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Let k be a base field, K be a field containing k, and L/K be a field extension of degree n. The essential
dimension ed(L/K ) over k is a numerical invariant measuring “the complexity” of L/K . Of particular
interest is

τ(n)=max
{
ed(L/K ) | L/K is a separable extension of degree n

}
,

also known as the essential dimension of the symmetric group Sn . The exact value of τ(n) is known
only for n 6 7. In this paper we assume that k is a field of characteristic p > 0 and study the essential
dimension of inseparable extensions L/K . Here the degree n = [L : K ] is replaced by a pair (n, e) which
accounts for the size of the separable and the purely inseparable parts of L/K , respectively, and τ(n) is
replaced by

τ(n, e)=max
{
ed(L/K ) | L/K is a field extension of type (n, e)

}
.

The symmetric group Sn is replaced by a certain group scheme Gn,e over k. This group scheme is neither
finite nor smooth; nevertheless, computing its essential dimension turns out to be easier than computing
the essential dimension of Sn . Our main result is a simple formula for τ(n, e).

1. Introduction

Throughout this paper k will denote a base field. All other fields will be assumed to contain k. A field
extension L/K of finite degree is said to descend to a subfield K0 ⊂ K if there exists an intermediate
field K0 ⊂ L0 ⊂ L such that L0 and K generate L and [L0 : K0] = [L : K ]. Equivalently, L is isomorphic
to L0⊗K0 K over K , as is shown in the diagram

L

L0 K

K0

The essential dimension of L/K (over k) is defined as

ed(L/K )=min
{
trdeg(K0/k) | L/K descends to K0 and k ⊂ K0

}
.
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Essential dimension of separable field extensions was studied in [Buhler and Reichstein 1997]. Of
particular interest is

τ(n)=max
{
ed(L/K ) | L/K is a separable extension of degree n and k ⊂ K

}
, (1-1)

otherwise known as the essential dimension of the symmetric group Sn . It is shown in [Buhler and
Reichstein 1997] that if char(k)= 0, then bn/2c6 τ(n)6 n−3 for every n > 5.1 A. Duncan [2010] later
strengthened the lower bound as follows.

Theorem 1.1. If char(k)= 0, then b(n+ 1)/2c6 τ(n)6 n− 3 for every n > 6.

This paper is a sequel to [Buhler and Reichstein 1997]. Here we will assume that char(k)= p > 0 and
study inseparable field extensions L/K . The role of the degree, n = [L : K ] in the separable case, will be
played by a pair (n, e). The first component of this pair is the separable degree, n= [S : K ], where S is the
separable closure of K in L . The second component is the so-called type e= (e1, . . . , er ) of the purely
inseparable extension [L : S], where e1 > e2 > · · ·> er > 1 are integers; see Section 4 for the definition.
Note that the type e= (e1, . . . , er ) uniquely determines the inseparable degree [L : S] = pe1+···+er of L/K
but not conversely. By analogy with (1-1) it is natural to define

τ(n, e)=max
{
ed(L/K ) | L/K is a field extension of type (n, e) and k ⊂ K

}
. (1-2)

Our main result is the following:

Theorem 1.2. Let k be a base field of characteristic p > 0, n > 1 and e1 > e2 > · · ·> er > 1 be integers,
e= (e1, . . . , er ), and si = e1+ · · ·+ ei for i = 1, . . . , r . Then

τ(n, e)= n
r∑

i=1

psi−iei .

Some remarks are in order.

(1) Theorem 1.2 gives the exact value for τ(n, e). This is in contrast to the separable case, where
Theorem 1.1 only gives estimates and the exact value of τ(n) is unknown for any n > 8.

(2) A priori, the integers ed(L/K ), τ(n), and τ(n, e) all depend on the base field k. However, Theorem 1.2
shows that for a fixed p = char(k), τ(n, e) is independent of the choice of k.

(3) Theorem 1.2 implies that for any inseparable extension L/K of finite degree,

ed(L/K )6 1
p
[L : K ];

see Remark 5.3. This is again in contrast to the separable case, where Theorem 1.1 tells us that there
exists an extension L/K of degree n such that ed(L/K ) > 1

2 [L : K ] for every odd n > 7 (assuming
char(k)= 0).

1These inequalities hold for any base field k of characteristic 6= 2. On the other hand, the stronger lower bound of Theorem 1.1,
due to Duncan, is only known in characteristic 0.
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(4) We will also show that the formula for τ(n, e) remains valid if we replace the essential dimension
ed(L/K ) in the definition (1-2) by the essential dimension at p, edp(L/K ); see Theorem 7.1. For the
definition of the essential dimension at a prime, see Section 5 in [Reichstein 2010] or Section 3 below.

The number τ(n) has two natural interpretations. On the one hand, τ(n) is the essential dimension
of the functor Etn which associates to a field K the set of isomorphism classes of étale algebras of
degree n over K . On the other hand, τ(n) is the essential dimension of the symmetric group Sn . Recall
that an étale algebra L/K is a direct product L = L1 × · · · × Lm of separable field extensions L i/K .
Equivalently, an étale algebra of degree n over K can be thought of as a twisted K -form of the split
algebra kn

= k× · · · × k (n times). The symmetric group Sn arises as the automorphism group of this
split algebra, so that Etn = H 1(K ,Sn); see Example 3.5.

Our proof of Theorem 1.2 relies on interpreting τ(n, e) in a similar manner. Here the role of the split
étale algebra kn will be played by the algebra 3n,e, which is the direct product of n copies of the truncated
polynomial algebra

3e = k[x1, . . . , xr ]/
(
x

pe
1

1 , . . . , x per

r
)
.

Note that the k-algebra 3n,e is finite-dimensional, associative, and commutative, but not semisimple.
Étale algebras over K will get replaced by K -forms of 3n,e. The role of the symmetric group Sn will
be played by the algebraic group scheme Gn,e = Autk(3n,e) over k. We will show that τ(n, e) is the
essential dimension of Gn,e, just like τ(n) is the essential dimension of Sn in the separable case. The
group scheme Gn,e is neither finite nor smooth; however, much to our surprise, computing its essential
dimension turned out to be easier than computing the essential dimension of Sn .

