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High moments of the Estermann function
Sandro Bettin

For a/q ∈Q the Estermann function is defined as D(s, a/q) :=
∑

n≥1 d(n)n−s e
(
n a

q

)
if <(s) > 1 and by

meromorphic continuation otherwise. For q prime, we compute the moments of D(s, a/q) at the central
point s = 1/2, when averaging over 1≤ a < q .

As a consequence we deduce the asymptotic for the iterated moment of Dirichlet L-functions∑
χ1,...,χk (mod q)

∣∣L( 1
2 , χ1

)∣∣2 · · · ∣∣L( 1
2 , χk

)∣∣2∣∣L( 1
2 , χ1 · · ·χk

)∣∣2, obtaining a power saving error term.
Also, we compute the moments of certain functions defined in terms of continued fractions. For

example, writing f±(a/q) :=
∑r

j=0(±1) j b j where [0; b0, . . . , br ] is the continued fraction expansion of
a/q we prove that for k ≥ 2 and q primes one has

∑q−1
a=1 f±(a/q)k ∼ 2(ζ(k)2/ζ(2k))qk as q→∞.

1. Introduction

Since the pioneering work of Hardy and Littlewood [1916], the study of moments of families of L-
functions has gained a central role in number theory. This is mostly due their numerous applications on,
e.g., nonvanishing (see [Iwaniec and Sarnak 2000; Soundararajan 2000]) and subconvexity estimates
(see [Conrey and Iwaniec 2000]). Moreover, moments are also important as they highlight clearly the
symmetry of each family.

In this paper we consider the moments of the Estermann function at the central point and, as a
consequence, we obtain new results for moments of Dirichlet L-functions. We will describe the Estermann
function in Section 1.1.2, we now focus on the family of Dirichlet L-functions. For this family only the
second and fourth moments have been computed. The asymptotic for the second moment was obtained
by Paley [1931], whereas Heath-Brown [1981] considered the fourth moment and showed

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)∣∣4 ∼ 1
2π2

∏
p|q

(1− 1/p)3

1+ 1/p
(log q)4, (1-1)

provided that q doesn’t have “too many prime divisors”, a restriction that was later removed by Soundarara-
jan [2007]. As usual,

∑
∗ indicates that the sum is restricted to primitive characters and ϕ∗(q) denotes

the number of such characters. The problem of computing the full asymptotic expansion for the fourth
moment was later solved by Young [2011a] in the case when q is prime. He proved

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)∣∣4 = 4∑
i=0

ci (log q)i + O(q−
5

512+ε) (1-2)

MSC2010: primary 11M06; secondary 11A55, 11M41, 11N75.
Keywords: Estermann function, Dirichlet L-functions, divisor function, continued fractions, mean values, moments.
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252 Sandro Bettin

for some absolute constants ci with c4 = (2π2)−1. Recently, Blomer, Fouvry, Kowalski, Michel and
Milićević [Blomer et al. 2017] introduced several improvements in Young’s work improving the error
term in (1-2) to O(q−

1
32+ε).

In this paper, we consider a variation of this problem and compute the asymptotic of

Mk(q)=
1

ϕ∗(q)k−1

∑*

χ1,...,χk−1 (mod q)

∣∣L( 1
2 , χ1

)∣∣2 · · · ∣∣L( 1
2 , χk−1

)∣∣2∣∣L( 1
2 , χ1 · · ·χk−1

)∣∣2, (1-3)

where the sum has the extra restriction that χ1 · · ·χk−1 is primitive. If k = 2, this coincides with the usual
fourth moment of Dirichlet L-functions as computed by Young, whereas if k > 2 then Mk(q) should be
thought of as an iterated fourth moment, since each character appears four times in the above expression.
We shall prove the following theorem.

Theorem 1. Let k ≥ 3 and let q be prime. Then, there exists an absolute constant A > 0 such that

Mk(q)=
∞∑

n=1

2ν(n)

nk/2

((
log q

8nπ

)k
+
(
−
π
2

)k)
+ Oε(k Akq−δk+ε),

where ν(n) is the number of different prime factors of n, δk := (k− 2− 3ϑ)/(2k+ 5) with ϑ = 7
64 being

the best bound towards Selberg’s eigenvalue conjecture. Also, the implicit constant depends on ε only.

Remark. Notice that δk is a increasing sequence such that δk→
1
2 as k→∞. For ϑ = 7

64 the first few
values of δk are δ3 =

43
704 , δ4 =

107
832 , δ5 =

57
320 .

Theorem 1 yields an asymptotic formula for Mk(q) for k <η(log q)/(log log q) with η > 0 sufficiently
small. Larger values of k are easier to deal with and one obtains the following corollary.

Corollary 2. Let q be prime. Then as q→∞ we have

Mk(q)∼
ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k, (1-4)

uniformly in 3 ≤ k = o(q
1
2 log q), where γ is the Euler–Mascheroni constant. Moreover this range is

optimal, meaning that (1-4) is false if k� q
1
2 log q.

Remark. Notice that the main terms in (1-4) and Theorem 1 have a double pole at k = 2. This is
consistent with the fact that the main term for M2(q) has size (log q)4 rather than (log q)2. In principle
one could treat the case k = 2 together with the case k ≥ 3. However, in order to do so one would need to
include in (2-2) an extra main-term of size qo(1) coming from the diagonal term. For k ≥ 3 this term is
absorbed in the error term and so it is more convenient to simply exclude the case k = 2.

A moment somewhat similar to (1-3) was previously considered by Chinta [2005] who used a multiple
Dirichlet series approach to compute the asymptotic of the first moment of (roughly)

L
( 1

2 , χd1

)
L
(1

2 , χd2

)
L
( 1

2 , χd1χd2

)
, (1-5)
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where χd denotes the quadratic character associated to the extension Q(
√

d) of Q. We remark that there
is a big difference between (1-3) and this case. Indeed, if χ1, χ2 are characters modulo q then so is χ1χ2,
whereas if d1, d2 ≈ X then χd1χd2 is typically a character with conductor ≈ X2. This means that (1-3)
roughly correspond to an iterated fourth moment, whereas the second moment of (1-5) roughly correspond
to an iterated sixth moment of quadratic Dirichlet L-functions, and thus it doesn’t seem to be attackable
with the current technology. (As a comparison, the first moment computed by Chinta roughly correspond
to an iterated third moment).

1.1. Twisted moments, the Estermann function, and continued fractions. A nice feature of Theorem 1
is that it can be essentially rephrased in terms of high moments of other functions appearing naturally in
number theory. Indeed, the same computations give also the asymptotic for moments of twisted moments
of Dirichlet L-functions, of the Estermann function, and of certain functions defined in terms of continued
fractions. We now briefly describe each of these objects and give the corresponding version of Theorem 1.

1.1.1. Moments of twisted moments. Several classical methods to investigate the central values of Dirichlet
L-functions pass through the study of the second moment of L(s, χ) times a Dirichlet polynomial
Pϑ(s, χ) :=

∑
n≤qϑ an ·χ(n)n−s :

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L(1
2 , χ

)
Pϑ
( 1

2 , χ
)∣∣2. (1-6)

For example, Iwaniec and Sarnak proved that 1
3 of the Dirichlet L-functions do not vanish at the central

point via proving the asymptotic for such average for ϑ < 1
2 (and choosing Pϑ to be a mollifier). Moreover,

it is easy to see that if one could extend such asymptotic to all polynomials of length ϑ < 1, then the
Lindelöf hypothesis would follow.

Expanding the square, using the multiplicativity of Dirichlet characters, and renormalizing, one
immediately sees that (1-6) can be reduced to an average of twisted moments of the form

M(a, q) :=
q

1
2

ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)2∣∣χ(a),
for (a, q) = 1. By the orthogonality of Dirichlet characters one can immediately rewrite Theorem 1
(and (1-1)) in terms of M(a, q). In particular, one has

q∑
a=1

M(a, q)k =
ϕ(q)
ϕ∗(q)

qk/2 Mk(q)∼


ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k if 3≤ k = o(q

1
2 log q),

1
2π2

(log q)4 if k = 2,
(1-7)

as q→∞ with q prime, where ϕ is Euler’s ϕ-function.

1.1.2. Moments of the Estermann function. For

(a, q)= 1, q > 0, α, β ∈ C and <(s) > 1−min(<(α),<(β)),
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the Estermann function is defined as

Dα,β(s, a/q) :=
∞∑

n=1

e(na/q)
τα,β(n)

ns = Dcos;α,β(s, a/q)+ i Dsin;α,β(s, a/q), (1-8)

where Dcos and Dsin have the same definition as D, but with e(na/q) replaced by cos(2πna/q) and
sin(2πna/q) respectively. As usual, e(x) := e2π i x and τα,β(n) :=

∑
d1d2=n d−α1 d−β2 .

Dα,β(s, a/q) was first introduced (with α = β = 0) by Estermann who proved that it extends to a
meromorphic function on C satisfying a functional equation

relating Dα,β(s, a/q) with D−α,−β(1− s,±ā/q),

where ā denotes the multiplicative inverse of a modulo q (and similarly for Dsin and Dcos which satisfy a
more symmetric functional equation given by (3-2) below).

Since the work of Estermann [1930; 1932] on the number of representations of an integer as a sum of
two or more products, the Estermann function has proved itself as a valuable tool when studying additive
problems of similar flavor (see, e.g., [Motohashi 1980; 1994]) and in problems related to moments of
L-functions (see, e.g., [Heath-Brown 1979; Young 2011a; Conrey et al. 1986]). These applications
mainly use the functional equation for D as it encodes Voronoi’s summation in an analytic fashion,
allowing for a simpler computation of the main terms. However, the Estermann function is an interesting
object by its own right, due to its surprising symmetries (see [Bettin 2016]) and to the connections with
some interesting objects in analytic number theory. For example, by the work of Ishibashi [1995] (see
also [Bettin and Conrey 2013a]) one has

Dsin;1,0(0, a/q)= π s(a, q), Dsin;0,0(0, a/q)= 1
2 c0(a/q),

where s(a, q) is the classical Dedekind sum and c0(a/q) is a cotangent sum, related to the Nyman–
Beurling criterion for the Riemann hypothesis, which has been an object of intensive studies in recent
years (see, for example, [Bettin and Conrey 2013b; Maier and Rassias 2016; Bettin 2015]). Ishibashi
obtained similar identities also for other values of α, β, and in particular if α is a positive odd integer one
obtains that Dsin;α,0(0, a/q) is related to certain Dedekind cotangent sums studied by Beck [2003]. All
these functions satisfy certain reciprocity relations and provide examples of “quantum modular forms”
(see [Zagier 2010]).

Moreover, one can also obtain formulae relating the Estermann function to twisted moments of Dirichlet
L-function (see [Bettin 2016; Conrey and Ghosh 2006]) and in particular for q prime and (a, q)= 1, one
has

Dcos;0,0
( 1

2 , a/q
)
+ Dsin;0,0

( 1
2 , a/q

)
= M(a, q)+

2(q
1
2 − 1)
ϕ(q)

ζ
( 1

2

)2
. (1-9)

By this formula and (1-7), it is clear that Theorem 1 gives an asymptotic formula for the high moments
of Dcos;0,0

( 1
2 , a/q

)
+ Dsin;0,0

( 1
2 , a/q

)
. The method however allows one to obtain the asymptotic for the

joint moments of Dcos;0,0
(1

2 , a/q
)

and Dsin;0,0
(1

2 , a/q
)
. We shall state this in Theorem 5 below where
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shifts are also included (all our results will be derived from this theorem). Here we content ourselves
with giving the asymptotic for the high moments of the Estermann function:

Theorem 3. Let q be prime. Then,

1
ϕ(q)

q−1∑
a=1

D0,0
( 1

2 ,
a
q

)k
∼ qk/2−121−k/2 ζ(k/2)

2

ζ(k)
<
((

eπ i/4(log q
8π + γ

)
− e−π i/4 π

2

)k)
as q→∞, uniformly in 3≤ k = o(q

1
2 log q). In particular, if 3≤ k� 1 then

1
ϕ(q)

q−1∑
a=1

D0,0
(1

2 ,
a
q

)k
∼ qk/2−121−k/2 ζ(k/2)

2

ζ(k)

(
cos
( kπ

4

)
(log q)k − π

2 sin
( kπ

4

)
(log q)k−1)

as q→∞.

1.1.3. Moments of certain functions defined in terms of continued fractions. Finally, we discuss the
relation with continued fractions. In [Bettin 2016] (see also [Young 2011b]), it was observed that M(a, q),
and more generally, Dcos and Dsin, can be written in terms of the continued fraction expansion of a/q.
Indeed, if a, q ∈ Z>0 and [b0; b1, . . . , bκ , 1] is the continued fraction expansion of a/q , then for q prime
one has

M(a, q)=
κ∑

j=1
j odd

b
1
2
j

(
log b j

8π + γ
)
−

π
2

κ∑
j=1

j even

b
1
2
j + O(log q). (1-10)

It is therefore not surprising that Theorem 1 has an incarnation also in terms of moments for functions of
the rationals defined as

fr,±(a/q) :=
κ∑

j=1

(±1) j br/2
j ,

where r ∈ Z≥1.

Theorem 4. Let q be prime and let k, r ∈ Z≥1 with 3≤ kr = o((log q)/(log log q)). Then
q∑

a=1

fr,±(a/q)k ∼ 2
ζ(kr/2)2

ζ(kr)
qkr/2

as q→∞.

Starting with the work of Heilbronn [1969], who considered the average value of f0,+, there have been
a very large number of papers computing the mean values of functions defined in terms of the continued
fraction expansion. In particular, we cite the works [Porter 1975; Tonkov 1974] on f0,+ and [Yao and
Knuth 1975] where the asymptotic for the first moment of f2,+ was given. However, to the knowledge of
the author, Theorem 4 is the first result giving asymptotic formulae for k-th moments with k ≥ 3 without
exploiting an extra average over q (as in [Hensley 1994; Baladi and Vallée 2005]). For k = 2 the only
cases previously known where obtained by Bykovskiĭ [2005] (considering the second moment of f0,+)
and by the author [Bettin 2016] (considering the second moment of a variation of f2,+). By combining
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the techniques employed in [Bettin 2016] and in this paper it seems possible to extend Theorem 4 to more
general functions of similar shape.

1.2. Brief outline of the proof of Theorem 1. The approximate functional equation allows one to express
Mk(q) roughly in the form ∑

±n1±n2···±nk≡0 (mod q),
n1···nk�qk

d(n1) · · · d(nk)

n
1
2
1 · · · n

1
2
k

, (1-11)

so that the problem of estimating Mk(q) reduces to that of computing the asymptotic for this quadratic
divisor problem. The diagonal terms (i.e., the terms with ±n1± n2 · · · ± nk = 0) are a bit easier to study
and give a main term; the main difficulties then lie in obtaining an asymptotic for the off-diagonal terms
and in assembling the various main terms. In his proof of (1-2), which corresponds to (1-11) with k = 2,
Young used a combination of several techniques each effective for some range of the variables n1, n2.
In particular, when n1 ≈ n2 (in the logarithmic scale) he followed an approach à la Motohashi [1997]
using Kuznetsov formula, whereas when one variable is much larger than the other one, he used (new)
estimates for the average value of the divisor function in arithmetic progressions.

Our approach is similar to that of Young, however there are several substantial differences which we
will now discuss in some detail. First, the larger number of variables gives us the advantage of having
to deal with more “flexible” sums enlarging the ranges where the various estimates are effective. For this
reason, we can afford to use slightly weaker bounds employing the spectral theory only indirectly, through
the bounds of Deshouilliers and Iwaniec [1982] (together with Kim and Sarnak’s bound for the exceptional
eigenvalues [Kim 2003]). It seems likely that one could use spectral methods in a more direct and efficient
way, however the generalization of the methods in [Young 2011a] (or [Blomer et al. 2017]) to the k ≥ 3
case is not straightforward and so we choose a simpler route as this is still sufficient for our purposes.

The larger number of variables also has a cost. Indeed, it introduces several new complications in the
extraction and in the combination of the main terms, a process that requires a rather careful analysis and
constitutes the central part of this paper. One of the causes of the complicated shape of the main terms
(see (6-1)-(6-2)) is that with more than two variables the dichotomy “either one variable is much bigger
than the other or the variables have the same size” doesn’t hold for k > 2 and one has to (implicitly) deal
also with cases such as n1 ≈ · · · ≈ nk−1 ≈ q1+1/k and nk ≈ 1.

Another difference with Young’s work arises when studying the diagonal terms. If k = 2, then one can
handle these terms easily thanks to Ramanujan’s formula

∑
n≥1 d(n)2/ns

= ζ(s)4/ζ(2s). If k ≥ 3, we
don’t have such a nice exact formula, and we are left with the problem of showing that the series∑

±n1±···±nk=0

d(n1) · · · d(nk)

(n1 · · · nk)s

can be meromorphically continued past the line <(s)= 1− 1/k which is the boundary of convergence.
We shall leave this problem to a different paper, [Bettin 2017], where with similar (but a bit simpler)
techniques we prove that this series admits meromorphic continuation to the region <(s) > 1− 2/(k+ 1).
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Last, we mention a more technical problem. One of the steps in Young’s proof requires separating
n1, n2 in expressions of the form (n1± n2)

−z when <(z)≈ 0. This can be easily obtained by using some
classical Mellin formulae; however, whereas the Mellin integral corresponding to (1+ x)−z converges
absolutely, the Mellin integral corresponding to (1− x)−z converges only conditionally so that the terms
containing (n1−n2)

−z demand some caution. In our case this problem becomes rather more subtle as we
need to apply these formulae iteratively in order to handle expressions such as (n1± · · · ± nk)

−s . We
overcome this difficulties by using a modification of the resulting “iterated” Mellin formula allowing us
to write such expressions in terms of absolutely convergent integrals (see Section 10 for the details).

1.3. The structure of the paper. The paper is organized as follow. In Section 2 we state Theorem 5, a
more general version of Theorem 3 providing the asymptotic for the mixed moments of Dcos and Dsin

(as well as allowing for some small shifts). We then use this result to deduce Theorems 1, 3 and 4. In
Section 3 we give some lemmas on the Estermann function which we shall need later on. It is in these
lemmas that the spectral theory comes (indirectly) into play. The proof of Theorem 5 is carried out in
Sections 5–9, after introducing some notation in Section 4, and constitutes the main body of the paper.
Finally, in Section 10 we will prove the Mellin formula mentioned at the end of the previous section as
well as some technical Lemmas needed in order to use this formula effectively.

2. Mixed moments of Dcos and Dsin and the deduction of the main theorems

Let k ≥ 1, q be a prime and let α1, . . . , αk , β1, . . . , βk ∈C. Then, for any subset ϒ ⊆ {1, . . . , k} let Mϒ,k

be the mixed shifted moment

Mϒ,k :=
1

ϕ(q)

q−1∑
a=1

k∏
i=1

Di;αi ,βi

(1
2 ,

a
q

)
,

where Di;αi ,βi := Dsin;αi ,βi if i ∈ ϒ and Di := Dcos;αi ,βi otherwise. Also, let

0i (s) :=
{
0
( 1

2 + s
)

if i ∈ ϒ ,
0(s) otherwise.

(2-1)

Since Dsin;αi ,βi (s,−a/q) = −Dsin;αi ,βi (s, a/q), then Mϒ,k is identically zero if |ϒ | is odd. If |ϒ | is
even the asymptotic for Mϒ,k is given by the following theorem, provided that k ≥ 3 (the corresponding
theorem for k = 2 is essentially implicit in [Young 2011a], whereas the case k = 1 is trivial).

Theorem 5. Let ϒ ⊆ {1, . . . , k} with |ϒ | even. Let k ≥ 3 and let q be a prime. Let α = (α1, . . . , αk),
β := (β1, . . . , βk) ∈Ck with |αi |, |βi | � 1/log q and |αi |, |βi | ≤

1
10 for all i = 1, . . . , k. Then, there exists

an absolute constant A > 0 such that for any ε > 0 we have

Mϒ,k =
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + Oε(k Akqk/2−1−δk+ε), (2-2)
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where δk :=
k−2−3ϑ

2k+5
,

Mα,β :=
qk/2−1

2k−1

ζ
( k

2 −
∑k

i=1 αi
)
ζ
( k

2 +
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

) k∏
i=1

0i
( 1

4 −
αi
2

)
0i
( 1

4 +
αi
2

)( q
π

)−αi
ζ(1−αi +βi ) (2-3)

and where the implicit constant in the error term depends on ε only.

Remark. If αi = βi for some i = 1, . . . , k, then Mα,β has to be interpreted as the limit for αi → βi

(see (2-4) below).

As mentioned in Section 1.3, we will prove Theorem 5 in Sections 5–9. We will now deduce
Theorems 1, 3, and 4 from Theorem 5.

2.1. Proof of Theorem 1, 3 and 4 and of Corollary 2. We start by observing that if |ϒ | is even then
from Theorem 5 one has

q−1∑
a=1

k∏
i=1

Di;0,0
( 1

2 ,
a
q

)
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

(
log q

8nπ + γ − aiπ
)
+ Oε(k Akqk/2−δk+ε), (2-4)

where ai =−
1
2 if i ∈ ϒ and ai =

1
2 otherwise. Indeed, if α and β satisfy the hypothesis of Theorem 5

and αi 6= βi for all i , then by contour integration the main term on the right hand side of (2-2) can be
rewritten as

∑
{α′i ,β

′

i }={αi ,βi }

Mα∗,β∗ =
qk/2−1

2k−1

1
(2π i)k

∮
|s1|=

1
4

· · ·

∮
|sk |=

1
4

ζ
( k

2 +
∑k

i=1(si −αi −βi )
)
ζ
( k

2 +
∑k

i=1 si
)

ζ
(
k+

∑k
i=1(2si −αi −βi )

)
×

k∏
i=1

0i
( 1

4 +
s−αi−βi

2

)
0i
( 1

4 −
s−αi−βi

2

)( q
π

)si−αi−βi
ζ(1+ si −αi )ζ(1+ si −βi ) dsi , (2-5)

where the circles are integrated counterclockwise. Thus, taking the limit for α,β→ 0 and expanding
ζ(s)2/ζ(2s) as a Dirichlet series (see [Titchmarsh 1986, (1.2.8)]), we obtain

∑
{α′i ,β

′

i }={αi ,βi }

Mα′,β ′ =
qk/2−1

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

1
2π i

∮
|si |=

1
4

0i
( 1

4 +
si
2

)
0i
( 1

4 −
si
2

)( q
nπ

)si
ζ(1+ si )

2d si

=
qk/2−1

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

(
log q

8nπ + γ − aiπ
)
,

by the residue theorem. We remind that ν(n) is the number of distinct prime factors of n and γ is the
Euler–Mascheroni constant. Equation (2-4) then follows.
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To prove Theorem 1 we observe that by (2-4) we have (remember that if |ϒ | is odd then Mϒ,k = 0)

q−1∑
a=1

(
Dcos;0,0

( 1
2 ,

a
q

)
+ Dsin;0,0

(1
2 ,

a
q

))k

=

k∑
r=0

(k
r

) q−1∑
a=1

Dcos;0,0
( 1

2 ,
a
q

)k−r Dsin;0,0
(1

2 ,
a
q

)r
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

∑
r=0

r even

(k
r

)(
log q

8nπ + γ −
π
2

)k−r(log q
8nπ + γ +

π
2

)r
+ E2

=
qk/2

2k

∞∑
n=1

2ν(n)

nk/2

((
2 log q

8nπ + 2γ
)k
+
(
−
π
2

)k)
+ E2

for some E2�ε k Akqk/2−δk+ε, where in the last step we used that

k∑
r=0

reven

(k
r

)
xk−r yr

=
(x + y)k + (x − y)k

2
for all x, y ∈ R.

Thus, using (1-9) one obtains Theorem 1. One easily verifies that as q→∞

∞∑
n=1

2ν(n)

nk/2

((
log q

8nπ + γ
)k
+
(
−
π
2

)k)
∼
ζ(k/2)2

ζ(k)

(
log q

8π + γ
)k

uniformly in k ≥ 3. If k < η(log q)/(log log q) with η > 0 sufficiently small (but fixed), then the error
term E2 is smaller than the above main term and so Corollary 2 follows on this range.

Now assume k ≥ η(log q)/(log log q). First, we observe that by (1-10) for a 6= 1 we have

|M(a, q)| ≤ (q/η)
1
2 log q (2-6)

for any fixed 1 < η < 2 and q sufficiently large. Indeed, this is obvious if a = −1, whereas if a 6= ±1
then max j b j ≤ (q − 1)/2 and so the above bound follows since b1 · · · bκ ≤ q. Furthermore, from the
second moment estimate

∑q
a=1 |M(a, q)|2� (log q)4 it follows that for every C > 0 there are at most

O(q(log q)4/C2) values of a in 1< a ≤ q such that |M(a, q)| ≥ C . Thus, by (2-6) we have

q∑
a=2

M(a, q)k ≤
q∑

2≤a≤q
|M(a,q)|<C

M(a, q)k +
q∑

2≤a≤q
|M(a,q)|≥C

M(a, q)k

� Ckq +
qk/2+1(log q)k+4

ηk/2C2 �
qk/2+2/(k+2)

ηk/2 (log q)k+2

for C = η−
1
2 q

1
2−1/(k+2) log q . Note that if k� (log q)/(log log q), then

error term� qk/2η−k/4(log q)k = o(qk/2(log(q/(8π))+ γ )k) as q→∞, uniformly in k.
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Finally, we have (see [Heath-Brown 1981])

M(1, q)= q
1
2 (log(q/(8π))+ γ )+ 2ζ

( 1
2

)2
+ O(q−

1
2 )

so that

M(1, q)k = qk/2(log(q/(8π))+ γ )k exp
(

2ζ
( 1

2

)2 k

q
1
2 log q

(1+ O(1/ log q))
)

for q large enough. Thus, if (log q)/(log log q)� k = o(q
1
2 log q) we have

Mk(q)= q−k/2
q∑

a=1

M(a, q)k ∼ (log(q/(8π))+ γ )k ∼
ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k

as q→∞, whereas this asymptotic is false if k� q
1
2 log q. This concludes the proof of Corollary 2.

The proof of Theorem 3 is analogous to those of Theorem 1 and Corollary 2, with the difference that
in this case we use (1-8) rather than (1-9). Indeed for some E1�ε k Akqk/2−δk+ε we have

q−1∑
a=1

D0,0
( 1

2 ,
a
q

)k

=

k∑
r=0

(k
r

) q−1∑
a=1

Dcos;0,0
(1

2 ,
a
q

)k−r ir Dsin;0,0
( 1

2 ,
a
q

)r
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

k∑
r=0

r even

(k
r

)(
log q

8nπ + γ −
π
2

)k−r ir(log q
8nπ + γ +

π
2

)r
+ E1

=
qk/2

2k

∞∑
n=1

2ν(n)

nk/2

((
(1+ i)

(
log q

8nπ + γ
)
− (1− i)π2

)k
+
(
(1− i)

(
log q

8nπ + γ
)
− (1+ i)π2

)k)
+ E1

= (q/2)k/22<
( ∞∑

n=1

2ν(n)

nk/2

(
eπ i/4(log q

8nπ + γ
)
− e−π i/4 π

2

)k
)
+ E1,

∼ qk/221−k/2 ζ(k/2)
2

ζ(k)
<
((

eπ i/4(log q
8π + γ

)
− e−π i/4 π

2

)k)
as q →∞ with 3 ≤ k = o((log q)/(log log q)). One then obtains Theorem 3 on the range 3 ≤ k =
o(q

1
2 log q) by proceeding as in the proof of Corollary 2.

2.2. Proof of Theorem 4. We compute the moments of fr,+ only, the case of fr,− being analogous
(using (2-8) instead of (2-7)).

We start by noticing that Corollary 11 of [Bettin 2016] gives

Dcos;0,0
( 1

2 ,
a
q

)
=

1
2

κ∑
j=1

b
1
2
j

(
log b j

8π + γ −
π
2

)
+ O(log q), (2-7)
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Dsin;0,0
( 1

2 ,
a
q

)
=

1
2

κ∑
j=1

(−1) j b
1
2
j

(
log b j

8π + γ +
π
2

)
+ O(log q), (2-8)

where [0; b1, . . . bκ , 1] is the continued fraction expansion of a/q . Moreover, since b1 · · · b j � q , then if
one among b1, . . . , b j , say b j∗ , satisfies b j∗ > q/(log q)100, and thus in particular

log b j∗ = log q + O(log log q),

then b j � (log q)100 for j 6= j∗. In particular, if max j b j > q/(log q)100 and 1≤ r = o(log q/ log log q),
then

fr,+
( a

q

)
=

κ∑
j=1

br
j/2= max

j=1,...κ
br/2

j + O((log q)50r+1)=
1

(log q)r

(
max

j=1,...κ
b

1
2
j log q

)r

+ O((log q)50r+1)

=
1

(log q)r

((
max

j=1,...κ
b

1
2
j

(
log b j

8π + γ −
π
2

))(
1+ O(log log q/ log q)

))r

+ O((log q)50r+1)

=
2r

(log q)r
Dcos

( 1
2 ,

a
q

)r(1+ O(r log log q/ log q)
)
. (2-9)

Moreover, from (2-7) it follows easily that

κ∑
j=1

b
1
2
j ≤ Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

for all a/q and some B > 0. In particular, if max j b j ≤ q/(log q)100 and q is large enough, then

fr,+
( a

q

)k
≤

q(k/2)(r−1)

(log q)50k(r−1)

( κ∑
j=1

b
1
2
j

)k

≤
q(k/2)(r−1)

(log q)50k(r−1)

(
Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

)k

�
qkr/2−1

(log q)50k(r−1)+47(k−2)

(
Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

)2 (2-10)

for k ≥ 2, since max j b j ≤ q/(log q)100 implies
∣∣Dcos

( 1
2 ,

a
q

)∣∣+B log q ≤ q
1
2 /(log q)48 for q large enough.

Now, we have
q∑

a=1

fr,+(
a
q )

k
=

∑
1≤a<q

max j b j>q/(log q)100

fr,+
( a

q

)k
+

∑
1≤a<q

max j b j≤q/(log q)100

fr,+
( a

q

)k
. (2-11)

By (2-10) the second summand is bounded by∑
1≤a<q,

max j b j≤q/(log q)100

fr,+
( a

q

)k
�

qkr/2−1

(log q)50k(r−1)+48(k−2)

∑
1≤a<q

(
Dcos

( 1
2 ,

a
q

)
+ B log q

)2

�
qkr/2

(log q)50k(r−1)+48(k−2)−4 �
qkr/2

log q
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for kr ≥ 3 (if k = 1 one needs to modify slightly the argument, but the final bound still holds). By (2-9)
the first summand of (2-11) can be written as

q∑
1≤a<q

max j b j>q/(log q)100

(
2Dcos;0,0

( 1
2 ,

a
q

))kr

(log q)kr

(
1+ O(kr log log q/ log q)

)

=

∑
1≤a<q

(
2Dcos;0,0

( 1
2 ,

a
q

))kr

(log q)kr

(
1+ O(kr log log q/ log q)

)
+ O(qkr/2/log q)

= 2
ζ(kr)2

ζ(kr/2)
qkr/2(1+ O(kr log log q/ log q)

)
by (2-4) for 3≤ rk = o((log q)/(log log q)) and where one can complete the sum by proceeding as in the
previous computation. Theorem 4 then follows.

3. The Estermann function and bounds for sums of Kloosterman sums

In this Section we give some results for the Estermann function and for the periodic zeta-function which
will be needed in the proof of Theorem 5. In particular, in Section 3.1 we give the functional equation for
both these functions, whereas in Section 3.2 we give a version of the approximate functional equation for
the Estermann function. Finally, in Section 3.3 we give some estimates for products of the Estermann
function and the periodic zeta-function, using the bounds of [Deshouillers and Iwaniec 1982] for sums of
Kloosterman sums.

3.1. The functional equations. We start by giving the functional equation for the Estermann function.

Lemma 6. For (a, q)= 1, q > 0 and α ∈C, Dα,β(s, a/q)−q1−α−β−2sζ(s+α)ζ(s+β) can be extended
to an entire function of s. Moreover, Dα,β(s, a/q) satisfies the functional equation

Dα,β

(
s, a

q

)
=

2
q

( q
2π

)2−2s−α−β
0(1− s−α)0(1− s−β)

×
(
cos(π(α−β)/2)Dα,β

(
1− s, ā

q

)
− cos

(
π
2 (2s+α+β)

)
D−α,−β

(
1− s,− ā

q

))
, (3-1)

where, here and in the following, ā denotes the multiplicative inverse of a modulo the denominator q.

Proof. This is Lemma 4 of [Conrey 1989]. �

Corollary 7. Let

3cos;α,β
(
s, a

q

)
: = 0

( s+α
2

)
0
( s+β

2

)( q
π

)s+(α+β)/2
Dcos;α,β

(
s, a

q

)
,

3sin;α,β
(
s, a

q

)
: = 0

( 1+s+α
2

)
0
( 1+s+β

2

)( q
π

)s+(α+β)/2
Dsin;α,β

(
s, a

q

)
.

Then, we have the functional equations

3cos;α,β
(
s, a

q

)
=3cos;−α,−β

(
1− s, ā

q

)
, 3sin;α,β

(
s, a

q

)
=3sin;−α,−β

(
1− s, ā

q

)
. (3-2)



High moments of the Estermann function 263

Proof. These functional equations follow from (3-1), using the reflection and the duplication formulas for
the 0-function. �

We also need the basic properties of the periodic zeta-function which, for x ∈ R and <(s) > 1, is
defined as

F(s, x) :=
∞∑

n=1

e(nx)
ns . (3-3)

Notice that if x ∈ Z, then F(s, x)= ζ(s).

Lemma 8. Let h, l ∈ Z with (h, `)= 1 and ` > 0, then F(s, h/`) extends to an entire function of s with
the exception of a simple pole at s = 1 if `= 1. Moreover, F(s, x) satisfies the functional equation

F(1− s, h/`)= `s−1
∑̀
b=1

e(hb/`)
0(s)
(2π)s

(
e−π is/2 F(s, b/`)+ eπ is/2 F(s,−b/`)

)
. (3-4)

Finally, for ` - h we have

F(0, h/`)=− 1
2 +

i
2 cot(πh/`). (3-5)

Proof. For (3-5) and the analytic continuation of F see [Apostol 1951, pp. 161, 164]. For (3-4), one divides
the series for F into congruence classes modulo ` writing F(s, h/`) as a sum of Hurwitz zeta-functions
ζ(s, b/`); applying the functional equation [Apostol 1976, Theorem 12.6] for ζ(s, x) then gives (3-4). �

3.2. The approximate functional equation. Next, we give an approximate functional equation allowing
us to express a product of k Estermann functions as a sum of total length about qk/2.

Lemma 9. Let k ≥ 1 and ϒ ⊆ {1, . . . , k}. Let Gα,β(s) be an entire function satisfying Gα,β(−s) =
G−α,−β(s), Gα,β(0) = 1 and Gα,β

( 1
2 − αi

)
= Gα,β

( 1
2 − βi

)
= 0 for i = 1, . . . , k and decaying faster

than any power of s on vertical strips. Let

gα,β(s): = π−ks
k∏

j=1

0i
((1

2 + s+αi
)
/2
)
0i
((1

2 + s+βi
)
/2
)

0i
(( 1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
) , (3-6)

Xα,β : =
k∏

j=1

0i
((1

2 −αi
)
/2
)
0i
((1

2 −βi
)
/2
)

0i
((1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
)( q
π

)−αi−βi

and for any cs > 0 let

Vα,β(x) :=
1

2π i

∫
(cs)

Gα,β(s)gα,β(s)x−s ds
s
,

where, as usual,
∫
(c) · ds indicates that the integral is taken along the vertical line from c− i∞ to c+ i∞.

Then for a, q ∈ Z, with q > 1 and (a, q)= 1 we have
k∏

i=1

Di;αi ,βi

( 1
2 ,

a
q

)
= Sα,β(a, q)+ Xα,βS−α,−β(ā, q), (3-7)
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where ā is the inverse of a modulo q and

Sα,β(a, q) :=
i−|ϒ |

2k

∑
ε=(±11,...,±k1)∈{±1}k

∑
n1,...,nk≥1

ρϒ(ε)
τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

× e
(

a(±1n1±2 · · · ±k nk)

q

)
Vα,β

(
n1 · · · nk

qk

)
,

with ρϒ(ε) :=
∏

i∈ϒ(±i 1).

Proof. By contour integration and the functional equation, we have

k∏
i=1

3i;αi ,βi

(1
2 ,

a
q

)
=

1
2π i

(∫
(2)
−

∫
(−2)

) k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
·Gα,β(s)

ds
s

=
1

2π i

∫
(2)

k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
·Gα,β(s)

ds
s
+

1
2π i

∫
(2)

k∏
i=1

3i;−αi ,−βi

( 1
2 + s, ā

q

)
·G−α,−β(s)

ds
s
.

Now, expanding the Estermann functions into their Dirichlet series, we see that

1
2π i

∫
(2)

k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
0i
(( 1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
)( q
π

) 1
2+(αi+βi )/2

·Gα,β(s)
ds
s

=
i−|ϒ |

2k

∑
n1,...,nk∈Z\{0}

sgn
(∏

i∈ϒ

ni

)
τα1,β1(|n1|) · · · ταk ,βk (|nk |)

|n1 · · · nk |
1
2

e
(

a(n1+ · · ·+ nk)

q

)

×
1

2π i

∫
(2)

Gα,β(s)gα,β(s)
(
|n1 · · · nk |

qk

)−s
ds
s

and the lemma follows. �

3.3. Estimates for the Estermann function. In this section we give two bounds for certain averages
of products the Estermann function and the periodic zeta-function. Both bounds depend on estimates
for Kloosterman sums, more specifically on Weil’s bound and on (a minor modification of) a bound by
Deshouilliers and Iwaniec [1982]. We recall that the classical Kloosterman sum is defined as

S(m, n; `) :=
∑*

c (mod `)

e
(

mc+ nc̄
`

)

for any c,m, n ∈ Z, c ≥ 1, where
∑* indicates that the sum is over c (mod `) such that (c, `) = 1.

Also, we recall that Weil’s bound gives S(m, n; `)� d(`)(m, n, `)
1
2 `

1
2 . Using this bound we obtain the

following lemma.
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Lemma 10. Let r > 0, 0 < δ < 1, C ≥ 2, η0 6= 0 and (η1, . . . , ηr ) ∈ {±1}r . Let |a| ≤ 2Cδ, |b| ≤ Cδ
and |a j |, |b j |< δ for j = 1, . . . , r . Then, for some A > 0 we have∑
`≥1

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 ,

η j h
`

)
�δ (AC/δ)A(r+C)(1+ |s|)A(r+C) (3-8)

in the strip

−
1
2
+

r + 3
2

C + r − 1
2

+ 8δ < <(s) < 1
2
− 2δ,

where F is the periodic zeta-function defined in (3-3). Moreover, the left hand side of (3-8) is meromorphic
in the half plane <(s) > − 1

2 + (r +
3
2)/(C + r − 1

2)+ 8δ with poles at s = 1
2 − a j and s = 1

2 − b j for
j = 1, . . . , r and s= 1

2−b/C and these poles are simple if a1, . . . , ar , b1, . . . , br and b/C are all distinct.

Proof. For L ≥ 1, let

HL(s) :=
∑

L<`≤2L

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 + s, η j h

`

)
,

K (s) :=
r∏

j=1

(
s− 1

2 + a j
)(

s− 1
2 + b j

)
.

Notice that if ` 6= 1 and (h, `)= 1 then F(x, h/`) is entire and thus so is HL(s)K (s) for all L ≥ 1. Now,
if <(s)= 1

2 + 2δ, then a trivial bound gives

HL(s)K (s)� (1+ |s|2r )(A/δ)2r+1L−C+2+2δC , (3-9)

where, here and in the following, A denotes a sufficiently large positive constant, which might change
from line to line.

Next, take <(s) = − 1
2 − 2δ. Then, applying the functional equations (3-1) and (3-4) to D and F ,

expanding D and F into their Dirichlet series, and using Stirling’s formula in the crude form

0(σ + i t)� c−1(1+ A|σ |)|σ |(1+ |t |)σ−
1
2 e−(π/2)|t |, σ ≥ c > 0, (3-10)

we see that

HL(s)K (s)� Ar C AC(1+ |s|)A(r+C)Lr−1+(5C+6r)δ
∑

L<`≤2L

∑̀
u=1

∣∣F(C( 1
2 − s

)
− b, u/`

)∣∣
×

∑
n1,...,nr∈Z6=0

|τ−a1,−b1(|n1|) · · · τ−ar ,−br (|nr |)|

|n1+2δ
1 · · · n1+2δ

r |

∣∣S(η0u, n1+ · · ·+ nk; `)
∣∣,

and thus by Weil’s bound we obtain

HL(s)K (s)� (A/δ)2r+5C AC(1+ |s|)A(r+C)Lr+ 3
2+6(r+C)δ, (3-11)
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when <(s)=−1
2 −2δ. Thus, by (3-9), (3-11) and the Phragmén–Lindelöf principle, if − 1

2 −2δ ≤<(s)≤
1
2 + 2δ we have

HL(s)K (s)� (A/δ)2r+5C AC(1+ |s|)A(r+C)Lr+ 3
2−(C+r− 1

2)(<(s)+
1
2)+5δ(r+C).

Moreover, if
∣∣s− 1

2

∣∣> 2δ then K (s)� δ2r and thus, if − 1
2 − 2δ ≤<(s)≤ 1

2 − 2δ, we have

HL(s)� (A/δ)4r+5C AC(1+ |s|)A(r+C)Lr+ 3
2−(C+r− 1

2)(<(s)+
1
2)+5δ(r+C).

It follows that if

−
1
2
+

r + 3
2 + 6δ(r +C)

C + r − 1
2

≤<(s)≤ 1
2
− 2δ (3-12)

then∑
`>1

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 + s, η j h

`

)
�δ (A/δ)4r+6C AC(1+ |s|)A(r+C).

Finally, the contribution of the `= 1 term to the left hand side of (3-8) is

ζ
(
1+C

(
s− 1

2

)
+ b

) r∏
j=1

ζ
( 1

2 + s+ a j
)
ζ
( 1

2 + s+ b j
)
� (A/δ)2r+1C AC(1+ |s|)A(r+C)

when s satisfies (3-12) and thus (3-8) follows. We conclude by remarking that the above computations also
give the meromorphicity of the left hand side of (3-8) on <(s)≥−1

2+
(
r+ 3

2+5δ(r+C)
)
/
(
C+r− 1

2

)
. �

We now states a variation of a bound by Deshouilliers–Iwaniec for sums of Kloosterman sums (see
Theorem 9 and (1.52) of [Deshouillers and Iwaniec 1982]), which is also essentially implicit in the more
general bounds given in [Blomer et al. 2007; Harman et al. 2004] (see [Watt 2005, Theorem 1.4]).

Lemma 11. Let W be a smooth function supported in [1, 2] and satisfying W (i)(x)� C i for i = 0, 1, 2
and some C > 1. Let am, bn � 1 be sequences of complex numbers supported in [M, 2M] and [N , 2N ]
respectively. Then, for q ≥ 1 and η ∈ {±1} we have∑

m,n,`≥1

W (`/L)ambn S(qm, ηn; `)�ε qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N , (3-13)

where ϑ = 7
64 .

Proof. First we observe that we can assume that am is supported on integers which are coprime with q.
Indeed, if (3-13) holds in the coprime case, then since ϑ < 1

2 we have∑
m,n,`≥1

W (`/L)ambn S(qm, ηn; `)=
∑

d | q∞

∑
m,n,`≥1
(m,q)=1

W (`/L)admbn S(qdm, ηn; `)

�

∑
d | q∞

qϑ+ε

d1−ϑ−εC
9
2+ε(L1+ε

+ (dq)
1
2 )M N

� qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N ,
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as claimed. To prove (3-13) in the coprime case, one proceeds as in the proof of Theorem 9 of [Deshouillers
and Iwaniec 1982] applying Kuznetsov’s formula. Then one uses the multiplicativity of Hecke-eigenvalues
to separate q and m and applies the Kim–Sarnak bound [Kim 2003] for Hecke eigenvalues to deal with
the contribution of the q-coefficient. The rest of the proof carries on as in [Deshouillers and Iwaniec
1982] essentially unchanged other than for the parameter X which is now multiplied by q

1
2 . We remark

that the multiplicativity of Hecke eigenvalues holds since we are in the case of level 1 for which there are
only new-forms.

The above argument was carried out in detail in [Blomer et al. 2007, Theorem 4], where the authors
deal with the more general case of arbitrary level which introduces several difficulties especially when
dealing with the contribution of the Eisenstein spectrum. In some ranges [Blomer et al. 2007, Theorem 4]
gives a weaker bound than (3-13), but one can easily modify their proof to obtain (3-13). Indeed, for
D = 1 the bound on the last display of [Blomer et al. 2007, p. 75] can be modified to give (in the same
notation as in [Blomer et al. 2007])

�ε,p1,p2 ((1+ X)Zq)4ε
(

Z
|ξ1|M

)p1
(

Z
|ξ2|N

)p2

M Nq2ϑ Z
3
2 + Z X + X2

+M/q
1+ X/Z

‖a2‖
2
2. (3-14)

If Z1+ε
≥ X then this is obvious since this bound is weaker than the bound in [Blomer et al. 2007],

aside from the fact that we removed the factors (1+C/
√

M N )2ϑ and Z2ϑ since Selberg’s eigenvalue
conjecture holds when the level is D= 1. If X > Z1+ε, then Z1+ε < T0= 16X and so only the summands
with |t j | ≤ 1 and 1≤ |t j | ≤ T0 = 16X give a nonnegligible contribution. The terms with |t j | ≤ 1 then are
bounded as in the first display of [Blomer et al. 2007, p. 75] without ignoring the extra saving (1+X/Z)−1

as done there, whereas for the terms with 1≤ |t j | ≤ T0 we use the bound in the first line of the second
display of [Blomer et al. 2007, p. 75] using T0 = 16X .

In the case D = 1 the contribution of both the holomorphic and the continuous spectrum can be treated
in the same way without extra difficulties, obtaining that also their contribution is bounded by (3-14).
Using these bounds we then obtain that the left hand side of (3-13) is

�ε qϑ+εC2+ε

(
C

3
2 +C

√
q M N/L + q M N/L2

+M
) 1

2
(
C

3
2 +C

√
q M N/L + q M N/L2

+ N
) 1

2

1+
√

q M N/(LC)
× L1+ε

√
M N

� qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N . �

Remark. Using the variation of the spectral large sieve given by Blomer and Milićević [2015, Theorem 8],
one obtains a bound which improves upon (3-13) when the parameters are in certain ranges. It is likely
that the use of such a bound in combination with (3-13) would lead to a better bound for the error term in
Theorem 5. However for simplicity we choose to use (3-13) in all ranges, since this is sufficient for our
purposes.

Using Lemma 11 we obtain the following result.
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Lemma 12. For r ≥ 1, let t0, . . . , tr ∈ R, (η1, . . . , ηr ) ∈ {±1}r , and let η0 6= 0. Furthermore, let
|a j |, |b j |< δ for j = 1, . . . , r and some 0< δ < 1. Finally, let L > 0 and let W (x) be a smooth function
supported on [1, 2] with W (i)(x)� 1 for i = 0, 1, 2. Then, if w ∈ C and σ ≥ 2δ, we have that

S :=
∑
`≥1

W (`/L)
`1+w

∑*

h (mod `)

F
(
1+ σ + i t0,

η0h
`

) r∏
j=1

Da j ,b j

(
−σ + i t j ,

η j h
`

)
is bounded by

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )×

{
|η0|

ϑ+δ if L ≥ |η0|
1
2 ,

|η0|
1
6+

ϑ
3+δ always,

(3-15)

for some absolute A > 0 and where

Kr (s, w, t1, . . . , t j ) := (1+ σ)2r(2σ+1)(1+ |w|)4
r∏

j=1

(1+ |s| + |t j |)
1+4σ

Proof. Applying the functional equation (3-1), expanding D and F into their Dirichlet series, and
using (3-10) we obtain

S�δ Ar (1+ Aσ)2r(σ+δ+1)
( r∏

j=1

(1+ |t j |)
2(σ+δ)+1

)∣∣∣∣∑
`≥1

∑
m≥1

∑
n∈Z

W0(`) fn

m1+σ+i t0
S(η0m, n; `)

∣∣∣∣,
where

W0(x) :=W (x/L)xr(2σ+1)−1−w−
∑r

j=1(t j+a j+b j ) � (2L)r(3σ+1)−1−<(w),

fn :=
∑

n1,...,nr∈Z6=0
n1+···+nr=n

τ−a1,−b1(|n1|)

n1+s−i t1
1

· · ·
τ−ar ,−br (|nr |)

n1+s−i tr
r

�δ (A/δ)2r 1
|n|1+δ/2

.

Splitting the sums over n and m into dyadic blocks and applying (3-13) one easily gets the bound

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )|η0|
ϑ+δ(1+ |η0|

1
2 /L), (3-16)

which gives (3-15) in the case L ≥ |η0|
1
2 . Applying Weil’s bound rather than (3-13), one obtains

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )L
1
2 , (3-17)

and taking the minimum between (3-16) and (3-17) one gets (3-15) also in the case L < |η0|
1
2 . �

4. Some assumptions

In this section we set up some notation and make some simplifying assumptions, which we will use
throughout the rest of the paper.

First, q will always denote a prime, k an integer greater than 2, and ϒ a subset of {1, . . . , k} of even
cardinality. Moreover we shall use the convention that A and ε denote respectively a sufficiently large
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and an arbitrarily small positive constant on which the implicit bounds are allowed to depend and whose
value might change from line to line.

Also, we assume α = (α1, . . . , αk) ∈ Ak
2C , β = (β1, . . . , βk) ∈ Ak

C/2 for some constant C > 0
(
with

4C/ log q ≤ 1
10

)
, where Ar denotes the annulus {s ∈ C | r/ log q ≤ |s| ≤ 2r/ log q}. This assumption can

then be removed in the proof of Theorem 5 by analytic continuation and the maximum modulus principle,
since both the left hand side and, by (2-5), the main term on the right hand side of (2-2) are analytic
functions of the shifts in |αi |, |βi | ≤ 4C/ log q . We remark in particular, that with the above assumption,
we have |αi |, |βi |, |αi −βi | � 1/ log q .

Moreover, for the rest of the paper we fix an entire function Gα,β(s) as follow:

Gα,β(s) :=
Qα,β(s)
Qα,β(0)

ξ
( 1

2 + s
)

ξ
( 1

2

) , (4-1)

where ξ(s) := 1
2 s(s− 1)π−π/20

( 1
2 s
)
ζ(s) is the Riemann ξ -function and

Qα,β(s) :=
k∏

i=1

((
s2
− (αi −βi )

2)(1
4 − (s+αi )

2)(1
4 − (s+βi )

2)).
By the functional equation for the Riemann zeta-function we have Gα,β(−s)=G−α,−β(s) and so Gα,β(s)
satisfies the hypotheses of Lemma 9. Moreover, using Stirling’s formula (3-10) we also obtain

Gα,β(s)� (A log q)2ke−C1|t |(1+ |σ |)A(|σ |+k), (4-2)

for all s = σ + i t ∈ C and some C1 > 0.
Finally, we notice that from the functional equations (3-2), for i = 1, . . . , k we have the convexity

bound

Di,αi ,βi

( 1
2 ,

a
q

)
� q

1
2 (log q)2

and so trivially Mϒ,k � (Aq
1
2 (log q)2)k . Also, from (2-5) it is easy to see that one also has∑
{α′i ,β

′

i }={αi ,βi }

Mα′,β ′ � qk/2−1(A log q)k .

It follows that Theorem 5 is trivial if k � log q/ log log q since in this case (Ak)Ak
� q A/2. Thus, we

will assume k = o(log q/ log log q). In particular, for q large enough we have |αi |, |βi | ≤ 4C/ log q <
1/(k log log q) < ε

2k and a fortiori

|α1| + · · · + |αk | + |β1| + · · · + |βk |< ε.

Moreover, notice that under these assumptions we also have the inequality (k/ε)Ak
� (log q)Ak

� qε,
which we shall often use.
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5. Dividing into diagonal and off-diagonal terms and structure of the proof

By the approximate functional Equation (3-7) and the orthogonality of additive characters, we can
decompose Mϒ,k into diagonal and off-diagonal terms:

Mϒ,k :=
1

ϕ(q)

q−1∑
a=1

k∏
i=1

Di;αi ,βi

( 1
2 ,

a
q

)
= Dα,β + Xα,βD−α,−β +Oα,β + Xα,βO−α,−β,

where

Dα,β :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑

±1n1±2···±knk=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
,

Oα,β :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)O′ε,α,β,

O′ε,α,β :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
d | (±1n1±2···±knk)
±1n1±2···±knk 6=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
,

and the sum over ε is a sum over ε = {±11, . . . ,±k1} ∈ {1,−1}k .
The diagonal term Dα,β will be treated in Section 6, using the results of [Bettin 2017]. The terms with

d = 1 in O′ε,α,β could be easily dealt with in a simple way, however it is more convenient to keep them
together with the other off-diagonal terms.

Lemma 13. We have
Dα,β = Dα,β + O(qk/2−2k/(k+1)+ε), (5-1)

where Dα,β is as defined in (6-1).

For the off-diagonal terms we introduce partitions of unity. We need a function P : R≥0 → R≥0,
satisfying ∑†

N

P(x/N )= 1, ∀x > 0,

where by
∑† we mean that the index runs through the elements of a certain (fixed) set of positive real

numbers such that
∑†

X−1≤N≤X 1� log X . Also, we require that P(x) is supported on 1 ≤ x ≤ 2 and
P ( j)(x)� j Aj for some A > 0. It is not difficult to construct such a partition.1 Notice that under these
conditions, the Mellin transform of P(x),

P̃(s) :=
∫
∞

0
P(x)x s−1 dx,

is entire and satisfies

P̃(σ + i t)� (1+ j + |σ |)Aj A|σ |(1+ |t |)− j , ∀ j ≥ 0. (5-2)

1For example take the set of indexes in
∑† to be

{( 3
2
)n
| n ∈ Z

}
and P(x)=

∫ 3
2

1 η(xy) dy
y , where η(x)= Ce−1/(1−(4x−7)2)

for
∣∣x − 7

4
∣∣< 1

4 and η(x)= 0 otherwise, and where C is such that
∫

R η(y)
dy
y = 1.
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Using partitions of unity we can decompose O′α,β into

O′ε,α,β :=
∑†

N1,...,Nk

O′′ε,α,β(N1, . . . , Nk),

where O′′ε,α,β(N1, . . . , Nk) is defined as O′ε,α,β , with the only difference that the summands are multiplied
by P(n1/N1) · · · P(nk/Nk). In the following we will often omit to indicate the dependencies from
N1, . . . Nk for ease of notation.

The following two Lemmas summarize our results on the off-diagonal terms. The first Lemma, which
is effective when N1, . . . , Nk are close together, uses the spectral theory of automorphic forms (via the
bounds proven in Section 3.3) and is proven in Section 7. The second lemma, which is effective when one
of the Ni is considerably larger than the others, uses the bounds for sums of Kloosterman sums proven by
Young [2011a] and is proven in Section 9.

Lemma 14. Let Nmax be the maximum among N1, . . . , Nk . Then∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E1;α,β(N1, . . . , Nk), (5-3)

where

E1;α,β �
N ε

max

q1−ε

(
qϑN

k/2+ 1
2

max

(N1 · · · Nk)
1
2

+
qk/2− 1

3+ϑ/3 N
1
2

max

(N1 · · · Nk)
1
2

+
q

1
6+ϑ/3(N1 · · · Nk)

1
2

Nmax
+
(N1 · · · Nk)

1
2

N
1
2

max

)
(5-4)

and Mα,β(N1, . . . , Nk) is defined in (7-38). Moreover,

Mα,β(N1, . . . , Nk)� qε(N1 · · · Nk)
1
2 N−1+ε

max . (5-5)

Lemma 15. Let Nmax be the maximum among N1, . . . , Nk . Then

O′′ε,α,β(N1, . . . , Nk)� qε
((

N1 · · · Nk

Nmax

) 1
2−1/(2(k−1))( q

3
4

N
1
2

max

+ 1
)
+
(N1 · · · Nk)

1
2

N 3/4
max

)
.

Notice that in the crucial case N1 · · · Nk � qk Lemma 14 is nontrivial for Nmax� q2−2(ϑ+1)/(k+1)−δ

for any fixed δ > 0, whereas Lemma 15 is nontrivial as long as Nmax�k q
4
3+δ . In particular, in order to

have a nontrivial bound for all ranges we need ϑ < k−2
3 and so for k = 3 we need ϑ < 1

3 .
The following lemma, which we shall prove in Section 8, allows us to combine the various main terms.

Lemma 16. We have

i |ϒ |

2k

∑†

N1,...,Nk
N1···Nk�qk+ε

(Mα,β(N1, . . . , Nk)+ Xβ,αM−β,−α(N1, . . . , Nk))

=−(Dα,β + Xβ,αD−β,−α)+
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + O(qk/2− 3
2+ιk+ε),

where Mα,β is as defined in (2-3) and ιk = 3
14 if k = 4 and ιk = 0 otherwise.
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We conclude the section with the deduction of Theorem 5 from the above lemmas.

Proof of Theorem 5. Lemma 14 gives us the asymptotic for
∑

ε ρϒ(ε)O
′′

ε,α,β in the range where the
variables are close together. If one variable is much larger than the others then (5-5) and Lemma 15 give
us that both O′′ε,α,β and the main term are small and so we obtain a second formula for

∑
ε ρϒ(ε)O

′′

ε,α,β ,∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E2;α,β(N1, . . . , Nk), (5-6)

where

E2;α,β � qε
((

N1 · · · Nk

Nmax

)1
2−1/(2(k−1))( q

3
4

N
1
2

max

+ 1
)
+
(N1 · · · Nk)

1
2

N
3
4

max

)
.

Finally, in the range where N1 · · · Nk is much smaller than qk one can improve upon (5-3) and (5-6) by
simply bounding trivially O ′′ε,α,β and Mα,β by q−1+ε(N1 · · · Nk)

1
2 . We then record here the following

third formula for
∑

ε ρϒ(ε)O
′′

ε,α,β :∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E3;α,β(N1, . . . , Nk), (5-7)

with E3;α,β(N1, . . . , Nk)� q−1+ε(N1 · · · Nk)
1
2 .

Combining (5-3), (5-6) and (5-7), and adding the condition N1 · · · Nk � qk+ε at a negligible cost,
Lemma 16 gives

Oα,β + Xβ,αOα,β

=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑†

N1,...,Nk
N1···Nk�qk+ε

(
O′α,β(N1, . . . , Nk)+ Xβ,αO′−β,−α(N1, . . . , Nk)

)
+ O(1)

=−(Dα,β + Xβ,αD−β,−α)+
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + Eα,β + O(qk/2− 3
2+ιk+ε),

where
Eα,β � max

N1,...,Nk
N1···Nk�qk+ε

(
min(E1, E2, E3)

)
.

Thus, since the term −(Dα,β + Xβ,αD−β,−α) cancels out with the main term of the diagonal term given
by (5-1), to conclude the proof of Theorem 5 we just need to show that Eα,β � qk/2−1−δk+ε. Writing
Nmax = qa and N1 · · · Nk = qb (and considering only the contribution from the first summand in (5-4),
since it easy to see the other terms produce a contribution which is O(qk/2− 3

2+ε)), we have that it is
sufficient to show that

max
i=1,2,3

max
a≤b≤k
ka≥b

min
(k+1

2
a− b

2
− 1+ϑ, L i (a, b), b

2
− 1

)
=

k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

=
k
2
− 1− δk,

for k ≥ 3, where

L1(a, b) := 3
4
−

a
2
+(b−a)

(1
2
−

1
2(k−1)

)
, L2(a, b) := (b−a)

(1
2
−

1
2(k−1)

)
, L3(a, b) := b

2
−

3
4

a.
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If the maximum is attained at the interior of {a ≤ b≤ k, ka ≥ b}, then it must occur when k+1
2 a− b

2 −1=
b
2 − 1= L i (a, b) for i = 1, 2, or 3 and so it would be 7k

20 −
13
20 , k

3 −
2
3 and k

3 −
2
3 respectively. Along the

lines a = b, ka = b and b = k we have

max
i=1,2,3

max
0≤a≤k

min
(k

2
a− 1+ϑ, L i (a, a), a

2
− 1

)
= max

0≤a≤k
min

(
L i (a, a), a

2
− 1

)
= 0,

max
i=1,2,3

max
0≤a≤1

min
(a

2
− 1+ϑ, L i (a, ka), ka

2
− 1

)
≤−

1
2
+ϑ ≤ 0,

max
i=1,2,3

max
1≤a≤k

min
(k+1

2
a− k

2
− 1+ϑ, L i (a, k), k

2
− 1

)
=max

(k
2
−

7
4
+

8k(2+ϑ)−19−12ϑ
4(k2+2k−4)

,
k
2
−

3
2
+

2(k+ϑ)−5−4ϑ
2(k2+k−3)

,
k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

)
=

k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

,

for k ≥ 3 and ϑ ≤ 1
3 . Theorem 5 then follows. �

6. The diagonal terms

In this section we prove Lemma 13 deducing it from the following Lemma in [Bettin 2017]. We recall
that in Section 4 we assumed |αi |, |βi |<

ε
2k for all i = 1, . . . , k.

Lemma 17. For <(s) > 1− 1
k −

1
k

∑k
i=1 min(<(αi ),<(βi )), let

Wα,β(s) :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑

±1n1±2···±knk=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)s
.

Also, let

W†
α,β(s) :=

∑
(I,α′,β ′)∈Sα,β

2|J |+1π |I|/2−1

|I|(s− 1)+ sI;α′ + 1

(∏
i∈I

ζ(1−α′i +β
′

i )
0i
(
−α′i/2+ (1+ sI;α′)/(2|I|)

)
0i
( 1

2 +α
′

i/2− (1+ sI;α′)/(2|I|)
))

×

∑
`≥1

∑*

h (mod `)

1

`|I
′|−
∑

i∈I(α
′

i−β
′

i )

∏
i /∈I

Di
(
1+α′i − (1+ sI;α′)/|I|, α′i −β

′

i , h/`
)
.

where sI;α′ :=
∑

i∈I α
′

i and

Sα,β :=
{
(I,α′,β ′)

∣∣∣∣ I ⊆ {1, . . . k}, |I|> |J | + 1, |I ∩ϒ | even,

{α′i , β
′

i } = {αi , βi } ∀i ∈ I, (α′i , β
′

i )= (αi , βi ) ∀i /∈ I

}
.

Then for any ε > 0, Wα,β(s)−W†
α,β(s) extends to a holomorphic function on <(s) ≥ 1− 2−4ε

k+1 and in
such a half plane it satisfies Wα,β(s)−W†

α,β(s)�
( k
ε
(1+ |s|)

)Ak .

Proof. Theorem 3 of [Bettin 2017] gives the meromorphic continuation and the bound for each ε. Thus,
one obtains the lemma by summing over ε (for the simplification of the polar term one proceeds as in
Lemma 23; see also Remark 2 of [Bettin 2017]). �
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Proof of Lemma 13. Writing Vα,β in terms of it’s Mellin transform we have

Dα,β =
1

2π i

∫
(2)

Gα,β(s)gα,β(s)Wα,β

( 1
2 + s

)
qks ds

s
.

We write Wα,β

( 1
2 + s

)
as W†

α,β

( 1
2 + s

)
+
(
Wα,β

( 1
2 + s

)
−W†

α,β

( 1
2 + s

))
. For the second term we move

the line of integration to <(s)= 1
2 − (2− 4ε)/(k+ 1) and bound trivially using (4-2) obtaining an error

of size O(k Akqk/2−2k/(k+1)+ε)= O(qk/2−2k/(k+1)+ε). For the first term we move the line of integration
to <(s)=− 1

2 picking up the residues from the poles. We obtain (5-1) with

Dα,β :=
∑

I∪J={1,...,k}, I∩J=∅
|I|>|J |+1, |I∩ϒ |even

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

DI;α′,β ′ (6-1)

where

DI;α,β := 2k Gα,β(sI;α)
sI;απ |I|

gα,β(sI;α)qksI;α

(∏
i∈I

π
1
2 ζ(1−αi +βi )

2
1
2+αi+sI,α

0i
( 1

4 − (αi + sI,α)/2
)

0i
( 1

4 + (αi + sI,α)/2
))

×

∑
`

∑*

h (mod `)

1
`|I|−

∑
i∈I(αi−βi )

(∏
j∈J

D j
( 1

2 +α j + sI,α, α j −β j , ± j
h
`

))
(6-2)

and sI;α :=
∑

i∈I αi . �

7. The terms close to the diagonal

In this section we prove Lemma 14. First, we assume that N1 is the maximum of N1, . . . , Nk , as we can
do since both the main term and the error terms in Lemma 14 are symmetric in the indexes. Moreover,
since we assumed that |ϒ | is even, then we have∑

ε∈{±1}k
ρϒ(ε)O′′ε,α,β = 2

∑
ε∈{±1}k
±11=−1

ρϒ(ε)O′′ε,α,β,

where here and in the following ε = (±11,±21, . . . ,±k1). We split O′′ε,α,β further, depending on the
sign and the size of ±∗ f := −n1±2 n2±3 · · · ±k nk (with f > 0), introducing another partition of unity
controlling the size of f :∑

ε∈{±1}k
ρϒ(ε)O′′ε,α,β = 2

∑†

N∗�k N1qε/k

∑
ε∈{±1}k
±1=−1

ρϒ(ε)
∑

±∗1∈{±1}

Kε,±∗,α,β, (7-1)

where

Kε,±∗;α,β :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
f≥1,

f≡0 (mod d)

∑
n1,...,nk≥1

n1=±2n2±3···±knk±∗ f

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

× Vα,β

(
n1 · · · nk

qk

)
P
(

n1

N1

)
· · · P

(
nk

Nk

)
P
(

f
N∗

)
.
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Notice that in (7-1) we truncated the sum over N∗ at N∗� k N1qε/k , as we clearly could.

7.1. Separating the variables arithmetically. We wish to separate the variables in

τα1,β1(n1)= τα1,β1(±2n2±3 · · · ±k nk ±∗ f ).

One can achieve this goal by using Ramanujan’s identity

τa,b(n)= n−aτ0,b−a(n)= n−aζ(1− a+ b)
∞∑
`=1

c`(n)
`1−a+b , (7-2)

which holds for n 6= 0 and <(a− b) < 0. The coefficient c`(n) denotes the Ramanujan sum

c`(n) :=
∑*

h (mod `)

e
(nh
`

)
.

However, since (7-2) doesn’t hold in a neighborhood of a= b= 0, it is more convenient to follow Young’s
approach and use the following lemma, which rephrases (7-2) as an approximate functional equation
for τa,b(n).

Lemma 18. Let n ∈ Z>0 and let a, b ∈ C. Then,

τa,b(n)= n−a
∑
`

c`(n)
`1−a+b υa−b

(
`2

n

)
+ n−b

∑
`

c`(n)
`1+a−b υb−a

(
`2

n

)
(7-3)

where

υa(x)=
∫
(cw)

x−w/2ζ(1− a+w)
Gα,β(w)

w
dw,

where cw > |<(a− b)| and Gα,β(w) is as defined in (4-1).

Proof. See Lemma 5.4 of Young [2011a]. �

Applying (7-3) and splitting the resulting sum over ` using another partition of unity (and adding the
restriction L ≥ 1

2 as we can do since P is supported on [1, 2]), we rewrite Kε,±∗;α,β as

Kε,±∗;α,β =
∑

{α′1,β
′

1}={α1,β1}

(α′j ,β
′

j )=(α j ,β j ) ∀ j 6=1

∑†

L≥ 1
2

Lα′,β ′, (7-4)

where α′ := (α′1, . . . , α
′

k), β
′
:= (β ′1, . . . , β

′

k) and

Lα,β :=
∑

n1,...,nk , f≥1
n1=±2n2±3···±knk±∗ f

∑
d | q
d | f

µ(q/d)d
ϕ(q)

∑
`

∑*

h (mod `)

c`(±2n2±3 · · · ±k nk ±∗ f )
`1−α+β υα1−β1

(
`2

n1

)

×
τα2,β2(n2) · · · ταk ,βk (nk)

n
1
2
1 · · · n

1
2
k

Vα,β

(
n1 · · · nk

qk

)
P
(

n1

N1

)
· · · P

(
nk

Nk

)
P
(

f
N∗

)
P
(
`

L

)
.

Notice that we have omitted to indicate the dependency of Lα,β from ε and ±∗ in order to save notation.
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Expressing P , υα1−β1 and V in terms of their Mellin transform and making the change of variables
ui → ui − s, for i = 1, . . . , k, we see that Lα,β can be written as

Lα,β =
∑
d | q

µ(q/d)d
ϕ(q)

∑
n2,...,nk , f≥1, d | f
±2n2±3···±knk±∗ f>0

∑
`

∑*

h (mod `)

1
(2π i)k+3

×

∫
(cs ,cw,cu,cu∗ )

N u∗
∗

f u∗
P
(
`

L

)N u1−s
1 · · · N uk−s

k

`1−α1+β1+w

τα2,β2(n2) · · · ταk ,βk (nk)c`(±2n2±3 · · · ±k nk ±∗ f )

(±2n2±3 · · · ±k nk ±∗ f )
1
2+α1+u1−w/2n

1
2+u2

2 · · · n
1
2+uk

k

×P̃(u∗)P̃(u1− s) · · · P̃(uk − s)qks Hα,β(w, s)
ws

dw ds du du∗, (7-5)

where du := du1 · · · duk , cu denotes the lines of integration cu1, . . . , cuk and

Hα,β(w, s) := ζ(1+w−α1+β1)Gα,β(s)Gα,β(w)gα,β(s).

Notice that, by the definitions (4-1) and (3-6) of Gα,β(s) and gα,β(s), Hα,β(w, s) is entire and decays
rapidly in both variables w and s:

Hα,β(w, s)� e−C2(|=(s)|+|=(w)|)(1+ |<(s)| + |<(w)|)A(|<(s)|+|<(w)|+k), (7-6)

for some C2 > 0. As lines of integration, we take

cs := ε/k, cu1 =−3k− 1
2 −α1+ 7ε, cu∗ = cu2 = · · · = cuk = 4k, cw = 10ε.

The real parts of the lines are chosen to be large enough so that the various sums are absolutely convergent.

