then G does not contain a complete

bipartite subgraph Ka,b with a+ b = d + 1 (i.e., G is (n−d)-connected). Similar results are obtained
for complete intersections. In general these conditions are only necessary but in Section 6 we show that
for small values of d they can be used to characterize the properties. For d = 1 the characterization is
obvious and in [Herzog et al. 2015] it is proved that Lk

G(2) is prime if and only if G is a matching. We
obtain the following:

Theorem 1.4. Let G be a graph. Then:

(1) Lk
G(3) is prime if and only if G does not contain K1,3 and does not contain K2,2.

(2) Lk
G(2) is a complete intersection if and only if G does not contain K1,3 and does not contain C2m for

some m ≥ 2.

Here Cn denotes the cycle with n vertices. Finally for forests (i.e., graphs without cycles) we can give
a complete picture.

Theorem 1.5. Let G be a forest and denote by 1(G) the maximal degree of a vertex in G. Then:

(1) Lk
G(d) is radical for all d.

(2) Lk
G(d) is a complete intersection if and only if d ≥1(G).

(3) Lk
G(d) is prime if and only if d ≥1(G)+ 1.

In Section 7 we demonstrate in characteristic 0 the above mentioned connection between Lk
G(d)

and I k
d+1(X

sym
G ). Using the results from the preceding sections we deduce sufficient conditions for

I k
d+1(X

sym
G ) to be radical, prime or of expected height. Similar results are obtained for coordinate

hyperplane sections of the generic determinantal varieties and the generic skew-symmetric Pfaffian
varieties. To our knowledge coordinate sections of determinantal varieties have been systematically
studied only in the case of maximal minors, see for example the results in [Boocher 2012; Eisenbud 1988;
Giusti and Merle 1982].

In Section 8 we use the results from Section 4 and Section 7 to formulate obstructions that prevent
Lk

G(d) to be prime or a complete intersection. We also study the exact asymptotics in terms of the
number of vertices of the least d such that Lk

G(d) is prime for G a complete and a complete bipartite
graph. Finally, in Section 9 we pose open problems, formulate conjectures and exhibit a relation between
hypergraph LSS-ideals and coordinate sections of bounded rank tensor varieties.
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To complete the outline of the paper we mention that Section 2 sets up the graph theory and Gröbner
theory. Section 3 recalls results from [Herzog et al. 2015] for the case d = 2 which in particular show that
Lk

G(2) is always radical if char k 6= 2. We then exhibit and discuss counterexamples which demonstrate
that this is not the case for d = 3.

2. Notations and generalities

2A. Graph and hypergraph theory. In the following we introduce graph theory notation. We mostly
follow the conventions from [Diestel 1997]. For us a graph G = (V, E) is a simple graph on a finite
vertex set V . In particular, E is a subset of the set of 2-element subsets

(V
2

)
of V . In most of the cases

we assume that V = [n] = {1, . . . , n}. A subgraph of a graph G = (V, E) is a graph G ′ = (V ′, E ′) such
that V ′ ⊆ V and E ′ ⊆ E . Given two graphs G and G ′ we say that G contains G ′ if G has a subgraph
isomorphic to G ′.

More generally, a hypergraph H = (V, E) is a pair consisting of a finite set of vertices V and a set E
of subsets of V . We are only interested in the situation when the sets in E are inclusionwise incomparable.
Such a set of subsets is called a clutter.

For m, n > 0 we will use the following notation:

• Kn denotes the complete graph on n vertices, i.e., Kn = ([n], {{i, j} : 1≤ i < j ≤ n}),

• Km,n denotes the complete bipartite graph ([m] ∪ [ñ], {{i, j̃} : i ∈ [m], j̃ ∈ [ñ] }) with bipartition
[m] and [ñ] = {1̃, . . . , ñ}.

• Bn denotes the subgraph of Kn,n obtained by removing the edges {i, ĩ} for i = 1, . . . , n.

• For n > 2 we denote by Cn the cycle with n vertices, i.e., the subgraph of Kn with edges {1, 2},
{2, 3}, . . . , {n− 1, n}, {n, 1}.

• For n > 1 we denote by Pn the path with n vertices, i.e., the subgraph of Kn with edges {1, 2},
{2, 3}, . . . , {n− 1, n}.

We denote by G = (V, E) with E =
(V

2

)
\ E the graph complementary to G = (V, E). Let W ⊆ V .

We write GW = (W, {e ∈ E : e ⊆ W }) for the graph induced by G on vertex set W and G −W for the
subgraph induced by G on V \W . In case W = {v} for some v ∈ V we simply write G− v for G−{v}.

A graph G = ([n], E) with n ≥ k + 1 is called k-(vertex)connected if for every W ⊂ V with |W | =
k − 1 the graph G −W is connected. The degree deg(v) of a vertex v of G is |{e ∈ E : v ∈ e}| and
1(G) = maxv∈V deg(v). Clearly, if G = ([n], E) is k-connected then every vertex has degree at least
k and 1(G) ≤ n − k − 1. We denote by ω(G) the clique number of G, i.e., the largest a such that G
contains Ka . The following well known fact follows directly from the definitions.

Lemma 2.1. Given a graph G= ([n], E) and an integer 1≤ d ≤ n the following conditions are equivalent:

(1) G is (n−d)-connected.

(2) G does not contain Ka,b with a+ b = d + 1.
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2B. Basics on LSS-ideals and their generalization to hypergraphs. Let H = ([n], E) be a hypergraph.
For an integer d ≥ 1 we consider the polynomial ring S = k[yi` : i ∈ [n], ` ∈ [d]]. We define for e ∈ E

f (d)e =

d∑
`=1

∏
i∈e

yi`.

If E is a clutter we call the ideal

Lk
H (d)= ( f (d)e : e ∈ E )⊆ S

the LSS-ideal of the hypergraph H .
It will sometimes be useful to consider Lk

H (d) as a multigraded ideal. For that we equip S with the
multigrading induced by deg(yi`)= ei for the i-th unit vector ei in Zn and (i, `) ∈ [n]× [d]. Clearly, for
e ∈ E the polynomial f (d)e is multigraded of degree

∑
i∈e ei . In particular, Lk

H (d) is Zn-multigraded. The
following remark is an immediate consequence of the fact that if E is a clutter the two polynomials f (d)e

and f (d)e′ corresponding to distinct edges e, e′ ∈ E have incomparable multidegrees.

Remark 2.2. Let H = ([n], E) be a hypergraph such that E is clutter. The generators f (d)e , e ∈ E , of
Lk

H (d) form a minimal system of generators. In particular, Lk
H (d) is a complete intersection if and only

if the polynomials f (d)e , e ∈ E , form a regular sequence.

The following alternative description of Lk
G(d) for a graph G turns out to be helpful in some places.

Remark 2.3. Let G = ([n], E) be a graph. Consider the n × d matrix Y = (yi`). Then Lk
G(d) is the

ideal generated by the entries of the matrix Y Y T in positions (i, j) with {i, j} ∈ E . Here Y T denotes the
transpose of Y .

Similarly, for a bipartite graph G, say a subgraph of Km,n , one considers two sets of variables yi j

with (i, j) ∈ [m]× [d], zi j with (i, j) ∈ [d]× [n] and the matrices Y = (yi j ) and Z = (zi j ). Then Lk
G(d)

coincides (after renaming the variables in the obvious way) with the ideal generated by the entries of the
product matrix Y Z in positions (i, j) for {i, j̃} ∈ E .

2C. Gröbner bases. We use the following notations and facts from Gröbner bases theory, see for example
[Bruns and Conca 2003]. Consider the polynomial ring S = k[x1, . . . , xm]. For a vector

w= (wi : i ∈ [m]) ∈ Rm

and a nonzero polynomial

f =
∑
α∈N[m]

aαxα

we set mw( f )=maxaα 6=0{α ·w} and

inw( f )=
∑

α·w=mw( f )

aαxα.

The latter is called the initial form of f with respect to w. For an ideal I we denote by inw(I ) the ideal
generated by inw( f ) with f ∈ I \ {0}. For a term order ≺ we denote similarly by in≺( f ) the largest term
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of f and by in≺(I ) the ideal generated by in≺( f ) with f ∈ I \ {0}. The following will allow us to deduce
properties of ideals from properties of their initial ideals.

Proposition 2.4. Let I be a homogeneous ideal in the polynomial ring S and let τ be either a term order
≺ or a vector w ∈ Rm . If inτ (I ) is radical or a complete intersection or prime then so is I . Moreover, if
I = ( f1, . . . , fr ) and the elements inτ ( f1), . . . , inτ ( fr ) form a regular sequence then f1, . . . , fr form a
regular sequence and inτ (I )= (inτ ( f1), . . . , inτ ( fr )).

3. Known results and counterexamples for Lovász–Saks–Schrijver ideals

We recall results from [Herzog et al. 2015] and present examples showing that Lk
G(3) is not radical in

general. First observe that, for obvious reasons, Lk
G(1) is radical, it is a complete intersection if and only

if G is a matching and it is prime if and only if G has no edges. For d = 2 the following result from
[Herzog et al. 2015] gives a complete answer for two of the three properties under discussion.

Theorem 3.1 [Herzog et al. 2015, Theorems 1.1, 1.2 and Corollary 5.3]. Let G = ([n], E) be a graph. If
char k 6= 2 then the ideal Lk

G(2) is radical. If char k= 2 then Lk
G(2) is radical if and only if G is bipartite.

Furthermore, Lk
G(2) is prime if and only if G is a matching.

Indeed, in [Herzog et al. 2015] the characterization of the graphs G for which Lk
G(2) is prime is given

under the assumption that char k 6= 1, 2 mod (4) but it turns out that the statement holds as well in arbitrary
characteristic (see Proposition 4.4 for the missing details).