The remainder of this paper is structured as follows. Sections 2 and 3 contain preliminary results on
finite-dimensional algebras, their automorphism groups, and essential dimension. In Section 4 we recall
the structure theory of inseparable field extensions. Section 6 is devoted to versal algebras. The upper
bound of Theorem 1.2 is proved in Section 5; alternative proofs are outlined in Section 8. The lower
bound of Theorem 1.2 is established in Section 7; our proof relies on the inequality (7-2) due to D. Tossici
and A. Vistoli [2013]. Finally, in Section 9 we prove a stronger version of Theorem 1.2 in the special
case where n = 1, e1 = · · · = er , and k is perfect.

2. Finite-dimensional algebras and their automorphisms

Recall that in the introduction we defined the essential dimension of a field extension L/K of finite
degree, where K contains k. The same definition is valid for any finite-dimensional algebra A/K . That is,
we say that A descends to a subfield K0 if there exists a K0-algebra A0 such that A0⊗K0 K is isomorphic
to A (as a K -algebra). The essential dimension ed(A) is then the minimal value of trdeg(K0/k), where
the minimum is taken over the intermediate fields k ⊂ K0 ⊂ K such that A descends to K0.

Here by a K -algebra A we mean a K -vector space with a bilinear “multiplication” map m : A× A→ A.
Later on we will primarily be interested in commutative associative algebras with 1, but at this stage m
can be arbitrary: we will not assume that A is commutative or associative or has an identity element. (For
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example, one can talk of the essential dimension of a finite-dimensional Lie algebra A/K .) Recall that to
each basis x1, . . . , xn of A one can associate a set of n3 structure constants ch

i j ∈ K , where

xi · x j =

n∑
h=1

ch
i j xh . (2-1)

Lemma 2.1. Let A be an n-dimensional K -algebra with structure constants ch
i j (relative to some K -basis

of A). Suppose a subfield K0 ⊂ K contains ch
i j for every i, j, h = 1, . . . , n. Then A descends to K0. In

particular, ed(A)6 trdeg(K0/k).

Proof. Let A0 be the K0-vector space with basis b1, . . . , bn . Define the K0-algebra structure on A0 by
(2-1). Clearly A0⊗K0 K = A, and the lemma follows. �

The following lemma will be helpful to us in the sequel.

Lemma 2.2. Suppose k ⊂ K ⊂ S are field extensions, such that S/K is separable of degree n. Let A be a
finite-dimensional algebra over S. If A descends to a subfield S0 of S such that K (S0)= S, then

ed(A/K )6 n trdeg(S0/k).

Here ed(A/K ) is the essential dimension of A, viewed as a K -algebra.

Proof. By our assumption there exists an S0-algebra A0 such that A = A0⊗S0 S.
Denote the normal closure of S over K by Snorm, and the associated Galois groups by G=Gal(Snorm/K )

and H = Gal(Snorm/S) ⊂ G. Now define S1 = k(g(s) | s ∈ S0, g ∈ G). Choose a transcendence basis
t1, . . . , td for S0 over k, where d = trdeg(S0/k). Clearly S1 is algebraic over k(g(ti ) | g ∈G, i = 1, . . . , d).
Since H fixes every element of S, each ti has at most [G : H ] = n distinct translates of the form g(ti ),
g ∈ G. This shows that trdeg(S1/k)6 nd .

Now let K1 = SG
1 ⊂ K and A1 = A0⊗K0 K1. Since S1 is algebraic over K1, we have

trdeg(K1/k)= trdeg(S1/k)6 nd.

Examining the diagram
A0 A1 A

S0 S1 S

K1 K

we see that A/K descends to K1, and the lemma follows. �

Now let3 be a finite-dimensional k-algebra with multiplication map m :3×3→3. The general linear
group GLk(3) acts on the vector space 3∗⊗k3

∗
⊗k3 of bilinear maps 3×3→3. The automorphism

group scheme G = Autk(3) of 3 is defined as the stabilizer of m under this action. It is a closed
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subgroup scheme of GLk(3) defined over k. The reason we use the term “group scheme” here, rather
than “algebraic group”, is that G may not be smooth; see the Remark after Lemma III.1.1 in [Serre 1997].

Proposition 2.3. Let 3 be a commutative finite-dimensional local k-algebra with residue field k, and
G = Autk(3) be its automorphism group scheme. Then the natural map

f : Gn oSn→ Autk(3n)

is an isomorphism. Here Gn
= G×· · ·×G (n times) acts on 3n

=3×· · ·×3 (n times) componentwise
and Sn acts by permuting the factors.

Before proceeding with the proof of the proposition, recall that an element α of a ring R is called an
idempotent if α2

= α.

Lemma 2.4. Let 3 be a commutative finite-dimensional local k-algebra with residue field k and R be an
arbitrary commutative k-algebra with 1. Then the only idempotents of 3R =3⊗k R are those in R (more
precisely in 1⊗ R).

Proof. By Lemma 6.2 in [Waterhouse 1979], the maximal ideal M of 3 consists of nilpotent elements.
Tensoring the natural projection 3→3/M ' k with R, we obtain a surjective homomorphism 3R→ R
whose kernel again consists of nilpotent elements. By Proposition 7.14 in [Jacobson 1980], every
idempotent in R lifts to a unique idempotent in 3R , and the lemma follows. �

Proof of Proposition 2.3. Let αi = (0, . . . , 1, . . . , 0) where 1 appears in the i-th position. Then
⊕n

i=1 Rαi

is an R-subalgebra of 3n
R .

