

msp

On rational singularities and counting points of schemes over finite rings

Itay Glazer

We study the connection between the singularities of a finite type \mathbb{Z} -scheme *X* and the asymptotic point count of *X* over various finite rings. In particular, if the generic fiber $X_{\mathbb{Q}} = X \times_{\text{Spec}\mathbb{Z}} \text{Spec} \mathbb{Q}$ is a local complete intersection, we show that the boundedness of $|X(\mathbb{Z}/p^n\mathbb{Z})|/p^{n\dim X_{\mathbb{Q}}}$ in *p* and *n* is in fact equivalent to the condition that $X_{\mathbb{Q}}$ is reduced and has rational singularities. This paper completes a recent result of Aizenbud and Avni.

1. Introduction

1A. *Motivation.* Given a finite type \mathbb{Z} -scheme X, the study of the quantity $|X(\mathbb{Z}/m\mathbb{Z})|$ and its asymptotic behavior is a fundamental question in number theory. The case when m = p, or more generally the quantity $|X(\mathbb{F}_q)|$ with $q = p^n$, has been studied by many authors, most famously by Lang and Weil [1954], Dwork [1960], Grothendieck [1965] and Deligne [1974; 1980]. The Lang–Weil estimates (see [Lang and Weil 1954]) give a good asymptotic description of $|X(\mathbb{F}_q)|$:

$$|X(\mathbb{F}_q)| = q^{\dim X_{\mathbb{F}_q}} (C_X + O(q^{-\frac{1}{2}})),$$

where C_X is the number of top dimension irreducible components of $X_{\overline{\mathbb{F}}_q}$ that are defined over \mathbb{F}_q . From these estimates and the fact that

$$|X(F)| = |U(F)| + |(X \setminus U)(F)|,$$
(1-1)

for any open subscheme $U \subseteq X$ and any finite field F, one can see that the asymptotics of $|X(\mathbb{F}_{p^n})|$, in p or in n, does not depend on the singularity properties of X. For finite rings, however, (1-1) is no longer true (e.g., $|\mathbb{A}^1(A)| = |A|$ and $|(\mathbb{A}^1 - \{0\})(A)| = |A^{\times}|)$ and indeed, the number $|X(\mathbb{Z}/m\mathbb{Z})|$ and its asymptotics have much to do with the singularities of X. The case when $m = p^n$ is a prime power was studied by Borevich and Shafarevich, among others (see the works of Denef [1991], Igusa [2000], du Sautoy and Grunewald [2000], and a recent overview by Mustață [2011]).

For a finite ring A, set $h_X(A) := |X(A)|/|A|^{\dim X_{\mathbb{Q}}}$. If $X_{\mathbb{Q}}$ is smooth, one can show that for almost every prime p, we have $h_X(\mathbb{Z}/p^n\mathbb{Z}) = h_X(\mathbb{Z}/p\mathbb{Z})$ for all n, which by the Lang–Weil estimates is uniformly bounded. On the other hand, if $X_{\mathbb{Q}}$ is singular, then $h_X(\mathbb{Z}/p^n\mathbb{Z})$ need not be bounded in n or in p. The goal of this paper is to investigate this phenomena and to complete the main result presented in [Aizenbud and Avni 2018], which we describe next.

MSC2010: primary 14B05; secondary 14G05.

Keywords: rational singularities, complete intersection, analysis on p-adic varieties, asymptotic point count.

1B. Related work. Aizenbud and Avni [2018] proved the following:

Theorem 1.1 [Aizenbud and Avni 2018, Theorem 3.0.3]. Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is equidimensional and a local complete intersection. Then the following are equivalent:

- (i) For any n, $\lim_{p\to\infty} h_X(\mathbb{Z}/p^n\mathbb{Z}) = 1$.
- (ii) There exists a finite set of prime numbers S and a constant C, such that $|h_X(\mathbb{Z}/p^n\mathbb{Z}) 1| < Cp^{-\frac{1}{2}}$ for any prime $p \notin S$ and any $n \in \mathbb{N}$.
- (iii) $X_{\overline{\Omega}}$ is reduced, irreducible and has rational singularities.

Definition 1.2 [Aizenbud and Avni 2016, 1.2, Definition II]. Let *X* and *Y* be smooth varieties over a field *k* of characteristic 0. We say that a morphism $\varphi : X \to Y$ is (FRS) if it is flat and any geometric fiber is reduced and has rational singularities. We say that φ is (FRS) at $x \in X(k)$ if there exists a Zariski open neighborhood *U* of *x* such that $U \times_Y \{\varphi(x)\}$ is reduced and has rational singularities.

Aizenbud and Avni introduced an analytic criterion for a morphism φ to be (FRS), which played a key role in the proof of Theorem 1.1:

Theorem 1.3 [Aizenbud and Avni 2016, Theorem 3.4]. Let $\varphi : X \to Y$ be a map between smooth algebraic varieties defined over a finitely generated field k of characteristic 0, and let $x \in X(k)$. Then the following conditions are equivalent:

- (a) φ is (FRS) at x.
- (b) There exists a Zariski open neighborhood x ∈ U ⊆ X, such that for any non-Archimedean local field F ⊇ k and any Schwartz measure m on U(F), the measure (φ|_{U(F)})_{*}(m) has continuous density (see Definition 2.5 for the notion of Schwartz measure and continuous density of a measure).
- (c) For any finite extension k'/k, there exists a non-Archimedean local field $F \supseteq k'$ and a nonnegative Schwartz measure m on X(F) that does not vanish at x such that $\varphi_*(m)$ has continuous density.

1C. Main results. In this paper, we strengthen Theorem 1.1 as follows:

Theorem 1.4. Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is equidimensional and a local complete intersection. Then (i), (ii) and (iii) in Theorem 1.1 are also equivalent to:

- (iv) $X_{\overline{\mathbb{Q}}}$ is irreducible and there exists C > 0 such that $h_X(\mathbb{Z}/p^n\mathbb{Z}) < C$ for any prime p and any $n \in \mathbb{N}$.
- (v) $X_{\overline{\mathbb{Q}}}$ is irreducible and there exists a finite set of primes *S*, such that for any $p \notin S$, the sequence $n \mapsto h_X(\mathbb{Z}/p^n\mathbb{Z})$ is bounded.

Remark. In fact, one can drop the demand that $X_{\overline{\mathbb{Q}}}$ is irreducible in conditions (iii), (iv) and (v), such that they will stay equivalent. For a slightly stronger statement, see Theorem 4.1.

There are two main difficulties in the proof of Theorem 1.4. The first one is portrayed in the fact that condition (v) seems a-priori too weak, as it requires the bound on $h_X(\mathbb{Z}/p^n\mathbb{Z})$ to be uniform only in *n*, while in condition (ii), the demand is that the bound is uniform both in *p* and in *n*.

In order to show that condition (v) implies the other conditions, we first reduce to the case when $X_{\mathbb{Q}}$ is a complete intersection in an affine space, and thus can be written as the fiber at 0 of a morphism $\varphi : \mathbb{A}_{\mathbb{Q}}^{M} \to \mathbb{A}_{\mathbb{Q}}^{N}$, which is flat above 0. We can then translate condition (iii), i.e., the condition that $X_{\overline{\mathbb{Q}}}$ is reduced and has rational singularities, to the condition that $\varphi : \mathbb{A}_{\mathbb{Q}}^{M} \to \mathbb{A}_{\mathbb{Q}}^{N}$ is (FRS) above 0, i.e., at

any point $x \in (\varphi^{-1}(0))(\overline{\mathbb{Q}})$. After some technical argument, one can show that condition (v) implies the following:

Condition 1.5. For any finite extensions k/\mathbb{Q} and k'/k, and any $x \in (\varphi^{-1}(0))(k)$, there exists a prime p with $k' \hookrightarrow \mathbb{Q}_p$, $x \in (\varphi^{-1}(0))(\mathbb{Z}_p)$, such that the sequence $n \mapsto \varphi_*(\mu)(p^n \mathbb{Z}_p^N)/p^{-nN}$ is bounded, where μ is the normalized Haar measure on \mathbb{Z}_p^M .

Hence, we would like to strengthen Theorem 1.3, such that Condition 1.5 will imply the (FRS) property of φ above 0.

The measure $\varphi_*(m)$ as in Condition 1.5 is said to be bounded with respect to the local basis $\{p^n \mathbb{Z}_p^N\}_n$ for the topology of \mathbb{Q}_p^N at 0 (see Definition 3.1). We introduce the notion of bounded eccentricity of a local basis to the topology of an *F*-analytic manifold (Section 3A), and prove the following stronger version of Theorem 1.3:

Theorem 1.6. Let $\varphi : X \to Y$ be a map between smooth algebraic varieties defined over a finitely generated field k of characteristic 0, and let $x \in X(k)$. Then (a), (b), (c) in Theorem 1.3 are also equivalent to:

(c') For any finite extension k'/k, there exists a non-Archimedean local field $F \supseteq k'$ and a nonnegative Schwartz measure m on X(F) that does not vanish at x, such that $\varphi_*(m)$ is bounded with respect to some local basis \mathcal{N} of bounded eccentricity at $\varphi(x)$.

We then use Theorem 1.6 and the fact that the local basis $\{p^n \mathbb{Z}_p^N\}_n$ is of bounded eccentricity to show that (v) implies condition (iii).