The next examples show that Lk
G(3) need not be radical. In the examples we assume that k has

characteristic 0 but we consider it very likely that the ideals are not radical over any field.
A quick criterion implying that an ideal J in a ring S is not radical is to identify an element g ∈ S such

that J : g 6= J : g2. We call such a g a witness (of the fact that J is not radical). Of course the potential
witnesses must be sought among the elements that are “closely related” to J . Alternatively, one can try to
compute the radical of J or even its primary decomposition directly and read off whether J is radical.
But these direct computations are extremely time consuming for LSS-ideals and did not terminate on our
computers in the examples below. Nevertheless, in all examples we have quickly identified witnesses.

Example 3.2. We present three examples of graphs G such that Lk
G(3) is not radical over any field k of

characteristic 0. The first example has 6 vertices and 9 edges and it is the smallest example we have
found (both in terms of edges and vertices). The second example has 7 vertices and 10 edges and it is a
complete intersection. This shows that Lk

G(3) can be a complete intersection without being radical. The
third example is bipartite, a subgraph of K5,4, with 12 edges, and is the smallest bipartite example we
have found. In all cases, since the LSS-ideal Lk

G(3) has integral coefficients, we may assume that k=Q

and exhibit a witness g, i.e., a polynomial g such that Lk
G(3) : g 6= Lk

G(3) : g
2. The latter inequality can

be checked with the help of CoCoA [Abbott et al. 2018] or Macaulay 2 [Grayson and Stillman 1993].

(1) Let G be the graph with 6 vertices and 9 edges depicted in Figure 1, left, i.e., with edges

E =
{
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

}
.
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Figure 1. Graphs G with nonradical Lk

G(3).

Here the witness can be chosen as follows. Denote by Y = (yi j ) a generic 6× 3 matrix. As discussed
in Remark 2.3 the ideal LQ

G(3) is generated by the entries of Y Y T corresponding to the positions in E .
Now g can be taken as the 3-minor of Y with row indices 1, 5, 6.

(2) Let G be the graph with 7 vertices and 10 edges depicted in Figure 1, middle, i.e., with edges

E =
{
{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 7}, {3, 4}, {3, 7}, {4, 5}, {5, 6}, {6, 7}

}
.

Here the witness can be chosen as follows. Denote by Y = (yi j ) a generic 7×3 matrix. Again as discussed
in Remark 2.3 the ideal LQ

G(3) is generated by the entries of Y Y T corresponding to the positions in E .
Now g can be taken as the 3-minor of Y with row indices 1, 2, 4. The fact that LQ

G(3) is a complete
intersection can be checked quickly with CoCoA [Abbott et al. 2018] or Macaulay 2 [Grayson and
Stillman 1993].

(3) Let G be the subgraph of the complete bipartite graph K5,4 depicted in Figure 1, right, i.e., with edges

E =
{
{1, 1̃}, {1, 2̃}, {1, 3̃}, {1, 4̃}, {2, 1̃}, {2, 2̃}, {3, 2̃}, {3, 3̃}, {4, 3̃}, {4, 4̃}, {5, 1̃}, {5, 4̃}

}
.

Denote by X = (xi j ) a generic 5× 3 matrix and by Y = (yi j ) a generic 3× 4 matrix. As explained in
Remark 2.3 the ideal LQ

G(3) is generated by the entries of XY corresponding to the positions in E . Now
the witness g can be taken to be the 3-minor of X corresponding to the column indices 1, 2, 4.

4. Stabilization of algebraic properties of Lk
G(d)

In this section we prove Theorem 1.1 and state some of its consequences. We recall first some facts on
the symmetric algebra of a module stating the results in the way that suit our needs best.

Recall that, given a ring R and an R-module M presented as the cokernel of an R-linear map

f : Rm
→ Rn

the symmetric algebra SymR(M) of M is (isomorphic to) the quotient of SymR(R
n) = R[x1, . . . , xn]

by the ideal J generated by the entries of A (x1, . . . , xn)
T , where A is the m× n matrix representing f .

Vice versa every quotient of R[x1, . . . , xn] by an ideal J generated by homogeneous elements of degree 1
in the xi ’s is the symmetric algebra of an R-module.
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Part (1) of the following is a special case of [Avramov 1981, Proposition 3] and part (2) a special case
of [Huneke 1981, Theorem 1.1]. Here and in the rest of the paper for a matrix A with entries in a ring R
and a number t we denote by It(A) the ideal of R generated by the t-minors of A.

Theorem 4.1. Let R be a complete intersection. Then:

(1) SymR(M) is a complete intersection if and only if height It(A)≥ m− t + 1 for all t = 1, . . . ,m.

(2) SymR(M) is a domain and Im(A) 6= 0 if and only if R is a domain, and height It(A)≥m− t + 2 for
all t = 1, . . . ,m.

The equivalent conditions of (2) imply those of (1).

Remark 4.2. Let G = ([n], E) be a graph. The ideal Lk
G(d)⊆ S = k[yi, j : i ∈ [n], j ∈ [d]] is generated

by elements that have degree at most one in each block of variables. Hence Lk
G(d) can be seen as an

ideal defining a symmetric algebra in various ways.
For example, set G1 =G−n, U = {i ∈ [n−1] : {i, n} ∈ E}, u = |U |, S′ = k[yi, j : i ∈ [n−1], j ∈ [d]]

and R = S′/Lk
G1
(d). Then S/Lk

G(d) is the symmetric algebra of the cokernel of the R-linear map

Ru
→ Rd

associated to the u× d matrix A = (yi j ) with i ∈U and j = 1, . . . , d .

Remark 4.3. In order to apply Theorem 4.1 to the case described in Remark 4.2 it is important to observe
that for every G no minors of the matrix (yi j )(i, j)∈[n]×[d] vanish modulo Lk

G(d). This is because Lk
G(d)

is contained in the ideal J generated by the monomials yik y jk and the terms in the minors of (yi j ) do not
belong to J for obvious reasons.

Proposition 4.4. Let G = ([n], E) be a graph. If Lk
G(d) is prime then G does not contain Ka,b with

a+ b > d.

Proof. Suppose by contradiction that Lk
G(d) is prime and G contains Ka,b for some a+ b > d . We may

decrease either a or b or both and assume right away that a + b = d + 1 with a, b ≥ 1. In particular
a, b ≤ d and a+ b ≤ n. We may assume that Ka,b is a subgraph of G with edges {i, a+ j} for i ∈ [a]
and j ∈ [b]. Set R = S/Lk

G(d) and Y = (yi `) ∈ Ra×d and Z = (z`,i ) ∈ Rd×b with z`,i = yi+a,`. Since
Ka,b is a subgraph of G we have Y Z = 0 in R. By assumption R is a domain and Y Z = 0 can be seen as
a matrix identity over the field of fractions of R. Hence

rank(Y )+ rank(Z)≤ d.

From a+b= d+1 it follows that rank(Y ) < a or rank(Z) < b. This implies that Ia(Y )= 0 or Ib(Z)= 0
as ideals of R. But by Remark 4.3 none of the minors of Y and Z are in Lk

G(d). This is a contradiction
and hence Lk

G(d) is not prime. �

Lemma 4.5. Let A be an m × n matrix with entries in a Noetherian ring R. Assume m ≤ n. Let
S = R[x] = R[x1, . . . , xm] be a polynomial ring over R and let B be the m× (n+ 1) matrix with entries
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in S obtained by adding the column (x1, . . . , xm)
T to A. Then we have height I1(B)= height I1(A)+m

and

height It(B)≥min
{
height It−1(A), height It(A)+m− t + 1

}
for all 1< t ≤ m.

Proof. Set u=min
{
height It−1(A), height It(A)+m−t+1

}
. Let P be a prime ideal of S containing It(B).

We have to prove that height P ≥ u. If P ⊇ It−1(A) then height P ≥ height It−1(A)≥ u. If P 6⊇ It−1(A)
then we may assume that the (t−1)-minor F corresponding to the first (t − 1) rows and columns of
A is not in P . Hence, height P = height P RF [x] and P RF [x] contains It(A)RF [x] and

(
x j − F−1G j :

j = t, . . . ,m
)

with G j ∈ R[x1, . . . , xt−1]. Since the elements x j − F−1G j are algebraically independent
over RF we have

height P RF [x] ≥ height It(A)RF + (m− t + 1)≥ height It(A)+ (m− t + 1). �

Proof of Theorem 1.1. To prove (1) we argue by induction on n. The induction base n ≤ 2 is obvious.
Assume n > 2. We use the notation from Remark 4.2 and set

S = k
[
yi j : i ∈ [n], j ∈ [d]

]
, S′ = k

[
yi, j : i ∈ [n− 1], j ∈ [d]

]
,

G1 = G− n, U = {i ∈ [n− 1] : {i, n} ∈ E}, u = |U |.

Note, that S′/Lk
G1
(d) is an algebra retract of S/Lk

G(d). Therefore Lk
G1
(d)= Lk

G(d)∩ S′ and so Lk
G1
(d)

is prime. By induction, it follows that Lk
G1
(d) is a complete intersection. Since u is the degree of the

vertex n in G we have that K1,u ⊂ G. Since Lk
G(d) is prime Proposition 4.4 implies 1+ u < d + 1, i.e.,

u < d. By virtue of Remark 4.3 we have that the minors of the matrix A are nonzero in S′/Lk
G1
(d). In

particular, Iu(A) 6= 0 in S′/Lk
G1
(d) and hence (2) in Theorem 4.1 holds. Then (1) in Theorem 4.1 holds

as well, i.e., Lk
G(d) is a complete intersection.