Let f ∈ AutR(3
n
R). Since each αi is an idempotent in 3n

R , so is each f (αi ). The components of
each f (αi ) are idempotents in 3R . By Lemma 2.4, they lie in R. Thus, f (αi ) ∈

⊕n
i=1 Rαi for every

i = 1, . . . , n. As a result, we obtain a morphism

AutR(3
n
R)

τR
−→ AutR

( n⊕
i=1

Rαi

)
= Sn(R).

For the second equality, see, e.g., p. 59 in [Waterhouse 1979]. These maps are functorial in R and thus
give rise to a morphism τ : Aut(3n)→ Sn of group schemes over k. The kernel of τ is Aut(3)n , and τ
clearly has a section. The proposition follows. �

Remark 2.5. The assumption that 3 is commutative in Proposition 2.3 can be dropped, as long as we
assume that the center of3 is a finite-dimensional local k-algebra with residue field k. The proof proceeds
along similar lines, except that we restrict f to an automorphism of the center Z(3n)= Z(3)n and apply
Lemma 2.4 to Z(3), rather than 3 itself. This more general variant of Proposition 2.3 will not be needed
in the sequel.

Remark 2.6. On the other hand, the assumption that the residue field of 3 is k cannot be dropped. For
example, if 3 is a separable field extension of k of degree d , then Autk(3n) is a twisted form of

Autk(3
n
⊗k k)= Autk(k

dn)= Snd .
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Here k denotes the separable closure of k. Similarly, Autk(3)n o Sd is a twisted form of (Sd)
n o Sn . For

d, n > 1, these groups have different orders, so they cannot be isomorphic.

3. Essential dimension of a functor

In the sequel we will need the following general notion of essential dimension, due to A. Merkurjev [Berhuy
and Favi 2003]. Let F : Fieldsk→ Sets be a covariant functor from the category of field extensions K/k
to the category of sets. Here k is assumed to be fixed throughout, and K ranges over all fields containing k.
We say that an object a ∈ F(K ) descends to a subfield K0 ⊂ K if a lies in the image of the natural
restriction map F(K0)→ F(K ). The essential dimension ed(a) of a is defined as the minimal value
of trdeg(K0/k), where k ⊂ K0 and a descends to K0. The essential dimension of the functor F , denoted
by ed(F), is the supremum of ed(a) for all a ∈ F(K ), and all fields K in Fieldsk .

If l is a prime, there is also a related notion of essential dimension at l, which we denote by edl . For an
object a ∈ F , we define edl(a) as the minimal value of ed(a′), where a′ is the image of a in F(K ′), and
the minimum is taken over all field extensions K ′/K such that the degree [K ′ : K ] is finite and prime to l.
The essential dimension edl(F) of the functor F at l is defined as the supremum of edl(a) for all a ∈ F(K )
and all fields K in Fieldsk . Note that the prime l in this definition is unrelated to p = char(k); we allow
both l = p and l 6= p.

Example 3.1. Let G be a group scheme over a base field k and FG : K → H 1(K ,G) be the functor
defined by

FG(K )= {isomorphism classes of G-torsors T → Spec(K )}.

Here by a torsor we mean a torsor in the flat (fppf) topology. If G is smooth, then H 1(K ,G) is the
first Galois cohomology set, as in [Serre 1997]; see Section II.1. The essential dimension ed(G) is, by
definition, ed(FG), and similarly for the essential dimension edl(G) of G at prime l. These numerical
invariants of G have been extensively studied; see, e.g., [Merkurjev 2009] or [Reichstein 2010] for a survey.

Example 3.2. Define the functor Algn : K → H 1(K ,G) by

Algn(K )= {isomorphism classes of n-dimensional K -algebras}.

If A is an n-dimensional algebra, and [A] is its class in Algn(K ), then ed([A]) coincides with ed(A)
defined at the beginning of Section 2. By Lemma 2.1, ed(Algn)6 n3; the exact value is unknown (except
for very small n).

We will now restrict our attention to certain subfunctors of Algn which are better understood.

Definition 3.3. Let 3/k be a finite-dimensional algebra and K/k be a field extension (not necessarily
finite or separable). We say that an algebra A/K is a K -form of 3 if there exists a field L containing K
such that 3⊗k L is isomorphic to A⊗K L as an L-algebra. We will write

Alg3 : Fieldsk→ Sets

for the functor which sends a field K/k to the set of K -isomorphism classes of K -forms of 3.
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Proposition 3.4. Let3 be a finite-dimensional k-algebra and G=Autk(3)⊂GL(3) be its automorphism
group scheme. Then the functors Alg3 and FG = H 1(∗,G) are isomorphic. In particular, ed(Alg3)=
ed(G) and edl(Alg3)= edl(G) for every prime l.

Proof. For the proof of the first assertion, see Proposition X.2.4 in [Serre 1979] or Proposition III.2.2.2 in
[Knus 1991]. The second assertion is an immediate consequence of the first, since isomorphic functors
have the same essential dimension. �

Example 3.5. The K -forms of 3n = k×· · ·× k (n times) are called étale algebras of degree n. An étale
algebra L/K of degree n is a direct products of separable field extensions,

L = L1× · · ·× Lr , where
r∑

i=1

[L i : K ] = n.

The functor Alg3n
is usually denoted by Etn . The automorphism group Autk(3n) is the symmetric

group Sn , acting on 3n by permuting the n factors of k; see Proposition 2.3. Thus, Etn = H 1(K , Sn); see,
e.g., Examples 2.1 and 3.2 in [Serre 2003].

4. Field extensions of type (n, e)

Let L/S be a purely inseparable extension of finite degree. For x ∈ L we define the exponent of x over S
as the smallest integer e such that x pe

∈ S. We will denote this number by e(x, S). We will say that
x ∈ L is normal in L/S if e(x, S)=max{e(y, S) | y ∈ L}. A sequence x1, . . . , xr in L is called normal if
each xi is normal in L i/L i−1 and xi /∈ L i−1. Here L i = S(x1, . . . , xi−1) and L0= S. If L = S(x1, . . . , xr ),
where x1, . . . , xr is a normal sequence in L/S, then we call x1, . . . , xr a normal generating sequence
of L/S. We will say that this sequence is of type e = (e1, . . . , er ) if ei := e(xi , L i−1) for each i . Here
L i = S(x1, . . . , xi ), as above. It is clear that e1 > e2 > · · ·> er .