The second difficulty is to show that if $h_X(\mathbb{Z}/p^n\mathbb{Z})$ is bounded for almost any prime p, then it is in fact bounded for any p. We first prove this for the case that X is a complete intersection in an affine space, denoted (CIA) (Proposition 4.5). We then deal with the case when $X_{\mathbb{Q}}$ is a (CIA), by constructing a finite type \mathbb{Z} -scheme \widehat{X} , which is a (CIA) and a morphism $\psi : X \longrightarrow \widehat{X}$, such that $\psi_{\mathbb{Q}} : X_{\mathbb{Q}} \longrightarrow \widehat{X}_{\mathbb{Q}}$ is an isomorphism (Lemma 4.6). We prove this case by showing the existence of $c, N \in \mathbb{N}$ such that

$$|X(\mathbb{Z}/p^n\mathbb{Z})| \le p^{Nc} \cdot |\widehat{X}(\mathbb{Z}/p^n\mathbb{Z})|,$$

(Lemma 4.7). For the general case, we first cover $X_{\mathbb{Q}}$ by affine \mathbb{Q} -schemes $\{U_i\}$ such that U_i is a (CIA), and then consider a collection of \mathbb{Z} -schemes $\{\widetilde{U}_i\}$, such that $\widetilde{U}_i \simeq U_i$ over \mathbb{Q} . Finally, using the explicit construction of \widetilde{U}_i we show that

$$h_X(\mathbb{Z}/p^n\mathbb{Z}) \leq \sum_i h_{\widetilde{U}_i}(\mathbb{Z}/p^n\mathbb{Z}),$$

and since $(\widetilde{U}_i)_{\mathbb{Q}} \simeq U_i$ is a (CIA), we are done by the last case.

2. Preliminaries

In this section, we recall some definitions and facts in algebraic geometry and the theory of F-analytic manifolds, for a non-Archimedean local field F.

2A. *Preliminaries in algebraic geometry.* Let *A* be a commutative ring. A sequence $x_1, \ldots, x_r \in A$ is called a *regular sequence* if x_i is not a zero-divisor in $A/(x_1, \ldots, x_{i-1})$ for each *i*, and we have a proper inclusion $(x_1, \ldots, x_r) \subsetneq A$. If (A, \mathfrak{m}) is a Noetherian local ring then the *depth* of *A*, denoted depth(*A*), is defined to be the length of the longest regular sequence with elements in \mathfrak{m} . It follows from Krull's principal ideal theorem that depth(*A*) is smaller or equal to dim(*A*), the Krull dimension of *A*. A Noetherian local ring (A, \mathfrak{m}) is *Cohen–Macaulay* if depth(*A*) = dim(*A*). A locally Noetherian scheme *X* is said to be *Cohen–Macaulay* if for any $x \in X$, the local ring $\mathcal{O}_{X,x}$ is Cohen–Macaulay.

Let X be an algebraic variety over a field k. We say that X has a *resolution of singularities*, if there exists a proper morphism $p: \tilde{X} \to X$ such that \tilde{X} is smooth and p is a birational equivalence. A *strong resolution of singularities* of X is a resolution of singularities $p: \tilde{X} \to X$ which is an isomorphism over the smooth locus of X, denoted X^{sm} . It is a theorem of Hironaka [1964], that any variety X over a field k of characteristic zero admits a strong resolution of singularities $p: \tilde{X} \to X$.

For the following definition, see [Kempf et al. 1973, I.3 pages 50–51] or [Aizenbud and Avni 2016, Definition 6.1]; a variety X over a field k of characteristic zero is said to have *rational singularities* if for any (or equivalently, for some) resolution of singularities $p : \widetilde{X} \longrightarrow X$, the natural morphism $\mathcal{O}_X \rightarrow \mathbb{R}p_*(\mathcal{O}_{\widetilde{X}})$ is a quasi-isomorphism, where $\mathbb{R}p_*$ is the higher direct image. A point $x \in X(k)$ is a *rational singularity* if there exists a Zariski open neighborhood $U \subseteq X$ of x that has rational singularities.

We denote by Ω_X^r the sheaf of differential *r*-forms on *X* and by $\Omega_X^r[X]$ (resp. $\Omega_X^r(X)$) the regular (resp. rational) *r*-forms. The following lemma gives a local characterization of rational singularities:

Lemma 2.1 [Aizenbud and Avni 2016, Proposition 6.2]. An affine k-variety X has rational singularities if and only if X is Cohen–Macaulay, normal, and for any, or equivalently, some strong resolution of singularities $p: \widetilde{X} \to X$ and any top differential form $\omega \in \Omega_{X^{\text{sm}}}^{\text{top}}[X^{\text{sm}}]$, there exists a top differential form $\widetilde{\omega} \in \Omega_{\widetilde{X}}^{\text{top}}[\widetilde{X}]$ such that $\omega = \widetilde{\omega}|_{X^{\text{sm}}}$.

Let X be a finite type scheme over a ring R. Then X is called:

- (1) A *complete intersection* (CI) if there exists an affine scheme Y, a smooth morphism $Y \to \text{Spec}R$, a closed embedding $X \hookrightarrow Y$ over SpecR, and a regular sequence $f_1, \ldots, f_r \in \mathcal{O}_Y(Y)$, such that the ideal of X in Y is generated by the $\{f_i\}$. In this case, we say that X is a *complete intersection in* Y.
- (2) A local complete intersection (LCI) if there is an open cover $\{U_i\}$ of X such that each U_i is a (CI).
- (3) A *complete intersection in an affine space* (CIA) if X is a complete intersection in Y, with $Y = \mathbb{A}_R^n$ an affine space.
- (4) A *local complete intersection in an affine space* (LCIA) if there is an open affine cover $\{U_i\}$ of X such that each U_i is a (CIA).

Remark 2.2. For an affine *k*-variety, the notion of (CIA) is not equivalent to (CI) (e.g., consider X to be any affine smooth *k*-variety which is not a (CIA)). On the other hand, the notion of (LCI) is equivalent to (LCIA) for finite type *k*-schemes. We will therefore use the notation (LCI) for both notions.

The following Proposition 2.3 and Proposition 2.4 are a consequence of the above remark and the miracle flatness theorem (e.g., [Vakil 2017, Theorems 26.2.10 and 26.2.11]).

Proposition 2.3. Let X be k-variety. If X is an (LCI) then there exists an open affine cover $\{U_i\}$ of X and morphisms φ_i, ψ_i , where $\varphi_i : \mathbb{A}_k^{m_i} \longrightarrow \mathbb{A}_k^{n_i}$ is flat above 0, and $\psi_i : U_i \hookrightarrow \mathbb{A}_k^{m_i}$ is a closed embedding that induces a k-isomorphism $\psi_i : U_i \simeq \varphi_i^{-1}(0)$.

Proposition 2.4. Let X be a finite type \mathbb{Z} -scheme. If X is a (CIA) then there exist \mathbb{Z} -morphisms φ, ψ , where $\varphi : \mathbb{A}_{\mathbb{Z}}^m \longrightarrow \mathbb{A}_{\mathbb{Z}}^n$ is flat above 0, and $\psi : X \hookrightarrow \mathbb{A}_{\mathbb{Z}}^m$ is a closed embedding that induces a \mathbb{Z} -isomorphism $\psi : X \simeq \varphi^{-1}(0)$.

A commutative Noetherian local ring A is called *Gorenstein* if it has finite injective dimension as an A-module. A locally Noetherian scheme X is said to be *Gorenstein* if all its local rings are Gorenstein. Any locally Noetherian scheme X which is a local complete intersection is also Gorenstein.

2B. Some facts on *F*-analytic manifolds. Let *X* be a *d*-dimensional smooth algebraic *k*-variety and $F \supseteq k$ be a non-Archimedean local field, with ring of integers \mathcal{O}_F . Then X(F) has a structure of an *F*-analytic manifold. Given $\omega \in \Omega_X^{\text{top}}(X)$, we can define a measure $|\omega|_F$ on X(F) as follows. For a compact open set $U \subseteq X(F)$ and an *F*-analytic diffeomorphism ϕ between an open subset $W \subseteq F^d$ and *U*, we can write $\phi^* \omega = g \cdot dx_1 \wedge \cdots \wedge dx_n$, for some $g: W \to F$, and define

$$|\omega|_F(U) = \int_W |g|_F \, d\lambda,$$

where $|\cdot|_F$ is the normalized absolute value on F and λ is the normalized Haar measure on F^d . Note that this definition is independent of the diffeomorphism ϕ , and that this uniquely defines a measure on X(F).

- **Definition 2.5.** (1) A measure *m* on X(F) is called *smooth* if every point $x \in X(F)$ has an analytic neighborhood *U* and an *F*-analytic diffeomorphism $f: U \to \mathcal{O}_F^d$ such that f_*m is some Haar measure on \mathcal{O}_F^d .
- (2) A measure on X(F) is called *Schwartz* if it is smooth and compactly supported.
- (3) We say that a measure μ on X(F) has *continuous density*, if there is a smooth measure *m* and a continuous function $f: X(F) \to \mathbb{C}$ such that $\mu = f \cdot m$.

The following proposition characterizes Schwartz measures and measures with continuous density:

Proposition 2.6 [Aizenbud and Avni 2016, Proposition 3.3]. Let X be a smooth variety over a non-Archimedean local field F.

- (1) A measure *m* on X(F) is Schwartz if and only if it is a linear combination of measures of the form $f|\omega|_F$, where *f* is a Schwartz function (i.e., locally constant and compactly supported) on X(F), and $\omega \in \Omega_X^{\text{top}}(X)$ has no zeros or poles in the support of *f*.
- (2) A measure μ on X(F) has continuous density if and only if for every point $x \in X(F)$ there is an analytic neighborhood U of x, a continuous function $f: U \to \mathbb{C}$, and $\omega \in \Omega_X^{\text{top}}(X)$ with no poles in U such that $\mu = f |\omega|_F$.