7.2. Separating the variables analytically. To complete the separation of the variables, we need also to
deal with the factor (±2n2±3 · · · ±k nk ±∗ f )

1
2+α1+u1−w/2 in (7-5). In order to do so, we use Lemma 27,

in Section 10. We apply the lemma with κ := k + 1, B := 3k and v1 =
1
2 − α1 − u1 +

w
2 , so that

<(v1)= B+ 1− 2ε. We get

Lα,β =
∑
ν

B!
ν2! · · · νk !ν∗!

(Nν;α,β +N ′ν;α,β), (7-7)

where the sum is over ν = (ν2, . . . , νk, ν∗) ∈ Zk
≥0 satisfying

ν2+ · · ·+ νk + ν∗ = B, νi = 0 if ±i 1=−1, ν∗ = 0 if ±∗1=−1,

and Nν;α,β is defined by

Nν;α,β :=

∑
d|q

µ(q/d)d
ϕ(q)

∑
n1,...,nk , `≥1

f≥1, d | f

P(`/L)
(2π i)2k+3

∫
(cs ,cw,cu,cu∗ ,cv∗ )

c`(±2n2±3 · · · ±k nk ±∗ f )
f v∗+u∗−ν∗

N u∗
∗

×
qks N u1−s

1

`1−α1+β1+w
P̃(u∗)P̃(u1− s)

( k∏
i=2

∫
(cvi )

ταi ,βi (ni )N
ui−s
i

n
1
2+ui+vi−νi

i

P̃(ui − s)
)

×9ε∗,B
( 1

2 −α1− u1+w/2, v, v∗
)Hα,β(w, s)

ws
ds dw du dv du∗ dv∗, (7-8)
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with cv2 = · · · = cvk = cv∗ = ε/k, and N ′ν;α,β is defined in the same way with lines of integrations
c′v2
=· · ·= c′vk

= c′v∗ =
1
2 in place of cv2, . . . , cvk , cv∗ . Also, in (7-8) we used the notation v := (v2, . . . , vk),

dv := dv2 · · · dvk and ε∗ := (±11, . . . ,±k1,±∗1) and 9ε∗,B is as in (10-5).
The contribution of N ′ν;α,β can be bounded by moving the lines of integration cui to cui = 2ε+ νi for

i = 2, . . . , k and cu∗ to cu∗ =
1
2 + ν∗+ ε and bounding trivially. We obtain

N ′ν;α,β � q−1+εN
−B− 1

2+Aε
1 N

1
2+ν∗+2ε
∗ N ν2+2ε

2 · · · N νk+2ε
k L−ε

and thus ∑
ν

B!
ν2! · · · νk !ν∗!

N ′ν;α,β � q−1+AεN Aε
1 L−ε,

since N1 is the maximum among N1, . . . , Nk and N∗� k N1qε/k .
Next, we open the Ramanujan sum in (7-8) and we execute the sums over n2, . . . , nk, f as we can do

since the integrals and sums are absolutely convergent since νi , ν∗ ≤ B = 3k and cui = cu∗ = 4k for all i .
We obtain

Nν;α,β =

∑
d|q

µ(q/d)
ϕ(q)

∑
`

P(`/L)
(2π i)2k+3

∫
(cs ,cw,cu,cu∗ ,cv∗ )

∑*

h (mod `)

d1−v∗−u∗+ν∗

`1−α1+β1+w
F
(
v∗+ u∗− ν∗,±∗ dh

`

)
qks

× N u∗
∗

P̃(u∗)
( k∏

i=2

∫
(cvi )

Dαi ,βi

( 1
2 + ui + vi − νi ,

±i h
`

)
P̃(ui − s)N ui−s

i

)
× N u1−s

1 P̃(u1− s)9ε∗,B
( 1

2 −α1− u1+
w
2 , v, v∗

)Hα,β(w, s)
ws

ds dw du dv du∗ dv∗,

where, after moving the lines of integration cu2, . . . , cuk , cu∗ , we have

cs := ε/k, cu1 =−B− 1
2 −<(α1)+ 7ε, cw = 10ε,

cv2 = · · · = cvk = cv∗ = ε/k, cu∗ = 1+ ν∗+ 2ε− ε/k,
(7-9)

and cui =
1
2 + νi + ε/k, for i = 2, . . . , k.

Remarks. (1), Thanks to (7-6) and to Lemma 28 in Section 10, the integrals in Nν;α,β are all absolutely
convergent when the line of integration are chosen so that <(v2) = · · · = <(vk) = <(v∗) = ε/k and
<(v1) := <

( 1
2 −α1− u1+

w
2

)
= B+ 1− 2ε (and even if an extra factor of

∏k
i=2(1+ |ui | + |vi |)

1+4ε is
introduced inside the integrals, as will be relevant later on in the argument). In the following computations,
until Lemma 20, we will (almost) always arrange the lines of integration in a way such that <(v1) is kept
equal to B+ 1− 2ε.2 This ensures the absolute convergence of the integrals in all the bounds we give.

(2) We also observe that, by the definition (10-5), the poles of 9ε∗,B(v1, v, v∗) are contained in the set{
(v1, v, v∗) ∈ Ck+1

| vi ∈ Z≤0 for some i ∈ {1, . . . , k} or v1+ · · ·+ vk + v∗ = B+ 1
}
.

2The only exception is in the proof of (7-19), where we need to take <(v1)= B− 2ε. One can easily verify however that the
integrals are all absolutely convergent also in that case.
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(3) One should morally think of having B = ν∗ = ν2 = · · · = νk = 0, as their presence is just an artificial
effect of forcing the various integrals over vi to be absolutely convergent. Also, we chose and shall
keep cu∗ in a way so that we stay just to the right of the pole of F . Aside from this, in the following
computations our goal will typically be that of moving cu2, . . . , cuk to the left thus obtaining savings in
N2, . . . , Nk . Since D

(
s, h

`

)
grows roughly like `1−<(s) when 0< <(s) < 1, we then need to move w to

the right to insure the convergence of the sum over `. This in turn forces us to move cu1 to the right
since we need <

( 1
2 −α1− u1+

w
2 + v2+ · · ·+ vk + v∗

)
< B+ 1 to avoid a pole of 9ε∗,B . Doing so we

lose a power of N1; however, since in the first argument of 9ε∗,B u1 appears with a coefficient which is
(negative the) double of that of w, we have that the gain in the exponents of N2, . . . , Nk is superior to the
loss in the exponent of N1. This will then produce a saving when the variables are close to the diagonal,
that is when N1 is not much larger than (N2 · · · Nk)

1/(k−1).

7.3. Picking up the residues of the Estermann function. For each i = 2, . . . , k we move the line of
integration cui to cui =−

1
2 + νi − 2ε, passing through the poles of the Estermann function at

ui =
1
2 −αi − vi + νi and ui =

1
2 −βi − vi + νi .

By Lemma 6 and the residue theorem, we obtain

Nν;α,β =

∑
I∪J={2,...,k}

I∩J=∅

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J∪{1}

PI ;ν;α′,β ′, (7-10)

where, for I ∪ J = {2, . . . , k}, I ∩ J =∅,

PI ;ν;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

P(`/L)
(2π i)5

∫
(cs ,cw,cu1 ,cu∗ ,cv∗ )

qksd1−v∗−u∗+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

∑*

h (mod `)

F
(
v∗+u∗−ν∗,±∗ dh

`

)
×

(∏
j∈J

1
(2π i)2

∫
(cu j ,cv j )

Dα j ,β j

( 1
2 + u j + v j − ν j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)

×

(∏
i∈I

1
2π i

∫
(cvi )

P̃
( 1

2 −αi − vi + νi − s
)
N

1
2−αi−vi+νi−s

i

)
N u∗
∗

P̃(u∗)N
u1−s
1 P̃(u1− s)

×9ε∗,B
( 1

2 −α1− u1+
w
2 , v, v∗

)H ′I ;α,β(w, s)

ws
ds dw du1 dv du∗ dv∗

and

H ′I ;α,β(w, s) := Gα,β(s)Gα,β(w)gα,β(s)ζ(1+w−α1+β1)
∏
i∈I

ζ(1−αi +βi ), (7-11)

so that

H ′I ;α,β(w, s)� (A log q)|I |e−C2(|=(s)|+|=(w)|)(1+ |<(s)| + |<(w)|)A(|<(s)|+|<(w)|+k). (7-12)
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We remind also that the lines of integrations are given by (7-9) and

cu j =−
1
2 + ν j − 2ε, for all j ∈ J. (7-13)

7.4. Applying the bounds on sums of Kloosterman sums. In this section, we apply Lemma 12 to give a
bound for PI,ν;α,β under certain conditions.

Lemma 19. Let I ⊆ {2, . . . , k} and let J := {2, . . . , k} \ I . Then, if |I | ≤ |J | we have

PI,ν;α,β � q−1+AεN Aε
1
(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1

)
(N1 · · · Nk)

−
1
2 L−ε, (7-14)

whereas if |I |> |J | and ν j > 0 for some j ∈ J , then

PI,ν;α,β � q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε. (7-15)

Proof. First, we bound the sums over h and ` by Lemma 12 and we bound trivially the integrals which
are all convergent by (5-2), (7-12) and (10-6) when the lines of integrations are given by (7-9) and (7-13).
Doing so, we obtain

PI,ν;α,β � q−
5
6+ϑ/3+AεN

−B− 1
2+Aε

1 N 1+ν∗+ε
∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L |J |−|I |−ε

×

∫
(cs ,cw,cu1 ,cu∗ ,cv∗ )

(∏
j∈J

∫
(cu j )

(1+ |v j | + |u j |)
1+4ε
|P̃(u j − s)||du j |

)

×

(∏
i∈I

∫
(cvi )

∣∣P̃( 1
2 −αi − vi + νi − s

)∣∣)|P̃(u∗)||P̃(u1− s)|

×
∣∣9ε∗,B( 1

2 −α1− u1+
w
2 , v, v∗

)∣∣ |H ′I ;α,β(w, s)|

|ws|
| ds dw du1 dv du∗ dv∗|

� q−
5
6+

ϑ
3+AεN

−B− 1
2+Aε

1 N 1+ν∗
∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L |J |−|I |−ε. (7-16)

If |I | − |J |> 0 and at least one of the ν j is greater than zero, then this is bounded by

PI,ν;α,β � q−
5
6+ϑ/3+AεN Aε

1
N ν∗+1
∗

N ν∗+1
1

(N1 · · · Nk)
1
2

(∏
i∈I

N νi
i

N νi
1

)(∏
j∈J

N ν j−1
j

N ν j
1

)
L−ε

� q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε,

since B = ν1+ · · ·+ νk and N2, . . . , Nk ≤ N1, N∗� k N1qε/k .
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Now assume |I | − |J | ≤ 0 and let L ≤ q
1
2 . In this case (7-16) gives

PI,ν;α,β � q−
5
6+ϑ/3+AεN

1
2+|I |+Aε

1
N ν∗+1
∗

N ν∗+1
1

(N1 · · · Nk)
−

1
2

(∏
i∈I

N 1+νi
i

N 1+νi
1

)(∏
j∈J

N ν j
j

N ν j
1

)
q

1
2 (|J |−|I |)−ε

� q−
5
6+ϑ/3+

1
2 (|J |−|I |)+AεN

1
2+|I |+Aε

1 (N1 · · · Nk)
−

1
2

� q−
1
3+ϑ/3+Aε(N k/2+Aε

1 q−
1
2 + qk/2−1 N

1
2

1 )(N1 · · · Nk)
−

1
2 , (7-17)

since |I | = k− 1− |J | and k−1
2 ≤ |J | ≤ k− 1.

Finally, if |I | − |J | ≤ 0 and L > q
1
2 , then we move the lines of integration cw and cu1 to

cw = |J | − |I | + 10ε = k− 1− 2|I | + 10ε, cu1 =−1− B+ k
2 −<(α1)− |I | + 7ε.

Then, we use Lemma 12 and bound trivially the integrals (using (5-2), (7-12) and (10-6)) and we obtain

PI,ν;α,β � q−1+ϑ+AεN−1−B+k/2−|I |+Aε
1 N 1+ν∗

∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L−ε

�
q−1+ϑ+Aε

Lε
N

k
2+Aε

1
N ν∗+1
∗

N ν∗+1
1

(∏
i∈I

Ni

N1

)( k∏
i=2

N
−

1
2+νi

i

N νi
1

)
�

q−1+ϑ+AεN
k/2+ 1

2+Aε
1

(N1 · · · Nk)
1
2 Lε

. (7-18)

Thus, since N k/2
1 q−

1
2 � qk/2−1 N

1
2

1 + q−1 N
k/2+ 1

2
1 , we have that (7-17) and (7-18) imply (7-14). �

7.5. Reassembling the sum over ν and further manipulations. By the previous section, we only need
to consider the PI ;ν;α,β with |I | > |J | and ν j = 0 for all j ∈ J (and lines of integration given in (7-9)
and (7-13)). For each j ∈ J , we move cu j to 1

2 + ν j − 2ε and simultaneously cv j to cv j = −1+ ε/k,
passing through the pole of 9ε∗,B at v j = 0. The contribution of the integral on the new line of integration
can be bounded by

� q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε, (7-19)

as can be see by moving cu1 to cu1 =−B− 3
2 −α1+ 7ε and bounding the sums and integrals as in the

proof of (7-15). Thus we only need to consider the residue at v j = 0 for all j ∈ J .
In the same way, we move the line of integration cv∗ to cv∗ = 1+ ε/k and cu∗ to cu∗ = ν∗+ 2ε− ε/k,

passing through the pole of 9ε∗,B at v∗ = B+ 1−
(1

2 −α1− u1+
w
2

)
−
∑

i∈I vi . The contribution of the
new line of integration can be bounded by (7-19) in a similar way, so again we only need to consider the
contribution of the residue. Thus, summarizing (and recalling (7-7) and (7-10)), we arrive at

Lα,β =
∑

I∪J={2,...,k}
I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J∪{1}

∑
ν

B!
ν2! · · · νk !ν∗!

QI ;ν;α,β

+ O
(

q−1+AεN Aε
1

(N1 · · · Nk)
1
2

(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1 + q
1
6+ϑ/3 N2 · · · Nk

)
L−ε

)
, (7-20)
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where the sum over ν is now over ν = (ν2, . . . , νk, ν∗) ∈ Zk
≥0 satisfying

ν2+ · · ·+ νk + ν∗ = B, νi = 0 if ±i 1=−1 or i ∈ J , ν∗ = 0 if ±∗1=−1,

and where

QI ;ν;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)4+|I |

∫
(cs ,cw,cu1 ,cu∗ , cvi ∀i∈I )

d
1
2−B−α1−u1+w/2+

∑
i∈I vi−u∗+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

× qks F
(
B+ 1

2 +α1+ u1−
w
2 −

∑
i∈I vi + u∗− ν∗,±∗ dh

`

)H ′I ;α,β(w, s)

ws

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u∗

∗
P̃(u∗)N

u1−s
1 P̃(u1− s)9 ′I ;ε∗I ,B

( 1
2 −α1− u1+

w
2 , vI

)
×

(∏
i∈I

P̃( 1
2 −αi − vi + νi − s)N

1
2−αi−vi+νi−s

i dvi dvi

)
dw du1 ds du∗, (7-21)

for vI := (vi )i∈I , ε∗I = (±i 1)i∈I∪{∗} and

9 ′I ;ε∗I ,B
(v1, vI ) :=

0
(
B+ 1− v1−

∑
i∈I vi

)∏
i∈I∪{1} 0(vi )

0(V∓∗;εI (v1, vI ))0(B+ 1− V∓∗;εI (v1, vI ))
,

V±,εI (v1, vI ) :=
∑

i∈I∪{1}
±i 1=±1

vi .
(7-22)

We also remind that the line of integrations are

cs := ε/k, cw = 10ε, cu∗ = 1+ ν∗+ 2ε− ε/k,

cu j =−
1
2 + ν j − 2ε ∀ j ∈ J, cvi =

ε

k
∀i ∈ I

(7-23)

and cu1 =−B− 1
2 −<(α1)+ 7ε.

Remark. Notice that the integrand in (7-21) decays rapidly along a vertical strip in each of the variables
of integration. In particular, in the following computations we will always be able to bound the integrals
trivially.

At this point, we wish to execute the sum over the partitions of unity N∗. However, first we need to
remove the truncation N∗� k N1qε/k . This can be done at a negligible cost, as shown in the following
lemma.

Lemma 20. We have∑†

N∗�k N1qε/k

QI ;ν;α,β =
∑†

N∗

QI ;ν;α,β + O
(
q−2+AεN Aε

1 (N1 · · · Nk)
1
2 L−ε

)
. (7-24)
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Proof. Assume N∗� k N1qε/k . Given a large positive integer 1, we move cvi to cvi =−1k+ 1
2 for all

i ∈ I in (7-21). Doing so, we pass through the poles of

9 ′I ;ε∗I ,B
(1

2 −α1− u1+
w
2 , vI

)
at vi ∈ S1 := {−r | r ∈ Z, 0≤ r <1k},

so that we have to deal with a sum of (1k + 1)|I | terms coming from the contribution of the residues
and of the integrals on the new lines of integration.3 Then, for each of these terms, we move the line
of integration cu1 to cu1 = 1k. This can be done without crossing any pole of 9 ′I ;ε∗I ,B if the term was
coming from picking up a residue in each of the variables vi for all i ∈ I , since in this case the 0 factor
in the denominator of 9 ′I ;ε∗I ,B cancel the poles of 0(v1)= 0

( 1
2 −α1− u1+

w
2

)
. Otherwise, we also have

to consider the residues of 9 ′I ;ε∗I ,B at 1
2 −α1− u1+

w
2 ∈ S1. In all cases, however, all the terms will still

have at least one integral left (besides the w and u∗ integrals) with line of integration cvi =−1k+ 1
2 or

cu1 =1k. Finally, for each of these terms we place the line of integration cu∗ so that the real part of the
argument of the function F in (7-21) is still 1+ (4− |I |/k)ε (we can do this without crossing poles).

Thus, bounding these terms by using Lemma 12 and the estimates (5-2), (7-12) and (10-6), we obtain

QI ;ν;α,β � q−
5
6+ϑ/3+Aε

∑
r1,...rk∈({0,1,...,1−1}∪{1k− 1

2})
ri=1k− 1

2 for some i ∈ ({1} ∪ I )
ri=0 if i ∈ J

N
1
2+r1+Aε

1 N
r2+

1
2+ν2

2 · · · N
rk+

1
2+νk

k

N B+
∑k

i=1 ri−ν∗+(4−|I |/k)ε
∗ Lε

∏
j∈J

N−1
j

� q−1+Aε N Aε
1 (N1 · · · Nk)

1
2

q1εN ε
∗

(∏
j∈J

N−1
j

)
L−ε� q−2+AεN Aε

1 (N1 · · · Nk)
1
2 (L N∗)−ε,

if 1 is large enough with respect to ε. Equation (7-24) then follows. �

We now move the line of integration cu1 to cu1 =
1
2 + 3ε and then execute the sum over N∗, which we

do by using the following lemma.

Lemma 21. Let K (s) be a function which is analytic and grows at most polynomially on a strip |<(s)|< c
for some c > 0. Then, for any −c < cu < c we have∑†

N

1
2π i

∫
(cu)

K (u)P̃(u)N udu = K (0).

Proof. For ε > 0, let ĝε(x) be the Mellin transform of gε(u) := K (u)eεu
2
. We have∑†

N

1
2π i

∫
(cu)

K (u)P̃(u)N u du = lim
ε→0

∑†

N

1
2π i

∫
(0)

K (u)eεu
2
P̃(u)N u du

as can be seen by splitting the sum according to whether N ≥ 1 or N < 1 and moving the line of integration
accordingly to −c/2 or c/2. We then write gε(u) in terms of its Mellin transform. Exchanging the order

3In total there are (1k+ 1)|I | terms because for each vi we have the possibility of taking the residue at vi =−ri ∈ S1 or to
take the integral at cvi =−1k+ 1

2 .
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of the integrals, as allowed by the bound ĝε(x)�min(xc/2, x−c/2), and executing the integral over u we
obtain

lim
ε→0

∑†

N

∫
∞

0
gε(x)P(1/N x) dx

x
= lim
ε→0

∫
∞

0
gε(x)

dx
x
= F(0). �

We move the line of integration cu1 to cu1 =
1
2 + 3ε without crossing poles and apply the above lemma

obtaining∑†

N∗

QI ;ν;α,β =
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)3+|I |

∫
(cs ,cw,cu1 , cvi ∀i∈I )

d
1
2−B−α1−u1+w/2+

∑
i∈I vi+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

× qks F
(
B+ 1

2 +α1+ u1−
w
2 −

∑
i∈I vi − ν∗, ±∗

h
`

)
×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u1−s

1 P̃(u1− s)9 ′I ;ε∗I ,B
( 1

2 −α1− u1+
w
2 , vI

)H ′I ;α,β(w, s)

ws
×

∏
i∈I

(
P̃( 1

2 −αi − vi + νi − s)N
1
2−αi−vi+νi−s

i dvi dvi

)
dw du1 ds, (7-25)

with lines of integrations that we can take to be given by (7-23) and cu1 =
1
2 + 3ε.

We are finally ready to execute the sum over ν. We do this in the following lemma, which also
summarizes the previous computations.

Lemma 22. We have∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β = 2
∑†

L

∑
I∪J={2,...,k}

I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I1
(α′j ,β

′

j )=(α j ,β j )∀ j∈J

∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

RI ;ε∗;α,β

+ O
(

q−1+AεN Aε
1

(N1 · · · Nk)
1
2 Lε

(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1 + q
1
6+ϑ/3 N2 · · · Nk

))
, (7-26)

where I1 := I ∪ {1} and

RI ;ε∗;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)3+|I |

∫
(cs ,cw,cu1 , cvi ∀i∈I )

qksd
1
2−α1−u1+w/2+

∑
i∈I vi N u1−s

1

`
∑

i∈I1
(1−αi+βi )+w

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× P̃(u1− s)× F

( 1
2 +α1+ u1−

w
2 −

∑
i∈I vi ,±∗

dh
`

)
9 ′I ;ε∗I ,0

( 1
2 −α1− u1+

w
2 , vI

)
×

(∏
i∈I

P̃
(1

2 −αi − vi − s
)
N

1
2−αi−vi−s

i dvi dvi

)H ′I ;α,β(w, s)

ws
dw du1 ds

and lines of integrations given by (7-23) and cu1 =
1
2 + 3ε.
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Proof. Using (7-1), (7-4), (7-20) and (7-24) we obtain (7-26), with RI ;ε∗;α,β replaced by

R′I ;ε∗;α,β :=
∑
ν

B!
ν2! · · · νk !ν∗!

∑†

N∗

QI ;ν;α,β

and
∑† QI ;ν;α,β as in (7-25). Thus, the lemma reduces to showing that RI ;ε∗;α,β =R′I ;ε∗;α,β . This is an

immediate consequence of Lemma 29 below, which is applicable since the pole of F is canceled by the
sum over d . �

7.6. Reassembling the sum over ε. Now, we can also get rid of the integral over w. To do this, first we
move the lines of integration cu1 and cu j for j ∈ J (without passing through poles), so that we have

cu1 =−<(α1)+ 7ε, cu j =
1
2 −<(α j )− 2ε ∀ j ∈ J cs := ε/k, cvi =

ε

k
∀i ∈ I (7-27)

and then we move cw to cw =−1+ 10ε passing through a pole at w = 0. The contribution of the new
line of integration is trivially bounded by

� q−1+AεN
−

1
2+Aε

1 (N1 · · · Nk)
1
2 L−ε. (7-28)

since we have the convexity bound D
(
1−2ε+ i t, α j−β j ,

h
`

)
� `3ε(1+|t |)3ε and |I | ≥ 2 (since |I |> |J |

and k ≥ 3). Thus, we only need to consider the contribution from the residue at w = 0.
By the convexity bound

F
( 1

2 + 7ε− |I |ε/k+ i t, h
`

)
� `

1
2 (1+ |t |)

1
2 ,

the contribution of the d= 1 term is also bounded by (7-28). Thus, using also that ϕ(q)−1
= q−1

+O(q−2)

for q prime, we have

RI ;ε∗;α,β = SI ;ε∗;α,β + O
(
q−1+AεN

−
1
2+Aε

1 (N1 · · · Nk)
1
2 L−ε

)
(7-29)

with

SI ;ε∗;α,β =
∑
`

∑*

h (mod `)

P(`/L)
(2π i)2+|I |

∫
(cs ,cu1 , cvi ∀i∈I )

qks− 1
2−α1−u1+

∑
i∈I vi

`
∑

i∈I∪{1}(1−αi+βi )
N u1−s

1 P̃(u1− s)

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,±∗

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× F

( 1
2 +α1+ u1−

∑
i∈I vi ,

qh
`

)
9 ′I ;ε∗I ,0

( 1
2 −α1− u1, vI

)
×

(∏
i∈I

P̃
( 1

2 −αi − vi − s
)
N

1
2−αi−vi−s

i qvi dvi

)H ′I ;α,β(0, s)

s
du1 ds

and lines of integration given by (7-27). Notice that we made the change of variable h→±∗h.
We are ready to reassemble the sum over ε. To do this, first we split ε into εI1 and εJ , where

εS := (±i 1)i∈S; in particular, ρϒ(ε) = ρϒ(εI1)ρϒ(εJ ) where, with a slight abuse of notation, we write
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ρϒ(εS) :=
∏

i∈ϒ∩S(±i 1). Then, we observe that∑
εJ∈{±1}|J |

ρϒ(εJ )
∏
j∈J

Dα j ,β j

(
s j ,±∗

± j h
`

)
= 2|J |(±∗i)|ϒ∩J |

∏
j∈J

D j;α j ,β j

(
s j ,

h
`

)
.

Thus,∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

SI ;ε∗;α,β

= 2|J |i |ϒ∩J |
∑
`

∑*

h (mod `)

P(`/L)
(2π i)2+|I |

qks− 1
2−α1−u1+

∑
i∈I vi

`
∑

i∈I∪{1}(1−αi+βi )

×

∫
(cs ,cu1 , cvi ∀i∈I )

(∏
j∈J

1
2π i

∫
(cu j )

D j;α j ,β j

( 1
2 + u j ,

h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u1−s

1 P̃(u1− s)F
(1

2 +α1+ u1−
∑

i∈I vi ,
qh
`

)
XI
( 1

2 − u1−α1, vI
)

×

(∏
i∈I

P̃( 1
2 −αi − vi − s)N

1
2−αi−vi−s

i qvi dvi

)H ′I ;α,β(0, s)

s
du1 ds, (7-30)

with

XI (v1, vI ) :=
∑

±∗1∈{±1}

(±∗1)|ϒ∩J |
∑

εI1∈{±1}|I1|

±11=−1

ρϒ(εI1)9
′

I ;ε∗I ,0
(v1, vI ),

= 0

(
1−

∑
i∈I1

vi

)∏
i∈I1

0(vi )
∑

±∗1∈{±1}

(±∗1)|ϒ∩I1|

×

∑
εI1∈{±1}|I1|

±11=−1

ρϒ(εI1)

(
0

( ∑
i∈I1

±i 1=∓∗1

vi

)
0

(
1−

∑
i∈I1

±i 1=∓∗1

vi

))−1

,

by the definition (7-22) of 9 ′I ;ε∗I ,0 and since (±∗1)|ϒ∩J |
= (±∗1)|ϒ∩(I∪{1})| for |ϒ | even (as we have

assumed). Also, we remind that we defined ε∗I := (±i 1)i∈I∪{∗} and I1 := I ∪ {1}.
We will now give a 0-function identity, which we will use to give a symmetric expression for XI (v1, vI ).

Lemma 23. Let r ≥ 1, 2 ⊆ {1, . . . , r} and (s1, . . . , sr ) ∈ Cr . For εr = (±1, . . . ,±r 1) ∈ {±1}r let
ρ2(ε) :=

∏
i∈2(±i 1). Then,4

r∏
i=1

0(si )
∑

±∗1∈{±1}

(±∗1)|2|
∑

ε∈{±1}r
±11=−1

ρ2(ε)

(
0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

=
2s1+···+sr

π1−r/2

(∏
i∈2

0
( 1

2 +
si
2

)
0
(
1− si

2

))(∏
i /∈2

0( si
2 )

0
( 1

2 −
si
2

)) sin
(
π

2
(s1+ · · ·+ sr )−

π

2
|2|
)
.

4The identity has to be interpreted as an identity between meromorphic functions.
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Proof. First, we observe that, by analytic continuation, we can assume that s1, . . . , sr ∈R\Z. Thus, using
the reflection formula for the Gamma function to have(

0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

= π−1 sin
(
π

∑
±i 1=∓∗1

si

)
= π−1

=

(
exp

(
π i

∑
±i 1=∓∗1

si

))
.

It follows that

S :=
∑

±∗1∈{±1}

(±∗ 1)|2|
∑

ε∈{±1}r
±11=−1

ρ2(ε)

(
0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

= π−1
=
(
eπ is1 A++ (−1)|2|A−

)
,

where

A± :=
∑

ε∈{±1}r
±11=−1

ρ2(ε) exp
(
π i

r∑
i=2
±i 1=∓1

si

)
.

Now, since ρ2(ε)=
∏

i∈2(±i 1)= (−1)|2∩{1}|
∏

i∈2\{1}(±i 1), we have

A± = (−1)|2∩{1}|
( r∏

i=2
i∈2

(±1∓ eπ isi )

)( r∏
i=2
i /∈2

(1+ eπ isi )

)

= (±1)|2∩{1}|(∓1)|2|i |2\{1}|2r−1 exp
(
π i
2

r∑
i=2

si

)( r∏
i=2
i∈2

sin
(
πsi
2

))( r∏
i=2
i /∈2

cos
(
πsi
2

))
and thus

S = 2r−1

π

(∏
i∈2
i 6=1

sin
(
πsi
2

))(∏
i /∈2
i 6=1

cos
(
πsi
2

))
(−1)|2|=

(
(eπ is1 + (−1)|2∩{1}|)e(π i/2)|2\{1}|+(π i/2)

∑r
i=2 si

)

=
2r

π

(∏
i∈2

sin
(
πsi
2

))(∏
i /∈2

cos
(
πsi
2

))
(−1)|2|=

(
i |2∩{1}|e(π i/2)|2\{1}|+(π i/2)

∑r
i=1 si

)
=

2r

π

(∏
i∈2

sin
(
πsi
2

))(∏
i /∈2

cos
(
πsi
2

))
sin
(
−
π

2
|2| +

π

2

r∑
i=1

si

)
.

By the duplication and the reflection formula for the 0-function we have

sin
(
πs
2

)
0(s)= π

1
2 2s−10

( 1
2 +

s
2

)
0
(
1− s

2

) , cos
(
πs
2

)
0(s)= π

1
2 2s−1 0

( s
2

)
0
( 1

2 −
s
2

)
and thus the lemma follows. �

Applying Lemma 23 with r = |I1| and using the definition (2-1) of 0i , we obtain

XI (v1, vI )= 0

(
1−

∑
i∈I1

vi

)
2
∑

i∈I1
vi

π1−|I1|/2

(∏
i∈I1

0i
(
vi
2

)
0i
( 1

2 −
vi
2

)) sin
(
−
π

2
|I1 ∩ϒ | +

π

2

∑
i∈I1

vi

)
.
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Thus, plugging this expression into (7-30), making the change of variables

ui =
1
2 −αi − vi − s ∀i ∈ I, u j → u j + s ∀ j ∈ (J ∪ {1}),

and moving slightly the lines of integration, we obtain∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

SI ;ε∗;α,β = UI1;α,β, (7-31)

where for I ⊆ {1, . . . , k} (with |I| ≥ 2), J := {1, . . . , k} \ I, we define

UI;α,β := −2|J |i |ϒ∩J |
∑
`

∑*

h (mod `)

P(`/L)
(2π i)1+k

∫
(cs ,cu)

qks−1

π`
∑

i∈I(1−αi+βi )

H ′′I;α,β(s)

s

×

(∏
j∈J

D j;α j ,β j

( 1
2 + u j + s, h

`

)
P̃(u j )N

u j
j

)
0
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I(ui +αi )
)

× sin
(
π

2
|ϒ ∩ I| +

π

2
|I|
(
s− 1

2

)
+
π

2

∑
i∈I

(ui +αi )

)

×F
(
1+|I|(s− 1

2)+
∑

i∈I(ui+αi ),
qh
`

)(∏
i∈I

π
1
2 P̃(ui )N

ui
i

(2q)ui+αi+s− 1
2

0i
( 1

4 −
ui+αi+s

2

)
0i
( 1

4 +
ui+αi+s

2

)) ds du, (7-32)

with lines of integration

cui =
1
2 −<(αi )− 3ε

k
− ε ∀i ∈ {1, . . . , k}, cs := ε/k, (7-33)

and, recalling (7-11),

H ′′I;α,β(s) := Gα,β(s)gα,β(s)
∏
i∈I

ζ(1−αi +βi ). (7-34)

For future use we remark that if we move cu′i to cu′i =−
1
2 −<(α1)− 5ε for some i ′ ∈ I we get

UI;α,β � N−1+Aε
i ′ q Aε(N1 · · · Nk)

1
2 L−ε. (7-35)

Also, if |I|> |J |, then moving the line of integration to cu j to cu j =−
1
2 + 5 εk − ε for all j ∈ J (leaving

the other lines of integration as in (7-33)), we obtain

UI;α,β � q−1+Aε(N1 · · · Nk)
1
2 L−ε

∏
j∈J

N−1+Aε
j . (7-36)

Finally, moving cs to cs =
1
2 + B− 3 εk and cui to cui =−B for all i = 1, . . . , k we obtain

UI;α,β �B (N1 · · · Nk/qk)−Bqk/2−1+Aε, (7-37)

if |I| ≥ 2.
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We are now ready to complete the proof of Lemma 14. Using (7-26), (7-29) and (7-31) we obtain

∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β =
∑†

L

∑
I∪J={2,...,k}

I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I1
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2UI1;α,β

+ O
(

N Aε
1

q1−Aε

(
qϑN k/2

1 + qk/2− 1
3+ϑ/3

(N2 · · · Nk)
1
2

+ (q
1
6+ϑ/3 N

−
1
2

1 + 1)(N2 · · · Nk)
1
2

))

=Mα,β + O
(

N Aε
1

q1−Aε

(
qϑN k/2

1 + qk/2− 1
3+ϑ/3

(N2 · · · Nk)
1
2

+ (q
1
6+ϑ/3 N

−
1
2

1 + 1)(N2 · · · Nk)
1
2

))
where

Mα,β(N1, . . . , Nk) :=
∑†

L

∑
I∪J={1,...,k}

I∩J=∅, |I|>|J |+1

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2UI;α,β . (7-38)

and UI;α,β as defined in (7-32). Noticed that in the last step we used (7-36) to extend the sum over the
subsets of {1 . . . , k} to include also the sets I that do not contain 1. Moreover, by (7-35) and (7-36) we
also have

Mα,β(N1, . . . , Nk)� q Aε(N1 · · · Nk)
1
2 N−1+Aε

1 .

and thus the proof of Lemma 14 is complete. Also, by (7-37) for any B > 0 we have

Mα,β(N1, . . . , Nk)�B qk/2−1+Aε(N1 · · · Nk/qk)−B (7-39)

We remark that we reached a formula for Mα,β which is completely symmetric in the N1, . . . , Nk . This
is important in order to remove the assumption that N1 is the largest of N1, . . . , Nk , so that we can sum
over the partitions of unity.

8. Assembling the main terms

In this section we prove Lemma 16.
We start by moving cui to cui = 0 for all i ∈ I and cs to 1

2−3 εk (we can do this without passing through
any pole nor having a problem of convergence). Then, after extending the sum over the partitions of unity
L , N1, . . . , Nk using (7-39) and summing over them using Lemma 21 we obtain

∑†

N1,...,Nk
N1···Nk�qk+ε

Mα,β(N1, . . . , Nk)=
∑

I∪J={1,...,k}
I∩J=∅, |I|>|J |+1

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2 VI;α,β + O(1)
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with

VI;α,β := −2|J |i |ϒ∩J |
1

2π i

∫
(cs)

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s−1

`
∑

i∈I(1−αi+βi )
0
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I αi
)

×

(∏
j∈J

D j;α j ,β j

( 1
2 + s, h

`

))(∏
i∈I

(2π)
1
2

2αi+sqαi

0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
αi+s

2

))H ′′I;α,β(s)

πs

× F
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I αi ,
h
`

)
sin
(
π

2
|ϒ ∩ I| +

π

2
|I|
(
s− 1

2

)
+
π

2

∑
i∈I

αi

)
ds, (8-1)

and line of integration cs =
1
2 − 3 εk .

Now, for each integral we move the line of integration cs to

cs =max
(

0,−1
2
+
|J | + 3

2

|I| + |J | − 1
2

)
+ 9

ε

k
=

{ 3
4k−2 + 9 εk if |I| = |J | + 2= k

2 + 1 with k even,
9 εk if |I|> |J | + 2.

picking up the residue of the pole of the 0-function at

s ′ = s ′(α)= 1
2
−

1+
∑

i∈I αi

|I|

(unless k = 4, |I| = 3 in which case we stay on the right of such pole). Notice that Lemma 10 guarantees
the convergence of the sum over ` on the new line of integration. Also, a quick computation shows that if
I 6= Ik := {1, . . . , k} (and |I|> |J | + 1) then

1
2
|I| + |J |cs − 1≤ k

2
−

3
2
+ ιk + 9ε

k

where ιk = 3
14 if k = 4 and ιk = 0 otherwise. In particular, if I 6= Ik , then by (3-8) the contribution of the

integral on the new line of integration is O(qk/2− 3
2+ιk+Aε) and we obtain

VI;α,β =XI;α,β + O(qk/2− 3
2+ιk+Aε), (8-2)

where

XI;α,β := −
2|J |i |ϒ∩J |

|I|

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s

′
−1

`
∑

i∈I(1−αi+βi )
F
(
0, h

`

)
sin
(
π

2
(|ϒ ∩ I| − 1)

)

×

(∏
j∈J

D j;α j ,β j

( 1
2 + s ′, h

`

))(∏
i∈I

(2π)
1
2

2s′+αi qαi

0i
( 1

4 −
αi+s′

2

)
0i
( 1

4 +
αi+s′

2

))H ′′I;α,β(s
′)

πs ′
.

(Notice that (8-2) holds also in the case k = 4, |I| = 3, since from (3-5) and a trivial bound it follows
that XI;α,β is convergent and O(q

2
3+Aε)= O(qk/2− 3

2+ιk+Aε)).
If I = Ik , then

VIk ;α,β =XIk ;α,β +V ′Ik ;α,β
,

where V ′Ik ;α,β
is as in (8-1), but with the line of integration cs = 9ε/k.
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Now, notice that if |ϒ ∩ J | is odd (and thus so is |ϒ ∩ I| since |ϒ | is even), then the sine in the
expression defining XI;α,β is equal to 0 and thus so is XI;α,β . If |ϒ ∩J | is even, then the product of
the Estermann functions in the definition of XI;α,β is invariant under the change h 7→ −h; in particular,
using the identity F(0, h/`)+ F(0,−h/`) = −1 (which follows immediately from (3-5)), we obtain
XI;α,β =−XI;α,β +KI;α,β and so XI;α,β =

1
2KI;α,β , where

KI;α,β := −
2|J |

|I|

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s

′
−1

`
∑

i∈I(1−αi+βi )

(∏
j∈J

D j;α j ,β j

( 1
2 + s ′, h

`

))
×

(∏
i∈I

(2π)
1
2

2s+αi qαi

0i
(1

4 −
αi+s′

2

)
0i
( 1

4 +
αi+s′

2

))H ′′I;α,β(s
′)

πs ′

= −DI;α,β,

where DI;α,β is as in (6-2), since 1
2 |I| + |J |s

′
− 1 = ks ′+

( 1
2 − s ′

)
|I| − 1 = ks ′+

∑
i∈I αi and by the

definition (7-34) of H ′′I;α,β(s
′). It follows that

∑
I∪J={1,...,k}

I∩J=∅
k
2+

3
4<|I|

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2VI;α,β =
∑

{α′i ,β
′

i }={αi ,βi } ∀i∈Ik

2V ′Ik ;α,β
−Dα,β + O(qk/2− 1

2+ιk+Aε)

and thus to conclude the proof of Lemma 16, we just need to show V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α

=Mα,β with
Mα,β as in (2-3). First, we need the following lemma.

Lemma 24. For <(s1+ s1) > 2 and <(s2) > 1 we have

∑
`

1
`s2

∑*

h (mod `)

F
(
s1,

h
`

)
=
ζ(s1)ζ(s1+ s2− 1)

ζ(s2)
. (8-3)

Proof. From the functional equation for F(s, x) and the Phragmén–Lindelöf principle one sees that if
|s1− 1|> ε′ > 0, then if ∑*

h (mod `)

∣∣F(s1,
h
`

)∣∣�s,ε,ε′ 1+ `1−<(s1)+ε

for all ε > 0. It follows that the left hand side of (8-3) defines a meromorphic function in s1, s2 on
the region <(s2) > 1, <(s1+ s2) > 2. Now, assume <(s1),<(s2) > 1. Expanding F into its Dirichlet
expansion (3-3), executing the sum over h, and using (7-2), we obtain

∑
`

1
`s2

∑*

h (mod `)

F
(
s1,

h
`

)
=

∑
`

1
`s2

∑
n

c`(n)
ns1
=

1
ζ(s2)

∑
n

σ1−s2(n)
ns1

=
ζ(s1)ζ(s1+ s2− 1)

ζ(s2)
.

The lemma then follows by analytic continuation. �
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Applying this Lemma, we see that

V ′Ik ;α,β
=−

qk/2−1

2π i

∫
(cs)

0

(
1+ ks−

k
2
+

k∑
i=1

αi

)
ζ
(
1+ ks− k

2 +
∑k

i=1 αi
)
ζ
( k

2 + ks+
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

)
× sin

(
π

2

(
|ϒ | −

k
2
+ ks+

k∑
i=1

αi

))( k∏
i=1

0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
αi+s

2

) π 1
2 q−αi

2s− 1
2+αi

)H ′′Ik ;α,β
(s)

πs
ds,

so that by the functional equation (using that |ϒ | is even) and the definition (7-34) of H ′′ we obtain

V ′Ik ;α,β
= (−1)|ϒ |/2

q
k
2−1

2π i

∫
(cs)

ζ
( k

2 − ks−
∑k

i=1 αi
)
ζ
( k

2 + ks+
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

)
×Gα,β(s)

( k∏
i=1

ζ(1−αi +βi )
0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
βi+s

2

)
0i
((1

2 +αi
)
/2
)
0i
(( 1

2 +βi
)
/2
)( q
π

)−αi
)

ds
s
.

Notice that changing s into−s we obtain exactly−Xβ,α times the analogous term coming from V ′Ik ;−β,−α,

but with line of integration cs =−9 εk . Thus, V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α,

coincides with the residue of the
above integral at s = 0, that is

V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α,

= (−1)|ϒ |/2qk/2−1 ζ
( k

2 −
∑k

i=1 αi
)
ζ
( k

2 +
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

) k∏
i=1

ζ(1−αi +βi )
0i
( 1

4 −
αi
2

)
0i
( 1

4 +
αi
2

)( q
π

)−αi
.

Thus, Lemma 16 follows.

9. The terms far from the diagonal

We will use the following result of Young to prove Lemma 15.

Lemma 25. Let q be prime and let L , K � q1+ε and let W be a smooth function with compact support
on R>0. Then, ∑

0<`<L

∣∣∣∣ ∑
(k,q)=1

e
(
`k̄
q

)
W
( k

K

)∣∣∣∣� L
1
2 q

3
4+ε + qεK

1
2 L .

Proof. This is Proposition 4.3 of [Young 2011a] with the extra condition requiring q to be prime which
easily allows us to remove the condition (q, `)= 1 from the first sum. �

Proof of Lemma 15. For simplicity we shall take α = β = 0 := (0, . . . , 0), as the shifts don’t play any
role in this lemma and the same argument with obvious modifications works also when αi , βi � 1/log q .

By symmetry, we can assume that N1 is the maximum of the Ni and that N2 is the second largest.
Also, we assume N1 · · · Nk � qk+ε and N1� q1+3ε, since otherwise the result is trivial.
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Now, we start by observing that we can remove the condition ±1n1±2 · · · ±k nk 6= 0 in O′′ε :=O′′ε,0,0
at a cost of an admissible error:

O′′ε =
∑
d | q

d
µ(q/d)
ϕ(q)

∑
d|(±1n1±2···±knk)

d(n1) · · · d(nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
P
( n1

N1

)
· · · P

( nk
Nk

)
+ O

(
q Aε(N1 · · · Nk)

1
2 /N1

)
.

Next, we decompose n1 into n1 = f1g1 and attach to the new variables two partitions of unity so that
f1 � F1, g1 � G1 with F1 ≥ G1 and F1G1 � N1. We shall also add the condition (g1, q)= 1 at a cost
of an error which is easily seen to be O(qk/2−2+Aε). Writing V and P(n1/N1) in terms of their Mellin
transform, we obtain

O′′ε =
∑†

F1G1�N1
G1≤F1

∫
′

(cs ,cu1 )

qks N u1
1

∑
0≤|m|<M

wm(s)Am(s+ u1)Gα,β(s)gα,β P̃(u1)
ds
s

du1

+ O
(
q Aε(N1 · · · Nk)

1
2 /N1+ qk/2−2+Aε), (9-1)

where M :=min(2k N2, q), the
∫
′ indicates that the integrals are truncated at |u1|, |s| ≤ qε, the lines of

integrations are cu1 = 0, cs = ε/k, and

Am(s) :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
(g1,q)=1

∑
f1g1≡m (mod d)

1

( f1g1)
1
2+s

P
(

f1

F1

)
P
(

g1

G1

)
,

wm(s) :=
∑

±2n2±3···±knk≡−m (mod q)

d(n2) · · · d(nk)

(n2 · · · nk)
1
2+s

P
( n2

N2

)
· · · P

( nk
Nk

)
.

Now, we apply Poisson’s summation formula to the sum over f1 and we see that for <(s)= ε/k

Am(s)=
∑
d | q

µ(q/d)
ϕ(q)

∑
(g1,q)=1

P(g1/G1)

g
1
2+s
1

∑
0≤|`|≤ dq Aε

F1

e
(
`mg1

d

)∫
∞

0

P(x/F1)

x
1
2+s

e
(
−
`x
d

)
dx + O(q−1)

= A ∗m(s)+ O(q−1),

where

A ∗m(s)=
F

1
2−s

1

ϕ(q)

∑
(g1,q)=1

P(g1/G1)

g
1
2+s
1

∑
0<|`|≤L

e
(
`mg1

q

)∫
∞

0

P(x)

x
1
2+s

e
(
−
`F1x

q

)
dx

and L = q1+Aε/F1. Indeed, the sum over ` in the d = 1 summands contains only the term `= 0 which
cancel with the `= 0 term from d = q . Thus, (9-1) becomes

O′′ε =
∑†

F1G1�N1,
G1≤F1

∫
′

(cs ,cu1 )

qks N u1
1

∑
06=|m|<M

wm(s)A ∗m(s+ u1)Gα,β(s)gα,β P̃(u1)
ds
s

du1

+ O(qk/2− 3
2+Aε
+ q Aε(N1 · · · Nk)

1
2 /N1),
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since the contribution of the terms with m = 0 can be bounded trivially by

�
L(F1G1)

1
2

q
(1+ N2/q)N

−
1
2

2 (N3 · · · Nk)
1
2 q Aε

� q AεN
−

1
2

2 (N3 · · · Nk)
1
2 + q−1+Aε(N2 · · · Nk)

1
2 � qk/2− 3

2+Aε.

since N−1
2 N3 · · · Nk � qk−3+Aε and N2 · · · Nk � qk−2+Aε. Also, we assume N1 ≤ F2

1 ≤ q2+2Aε, since
otherwise A ∗m(s) is identically zero.

Changing the order of summation and integration and bounding trivially Gα,β(s)gα,β P̃(u1), we see
that

O′′ε �
∑†

F1G1�N1
G1≤F1

∫
′

(cs ,cu1 )

qε|E(s, u1)| |ds du1| + qk/2− 3
2+Aε
+ q Aε (N1 · · · Nk)

1
2

N1
, (9-2)

where

E(s, u1) :=
F

1
2

1

ϕ(q)

∑
0<|`|≤L

∑
0<|m|<M

|wm(s)|
∣∣∣∣ ∑
(g1,q)=1

P(g1/G1)

g
1
2+s+u1

1

e
`mg1

q

∣∣∣∣
�

F
1
2

1

qG
1
2
1

max
0<|r |≤R

cr

∑
06=|r |≤R

∣∣∣∣ ∑
(g1,q)=1

P
(

g1

G1

)(
G1

g1

) 1
2+s+u1

e
(

rg1

q

)∣∣∣∣,
with R :=min(2kL N2, q)≤ 2kq1+Aε min(N2/F1, 1) and

cr :=
∑

`m≡r (mod q)
0<|m|≤M, 0<|`|≤L

|wm(s)| �
∑

0<|`|≤L , n2�N2,...,nk�Nk
(±2n2±3···±knk)`≡−r (mod q)

q Aεd(n2) · · · d(n2)(N2 · · · Nk)
−

1
2

�

∑
0<|`|≤L , |n|�k N2

n`≡−r (mod q)

q AεN
−

1
2

2 (N3 · · · Nk)
1
2 �

∑
|a|�kL N2

a≡−r (mod q)

d(a)q AεN
−

1
2

2 (N3 · · · Nk)
1
2

� q AεN
−

1
2

2 (N3 · · · Nk)
1
2 (1+ L N2/q).

Thus, by Lemma 25, for |s|, |u1| � q Aε, <(s)= ε/k, <(u1)= 0 we have

E(s, u1)� q−1+AεF
1
2

1 (G1 N2)
−

1
2 (N3 · · · Nk)

1
2 (1+ L N2/q)(R

1
2 q

3
4 +G

1
2
1 R)

� q Aε(F1/G1 N2)
1
2 (N3 · · · Nk)

1
2 (1+ N2/F1)min

(
F
−

1
2

1 N
1
2

2 q
1
4 +G

1
2
1 N2/F1, q

1
4 +G

1
2
1

)
= q Aε(N3 · · · Nk)

1
2 (1+ N2/F1)min

(
q

1
4

G
1
2
1

+
N

1
2

2

F
1
2

1

,
F

1
2

1

N
1
2

2

q
1
4

G
1
2
1

+
F

1
2

1

N
1
2

2

)
.
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For x, y > 0 we have (1+ x2)min(y+ x, y/x + 1/x)≤ (x + 1)(y+ 1), whence

E(s, u1)� q Aε(N3 · · · Nk)
1
2
(
N

1
2

2 q
1
4 N
−

1
2

1 + N
1
2

2 F
−

1
2

1 + q
1
4+εG

−
1
2

1 + 1
)

� q Aε(N3 · · · Nk)
1
2
(
N

1
2

2 N
−

1
4

1 + q
3
4 N
−

1
2

1 + 1
)

� q Aε((N2 · · · Nk)
1
2 N
−

1
4

1 + (N2 · · · Nk)
1
2−1/(2(k−1))(q

3
4 N
−

1
2

1 + 1)
)
, (9-3)

where in the second inequality we used that N1� q , F
−

1
2

1 ≤ N
−

1
4

1 and G
−

1
2

1 � (F1/N1)
1
2 ≤ N

−
1
2

1 q
1
2+Aε,

and in the third one that N3 · · · Nk ≤ N k−2
2 (so that N3 · · · Nk ≤ (N2 · · · Nk)

(k−2)/(k−1)). The lemma then
follows by inserting (9-3) in (9-2). �

10. A Mellin formula

In this section we prove a formula to separate the variables in expressions of the form (±1x1±2 · · ·±κ xκ)−s

which generalizes the Mellin transforms given in the following lemma.

Lemma 26. Let x, y > 0. Then

(x + y)−b
=

1
2π i

∫
(cv)

0(v)0(b− v)
0(b)

xv−b y−v dv, (10-1)

for 0< cv < <(b). Moreover, for <(b) < 0< cw, we have

(x − y)−bχR>0(x − y)=
1

2π i

∫
(cw)

0(w)0(1− b)
0(1− b+w)

xw−b y−w dw, (10-2)

where χX (x) is the indicator function of the set X.

Equation (10-1) can be used repeatedly to give a formula for (x1 + · · · + xκ)−s valid for <(s) > 0.
However, it is not straightforward to obtain a satisfactory formula valid in the case when there are
some minus signs, as the integrals obtained by repeatedly applying (10-1) and (10-2) are not absolutely
convergent. The following Lemma overcomes this problem by introducing an extra integration.

Lemma 27. Let κ ≥ 2 and x1, . . . xκ > 0. Let ε = (±1, . . . ,±κ1) ∈ {±1}κ , with ±11=−1. Let B ∈ Z≥0

be such that κ2 +
1
2 < <(v1) < B+ 1. Moreover, let cv2, . . . , cvκ , c′v2

, . . . , c′vκ > 0 be such that

<(v1)+ cv2 + · · ·+ cvκ < B+ 1< <(v1)+ c′v2
+ · · ·+ c′vκ . (10-3)

Then

(±2 x2±3 · · · ±κ xκ)v1−1χR>0(±2x2±3 · · · ±κ xκ)

=

∑
ν=(ν2,...,νκ )∈Zκ−1

≥0
ν2+···+νκ=B
νi=0 if ±i =−1

B!
ν2! · · · νκ !

1
(2π i)κ−1

( ∫
(cv2 ,...,cvκ )

−

∫
(c′v2 ,...,c

′
vκ
)

)
9ε,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−νκκ

dv2 · · · dvκ , (10-4)
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where

9ε,B(s1, . . . , sκ): =
0(s1) · · ·0(sκ)

0(V+;ε(s1, . . . , sκ))0(V−;ε(s1, . . . , sκ))
G(B+ 1− s1− · · ·− sκ)

B+ 1− s1− · · ·− sκ
,

V±;ε(v1, . . . , vκ): =
∑

1≤i≤κ
±i 1=±1

vi
(10-5)

and G(s) is any entire function such that G(0)= 1 and G(σ + i t)� e−C1|t |(1+ |σ |)C2|σ | for some fixed
C1,C2 > 0.

Remarks. (1) If ε = (−1, . . . ,−1), then 9ε has to be interpreted as being identically zero.

(2) If ξ(s) is the Riemann ξ -function, then G(s)= ξ(s)/ξ(0) satisfies the hypothesis of the lemma.

Before giving a proof for Lemma 27, we give the following lemma which implies that the integrals
in (10-4) are absolutely convergent.

Lemma 28. Let si = σi + i ti for i = 1, . . . , κ . Then, for some A > 0 we have

9ε,B(s1, . . . , sκ)�
1
δκ

(1+ B+ |σ1| + · · · + |σκ |)
A(1+B+|σ1|+···+|σκ |)

(1+ |t1|)
1
2−σ1 · · · (1+ |tκ |)

1
2−σκ (1+ |t1| + · · · + |tκ |)σ1+···+σκ−1

, (10-6)

provided that the si are located at a distance greater than δ > 0 from the poles of 9ε.

Proof. By Stirling’s formula (and the reflection’s formula for the Gamma function), if the distance of
s = σ + i t from the poles of 0(s) is greater than δ, then we have

0(s)�
1
δ
(1+ A1|σ |)

|σ |(1+ |t |)σ−
1
2 e−(π/2)|t |, 0(s)−1

� (1+ A1|σ |)
|σ |(1+ |t |)−σ+

1
2 e(π/2)|t |,

for some A1 > 0. It follows that

9ε,B(s1, . . . , sκ)

�
1
δκ

(1+ B+ |σ1| + · · · + |σκ |)
A2(1+B+|σ1|+···+|σκ |)

(1+ |t1|)
1
2−σ1 · · · (1+ |tκ |)

1
2−σκ

×
e−(π/2)(|t1|+···+|tκ |−|V+;ε(t1,...,tκ )|−|V−;ε(t1,...,tκ )|)−C1|t1+···+tκ |

(1+ |V+;ε(t1, . . . , tκ)|)V+;ε(σ1,...,σκ )−
1
2 (1+ |V−;ε(t1, . . . , tκ)|)V−;ε(σ1,...,σκ )−

1
2

, (10-7)

for some A2 > 0. Now, we have

e−C1|x+y|

(1+ |x |)η1(1+ |y|)η2
�
(1+ |η1| + |η2|)

A3(|η1|+|η2|)

(1+ |x | + |y|)η1+η2
,

for some A3 > 0 (depending on C1). Thus, the factor on the second line of (10-7) is

� (1+ |σ1| + · · · + |σκ |)
A4(|σ1|+···+|σκ |)

e−(π/2)(|t1|+···+|tκ |−|V+;ε(t1,...,tκ )|−|V−;ε(t1,...,tκ )|)(
1+ |V+;ε(t1, . . . , tκ)| + |V−;ε(t1, . . . , tκ)|

)σ1+···+σκ−1

�
(1+ |σ1| + · · · + |σκ |)

A5(|σ1|+···+|σκ |)

(1+ |t1| + · · · + |tκ |)σ1+···+σκ−1 ,
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and (10-6) follows. �

Proof of Lemma 27. First, we remark that the estimate (10-6) implies the absolute convergence of the
integrals on the right hand side of (10-4) and justifies the following computations.

we prove the lemma by induction. First we consider the case κ = 2. From (10-1) we have

(x2+ x3)
v1−1
= (x2+ x3)

B(x2+ x3)
v1−1−B

=

∑
ν2,ν3∈Z≥0
ν2+ν3=B

B!
ν2!ν3!

xν2 xν3
3

1
2π i

∫
(cv3 )

0(v3)0(1+ B− v1− v3)

0(1+ B− v1)x
B+1−v1−v3
2 xv3

3

dv3, (10-8)

for 0< cv3 < 1+ B−<(v1). Now, by contour integration,

0(1+ B− v1− v3)

0(1+ B− v1)
xv1+v3−B−1

2 =
1

2π i

(∫
(cv2 )
−

∫
(c′v2 )

)
0(v2)x

−v2
2

0(v2+ v3)

G(B+ 1− v1− v2− v3)

B+ 1− v1− v2− v3
dv2,

where cv2, c′v2
> 0 and cv2 <−<(v1+ v3)+ B+ 1< c′v2

. Inserting this into (10-8) we obtain (10-4) in
the case ε = (−1, 1, 1).

The case ε = (−1, 1,−1) (and thus its permutation ε = (−1,−1, 1)) follows in the same way
from (10-2).

Now, let ε = (−1,±2, . . . ,±κ+1) ∈ {±1}κ+1 with κ ≥ 2 and suppose (10-4) holds for all ε′ ∈ {±1}κ

with ±′11 = −1. Since κ + 1 ≥ 3 there are two indexes 2 ≤ i < j ≤ κ + 1 such that ±i 1 = ± j 1 and
without loss of generality we can assume i = κ , j = κ+1. Then, letting ε′ = (−1,±2, . . . ,±κ), we have

(±2x2±3 · · · ±κ+1 xκ+1)
v1−1χR>0(±2x2±3 · · · ±κ+1 xκ+1)

=

∑
ν=(ν2,...,νκ )∈Zκ

≥0
ν2+···+νκ+1=B
νi=0 if ±i =−1

B!
ν2! · · · νκ !

1
(2π i)κ−1

×

( ∫
(cv2 ,...,cvκ )

−

∫
(c′v2 ,...,c

′
vκ
)

)
9ε′,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−1−νκ−1

κ−1

(xκ + xκ+1)
−vκ+νκ dv2 · · · dvκ

where cv2, . . . , cvκ , c′v2
, . . . , c′vκ > 0 satisfy (10-3). Then, we expand the binomial (xκ+xκ+1)

νκ and apply
(10-1) to (xκ + xκ+1)

−vκ . We obtain

(±2x2±3 · · · ±κ+1 xκ+1)
v1−1χR>0(±2x2±3 · · · ±κ+1 xκ+1)

=

∑
ν=(ν2,...,νκ+1)∈Zκ

≥0
ν2+···+νκ+1=B
νi=0 if ±i =−1

B!
ν2! · · · νκ+1!

1
(2π i)κ

( ∫
(cv2 ,...,cvκ+1 )

−

∫
(c′v2 ,...,c

′
vκ+1

)

)

×
9ε′,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−1−νκ−1

κ−1 xvκ−vκ+1−νκ
κ xvκ+1−νκ+1

κ+1

0(vκ+1)0(vκ − vκ+1)

0(vκ)
dv2 · · · dvκ ,

where cvκ+1, c′vκ+1
> 0 are such that 0 < cvκ+1 < cvκ . We make the change of variables vκ → vκ + vκ+1

and the lemma follows. �
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Lemma 29. Let κ ≥ 2 and let ε∗ = (±11, . . . ,±κ1,±∗1) ∈ {±1}κ+1, with ±11=−1. For B ≥ 0, let

9 ′ε∗,B(v1, . . . , vκ) :=
0(B+ 1− v1− · · ·− vκ)0(v1) · · ·0(vκ)

0(V∓∗;ε(v1, . . . , vκ))0(B+ 1− V∓∗;ε(v1, . . . , vκ))
,

where V±;ε is defined in (10-5).
Let F(v0, . . . , vκ) be analytic on

{
(v0, . . . , vκ) ∈ Cκ+1

| 0 < <(v0) < B + 1
}

and assume that for
0< <(v0) < B+ 1 and any A > 0 one has that F satisfies

F(v0, . . . , vκ)�

κ∏
i=2

(1+ |vi |)
−A

where the implicit constant may depend on A, v1 and <(v0). Then for any v1 ∈ C and cv2, . . . , cvκ > 0
satisfying 0< <(v1)+ cv2 + · · ·+ cvκ < 1 we have∑
ν

B!
ν∗!ν2! · · · νκ !

∫
(cv2 ,...,cvκ )

9 ′ε,B(v1, . . . , vκ)

×F
(
B+ 1− ν∗− v1− · · ·− vκ , v1, v2− ν2, . . . , vκ − νκ

)
dv2 · · · dvκ

=

∫
(cv2 ,...,cvκ )

9 ′ε,0(v1, . . . , vκ)F
(
1− v1− · · ·− vκ , v1, . . . , vκ

)
dv2 · · · dvκ , (10-9)

where the sum on the left is taken over ν = (ν2, . . . , νκ , ν∗) ∈ Zκ
≥0 satisfying

ν2+ · · ·+ νκ + ν∗ = B, νi = 0 if ±i =−1 or i ∈ J , ν∗ = 0 if ±∗ =−1.

Proof. Making the change of variables vi→ vi+νi , for i = 2, . . . , κ , moving back the lines of integration
to cvi (as we can do without crossing any pole), and switching the order of summation and integration,
we see that the left hand side of (10-9) is equal to∫
(cv2 ,...,cvκ )

∑
ν

B!
ν∗!ν2! · · · νκ !

9 ′ε(v1, v2+ ν2, . . . , vκ + νκ)F(1− v1− · · ·− vκ , v1, . . . , vκ) dv2 · · · dvκ .

Now, the identity B(s1 + 1, s2)+B(s1, s2 + 1) = B(s1, s2), satisfied by the Beta function B(s1, s2) :=

0(s1)0(s2)0(s1+ s2)
−1, can be generalized to∑

(r1,...,rm)∈Zm
≥0

r1+···+rm=r

r !
r1! · · · rm !

0(s1+ r1) · · ·0(sm + rm)

0(r + s1+ · · ·+ sm)
=
0(s1) · · ·0(sm)

0(s1+ · · ·+ sm)
,

for m, r ≥ 1, s1, . . . , sm ∈ C. Thus, we have∑
ν=(ν2,...,νκ ,ν∗)∈Zκ

≥0
ν2+···+νκ+ν∗=B
νi=0 if ±i =−1
ν∗=0 if ±∗ =−1

B!
ν∗!ν2! · · · νκ !

9ε,B(v1, v2+ ν2 . . . , vκ + νκ)=9
′

ε,0(v1, . . . , vκ)
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and the lemma follows. �
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Le théorème de Fermat sur certains corps
de nombres totalement réels

Alain Kraus

Soit K un corps de nombres totalement réel. Pour tout nombre premier p ≥ 5, notons Fp la courbe de
Fermat d’équation x p

+ y p
+ z p
= 0. Sous l’hypothèse que 2 est totalement ramifié dans K , on établit

quelques résultats sur l’ensemble Fp(K ) des points de Fp rationnels sur K . On obtient un critère pour que
le théorème de Fermat asymptotique soit vrai sur K , critère relatif à l’ensemble des newforms modulaires
paraboliques de Hilbert sur K , de poids parallèle 2 et de niveau l’idéal premier au-dessus de 2. Il peut
souvent se tester simplement numériquement, notamment quand le nombre de classes restreint de K
vaut 1. Par ailleurs, en utilisant la méthode modulaire, on démontre le théorème de Fermat de façon
effective, sur certains corps de nombres dont les degrés sur Q sont 3, 4, 5, 6 et 8.

Let K be a totally real number field. For all prime number p ≥ 5, let us denote by Fp the Fermat curve
of equation x p

+ y p
+ z p
= 0. Under the assumption that 2 is totally ramified in K , we establish some

results about the set Fp(K ) of points of Fp rational over K . We obtain a criterion so that the asymptotic
Fermat’s last theorem is true over K , criterion related to the set of Hilbert modular cuspidal newforms
over K , of parallel weight 2 and of level the prime ideal above 2. It is often simply testable numerically,
particularly if the narrow class number of K is 1. Furthermore, using the modular method, we prove
Fermat’s last theorem effectively, over some number fields whose degrees over Q are 3, 4, 5, 6 and 8.

1. Introduction

Soient K un corps de nombres totalement réel et p ≥ 5 un nombre premier. Notons

Fp : x p
+ y p
+ z p
= 0 (1-1)

la courbe de Fermat d’exposant p. Dans le cas où 2 est totalement ramifié dans K , on se propose de faire
quelques remarques sur la description de l’ensemble Fp(K ) des points de Fp rationnels sur K . On se
préoccupera en particulier de cette description quand de plus le nombre de classes restreint de K vaut 1.

Adoptons la terminologie selon laquelle Fp(K ) est trivial, si pour tout point (x, y, z) ∈ Fp(K ) on a
xyz = 0. Tel est le cas si K =Q [Wiles 1995]. On dira que le théorème de Fermat asymptotique est vrai
sur K , si Fp(K ) est trivial dès que p est plus grand qu’une constante qui ne dépend que de K . Parce
que K ne contient pas les racines cubiques de l’unité, la conjecture abc sur K implique le théorème de
Fermat asymptotique sur K (cf. [Browkin 2006]).

MSC2010 : primary 11D41; secondary 11G05, 11R37.
Mots-clefs : Fermat equation, number fields, elliptic curves, modular method.
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Au cours de ces dernières années, les principaux résultats qui ont été établis concernant l’équation de
Fermat sur les corps totalement réels sont dus à Freitas et Siksek. Ils ont notamment obtenu un critère
permettant parfois de démontrer le théorème de Fermat asymptotique sur un corps totalement réel [Freitas
et Siksek 2015a, Theorem 3]. En particulier, ils en ont déduit le théorème de Fermat asymptotique pour
une proportion de 5/6 de corps quadratiques réels. Ils ont par ailleurs démontré que pour K =Q(

√
m),

où m ≤ 23 est un entier sans facteurs carrés, autre que 5 et 17, l’ensemble Fp(K ) est trivial pour tout
p ≥ 5 [Freitas et Siksek 2015b]. Le cas où m = 2 avait déjà été établi dans [Jarvis et Meekin 2004].

1.1. Le critère de Freitas et Siksek. Énonçons leur résultat dans le cas où 2 est totalement ramifié dans K .
On notera dans toute la suite, d le degré de K sur Q, OK l’anneau d’entiers de K et L l’idéal premier

de OK au-dessus de 2. On a 2OK =L d .
Soient vL la valuation sur K associée à L et UL le groupe des {L }-unités de K . Posons

S = {a ∈UL | 1− a ∈UL }.

Désignons par (FS) la condition suivante :

(FS) pour tout a ∈ S, on a
|vL (a)| ≤ 4d. (1-2)

Leur critère est le suivant :

Théorème 1. Supposons que la condition (FS) soit satisfaite par K . Alors, le théorème de Fermat
asymptotique est vrai sur K .

L’ensemble S est fini [Siegel 1929]. Avec les travaux de Smart, on dispose d’algorithmes permettant
d’expliciter S, sous réserve que le groupe UL soit connu [Smart 1998]. Dans ce cas, la condition (FS) est
donc en principe testable sur K . Cela étant, la détermination de S n’est pas pour l’instant implémentée
dans des logiciels de calcul et expliciter S reste un travail généralement important. Par exemple, pour le
sous-corps totalement réel maximal Q(µ16)

+ du corps cyclotomique des racines 16-ièmes de l’unité, S
est de cardinal 585 [Freitas et Siksek 2015a, 1.3]. On peut vérifier que la condition (FS) est satisfaite, en
particulier le théorème de Fermat asymptotique est vrai sur le corps Q(µ16)

+ [loc. cit.].
Dans l’objectif de démontrer le théorème de Fermat asymptotique sur certains corps de nombres, dans

lesquels 2 est totalement ramifié, on va introduire ci-dessous une nouvelle condition, qui d’un point de
vue numérique a l’avantage, à ce jour, de pouvoir se tester souvent simplement sur machine. On établit
dans le théorème 2 qu’elle est équivalente à (FS), moyennant une hypothèse de modularité pour certaines
courbes elliptiques sur K .

1.2. La condition (C). Le nombre premier 2 étant supposé totalement ramifié dans K , désignons par H
l’ensemble des newforms modulaires paraboliques de Hilbert sur K , de poids parallèle 2 et de niveau L .
C’est un système fini libre sur C. Pour tout f ∈ H et tout idéal premier non nul q de OK , notons aq(f)
le coefficient de Fourier de f en q. C’est un entier algébrique. Le sous-corps Qf de C engendré par les
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coefficients aq(f) est une extension finie de Q. C’est un corps totalement réel ou un corps CM. (Voir par
exemple [Cremona et Dembélé 2014; Dembélé et Voight 2013].)

Pour tout idéal premier q de OK , notons Norm(q) sa norme sur Q.
La condition est la suivante :

(C) pour tout f ∈H tel que Qf =Q, il existe un idéal premier q de OK , distinct de L , tel que l’on ait

aq(f) 6≡ Norm(q)+ 1 (mod 4). (1-3)

Elle est en apparence moins simple que la condition (FS), mais on peut généralement la tester en
utilisant le logiciel de calcul Magma [Bosma et al. 1997], disons si d ≤ 8 et si le discriminant de K n’est
pas trop grand. Dans le cas où d ≤ 6, on dispose également de tables de newforms décrivant H, qui sont
directement implémentées dans [LMFDB 2013].