Proposition 4.1 (G. Pickert [1949]). Let L/S be a purely inseparable field extension of finite degree.

(a) For any generating set 3 of L/S there exists a normal generating sequence x1, . . . , xr with each
xi ∈3.

(b) If x1, . . . , xr and y1, . . . , ys are two normal generating sequences for L/S, of types (e1, . . . , er ) and
( f1, . . . , fs), respectively, then r = s and ei = fi for each i = 1, . . . , r .

Proof. For modern proofs of both parts, see Propositions 6 and 8 in [Rasala 1971] or Lemma 1.2 and
Corollary 1.5 in [Karpilovsky 1989]. �

Proposition 4.1 allows us to talk about the type of a purely inseparable extension L/S. We say that
L/S is of type e= (e1, . . . , er ) if it admits a normal generating sequence x1, . . . , xr of type e.

Now suppose L/K is an arbitrary inseparable (but not necessarily purely inseparable) field extension
L/K of finite degree. Denote the separable closure of K in L by S. We will say that L/K is of type (n, e)
if [S : K ] = n and the purely inseparable extension L/S is of type e.
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Remark 4.2. Note that we will assume throughout that r > 1, i.e., that L/K is not separable. In particular,
a finite field K does not admit an extension of type (n, e) for any n and e.

Remark 4.3. It follows from Proposition 4.1 that L/K cannot be generated by fewer than r elements.
Note also that the integer r can be determined directly, without constructing a normal generating sequence.
Indeed, by Theorem 6 in [Becker and MacLane 1940], [L : K (L p)] = pr . Here K (L p) denotes the
subfield of L generated by L p and K .

Lemma 4.4. Let n > 1 and e1 > e2 > · · ·> er > 1 be integers. Then there exist

(a) a separable field extension E/F of degree n with k ⊂ F and

(b) a field extension L/K of type (n, e) with k ⊂ K and e= (e1, . . . , er ).

In particular, this lemma shows that the maxima in definitions (1-1) and (1-2) are taken over a nonempty
set of integers.

Proof. (a) Let x1, . . . , xn be independent variables over k. Set E = k(x1, . . . , xn) and F = EC , where
C is the cyclic group of order n acting on E by permuting the variables. Clearly E/F is a Galois (and
hence, separable) extension of degree n.

(b) Let E/F be as in part (a) and y1, . . . , yr be independent variables over F . Set L = E(y1, . . . , yr ) and
K = F(z1, . . . , zr ), where zi = y pei

i . One readily checks that S = E(z1, . . . , zn) is the separable closure
of K in L and L/S is a purely inseparable extension of type e. �

Now suppose n > 1 and e = (e1, . . . , er ) are as above, with e1 > e2 > · · · > er > 1. The following
finite-dimensional commutative k-algebras will play an important role in the sequel:

3n,e =3e× · · ·×3e (n times), where 3e = k[x1, . . . , xr ]/(x
pe1

1 , . . . , x per

r ) (4-1)

is a truncated polynomial algebra.

Lemma 4.5. 3n,e is isomorphic to 3m, f if and only if m = n and e= f .

Proof. One direction is obvious: if m = n and e= f , then 3n,e is isomorphic to 3m, f

To prove the converse, note that 3e is a finite-dimensional local k-algebra with residue field k. By
Lemma 2.4, the only idempotents in 3e are 0 and 1. This readily implies that the only idempotents
in 3n,e are of the form (ε1, . . . , εn), where each εi is 0 or 1, and the only minimal idempotents are

α1 = (1, 0, . . . , 0), . . . , αn = (0, . . . , 0, 1).

(Recall that idempotents α and β are called orthogonal if αβ = βα = 0. If α and β are orthogonal, then
one readily checks that α+β is also an idempotent. An idempotent is minimal if it cannot be written as a
sum of two orthogonal idempotents.)

If 3n,e and 3m, f are isomorphic, then they have the same number of minimal idempotents; hence,
m = n. Denote the minimal idempotents of 3m, f by

β1 = (1, 0, . . . , 0), . . . , βm = (0, . . . , 0, 1).
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A k-algebra isomorphism 3n,e → 3m, f takes α1 to β j for some j = 1, . . . , n and, hence, induces a
k-algebra isomorphism between α13n,e '3e and β j3m, f '3 f . To complete the proof, we appeal to
Proposition 8 in [Rasala 1971], which asserts that 3e and 3 f are isomorphic if and only if e= f . �

Lemma 4.6. Let L/K be a field extension of finite degree. Then the following are equivalent.

(a) L/K is of type (n, e).

(b) L is a K -form of 3n,e. In other words, L ⊗K K ′ is isomorphic to 3n,e⊗k K ′ as a K ′-algebra for
some field extension K ′/K .

Proof. (a) =⇒ (b). Assume L/K is a field extension of type (n, e). Let S be the separable closure of K
in L and K ′ be an algebraic closure of S (which is also an algebraic closure of K ). Then

L ⊗K K ′ = L ⊗S (S⊗K K ′)= (L ⊗S K ′)× · · ·× (L ⊗S K ′) (n times).

On the other hand, by [Rasala 1971, Theorem 3], L ⊗S K ′ is isomorphic to 3e as a K ′-algebra, and
part (b) follows.