To prove (2) we again argue by induction on n. For n ≤ 2 the assertion is obvious. Assume n > 2.
We again use the notation G1 = G − n, U = {i ∈ [n] : {i, n} ∈ E}, u = |U |. In addition we set
Y = (yi j )(i, j)∈U×[d+1], S = k[yi j : i ∈ [n], j ∈ [d + 1]], S′ = k[yi j : i ∈ [n − 1], j ∈ [d + 1]] and
R = S′/Lk

G1
(d + 1). By construction, S/Lk

G(d + 1) is the symmetric algebra of the R-module presented
as the cokernel of the map Ru

→ Rd+1 associated to Y .
By assumption, Lk

G(d) is a complete intersection and hence Lk
G1
(d) is a complete intersection as well.

It then follows by induction that Lk
G1
(d + 1) is prime and hence R is a domain. Since the polynomials

f (d)
{i,n} with i ∈ U are a regular sequence contained in the ideal (ynj : 1 ≤ j ≤ d) we have u ≤ d and by

Remark 4.3 Iu(Y ) 6= 0 in R. Therefore, by Theorem 4.1(2) we have

Lk
G(d + 1) is prime ⇐⇒ height It(Y )≥ u− t + 2 in R for every t = 1, . . . , u.

Equivalently, we have to prove that

height
(
It(Y )+ Lk

G1
(d + 1)

)
≥ u− t + 2+ g in S′ for every t = 1, . . . , u,
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where g = height Lk
G1
(d + 1)= |E | − u.

Consider the weight vector w ∈Rn×(d+1) defined by wi j = 1 and wi d+1 = 0 for all j ∈ [d] and i ∈ [n].
By construction the initial forms of the standard generators of inw(Lk

G1
(d+1)) are the standard generators

of Lk
G1
(d). Since the standard generators of It(Y ) coincide with their initial forms with respect to w it

follows that inw(It(Y ))⊇ It(Y ) (indeed equality holds but we do not need this fact).
Therefore, inw(It(Y )+ Lk

G1
(d + 1))⊇ It(Y )+ Lk

G1
(d) and it is enough to prove that

height
(
It(Y )+ Lk

G1
(d)
)
≥ u− t + 2+ g in S′ for every t = 1, . . . , u

or, equivalently,
height It(Y )≥ u− t + 2 in R′ for every t = 1, . . . , u,

where R′ = S′/Lk
G1
(d).

The variables y1 d+1, . . . , yn−1 d+1 do not appear in the generators of Lk
G1
(d). Hence

R′ = R′′[y1 d+1, . . . , yn−1 d+1] with R′′ = k
[
yi j : (i, j) ∈ [n− 1]× [d]

]
/Lk

G1
(d).

Let Y ′ be the matrix Y with the (d+1)-st column removed. Then S/Lk
G(d) can be regarded as the

symmetric algebra of the R′′-module presented as the cokernel of the map

(R′′)u
Y ′
−→ (R′′)d . (1)

By assumption S/Lk
G(d) is a complete intersection. Hence by Theorem 4.1(1) we know

height It(Y ′)≥ u− t + 1 in R′′ for every t = 1, . . . , u

Since Y is obtained from Y ′ by adding a column of variables over R′′ by Lemma 4.5 we have

height It(Y )≥min
{
height It−1(Y ′), height It(Y ′)+ u− t + 1

}
≥ u− t + 2

in R′ and for all t = 1, . . . , u. �

Proof of Corollary 1.2. Assertion (1) in Corollary 1.2 is a formal consequence of Theorem 1.1. Assertion (2)
is obvious for complete intersections. Finally assume that Lk

G(d) is prime. Then by Theorem 1.1 Lk
G(d)

is a complete intersection. The statement now follows from a general fact: if a regular sequence generates
a prime ideal in a standard graded algebra or in a local ring then so does every subset of the sequence. �

5. Positive matching decompositions

In this section we introduce positive matching decompositions and prove Theorem 1.3.

Definition 5.1. Given a hypergraph H = (V, E) a positive matching of H is a subset M ⊂ E of pairwise
disjoint sets (i.e., a matching) such that there exists a weight function w : V → R satisfying:∑

i∈A

w(i) > 0 if A ∈ M,
∑
i∈A

w(i) < 0 if A ∈ E \M. (2)

The next lemma summarizes some elementary properties of positive matchings.
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Lemma 5.2. Let H = (V, E) be a hypergraph such that E is a clutter, M ⊆ E and VM =
⋃

A∈M A.

(1) M is a positive matching for H if and only if M is a positive matching for the induced hypergraph
(VM , {A ∈ E : A ⊆ VM}).

(2) Assume M is a positive matching on H and A ∈ E is such that M1 = M ∪{A} is a matching. Assume
also there is a vertex a ∈ A such that{

B ∈ E : B ⊂ VM1 and a ∈ B
}
= {A}.

Then M ∪ {A} is a positive matching of H.

(3) If H is a bipartite graph with bipartition V = V1 ∪ V2 then M is a positive matching if and only if M
is a matching and directing the edges e ∈ E from V1 to V2 if e ∈ M and from V2 to V1 if e ∈ E \M
yields an acyclic orientation.

Proof. (1) Set H1 = (VM , {A ∈ E : A ⊆ VM}). Clearly a weight function on V for which M is a positive
matching restricts to VM making M a positive matching of H1. Conversely, assume we are given a weight
function w on VM that makes M a positive matching. Then we extend w to V by assigning to the vertices
in V \ VM a weight sufficiently negative to induce a negative weight on the elements of E which contain
at least one element from V \ VM . For example, one can set w(i)=−|V |max{w( j) : j ∈ VM} for every
i ∈ V \ VM . Such an extension makes M a positive matching for H .

(2) Let w be a weight that makes M a positive matching of H . In view of (1), it is enough to prove
that there is a weight v defined on VM1 making M1 a positive matching for the restriction of H to VM1 .
We set v(i) = w(i) if i ∈ VM1 and i 6= a and we give v(a) a high enough value to have v(A) > 0, i.e.,
v(a) >−

∑
i∈A i 6=a w(i). Since there are no elements in E other than A that are contained in VM1 and

contain a the resulting weight v has the desired properties.

(3) We change the coordinates w(i) to −w(i) for i ∈ V2 in the inequalities defining a positive matchings.
As a simple reformulation of (2) we get that in these coordinates a matching M is positive if and only if
there is a weight function such that for {i, j} ∈ E , i ∈ V1, j ∈ V2 we have

w(i) > w( j) if {i, j} ∈ M, w(i) < w( j) if {i. j} ∈ E \M. (3)

This is equivalent to the existence of a region in the arrangement of hyperplanes w(i) = w( j) for
{i, j} ∈ E in RV satisfying (3). But it is well known that the regions in this arrangement are in one to one
correspondence with the acyclic orientations of G (see [Greene and Zaslavsky 1983, Lemma 7.1]). �

Now we are in position to introduce the key concept of this section.

Definition 5.3. Let H = (V, E) be a hypergraph for which E is a clutter. A positive matching decom-
position (or pm-decomposition) of G is a partition E =

⋃p
i=1 Ei into pairwise disjoint subsets such

that Ei is a positive matching on
(
V, E \

⋃i−1
j=1 E j

)
for i = 1, . . . , p. The Ei are called the parts of the

pm-decomposition. The smallest p for which G admits a pm-decomposition with p parts will be denoted
by pmd(H).
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Note that one has pmd(H)≤ |E | because of the obvious pm-decomposition
⋃

A∈E {A}. On the other
hand pmd(G) is smaller than |E | for most clutters. For graphs we have:

Lemma 5.4. Let G = ([n], E) be a graph. Then:

(1) pmd(G)≤min(2n− 3, |E |).

(2) If G is bipartite then pmd(G)≤min(n− 1, |E |).

(3) pmd(G)≥1(G) with equality if G is a forest.

Proof. (1) Since we have already argued that pmd(G) ≤ |E | to prove the first statement we have to
show that pmd(G)≤ 2n− 3. To this end we may assume that G is the complete graph Kn because any
pm-decomposition of Kn induces a pm-decomposition on its subgraphs. For `= 1, . . . , 2n− 3 we set
E`={{i, j} : i+ j = `+2}. Clearly one has E =

⋃2n−3
`=1 E`. So to prove that this is a pm-decomposition of

Kn we have to prove that Et is a positive matching on G t =
(
[n],

⋃2n−3
`=t E`

)
. To this end we build Et by

inserting the edges one by one starting from those that involve vertices with smaller indices and repeatedly
use Lemma 5.2(2) to prove that we actually get a positive matching. For example for n = 8, to prove that
E7 is a positive matching on G7 we order the elements in E7 as follows {4, 5}, {3, 6}, {2, 7}, {1, 9}. We
assume we know already that {{4, 5}, {3, 6}} is a positive matching and use Lemma 5.2(2) with A= {2, 7}
and a = 2 to prove that {{4, 5}, {3, 6}, {2, 7}} is a positive matching as well.

(2) In this case it is enough to prove that pmd(Km,n) ≤ n +m − 1. For ` = 1, . . . ,m + n − 1 we set
E` = {{i, j̃} : i + j = ` + 1}. Clearly one has E =

⋃m+n−1
`=1 E`. So to prove that this is a positive

matching decomposition of Km,n we have to prove that E` is a positive matching on E \
⋃`−1

k=1 Ek for
`= 1, . . . ,m+ n− 1.

For `= 1 the assertion is obvious since E1 contains a single edge. Now assume `≥ 2. By Lemma 5.2(3)
it suffices to show that directing the edges in E` from [m] to [ñ] and the edges in E \

⋃`
k=1 Ek in the

other direction yields an acyclic orientation. Assume the resulting directed graph has a directed cycle.
Let {i, j̃} ∈ E` be the edge from E` in this directed cycle for which j is minimal. The directed edge
following the edge i→ j̃ in the directed cycle is of the form j̃→ i ′ for some i ′ with i ′+ j > `+ 1. This
implies i ′ > i . Now let i ′→ j̃ ′ be the edge following j̃→ i ′ in the directed cycle. Then {i ′, j̃ ′} ∈ E` and
i ′+ j ′ = `+ 1. But this yields j ′ < j which contradicts the minimality of j . Hence there is no directed
cycle and E` is a positive matching on E \

⋃`−1
k=1 Ek .