Proposition 2.7 [Aizenbud and Avni 2016, Proposition 3.5]. Let $\varphi : X \to Y$ be a smooth map between smooth varieties defined over a non-Archimedean local field *F*.

- (1) If m is a Schwartz measure on X(F), then φ_*m is a Schwartz measure on Y(F).
- (2) Assume that $\omega_X \in \Omega_X^{\text{top}}[X]$ and $\omega_Y \in \Omega_Y^{\text{top}}[Y]$, where ω_Y is nowhere vanishing, and that f is a Schwartz function on X(F). Then the measure $\varphi_*(f|\omega_X|_F)$ is absolutely continuous with respect to $|\omega_Y|_F$, and its density at a point $y \in Y(F)$ is $\int_{\varphi^{-1}(y)(F)} f \cdot |(\omega_X/\varphi^*\omega_Y)|_{\varphi^{-1}(y)}|_F$.

3. An analytic criterion for the (FRS) property

Our goal in this section is to prove Theorem 1.6, which is a stronger version of Theorem 1.3, and the main ingredient in the proof of the implication $(v) \Rightarrow (iii)$ of Theorem 1.4. As discussed in the introduction, we want to relax condition (c) of Theorem 1.3, and get a weaker condition (c') that is similar to Condition 1.5, such that it will imply the (FRS) property (condition (a) of Theorem 1.3).

Definition 3.1. Let *F* be a non-Archimedean local field, *X* be an *F*-analytic manifold and μ be a measure on *X*. Let $\mathcal{N} = \{N_i\}_{i \in I}$ be a local basis for the topology of *X* at a point $x \in X$. We say that μ is *bounded with respect to* \mathcal{N} , if there exists a smooth measure λ on *X* and an open analytic neighborhood *U* of *x*, such that $|\mu(N_i)/\lambda(N_i)|$ is uniformly bounded on $\mathcal{N}_U := \{N_i \in \mathcal{N} \mid N_i \subseteq U\}$.

Let $\varphi : X \to Y$, *m* and *F* be as in Theorem 1.3. A possible relaxation (c') of (c), is to require $\varphi_*(m)$ to be bounded with respect to any local basis of the topology of Y(F) at $\varphi(x)$. While this condition is equivalent to (a) and (b) it is still not weak enough for our purpose of proving Theorem 1.4. A much weaker condition (c'') is to demand that $\varphi_*(m)$ is bounded with respect to *some* local basis at $\varphi(x)$. Unfortunately, the following example shows that the latter demand is too weak:

Example. Consider the map $\varphi : \mathbb{A}_{\mathbb{Q}}^2 \longrightarrow \mathbb{A}_{\mathbb{Q}}$ defined by $(x, y) \longmapsto x^2$. The fiber over 0 is not reduced, and thus φ is not (FRS) over 0. Fix a finite extension k/\mathbb{Q} and embed k in \mathbb{Q}_p for some prime p (see Lemma 4.3). Let λ_1, λ_2 be the normalized Haar measure on $\mathbb{Q}_p, \mathbb{Q}_p^2$ and let $m = \mathbb{1}_{\mathbb{Z}_p^2} \cdot \lambda_2$ be a Schwartz measure. Now consider the following collection \mathcal{N} of sets B_n constructed as follows. Define $B_n^1 := \{x \in \mathbb{Z}_p \mid |x| \le p^{-2n^2}\}$ and $B_n^2 := \{x \in \mathbb{Z}_p \mid |x - a_n| \le p^{-4n}\}$, where $a_n = p^{2n+1}$. Note that any $x \in B_n^2$ has norm p^{-2n-1} and thus is not a square, so $\varphi^{-1}(B_n^2) = \emptyset$. Denote $B_n = B_n^1 \cup B_n^2$ and notice that $\mathcal{N} := \{B_n\}_{n=1}^{\infty}$ is a local basis at 0 and that:

$$\lim_{n \to \infty} \frac{\varphi_* m(B_n)}{\lambda_1(B_n)} = \lim_{n \to \infty} \frac{m(\varphi^{-1}(B_n^1))}{p^{-2n^2} + p^{-4n}} = \lim_{n \to \infty} \frac{p^{-n^2}}{p^{-2n^2} + p^{-4n}} \to 0.$$

This shows that φ satisfies condition (c'') but is not (FRS) at (0, 0).

Luckily, we can relax (c) by demanding that $\varphi_*(m)$ is bounded with respect to *some* local basis at $\varphi(x)$, if this basis is nice enough. In order to define precisely what we mean, we introduce the notion of a local basis of bounded eccentricity.

3A. Local basis of bounded eccentricity.

Definition 3.2. Let *F* be a local field, and λ be a Haar measure on F^n .

- (1) A collection of sets $\mathcal{N} = \{N_i\}_{i \in I}$ in F^n is said to have *bounded eccentricity* at $x \in F^n$, if there exists a constant C > 0 such that $\sup_i (\lambda(B_{\min_i}(x))/\lambda(B_{\max_i}(x))) \leq C$, where $B_{\max_i}(x)$ is the maximal ball around x that is contained in N_i and $B_{\min_i}(x)$ is the minimal ball around x that contains N_i .
- (2) We call $\mathcal{N} = \{N_i\}_{i \in I}$ a *local basis of bounded eccentricity* at *x*, if it is a local basis of the topology of F^n at *x*, and there exists $\epsilon > 0$, such that $\mathcal{N}_{\epsilon} := \{N_i \in \mathcal{N} \mid N_i \subseteq B_{\epsilon}(x)\}$ has bounded eccentricity.

Remark. Note that $\mathcal{N}_{\epsilon} \neq \emptyset$ for any $\epsilon > 0$ since it is a local basis at *x*.

Lemma 3.3. Let $\phi : F^n \to F^n$ be an *F*-analytic diffeomorphism. Let $\mathcal{N} = \{N_i\}_{i \in \alpha}$ be a local basis of bounded eccentricity at $x \in F^n$. Then $\phi(\mathcal{N})$ is a local basis of bounded eccentricity at $\phi(x)$.

Proof. Let $d\phi_x = A$ be the differential of ϕ at x. Since ϕ is a diffeomorphism, then for any C > 1, there exists δ , $\delta' > 0$ such that for any $y \in B_{\delta}(x)$:

$$\frac{1}{C} < \frac{|\phi(y) - \phi(x)|_F}{|A \cdot (y - x)|_F} < C,$$

and for any $z \in B_{\delta'}(\phi(x))$ we have:

$$\frac{1}{C} < \frac{|\phi^{-1}(z) - x|_F}{|A^{-1} \cdot (z - \phi(x))|_F} < C.$$

We can choose small enough δ , δ' such that \mathcal{N}_{δ} is a collection of sets which has bounded eccentricity and $\phi(\mathcal{N}_{\delta}) \supseteq \phi(\mathcal{N})_{\delta'}$. We now claim that $\mathcal{M}_{\delta'} := \phi(\mathcal{N})_{\delta'}$ is a collection of sets which has bounded eccentricity at $\phi(x)$. Let $B_{\min_i}(x)$ be the minimal ball that contains $N_i \in \mathcal{N}_{\delta}$ and $B_{\max_i}(x)$ be the maximal ball that is contained in N_i . Notice that for any $y \in B_{\min_i}(x) \subseteq B_{\delta}(x)$ we have

$$|\phi(\mathbf{y}) - \phi(\mathbf{x})|_F < C \cdot |A \cdot (\mathbf{y} - \mathbf{x})|_F \le C \cdot ||A|| \cdot |\mathbf{y} - \mathbf{x}|_F \le C \cdot \min_i \cdot ||A||,$$

thus $\phi(N_i) \subseteq \phi(B_{\min_i}(x)) \subseteq B_{C \cdot \min_i \cdot ||A||}(\phi(x))$. Similarly, for any $z \in B_{\max_i / (C \cdot ||A^{-1}||)}(\phi(x))$ we have that

$$|\phi^{-1}(z) - x|_F < C \cdot |A^{-1} \cdot (z - \phi(x))|_F \le C \cdot ||A^{-1}|| \cdot \frac{\max_i}{C \cdot ||A^{-1}||} = \max_i .$$

Therefore, $\phi^{-1}(B_{\max_i/(C \cdot ||A^{-1}||)}(\phi(x))) \subseteq B_{\max_i}(x) \subseteq N_i$ and thus $B_{\max_i/(C \cdot ||A^{-1}||)}(\phi(x)) \subseteq \phi(N_i)$. Thus we get that

$$B_{\max_i/(C \cdot ||A^{-1}||)}(\phi(x)) \subseteq \phi(N_i) \subseteq B_{C \cdot \min_i \cdot ||A||}(\phi(x)),$$

for any *i*. By assumption, there exists some D > 0 such that $\lambda(B_{\min_i}(x))/\lambda(B_{\max_i}(x)) < D$ for any set $N_i \in \mathcal{N}_{\delta}$. Hence:

$$\frac{\lambda(B_{C \cdot \min_i \cdot \|A\|}(\phi(x)))}{\lambda(B_{\max_i / (C \cdot \|A^{-1}\|)}(\phi(x)))} \le C^{2n} \|A\|^n \cdot \|A^{-1}\|^n \cdot D,$$

and $\mathcal{M}_{\delta'}$ has bounded eccentricity.