(b) =⇒ (a). Assume L⊗K K ′ is isomorphic to 3n,e⊗k K ′ as a K ′-algebra for some field extension K ′/K .
After replacing K ′ by a larger field, we may assume that K ′ contains the normal closure of S over K .
Since 3n,e⊗k K ′ is not separable over K ′, L is not separable over K . Thus, L/K is of type (m, f ) for
some m> 1 and f = ( f1, . . . , fs) with f1> f2> · · ·> fs > 1. As shown above, this implies that L⊗K K ′′

is isomorphic to 3m, f ⊗k K ′′ for a suitable field extension K ′′/K . After enlarging K ′′, we may assume
without loss of generality that K ′ ⊂ K ′′. We conclude that 3n,e⊗k K ′′ is isomorphic to 3m, f ⊗k K ′′ as a
K ′′-algebra. By Lemma 4.5, with k replaced by K ′′, this is only possible if (n, e)= (m, f ). �

5. Proof of the upper bound of Theorem 1.2

In this section we will prove the following proposition.

Proposition 5.1. Let n>1, e= (e1, . . . , er ), where e1> · · ·> er >1, and si = e1+· · ·+ei for i =1, . . . , r .
Then

τ(n, e)6 n
r∑

i=1

psi−iei .

Our proof of Proposition 5.1 will be facilitated by the following lemma.

Lemma 5.2. Let K be an infinite field of characteristic p, q be a power of p, S/K be a separable field
extension of finite degree, and 0 6= a ∈ S. Then there exists an s ∈ S such that asq is a primitive element
for S/K .

Proof. Assume the contrary. It is well known that there are only finitely many intermediate fields between
K and S; see, e.g., [Lang 1984, Theorem V.4.6]. Denote the intermediate fields properly contained in S
by S1, . . . , Sn ( S, and let AK (S) be the affine space associated to S. (Here we view S as a K -vector
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space.) The nongenerators of S/K may now be viewed as K -points of the finite union

Z =
n⋃

i=1

AK (Si ).

Since we are assuming that every element of S of the form asq is a nongenerator, and K is an infinite field,
the image of the K -morphism f :A(S)→A(S) given by s 7→ asq lies in Z =

⋃n
i=1 AK (Si ). Since AK (S)

is irreducible, we conclude that the image of f lies in one of the affine subspaces AK (Si ), say in AK (S1).
Equivalently, asq

∈ S1 for every s ∈ S. Setting s = 1, we see that a ∈ S1. Dividing asq
∈ S1 by 0 6= a ∈ S1,

we conclude that sq
∈ S1 for every s ∈ S. Thus, S is purely inseparable over S1, contradicting our

assumption that S/K is separable. �

Proof of Proposition 5.1. Let L/K be a field extension of type (n, e). Our goal is to show that ed(L/K )6
n
∑r

j=1 ps j− je j . By Remark 4.2, K is infinite.
Let S be the separable closure of K in L and x1, . . . , xr be a normal generating sequence for the purely

inseparable extension L/S of type e. Set qi = pei . Recall that by the definition of normal sequence,
xq1

1 ∈ S. We are free to replace x1 by x1s for any 0 6= s ∈ S; clearly x1s, x2, . . . , xr is another normal
generating sequence. By Lemma 5.2, we may choose s ∈ S so that (x1s)q1 is a primitive element for S/K .
In other words, we may assume without loss of generality that xq1

1 is a primitive element for S/K .
By the structure theorem of Pickert, each xqi

i lies in S[xqi
1 , . . . , xqi

i−1], where qi = pei [Rasala 1971,
Theorem 1]. In other words, for each i = 1, . . . , r ,

xqi
i =

∑
ad1,...,di−1 xqi d1

1 · · · xqi di−1
i−1 (5-1)

for some ad1,...,di−1 ∈ S. Here the sum is taken over all integers d1, . . . , di−1, where each 06 d j < pe j−ei .
Note that for i = 1 (5-1) reduces to

xq1
1 = a∅,

for some a∅ ∈ S. By Lemma 2.1, L (viewed as an S-algebra), descends to

S0 = k(ad1,...,di−1 | i = 1, . . . , r and 06 d j < pe j−ei ).

Note that for each i = 1, . . . , r , there are exactly

pe1−ei · pe2−ei · · · · · pei−1−ei = psi−iei

choices of the subscripts d1, . . . , di−1. Hence, S0 is generated over k by
∑r

i=1 psi−iei elements and
consequently,

trdeg(S0/k)6
r∑

i=1

psi−iei .

Moreover, since S0 contains a∅ = xq
1 , which is a primitive element for S/K , we conclude that K (S0)= S.

Thus, Lemma 2.2 can be applied to A = L; it yields ed(L/K ) 6 n trdeg(S0/k), and the proposition
follows. �
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Remark 5.3. Suppose L/K is an extension of type (n, e), where e = (e1, . . . , er ). Here, as usual, K
is assumed to contain the base field k of characteristic p > 0. Dividing both sides of the inequality in
Proposition 5.1 by [L : K ] = npe1+···+er , we readily deduce that

ed(L/K )
[L : K ]

6
τ(n)
[L : K ]

6
r∑

i=1

p−iei−ei+1−···−er 6
r
pr 6

1
p
.

In particular, ed(L/K )6 1
2 [L : K ] for any inseparable extension [L : K ] of finite degree, in any (positive)

characteristic. As we pointed out in the introduction, this inequality fails in characteristic 0 (even for
k = C).

6. Versal algebras

Let K be a field and A be a finite-dimensional associative K -algebra with 1. Every a ∈ A gives rise to the
K -linear map la : A→ A given by la(x)= ax (left multiplication by a). Note that lab = la · lb. It readily
follows from this that a has a multiplicative inverse in A if and only if la is nonsingular.

Proposition 6.1. Let l be a prime integer and 3 be a finite-dimensional associative k-algebra with 1.
Assume that there exists a field extension K/k and a K -form A of3 such that A is a division algebra. Then:

(a) There exists a field Kver containing k and a Kver-form Aver of 3 such that

ed(Aver)= ed(Alg3), edl(Aver)= edl(Alg3) for every prime integer l, and

Aver is a division algebra.