(3) The inequality 1(G)≤ pmd(G) is obvious. To prove that equality holds if G is a forest we argue by
induction on the number of vertices. We may assume {n− 1, n} ∈ E and that n is a leaf of G. Hence
G1 = G− n is a forest on n− 1 vertices and by induction there exists a positive matching decomposition
E1, . . . , E p of G1 with p = 1(G1). If 1(G1) < 1(G) we may simply set E p+1 = {{n − 1, n}} and
note that, by virtue of Lemma 5.2(1), E1, . . . , E p+1 is a positive matching decomposition of G. If
instead 1(G1) = 1(G) then there exists i such that n − 1 6∈ VEi and hence E ′i = Ei ∪ {{n − 1, n}}
is a matching. Using (1) and (2) of Lemma 5.2 one easily checks that the resulting decomposition
E1, . . . , Ei−1, E ′i , Ei+1 . . . , E p is a positive matching decomposition of G. �
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Next we connect positive matching decompositions to algebraic properties of LSS-ideals.

Lemma 5.5. Let H = (V, E) be a hypergraph such that E is a clutter, d≥ p=pmd(H) and E=
⋃p
`=1 E`

a positive matching decomposition. Then there exists a term order < on S such that for every ` and every
A ∈ E` we have

in<( f (d)A )=
∏
i∈A

yi`. (4)

Proof. To define < we first define weight vectors w1, . . . ,wp ∈ RV×[d]. For that purpose we use the
weight functions w` : V → R, associated to each matching E`, `= 1, . . . , p. The weight vector w` is
defined as follows:

• w`(yik)= 0 if k 6= `, and

• w`(yi`)= w`(i).

By construction it follows that:

inw1( f (d)A )=

{∏
i∈A yi1 if A ∈ E1,∑d
k=2

∏
i∈A yik if A ∈ E \ {E1}.

(5)

We define the term order < as follows: yα < yβ if

(1) |α|< |β|, or

(2) |α| = |β| and w`(yα) <w`(yβ) for the smallest ` such that w`(yα) 6=w`(yβ), or

(3) |α| = |β| and w`(yα)=w`(yβ) for all ` and yα <0 yβ for an arbitrary but fixed term order <0.

Now a simple induction shows that for all ` and for all A ∈ E` we have in<( f (d)A )=
∏

i∈A yi`. �

Proof of Theorem 1.3. Let d ≥ p= pmd(G) and E =
⋃p
`=1 E` a pm-decomposition of G. By Lemma 5.5

there is a term order< satisfying (4). Since each E`, `= 1, . . . , p, is a matching (4) implies that the initial
monomials of the generators f (d)A of Lk

H (d) are pairwise coprime and square free. Then the assertion
follows from Proposition 2.4. The rest follows from Theorem 1.1. �

The following is an immediate consequence of Theorem 1.3 and Lemma 5.4:

Corollary 5.6. Let G = ([n], E) be a graph. Then Lk
G(d) is a radical complete intersection for d ≥

min{2n − 3, |E |} and prime for d ≥ min{2n − 3, |E |} + 1. If G is bipartite then Lk
G(d) is a radical

complete intersection for d ≥min{n− 1, |E |} and prime for d ≥min{n− 1, |E |} + 1.

6. Proofs of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4. (1) By Proposition 4.4 if Lk
G(3) is prime then G does not contain K1,3 and K2,2.

Now assume G does not contain K1,3 and K2,2. In addition, we may assume that k is algebraically
closed. Since the tensor product over k of k-algebras that are domains is a domain (see the Corollary
to Proposition 1 in Bourbaki’s Algebra [Bourbaki 1990, Chapter V, 17]) we may also assume that the
graph is connected. A connected graph not containing K1,3 and K2,2 is either an isolated vertex or a path
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Pn on n > 1 vertices or a cycle Cn with n vertices for n = 3 or n ≥ 5. For an isolated vertex we have
Lk

G(3)= (0). Hence we have to prove that Lk
G(3) is prime when G = Pn for n ≥ 2 or G = Cn for n = 3

or n ≥ 5. If G = Pn then by Lemma 5.4 pmd(Pn)=1(Pn)≤ 2. Hence by Theorem 1.3 it follows that
Lk

Pn
(3) is prime.

Now let G=Cn for n=3 or n≥5 and set m=n−1. To prove that Lk
Cn
(3) is prime we use the symmetric

algebra perspective. Observe that Cn − n is Pm = Pn−1. Set J = Lk
Pm
(3), S = k[yi j : i ∈ [m], j ∈ [3]]

and R = S/J . We have already proved that J is a prime complete intersection of height m− 1. We have
to prove that the symmetric algebra of the cokernel of the R-linear map

R2 Y
−→ R3 with Y =

(
y11 y12 y13

ym1 ym2 ym3

)
is a domain. Since by Remark 4.3 I2(Y ) 6= 0 in R, taking into consideration Remark 4.2 we may apply
Theorem 4.1. Therefore, it is enough to prove that

height I1(Y )≥ 3 and height I2(Y )≥ 2 in R.

Equivalently, it is enough to prove that in S

height I1(Y )+ J ≥ m+ 2, (6)

height I2(Y )+ J ≥ m+ 1. (7)

First we prove (6). Since height I1(Y ) = 6 in S then (6) is obvious for m ≤ 4. For m > 4 observe that
I1(Y )+ J can be written as I1(Y )+H , where H is the LSS-ideal of the path with vertices 2, 3, . . . ,m−1.
Because I1(Y ) and H use disjoint set of variables, we have

height I1(Y )+ H = 6+m− 3= m+ 3

and this proves (6). Now we note that the condition height I2(Y )≥ 1 holds in R because R is a domain
and I2(Y ) 6= 0. Hence we deduce from Theorem 4.1(1) that Lk

Cn
(3) is a complete intersection for all

n ≥ 3.
It remains to prove (7). Since I2(Y ) is a prime ideal of S of height 2 and J 6⊂ I2(Y ) the ideal I2(Y )+ J

has height at least 3. Hence the assertion (7) is obvious for m = 2, i.e., n = 3. Therefore, we may
assume m ≥ 4 (here we use n 6= 4). Let P be a prime ideal of S containing I2(Y )+ J . We have to
prove that height P ≥ m + 1. If P contains I1(Y ) then height P ≥ m + 2 by (6). So we may assume
that P does not contain I1(Y ), say y11 6∈ P , and prove that height P Sx ≥ m + 1, where x = y11. Since
I2(Y )Sx = (ym2− x−1 ym1 y12, ym3− x−1 ym1 y13) we have

f (3)m−1,m = ym−1,1 ym1+ ym−1,2 ym2+ ym−1,3 ym3

= ym−1,1 ym1+ ym−1,2x−1 ym1 y12+ ym−1,3x−1 ym1 y13

= x−1 ym1 f (3)1,m−1 mod I2(Y )Sx .
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From f (3)m−1,m ∈ J it follows that ym1 f (3)1,m−1 ∈ P Sx . This implies that either ym1 ∈ P Sx or f (3)1,m−1 ∈ P Sx .
In the first case P Sx contains ym1, ym2, ym3 and the LSS-ideal associated to the path with vertices
1, . . . ,m− 1. Hence height P Sx ≥ 3+m− 2= m+ 1 as desired. Finally, if f (3)1,m−1 ∈ P Sx we have that
P Sx contains the ideal Lk

Cm−1
(3) associated to the cycle with vertices 1, . . . ,m− 1 and we have already

observed that this ideal is a complete intersection. Since ym2− x−1 ym1 y12, ym3− x−1 ym1 y13 are in P Sx

as well it follows that height P Sx ≥ 2+m− 1= m+ 1.

(2) For the “only if” part we note that if Lk
G(2) is a complete intersection then Lk

G(3) is prime by
Theorem 1.1 and hence G does cannot contain K1,3 by Proposition 4.4. Suppose, by contradiction, that G
contains C2m for some m ≥ 2. Hence Lk

C2m
(2) is a complete intersection of height 2m. But the generators

of Lk
C2m
(2) are (up to sign) among the 2-minors of the matrix(

y11 −y22 y31 . . . y2m−1,1 −y2m,2

y12 y21 y32 . . . y2m−1,2 y2m,1

)
and the ideal of 2-minors of such a matrix has height 2m− 1, a contradiction.

For the converse implication, we may assume that k is algebraically closed. Since the tensor product
over a perfect field k of reduced k-algebras is reduced [Bourbaki 1990, Theorem 3, Chapter V, 15],
we may also assume that G is connected. A connected graph satisfying the assumptions is either an
isolated vertex, or a path or a cycle with an odd number of vertices. We have already observed that
pmd(Pn)=1(Pn)≤ 2. By Theorem 1.3 it follows that Lk

Pn
(2) is a complete intersection. It remains to

prove that Lk
C2m+1

(2) is a complete intersection (of height 2m+ 1). Note that Lk
P2m+1

(2)⊂ Lk
C2m+1

(2) and
we know already that Lk

P2m+1
(2) is a complete intersection of height 2m. Hence it remains to prove that

f (2)1,2m+1 does not belong to any minimal prime of Lk
P2n+1

(2). The generators of Lk
P2n+1

(2) are (up to sign)
the adjacent 2-minors of the matrix(

y11 −y22 y31 . . . y2m−1,1 −y2m,2 y2m+1,1

y12 y21 y32 . . . y2m−1,2 y2m,1 y2m+1,2

)
.