Signalons par ailleurs que pour établir le théorème de Fermat asymptotique sur K de façon effective,
la détermination de H est, comme on le verra, a priori indispensable dans la mise en œuvre de la méthode
modulaire.

À titre indicatif, le corps quadratique réel de plus petit discriminant pour lequel la condition (C) n’est
pas satisfaite est K = Q(

√
114). Il existe une courbe elliptique sur K , de conducteur L , ayant tous

ses points d’ordre 2 rationnels sur K [LMFDB 2013], ce qui explique pourquoi (C) n’est pas réalisée
sur ce corps (théorème 2, lemme 12 et [Freitas et al. 2015]) ; il en est ainsi pour une infinité de corps
quadratiques. Par exemple, en utilisant la table 1 de [Freitas et Siksek 2015a], on peut démontrer qu’il
existe une infinité de corps quadratiques réels Q(

√
m), avec m sans facteurs carrés congru à 7 modulo 8,

pour lesquels la condition (C) n’est pas satisfaite.
Voyons un autre exemple illustrant la condition (C). Soit K le sous-corps totalement réel maximal du

corps cyclotomique Q(µ48). C’est le corps totalement réel de degré 8 sur Q de plus petit discriminant,
dans lequel 2 soit totalement ramifié (on peut le vérifier avec les tables de [Voight]). On constate avec
Magma que l’on a |H| = 16 et que la condition (C) est satisfaite par K , car il n’existe pas de newforms
f ∈H telles que Qf =Q ; pour tout f ∈H, on a [Qf :Q] = 4.

1.3. Hypothèse sur le nombre de classes restreint de K. Notons h+K le nombre de classes restreint de K .
Rappelons que h+K est le degré sur K de l’extension abélienne de K non ramifiée aux places finies
maximale.

Malgré de nombreux essais expérimentaux, je ne suis pas parvenu à trouver un exemple de corps de
nombres totalement réel K tel que 2 soit totalement ramifié dans K et que h+K = 1, sans que la condition
(C) soit satisfaite. En particulier, a-t-on toujours l’implication

2OK =L d et h+K = 1 ⇒ (C) ?

En fait, la réponse est positive si on a d ∈ {1, 2, 4, 8}. La raison étant que pour tout entier n, il existe au
plus un corps totalement réel K pour lequel on a d = 2n , 2OK =L d et h+K = 1, à savoir le sous-corps



304 Alain Kraus

totalement réel maximal du corps cyclotomique des racines 2n+2-ièmes de l’unité (théorème 6). On
indiquera par ailleurs quelques constatations numériques en faveur de cette implication.

Signalons que, comme conséquence du théorème 4, si cette implication était toujours vraie, cela
impliquerait le théorème de Fermat asymptotique sur tout corps de nombres totalement réels pour lesquels
2OK =L d et h+K = 1.

Les hypothèses selon lesquelles 2OK = L d et h+K = 1 sont très favorables dans l’application de la
méthode modulaire pour obtenir des versions effectives du théorème de Fermat sur K . Cela est notamment
dû au fait qu’avec ces hypothèses, on peut normaliser toute solution de l’équation de Fermat (1-1) de
façon simple (proposition 16). On illustrera cette méthode pour certains corps de nombres de degré
d ∈ {3, 4, 5, 6, 8}. On établira par exemple que pour le corps K =Q(µ16)

+, l’ensemble Fp(K ) est trivial
pour tout p ≥ 5.

Tous les calculs numériques que cet article a nécessités ont été effectués avec les logiciels de calcul
Pari [PARI 2015] et Magma.

Remarque. Pendant la période de l’examen de cet article par le referee, Freitas et Siksek ont démontré
une version généralisée de l’implication suggérée ci-dessus ; voir [Freitas et Siksek 2018]. En particulier,
compte tenu du théorème 4, si 2 est totalement ramifié dans K et si h+K = 1, le théorème de Fermat
asymptotique est vrai sur K .

Partie I. Énoncé des résultats

Soit K un corps de nombres totalement réel.
Rappelons qu’une courbe elliptique E/K est dite modulaire s’il existe une newform modulaire parabo-

lique de Hilbert sur K , de poids parallèle 2 et de niveau le conducteur de E , ayant la même fonction L
que celle de E .

Conjecturalement, toute courbe elliptique définie sur K est modulaire. Cela est démontré si K =Q

[Wiles 1995; Taylor et Wiles 1995; Breuil et al. 2001] et si K est un corps quadratique [Freitas et al.
2015]. Par ailleurs, à K -isomorphisme près, l’ensemble des courbes elliptiques sur K qui ne sont pas
modulaires est fini [loc. cit.].

2. Les conditions (C) et (FS)

Théorème 2. Supposons que les deux conditions suivantes soient satisfaites :

(1) 2 est totalement ramifié dans K .

(2) Toute courbe elliptique définie sur K , de conducteur L , ayant tous ses points d’ordre 2 rationnels
sur K , est modulaire.

Alors, les conditions (C) et (FS) sont équivalentes.

Si K est un corps quadratique dans lequel 2 est totalement ramifié, les conditions (C) et (FS) sont
donc équivalentes.
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3. Théorème de Fermat asymptotique

Comme conséquence directe des théorèmes 1 et 2, on obtient l’énoncé suivant :

Théorème 3. Supposons que les trois conditions suivantes soient satisfaites :

(1) 2 est totalement ramifié dans K .

(2) Toute courbe elliptique définie sur K , de conducteur L , ayant tous ses points d’ordre 2 rationnels
sur K , est modulaire.

(3) La condition (C) est satisfaite.

Alors, le théorème de Fermat asymptotique est vrai sur K .

Remarque. Dans les limites des tables de newforms modulaires de Hilbert sur un corps totalement réel
K figurant dans [LMFDB 2013], pour lesquelles 2 est totalement ramifié dans K , on constate les données
numériques suivantes. Les corps intervenant dans ces tables sont de degré d ≤ 6.

(1) Pour d = 3, il y a treize tels corps de nombres (à isomorphisme près). Leurs discriminants sont

148, 404, 564, 756, 788, 1076, 1300, 1396, 1492, 1524, 1556, 1620, 1940.

Pour chacun d’eux, la condition (C) est satisfaite.
Cela étant, la condition (C) n’est pas toujours satisfaite si d = 3. Par exemple, elle ne l’est pas pour le

corps K =Q(α) où α3
−32α+2= 0. En effet, posons a = 16α ; cet entier est dans S et on a vL (a)= 13.

La courbe elliptique E/K d’équation

y2
= x(x − a)(x + 1− a)

est de conducteur L et a tous ses points d’ordre 2 rationnels sur K (cf. la démonstration du lemme 12,
équation (6-1)). En utilisant le théorème 18, on peut démontrer qu’elle est modulaire. Il existe donc f ∈H
ayant la même fonction L que celle de E . On a Qf =Q et f ne vérifie pas la condition (1-3), d’où notre
assertion.

(2) Pour d = 4, il y a quinze corps de nombres, dont les discriminants sont

2048, 2304, 4352, 6224, 7168, 7488, 11344, 12544, 13824, 14336, 14656, 15952, 16448, 18432, 18688.

Pour chacun de ces corps, la condition (C) est satisfaite. Excepté pour le corps de discriminant 16448, on
a |H| = 0.

Signalons à titre indicatif que pour le corps K = Q(α) où α4
− 12α2

− 18α − 5 = 0, la condition
(C) n’est pas satisfaite. On peut le vérifier comme dans l’alinéa précédent, en considérant l’entier
a = 16(1+ α)2(4+ 4α + α2). Il appartient à S et on a vL (a) = 18. On constate alors que la courbe
elliptique sur K , d’équation y2

= x(x − a)(x + 1− a), est modulaire et que son conducteur est L .

(3) Pour d = 5, il y a trois corps de nombres, dont les discriminants sont

126032, 153424, 179024,
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et ils vérifient la condition (C). Pour d = 6, il n’y a pas de tels corps dans les tables de [LMFDB 2013].

Dans le cas où l’on a h+K = 1, on peut s’affranchir de l’hypothèse de modularité :

Théorème 4. Supposons que les trois conditions suivantes soient satisfaites :

(1) 2 est totalement ramifié dans K .

(2) On a h+K = 1.

(3) La condition (C) est satisfaite.

Alors, le théorème de Fermat asymptotique est vrai sur K .

4. Question

Certaines constatations numériques concernant les hypothèses faites dans le théorème 4 suggèrent la
question suivante :

Question 4.1. Supposons 2 totalement ramifié dans K et h+K = 1. La condition (C) est-elle toujours
satisfaite ? 1

Proposition 5. La réponse est positive si on a d ∈ {1, 2, 4, 8}.

C’est une conséquence du résultat qui suit. Sa démonstration repose sur la première assertion du
théorème 39 de l’Appendice. Pour tout n ≥ 1, soit µ2n+2 le groupe des racines 2n+2-ièmes de l’unité.
Notons Q

(
µ2n+2

)+ le sous-corps totalement réel maximal de Q
(
µ2n+2

)
.

Théorème 6. Soient n un entier et K un corps de nombres totalement réel, de degré 2n sur Q, satisfaisant
les conditions suivantes :

(1) 2 est totalement ramifié dans K .

(2) On a h+K = 1.

Alors, on a K =Q
(
µ2n+2

)+.

Le corps Q
(
µ2n+2

)+ satisfait la première condition. Pour n ≤ 5, son nombre de classes restreint vaut 1.
On conjecture que pour tout n, son nombre de classes vaut 1. Certains résultats récents ont été démontrés
dans cette direction [Fukuda et Komatsu 2011].

On peut vérifier directement avec Magma que pour n≤ 3, la condition (C) est satisfaite pour Q
(
µ2n+2

)+,
ce qui implique la proposition 5.

1. Comme je l’ai signalé dans la remarque à la fin de l’introduction (page 304), il est maintenant démontré que la réponse à
cette question est positive [Freitas et Siksek 2018].
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Faits expérimentaux. Indiquons quelques constatations numériques en faveur d’une réponse positive
à la question 4.1. En utilisant les tables de Voight, j’ai dressé une liste de corps totalement réels pour
lesquels :

(1) d ∈ {3, 5, 6, 7},

(2) 2 est totalement ramifié dans K ,

(3) h+K = 1,

(4) le discriminant DK de K est pair plus petit qu’une borne fixée.

Dans le tableau ci-dessous, l’entier N est le nombre de corps totalement réels de degré d et de
discriminant DK pair plus petit que la borne que l’on s’est fixée (à isomorphisme près). Dans la dernière
colonne se trouve le nombre de corps pour lesquels 2 est totalement ramifié et h+K = 1.

d Borne sur DK N 2OK=L d et h+K=1

3 21 · 103 378 80
5 17 · 105 315 23
6 21 · 106 361 7
7 207 · 106 32 2

Il y a cent-douze corps K intervenant dans ce tableau pour lesquels 2OK =L d et h+K = 1. Pour chacun
d’eux, on constate avec Magma que la condition (C) est satisfaite.

Les discriminants de ces cent-douze corps sont explicités ci-dessous. Des éléments primitifs de chacun
de ces corps sont déterminés dans les tables de Voight.

d = 3 d = 5 d = 6 d = 7

148 2708 4628 7668 9076 10324 12852 15252 16532 19252 126032 629584 1197392 2803712 46643776
404 2804 4692 7700 9204 10580 13172 15284 17556 19348 153424 708944 1280592 4507648 196058176
564 3124 4852 7796 9300 10868 13684 15380 17684 19572 179024 747344 1284944 5163008
756 3252 5172 8308 9460 11060 13748 15444 17716 20276 207184 970448 1395536 6637568

1300 3508 5204 8372 9812 11092 13972 15700 17780 20436 223824 981328 1550288 7718912
1524 3540 5940 8628 10164 11476 14420 16084 18292 20724 394064 1034192 1664592 10766336
1620 3604 6420 8692 10260 12660 14516 16116 18644 20788 453712 1104464 1665360 20891648
2228 3892 7028 9044 10292 12788 14964 16180 18740 20948 535120 1172304

On en déduit avec le théorème 4 l’énoncé suivant :

Proposition 7. Pour chacun des corps de nombres K indiqués ci-dessus, le théorème de Fermat asympto-
tique est vrai sur K .

Signalons que, pour d 6= 6, le groupe de Galois sur Q de la clôture galoisienne de K est isomorphe
à Sd . Pour d = 6, il est non abélien d’ordre 12 ou 72.
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5. Théorème de Fermat effectif – exemples

On établit le théorème de Fermat asymptotique de façon effective pour quelques corps de nombres
figurant dans ces tables, ainsi que pour les corps Q(µ16)

+ et Q(µ32)
+.

Théorème 8. Soit K un corps cubique réel de discriminant DK ∈ {148, 404, 564}. Pour tout p ≥ 5,
l’ensemble Fp(K ) est trivial.

Théorème 9. Posons K =Q(α) avec

α5
− 6α3

+ 6α− 2= 0. (5-1)

(C’est le corps de plus petit discriminant intervenant dans les colonnes “d = 5” du tableau ci-dessus.)
Pour tout p distinct de 5, 13, 17, 19, l’ensemble Fp(K ) est trivial.

Théorème 10. Posons K =Q(α) avec

α6
+ 2α5

− 11α4
− 16α3

+ 15α2
+ 14α− 1= 0. (5-2)

(C’est le corps de plus petit discriminant intervenant dans la colonne “d = 6” du tableau ci-dessus.) Pour
tout p ≥ 29, distinct de 37, l’ensemble Fp(K ) est trivial.

Théorème 11. (1) Pour tout p ≥ 5, l’ensemble Fp(Q(µ16)
+) est trivial.

(2) Pour tout p > 6724, l’ensemble Fp(Q(µ32)
+) est trivial.

On a 6724= (1+34)2, qui est, pour d = 8, la borne obtenue dans [Oesterlé 1996] concernant les points
de p-torsion des courbes elliptiques sur les corps de nombres de degré d (voir aussi [Derickx 2016]).

Partie II. Les théorèmes 2 et 6

Pour tout idéal premier q de OK , notons vq la valuation sur K qui lui est associée, et pour toute courbe
elliptique E/K , notons jE son invariant modulaire.

6. Démonstration du théorème 2

Lemme 12. Les trois assertions suivantes sont équivalentes :

(1) La condition (FS) est satisfaite.

(2) Il n’existe pas de courbe elliptique E/K telle que l’on ait :

(i) vL ( jE) < 0,

(ii) pour tout idéal premier q de OK , distinct de L , on a vq( jE)≥ 0,

(iii) E a tous ses points d’ordre 2 rationnels sur K .

(3) Il n’existe pas de courbe elliptique sur K , de conducteur L , ayant tous ses points d’ordre 2
rationnels sur K .
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Démonstration. Vérifions l’implication (1)⇒ (2). Supposons pour cela qu’il existe une courbe elliptique
E/K satisfaisant les trois conditions de la deuxième assertion. D’après la condition (iii), à torsion
quadratique près, il existe λ ∈ K tel que E/K possède une équation de la forme de Legendre (voir
[Silverman 2009, p. 49, Proposition 1.7(a)] et sa démonstration)

y2
= x(x − 1)(x − λ).

Posons

µ= 1− λ.

On a les égalités

jE = 28 (λ
2
− λ+ 1)3

λ2(1− λ)2
= 28 (1− λµ)

3

(λµ)2
.

Soit OL l’anneau des {L }-entiers de K . D’après la condition (ii), on a

jE ∈ OL .

De plus, λ, 1
λ

, µ et 1
µ

sont racines d’un polynôme unitaire (de degré 6) à coefficients dans OL . Par suite,
λ et µ appartiennent à S. Posons

t =max{|vL (λ)|, |vL (µ)|}.

Il résulte de la condition (i) que l’on a t > 0. L’égalité λ+µ= 1 implique alors que l’on a

vL (λ)= vL (µ)=−t ou vL (λ)= 0, vL (µ)= t ou vL (λ)= t, vL (µ)= 0.

On obtient dans tous les cas

vL ( jE)= 8vL (2)− 2t = 8d − 2t.

La condition (i) implique t > 4d et donc la condition (FS) n’est pas satisfaite (inégalité (1-2)). Cela
prouve la première implication.

L’implication (2)⇒ (3) est immédiate.
Démontrons l’implication (3)⇒ (1). Supposons la condition (FS) non satisfaite, autrement dit qu’il

existe a ∈ S tel que l’on ait

|vL (a)|> 4d.

Posons b = 1− a.
Supposons vL (a) > 4d. Vérifions que la courbe elliptique E/K d’équation

y2
= x(x − a)(x + b) (6-1)

est de conducteur L , ce qui établira l’implication dans ce cas. Notons c4(E) et 1(E) les invariants
standard associés à cette équation. On a

c4(E)= 16(a2
+ ab+ b2) et 1(E)= 16(ab)2.
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Pour tout idéal premier q de OK distinct de L , on a vq(1(E))= 0, donc E/K a bonne réduction en q.
Posons

x = 4X et y = 8Y + 4X.

On obtient comme nouveau modèle de E/K

(W ) : Y 2
+ XY = X3

−
a
2

X2
−

ab
16

X.

On a vL (a) > 4d = 4vL (2), donc ce modèle est entier. Par ailleurs, on a

vL (c4(E))= 4d et vL (1(E))= 4d + 2vL (a) > 12d,

c4(E)= 24c4(W ) et 1(E)= 2121(W ),

d’où
vL (c4(W ))= 0 et vL (1(W )) > 0.

Ainsi E a réduction de type multiplicatif en L , d’où notre assertion.
Supposons vL (a) <−4d. Posons

a′ = 1
a

et b′ = 1− a′.

On a b′ = −b/a donc a′ est dans S et on a vL (a′) > 4d. Comme ci-dessus, on vérifie que la courbe
elliptique d’équation y2

= x(x − a′)(x + b′) est de conducteur L . Cela établit l’implication. �

Lemme 13. Supposons que toute courbe elliptique sur K , de conducteur L , ayant tous ses points
d’ordre 2 sur K , soit modulaire. Les deux assertions suivantes sont équivalentes :

(1) Il n’existe pas de courbe elliptique sur K , de conducteur L , ayant tous ses points d’ordre 2
rationnels sur K .

(2) La condition (C) est satisfaite.

Démonstration. Pour tout idéal premier q 6=L de OK , posons Fq = OK /q.
Supposons que la première condition soit réalisée. Vérifions que la seconde l’est aussi. Soit f une

newform de H telle que Qf = Q. Procédons par l’absurde en supposant que pour tout idéal premier
q 6=L de OK la condition (1-3) ne soit pas satisfaite. Parce que le niveau de f est L , il existe une courbe
elliptique E/K , de conducteur L , ayant la même fonction L que celle de f [Freitas et Siksek 2015a,
Theorem 8]. Pour tout idéal premier q 6=L de OK , l’ordre de E(Fq) est donc multiple de 4. Il en résulte
que E/K est liée par une isogénie de degré ≤ 2 à une courbe elliptique F/K ayant tous ses points d’ordre
2 sur K [Şengün et Siksek 2018, Lemma 7.5]. Le conducteur de F/K est L , d’où une contradiction. (On
n’a pas utilisé ici l’hypothèse de modularité.)

Inversement, supposons qu’il existe une courbe elliptique E/K , de conducteur L , ayant tous ses points
d’ordre 2 sur K . Par hypothèse, E étant modulaire, il existe une newform f ∈H ayant la même fonction L
que celle de E . On a Qf=Q. Soit q un idéal premier de OK distinct de L . La courbe elliptique E a bonne
réduction en q et l’application E(K )[2] → E(Fq) est injective (cf. [Silverman 2009, Propopsition 3.1,
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p. 192]). Par suite, 4 divise l’ordre de E(Fq), autrement dit, on a aq(f)≡ Norm(q)+ 1 (mod 4). Ainsi, la
condition (C) n’est pas satisfaite, d’où le résultat. �

Le théorème 2 est une conséquence directe des lemmes 12 et 13.

Remarque. L’hypothèse de modularité est intervenue dans la démonstration pour établir l’implication
(C)⇒ (FS).

7. Démonstration du théorème 6

On démontre par récurrence que pour tout r ≥ 1, tel que r ≤ n+ 2, on a l’inclusion

Q(µ2r )+ ⊆ K . (7-1)

Cela établira le résultat, car Q(µ2n+2)+ et K sont de même degré 2n sur Q. L’inclusion (7-1) est vraie
si r = 1 et r = 2. Soit r un entier tel que 2 ≤ r < n+ 2 et que (7-1) soit vraie. Il s’agit de vérifier que
Q(µ2r+1)+ est contenu dans K . Posons

L = K Q(µ2r+1)+.

L’extension L/K est non ramifiée en dehors des idéaux premiers de OK au-dessus de 2, y compris aux
places à l’infini. Par suite, son conducteur est une puissance de L . Plus précisément :

Lemme 14. Le conducteur de L/K divise 4OK .

Démonstration. Soit ζ une racine primitive 2r+1-ième de l’unité. Il existe x ∈ OK tel que x appartienne à
L et pas à L 2. On a r − 1≤ n. Posons

a = x2n−(r−1)
et u =

(
ζ + ζ−1

a

)2

.

On a (ζ + ζ−1)2 = ζ 2
+ ζ−2

+ 2. Parce que ζ 2 est une racine primitive 2r -ième de l’unité, on déduit de
(7-1) que u appartient à K . Par ailleurs, on a

[Q(µ2r+1)+ :Q(µ2r )+] = 2 et Q(µ2r+1)+ =Q(ζ + ζ−1).

Il en résulte que l’on a [L : K ] ≤ 2, puis l’égalité

L = K (
√

u).

On a
vL (u)= 0. (7-2)

En effet, v étant la valuation de Q2 normalisée par v(2)= 1, on a

v(x)=
1
2n , v(a)=

1
2r−1 et v(ζ + ζ−1)=

1
2r−1 ,

d’où (7-2). Ainsi, le discriminant de L/K divise 4OK . On obtient le résultat car le conducteur et le
discriminant de L/K sont égaux [Cassels et Fröhlich 1967, p. 160, si [L : K ] = 2]. �
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Soit K 4OK le corps de classes de rayon modulo 4OK sur K . D’après le lemme précédent, L est contenu
dans K 4OK . Par hypothèse, 2 est totalement ramifié dans K et on a h+K = 1. D’après l’assertion 1 du
théorème 39 de l’Appendice, on a donc K 4OK = K . On obtient L = K , ce qui montre que Q(µ2r+1)+ est
contenu dans K , d’où le théorème.

Partie III. La méthode modulaire

Les démonstrations du théorème 4 et des résultats annoncés dans le paragraphe 5, reposent sur la
méthode modulaire, analogue à celle utilisée par Wiles pour établir le théorème de Fermat sur Q. On peut
trouver dans [Freitas et Siksek 2015a] un exposé détaillé de cette méthode. Le principe général consiste à
procèder par l’absurde en supposant qu’il existe un point non trivial dans Fp(K ). On lui associe ensuite
une courbe elliptique définie sur K et en étudiant le module galoisien de ses points de p-torsion, on
essaye d’obtenir une contradiction.

Décrivons la mise en œuvre de cette méthode dans notre situation. Soit K un corps de nombres
totalement réel, de degré d sur Q, satisfaisant les deux conditions suivantes :

(1) 2 est totalement ramifié dans K .

(2) On a h+K = 1.

8. La courbe elliptique E0/K

Considérons un point (a, b, c) ∈ Fp(K ) tel que abc 6= 0. On peut supposer que l’on a

a, b, c ∈ OK . (8-1)

On a h+K = 1, en particulier OK est principal. On supposera désormais, cela n’est pas restrictif, que l’on a

aOK + bOK + cOK = OK . (8-2)

Soit E0/K la cubique, appelée souvent courbe de Frey, d’équation

y2
= x(x − a p)(x + bp). (8-3)

Les invariants standard qui lui sont associés sont

c4(E0)= 16
(
a2p
+ (ab)p

+ b2p), c6(E0)=−32(a p
− bp)(bp

− cp)(cp
− a p), (8-4)

1(E0)= 16(abc)2p. (8-5)

En particulier, E0 est une courbe elliptique définie sur K .

8.1. Réduction de E0/K.

Lemme 15. Soit q un idéal premier de OK distinct de L .
1) L’équation (8-3) est minimale en q.
2) Si q ne divise pas abc, E0 a bonne réduction en q.
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3) Si q divise abc, E0 a réduction de type multiplicatif en q.

Démonstration. C’est une conséquence de la condition (8-1) ainsi que des formules (8-2), (8-4) et (8-5). �

Pour tout idéal premier q de OK , notons 1q un discriminant local minimal de E0 en q.

Proposition 16. Supposons p > 4d. Quitte à multiplier (a, b, c) par une unité convenable de OK , les
deux conditions suivantes sont satisfaites :

(1) E0 a réduction de type multiplicatif en L .

(2) On a

vL (1L )= 2pvL (abc)− 8d.

En particulier, avec une telle normalisation, E0/K est semi-stable.

Démonstration. Le nombre premier 2 étant totalement ramifié dans K , on a OK /L = F2. L’un des entiers
a, b, c est donc divisible par L . On peut supposer que L divise b et que L ne divise pas ac. On a de
plus h+K = 1, donc le corps de classes de rayon modulo 4OK sur K est égal à K (théorème 39). Soit UK

le groupe des unités de OK . Le morphisme naturel UK → (OK /4OK )
∗ est surjectif (lemme 41). Il existe

ainsi ε ∈UK tel que l’on ait

ε−1
≡−a (mod 4).

Posons

a′ = εa, b′ = εb, c′ = εc.

Considérons alors la courbe elliptique E ′0/K d’équation

y2
= x(x − a′p)(x + b′p). (8-6)

En effectuant le changement de variables

x = 4X et y = 8Y + 4X,

on obtient comme nouveau modèle

(W ) : Y 2
+ XY = X3

+

(
b′p − a′p − 1

4

)
X2
−
(a′b′)p

16
X.

On a

a′p + 1≡ 0 (mod 4),

et d’après l’hypothèse faite sur p,

vL (b′p)= pvL (b′)≥ p > 4d = 4vL (2).

Par suite, (W ) est un modèle entier. En notant c4(W ) et 1(W ) les invariants standard qui lui sont associés,
on a

c4(E ′0)= 24c4(W ) et 1(E ′0)= 2121(W ).
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D’après les formules (8-4) et (8-5), utilisées avec l’équation (8-6), on obtient

vL (c4(W ))= 0 et vL (1(W ))= 2pvL (a′b′c′)− 8d > 0.

Ainsi, (W ) est un modèle minimal de E ′0/K , qui a donc réduction de type multiplicatif en L . Parce que
ε est une unité de OK , et compte tenu du lemme 15, cela entraîne le résultat. �

Dans le cas où p > 4d , on supposera, dans toute la suite, que le triplet (a, b, c) ∈ Fp(K ) est normalisé
de sorte que les deux conditions de la proposition 16 soient satisfaites.

8.2. Modularité de E0/K. D’après le corollaire 2.1 de [Freitas et Siksek 2015a] :

Théorème 17. La courbe elliptique E0/K est modulaire si p est plus grand qu’une constante qui ne
dépend que de K .

D’après la remarque qui suit le corollaire 2.1 de [loc. cit.], ce résultat n’est pas effectif en général.
Cependant l’énoncé suivant permet parfois de démontrer qu’une elliptique semi-stable définie sur K est
modulaire [Freitas et al. 2015, Theorem 7] :

Théorème 18. Posons `= 5 ou `= 7. Supposons qu’il existe un idéal premier de OK au-dessus de ` en
lequel l’extension K/Q soit non ramifiée. Soit E/K une courbe elliptique semi-stable sur K . Si E(K )
n’a pas de sous-groupe d’ordre ` stable par Gal(K/K ), alors E/K est modulaire.

9. La représentation ρE0, p

Notons

ρE0,p : Gal(K/K )→ Aut(E0[p])' GL2(Fp)

la représentation donnant l’action de Gal(K/K ) sur le groupe des points de p-torsion de E0.

9.1. Le conducteur de ρE0, p. Notons NE0 le conducteur de E0/K . Posons

Mp =
∏
q|NE0

p|vq(1q)

q et Np =
NE0

Mp
.

Lemme 19. Supposons p > 4d. On a Np =L .

Démonstration. D’après le lemme 15 et la formule (8-5), pour tout idéal premier q de OK , distinct de L ,
on a

vq(1q)≡ 0 (mod p).

La seconde condition de la proposition 16 entraîne alors le résultat. �

Remarque. La terminologie adoptée dans ce paragraphe se justifie par le fait que si l’on a p > 4d, on
peut démontrer que L le conducteur de Serre de ρE0,p (cf. [Serre 1987] pour K =Q).
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9.2. Irréductibilité de ρE0, p. Le corps K étant totalement réel, il ne contient pas le corps de classes de
Hilbert d’un corps quadratique imaginaire. D’après la proposition de l’Appendice B de [Kraus 2007], on
a ainsi l’énoncé suivant :

Théorème 20. La représentation ρE0,p est irréductible si p est plus grand qu’une constante que ne
dépend que de K .

En ce qui concerne l’effectivité de cet énoncé, considérons plus généralement dans la suite de ce
paragraphe une courbe elliptique E/K semi-stable. Notons ρE,p la représentation donnant l’action
Gal(K/K ) sur son groupe des points de p-torsion. Rappelons un critère permettant souvent d’établir de
manière effective que ρE,p est irréductible (cf. [Kraus 2007]).

Soit p0 le plus grand nombre premier pour lequel il existe une courbe elliptique définie sur K ayant un
point d’ordre p0 rationnel sur K . Il est borné par une fonction de d [Merel 1996] ; plus précisément, on a
(voir [Oesterlé 1996; Derickx 2016])

p0 ≤ (1+ 3d/2)2.

Notons
[d

2

]
la partie entière de d

2 . Soit U+K le groupe des unités totalement positives de OK . Pour tout
u ∈U+K et tout entier n tel que 1≤ n ≤

[ d
2

]
, on définit le polynôme H (u)

n ∈ Z[X ] comme suit. Soient H
le polynôme minimal de u sur Q et t son degré. On pose

H (u)
1 = H et G = X t H

(
Y
X

)
∈ Z[Y ][X ]. (9-1)

Pour tout n ≥ 2, H (u)
n est le polynôme de Z[X ] obtenu en substituant Y par X dans

ResX
(
H (u)

n−1,G
)
∈ Z[Y ], (9-2)

le résultant par rapport à X de H (u)
n−1 et G. Il est unitaire de degré tn et ses racines sont les produits de n

racines de H comptées avec multiplicités. Posons

An = pgcdu∈U+K
H (u)

n (1) et RK =

[d/2]∏
n=1

An. (9-3)

L’énoncé qui suit est une reformulation du théorème 1 de [Kraus 2007] dans le cas où h+K = 1 (voir
aussi la proposition 4 de [loc. cit.] pour d = 3). Seule la condition h+K = 1 intervient ici. On n’utilise pas
l’hypothèse que 2 est totalement ramifié dans K .

Théorème 21. Soit p un nombre premier ne divisant pas DK RK . Si ρE,p est réductible, alors E/K , ou
bien une courbe elliptique sur K liée à E par une K -isogénie de degré p, possède un point d’ordre p
rationnel sur K . En particulier, si p > p0 alors ρE,p est irréductible.

Démonstration. Rappelons les principaux arguments. Supposons ρE,p réductible. Il existe des caractères
ϕ, ϕ′ : Gal(K/K )→ F∗p tels que ρE,p soit représentable sous la forme

( ϕ ∗
0 ϕ′

)
.

Soit Ap l’ensemble des idéaux premiers de OK au-dessus de p. Les caractères ϕ et ϕ′ sont non ramifiés
en tout idéal premier qui n’est pas dans Ap. De plus, pour tout p ∈ Ap l’un des caractères ϕ et ϕ′ est
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non ramifié en p. Par suite, il existe un sous-ensemble A de Ap tel que l’un des caractères ϕ et ϕ′ soit
non ramifié en dehors de A et que pour tout p ∈A sa restriction à un sous-groupe d’inertie en p soit le
caractère cyclotomique.

Supposons A vide. Alors, ϕ ou ϕ′ est partout non ramifié aux places finies. Parce que h+K = 1, ϕ ou ϕ′

est donc trivial. Si ϕ = 1, E a un point d’ordre p rationnel sur K . Si ϕ′ = 1, E est liée par une K -isogénie
de degré p a une courbe elliptique sur K ayant un point d’ordre p sur K .

Si A n’est pas vide, alors p divise DK RK (voir la fin de la preuve du Theorem 1 de [Kraus 2007],
p. 619, alinéa (2)), d’où le résultat. �

Remarque. Si RK n’est pas nul, on obtient ainsi une constante explicite cK , telle que pour tout p > cK

et toute courbe elliptique E/K semi-stable sur K , la représentation ρE,p soit irréductible. Dans ce cas,
on obtient une version effective du théorème 20. Par exemple, RK n’est pas nul si d ∈ {1, 2, 3, 5, 7} [loc.
cit., Theorem 2].

10. Le théorème d’abaissement du niveau

Il s’agit de l’analogue du théorème de Ribet intervenant dans la démonstration du théorème de Fermat
sur Q [Ribet 1990]. Dans notre situation, si on a p> 4d , il s’énonce comme suit ([Freitas et Siksek 2015a,
Theorem 7], les lemmes 15, 19 et l’égalité (8-5)) :

Théorème 22. Supposons que les conditions suivantes soient satisfaites :

(1) On a p > 4d.

(2) L’indice de ramification de tout idéal premier de OK au-dessus de p est strictement plus petit que
p− 1 et le corps Q(µp)

+ n’est pas contenu dans K .

(3) La courbe elliptique E0/K est modulaire.

(4) La représentation ρE0,p est irréductible.

Alors, il existe f ∈H et un idéal premier p de l’anneau d’entiers OQf de Qf au-dessus de p, tels que, en
notant

ρf,p : Gal(K/K )→ GL2(OQf/p)

la représentation galoisienne associée à f et p, on ait

ρE0,p ' ρf,p. (10-1)

Proposition 23. Les hypothèses faites dans l’énoncé du théorème 22 sont satisfaites si p est plus grand
qu’une constante qui ne dépend que de K .

Démonstration. La seconde condition est réalisée si p est non ramifié dans K . Les théorèmes 17 et 20
entraînent alors le résultat. �
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Les représentations ρE0,p et ρf,p sont non ramifiées en dehors de L et des idéaux premiers de OK

au-dessus de p. Parce que ρE0,p est irréductible, l’isomorphisme (10-1) se traduit par les conditions
suivantes : pour tout idéal premier q de OK , distinct de L , qui n’est pas au-dessus de p, on a

aq(f)≡ aq(E0) (mod p) si E0 a bonne réduction en q, (10-2)

aq(f)≡±(Norm(q)+ 1) (mod p) si E0 a réduction de type multiplicatif en q. (10-3)

On en déduit l’énoncé ci-dessous permettant parfois d’obtenir une contradiction à l’existence de
(a, b, c) ∈ Fp(K ) (cf. [Freitas et Siksek 2015b, lemme 7.1]). Pour tout idéal premier q de OK , distinct de
L , posons

Aq =
{
t ∈ Z | |t | ≤ 2

√
Norm(q) et Norm(q)+ 1≡ t (mod 4)

}
, (10-4)

Bf,q = Norm(q)
(
(Norm(q)+ 1)2− aq(f)2

) ∏
t∈Aq

(t − aq(f)). (10-5)

Proposition 24. Supposons les quatre conditions du théorème 22 satisfaites. Soient f ∈H et p un idéal
premier de OQf au-dessus de p tels que ρE0,p ' ρf,p. Soit q un idéal premier de OK distinct de L . Alors,
p divise la norme de Qf sur Q de Bf,q.

Démonstration. Si q divise p, alors p divise Norm(q), en particulier p divise la norme de Qf sur Q

de Bf,q. Supposons que q ne divise pas p. La courbe elliptique E0 a bonne réduction ou réduction de type
multiplicatif en q.

Supposons que E0 ait bonne réduction en q. Parce que E0 a tous ses points d’ordre 2 rationnels que K
et que q est distinct de L , le nombre de points de la courbe elliptique déduite de E0 par réduction est
multiple de 4. Par ailleurs, on a |aq(E0)| ≤ 2

√
Norm(q) (borne de Weil), donc aq(E0) appartient à Aq.

La condition (10-2) implique alors notre assertion dans ce cas.
Si E0 a réduction de type multiplicatif en q, la condition (10-3) est satisfaite, d’où le résultat. �

11. Démonstration du théorème 4

Compte tenu des propositions 23 et 24, le théorème 4 résulte de l’énoncé suivant :

Proposition 25. Pour tout f ∈ H, il existe un idéal premier q de OK , distinct de L , tel que l’on ait
Bf,q 6= 0.

Démonstration. Soit f un élément de H.
Supposons Qf 6=Q. Il existe alors un idéal premier q de OK , distinct de L , tel que aq(f) ne soit pas

dans Z (cf. [Cremona et Dembélé 2014, Theorem 9]), d’où Bf,q 6= 0.
Supposons Qf = Q. D’après la condition (C), il existe un idéal premier q de OK , distinct de L ,

tel que l’on ait aq(f) 6≡ Norm(q)+ 1 (mod 4). En particulier, aq(f) n’est pas dans Aq. De plus, on a
(Norm(q)+ 1)2 6= aq(f)2 : dans le cas contraire, on aurait aq(f)=−(Norm(q)+ 1). Or q étant distinct de
L , on a 2(Norm(q)+ 1)≡ 0 (mod 4), ce qui conduit à une contradiction. Par suite, on a Bf,q 6= 0, d’où
l’assertion. �
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Partie IV. Les théorèmes 8, 9, 10 et 11

Dans toute cette partie, on suppose qu’il existe un point (a, b, c) ∈ Fp(K ) tel que abc 6= 0. Rappelons
que pour p > 4d, on suppose implicitement qu’il est normalisé comme indiqué dans l’énoncé de la
proposition 16.

12. Sur l’irréductibilité de ρE0, p

Dans le cas où p est ramifié dans K , le théorème 21 ne permet pas d’établir que la représentation
ρE0,p est irréductible (si tel est le cas). On dispose néanmoins du résultat suivant permettant parfois de
conclure, qui vaut sans hypothèse de ramification en p. Pour tout cycle m of K , notons Km le corps de
classes de rayon modulo m sur K .

Lemme 26. Soit p un idéal premier de OK au-dessus de p. Notons m∞ le produit des places archimé-
diennes de K . Soit ϕ : Gal(K/K )→ F∗p un caractère non ramifié en dehors m∞p. Alors, le corps laissé
fixe par le noyau de ϕ est contenu dans Km∞p.

Démonstration. Soit n ≥ 1 un entier. Il suffit de montrer que

Gal
(
Km∞p

n
/Km∞p

)
est un p-groupe. (12-1)

En effet, d’après l’hypothèse faite, il existe j ≥ 1 tel que le corps laissé fixe par le noyau de ϕ soit contenu
dans Km∞p

j
. D’après l’assertion (12-1), le groupe Gal

(
Km∞p

j
/Km∞p

)
est contenu dans le noyau ϕ, ce

qui implique alors le résultat.
Démontrons (12-1). Posons m = m∞pn+1 et n = m∞p

n . Notons Um,1 le groupe des unités de OK

congrues à 1 modulo m et Un,1 l’analogue de Um,1 en ce qui concerne le cycle n. Le corollaire 3.2.4 of
[Cohen 2000] entraîne l’égalité

[Km
: K n
](Un,1 :Um,1)= Norm(p). (12-2)

Par ailleurs, pour tout x ∈ Un,1, on a x p
∈ Um,1. Ainsi, Un,1/Um,1 est un p-groupe. D’après l’égalité

(12-2), [Km
: K n
] est donc une puissance de p, ce qui entraîne l’assertion (12-1). �

On utilisera ce résultat de la façon suivante. Supposons p > 4d et ρE0,p réductible. Soient ϕ et ϕ′ ses
caractères d’isogénie. Ils sont non ramifiés en dehors de m∞ et des idéaux premiers de OK au-dessus
de p. Supposons qu’il existe un idéal premier p de OK au-dessus de p tel que ϕ ou ϕ′ soit non ramifié en
dehors de m∞p et que de plus on ait [Km∞p : K ] ≤ 2. On déduit alors du lemme 26, l’existence d’une
courbe elliptique sur K ayant un point d’ordre p rationnel sur K , ce qui, si p est assez grand par rapport
à d , conduit à une contradiction.
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13. Corps cubiques et modularité

On va démontrer ici un critère permettant parfois d’établir que toute courbe elliptique semi-stable
définie sur un corps cubique réel est modulaire. Rappelons que l’entier RK est défini par la seconde
formule de (9-3).

Théorème 27. Soit K un corps cubique réel satisfaisant les conditions suivantes :

(1) On a h+K = 1.

(2) 5 et 7 ne divisent pas DK RK .

(3) 3 n’est pas inerte dans K .

Alors, toute courbe elliptique semi-stable définie sur K est modulaire.

13.1. Courbes elliptiques et points de 35-torsion. Commençons par établir l’énoncé qui suit, qui est une
conséquence d’un résultat de Bruin et Najman [2016].

Proposition 28. Soit K un corps cubique tel que 3 ne soit pas inerte dans K . Alors, il n’existe pas de
courbes elliptiques définies sur K ayant un point d’ordre 35 rationnel sur K .

Démonstration. On utilise le théorème 1 de [Bruin et Najman 2016], ainsi que la remarque 4 à la fin du
paragraphe 2 de [loc. cit.] qui est très utile dans son application. Avec les notations de ce théorème, on
prend

A = Z/35Z, L =Q, m = 1, n = 35, X = X ′ = X1(35), π = id et p = p0 = 3.

Il s’agit de vérifier que les six conditions i)-vi) de cet énoncé sont satisfaites. Parce que 3 ne divise pas n,
on a A′ = Z/35Z et h = 1. Pour toute pointe Z de X1(35), l’ensemble L(Z) est le corps de rationalité
de Z . C’est donc l’un des corps

Q, Q(µ5), Q(µ7) et Q(µ35)
+.

Par hypothèse, 3 n’est pas inerte dans K , on a donc

SK ,p0 = {1, 2}.

La gonalité de X1(35) vaut 12 et sa Jacobienne est de rang 0 sur Q [Derickx 2016, p. 19 et lemme 1,
p. 30]. Pour tout idéal premier p de OK au-dessus de 3, il n’existe pas de courbes elliptiques définies sur
k(p) ayant un point rationnel d’ordre 35. Par ailleurs, 3 est inerte dans Q(µ5), Q(µ7) et Q(µ35)

+. Les
six conditions considérées sont donc satisfaites, d’où le résultat. �

Remarque. Il existe des courbes elliptiques définies sur F27 ayant un point rationnel d’ordre 35, ce qui
explique l’hypothèse que 3 n’est pas inerte dans K dans l’énoncé de la proposition (cf. [Waterhouse 1969,
Theorem 4.1]).
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13.2. Démonstration du théorème 27. Soit E/K une courbe elliptique semi-stable sur K . On utilise le
théorème 18. Par hypothèse, 5 et 7 sont non ramifiés dans K . Il s’agit ainsi de montrer que l’une au
moins des représentations ρE,5 et ρE,7 est irréductible. Supposons le contraire, i.e., que ρE,5 et ρE,7 soient
réductibles. Parce que l’on a h+K = 1 et que 5 et 7 ne divisent pas DK RK , quitte à remplacer E par une
courbe elliptique sur K qui lui est liée par une K -isogénie de degré 1, 5, 7 ou 35, on peut supposer que E
a un point d’ordre 5 et un point d’ordre 7 rationnels sur K (théorème 21). Elle possède donc un point
d’ordre 35 rationnel sur K , ce qui conduit à une contradiction (proposition 28), d’où le résultat.

14. Corps cubiques et irréductibilité de ρE0,13

On utilisera dans la démonstration du théorème 8 le résultat suivant.

Théorème 29. Soit K un corps cubique satisfaisant les conditions suivantes :

(1) On a h+K = 1.

(2) 13 ne divise pas DK RK .

(3) 3 n’est pas inerte dans K .

Alors, pour toute courbe elliptique semi-stable E/K , ayant un point d’ordre 2 rationnel sur K , la
représentation ρE,13 est irréductible.

Démonstration. Elle est analogue à celle du théorème 27. Soit E/K une courbe elliptique semi-stable
ayant un point d’ordre 2 rationnel sur K . Supposons ρE,13 réductible. Parce que h+K = 1 et que 13 ne
divise pas DK RK , la courbe elliptique E , ou bien une courbe elliptique sur K liée à E par une K -isogénie
de degré 13, possède un point d’ordre 13 rationnel K (théorème 21). Il existe donc une courbe elliptique
sur K ayant un point d’ordre 26 rationnel sur K .

Avec les notations du théorème 1 de [Bruin et Najman 2016], on prend A = Z/26Z, m = 1, n = 26,
p0 = 3, X = X ′ = X1(26) et π est l’identité de X . Parce que 3 ne divise pas n, on a A′ = Z/26Z et
h = 1. Le corps de rationalité des pointes de X1(26) est Q ou Q(µ13)

+. Par hypothèse, 3 n’est pas inerte
dans K , donc on a SK ,p0 = {1, 2}. La gonalité de X1(26) vaut 6 et sa Jacobienne est de rang 0 sur Q

[Derickx 2016, p. 19 et lemme 1, p. 30]. Pour tout idéal premier p de OK au-dessus de 3, il n’existe pas
de courbes elliptiques définies sur k(p) ayant un point rationnel d’ordre 26. Par ailleurs, dans l’anneau
d’entiers de Q(µ13)

+, l’idéal engendré par 3 est le produit de deux idéaux premiers de degré 3, et 3 n’est
pas dans SK ,p0 . Le théorème 1 de [Bruin et Najman 2016] entraîne alors contradiction et le résultat. �

15. Démonstration du théorème 8

Gross et Rohrlich [1978, Theorem 5.1] ont démontré que l’ensemble des points rationnels de F7 et F11

sur tout corps cubique est trivial. Par ailleurs, Klassen et Tzermias [1997, Theorem 1] ont établi qu’il en
est de même pour F5. On supposera donc que l’on a

p ≥ 13.
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En particulier, l’inégalité p > 4d est satisfaite. De plus, on a p0 = 13 [Parent 2003].

15.1. Cas où DK = 148. On a [Voight]

K =Q(α) où α3
−α2
− 3α+ 1= 0.

Le nombre premier 3 étant inerte dans K , les théorèmes 27 et 29 ne s’appliquent pas.

Lemme 30. La courbe elliptique E0/K est modulaire.

Démonstration. On utilise le théorème 18 avec `= 5, qui ne divise pas DK . Supposons que E0 possède
un sous-groupe d’ordre 5 stable par Gal(K/K ). Parce que E0 a tous ses points d’ordre 2 rationnels sur K ,
il en résulte que E0 est liée par une K -isogénie de degré au plus 2 à une courbe elliptique sur K ayant un
sous-groupe cyclique d’ordre 20 stable par Gal(K/K ) (cf. par exemple [Anni et Siksek 2016, p. 1163]).
La courbe modulaire X0(20) est la courbe elliptique, de conducteur 20, numérotée 20A1 dans les tables
de Cremona [1997], d’équation

y2
= x3
+ x2
+ 4x + 4.

Elle possède six pointes, toutes rationnelles sur Q. Le groupe X0(20)(Q) est d’ordre 6, et on vérifie avec
Magma 2 qu’il en est de même du groupe X0(20)(K ). Cela montre que Y0(20)(K ) est vide, d’où une
contradiction et notre assertion. �

Lemme 31. La représentation ρE0,p est irréductible.

Démonstration. Posons u = α2. C’est une unité totalement positive de K . Son polynôme minimal est
H = X3

− 7X2
+ 11X − 1. On a H(1)= 4, donc RK divise 4 (formules (9-1) et (9-3)). Par ailleurs, on a

DK = 4.37. Cela entraîne le résultat si p 6= 13, 37 (théorème 21).
Supposons ρE0,13 réductible. Dans ce cas, E0 est liée par une K -isogénie de degré au plus 2 à une courbe

elliptique sur K ayant un sous-groupe cyclique d’ordre 52 stable par Gal(K/K ). Il existe un morphisme
défini sur Q, de degré 3, de la courbe modulaire X0(52) sur la courbe elliptique F/Q, numérotée 52A1
dans les tables de Cremona [1997, p. 363], d’équation

y2
= x3
+ x − 10.

La courbe X0(52) possède six pointes, toutes rationnelles sur Q. Avec Magma, on constate que l’on a
F(K )= F(Q), qui est d’ordre 2. On en déduit que Y0(52)(K ) est vide, d’où une contradiction et le fait
que ρE0,13 soit irréductible.

Supposons ρE0,37 réductible. Soient ϕ et ϕ′ ses caractères d’isogénie. On a 37OK = p2
1p2, où pi est un

idéal premier de OK . L’idéal p2 est non ramifié. Par ailleurs, E0 a en p2 réduction semi-stable. D’après
l’hypothèse faite sur ρE0,37, si E0 a bonne réduction en p2, cette réduction est nécessairement de hauteur 1

2. À de nombreuses reprises dans cet article, comme dans la démonstration du lemme 30, on est amené à déterminer le
rang sur des corps de nombres de certaines courbes elliptiques définies sur Q. Pour cela, on utilise directement le programme
relatif à l’instruction MordellWeilGroup du logiciel Magma. De plus, cette instruction indique si les résultats obtenus sont
inconditionnels. Tel est le cas de tous ceux intervenant dans la suite.
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(cf. [Serre 1972, proposition 12]). On en déduit que l’un des caractères ϕ et ϕ′ est non ramifié en p2

[loc. cit., corollaire p. 274 et corollaire p. 277]. Quitte à remplacer E0 par une courbe elliptique qui lui
est liée par une K -isogénie de degré 37, on peut supposer que c’est ϕ. Par suite, ϕ est non ramifié en
dehors de p1 et des places archimédiennes. D’après le lemme 26, le corps laissé fixe par le noyau de ϕ est
donc contenu dans le corps de rayon Km∞p1 . On vérifie que l’on a [Km∞p1 : K ] = 2 [PARI 2015]. Ainsi,
ϕ est d’ordre au plus 2. On a ϕ 6= 1, car E0 n’a pas de point d’ordre 37 rationnel sur K . Le caractère ϕ
est donc d’ordre 2 et la courbe elliptique déduite de E0 par torsion quadratique par ϕ a donc un point
d’ordre 37 sur K , d’où une contradiction et le résultat. �

Les quatre conditions du théorème d’abaissement de niveau sont donc satisfaites. Par ailleurs, on a
|H| = 0, i.e., il n’existe pas de newforms modulaires paraboliques de Hilbert sur K de poids parallèle
2 et de niveau L [LMFDB 2013]. On obtient ainsi une contradiction à l’existence de (a, b, c), d’où le
théorème dans ce cas.

15.2. Cas où DK = 404. On a

K =Q(α) où α3
−α2
− 5α− 1= 0.

On a 3OK = ℘1℘2, où ℘1 est un idéal premier de degré 1 et où ℘2 est de degré 2. En particulier, 3 n’est
pas inerte dans K .

Le polynôme minimal de α2
∈U+K est H = X3

−11X2
+23X−1 et on a H(1)= 12. On a DK = 22

·101,
donc 5, 7 et 13 ne divisent pas DK RK .

Il résulte alors du théorème 27 que E0/K est modulaire. Pour p 6= 101, les théorèmes 21 et 29 entraînent
que ρE0,p est irréductible. La décomposition de 101OK en produit d’idéaux premiers est de la forme
p2

1p2 et on a [Km∞p1 : K ] = 2. On en déduit, comme dans la démonstration du lemme 31, que ρE0,101 est
irréductible.

Par ailleurs, on a |H| = 1, i.e., il existe une unique newform modulaire parabolique de Hilbert f sur K
de poids parallèle 2 et de niveau L [LMFDB 2013]. En particulier, on a Qf =Q. Soit q l’idéal premier
de OK au-dessus de 7 de degré 1. On a aq(f)=−2. D’après les égalités (10-4) et (10-5), on a

Aq = {−4, 0, 4} et Bf,q =−25
· 32
· 5 · 7.

Ainsi, Bf,q n’est pas divisible par p, d’où la conclusion dans ce cas (proposition 24).

15.3. Cas où DK = 564. On a

K =Q(α) où α3
−α2
− 5α+ 3= 0.

On a 3OK = ℘
2
1℘2, où ℘i est un idéal premier de degré 1.

Le polynôme minimal de (α+ 2)2 ∈U+K est H = X3
− 27X2

+ 135X − 1 et on a H(1)= 22
· 33.

On a DK = 22
·3 ·47. On en déduit que E0/K est modulaire (théorème 27) et que ρE0,p est irréductible

pour p 6= 47 (théorème 21 et théorème 29). On a 47OK = p2
1p2 et [Km∞p1 : K ] = 2, il en est donc de

même de ρE0,47.
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L’ensemble H, qui est de cardinal 2, est formé d’une newform f et de sa conjuguée galoisienne telle
que Qf =Q(β) où β2

+ 3β− 1= 0 [LMFDB 2013]. Soit q l’idéal premier de OK au-dessus de 3 tel que
aq(f)= β. Il est de degré 1. On a Aq = {0} et Bf,q =−3β(16−β2). Sa norme sur Q étant −36, on obtient
la conclusion cherchée.

Cela termine la démonstration du théorème 8.

16. Démonstration du théorème 9

L’ensemble des points rationnels de F11 sur tout corps de degré 5 sur Q est trivial [Gross et Rohrlich
1978, Theorem 5.1]. Tzermias [1998, Theorem 1] a démontré qu’il en est de même pour F7. On supposera
donc que l’on a

p ≥ 23.

En particulier, on a p > 4d . Par ailleurs, on a DK = 24
· 7877.

Lemme 32. La courbe elliptique E0/K est modulaire.

Démonstration. On utilise le théorème 18 avec `= 7. Supposons que E0 possède un sous-groupe d’ordre 7
stable par Gal(K/K ). Dans ce cas, E0 possède un sous-groupe cyclique d’ordre 14 stable par Gal(K/K ).
La courbe modulaire X0(14) est la courbe elliptique, de conducteur 14, numérotée 14A1 dans les tables
de Cremona [1997], d’équation

y2
+ xy+ y = x3

+ 4x − 6.

Elle possède quatre pointes, qui sont rationnelles sur Q. On vérifie avec Magma que l’on a X0(14)(K )=
X0(14)(Q) qui est d’ordre 6. Par ailleurs, les points non cuspidaux de X0(14) correspondent à deux
classes d’isomorphisme de courbes elliptiques sur Q d’invariants modulaires entiers (−153 et 2553). Parce
que celui de E0 n’est pas entier en L , on obtient une contradiction et le résultat. �

Lemme 33. La représentation ρE0,p est irréductible.

Démonstration. L’entier α étant défini par l’égalité (5-1), posons

u1 = (α− 1)2 et u2 = (α
2
+α− 1)2.

Ce sont des unités totalement positives de OK . On vérifie que l’on a (formules (9-1) et (9-2))

H (u1)
1 (1)=−12 et pgcd

(
H (u1)

2 (1), H (u2)
2 (1)

)
= 212

· 3 · 52.

Il en résulte que RK n’est pas divisible pas un nombre premier plus grand que 7. On a p0 = 19 [Derickx
2016, Chapter III, Theorem 1.1], d’où l’assertion si p 6= 7877. Par ailleurs, on a 7877OK = p2

1p2, où p1

est un idéal premier de degré 1 et p2 un idéal premier de degré 3. On vérifie que l’on a [Km∞p1 : K ] = 2,
ce qui entraîne le résultat pour p = 7877. �

Par ailleurs, on a |H|=2. Plus précisément, H est formé d’une newform f et de sa conjuguée galoisienne,
et on a Qf =Q(β) où β2

+β − 3= 0 [LMFDB 2013]. Soit q l’idéal premier de OK au-dessus de 3 de
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degré 1. On a aq(f) = β. D’après les égalités (10-4) et (10-5), on a Aq = {0} et Bf,q = −3β(16− β2).
La norme sur Q de Bf,q est −35

· 17, qui n’est pas divisible par p. La proposition 24 implique alors le
théorème.

17. Démonstration du théorème 10

On a DK = 211
· 372. On vérifie, comme dans la démonstration du lemme 32, que l’on a X0(14)(Q)=

X0(14)(K ), d’où l’on déduit que E0/K est modulaire.
Démontrons que ρE0,p est irréductible. Par hypothèse, on a p > 4d = 24 et p 6= 37. L’entier α étant

défini par l’égalité (5-2), on considère les unités totalement positives

u1 =
1

582

(
4α5
+ 19α4

− 28α3
− 170α2

− 16α+ 41
)2
,

u2 =
1

582

(
14α5
+ 23α4

− 156α3
− 160α2

+ 176α+ 13
)2
.

On vérifie que l’on a

H (u1)
1 (1)= 16, H (u1)

2 (1)= 232
· 54 et H (u2)

3 (1)= 2216
· 754.

Par suite, RK n’est pas divisible par un nombre premier plus grand que 7. Il n’existe pas de courbes
elliptiques sur K ayant un point d’ordre p rationnel sur K [Derickx 2016, Chapter III, Theorem 1.1)],
d’où l’assertion.

Par ailleurs, on vérifie avec Magma que l’on a |H| = 2 et que H est formé d’une newform f et de sa
conjuguée galoisienne, dont le corps de rationalité est Qf = Q(β) où β2

− β − 21 = 0. En utilisant la
proposition 24, on conclut alors en considérant l’idéal premier q1 de OK de degré 1 au-dessus de 17, tel
que aq1(f)= β et l’idéal premier q2 de degré 1 au-dessus de 23, tel que aq2(f)= β − 2.

18. Démonstration du théorème 11

Posons Kn =Q(µ2n+2)+.

Lemme 34. Toute courbe elliptique définie sur Kn est modulaire.

Démonstration. Le corps Kn est le n-ième étage de la Z2-extension cyclotomique de Q, d’où l’assertion
[Thorne 2015, Theorem 1]. �

18.1. L’assertion (1). Elle est déjà connue si p = 7 [Tzermias 1998, Theorem 1] et si p = 11 [Gross
et Rohrlich 1978]. Le fait que F5(K2) soit trivial est une conséquence directe du théorème 2 de [Kraus
2018]. On supposera donc

p ≥ 13.

On est amené à distinguer deux cas suivant que p = 13 ou p ≥ 17 (car 4d = 16).
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18.1.1. Cas où p ≥ 17.

Lemme 35. Pour tout p ≥ 17, la représentation ρE0,p est irréductible.

Démonstration. On a DK2 = 211 et K2 =Q(α) où

α4
− 4α2

+ 2= 0.

Posons u= (α+1)2. On a u ∈U+K2
. Son polynôme minimal est H (u)

1 = X4
−12X3

+34X2
−20X+1 et on

a H (u)
1 (1)= 4. On vérifie que H (u)

2 (1)= 216
·17. Par ailleurs, on a p0 = 17 [Derickx 2016, Theorem 1.1],

d’où le résultat si p 6= 17 (théorème 21).
Supposons p=17. La courbe modulaire X0(17) est Q-isomorphe à la courbe elliptique de conducteur 17,

notée 17A1 dans les tables de Cremona [1997], d’équation

y2
+ xy+ y = x3

− x2
− x − 14.

Elle possède deux pointes, qui sont rationnelles sur Q. Avec Magma, on constate que l’on a X0(17)(K )=
X0(17)(Q), qui est cyclique d’ordre 4. Les points non cuspidaux de X0(17)(Q) correspondent à deux
classes d’isomorphisme de courbes elliptiques sur Q d’invariants modulaires (voir par exemple [Dahmen
2008, p. 30, Table 2.1])

j1 =−
17 · 3733

217 et j2 =−
172
· 1013

2
.

Ils sont distincts de j (E0). En effet, on peut supposer vL (b) > 0 et vL (ac)= 0 ; on a

j (E0)= 28
(
(a34
+ (ab)17

+ b34)3

(abc)34

)
,

d’où vL ( j (E0)) = 32− 34vL (abc). Par ailleurs, on a vL ( j1) = −68 et vL ( j2) = −4, ce qui entraîne
l’assertion et le lemme. �

On constate dans les tables de [LMFDB 2013] que l’on a |H| = 0, d’où le résultat dans ce cas.

18.1.2. Cas où p = 13. A priori, on ne peut plus normaliser (a, b, c) ∈ F13(K2) de sorte que la courbe
de Frey E0/K2 soit semi-stable. On va donc utiliser le théorème d’abaissement du niveau dans le cas
général [Freitas et Siksek 2015a, Theorem 7].

Considérons un point (a, b, c) ∈ F13(K2) tel que abc 6= 0 et que a, b, c soient premiers entre eux
dans OK2 . On a vL (abc)≥ 1. Soit E0/K2 la courbe elliptique d’équation

y2
= x(x − a13)(x + b13). (18-1)

Rappelons que l’on a

c4(E0)= 24(a26
+ (ab)13

+ b26) et 1(E0)= 24(abc)26. (18-2)

Lemme 36. La représentation ρE0,13 est irréductible.
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Démonstration. Supposons ρE0,13 réductible. Dans ce cas, E0/K2 possède un sous-groupe d’ordre 26
stable par Gal(K2/K2). La courbe modulaire X0(26) possède donc un point rationnel sur K2 qui n’est
pas l’une de ses quatre pointes. Soit C/Q la courbe hyperelliptique d’équation

y2
= x6
− 8x5

+ 8x4
− 18x3

+ 8x2
− 8x + 1.

Il existe un unique Q-isomorphisme de X0(26) sur C appliquant les quatre pointes de X0(26) sur (0, 1),
(0,−1) et les deux points à l’infini de C (cf. [Mazur et Vélu 1972]). Par suite, il existe un point P =
(x0, y0) ∈ C(K2) tel que x0 6= 0.

Soit F/Q la courbe elliptique d’équation, numérotée 26B1 dans les tables de Cremona, d’équation

Y 2
+ XY + Y = X3

− X2
− 3X + 3.

Les formules

X =−
(x + 1)2

(x − 1)2
et Y =

2(x(x − 1)− y)
(x − 1)3

,

définissent un morphisme ϕ : C→ F de degré 2 [loc. cit., 2.3] On vérifie alors avec Magma que l’on a
F(K2)= F(Q) qui est cyclique d’ordre 7. On en déduit que l’on a

F(K2)=
{
0, (−1, 2), (3,−6), (1, 0), (1,−2), (3, 2), (−1,−2)

}
.

On a x0 6= 1 car sinon y2
0 =−16, or −1 n’est pas un carré dans K2. Parce que x0 n’est pas nul, on a

ainsi
ϕ(P) ∈

{
(3,−6), (1, 0), (1,−2), (3, 2)

}
.

Cela conduit à une contradiction car −3 et −1 ne sont pas des carrés dans K2, d’où le lemme. �

Remarque. Le même argument que celui utilisé dans démonstration du lemme 31, pour p = 13, ne
convient pas ici pour conclure. En effet, on peut vérifier avec Magma, seulement conditionnellement, que
le groupe des points K2-rationnels de la courbe elliptique numérotée 52A1 dans les tables de Cremona
est d’ordre 2.

Supposons vL (abc)≥ 2. Dans ce cas, par les mêmes arguments que ceux utilisés dans la démonstration
de la proposition 16, on peut encore normaliser (a, b, c) de sorte que E0 ait réduction de type multiplicatif
en L et que E0 soit semi-stable. On peut alors conclure comme dans l’alinéa précédent.

Supposons donc désormais que l’on a

vL (abc)= 1. (18-3)

Lemme 37. Quitte à multiplier (a, b, c) par une unité convenable de OK2 , on a

vL (NE0) ∈ {5, 6, 8}.

Démonstration. D’après (18-2) et (18-3), on a

vL (c4(E0))= 16, vL (c6(E0))= 24, vL (1(E0))= 42. (18-4)
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On a vL ( jE0)= 6, donc E0 a potentiellement bonne réduction en L .
On peut supposer que l’on a vL (b)= 1, auquel cas vL (ac)= 0. Par ailleurs, il existe une unité ε de

OK2 telle que l’on ait εa+1≡ 0 (mod 4) (Appendice, théorème 39 et lemme 41). En remplaçant (a, b, c)
par (εa, εb, εc), on se ramène au cas où l’on a

a13
+ 1≡ 0 (mod 4). (18-5)

Le modèle (18-1) n’est pas minimal en L . En effet, posons

x = α4 X et y = α6Y +α4 X.

On obtient comme nouveau modèle

(W ) : Y 2
+

2
α2 XY = X3

+

(
b13
− a13

− 1
α4

)
X2
−
(ab)13

α8 X.

D’après (18-5) et le fait que 2 soit associé à α4, c’est un modèle entier. On a

c4(E0)= α
8c4(W ), c6(E0)= α

12c6(W ), 1(E0)= α
241(W ),

d’où (formules (18-4))

vL (c4(W ))= 8, vL (c6(W ))= 12, vL (1(W ))= 18.

On vérifie avec les tables de [Papadopoulos 1993] que le type de Néron en L de (W ) est I∗6 ou bien que
(W ) n’est pas minimal en L . Si le type de Néron est I∗6, on a vL (NE0)= 8. Si (W ) n’est pas minimal, le
triplet de valuations de ses invariants minimaux en L est (4, 6, 6). On constate alors que son type de
Néron est II, auquel cas vL (NE0)= 6, ou bien que son type de Néron est III et on a vL (NE0)= 5, d’où
le lemme. �

Supposons (a, b, c) normalisé comme dans l’énoncé du lemme précédent. Notons S+2 (L
r ) le C-espace

vectoriel engendré par les newforms modulaires paraboliques de Hilbert sur K2, de poids parallèle 2 et de
niveau L r . On a [LMFDB 2013]

dimS+2 (L
5)= 1, dimS+2 (L

6)= 3 et dimS+2 (L
8)= 8.

Compte tenu des lemmes 34 et 36, les conditions du théorème d’abaissement du niveau sont satisfaites
[Freitas et Siksek 2015a, Theorem 7]. Il existe donc f ∈ S+2 (L

r ) avec r ∈ {5, 6, 8} et un idéal premier p
au-dessus de 13 dans OQf , tels que

ρf,p ' ρE0,13.

Considérons alors le nombre premier 79. Il est totalement décomposé dans K2. Soit q un idéal premier de
OK2 au-dessus de 79. On constate que l’on a

aq(f) ∈ {−8, 0, 8}.
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Si E0 a réduction multiplicative en q, on a

aq(f)≡±2 (mod p),

ce qui n’est pas. Ainsi E0 a bonne réduction en q. On a donc la congruence

aq(E0)≡ aq(f) (mod p).

On a vq(abc)= 0, donc a13, b13, c13 sont des racines 6-ièmes de l’unité modulo q. On a ainsi

a13, b13, c13
≡ 1, 23, 24, 55, 56, 78 (mod q).

L’égalité a13
+ b13

+ c13
= 0 implique

(a13, b13)≡ (1, 23), (1, 55), (23, 1), (23, 55), (24, 56), (24, 78), (55, 1), (55, 23), (56, 24),

(56, 78), (78, 24), (78, 56) (mod q).

Dans tous les cas, on obtient

aq(E0)=±4,

d’où la contradiction cherchée et le résultat pour p = 13.

18.2. L’assertion (2).

Lemme 38. Pour tout p > 6724, la représentation ρE0,p est irréductible.

Démonstration. On a DK3 = 231 et K3 =Q(α) où

α8
− 8α6

+ 20α4
− 16α2

+ 2= 0.

Posons

u1 =
(
−α6
−2α5

+5α4
+10α3

−4α2
−9α−1

)2
, u2 =

(
α7
+α6
−6α5

−5α4
+9α3

+5α2
−3α−1

)2
,

u3 =
(
−2α7

− 2α6
+ 11α5

+ 10α4
− 13α3

− 9α2
+α+ 1

)2
.

Ce sont des unité totalement positives de OK3 . En utilisant le théorème 21 avec les ui , on vérifie que on a
l’implication

RK3 ≡ 0 (mod p) ⇒ p ≤ 607.

Par ailleurs, on a p0 < 6724 (voir [Oesterlé 1996; Derickx 2016]), d’où l’assertion. �

Les conditions du théorème 22 sont satisfaites. On constate avec Magma que l’on a |H| = 40. À
conjugaison près, H est formé de quatre newforms f telles que [Qf :Q] = 4 et d’une newform dont le
corps de rationalité est de degré 24 sur Q.

Les nombres premiers 31 et 97 sont totalement décomposés dans K3. En utilisant la proposition 24, et
en prenant pour q un idéal premier de OK3 au-dessus de 31, puis un idéal premier au-dessus de 97, on
obtient alors le résultat.
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Partie V. Appendice

Soit K un corps de nombres totalement réel. Notons K 4OK le corps de classes de rayon modulo 4OK

sur K . On établit ici l’énoncé suivant, que l’on utilise, tout au moins sa première assertion, dans les
démonstrations du théorème 6, de la proposition 16 et du lemme 37.

Théorème 39. (1) Supposons 2 totalement ramifié dans K et h+K = 1. Alors, on a K = K 4OK .

(2) Supposons K = K 4OK . Alors, on a h+K = 1.

En particulier :

Corollaire 40. Supposons 2 totalement ramifié dans K . On a h+K = 1 si et seulement si K = K 4OK .

18.3. Résultats préliminaires. Notons UK le groupe des unités de OK et hK le nombre de classes de K .
Rappelons que d désigne le degré de K sur Q. Posons

G = (OK /4OK )
∗.

Soit ϕ :UK → G le morphisme qui à u ∈UK associe u+ 4OK .

Lemme 41. On a K = K 4OK si et seulement si hK = 1 et ϕ est une surjection sur G.

Démonstration. C’est conséquence directe de [Cohen 2000, Proposition 3.2.3]. �

Lemme 42. Les deux conditions suivantes sont équivalentes :

(1) On a h+K = 1.

(2) On a hK = 1 et toute unité totalement positive est un carré dans K .

Démonstration. On a l’égalité (cf. [Cohen 2000, Proposition 3.2.3], avec pour m le produit des places à
l’infini)

h+K =
2d

[UK :U+K ]
hK .

Supposons h+K = 1. On a alors hK = 1, puis [UK : U+K ] = 2d . D’après le théorème de Dirichlet, on a
[UK : U 2

K ] = 2d , d’où U+K = U 2
K . Inversement, si hK = 1 et U+K = U 2

K , la formule ci-dessus implique
h+K = 1. �

Lemme 43. Supposons 2 totalement ramifié dans K . On a

|G/G2
| = 2d .

Démonstration. Soit a un élément de G. Soit L l’idéal premier de OK au-dessus de 2. On a OK /L = F2,
donc il existe x ∈L tel que a = 1+ x + 4OK . On a a2

= 1+ x(2+ x)+ 4OK , d’où il résulte que l’on a

a2
= 1⇔ x ∈ 2OK .
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Posons G[2] = {z ∈ G | z2
= 1}. On en déduit une application f : G[2] → 2OK /4OK définie pour tout

a ∈ G[2] par l’égalité
f (a)= x + 4OK où a = 1+ x + 4OK .