(b) If G is the automorphism group scheme of 3, then

ed(G)= ed(Alg3) =max
{
ed(A/K ) | A is a K -form of 3 and a division algebra

}
,

edl(G)= edl(Alg3)=max
{
edl(A/K ) | A is a K -form of 3 and a division algebra

}
.

Here the subscript “ver” is meant to indicate that Aver/Kver is a versal object for Alg3 = H 1(∗,G).
For a discussion of versal torsors, see Section I.5 in [Serre 2003] or [Duncan and Reichstein 2015].

Proof. (a) We begin by constructing a versal G-torsor Tver → Spec(Kver). Recall that G = Autk(3)
is defined as a closed subgroup of the general linear group GLk(3). This general linear group admits
a generically free linear action on some vector space V (e.g., we can take V = Endk(3), with the
natural left G-action). Restricting to G we obtain a generically free representation G→ GL(V ). We can
now choose a dense open G-invariant subscheme U ⊂ V over k which is the total space of a G-torsor
π :U→ B; see, e.g., Example 5.4 in [Serre 2003]. Passing to the generic point of B, we obtain a G-torsor
Tver→ Spec(Kver), where Kver is the function field of B over k. Then ed(Tver/Kver)= ed(G) (see, e.g.,
Section 4 in [Berhuy and Favi 2003]) and edl(Tver/Kver)= edl(G) (see Lemma 6.6 in [Reichstein and
Youssin 2000] or Theorem 4.1 in [Merkurjev 2009]).

Let T → Spec(K ) be the torsor associated to the K -algebra A and Aver be the Kver-algebra associated
to Tver→ Spec(Kver) under the isomorphism between the functors Alg3 and H 1(∗,G) of Proposition 3.4.



524 Zinovy Reichstein and Abhishek Kumar Shukla

By the characteristic-free version of the no-name lemma, proved in [Reichstein and Vistoli 2006, §2],
T ×V is G-equivariantly birationally isomorphic to T ×Ad

k , where d = dim V and G acts trivially on Ad
k .

In other words, we have a Cartesian diagram of rational maps defined over k:

T ×Ad '
//

��

T × V
pr2

// U

��

Ad
K Spec(K )×Ad // B

Here all direct products are over Spec(k), and pr2 denotes the rational G-equivariant projection map
taking (t, v)∈ T×V to v ∈ V for v ∈U . The map Spec(K )×Ad 99K B in the bottom row is induced from
the dominant G-equivariant map T ×Ad 99KU on top. Passing to generic points, we obtain an inclusion
of field Kver ↪→ K (x1, . . . , xd) such that the induced map H 1(Kver,G)→ H 1(K (x1, . . . , xd),G) sends
the class of Tver → Spec(Kver) to the class associated to T × Ad

→ Ad
K . Under the isomorphism of

Proposition 3.4 between the functors Alg3 and FG = H 1(∗,G), this translates to

Aver⊗Kver K (x1, . . . , xd)' A⊗K K (x1, . . . , xd)

as K (x1, . . . , xd)-algebras.
For simplicity we will write A(x1, . . . , xd) in place of A⊗K K (x1, . . . , xd). Since A is a division

algebra, so is A(x1, . . . , xd). Thus, the linear map la : A(x1, . . . , xd)→ A(x1, . . . , xd) is nonsingular (i.e.,
has trivial kernel) for every a ∈ Aver. Hence, the same is true for the restriction of la to Aver. We conclude
that Aver is a division algebra. Remembering that Aver corresponds to Tver under the isomorphism of
functors between Alg3 and FG , we see that

ed(Aver)= ed(Tver/Kver) = ed(G) = ed(Alg3),

edl(Aver)= edl(Tver/Kver)= edl(G)= edl(Alg3),

as desired.

(b) The first equality in both formulas follows from Proposition 3.4, and the second from part (a). �

We will now revisit the finite-dimensional k-algebras 3e and 3n,e =3e× · · ·×3e (n times) defined
in Section 4; see (4-1). We will write

Gn,e = Aut(3n,e)⊂ GLk(3n,e)

for the automorphism group scheme of 3n,e and Algn,e for the functor Alg3n,e
: Fieldsk→ Sets. Recall

that this functor associates to a field K/k the set of isomorphism classes of K -forms of 3n,e.
Replacing essential dimension by essential dimension at a prime l in the definitions (1-1) and (1-2),

we set

τl(n)=max
{
edl(L/K ) | L/K is a separable field extension of degree n and k ⊂ K

}
,

τl(n, e)=max
{
edl(L/K ) | L/K is a field extension of type (n, e) and k ⊂ K

}
.
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Corollary 6.2. Let l be a prime integer. Then:

(a) ed(Sn)= ed(Etn)= τ(n) and edl(Sn)= edl(Etn)= τl(n). Here Etn is the functor of n-dimensional
étale algebras, as in Example 3.5.

(b) ed(Gn,e)= ed(Algn,e)= τ(n, e) and edl(Gn,e)= edl(Algn,e)= τl(n, e).

Proof. (a) Recall that étale algebras are, by definition, commutative and associative with identity. For
such algebras “division algebra” is the same as “field”. By Lemma 4.4(a) there exists a separable field
extension E/F of degree n with k ⊂ F . The desired equality follows from Proposition 6.1(b).

(b) The same argument as in part (a) goes through, with part (a) of Lemma 4.4 replaced by part (b). �

Remark 6.3. The value of edl(Sn) is known for every integer n > and every prime l > 2:

edl(Sn)=


bn/ lc if char(k) 6= l,
1 if char(k)= l 6 n,
0 if char(k)= l > n.

See respectively [Meyer and Reichstein 2009, Corollary 4.2], [Reichstein and Vistoli 2018, Theorem 1],
and either [Meyer and Reichstein 2009, Lemma 4.1] or [Reichstein and Vistoli 2018, Theorem 1].

7. Conclusion of the proof of Theorem 1.2

In this section we will prove Theorem 1.2 in the following strengthened form.