The minimal primes of Lk
P2n+1

(2) are described in the proof of [Diaconis et al. 1998, Theorem 4.3], see
also [Hoşten and Sullivant 2004; Herzog et al. 2010]. By the description given in [Diaconis et al. 1998] it
is easy to see that all minimal primes of Lk

P2n+1
(2) with the exception of I2(Y ) are contained in the ideal

Q = (yi j : 2< i < 2m+ 1, 1≤ j ≤ 2). Clearly, f (2)1,2m+1 6∈ Q. Finally, one has f (2)1,2m+1 6∈ I2(Y ) since the
monomial y11 y2m+1,1 is divisible by no monomials in the support of the generators of I2(Y ). �

We proceed with the proof of Theorem 1.5. We first formulate a more general statement. For this we
need to introduce the concept of Cartwright–Sturmfels ideals. This concept was coined in [Conca et al.
2016] inspired by earlier work in [Conca et al. 2015; Cartwright and Sturmfels 2010]. It was further
developed and applied to various classes of ideals in [Conca et al. 2017; 2018].

Consider for d1, . . . , dn ≥ 1 the polynomial ring S = k[yi j : i ∈ [n], j ∈ [di ]] with multigrading
deg yi j = ei ∈ Zn . The group G =GLd1(k)×· · ·×GLdn (k) acts naturally on S as the group of Zn-graded
K -algebra automorphism. The Borel subgroup of G is B =Ud1(k)× · · ·×Udn (k), where Ud(k) denotes
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the subgroup of upper triangular matrices in GLd(k). A Zn-graded ideal J is Borel fixed if g(J ) = J
for every g ∈ B. A Zn-graded ideal I of S is called a Cartwright–Sturmfels ideal if there exists a radical
Borel fixed ideal J with the same multigraded Hilbert-series.

Theorem 6.1. For d1, . . . , dn ≥ 1 let S = k[yi j : i ∈ [n], j ∈ [di ]] be the polynomial ring with Zn

multigrading induced by deg yi j = ei ∈ Zn and G = (V, E) be a forest. For each e = {i, j} ∈ E let fe ∈ S
be a Zn-graded polynomial of degree ei + e j . Then I = ( fe : e ∈ E) is a Cartwright–Sturmfels ideal. In
particular, I and all its initial ideals are radical.

Proof. First, we observe that we may assume that the generators fe of I form a regular sequence. To
this end we introduce new variables and for each e = {i, j} ∈ E we add to fe a monomial me in the new
variables of degree ei + e j so that me and me′ are coprime if e 6= e′. The new polynomials fe+me with
e ∈ E form a regular sequence by Proposition 2.4 since their initial terms with respect to an appropriate
term order are the pairwise coprime monomials me. The ideal I arises as a multigraded linear section of
the ideal ( fe+me : e ∈ E) by setting all new variables to 0. By [Conca et al. 2015, Theorem 1.16(5)] the
family of Cartwright–Sturmfels ideals is closed under any multigraded linear section. Hence it is enough
to prove the statement for the ideal ( fe+me : e ∈ E). Equivalently we may assume right away that the
generators fe of I form a regular sequences.

The multigraded Hilbert series of a multigraded S-module M can by written as

KM(z1, . . . , zn)∏n
i=1(1− zi )di

.

The numerator KM(z1, . . . , zn) is a Laurent polynomial with integral coefficients called the K -polynomial
of M . Since the fe’s form a regular sequence the K -polynomial of S/I is the polynomial

F(z)= F(z1, . . . , zn)=
∏
{i, j}∈E

(1− zi z j ) ∈Q[z1, . . . , zn].

To prove that I is Cartwright–Sturmfels we have to prove that there is a Borel-fixed radical ideal J
such that the K -polynomial of S/J is F(z). Taking into consideration the duality between Cartwright–
Sturmfels ideals and Cartwright–Sturmfels∗ ideals discussed in [Conca et al. 2016], it is enough to exhibit
a monomial ideal J whose generators are in the polynomial ring S′ = k[y1, y2, . . . , yn] equipped with
the (fine) Zn-grading deg yi = ei ∈ Zn such that the K -polynomial of J regarded as an S′-module is
F(1− z1, . . . , 1− zn), that is, ∏

{i, j}∈E

(zi + z j − zi z j ).

We claim that, under the assumption that ([n], E) is a forest, the ideal

J =
∏
{i, j}∈E

(yi , y j )
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has the desired property. In other words, we have to prove that the tensor product

TE =
⊗
{i, j}∈E

T{i, j}

of the truncated Koszul complexes

T{i, j} : 0→ S′(−ei − e j )→ S′(−ei )⊕ S′(−e j )→ 0

associated to yi , y j resolves the ideal J . Consider a leaf {a, b} of E . Set E ′ = E \ {{a, b}},

J ′ =
∏
{i, j}∈E ′

(yi , y j )

and J ′′ = (ya, yb). Then by induction on the number of edges we have that TE ′ resolves the ideal J ′.
Then the homology of TE is TorS′

∗
(J ′, J ′′). Since {a, b} is a leaf, one of the two variables ya, yb does not

appear at all in the generators of J ′. Hence ya, yb forms a regular J ′-sequence. Then TorS′
≥1(J

′, J ′′)= 0
and hence TE resolves J ′ ⊗ J ′′. Finally, J ′ ⊗ J ′′ = J ′ J ′′ since TorS′

1 (J
′, S/J ′′) = 0. This concludes

the proof that the ideal I is a Cartwright–Sturmfels ideal. Every initial ideal of a Cartwright–Sturmfels
ideal is a Cartwright–Sturmfels ideal as well because this property just depends on the Hilbert series. In
particular, every initial ideal of a Cartwright–Sturmfels ideal is radical. �

Proof of Theorem 1.5. Setting d1 = · · · = dn = d and fe = f (d)e in Theorem 6.1 we have that Lk
G(d)

is a Cartwright–Sturmfels ideal and hence radical. Assertions (2) and (3) follow from Lemma 5.4,
Theorem 1.3, Proposition 4.4 and Theorem 1.1. �

7. Invariant theory, determinantal ideals of matrices with 0’s and their relation to LSS-ideals

The first goal of this section is to recall some classical results from invariant theory, see for example
the paper by De Concini and Procesi [1976]. In particular, we recall how determinantal/Pfaffian rings
arise as invariant rings of group actions. We assume throughout this section that the base field k is of
characteristic 0. After the recap of invariant theory we will establish the connection to LSS-ideals.

7A. Generic determinantal rings as rings of invariants (gen). We take an m × n matrix of variables
Xgen

m,n = (xi j ) and consider the ideal I k
d+1(X

gen
m,n) of Sgen

= k[xi j : (i, j) ∈ [m] × [n]] generated by the
(d+1)-minors of Xgen

m,n . Consider two matrices of variables Y and Z of size m × d and d × n and the
following action of G=GLd(k) on the polynomial ring k[Y, Z ]: The matrix A ∈G acts by the k-algebra
automorphism of k[Y, Z ] that sends Y → Y A and Z→ A−1 Z . The entries of the product matrix Y Z are
clearly invariant under this action. Hence the ring of invariants k[Y, Z ]G contains the subalgebra k[Y Z ]
generated by the entries of the product Y Z . The first main theorem of invariant theory for this action says
that k[Y, Z ]G = k[Y Z ]. We have a surjective k-algebra map

φ : Sgen
→ k[Y, Z ]G = k[Y Z ]
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sending X to Y Z . Clearly the product matrix Y Z has rank d and hence we have I k
d+1(X

gen
m,n) ⊆ Kerφ.

The second main theorem of invariant theory says that I k
d+1(X

gen
m,n)= Kerφ. Hence

S/I k
d+1(X

gen
m,n)' k[Y Z ]. (8)

7B. Generic symmetric determinantal rings as rings of invariants (sym). We take an n× n symmetric
matrix of variables X sym

n = (xi j ) and consider the ideal I k
d+1(X

sym
n ) in Ssym

= k[xi j : 1 ≤ i ≤ j ≤ n]
generated by the (d+1)-minors of X sym

n . Consider a matrix of variables Y of size n×d and the following
action of the orthogonal group G=Od(k)= {A ∈GLd(k) : A−1

= AT
} on the polynomial ring k[Y ]: any

A ∈G acts by the k-algebra automorphism of k[Y ] that sends Y to Y A. The entries of the product matrix
Y Y T are invariant under this action and hence the ring of invariants contains the subalgebra k[Y Y T

]

generated by the entries of Y Y T . The first main theorem of invariant theory for this action asserts that
k[Y ]G = k[Y Y T

]. Then we have a surjective presentation

φ : Ssym
→ k[Y Y T

]

sending X to Y Y T . Since the product matrix Y Y T has rank d we have Id+1(X) ⊆ Kerφ. The second
main theorem of invariant theory then says that Id+1(X)= Kerφ. Hence

Ssym/I k
d+1(X

sym
n )' k[Y Y T

]. (9)

7C. Generic Pfaffian rings as rings of invariants (skew). We take an n× n skew-symmetric matrix of
variables X skew

n = (xi j ) and consider the ideal Pf k
2d+2(X) generated by the Pfaffians of size (2d + 2) of

X skew
n in Sskew

= k[xi j : 1≤ i < j ≤ n]. Consider a matrix of variables Y of size n× 2d and let J be the
2d × 2d block matrix with d blocks (

0 1
−1 0

)
on the diagonal and 0 in the other positions. The symplectic groupG=Sp2d(k)={A∈GL2t(k):AJ AT

= J }
acts on the polynomial ring k[Y ] as follows: an A ∈ G acts on k[Y ] by the automorphism that sends
Y → Y A. The entries of the product matrix Y JY T are invariant under this action and hence the ring of
invariants contains the subalgebra k[Y JY T

] generated by the entries of Y JY T. The first main theorem
of invariant theory for the current action says that k[Y ]G = k[Y JY T

]. Then we have a surjective
presentation: φ : Sskew

→ k[Y Y T
] sending X to Y JY T. The product matrix Y JY T has rank 2d and

hence we have Pf k
2d+2(X)⊆ Kerφ. The second main theorem of invariant theory for this action says that

Pf k
2d+2(X)= Kerφ. Hence

Sskew/Pf k
2d+2(X

skew
n )' k[Y JY T

]. (10)

7D. Determinantal ideals of matrices with 0’s and their relation to LSS-ideals. The classical invariant
theory point of view shows that the generic determinantal and Pfaffian ideals are prime as they are kernels
of ring maps whose codomains are integral domains. Their height is also well known (see for example
[Bruns and Vetter 1988]):
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(gen) The height of the ideal I k
d (X

gen
m,n) of d-minors of a m×n matrix of variables is (n+1−d)(m+1−d).