Lemma 3.3 implies that the following notion is well defined:

Definition 3.4. Let X be an F-analytic manifold and λ be a Haar measure on F^n .

(1) A local basis \mathcal{N} at $x \in X$ is said to have *bounded eccentricity* if given an *F*-analytic diffeomorphism ϕ between an open subset $W \subseteq F^n$ and an open neighborhood U of x, we have that

$$\widetilde{\mathcal{N}} = \{ \phi^{-1}(N) \mid N \in \mathcal{N}, \ N \subseteq U \}$$

is a local basis of bounded eccentricity.

(2) A measure *m* on *X* is said to be *N*-bounded, if there exists $\epsilon > 0$ such that:

$$\sup_{N\in\mathcal{N}_{\epsilon}}\frac{m(N)}{\lambda(N)}<\infty.$$

3B. *Proof of Theorem 1.6.* It is easy to see that $(c) \Rightarrow (c')$. The proof of the implication $(c') \Rightarrow (a)$ is a variation of the proof of $(c) \Rightarrow (a)$ of Theorem 1.3 (see [Aizenbud and Avni 2016, Section 3.7]). Let k be a finitely generated field of characteristic 0, $\varphi : X \rightarrow Y$ be a morphism of smooth k-varieties X, Y and let $x \in X(k)$. Assume that condition (c') of Theorem 1.6 holds. Let $Z = \varphi^{-1}(\varphi(x))$ and denote by X^S the smooth locus of φ . The following lemma is a slight variation of [Aizenbud and Avni 2016, Claim 3.19]. Since we use the constructions presented in the proof of [loc. cit.], and for the convenience of the reader, we write the full steps and use similar notation as well.

Lemma 3.5. There exists a Zariski neighborhood U of x such that $Z \cap X^S \cap U$ is a dense subvariety of $Z \cap U$.

Proof. Let Z_1, \ldots, Z_n be the absolutely irreducible components of Z containing x. After restricting to an open neighborhood of x that does not intersect the other irreducible components, it is enough to show that $Z_i \cap X^S$ is Zariski dense in Z_i for any i. Since X^S is open, it is enough to show that $Z_i \cap X^S$ is nonempty for any i.

Assume that $Z_i \cap X^S = \emptyset$ for some *i*. Then dim ker $d\varphi_z > \dim X - \dim Y$ for any $z \in Z_i(\bar{k})$. By the upper semicontinuity of dim ker $d\varphi$, there is a nonempty open set $W_i \subseteq Z_i$ and an integer $r \ge 1$ such that dim ker $d\varphi|_z = \dim X - \dim Y + r$ for all $z \in W_i(\bar{k})$ and such that $W_i \cap Z_j = \emptyset$ for any $j \ne i$. Let k'/k be a finite extension such that both Z_i , W_i are defined over k' and $W_i^{sm}(k') \ne \emptyset$. By [Aizenbud and Avni 2016, Lemma 3.14], we can choose k' such that $x \in W_i^{sm}(F)$ for any non-Archimedean local field $F \supseteq k'$.

By our assumption, there exists a non-Archimedean local field $F \supseteq k'$ and a nonnegative Schwartz measure *m* on X(F) that does not vanish at *x* and such that φ_*m is bounded with respect to some local basis \mathcal{N} (at $\varphi(x)$) of bounded eccentricity. Since $x \in \overline{W_i^{sm}(F)}$, there exists a point $p \in W_i^{sm}(F) \cap \operatorname{supp}(m)$.

By the implicit function theorem, there exist neighborhoods $U_X \subseteq X(F)$ and $U_Y \subseteq Y(F)$ of pand $\varphi(x) = \varphi(p)$ respectively, analytic diffeomorphisms $\alpha_X : U_X \to \mathcal{O}_F^{\dim X}$, $\alpha_Y : U_Y \to \mathcal{O}_F^{\dim Y}$ and $\alpha_{Z_i} : U_X \cap W_i^{\mathrm{sm}}(F) \to \mathcal{O}_F^{\dim Z_i}$ such that $\alpha_X(p) = 0$, $\alpha_Y(\varphi(p)) = 0$, and an analytic map $\psi : \mathcal{O}_F^{\dim X} \to \mathcal{O}_F^{\dim Y}$ such that the following diagram commutes:

where $j: \mathcal{O}_F^{\dim Z_i} \to \mathcal{O}_F^{\dim X}$ is the inclusion to the first dim Z_i coordinates. After an analytic change of coordinates we may assume that:

$$\ker d\psi_z = \operatorname{span}\{e_1, \ldots, e_{\dim X - \dim Y + r}\},\$$

for any $z \in \mathcal{O}_F^{\dim Z_i}$. By Lemma 3.3, we have that $\mathcal{M} := \alpha_Y(\mathcal{N})$ is a local basis of bounded eccentricity at $0 \in \mathcal{O}_F^{\dim Y}$. Note that $\mu := (\alpha_X)_*(1_{U_X} \cdot m)$ is a nonnegative Schwartz measure that does not vanish at 0, and that $\psi_*(\mu)$ is \mathcal{M} -bounded. By Proposition 2.6, after restricting to a small enough ball around 0 and applying a homothety, we can assume that μ is the normalized Haar measure.

As part of the data, for any $M_j \in \mathcal{M}$ we are given by $B_{\max_j}(0)$ and $B_{\min_j}(0)$, and there exists δ , C > 0such that for any $M_j \in \mathcal{M}_{\delta} := \{M_j \in \mathcal{M} \mid M_j \subseteq B_{\delta}(0)\}$, we have $B_{\max_j}(0) \subseteq M_j \subseteq B_{\min_j}(0)$ and $\lambda(B_{\min_i})/\lambda(B_{\max_i}) \leq C$. For any $0 < \epsilon < 1$, set

$$A_{\epsilon} := \{(x_1, \ldots, x_{\dim X}) \in \mathcal{O}_F^{\dim X} \mid |x_k| < \epsilon^{n_k}\},\$$

where $n_k = 0$ if $1 \le k \le \dim Z_i$; $n_k = 1$ for $\dim Z_i + 1 \le k \le \dim X - \dim Y + r$; and $n_k = 2$ for $\dim X - \dim Y + r + 1 \le k \le \dim X$.

By choosing δ small enough, we may find a constant D > 0 such that $\psi(A_{D\sqrt{\epsilon}}) \subseteq B_{\epsilon}(0)$ for every $\epsilon < \delta$. In particular, for any $M_j \in \mathcal{M}_{\delta}$ we get that $\psi(A_{D,\sqrt{\max_j}}) \subseteq B_{\max_j}(0)$, so $\psi^{-1}(B_{\max_j}(0)) \supseteq A_{D,\sqrt{\max_j}}$. Denote $\sqrt{\max_j}$ by ϵ_j and notice that there exists a constant L > 0 such that for any j with $M_j \in \mathcal{M}_{\delta}$, it holds that

$$\mu(A_{D\epsilon_j}) \ge L \cdot (D\epsilon_j)^{\dim X - \dim Y + r - \dim Z_i + 2(\dim Y - r)}$$

= $D' \cdot \epsilon_j^{\dim X + \dim Y - r - \dim Z_i}$
 $\ge D' \cdot \epsilon_j^{2\dim Y - r},$

where D' is some positive constant. Altogether, we have:

$$\frac{\psi_*(\mu)(M_j)}{\lambda(M_j)} \ge \frac{\psi_*(\mu)(B_{\max_j}(0))}{\lambda(B_{\min_j}(0))} \ge \frac{1}{C} \frac{\psi_*(\mu)(B_{\max_j}(0))}{\lambda(B_{\max_j}(0))}$$
$$\ge \frac{1}{C} \frac{\mu(A_{D\epsilon_j})}{\lambda(B_{\max_j}(0))} \ge \frac{D'}{C} \frac{\epsilon_j^{2\dim Y-r}}{\epsilon_i^{2\dim Y}} \ge \frac{D'}{C} \epsilon_j^{-r}.$$

Since \mathcal{M}_{δ} is a local basis, the above equation is true for arbitrary small ϵ_j , so we have a contradiction to the \mathcal{M} -boundedness of $\psi_*(\mu)$.

Corollary 3.6. We have that φ is flat at x, and that there is a Zariski neighborhood U_0 of x such that $Z \cap U_0$ is reduced and a local complete intersection (LCI).

Proof. Let Z_1, \ldots, Z_n be the absolutely irreducible components of Z containing x. By the previous lemma, each Z_i contains a smooth point of φ , so dim_{$x} <math>Z := \max_i \dim Z_i = \dim X - \dim Y$. Hence, we may find a neighborhood U_0 of x such that $\varphi|_{U_0}$ is flat over $\varphi(x)$ (and in particular flat at x). As a consequence, we get that $Z \cap U_0$ is an (LCI), and in particular Cohen–Macaulay. Since $Z \cap X^S \cap U_0$ is dense in $Z \cap U_0$ and $Z \cap X^S = Z^{\text{sm}}$ (see, e.g., [Hartshorne 1977, III.10.2]) it follows that $Z \cap U_0$ is generically reduced. Since $Z \cap U_0$ is also Cohen–Macaulay, it now follows from (e.g., [Vakil 2017, Exercise 26.3.B]) that it is reduced.</sub>

Without loss of generality, we assume $X = U_0$. The following lemma implies that φ is (FRS) at x, and thus finishes the proof of Theorem 1.6:

Lemma 3.7. The element x is a rational singularity of Z.