Theorem 7.1. Let k be a base field of characteristic p > 0, n > 1 and e1 > e2 > · · ·> er > 1 be integers,
e= (e1, . . . , er ), and si = e1+ · · ·+ ei for i = 1, . . . , r . Then

τp(n, e)= τ(n, e)= n
r∑

i=1

psi−iei .

By definition τp(n, e) 6 τ(n, e) and by Proposition 5.1, τ(n, e) 6 n
∑r

i=1 psi−iei . Moreover, by
Corollary 6.2(b), τp(n, e)= edp(Gn,e). It thus remains to show that

edp(Gn,e)> n
r∑

i=1

psi−iei . (7-1)

Our proof of (7-1) will be based on the general inequality, due to Tossici and Vistoli [2013],

edp(G)> dim Lie(G)− dim G (7-2)

for any group scheme G of finite type over a field k of characteristic p. Now recall that Ge = Autk(3e),
and Gn,e =Autk(3n,e), where 3n,e =3

n
e . Since 3e is a commutative local k-algebra with residue field k,

Proposition 2.3 tells us that Gn,e = Gn
e o Sn (see also Proposition 5.1 in [Sancho de Salas 2000]). We

conclude that

dim Gn,e = n dim Ge and dim Lie(Gn,e)= n dim Lie(Ge).
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Substituting these formulas into (7-2), we see that the proof of the inequality (7-1) (and thus of Theorem 7.1)
reduces to the following:

Proposition 7.2. Let e= (e1, . . . , er ), where e1 > · · ·> er > 1 are integers. Then

(a) dim Lie(Ge)= r pe1+···+er , and

(b) dim Ge = r pe1+···+er −
∑r

i=1 psi−iei .

The remainder of this section will be devoted to proving Proposition 7.2. We will use the following
notations.

(1) We fix the type e= (e1, . . . , er ) and set qi = pei .

(2) The infinitesimal group scheme αpl over a commutative ring S of characteristic p is defined as the
kernel of the j-th power of the Frobenius map, Ga→ Ga , x 7→ x p j

, viewed as a homomorphism of
group schemes over S. We will be particularly interested in the case where S =3e.

(3) Suppose X is a scheme over 3, where 3 is a finite-dimensional commutative k-algebra. We will
denote the Weil restriction of the 3-scheme X to k by R3/k(X). For generalities on Weil restriction,
see Chapter 2 and the Appendix in [Milne 2017].

(4) We will denote by End(3e) the functor

Commk→ Sets, R→ EndR-alg(3e⊗k R)

of algebra endomorphisms of 3e. Here Commk denotes the category of commutative associative
k-algebras with 1 and Sets denotes the category of sets.

Lemma 7.3. (a) The functor End(3e) is represented by an irreducible, nonreduced, affine k-scheme Xe.

(b) dim Xe = r pe1+···+er −
∑r

i=1 psi−iei .

(c) dim Tγ (Xe)= r pe1+···+er for any k-point γ of Xe. Here Tγ (Xe) denotes the tangent space to Xe at γ .

Proof. An endomorphism F in End(3e)(R) is uniquely determined by the images

F(x1), F(x2), . . . , F(xr ) ∈3e(R)

of the generators x1, . . . , xr of 3e. These elements of 3e satisfy F(xi )
qi = 0. Conversely, any r elements

F1, . . . , Fr in 3e⊗ R satisfying Fqi
i = 0 give rise to an algebra endomorphism F in End(3e)(R). We

thus have
End(3e)(R)= HomR-alg(3e⊗k R,3e⊗ R)

∼= αq1(3e⊗ R)× · · ·×αqr (3e⊗ R)
∼= R3e/k(αq1)(R)× · · ·× R3e/k(αqr )(R)

∼=

r∏
i=1

R3e/k(αqi )(R).
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We conclude that End(3e) is represented by an affine k-scheme Xe =
∏r

i=1 R3e/k(αqi ). Note that Xe is
isomorphic to

∏r
i=1 R3e/k(αqi ) as a k-scheme only, not as a group scheme. To complete the proof of the

lemma it remains to establish the following assertions, claimed for all q j ∈ {q1, . . . , qr }:

(a′) R3e/k(αq j ) is irreducible.

(b′) dim R3e/k(αq j )= pe1+···+er − ps j− je j .

(c′) dim Tγ (R3e/k(αq j ))= pe1+···+er for any k-point γ of R3e/k(αq j ).

To prove (a′), (b′), and (c′), we will write out explicit equations for R3e/k(αq j ) in R3e/k(A
1)'Ak(3e).

We will work in the basis {x i1
1 x i2

2 · · · x
ir
r } of monomials in3e, where 06 i1<q1, 06 i2<q2, . . . , 06 ir <qr .

Over3e, αq j is cut out (scheme-theoretically) in A1 by the single equation tq j = 0, where t is a coordinate
function on A1. Since xqi

i = 0 for every i , writing

t =
∑

yi1,...,ir x i1
1 x i2

2 · · · x
ir
r

and expanding

tq j =

∑
yq j

i1,...,ir
xq j i1

1 xq j i2
2 · · · xq j ir

r

we see that the only monomials appearing in the above sum are those for which

q j i1 < q1, q j i2 < q2, . . . , q j ir < qr .