(sym) The height of the ideal I k
d (X

sym
n ) of d-minors of a symmetric n×n matrix of variables is

(n−d+2
2

)
.

(skew) The height of the ideal of Pfaffians Pf k
2d(X skew

n ) of size 2d (and degree d) of an n × n skew-
symmetric matrix of variables is

(n−2d+2
2

)
.

If one replaces the entries of the matrices with general linear forms in, say, u variables, then Bertini’s
theorem in combination with the fact that the generic determinantal/Pfaffian rings are Cohen–Macaulay
implies that the determinantal/Pfaffian ideals remain prime as long as u ≥ 2+ height and radical if
u ≥ 1+ height.

But what about the case of special linear sections of determinantal ideals of matrices? And what about
the case of coordinate sections? Are the corresponding ideals prime or radical? To describe coordinate
sections we employ the following notation.

(gen) In the generic case we take a bipartite graph G = ([m] ∪ [ñ], E) and denote by Xgen
G the matrix

obtained from the m× n matrix of variables by replacing the entries in position (i, j) with 0 for
all {i, j̃} ∈ E .

(sym) In the generic symmetric case we take a subgraph G = ([n], E) of Kn and denote by X sym
G the

matrix obtained from the n× n symmetric matrix of variables by replacing with 0 the entries in
position (i, j) and ( j, i) for all {i, j} ∈ E .

(skew) In the generic skew-symmetric case we take a subgraph G = ([n], E) of Kn and denote by X skew
G

the matrix obtained from the skew-symmetric matrix of variables by replacing with 0 the entries
in position (i, j) and ( j, i) for all {i, j} ∈ E .

In this terminology I k
d (X

gen
G ) is the ideal of d-minors of Xgen

G in Sgen and similarly in the symmetric
case. We write Pf k

2d(X
skew
G ) for the ideal of Pfaffians of size 2d of X skew

G in Sskew. We ask for conditions
on G that imply that I k

d (X
gen
G ), I k

d (X
sym
G ) or Pf k

2d(X
skew
G ) is radical or prime or has the expected height.

Clearly, special linear sections of generic determinantal ideals can give nonprime and nonradical ideals.
On the positive side, for maximal minors, we have the following results:

Remark 7.1. (1) Eisenbud [1988] proved that the ideal of maximal minors of a 1-generic m× n matrix
of linear forms is prime and remains prime even after modding out any set of ≤ m− 2 linear forms.
In particular, the ideal of maximal minors of an m× n matrix of linear forms is prime provided the
ideal generated by the entries of the matrix has at least m(n− 1)+ 2 generators.

(2) Giusti and Merle [1982] studied the ideal of maximal minors of coordinate sections in the generic case.
One of their main results, [Giusti and Merle 1982, Theorem 1.6.1] characterizes, in combinatorial
terms, the subgraphs G of Km,n , m ≤ n, such that the variety associated to I k

m(X
gen
G ) is irreducible,

i.e., the radical of I k
m(X

gen
G ) is prime.
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(3) Boocher [2012] proved that for any subgraph G of Km,n , m ≤ n, the ideal I k
m(X

gen
G ) is radical.

Combining his result with the result of Giusti and Merle, one obtains a characterization of the graphs
G such that I k

m(X
gen
G ) is prime.

(4) Generalizing the result of Boocher, in [Conca et al. 2015; 2016] it is proved that ideals of maximal
minors of a matrix of linear forms that is either row or column multigraded is radical.

In the generic case every nonzero minor of a matrix of type Xgen
G has no multiple factors because its

multidegree is square-free. This explains, at least partially, why the determinantal ideals of Xgen
G have the

tendency to be radical. However, the following example shows that they are not radical in general.

Example 7.2. Let Xgen
G be the 6× 6 matrix associated to the graph from Example 3.2(3). That is, in the

6× 6 generic matrix we set to 0 the entries in positions

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2), (3, 3), (4, 3), (4, 4), (5, 1), (5, 4).

Then I k
4 (X

gen
G ) is not radical over a field of characteristic 0 and very likely over any field. Here the

“witness” is g = x1,5, i.e., I k
4 (X

gen
G ) : g 6= I k

4 (X
gen
G ) : g2. Since G is contained in K5,4 one can consider as

well I k
4 (X

gen
G ) in the 5× 5 matrix but that ideal turns out to be radical.

Similarly for symmetric matrices we have:

Example 7.3. Let X sym
G be the 7×7 generic symmetric matrix associated to the graph from Example 3.2(1).

That is, in the 7× 7 generic symmetric matrix we set to 0 the entries in positions

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

as well as in the symmetric positions. Then I k
4 (X

sym
G ) is not radical over a field of characteristic 0. The

witness here is g = x1,6. Since G is contained in K6 one can consider as well I k
4 (X

sym
G ) in the 6× 6

matrix but that ideal turns out to be radical.

It turns out that Examples 3.2, 7.2 and 7.3 are indeed closely related as we now explain.
Let G = ([m] ∪ [ñ], E) be a subgraph of the complete bipartite graph Km,n . In view of the isomor-

phism (8) we have that

Sgen/
(
I k
d+1(X

gen
m,n)+ (xi j : {i, j̃} ∈ E)

)
' k[Y Z ]/JG(d),

where Y = (yi j ), Z = (zi j ) are respectively m× d and d× n matrices of variables and JG(d) is the ideal
of k[Y Z ] generated by (Y Z)i, j with {i, j̃} ∈ E . Furthermore

I k
d+1(X

gen
m,n)+ (xi j : {i, j̃} ∈ E)= I k

d+1(X
gen
G )+ (xi j : {i, j̃} ∈ E).

The LSS-ideal Lk
G(d)⊂k[Y, Z ] is indeed equal to JG(d)k[Y, Z ]. Now it is a classical result in invariant

theory (derived from the fact that linear groups are reductive in characteristic 0), that k[Y Z ] is a direct
summand of k[Y, Z ] in characteristic 0. This implies that

JG(d)= Lk
G(d)∩ k[Y Z ].



Lovász–Saks–Schrijver ideals and coordinate sections of determinantal varieties 475

The next proposition is an immediate consequence.

Proposition 7.4. Let k be a field of characteristic 0, d ≥ 1 and G = ([m] ∪ [ñ], E) be a subgraph
of Km,n . If Lk

G(d) is radical (resp. is a complete intersection, is prime) then I k
d+1(X

gen
G ) is radical (resp.

has maximal height, is prime).

Now we start from a subgraph G of Kn . For d + 1 ≤ n we may consider the coordinate section
I k
d+1(X

sym
G ) of I k

d+1(X
sym
n ). Using the isomorphism (9) we obtain:

Proposition 7.5. Let k be a field of characteristic 0 and G = ([n], E) a graph. If Lk
G(d) is radical (resp.

is a complete intersection, is prime) then I k
d+1(X

sym
G ) is radical (resp. has maximal height, is prime).

For 2d + 2≤ n we may consider the coordinate section Pf k
2d+2(X

skew
G ) of Pf k

2d+2(X
skew
n ). We may as

well consider the associated twisted LSS-ideal L̂k
G(d) defined as follows. For every i ∈ [n] we consider

2d indeterminates yi 1, . . . , yi 2d . For e = {i, j}, 1≤ i < j ≤ n we set f̂ (d)e to be the entry of the matrix
Y JY T in row i and column j , i.e.,

f̂ (d)e =

d∑
k=1

(
yi 2k−1 y j 2k − yi 2k y j 2k−1

)
.

Then we define the twisted LSS-ideal associated to G as follows:

L̂k
G(d)= ( f̂ (d)e : e ∈ E).

For d = 1 the twisted LSS-ideal coincides with the so-called binomial edge ideal defined and studied
in [Herzog et al. 2010; Kiani and Saeedi Madani 2016; Matsuda and Murai 2013; Ohtani 2011].

Remark 7.6. Assume G is bipartite with bipartition [n] = V1 ∪ V2 then the coordinate transformation
(see [Bolognini et al. 2018, Corollary 6.2])

yi 2k−1 7→ yi 2k−1 and yi 2k 7→ yi 2k for i ∈ V1,

y j 2k 7→ y j 2k−1 and y j 2k−1 7→ −y j 2k for j ∈ V2,

sends L̂k
G(d) to Lk

G(2d). In particular, for a bipartite graph G we have that L̂k
G(d) is radical (resp. prime)

if and only if Lk
G(2d) is radical (resp. prime).

Using the isomorphism (10) we obtain:

Proposition 7.7. Let k be a field of characteristic 0 and G = ([n], E) a graph. If L̂k
G(d) is radical (resp.

is a complete intersection, is prime) then Pf k
2d+2(X

skew
G ) is radical (resp. has maximal height, is prime).

Now, in characteristic 0, the results that we have established for LSS-ideals can be turned into statements
concerning coordinate sections of determinantal ideals.

Theorem 7.8. Let k be a field of characteristic 0.

(1) For every subgraph G of Km,n the ideals I k
2 (X

gen
G ) and I k

3 (X
gen
G ) are radical.

(2) For every subgraph G of Kn the ideals I k
2 (X

sym
G ) and I k

3 (X
sym
G ) are radical.
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(3) For every subgraph G of Kn the ideal Pf k
4 (X

skew
G ) is radical.