Proof. After further restricting to Zariski open neighborhoods of x and $\varphi(x)$, we may assume that X and Y are affine, with Ω_X^{top} , Ω_Y^{top} free. Fix invertible top forms $\omega_X \in \Omega_X^{\text{top}}[X]$, $\omega_Y \in \Omega_Y^{\text{top}}[Y]$. We may find an invertible section $\eta \in \Omega_Z^{\text{top}}[Z]$, such that $\eta|_{Z^{\text{sm}}} = \omega_X|_{X^S}/\varphi^*(\omega_Y)$ (for more details see the last part of the proof of [Aizenbud and Avni 2016, Theorem 3.4]). We denote $\omega_Z := \eta|_{Z^{\text{sm}}}$.

Fix a finite extension k'/k. By assumption, there exists a non-Archimedean local field $F \supseteq k'$ and a nonnegative Schwartz measure *m* on X(F) that does not vanish at *x*, such that $\varphi_*(m)$ is bounded with respect to a local basis \mathcal{N} of bounded eccentricity. Write *m* as $m = f \cdot |\omega_X|_F$. Since *Z* is an

(LCI), it is also Gorenstein, so by [Aizenbud and Avni 2016, Corollary 3.15], it is enough to prove that $\int_{X^S \cap Z(F)} f |\omega_Z|_F < \infty$ for any such k'/k and F.

Fix some embedding of X into an affine space, and let d be the metric on X(F) induced from the valuation metric. Define a function $h_{\epsilon}: X(F) \to \mathbb{R}$ by $h_{\epsilon}(x') = 1$ if $d(x', (X^{S}(F))^{C}) \ge \epsilon$ and $h_{\epsilon}(x') = 0$ otherwise. Notice that h_{ϵ} is smooth, and $f \cdot h_{\epsilon}$ is a Schwartz function whose support lies in $X^{S}(F)$.

Using Proposition 2.7, we have $\varphi_*(f \cdot h_\epsilon |\omega_X|_F) = g_\epsilon |\omega_Y|_F$, where $g_\epsilon(\varphi(x)) = \int_{X^S \cap Z(F)} f \cdot h_\epsilon |\omega_Z|_F$. Note that *f* is nonnegative and $f \cdot h_\epsilon$ is monotonically increasing when $\epsilon \to 0$, and converges pointwise to *f*. By Lebesgue's monotone convergence theorem we have:

$$\int_{X^S \cap Z(F)} f|\omega_Z|_F = \lim_{\epsilon \to 0} \int_{X^S \cap Z(F)} fh_\epsilon |\omega_Z|_F = \lim_{\epsilon \to 0} g_\epsilon(\varphi(x)).$$

It is left to show that $g_{\epsilon}(\varphi(x))$ is bounded in ϵ and we are done. By our assumption, $\varphi_*(f \cdot |\omega_X|_F)$ is \mathcal{N} -bounded, so there exists $\delta > 0$ and M > 0 such that for all $N_i \in \mathcal{N}_{\delta}$,

$$\sup_{i} \frac{\varphi_*(f|\omega_X|_F)(N_i)}{|\omega_Y|_F(N_i)} < M.$$

Note that we used the fact that for small enough δ , $|\omega_Y|_F$ is just the normalized Haar measure up to homothety. Finally, we obtain:

$$\int_{X^{S} \cap Z(F)} f|\omega_{Z}|_{F} = \lim_{\epsilon \to 0} g_{\epsilon}(\varphi(x)) = \lim_{\epsilon \to 0} \left(\lim_{i \to \infty} \frac{\varphi_{*}(f \cdot h_{\epsilon}|\omega_{X}|_{F})(N_{i})}{|\omega_{Y}|_{F}(N_{i})} \right) \leq \left(\sup_{i} \frac{\varphi_{*}(f|\omega_{X}|_{F})(N_{i})}{|\omega_{Y}|_{F}(N_{i})} \right) < M.$$

4. Proof of the main theorem

For any prime power $q = p^r$, we denote the unique unramified extension of \mathbb{Q}_p of degree r by \mathbb{Q}_q , its ring of integers by \mathbb{Z}_q , and the maximal ideal of \mathbb{Z}_q by \mathfrak{m}_q . Recall that for a finite type \mathbb{Z} -scheme X and a finite ring A, we have defined $h_X(A) := |X(A)|/|A|^{\dim X_Q}$. In this section we prove the following slightly stronger version of Theorem 1.4:

Theorem 4.1. Let X be a scheme of finite type over \mathbb{Z} such that $X_{\mathbb{Q}}$ is equidimensional and a local complete intersection. Then the following conditions are equivalent:

- (i) For any $n \in \mathbb{N}$, $\lim_{p \to \infty} h_X(\mathbb{Z}/p^n\mathbb{Z}) = 1$.
- (ii) There is a finite set *S* of prime numbers and a constant *C*, such that $|h_X(\mathbb{Z}/p^n\mathbb{Z}) 1| < Cp^{-\frac{1}{2}}$ for any prime $p \notin S$ and any $n \in \mathbb{N}$.
- (iii) $X_{\overline{\Omega}}$ is reduced, irreducible and has rational singularities.
- (iv) $X_{\overline{\mathbb{Q}}}$ is irreducible and there exists C > 0 such that $h_X(\mathbb{Z}/p^n\mathbb{Z}) < C$ for any prime p and $n \in \mathbb{N}$.
- (iv') $X_{\overline{\mathbb{Q}}}$ is irreducible and for any prime power q, the sequence $n \mapsto h_X(\mathbb{Z}_q/\mathfrak{m}_q^n)$ is bounded.
- (v) $X_{\overline{\mathbb{Q}}}$ is irreducible and there exists a finite set *S* of primes, such that for any $p \notin S$, the sequence $n \mapsto h_X(\mathbb{Z}/p^n\mathbb{Z})$ is bounded.

Moreover, conditions (iii), (iv), (iv') and (v) are equivalent without demanding that $X_{\overline{\mathbb{Q}}}$ is irreducible.

We divide the proof of the theorem into two main parts that correspond to the implications $(v) \Rightarrow (iii)$ (Section 4A) and $(iii) \Rightarrow (iv')$ (Section 4B). Theorem 4.1 can then be deduced as follows; the equivalence

of conditions (i), (ii) and (iii) was proved in [Aizenbud and Avni 2018, Theorem 3.0.3] (see Theorem 1.1). The implications (ii) \Rightarrow (v) and (iv') \Rightarrow (v) are trivial, so it follows that conditions (i), (ii), (iii), (iv') and (v) are equivalent. The implication (iv) \Rightarrow (v) is also trivial. Finally, (iv) follows from the rest of the conditions by first setting q = p in (iv') and getting that $\{h_X(\mathbb{Z}/p^n\mathbb{Z})\}_{n\in\mathbb{N}}$ is bounded for any prime p, and then by using (ii) to obtain a bound on $\{h_X(\mathbb{Z}/p^n\mathbb{Z})\}_{n\in\mathbb{N}}$ which is uniform over all primes p.

Lemma 4.2 [Aizenbud and Avni 2018, Lemma 3.1.1]. Let $X = U_1 \cup U_2$ be an open cover of a scheme. Then for any finite local ring A, we have:

- (1) $|X(A)| = |U_1(A)| + |U_2(A)| |U_1 \cap U_2(A)|.$
- (2) $|X(A)| \ge |U_1(A)|.$

The following lemma is a consequence of Chebotarev's density theorem and Hensel's lemma.

Lemma 4.3 [Glazer and Hendel 2018, Lemma 3.15]. Let X be a finite type \mathbb{Z} -scheme and let $x \in X(\overline{\mathbb{Q}})$. *Then*:

- (1) There exists a finite extension k of \mathbb{Q} , such that $x \in X(k)$.
- (2) For any finite extension k/\mathbb{Q} as in (1), there exist infinitely many primes p with $i_p : k \hookrightarrow \mathbb{Q}_p$ such that $i_{p^*}(x) \in X(\mathbb{Z}_p)$, where $i_{p^*} : X(k) \hookrightarrow X(\mathbb{Q}_p)$.

4A. Boundedness implies rational singularities.

Theorem 4.4. Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is a local complete intersection. Assume that there exists a finite set of primes S, such that for any $p \notin S$, the sequence $n \mapsto h_X(\mathbb{Z}/p^n\mathbb{Z})$ is bounded. Then $X_{\overline{\mathbb{Q}}}$ is reduced and has rational singularities.

Proof. <u>Step 1</u>: Reduction to the case when $X_{\mathbb{Q}}$ is a complete intersection in an affine space (CIA).

Let $\bigcup_{i=1}^{l} \overline{X}_i$ be an affine cover of $X_{\mathbb{Q}}$, with each \overline{X}_i a (CIA). For any *i*, there is a finite set S_i of primes, such that \overline{X}_i is defined over $\mathbb{Z}[S_i^{-1}]$ and thus it has a finite type \mathbb{Z} -model, denoted X_i . By Lemma 4.2, for each $p \notin S_i$ we have $|X_i(\mathbb{Z}/p^n\mathbb{Z})| \leq |X(\mathbb{Z}/p^n\mathbb{Z})|$ and thus $n \mapsto h_{X_i}(\mathbb{Z}/p^n\mathbb{Z})$ is bounded for each $p \notin S_i \cup S$. By our assumption, this implies that each $(X_i)_{\overline{\mathbb{Q}}}$ is reduced and has rational singularities, and thus also $X_{\overline{\mathbb{Q}}}$.

<u>Step 2</u>: Proof for the case when $X_{\mathbb{Q}}$ is a (CIA).