Thus, R3e/k(αq j ) is cut out (again, scheme-theoretically) in R3e/k(A
1)' A(3e) by

yq j
i1,...,i j−1,0,...,0 = 0 for 06 i1 <

q1

q j
, . . . , 06 i j−1 <

q j−1

q j
,

where yi1,...,ir are the coordinates in A(3e). In other words, R3e/k(αq j ) is the subscheme of R3e/k(A
1)'

Ak(3e)' A
pe1+···+er

k cut out (again, scheme-theoretically) by q j -th powers of

q1

q j

q2

q j
· · ·

q j−1

q j
= ps j− je j

distinct coordinate functions. The reduced scheme R3e/k(αq j )red is thus isomorphic to an affine space
of dimension pe1+···+er −

∑r
j=1 ps j− je j . On the other hand, since q j is a power of p, the Jacobian

criterion tells us that the tangent space to R3e/k(αql ) at any k-point is the same as the tangent space
to A(3e)= Ape1+···+er , and (a′), (b′), and (c′) follow. �

Conclusion of the proof of Proposition 7.2. The automorphism group scheme Ge is the group of invertible
elements in End(3e). In other words, the natural diagram

Ge //

��

GLN

��

End(3e) // MatN×N
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where N = dim3e = pe1+···+er , is Cartesian. Hence, Ge is an open subscheme of Xe. Since Xe is
irreducible, Proposition 7.2 follows from Lemma 7.3. This completes the proof of Proposition 7.2 and
thus of Theorem 7.1. �

8. Alternative proofs of Theorem 1.2

The proof of the lower bound of Theorem 1.2 given in Section 7 is the only one we know. However, we
have two other proofs for the upper bound (Proposition 5.1), in addition to the one given in Section 5. In
this section we will briefly outline these arguments for the interested reader.

Our first alternative proof of Proposition 5.1 is based on an explicit construction of the versal algebra Aver

of type (n, e) whose existence is asserted by Proposition 6.1. This construction is via generators and
relations, by taking “the most general” structure constants in (5-1). Versality of Aver constructed this way
takes some work to prove; however, once versality is established, it is easy to see directly that Aver is a
field and thus

τ(n, e)= ed(Aver)6 trdeg(Kver/k)= n
r∑

i=1

psi−iei .

Our second alternative proof of Proposition 5.1 is based on showing that the natural representation
of Gn,e on V =3r

n,e is generically free. Intuitively speaking, this is clear: 3n,e is generated by r elements
as a k-algebra, so r-tuples of generators of 3n,e are dense in V and have trivial stabilizer in Gn,e. The
actual proof involves checking that the stabilizer in general position is trivial scheme-theoretically and
not just on the level of points. Once generic freeness of this linear action is established, the upper bound
of Proposition 5.1 follows from the inequality

ed(Gn,e)6 dim V − dim Gn,e;

see, e.g., Proposition 4.11 in [Berhuy and Favi 2003]. To deduce the upper bound of Proposition 5.1 from
this inequality, recall that

• τ(n, e)= ed(Gn,e) (see Corollary 6.2(b)),

• dim V = r dim3n,e = nr dim3e = nr pe1+···+er (clear from the definition), and

• dim Gn,e = n dim Ge = nr pe1+···+er − n
∑r

i=1 psi−iei (see Proposition 7.2(b)).

9. The case, where e1 = · · · = er

In the special case where n = 1 and e1 = · · · = er , Theorem 1.2 tells us that τ(n, e)= r . In this section,
we will give a short proof of the following stronger assertion under the assumption that k is perfect.

Proposition 9.1. Let e = (e, . . . , e) (r times) and L/K be purely inseparable extension of type e, with
k ⊂ K . Assume that the base field k is perfect. Then edp(L/K )= ed(L/K )= r .

The assumption that k is perfect is crucial here. Indeed, by Lemma 4.4(b), there exists a field extension
L/K of type e. If we do not require k to be perfect, then we may set k = K . In this case ed(L/K )= 0,
and the proposition fails.
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The remainder of this section will be devoted to proving Proposition 9.1. We begin with two reductions.

(1) It suffices to show that

ed(L/K )= r for every field extension L/K of type e; (9-1)

the identity edp(L/K ) will then follow. Indeed, edp(L/K ) is defined as the minimal value of ed(L ′/K ′)
taken over all finite extensions K ′/K of degree prime to p. Here L ′ = L⊗K K ′. Since [L : K ] is a power
of p, L ′ is a field, so (9-1) tells us that ed(L ′/K ′)= r .

(2) The proof of the upper bound,

ed(L/K )6 r, (9-2)

is the same as in Section 5, but in this special case the argument is much simplified. For the sake of
completeness we reproduce it here. Let x1, . . . , xr be a normal generating sequence for L/K . By a theorem
of Pickert [Rasala 1971, Theorem 1], xq

1 , . . . , xq
r ∈ K , where q = pe. Set ai = xq

i and K0= k(a1, . . . , ar ).
The structure constants of L relative to the K -basis xd1

1 · · · x
dr
r of L , with 06 d1, . . . , dr 6 q − 1 all lie

in K0. Clearly trdeg(K0/k)6 r ; the inequality (9-2) now follows from Lemma 2.1.

It remains to prove the lower bound, ed(L/K )> r . Assume the contrary: L/K descends to L0/K0 with
trdeg(K0/k) < r . By Lemma 2.1, L0/K0 further descends to L1/K1, where K1 is finitely generated over
k. By Lemma 4.6, L1/K1 is a purely inseparable extension of type e. After replacing L/K by L1/K1, it
remains to prove the following:

Lemma 9.2. Let k be a perfect field and K/k be a finitely generated field extension of transcendence
degree < r . There does not exist a purely inseparable field extension L/K of type e= (e1, . . . , er ), where
e1 > · · ·> er > 1.

Proof. Assume the contrary. Let a1, . . . , as be a transcendence basis for K/k. That is, a1, . . . , as are
algebraically independent over k, K is algebraic and finitely generated (hence, finite) over k(a1, . . . , as),
and s 6 r − 1. By Remark 4.3,

[L : L p
]> [L : (L p

· K )] = pr . (9-3)

On the other hand, since [L : k(a1, . . . , as)]<∞, Theorem 3 in [Becker and MacLane 1940] tells us that

[L : L p
] = [k(a1, . . . , as) : k(a1, . . . , as)

p
] = [k(a1, . . . , as) : k(a

p
1 , . . . , a p

s )] = ps < pr . (9-4)

Note that the second equality relies on our assumption that k is perfect. The contradiction between (9-3)
and (9-4) completes the proof of Lemma 9.2 and thus of Proposition 9.1. �
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