C’est un isomorphisme de groupes. Le groupe 2OK /4OK est isomorphe à OK /2OK qui est d’ordre 2d .
Par ailleurs, les ordres de G[2] et G/G2 sont égaux, d’où le lemme. �

Lemme 44. Supposons 2 totalement ramifié dans K . Les deux conditions suivantes sont équivalentes :

(1) On a K = K 4OK .

(2) On a hK = 1 et toute unité congrue à un carré modulo 4 est un carré dans K .

Démonstration. Notons ψ :UK → G→ G/G2 le morphisme naturel déduit de ϕ.
Supposons K = K 4OK . Le morphisme ψ est une surjection (lemme 41). Les ordres de UK /U 2

K et
G/G2 sont égaux (lemme 43). Par suite, U 2

K est le noyau de ψ , donc toute unité congrue à un carré
modulo 4 est un carré.

Inversement, supposons la seconde condition satisfaite. Démontrons que le morphisme ϕ est surjectif,
ce qui, d’après le lemme 41, impliquera la première assertion. D’après l’hypothèse faite, le noyau de
ψ est U 2

K . Les ordres de UK /U 2
K et G/G2 étant égaux, on en déduit que ψ est une surjection. Ainsi,

l’image de ϕ(UK ) dans G/G2 est G/G2. Parce que 2 est totalement ramifié dans K , G est un 2-groupe
[Cohen 2000, p. 137]. Il en résulte que ϕ(UK )= G, d’où le résultat. (Si p est premier, le sous-groupe de
Frattini d’un p-groupe abélien fini A est Ap, voir par exemple [Rotman 1995, Theorem 5.48]. Si B est
un sous-groupe de A tel que B Ap

= A, on a donc A = B.) �

18.4. Fin de la démonstration du théorème 39. (1) Supposons 2 totalement ramifié dans K et h+K = 1.
Soit u une unité de OK congrue à un carré modulo 4. L’extension K (

√
u)/K est alors partout non ramifiée

aux places finies de K [Cox 1989, Lemma 5.32, p. 114]. On a h+K = 1, donc u est un carré dans K . Vu
que hK = 1, on a donc K = K 4OK (lemme 44).

(2) Supposons K = K 4OK . On a hK = 1. Soit u une unité totalement positive de OK . D’après le lemme 42,
il s’agit de montrer que u est un carré dans K . L’extension K (

√
u)/K est non ramifiée aux places à

l’infini et en dehors des idéaux premiers de OK au-dessus de 2. Le conducteur de l’extension K (
√

u)/K
est égal à son discriminant [Cassels et Fröhlich 1967, p. 160], qui divise 4OK . Par suite, K (

√
u) est

contenu dans K 4OK , d’où K (
√

u)= K et notre assertion.
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G-valued local deformation rings
and global lifts

Rebecca Bellovin and Toby Gee

We study G-valued Galois deformation rings with prescribed properties, where G is an arbitrary (not
necessarily connected) reductive group over an extension of Zl for some prime l. In particular, for the
Galois groups of p-adic local fields (with p possibly equal to l) we prove that these rings are generically
regular, compute their dimensions, and show that functorial operations on Galois representations give
rise to well-defined maps between the sets of irreducible components of the corresponding deformation
rings. We use these local results to prove lower bounds on the dimension of global deformation rings with
prescribed local properties. Applying our results to unitary groups, we improve results in the literature on
the existence of lifts of mod l Galois representations, and on the weight part of Serre’s conjecture.
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1. Introduction

The study of Galois deformation rings was initiated in [Mazur 1989], and was crucial to the proof of
Fermat’s last theorem in [Wiles 1995], and in particular to the modularity lifting theorems proved in [Wiles
1995; Taylor and Wiles 1995]. Many generalisations of these modularity lifting theorems have been
proved over the last 25 years, and it has become increasingly important to consider Galois representations
valued in reductive groups other than GLn . From the point of view of the Langlands program, it is
particularly important to be able to use disconnected groups, as the L-groups of nonsplit groups are
always disconnected. In particular, it is important to study the structure of local deformation rings for
general reductive groups, and to prove lifting results for global deformation rings. We briefly review the
history of such results in Section 1.1, but we firstly explain the main theorems of this paper.
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We begin with a result about local deformation rings. Let K/Qp be a finite extension, let O be the
ring of integers in a finite extension E of Ql with residue field F, where l is possibly equal to p, and let
G be a (not necessarily connected) reductive group over O. Given a representation ρ̄ : GalK → G(F), we
consider liftings of ρ̄ of some inertial type τ , and in the case l = p, some p-adic Hodge type v. There is
a corresponding universal framed deformation ring R�,τ,vρ̄ , and we prove the following result (as well as a
variant for “fixed determinant ψ” deformations).

Theorem A (Theorem 3.3.2). Fix an inertial type τ , and if l = p then fix a p-adic Hodge type v. Then
R�,τ,vρ̄ [1/ l] is generically regular. In addition, R�,τ,vρ̄ is equidimensional of dimension

1+ dimE G+ δl=p dimE(ResE⊗K/E G)/Pv,

and R�,τ,v,ψρ̄ is equidimensional of dimension

1+ dimE Gder
+ δl=p dimE(ResE⊗K/E G)/Pv.

(We are abusing notation here; Pv is a (ResE⊗K/E G)◦
E

-conjugacy class of parabolic subgroups of
ResE⊗K/E G, and we choose a representative defined over E to compute the dimension of the quotient.)
We are also able to describe the regular locus of R�,τ,vρ̄ [1/ l] precisely in terms of the corresponding
Weil–Deligne representations; see Corollary 3.3.4. In the case that G =GLn and l = p this is a theorem of
Kisin [2008], and results for general groups (but with more restrictive hypotheses than those of Theorem A)
were previously proved by Balaji [2013] and Bellovin [2016].

Combining Theorem A with results of [Balaji 2013], we obtain the following result (see Section 4 for any
unfamiliar notation or terminology — in particular, g0

F denotes the F-points of the Lie algebra of the derived
subgroup of G); in the case of potentially crystalline representations, this is the main result of [loc. cit.].

Theorem B (Proposition 4.2.6). Let F be totally real, assume that l > 2, let S be a finite set of places of F
containing all places dividing l∞, and let ρ̄ : GalF,S→ G(Fl) be a representation admitting a universal
deformation ring. Fix inertial types at all places v ∈ S, and Hodge types at all places v | l, in such a way
that the corresponding local deformation rings are nonzero, and let Runiv denote the corresponding fixed
determinant universal deformation ring for ρ̄.

Assume that ρ̄ is odd, and that H 0(GalF,S, (g
0
F)
∗(1)) = 0. Suppose also that for each place v | l the

corresponding Hodge type is regular. Then Runiv has Krull dimension at least 1.

We use this result to improve on some results about automorphic forms on unitary groups proved using
the methods of [Barnet-Lamb et al. 2014]. Beginning with [Clozel et al. 2008], Galois deformations were
considered for representations valued in a certain disconnected group Gn , whose connected component
is GLn ×GL1 (this group is related to the L-group of a unitary group, see [Buzzard and Gee 2014, §8]).
In the case that G = Gn , Theorem B generalises [Barnet-Lamb et al. 2014, Proposition 1.5.1], removing
restrictions on the places in S (which were chosen to split in the splitting field of the corresponding
unitary group, in order to reduce the local deformation theory to the GLn case).
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We deduce corresponding improvements to a number of results proved using the methods of [loc. cit.],
such as the following general result about Serre weights for rank-2 unitary groups, which removes a “split
ramification” hypothesis on the ramification of r̄ at places away from l.

Theorem C (Theorem 5.2.2). Let F be an imaginary CM field with maximal totally real subfield F+,
and suppose that F/F+ is unramified at all finite places, that each place of F+ above l splits in F, and
that [F+ : Q] is even. Suppose that l is odd, that r̄ : G F+ → G2(Fl) is irreducible and modular, and
that r̄(G F(ζl )) is adequate.

Then the set of Serre weights for which r̄ is modular is exactly the set of weights given by the
sets W (r̄ |G Fv

), v | l.

(See Remark 5.2.3 for a discussion of further improvements to this result that could be made by
techniques orthogonal to those of this paper.) These results are also crucially applied in [Calegari et al.
2018], where they are used to construct lifts of representations valued in Gn which have prescribed
ramification at certain inert places.

1.1. A brief historical overview. We now give a very brief overview of some of the developments in the
deformation theory of Galois representations, which was introduced for representations valued in GLn in
[Mazur 1989]; we apologise for the many important papers that we do not discuss here for reasons of space.
The abstract parts of this deformation theory were generalised to arbitrary reductive groups in [Tilouine
1996]. However, for applications to the Langlands program (and in particular to proving automorphy
lifting theorems), one needs to study conditions on Galois deformations coming from p-adic Hodge theory.

This was initially done in a somewhat ad hoc fashion, mostly for the group GL2 and mostly for
conditions coming from p-divisible groups, culminating in [Breuil et al. 2001], which used a detailed
study of some particular such deformation rings to complete the proof of the Taniyama–Shimura–Weil
conjecture. This situation changed with [Kisin 2008], which proved the existence of local deformation
rings for GLn corresponding to general p-adic Hodge theoretic conditions (namely being potentially
crystalline or semistable of a given inertial type), and determined the structure of their generic fibres, in
particular showing that they are generically regular, and computing their dimensions.

The results of [Kisin 2008] were generalised in [Balaji 2013] to the case of general reductive groups G
under the hypothesis of being potentially crystalline, and in [Bellovin 2016] to the case that G is
connected, and the inertial type is totally ramified. In the potentially crystalline case the generic fibres
of the deformation rings can easily be shown to be regular, whereas in the potentially semistable case,
one has to gain some control of the singularities, which is why there are additional restrictions in the
theorems of [loc. cit.]. Our Theorem A is a common generalisation of these results to the case that G is
possibly disconnected, and the representation is potentially semistable with no condition on the inertial
type. (We also simultaneously handle the case that p 6= l.)

Another important application of Galois deformation theory to the Langlands program is to prove results
showing that mod l representations of the Galois groups of number fields admit lifts to characteristic 0 with
prescribed local properties; for example, such results were an important part of Khare and Wintenberger’s
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proof of Serre’s conjecture. The first such results were proved in [Ramakrishna 2002] for GL2, and this
method has now been generalised to a wide class of reductive groups; see in particular [Patrikis 2016;
Booher 2019a; 2019b]. However, it has two disadvantages: it loses control of the local properties at a
finite set of places, and it only applies in cases where formally smooth deformation rings exist.

A different approach was found in [Khare and Wintenberger 2009], which observed that in conjunction
with the theory of potential modularity, such lifting results can be deduced from a lower bound on the
Krull dimension of a global deformation ring, which was provided by the results of [Böckle 1999].
Kisin [2007] improved on the results of [Böckle 1999], proving a result about presentations of global
deformation rings over local ones for GLn , and deducing a lower bound on the dimensions of global
deformation rings. These results were generalised to general reductive groups by Balaji [2013], and given
our Theorem A, results such as Theorem B are essentially immediate from Balaji’s.

Finally, [Booher and Patrikis 2017] (independently and contemporaneously) proved similar results to
those of this paper in the case l 6= p by a related but different method; rather than constructing a large
enough supply of unobstructed points, as in this paper, they instead show that all points can be path
connected to unobstructed points. We refer to the introduction to [loc. cit.] for a fuller discussion of the
difference between the approaches.

1.2. Some details. We now explain our local results (and their proofs) in more detail. Theorem A is a
generalisation of [Kisin 2008, Theorem 3.3.4], which proves the result in the case l = p and G =GLn . It
was previously adapted to the (much easier) case G=GLn and l 6= p in [Gee 2011] by using Weil–Deligne
representations in place of the filtered (ϕ, N )-modules employed in [Kisin 2008]. It was also generalised
in [Bellovin 2016] to the case that G is connected, l = p, and τ is totally ramified. Our approach is in
some sense a synthesis of the approaches of [Gee 2011; Bellovin 2016], in that we treat the cases l 6= p
and l = p essentially simultaneously, by using Weil–Deligne representations.

We briefly explain our approach, which in broad outline follows that of [Kisin 2008]. It is relatively
straightforward (by passing from Galois representations to Weil–Deligne representations using Fontaine’s
constructions in the case l = p, and Grothendieck’s monodromy theorem if l 6= p) to reduce Theorem A
to analogous statements about moduli spaces of Weil–Deligne representations over l-adic fields. These
moduli spaces admit an explicit tangent-obstruction theory given by an analogue of Herr’s complex
computing Galois cohomology in terms of (ϕ, 0)-modules, and the key problem is to prove that the H 2

of this complex generically vanishes. We can think of this H 2 as a coherent sheaf over the moduli space,
so by considering its support, we can reduce to the problem of exhibiting sufficiently many points at
which the H 2 vanishes (which turn out to be precisely the regular points, which in a standard abuse of
terminology we refer to as “smooth points”).

Our approach to exhibiting these points is related to that taken in [Bellovin 2016], in that it makes use of
the theory of associated cocharacters (see Section 2.3), but it is more streamlined and conceptual (for exam-
ple, we do not need to consider the case N = 0 separately, as was done in [loc. cit.]). Surprisingly (at least
to us), it is possible to construct all the smooth points that we need by considering the single Weil–Deligne
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representation WK → SL2(Ql) which is trivial on IK , takes an arithmetic Frobenius element of WK to(q1/2 0
0 q−1/2

)
,

where q is the order of the residue field of K , and has

N =
(0 1

0 0

)
.

It is easy to check that this gives a smooth point of the moduli space of Weil–Deligne representations
(while the point with the same representation of WK but with N = 0 is not smooth).

Returning to the case of general G, suppose that the inertial type τ is trivial. If we consider a nilpotent
element N ∈Lie G, the theory of associated cocharacters allows us to construct a particular homomorphism
SL2→G taking

( 0
0

1
0

)
to N, and an elementary calculation using the representation theory of sl2 shows that

the composition of our fixed representation WK → SL2(Ql) with this homomorphism defines a smooth
point. We obtain further smooth points by multiplication by elements of G(Ql) of finite order, and this
turns out to give us all the smooth points we need (even when G is not connected). (See Remark 2.3.10
for an interpretation of this construction in terms of the SL2 version of the Weil–Deligne group.)

In the case of general τ we reduce to the same situation by replacing G by the normaliser in G of τ ,
which is also a reductive group. This use of Weil–Deligne representations is what allows us to remove
the assumption made in [Bellovin 2016] that the inertial type is totally ramified, which was used in order
to choose coordinates so that the inertial type τ was invariant under Frobenius. (Similarly, it clarifies the
calculations made for GLn in [Kisin 2008], as the semilinear algebra becomes linear algebra.) Under this
assumption, when studying the structure of the moduli space of G-valued (ϕ, N, τ )-modules one could
exploit the fact that 8 was in the centraliser ZG(τ ) and N was in Lie ZG(τ ). Passing to Weil–Deligne
representations r lets us argue similarly for general τ : a generator8 of the unramified quotient of the Weil
group normalises the inertial type and N is centralised by the inertial type. Since ZG(r |IL/K ) has finite index
in the normaliser NG(r |IL/K ), we see that N is again in the Lie algebra of the algebraic group containing8.

In view of the functorial nature of our construction of smooth points, we are able to produce points
on each irreducible component of the generic fibre of the deformation ring which are furthermore “very
smooth” in the sense that they give rise to smooth points after restriction to any finite extension K ′/K
(these points were called “robustly smooth” in [Barnet-Lamb et al. 2014] when p 6= l). In particular,
the images of such points on the corresponding deformation rings for GalK ′ lie on only one irreducible
component, so that we obtain a well-defined “base change” map between irreducible components. We
prove a similar result for the maps between deformation rings induced by morphisms of algebraic groups
G→ G ′ (see Section 3.5 for this, and for the case of base change). In particular, this allows one to talk
about taking tensor products of components of deformation rings, which is frequently convenient when
applying the Harris tensor product trick; see for example [Calegari et al. 2018].

We end this introduction by explaining the structure of the paper. In Section 2, we prove our main
results about the structure of the moduli spaces of Weil–Deligne representations; we explain the tangent-
obstruction theory and exhibit smooth points, and study the relationship with Galois representations. In
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doing so we remove the connectedness hypothesis on G made in [Bellovin 2016], by studying exact
tensor-filtrations on fibre functors for disconnected reductive groups. We do this via a functor of points
approach, using the dynamic approach to parabolic subgroups discussed in [Conrad et al. 2010, §I.2.1]. In
Section 3 we deduce our results on the local structure of Galois deformation rings, which we then combine
with the results of [Balaji 2013] to prove our lower bound on the dimension of a global deformation ring
in Section 4. Finally, in Section 5 we specialise these results to the case of unitary groups.

1.3. Notation and conventions. All representations considered in this paper are assumed to be continuous
with respect to the natural topologies, and we will never draw attention to this.

If K is a field then we write GalK := Gal(K/K ) for its absolute Galois group, where K is a fixed
choice of algebraic closure; we will regard all algebraic extensions of K as subfields of K without further
comment, so that in particular we can take the compositum of any two such extensions. If L/K is a
Galois extension then we write GalL/K :=Gal(L/K ), a quotient of GalK . If K is a number field and v is
a place of K then we fix an embedding K ↪→ K v , so that we have a homomorphism GalKv

→GalK . If S
is a finite set of places of a number field K , then we let K (S) be the maximal extension of K (inside K )
which is unramified outside S, and write GalK ,S := Gal(K (S)/K ).

If K/Qp is a finite extension for some prime p then we write IK for the inertia subgroup of GalK ,
WK for the Weil group, and fK for the inertial degree of K/Qp. We let ϕ denote the arithmetic Frobenius
on Fp, so that we have an exact sequence

1→ IK →WK → 〈ϕ
fK 〉 → 1,

and we let v :WK → Z be the function such that v(g)= i if the image of g modulo IK is ϕi fK. Recall that
a Weil–Deligne representation of WK is a pair (r, N ) consisting of a finite-dimensional representation
r :WK → End(V ) and a (necessarily nilpotent) endomorphism N ∈ End(V ) satisfying

ρ(g)N = pv(g) fK Nρ(g)

for all g ∈WK .

1.3.1. Parabolic subgroups. If G is a finite-type affine group scheme over A, and λ : Gm → G is a
cocharacter of G, then there is a subgroup PG(λ) of G associated to λ as follows. Following [Conrad
et al. 2010, §I.2.1], for any A-algebra A′ we define the functors

PG(λ)(A′)= {g ∈ G(A′) | limt→0 λ(t)gλ(t)−1 exists},

UG(λ)(A′)= {g ∈ PG(λ)(A′) | limt→0 λ(t)gλ(t)−1
= 1}.

We also let ZG(λ) denote the scheme-theoretic centraliser of λ. All of these functors are representable by
subgroup schemes of G, and they are smooth if G is smooth. By construction, the formation of PG(λ),
UG(λ), and ZG(λ) commutes with base change on A.

The cocharacter λ induces a grading on the Lie algebra g :=Lie G. Let gn := {v∈g |Ad(λ(t))(v)= tnv}

and let g≥0 :=
⊕

n≥0 gn . Then Lie PG(λ)= g≥0, Lie UG(λ)= g≥1, and Lie ZG(λ)= g0.
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The multiplication map ZG(λ)nUG(λ)→ PG(λ) is an isomorphism. Furthermore, the fibres of UG(λ)

are unipotent and connected. If the morphism G→ Spec A has connected reductive fibres, then PG(λ) is a
parabolic subgroup scheme with connected fibres, UG(λ) is its unipotent radical, and ZG(λ) is connected
and reductive.

1.3.2. Deformation rings. Let l be prime, and let O be the ring of integers in a finite extension E/Ql

with residue field F. Write CNLO for the category of complete local noetherian O-algebras with residue
field F.

Let 0 be either the absolute Galois group GalK of a finite extension K of Ql for some p (possibly
equal to l), or a group GalK ,S where S is a finite set of places of a number field K .

Let G be a smooth affine group scheme over O whose geometric fibres are reductive (but not necessarily
connected), and fix a homomorphism ρ̄ : 0→ G(F). A framed deformation of ρ̄ to a ring A ∈ CNLO

is a homomorphism ρ : 0→ G(A) whose reduction modulo mA is equal to ρ̄. The functor of framed
deformations is represented by the universal framed deformation O-algebra R�ρ̄ , an object of CNLO

[Balaji 2013, Theorem 1.2.2].
Suppose from now on for the rest of the paper that the centre ZG of G is smooth over O. Write gF and zF

for the F-points of the Lie algebras of G and ZG respectively; 0 acts on gF via the adjoint action composed
with ρ̄. A deformation of ρ̄ to A is a (ker(G(A)→ G(F)))-conjugacy class of framed deformations
of ρ̄ to A. If H 0(0, gF) = zF, then the functor of deformations is represented by the universal framed
deformation O-algebra Rρ̄ , an object of CNLO; see [Balaji 2013, Theorem 1.2.2] or [Tilouine 1996,
Theorem 3.3], together with Comment (2) following [loc. cit., Theorem 3.3].

We will also consider “fixed determinant” versions of these (framed) deformations rings. Let Gab

and Gder respectively denote the abelianisation and derived subgroup of G, and write ab : G→ Gab for
the natural map. Write g0

F for the F-points of the Lie algebra of Gder. Fix a homomorphism ψ : 0→

Gab(O) such that ab ◦ ρ̄ = ψ̄ . We let R�,ψρ̄ denote the quotient of R�ρ̄ corresponding to deformations ρ
with ab◦ρ=ψ and Rψρ̄ denote the quotient of Rρ̄ corresponding to framed deformations ρ with ab◦ρ=ψ .

We write G◦ for the connected component of G containing the identity. We will always consider
representations up to G◦-conjugacy, rather than G-conjugacy; note that this is compatible with our
definition of deformations, as an element of (ker(G(A)→ G(F))) is necessarily contained in G◦(A).

We for the most part allow any coefficient field E , although for some constructions in p-adic Hodge
theory we need to allow it to be sufficiently large; we will comment when we do this. The effect
of replacing E with a finite extension E ′ with ring of integers O′ is simply to replace R�ρ̄ and Rρ̄
with R�ρ̄ ⊗O O′ and Rρ̄ ⊗O O′ respectively.

2. Moduli of Weil–Deligne representations

Let K/Qp be a finite extension, and let l be a prime, possibly equal to p. In this section we prove
analogues for l-adic Weil–Deligne representations of some results on moduli spaces of weakly admissible
modules from [Kisin 2008; Bellovin 2016], and remove some hypotheses imposed in those papers; in
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particular, we allow our groups to be disconnected, and we work with arbitrary inertial types (rather than
totally ramified types). In the case that l = p we relate our moduli spaces to those for weakly admissible
modules. In Section 3 we will use these results to study the generic fibres of deformation rings in both
the case l = p and the case l 6= p.

2.1. Moduli of Weil–Deligne representations. Let K/Qp be a finite extension, and let L/K be a finite
Galois extension. As in Section 1.3, we let E/Ql be a finite extension for some prime l, with ring of
integers O. We also continue to let G be a (not necessarily connected) reductive group over O; in fact,
throughout this section we will be working with l inverted, and we will write G for G E without further
comment. We write gE for the Lie algebra of G.

A morphism of G-torsors f : D → D′ over an E-scheme X is a morphism of the underlying X -
schemes which is equivariant for the action of G X . Such a morphism is necessarily an isomorphism. The
G-equivariant automorphisms of D, which we denote by AutG(D), form a group, and it makes sense
to talk about homomorphisms r : WK → AutG(D). We also define a sheaf of automorphism groups
AutG(D) over X ; if X ′ is an X -scheme, its X ′-points are given by AutG(D)(X ′) := AutG(DX ′). This
is a representable functor, since AutG(D) is étale-locally isomorphic to G X , which is affine. We abuse
notation by writing AutG(D) for the group scheme, as well.

Definition 2.1.1. Let G- WDE(L/K ) be the category cofibred in groupoids over E-Alg whose fibre over
an E-algebra A is a G-torsor D over A together with a pair (r, N ), where now r :WK → AutG(D) is a
representation of the Weil group such that r |IL is trivial, N ∈Lie AutG(D), and N = p−v(g) fK Ad(r(g))(N )
for all g ∈WK .

Requiring D to be a trivial G-torsor equipped with a trivialising section lets us define a representable
functor covering G- WDE(L/K ), as follows. The exact sequence

0→ IK →WK → 〈ϕ
fK 〉 ∼= Z→ 0

is noncanonically split, and choosing a splitting is the same as choosing a lift g0 ∈WK of ϕ fK. Thus, to
specify a representation r :WK →AutG(D), it suffices to specify r |IK and r(g0) (which we denote by 8).
Since we are interested in representations which are trivial on IL , we may replace r |IK with r |IL/K . For
an E-algebra A, we let RepA IL/K denote the set of A-linear representations of IL/K on G(A).

Definition 2.1.2. Choose g0 ∈ WK lifting ϕ fK. We let YL/K ,ϕ,N be the functor on the category of
E-algebras whose A-points are triples

(8, N, τ ) ∈ G(A)× gE(A)×RepA IL/K

which satisfy

• N = p− fK Ad(8)(N ),

• 8 ◦ τ(g) ◦8−1
= τ(g0gg−1

0 ) for all g ∈ IL/K , and

• N = Ad(τ (g))(N ) for all g ∈ IL/K .
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To go from YL/K ,ϕ,N to G- WDE(L/K ), we need to forget the trivialising section and also forget g0;
the representation associated to (8, N, τ ) is given by

r(gn
0 h)=8nτ(h),

where n ∈ Z and h ∈ IK .
The functor YL/K ,ϕ,N is visibly represented by a finite-type affine scheme over E , and there is an

action of G on YL/K ,ϕ,N given by changing the trivialising section; explicitly,

a · (8, N, {τ(g)}g∈IL/K ) := (a8a−1,Ad(a)(N ), {aτ(g)a−1
}g∈IL/K ).

Recall that if Z is an E-scheme equipped with a left-action of an algebraic group H over E , then for any
E-scheme S, the groupoid [Z/H ](S) over S is the category

[Z/H ](S) := {Left H -bundle D→ S and H -equivariant morphism D→ Z}.

A morphism f : D→ D′ in this fibre category is a morphism of H -torsors over S.

Lemma 2.1.3. The quotient stack [YL/K ,ϕ,N /G] is equivalent to the groupoid G- WDE(L/K ).

Proof. We choose g0 ∈ WK lifting ϕ fK. Given an A-valued point of G- WDE(L/K ) with underlying
G-torsor D, the base change D×A D→ D (which is projection on the first factor) is a trivial G-torsor
(with G acting on the second factor). The identity morphism D −→∼ D induces a canonical trivialising
section D→ D×A D, namely the diagonal. Pulling back r and N to D×A D, writing them in coordinates
(with respect to the trivialising section), and writing τ := r |IL/K and 8 := r(g0) gives us a morphism
D→ YL/K ,ϕ,N .

We need to check that the morphism D → YL/K ,ϕ,N is G-equivariant. If A′ is an A-algebra, the
morphism D→ YL/K ,ϕ,N carries x ∈ D(A′) to the fibre of (8, N, τ ) over x . The fibre of D×A D→ D
over x is a copy of DA′ , together with a section (defined by taking the fibre of the diagonal over x). If
g ∈ G(A′), the fibre of D×A D→ D over g · x is also a copy of DA′ , but the section has been multiplied
by g. Thus, our “change-of-basis” formula for triples (8, N, τ ) implies that the morphism D→ YL/K ,ϕ,N

is G-equivariant, as required. �

Similarly, we let YL/K ,N denote the functor on the category of E-algebras parametrising pairs

(N, τ ) ∈ gE(A)×RepA IL/K

such that N =Ad(τ (g))(N ) for all g ∈ IL/K ; and we let YL/K be the functor on the category of E-algebras,
whose A-points are RepA IL/K .

Let K ′/K be a finite extension, and write L ′/K ′ for the compositum of K ′ and L . Then L ′/K ′ is
Galois, with Galois group GalL ′/K ′ ⊂ GalL/K . There are versions of the above functors for L ′/K ′ which
we write YL ′/K ′,ϕ,N , YL ′/K ′,N , and YL ′/K ′ . Restriction of Weil–Deligne representations from WK to WK ′

induces morphisms YL/K ,ϕ,N → YL ′/K ′,ϕ,N , YL/K ,N → YL ′/K ′,N and YL/K → YL ′/K ′ .
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2.2. A tangent-obstruction theory for G- WDE(L/K ). Choose an object DA ∈ G- WDE(L/K ) with
coefficients in an E-algebra A, and let ad DA denote the Weil–Deligne module induced on Lie AutG DA.
Choose g0 ∈ WK which lifts ϕ fK and write 8 := r(g0), let Ad(8) denote the action on ad DA given
by differentiating the homomorphism AutG DA→ AutG DA given by g 7→ 8g8−1, and let adN act by
x 7→ [N, x]. If G = GLn and DA is the trivial torsor, these actions become x 7→ 8 ◦ x ◦ 8−1 and
x 7→ N ◦ x − x ◦ N, respectively. Then we have an anticommutative diagram:

(ad DA)
IL/K

adN
��

1−Ad(8)
// (ad DA)

IL/K

adN
��

(ad DA)
IL/K

p− fK Ad(8)−1
// (ad DA)

IL/K

Here g ∈ IL/K acts on ad DA via Ad(τ (g)); note that the minus sign in p− fK arises because g0 is a lift of
arithmetic Frobenius. This diagram does not depend on our choice of g0, because any two lifts of ϕ fK

differ by an element of IL/K , which acts trivially on (ad DA)
IL/K.

The total complex C •(DA) of this double complex controls the deformation theory of objects of
G- WDE(L/K ). We write H i (ad DA) for the cohomology groups of C •(DA). The following result will
be proved in a very similar way to [Kisin 2008, Proposition 3.1.2], which is an analogous result for
semilinear representations in the case G = GLn .

Proposition 2.2.1. Let A be a local E-algebra with maximal ideal mA and let I ⊂ A be an ideal
with ImA = (0). Let DA/I be an object of G- WDE(L/K ) with coefficients in A/I, with Weil–Deligne
representation (r̄ , N ). Then:

(1) If H 2(ad DA/mA)= 0, then there exists an object DA in G- WDE(L/K ) with coefficients in A, such
that (A/I )⊗A DA ∼= DA/I .

(2) The set of isomorphism classes of liftings of DA/I to DA is either empty or a torsor under I ⊗A/mA

H 1(ad DA/mA).

We begin by proving a preliminary lemma.

Lemma 2.2.2. Let DA be a G-torsor over A, and suppose there is a representation r̄ :WK→AutG(DA/I )

such that r̄ |IL is trivial. Then there is a representation r :WK → AutG(DA) such that r |IL is trivial and r
lifts r̄ . Moreover, the set of infinitesimal automorphisms of r (as a lift of r̄ ) is a torsor under

H 0(WK /IL , I ⊗A/mA ad D IL
A/mA

)= I ⊗A/mA ad DWK
A/mA

,

and the set of lifts of r̄ is a torsor under

H 1(WK /IK , I ⊗A/mA ad D IL/K
A/mA

).

Proof. An isomorphism f̄ : DA/I → DA/I lifts to an isomorphism f : DA→ DA, and the set of such lifts
is a torsor under either a left- or right-action of H 0(A, I ⊗A/mA DA/mA) by [Bellovin 2016, Lemma 3.5].
Thus, for each g ∈WK , we can lift the map r̄(g) : DA/I → DA/I to an isomorphism r(g) : DA→ DA.
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The assignment
(g1, g2) 7→ r(g1)r(g2)r(g1g2)

−1

is a 2-cocycle of WK /IL valued in I ⊗A/mA ad DA/mA . Since we are in characteristic 0, and IL/K is a
finite group, the Hochschild–Serre spectral sequence implies that for each i > 0, we have an isomorphism

H i (WK /IK , I ⊗A/mA ad D IL/K
A/mA

)−→∼ H i (WK /IL , I ⊗A/mA ad DA/mA).

In particular,

H 2(WK /IL , I ⊗A/mA ad DA/mA)
∼= H 2(Ẑ, I ⊗A/mA ad D IL/K

A/mA
)= 0,

so r̄ lifts to a representation r :WK → AutG(DA) with r |IL = 0, as claimed.
An isomorphism f : DA→ DA is an infinitesimal automorphism of r if and only if it is the identity

modulo I and r(g) ◦ f = f ◦ r(g) for all g ∈ WK . Equivalently, f is an element of I ⊗A/mA ad DA/mA

fixed by WK , and since I is a vector space over A/mA, this is equivalent to f ∈ I ⊗A/mA ad DWK
A/mA

, as
desired.

Finally, if r ′ : WK → AutG(D) is another such lift, then g 7→ r ′(g)r(g)−1 is a 1-cocycle of WK /IL

valued in I ⊗A/mA ad DA/mA . But

H 1(WK /IL , I ⊗A/mA ad DA/mA)
∼= H 1(WK /IK , I ⊗A/mA ad D IL/K

A/mA
),

so we are done. �

Proof of Proposition 2.2.1. By [Bellovin 2016, Lemma 3.4], the underlying G-torsor DA/I lifts to
a G-torsor DA over Spec A, and DA is unique up to isomorphism, and by Lemma 2.2.2, r̄ lifts to a
representation r : WK → AutG(DA). Moreover, by [loc. cit., Lemma 3.7], N ∈ ad DA/I lifts to some
N ∈ ad DA such that Ad(r(g))(N ) = N for all g ∈ IL/K , and any two lifts differ by an element of
I ⊗A/mA (ad DA/mA)

IL/K .
Now DA, together with r and N, is an object of G- WDE(L/K ) if and only if N = p− fK Ad(8)(N ),

where 8 := r(ϕ fK ). We define

h := N − p− fK Ad(8)(N ) ∈ I ⊗A/mA ad D IL/K
A/mA

.

If H 2(ad DA/mA) = 0, then by definition there exist f, g ∈ I ⊗A/mA ad D IL/K
A/mA

such that h = adN ( f )+
(p− fK Ad(8)− 1)(g). We can view f and g either as elements of AutG(DA) (congruent to the identity
modulo I ) or as elements of its tangent space. Thus we claim that if we define Ñ := N + g and
8̃ := f −1

◦8, then Ñ = p− fK Ad(8̃)(Ñ ). Indeed,

Ñ − p− fK Ad(8̃)(Ñ )

= N + g− p− fK (Ad(1− f ) ◦Ad(8))(N + g)

= N + g− p− fK Ad(8)(N )− p− fK Ad(8)(g)+ p− fK [ f,Ad(8)(N )] + p− fK [ f,Ad(8)(g)]

= adN ( f )+ p− fK [ f,Ad(8)(N )]

= [h, f ] = 0.
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Here we have used that f, g, h∈ I⊗A/mA ad DGalL/K
A/mA

and I · I ⊂ ImA=0, so the Lie brackets [ f,Ad(8)(g)]
and [h, f ] vanish. This proves part (1).

Now suppose that Ñ = p− fK Ad(8̃)(Ñ ), and let f, g ∈ I ⊗A/mA ad D IL/K
A/mA

. Define Ñ ′ := N + g and
8̃′ := f −1

◦ 8̃. Then

Ñ ′− p− fK Ad(8̃′)(Ñ ′)

= Ñ + g− p− fK Ad(8̃)(Ñ )− p− fK Ad(8̃)(g)+ p− fK [ f,Ad(8̃)(Ñ )] + p− fK [ f,Ad(8̃)(g)]

= (1− p− fK Ad(8̃))(g)+ [ f, Ñ ]

= −(p− fK Ad(8)− 1)(g)− adN ( f ).

Thus, 8̃′, Ñ ′ give another lift if and only if ( f, g) ∈ ker(d1).
Moreover, if (8̃′, Ñ ′) is another lift, it is isomorphic to (8̃, Ñ ) if and only if there is some j ∈

I ⊗A/mA D IL/K
A/mA

such that

Ñ ′ = Ad(1+ j)(Ñ ) and (1+ j)8̃= 8̃′(1+ j).

This is equivalent to

Ñ − Ñ ′ = adN ( j) and 8̃(8̃′)−1
= 1− (1−Ad(8))( j).

In other words, (8̃, Ñ ) and (8̃′, Ñ ′) differ by an element of im(d0), as required. �

2.3. Construction of smooth points. We wish to show that “most” points of YL/K ,ϕ,N are smooth, and so
are their images in YL ′/K ′,ϕ,N for any finite extension K ′/K . In this section we will consider a single fixed
extension K ′/K , and in Section 2.4 below we will deduce a result for all extensions K ′/K simultaneously.

We begin by fixing an inertial type τ : IL/K → G(E). This amounts to considering the fibre of
YL/K ,ϕ,N→ YL/K over the point corresponding to τ . Next, we observe that if we can find r :WK→G(E)
such that r |IK = τ , then 8 := r(g0) is an element of the algebraic group defined over E

NG(τ ) := {h ∈ G | hr(g)h−1
∈ r(IL/K ) for all g ∈ IL/K }.

Note that 8 is not necessarily an element of the centraliser

ZG(τ ) := {h ∈ G | hr(g)h−1
= r(g) for all g ∈ IL/K }.

However, since IL/K is finite (and in particular has only finitely many automorphisms), ZG(τ )⊂ NG(τ )

has finite index; so we have ZG(τ )
◦
= NG(τ )

◦ and Lie ZG(τ ) = Lie NG(τ ). In particular, this implies
that NG(τ ) and ZG(τ ) are reductive:

Theorem 2.3.1. The normaliser NG(τ ) := {h ∈ G | hr(g)h−1
∈ r(IL/K ) for all g ∈ IL/K } of τ(IL/K ) is

a reductive group.

Proof. Since we are working over a field of characteristic 0, it is enough to prove that the connected
component of the identity NG(τ )

◦
= ZG(τ )

◦
= ZG◦(τ )

◦ is reductive. But reductivity for the latter group
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follows from [Prasad and Yu 2002, Theorem 2.1], which states that when a finite group acts on a connected
reductive group, the connected component of the identity of the fixed points is reductive. �

Remark 2.3.2. Prasad and Yu prove their result under the assumption that the characteristic of the ground
field does not divide the order of the group. Conrad, Gabber, and Prasad prove a more general result
[Conrad et al. 2010, Proposition A.8.12], assuming only that the algebraic group acting is geometrically
linearly reductive.

Our hypotheses imply that N ∈ Lie ZG(τ ) and 8 ∈ NG(τ ). However, if (r, N ) exists and has the
correct inertial type, the set of 8 ∈ G(E) compatible with r |IL/K and N is a torsor under ZG(τ )∩ ZG(N ).

We now briefly recall the theory of associated cocharacters over a field of characteristic 0; we refer the
reader to [Jantzen 2004] (in particular Section 5) for further details and proofs. We will not draw attention
to the assumption that our ground field has characteristic 0 below (but we will frequently use it); on the
other hand, we do explain why the results that we are recalling hold over arbitrary fields of characteristic 0.

If N ∈ g is nilpotent, a cocharacter λ : Gm→ G is said to be associated to N if

• Ad(λ(t))(N )= t2 N, and

• λ takes values in the derived subgroup of a Levi subgroup L ⊂ G for which N ∈ l := Lie L is
distinguished (that is, every torus contained in ZL(N ) is contained in the centre of L).

By [McNinch 2004, Theorem 26], for any N there exists a cocharacter associated to N which is defined
over the same field as N. Any two cocharacters associated to N are conjugate under the action of ZG(N )◦.

An sl2-triple is as usual a nonzero triple (X, H, Y ) of elements of g such that [H, X ] = 2X , [H, Y ] =
−2Y, and [X, Y ]= H. The Jacobson–Morozov theorem [Bourbaki 2005, Chapter VIII, §11, Proposition 2]
states that for a nonzero nilpotent element N in a semisimple Lie algebra, an sl2-triple (N, H, Y ) always
exists, and any two such triples (N, H, Y ) and (N, H ′, Y ′) are conjugate under the action of ZG(N )◦

[loc. cit., Chapter VIII, §11, Proposition 1]. Given a pair (N, H) such that [H, N ] = 2N and H ∈ [N, g],
it is possible to construct an sl2-triple (N, H, Y ) [loc. cit., Chapter VIII, §11, Lemme 6] (or the zero triple
if N = H = 0). Since SL2 is simply connected, this implies that there is a homomorphism SL2→ G
which sends the “standard” basis for sl2 to (N, H, Y ).

If we let λ :Gm→SL2→G be the composition of the cocharacter t 7→
( t

0
0

t−1

)
with this homomorphism

SL2→ G, then λ is associated to N. Moreover, the association λ 7→ dλ(1) sends cocharacters associated
to N to elements H such that [H, N ] = 2N and H ∈ [N, g], and this is an injective map [Jantzen 2004,
Proposition 5.5] (this reference assumes that the ground field is algebraically closed, but this hypothesis
is not used). Thus (in characteristic 0) associated cocharacters are a group-theoretic analogue of the
Jacobson–Morozov theorem.

We use the following properties of associated cocharacters; the given reference assumes the ground
field is algebraically closed, but these statements can all be checked after extension of the ground field.

Proposition 2.3.3 [Jantzen 2004, 5.9–11]. Let G be a connected reductive group, let N ∈ g be a nilpotent
element, and let λ : Gm→ G be an associated cocharacter for N. Then:
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(1) The associated parabolic PG(λ) depends only on N, not on the choice of associated cocharacter.

(2) We have ZG(N )⊂ PG(λ). In particular, ZG(N )= Z PG(λ)(N ).

(3) ZG(N )= (UG(λ)∩ ZG(N ))o (ZG(λ)∩ ZG(N )).

(4) ZG(λ)∩ ZG(N ) is reductive.

In particular, by Proposition 2.3.3(3), the disconnectedness of ZG(N ) is entirely accounted for by the
disconnectedness of ZG(λ)∩ ZG(N ). The connectedness assumption on G for that part is removed in
[Bellovin 2016, Proposition 4.9], so we may apply it to groups such as ZG(τ ) (which is reductive but not
necessarily connected).

We will use the following lemma in the proof of Theorem 2.3.6 below.

Lemma 2.3.4. If λ is an associated cocharacter of N, then the weight-2 part of g for the adjoint action
of λ is in the image of adN .

Proof. If N = 0, then λ is the constant cocharacter and the corresponding weight-2 subspace is trivial.
Otherwise, we may find an sl2-triple of the form (N, dλ(1), Y ) and view g as a representation of sl2.
Then the result follows by the representation theory of sl2: if T ∈ g is in the weight-2 part, then 1

2 [Y, T ]
is in the weight-0 part and [

N, 1
2 [Y, T ]

]
=

1
2 [[N, Y ], T ] = 1

2 [dλ(1), T ] = T,

so T is in the image of adN . �

Let f : G → G ′ be a morphism of reductive groups over E , inducing a morphism g→ g′ on Lie
algebras, which we also denote by f . We use the following lemma in the proof of Theorem 2.3.8 below.

Lemma 2.3.5. If λ is an associated cocharacter for N ∈ g, then f ◦ λ is an associated cocharacter
for f (N ).

Proof. It is clear that dλ(1) is semisimple. Then there exists some Y ∈ g such that (N, dλ(1), Y )
is an sl2-triple, and therefore there is a homomorphism SL2 → G such that the precomposition with
the diagonal is λ. The composition Gm → SL2 → G → G ′ is f ◦ λ. Moreover, if we consider the
composition SL2→ G→ G ′ and differentiate, we get a map sl2→ g′ sending the “standard” basis of sl2
to ( f (N ), f (dλ(1)), f (Y )). This shows that [ f (dλ(1)), f (N )] = 2 f (N ) and f (dλ(1)) is in the image
of ad f (N ). Since f (dλ(1))= d( f ◦ λ)(1), this shows that f ◦ λ is associated to f (N ), by [Jantzen 2004,
Proposition 5.5]. �

If K ′/K is a finite extension, we write H 2
L ′/K ′ for the coherent sheaf on YL/K ,ϕ,N given by the

cokernel of

(adD)IL′/K ′ ⊕ (adD)IL′/K ′
adNL′

−(p− fK ′ Ad(8 fK ′ / fK )−1)
−−−−−−−−−−−−−−−−−−→ (adD)IL′/K ′ ,

where (D,8, N, τ ) is the universal object over YL/K ,ϕ,N , the operator adNL′
acts on the first factor and

(p− fK ′ Ad(8 fK ′/ fK )−1) acts on the second factor. Then the fibre of H 2
L ′/K ′ at a closed point of YL/K ,ϕ,N

controls the obstruction theory of the restriction to WK ′ of the corresponding Weil–Deligne representation.
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Theorem 2.3.6. Let K ′/K be a finite extension. Then there is a dense open subscheme U ⊂ YL/K ,ϕ,N

(possibly depending on K ′) such that H 2
L ′/K ′ |U = 0.

Proof. Since the support of H 2
L ′/K ′ is closed, it suffices to show that if we consider the map YL/K ,ϕ,N →

YL/K ,N , then each component of the fibre over some point N ∈ YL/K ,N contains a point (8, N ) whose
corresponding H 2 vanishes (when viewed as a point of YL ′/K ′,ϕ,N ).

To do this, we consider a new moduli problem ỸL/K ,ϕ,N , which by definition is the functor on the
category of E-algebras whose A-points are triples

(8, N, τ ) ∈ NG(τ )×Lie ZG(τ )×RepA IL/K

which satisfy N = p− fK Ad(8)(N ).
This is representable by an affine scheme which we also write as ỸL/K ,ϕ,N , and there is a natural

morphism ỸL/K ,ϕ,N → YL/K ,N . Indeed, the map YL/K ,ϕ,N → YL/K ,N factors through the natural
inclusion YL/K ,ϕ,N ↪→ ỸL/K ,ϕ,N , and the fibres of YL/K ,ϕ,N → YL/K ,N are closed and open in the fibres
of ỸL/K ,ϕ,N → YL/K ,N . Thus, it suffices to study the fibres of the map ỸL/K ,ϕ,N → YL/K ,N . (Note that
the tangent-obstruction complex for objects of G- WDE(L/K ) makes sense over ỸL/K ,ϕ,N as well.)

Choose an associated cocharacter λ : Gm→ ZG(τ )
◦ for N, so that in particular Ad(λ(t))(N )= t2 N,

and let 8 := λ(p fK /2). Then (8, N, τ ) is a point of ỸL/K ,ϕ,N , and we wish to study the restriction
(8 fK ′/ fK , NL ′, τ |IL′/K ′

).
If D denotes the underlying G-torsor for (8, N, τ ), and ad D denotes its pushout via the adjoint

representation, then Ad(8) and Ad(8 fK ′/ fK ) are semisimple operators on (ad D)IL/K and (ad D)IL′/K ′ ,
respectively. Therefore, p− fK Ad(8)− 1 and p fK ′ Ad(8 fK ′/ fK )− 1 are semisimple as well (since they
are the difference of commuting semisimple operators in characteristic 0).

Thus, to compute the cokernel of p− fK ′ Ad(8 fK ′/ fK ) − 1, it suffices to compute its kernel. Now
(ad D)IL′/K ′ is graded by the adjoint action of λ :Gm→ ZG(τ )⊂ ZG(τ |IL′/K ′

), and if (ad D)
IL′/K ′

k denotes
the weight-k subspace, then p− fK ′ Ad(8 fK ′/ fK )− 1 preserves it, so it suffices to compute

ker(p− fK ′ Ad(8 fK ′/ fK )− 1)|
(ad D)

IL′/K ′
k

for each k. But p− fK ′ Ad(8 fK ′/ fK )− 1 acts invertibly unless k = 2 (in which case it acts by 0), so the
cokernel of p− fK ′ Ad(8 fK ′/ fK )−1 is exactly (ad D)

IL′/K ′

2 . By Lemma 2.3.4, the weight-2 part of gIL′/K ′ is
in the image of adN , so we conclude that H 2

L ′/K ′ vanishes at (8, N ), and at its image in YL ′/K ′,ϕ,N .
We need to find similar points on every connected component of the fibre of ỸL/K ,ϕ,N → YL/K ,N over

N ∈ YL/K ,N . This fibre is a torsor under NG(τ )∩ ZG(N ), and the disconnectedness of NG(τ )∩ ZG(N )
is entirely accounted for by the disconnectedness of NG(τ ) ∩ ZG(λ) ∩ ZG(N ), by [Bellovin 2016,
Proposition 4.9] (applied with G ′ = NG(τ )). On each component of NG(τ )∩ ZG(N ), we may therefore
by [loc. cit., Lemma 5.3] choose a finite-order element c ∈ NG(τ ) ∩ ZG(λ) ∩ ZG(N ). (Note that
NG(τ )∩ ZG(λ)∩ ZG(N )= Z NG(τ )(N )∩ Z NG(τ )(λ) is reductive by Proposition 2.3.3.)
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We now check that H 2
L/K and H 2

L ′/K ′ vanish at the points of ỸL/K ,ϕ,N and ỸL ′/K ′,ϕ,N , respectively,
corresponding to (8 · c, N ).

Firstly, we claim that p− fK ′ Ad((8 · c) fK ′/ fK )−1 is semisimple, or equivalently, that Ad((8 · c) fK ′/ fK )

is semisimple. For this, it suffices to check that some iterate of Ad((8 · c) fK ′/ fK ) is semisimple (since we
are in characteristic 0). Let n be the order of c. Since c and 8= λ(p fK /2) commute,

Ad(8 fK ′/ fK · c)n = Ad(8n fK ′/ fK · cn)= Ad(8n fK ′/ fK ).

But since Ad(8) is semisimple by construction, so is Ad(8n fK ′/ fK ), as claimed.
Thus, to compute the cokernel of p− fK ′ Ad((8 · c) fK ′/ fK )− 1, it suffices to compute its kernel, which

is contained in the kernel of p−n fK ′ Ad(8n fK ′/ fK )− 1. Since p−n fK ′ Ad(8n fK ′/ fK )− 1 acts invertibly on
each weight space (ad D)IL/K

k unless k = 2, the cokernel of p− fK ′ Ad(8 fK ′/ fK · c)− 1 is contained in
(ad D)IL/K

2 . Since (ad D)IL/K
2 is again in the image of adN by Lemma 2.3.4, we are done. �

Corollary 2.3.7. The stack G- WDE(L/K ) is generically smooth, and is equidimensional of dimension 0;
equivalently, the scheme YL/K ,ϕ,N is generically smooth, and is equidimensional of dimension dim G. The
nonsmooth locus is precisely the locus of Weil–Deligne representations D with H 2(ad D) 6= 0. Moreover,
YL/K ,ϕ,N is locally a complete intersection and reduced.

Proof. It is enough to prove the statement for YL/K ,ϕ,N . Let U ⊂ YL/K ,ϕ,N be the dense open subscheme
provided by Theorem 2.3.6 (with K ′= K ). Then at each closed point x of U, it follows from Lemma 2.2.2
and Proposition 2.2.1 that YL/K ,ϕ,N is formally smooth at x . Furthermore, for any closed point x
of YL/K ,ϕ,N with corresponding Weil–Deligne representation Dx , the dimension of the tangent space
at x is dim G− dim H 0(Dx)+ dim H 1(Dx). Since the Euler characteristic of C •(Dx) is 0, this is equal
to dim G+ dim H 2(ad Dx)= dim G, and the claim about H 2(ad D) follows immediately.

To see that YL/K ,ϕ,N is reduced and locally a complete intersection, we proceed as in the proof
of [Bellovin 2016, Corollary 5.4]. We have morphisms YL/K ,ϕ,N → YL/K ,N → YL/K , and the fibre
above a point τ ∈ YL/K is defined by the relation N = p− fK Ad(8)(N ), where 8 ∈ ZG(τ ) and N ∈
Lie ZG(τ ). In other words, the fibre YL/K ,ϕ,N |τ is cut out of the smooth (2 dim ZG(τ ))-dimensional space
ZG(τ )×Lie ZG(τ ) by dim ZG(τ ) equations.

The quotient map G → G/ZG(τ ) ∼= YL/K admits sections étale locally. Thus, there is an étale
neighborhood U→YL/K of τ such that the U -pullback YL/K ,ϕ,N×YL/K U is isomorphic to U×YL/K ,ϕ,N |τ .
Since YL/K ,ϕ,N ×YL/K U is étale over YL/K ,ϕ,N , it is equidimensional of dimension dim G. On the other
hand, it is cut out of the smooth (dim U + 2 dim ZG(τ ))-dimensional space U × ZG(τ )×Lie ZG(τ ) by
dim ZG(τ ) equations.

Since dim U = dim YL/K = dim G − dim ZG(τ ) and being locally a complete intersection can be
checked étale locally, it follows that YL/K ,ϕ,N is locally a complete intersection. Moreover, schemes
which are local complete intersections are Cohen–Macaulay, by [Matsumura 1989, Theorem 21.3],
and Cohen–Macaulay schemes which are generically reduced are reduced everywhere, by [loc. cit.,
Theorem 17.3], so we are done. �
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If G→ G ′ is a morphism of reductive groups over E , then for any family of G-torsors D over Spec A,
we can push out to a family D′ of G ′-torsors. Therefore, the moduli space YL/K ,ϕ,N of (framed) G-valued
Weil–Deligne representations carries a family D′ of G ′-torsors, and ad D′ := Lie AutG ′(D′) is a coherent
sheaf on YL/K ,ϕ,N . Since D is a trivial G-torsor, D′ is a trivial G ′-torsor. Since pushing out G-torsors to
G ′-torsors is functorial, D′ is a family of G ′-valued Weil–Deligne representations and we can construct
the complex C •(D′). We let H 2

G ′ denote its cohomology in degree 2.

Theorem 2.3.8. Let f : G→ G ′ be a morphism of reductive groups over E. Then there is a dense open
subset U ⊂ YL/K ,ϕ,N (possibly depending on G ′) such that H 2

G ′ |U = 0.

Proof. As in the proof of Theorem 2.3.6, it suffices to construct a point on each connected component
of each fibre of the map YL/K ,ϕ,N → YL/K ,N where H 2

G ′ vanishes. In fact, the same points work: by
Lemma 2.3.5 the composition f ◦ λ is an associated cocharacter for f∗(N ). Therefore, H 2

G ′ vanishes
at the point corresponding to (λ(p fK /2), N ). Similarly, if c ∈ NG(τ )∩ ZG(λ)∩ ZG(N ) is a finite-order
point, then H 2

G ′ vanishes at the point corresponding to (λ(p fK /2) · c, N ). �

Remark 2.3.9. The proofs of Theorems 2.3.6 and 2.3.8 justify the claim we made in the Introduction,
that all of the smooth points that we explicitly construct arise from pushing out a single “standard” smooth
point for SL2. Indeed, as discussed above, given an associated cocharacter λ for N, the map λ 7→ dλ(1)
allows us to determine a homomorphism SL2→ G, and we see that the choice of 8, N made in the proof
of Theorem 2.3.6 is the image under this homomorphism of the elements 8, N for SL2 discussed in the
Introduction.

Remark 2.3.10. The Jacobson–Morozov theorem allows one to think of semisimple Weil–Deligne
representations as representations of WK × SL2; see [Gross and Reeder 2010, Proposition 2.2] for a
precise statement. From this perspective, our construction of smooth points from associated cocharacters
can be summarised as follows: given a nilpotent N ∈ Lie G, we obtain a map SL2 → G, and the
corresponding Weil–Deligne representation is obtained by composing with the map

WK ×SL2→ SL2

which on the first factor is unramified and takes an arithmetic Frobenius to the matrix(
p fK 0
0 p− fK

)
,

and is the identity on the second factor.

2.4. Tate local duality for Weil–Deligne representations. If D is a G-valued Weil–Deligne representa-
tion over a field E , we can also prove an analogue of Tate local duality for the complex C •(D). In addition
to allowing us to compute with either kernels or cokernels, this pairing allows us to give an explicit
characterisation of the smooth locus (see Corollary 2.4.2). Since we only need the pairing between H 0

and H 2, we have not worked out the details of the pairing on H 1s, which for reasons of space we leave to
the interested reader.
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To construct pairings H i ((ad D)∗(1))× H 2−i (ad D)→ E(1), we use the evaluation pairing

ev : (ad D)∗× ad D→ E .

Here the “(1)” means that we multiply the action of Ad(8) by p fK ; since (ad D)∗ and (ad D)∗(1) have the
same underlying vector space (as do E and E(1)), we have an induced pairing ev(1) : (ad D)∗(1)×ad D→
E(1). Note that if X ∈ (ad D)∗, Y ∈ ad D, then

ev(Ad(8)(X),Ad(8)(Y ))= ev(X, Y ),

and if X ∈ (ad D)∗(1), Y ∈ ad D, then

ev(1)(Ad(8)(X),Ad(8)(Y ))= ev(p fK Ad(8)(X),Ad(8)(Y ))= p fK ev(X, Y )=Ad(8)(ev(1)(X, Y )).

Proposition 2.4.1. Let D be as above. Then the evaluation pairing induces a perfect pairing

H 0((ad D)∗(1))× H 2(ad D)→ E(1).

Proof. We first check that the pairing ev(1) : (ad D)∗(1)×ad D→ E(1) descends to a well-defined pairing
H 0((ad D)∗(1))× H 2(ad D)→ E(1). If X ∈ (ad D)∗(1)IL/K is in the kernel of adN and the kernel of
1−Ad(8), and Y ∈ (ad D)IL/K, then

ev(1)(X, Y + adN (Z))= ev(1)(X, Y )+ ev(1)(X, adN (Z))

= ev(1)(X, Y )− ev(1)(adN (X), Z)

= ev(1)(X, Y ),
and

ev(1)(X, Y+(p− fK Ad(8)−1)(Z))= ev(1)(X, Y )+ev(1)(X, p− fK Ad(8)(Z))−ev(1)(X, Z)

= ev(1)(X, Y )+p− fK ev(1)(Ad(8)(X),Ad(8)(Z))−ev(1)(X, Z)

= ev(1)(X, Y )+ev(1)(X, Z)−ev(1)(X, Z)

= ev(1)(X, Y ),

so the pairing is indeed well-defined.
Next, we need to check that this pairing is perfect. Suppose X ∈ H 0((ad D)∗(1)) and ev(1)(X, Y )= 0

for all Y ∈ H 2(ad D). Then ev(1)(X, Y ) = 0 for all Y ∈ (ad D)IL/K, so X = 0. This implies that the
natural map H 0((ad D)∗(1))→ (H 2(ad D)∗)(1) is injective.

On the other hand, let f : H 2(ad D)→ E(1) be an element of (H 2(ad D)∗)(1). By composition, we
have a linear functional

f : (ad D)IL/K → H 2(ad D)→ E(1).

This is an element of ((ad D)IL/K )∗(1); we need to show that adN ( f )= (1−Ad(8))( f )= 0. But for any
Y ∈ (ad D)IL/K,

ev(1)(adN ( f ), Y )= ev( f,− adN (Y ))= 0
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since f factors through H 2(ad D). Similarly, for any Y ∈ (ad D)IL/K,

ev(1)((1−Ad(8))( f ), Y )= ev(1)( f, Y )− ev(1)(Ad(8)( f ), Y )

= ev(1)( f, Y )− ev(1)( f, p− fK Ad(8)−1(Y ))

= ev(1)( f, (1− p− fK Ad(8)−1)(Y ))

= ev(1)
(

f, (p fK Ad(8)− 1)(p− fK Ad(8−1)(Y ))
)
= 0

Since Ad(8) : (ad D)IL/K → (ad D)IL/K is an isomorphism, this suffices. �

Corollary 2.4.2. The nonsmooth locus of the stack G- WDE(L/K ) is precisely the locus of Weil–Deligne
representations D with H 0((ad D)∗(1)) 6= 0.

Proof. This is immediate from Corollary 2.3.7 and Proposition 2.4.1. �

We now use Corollary 2.4.2 to deduce that there is a dense set of points of YL/K ,ϕ,N which give smooth
points for every finite extension K ′/K .

Definition 2.4.3. A point x ∈ YL/K ,ϕ,N is very smooth if its image in YL ′/K ′,ϕ,N is smooth for every finite
extension K ′/K .

Lemma 2.4.4. Fix a finite extension E ′/E. There is a finite extension K ′/K (which depends only on E ′)
such that H 2

L ′/K ′ vanishes at x ∈ YL/K ,ϕ,N (E ′) if and only if x is very smooth.

Proof. Suppose (D,8, N, τ ) corresponds to a point of YL/K ,ϕ,N such that H 2
L ′′/K ′′ does not vanish at its

image in YL ′′/K ′′,ϕ,N . By Corollary 2.4.2, this holds if and only if H 0((ad D)∗(1)) does not vanish.
Thus, it suffices to consider the injectivity of

1− p fK ′′ Ad(8 fK ′′/ fK )∗ : (ad D)IL′′/K ′′ → (ad D)IL′′/K ′′

on ker(adN ), where Ad(8 fK ′′/ fK )∗denotes the dual of Ad(8 fK ′′/ fK ). If this map is not injective, this
implies that p fK Ad(8)∗ has a generalised eigenvalue λ satisfying λ fK ′′/ fK = 1. But the characteristic
polynomial of Ad(8) acting on ad D has degree dim ad D = dim G and there are only finitely many roots
of unity with minimal polynomial of bounded degree over E ′. It follows that there are only a finite number
of possibilities for λ.

In other words, to check whether 1− p fK ′′ Ad(8 fK ′′/ fK )∗ has a nontrivial kernel for any finite extension
K ′′/K , it suffices to consider some fixed K ′ such that fK ′/ fK is divisible by all n such that φ(n)≤ dim G
and such that τ |IL′/K ′

is trivial (where φ(n) denotes Euler’s totient function), as required. �

Corollary 2.4.5. The set of closed points of G- WDE(L/K ) which are very smooth is Zariski dense.

Proof. Let E ′/E be a finite extension such that YL/K ,ϕ,N (E ′) is Zariski dense in YL/K ,ϕ,N . By
Lemma 2.4.4, there is a finite extension K ′/K such that x ∈ YL/K ,ϕ,N (E ′) is very smooth if H 2

L ′/K ′

vanishes at x . By Theorem 2.3.6, there is a Zariski dense open subscheme U ⊂ YL/K ,ϕ,N such that
H 2

L ′/K ′ |U = 0. But then the intersection U ∩YL/K ,ϕ,N (E ′) is a Zariski dense subset of YL/K ,ϕ,N consisting
of very smooth points, so we are done. �
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2.5. l-adic Hodge theory. We suppose in this subsection that l 6= p. We briefly recall some results
from [Fontaine 1994], which will allow us to relate l-adic representations of GalK to Weil–Deligne
representations.

Recall that by a theorem of Grothendieck, a continuous representation ρ : GalK → GLd(E) is au-
tomatically potentially semistable, in the sense that there is a finite extension L/K such that ρ|IL is
unipotent. After making a choice of a compatible system of l-power roots of unity in K , we see from
[loc. cit., Propositions 1.3.3, 2.3.4] that there is an equivalence of Tannakian categories between the
category of E-linear representations of GalK which become semistable over L , and the full subcategory
of Weil–Deligne representations (r, N ) of WK over E with the properties that r |IL is trivial and the roots
of the characteristic polynomial of any arithmetic Frobenius element of WL are l-adic units (such an
equivalence is given by the functor ŴD pst of [loc. cit., §2.3.7]).

2.6. The case l = p: (ϕ, N)-modules. In this section we let l = p, and we explain the relationship
between Weil–Deligne representations and (ϕ, N )-modules. Let K0, L0 be the maximal unramified
subfields of K , L respectively, of respective degrees fK , fL over Qp. Let E/Qp be a finite extension,
which is large enough that it contains the image of all embeddings L0 ↪→ E , so that we may identify
E ⊗Qp L0 with

⊕
L0↪→E E . Let ϕ denote the arithmetic Frobenius.

If D is a ResE⊗Qp L0/E G-torsor over Spec A, we may also view D as a G-torsor over A⊗Qp L0. Then
any automorphism g : L0→ L0 extends to an automorphism of A⊗Qp L0, and we may pull D back
to a G-torsor g∗D over A⊗Qp L0. Then we may view g∗D as a ResE⊗Qp L0/E G-torsor over Spec A,
which we also denote by g∗D. In particular, we may pull D back by Frobenius and obtain another
ResE⊗Qp L0/E G-torsor ϕ∗D over Spec A.

This motivates us to define the following groupoid on E-algebras.

Definition 2.6.1. The category of G-valued (ϕ, N,GalL/K )-modules, which we denote by G-ModL/K ,ϕ,N ,
is the groupoid whose fibre over an E-algebra A consists of a ResE⊗L0/E G-torsor D over A, equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D, and

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D.

These are required to satisfy the following compatibilities:

(1) Ad8(N )= 1
p N.

(2) Adτ(g)(N )= N for all g ∈ GalL/K .

(3) τ(g1g2)= τ(g1) ◦ g∗1τ(g2) for all g1, g2 ∈ GalL/K .

(4) τ(g) ◦ g∗8=8 ◦ϕ∗τ(g) for all g ∈ GalL/K .

Here Ad8 and Adτ(g) are “twisted adjoint” actions on Lie AutG D; after pushing out Y by a represen-
tation σ ∈ RepE(G), they are given by M 7→8σ ◦M ◦8−1

σ and M 7→ τ(g)σ ◦M ◦ τ(g)−1
σ , respectively.
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Note that the action of GalL/K on scalars factors through the abelian quotient 〈ϕ fK 〉, which also commutes
with ϕ, so (g1g2)

∗
= g∗1 ◦ g∗2 and g∗ϕ∗ = ϕ∗g∗.

Requiring D to be a trivial ResE⊗L0/E -torsor equipped with a trivialising section lets us define a
representable functor which covers G-ModL/K ,ϕ,N,τ , as follows.

Definition 2.6.2. Let X L/K ,ϕ,N denote the functor on the category of E-algebras whose A-points are
triples

(8, N, τ ) ∈ (ResE⊗L0/E G)(A)× (ResE⊗L0/E gE)(A)×RepA⊗L0
GalL/K

which satisfy

• N = pAd(8)(N ),

• τ(g) ◦8=8 ◦ τ(g), and

• Ad(τ (g))(N )= N for all g ∈ GalL/K .

This functor is visibly representable by a finite-type affine scheme over E , which we also denote
by X L/K ,ϕ,N . Moreover, there is a left action of ResE⊗L0/E G on X L/K ,ϕ,N coming from changing the
choice of trivialising section. Explicitly,

a · (8, N, {τ(g)}g∈GalL/K )= (a8ϕ(a)
−1,Ad(a)(N ), {aτ(g)(g · a)−1

}g∈GalL/K ).

As in Lemma 2.1.3, we have the following:

Lemma 2.6.3. The stack quotient [X L/K ,ϕ,N /ResE⊗L0/E G] is isomorphic to G-ModL/K ,ϕ,N .

Proof. The proof follows as in Lemma 2.1.3. �

Given a (ϕ, N,GalL/K )-module, there is a standard recipe due to Fontaine for constructing a Weil–
Deligne representation, and there is an analogous construction for ResE⊗L0/E G-torsors. Indeed, let A be
an E-algebra. Given a ResE⊗L0/E G-torsor D over A, and an embedding σ : L0 ↪→ E , the σ -isotypic
part is a G-torsor over A which we denote by Dσ . Moreover, if Nσ denotes the σ -isotypic component
of N, then Nσ ∈ Lie AutG(Dσ ) is nilpotent.

Given an isomorphism 8 : ϕ∗D−→∼ D, the composition 8 fL :=8◦ϕ∗(8)◦ · · ·◦ (ϕ fL−1)∗(8) restricts
to an isomorphism Dσ → Dσ for each σ .

Lemma 2.6.4. For any σ and any E-algebra A, the association (D,8) (Dσ ,8
fL ) defines an equiva-

lence of categories between ResE⊗L0/E G-torsors D over A equipped with an isomorphism8 :ϕ∗D−→∼ D,
and G-torsors Dσ over A equipped with an isomorphism 8′σ : Dσ −→

∼ Dσ .

Proof. Write the embeddings σi : L0 ↪→ E , i ∈ Z/ fLZ, with the numbering chosen so that σ1 = σ , and 8
induces isomorphisms σi : Di+1 −→

∼ Di for each i (where we write Di for Dσi ).
Let A→ A′ be an fpqc cover trivialising D, so that DA′ is a trivial torsor and we may choose a section.

Then we can write 8= (81, . . . , 8 fL ).
We define

a := (1, (82 · · ·8 fL )
−1, (83 · · ·8 fL )

−1, . . . , 8−1
fL
).
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Then if we multiply our choice of trivialising section by a, we replace 8 by

a8ϕ(a)−1
= (81 · · ·8 fL , 1, . . . , 1).

Thus, we can recover (DA′,8) from ((Dσ )A′,8
fL ).

Furthermore, DA′ is equipped with a descent datum, since it is the base change of D. Therefore, (Di )A′

has a descent datum, and since (Di )A′→ Spec A′ is affine, it is effective.
Now suppose that f = ( f1, . . . , f fL ) : D −→∼ D′ is an isomorphism of ResE⊗L0/E G-torsors equipped

with isomorphisms 8 : ϕ∗D −→∼ D and 8′ : ϕ∗D′ −→∼ D′. We obtain a corresponding isomorphism
f A′ : DA′ −→

∼ D′A′ , together with a covering datum. Then each fi : Di −→
∼ D′i is an isomorphism of

G-torsors, and we have

fi ◦8i =8
′

i ◦ fi+1 : Di+1→ D′i .

Multiplying the trivialising section of DA′ by a and multiplying the trivialising section of DA′ by a′ has
the effect of replacing f with a′ ◦ f ◦ a−1. Then if we let a and a′ be as above, f becomes ( f1, . . . , f1).
Thus, we can also recover morphisms of pairs (D,8)→ (D′,8′) from the associated morphisms of pairs
(Di ,8

fL )→ (D′i, (8
′) fL ), as required. �

Now suppose that D is a ResE⊗L0/E G-torsor equipped with an isomorphism 8 : ϕ∗D −→∼ D, and
suppose in addition that D is equipped with a semilinear action τ of GalL/K , compatible with 8 in the
sense that 8 ◦ϕ∗τ(g)= τ(g) ◦ g∗(8) for all g ∈ GalL/K . For each σ , we will construct a Weil–Deligne
representation on Dσ which is trivial on IL .

There is a surjective map WK � GalL/K which restricts to a surjection IK � IL/K . If g ∈ WK , we
write ḡ for its image in GalL/K . For g ∈WK , we have an isomorphism

τ(ḡ) : g∗D −→∼ D

and we have an isomorphism

8−v(g) fK := D 8−1
−→ϕ∗D ϕ∗8−1

−−→· · ·
(gϕ−1)∗8−1
−−−−−→ g∗D.