Furthermore if G is a forest then:

(4) I k
d (X

gen
G ), I k

d (X
sym
G ) and Pf k

2d(X
skew
G ) are radical for all d.

(5) I k
d (X

gen
G ) and I k

d (X
sym
G ) have maximal height if d ≥1(G)+ 1.

(6) I k
d (X

gen
G ) and I k

d (X
sym
G ) are prime if d ≥1(G)+ 2.

Proof. The statements for ideals of 2-minors follow from Propositions 7.4 and 7.5 using the fact that the
edge ideal of a graph is radical. Indeed these results hold over a field of arbitrary characteristic as the
corresponding ideals are “toric.”

By [Herzog et al. 2015, Theorem 1.1] the ideal Lk
G(2) is radical for all graphs G. Using Propositions 7.4

and 7.5 this implies that I k
3 (X

gen
G ) is radical for bipartite graphs G and I k

3 (X
sym
G ) is radical for arbitrary

graphs.
By [Herzog et al. 2010, Corollary 2.2] the ideal L̂k

G(1) is radical for all graphs G. Using Proposition 7.7
this implies that Pf k

4 (X
skew
G ) is radical for arbitrary graphs.

Finally, for a forest G the results in the case of minors are derived from Propositions 7.4, 7.5 and
Theorem 1.5. In the Pfaffian case they follow using Theorem 6.1 and Proposition 7.7. �

The following corollary is an immediate consequence of assertion (3) in Theorem 7.8.

Corollary 7.9. Let G(2, n) be the coordinate ring of the Grassmannian of 2-dimensional subspaces in kn

in its standard Plücker coordinates. Then any subset of the Plücker coordinates generates a radical ideal
in G(2, n).

A statement analogous to Corollary 7.9 for higher order Grassmannians is not true. Indeed, the point is
that a set of m-minors of a generic matrix m× n does not generate a radical ideal in general (as it does
for m = 2). For example, in the Grassmannian G(3, 6) modulo [123], [124], [135], [236] the class of
[125][346] is a nonzero nilpotent.

Next we look into necessary conditions for I k
d (X

gen
G ) and I k

d (X
sym
G ) to be prime.

Lemma 7.10. Let G = ([n],G) be a graph.

(1) If I k
d+1(X

sym
G ) is prime then G does not contain Ka,b for a+ b > d (i.e., G is (n−d)-connected).

(2) If G = Bd with d ≥ 4 and X is the generic (d + 2)× (d + 2) matrix then I k
d+1(X

gen
G ) is not prime.

Proof. (1) Assume by contradiction that G contains Ka,b for a+ b = d + 1. We may assume that the
corresponding set of vertices are [a] and {a+ j : j ∈ [b]}. But then the submatrix of X sym

G of the first
d+ 1 rows and columns is block-diagonal with (at least) two blocks. Hence its determinant is nonzero, is
reducible and has degree d + 1. Since all the generators of I k

d+1(X
sym
G ) have degree d + 1 it follows that

I k
d+1(X

sym
G ) cannot be prime.



Lovász–Saks–Schrijver ideals and coordinate sections of determinantal varieties 477

(2) Set Yd = Xgen
Bd

, i.e.,

Yd =



x11 0 · · · 0 x1,d+1 x1,d+2

0 x22 · · · 0 x2,d+1 x2,d+2
...

...
...

...
...

...

0 · · · 0 xdd
...

...

xd+1,1 xd+1,2 · · · · · · xd+1,d+1 xd+1,d+2

xd+2,1 xd+2,2 · · · · · · xd+2,d+1 xd+2,d+2


.

and J = Id+1(Yd) and let S be the polynomial ring whose indeterminates are the nonzero entries of Yd .
First, we prove that for every d ≥ 1 the ideal J has the expected height, i.e., height J = 4. For d = 1, 2, 3
the ideal J is indeed prime of height 4: for d = 1 this is obvious because Y1 is the generic 3 × 3
matrix; for d = 2 and d = 3 it follows from the fact that the corresponding LSS-ideal is prime by virtue
of Proposition 7.4. For d > 3 let P be a prime containing J . If P contains (x11, x22, x33, x44) then
height P ≥ 4. If P does not contain (x11, x22, x33, x44) we may assume x11 6∈ P . Inverting x11 and using
the standard localization trick for determinantal ideals one sees that P Sx11 contains, up to a change of
variables, Id(Yd−1). Hence height P=height P Sx ≥4. Now that we know that J has height 4 to prove that
J is not prime for d ≥ 4 it is enough to observe that J ⊂ (x11, x22, x33, x44). The latter is straightforward
since mod (x11, x22, x33, x44) the submatrix of Y consisting of the first 4-rows has rank 2. �

8. Obstructions to algebraic properties and asymptotic behavior

In this section we return to the study of LSS-ideals Lk
G(d). Using results from Section 4 and results

about Id+1(X
gen
Bd
) from Section 7 we derive necessary conditions for Lk

G(d) to be a complete intersection
or prime. In addition, we discuss the exact asymptotic behavior of these properties for complete and
complete bipartite graphs. To this end it is convenient to introduce the following notation. Given an
algebraic property P of ideals and a graph G we set

asymk(P,G)= inf
{
d : Lk

G(d
′) has property P for all d ′ ≥ d

}
.

Here we are interested in the properties P ∈ {radical, c.i., prime}. By Theorem 1.1, Corollary 1.2 and
Theorem 1.3 we know that for every graph G we have

asymk(c.i.,G)=min{d : Lk
G(d) is c.i.} ≤ pmd(G),

asymk(prime,G)=min{d : Lk
G(d) is prime} ≤ pmd(G)+ 1,

asymk(c.i.,G)≤ asymk(prime,G) ≤ asymk(c.i.,G)+ 1.

Furthermore there are graphs such that asymk(prime,G) = asymk(c.i.,G)+ 1 (e.g., odd cycles or
forests) and others such that asymk(prime,G)= asymk(c.i.,G) (e.g., even cycles). We have the following
obstructions:

Proposition 8.1. Let G = ([n], E). Then:
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(1) If Lk
G(d) is prime then G does not contain Ka,b with a + b = d + 1. Furthermore, if d > 3 and

char k= 0 then G does not contain Bd .

(2) If Lk
G(d) is a complete intersection then G does not contain Ka,b with a+ b = d + 2. Furthermore,

if d > 2 and char k= 0 then G does not contain Bd+1.

Proof. (1) The first assertion has been already proved in Proposition 4.4. For the second let char k= 0
and d > 3. By contradiction, assume G contains Bd . Then by Corollary 1.2 we know that Lk

Bd
(d) is prime

because Lk
G(d) is prime. Then Proposition 7.4 implies that Id+1(X

gen
Bd
) is prime for a generic matrix X of

arbitrary size and this contradicts Lemma 7.10(2).

(2) Assertion (2) follows from (1) by using Theorem 1.1. �

Another obstruction is described in the following proposition.

Proposition 8.2. Let k be a field of characteristic 0 and n ∈N. Let wn be the largest positive integer such
that

(
wn
2

)
≤ n. Then:

(1) Lk
Kn
(d) is not prime for d = n+

(
wn−2

2

)
− 1.

(2) Lk
Kn
(d) is not a complete intersection for d = n+

(
wn+1−2

2

)
− 2.

Proof. (1) We set hn =
(
wn
2

)
and mn =wn+d−1. The numbers are chosen so that, using the formulas for

the height of determinantal ideals mentioned in Section 7, the ideal Id+1(X) of (d+1)-minors of a generic
symmetric mn×mn matrix X has height hn . Consider Kn as the graph

(
[mn],

(
[n]
2

))
on mn vertices where

the vertices n+ 1, . . . ,mn do not appear in edges. Assume, by contradiction, that the ideal Lk
Kn
(d) is

prime. Then by Proposition 7.5 the ideal I k
d+1(X

sym
Kn
) is prime and of height hn . But one has

I k
d+1(X

sym
Kn
)⊂ (x11, x22, . . . , xhnhn ) (11)

which is a contradiction. To check (11) it is enough to prove that the rank of the matrix

X sym
Kn

mod (x11, x22, . . . , xhnhn )

is at most d . That is, we have to check that the rank of an (mn ×mn)-matrix with block decomposition(
0 A
B C

)
,

where 0 is the zero matrix of size (hn×n), is at most d . Since d =mn−n+mn−hn the latter is obvious.

(2) We set hn =
(
wn+1

2

)
and mn = wn+1 + d − 1. As above, the numbers are chosen so that the ideal

Id+1(X) of (d+1)-minors of a generic symmetric mn ×mn matrix X has height hn .
Assume, by contradiction, that Lk

Kn
(d) is a complete intersection. From Proposition 7.5 it follows that

I k
d+1(X

sym
Kn
) has height hn . But

I k
d+1(X

sym
Kn
)⊂ (x11, x22, . . . , xhn−1,hn−1) (12)

which is a contradiction. As above (12) boils down to an obvious statement about the rank of a matrix
with a zero submatrix of a certain size. �
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Using this result we can now analyze the asymptotic behavior of asymk(c.i., Kn) and asymk(prime, Kn).

Corollary 8.3. Let k be a field of characteristic 0. Then

lim
n→∞

asymk(c.i., Kn)

n
= lim

n→∞

asymk(prime, Kn)

n
= 2. (13)

Proof. By Corollary 5.6 we have asymk(prime, Kn)≤ 2n− 2. By Proposition 8.2 we have

n+
(
wn+1−2

2

)
− 1≤ asymk(c.i., Kn)≤ asymk(prime, Kn). (14)

Hence the equalities in (13) follow from the fact that

lim
n→∞

(
wn+1−2

2

)
n

= 1. �

Using Proposition 8.2 and Theorem 1.1 we obtain further obstructions.