By Proposition 2.3 we have an inclusion $\overline{\psi} : X_{\mathbb{Q}} \hookrightarrow \mathbb{A}_{\mathbb{Q}}^{M}$ and a morphism $\overline{\varphi} : \mathbb{A}_{\mathbb{Q}}^{M} \to \mathbb{A}_{\mathbb{Q}}^{N}$, flat over 0, such that $\overline{\psi} : X_{\mathbb{Q}} \simeq \overline{\varphi}^{-1}(0)$. As in Step 1, there exists a set S_{1} of primes, and morphisms $\varphi : \mathbb{A}_{\mathbb{Z}[S_{1}^{-1}]}^{M} \to \mathbb{A}_{\mathbb{Z}[S_{1}^{-1}]}^{N}$ and $\psi : X_{\mathbb{Z}[S_{1}^{-1}]} \hookrightarrow \mathbb{A}_{\mathbb{Z}[S_{1}^{-1}]}^{M}$, such that $\varphi_{\mathbb{Q}} = \overline{\varphi}, \ \psi_{\mathbb{Q}} = \overline{\psi}, \ \varphi$ is flat over 0, and $\psi : X_{\mathbb{Z}[S_{1}^{-1}]} \simeq \varphi^{-1}(0)$.

It is enough to prove that for any finite extension k/\mathbb{Q} and any $y \in (\varphi^{-1}(0))(k)$, the map $\varphi_k : \mathbb{A}_k^M \to \mathbb{A}_k^N$ is (FRS) at y.

Fix $y \in (\varphi^{-1}(0))(k)$ and let k' be a finite extension of k. By Lemma 4.3, there exists an infinite set of primes T such that for any $p \in T$ we have an inclusion $i_p : k' \hookrightarrow \mathbb{Q}_p$ and $i_{p*}(y) \in \mathbb{Z}_p^M$. Choose $p \in T \setminus (S \cup S_1)$ and consider the local basis of balls $\{p^n \mathbb{Z}_p^N\}_n$ at 0, which clearly has bounded eccentricity. Let μ be the normalized Haar measure on \mathbb{Z}_p^M and notice that μ does not vanish at y. By Theorem 1.6, in order to prove that $\varphi_k : \mathbb{A}_k^M \to \mathbb{A}_k^N$ is (FRS) at y it is enough to show that the sequence

$$n \mapsto \frac{((\varphi_{\mathbb{Z}_p})_*\mu)(p^n \mathbb{Z}_p^N)}{\lambda(p^n \mathbb{Z}_p^N)}$$

is bounded (for any k' and p as above), where λ is the normalized Haar measure on \mathbb{Q}_p^N . Consider $\pi_{N,n} : \mathbb{Z}_p^N \to (\mathbb{Z}/p^n\mathbb{Z})^N$ and notice that the following diagram is commutative:

Therefore we have

 $\mu(\varphi_{\mathbb{Z}_p}^{-1}(p^n\mathbb{Z}_p^N)) = \mu(\varphi_{\mathbb{Z}_p}^{-1} \circ \pi_{N,n}^{-1}(0)) = \mu(\pi_{M,n}^{-1} \circ \varphi_{\mathbb{Z}/p^n}^{-1}(0)) = p^{-Mn} \cdot |\varphi_{\mathbb{Z}/p^n}^{-1}(0)| = p^{-Mn} \cdot |X(\mathbb{Z}/p^n\mathbb{Z})|,$

and hence

$$\frac{((\varphi_{\mathbb{Z}_p})_*\mu)(p^n\mathbb{Z}_p^N)}{\lambda(p^n\mathbb{Z}_p^N)} = \frac{|X(\mathbb{Z}/p^n\mathbb{Z})|}{p^{(M-N)\cdot n}} = h_X(\mathbb{Z}/p^n\mathbb{Z})$$

is bounded and we are done.

4B. *Rational singularities implies boundedness.* In the last section we proved the implication $(v) \Rightarrow (iii)$ of Theorem 4.1. In this subsection we prove that (iii) implies (iv'). We divide the proof into three cases:

- (1) *X* is a (CIA).
- (2) $X_{\mathbb{Q}}$ is a (CIA).
- (3) $X_{\mathbb{Q}}$ is an (LCI).

4B1. *Proof for the case that X is a* (CIA).

Proposition 4.5. If X is a (CIA), then (iii) \Rightarrow (iv').

Proof. By Proposition 2.4, there exists an inclusion $X \hookrightarrow \mathbb{A}^M_{\mathbb{Z}}$ and a morphism $\varphi : \mathbb{A}^M_{\mathbb{Z}} \to \mathbb{A}^N_{\mathbb{Z}}$, flat over 0, such that $X \simeq \varphi^{-1}(0)$. Consider $\varphi_{\mathbb{Q}} : \mathbb{A}^M_{\mathbb{Q}} \to \mathbb{A}^N_{\mathbb{Q}}$ and notice that $\varphi_{\mathbb{Q}}$ is (FRS) at any $x \in \varphi_{\mathbb{Q}}^{-1}(0)(\overline{\mathbb{Q}})$, as $X_{\overline{\mathbb{Q}}}$ has rational singularities.

Let μ be the normalized Haar measure on \mathbb{Z}_q^M . As in the proof of Step 2 of Theorem 4.4, we have the following commutative diagram:

In order to show that $h_X(\mathbb{Z}_q/\mathfrak{m}_q^n)$ is bounded, it is enough to show that $(\varphi_{\mathbb{Z}_q})_*\mu$ has bounded density with respect to the local basis $\{p^n\mathbb{Z}_q^N\}_n$.

After base change to \mathbb{Q}_q , we have a map $\varphi_{\mathbb{Q}_q} : \mathbb{A}_{\mathbb{Q}_q}^M \to \mathbb{A}_{\mathbb{Q}_q}^N$, which is (FRS) at any point $x \in X(\mathbb{Q}_q)$. For any $t \in \mathbb{N}$, consider the set $U_t = \varphi_{\mathbb{Z}_q}^{-1}(p^t \mathbb{Z}_q^N)$ and note that it is open, closed and compact. We claim that there exists $R \in \mathbb{N}$, such that for any t > R we have that φ is (FRS) at any point $y \in U_t$. Indeed, otherwise we may construct a sequence $x_t \in U_t$ such that φ is not (FRS) at x_t . By a theorem of Elkik [1978] (see also [Aizenbud and Avni 2016, Theorem 6.3]), the (FRS) locus of φ is an open set. After

496

choosing a convergent subsequence $\{x_{t_j}\}$, we obtain that $\varphi_{\mathbb{Q}_q}$ is not (FRS) at the limit $x_0 \in \mathbb{Z}_q^M$. But $\varphi_{\mathbb{Q}_q}(x_0) \in \bigcap_t \varphi_{\mathbb{Q}_q}(U_t) = \{0\}$ so $x_0 \in X(\mathbb{Q}_q)$ and we get a contradiction.

Finally, by Theorem 1.3, the measure $(\varphi_{\mathbb{Z}_q})_*\mu|_{U_R}$ has continuous density, and in particular bounded with respect to the local basis $\{p^n\mathbb{Z}_q^N\}_n$. Hence, from the definition of U_R , we have for n > R:

$$h_X(\mathbb{Z}_q/\mathfrak{m}_q^n) = \frac{(\varphi_{\mathbb{Z}_q})_*\mu(p^n\mathbb{Z}_q^N)}{q^{-nN}} = \frac{(\varphi_{\mathbb{Z}_q})_*\mu|_{U_R}(p^n\mathbb{Z}_q^N)}{q^{-nN}} < C,$$

for some constant C > 0 and we are done.

4B2. Some constructions. Let X be an affine \mathbb{Z} -scheme with a coordinate ring

$$\mathbb{Z}[X] := \mathbb{Z}[x_1, \ldots, x_c]/(f_1, \ldots, f_m),$$

and fix $K \in \mathbb{N}$.

- (1) For any $g \in \mathbb{Z}[x_1, \ldots, x_c]$ denote by $g_K \in \mathbb{Q}[x_1, \ldots, x_c]$ the function $g_K(x_1, \ldots, x_c) := g\left(\frac{x_1}{K}, \ldots, \frac{x_l}{K}\right)$.
- (2) For any $\varphi : \mathbb{A}_{\mathbb{Z}}^{M} \to \mathbb{A}_{\mathbb{Z}}^{N}$ of the form $\varphi = (\varphi_{1}, \ldots, \varphi_{N})$, we denote by $\varphi_{K} : \mathbb{A}_{\mathbb{Q}}^{M} \to \mathbb{A}_{\mathbb{Q}}^{N}$ the morphism $\varphi_{K} := ((\varphi_{1})_{K}, \ldots, (\varphi_{N})_{K}).$
- (3) Let $r(K) \in \mathbb{N}$ be minimal such that $K^{r(K)}(f_i)_K$ has integer coefficients for any *i*. Denote by \widetilde{X}_K the \mathbb{Z} -scheme with the following coordinate ring:

$$\mathbb{Z}[\widetilde{X}_K] := \mathbb{Z}[x_1, \ldots, x_c] / \big(K^{r(K)}(f_1)_K, \ldots, K^{r(K)}(f_m)_K \big).$$

- (4) For any \mathbb{Q} -morphism $\psi: X_{\mathbb{Q}} \to \mathbb{A}_{\mathbb{Q}}^{M}$ of the form $\psi = (\psi_1, \ldots, \psi_N)$ let $K\psi$ denote $(K \cdot \psi_1, \ldots, K \cdot \psi_N)$.
- (5) For any affine Q-scheme Z, with $\mathbb{Q}[Z] = \mathbb{Q}[y_1, \dots, y_d]/(g_1, \dots, g_k)$ and a Q-morphism $\phi: Z \to X_{\mathbb{Q}}$, we may define a morphism $K\phi: Z \to (\widetilde{X}_K)_{\mathbb{Q}}$ by $K\phi(y_1, \dots, y_d) := K \cdot \phi(y_1, \dots, y_d)$.