Accordingly, we define r(g) : Dσ −→
∼ Dσ to be the restriction of

r(g) := τ(ḡ) ◦8−v(g) fK : D −→∼ D.

Note that r |IL is trivial.

Lemma 2.6.5. Let D be a G-torsor and let r : WK → AutG(D) be a homomorphism such that r |IL is
trivial. Then r(WL) centralises r(WK ).

Proof. Let g ∈WK and let h ∈WL . Then v(ghg−1h−1)= 0, so ghg−1h−1
∈ IK . Moreover, WL ⊂WK is

a normal subgroup, so that ghg−1h−1
∈WL . But IK ∩WL = IL , so r(ghg−1h−1)= 1, as required. �

We now prove the equivalence between Weil–Deligne representations and (ϕ, N )-modules. In the case
that G = GLn , the following lemma is [Breuil and Schneider 2007, Proposition 4.1].
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Lemma 2.6.6. The map r :WK →AutG(Dσ ) is a homomorphism, and (D,8, N, τ ) (Dσ , r, Nσ ) is an
equivalence of categories between G-ModL/K ,ϕ,N and G- WDE(L/K ).

Proof. Since τ(ḡ) ◦ g∗(8)=8 ◦ϕ∗(τ (ḡ)), we have 8−1
◦ τ(ḡ)= ϕ∗(τ (ḡ)) ◦ g∗(8−1) as isomorphisms

g∗D −→∼ ϕ∗D. It follows that

r(g1)r(g2)= (τ (ḡ1) ◦8
−v(g1) fK ) ◦ (τ (ḡ2) ◦8

−v(g2) fK )

= τ(ḡ1) ◦ (ϕ
v(g1) fK )∗(τ (ḡ2) ◦8

−v(g1g2) fK )

= τ(g1g2) ◦8
−v(g1g2) fK = r(g1g2)

and r is a homomorphism. Another short computation shows that

Nσ = p−v(g) fK Ad(r(g))(Nσ ),

so that (Eσ , r, Nσ ) is a G-valued Weil–Deligne representation.
The association (D,8, N, τ )  (Dσ , r, Nσ ) is clearly functorial. Moreover, if f : D → D′ is a

morphism of G-valued (ϕ, N,GalL/K )-modules, then 8′ ◦ ϕ∗( f ) = f ◦ 8. This implies that f is
determined by its restriction f |Dσ

to the σ -isotypic piece, and therefore, the functor is fully faithful.
We need to check that this functor is essentially surjective. In other words, we need to check that we

can construct (D,8, N, τ ) from (Dσ , r, Nσ ). To do so, we number the embeddings as σi , as in the proof
of Lemma 2.6.4. For each element h ∈ IL/K , we fix a lift to an element h̃ ∈ IK ; note that since r |IL is
trivial, r(h̃) is independent of the choice of h̃.

To construct 8 fL |Di from r , we observe that if g0 ∈ WK lifts ϕ fK and (Di , r, Ni ) is in the essential
image of our functor, then

r(g fL/ fK
0 )= τ(ḡ fL/ fK

0 )8− fL .

But ḡ fL/ fK
0 ∈ IL/K , so we can define 8 fL |Di := r(g fL/ fK

0 )−1r(˜̄g fL/ fK
0 ).

We need to check that 8 fL |Di does not depend on our choice of g0. Indeed, if h ∈ IK , then

(g0h) fL/ fK = h1 · · · h fL/ fK−1g fL/ fK
0 ,

where hi := gi
0hg−i

0 ∈ IK , so we may write (g0h) fL/ fK = h′g fL/ fK
0 for some h′ ∈ IK . Then r( ˜h′)= r(h′), so

r((g0h) fL/ fK )−1r( ˜g0h fL/ fK )= r(g fL/ fK
0 )−1r(h′)−1r( ˜h′)r(˜̄g fL/ fK

0 )= r(g fL/ fK
0 )−1r(˜̄g fL/ fK

0 ),

as required.
Lemma 2.6.4 now implies that we can construct (D,8) from (Di ,8

fL |Di ). Since WK → GalL/K is
surjective, we define for g ∈ GalL/K

τ(g) := r(g̃) ◦8v(g̃) fK = r(g̃) ◦ (8 ◦ · · · ◦ (ϕ−1)∗g∗8)

as a map Di+v(g) fK→Di . We need to check that this is well-defined. Note that the kernel of WK→GalL/K

is WL , and if h ∈WL , then v(h)= ( fL/ fK ) · i for some i ∈ Z. Thus, for any h ∈WL ,

r(g̃h) ◦8v(g̃h) fK = r(g̃)r(h) ◦8i · fL ◦8v(g̃) fK ,
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so it suffices to show that r(h) ◦8i · fL = 1. Since r |IL is trivial, it suffices to consider the case i = 1, i.e.,
h generates the unramified quotient of WL . But then

r(h) ◦8 fL = r(h)r(g fL/ fK
0 )−1r(˜̄g fL/ fK

0 );

on the one hand hg− fL/ fK
0 ∈ IK and ˜̄g fL/ fK

0 ∈ IK , and on the other hand g− fL/ fK
0

˜̄g fL/ fK
0 ∈WL . It follows that

hg− fL/ fK
0

˜̄g fL/ fK
0 ∈ IK ∩WL = IL

and the result follows.
We can also construct τ(g) : D j+v(g̃) fK −→

∼ D j for the remaining σ j -isotypic factors. Indeed, the
desired compatibility between 8 and τ forces us to set

ϕ∗τ(g) :=8−1
◦ τ(g) ◦ g∗8 : Di+v(g̃) fK+1 −→

∼ Di+1 (2-6-1)

(and we proceed inductively).
We need to check that this is well-defined. More precisely, we need to check that (ϕ fL )∗τ(g)= τ(g)

for all g ∈ GalL/K . In other words, we need to check that

τ(g) ◦ (g∗8 ◦ϕ∗g∗8 ◦ · · · ◦ (ϕ fL−1)∗g∗8)= (8 ◦ϕ∗8 ◦ · · · ◦ (ϕ fL−1)∗8) ◦ τ(g)

as isomorphisms Di+v(g̃) fK −→
∼ Di , or equivalently that

τ(g) ◦ g∗8 fL =8 fL ◦ τ(g).

But
τ(g) ◦ g∗8 fL = (r(g̃) ◦8v(g̃) fK ) ◦ g∗(8 fL )

= r(g̃) ◦8 fL ◦8v(g̃) fK

= r(g̃) · r(g− fL/ fK
0

˜̄g fL/ fK
0 ) ◦8v(g̃) fK

= r(g− fL/ fK
0

˜̄g fL/ fK
0 ) · r(g̃) ◦8v(g̃) fK

=8 fL ◦ τ(g).

Here we used Lemma 2.6.5 and the fact that g− fL/ fK
0

˜̄g fL/ fK
0 ∈WL .

It remains to show that τ is a semilinear representation, or more precisely, that τ(g1g2)= τ(g1)◦g∗1τ(g2)

for all g1, g2 ∈ GalL/K . Now by (2-6-1) we see that

τ(g1) ◦ g∗1τ(g2)= τ(g1) ◦
(
((g1ϕ

−1)∗8−1
◦ · · · ◦8−1) ◦ τ(g2) ◦ (g∗28 ◦ · · · ◦ (g1ϕ

−1)∗g∗28)
)

= τ(g1) ◦ ((g1ϕ
−1)∗8−1

◦ · · · ◦8−1) ◦ τ(g2) ◦ g∗2(8 ◦ · · · ◦ (g1ϕ
−1)∗8)

= r(g̃1) ◦ r(g̃2) ◦8
v(g̃2) fK ◦ g∗28

v(g̃1) fK

= r(g̃1)r(g̃2) ◦8
v(g̃1 g̃2) fK

= τ(g1g2),

as required.
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Finally, we construct N. We have Ni , and we use the desired relation N = pAd(8)(N ) to construct
the Frobenius-conjugates of Ni . It then follows that for any g ∈ GalL/K

Ad(τ (g))(N )= Ad(r(g̃) ◦8v(g) fK )(N )

= Ad(r(g̃) ◦8v(g) fK )(p−v(g) fK Ad(8−v(g) fK )(N ))

= Ad(r(g̃))(N )= N
so we are done.

The assignment (Di , r, Ni ) (D,8, N, τ ) is clearly functorial and quasi-inverse to (D,8, N, τ ) 
(Di , r, Ni ). �

2.7. Exact ⊗-filtrations for disconnected groups. In this section we prove some results on tensor filtra-
tions that we will apply to the Hodge filtration in p-adic Hodge theory.

Let G be an affine group scheme over a field k of characteristic 0, let A be a k-algebra, and let η
be a fibre functor from Repk(G) to ProjA. More precisely, Repk(G) is the category of k-linear finite-
dimensional representations of G, ProjA is the category of finite projective A-modules (which we will
also think of as being vector bundles on Spec A), and by a “fibre functor” we mean that:

(1) η is k-linear, exact, and faithful.

(2) η is a tensor functor; that is, η(V1⊗k V2)= η(V1)⊗A η(V2).

(3) If 1 denotes the trivial representation of G, then η(1) is the trivial A-module of rank 1.

Given a fibre functor η : Repk(G) → ProjA and an A-algebra A′, there is a natural fibre functor
η′ :Repk(G)→ ProjA′ given by composing η with the natural base extension functor ιA′ : ProjA→ ProjA′

sending M to M ⊗A A′.

Definition 2.7.1. Let ω, η : Repk(G)⇒ ProjA be fibre functors. Then Hom⊗(ω, η) is the functor on
A-algebras given by

Hom⊗(ω, η)(A′) := Hom⊗(ιA′ ◦ω, ιA′ ◦ η).

Here Hom⊗ refers to natural transformations of functors which preserve tensor products.

Theorem 2.7.2 [Deligne and Milne 1982, Theorem 3.2]. Let ω :Repk(G)→Veck be the natural forgetful
functor:

(1) For any fibre functor η :Repk(G)→ ProjA, the functor Hom⊗(ιA ◦ω, η) is representable by an affine
scheme faithfully flat over Spec A; it is therefore a G-torsor.

(2) The functor η  Hom⊗(ιA ◦ ω, η) is an equivalence between the category of fibre functors η :
Repk(G)→ ProjA and the category of G-torsors over Spec A. The quasi-inverse assigns to any
G-torsor X over A the functor η sending any ρ : G→ GL(V ) to the M ∈ ProjA associated to the
push-out of X over A.

Corollary 2.7.3. Let η : Repk(G)→ ProjA be a fibre functor, corresponding to a G-torsor X→ Spec A.
Then the functor Aut⊗(η) is representable by the A-group scheme AutG(X). This is a form of GA.
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We now assume that η is equipped with an exact ⊗-filtration; i.e., for each V ∈ Repk(G), we have a
decreasing filtration F •(η(V )) of vector sub-bundles on each η(V ) such that:

(1) The specified filtrations are functorial in V.

(2) The specified filtrations are tensor-compatible, in the sense that

Fnη(V ⊗k V ′)=
∑

p+q=n

F pη(V )⊗A Fqη(V ′)⊂ η(V )⊗A η(V ′).

(3) Fn(η(1))= η(1) if n ≤ 0 and Fn(η(1))= 0 if n ≥ 1.

(4) The associated functor from Repk(G) to the category of graded projective A-modules is exact.

Equivalently, an exact ⊗-filtration of η is the same as a factorisation of η through the category of filtered
vector bundles over Spec A.

We define two auxiliary subfunctors of Aut⊗(η):

• PF = Aut⊗F (η) is the functor on A-algebras such that

PF (A′)= {λ ∈ Aut⊗(η)(A′) | λ(Fnη(V ))⊂ Fnη(V ) for all V ∈ Repk(G) and n ∈ Z}.

• UF = Aut⊗!F (η) is the functor on A-algebras such that

UF (A′)= {λ ∈ Aut⊗(η)(A′) | (λ− id)(Fnη(V ))⊂ Fn+1η(V ) for all V ∈ Repk(G) and n ∈ Z}.

By [Saavedra Rivano 1972, Chapter IV, 2.1.4.1], these functors are both representable by closed subgroup
schemes of AutG(X), and they are smooth if G is. This holds for any affine group G over k (since
it is automatically flat); there is no need for reductivity or connectedness hypotheses. Furthermore,
Lie PF = F 0(Lie Aut⊗(η)) and Lie UF = F1(Lie Aut⊗(η)), by the same result.

We also have a notion of a ⊗-grading on η: a ⊗-grading of η is the specification of a grading
η(V )=

⊕
n∈Z η(V )n of vector bundles on each η(V ) such that:

(1) The specified gradings are functorial in V.

(2) The specified grading are tensor-compatible, in the sense that

η(V ⊗k V ′)n =
⊕

p+q=n

(η(V )p⊗A η(V ′)q).

(3) η(1)0 = η(1).

Equivalently, a ⊗-grading of η is a factorisation of η through the category of graded vector bundles on
Spec A. A ⊗-grading induces a homomorphism of A-group schemes Gm→ Aut⊗(η).

Given a ⊗-grading of η, we may construct a ⊗-filtration of η, by setting

Fnη(V )=
⊕
n′≥n

η(V )n′ .

We say that a ⊗-filtration F • is splittable if it arises in this way, and we say that F • is locally splittable if
fpqc-locally on Spec A it arises in this way. A splitting of F • is a ⊗-grading on η giving rise to F •.
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Given an exact ⊗-filtration F • on η, we may define a fibre functor gr(η) equipped with a ⊗-grading
by setting

gr(η)(V )n := Fn(V )/Fn+1(V ).

Thus, a splitting of F • is equivalent to an isomorphism of filtered fibre functors gr(η)∼= η.
In fact, by a theorem of Deligne (proved in [Saavedra Rivano 1972, Chapter IV, 2.4]), every ⊗-

filtration is locally splittable (in fact, splittable Zariski-locally on Spec A), because G is smooth and
A has characteristic 0 (this result also holds under various other sets of hypotheses on G and A).
Again, this does not require G to be reductive or connected. If λ : Gm → Aut⊗(η) is a cocharacter
splitting the filtration, then PF =UF o ZG(λ), by [loc. cit., Chapter IV, 2.1.5.1]. In particular, λ factors
through PF .

If F • is a splittable filtration on η, we may consider the functor Scin(η,F •) of splittings. Then
Scin(η,F •) is the same as the functor Isom⊗!F (grF (η), η), which is the subset of Isom⊗F (grF (η), η)
inducing the identity grF (η)→ grF (η). Thus, Scin(η,F •) is a left torsor under UF . It follows that the
composition λ : Gm→ PF → PF/UF is independent of the choice of splitting.

In other words, PF and UF depend only on the filtration, and if it is locally splittable, there is a
homomorphism λ̄ :Gm→ PF/UF which also only depends on the filtration. If the filtration is actually
splittable, a choice of splitting lets us lift λ̄ to a cocharacter λ : Gm → PF . In that case, since both
Scin(η,F) and the set of lifts of cocharacters from PF/UF to PF are torsors under UF (in the latter
case, UF acts by conjugation), they are isomorphic. In particular, any two cocharacters λ, λ′ :Gm ⇒ PF

splitting the ⊗-filtration F are conjugate by UF .
Let G := Aut⊗(η), so that the geometric fibres of G are isomorphic to G k̄ . Then for any geometric

point x ∈ Spec A, the G◦(κ(x))-conjugacy class of F •x induces a unique G◦(κ(x))-conjugacy class of
cocharacters, and this conjugacy class is Zariski-locally constant on Spec A.

Recall that when λ :Gm→ G is a cocharacter, we defined subgroups UG(λ)⊂ PG(λ)⊂ G in Section 1.3.

Proposition 2.7.4. Suppose that G is a (possibly disconnected) algebraic group. Let η :Repk(G)→ProjA

be a fibre functor equipped with a splittable exact⊗-filtration F •, and let λ :Gm→Aut⊗(η) be a splitting.
Let G denote the group scheme representing Aut⊗(η). Then PF = PG(λ), UF =UG(λ), and the fibres of
UF are connected.

Proof. We consider the map µ : Gm × PF → Aut⊗(η) defined by µ(t, g) := λ(t)gλ(t−1), and for
g ∈ PF (A′), we let µg : (Gm)A′ → (Aut⊗(η))A′ be the restriction µ|Gm×{g}. Let σ : G→ GL(V ) be a
representation of G. Then the pushout η(V ) is a filtered vector bundle, and if g ∈ PF (A′), the action
of g preserves the filtration on η(V ). The choice of a splitting in particular specifies an isomorphism
gr•(η(V ))−→∼ η(V ), and t ∈ Gm(A′) acts via tn on (η(V ))n .

Let σ∗(λ) denote the corresponding cocharacter σ∗(λ) :Gm→AutGL(V )(η(V )). Since this cocharacter
induces the filtration on η(V ), we see that the morphism

σ∗(µg) := σ∗(λ)(t)gσ∗(λ)(t−1) : Gm→ PAutGL(V )(η(V ))(σ∗(λ))



360 Rebecca Bellovin and Toby Gee

extends uniquely to a morphism

σ̃∗(µg) : A
1
→ PAutGL(V )(η(V ))(σ∗(λ)).

We claim that the collection {σ̃∗(µg)}σ is functorial in σ and tensor-compatible. Indeed, since the
collection {σ̃∗(µg)|Gm }σ is functorial in σ and tensor-compatible, and the extensions to A1 are unique, it
follows that {σ̃∗(µg)}σ is functorial in σ and tensor-compatible. Thus, there is a morphism µ̃g : A

1
→

Aut⊗F (η) whose restriction to Gm is µg. It follows that g ∈ PG(λ)(A′).
Suppose in addition that g ∈UF (A′). Then for every representation σ : G→ GL(V ), g induces the

identity map from gr•(σ (F •)) to itself. It follows that σ̃∗(µg)(0)= 1 for all σ , and therefore µ̃g(0)= 1.
On the other hand, if g ∈ PG(λ)(A′), then the morphism µg : (Gm)A′ → Aut⊗(η)A′ defined by

t 7→ λ(t)gλ(t−1) extends to a morphism µ̃g : (A
1)A′ → Aut⊗(η)A′ . It therefore induces a family of

morphisms
σ∗(µ̃g) : (A

1)A′→ GL(V )A′

and so σ∗(g) ∈ PAutGL(V )(η(V ))(σ∗(λ)). But then σ∗(g) preserves the filtration on η(V ) induced by σ∗(λ);
since this holds for all V ∈Repk(G), we have g∈ PF (A′). A similar argument shows that if g∈UG(λ)(A′),
then g ∈UF (A′).

Finally, since µ̃g : A
1
→ Aut⊗(η) is a morphism from a connected scheme such that µ̃g(0)= 1 and

µ̃g(1)= g, we see that g is in the connected component of the identity for all g ∈UF (A′). �

Lemma 2.7.5. Let F • be a locally splittable exact ⊗-filtration on η. Then the geometric fibres of PF are
parabolic subgroups of G k̄ .

Proof. We may work locally on Spec A and assume that we have a cocharacter λ : Gm → GA splitting
the exact ⊗-filtration. Then PF ∼= PG(λ). Since the formation of PG(λ) commutes with base change
on A, we may assume that A = k = k̄ and G = G = G k̄ . Then PG◦(λ)⊂ G◦ is a parabolic subgroup, so
G◦/PG◦(λ) is proper. There is a sequence of maps

G◦/PG◦(λ)→ G/PG◦(λ)� G/PG(λ).

Since G◦ ⊂ G has finite index, the properness of G◦/PG◦(λ) implies the properness of G/PG◦(λ). This
implies that G/PG(λ) is proper, so PG(λ)⊂ G is a parabolic subgroup. �

We will also need the following result:

Theorem 2.7.6 [SGA 3 II 1970, Exposé IX, Théorème 3.6]. Let S be an affine scheme, S0 a subscheme
defined by a nilpotent ideal J, H a group of multiplicative type over S, G a smooth group scheme over S,
and µ0 : H ×S S0→ G×S S0 a homomorphism of S0-groups.

Then there exists a homomorphism µ : H → G of S-groups which lift µ0, and any two such lifts are
conjugate by an element of G(S) which reduces to the identity modulo J.

Corollary 2.7.7. Let A be an artin local k-algebra with maximal ideal mA, and let I ⊂ A be an ideal
such that ImA = (0). Then if DA is a G-torsor over A such that the reduction DA/I := DA ⊗A A/I is
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equipped with an exact ⊗-filtration F •A/I , then the set of lifts of F •A/I to an exact ⊗-filtration on DA is
nonempty, and is a torsor under I ⊗A/mA (ad DA/mA/F 0

A/mA
(ad DA/mA)).

Proof. Suppose that DA/I is a G-torsor over Spec A/I, equipped with an exact ⊗-filtration F •A/I . Since
A/I is local, F •A/I is split, so it is induced by a cocharacter λA/I :Gm→AutG(DA/I ). By Theorem 2.7.6,
λA/I lifts to a cocharacter λA :Gm→AutG(DA). Then λA induces an exact ⊗-filtration F •A on DA which
lifts that on DA/I .

Suppose there are two exact ⊗-filtrations, F •A and F ′A
• on DA lifting F •A/I , induced by cocharacters λA

and λ′A, respectively, which lift λA/I . Then λA and λ′A are conjugate by an element of AutG(DA) which is
the identity modulo I. In other words, there is some j ∈ ad DA/mA⊗A/mA I such that λ′A= (1+ j)λA(1− j).
This implies that F •A and F ′A

• are conjugate.
On the other hand, conjugation by 1+ j preserves F •A if and only if 1+ j ∈ PFA(AutG(DA)). This

holds if and only if j ∈ F 0
A/mA

Lie AutG(DA/mA)⊗A/mA I = F 0
A/mA

ad DA/mA ⊗A/mA I. �

2.8. p-adic Hodge theory. Our goal is to study deformations of potentially semistable Galois represen-
tations. That is, we wish to consider deformations of representations ρ : GalK → G(E) such that ρ|GalL

is semistable. Such representations can be described by linear algebra. Briefly, for every representation
σ : G→ GLd , σ ◦ ρ is a potentially semistable representation, and DL

st(σ ◦ ρ) is a weakly admissible
filtered (ϕ, N,GalL/K )-module. The formation of DL

st(σ ◦ ρ) is exact and tensor-compatible in σ , and if
1 denotes the trivial representation of G, then DL

st(1◦ρ) is the trivial filtered (ϕ, N,GalL/K )-module with
coefficients in E .

Therefore, as in [Bellovin 2016, §A.2.8–9], σ 7→DL
st(σ◦ρ) is a fibre functor η :RepE(G)→ProjE⊗Qp

L0,
and we obtain from ρ a G-torsor D = DL

st(ρ) over E ⊗ L0 equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D,

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D,

• a GalL/K -stable exact ⊗-filtration on DL , or equivalently (by Galois descent), an exact ⊗-filtration
on the ResE⊗K/E G-torsor DGalL/K

L over K .

These satisfy the requisite compatibilities such that forgetting the filtration on DL
st(ρ) gives us an object

of G-ModL/K ,ϕ,N .

Definition 2.8.1. The category of G-valued filtered (ϕ, N,GalL/K )-modules, which we denote by
G-ModL/K ,ϕ,N,Fil, is the category cofibred in groupoids over E-Alg whose fibre over an E-algebra A
consists of a ResE⊗L0/E G-torsor D over A, equipped with

• an isomorphism 8 : ϕ∗D −→∼ D,

• a nilpotent element N ∈ Lie AutG D,

• for each g ∈ GalL/K , an isomorphism τ(g) : g∗D −→∼ D,
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• a GalL/K -stable exact ⊗-filtration on DL , or equivalently, an exact ⊗-filtration on the ResE⊗K/E G-
torsor DGalL/K

L over A.

The ResE⊗L0/E G-torsor D, together with 8, N, and {τ(g)}g∈GalL/K , is required to be an object of
G-ModL/K ,ϕ,N .

Definition 2.8.2. Suppose that ρ : GalK → G(E) is a potentially semistable Galois representation which
becomes semistable when restricted to GalL . The p-adic Hodge type v of ρ is the (ResE⊗K/E G)◦(E)-
conjugacy class of cocharacters λ : Gm→ (ResE⊗K/E G)E which split the ⊗-filtration on DL

st(ρ)
GalL/K
L .

We let Pv denote the (ResE⊗K/E G)◦(E)-conjugacy class of PResE⊗K/E G(λ) for λ ∈ v.

While we do not need it, for completeness we record the following definition and result, which control
the deformation theory of filtered (ϕ, N,GalL/K )-modules. Given an object DA ∈ G-ModL/K ,ϕ,N,Fil, we
consider the diagram

(ad DA)
GalL/K //

��

(ad DA)
GalL/K ⊕ (ad DA)

GalL/K // (ad DA)
GalL/K

(ad DA,L/Fil0ad DA,L)
GalL/K

where the top line is the total complex of

(ad DA)
GalL/K

1−Ad(8)
//

adN
��

(ad DA)
GalL/K

adN
��

(ad DA)
GalL/K

pAd(8)−1
// (ad DA)

GalL/K

and the vertical map is the natural quotient map. We let C •Fil denote its total complex. Then C •Fil controls
the deformation theory of DA:

Proposition 2.8.3. Let A be an artin local E algebra with maximal ideal mA and let I ⊂ A be an ideal such
that ImA = (0). Let DA/I be an object of G-ModL/K ,ϕ,N,Fil(A/I ) and set DA/mA := DA/I ⊗A/I A/mA:

(1) If H 2
Fil(DA/I )= 0, then there exists an object DA ∈ G-ModL/K ,ϕ,N,Fil(A) lifting DA/I .

(2) The set of isomorphism classes of lifts of DA/I to DA ∈ G-ModL/K ,ϕ,N,Fil(A) is either empty or a
torsor under H 1

Fil(DA/mA)⊗A/mA I.

Proof. This follows by combining [Bellovin 2016, Proposition 3.2] and Corollary 2.7.7. �

3. Local deformation rings

As in Section 1.3.2, we let K/Qp be a finite extension for some prime p, possibly equal to l, and let
ρ̄ :GalK →G(F) be a continuous representation. We have a universal framed deformation O-algebra R�ρ̄ ,
and if we fix a homomorphism ψ : 0→ Gab(O) such that ab ◦ ρ̄ = ψ̄ , we also have the quotient R�,ψρ̄

corresponding to framed deformations ρ with ab ◦ ρ = ψ . When we define quotients of R�ρ̄ , there are
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corresponding quotients of R�,ψρ̄ , which we will not explicitly define, but will denote by a superscript ψ .
An inertial type is by definition a G◦(E)-conjugacy class of representations τ : IK → G(E) with open
kernel which admit extensions to GalK ; any such τ is defined over some finite extension of E . We choose
a finite Galois extension L/K for which τ |IL is trivial. If E ′/E is a finite extension, and ρ :GalK→G(E ′)
is a representation, which we assume to be potentially semistable if l = p, then we say that ρ has type τ if
the restriction to IK (forgetting N ) of the corresponding Weil–Deligne representation WD(ρ) is equivalent
to τ .

3.1. The case l 6= p. Suppose firstly that l 6= p. The proof of [Balaji 2013, Proposition 3.0.12] shows
that for each τ we may define a Zl-flat quotient R�,τρ̄ of R�ρ̄ whose characteristic-0 points correspond
to representations of type τ . The usual construction of the Weil–Deligne representation associated to a
Galois representation makes sense over R�ρ̄ [1/ l], so we have a natural morphism

Spec R�,τρ̄ [1/ l] → G- WDE(L/K ).

3.2. The case l = p. Now suppose that l = p. If we fix a p-adic Hodge type v in the sense of
Definition 2.8.2 (that is, a (ResE⊗K/E G)◦(E)-conjugacy class of cocharacters λ :Gm→ (ResE⊗K/E G)E ),
and an inertial type τ , then by [Balaji 2013, Proposition 3.0.12] there is a unique Zl-flat quotient R�,τ,vρ̄

of R�ρ̄ with the property that if B is a finite local E-algebra, then a morphism R�ρ̄ → B factors through
R�,τ,vρ̄ if and only if the corresponding representation ρ : GalK → G(B) is potentially semistable with
Hodge type v and inertial type τ . For each finite-dimensional representation V of G, we may compose
with the representation GalK →G(R�,τ,vρ̄ [1/p]) to obtain a representation GalK →GL(V )(R�,τ,vρ̄ [1/p]).
Then exactly as in [Kisin 2008, Theorem 2.5.5] we obtain a corresponding (GL(V )-valued) filtered
(ϕ, N,GalL/K )-module over R�,τ,vρ̄ [1/p] (note that we have been working with covariant functors in this
paper, while Kisin uses contravariant functors; it is necessary to dualise the construction in [loc. cit.,
§2.4]). As these filtered (ϕ, N,GalL/K )-modules are exact and tensor-compatible, we obtain a G-valued
filtered (ϕ, N,GalL/K )-module over R�,τ,vρ̄ [1/p]. By Lemma 2.6.6, we again have a natural morphism

Spec R�,τ,vρ̄ [1/ l] → G- WDE(L/K ).

3.3. Denseness of very smooth points. We continue to fix an inertial type τ and (if p = l) a p-adic
Hodge type v. For convenience, if l 6= p then for the rest of this section we write R�,τ,vρ̄ for R�,τρ̄ ; this
notational convention allows us to treat the cases l 6= p and l = p simultaneously. We study the generic
fibre R�,τ,vρ̄ [1/ l] via the morphism

Spec R�,τ,vρ̄ [1/ l] → G- WDE(L/K ). (3-3-1)

In a standard abuse of terminology, we say that a closed point x ∈ Spec R�,τ,vρ̄ [1/ l] is smooth if the
(completed) local ring at x is regular. We will see in the proof of Theorem 3.3.2 that these are the points
whose images in G- WDE(L/K ) are smooth points, which perhaps justifies this terminology. Similarly,
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we say that x is very smooth if for any finite extension K ′/K , the image of x in (with obvious notation)
Spec R

�,τ |IK ′
,vK ′

ρ̄|G K ′
[1/ l] is smooth.

As in [Kisin 2009, Proposition 2.3.5], if x ∈ Spec R�,τ,vρ̄ [1/ l] is a closed point corresponding to a
representation ρx , then the completed local ring Ax at x pro-represents framed deformations of ρx which
are potentially semistable of p-adic Hodge type v (if l = p), and have inertial type τ .

Proposition 3.3.1. (1) If x is a closed point of the Jacobson scheme Spec R�,τ,vρ̄ [1/ l], then the comple-
tion at x of the morphism (3-3-1) is formally smooth.

(2) The morphism (3-3-1) is flat.

Proof. The formal smoothness follows from the proofs of [Kisin 2008, Lemma 3.2.1, Proposition 3.3.1],
which carries over verbatim to our setting (since the morphism of groupoids from framed deformations to
unframed deformations is formally smooth). Part (2) then follows from the fact that formally smooth
morphisms between locally noetherian schemes are flat, which in turn follows from [EGA IV1 1964, §0
Théorème 19.7.1]. �

Theorem 3.3.2. Assume that R�,τ,vρ̄ 6= 0. There is a dense open subscheme U ⊂ Spec R�,τ,vρ̄ [1/ l] which
is regular, and there is a Zariski dense subset of Spec R�,τ,vρ̄ [1/ l] consisting of very smooth points. Fur-
thermore, Spec R�,τ,vρ̄ [1/ l] is equidimensional of dimension dim G+ δl=p dim ResE⊗K/E G/Pv, locally
a complete intersection, and reduced.

Similarly, Spec R�,τ,v,ψρ̄ [1/ l] contains a regular dense open subscheme and a Zariski dense subset of
very smooth points, and is equidimensional of dimension dim Gder

+ δl=p dim(ResE⊗K/E G)/Pv.

Remark 3.3.3. In contrast to previous work (in particular [Kisin 2008; Gee 2011; Bellovin 2016]), we
only claim that U is regular, not formally smooth over Qp. We are grateful to Jeremy Booher and Stefan
Patrikis [2017] for drawing our attention to this.

Proof. Since the formation of scheme-theoretic images is compatible with flat base change, the existence of
a dense open subscheme U consisting of smooth points follows from Corollary 2.3.7 and Proposition 3.3.1.
The existence of a Zariski dense subset of very smooth points follows from Corollary 2.4.5. We claim
that if x ∈ Spec R�,τ,vρ̄ [1/ l] is a closed point in U, then the completion Ax of R�,τ,vρ̄ [1/ l] at x is a
formally smooth Qp-algebra, and is in particular regular. Indeed, if mx is the maximal ideal of Ax ,
then Spec Ax/m

n
x ⊂ U for all n ≥ 1 (since U is open). Let B be a local Qp-algebra with maximal

ideal mB and let I ⊂ B be an ideal such that ImB = (0). If there is a local homomorphism Ax→ B/I, let
DB/I be the induced object of G- WDE(L/K )(B/I ). Then H 2(ad DB/I )= 0, since the homomorphism
Ax → B/I factors through A/mn

x for some n. It follows that DB/I lifts to DB ∈ G- WDE(L/K )(B).
Since Spf Ax→G- WDE(L/K ) is formally smooth, DB is induced from a map Ax→ B lifting A→ B/I.
Since R�,τ,vρ̄ [1/ l] is Noetherian, it follows that the localisation of R�,τ,vρ̄ [1/ l] at x is regular [Stacks
2005–, Tag 07NY], so U is regular by [loc. cit., Tag 02IT], as claimed.

Thus, to compute the dimension of Spec R�,τ,vρ̄ [1/ l], it is enough to compute the dimension of the
tangent spaces at closed points in U. Let x be such a closed point, let E ′ be its residue field, and write

http://stacks.math.columbia.edu/tag/07NY
http://stacks.math.columbia.edu/tag/02IT
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Ax for the completion of R�,τ,vρ̄ [1/ l] at x . Since the morphism Spf Ax → G- WDE(L/K ) is formally
smooth by Proposition 3.3.1, it is versal at x . More precisely, in the case that l 6= p we see (by the
equivalence between Galois representations and Weil–Deligne representations recalled in Section 2.5)
that the induced map Spf Ax → G- WDE(L/K )∧x (with the right-hand side denoting the completion of
the target at x) is a Ĝ-torsor, where Ĝ is the completion of G E along the closed subgroup given by the
centraliser of the representation corresponding to x , in the sense that there is an evident isomorphism

Spf Ax × Ĝ −→∼ Spf Ax ×G- WDE (L/K )∧x Spf Ax .

In particular, we have dim Ax ×G- WDE (L/K )∧x Ax = dim Ax + dim Ĝ, and the claim about the dimension
then follows from [Emerton and Gee 2017, Lemma 2.40] and Corollary 2.4.5.

If l = p, let Dx := DL
st(ρx); it is equipped with a filtration F •x . We consider the set (Spf Ax)(E ′[ε]).

Forgetting the framing on liftings is a formally smooth morphism of groupoids and makes the tangent
space at x into a Lie G-torsor over the groupoid of unframed deformations. But since E ′[ε] is an artin
local E-algebra, by [Bellovin 2016, Proposition 2.4] the category of (unframed) potentially semistable rep-
resentations of GalK over E ′[ε] deforming ρx is equivalent to the subcategory of G-ModL/K ,ϕ,N,Fil(E ′[ε])
deforming DL

st(ρx).
There is a natural morphism of groupoids

G-ModL/K ,ϕ,N,Fil→ G-ModL/K ,ϕ,N

and therefore a commutative diagram:

G-ModL/K ,ϕ,N,Fil(E ′[ε]) //

��

G-ModL/K ,ϕ,N (E ′[ε])

��

G-ModL/K ,ϕ,N,Fil(E ′) // G-ModL/K ,ϕ,N (E ′)

By Corollary 2.7.7, the fibres of

G-ModL/K ,ϕ,N,Fil(E ′[ε])→ G-ModL/K ,ϕ,N (E ′[ε])

over the filtered G-torsor Dx are torsors under (ad Dx/F 0(ad Dx))
GalL/K. Since G-ModL/K ,ϕ,N ∼=

G- WDE(L/K ) is equidimensional of dimension 0 and x ∈ Spec R�,τ,vρ̄ [1/ l] is a smooth point, we
conclude that

dim Ax = dim Lie G+ dim(ad Dx/F 0(ad Dx))
GalL/K

= dim G+ dim ResE⊗K/E G/Pv

as desired.
To prove that R�,τ,vρ̄ [1/ l] is reduced and locally a complete intersection, we consider the fibre prod-

uct Spec R�,τ,vρ̄ [1/ l] ×G- WDE (L/K ) YL/K ,ϕ,N . This is a G-torsor, hence smooth, over Spec R�,τ,vρ̄ [1/ l],
so it suffices to prove that this fibre product is reduced and locally a complete intersection. But by
Proposition 3.3.1, the natural morphism Spec R�,τ,vρ̄ [1/ l]×G- WDE (L/K )YL/K ,ϕ,N → YL/K ,ϕ,N is formally
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smooth, so completed local rings at points of Spec R�,τ,vρ̄ [1/ l]×G- WDE (L/K ) YL/K ,ϕ,N are power series
rings over completed local rings of YL/K ,ϕ,N . Since the latter are reduced and complete intersections (by
Corollary 2.4.5), the same holds for the former.

The corresponding statements for R�,τ,v,ψρ̄ can be proved in the same way; we leave the details to the
reader. �

The following is a generalisation of [Allen 2016a, Theorem D] (which treats the case that l = p and
G = GLn). We let x be a closed point of R�,τ,vρ̄ [1/ l] with residue field Ex (a finite extension of E), and
write ρx : GalK → G(Ex) for the corresponding representation.

Corollary 3.3.4. The point x is a formally smooth point of R�,τ,vρ̄ [1/ l] if and only if

H 0((ad WD(ρx))
∗(1))= 0.

Proof. Corollary 2.4.2 implies that the formally smooth points of G- WDE(L/K ) are precisely those
points x for which H 0((ad Dx)

∗(1)). Thus, we need to show that x ∈ Spec R�,τ,vρ̄ [1/ l] is formally smooth
if and only if its image in G- WDE(L/K ) is formally smooth.

We have a morphism
Spec R�,τ,vρ̄ [1/ l]∧x → G- WDE(L/K )∧x ,

which is formally smooth by Proposition 3.3.1. But this implies that for any Qp-finite artin local ring B,
the map

Spec R�,τ,vρ̄ [1/ l]∧x (B)→ G- WDE(L/K )∧x (B)

is surjective. Hence, Spec R�,τ,vρ̄ [1/ l]∧x is formally smooth if and only if G- WDE(L/K )∧x is formally
smooth. �

Remark 3.3.5. If G is the L-group of a quasisplit reductive group over K , then it seems plausible that
the condition of Corollary 3.3.4 could be equivalent to the condition that the (conjectural) L-packet of
representations associated to the Frobenius semisimplification of WD(ρx) contains a generic element. In
the case that G = GLn (where the L-packets are singletons) and WD(ρx) is Frobenius semisimple, this
is proved in [Allen 2016a, §1], and in the general case it is closely related to [Gross and Prasad 1992,
Conjecture 2.6] (which relates genericity to poles at s = 1 of the adjoint L-function).

Remark 3.3.6. In the case that l 6= p, the equivalence between Galois representations and Weil–Deligne
representations means that we can rewrite the condition in Corollary 3.3.4 as H 0(GalK , ad ρ∗x (1))= 0.

We can also consider the quotient R�,τ,v,N=0
ρ̄ , corresponding to the union of the irreducible components

of R�,τ,vρ̄ [1/ l] for which the monodromy operator N vanishes identically (if l = p, this is the locus of
potentially crystalline representations, and if l 6= p, it is the locus of potentially unramified representations).

Theorem 3.3.7. Fix an inertial type τ , and if l = p then fix a p-adic Hodge type v. Assume that
R�,τ,v,N=0
ρ̄ 6= 0. Then R�,τ,v,N=0

ρ̄ [1/ l] is regular, and is equidimensional of dimension

dimE G+ δl=p dimE(ResE⊗K/E G)/Pv.



G-valued local deformation rings and global lifts 367

Similarly R�,τ,v,N=0,ψ
ρ̄ [1/ l] is regular and equidimensional of dimension

dimE Gder
+ δl=p dimE(ResE⊗K/E G)/Pv.

Proof. This can be proved in exactly the same way as Theorem 3.3.2, replacing the use of the three term
complex C•(D) considered in Proposition 2.2.1 with the two term complex

(ad DA)
IL/K 1−Ad(8)
−−−−→ (ad DA)

IL/K

concentrated in degrees 0 and 1; see [Kisin 2008, Theorem 3.3.8] for more details in the case that l = p
and G = GLn . �

3.4. Components of deformation rings. We now prove the following reassuring lemma, which shows that
the components of universal deformation rings are invariant under G(O)-conjugacy. It is a generalisation
of [Barnet-Lamb et al. 2014, Lemma 1.2.2], which treats the case G = GLn; the proof there is by an
explicit homotopy, while we use the theory of reductive group schemes over O to construct less explicit
homotopies.

Lemma 3.4.1. Let h ∈ G(O′) be an element which reduces to the identity modulo the maximal ideal,
where O′ is the ring of integers in a finite extension of E. Then conjugation by h induces a map
Spec(R�,τ,vρ̄ ⊗O O′)[1/ l] → Spec(R�,τ,vρ̄ ⊗O O′)[1/ l], and it fixes each irreducible component.

Before we prove it, we record a preliminary lemma on irreducible components of the generic fibre
of R�,τ,vρ̄ :

Lemma 3.4.2. Let A :=O[[X1, . . . , Xn]]/I be the quotient of a power series ring. If x, x ′ ∈ (Spf A)rig lie
on the same irreducible component, then they lie on the same irreducible component of Spec A[1/ l].

Proof. If x = x ′ as points of (Spf A)rig, then by [de Jong 1995, Lemma 7.1.9], x = x ′ as points of
Spec A[1/ l]. Thus, we may assume that x 6= x ′. Let A→ Ã denote the normalisation of A. Then by
[Conrad 1999, Theorem 2.1.3], (Spf Ã)rig→ (Spf A)rig is a normalisation of the rigid space (Spf A)rig, and
x, x ′ lift to points x̃, x̃ ′ ∈ (Spf Ã)rig on the same connected component. By [de Jong 1995, Lemma 7.1.9],
x̃ and x̃ ′ correspond to distinct closed points of Spec Ã[1/ l].

If x̃ and x̃ ′ lie on distinct connected components of Spec Ã[1/ l], there are idempotents ex , ex ′ ∈ Ã[1/ l]
such that ex is 1 at x̃ and 0 at x̃ ′ and ex ′ is 1 at x̃ ′ and 0 at x̃ . Again by [loc. cit., Lemma 7.1.9], the natural
map (Spf Ã)rig→ Spec Ã[1/ l] induces isomorphisms on residue fields of closed points. It follows that
the pullbacks of ex and ex ′ to (Spf Ã)rig are again idempotents (in the global sections of the structure
sheaf of (Spf Ã)rig) such that ex is 1 at x̃ and 0 at x̃ ′ and ex ′ is 1 at x̃ ′ and 0 at x̃ . But this would contradict
the fact that x̃ and x̃ ′ lie on the same connected component of (Spf Ã)rig, so they must actually lie on the
same connected component of Spec Ã[1/ l]. This in turn implies that they lie on the same irreducible
component of Spec A[1/ l]. �

Proof of Lemma 3.4.1. Let R�,τ,vρ̄ ⊗O O′′→O′′ be a homomorphism corresponding to a lift ρ : GalK →

G(O′′), where O′′ is the ring of integers in a finite extension of E and contains O′. We continue to write
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h for the image of h in G(O′′). There is a finite surjective morphism

Spec(R�,τ,vρ̄ ⊗O O′′)[1/ l] → Spec(R�,τ,vρ̄ ⊗O O′)[1/ l],

so to show that conjugation by h preserves irreducible components of Spec(R�,τ,vρ̄ ⊗O O′)[1/ l], it
suffices to show that conjugation by h preserves irreducible components of Spec(R�,τ,vρ̄ ⊗O O′′)[1/ l].
Moreover, by Lemma 3.4.2, it suffices to work with the rigid analytic generic fibre Spf(R�,τ,vρ̄ ⊗O O′′)rig

of R�,τ,vρ̄ ⊗O O′′.
After possibly extending O′′, we may assume that G splits over O′′. Since h is residually the identity

element of G, it is a point of G◦. After possibly further increasing O′′, there is some Borel subgroup
BO′′[1/ l] ⊂ G◦O′′[1/ l] containing the image of h; it extends to a Borel subgroup B ⊂ G◦O′′ which contains h.
Since O′′ is local, by [Conrad 2014, Proposition 5.2.3] there is a cocharacter λ : (Gm)O′′→G◦O′′ such that
B = PG◦(λ)=UG◦(λ)o ZG◦(λ). Write hz for the projection of h to ZG◦(λ) and hu for the projection to
UG◦(λ). Since this decomposition is unique, both hz and hu reduce to the identity modulo $ (where $
is a uniformiser of O′′).

Since ZG◦(λ) is a split torus, there is a map zt : (Gm)O′′ → G◦O′′ which specialises to both hz and
the identity. After analytifying this map, hz and the identity lie in the same residue disk. Choosing
coordinates on this residue disk, and rescaling them if necessary, we obtain a Galois representation
ρ̃ : GalK → G(O′′[[T ]]) by considering the conjugation map ztρz−1

t : GalK → G(O′′[T ]). This in-
duces a homomorphism R�,τ,vρ̄ ⊗O O′′→ O′′[[T ]], which in turn induces a morphism of rigid spaces
Spf(O′′[[T ]])rig→ Spf(R�,τ,vρ̄ ⊗O O′′)rig. Since the source is irreducible and its image contains points
corresponding to both ρ and hzρh−1

z , they lie on the same irreducible component of Spf(R�,τ,vρ̄ ⊗OO′′)rig.
Thus, we may assume that h ∈UG◦(λ). By definition, if A is an O′-algebra,

UG◦(λ)(A)= {g ∈ G◦(A) | limt→0 λ(t)gλ(t)−1
= 1},

so conjugating h by λ induces a map ut :A
1
O′′→GO′′ with u1= h and u0= 1. We therefore obtain a Galois

representation ρ̃ ′ : GalK → G(O′′〈T 〉) by l-adically completing the map utρu−1
t : GalK → G(O′′[T ]).

Since ut is the identity modulo $ , ρ̃ ′ in fact lands in G(O′′〈$T 〉), and therefore in G(O′′[[$T ]]). This
induces a map R�,τ,vρ̄ ⊗OO′′→O′′[[$T ]], and therefore a morphism of rigid spaces Spf(O′′[[$T ]])rig→
Spf(R�,τ,vρ̄ ⊗O O′′)rig. Since the source is irreducible and its image contains points corresponding to both
ρ and huρh−1

u , they lie on the same irreducible component of Spf(R�,τ,vρ̄ ⊗O O′′)rig, as required. �

3.5. Tensor products of components, and base change. By a “component for ρ̄” we mean a choice
of τ and v (in the case l = p) such that R�,τ,vρ̄ [1/ l] 6= 0, and a choice of an irreducible component
of Spec R�,τ,vρ̄ [1/ l].

Let r̄ : GalK → GLn(F) and s̄ : GalK → GLm(F) be representations, let C be a component for r̄ and
let D be a component for s̄. Let K ′/K be a finite extension. The following lemma will be useful in
Section 5.

Lemma 3.5.1. There is a unique component C⊗D for r̄⊗ s̄ with the property that, if r :GalK→GLn(Ql)

and s : GalK → GLm(Ql) correspond to closed points of C and D respectively, then r ⊗ s corresponds
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to a closed point of C ⊗ D. Similarly, there is a unique component C |K ′ for r̄ |GalK ′
such that for all r ,

r |GalK ′
corresponds to a closed point of C |K ′ .

Proof. If a point of Spec R�,τ,vr̄ [1/ l] or a point of Spec R�,τ,vr̄⊗s̄ [1/ l] is smooth, then it lies on a unique
irreducible component. Then the first part follows as in the proof of Theorem 3.3.2, replacing the appeal
to Corollary 2.4.5 with one to Theorem 2.3.8, applied to the tensor product map

GLn ×GLm→ GLnm .

The second part follows from Theorem 3.3.2 (more precisely, from the existence of very smooth points
on each irreducible component). �

In the setting of the previous lemma, we will sometimes say that the component C ⊗ D is the tensor
product of the components C and D, and that C |K ′ is the base change to K ′ of the component C .

4. Global deformation rings

4.1. A result of Balaji. In this section we recall one of the main results of [Balaji 2013], which we will
then combine with the results of Section 3 to prove Proposition 4.2.6, which gives a lower bound for the
dimension of certain global deformation rings. In [loc. cit., §4.2] the group G is assumed to be connected,
but this is unnecessary. Indeed, the assumption is only made in order to use the results of [Tilouine 1996,
§5], where it is also assumed that G is connected; however, this assumption is never used in any of the
arguments of [loc. cit., §5], which apply unchanged to general G. Accordingly, we will freely use the
results of [Balaji 2013, §4.2] without assuming that G is connected. We assume in this section that E is
taken large enough that G E is quasisplit.

Let F be a number field, and let S be a finite set of places of F containing all of the places dividing l∞.
We work in the fixed determinant setting, and accordingly we fix homomorphisms ρ̄ : GalF,S→ G(F)
and ψ : GalF,S→ Gab(O) such that ab ◦ ρ̄ = ψ̄ .

Write R�,ψF,S ∈CNLO for the universal fixed determinant framed deformation O-algebra of ρ̄. Let6⊂ S
be a subset containing all of the places lying over l. For each v ∈6, we let R�,ψv denote the universal
fixed determinant framed deformation O-algebra of ρ̄|GalFv

, and we set

R�,ψ6 :=

⊗̂
v∈6,O

R�,ψv .

The following result is a special case of [Balaji 2013, Proposition 4.2.5].

Proposition 4.1.1. Suppose that H 0(GalF,S, (g
0
F)
∗(1))= 0, and let

s := (|6| − 1) dimF g
0
F+

∑
v |∞,v /∈6

dimF H 0(GalFv , g
0
F).

Then for some r ≥ 0 there is a presentation

R�,ψF,S −→
∼ R�,ψ6 [[x1, . . . , xr ]]/( f1, . . . , fr+s).
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4.2. Global deformation rings of fixed type. We now combine our local results with Proposition 4.1.1
to prove a lower bound for the Krull dimension of a global deformation ring, following Balaji. This lower
bound will only be nontrivial in the following setting.

Definition 4.2.1. If l > 2 then we say that ρ̄ is discrete series and odd if F is totally real, and if for all
places v |∞ of F we have dimF H 0(GalFv , g

0
F)= dimE G− dimE B, where B is a Borel subgroup of G.

Remark 4.2.2. Recall that we chose E to be large enough that G E is quasisplit, so this definition makes
sense. The condition that ρ̄ is discrete series and odd is needed to make the usual Taylor–Wiles method
work; see the introduction to [Clozel et al. 2008]. If G is the L-group of a simply connected group then
one can check that this condition is equivalent to F being totally real and ρ̄ being odd in the sense of
[Gross 2007] (cf. [Balaji 2013, Lemma 4.3.1]). We use the term “discrete series” because the (conjectural)
Galois representations associated to tempered automorphic representations which are discrete series at
infinite places are expected to satisfy this property; see Section 5 for an example of this, and [Gross 2007]
for a more general discussion.

Definition 4.2.3. We say that a p-adic Hodge type v is regular if the conjugacy class Pv consists of
parabolic subgroups of ResE⊗K/E G whose connected components are Borel subgroups of (ResE⊗K/E G)◦.

Remark 4.2.4. If G = GLn then Definition 4.2.3 is equivalent to the usual definition, that for each
embedding K ↪→ E the Hodge–Tate weights are pairwise distinct.

Remark 4.2.5. If E ′/E is a field extension, then

(ResE⊗K/E G)E ′ ∼= ResE ′⊗K/E ′ G.

Furthermore, the formation of PResE⊗K/E G(λ) is compatible with extension of scalars from E to E ′. Thus,
if v is regular after extending scalars, it was regular over E (and ResE⊗K/E G is automatically quasisplit).

Write S∞ for the set of finite places in S. For each place v ∈ S∞, we fix an inertial type τv, and
if v | l then we fix a Hodge type vv. If v - l (resp. if v | l), we let Rv be a quotient of the corresponding
fixed determinant framed deformation ring R�,τv,ψρ̄|GalFv

(resp. R�,τv,vv,ψρ̄|GalFv
) corresponding to a nonempty union

of irreducible components of the generic fibre. Set

R�,univ
:= R�,ψF,S ⊗R�,ψ

6 ,O

⊗̂
v∈S∞

Rv;

this is nonzero, because we are assuming that each Rv is nonzero.
Assume that H 0(GalF,S, gF)= zF, so that ρ̄ admits a universal fixed determinant deformation O-algebra

RψF,S ∈ CNLO, and write Runiv for the quotient of RF,S corresponding to R�,univ (as in the discussion
preceding [Barnet-Lamb et al. 2014, Lemma 1.3.3], this quotient exists by Lemma 3.4.1). In the case
that we fix potentially crystalline types at the places v | l, and do not fix types at places away from l, the
following result is [Balaji 2013, Theorem 4.3.2]; the general case follows from the same arguments as
those of Balaji, given the input of our local results.
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Proposition 4.2.6. Assume that l > 2, that ρ̄ is a discrete series and odd (so that in particular F is totally
real), and that H 0(GalF,S, (g

0
F)
∗(1))= 0. Maintain our assumption that the local deformation rings Rv

are nonzero.
Suppose that for each place v | l the Hodge type vv is regular. Then Runiv has Krull dimension at least 1.

Proof. By Proposition 4.1.1 (taking 6 = S∞) we see that for some r ≥ dimF g
0
F we have a presentation

R�,univ
−→∼

(⊗̂
v∈S∞

Rv

)
[[x1, . . . , xr ]]/( f1, . . . , fr+s),

where

s = (|S∞| − 1) dimF g
0
F+

∑
v |∞

dimF H 0(GalFv , g
0
F).

Since R�,univ is formally smooth over Runiv of relative dimension dimF g
0
F, it follows that the Krull

dimension of Runiv is at least

dim
⊗̂

v∈S∞,O
Rv − |S∞| dimF g

0
F−

∑
v |∞

dimF H 0(GalFv , g
0
F),

which by Theorem 3.3.2, and our assumption that each Hodge type vv is regular, is equal to

1+
∑
v | p

[Fv :Qp] dimE G/B−
∑
v |∞

dimF H 0(GalFv , g
0
F),

which in turn (by the assumption that ρ̄ is discrete series and odd) equals 1, as required. �

5. Unitary groups

5.1. The group Gn. Let F be a CM field with maximal totally real subfield F+. In this section we
generalise some results of [Barnet-Lamb et al. 2014] on the deformation theory of Galois representations
associated to polarised representations of GalF , by allowing ramification at primes of F+ which are
inert or ramified in F. This allows us to make cleaner statements, and is also useful in applications; for
example, in Theorem 5.2.2 we remove a “split ramification” condition in the proof of the weight part of
Serre’s conjecture for rank-2 unitary groups. Our results are also needed in [Calegari et al. 2018], where
they are used to construct lifts with specified ramification at certain places of F+ which are inert in F.

Recall from [Clozel et al. 2008] the reductive group Gn over Z given by the semidirect product of
G0

n = GLn ×GL1 by the group {1, }, where

 (g, a)−1
= (a(gt)−1, a).

We let ν : Gn → GL1 be the character which sends (g, a) to a and sends  to −1. Our results in this
section are for the most part a straightforward application of the results of the earlier sections to the
particular case G = Gn , but we need to begin by comparing our definitions to those of [loc. cit.]; we will
follow the notation of that paper where possible.
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Fix a place v |∞. By [Clozel et al. 2008, Lemma 2.1.1], for any ring R there is a natural bijection
between the set of homomorphisms ρ :GalF+→Gn(R) inducing an isomorphism GalF+ /GalF −→

∼ Gn/G0
n ,

and the set of triples (r, µ, 〈 · , · 〉) where r :GalF→GLn(R), µ :GalF+→ R×, and 〈 · , · 〉 : Rn
×Rn

→ R
is a perfect R-linear pairing such that 〈x, y〉 = −µ(cv)〈y, x〉, and 〈r(δ)x, r cv (δ)y〉 = µ(δ)〈x, y〉 for
all δ ∈ GalF . We refer to such a triple as a µ-polarised representation of GalF , and we will sometimes
denote it as a pair (r, µ), the pairing being implicit.

This bijection is given by setting r := ρ|GalF (more precisely, the projection of ρ|GalF to GLn(R)),
µ := ν ◦ ρ, and 〈x, y〉 = x t A−1 y, where ρ(cv) = (A,−µ(cv)) . If v is a finite place of F+ which is
inert or ramified in F, then we have an induced bijection between representations GalF+v → Gn(R) and
µ-polarised representations GalFv → GLn(R).

There is an isomorphism GL1→ ZGn given by g 7→ (g, g2) ∈ GL1→ GL1 ⊂ GLn ×GL1, and we
have Gder

n =GLn ×1, and Gab
n =GL1×{1, }. (It is easy to check by direct calculation that Gder

n ⊂ G◦n , and
indeed Gder

n ⊂GLn ×1. Since GLder
n =SLn , we have SLn ×1⊂Gder

n , and since  (1, a)−1(1, a−1)= (a, 1),
we also have GL1×1⊂ Gder

n , whence GLn ×1⊂ Gder
n . Similarly, one checks easily that ZGn ⊂ G◦n , so that

ZGn ⊂ GL1×GL1. If (g, a) ∈ GL1×GL1 then  (g, a)−1
= (ag−1, a), so we see that (g, a) ∈ ZGn if

and only if a = g2, as required.)
We fix a prime l > 2 and a representation ρ̄ : GalF+ → Gn(F) with ρ̄−1(G0

n(F)) = GalF . We fix a
character µ :GalF+→O× with ν ◦ ρ̄ = µ̄. Write ψ :GalF+→ Gab

n (O) for the character taking g ∈GalF

to (µ(g), 1) and g ∈ GalF+ \GalF to (−µ(g), ).
Note that if R ∈ CNLO then a deformation ρ : GalF+ → Gn(R) of ρ̄ has ab ◦ ρ = ψ if and only if

ν ◦ ρ = µ, in which case we say that it is µ-polarised. By [Allen 2016b, Proposition 2.2.3], restriction
to GalF gives an equivalence between the µ-polarised (framed) deformations of ρ̄ and the µ-polarised
(framed) deformations r of r̄ := ρ̄|GalF : GalF → GLn(F), the latter by definition being those r which
satisfy r c ∼= r∨µ (where we are writing c for cv, as r c is independent of the choice of v |∞).

The same equivalence pertains to deformations of ρ̄|GalF+v
, where v is inert or ramified in F. On the

other hand, if v splits as ṽṽc in F, then restriction to GalFṽ gives an equivalence between µ-polarised
(framed) deformations of ρ̄|GalF+v

and (framed) deformations of r̄ |GalFṽ
; thus at such places the deformation

theory of representations valued in Gn is reduced to the case of GLn . It is for this reason that [Clozel et al.
2008] and its sequels only permit ramification at places which split in F.

By [loc. cit., Lemma 2.1.3], ρ̄ is discrete series and odd in the sense of Definition 4.2.1 if and only if
for each place v |∞ of F+ with corresponding complex conjugation cv ∈ GalF+ we have µ̄(cv)=−1.
This is by definition equivalent to the corresponding polarised representation (ρ̄|GalF , µ̄) being totally
odd in the sense of [Barnet-Lamb et al. 2014, §2.1].

Let S be a finite set of places of F+, including all the places where r̄ or µ are ramified, all the infinite
places, and all the places dividing l. The following is a generalisation of [loc. cit., Proposition 1.5.1] (which
is the case that every finite place in S splits in F, and is actually proved in [Clozel et al. 2008]); note that
the assumption that ρ̄|GalF(ζl )

is absolutely irreducible is missing from the statement of [Barnet-Lamb et al.
2014, Proposition 1.5.1], but should have been included there. Note also that this assumption implies that ρ̄
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admits a universal deformation ring; indeed, we have H 0(GalF+, gF)= H 0(GalF+, gln,F× gl1,F)= gl1,F
by Schur’s lemma (note that Gal(F/F+) acts by −1 on the scalar matrices in gln,F).

Corollary 5.1.1. Let l > 2 be prime, and let ρ̄ : GalF+ → Gn(F) be such that ρ̄|GalF(ζl )
is absolutely

irreducible. Assume that ρ̄ is discrete series and odd.
Let µ be a de Rham lift of µ̄, and let S be a finite set of places of F+ including all the places at which

either r̄ or µ is ramified, and all the places dividing l∞. For each finite place v ∈ S, fix an inertial type τv ,
and if v | l, fix a regular Hodge type vv. Fix quotients of the corresponding local µ-polarised framed
deformation rings which correspond to a (nonempty) union of irreducible components of the generic fibre.

Let Runiv be the universal deformation ring for µ-polarised deformations of ρ̄ which are unramified
outside S, and lie on the given union of irreducible components for each finite place v ∈ S. Then Runiv

has Krull dimension at least 1.

Proof. By Proposition 4.2.6, we need only check that H 0(GalF+,S, (gln,F)
∗(1)) vanishes, where gln,F is

the Lie algebra of Gder
n . By inflation-restriction this group injects into

H 0(GalF(ζl ), (gln,F)
∗(1))Gal(F(ζl )/F+)

= H 0(GalF(ζl ), (gln,F))
Gal(F(ζl )/F+).

Since ρ̄|GalF(ζl )
is absolutely irreducible by assumption, this group vanishes by Schur’s lemma (noting

again that Gal(F/F+) acts by −1 on the scalar matrices in gln,F). �

5.2. Existence of lifts and the weight part of Serre’s conjecture. We now prove a strengthening of
[Barnet-Lamb et al. 2013, Theorem A.4.1], removing the condition that the places at which our Galois
representations are ramified are split in F. We refer the reader to [Barnet-Lamb et al. 2014] for any
unfamiliar terminology; in particular, potential diagonalisability is defined in [loc. cit., §1.4], while
adequacy and the notion of a polarised Galois representation being potentially diagonalisably automorphic
are defined in [loc. cit., §2.1].

Theorem 5.2.1. Let l be an odd prime not dividing n, and suppose that ζl /∈ F. Let ρ̄ :GalF+→ Gn(F) be
such that ρ̄|GalF(ζl )

is absolutely irreducible. Assume that ρ̄ is discrete series and odd. Let S be a finite set
of places of F+, including all places dividing l∞.

Let µ be a de Rham lift of µ̄, and let S be a finite set of places of F+ including all the places at which
either r̄ or µ is ramified, and all the places dividing l∞. For each finite place v ∈ S, fix an inertial type τv ,
and if v | l, fix a regular Hodge type vv. Fix quotients of the corresponding local µ-polarised framed
deformation rings which correspond to an irreducible component of the generic fibre; if v | l, assume also
that this component is potentially diagonalisable

Assume further that there is a finite extension of CM fields F ′/F such that F ′ does not contain ζl ,
all finite places of (F ′)+ above S split in F, and ρ̄(GalF ′(ζl )) is adequate, and assume that there exists
a lift ρ ′ : GalF+,S → Gn(O) of ρ̄|Gal(F ′)+,S with ν ◦ ρ ′ = µ|GalF+,S

, with the further property that ρ ′ is
potentially diagonalisably automorphic.
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Then there is a lift

ρ : GalF+,S→ Gn(O)
of ρ̄ such that:

(1) ν ◦ ρ = µ.

(2) If v ∈ S is a finite place, then ρ|G F+v
corresponds to a point on our chosen component of the local

deformation ring.

(3) ρ|Gal(F ′)+,S is potentially diagonalisably automorphic.

Proof. Let Runiv be the universal deformation ring for µ-polarised deformations of ρ̄ which are unramified
outside S, and lie on the given irreducible component for each finite place v ∈ S. Then Runiv has Krull
dimension at least 1 by Corollary 5.1.1. We claim that Runiv is a finite O-algebra. Admitting this claim,
we can choose a homomorphism Runiv

→ E , and let ρ be the corresponding representation. This satisfies
properties (1) and (2) by construction.

Let Runiv
F ′ be the universal deformation ring for µ|G(F ′)+,S

-polarised deformations of r̄ |G F ′,S
which lie

on the base changes of our chosen components. By [Barnet-Lamb et al. 2014, Lemma 1.2.3(1)], Runiv is
a finite Runiv

F ′ -algebra, so in order to prove the claim it is enough to show that Runiv
F ′ is a finite O-algebra.

By [Barnet-Lamb et al. 2013, Theorem A.4.1] (with F there taken to equal F ′), there is a represen-
tation ρ ′′ : G(F ′)+,S → Gn(O) corresponding to an O-point of Runiv

F ′ , which is furthermore potentially
diagonalisably automorphic. Then Runiv

F ′ is a finite O-algebra by [Barnet-Lamb et al. 2014, Theorem 2.3.2].
as required. Finally, property (3) holds by [loc. cit., Theorem 2.3.2] (applied to ρ ′′ and ρ|G(F ′)+,S

). �

We now apply this result to the weight part of Serre’s conjecture for unitary groups. We restrict
ourselves to the case n= 2, where the existing results in the literature are strongest; our results should also
allow the removal of the hypothesis of “split ramification” from results in the literature for higher-rank
unitary groups, such as the results of [Barnet-Lamb et al. 2018]. We recall that if K/Ql is a finite
extension, there is associated to any representation ρ̄ : GalK → GL2(F) a set W (ρ̄) of Serre weights.
A definition of W (ρ̄) was first given in [Buzzard et al. 2010] in the case that K/Ql is unramified, and
various generalisations and alternative definitions have subsequently been proposed. As a result of the
main theorems of [Gee et al. 2015; Calegari et al. 2017], all of these definitions are equivalent; we refer
the reader to the introductions to those papers for a discussion of the various definitions.

Suppose that F is an imaginary CM field with maximal totally real subfield F+ such that F/F+

is unramified at all finite places, that each place of F+ above l splits in F, and that [F+ : Q] is even.
Then as in [Barnet-Lamb et al. 2013] we have a unitary group G/F+ which is quasisplit at all finite
places and compact at all infinite places. If r̄ : GalF+ → G2(Fl) is irreducible, the notion of r̄ being
modular of a Serre weight is defined in [loc. cit., Definition 2.1.9]. This definition (implicitly) insists
that r̄ is only ramified at places which split in F, and we relax it as follows: we change the definition
of a good compact open subgroup U ⊂ G(A∞F+) in [loc. cit., Definition 2.1.5] to require only that at all
places v | l we have Uv = G(OF+v ), and at all places v - l we have Uv ⊂ G(OF+v ). (Consequently, we
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are now considering automorphic forms of arbitrary level away from l, whereas in [loc. cit.] the level is
hyperspecial at all places which do not split in F.)

Having made this change, everything in [loc. cit., §2] goes through unchanged, except that all mentions
of “split ramification” can be deleted. The following theorem strengthens [Gee et al. 2014, Theorem A],
removing a hypothesis on the ramification away from l (and also a hypothesis on the ramification at l,
although that could already have been removed thanks to the results of [Gee et al. 2015]).

Theorem 5.2.2. Let F be an imaginary CM field with maximal totally real subfield F+, and suppose
that F/F+ is unramified at all finite places, that each place of F+ above l splits in F, and that [F+ :Q]
is even. Suppose that l is odd, that r̄ : G F+→ G2(Fl) is irreducible and modular, and that r̄(G F(ζl )) is
adequate.

Then the set of Serre weights for which r̄ is modular is exactly the set of weights given by the
sets W (r̄ |G Fv

), v | l.

Proof. We begin by observing that the proof of [Barnet-Lamb et al. 2013, Theorem 5.1.3] goes through
in our more general context (that is, without assuming “split ramification”). Indeed, we have already
observed that the results of [loc. cit., §2] are valid in our context, and chasing back through the references,
we see that the only change that needs to be made is to relax the hypotheses in [loc. cit., Theorem 3.1.3]
by no longer requiring that the places v ∈ S, v - l, split in F. This follows by replacing the citation of
[loc. cit., Theorem A.4.1] in the proof of [loc. cit., Theorem 3.1.3] with a reference to Theorem 5.2.1
above (after making a further extension of F ′ to arrange that all of the places of (F ′)+ lying over S split
in F ′).

This shows that r̄ is modular of every weight given by the W (r̄ |G Fv
), v | l. For the converse, observe

that [loc. cit., Corollary 4.1.8] also holds in our context (again, since the results of [loc. cit., §2] go
through); the result then follows immediately from [Gee et al. 2015, Theorem 6.1.8]. �

Remark 5.2.3. It is presumably possible to prove in the same way a further strengthening of Theorem 5.2.2
where we allow our unitary group to be ramified at some finite places (and thus allow [F+ : Q] to be
odd, and F/F+ to be ramified at some finite places), but to do so would involve a lengthier discussion of
automorphic representations on unitary groups, which would take us too far afield.

Remark 5.2.4. We have assumed that the places of F+ above l split in F, because the weight part of
Serre’s conjecture has not been considered in the literature for unitary groups which do not split above l
(although if l is unramified in F, and we are in the generic semisimple case, such a conjecture is a special
case of the conjectures of [Gee et al. 2018]). However, it seems likely that it is possible to formulate and
prove a generalisation of Theorem 5.2.2 which removes this assumption, following the ideas of [Gee
and Kisin 2014; Gee and Geraghty 2015] (that is, using the Breuil–Mézard conjecture for potentially
Barsotti–Tate representations). Again, this would take us too far afield from the main concerns of this
paper, so we do not pursue this; and in any case we understand that this will be carried out in forthcoming
work of Koziol and Morra.
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Functorial factorization of birational maps for
qe schemes in characteristic 0

Dan Abramovich and Michael Temkin

We prove functorial weak factorization of projective birational morphisms of regular quasiexcellent
schemes in characteristic 0 broadly based on the existing line of proof for varieties. From this general
functorial statement we deduce factorization results for algebraic stacks, formal schemes, complex
analytic germs, Berkovich analytic and rigid analytic spaces, answering a present need in nonarchimedean
geometry. Techniques developed for this purpose include a method for functorial factorization of toric
maps, variation of GIT quotients relative to general noetherian qe schemes, and a GAGA theorem for
Stein compacts.
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1. Introduction

1.1. The class of qe schemes (originally “quasiexcellent schemes”) is the natural class of schemes on
which problems around resolution of singularities are of interest. They can also be used as a bridge for
studying the same type of problems in other geometric categories; see [Temkin 2008, Section 5]. In this
paper we address the problem of functorial factorization of birational morphisms between regular qe
schemes of characteristic 0 into blowings up and down of regular schemes along regular centers. We rely
on general foundations developed in [Abramovich and Temkin 2017; 2018] and the approach for varieties
of [Włodarczyk 2000; Abramovich et al. 2002]. As a consequence of both this generality of qe schemes
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and of functoriality, we are able to deduce factorization of birational or bimeromorphic morphisms in
other geometric categories of interest.