Corollary 8.4. Let G be a graph on n vertices and k a field of characteristic 0 and denote by α = ω(G)
the clique number of G. Then Lk

G(d) is not a complete intersection for d ≤ α+
(
wα+1−2

2

)
− 2 and Lk

G(d)
is not prime for d ≤ α+

(
wα−2

2

)
− 1, where wα is defined as in Proposition 8.2.

To give an actual feeling for the obstruction, we present one example:

Example 8.5. For n= 15 one has wn = 6 and Lk
Kn
(d) is not prime for d = 15+

(6−2
2

)
−1= 20. Therefore

Lk
G(20) is not prime if G contains K15, i.e., ω(G)≥ 15.

For the case of complete bipartite graphs Km,n results of De Concini and Strickland [1981] or Musili
and Seshadri [1983] on the varieties of complexes imply the following:

Theorem 8.6. Let G = Km,n . Then:

(1) Lk
G(d) is radical for every d.

(2) Lk
G(d) is a complete intersection if and only if d ≥ m+ n− 1.

(3) Lk
G(d) is prime if and only if d ≥ m+ n.

(4) pmd(G)= m+ n− 1.

Proof. Taking into account Remark 2.3, the assertions (1), (2), and (3) follow form general results on
the variety of complexes proved in [De Concini and Strickland 1981] and, with different techniques, in
[Musili and Seshadri 1983]. It has been observed by Tchernev [2001] that the assertions in [De Concini
and Strickland 1981] that refer to the so-called Hodge algebra structure of the variety of complexes are
not correct. However, those assertions can be replaced with statements concerning Gröbner bases as it is
done, for example, in a similar case in [Tchernev 2001]. Hence, (1), (2) and (3) can still be deduced from
the arguments in [De Concini and Strickland 1981].

Alternative proofs of (2) and (3) are obtained by combining Proposition 8.1 and Corollary 5.6. Finally (4)
is a consequence of Lemma 5.4 and Proposition 8.1. �
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9. Questions and open problems

We have seen that for the properties “complete intersection” and “prime” of Lk
G(d) there is persistence

along the parameter d but Example 3.2 shows persistence does not occur in general for the property of
being radical.

Question 9.1. What patterns can occur in the set {d : Lk
G(d)is radical} for a graph G?

Since the complete intersection property and prime property of Lk
G(d) for a given d are inherited by

subgraphs, the properties can be characterized by means of forbidden subgraphs. We have explicitly
identified the forbidden subgraphs in Theorem 1.4 for d = 2 and complete intersection and for d = 3 and
prime. For d = 3 and complete intersection we do not even have a conjecture for the set of forbidden
graphs. For d = 4 results from Lovász’s book [2009, Chapter 9.4] suggest the following:

Question 9.2. Is it true that Lk
G(4) is prime if and only if G does not contain Ka,b for a+ b= 5 and B4?

Via the fact that primeness of Lk
G(d) implies primeness of I k

d+1(XG) a result by Giusti and Merle
[1982, Theorem 1.6.1] guides the intuition behind the following question.

Question 9.3. Let G be a subgraph of Km,n graph and assume m ≤ n. Is it true that Lk
G(m− 1) is prime

if and only if G does not contain Ka,b for a+ b ≥ m?

By Propositions 7.4 and 7.5 we know that if Lk
G(d) is radical or prime then so are I k

d+1(X
gen
G ) and

I k
d+1(X

sym
G ) respectively. But our general bounds for asymk(radical,G) and asymk(prime,G) from

Corollary 5.6 are not good enough to make use of this implication. Indeed, Corollary 8.3 shows that
for the properties complete intersection and prime and n large enough there are graphs G for which
Proposition 7.5 does not prove primality of an interesting ideal. On the other hand the use of Theorem 1.5
in Theorem 7.8 shows that one can take advantage of this connection in some cases. It would be interesting
to exhibit classes different from forests where this is possible.

Question 9.4. Are there more interesting classes of graphs G = ([n], E) for which asymk(c.i.,G)≤ n−1
or asymk(prime,G)≤ n?

Despite the fact that Proposition 8.2 destroys the hope for using Theorem 7.8 for general graphs, it
would be interesting to replace the asymptotic result by an actual value. By Corollary 8.3 for n large we
have asymk(prime, Kn)= 2n−cn for some numbers cn ∈ o(n) which using the notation of Proposition 8.2
satisfy n−

(
wn−2

2

)
+ 1≥ cn ≥ 2. But we have no conjecture for an actual formula for cn .

Question 9.5. What is the exact value of asymk(prime, Kn)?

For radicality we have a concrete conjecture in the case G = Kn .

Conjecture 9.6.
asymk(radical, Kn)= 1 (at least if char k= 0).

In other words, given a matrix of variables X of size n× d we conjecture the ideal of the off-diagonal
entries of X X T is radical for all n, d.
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It would also be interesting to study the ideal generated by all the entries of X X T . We note that the
symplectic version of this problem has been investigated by De Concini [1979].

Next we turn to open problems about hypergraph LSS-ideals. We know from Theorem 1.3 that for a
hypergraph H = (V, E) for which E is a clutter the ideal Lk

H (d) is a radical complete intersection for
d ≥ pmd(G). But we prove in Theorem 1.3 that Lk

H (d) is prime for d ≥ pmd(H)+ 1 only in the case
that H is a graph.

Question 9.7. Is it true that for a hypergraph H = (V, E), where E is a clutter, we have Lk
H (d) is prime

for d ≥ pmd(H)+ 1?

Similarly, the persistence results from Theorem 1.1 ask for generalizations.

Question 9.8. Let H = (V, E) be a hypergraph, where E is a clutter. Is it true that if Lk
H (d) is a complete

intersection (resp. prime) then so is Lk
H (d + 1)?

For a number r ≥ 1 we call a hypergraph H = (V, E) an r -uniform graph if every element of E has
cardinality r . In particular, E is a clutter. We say that an r -uniform graph H = (V, E) is r -partite if there
is a partition V = V1∪ · · ·∪Vr such that #(A∩Vi )= 1 for all i ∈ [r ] and for all A ∈ E . Now we connect
the study of ideal Lk

H (d) for r-uniform (r-partite) graphs with the study of coordinate sections of the
variety of tensors with a given rank. We consider two mappings:

(φ) Let e1, . . . , en be the standard basis vectors of kn . For vectors vi = (vi, j ) j∈[d] ∈ kd , i ∈ [r ], consider
the map φ that sends (v1, . . . , vr ) ∈ (kd)n to the tensor

d∑
j=1

∑
σ∈Sr

vσ(1), j · · · vσ(r), j eσ(1)⊗ · · ·⊗ eσ(r) ∈ kn
⊗ · · ·⊗ kn︸ ︷︷ ︸

r

.

We take the sums over the different tensors arising from ei1⊗· · ·⊗eir , for numbers 1≤ i1≤· · ·≤ ir ≤n,
by permuting the positions as standard basis of the space of symmetric tensors.

(ψ) Let n = n1+ · · ·+ nr for natural numbers n1, . . . , nr ≥ 1. Let e( j)
i ∈ kn j be the i-th standard basis

vector of kn j , i ∈ [n j ] and j ∈ [r ]. For vectors v( j)
i = (vi, j ) j∈[d] ∈ kd for i ∈ [n j ] and j ∈ [r ] consider

the map ψ that sends (v( j)
i )(i, j)∈[n j ]×[r ] to∑

(i1,...,ir )∈[n1]×···×[nr ]

v
(1)
i1
· · · v

(r)
ir

e(1)i1
⊗ · · ·⊗ e(r)ir

∈ kn1 ⊗ · · ·⊗ knr .

We take the tensors e(1)i1
⊗· · ·⊗e(r)ir

for numbers i j ∈[n j ], j ∈[r ] as the standard basis of kn1⊗· · ·⊗knr .

Recall that a (symmetric) tensor has (symmetric) rank≤d it can be written as a sum of≤d decomposable
(symmetric) tensors. For more details on tensor rank and the geometry of bounded rank tensors we refer
the reader to [Landsberg 2012]. Let H = (V, E) be a hypergraph. We write V(Lk

H (d)) for the vanishing
locus of Lk

H (d). The definition of the maps φ and ψ immediately implies the following proposition.

Proposition 9.9. Let H = ([n], E) be an r-uniform hypergraph and k an algebraically closed field.
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(1) Then the restriction of the map φ to V(Lk
H (d)) is a parametrization of the variety of symmetric

tensors in kn
⊗ · · ·⊗ kn (with r factors kn) of rank ≤ d which when expanded in the standard basis

has coefficient zero for the basis elements indexed by 1≤ i1 < · · ·< ir ≤ n and {i1, . . . , ir } ∈ E. In
particular, the Zariski-closure of the image of the restriction is irreducible if Lk

H (d) is prime.

(2) If H is r-partite with respect to the partition V = V1 ∪ · · · ∪ Vr , where |Vi | = ni , i ∈ [r ], then the
restriction of the map ψ to V(Lk

H (d)) is a parametrization of the variety of tensors in kn1⊗· · ·⊗knr

of rank ≤ d which when expanded in the standard basis have coefficient zero for the basis elements
indexed by i1, . . . , ir where {i1, . . . , ir } ∈ E. In particular, the Zariski-closure of the image of the
restriction is irreducible if Lk

H (d) is prime.

Proposition 9.9 gives further motivation to Question 9.7. Indeed, it suggests to strengthen Question 9.4.

Question 9.10. Let k be an algebraically closed field. Can one describe classes of r -uniform hypergraphs
H for which Lk

H (d) is prime for some d bounded from above by the maximal symmetric rank of a
symmetric tensor in kn

⊗ · · ·⊗ kn (with r factors kn)?

An analogous question can be asked for r -partite r -uniform hypergraphs and tensors of bounded rank.
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