4B3. Proof for the case that $X_{\mathbb{Q}}$ is a (CIA). In this case, we have an inclusion $\psi : X_{\mathbb{Q}} \hookrightarrow \mathbb{A}_{\mathbb{Q}}^{M}$ and a morphism $\varphi : \mathbb{A}_{\mathbb{Q}}^{M} \to \mathbb{A}_{\mathbb{Q}}^{N}$, flat over 0, such that $X_{\mathbb{Q}} \simeq \varphi^{-1}(0)$.

Lemma 4.6. Let X be a finite type \mathbb{Z} -scheme, such that $X_{\mathbb{Q}}$ is a (CIA), defined by the morphisms φ, ψ as above. Then there exists a \mathbb{Z} -scheme $\widehat{X}_{\varphi,\psi}$, which is a (CIA), and a \mathbb{Z} -morphism $\phi : X \to \widehat{X}_{\varphi,\psi}$, such that $\phi_{\mathbb{Q}}$ is an isomorphism.

Proof. Let $\mathbb{Z}[X] := \mathbb{Z}[x_1, \ldots, x_c]/(f_1, \ldots, f_m)$ be the coordinate ring of *X*. Denote by $S = \{p_1, \ldots, p_s\}$ the set of all prime numbers that appear in the denominators of the polynomial maps ψ and φ , and set $P' := \prod_{p_i \in S} p_i$. Let $t \in \mathbb{N}$ be minimal such that $(P')^t \psi$ has integer coefficients. Denote $P := (P')^t$ and notice that $P\psi$ is a \mathbb{Z} -morphism. Let $\varphi_P : \mathbb{A}^M_{\mathbb{Q}} \to \mathbb{A}^N_{\mathbb{Q}}$ be as defined in 4B2. Notice that there exists $m \in \mathbb{N}$ such that $P^m \varphi_P$ has coefficients in \mathbb{Z} . We now have the following \mathbb{Z} -morphisms:

$$X \xrightarrow{P\psi} \mathbb{A}^M_{\mathbb{Z}} \xrightarrow{P^m \varphi_P} \mathbb{A}^N_{\mathbb{Z}}.$$

Set $\widehat{X}_{\varphi,\psi}$ to be the fiber $(P^m \varphi_P)^{-1}(0)$ and notice that $\phi := P \psi$ is a \mathbb{Z} -morphism from X to $\widehat{X}_{\varphi,\psi}$, such that $\phi_{\mathbb{Q}}$ is an isomorphism, and $\widehat{X}_{\varphi,\psi}$ is a (CIA).

Lemma 4.7. Let X and Y be affine \mathbb{Z} -schemes and $\phi : X \to Y$ be a \mathbb{Z} -morphism, such that $\phi_{\mathbb{Q}}$ is an isomorphism. Then there exist c, $N \in \mathbb{N}$, such that for any prime power q and any n:

$$|X(\mathbb{Z}_q/\mathfrak{m}_q^n)| \le q^{N \cdot c} \cdot |Y(\mathbb{Z}_q/\mathfrak{m}_q^n)|.$$

Proof. The morphism ϕ induces a map $\phi_n : X(\mathbb{Z}_q/\mathfrak{m}_q^n) \to Y(\mathbb{Z}_q/\mathfrak{m}_q^n)$. It is enough to show that ϕ_n has fibers of size at most $q^{N \cdot c}$. Assume that $\mathbb{Z}[X] = \mathbb{Z}[x_1, \ldots, x_c]/(f_1, \ldots, f_m)$. As in Section 4B2, we may choose $K, r(K) \in \mathbb{N}$ such that \widetilde{X}_K is a \mathbb{Z} -scheme with a coordinate ring

$$\mathbb{Z}[\widetilde{X}_K] := \mathbb{Z}[x_1, \ldots, x_c] / \big(K^{r(K)}(f_1)_K, \ldots, K^{r(K)}(f_m)_K \big),$$

and $K\phi^{-1}: Y \to \widetilde{X}_K$ is a \mathbb{Z} -morphism. The map $(K\phi^{-1} \circ \phi): X \to \widetilde{X}_K$ is just coordinatewise multiplication by K. Thus $(K\phi^{-1})_n \circ \phi_n: X(\mathbb{Z}_q/\mathfrak{m}_q^n) \to \widetilde{X}_K(\mathbb{Z}_q/\mathfrak{m}_q^n)$ sends $(a_1, \ldots, a_c) \in X(\mathbb{Z}_q/\mathfrak{m}_q^n)$ to $(Ka_1, \ldots, Ka_c) \in \widetilde{X}_K(\mathbb{Z}_q/\mathfrak{m}_q^n)$.

For any prime p, let N(p) be the maximal integer such that $p^{N(p)}|K$. Note that the map $(a_1, \ldots, a_n) \mapsto (Ka_1, \ldots, Ka_n)$ from $(\mathbb{Z}_q/\mathfrak{m}_q^n)^c$ to $(\mathbb{Z}_q/\mathfrak{m}_q^n)^c$ has fibers of size $q^{N(p)\cdot c}$ for n > N(p). Indeed, for $(b_1, \ldots, b_c) \in (\mathbb{Z}_q/\mathfrak{m}_q^n)^c$, $(Ka_1, \ldots, Ka_c) = (b_1, \ldots, b_c)$ if and only if $Ka_i = b_i$ for any $1 \le i \le c$. Since $K/p^{N(p)}$ is invertible in $\mathbb{Z}_q/\mathfrak{m}_q^n$, it is equivalent to demand that $p^{N(p)}a_i = c_i$ for some multiple c_i of b_i by an invertible element. Hence, we can reduce to the case of the map $(a_1, \ldots, a_c) \mapsto (p^{N(p)}a_1, \ldots, p^{N(p)}a_c)$, which clearly has fibers of size $q^{N(p)\cdot c}$ for n > N(p). Note that for any $y \in Y(\mathbb{Z}_q/\mathfrak{m}_q^n)$ we have $|\phi_n^{-1}(y)| \le |((K\phi^{-1})_n \circ \phi_n)^{-1}(x)|$, where $x = (K\phi^{-1})_n(y)$. Since the fibers of $(K\phi^{-1})_n \circ \phi_n$ are of size bounded by $q^{N(p)c}$, so are the fibers of ϕ_n . We may take N := K > N(p) and we are done.

Corollary 4.8. Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is a (CIA). Then condition (iii) of Theorem 4.1 implies condition (iv').

Proof. By Lemma 4.6, we may choose a \mathbb{Z} -scheme \widehat{X} , which is a (CIA), and a \mathbb{Z} -morphism $\phi : X \to \widehat{X}$, such that $\phi_{\mathbb{Q}}$ is an isomorphism. By Proposition 4.5 and Lemma 4.7, there exists $c, N \in \mathbb{N}$, such that for any prime power q, there exists C > 0 such that:

$$h_X(\mathbb{Z}_q/\mathfrak{m}_q^n) = \frac{|X(\mathbb{Z}_q/\mathfrak{m}_q^n)|}{q^{n \dim X_{\mathbb{Q}}}} \le q^{c \cdot N} \cdot \frac{|\widehat{X}(\mathbb{Z}_q/\mathfrak{m}_q^n)|}{q^{n \dim X_{\mathbb{Q}}}} \le q^{c \cdot N} \cdot C,$$

and hence condition (iv') holds.

4B4. Proof for the case when $X_{\mathbb{Q}}$ is an (LCI). Using Lemma 4.2, we may reduce to the case when X is affine, with coordinate ring $\mathbb{Z}[X] := \mathbb{Z}[x_1, \ldots, x_c]/(f_1, \ldots, f_m)$. Since $X_{\mathbb{Q}}$ is an (LCI), we have an affine open cover $\{\beta_i : U_i \hookrightarrow X_{\mathbb{Q}}\}_i$ of $X_{\mathbb{Q}}$ with inclusions $\psi_i : U_i \hookrightarrow \mathbb{A}_{\mathbb{Q}}^{M_i}$ and maps $\varphi_i : \mathbb{A}_{\mathbb{Q}}^{M_i} \to \mathbb{A}_{\mathbb{Q}}^{N_i}$, flat over 0, such that $\psi_i : U_i \simeq \varphi_i^{-1}(0)$. We may assume that U_i is isomorphic to a basic open set $D(g_i)$ for $g_i \in \mathbb{Q}[X]$ and $\beta_i^* : \mathbb{Q}[X] \to \mathbb{Q}[X, t]/(g_i t - 1)$ is the natural map. Since $\{D(g_i)\}_i$ is a cover of $X_{\mathbb{Q}}$, there exist $c'_i \in \mathbb{Z}[X]$ and $d_i \in \mathbb{Z}$ such that $\sum c'_i \cdot g_i/d_i = 1$. Thus, by multiplying by all the d_i 's, we obtain $\sum c_i g_i = D$ for some $c_i \in \mathbb{Z}[X]$ and $D \in \mathbb{Z}$. Choose large enough $P \in \mathbb{N}$ such that the following algebra

$$\mathbb{Z}[x_1,\ldots,x_c,t]/(f_1,\ldots,f_m,Pg_it-D\cdot P)$$

is a coordinate ring of a \mathbb{Z} -scheme \widetilde{U}_i , for any *i*. Moreover, notice that $\widetilde{U}_i \simeq U_i$ over \mathbb{Q} .