Theorem 1.3.3 below answers a question in [Simons 2015] in characteristic 0 unconditionally, and in
positive and mixed characteristics conditionally on resolution. It provides a complete proof of a key result,
Proposition 3 in [Gillet and Soulé 2000], using the argument of Section 3.4 of that paper for general base
ring 3 and not relying on results of J. Franke yet unpublished after 25 years. It justifies [Kontsevich and
Soibelman 2006, Theorem 9].

1.2. Blowings up and weak factorizations. We start with a morphism of noetherian qe regular schemes
φ : X1→ X2 given as the blowing up of a coherent sheaf of ideals I on the qe scheme X2. In addition, we
provide φ with a boundary (D1, D2), where each Di is a normal crossings divisor in X i and D1= φ

−1 D2.
Let U = X2 r (D2 ∪ V (I )) be the maximal open subscheme of X2 such that I is the unit ideal on U and
the boundary is disjoint from U. The restriction of φ on U is the trivial blowing up (i.e., the blowing up
of the empty center); in particular, we canonically have an isomorphism φ−1U →U. We often keep the
ideal I implicit in the notation, even though it determines φ (but see Section 2.1.8 for a construction in
the reverse direction). The reader may wish to focus on the following two cases of interest: (i) D2 =∅;
(ii) V (I )⊆ D2.

A weak factorization of a blowing up φ : X1→ X2 is a diagram of regular qe schemes

X1 = V0
ϕ1
// V1

ϕ2
// · · ·

ϕl−1
// Vl−1

ϕl
// Vl = X2

along with regular schemes Zi for i = 1, . . . , l and ideal sheaves Ji for i = 1, . . . , l − 1 satisfying the
following conditions:

(1) φ = ϕl ◦ϕl−1 ◦ · · · ◦ϕ2 ◦ϕ1.

(2) The maps Vi // X2 are morphisms; these maps as well as ϕi induce isomorphisms on U.

(3) For every i = 1, . . . , l either ϕi : Vi−1 // Vi or ϕ−1
i : Vi // Vi−1 is a morphism given as the blowing

up of Zi , which is respectively a subscheme of Vi or Vi−1 disjoint from U.

(4) The inverse image DVi ⊂ Vi of D2 ⊂ X2 is a normal crossings divisor and Zi has normal crossings
with DVi .

(5) For every i = 1, . . . , l − 1, the morphism Vi → X2 is given as the blowing up of the corresponding
coherent ideal sheaf Ji on X2, which is the unit ideal on U.

To include V0→ X2, we define J0 = I. The ideals Ji are a convenient way to encode functoriality,
especially when we later pass to other geometric categories.

These conditions are the same as (1)–(5) in [Abramovich et al. 2002, Theorem 0.3.1], except that here
the centers of blowing up and ideal sheaves are specified. Condition (2) is formulated for convenience;
it is a consequence of (3) and (5). Note that here, as in [loc. cit., Theorem 0.3.1], the centers are not
assumed irreducible, in contrast with [loc. cit., Theorem 0.1.1]. With these conditions, the most basic
form of our main theorem is as follows:



Functorial factorization of birational maps for qe schemes in characteristic 0 381

Theorem 1.2.1 (weak factorization). Every birational blowing up φ : X1→ X2 of a noetherian qe regular
Q-scheme has a weak factorization X1 = V0 // V1 // · · · // Vl−1 // Vl = X2.

The adjective “weak” serves to indicate that blowings up and down may alternate arbitrarily among
the maps ϕi , as opposed to a strong factorization, where one has a sequence of blowings up followed by
a sequence of blowings down. We note that at present strong factorization is not known even for toric
threefolds.

Theorem 1.2.1 generalizes [Włodarczyk 2003, 0.0.1; Abramovich et al. 2002, Theorem 0.1.1], where
the case of varieties is considered. But we wish to prove a more precise theorem.

1.3. Functorial weak factorization. The class of data (X2, I, D2), namely morphisms φ : X1→ X2 of
noetherian qe regular schemes given as blowings up of ideals I, with divisor D2 as in Section 1.2, can be
made into the regular surjective category of blowings up, denoted by Bl, by defining arrows as follows:

Definition 1.3.1. An arrow from the blowing up φ′ : X ′1 = BlI ′(X ′2)→ X ′2 to φ : X1 = BlI (X2)→ X2

is a regular and surjective morphism g : X ′2→ X2 such that g∗ I = I ′ and g−1 D2 = D′2. In particular, g
induces a canonical isomorphism X ′1→ X1×X2 X ′2 and D′1 is the preimage of D1 under X ′1→ X1.

Similarly, weak factorizations can be made into the regular surjective category of weak factorizations,
denoted by Fact, by defining arrows as follows:

Definition 1.3.2. A morphism in Fact from a weak factorization

X ′1 = V ′0 // V ′1 // · · · // V ′l−1
// V ′l = X ′2

of φ′ : X ′1→ X ′2, with centers Z ′i and ideals J ′i, to a weak factorization

X1 = V0 // V1 // · · · // Vl−1 // Vl = X2

of φ : X1→ X2, with centers Zi and ideals Ji , consists of a regular surjective morphism g : X ′2→ X2

such that g∗ I = I ′, g∗ Ji = J ′i, inducing gi : V ′i → Vi such that Z ′i = g−1
i Zi or g−1

i−1 Zi as appropriate. In
particular ϕi ◦ gi−1 = gi ◦ϕi and g−1

i DVi = DV ′i .

Note that given a factorization of φ, any morphism from a factorization of φ′ is uniquely determined
by g : X ′2→ X2.

If we wish to restrict to schemes in a given characteristic p we denote the categories Bl(char = p)
and Fact(char = p) respectively. If we wish to restrict the dimension we write Bl(char = p, dim ≤d) and
Fact(char = p, dim ≤d).

There is an evident forgetful functor Fact→Bl taking a weak factorization X1= V0 // V1 // · · · //

Vl−1 // Vl = X2 to its composition φ : X1→ X2. The weak factorization theorem provides a section,
when strong resolution of singularities holds:

Theorem 1.3.3. (1) Functorial weak factorization: There is a functor

Bl(char =0)→ Fact(char =0)
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assigning to a blowing up φ : X1→ X2 in characteristic 0 a weak factorization

X1 = V0 // V1 // · · · // Vl−1 // Vl = X2,

so that the composite Bl(char =0)→ Fact(char =0)→ Bl(char =0) is the identity.

(2) Conditional factorization in positive and mixed characteristics: If functorial embedded resolution of
singularities applies in characteristic p for schemes of dimension ≤ d + 1, then there is a functor

Bl(char = p, dim ≤d)→ Fact(char = p, dim ≤d)

which is a section of Fact(char = p, dim ≤d)→Bl(char = p, dim ≤d). If functorial embedded resolution
of singularities applies over Z for schemes of dimension ≤ d + 1, then there is a functor

Bl(dim ≤d)→ Fact(dim ≤d)

which is a section of Fact(dim ≤d)→ Bl(dim ≤d).

This generalizes a theorem for varieties in characteristic 0 [Abramovich et al. 2002, Theorem 0.3.1 and
Remark (3) thereafter; Włodarczyk 2006, Theorem 1.1, 2009, Theorem 0.0.1], where the factorization is
only shown to be functorial for isomorphisms. The precise statements we need for part (2) are spelled out
below as Hypothetical Statements 2.2.13 and 2.3.6.

Remark 1.3.4 (preservation of G-normality). Borisov and Libgober [2005, Definition 3.1] introduced G-
normal divisors and in Theorem 3.8 of the same paper they showed that this condition can be preserved in
the algorithm of [Abramovich et al. 2002]. The same holds true here, using the same argument of [Borisov
and Libgober 2005, Theorem 3.8], by performing the sequence of blowings up associated to the barycentric
subdivision on the schemes W res

i± obtained in Section 5.4. Details are left to the interested reader.

1.4. Applications of functoriality. We need to justify the somewhat heavy functorial treatment. Of
course functoriality may be useful if one wants to make sure the factorization is equivariant under group
actions and separable field extensions; this has been of use already in the case of varieties. But it also
serves as a tool to transport our factorization result to other geometric spaces.

Blowings up of regular objects is a concept which exists in categories other than schemes, for instance,
in Artin stacks, qe formal schemes, complex semianalytic germs (see Appendix B), Berkovich k-analytic
spaces, rigid k-analytic spaces. For brevity we denote the full subcategory of qe noetherian objects in any
of these categories by Sp. Functoriality, as well as the generality of qe schemes, is crucial in proving the
following:

Theorem 1.4.1 (factorization in other categories). Any blowing up X1 → X2 of either noetherian qe
regular algebraic stacks, or regular objects of Sp, in characteristic 0 has a weak factorization X1 =

V0 // V1 // · · · // Vl−1 // Vl = X2. The same holds in positive and mixed characteristics (when
relevant) if functorial embedded resolution of singularities for qe schemes applies in positive and mixed
characteristics.
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See Theorem 6.1.3 for the case of stacks and Theorem 6.4.5 for other categories, where functoriality is
also shown; in other words Theorem 1.3.3 applies in each of the categories Sp. In addition, the argument
deducing Theorem 6.1.3 from Theorem 1.3.3 is a formal one based on functoriality, so the same argument
can be used to extend Theorem 6.4.5 to stacks in the categories of formal schemes, Berkovich spaces,
etc., once an appropriate theory of stacks is constructed; see for instance [Simpson 1996; Noohi 2005;
Ulirsch 2015; Yu 2018; Porta and Yu 2016].

1.5. The question of stronger functoriality. It is natural to replace the category Bl by the category Blr
with the same objects but where arrows g : X ′2→ X2 as in Definition 1.3.1 are not required to be surjective,
only regular. In a similar way one can replace the category Fact by a category Factr . As explained
in [Temkin 2008, §2.3.3] for resolution of singularities, removing the surjectivity assumption requires
imposing an equivalence relation on factorizations in which two factorizations which differ by a step
which is the blowing up of the unit ideal are considered equivalent. It is conceivable that the analogue of
Theorem 1.3.3 may hold for Factr → Blr .

1.6. Factorization of birational and bimeromorphic maps. Our results for projective morphisms imply
results for birational and bimeromorphic maps. We start with the case of schemes. By a proper birational
map f : X1 // X2 of reduced schemes we mean an isomorphism f0 :U1→U2 of dense open subschemes
such that the closure Y ⊂ X1× X2 of the graph of f0 is proper over each X i . Assume that X1 and X2

are regular. The factorization problem for the birational map f reduces to factorization of the proper
morphisms Y res

→ X i , where Y res is a resolution of Y. Assume, now, that f : X1→ X2 is a proper birational
morphism. By a blow-up version of Chow’s lemma (e.g., it follows from the flattening of Raynaud–
Gruson) there exists a blowing up Y =BlI (X2)→ X2 that factors through X1. Then Y =Bl f −1 I (X1) and
hence the resolution Y res, which is a blowing up of Y, is also a blowing up of both X i . Thus, factorization
of f reduces to the factorization for blowings up, which was dealt with in Theorem 1.3.3.

Now, assume that Sp is any geometric category. The definition of a proper bimeromorphic map
f : X1→ X2 is similar to the definition of a proper birational map with two addenda: in the case of stacks

we require that the morphisms Y → X i are representable, and in the case of analytic spaces or formal
schemes we require that U is open in Y (in particular, Y → X i are bimeromorphic). Then the general
factorization problem immediately reduces to the case when f is a proper morphism. Furthermore, if
objects of Sp are compact and if Chow’s lemma holds in Sp then the problem reduces further to the case
when f is a blowing up. For complex analytic spaces, Chow’s lemma was proved by Hironaka [1975,
Corollary 2]. It extends immediately to the complex analytic germs we consider in this paper, and these
are indeed compact. Most probably, it also holds in all other categories Sp we mentioned, but this does
not seem to be worked out so far.

2. qe schemes and functoriality

2.1. Projective morphisms and functorial constructions. In our method, it will be important to describe
certain morphisms we will obtain as the blowing up of a concrete ideal or an explicitly described
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projective morphism, since further constructions will depend on these data. Moreover, this should be
done functorially with respect to surjective regular morphisms. In the current section we develop a few
basic functorial constructions of this type.

There are a few ways to describe a projective morphism: using Proj, using ample sheaves, or using
projective fibrations, but each approach involves choices. Neither description is “more natural” than the
others, and we will have to switch between them. Similarly to [EGA II 1961] we choose the language of
projective fibrations to be the basic one and we will show how other descriptions are canonically reduced
to projective fibrations.

2.1.1. Projective fibrations. Let X be a scheme. For a coherent OX -module E consider the projective
fibration P(E)=PX (E) := ProjX Sym•(E) associated with E . It has a canonical twisting sheaf OP(E)(1),
and E→ π∗O(1) is an isomorphism. This construction is functorial for all morphisms: if φ : X ′→ X is
any morphism and E ′ = φ∗E then PX ′(E ′)= X ′×X PX (E), and OP(E ′)(1) is the pullback of OP(E)(1).

2.1.2. Projective morphisms. By the usual definition [EGA II 1961, 5.5.2], a morphism f : Y → X is
projective if it factors through a closed immersion i : Y ↪→ PX (E) for a coherent OX -module E . In
this paper, we will use the convention that by saying “ f is projective” we fix E and i . In particular,
Y acquires a canonical relatively very ample sheaf OY (1)= OP(E)(1)|Y . The base change or pullback
f ′ : Y ′ = Y ×X X ′→ X ′ of f with respect to a morphism φ : X ′→ X is projective via the embedding
Y ′ ↪→PX ′(E ′), where E ′= φ∗E . We will use the notation f ′= φ∗( f ). Also, we say that f is projectively
the identity over an open U of X if E |U =OU and Y |U =U.

2.1.3. Relation to Proj. For a projective morphism f : Y→ X we also obtain a canonical description of Y
as a Proj. Namely, if IY ⊆OP(E) denotes the ideal defining Y then Y = ProjX A, where A•= Sym•(E)/IY

is a quasicoherent OX -algebra with coherent graded components, generated over A0
=OX by its degree-1

component A1. Again this structure is functorial for all morphisms: if φ : X ′→ X is any morphism and
A′ = φ∗A then ProjX ′ A′ = X ′×X ProjX A.

Conversely, if a graded OX -algebra A• has coherent components and is generated over A0
=OX by

A1 then Sym•(A1)� A• and we obtain a closed immersion i : ProjX A ↪→ PX (A1). Thus, Y = ProjX A
is projective over X , and the associated graded quasicoherent algebra is A itself. This construction is also
functorial for all morphisms.

Remark 2.1.4. We note that the construction of a projective morphism from Proj is right inverse to
the construction of Proj from a projective morphism, but they are not inverse: going from a projective
morphism to Proj and back to a projective morphism usually changes the projective fibration.

Remark 2.1.5. In this paper we use superscripts to denote degrees of homogeneous components of a
graded object, as in Ai

⊂ A•. When considering weights of a given Gm-action we will use subscripts. We
hope this will not cause confusion.

2.1.6. General Proj. Consider now a general quasicoherent graded OX -algebra with coherent graded
components, which is only assumed to be generated over A0 = OX in finitely many degrees. Writing
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AM•
=
⊕

j AM j for a positive integer M, we have a canonical isomorphism Y = ProjX A• ' ProjX AM•.
For a suitable M the algebra AM• is generated in degree 1 by AM. If we take the minimal M0 such
that AM• is generated in degree 1, then L is not functorial for all morphisms. Rather it is functorial
for all flat surjective morphisms X ′→ X : if AM• is generated in degree 1 then (A′)M• is generated in
degree 1, and the opposite is true whenever X ′→ X is flat surjective; this follows since surjectivity of
((A′)1)⊗n

→ (A′)n implies surjectivity of (A1)⊗n
→ An by flat decent. Combining this construction with

the previous one we obtain an interpretation of Y → X as a projective morphism, and this construction is
functorial for all flat surjective morphisms.

Remark 2.1.7. This construction applies to the following situation: assume f : Y → X is a proper
morphism of noetherian schemes and L is an f -ample sheaf. Then A• =OX ⊕

⊕
∞

k=1 f∗(Lk) is generated
in finitely many degrees and Y = ProjX A. Therefore, L gives rise to an interpretation of f as a projective
morphism functorially for all surjective flat morphisms.

2.1.8. Blowings up. An important variant is that of blowings up. Consider a coherent ideal sheaf I on X .
The Rees algebra RX (I ) =

⊕
∞

k=0 I k is generated in degree 1, and we define BlI (X) = ProjX RX (I ).
In particular, BlI (X) is projective over X with the closed immersion BlI (X) ↪→ PX (I ), and if I is the
unit ideal on an open U of X then BlI (X)→ X is projectively the identity on U. If φ : X ′→ X is a
morphism, then I kOX ′ = (IOX ′)

k
= (I ′)k and φ∗(I k)→ I kOX ′ is surjective, giving a canonical morphism

φ′ : BlI ′(X ′)→ BlI (X) over φ. Clearly (φ′)∗L = L ′. So a blowing up is functorially projective. If
moreover X ′→ X is flat, then BlI ′(X ′)= X ′×X BlX I.

We will need an opposite construction, using a variant of [Hartshorne 1977, Theorem II.7.17] for
regular schemes. Assume X is regular and f : Y → X is a proper birational morphism with a relatively
ample sheaf L (e.g., if Y → X is projective we can take L =OY (1)). Then after replacing L by a positive
power which is functorial for flat surjective morphisms, we have Y = ProjX A•, where A• is generated
over A0 =OX by its degree-1 component, and Ak

= f∗Lk.
Locally on X , write Lk as a fractional ideal on Y, giving it as a fractional ideal FL ,k on X since Y→ X is

birational. Since A• is generated in degree 1, we have FL ,k = Fk
L ,1; see [loc. cit., Theorem II.7.17, Step 5].

Since X is factorial, there is a unique expression FL ,1=M I, where M is an invertible fractional ideal and I
is an ideal sheaf without invertible factors. Explicitly, F∗L ,1 is invertible, so we can write I = F∗L ,1 FL ,1 and
M = F∗∗L ,1. It follows that FL ,k = Mk I k. Note that while the construction is local on X and depends on an
embedding of L in the fraction field, the ideal sheaf I glues canonically. Locally on X we have a canonical
isomorphism Y 'BlI (X), which evidently glues canonically. We have obtained that a projective birational
morphism f : Y → X with X regular is a blowing up, functorially for flat surjective morphisms X ′→ X
of regular schemes. In addition, if f is projectively the identity on U ⊆ X then I is the unit ideal on U.

For future reference we record the following well-known result that follows from the universal property
of blowings up.

Lemma 2.1.9. If X is an integral scheme and a blowing up Y = BlI (X)→ X factors through a proper
birational morphism Z→ X then Y = BlIOZ (Z).
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2.1.10. Sequences of projective morphisms. Now assume Z g
−→ Y f

−→ X is a sequence of projective
morphisms of noetherian schemes, say Z ↪→PY (F) and Y ↪→PX (E) for a coherent OY -module F and a
coherent OX -module E . For a large enough n the map f ∗ f∗(F(n)) α

−→F(n) is surjective; hence PY (F)=
PY (F(n)) embeds into PX (E ⊗ f∗F(n)) and we obtain a closed immersion Z ↪→ PX (E ⊗ f∗F(n)).
Choosing the minimal n such that α is surjective we obtain a construction that realizes composition of
projective morphisms as a projective morphism functorially for flat surjective morphisms X ′→ X .

If X is regular we can combine this with the previous statements, so if Ym → · · · → Y1 → X is a
sequence of birational projective morphisms which are projectively the identity over an open U ⊆ X , then
Ym→ X is a blowing up of an ideal sheaf which is the unit ideal on U, and this is functorial for flat and
surjective morphisms of regular schemes.

Remark 2.1.11. We will not use this, but blowings up can also be composed in terms of ideals. One can
show that if X is normal then the composition of Y = BlI (X)

f
−→ X and BlJ (Y )→ Y is of the form

Bl f∗( f −1(I n)J )(X)→ X for a large enough n.

2.2. qe schemes and resolution of pairs.

2.2.1. qe schemes. The class of quasiexcellent schemes was introduced by Grothendieck as the natural
class where problems related to resolution of singularities behave well. The name “quasiexcellent” is
perhaps not very elegant (it was not introduced by Grothendieck), and we feel it harmless to refer to them
as qe schemes.

First recall that regular morphisms are a generalization of smooth morphisms in situations of morphisms
which are not necessarily of finite type. Following [EGA IV2 1965, 6.8.1] a morphism of schemes
f : Y → X is said to be regular if

• the morphism f is flat and

• all geometric fibers of f : Y → X are regular.

A locally noetherian scheme X is a qe scheme if the following two conditions hold:

• For any scheme Y of finite type over X , the regular locus Yreg is open.

• For any point x ∈ X , the completion morphism Spec ÔX,x → SpecOX,x is regular.

It is a known, but nontrivial fact, that a scheme Y of finite type over a qe scheme is also a qe scheme;
see, for example, [Matsumura 1980, 34.A]. A ring A is a qe ring if Spec A is a qe scheme.

2.2.2. Resolution of pairs. Consider a pair (X, Z), where X is a reduced qe scheme and Z is a nowhere
dense closed subset of X . By a resolution of (X, Z) we mean a birational projective morphism f : X ′→ X
such that X ′ is regular, Z ′ = f −1(Z) is a simple normal crossings divisor, and f is projectively the
identity outside of the union of Z and the singular locus Xsing of X . Since [EGA IV2 1965, 7.9.6], it is
universally hoped that every qe scheme admits a good resolution of singularities; the same should also
hold for pairs; see Remark 2.2.3 below. If X is noetherian of characteristic 0 then (X, Z) can be resolved
by [Temkin 2012, Theorem 1.1].
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Remark 2.2.3. (i) Usually, resolution of pairs is constructed in two steps:

(1) Resolve X by a projective morphism f : X ′→ X . Usually, this is achieved by a sequence of blowings
up Xl→ · · · → X0 = X . One can also achieve that the centers are regular, though this requires an
additional effort.

(2) Resolve Z ′ = f −1(Z) by a further projective morphism f ′ : X ′′→ X ′. Usually, this is achieved by a
sequence of blowings up X ′′ = X ′n→ · · · → X ′0 = X ′ whose centers are regular and have simple
normal crossings with the accumulated exceptional divisor, so that all schemes X ′i remain regular
and exceptional divisors E ′i are simple normal crossings. In addition, one achieves a principalization
of Z ′ as a subscheme; i.e., Z ′×X ′ X ′n is a divisor supported on E ′n .

(ii) The best known results for general noetherian qe schemes beyond characteristic 0 are resolution of qe
threefolds, see [Cossart and Piltant 2014], and principalization of surfaces in regular qe schemes, see
[Cossart et al. 2009]. In particular, a noetherian qe pair (X, Z) can be resolved whenever dim(X)≤ 3.

2.2.4. Compatibility with morphisms. By a morphism of pairs φ : (Y, T )→ (X, Z) we will always mean
a morphism φ : Y → X such that T = φ−1(Z). We say that resolutions fX : X ′→ X and fY : Y ′→ Y of
(X, Z) and (Y, T ) are compatible with φ if fY = φ

∗( fX ).

Remark 2.2.5. As we mentioned, often resolution of pairs has a natural structure of a composition of
blowings up. The definition of compatibility in this case is similar with the only difference that the
blowing up sequence of Y is obtained from the pullback of the blowing up sequence of X by removing all
blowings up with empty centers. The latter contraction procedure is only needed when f is not surjective.

2.2.6. Functorial resolution. Let C be a class of pairs (X, Z), where X is a reduced noetherian qe scheme
and Z is a closed subscheme. Throughout this paper, by a functorial resolution on C we mean a rule
that assigns to any pair (X, Z) ∈ C a resolution (X ′, Z ′)→ (X, Z) in a way compatible with arbitrary
surjective regular morphisms between pairs in C. In addition, we always make the following assumption
on the resolution of normal crossings pairs, i.e., pairs (X, Z) with regular X and normal crossings Z (not
necessarily simple):

Assumption 2.2.7. For any normal crossings pair (X, Z) in C its resolution X ′→ X can be functorially
represented as a composition of blowings up whose centers are regular and have normal crossings with
the union of the preimage of Z and the accumulated exceptional divisor.

Remark 2.2.8. (i) This definition provides the minimal list of properties we will use. As we remarked
earlier, usually one proves finer desingularization results obtaining, in particular, that Z ×X X ′ is a divisor
and the resolution is functorial for nonsurjective morphisms as well.

(ii) It seems that any reasonable resolution should satisfy the assumption. In fact, most (if not any)
algorithms appearing in the literature apply to normal crossings pairs (X, Z) via the following standard
algorithm: first one blows up the maximal multiplicity locus of Z , then one blows up the maximal
multiplicity locus of the strict transform of Z , etc. It is easy to see that the standard algorithm satisfies
the assumption.
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2.2.9. Resolution of singularities of qe schemes: characteristic 0. Functorial resolution of pairs is known
in characteristic 0:

Theorem 2.2.10. There exists a functorial resolution, satisfying Assumption 2.2.7, on the class Cchar=0

whose elements are pairs (X, Z) with X a reduced noetherian qe scheme over Q.

Proof. By [Temkin 2018, Theorem 1.1.7] there exists a blowing up sequence

Fprinc(X, Z) : X ′→ · · · → X

whose centers lie over Z ∪ Xsing and such that X ′ is regular and Z ′= f −1(Z) is a simple normal crossings
divisor. Moreover, this sequence is functorial in regular morphisms. By Section 2.1.10, the morphism
X ′→ X is a projective morphism functorially in surjective regular (even flat) morphisms. Finally, a direct
(but tedious) inspection shows that the algorithm Fprinc of [loc. cit.] resolves normal crossings pairs via
the standard algorithm. �

Remark 2.2.11. Functoriality of this resolution implies that one also gets a functorial way to resolve an
arbitrary qe pair over Q (locally noetherian but not necessarily noetherian) by a morphism f : X ′→ X . In
general, there is no natural way to provide f with an appropriate structure, neither as a single blowing up
nor a sequence of blowings up. However, f can be realized as an infinite composition whose restrictions
onto noetherian open subschemes of X are finite; e.g., the case of Z =∅ is worked out in [Temkin 2008,
Theorem 5.3.2].

2.2.12. Positive and mixed characteristics hypothesis. In Theorem 1.3.3 (3), the precise hypothetical
statement we need about resolutions of pairs is the following analogue of Theorem 2.2.10:

Hypothetical Statement 2.2.13. (1) Functorial resolution: The classes Cchar=p,dim≤d+1 and Cdim≤d+1 of
pairs (X, Z), where X is a reduced noetherian qe Fp-scheme or Z-scheme, respectively, of dimension
≤ d + 1, each admit a functorial resolution f(X,Z) : X ′→ X satisfying Assumption 2.2.7.

(2) Equivariance: Moreover, the resolution is compatible with any G-action on (X, Z), where G = Gm

or G = (Ga)
d, in the sense that a∗( f(X,Z))= p∗X ( f(X,Z)), where a : G× X→ X is the action morphism

and pX : G× X→ X is the projection.

In mixed characteristics we will also need:

(3) Functoriality of toroidal charts: assume that X is a toroidal scheme (see [Abramovich and Temkin
2017, §2.3.4]) of dimension at most d + 1 and j : X→ Y = Spec Z[M] is a toroidal chart (see [loc. cit.,
§2.3.17]), T is a toric subscheme of Y and Z = X ×Y T. Then j∗( f(Y,T ))= f(X,Z).

We note that the equivariance statement (2) in dimension d+1 follows from statement (1) in dimension
d + 2, but here we wish to only make assumptions up to dimension d + 1. It is conceivable that a version
of (2) sufficient for our needs follows from (1) by taking slices, but we will not pursue this question.

Let us say that a pair (X, Z) is locally monoidal if locally X admits a logarithmic structure making it
into a logarithmically regular logarithmic scheme so that the ideal of Z is monoidal. It is expected that
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there should exist a canonical resolution of such pairs of combinatorial nature, which is, in particular,
independent of the characteristics. Our statement (3) asserts such independence in mixed characteristics; in
pure characteristics it is a consequence of equivariance. It is analogous to Hypothetical Statement 2.3.6(3)
below. Similarly to Hypothetical Statement 2.3.6, proving statements (1)–(3) for locally monoidal pairs
is expected to be easier than the general case. For example, it is proved in [Illusie and Temkin 2014,
Theorem 3.4.9] for logarithmically regular logarithmic schemes (with a single logarithmic structure), but
the known functoriality [loc. cit., Theorem 3.4.15] is not enough to extend it to locally monoidal schemes.
In addition, very recently Buonerba [2015] resolved certain locally monoidal varieties.

2.3. Principalization of ideal sheaves. In addition to resolution of pairs, we will need a version of
functorial principalization of coherent ideal sheaves on a qe regular scheme X with a simple normal
crossings divisor D, which will often be called the boundary. In fact, we will only need a particular case
of locally monoidal ideals as introduced below.

2.3.1. Permissible sequences. A blowing up sequence Xn→ · · ·→ X0 = X will be called permissible if
its centers Vi ⊂ X i are regular and have simple normal crossings with Di ⊂ X i , which is defined to be
the union of the preimage of D and the accumulated exceptional divisor. Note that in such case each X i

is regular and each Di is a boundary.

2.3.2. Principalization. We consider the category of triples (X, D, I ), where (X, D) is a noetherian
regular qe scheme with a boundary, I is a coherent ideal sheaf, and arrows are regular morphisms
f : X ′→ X such that IOX ′ = I ′ and f −1 D = D′. A principalization of I is a permissible sequence of
blowings up φ(X,D,I ) : Xn→ · · · → X0 = X such that:

(1) Each center Vi lies in the union of Di with the locus where I is not the unit ideal.

(2) In = IOXn is a divisorial ideal supported on Dn . In particular, V (In) is a divisor with a simple
normal crossings reduction.

Principalizations form a category again, and functorial principalization provides a functor from triples
(X, I, D) to principalizations φX : X ′→ X . As we do not require the morphism f to be surjective, we
have to use the equivalence relation mentioned in Section 1.5. However, we will only apply the result in
the context of surjective morphisms, so this equivalence will not figure in any of our applications.

2.3.3. Known results. Functorial principalization of ideal sheaves for varieties over a field of characteris-
tic 0 is known; e.g., see [Bierstone and Milman 1997, Sections 11,13] or [Kollár 2007, Theorem 3.26].
The second author is in the process of writing a general functorial principalization of ideal sheaves on
noetherian regular qe schemes over Q with the methods of [Temkin 2018]; we will manage not to use
this result. For general qe schemes, the best known result is principalization on threefolds; see [Cossart
and Piltant 2014].

Remark 2.3.4. (i) Classically, one only blows up centers over the locus where I is not trivial. On the
other hand, usually one works with ordered boundaries D =

⋃n
i=0 Di , where Di are smooth components.
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Ordering the boundary restricts functoriality and, in fact, it is not critical. For example, the boundaries in
[Cossart et al. 2009] are not ordered.

(ii) Since we allow blowings up that modify the whole D, we can freely use the classical results to resolve
(X, D, I ): first apply the standard principalization f : Xn → · · · → X to (X, D); then Dn is a simple
normal crossings divisor ordered by the history of blowings up, and we can apply a classical algorithm to
(Xn, Dn, IOXn ).

2.3.5. Locally monoidal ideals. A triple (X, D, I ) with X regular, D a boundary and I an ideal sheaf
on X is said to be locally monoidal if there is an open covering

∐
Uα → X , logarithmically regular

structures (Uα,Mα) in the sense of [Kato 1994; Abramovich and Temkin 2017, §2.3.1] such that D is
part of the toroidal divisor, and monoid ideals Iα ⊂ Mα such that IUα

is generated by the image of Iα
under Mα→OUα

.

Hypothetical Statement 2.3.6. (1) Each locally monoidal Fp-triple or Z-triple (X, D, I ) of dimension
≤ d admits a principalization

φ(X,D,I ) : X̃→ · · · → X

in a manner functorial for regular morphisms X ′→ X.

(2) Moreover, if a : G × X → X is an action of G = (Ga)
d such that I and D are equivariant, that is,

a−1 I = p−1
X I and a−1 D= p−1

X D, where pX :G×X→ X is the projection, then X̃→ X is G-equivariant
as well.

Again in mixed characteristics we also need:

(3) Functoriality of toroidal charts: assume that (X, D, I ) is locally monoidal of dimension ≤ d and
j : (X, D)→ (Y = Spec Z[M], DY ) is a toroidal chart such that I = j−1 I0 for a toric ideal I0 on Y. Then
the sequence φ(X,D,I ) is the pullback of φ(Y,DY ,I0).

Remark 2.3.7. (i) In fact, the hypothesis asserts that toric ideals on schemes Spec Z[M] can be princi-
palized so canonically that given a locally monoidal triple (X, D, I ) any toroidal chart induces the same
principalization of I.

(ii) The results of [Illusie and Temkin 2014, Section 3.1.14] suggest that this statement may be within
reach: in that paper the local nonfunctorial problem is solved, and the problem reduces to making the
process functorial even if one changes the logarithmic structure Mα on Uα.

(iii) Here and below, given a morphism f : Y → X and ideal I ⊂OX we use the common notation f −1 I
for the ideal sheaf more precisely denoted by ( f ∗ I )OY , hoping this notation will not confuse the reader.
We find the notation (a∗ I )OG×X too heavy, and writing more simply IOG×X would not work in (2) above.

2.3.8. The characteristic-0 case. To make our results unconditional in characteristic 0 we should prove
that parts (1) and (2) of Hypothetical Statement 2.3.6 hold for schemes over Q. In fact, we will even
deal with a larger class of triples using the case of varieties and methods of [Illusie and Temkin 2014,
Theorem 2.4.1, p. 95].
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A triple (X, D, I ) is said to be Q-absolute if there exists an open covering
∐

Uα → X , regular
Q-varieties Zα, regular morphisms fα : Uα→ Zα, ideal sheaves Iα on Zα and divisors Dα ⊂ Zα such
that f −1

α Iα = I |Uα
and f −1

α Dα = D|Uα
. The collection of Q-absolute triples forms a full subcategory of

the category of triples. Functorial principalization of Q-absolute triples (X, D, I ) is a functor from this
subcategory to principalizations of the corresponding ideals.

The statement we need is the following:

Proposition 2.3.9. There exists a functorial principalization φX : X̃→ X of Q-absolute triples (X, D, I ).

Proof. We may replace
∐

Uα by a finite covering, since X is noetherian. We write Uαβ = Uα ×X Uβ .
Now, we will use the ideas from the proof of [Illusie and Temkin 2014, Theorem 2.4.3].

First we construct a principalization. It suffices to construct a principalization of
∐
(Uα, D|Uα

, I |Uα
)

whose two pullbacks to the fiber product W :=
∐

Uαβ coincide. The triple (Z , DZ , IZ ) :=
∐
(Zα, Dα, Iα)

has a principalization compatible with Dα coming from the principalization functor for Q-varieties.
This pulls back to a principalization of

∐
(Uα, D|Uα

, I |Uα
) and we need to show that the two pullbacks

to W coincide. We have two regular morphisms f, g : W → Z . By Popescu’s theorem [1986], see
also [Spivakovsky 1999], f is the limit of smooth morphisms fγ : Wγ → Z . By [EGA IV3 1966,
Proposition 8.13.1], g factors through a morphism gγ :Wγ → Z for a large enough γ and then [Illusie
and Temkin 2014, Proposition 2.4.3] implies that replacing Wγ by a neighborhood of the image of W we
can achieve that gγ is also smooth. Since the two pullbacks of IZ and DZ to W coincide, there is some γ
such that the two pullbacks of IZ and DZ to Wγ coincide. It follows by functoriality of principalization
for varieties that the two principalizations on Wγ coincide, and therefore they coincide on W, as required.

We now demonstrate that this principalization is functorial. Consider a regular surjective morphism
f : (X1, D1, I1)→ (X2, D2, I2) with coverings

∐
U1α and

∐
U2β and Q varieties Z1α and Z2α. Then

composing U2β → Z2β with f we get another covering
∐

f −1U2β with regular maps to Z2β , so it is
enough to show that the resulting principalizations on X1 coincide. We now write W =

∐
U1α×X1 f −1U2β ,

which maps to Z1=
∐

Z1α and Z2=
∐

Z2β . By the same argument as earlier we have that W→ Z1× Z2

is the limit of a family Wγ → Z1× Z2, where the two maps Wγ → Zi are smooth. As above we conclude
that the ideals and divisors coincide on some Wγ and the two principalizations coincide on W and
therefore on X1. �

3. Functorial toroidal factorization

3.1. Statement. We follow the treatment of toroidal schemes in [Abramovich and Temkin 2017, Sec-
tion 2.3], in particular they carry logarithmic structures in the Zariski topology. A toroidal ideal I on a
toroidal scheme X with logarithmic structure M is the ideal generated by the image of a monomial ideal
in M through M→OX . We define a category TorBlrs of toroidal blowings up, similar to Bl:

(1) An object is a birational transformation X1 → X2 where X1, X2 are toroidal and regular, and
X1→ X2 is given as the normalized blowing up of a toroidal ideal I ⊂OX2 .
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(2) An arrow from X ′1→ X ′2 to X1→ X2 consists of a regular surjective morphism g : X ′2→ X2 such
that UX2 = g−1UX2 and I ′ = IOX ′2 .

We similarly define a toroidal weak factorization X1 = V0 // V1 // · · · // Vl−1 // Vl = X2 of a
toroidal blowing up X1→ X2, where the schemes Vi , ideals Ji and centers Zi are toroidal. These form
the regular surjective category TorFactrs of toroidal weak factorizations in a manner similar to the above.

Proposition 3.1.1. Let X1→ X2 be a toroidal morphism of toroidal schemes obtained by normalized blow-
ing up a toroidal ideal. Then there is a toroidal weak factorization X1=V0 // V1 // · · · // Vl−1 // Vl=

X2 in a functorial manner: there is a section TorBlrs→ TorFactrs of the forgetful functor TorFactrs→ Bl.

Remark 3.1.2. Jarosław Włodarczyk informed us that one can prove a stronger result: a factorization
procedure which is functorial for all regular strict morphisms g : X ′2→ X2, not required to be surjective.
His proposed argument involves subtle modifications at the heart of the algorithm in [Włodarczyk 2009,
Sections 4 and 5]. The proof we provide at the end of this section shows that any procedure for toric
factorization gives rise to a functorial procedure.

3.2. Cone complexes. Before proving Proposition 3.1.1 we need to discuss a generalization of the
polyhedral cone complexes with integral structure of [Kempf et al. 1973] which was introduced in
[Abramovich et al. 2015, 2.5] to accommodate any toroidal embedding in the sense of [Kempf et al.
1973], allowing for self-intersections and monodromy. In this paper we only assign polyhedral cone
complexes to Zariski toroidal schemes, without self-intersections or monodromy, but the generalized
polyhedral cone complexes are used as a combinatorial tool to achieve functoriality.

Fix a toroidal scheme X . Recall that the polyhedral complex of [Kempf et al. 1973] or the equivalent
Kato fan of [Kato 1994] assigns a polyhedral cone σZ with integral structure to each toroidal stratum
Z ⊂ X ; each inclusion Z ′ ↪→ Z ⊂ X gives rise to a linear map ν : σZ→ σZ ′ , which identifies σZ as a face
of σZ ′ in such a way that the integral structure on σZ is the restriction of the integral structure of σZ ′ : this
is called a face map. The diagram ({σZ }, {ν}) is a poset, defining a polyhedral cone complex 6(X) as in
[Abramovich et al. 2015, Section 2.2]. Anticipating Section 3.3 we denote it by 6(X)= lim

−−→
({σZ }, {ν}),

where the colimit is taken in the category of generalized cone complexes of [loc. cit., Section 2.6]. This
polyhedral cone complex is similar to the fan of a toric variety, but is not embedded in a space NR and
the intersection of two cones may be the union of faces rather than just one face.

A map of polyhedral cone complexes lim
−−→
({σ ′i }, {ν

′

k})→ lim
−−→
({σj }, {νl}) is defined to be a collection of

cone maps σ ′i → σ j (i) compatible with the face maps ν ′k and νk . A toroidal map X ′→ X gives rise to a
map of cone complexes; here are a few well-known relationships:

(1) A proper birational toroidal morphism gives rise to a subdivision, and there is an equivalence
of categories between proper toroidal birational morphisms and subdivisions. Blowings up of ideals
correspond to subdivisions determined by piecewise linear continuous integral functions which are convex
on each cone; following [Kempf et al. 1973] we call these projective subdivisions (in the combinatorial
literature they are coherent subdivisions).
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(2) A regular morphism g : X ′2 → X2 such that UX ′2 = g−1UX2 gives rise to a map of complexes
6(g) : 6(X ′)→ 6(X) where all the maps σ ′i → σ j (i) are face maps — this is called a face map of
complexes.

(3) If the map g : X ′2→ X2 is also surjective then 6(g) is surjective.

(4) The scheme X is regular if and only if all the cones σi ⊂ 6(X) are nonsingular in the usual toric
sense.

(5) If X is regular then the closure of a stratum is always regular (this would fail if we allowed self-
intersections); we call such subschemes toroidal centers.

(6) The blowing up X ′ → X of an irreducible toroidal center Z on a regular X corresponds to the
star subdivision 6′→ 6(X) at the barycenter of σZ . The blowing up X ′→ X of any regular toroidal
subscheme W corresponds to the simultaneous star subdivision 6′→6(X) at the barycenters of all the
cones corresponding to the connected components of W.

Thus Proposition 3.1.1 would follow if the projective subdivision 6(X1)→6(X2) can be factored as a
composition of such simultaneous star subdivisions and their inverses, in such a way that the intermediate
steps are projective subdivisions of 6(X2), in a functorial manner with respect to surjective face maps.
This will be our Lemma 3.5.1 below.

Morelli’s π-desingularization lemma of fan cobordisms [Włodarczyk 2003, Lemma 10.4.3] gives a
nonfunctorial result in the case of fans; this was generalized in [Abramovich et al. 1999] to polyhedral
cone complexes. In [Abramovich et al. 2002] it is made functorial under automorphisms, which is not
sufficient for our purposes here.

Consider the category whose objects are projective subdivisions 61 → 62 of nonsingular cone
complexes given by a fixed piecewise linear continuous integral function f : 62→ R convex on each
cone and arrows (6′2, f ′)→ (62, f ) induced by surjective face maps h : 6′2 → 62 with f ′ = f ◦ h.
Functoriality would be easily achieved if the connected component of any object 61 → 62 in this
category had a final object, as we show below in Lemma 3.5.1. Indeed, this would mean that applying
Morelli’s lemma to the final object would induce a factorization for the whole component, giving the
result. Unfortunately final objects usually do not exist in the category of cone complexes. Our next goal
is to enlarge this category so that final objects do exist; see Lemma 3.3.1 below.

3.3. Generalized cone complexes and existence of final objects. A generalized cone complex is given
by any finite diagram ({σj }, {νl}) of cones and face maps. We allow for more than one face map σj → σl ,
including nontrivial self-face maps σj → σj . We think of a generalized cone complex 6 as a structure
imposed on the topological space 6 = lim

−−→
({σj }, {νl}). Thus an arrow of generalized cone complexes

({σ ′i }, {ν
′

k})→ ({σj }, {νl}) is given by compatible cone maps as above; an arrow is a face map if it is
given by compatible face maps; and an arrow is declared to be an isomorphism if it is a face map inducing
a bijection of sets lim

−−→
({σ ′i }, {ν

′

k})→ lim
−−→
({σj }, {νl}). See [Abramovich et al. 2015, §2.6].
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Cone complexes are a full subcategory of generalized cone complexes. They are distinguished by
the property that, for any cones τ, σ of 6, a face map ν : τ → σ in 6 is unique if it exists. Thus
Proposition 3.1.1 would again follow if any projective subdivision 61→62 of generalized nonsingular
cone complexes can be factored as a composition of simultaneous star subdivisions and their inverses, in
a functorial manner with respect to surjective cone maps. The advantage of working with generalized
cone complexes is the following:

Lemma 3.3.1. The connected component of the projective subdivision 61 → 62 of generalized cone
complexes in the category induced by surjective face maps 6′2→62 has a final object.

Proof. The projective subdivision 61→62 is induced by an implicit piecewise linear convex integral
function f : 62→ R. Write 62 = ({σj }, {νl}). Then νl : σi → σj has the property that fσi = fσj ◦ νl .
Let {µk} be the collection of all face maps µk : σm → σn with the property that fσm = fσn ◦ µk .
Then 1 := ({σj }, {µk}) is a generalized cone complex, the maps fσj glue to give a piecewise linear
integral function f̃ :1→ R, and since {νl} ⊂ {µk} we have a map of diagrams g : 62→1 such that
f = f̃ ◦ g.

It is convenient to have another presentation of1. Choose one representative σ̄ from each isomorphism
class of cones in 1. Given two such representatives τ̄ and σ̄ , consider all maps ν̄l : τ̄ → σ̄ in 1. Clearly
1̄= ({σ̄ }, {ν̄l}) maps as a subdiagram to 1, and the map is an isomorphism since it is clearly a bijection
on set-theoretic limits.

We claim that (1, f̃ ) is a final object in the component of (62, f ) in the category of generalized cone
complexes with piecewise linear integral function. For this it suffices to show that if (6′2, f ′) is an object
and h : 62→ 6′2 is a surjective face map such that f ′ ◦ h = f then g = g′′ ◦ h, where g′′ : 6′2→1 is
a morphism so that f ′ = f̃ ◦ g′′.

First, if we apply the construction of 1 to 6′2 we get a map g′ :6′2→1′ which sits in a commutative
diagram:

62
g

//

h

��

f
**

1

h̃

��

f̃

  

R

6′2 g′
//

f ′
55

1′
f̃ ′

??

On the other hand 1̄ ' 1 and 1̄′ ' 1′, and the map 1̄ → 1̄′ induced by h̃ is an isomorphism
of diagrams: since h is a surjective face map, any cone in 6′2 is isomorphic to a cone of 61 via an
isomorphism compatible with f and vice versa. So h̃ gives a bijection between the isomorphism classes
of cones, and the maps ν̄ between cones are determined by the compatibility of the function f̃ = f̃ ′ on
them. So 1→1′ is an isomorphism, giving the requisite map of generalized complexes g′′= h̃−1

◦g′. �



Functorial factorization of birational maps for qe schemes in characteristic 0 395

3.4. Barycentric subdivisions and factorization for generalized cone complexes. We proceed to extend
the factorization of subdivisions of cone complexes to generalized cone complexes. We do it by a reduction
step using barycentric subdivisions:

Lemma 3.4.1. (1) [Abramovich et al. 2015, 2.5] The barycentric subdivision B(1) of a generalized cone
complex 1 is a projective subdivision obtained by a sequence of simultaneous star subdivisions. If 1 is
nonsingular then the star subdivisions are smooth. The generalized cone complex B(1) is in fact a cone
complex.

(2) [Abramovich et al. 1999, Lemma 8.7] The barycentric subdivision B(1) of a nonsingular cone
complex 1 is a projective subdivision obtained by a sequence of simultaneous smooth star subdivisions.
The nonsingular cone complex B(1) is in fact isomorphic to a fan.

Proof. (1) Write 1= ({σj }, {µk}). We need to show that if τB, σB are cones in B(1), then a face map
τB→ σB in B(1) is unique if it exists. Suppose the minimal cone containing the image of τB is τ and
the corresponding cone for σB is σ . Then it suffices to show that the restriction to τB of a face map
ψ : τ→ σ in 1 carrying τB into σB is unique if it exists. We can write σB = 〈b(σi1), . . . b(σik )〉 uniquely
as the cone generated by the barycenters b(σir ) of faces σir of σ of dimensions i1 < · · ·< ik , and similarly
τB = 〈b(τ j1), . . . b(τ jl )〉. So ψ must carry b(τ js ) to the barycenter of a cone of σ of dimension js ; in
other words ψ(b(τ js ))= b(σ js ). Since {b(τ j1), . . . , b(τ jl )} spans τB this means that the restriction of ψ
is unique if it exists.

(2) Consider the vector space V =
⊕

σ∈1 Rσ with one basis element for each cone of σ . Assume 1 is a
cone complex. In [Abramovich et al. 1999, Lemma 8.7] it is shown that B(1) has a real embedding in V,
and the image is the real support of a fan. The embedding is obtained by sending b(σ ) to the unit vector
eσ ∈ Rσ ⊂ V. Here we assume that 1 is nonsingular, and we need to check that the embedding gives
an isomorphism of cone complexes, namely that the integral structures coincide. Note that the lattice in
any cone 〈b(σi1), . . . , b(σik )〉 in B(1) is generated by the elements b(σi1), . . . , b(σik ). The image of this
lattice in V is precisely generated by e(σi1), . . . , e(σik ), and coincides with the intersection of the cone
〈e(σi1), . . . , e(σik )〉 with

⊕
σ∈1 Zσ . So the image of B(1) is indeed a fan, as required. �

Lemma 3.4.2. Let 1 be a nonsingular generalized cone complex and f : 1→ R a piecewise linear
function, convex and integral on each cone, such that the corresponding subdivision11→1 is nonsingular.
Then 11 → 1 admits a factorization into nonsingular star subdivisions and their inverses, with all
intermediate steps projective over 1.

Proof. By Lemma 3.4.1 we may replace 11 by its second barycentric subdivision, so we may assume 11

is isomorphic to a fan. The common subdivision of B(B(11)) and B(B(1)) is a projective subdivision
of B(B(11)), so there is a sequence of star subdivisions 1′1→ B(B(11)) such that 1′1→ 1 factors
through a projective subdivision 1′1→ 1′ := B(B(1)). Since 1′ is isomorphic to a fan and 1′1 is a
projective subdivision, Morelli’s π -desingularization lemma applies, see [Morelli 1996] or [Włodarczyk
2003, Lemma 10.4.3], giving a factorization by star subdivisions and their inverses, all projective over 1′.
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Combining these transformation, we obtain the desired factorization, with all steps projective over 1:

1′1

star subdivision sequence
zz

factorized
// 1′

B(B(11))

star subdivision sequence
zz

B(B(1))

star subdivision sequence
$$

11 projective subdivision
// 1 �

3.5. Functoriality for generalized cone complexes.

Lemma 3.5.1. The factorization in Lemma 3.4.2 can be made functorial for surjective face maps: we can
associate to (1, f ) a factorization so that, given a surjective face map φ :6→1, the factorization of
(6, f ◦φ) is the pullback of the factorization of (1, f ) along φ.

Proof. For each connected component of the category of pairs (1, f ) with face maps between them
choose a final object (1̃, f̃ ). By Lemma 3.4.2 there is a factorization 1̃1 // · · · // 1̃ of (1̃, f̃ ). Given
an arbitrary (1, f ) it has a morphism ψ1 :1→ 1̃ to the final object (1̃, f̃ ), so that f = f ◦ψ1. The
pullback 11 // · · · //1 of 1̃1 // · · · // 1̃ along ψ1 is a factorization of (1, f ), and its pullback
along φ is simply the pullback 61 // · · · //6 along ψ1 ◦φ = ψ6 of 1̃1 // · · · // 1̃, so the process
is functorial. �

3.6. Functoriality for toroidal factorization.

Proof of Proposition 3.1.1. The toroidal morphism X1→ X2 corresponds to a subdivision6(X1)→6(X2)

induced by a piecewise linear function f :6(X2)→R convex and integral on each cone. This is functorial:
a surjective regular morphism X ′2→ X2 gives rise to a surjective face map φ : 6(X2)

′
→ 6(X2) such

that X ′1→ X ′2 corresponds to f ◦φ.
By Lemma 3.5.1 we have a factorization 6(X1) // · · · //6(X2), functorial for surjective face maps,

into nonsingular star subdivisions and their inverses, with all intermediate steps functorially projective over
6(X2). This gives rise to a toroidal factorization X1 // · · · // X2 into blowings up and down, which
is functorial for surjective regular morphisms, where the terms are functorially projective over X2. �

4. Birational cobordisms

A key tool in the factorization algorithm is the notion of birational cobordism, introduced in [Włodarczyk
2000], where it is motivated by analogy with Morse theory. In this paper we adopt the approach of
[Abramovich et al. 2002], which relies on geometric invariant theory and variation of linearizations; see
[Brion and Procesi 1990; Thaddeus 1996; Dolgachev and Hu 1998].

4.1. Geometric Invariant Theory of P(E). Given a nonzero coherent sheaf E on X2, the data of a Gm-
action ρ :Gm→Aut E on E is equivalent to the data of a Z-grading E =

⊕
a∈Z Ea , which is necessarily
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a finite sum: E =
⊕amax

a=amin
Ea . The homogeneous factor Ea is characterized by

ρ(t)v = tav for all v ∈ Ea.

Here and later we use the informal notation v ∈ Ea to indicate that v is a local section of Ea . Given such
data, there is a resulting action of Gm on Sym•(E) and a linearized action on P(E)= PX2(E).

We require the following:

Assumption 4.1.1. The sheaves Eamin and Eamax are everywhere nonzero, so the morphisms P(Eamin)→ X2

and P(Eamax)→ X2 are surjective.

Given an integer a viewed as a character of Gm , we define a new action of Gm on E by

ρa(t)v = t−aρ(t)(v).

This induces an action on Sym•(E) and on (P(E),OP(E)(1)) which we also denote by ρa . Writing
(Sym•(E))ρa for the ring of invariants under this action, we define

P(E)//aGm := ProjX2
(Sym•(E))ρa .

As customary, we unwind this as follows: we define the unstable locus of ρa to be the closed subscheme

P(E)un
a := P

(⊕
b<a

Eb

)⊔
P

(⊕
b>a

Eb

)
, (1)

and the semistable locus to be the complementary open

P(E)sst
a := P(E)rP(E)un

a .

We have the following well-known facts:

Lemma 4.1.2. (1) The semistable locus P(E)sst
a is nonempty precisely when amin ≤ a ≤ amax.

(2) Consider the rational map qa : P(E) → P(E)//aGm induced by the inclusion (Sym•(E))ρa ⊂

(Sym•(E)). Then qa restricts to an affine Gm-invariant morphism P(E)sst
a → P(E)//aGm which is a

submersive universal categorical quotient; thus P(E)//aGm = P(E)sst
a //Gm .

(3) For amin ≤ a1 < a2 ≤ amax we have P(E)sst
a1
⊂ P(E)sst

a2
precisely when

⊕a2−1
a=a1

Ea = 0, and similarly
P(E)sst

a1
⊃ P(E)sst

a2
precisely when

⊕a2
a=a1+1 Ea = 0. In particular P(E)sst

a1
= P(E)sst

a2
precisely when⊕a2

a=a1
Ea = 0.

(4) If amin≤ a1< a2≤ amax and
⊕a2−1

a=a1
Ea = 0, then the inclusion P(E)sst

a1
⊂P(E)sst

a2
induces a projective

morphism

P(E)sst
a1
//Gm→ P(E)sst

a2
//Gm .

Similarly if
⊕a2

a=a1+1 Ea = 0 we have a projective morphism

P(E)sst
a1
//Gm← P(E)sst

a2
//Gm .
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Proof. (1) We have a≤amax if and only if P
(⊕

b<a Eb
)
6=P(E), and amin≤a if and only if P

(⊕
b>a Eb

)
6=

P(E).

(2a) Affine cover of the quotient: The scheme P(E)//aGm = ProjX2
(Sym•(E))ρa is covered by principal

open sets

D0
f := (P(E)//aGm)r ZP(E)//aGm ( f ) (2)

associated to nonzero homogeneous invariant elements of the form f =
∏s

j=1 f j , where f j ∈ Ea+δj with∑
δj = 0.

(2b) Common zero locus of { f }: We note that the common zero locus of elements of Ec is P(E/Ec)=

P
(⊕

b 6=c Eb
)
. Now observe that any element f =

∏s
j=1 f j as above has a factor f j with δj ≥ 0 and a

factor f j with δj ≤ 0. This means that f vanishes on P
(⊕

b<a Eb
)

and on P
(⊕

b>a Eb
)
, so f vanishes

on P(E)un
a a.

Conversely if x /∈P(E)un
a a then we have some coordinates f1 ∈ Ea+δ1 , δ1 ≤ 0 and f2 ∈ Ea+δ2 , δ2 ≥ 0,

which do not vanish: f1(x) 6= 0 6= f2(x). Taking any positive r, s so that rδ1 + sδ2 = 0 we can form
f = f r

1 f s
2 , and f (x) 6= 0. This implies that the common zero locus of the elements f =

∏s
j=1 f j above

in P(E) is precisely P(E)un
a a.

(2c) Compatible affine cover of P(E)sst
a : It follows that P(E)sst

a is covered by principal open sets

Df = P(E)r ZP(E)( f ), (3)

the inverse image of the affine open D0
f of equation (2) is the affine open Df of equation (3), and

P(E)sst
a → P(E)//aGm is an affine morphism.

(2d) Coordinates and invariants: The coordinate ring of D0
f is the degree-0 component of (Sym•(E))ρa

[ 1
f

]
,

which is the ρa-invariant summand of the degree-0 component of (Sym•(E))
[ 1

f

]
. The latter is the

coordinate ring of Df . In particular, D0
f = Df //Gm is a submersive universal categorical quotient; see

[Abramovich and Temkin 2018, Lemma 4.2.6 and Corollary 4.2.11]. It follows from the definition, see
[Mumford et al. 1994, Remark 5, p. 8], that P(E)sst

a → P(E)//aGm is a submersive universal categorical
quotient.

(3) The situation is symmetric, so we only address the first statement. If
⊕a2−1

a=a1
Ea=0 then P

(⊕
b<a2

Eb
)
=

P
(⊕

b<a1
Eb
)
⊂ P(E)un

a a1 and certainly P
(⊕

b>a2
Eb
)
⊂ P

(⊕
b>a1

Eb
)
⊂ P(E)un

a a1, so P(E)un
a a1 ⊂

P(E)un
a a2 as needed.

Conversely, if v ∈ P
(⊕a2−1

a=a1
Ea
)

over x ∈ X2 and we take w ∈ P(Eamin) also over x , then either
v∈P(Ea1)⊂P(E)sst

a1
or else (v+w)∈P(E)sst

a1
. In either case, if

⊕a2−1
a=a1

Ea 6=0 we have P(E)sst
a1
6⊂P(E)sst

a2
,

as needed.

(4) The situation is symmetric, so we only address the first case, where amin ≤ a1 < a2 ≤ amax and⊕a2−1
a=a1

Ea = 0, so that P(E)sst
a1
⊂ P(E)sst

a2
by (3). Since P(E)sst

ai
→ P(E)//ai Gm are categorical quotients,

we have a canonical morphism ϕa1/a2 making the following diagram commutative:



Functorial factorization of birational maps for qe schemes in characteristic 0 399

P(E)sst
a1

� � //

��

P(E)sst
a2

��

P(E)//a1Gm
ϕa1/a2

// P(E)//a2Gm .

But P(E)//ai Gm are projective over X2; hence ϕa1/a2 is projective. �

This lemma gives the familiar “wall and chamber decomposition” of the interval [amin, amax] in the
character lattice Z into segments where the quotients P(E)sst

a1
//Gm are constant.

All the constructions above are compatible with arbitrary morphisms X ′2→ X2, except that the values
of amin and amax and the ample sheaf for φa1/a2 are only compatible with surjective morphisms X ′2→ X2.

Remark 4.1.3. One can show that the quotient morphism P(E)sst
a → P(E)sst

a //Gm is in fact universally
submersive. If in addition Ea = 0, it can be shown that the quotient morphism is a universal geometric
quotient P(E)sst

a → P(E)sst
a /Gm . These facts follow from [Mumford et al. 1994, Theorem 1.1 and

Amplification 1.3], which are stated for schemes over a field in characteristic 0 but apply here since Gm

is a linearly reductive group-scheme over Z. Since we do not need these facts, we will not provide a
detailed proof, though we will use the notation P(E)sst

a /Gm when Ea = 0.

4.2. Geometric invariant theory of B ⊂ P(E). Continuing the discussion, let B ⊂ P(E) be a closed
reduced Gm-stable subscheme. It is the zero locus of a homogeneous and Gm-homogeneous ideal
IB ⊂ Sym• E . We define Bun

a a := B ∩ P(E)un
a a and Bsst

a := B ∩ P(E)sst
a . The image of qa : Bsst

a →

P(E)//aGm is denoted by B//aGm . We have canonically B//aGm = ProjX2
((Sym• E/IB)

ρa ). We write
amin(B)=min{a | B ∩P(Ea) 6=∅} and similarly amax(B)=max{a | B ∩P(Ea) 6=∅}. We deduce the
analogous, still well-known, facts, which follow immediately from Lemma 4.1.2:

Lemma 4.2.1. (1) The semistable locus Bsst
a is nonempty precisely when amin(B)≤ a ≤ amax(B).

(2) The map qa : Bsst
a →P(E)//aGm is an affine Gm-invariant morphism, inducing a categorical quotient

Bsst
a → Bsst

a //Gm = B//aGm .

(3) For a1 < a2 we have Bsst
a1
⊂ Bsst

a2
precisely when B∩P

(⊕a2−1
a=a1

Ea
)
=∅, and similarly Bsst

a1
⊃ Bsst

a2
pre-

cisely when B∩P
(⊕a2

a=a1+1 Ea
)
=∅. In particular Bsst

a1
= Bsst

a2
precisely when B∩P

(⊕a2
a=a1

Ea
)
=∅.

(4) If a1 < a2 and B ∩P
(⊕a2−1

a=a1
Ea
)
=∅, then the inclusion Bsst

a1
⊂ Bsst

a2
induces a projective morphism

Bsst
a1
//Gm → Bsst

a2
//Gm . Similarly if B ∩ P

(⊕a2
a=a1+1 Ea

)
= ∅ we have a projective morphism

Bsst
a1
//Gm← Bsst

a2
//Gm .

This time we obtain a “wall and chamber decomposition” of the interval [amin(B), amax(B)]. We denote
the “walls”, namely the values of a for which B∩P(Ea) 6=∅, by amin(B)= a0< a1< · · ·< am = amax(B).

By replacing the embedding B ⊂ P(E) by the Veronese re-embedding B ⊂ P(Sym2 E) we may, and
will, assume:

Assumption 4.2.2. ai + 1< ai+1.
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We set Bsst
ai+
= Bsst

ai+1 and Bsst
ai−
= Bsst

ai−1, and note that Bsst
ai+
= Bsst

ai+1−
. Assumption 4.2.2 implies that

now we always have projective morphisms ϕai±:

Bsst
ai−
/Gm

ϕai−
''

ϕi
// Bsst

ai+
/Gm

ϕai+
ww

Bsst
ai+1−

/Gm ϕai+1−

((

· · ·

Bsst
ai
//Gm Bsst

ai+1
//Gm

(4)

Finally, we will assume the following:

Assumption 4.2.3. Each irreducible component of B meets both P(Eamin(B)) and P(Eamax(B)).

Under this assumption the quotients Bsst
a //Gm are all birational to each other, as long as amin(B) <

a < amax(B). For the extreme values we have isomorphisms

B ∩P(Eamin(B))→ Bsst
amin(B)//Gm,

B ∩P(Eamax(B))→ Bsst
amax(B)//Gm .

Remark 4.2.4. As in Remark 4.1.3, it can be shown that Bsst
a → Bsst

a //Gm is universally submersive, and
if B ∩P(Ea)=∅ we have a universal geometric quotient Bsst

a → Bsst
a /Gm .

4.3. Definition of a birational cobordism. The notion of a birational cobordism for a blowing up we
use in this paper extends the notion of compactified relatively projective embedded birational cobordism
of [Abramovich et al. 2002, 2.4] by allowing a nonempty boundary. Ignoring the issue of the boundary,
it is far more restrictive than the notion introduced in [Włodarczyk 2000].

Let φ : X1→ X2 be an object of the category Bl (Definition 1.3.1). A birational cobordism for φ is a
scheme B which is the blowing up of a Gm-invariant ideal on P1

X2
, and embedded, in a manner satisfying

Assumptions 4.2.2 and 4.2.3, as a Gm-stable subscheme in P(E) for a Gm-sheaf E on X2, such that

(1) X ′1 = Bsst
a0+
/Gm = Bsst

a0
//Gm is obtained from X1 by principalizing D1,

(2) X ′2 = Bsst
am−

/Gm = Bsst
am
//Gm is obtained from X2 by principalizing D2, and

(3) the following diagram of rational maps commutes:

Bsst
a0

qa0
//

α

��

X ′1 // X1

φ

��

Bsst
am

qam
// X ′2 // X2

where α is the birational map induced by the open dense inclusions

Bsst
a0
⊂ B ⊃ Bsst

am
.

The birational cobordism is said to respect the open set U ⊂ X2 if U is contained in the image of
(Bsst

a0+
∩ Bsst

am−
)/Gm . This happens whenever the ideal on P1

X2
whose blowing up is B restricts to the unit
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ideal on P1
U . We say that a birational cobordism B of φ is regular if B is regular and the preimage DB of

D2 is a simple normal crossings divisor.

4.4. Construction of regular birational cobordism. We claim that one can associate a regular birational
cobordism to any blowing up in Bl functorially, and we formalize this claim as follows. There is an
evident category Cobrs of regular birational cobordisms of blowings up φ : X1 → X2 in Bl, with an
evident forgetful functor Cobrs→ Bl. A morphism of regular birational cobordisms B ′→ B is uniquely
determined by a regular surjective morphism g : X ′2→ X2.

Proposition 4.4.1. The functor Cobrs→ Bl has a section Bl→ Cobrs.

We provide a sketch of proof here, and more detail in Appendix A.

Sketch of proof. Following the construction of [Abramovich et al. 2002, Theorem 2.3.1], consider the
blowing up of the ideal I ⊗OP1

X2
+ I{0}. This is a birational cobordism BI for φ, but it may be singular.

Let DBI ⊂ BI be the preimage of D2. Applying resolution of pairs to (BI , DBI ) we obtain a regular
birational cobordism (B, DB) for φ. Here we use Theorem 2.2.10 if the characteristic is 0, and parts (1)
and (2) with G = Gm of the Hypothetical Statement 2.2.13 otherwise. �

5. Factoring the map

Throughout this section “functorial” means “functorial in X1→ X2 with respect to surjective regular
morphisms”. By total transform of a divisor D ⊂ X under a (normalized) blowing up BlJ (X)→ X we
mean the union of the preimage of D and the total transform of J.

5.1. Initial factorization. Proposition 4.4.1 provides a functorial birational cobordism (B, DB) of φ.
Departing slightly from the notation of [Abramovich et al. 2002, Theorem 2.6.2], we write Wi±= Bsst

ai±
/Gm ,

and Wi = Bsst
ai
//Gm . Since Wi+ 'W(i+1)− we have a functorial factorization

W1−
ϕ0+ ϕ1−

""

W2−
ϕ1+

||

ϕ2−

��

Wm−
ϕm−ϕ(m−1)+

��X ′1 W0 W1 · · · Wm X ′2

(5)

with all terms functorially projective over X2. Since the cobordism is compatible with U, the morphisms
Wi±→ X2 and Wi → X2 and hence also the morphisms ϕi± are isomorphisms on U. Note that since
Wm−1 //Wm is a morphism it follows that ϕ(m−1)+ is an isomorphism, but this fact does not feature in
our arguments. In general the terms Wi and Wi± in this factorization are singular, but we will use them
to construct a nonsingular factorization.

5.2. Blowing up torific ideals.

5.2.1. Torific ideals. Let Di ⊂Wi , Di±⊂Wi±, Dai ⊂ Bsst
ai

and Dai±⊂ Bsst
ai±

denote the preimages of D2.
We will show how main results of [Abramovich and Temkin 2017] imply that since (Wi , Di ) is given as
a quotient of (Bsst

ai
, Dai ), it can be made toroidal by a canonical torific blowing up. Since B is regular and
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DB is a simple normal crossings divisor, (Bsst
ai
, Dai ) is a toroidal scheme with a relatively affine Gm-action.

In [loc. cit., §5.4.1] one functorially associates to (Bsst
ai
, Dai ) a Gm-equivariant normalized torific ideals

J B
i and Ji on Bsst

ai
and Wi , respectively. By abuse of language, the ideal sheaves Ji± = JiOWi± will also

be called normalized torific ideals.

Theorem 5.2.2. For every 1≤ i ≤ m− 1 the ideal sheaves Ji and Ji± are functorial and restrict to the
unit ideal on U. Furthermore, let W tor

i = BlJi Wi and W tor
i± = BlJi± Wi±, and denote by Dtor

i ⊂W tor
i and

Dtor
i± ⊂W tor

i± the total transforms of Di and Di±, respectively. Then

(1) (W tor
i , Dtor

i ) and (W tor
i± , Dtor

i±) are toroidal, and

(2) the morphisms ϕi± induce toroidal morphisms

ϕtor
i± : (W

tor
i± , Dtor

i±)→ (W tor
i , Dtor

i )

that restrict to isomorphisms on U.

Proof. The ideals Ji are functorial by [Abramovich and Temkin 2017, Theorem 1.1.2(iii)]; hence Ji±

are functorial too. Since the action of Gm on Bsst
ai

is already toroidal on P1
U , we know by [loc. cit.,

Theorem 1.1.2(iv)] that the Ji restrict to the unit ideal of U.
By [loc. cit., Lemma 4.2.12] Gm acts in a relatively affine way on B tor

ai
:= BlJ B

i
(Bsst

ai
). Let Dtor

ai
⊂ B tor

ai

be the total transform of Dai ; then by [loc. cit., Theorem 1.1.2], (B tor
ai
, Dtor

ai
) is a toroidal scheme with

toroidal action of Gm , and W tor
i = B tor

ai
//Gm . Note that Dtor

i is the image of Dtor
ai

; hence (W tor
i , Dtor

i ) is
toroidal by [loc. cit., Theorem 1.1.3(i)].

By [loc. cit., Lemma 5.5.5], W tor
i± = (B

tor
ai
)±//Gm . Set (Dtor

ai
)± = Dtor

ai
|(B tor

ai
)± ; then Gm acts toroidally

on ((B tor
ai
)±, (Dtor

ai
)±) and hence the quotient (W tor

i± , Dtor
i±) is toroidal by [loc. cit., Theorem 1.1.3(i)]. Note

also that ϕi± induce toroidal morphisms ϕtor
i± by [loc. cit., Proposition 5.5.2]. �

We note that in general W tor
i+ 6= W tor

(i+1)−. The steps Wi−→ Wi ← Wi+ in the factorization (5) now
look as follows:

W tor
i− ϕtor

i−

&&

��

W tor
i+ϕtor

i+

xx

��

W tor
i

��

W(i−1)+ Wi− ϕi−

**

Wi+ϕi+

tt

W(i+1)−

Wi

(6)

Remark 5.2.3. In [Abramovich et al. 2002, Lemma 3.2.8] it is stated with a sketch of proof that the
ideals Ji can be chosen so that ϕtor

i± are isomorphisms. We will not use this statement. We note however
that this follows from [Thaddeus 1996, Theorem 3.5]: if the l-torific ideal Il generates all IMl , M ≥ 1,
and also I−l generates all I−Ml , M ≥ 1, then once l,−l ∈ Si , where Si is the ample set of characters on
Bsst

ai
used to determine J B

i in [Abramovich and Temkin 2017], we have ϕtor
i± are isomorphisms. One can

choose such l in a manner functorial for regular surjective morphisms.
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5.3. Resolution and local charts.

5.3.1. Canonical resolution. Extending the notation of [Abramovich et al. 2002, Section 4.2] to qe
schemes with a boundary, we write W res

i± → Wi± for the resolution of the pair (Wi±, Di±) and denote
the preimage of D2 in W res

i± by Dres
i± . This morphism is functorially projective and is projectively

the identity on U. In characteristic 0 we use Theorem 2.2.10, and otherwise we invoke Hypothetical
Statement 2.2.13(1). Thus, W res

i± is regular and Dres
i± is a simple normal crossings divisor.

Note that the resolution process is independent of the toroidal structures and hence coincides for
(W(i−1)+, D(i−1)+) = (Wi−, Di−). Thus, (W res

(i−1)+, Dres
(i−1)+) = (W

res
i− , Dres

i−) and this provides a bridge
between W tor

(i−1)+ and W tor
i− :

W tor
(i−1)+

// W res
(i−1)+ =W res

i− W tor
i−

oo

Remark 5.3.2. Since W1− = X ′1 is regular, X ′′1 := W res
1− is obtained from X ′1 by principalization of D′1

and similarly X ′′2 := W res
m− is obtained from X ′2 by principalization of D′2. Both D′1 and D′2 are simple

normal crossings divisors, so we could alternatively take W res
1− = X ′1 and W res

m− = X ′m . Our choice above
helps to make notation uniform, though it results in a slightly longer factorization.

Remark 5.3.3. The singularities requiring resolution in this step are far from general: it is shown in
the proof of Lemma 5.3.7 below that Zariski locally one can obtain a toroidal scheme from (Wi±, Di±)

simply by enlarging the divisor Di±. At least over an algebraically closed field they admit resolution
of singularities, see [Włodarczyk 2003, Theorem 8.3.2], and it seems reasonable to expect the same in
general, and in a functorial manner.

5.3.4. Localization. In Section 5.4 we will connect W res
i± and W tor

i± by principalizing the ideal J res
i± :=

Ji±OW res
i±

, but to use our principalization conjectures in positive and mixed characteristics we should
first check that J res

i± is locally monoidal, so we start with defining local toroidal charts of all our con-
structions. We will work locally at a point x ∈ Wi±, so consider the localization Wx := SpecOWi±,x .
We set W res

x = W res
i± ×Wi± Wx and similarly for W tor

x and other Wi±-schemes we will introduce later.
For brevity, we also set Bx = Bsst

ai±
×Wi± Wx , DBx = Dai± ×Bsst

ai±
Wx , and Dx = Di± ×Wi± Wx . We

use the terminology of [Abramovich and Temkin 2018] regarding strictly local actions and strongly
equivariant morphisms, and of [Abramovich and Temkin 2017] regarding simple actions and toroidal
actions.

5.3.5. Local toroidal charts. The action of Gm on Bx is simple since Gm is connected and local since
Bx//Gm = Wx . Let O be the closed orbit of Bx and GO = Spec(Z[LO ]) its stabilizer. Note that O is a
torsor under the k(x)-group-scheme DKO := Spec k(x)[KO ] with KO = Ker(Z � LO). We have two
possibilities: (1) O is a point (i.e., the action is strictly local), GO = Gm , and LO = Z, or (2) the orbit
is a torus, GO = µn , and LO = Z/nZ. For a toric monoid P we will use the notation AP = Spec Z[P]
and E P = AP r APgp . By [Abramovich and Temkin 2017, Theorem 3.6.11] there exists a strongly
equivariant strict morphism h : (Bx , DBx )→ (AP , EP), with a suitable Z-graded toric monoid of the
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form P = M O ⊕ KO ⊕NσO and EP = AP r AMgp
O⊕KO⊕NσO . Note that the action on (AP , EP) is not

toroidal, but it becomes toroidal if we enlarge the toroidal structure to E P .

5.3.6. The quotient charts. Let M = P0 be the trivially graded part of P. Then Y := AM = AP//Gm and
we consider the divisor E = EP//Gm on Y, which is a subdivisor of the toroidal divisor E M = E P//Gm .
The Gm-action on (AP , EP) gives rise to the normalized torific ideal JY on Y, and let Y tor

→ Y be the
blowing up along JY . By [Abramovich and Temkin 2017, Theorem 1.1.2(iii)], the torifications of Y
and Wx are compatible with respect to the quotient morphism h//G : Wx → Y ; namely, JWx = Ji±|Wx

coincides with JYOWx and W tor
x =Wx ×Y Y tor.

In addition, consider the resolution Y res
→ Y of the pair (Y, E) as defined in Theorem 2.2.10 and

Hypothetical Statement 2.2.13(1). Since the resolution is AMgp-equivariant, Y res is a toric scheme too.
Recall that the resolution is compatible with toroidal charts: this follows from the functoriality if X is
defined over a field, and we use Hypothetical Statement 2.2.13(3) in mixed characteristics. Therefore,
W res

x =Wx ×Y Y res and the ideal J res
i± = Ji±OW res

x
= JYOW res

x
comes from the ideal J res

Y = JYOY res on Y res.

Lemma 5.3.7. The ideal J res
i± is locally monoidal.

Proof. We will work locally at x ∈Wi±. Let DBx ⊂ Bx and Dx ⊂Wx be the preimages of E P and E M ,
respectively. Since h is strongly equivariant, the induced morphism h̄ : (Bx , DBx )→ (AP , E P) is a
strongly equivariant toroidal chart. The action on the target of h̄ is toroidal; hence the action on the source
is toroidal by [Abramovich and Temkin 2017, Lemma 3.1.9(iv)] and h̄//G : (Wx , Dx)→ (Y, E M) is a
toroidal chart by [loc. cit., Theorem 1.1.3(iii)].

The resolution Y res
→ Y is AMgp-equivariant; hence it is obtained by blowing up a toroidal ideal, and if

E res denotes the total transform of E M then the morphism (Y res, E res)→ (Y, E M) is toroidal. In addition,
the pullback of h̄//G gives rise to a toroidal chart g : (W res

x , Dres
x )→ (Y res, E res) with Dres

x ⊆ Dres
x . Since

the action on (Y, E M) is toroidal, the ideal JY is toroidal with respect to E M by [loc. cit., Lemma 4.4.5(i)].
Thus, J res

Y is toroidal with respect to E res and hence its pullback J res
i± is toroidal with respect to Dres

x . The
lemma follows. �

5.4. Tying the maps together.

5.4.1. Principalization of torific ideals. Thanks to Lemma 5.3.7 we can define W can
i± to be the canonical

principalization of J res
i± in the sense of Section 2.3. It is obtained by a functorial sequence of blowings up

of nonsingular centers disjoint from U starting from W res
i± ; see Proposition 2.3.9. In positive and mixed

characteristics we require Hypothetical Statement 2.3.6.
By the universal property of blowing up, the maps W can

i±
//W tor

i± are morphisms. The map W can
i± →Wi

is a composition of maps given functorially by blowing up ideals restricting to the unit ideal on U. By
Section 2.1.10 the morphism W can

i± →Wi itself is given by blowing up a functorial ideal J̃ can
i± restricting

to the unit ideal on U. So, by Lemma 2.1.9 the morphism W can
i± → W tor

i± is given by blowing up the
functorial ideal J can

i± = J̃ can
i± OW tor

i±
. By Dcan

i± we denote the total transform of Dtor
i±. Diagram (6) now looks
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as follows:
W can

i−

�� ��

W can
i+

����

W res
(i−1)+

��

W res
i−

��

W tor
i− ϕtor

i−

&&

��

W tor
i+ϕtor

i+

xx

��

W res
i+

��

W res
(i+1)−

��

W tor
i

��

W(i−1)+ Wi− ϕi−

++

Wi+ϕi+

ss

W(i+1)−

Wi

(7)

Lemma 5.4.2. The ideal J can
i± is toroidal. Thus, (W can

i± , Dcan
i± )→ (W tor

i± , Dtor
i±) is a functorial toroidal

blowing up.

Proof. Step 1: reduction to toric case. We will work locally at x ∈Wi±. We already used in Section 5.3.6
that torification and resolution are compatible with toroidal charts to show, in the notation introduced there,
that W tor

x =Wx×Y Y tor, W res
x =Wx×Y Y res and J res

x = J res
Y OW res

x
. Let Y can

→ Y res be the principalization
of J res

Y . Then by the same functoriality argument W can
x =Wx ×Y Y can.

By the universal property of blowings up, Y can
→ Y factors through Y tor. We have Y can

=Bl J̃ can
Y
(Y ) for

a functorial ideal J̃ can on Y ; hence by Lemma 2.1.9, Y can
= BlJ can

Y
(Y tor), where J can

Y = J̃ can
Y OY tor . Again,

the construction of the ideals J can
±

is compatible with charts. So J can
i± OW can

x
is the pullback of J can

Y . Thus,
it suffices to prove that the ideal J can

Y is toroidal.

Step 2: proof in the toric case. It is shown in [Abramovich et al. 2002, Proposition 4.2.1] that
(Y can, Ecan)→ (Y tor, E tor) is toroidal: here we produce this morphism by blowing up the normalized
toroidal ideals of [Abramovich and Temkin 2018] instead of the torific ideal of [Abramovich et al. 2002],
but these morphisms have the same equivariance properties. In [Abramovich et al. 2002] the ideal blown
up is not shown to be toroidal. This can be shown as follows. As in [loc. cit., Proposition 4.2.2] one
constructs an action of Gk

a on (Y, E). One shows that the morphism Y tor
→ Y of charts is equivariant

under this action, as well as the normalized torific ideal JY ; the scheme Y tor is written as a product of Gk
a

with a toric scheme providing its toroidal structure. It suffices to show that the ideal defining the blowing
up Y can

→ Y tor is a Gk
a-equivariant monomial ideal, since then its generating monomials are not divisible

by the coordinates of the Gk
a factor.

Since the blowing up Y res
→ Y is the canonical resolution of singularities of (Y, E), the ideal defining

this blowing up on a toric chart is monomial and Gk
a-equivariant. Also the torific ideal on Y res is

monomial and Gk
a-equivariant; therefore the same is true for the ideal defining its functorial principalization

Y can
→ Y res, as required. Note that in the case of nonzero characteristic we have used Gk

a-equivariance
from Hypothetical Statements 2.2.13 and 2.3.6. �

The above lemma implies that the composition W can
i± →W tor

i is a toroidal morphism given by blowing up
a functorial toroidal ideal we denote by J can

i± . Let W ′i →W tor
i be the normalized blowing up of the product
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ideal J can
i− J can

i+ , giving rise to toroidal morphisms W ′i→W can
i± . By [Illusie and Temkin 2014, Theorem 3.4.9]

there is a functorial toroidal resolution of singularities W tor res
i →W ′i . This gives the following:

Lemma 5.4.3. There is a toroidal nonsingular modification W tor res
i → W tor

i obtained by blowing up a
functorial ideal such that the maps W tor res

i
//W can

i± are both toroidal morphisms.

Note that these latter maps are again blowings up of the pullbacks of the ideal defining W tor res
i →W tor

i ,
which is functorial as well. Since the morphism is toroidal, it induces the identity on U, and the toroidal
ideal blown up is the unit ideal on U.

We now have pieces of the diagram above looking as follows:

W tor res
i

(TorBlrs)
zz

(TorBlrs)
$$

W can
i−

(blow-up sequence)

|| $$

W can
i+

zz

(blow-up sequence)

""

W res
(i−1)+

��

W res
i−

��

W tor
i

��

W res
i+

��

W res
(i+1)−

��

W(i−1)+ Wi−

))

Wi+

uu

W(i+1)−

Wi

All maps are functorially the blowings up of ideals. The top diamond is at the same time toroidal, with
maps given by blowings up of functorial toroidal ideals, so the toroidal structure is functorial in X1→ X2.
By Proposition 3.1.1, the two top maps W tor res

i → W can
i± have a functorial toroidal weak factorization;

since it is toroidal it induces isomorphisms on U. This gives a factorization of the top diamond of the
diagram above as follows:

W tor res
i

(TorFactrs)
zz

(TorFactrs)
$$

W can
i−

$$

W can
i+

zz

W tor
i

Note that W res
1− = X ′′1 and W res

m− = X ′′2 by Remark 5.3.2. By construction, X ′′i → X ′i and X ′i → X i

are resolutions of normal crossings pairs (X ′i , D′i ) and (X i , Di ), respectively; hence X ′′i → X i factor as
sequences of blowings up of regular centers compatible with Ui and Di thanks to Assumption 2.2.7.
Putting these together we functorially obtain a diagram:

X ′′1

(Fact)

��

W tor res
1

(Fact)

��

(Fact)

��

W tor res
m−1

(Fact)

��

(Fact)

��

X ′′2

(Fact)

��

X1 // W res
1− ϕ1

// W res
2− ϕ2

// · · ·
ϕm−1
// W res

(m−1)− ϕm
// W res

m−
// X2.
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Note that Wi are given by blowing up of functorial ideals on X2, and that W res
i± are obtained by blowing

up functorial ideals on Wi , all restricting to the identity on U. Similarly, the terms appearing in the
diagonal arrows are given by blowing up of functorial ideals on W res

i± . By the result of Section 2.1.10
all terms appearing are obtained by blowing up of functorial ideals on X2 restricting to the unit ideal
on U. In the case X i rU are normal crossings divisors, we have guarantees that the same holds for W res

i± .
It follows that the same holds for all terms in the sequence forming W can

i± →W res
i± by the properties of

canonical principalization, and for the terms in a factorization of W tor res
i → W can

i± since these are all
nonsingular toroidal schemes. Renaming all these terms Vi , i = 1, . . . , l, Theorem 1.3.3 follows. �

5.5. Summary of resolution steps. Results around resolution of singularities were used in several steps
in the proof of Theorem 1.3.3. We recall here these steps and what they require. While our main theorem
requires the procedures to be functorial, we emphasize the equivariance and functoriality properties
necessary for the factorization theorem to hold even without requiring the factorization to be functorial.

The first resolution process appears in the construction of the birational cobordism in Proposition 4.4.1.
This appears explicitly in Step 3a in Appendix A, where we resolve the pair (BI , DBI ), which has
dimension dim X2+ 1. It is crucial that the process be Gm-equivariant.

In Section 5.3.1 we apply resolution of singularities to Wi±, which has dimension dim X2. The
singularities of Wi± are all locally monomial. Similarly, in Section 5.4 we apply principalization of the
ideals J res

i± , which are locally monoidal ideals. On the other hand these two steps require the resolution and
principalization to be equivariant in a strong sense: Lemma 5.4.2 requires the process to be compatible
with toric charts, and the process on the toric schemes must be both torus equivariant and Gk

a-equivariant.
Finally, Lemma 5.4.3 requires toroidal resolution of singularities, which is as functorial as one could wish.

6. Extending the factorization to other categories

In this section we use the factorization for schemes to construct an analogous factorization for blowings
up of formal schemes, complex and nonarchimedean analytic spaces, and stacks. We follow the general
outline of the argument in [Temkin 2008, Sections 5.1–5.2], though we decided to elaborate more details
related to the relative GAGA issues. In fact, for this construction to work one only needs to have a
reasonable comparison theory between algebraic blowing ups and their analytifications, but some of these
results do not seem to be covered by the literature, especially in the complex analytic case.

6.1. Stacks. Once functorial factorization for schemes is established, it extends to stacks straightforwardly.

6.1.1. Basic notions. Our terminology concerning stacks follows that of [Temkin 2008, §5.1]. In par-
ticular, by a stack we mean an Artin stack X and X is qe (respectively, regular) if it admits a smooth
covering W → X with W a qe (respectively, a regular) scheme. The definition of blowing up along a
closed subscheme is compatible with flat morphisms and hence extends to stacks. We define the regular
surjective category of blowings up of stacks BlSt

rs and the regular surjective category of weak factorizations
of blowings up of stacks FactSt

rs as in Definitions 1.3.1 and 1.3.2.
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6.1.2. Factorization for stacks. We are now in position to extend the factorization to stacks.

Theorem 6.1.3. There is a functor BlSt
rs (char= 0)→ FactSt

rs (char= 0) from the regular surjective cate-
gory of blowings up f : X′→ X in characteristic 0 to the regular surjective category of factorizations

X′ = X0 //X1 // · · · //Xl−1 //Xl = X

in characteristic 0 such that the composite

BlSt
rs (char= 0)→ FactSt

rs (char= 0)→ BlSt
rs (char= 0)

is the identity. The same holds in positive and mixed characteristics if Hypothetical Statements 2.2.13 and
2.3.6 hold true.

Proof. Choose a smooth covering of X by a qe scheme W. Then W and R = W ×X W are regular qe
schemes and the projections p1,2 : R ⇒ W are surjective and smooth. The pullbacks W ′→W and R′→ R
of X′→ X are objects of Bl; hence Theorem 1.3.3 provides their regular factorizations (W•) and (R•).
By the functoriality, these factorizations are compatible with both p1 and p2. Since both pullbacks of
the factorization (W•) to R coincide, flat descent implies that (W•) comes from a factorization (X•) of
X′→ X.

To see that the factorization (X•) is independent of a smooth covering W→X, we note that any smooth
covering W ′→ X that factors through W induces the same factorization of X′→ X, as follows from the
functoriality of factorization with respect to the morphism W ′→W.

Finally, assume that (Y′→Y)→ (X′→X) is a morphism in BlSt
rs . Then there exist smooth coverings

by qe schemes W→X and T →Y such that the morphism Y→X lifts to a regular surjective morphism
T → W. It then follows easily from the functoriality of factorization with respect to T → W that the
factorization for stacks we constructed is compatible with Y→ X. Thus, the factorization for stacks is
functorial. �

6.2. Geometric spaces.

6.2.1. Categories. We will work with the geometric spaces of the following four classes, that will simply
be called spaces:

(1) qe formal schemes as defined in [Temkin 2008, Section 2.4.3].

(2) Semianalytic germs of complex analytic spaces; see Appendix B.

(3) k-analytic spaces of Berkovich for a complete nonarchimedean field k; see [Berkovich 1993, Sec-
tion 1].

(3′) Rigid k-analytic spaces, where k is as above and nontrivially valued.

To make notation uniform, the category of all such spaces will be denoted by Sp in each of the four
cases.



Functorial factorization of birational maps for qe schemes in characteristic 0 409

Remark 6.2.2. (i) The case (3′) is added for the sake of completeness. It is essentially included in (3)
because the category of qcqs (i.e., quasicompact and quasiseparated) rigid spaces is equivalent to the
category of compact strictly analytic Berkovich spaces, and all our arguments will be “local enough”.

(ii) Probably, there exist other contexts where our methods apply, e.g., semialgebraic geometry. We do
not explore this direction here, but we will deal with the above four cases in a uniform way that should
make it simpler for the interested reader to extend our results to other possible settings.

6.2.3. Affinoid spaces. We say that a space X is affinoid if it is of the following type:

(1) X = Spf(A) is affine.

(2) (X , X) is an affinoid germ of a complex analytic space; see Section B.6.

(3) X =M(A) is an affinoid k-analytic space.

(3′) X = Sp(A) is an affinoid rigid space over k.

6.2.4. Admissible affinoid coverings. To simplify the discussion we consider only affinoid coverings
X =

⋃
i∈I X i of a qcqs space by its affinoid domains. Such a covering is called admissible if it possesses

a finite refinement. Here is the main property of admissible coverings, which may fail for nonadmissible
ones (e.g., the covering of a germ (X , X) by one-pointed subgerms (X , x) with x ∈ X ).

Lemma 6.2.5. Assume that X =
⋃

i∈I X i is an admissible covering of an affinoid space. Then for any
coherent OX -module F the Čech complex

0→ F(X)→
∏

i

F(X i )→
∏
i, j

F(X i ∩ X j )→ · · ·

is acyclic.

Proof. For formal schemes this is classical, and for nonarchimedean geometry this is Tate’s acyclicity
theorem and its extension to Berkovich spaces. It remains to deal with complex germs. It suffices to deal
with the case of finite coverings, and then we can replace the direct products with direct sums. Choosing
a small enough representative X of X we can assume that X is Hausdorff. Choose families of Stein
domains V0 ⊃ V1 · · · and V0i ⊃ V1i · · · for each i ∈ I such that X =

⋂
∞

n=0 Vn and X i =
⋂
∞

n=0 Vni . For
each n ∈N the union

⋃
i∈I Vni is a neighborhood of X and hence it contains some Vm . Let m = m(n) be

the minimal number for which the latter happens. The intersections Uni = Vm ∩ Vni are Stein domains
since X is Hausdorff; hence Vm is covered by Stein domains Uni and we obtain the acyclic Čech complex

0→ F(Vm)→
⊕

i

F(Uni )→
⊕
i, j

F(Uni ∩Unj )→ · · · .

Since limn→∞m(n)=∞ and X i =
⋂

n Uni , passing to the limit on n we obtain the sequence from the
formulation of the lemma. It remains to use that the filtered colimit is an exact functor. �
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6.2.6. Regular spaces. Each category of spaces possesses a natural notion of regular spaces; see [Temkin
2008, Section 5.2.2]. In fact, a space X is regular if it possesses an admissible affinoid covering X =

⋃
i X i

such that the rings Ai =OX (X i ) are regular. In particular, it follows from Lemma B.6.1 that a germ of
analytic space (X , X) is regular if and only if X is smooth in a neighborhood of X .

By Spreg we denote the full subcategory of Sp consisting of quasicompact regular objects, and we do
not impose any separatedness assumption.

6.2.7. Smooth and regular morphisms. Also, the category Sp has a natural notion of smooth morphisms.
In cases (1), (2) and (3′) this is the classical notion (with the obvious adjustment in (2)) and in (3) this is
the notion of quasismooth morphisms as defined in [Ducros 2018, Section 5].

In cases (2), (3) and (3′) any morphism is of finite type, so we identify the notions of smooth and
regular morphisms. Regular morphisms of qe formal schemes were defined in [Temkin 2008, 2.4.12]: a
morphism f : Y → X is called regular if it admits an open covering of the form fi : Spf(Bi )→ Spf(Ai )

such that the homomorphisms Ai → Bi are regular.

Lemma 6.2.8. If Y → X is a regular morphism of affinoid spaces in Sp then the homomorphism
OX (X)→OY (Y ) is regular.

Proof. Case (1) is covered by [Temkin 2008, Lemma 2.4.6]. Case (3), and hence also case (3′), follows
from [Ducros 2009, Theorem 3.3; 2018, Theorem 5.5.3] and the fact that for any affinoid space Z =M(C)
the map Z→Spec(C) is surjective by [Berkovich 1993, Proposition 2.1.1]. Case (2) is dealt with similarly
using that if Z is an affinoid germ, z ∈ Z and f : Z→ T = Spec(OZ (Z)) is the natural map then f (Z)
is the set of all closed points and the homomorphism OT, f (z)→OZ ,z is regular by Lemma B.6.1. �

6.3. Relative GAGA. Assume that X is an affinoid space, A=OX (X) and X = Spec A. Relative GAGA
relates the theory of X -schemes and X -spaces.

6.3.1. Analytification functor. There exists an analytification/formal completion functor from X -schemes
of finite type to X -spaces. For uniformity, we will usually call this functor analytification and set
Y 7→ Y = Yan. It is constructed as follows:

(i) The analytification of An
X is An

X .

(ii) If Y is X -affine, say Y = Spec B with B = A[t1, . . . , tn]/( f1, . . . , fm), then Yan is the vanishing
locus of f1, . . . , fm in An

X . It is easily seen to be independent of the A-presentation of B.

(iii) The construction in (ii) is compatible with localizations, so in general one covers Y by X -affine
schemes Yi and glues Yan from Yan

i .

6.3.2. The analytification map. There exist natural analytification maps πY : Yan
→ Y which can be

constructed through the steps (i)–(iii), or directly (ii) and (iii). Let us describe them in the affine case
Y = Spec B:

(1) The map is Spf B ↪→ Spec B. It is injective and the image is the set of open prime ideals of B.
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(2)/(3′) The map Yan
→ Y is injective and its image is the set of maximal ideals of B.

(3) The map Yan
→ Y is surjective; see [Berkovich 1993, Proposition 2.6.2].

6.3.3. Sheaves. The analytification functor also extends to coherent sheaves: for any X -scheme Y of
finite type there exists an analytification functor Coh(Y)→ Coh(Yan) given by Fan

= π∗YF.

6.3.4. Properties. For each X -proper scheme Y the analytification functor Coh(Y) −→∼ Coh(Y ) is an
equivalence of categories. In particular, the analytification functor induces an equivalence between the
categories of projective X -schemes and X -spaces. The references are:

(1) Grothendieck’s existence theorem [EGA III1 1961, 5.1.4].

(2) Theorem C.1.1 below.

(3) The analytification was introduced in [Berkovich 1993, Section 2.6], and comparison of coherent
sheaves can be found in [Poineau 2010, Theorem A.1].

(3′) Köpf’s theorem [1974, Sections 5 and 6]; see also [Conrad 2006, Example 3.2.6].

6.3.5. Analytification and regularity. Various properties are respected by analytification, but for our
needs we only need to study the situation with regularity.

Proposition 6.3.6. Assume that X is an affinoid space with A = OX (X), X = Spec(A), and Y is an
X -scheme of finite type with Y = Yan, then:

(i) If Y is regular then Y is regular.

(ii) Conversely, assume that Y is regular. Then
(a) in cases (2), (3) and (3′), Y is regular,
(b) in case (1) assume also that Y is X -proper, and then Y is regular.

Proof. Note that case (3′) follows from (3) since a qcqs rigid space can be enhanced to an analytic space,
and the regularity is preserved. We will study cases (1), (2) and (3) separately, but let us first make a
general remark. The claims (i) and (iia) are local on Y , so we can assume that Y = Spec B for a finitely
generated A-algebra B in these cases.

Case (1): In this case, A is an I -adic ring and X = Spf A. Since A is qe, B is qe and so the I -adic
completion homomorphism B→ B̂ is regular. This implies (i) since if B is regular then B̂ is regular, and
so Spf B̂ is regular.

Let us prove (ii). Since A is I -adic, I is contained in the Jacobson radical of A, see [Atiyah and
Macdonald 1969, Proposition 10.15(iv)], and so any point of X has a specialization in Xs := V (I ). By
the properness of f : Y→ X , any point of Y has a specialization in Ys := f −1(Xs); hence it suffices to
prove the following claim: if Y is of finite type over X and Y is regular, then Y is regular at any point
y ∈ Ys .

The latter claim is local around y; hence we can assume, again, that Y = Spec B. Let m ⊂ B be the
ideal corresponding to y; then the m-adic completion B→ B̂m factors through the I -adic completion
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B→ B̂, and so B̂m is the completion of B̂ along m B̂. Since X is qe, B̂ is qe and so B̂→ B̂m is regular.
By our assumption B̂ is regular; hence B̂m is regular too. The homomorphism Bm→ B̂m is faithfully flat;
hence Bm is regular and we win.

Case (3): In this case, A is k-affinoid and X =M(A). Consider a point y ∈ Y and set y= πY(y) ∈ Y . By
[Ducros 2018, Lemma 2.4.6(1)], Y is regular at y if and only if Y is regular at y. Since πY is surjective
this implies that Y is regular if and only if Y is regular.

Case (2): If y ∈ Y and y = πY(y) then it follows easily from Lemma B.6.1 that the homomorphism
fy :OY, y→OY,y induces an isomorphism of the completions. A local ring is regular if and only if its
completion is regular; hence OY, y is regular if and only if OY,y is regular. Since the image of πY contains
all closed points, we obtain that Y is regular if and only if Y is regular. �

6.4. The factorization theorem.

6.4.1. Blowings up. Each of the categories Sp has a natural notion of blowings up f : X ′→ X along
ideals; e.g., see [Temkin 2008, Sections 2.4.4 and 5.1.2]. In fact, BlI (X) can be described as follows: if
Y ⊂ X is an affinoid domain, Y = Spec(OX (Y )) and I ⊂OY is induced by I, then the restriction of f
onto Y is the analytification of the blowing up BlI(Y)→ Y . We will only consider blowings up with
nowhere-dense centers.

6.4.2. Weak factorization. By a weak factorization of X1→ X2 we mean a diagram

X1 = V0
φ1
// V1

φ2
// · · ·

φl−1
// Vl−1

φl
// Vl = X2

along with subspaces Zi and ideal sheaves Ji satisfying conditions (1)–(5) of Section 1.2, where in (2)
and (4) the word “scheme” is replaced with “space”. For brevity of notation, such a datum will be denoted
by (V•, φ•, Z•).

We define the regular surjective category of blowings up BlSp
rs in Sp and the regular surjective category

of weak factorizations FactSp
rs on Sp as in Definitions 1.3.1 and 1.3.2. By definition, these categories are

fibered over the category of regular spaces with regular morphisms, and the fibers over a regular space X
will be denoted by Bl(X) and Fact(X). Thus, Bl(X) is the set of blowings up X ′→ X with regular X
and Fact(X) is the set of all regular factorizations of blowings up of X .

Lemma 6.4.3. Let X be an affinoid space, A=OX (X) and X = Spec A. Then the analytification functor
Y 7→ Yan induces bijections Bl(X)−→∼ Bl(X ) and Fact(X)−→∼ Fact(X ).

Proof. By the relative GAGA, see Section 6.3.4, analytification induces a bijection between the blowings
up X ′ → X and X ′ → X . By Proposition 6.3.6, X ′ is regular if and only if X ′ is regular; hence
Bl(X)−→∼ Bl(X ). The second bijection is proved similarly, but this time one also relates regularity of the
centers in the factorizations. �

6.4.4. The main theorem. We are now in position to prove the following analogue of Theorem 1.3.3.
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Theorem 6.4.5. There is a functor BlSp
rs (char =0)→ FactSp

rs (char =0) from the regular surjective cate-
gory of blowings up f : X ′→ X in characteristic 0 to the regular surjective category of factorizations

X ′ = V0 // V1 // · · · // Vl−1 // Vl = X

in characteristic 0 such that the composite

BlSp
rs (char =0)→ FactSp

rs (char =0)→ BlSp
rs (char =0)

is the identity. The same holds in positive and mixed characteristics if Hypothetical Statements 2.2.13 and
2.3.6 hold true.

Proof. First, let us construct a factorization of f : X ′ → X . Fix an admissible affinoid covering
X =

⋃n
i=1 X i and set X ′i = X i ×X X ′. The rings Ai =OX (X i ) are qe, see [Temkin 2008, Section 5.2.3],

so the scheme X =
∐n

i=1 Xi with Xi = Spec(Ai ) is noetherian and qe. Let I be the ideal defining f and
let Ii ⊂ Ai be its restrictions. Consider the blowings up Fi :X ′i →Xi defined by Ii . The analytification of
Fi is the restriction fi of f over X i by the relative GAGA; hence X ′i is regular by Proposition 6.3.6(ii).

Set X ′ =
∐n

i=1 X
′

i and consider the factorization (V•,8•,Z•) of the blowing up F : X ′ → X . For
each i , it induces a factorization (Vi,•,8i,•,Zi,•) of Fi : X ′i → Xi and the analytification of the latter is a
factorization of fi : X ′i → X i that will be denoted by (Vi,•, φi,•, Zi,•).

We claim that the latter factorizations glue to a factorization of f . It suffices to prove that for any i, j
and an affinoid domain Y ⊂ X i∩X j , the restrictions of (Vi,•, φi,•, Zi,•) and (V j,•, φ j,•, Z j,•) onto Y coincide.
Set B =OX (Y ) and Y = Spec(B), and let G : Y ′→ Y be the blowing up along the ideal induced by I. In
particular, the analytification g : Y ′→ Y of G is the restriction of f . The regular homomorphisms Ai→ B
and Aj → B induce regular morphisms hi , h j : Y→ X such that G is the pullback of F with respect to
either of these morphisms. The factorizations of G induced from (V•,8•,Z•) via hi and h j coincide by
Lemma 6.4.6 below. It remains to note that the factorizations of g induced from the factorizations of fi

and f j are the analytifications of these factorizations of G.
We have constructed a factorization of f . The same argument as was used to glue local factorizations

to a global one shows that the construction is independent of the affinoid covering. Finally, compatibility
of factorization with a regular morphism h : Y → X is deduced in the same way from Lemma 6.2.8 and
compatibility with regular morphisms of factorization for schemes. �

The following result is an analogue of [Temkin 2008, Lemma 2.3.1].

Lemma 6.4.6. Assume that F : Bl→ Fact is a factorization functor, f : X ′→ X and g : Y ′→ Y are two
blowings up with regular source and target and hi : Y → X with i = 1, 2 are two regular morphisms such
that h∗i ( f )= g. Then the pullbacks of F( f ) to a factorization of g via h1 and h2 coincide.

Proof. Extend hi to morphisms φi : Y
∐

X → X so that the map on X is the identity. Each φi is a
surjective regular morphism; hence the pullback of F( f ) to Y

∐
X via φi coincides with the factorization

of the blowing up Y ′
∐

X ′→ Y
∐

X . Restricting the latter onto Y coincides with h∗i (F( f )). �
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Remark 6.4.7. (i) An analogue of Lemma 6.4.6 holds true in any category Sp and the above proof
applies verbatim.

(ii) Although h∗i (F( f )) coincide, they can differ from F(g) when hi are not surjective. See also [Temkin
2008, Remark 2.3.2(ii)].

Appendix A: Construction of a birational cobordism via deformation to the normal cone

Proof of Proposition 4.4.1. We follow the construction of [Abramovich et al. 2002, Theorem 2.3.1] word
for word, except we make it even more explicit and check functoriality.

Step 1: cobordism BO for trivial blowing up. We start with

BO = P1
X2
= P(OX2 · T0⊕OX2 · T1)=: PX2(EO),

with its projection π0 : BO → X2. Providing the generators T0 and T1 with Gm-weights 0 and 1, the
scheme BO is a birational cobordism for the identity morphism with the trivial ideal (1), with the standard
action of Gm linearized, except that it does not satisfy Assumption 4.2.2. But that may be achieved after
the fact by taking the symmetric square. The construction is clearly functorial.

Step 2a: construction of a singular cobordism BI . Assume X1 is given as the blowing up of the ideal I
on X2. We blow up the Gm-equivariant ideal I B

:= I ⊗OBO + I{0} on BO, where I{0} is the defining ideal
of {0}× X2. The ideal is clearly the unit ideal on P1

U . This blowing up gives rise to a Gm-scheme BI and
projective morphism πI : BI→ BO; this is evidently functorial in φ. The arguments of Section 2.1.10 show
that π BI /X2 := π0 ◦πI : BI → X2 is projective, again in a functorial manner. In particular BI ⊂ P(E I )

for some functorial Gm-sheaf E I .

Step 2b: coordinates of BI . Let us make the construction of the previous step explicit: write FI =

π0 ∗ I B(1)= I ·U0⊕OX2 ·U1 with U0,U1 having corresponding Gm-weights 0 and 1. Let

E I = FI ⊗ EO = I ·U0T0⊕ (OX2 ·U1T0⊕ I ·U0T1)⊕OX2 ·U1T1,

with corresponding Gm-weights 0, 1 and 2. Again it does not satisfy Assumption 4.2.2, but again that
may be achieved after the fact by taking the symmetric square.

We have a surjection π∗0 FI → I B(1) where the first coordinate sends f ·U0 7→ f T0 and the second
sends U1 7→ T1. We thus have Gm-equivariant closed embeddings

BI = BlI B (BO)= BlI B(1)(BO)⊂ PBO(π
∗

0 FI )= PX2(FI )×X2 BO = PX2(FI )×X2 PX2(EO)

⊂ PX2(FI ⊗ EO)= PX2(E I ),

where BlI B(1)(BO) denotes the blowing up of the fractional ideal I B(1) and the last inclusion is the Segre
embedding.

We describe BI = ProjX2
A as follows. The algebra

A :=
⊕

d

(I d
· T 2d

0 ⊕ I d−1
· T 2d−1

0 T1⊕ · · ·⊕OX2 · T0T 2d−1
1 ⊕OX2 · T

2d
1 ),
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with terms I d−k
· T j

0 T k
1 when j > k and OX2 · T

j
0 T k

1 when j ≤ k, is a graded Gm-weighted quotient
Sym• E I � A, where we set Uj = T j and map I⊗d � I d.

We note that BI admits an equivariant projection morphism BI → BO = PX2(EO) which is an
isomorphism away from the divisor (T 2

1 ), and an equivariant projection morphism BI →PX2(FI ), whose
image is the closed subscheme we denote by

PX2(FI )
′
:= ProjX2

⊕
n≥0

( n⊕
j=0

I j
)
.

The morphism BI→PX2(FI )
′ is an isomorphism away from the zero section ProjX2

⊕
n≥0 OX2⊂PX2(FI )

′,
whose complement is the total space Spec Sym((I OX1)

−1) of the invertible sheaf IOX1 on X1.

Step 2c: stable and unstable loci for weight 1. The homogeneous Cartier divisor (T0T1) is the union
of two regular subschemes: X1 = ProjX2

⊕
n≥0(I

n
· T 2n

0 ), which is the zero locus of (T0T1, T 2
1 ), and

X2 = ProjX2

⊕
n≥0(OX2 · T

2n
1 ), which is the zero locus of (T0T1, I · T 2

0 ). Since the zero locus of the
“irrelevant ideal” (I · T 2

0 , T0T1, T 2
1 ) is empty, these two subschemes are disjoint. In particular each is a

regular Cartier divisor. It follows that both X1 and X2 lie in the regular locus Breg
I , which is open since

BI is of finite type over the qe scheme X2.
We have X1 = BI ∩PX2((E I )0) and X2 = BI ∩PX2((E I )2), where the indices 0 and 2 denote the

components with given Gm-weight (the variable a in Section 4.2). Their union (T0T1) is the unstable
locus (BI )

un
a 1. The complement is affine, explicitly

(BI )
sst
1 = SpecX2

A[(T0T1)
−1
]degree=0

= SpecX2

(
· · · ⊕ I 2

(
T0

T1

)2

⊕ I
(

T0

T1

)
⊕OX2 ⊕OX2

(
T1

T0

)
⊕OX2

(
T1

T0

)2

⊕ · · ·

)
.

This scheme is in general singular, but the quotient is simpler:

(BI )
sst
1 //Gm = SpecX2

OX2 = X2.

Step 2d: stable and unstable loci for weight 2. The projective Cartier divisor (T 2
1 ) can be identified as

(BI )
un
a 2= PX2(I · T

2
0 )∪PZ(I )(I/I 2

· T 2
0 ⊕O · T0T1)= X1 ∪C(Z(I )),

where C(Z(I )) is the normal cone. The complement is again affine, of the form

(BI )
sst
2 = SpecX2

A[T−1
1 ]degree=0

= SpecX2

(
· · · ⊕OX2

(
T0

T1

)2

⊕OX2

(
T0

T1

)
⊕OX2

)
= A1

X2
.

Thus,
(BI )

sst
2 //Gm = SpecX2

OX2 = X2

and the morphism (BI )
sst
2 → X2 is smooth. Another way to see this is to notice that the map BI → BO

restricts to an open embedding on (BI )
sst
2 , and the image is the complement of {0}× X2.
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Step 2e: stable and unstable loci for weight 0. The projective zero locus of (I · T0)
2 can be identified as

(BI )
un
a 0= PX2(OX2 · T

2
1 )∪PZ(I )(OX2 · T0T1⊕OX2 · T

2
1 )= X2 ∪P1

Z(I ).

The complement is not necessarily affine, as I is not necessarily principal. However, recalling the sheaf FI

from Step 2b, the morphism (BI )
sst
0 →PX2(FI ) is an open embedding, whose image is the complement of

the zero section. So (BI )
sst
0 is the total space of the invertible sheaf IOX1 on X1. Thus, (BI )

sst
0 //Gm = X1

and the morphism (BI )
sst
0 → X1 is smooth.

Step 3a: resolving (BI , DBI ). Let DBI ⊂ BI be the preimage of D2. Applying resolution of pairs to
(BI , DBI ) we obtain a functorial projective Gm-equivariant morphism B→ BI such that B is regular and
the preimage DB ⊂ B of D2 is a simple normal crossings divisor. Here we use Theorem 2.2.10 if the
characteristic is 0. In positive and mixed characteristic we may use parts (1) and (2) of Hypothetical
Statement 2.2.13 since dim B = dim X2+ 1. In addition, B→ BI is projectively the identity outside of
the union of DBI and the singular locus of BI , which is included in the preimage of

PX2((E I )1)= PX2(OX2 ·U1T0⊕ I ·U0T1).

It follows that (B, DB) is a regular birational cobordism for φ.

Step 3b: embedding. By the arguments of Section 2.1.10, the composition B→ BI → BO is functorially
a single blowing up of an ideal J. Write J̃ = JOBI so that B = Bl J̃ BI . There is a functorially defined
integer d such that J̃ (d) is globally generated on BI relative to X2. Using [Hartshorne 1977, II.7.10(b)]
we have an equivariant embedding of B inside

PX2(Ẽ) := PX2(π
BI /X2
∗

J̃ (d)).

We claim that amin(B)=0 and amax(B)=2d . First, since E I has weights amin(E I )=0 and amax(E I )=2,
we have amin(Symd(E I ))= 0 and amax(Symd(E I ))= 2d. Second, the weights 0 and 2d survive in the
homogeneous coordinate ring of BI with respect to O(d) as described in the steps above. Third, the
weights in π BI /X2

∗ J̃ (d) necessarily lie among those of Symd(E I ), so amin(B)≥ 0 and amax(B)≤ 2d . To
show that the weights 0 and 2d survive in B it suffices to show this over a dense open set in X2. Since
B→ BI is projectively the identity over U, the weight-0 and weight-2d components of π BI /X2

∗ J̃ (d) are
everywhere nonzero, as needed.

Inspecting the description of unstable loci in Section 4.1, equation (1) we note that Bsst
0 = B×BI (BI )

sst
0

and Bsst
2d = B×BI (BI )

sst
2 .

Step 3c: B is a cobordism for φ that respects U. We have shown in Steps 2d and 2e that the morphisms
q2 : (BI )

sst
2 → X2 and q1 : (BI )

sst
0 → X1 are smooth. Functoriality of resolution of pairs with respect to qi

implies that, once restricted to (BI )
sst
2 , the morphism B→ BI is the pullback of the resolution X ′2→ X2 of

(X2, D2), and once restricted to (BI )
sst
0 , the morphism B→ BI is the pullback of the resolution X ′1→ X1

of (X1, D1). It follows that B ×BI (BI )
sst
2 //Gm = X ′2 and B ×BI (BI )

sst
0 //Gm = X ′1 and hence B is a

cobordism for φ. Also, we note that B∩P(Ẽ0)= X ′1 and B∩P(Ẽ2d)= X ′2, so Assumption 4.2.3 applies.



Functorial factorization of birational maps for qe schemes in characteristic 0 417

To show that B is compatible with U it suffices to show that both B→ BI and BI→ BO are projectively
the identity over U. This is so for the blowing up BI → P1

X2
because I + I{0} is the unit ideal on P1

U , and
this is so for the resolution B→ BI because P1

U is regular and disjoint from the preimage of D2. �

Appendix B: Germs of complex analytic spaces

In this section we use germs to extend the category of complex analytic spaces to include certain Stein
compacts. This will be used later to establish a tight connection between scheme theory and complex
analytic geometry. In particular, this is needed to develop a relative GAGA theory.

B.1 Semianalytic sets. We follow the setup of [Frisch 1967]. A subset X of an analytic space X is called
semianalytic if its local germs belong to the minimal class of germs, stable under finite unions and comple-
ments, generated by inequalities of the form f (x) < 0 for real analytic f ; see [loc. cit., p. 120]. It is called
a Stein if X has a fundamental system of neighborhoods of Stein subspaces of X ; see [loc. cit., p. 123].

B.2 The category of germs. A germ of a complex analytic space (or, simply, a germ) is a pair (X , X)
consisting of an analytic space X and a semianalytic subset X ⊂ X . We call X the support of (X , X) and
we call X a representative of (X , X). Sometimes, we will use the shorter notation X = (X , X).

A morphism φ : (X , X)→ (Y, Y ) consists of a neighborhood X ′ of X and an analytic map f :X ′→Y
taking X to Y. We say that f is a representative of φ. Note that a morphism (X , X)→ (Y, Y ) is an
isomorphism if it induces a bijection of X and Y and an isomorphism of their neighborhoods.

We identify an analytic space X with the germ (X, X). In particular, the category of analytic spaces
becomes a full subcategory of the category of germs.

B.3 The structure sheaf. Given a germ (X , X) we provide its support with the structure sheaf OX :=

OX |X = i∗OX , where i : X ↪→X is the embedding. In particular, we obtain a functor F : (X , X) 7→ (X,OX )

from the category of germs to the category of locally ringed spaces.

Remark B.3.1. We do not aim to develop a complete theory of semianalytic germs, so we do not study
the natural question of whether F is fully faithful.

B.4 Closed polydiscs and convergent power series. Consider an analytic affine space X = An
C

with
coordinates t1, . . . , tn . For any tuple r of numbers r1, . . . , rn ∈ [0,∞), by the closed polydisc D = Dr

of radius r we mean the subset of X given by the inequalities |ti | ≤ ri . Note that ri can be zero. By
C{t1, . . . , tn}†r we denote the ring of overconvergent series in t1, . . . , tn of radius r . It is a noetherian
regular excellent ring of dimension n; see [Matsumura 1980, Theorem 102].

Lemma B.4.1. Let D = Dr ⊂ X = An
C

be a polydisc and A =OX (D)= 0(OD). Then:

(i) C{t1, . . . , tn}†r −→∼ A.

(ii) 0(D, · ) induces an equivalence between the categories of coherent OD-modules and finitely gener-
ated A-modules, and higher cohomology of coherent OD-modules vanish.
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(iii) For any a ∈ D the ideal ma = (t1− a1, . . . , tn − an)⊂ A is maximal, and any maximal ideal of A is
of this form.

(iv) The completion of A along ma is C[[t1− a1, . . . , tn − an]].

Proof. The first claim is a classical result of analysis of several complex variables. Assertion (ii) follows
from the fact that D is the intersection of open polydiscs containing it, and the latter are Stein spaces.
Assertion (iv) follows easily from (iii), so we will only prove (iii).

For any f ∈ A the quotient

g1 = ( f (t1, . . . , tn)− f (a1, t2, . . . , tn))/(t1− a1)

lies in A, so f = (t1− a1)g1+ f1(t2, . . . , tn) with f1 = f (a1, t2, . . . , tn). Applying the same argument
to t2 and f1, etc., we will obtain in the end a representation f = f (a1, . . . , an)+

∑n
i=1(ti − ai )gi . In

particular, A/ma = C and hence ma is maximal.
Conversely, assume that m ⊂ A is maximal. The norm ‖ f ‖ =maxx∈D | f (x)| on A induces a norm on

the field κ = A/m; hence the completion K = κ̂ is a Banach C-field. Thus, K =C by the Gel’fand–Mazur
theorem, and we obtain that ti − ai ∈ m for some ai ∈ C. Finally, |ai | ≤ ri as otherwise ti − ai ∈ A×. �

B.5 Classes of morphisms. Let φ : (Y, Y )→ (X , X) be a morphism of germs. We say that φ is without
boundary if there exists a representative f :Y ′→X such that Y = f −1(X). Let P be one of the following
properties: smooth, open immersion, closed immersion. We say that φ is P if it is without boundary
and has a representative which is P. We say that φ is an embedding of a subdomain if it possesses a
representative which is an open immersion and we say that φ is quasismooth if it possesses a representative
which is smooth.

Remark B.5.1. The above terminology is chosen to match its nonarchimedean analogue as much as
possible.

B.6 Affinoid germs. A germ X is called affinoid if it admits a closed immersion into a germ of the form
(Cn, D) where D is a closed polydisc. Such a germ is controlled by the ring OX (X) very tightly.

Lemma B.6.1. Assume that X is an affinoid germ and let A =OX (X) and f : (X,OX )→ Y = Spec(A)
be the corresponding map of locally ringed spaces. Then:

(i) A is a quotient of a ring C{t1, . . . , tn}†r ; in particular it is an excellent noetherian ring.

(ii) 0(X, · ) induces an equivalence between the categories of coherent OX -modules and finitely generated
A-modules, and higher cohomology of coherent OX -modules vanish.

(iii) f establishes a bijection between X and the closed points of Y.

(iv) For any point x ∈ X with y = f (x) the homomorphism OY,y→OX,x is regular and its completion
ÔY,y→ ÔX,x is an isomorphism.
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Proof. In the case of a closed polydisc the assertion was proved in Lemma B.4.1. In general, we fix a
closed embedding i : X ↪→ D into a closed polydisc. So, OX becomes a coherent OD-algebra such that the
homomorphism φ :OD→OX is surjective, and then all assertions except the first half of (iv) follow easily
from the case of a polydisc. For example, 0(X,OX ) is a quotient of 0(D,OD) since H 1(D,Kerφ)= 0,
thereby proving (i).

The only new assertion is that φ : OY,y → OX,x is regular. This follows from the facts that φ̂ is an
isomorphism and the local ring OY,y is excellent (since it is a localization of the excellent ring A). �

Appendix C: The complex relative GAGA theorem

C.1 Statement of the theorem. Let (X , X) be an affinoid germ as in Appendix B with ring of global
analytic functions A, and r ≥ 0 an integer. Set Pr

X = CPr
× X and endow it with a locally ringed space

structure using the sheaf OPr
X
=OPr

X
|Pr

X
. We have a germ (Pr

X ,Pr
X ) and a morphism of locally ringed

spaces h : Pr
X → Pr

A. The aim of this appendix is to prove the following extension of Lemma B.6.1:

Theorem C.1.1 (Serre’s Théorème 3). Let (X , X) be an affinoid germ with ring of global analytic
functions A, and r ≥ 0 an integer. Then the pullback functor h∗ : Coh(Pr

A)→ Coh(Pr
X ) is an equivalence

which induces isomorphisms on cohomology groups.

Since (X , X) is closed in (Cn, D) it suffices to consider the case (X , X)= (Cn, D). So from now on
we make this assumption, and write A for the ring of holomorphic functions on X = D.

We follow the steps of Serre’s original proof [1956, §3] in some detail, to alleviate our skepticism that
this generalization might actually work. See also [Kedlaya 2009], which sketches Serre’s proof. One
difficulty is that we do not know if D×Cr is Stein in the sense of [Frisch 1967] or [Grauert and Remmert
1979]. The problem is that if {Di } are the open polydiscs containing D then {Di ×Cr

} do not form a
fundamental family of neighborhoods of D×Cr, while functions on D×Cr are only guaranteed to extend
to some member of a fundamental family of neighborhoods. This is circumvented in Lemma C.2.2, which
is the only point where we differ from the original arguments.

C.2 Cohomology.

Proposition C.2.1 (Serre’s Théorème 1). Let F be a coherent sheaf on Pr
A. The homomorphism h∗ :

H i (Pr
A,F)→ H i (Pr

D, h∗F) is an isomorphism.

Lemma C.2.2. (1) We have H i (Pr
A,F)= H i (Pr

D, h∗F)= 0 for i > r and all F.

(2) Proposition C.2.1 holds for F =OPr
A

for all r ≥ 0.

Proof. (1) For H i (Pr
A,F)= 0 use the standard Čech covering of Pr

A, which has only r + 1 elements. We
need to show H i (Pr

D, h∗F)= 0.
On the analytic side we mimic the standard argument for vanishing using Čech cocycles of a covering

by closed polydiscs instead of affine spaces. Let h∗F→ S• be the standard flabby resolution of h∗F by
discontinuous sections, so H i (Y, h∗F |Y ) = H i (0(Y, S•)) for any subset Y ⊂ Pr

D. Let Cr
' Ui ⊂ CPr
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be the standard open sets and let Di ⊂ Ui be the standard closed polydisc of fixed radius > 1. Set
X i = D × Di ⊂ Pr

D and for each subset I ⊂ {0, . . . , n} let XI =
⋂

i∈I X i . Then the XI are complex
affinoids for I 6=∅; hence H i (XI , h∗F |XI )= 0= H i (0(XI , S•)) for i > 0 and I 6=∅.

On the other hand

C•({X i }, S j )=

[⊕
|I |=1

S j
XI
→

⊕
|I |=2

S j
XI
→ · · ·

]
is a flabby resolution of S j so H 0(0(Pr

D, C
•({X i }, S j )))= 0(Pr

D, S j ) and for i > 0 we have

H i (0(Pr
D, C

•({X i }, S j )))= 0.

Consider the double complex C p,q
=
⊕
|I |=p 0(XI , Sq) and its two edges 0(Pr , S•) and Č p

=

⊕|I |=p0(XI , h∗F). We obtain

H i (Pr
D, h∗F)= H i (0(Pr , S•))= Hi (C •,•)= H i (Č •).

The latter is trivial in degrees > r .

(2) We have 0(OPr
A
)= A and H i (OPr

A
)= 0 for i > 0 by [Hartshorne 1977, Theorem III.5.1]. It suffices

to show that π∗OPr
D
=OD and Riπ∗OPr

D
= 0 for i > 0, where π : Pr

D→ D is the projection, since D is
Stein. For this note that OPr

D
= j−1

r OPr
CPn , where jr : Pr

D→ Pr
CPn is the inclusion

Pr
D

π
��

jr
// Pr

CPn

$
��

D
j0
// CPn.

By the topological proper push-forward theorem [Iversen 1986, Corollary VII.1.5] we have

Riπ∗OPr
D
= j−1

0 Ri$∗OPr
CPn ,

and the result follows from Serre’s original GAGA theorems. �

Lemma C.2.3. The proposition holds for F =OPr
A
(n) for all r ≥ 0 and all integers n.

Proof. Induction identical to [Serre 1956, Section 13, Lemme 5]: the result holds for r = 0 since D is
Stein. Supposing it holds for r − 1 and all n, we have the exact sequence 0→OPr

D
(n− 1)→OPr

D
(n)→

OPr−1
D
(n)→ 0 and the corresponding sequence for Pr

A. We obtain a canonical homomorphism of long
exact sequences:

H i−1(Pr−1
A ,O(n)) //

��

H i (Pr
A,O(n− 1)) //

��

H i (Pr
A,O(n)) //

��

H i (Pr−1
A ,O(n))

��

H i−1(Pr−1
D ,O(n)) // H i (Pr

D,O(n− 1)) // H i (Pr
D,O(n)) // H i (Pr−1

D ,O(n)).

The vertical arrows on the right and left are isomorphisms by the inductive assumption. It follows that
the result holds for r and O(n− 1) if and only if it holds for O(n). Since we have proven that it holds
for O, it holds for all n. �
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Proof of the proposition. The proof is identical to Serre’s Théorème 1. We apply descending induction
on i for all coherent Pr

A modules F. The case of i > r is proved by the lemma. Since F is coherent, there
is an epimorphism E→ F with E =

⊕m
i=1 OPr

A
(−ki ). Denoting by G the kernel, G is coherent and we

have a short exact sequence
0→ G→ E→ F→ 0.

Since the map h is flat we have an exact sequence

0→ h∗G→ h∗E→ h∗F→ 0.

In the commutative diagram of cohomologies with exact rows

H i (Pr
A, E) //

��

H i (Pr
A,F) //

��

H i+1(Pr
A,G) //

��

H i+1(Pr
A, E)

��

H i (Pr
D, h∗E) // H i (Pr

D, h∗F) // H i+1(Pr
D, h∗G) // H i+1(Pr

D, h∗E)

the vertical arrows on the left and right are isomorphisms by Lemma C.2.3. By the induction hypothesis
H i+1(Pr

A,G)→ H i+1(Pr
D, h∗G) is an isomorphism as well. By the five lemma the result holds for

H i (Pr
A,F)→ H i (Pr

D, h∗F) as required. �

C.3 Homomorphisms.

Proposition C.3.1 (Serre’s Théorème 2). For any coherent Pr
A-modules F,G the natural homomorphism

HomPr
A
(F,G)→ HomPr

D
(h∗F, h∗G)

is an isomorphism. In particular the functor h∗ is fully faithful.

Lemma C.3.2. The sheaf homomorphism

h∗HomPr
A
(F,G)→HomPr

D
(h∗F, h∗G)

is an isomorphism.

Proof. This follows since OPr
D

is a flat OPr
A
-module. Indeed, for a closed point x ∈ Pr

D corresponding to
a point x ′ = h(x) ∈ Pr

A we have

(h∗HomPr
A
(F,G))x =HomOx ′

(Fx ′,Gx ′)⊗Ox ′
Ox

=HomOx (Fx ′ ⊗Ox ′
Ox ,Gx ′ ⊗Ox ′

Ox)=HomPr
D
(h∗F, h∗G)x . �

Proof of the proposition. By Serre’s Théorème 1, h∗ preserves cohomology of coherent sheaves. Taking
H 0 in the lemma the result follows. �

C.4 The equivalence. It remains to show:

Proposition C.4.1. The functor h∗ is essentially surjective.

Proof. This is an inductive argument on r identical to Serre’s Théorème 3 which we repeat below. The
case r = 0 follows from Lemma B.6.1. Assume the result is known for r − 1 and let F be a coherent
sheaf on Pr

D. By Lemma C.4.2 below there is an epimorphism φ : O(−n0)
k0 → F, and applying this
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again to Ker(φ) we get a resolution O(−n1)
k1 ψ
−→O(−n0)

k0 → F → 0. By Serre’s Théorème 2 the
homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ ′, so the cokernel F of ψ
is also the analytification of the cokernel of ψ ′. �

Lemma C.4.2. Assume the proposition holds for r − 1. Then for any coherent sheaf F on Pr
D there is n0

so that F(n) is globally generated whenever n > n0.

Proof. By compactness it suffices to show that global sections of F(n) generate F(n)x for fixed x . By
Nakayama it suffices to show that global sections of F(n) generate the fiber F(n)x ⊗OD,x Cx .

Picking a hyperplane Pr−1
D ' H 3 x we obtain an exact sequence 0→ O(−1)→ O→ OH → 0,

giving an exact sequence F(−1) ϕ1
−→F ϕ0

−→FH → 0. Writing P for Ker(ϕ0) = Im(ϕ1) we have two
exact sequences

0→ G→ F(−1)→ P→ 0 and 0→ P→ F→ FH → 0,

noting that G and FH are coherent sheaves on H. Twisting by O(n) gives

0→ G(n)→ F(n− 1)→ P(n)→ 0 and 0→ P(n)→ F(n)→ FH (n)→ 0.

The long exact cohomology sequence gives

H 1(Pr
D,F(n− 1))→ H 1(Pr

D,P(n))→ H 2(H,G(n))
and

H 1(Pr
D,P(n))→ H 1(Pr

D,F(n))→ H 1(H,FH (n)).

By the assumption FH and G are analytifications of algebraic sheaves, so for large n the terms on the right
vanish by Serre’s Théorème 1. It follows that dim H 1(Pr

D,F(n)) stabilizes for large n, and when it does
the exact sequences above imply that H 1(Pr

D,P(n))→ H 1(Pr
D,F(n)) is bijective so H 0(Pr

D,F(n))→
H 0(H,FH (n)) is surjective. Since the result holds for analytifications of algebraic sheaves, FH (n) is
globally generated for large n, implying that F(n)x⊗OD,x Cx is generated by global sections, as needed. �
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Effective generation and
twisted weak positivity of direct images

Yajnaseni Dutta and Takumi Murayama

We study pushforwards of log pluricanonical bundles on projective log canonical pairs .Y;�/ over
the complex numbers, partially answering a Fujita-type conjecture due to Popa and Schnell in the log
canonical setting. We show two effective global generation results. First, when Y surjects onto a projective
variety, we show a quadratic bound for generic generation for twists by big and nef line bundles. Second,
when Y is fibered over a smooth projective variety, we show a linear bound for twists by ample line
bundles. These results additionally give effective nonvanishing statements. We also prove an effective
weak positivity statement for log pluricanonical bundles in this setting, which may be of independent
interest. In each context we indicate over which loci positivity holds. Finally, using the description of
such loci, we show an effective vanishing theorem for pushforwards of certain log-sheaves under smooth
morphisms.
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1. Introduction

Throughout this paper, all varieties will be over the complex numbers.
Popa and Schnell proposed the following relative version of Fujita’s conjecture:

Conjecture 1.1 [Popa and Schnell 2014, Conjecture 1.3]. Let f W Y ! X be a morphism of smooth
projective varieties, with dimX D n, and let L be an ample line bundle on X. For each k � 1, the sheaf

f�!
˝k
Y ˝L˝`

is globally generated for all `� k.nC 1/.
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Additionally assuming that L is globally generated, Popa and Schnell proved Conjecture 1.1 more
generally for log canonical pairs .Y;�/. Previously, Deng [2017, Theorem C] and the first author
[Dutta 2017, Proposition 1.2] studied this conjecture for klt Q-pairs, and were able to remove the global
generation assumption on L to obtain generic effective generation statements. In this paper, we obtain
similar generic generation results, more generally for log canonical pairs .Y;�/.

First, when X is arbitrarily singular and L is only big and nef, we obtain the following quadratic bound
on `. The case when .Y;�/ is klt and k D 1 is due to de Cataldo [1998, Theorem 2.2].

Theorem A. Let f W Y !X be a surjective morphism of projective varieties, where X is of dimension n.
Let .Y;�/ be a log canonical R-pair and let L be a big and nef line bundle on X. Consider a Cartier
divisor P on Y such that P �R k.KY C�/ for some integer k � 1. Then, the sheaf

f�OY .P /˝OX
L˝`

is generated by global sections on an open set U for every integer `� k.n2C 1/.

On the other hand, we have the following linear bound when X is smooth and L is ample. The
statement in (i) extends [Deng 2017, Theorem C] to log canonical pairs. As we were writing this, we
learned that a statement similar to (ii) was also obtained by Iwai [2017, Theorem 1.5].

Theorem B. Let f W Y !X be a fibration of projective varieties, where X is smooth of dimension n. Let
.Y;�/ be a log canonical R-pair and let L be an ample line bundle on X. Consider a Cartier divisor P
on Y such that P �R k.KY C�/ for some integer k � 1. Then, the sheaf

f�OY .P /˝OX
L˝`

is globally generated on an open set U for

(i) every integer `� k.nC 1/Cn2�n; and

(ii) every integer ` > k.nC 1/C 1
2
.n2�n/ when .Y;�/ is a klt Q-pair.

Here, a fibration is a morphism whose generic fiber is irreducible.
In both Theorems A and B, when Y is smooth and � has simple normal crossing support, we have

explicit descriptions of the open set U. See Remark 5.1. Thus, we have descriptions of the loci where
global generation holds up to a log resolution.

When X is smooth of dimension � 3 and L is ample, the bound on ` can be improved. This gives the
predicted bound in Conjecture 1.1 for surfaces; see Remark 5.2.

Remark 1.2 (effective nonvanishing). Theorems A and B can be interpreted as effective nonvanishing
statements. With notation as in the theorems, it follows that f�OY .P /˝L˝` admits global sections for
all ` � k.n2C 1/ when L is big and nef, and for all ` � k.nC 1/C n2 � n when L is ample and X is
smooth. Moreover, just as in Theorem B(ii), the effective bound of the second nonvanishing statement
can be improved in the case when .Y;�/ is a klt Q-pair.

We now state the technical results used in proving Theorems A and B.
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An extension theorem. Recall that if � W X 0 ! X is the blow-up of a projective variety X at x with
exceptional divisor E, then the Seshadri constant of a nef Cartier divisor L at x is

".LI x/ WD supft 2 R�0 j �
�L� tE is nefg:

The following replaces the role of Deng’s extension theorem [2017, Theorem 2.11] in our proofs.

Theorem C. Let f W Y !X be a surjective morphism of projective varieties, where X is of dimension n
and Y is smooth. Let � be an R-divisor on Y with simple normal crossing support and coefficients
in .0; 1�, and let L be a big and nef Q-Cartier Q-divisor on X. Suppose there exists a closed point
x 2 U.f;�/ and a real number ` > n=".LI x/ such that

P` �R KY C�C f̀ �L

for some Cartier divisor P` on Y . Then, the restriction map

H 0.Y;OY .P`// �!H 0.Yx;OYx
.P`// (1)

is surjective, and the sheaf f�OY .P`/ is globally generated at x.

See Notation 2.1(a) for the definition of the open set U.f;�/.

Remark 1.3 (comments on the proofs). The proofs of Theorems A and B(i) are in a way an algebraization
of Deng’s techniques, exploiting a generic lower bound for Seshadri constants due to Ein, Küchle, and
Lazarsfeld (Theorem 2.20). In the algebraic setting, this lower bound was first used by de Cataldo to
prove a version of Theorem A for klt pairs when k D 1. One of our main challenges was to extend
de Cataldo’s theorem to the log canonical case (see Theorem C above).

To obtain the better bound in Theorem B(ii) for klt Q-pairs, we use [Dutta 2017, Proposition 1.2]
instead of Seshadri constants.

In Theorems A and C, in order to work with line bundles L that are big and nef instead of ample,
we needed to study the augmented base locus BC.L/ of L (see Definition 2.22). We used Birkar’s
generalization of Nakamaye’s theorem [Birkar 2017, Theorem 1.4] and [Küronya 2013, Proposition 2.7],
which capture how L fails to be ample.

The proof of Theorem C relies on a cohomological injectivity theorem due to Fujino [2017a, Theo-
rem 5.4.1]. If .Y;�/ is replaced by an arbitrary log canonical R-pair, then the global generation statement
in Theorem C still holds over some open set (Corollary 3.2).

Remark 1.4 (effective vanishing). With the new input of weak positivity, which is discussed next, we
give some effective vanishing statements for certain cases of such pushforwards under smooth morphisms
(see Theorem 5.3). This improves similar statements in [Dutta 2017] and is in the spirit of [Popa and
Schnell 2014, Proposition 3.1], where they showed a similar statement with the assumption that L is
ample and globally generated.
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Effective twisted weak positivity. In order to prove Theorem B, we also use the following weak positivity
result for log canonical pairs. This may be of independent interest.

In this setting, weak positivity was partially known due to Campana [2004, Theorem 4.13], and later
more generally due to Fujino [2017b, Theorem 1.1], but using a slightly weaker notion of weak positivity
(see [loc. cit., Definition 7.3] and the comments thereafter). Our result extends these results.

Theorem D (twisted weak positivity). Let f W Y !X be a fibration of normal projective varieties such
that X is Gorenstein of dimension n. Let � be an R-Cartier R-divisor on Y such that .Y;�/ is log
canonical and k.KY C�/ is R-linearly equivalent to a Cartier divisor for some integer k � 1. Then, the
sheaf

f�OY .k.KY=X C�//

is weakly positive.

Recall that a torsion-free coherent sheaf F is weakly positive if there exists a nonempty open set U
such that for every integer a, there is an integer b � 1 such that

SymŒab�F ˝H˝b

is generated by global sections on U for all ample line bundles H. Here, � Œs� is the reflexive hull of � s

(see Notation 2.6).
Popa and Schnell [2014, Theorem 4.2] showed that if �D 0, the morphism f has generically reduced

fibers in codimension 1, and H D !X ˝ L˝nC1 with L ample and globally generated, then weak
positivity in Theorem D holds over U.f; 0/ for all b � k. In a similar spirit, we prove the following
“effective” version of twisted weak positivity when Y is smooth and� has simple normal crossing support.
Moreover, Theorem D is deduced from this result and therefore we also obtain an explicit description, up
to a log resolution, of the locus over which weak positivity holds. This extends [Popa and Schnell 2014,
Theorem 4.2] to arbitrary fibrations.

Theorem E (effective weak positivity). Let f W Y ! X be a fibration of projective varieties, where Y
is smooth and X is normal and Gorenstein of dimension n. Let � be an R-divisor on Y with simple
normal crossing support and with coefficients of�h in .0; 1�. Consider a Cartier divisor P on Y such that
P �R k.KY C�/ for some integer k � 1. Let U be the intersection of U.f;�/ with the largest open set
over which f�OY .P / is locally free, and let H D !X ˝L˝nC1 for L an ample and globally generated
line bundle on X. Then, the sheaf

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections on U for all integers `� k and s � 1.

Here, �h is the horizontal part of �; see Notation 2.1(b).
When b�c D 0, one can, in a way, get rid of the assumption that f�OY .P / is locally free on U using

invariance of log plurigenera [Hacon et al. 2018, Theorem 4.2]; see Remark 4.2.
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The proof of Theorem E relies on Viehweg’s fiber product trick; see [Viehweg 1983, §3], [Popa and
Schnell 2014, Theorem 4.2], or [Höring 2010, §3] for an exposition.

2. Definitions and preliminary results

Throughout this paper, a variety is an integral separated scheme of finite type over the complex numbers.
We will also fix the following notation:

Notation 2.1. Let f W Y !X be a morphism of projective varieties, where Y is smooth, and let � be an
R-divisor with simple normal crossing support on Y .

(a) We denote by U.f;�/ the largest open subset of X such that

� U.f;�/ is contained in the smooth locus Xreg of X ;

� f W f �1.U.f;�//! U.f;�/ is smooth; and

� the fibers Yx WDf �1.x/ intersect each component of� transversely for all closed points x 2U.f;�/.

This open set U.f;�/ is nonempty by generic smoothness; see [Hartshorne 1977, Corollary III.10.7] and
[Lazarsfeld 2004a, Lemma 4.1.11].

(b) We write

�D�vC�h;

where �v and �h do not share any components, such that

� every component of �h is horizontal over X, i.e., surjects onto X ; and

� �v is vertical over X, i.e., f .Supp.�v//¨X.

Note that U.f;�/ satisfies U.f;�/\f .�v/D∅.

Reflexive sheaves and weak positivity. In this section, fix an integral noetherian scheme X. To prove
Theorem E, we need some basic results on reflexive sheaves, which we collect here.

Definition 2.2. A coherent sheaf F onX is reflexive if the natural morphism F!F__ is an isomorphism,
where G_ WDHomOX

.G ;OX /. In particular, locally free sheaves are reflexive.
A coherent sheaf F on X is normal if the restriction map

�.U;F / �! �.U XZ;F /

is bijective for every open set U �X and every closed subset Z of U of codimension at least 2.