Lemma 4.9. There exists $N \in \mathbb{N}$, such that for any prime power $q = p^r$ and any n > N we have

$$|X(\mathbb{Z}_q/\mathfrak{m}_q^n)| \le \sum_i |\widetilde{U}_i(\mathbb{Z}_q/\mathfrak{m}_q^n)|.$$

Proof. Let N(p) be the maximal integer such that $p^{N(p)} | D \cdot P$. We first claim that for any n > N(p) + 1 and $(a_1, \ldots, a_c) \in X(\mathbb{Z}_q/\mathfrak{m}_q^n)$, there exists some *i* such that $Pg_i(a_1, \ldots, a_c) \notin \mathfrak{m}_q^{N(p)+1}/\mathfrak{m}_q^n$. Indeed, if

 $Pg_i(a_1, \ldots, a_c) \in \mathfrak{m}_q^{N(p)+1}/\mathfrak{m}_q^n$ for any i, then $\sum Pg_i(a_1, \ldots, a_c) \cdot c_i(a_1, \ldots, a_c) = D \cdot P \in \mathfrak{m}_q^{N(p)+1}/\mathfrak{m}_q^n$ and hence $p^{N(p)+1} | D \cdot P$ leading to a contradiction. Set $N := D \cdot P + 1$ and notice that N > N(p) + 1for any prime p. Fix n > N and let i such that $Pg_i(a_1, \ldots, a_c) \notin \mathfrak{m}_q^{N(p)+1}/\mathfrak{m}_q^n$. We now claim that the equation $Pg_i(a_1, \ldots, a_c)t - PD = 0$ has a solution in $\mathbb{Z}_q/\mathfrak{m}_q^n$. Indeed, if $Pg_i(a_1, \ldots, a_c)$ is invertible in $\mathbb{Z}_q/\mathfrak{m}_q^n$, we are done. Otherwise, we have that $Pg_i(a_1, \ldots, a_c) = p^l \cdot b \in \mathfrak{m}_q^l/\mathfrak{m}_q^n$ for some $l \leq N(p)$, where b is invertible. Write $PD = p^l \cdot a$. We can rewrite the equation as $p^l \cdot (bt - a) = 0$, which has a solution $d \in \mathbb{Z}_q/\mathfrak{m}_q^n$ since b is invertible. We see that for any n > N and any $(a_1, \ldots, a_c) \in X(\mathbb{Z}_q/\mathfrak{m}_q^n)$ there exists i and $d \in \mathbb{Z}_q/\mathfrak{m}_q^n$ such that $(a_1, \ldots, a_c, d) \in \widetilde{U}_i(\mathbb{Z}_q/\mathfrak{m}_q^n)$. This implies the lemma.

Since $(\widetilde{U}_i)_{\mathbb{Q}} \simeq U_i$ is a (CIA) for any *i*, we obtain

$$h_X(\mathbb{Z}_q/\mathfrak{m}_q^n) = q^{-n \dim X_{\mathbb{Q}}} \cdot |X(\mathbb{Z}_q/\mathfrak{m}_q^n)| \le \sum_i q^{-n \dim X_{\mathbb{Q}}} \cdot |\widetilde{U}_i(\mathbb{Z}_q/\mathfrak{m}_q^n)| < \sum C_i,$$

where $C_i = \sup_n h_{\widetilde{U}_i}(\mathbb{Z}_q/\mathfrak{m}_q^n)$. The implication (iii) \Rightarrow (iv') of Theorem 4.1 now follows.

Acknowledgements

I would like to thank my advisor Avraham Aizenbud for presenting me with this problem, teaching and helping me in this work. I hold many thanks to Nir Avni for helpful discussions and for hosting me at Northwestern University in July 2016, during which a large part of this work was done. I also thank Yotam Hendel for fruitful talks. This work was partially supported by the ISF grant [687/13], the BSF grant [2012247] and the Minerva Foundation grant.

References

- [Aizenbud and Avni 2016] A. Aizenbud and N. Avni, "Representation growth and rational singularities of the moduli space of local systems", *Invent. Math.* **204**:1 (2016), 245–316. MR Zbl
- [Aizenbud and Avni 2018] A. Aizenbud and N. Avni, "Counting points of schemes over finite rings and counting representations of arithmetic lattices", *Duke Math. J.* 167:14 (2018), 2721–2743. MR Zbl
- [Deligne 1974] P. Deligne, "La conjecture de Weil, I", Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307. MR Zbl

[Deligne 1980] P. Deligne, "La conjecture de Weil, II", Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252. MR Zbl

- [Denef 1991] J. Denef, "Report on Igusa's local zeta function", exposé 741, pp. 359–386 in *Séminaire Bourbaki*, 1990/1991, Astérisque **201–203**, 1991. MR Zbl
- [Dwork 1960] B. Dwork, "On the rationality of the zeta function of an algebraic variety", *Amer. J. Math.* **82** (1960), 631–648. MR Zbl
- [Elkik 1978] R. Elkik, "Singularités rationnelles et déformations", Invent. Math. 47:2 (1978), 139–147. MR Zbl
- [Glazer and Hendel 2018] I. Glazer and Y. I. Hendel, "On singularity properties of convolutions of algebraic morphisms", preprint, 2018. to appear in *Selecta Mathematica*. arXiv
- [Grothendieck 1965] A. Grothendieck, "Formule de Lefschetz et rationalité des fonctions *L*", exposé in *Séminaire Bourbaki*, 1964/1965, W. A. Benjamin, Amsterdam, 1965. Reprinted as pp. 41–55 in *Séminaire Bourbaki* 9, Soc. Math. France, Paris, 1995. MR
- [Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, 1977. MR Zbl
- [Hironaka 1964] H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II", *Ann. of Math.* (2) **79** (1964), 109–326. MR Zbl
- [Igusa 2000] J.-i. Igusa, *An introduction to the theory of local zeta functions*, AMS/IP Studies in Advanced Mathematics **14**, American Mathematical Society, Providence, RI, 2000. MR Zbl

[Kempf et al. 1973] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, *Toroidal embeddings, I*, Lecture Notes in Mathematics **339**, Springer, 1973. MR Zbl

[Lang and Weil 1954] S. Lang and A. Weil, "Number of points of varieties in finite fields", *Amer. J. Math.* **76** (1954), 819–827. MR Zbl

[Mustață 2011] M. Mustață, "Zeta functions in algebraic geometry", lecture notes, University of Michigan, 2011, Available at http://www.math.lsa.umich.edu/~mmustata/zeta_book.pdf.

[du Sautoy and Grunewald 2000] M. du Sautoy and F. Grunewald, "Analytic properties of zeta functions and subgroup growth", *Ann. of Math.* (2) **152**:3 (2000), 793–833. MR Zbl

[Vakil 2017] R. Vakil, "The rising sea: foundations of algebraic geometry", preprint, 2017, Available at http://math.stanford.edu/ ~vakil/216blog/FOAGnov1817public.pdf.

Communicated by Hélène Esnault Received 2018-03-03 Revised 2018-08-27 Accepted 2018-12-24

itay.glazer@weizmann.ac.il

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds	University of California, Berkeley, USA	Raman Parimala	Emory University, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Jonathan Pila	University of Oxford, UK
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Anand Pillay	University of Notre Dame, USA
Brian D. Conrad	Stanford University, USA	Michael Rapoport	Universität Bonn, Germany
Samit Dasgupta	University of California, Santa Cruz, USA	Victor Reiner	University of Minnesota, USA
Hélène Esnault	Freie Universität Berlin, Germany	Peter Sarnak	Princeton University, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Sergey Fomin	University of Michigan, USA	Christopher Skinner	Princeton University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Pham Huu Tiep	University of Arizona, USA
Roger Heath-Brown	Oxford University, UK	Ravi Vakil	Stanford University, USA
Craig Huneke	University of Virginia, USA	Michel van den Bergh	Hasselt University, Belgium
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Akshay Venkatesh	Institute for Advanced Study, USA
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Philippe Michel	École Polytechnique Fédérale de Lausanne	Kei-Ichi Watanabe	Nihon University, Japan
Susan Montgomery	University of Southern California, USA	Melanie Matchett Wood	University of Wisconsin, Madison, USA
Shigefumi Mori	RIMS, Kyoto University, Japan	Shou-Wu Zhang	Princeton University, USA
Martin Olsson	University of California, Berkeley, USA		

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US \$385/year for the electronic version, and \$590/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing http://msp.org/

© 2019 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 13 No. 2 2019

High moments of the Estermann function	251
Le théorème de Fermat sur certains corps de nombres totalement réels	301
<i>G</i> -valued local deformation rings and global lifts REBECCA BELLOVIN and TOBY GEE	333
Functorial factorization of birational maps for qe schemes in characteristic 0 DAN ABRAMOVICH and MICHAEL TEMKIN	379
Effective generation and twisted weak positivity of direct images YAJNASENI DUTTA and TAKUMI MURAYAMA	425
Lovász–Saks–Schrijver ideals and coordinate sections of determinantal varieties ALDO CONCA and VOLKMAR WELKER	455
On rational singularities and counting points of schemes over finite rings ITAY GLAZER	485
The Maillot–Rössler current and the polylogarithm on abelian schemes GUIDO KINGS and DANNY SCARPONI	501
Essential dimension of inseparable field extensions ZINOVY REICHSTEIN and ABHISHEK KUMAR SHUKLA	513