Proposition 2.3 (see [Hartshorne 1994, Proposition 1.11]). If X is normal, then every reflexive coherent
sheaf F is normal.

Lemma 2.4 [Stacks 2018, Tag 0AY4]. Let F and G be coherent sheaves on X, and assume that F is
reflexive. Then, HomOX

.G ;F / is also reflexive.

http://stacks.math.columbia.edu/tag/0AY4
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We will often use these facts to extend morphisms from the complement of codimension at least 2, as
recorded in the following:

Corollary 2.5. Suppose X is normal, and let F and G be coherent sheaves on X such that F is reflexive.
If U �X is an open subset such that codim.X XU/� 2, then every morphism ' W G jU !F jU extends
uniquely to a morphism Q' W G !F .

Proof. The morphism ' corresponds to a section of the sheaf HomOX
.G ;F / over U. The sheaf

HomOX
.G ;F / is reflexive by Lemma 2.4; hence the section ' extends uniquely to a section Q' of

HomOX
.G ;F / over X by Proposition 2.3. �

We will use the following notation throughout this paper:

Notation 2.6 [Höring 2010, Notation 3.3]. Let F be a torsion-free coherent sheaf on a normal variety X.
Let i WX� ,!X be the largest open set such that F jX� is locally free. We define

SymŒb�F WD i� Symb.F jX�/ and F Œb�
WD i�..F jX�/

˝b/:

We can also describe these sheaves as follows:

SymŒb�F ' .Symb.F //__ and F Œb�
' .F˝b/__:

Indeed, these pairs of reflexive sheaves coincide in codimension 1 and hence are isomorphic (see
[Hartshorne 1994, Theorem 1.12]).

We can now define the positivity notion appearing in Theorem D.

Definition 2.7 (weak positivity [Viehweg 1983, Definition 1.2]). LetX be a normal variety, and let U �X
be an open set. A torsion-free coherent sheaf F onX is said to be weakly positive onU if for every positive
integer a and every ample line bundle L on X, there exists an integer b � 1 such that SymŒab�F ˝L˝b

is globally generated on U. We say F is weakly positive if F is weakly positive on some open set U.

Dualizing complexes and canonical sheaves. The main reference for this section is [Hartshorne 1966].
We define the following:

Definition 2.8. Let h WX ! Spec k be an equidimensional scheme of finite type over a field k. Then the
normalized dualizing complex for X is !�X WD h

Šk, where hŠ is the exceptional pullback of Grothendieck
duality [loc. cit., Corollary VII.3.4]. One defines the canonical sheaf on X to be the coherent sheaf

!X WDH� dimX!�X :

When X is smooth and equidimensional over a field, the canonical sheaf !X is isomorphic to the
invertible sheaf of volume forms �dimX

X [loc. cit., III.2].
We will need the explicit description of the exceptional pullback functor for finite morphisms. Let

� W Y ! X be a finite morphism of equidimensional schemes of finite type over a field. Consider the
functor

N�� WMod.��OY / �!Mod.OY /
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obtained from the morphism N� W .Y;OY /! .X; ��OY / of ringed spaces. This functor N�� satisfies the
following properties (see [loc. cit., III.6]):

(a) The functor N�� is exact since the morphism N� of ringed spaces is flat. We define the functor

�Š W DC.Mod.OX // �! DC.Mod.OY //;

F 7�! N��RHomOX
.��OY ;F /:

(b) For every OX -module G , we have ��G ' N��.G ˝OX
��OY /.

(c) If !�X is the normalized dualizing complex for X, then �Š!�Y is the normalized dualizing complex
for Y .

Using the above description, we construct the following pluri-trace map for integral schemes over
fields, which we will use in the proof of Theorem E. We presume that this construction is already known
to the experts, but we could not find a reference.

Lemma 2.9. Let d W Y 0! Y be a dominant proper birational morphism of integral schemes of finite type
over a field, where Y 0 is normal and Y is Gorenstein. Then, there is a map of pluricanonical sheaves

d�!
˝k
Y 0 �! !˝kY

which is an isomorphism where d is an isomorphism.

Proof. By the universal property of normalization [Stacks 2018, Tag 035Q], we can factor d as

Y 0 Y Y
d 0

d

�

where � is the normalization. Note that d 0 is proper and birational since d is.
We first construct a similar morphism for �. Let nD dimY . Since Y is Gorenstein, the canonical sheaf

!Y is invertible and the normalized dualizing complex is !Y Œn� [Hartshorne 1966, Proposition V.9.3].
Using property (c) above we have

!Y DH�n.�Š!�Y /' N�
�.R�nHomOY

.��OY ;OY Œn�/˝OY
!Y /

' N��.HomOY
.��OY ;OY /˝OY

!Y /;

where we get the first isomorphism since N�� is exact by (a) and since !Y is invertible.
Now HomOY

.��OY ;OY / admits a morphism to ��OY , which makes it the largest ideal in ��OY that
is also an ideal in OY . It is the so-called conductor ideal of the normalization map [Kollár 2013, (5.2)].
Thus, we get a morphism

!Y ,�! N�
�.��OY ˝!Y /' �

�!Y :

The last isomorphism follows from (b) above. By taking the .k�1/-fold tensor product of the above
morphism we have

!
˝.k�1/

Y
,�! ��!

˝.k�1/
Y : (2)

http://stacks.math.columbia.edu/tag/035Q
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Finally, we use (2) to construct a map

d�!
˝k
Y 0 �! ��!

˝.k�1/
Y ˝OY

!Y :

First, we construct the above morphism over U, where d 0 is an isomorphism. Define V WD d 0�1.U /. The
identity map

id W d 0�!
˝k
V �! !˝kU

composed with map obtained from (2) gives the map

� W d 0�!
˝k
V �! ��!

˝.k�1/
Y jU ˝OU

!U :

Since ��!˝.k�1/Y is invertible and !Y is reflexive, the sheaf ��!˝.k�1/Y ˝!Y is also reflexive. Now
codim.Y XU/ � 2 by Zariski’s main theorem; see [Hartshorne 1977, Theorem V.5.2]. Therefore by
Corollary 2.5 we obtain

Q� W d 0�!
˝k
Y 0 �! ��!

˝.k�1/
Y ˝OY

!Y :

Composing �� Q� with one copy of the trace morphism ��!Y !!Y [Hartshorne 1966, Proposition III.6.5],
we get

d�!
˝k
Y 0

�� Q����! ��.�
�!
˝.k�1/
Y ˝OY

!Y /' !
˝.k�1/
Y ˝OY

��!Y
id˝Tr
���!!˝kY : (3)

The statement about the isomorphism locus of the above morphism holds by construction of the
maps above. Indeed, in (3) the trace morphism is compatible with flat base change [Hartshorne 1966,
Proposition III.6.6(2)], and hence compatible with restriction to the open set where d is an isomorphism. �

Singularities of pairs. We follow the conventions of [Fujino 2017a, §2.3]; see also [Kollár 2013, §1.1,2.1].
Recall that Xreg denotes the regular locus of a scheme X ; see Notation 2.1(a).

Definition 2.10 (canonical divisor). Let X be a normal variety of dimension n. A canonical divisor KX
on X is a Weil divisor such that

OXreg.KX /'�
n
Xreg
:

The choice of a canonical divisor KX is unique up to linear equivalence. Then one defines OX .KX / to be
the reflexive sheaf of rank 1 associated to KX .

The following lemma allows us to freely pass between divisor and sheaf notation on normal varieties:

Lemma 2.11. Let X be a normal variety of dimension n. Then, OX .KX / is isomorphic to !X .

Proof. The sheaf OX .KX / is reflexive by definition and the canonical sheaf !X is S2, by [Stacks 2018,
Tag 0AWE], and hence reflexive, by [Hartshorne 1994, Theorem 1.9]. Since they are both isomorphic to
�nXreg

on Xreg and codim.X XXreg/� 2, we have OX .KX /' !X by [loc. cit., Theorem 1.12]. �

http://stacks.math.columbia.edu/tag/0AWE
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Definition 2.12 (discrepancy). Let .X;�/ be a pair consisting of a normal variety X and an R-divisor �
on X such that KX C� is R-Cartier. Suppose f W Y !X is a proper birational morphism from a normal
variety Y , and choose canonical divisors KY and KX such that f�KY DKX . In this case, we may write

KY D f
�.KX C�/C

X
i

a.Ei ; X;�/Ei ;

where the Ei are irreducible Weil divisors. The real number a.Ei ; X;�/ is called the discrepancy of Ei
with respect to .X;�/, and the discrepancy of .X;�/ is

discrep.X;�/D inf
E
fa.E;X;�/ jE is an exceptional divisor over Xg;

where the infimum runs over all irreducible exceptional divisors of all proper birational morphisms
f W Y !X.

Definition 2.13 (singularities of pairs). Let .X;�/ be a pair consisting of a normal variety X and an
effective R-divisor� onX such thatKXC� is R-Cartier. We say that .X;�/ is klt if discrep.X;�/>�1
and b�c D 0. We say that .X;�/ is log canonical if discrep.X;�/� �1.

We will repeatedly use the following results about log resolutions of log canonical R-pairs.

Lemma 2.14. Let .Y;�/ be a log canonical (resp. klt) R-pair, and consider a Cartier divisor P on Y
such that P �R k.KY C�CH/ for some integer k � 1 and some R-Cartier R-divisor H. Then, for
every proper birational morphism � W zY ! Y such that zY is smooth and ��1.�/C exc.�/ has simple
normal crossing support, there exists a divisor zP on zY and an R-divisor Q� such that

(i) Q� has coefficients in .0; 1� (resp. .0; 1/) and simple normal crossing support;

(ii) the divisor zP ���P is an effective divisor with support in Supp.exc.�//;

(iii) the divisor zP satisfies zP �R k.K zY C
Q�C��H/; and

(iv) there is an isomorphism ��O zY . zP /'OY .P /.

Proof. On zY , we can write
K zY ��

�.KY C�/DQ�N;

where Q and N are effective R-divisors without common components such that Q �N has simple
normal crossing support and Q is �-exceptional. Note that since .Y;�/ is log canonical (resp. klt), all
coefficients in N are less than or equal to 1 (resp. less than 1). Let

Q� WDN CdQe�Q

so that by definition Q� has simple normal crossing support and coefficients in .0; 1� (resp. .0; 1/). Now
setting zP WD ��P C kdQe, we have

zP �R k�
�.KY C�CH/C kdQe

�R kK zY C k.N CdQe�Q/C�
�H D k.K zY C

Q�C��H/:

Since dQe is �-exceptional, we get ��O zY . zP /'OY .P / by using the projection formula. �
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We also use the following stronger notion of log resolution due to Szabó:

Theorem 2.15 [Kollár 2013, Theorem 10.45.2]. Let X be a variety, and let D be a Weil divisor on X.
Then, there is a log resolution � W zX !X of .X;D/ such that � is an isomorphism over the locus where
X is smooth and D has simple normal crossing support.

A few tools from Popa–Schnell. The following result is a slight generalization of [Popa and Schnell
2014, Variant 1.6]. This will be instrumental in proving Theorems D and E.

Theorem 2.16. Let f W Y ! X be a morphism of projective varieties, where Y is normal and X is of
dimension n. Let � be an R-divisor on Y and H a semiample Q-divisor on X such that for some integer
k � 1, there is a Cartier divisor P on Y satisfying

P �R k.KY C�Cf
�H/:

Suppose, moreover, that � can be written as �D�0C�v, where .Y;�0/ is log canonical and �v is an
R-Cartier R-divisor that is vertical over X. Let L be an ample and globally generated line bundle on X.
Then, the sheaf

f�OY .P /˝L˝`

is generated by global sections on some open set U for all `� k.nC 1/. Moreover, when �0 has simple
normal crossing support, we have U DX Xf .Supp.�v//.

Proof. Possibly after a log resolution of .Y;�/, we may assume that � D �h C�v in the sense of
Notation 2.1(b) such that .Y;�h/ is log canonical and � has simple normal crossing support. Indeed, let
� W zY ! Y be a log resolution of .Y;�/. Then, by Lemma 2.14 applied to the pair .Y;�0/ and H D�v,
we obtain a log canonical R-divisor Q� with simple normal crossing support on zY satisfying

K zY C
Q�C���v �R �

�.KY C�/CN;

where N is an effective �-exceptional divisor. We rename zY and Q�C���v as Y and � respectively.
Now � has simple normal crossing support and �h is log canonical. Moreover, since f �H is

semiample, by Bertini’s theorem we can pick a Q-divisor D�Q f
�H with smooth support and satisfying

the conditions that DC� has simple normal crossing support and D does not share any components
with �. Letting �00 WD�v �b�vc, we have

�D�hC�00Cb�vc

and .Y;�hC�00CD/ is log canonical. Since L is ample and globally generated, we therefore obtain that

f�OY .k.KY C�hC�00Cf �H//˝L˝`

is generated by global sections for all `� k.nC 1/ by [Popa and Schnell 2014, Variant 1.6]. But

f�OY .k.KY C�hC�00Cf �H//˝L˝` ,�! f�OY .P /˝L˝`;
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and they have the same stalks at every point x 2 U. Thus, the sheaf on the right-hand side is generated by
global sections at x for all x 2 U and for all `� k.nC 1/. �

We will also need the following result, which is used in the proof of [loc. cit., Variant 1.6]:

Lemma 2.17 (cf. [Popa and Schnell 2014, p. 2280]). Let f WY !X be a morphism of projective varieties,
and let F be a coherent sheaf on Y such that the image of the counit map

f �f�F �!F

of the adjunction f � a f� is of the form F .�E/ for some effective Cartier divisor E on Y . Then, for
every effective Cartier divisor E 0 �E, we have f�.F .�E 0//' f�F .

Proof. We have the factorization

f �f�F F .�E 0/ F

and by applying the adjunction f � a f�, we have a factorization

f�F f�.F .�E
0// f�F

id

of the identity. �

Finally, we record the following numerical argument that will appear in the proofs of Theorems A
and B.

Lemma 2.18 (cf. [Popa and Schnell 2014, Theorem 1.7, Step 2]). Let X be a smooth projective variety.
Let � be an effective R-Cartier divisor and E an effective Z-divisor with simple normal crossing support
such that �CE also has simple normal crossing support and � has coefficients in .0; 1�. Let 0� c < 1
be a real number. Then, there exists an effective Cartier divisor E 0 �E such that �CcE�E 0 has simple
normal crossing support and coefficients in .0; 1�.

Seshadri constants. The effectivity of our results in Theorems A and B relies on Seshadri constants.
These were originally introduced by Demailly to measure local positivity of line bundles and thereby
study Fujita-type conjectures. See [Lazarsfeld 2004a, Chapter 5] for more on these invariants.

Definition 2.19. Let X be a projective variety, and let x 2X be a closed point. Let L be a nef R-Cartier
R-divisor on X. Denote by � WX 0!X the blow-up of X at x with exceptional divisor E. The Seshadri
constant of L at x is

".LI x/ WD supft 2 R�0 j �
�L� tE is nefg:

If L is a nef line bundle, then we denote by ".LI x/ the Seshadri constant of the associated Cartier
divisor L at x.

The following result is crucial in making our results effective.
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Theorem 2.20 [Ein et al. 1995, Theorem 1]. Let X be a projective variety of dimension n. Let L be a big
and nef Cartier divisor on X. Then, for every ı > 0, the locus�

x 2X

ˇ̌̌̌
".LI x/ >

1

nC ı

�
contains an open dense set.

Remark 2.21. If in the notation of Theorem 2.20 we also assume that X is smooth and L is ample, then
better lower bounds are known if nD 2; 3. Under these additional assumptions, the locus�

x 2X

ˇ̌̌̌
".LI x/ >

1

.n� 1/C ı

�
contains an open dense set if nD 2 [Ein and Lazarsfeld 1993, Theorem] or nD 3 [Cascini and Nakamaye
2014, Theorem 1.2]. Here, we use [Ein et al. 1995, Lemma 1.4] to obtain results for general points from
the cited results, which are stated for very general points. In general, it is conjectured that in the situation
of Theorem 2.20, the locus �

x 2X

ˇ̌̌̌
".LI x/ >

1

1C ı

�
contains an open dense set [Lazarsfeld 2004a, Conjecture 5.2.5].

The stable and augmented base locus. In order to deal with big and nef line bundles in Theorems A
and C, we will need some facts about base loci, following [Ein et al. 2009].

Definition 2.22. Let X be a projective variety. If L is a Q-Cartier Q-divisor on X, then the stable base
locus of L is the closed set

B.L/ WD
\
m

BsjmLjred;

wherem runs over all integers such thatmL is Cartier. If L is an R-Cartier R-divisor on X, the augmented
base locus of L is the closed set

BC.L/ WD
\
A

B.L�A/;

where A runs over all ample R-Cartier R-divisors A such that L�A is Q-Cartier. By definition, if L is a
Q-Cartier Q-divisor, then

B.L/�BC.L/:

Note that BC.L/¤X if and only ifL is big by Kodaira’s lemma [Lazarsfeld 2004a, Proposition 2.2.22].

We will also need the following result, which shows how augmented base loci and Seshadri constants
are related. The result follows from [Ein et al. 2009, §6] if the scheme X is a smooth variety, but we will
need it more generally for singular varieties.

Corollary 2.23. Let X be a projective variety, and let x 2X be a closed point. Suppose L is a big and
nef Q-Cartier Q-divisor. If ".LI x/ > 0, then x …BC.L/.
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Proof. If x2BC.L/, then by [Birkar 2017, Theorem 1.4] there exists a closed subvariety V �X containing
x such that LdimV �V D 0, in which case ".LI x/D 0 by [Lazarsfeld 2004a, Proposition 5.1.9]. �

3. An extension theorem

We now turn to the proof of Theorem C. The proof relies on the following application of cohomology
and base change.

Lemma 3.1. Let f W Y ! X be a proper morphism of separated noetherian schemes, and let F be a
coherent sheaf on Y . Let x 2X be a point that has an open neighborhood U �X , where F jf �1.U / is flat
over U. Consider the following cartesian square:

Yx Y

Spec.�.x// X

f

If the restriction map
H 0.Y;F / �!H 0.Yx;F jYx

/

is surjective, then the restriction map

H 0.X; f�F / �! f�F ˝OX
�.x/

is also surjective.

Proof. Let fU WD f jf �1.U / and FU WDF jf �1.U /. We have the commutative diagram

H 0.X; f�F / f�F ˝OX
�.x/

fU�FU ˝OU
�.x/

H 0.Y;F / H 0.Yx;F jYx
/

�

ˇ

˛0.x/

where the bottom arrow is surjective by assumption, ˇ is an isomorphism by computing affine-locally,
and ˛0.x/ is the natural base change map [Illusie 2005, (8.3.2.3)]. By the commutativity of the diagram,
this map ˛0.x/ is surjective, and hence is an isomorphism by cohomology and base change [loc. cit.,
Corollary 8.3.11]. Thus, the top horizontal arrow is also surjective. �

Before proving Theorem C, we first explain how to deduce a generic global generation statement for
arbitrary log canonical R-pairs .Y;�/ from Theorem C by passing to a log resolution.

Corollary 3.2. Let f WY !X be a surjective morphism of projective varieties, whereX is of dimension n.
Let .Y;�/ be a log canonical R-pair, and let L be an big and nef Q-Cartier Q-divisor on X. Let ` be a
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real number for which there exists a Cartier divisor P` on Y such that

P` �R KY C�C f̀ �L:

If ` > n=".LI x/ for general x 2X, then the sheaf f�OY .P`/ is generically globally generated.

Proof. Applying Lemma 2.14 for H D f̀ �L to a log resolution � W zY ! Y of .Y;�/, we have the
following commutative diagram:

H 0.X; .f ı�/�O zY . zP`// .f ı�/�O zY . zP`/˝ �.x/

H 0.X; f�OY .P`// f�OY .P`/˝ �.x/

� �

where zP` is the divisor on zY satisfying the properties in Lemma 2.14. Then, Theorem C for . zY ; Q�/
implies that for some open subset U �X, the top horizontal arrow is surjective for all closed points x 2U
such that ` > n=".LI x/; hence the bottom horizontal arrow is also surjective at these closed points x.
We therefore conclude that f�OY .P`/ is generically globally generated. �

To prove Theorem C, we need the following result on augmented base loci.

Lemma 3.3. Let X be a projective variety of dimension n, and let L be a big and nef R-Cartier R-divisor
on X. Let x 2X be a closed point, and suppose ".LI x/ > 0. Let � WX 0!X be the blow-up of X at x
with exceptional divisor E. For every positive real number ı < ".LI x/, we have

BC.�
�L� ıE/\E D∅:

In particular, if ��L� ıE is a Q-Cartier Q-divisor, then

Bsjm.��L� ıE/j \E D∅

for all sufficiently large and divisible integers m.

Proof. First, the R-Cartier R-divisor ��L� ıE is big and nef since

��L� ıE �R

ı

".LI x/
.��L� ".LI x/E/C

�
1�

ı

".LI x/

�
��L (4)

is the sum of a nef R-Cartier R-divisor and a big and nef R-Cartier R-divisor. Thus, by [Birkar 2017,
Theorem 1.4], we know that BC.�

�L� ıE/ is the union of positive-dimensional closed subvarieties V
of X 0 such that .��L� ıE/dimV �V D 0.

It suffices to show such a V cannot contain any point y 2E. First, if V �E, then

.��L� ıE/dimV
�V D .�ıE/dimV

�V D ıdimV .�EjE /
dimV

�V > 0;
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since OE .�E/'OE .1/ is very ample. On the other hand, if V 6�E, then V is the strict transform of
some closed subvariety V0 �X containing x, and by (4), we have

.��L� ıE/dimV
�V D

�
ı

".LI x/
.��L� ".LI x/E/C

�
1�

ı

".LI x/

�
��L

�dimV

�V

�

�
1�

ı

".LI x/

�dimV

.��L/dimV
�V

D

�
1�

ı

".LI x/

�dimV

LdimV
�V0 > 0;

where the first inequality is by nefness of ��L�".LI x/E, and the last inequality is by [Lazarsfeld 2004a,
Proposition 5.1.9] and the condition ".LI x/ > 0.

The last statement about base loci follows from the fact that

BC.�
�L� ıE/�B.��L� ıE/D Bsjm.��L� ıE/jred

for all sufficiently large and divisible integers m, where the last equality holds by [loc. cit., Proposi-
tion 2.1.21] since ��L� ıE is a Q-Cartier Q-divisor. �

Finally, we need the following cohomological injectivity theorem due to Fujino.

Theorem 3.4 [Fujino 2017a, Theorem 5.4.1]. Let Y be a smooth complete variety and let � be an
R-divisor on Y with coefficients in .0; 1� and simple normal crossing support. Let L be a Cartier divisor
on Y and let D be an effective Weil divisor on Y whose support is contained in Supp�. Assume that
L�R KY C�. Then, the natural homomorphism

H i .Y;OY .L// �!H i .Y;OY .LCD//

induced by the inclusion OY !OY .D/ is injective for every i .

We can now prove Theorem C.

Proof of Theorem C. Fix x 2 U, and consider the cartesian square

Y 0 Y

X 0 X

B

f 0 f

b

where b is the blow-up of X at x. Since f is flat in a neighborhood of x, the morphism B can be
identified with the blow-up of Y along Yx , which is a smooth subvariety of codimension n [Stacks 2018,
Tag 0805]. Moreover, if E is the exceptional divisor of b and D is the exceptional divisor of B , then
f 0�E DD. By Lemma 3.1, the surjectivity of (1) in the statement of Theorem C implies the generic
global generation statement, so it suffices to show that the map in (1) is surjective.

http://stacks.math.columbia.edu/tag/0805
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First, we note that .Y 0; B��/ is log canonical: since Yx intersects every component of � transversely,
the pullback B�� of � is equal to the strict transform �0 of � [Fulton 1984, Corollary 6.7.2], and so in
particular, .Y 0; �0/ is log canonical.

Since ".LI x/ > n=`, we can choose a sufficiently small ı > 0 such that .nC ı/=` 2Q and ".LI x/ >
.nC ı/=`. Thus, using the fact that L is a Q-Cartier Q-divisor, for real numbers m of the form m0=` for
sufficiently large and divisible integers m0, we have that m.`b�L� .nC ı/E/ is Cartier. Lemma 3.3
then implies

S WD Bsjm.`b�L� .nC ı/E/jred

does not intersect E, i.e., m.`b�L� .nC ı/E/ is globally generated away from S , and in particular, is
globally generated on an open set containing E. Thus, the pullback m.`B�f �L� .nC ı/D/ of this
divisor is globally generated away from S 0 WD f 0�1.S/, and in particular is globally generated on an
open set containing D. Choose

Dx 2 jm.`B
�f �L� .nC ı/D/j

which is smooth and irreducible away from f 0�1.S/, and is such that the component of Dx not contained
in S 0 intersects each component of the support of �0 transversely away from S 0. Note that such a choice is
possible by applying Bertini’s theorem [Hartshorne 1977, Corollary III.10.9 and Remark III.10.9.3]. Since
Dx may have singularities along S 0, however, we will need to pass to a log resolution before applying
Theorem 3.4.

By Theorem 2.15, there exists a common log resolution � W zY ! Y 0 for Dx and .Y 0; �0/ that is an
isomorphism away from f 0�1.S/¨ Y 0. We then write

��Dx DD
0
CF; ���0 D ��1� �

0
CF1;

where D0 is a smooth divisor intersecting Yx transversely and F;F1 are supported on ��1.S 0/. Define

F 0 WD
j
1

m
F CF1

k
; Q� WD ���0C

1

m
��Dx �F

0
C ı��D; zP` WD �

�B�P`CK zY =Y 0 :

Note that Q� has simple normal crossing support containing ��D, and has coefficients in .0; 1� by
assumption on the log resolution and by definition of F 0. Note also that

zP`�F
0
�R �

�B�.KY C�C f̀ �L/CK zY =Y 0 �F
0

�R K zY C�
��0�F 0C��.`B�f �L� .n� 1/D/

�R K zY C�
��0C

1

m
��Dx �F

0
C .1C ı/��D

�R K zY C
Q�C��D;

where the second equivalence follows from the fact that B is the blow-up of the smooth subvariety Yx ,
which is of codimension n; hence

K zY D �
�KY 0 CK zY =Y 0 D �

�B�KY C .n� 1/�
�DCK zY =Y 0 :
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We can now apply the injectivity result Theorem 3.4 to zP`�F 0���D �R K zY C
Q� to see that

H 1. zY ;O zY . zP`�F
0
���D// �!H 1. zY ;O zY . zP`�F

0// (5)

is injective. Next, consider the following commutative diagram:

H 0. zY ;O zY . zP`�F
0// H 0.��.D/;O��.D/. zP`�F 0//

H 0. zY ;O zY . zP`// H 0.��.D/;O��.D/. zP`//

H 0.Y 0;OY 0.B�P`// H 0.D;OD.B�P`//

H 0.Y;OY .P`// H 0.Yx;OYx
.P`//

�

� �

� �

The top right vertical arrow is an isomorphism since F 0 is disjoint from ��.D/. The bottom right vertical
arrow is an isomorphism since BjD realizes D as a projective bundle over Yx ; hence .BjD/�OD 'OYx

.
The other vertical isomorphisms follow from the projection formula and the fact that � and B are
birational. Finally, the top horizontal arrow is surjective by the long exact sequence on cohomology and
the injectivity of (5). The commutativity of the diagram implies the bottom row is surjective, which is
exactly the map in (1). �

4. Effective twisted weak positivity

We now prove Theorem E using Viehweg’s fiber product trick. This trick enables us to reduce the global
generation of the reflexivized s-fold tensor product f�OY .k.KY C�//Œs� to s D 1 with Y replaced by
a suitable zY s. The main obstacle is picking a suitable boundary divisor on zY s. We tackle this using
Theorem 2.16. Readers are encouraged to consult [Popa and Schnell 2014, §4], [Viehweg 1983, §3], or
[Höring 2010, §3].

Throughout the proof we use OX .KX / and !X interchangeably whenever X is a normal variety. We
can do so by Lemma 2.11.

Proof of Theorem E. For every positive integer s, let Y s denote the reduction of the unique irreducible
component of

Y �X Y �X � � � �X Y„ ƒ‚ …
s times

that surjects onto X ; note that it is unique since f has irreducible generic fiber. Setting V WD f �1.U /,
we define V s similarly.

Let d W Y .s/! Y s be a desingularization of Y s, and note that d is an isomorphism over V s. We will
also denote by V s the image of V s under any birational modification of Y s which is an isomorphism
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along V s. Define di D �i ı d for i 2 f1; 2; : : : ; sg, where �i W Y s ! Y is the i-th projection. Since
di is a surjective morphism between integral varieties, the pullback d�i �j of the Cartier divisor �j is
well-defined for every component �j of �; see [Stacks 2018, Tag 02OO(1)].

Let � W zY s! Y .s/ be a log resolution as in Theorem 2.15 of the pair
�
Y .s/;

P
i d
�
i �

�
so that � is an

isomorphism over V s. Define
Q�D ��

X
i

d�i �:

Claim 4.1. There exists a map

Qf s�O zY s .k.K zY s=X
C Q�// �! .f�OY .k.KY=X C�///Œs� (6)

which is an isomorphism over U.

Let X0 be the open set in X such that

� the map f is flat over X0;

� the regular locus of X contains X0; and

� the sheaf f�OY .k.KY=X C�// is locally free over X0.

Then, codim.XXX0/�2. Indeed,X is normal and both f�OY and f�OY .k.KY=XC�// are torsion-free.
Now by construction, we have U �X0. Since .f�OY .k.KY=X C�///Œs� is reflexive and is isomorphic
to .f�OY .k.KY=X C�///˝s on X0, a map

Qf s�O zY s .k.K zY s=X
C Q�// �! .f�OY .k.KY=X C�///˝s

over X0 will extend to a map of the form in (6) on X by Corollary 2.5. This, together with flat base
change [Hartshorne 1977, Proposition III.9.3], implies that it suffices to construct a map

Qf s�O zY s
0
.k.K zY s

0 =X0
C Q�j zY s

0
// �! .f�OY0

.k.KY0=X0
C�jY0

///˝s

which is an isomorphism over U.
Define Y0 WD f �1.X0/. In this case, by [Höring 2010, Corollary 5.24] we know that

Y s0 WD Y0 �X Y0 �X � � � �X Y0„ ƒ‚ …
s times

' Y0 �X0
Y0 �X0

� � � �X0
Y0„ ƒ‚ …

s times

and that Y s0 is Gorenstein. We can therefore apply Lemma 2.9 to d ı�, to obtain a morphism

.d ı�/�!
˝k
zY s

0 =X0

�! !˝k
Y s

0 =X0

which is an isomorphism over V s. Here !Y s
0 =X0

WD!Y0
˝f s�!�1X0

and we define ! zY s
0 =X0

similarly. This
induces a map

Qf s�O zY s
0
.k.K zY s

0 =X0
C Q�j zY s

0
// �! f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY s
0

�
(7)

http://stacks.math.columbia.edu/tag/02OO
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which is an isomorphism over U, where M WDOY .P � kKY / is the line bundle associated to the Cartier
divisor P � kKY �R k�.

We will now show that the sheaf on the right-hand side of (7) admits an isomorphism to

.f�OY0
.k.KY0=X0

C�jY0
///˝s:

Note that this would show Claim 4.1, since (7) is an isomorphism over U. We proceed by induction,
adapting the argument in [Höring 2010, Lemma 3.15] to our twisted setting. Note that the case s D 1 is
clear, since in this case Y s D Y and the sheaves in question are equal.

By [loc. cit., Corollary 5.24] we have

!˝k
Y s

0 =X0
˝

O
i

��i .M jY0
/' ��s .!

˝k
Y0=X0

˝M jY0
/˝� 0�.!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/;

where � 0 W Y s! Y s�1 and M s�1 WD
Ns�1
iD1�

�
i M . Since !˝k

Y s�1
0 =X0

˝M s�1jY s�1
0

is locally free, by the
projection formula we obtain

f s�

�
!˝k
Y s

0 =X0
˝

sO
iD1

��i M jY0

�
' f�

�
.!˝k
Y0=X0

˝M jY0
/˝�s��

0�.!˝k
Y s�1

0 =X0
˝M s�1

jY s�1
0

/
�
:

Now by flat base change [Hartshorne 1977, Proposition III.9.3],

�s��
0�.!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/' f �f s�1� .!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/:

By induction the latter is isomorphic to

f �.f�OY0
.k.KY0=X0

C�jY0
//˝s�1/:

Therefore

f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY0

�
' f�

�
!˝k
Y0=X0

˝M jY0
˝f �

�
f�OY0

.k.KY0=X0
C�jY0

//˝s�1
��
:

Since f�OY .k.KY=X C�// is locally free over X0, we can apply the projection formula to obtain

f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY0

�
' .f�OY0

.k.KY0=X0
C�jY0

///˝s:

This concludes the proof of Claim 4.1.
We now use Theorem 2.16 to finish the proof of Theorem E.
We first claim Q� satisfies the hypothesis of Theorem 2.16. To do so, first note that on �i is flat over Y0,

and therefore by flat pullback of cycles we have

��i .�j /jY s
0
D ��1i .�j jY0

/D Y0 �X0
� � � �X0

�j„ƒ‚…
i -th position

�X0
� � � �X0

Y0:

Since Y0 � V and both d and � are isomorphisms over V s, the pullbacks ��.�i ı d/��hj jV s of the
horizontal components of � are smooth above U for all i 2 f1; 2; : : : ; sg. In other words, the components
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of Q� either do not intersect V s, or intersect the fiber over x transversely for all x 2 U. Thus,

Q�jV s D ��1d�1
X
i

��1i .�hjV /:

In particular, using Notation 2.1(b), we have that the horizontal part Q�h equals the closure Q�jV s of Q�jV s

in zY s. We can therefore write
Q�D Q�hC Q�v;

where by construction, the coefficients of Q�h are in .0; 1� and Qf s. Q�v/\U D∅.
Finally, we note from Mori’s cone theorem [Kollár and Mori 1998, Theorem 1.24] thatHD!X˝L˝nC1

is nef and hence semiample by the base point free theorem [loc. cit., Theorem 3.3]. Therefore f �H˝.`�k/

is also semiample for all `� k. Using H again to denote a divisor class of H, we argue that since

Qf s�O zY s .k.K zY s=X
C Q�//˝H˝` ' Qf s�O zY s

�
k.K zY s C Q�C .`� k/ Qf

s�H/
�
˝L˝k.nC1/; (8)

with L ample and globally generated, we can apply Theorem 2.16 to conclude that the sheaf above in
(8) is generated by global sections over U for all ` � k. Now fix a closed point x 2 U. We have the
commutative diagram

H 0
�
X; Qf s�O zY s .k.K zY s=X

C Q�//˝H˝`
� �

Qf s�O zY s .k.K zY s=X
C Q�//˝H˝`

�
˝ �.x/

H 0
�
X; .f�OY .k.KY=X C�///Œs�˝H˝`

� �
.f�OY .k.KY=X C�///Œs�˝H˝`

�
˝ �.x/

�

where the vertical arrows are induced by the map (6) from Claim 4.1, and the top horizontal arrow is
surjective by the global generation of the sheaves in (8) over U. Since (6) is an isomorphism over U, the
right vertical arrow is an isomorphism; hence by the commutativity of the diagram, the bottom horizontal
arrow is surjective. We therefore conclude that

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections over U for all `� k. �

Remark 4.2. When b�c D 0, if we moreover take U.f;�/ to be an open set over which every stratum
of .Y;�/ is smooth, then applying invariance of log plurigenera [Hacon et al. 2018, Theorem 4.2], we
can assert that f�OY .k.KY=X C�//jU.f;�/ is locally free. In this case we can take X0 to be simply the
locus inside Xreg over which f is flat. Moreover, the isomorphism

.f�OY .k.KY=X C�///˝s ' .f�OY .k.KY=X C�///Œs�

automatically holds over U.f;�/. Thus, Theorem E holds more generally over U.f;�/.

We now deduce Theorem D from Theorem E.
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Proof of Theorem D. Using Lemma 2.14, we assume that Y is smooth and � has simple normal crossing
support. Then, Theorem E implies

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections for all `� k on an open set U �X. Since f�OY .k.KY=XC// is locally
free over U, the map

.f�OY .k.KY=X C�///Œs� �! SymŒs�.f�OY .k.KY=X C�///

is surjective over U ; hence
SymŒs�.f�OY .k.KY=X C�///˝H˝`

is also generated by global sections for all `� k on U.
Note that for any ample line bundle L, there is an integer b � 1 such that H˝�k ˝L˝b is globally

generated. For such a b, the sheaf

SymŒs�.f�OY .k.KY=X C�///˝L˝b

is also generated by global sections on U. Since b depends only on k and H and is independent of s, we
can set s D ab. This implies weak positivity of f�OY .k.KY=X C�// over U. �

Remark 4.3. The proof of Theorem D shows that when Y is smooth and � has simple normal crossing
support, the sheaf f�OY .k.KY=XC�// is weakly positive over the open set in the statement of Theorem E.

5. Generic generation for pluricanonical sheaves

Proof of Theorem A. We now prove Theorem A, following the strategy in [Popa and Schnell 2014,
Theorem 1.7] and [Dutta 2017, Theorem A]. The idea is to reduce to the case where Y is smooth and �
has simple normal crossing support, and then maneuver into a situation to which Theorem C applies.

Proof of Theorem A. We start with some preliminary reductions.

Step 0: We may assume that the image of the counit morphism

f �f�OY .P / �!OY .P / (9)

for the adjunction f � a f� is nonzero.

Suppose the image of (9) is the zero sheaf. Then, the natural isomorphism

HomOY
.f �f�OY .P /;OY .P //' HomOX

.f�OY .P /; f�OY .P //

from the adjunction f � a f� implies that the identity morphism id W f�OY .P /! f�OY .P / is the zero
morphism. This implies f�OY .P /D 0; hence the conclusion of Theorem A trivially holds.

Step 1 (cf. [Popa and Schnell 2014, Theorem 1.7, Step 1]): We can reduce to the case where

(a) Y is smooth;
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(b) � has simple normal crossing support and coefficients in .0; 1�; and

(c) the image of (9) is of the form OY .P �E/ for a divisor E such that �CE has simple normal
crossing support.

A priori, the image of the counit (9) is of the form b �OY .P /, where b�OY is the relative base ideal
of OY .P /. By Step 0, this ideal is nonzero, and so consider a simultaneous log resolution � W zY ! Y of
b and .Y;�/. The image of the counit morphism

��f �f�OY .P / �! ��OY .P /DOY 0.��P / (10)

is the sheaf OY 0.��P �E 0/ [Lazarsfeld 2004b, Generalization 9.1.17].
We then apply Lemma 2.14 to �. With the notation of the lemma we note that on zY the counit

morphism (10) becomes the surjective morphism

.f ı�/�.f ı�/�O zY . zP / O zY .�
�P �E 0/DO zY . zP � . zP ��

�P /�E 0/:

Setting E WD . zP ���P /CE 0, we see that (c) holds for zP.
Finally, Theorem A for . zY ; Q�/ and zP implies that

.f ı�/�O zY . zP /˝OX
L˝` ' f�OY .P /˝OX

L˝`

is generated by global sections on some open set U for `� k.n2C 1/. This concludes Step 1.

Henceforth, we work in the situation of Step 1. Before moving on to Step 2, we fix some notation. Let
L denote the divisor class of L. Let U be the subset of U.f;�CE/ where

".LI x/ >
1

nC 1
kn

for every x 2 U, which is nonempty by Notation 2.1(a) and Theorem 2.20.
We set m to be the smallest positive integer such that f�OY .P /˝OX

L˝m is globally generated on U.
This integer m exists by [Küronya 2013, Proposition 2.7] since U \BC.L/D∅ by Corollary 2.23.

Finally, we set B WD BsjP �ECmf �Ljred ¨ Y and note that B \f �1.U /D∅.

Step 2: Reducing the problem to k D 1 and a suitable pair.

From now on, fix a closed point x 2 U.
The surjection

f �f�OY .P /˝OY
f �L˝m OY .P �E/˝OY

f �L˝m

implies that OY .P �E/˝OY
f �L˝m is globally generated on f �1.U /. Choose a general member

Dx 2 jP �ECmf
�Lj:

By Bertini’s theorem [Hartshorne 1977, Corollary III.10.9 and Remark III.10.9.3], we may assume that
Dx is smooth away from the base locus B of the linear system jP �ECmf �Lj. We may also assume that
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Dx intersects the fiber Yx transversely, and the support of � and E transversely away from B [Lazarsfeld
2004a, Lemma 4.1.11]. We then have

k.KY C�/�R KY C�C
k� 1

k
DxC

k� 1

k
E �

k� 1

k
mf �LI

hence for every integer `,

k.KY C�/C f̀ �L�R KY C�C
k� 1

k
DxC

k� 1

k
EC

�̀
�
k� 1

k
m

�
f �L:

We now adjust the coefficients of� andE so they do not share any components. Applying Lemma 2.18
to c D .k� 1/=k, we see that there exists an effective divisor E 0 �E such that

�0 WD�C
k� 1

k
E �E 0

is effective with simple normal crossing support, with components intersecting Yx transversely, and with
coefficients in .0; 1�. We can then write

P �E 0C f̀ �L�R KY C�
0
C
k� 1

k
DC

�̀
�
k� 1

k
m

�
f �L: (11)

Step 3: Applying Theorem C to obtain global generation.

By Lemma 2.17, we have f�OX .P �E 0/' f�OX .P /. It therefore suffices to show that

f�OY .P �E 0/˝OX
L˝` (12)

is globally generated at x. We first modify Dx to allow us to apply Theorem C. By Theorem 2.15, there
exists a common log resolution � W zY ! Y for Dx and .Y;�/ that is an isomorphism away from B ¨ Y .
We then write

��Dx DDCF; ���0 D ��1� �
0
CF1;

where D is a smooth prime divisor intersecting the fiber over x transversely and F;F1 are supported on
��1.B/. Define

F 0 WD

�
k� 1

k
F CF1

�
; Q� WD ���0C

k� 1

k
��Dx �F

0; zP WD ��P CK zY =Y :

Note that Q� has simple normal crossing support and coefficients in .0; 1� by assumption on the log
resolution and by definition of F 0. Moreover, the support of Q� intersects the fiber over x transversely.
Pulling back the decomposition in (11) and adding K zY =Y �F

0 yields

zP ���E 0�F 0C `.f ı�/�L�R K zY C�
��0C

k� 1

k
��Dx �F

0
C

�̀
�
k� 1

k
m

�
.f ı�/�L

�R K zY C
Q�C

�̀
�
k� 1

k
m

�
.f ı�/�L: (13)
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We now claim that it suffices to show

.f ı�/�O zY . zP ��
�E 0�F 0/˝OX

L˝` (14)

is globally generated at x. Consider the commutative diagram

H 0
�
X; .f ı�/�O zY . zP��

�E 0�F 0/˝OX
L˝`

� �
.f ı�/�O zY . zP��

�E 0�F 0/˝OX
L˝`

�
˝�.x/

H 0
�
X; .f ı�/�O zY . zP��

�E 0/˝OX
L˝`

� �
.f ı�/�O zY . zP��

�E 0/˝OX
L˝`

�
˝�.x/

H 0
�
X; f�.��O zY . zP /˝OY .�E

0//˝OX
L˝`

� �
f�.��O zY . zP /˝OY .�E

0//˝OX
L˝`

�
˝�.x/

H 0
�
X; f�OY .P�E 0/˝OX

L˝`
�

f�OY .P�E 0/˝OX
L˝`˝�.x/

�

� �

� �

where the top right isomorphism holds since F 0 is supported away from .f ı�/�1.U /; hence the stalks of
the two sheaves are isomorphic, and the other isomorphisms follow from the projection formula and the fact
thatK zY =Y is�-exceptional. If the top horizontal arrow is surjective, then the commutativity of the diagram
implies that the bottom horizontal arrow is also surjective, i.e., the sheaf in (12) is globally generated at x.

We now apply Theorem C to the decomposition (13) to see that the sheaf in (14) is globally generated
at x for all

`�
k� 1

k
m >

n

".LI x/
:

By choice of U, we know that

".LI x/ >
1

nC 1
kn

at all x 2 U, and so by applying the same argument used so far to all x 2 U, we see f�OY .P /˝OX
L˝`

is globally generated on U for all

` > n

�
nC

1

kn

�
C
k� 1

k
mD n2C

1

k
C
k� 1

k
m:

By the minimality of m, we know

m�

�
n2C

1

k
C
k� 1

k
m

�
C 1� n2C

k� 1

k
mC 1:

The inequality between the leftmost and rightmost quantities is equivalent to m � k.n2C 1/; that is,
f�OY .P /˝OX

L˝` is globally generated on U for `� k.n2C 1/. �
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Proof of Theorem B. Restricting to X smooth and L ample, we now show a slightly better bound. The
strategy of Theorem B is the same as that for Theorem A: We first reduce to the case when Y is smooth
and � has simple normal crossing support. Then, using twisted weak positivity this time, we maneuver
to a situation in which we can apply Theorem C or [Dutta 2017, Proposition 1.2].

Proof of Theorem B. We begin with Steps 0 and 1 of the proof of Theorem A to reduce to a situation
where Y is smooth and � has simple normal crossing support. Following Step 1, we also assume that
there exists an effective divisor E with simple normal crossing support such that

f �f�OY .P / �!OY .P �E/ (15)

is surjective.

Step 2: Reducing the problem to k D 1 and a suitable pair.

Unless otherwise mentioned, throughout this proof we fix U to denote the intersection of U.f;�CE/
with the open set over which f�OY .P / is locally free.

In the diagram

f �
�
.f�OY .k.KY=X C�///˝b

�
OY .bk.KY=X C�/� bE/

f �
�
.f�OY .k.KY=X C�///Œb�

�
OY .bk.KY=X C�/� bE/

the dashed map exists making the diagram commute. Indeed, the map exists over the locus X1 where
f�OY .k.KY=X C�// is locally free. Since X1 has a complement of codimension � 2, and the bottom
right sheaf is locally free, we can extend the dashed map to all of X (Corollary 2.5).

Now the top arrow is the surjective map obtained by taking the b-th tensor power of (15). Then the
commutativity of the diagram implies that the bottom arrow is also surjective. By Theorem E we know
that over U,

f�OY .k.KY=X C�//Œb�˝L˝b

is generated by global sections for b� 1. Therefore so is OY .bk.KY=X C�/� bE/˝ f �L˝b over
f �1.U /.

We now fix a point x 2 U.
Letting L denote a Cartier divisor class of L, we can apply Bertini’s theorem to choose a divisor

D 2 jbk.KY=X C�/� bEC bf
�Lj

such that on f �1.U /, D is smooth, DC�CE has simple normal crossing support, D is not contained
in the support of �CE, and D intersects the fiber over x transversely. Then write

1

b
D �R k.KY=X C�/�ECf

�L:
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Multiplying both sides by k�1
k

, and then adding KY=X C�C k�1
k
E, we have

KY=X C�C
k� 1

kb
DC

k� 1

k
E �R k.KY=X C�/C

k� 1

k
f �L: (16)

Now applying Lemma 2.18 for c D k�1
k

, there exists an effective divisor E 0 �E such that

�0 WD�C
k� 1

k
E �E 0

has coefficients in .0; 1�. Subtracting E 0C k�1
k
f �L from both sides in (16), we can therefore write

KY=X C
k� 1

kb
DC�0�

k� 1

k
f �L�R k.KY=X C�/�E

0:

Let us now denote by H the line bundle !X ˝L˝nC1 and a divisor class in it at the same time. For a
positive integer `, we add f �KX C .k� 1/f �H C .`� .k� 1/.nC 1//f �L to both sides to obtain

KY C
k� 1

kb
DC�0C .k� 1/f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
f �L�R P �E

0
C f̀ �L: (17)

As noted earlier E 0 �E is an effective Cartier divisor and therefore

f�OY .P �E 0/' f�OY .P /

by Lemma 2.17. Moreover since the right-hand side of (17) is a Cartier divisor, it is enough to tackle the
generation of the left side.

Step 3: Applying Theorem C to obtain global generation.

First, we need to modify D to be able to apply Theorem C.
Let � W Y 0! Y be a log resolution of k�1

kb
DC�0 as in Theorem 2.15. Such a modification is an

isomorphism over f �1.U / by choice of D. Write

��D D zDCF; ���0 D Q�0CF1;

where zD is the strict transform of the components of D that lie above U and Q�0 is the strict transform
of �0. Note that both F and F1 has support outside of f �1.U /.

Define

F 0 WD

�
k� 1

kb
F CF1

�
; Q� WD ��DC���0�F 0; zP WD ��P CKY 0=Y :

By definition Q� has coefficients in .0; 1�. Now pulling back (17) and adding KY 0=Y �F 0 we and rewrite
(17) as

KY 0 C Q�C .k� 1/�
�f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
��f �L�R

zP ���E 0C `��f �L�F 0:
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This can be compared to (13). By the arguments following (13) we can say that it is enough to show
global generation for the pushforward of the left side under f ı� to deduce desired global generation for
f�OY .P /˝L˝` for suitable `.

To do so, we note once again that from Mori theory it follows that H D !X ˝L˝nC1 is semiample.
Therefore .k � 1/��f �H is also semiample. Applying Bertini’s theorem one more time we can pick
an effective fractional Q-divisor D0 �Q .k� 1/�

�f �H with smooth support and its support intersects
components of Q�CD0 and the fiber over x transversely. We can now rewrite the linear equivalence as

KY 0 C Q�CD
0
C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
��f �L�R

zP ���E 0C `��f �L�F 0: (18)

Note that Q�CD0 on the left-hand side of (18) has simple normal crossing support with coefficients in
.0; 1� and Supp. Q�CD0/ intersects the fiber over x transversely. Thus, we can apply Theorem C on the
left-hand side to conclude that

f�OY .P /˝L˝`

is generated by global sections over U for all

` >
n

".LI x/
C k.nC 1/�n�

1

k
:

After possibly shrinking U we assume that

".LI x/ >
1

nC 1
n.kC1/

for all points x 2 U, and hence

` > n

�
nC

1

n.kC 1/

�
C k.nC 1/�n�

1

k
D k.nC 1/Cn2�n�

1

k.kC 1/
:

Therefore, `� k.nC 1/Cn2�n. This proves (i).

Step 4: The case of klt Q-pairs.

When � is a klt Q-pair, we apply [Dutta 2017, Proposition 1.2] on the left-hand side of (18). To do
so, we first trace the construction of Q�CD0 to note that its coefficients lie in .0; 1/. We then apply the
proposition with

H D
1

k
��f �L; AD .`� k.nC 1/Cn/��f �L

to obtain global generation on U for all ` > k.nC 1/C 1
2
.n2�n/. This proves (ii). �

We summarize below the locus of global generation for Theorems A and B:

Remark 5.1. When Y is smooth and the relative base locus of P is an effective divisor E such that
�CE has simple normal crossing support, the open set U for Theorem A contains the largest open
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subset of U.f;�CE/ such that ".LI x/ >
�
nC 1

kn

��1 and for Theorem B(i), U contains the intersection
of U.f;�CE/, the locus where f�OY .P / is locally free, and the open set where

".LI x/ >
�
nC

1

n.kC 1/

��1
:

Finally, for Theorem B(ii), U contains the intersection of U.f;�CE/ and the locus where f�OY .P / is
locally free.

Remark 5.2. Using the better bounds in Remark 2.21 for low dimensions (nD 2; 3), one can show that
the lower bounds `� k.n2�nC1/ in Theorem A and `� k.nC1/Cn2�2n in Theorem B suffice when
X is smooth and L is ample. In particular, Conjecture 1.1 for generic global generation holds for nD 2.
In the klt case, the conjectured lower bound in fact holds when n� 4 as was observed in [Dutta 2017].

If the conjectured lower bound for Seshadri constants in Remark 2.21 holds, then Theorem A would
hold for the lower bound `� k.nC 1/, thereby proving this generic version of Conjecture 1.1 in higher
dimensions for big and nef line bundles.

An effective vanishing theorem. With the help of our effective twisted weak positivity, we improve the
effective vanishing statement in [Dutta 2017, Theorem 3.1]:

Theorem 5.3. Let f W Y !X be a smooth fibration of smooth projective varieties with dimX D n. Let
� be a Q-divisor with simple normal crossing support with coefficients in Œ0; 1/ such that every stratum
of .Y;�/ is smooth and dominant over X, and let L be an ample line bundle on X. Assume also that for
some fixed integer k � 1, k.KY C�/ is Cartier and OY .k.KY C�// is relatively base point free. Then,
for every i > 0 and all `� k.nC 1/�n, we have

H i
�
X; f�OY .k.KY C�//˝L˝`

�
D 0:

Moreover, if KX is semiample, for every i > 0 and every ample line bundle L we have

H i
�
X; f�OY .k.KY C�//˝L

�
D 0:

Proof. The hypothesis on f and � ensures invariance of log plurigenera, as noted in Remark 4.2; hence
f�OY .k.KY=X C�// is locally free. This means U.f;�/DX. Furthermore, by the description of the
open set in the proof of Theorem D, we have that there exists a positive integer b such that

.f�OY .k.KY=X C�///Œb�˝L˝b

is globally generated everywhere on X. Now since OY .k.KY C�// is relatively base point free, we
can choose a divisor 1

b
D �R k.KY=X C�/C f

�L satisfying the Bertini-type properties as in Step 2
of Theorem B. Define H WDKX C .nC 1/L, which is semiample by Mori’s cone theorem and the base
point free theorem. As before, we then write

KY C�C
k� 1

kb
DC .k� 1/f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
f �L�R k.KY C�/C f̀ �L:
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Since the divisor � C k�1
kb
D is klt and .k � 1/H C

�
` � k�1

k
� .k � 1/.n C 1/

�
L is ample for all

`� k.nC 1/�n, by Kollár’s vanishing theorem [1995, Theorem 10.19] we obtain

H i
�
X; f�OY .k.KY C�//˝L˝`

�
D 0

for all `� k.nC 1/�n and for all i > 0.
Moreover, when KX is already semiample, we take H D KX . In this case, the linear equivalence

above looks as follows:

KY C�C
k� 1

kb
DC .k� 1/f �H C

�̀
�
k� 1

k

�
f �L�R k.KY C�/C f̀ �L:

Then, we obtain the desired vanishing for all `� 1 and i > 0. �
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[Ein et al. 2009] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, “Restricted volumes and base loci of linear
series”, Amer. J. Math. 131:3 (2009), 607–651. MR Zbl

[Fujino 2017a] O. Fujino, Foundations of the minimal model program, MSJ Memoirs 35, Math. Soc. Japan, Tokyo, 2017. MR
Zbl

[Fujino 2017b] O. Fujino, “Notes on the weak positivity theorems”, pp. 73–118 in Algebraic varieties and automorphism groups
(Kyoto, 2014), edited by K. Masuda et al., Adv. Stud. Pure Math. 75, Math. Soc. Japan, Tokyo, 2017. MR Zbl

[Fulton 1984] W. Fulton, Intersection theory, Ergebnisse der Mathematik .3/ 2, Springer, 1984. MR Zbl

[Hacon et al. 2018] C. D. Hacon, J. McKernan, and C. Xu, “Boundedness of moduli of varieties of general type”, J. Eur. Math.
Soc. 20:4 (2018), 865–901. MR Zbl

http://dx.doi.org/10.1007/s00208-016-1441-y
http://msp.org/idx/mr/3673639
http://msp.org/idx/zbl/1388.14054
http://dx.doi.org/10.5802/aif.2027
http://msp.org/idx/mr/2097416
http://msp.org/idx/zbl/1062.14014
http://dx.doi.org/10.1515/advgeom-2013-0012
http://msp.org/idx/mr/3159092
http://msp.org/idx/zbl/1286.14009
http://dx.doi.org/10.5802/aif.1658
http://msp.org/idx/mr/1662243
http://msp.org/idx/zbl/0934.14002
http://msp.org/idx/arx/1703.07279
http://msp.org/idx/arx/1701.08830
http://msp.org/idx/mr/1265313
http://msp.org/idx/zbl/0812.14027
http://dx.doi.org/10.4310/jdg/1214457231
http://msp.org/idx/mr/1366545
http://msp.org/idx/zbl/0866.14004
http://dx.doi.org/10.1353/ajm.0.0054
http://dx.doi.org/10.1353/ajm.0.0054
http://msp.org/idx/mr/2530849
http://msp.org/idx/zbl/1179.14006
http://dx.doi.org/10.2969/msjmemoirs/035010000
http://msp.org/idx/mr/3643725
http://msp.org/idx/zbl/1386.14072
https://projecteuclid.org/euclid.aspm/1537498706
http://msp.org/idx/mr/3793363
http://msp.org/idx/zbl/1396.14032
http://dx.doi.org/10.1007/978-3-662-02421-8
http://msp.org/idx/mr/732620
http://msp.org/idx/zbl/0541.14005
http://dx.doi.org/10.4171/JEMS/778
http://msp.org/idx/mr/3779687
http://msp.org/idx/zbl/06864138


454 Yajnaseni Dutta and Takumi Murayama

[Hartshorne 1966] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, 1966. MR Zbl

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR Zbl

[Hartshorne 1994] R. Hartshorne, “Generalized divisors on Gorenstein schemes”, K-Theory 8:3 (1994), 287–339. MR Zbl

[Höring 2010] A. Höring, “Positivity of direct image sheaves: a geometric point of view”, Enseign. Math. .2/ 56:1-2 (2010),
87–142. MR Zbl

[Illusie 2005] L. Illusie, “Grothendieck’s existence theorem in formal geometry”, Chapter 8, pp. 179–233 in Fundamental
algebraic geometry, Math. Surveys Monogr. 123, Amer. Math. Soc., Providence, RI, 2005. MR Zbl

[Iwai 2017] M. Iwai, “On the global generation of direct images of pluri-adjoint line bundles”, preprint, 2017. To appear in
Math. Z. arXiv

[Kollár 1995] J. Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press, 1995. MR Zbl

[Kollár 2013] J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Math. 200, Cambridge Univ. Press,
2013. MR Zbl

[Kollár and Mori 1998] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134,
Cambridge Univ. Press, 1998. MR Zbl

[Küronya 2013] A. Küronya, “Positivity on subvarieties and vanishing of higher cohomology”, Ann. Inst. Fourier .Grenoble/
63:5 (2013), 1717–1737. MR Zbl

[Lazarsfeld 2004a] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse
der Mathematik .3/ 48, Springer, 2004. MR Zbl

[Lazarsfeld 2004b] R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals,
Ergebnisse der Mathematik .3/ 49, Springer, 2004. MR Zbl

[Popa and Schnell 2014] M. Popa and C. Schnell, “On direct images of pluricanonical bundles”, Algebra Number Theory 8:9
(2014), 2273–2295. MR Zbl

[Stacks 2018] The Stacks Project contributors, “The Stacks Project”, online reference, 2018, https://stacks.math.columbia.edu/.

[Viehweg 1983] E. Viehweg, “Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces”, pp. 329–353
in Algebraic varieties and analytic varieties (Tokyo, 1981), edited by S. Iitaka, Adv. Stud. Pure Math. 1, North-Holland,
Amsterdam, 1983. MR Zbl

Communicated by János Kollár
Received 2018-02-06 Revised 2018-10-23 Accepted 2018-11-24

ydutta@math.northwestern.edu Department of Mathematics, Northwestern University, Evanston, IL,
United States

takumim@umich.edu Department of Mathematics, University of Michigan, Ann Arbor, MI,
United States

mathematical sciences publishers msp

http://eudml.org/doc/203789
http://msp.org/idx/mr/0222093
http://msp.org/idx/zbl/0212.26101
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/0463157
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.1007/BF00960866
http://msp.org/idx/mr/1291023
http://msp.org/idx/zbl/0826.14005
http://dx.doi.org/10.4171/LEM/56-1-4
http://msp.org/idx/mr/2674856
http://msp.org/idx/zbl/1203.14011
http://dx.doi.org/10.1090/surv/123/08
http://msp.org/idx/mr/2223409
http://msp.org/idx/zbl/1085.14001
http://msp.org/idx/arx/1712.06293
http://dx.doi.org/10.1515/9781400864195
http://msp.org/idx/mr/1341589
http://msp.org/idx/zbl/0871.14015
http://dx.doi.org/10.1017/CBO9781139547895
http://msp.org/idx/mr/3057950
http://msp.org/idx/zbl/1282.14028
http://dx.doi.org/10.1017/CBO9780511662560
http://msp.org/idx/mr/1658959
http://msp.org/idx/zbl/0926.14003
http://dx.doi.org/10.5802/aif.2812
http://msp.org/idx/mr/3186506
http://msp.org/idx/zbl/1291.14018
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095471
http://msp.org/idx/zbl/1093.14501
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095472
http://msp.org/idx/zbl/1093.14500
http://dx.doi.org/10.2140/ant.2014.8.2273
http://msp.org/idx/mr/3294390
http://msp.org/idx/zbl/1319.14022
https://stacks.math.columbia.edu/
http://dx.doi.org/10.2969/aspm/00110329
http://msp.org/idx/mr/715656
http://msp.org/idx/zbl/0513.14019
mailto:ydutta@math.northwestern.edu
mailto:takumim@umich.edu
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 13:2 (2019)

dx.doi.org/10.2140/ant.2019.13.455

Lovász–Saks–Schrijver ideals and
coordinate sections of determinantal varieties

Aldo Conca and Volkmar Welker

Motivated by questions in algebra and combinatorics we study two ideals associated to a simple graph G:
• the Lovász-Saks-Schrijver ideal defining the d-dimensional orthogonal representations of the graph

complementary to G, and
• the determinantal ideal of the (d+1)-minors of a generic symmetric matrix with 0 in positions

prescribed by the graph G.

In characteristic 0 these two ideals turn out to be closely related and algebraic properties such as
being radical, prime or a complete intersection transfer from the Lovász–Saks–Schrijver ideal to the
determinantal ideal. For Lovász–Saks–Schrijver ideals we link these properties to combinatorial properties
of G and show that they always hold for d large enough. For specific classes of graphs, such a forests,
we can give a complete picture and classify the radical, prime and complete intersection Lovász–Saks–
Schrijver ideals.

1. Introduction

Let k be a field, n ≥ 1 be an integer and set [n] = {1, . . . , n}. For a simple graph G = ([n], E) with vertex
set [n] and edge set E we study the following two classes of ideals associated to G.

• Lovász–Saks–Schrijver ideals: For an integer d ≥ 1 we consider the polynomial ring

S = k
[
yi` : i ∈ [n], ` ∈ [d]

]
.

For every edge e = {i, j} ∈
(
[n]
2

)
we set

f (d)e =

d∑
`=1

yi`y j`.

The ideal
Lk

G(d)= ( f (d)e : e ∈ E )⊆ S

is called the Lovász–Saks–Schrijver ideal, LSS-ideal for short, of G with respect to k. The ideal
Lk

G(d) defines the variety of orthogonal representations of the graph complementary to G. We refer
the reader to [Lovász et al. 1989; Lovász 2009] for background on orthogonal representations and

The work on this paper was partly supported by a DAAD Vigoni project and by INdAM.
MSC2010: primary 05E40; secondary 05C62, 13P10.
Keywords: determinantal rings, complete intersections, ideals associated to graphs, Gröbner bases.
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results on the geometry of the variety of orthogonal representations which provided intuition for
some of our results.

• Coordinate sections of generic (symmetric) determinantal ideals: Consider the polynomial ring
S = k[xi j : 1 ≤ i ≤ j ≤ n] and let X be the generic n × n symmetric matrix, that is, the (i, j)-th
entry of X is xi j if i ≤ j and x j i if i > j . Let X sym

G be the matrix obtained from X by replacing
the entries in positions (i, j) and ( j, i) for {i, j} ∈ E with 0. For an integer d let I k

d (X
sym
G ) ⊆ S

be the ideal of d-minors of X sym
G . The ideal I k

d (X
sym
G ) defines a coordinate hyperplane section

of the generic symmetric determinantal variety. Similarly, we consider ideals defining coordinate
hyperplane sections of the generic determinantal varieties and the generic skew-symmetric Pfaffian
varieties.

We observe in Section 7 that the ideal I k
d+1(X

sym
G ) and the ideal Lk

G(d) are closely related. Indeed, if k

has characteristic 0, classical results from invariant theory can be employed to show that I k
d+1(X

sym
G ) is

radical (resp. is prime, has the expected height) provided Lk
G(d) is radical (resp. is prime, is a complete

intersection). We also exhibit similar relations between variants of Lk
G(d) and ideals defining coordinate

sections of determinantal and Pfaffian ideals.
These facts turn the focus on algebraic properties of the LSS-ideals Lk

G(d). In particular, we analyze
the questions: When is Lk

G(d) a radical ideal? When is it a complete intersection? When is it a prime
ideal? Other properties of ideals such as defining a normal ring or a UFD are interesting as well but will
not be treated here. In Section 4 we prove the following:

Theorem 1.1. Let G = ([n], E) be a graph. Then:

(1) If Lk
G(d) is prime then Lk

G(d) is a complete intersection.

(2) If Lk
G(d) is a complete intersection then Lk

G(d + 1) is prime.

As an immediate consequence we have:

Corollary 1.2. Let G = ([n], E) be a graph. Then:

(1) If Lk
G(d) is prime (resp. complete intersection) then Lk

G(d+ 1) is prime (resp. complete intersection).

(2) If Lk
G(d) is prime (resp. complete intersection) then Lk

G ′(d) is prime (resp. complete intersection) for
every subgraph G ′ of G.

In Section 5 we use these results to show that for d large enough Lk
G(d) is prime and complete

intersection. To this end, for a graph G = ([n], E) we define a graph theoretic invariant pmd(G) ∈ N,
called the positive matching decomposition number of G. We prove in Lemma 5.4 that pmd(G) ≤
min{2n− 3, |E |} and that pmd(G)≤min{n− 1, |E |} if G is bipartite. We show the following:

Theorem 1.3. Let G = ([n], E) be a graph. Then for d ≥ pmd(G) the ideal Lk
G(d) is a radical complete

intersection. In particular, Lk
G(d) is prime if d ≥ pmd(G)+ 1.
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The fact that Lk
G(d) is a complete intersection for large d also follows from [Sam and Weyman 2015,

Theorems 3.5 and 3.8] or using the theory of strength from results in [Ananyan and Hochster 2016]. To
have an explicit bound in Theorem 1.3 is crucial in order to use this result and the connection between
I k
d+1(X

sym
G ) and Lk

G(d). Indeed, for deducing meaningful results, we need to single out cases where we
can say something about Lk

G(d) for d ≤ n− 1. The results described in the following paragraph can be
seen as steps in this direction.

Already in Section 4 we give necessary conditions for Lk
G(d) to be prime in terms of subgraphs of G,

see Proposition 4.4. In particular, we prove that if Lk
G(d) is prime then G does not contain a complete

bipartite subgraph Ka,b with a+ b = d + 1 (i.e., G is (n−d)-connected). Similar results are obtained
for complete intersections. In general these conditions are only necessary but in Section 6 we show that
for small values of d they can be used to characterize the properties. For d = 1 the characterization is
obvious and in [Herzog et al. 2015] it is proved that Lk

G(2) is prime if and only if G is a matching. We
obtain the following:

Theorem 1.4. Let G be a graph. Then:

(1) Lk
G(3) is prime if and only if G does not contain K1,3 and does not contain K2,2.

(2) Lk
G(2) is a complete intersection if and only if G does not contain K1,3 and does not contain C2m for

some m ≥ 2.

Here Cn denotes the cycle with n vertices. Finally for forests (i.e., graphs without cycles) we can give
a complete picture.

Theorem 1.5. Let G be a forest and denote by 1(G) the maximal degree of a vertex in G. Then:

(1) Lk
G(d) is radical for all d.

(2) Lk
G(d) is a complete intersection if and only if d ≥1(G).

(3) Lk
G(d) is prime if and only if d ≥1(G)+ 1.

In Section 7 we demonstrate in characteristic 0 the above mentioned connection between Lk
G(d)

and I k
d+1(X

sym
G ). Using the results from the preceding sections we deduce sufficient conditions for

I k
d+1(X

sym
G ) to be radical, prime or of expected height. Similar results are obtained for coordinate

hyperplane sections of the generic determinantal varieties and the generic skew-symmetric Pfaffian
varieties. To our knowledge coordinate sections of determinantal varieties have been systematically
studied only in the case of maximal minors, see for example the results in [Boocher 2012; Eisenbud 1988;
Giusti and Merle 1982].

In Section 8 we use the results from Section 4 and Section 7 to formulate obstructions that prevent
Lk

G(d) to be prime or a complete intersection. We also study the exact asymptotics in terms of the
number of vertices of the least d such that Lk

G(d) is prime for G a complete and a complete bipartite
graph. Finally, in Section 9 we pose open problems, formulate conjectures and exhibit a relation between
hypergraph LSS-ideals and coordinate sections of bounded rank tensor varieties.
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To complete the outline of the paper we mention that Section 2 sets up the graph theory and Gröbner
theory. Section 3 recalls results from [Herzog et al. 2015] for the case d = 2 which in particular show that
Lk

G(2) is always radical if char k 6= 2. We then exhibit and discuss counterexamples which demonstrate
that this is not the case for d = 3.

2. Notations and generalities

2A. Graph and hypergraph theory. In the following we introduce graph theory notation. We mostly
follow the conventions from [Diestel 1997]. For us a graph G = (V, E) is a simple graph on a finite
vertex set V . In particular, E is a subset of the set of 2-element subsets

(V
2

)
of V . In most of the cases

we assume that V = [n] = {1, . . . , n}. A subgraph of a graph G = (V, E) is a graph G ′ = (V ′, E ′) such
that V ′ ⊆ V and E ′ ⊆ E . Given two graphs G and G ′ we say that G contains G ′ if G has a subgraph
isomorphic to G ′.

More generally, a hypergraph H = (V, E) is a pair consisting of a finite set of vertices V and a set E
of subsets of V . We are only interested in the situation when the sets in E are inclusionwise incomparable.
Such a set of subsets is called a clutter.

For m, n > 0 we will use the following notation:

• Kn denotes the complete graph on n vertices, i.e., Kn = ([n], {{i, j} : 1≤ i < j ≤ n}),

• Km,n denotes the complete bipartite graph ([m] ∪ [ñ], {{i, j̃} : i ∈ [m], j̃ ∈ [ñ] }) with bipartition
[m] and [ñ] = {1̃, . . . , ñ}.

• Bn denotes the subgraph of Kn,n obtained by removing the edges {i, ĩ} for i = 1, . . . , n.

• For n > 2 we denote by Cn the cycle with n vertices, i.e., the subgraph of Kn with edges {1, 2},
{2, 3}, . . . , {n− 1, n}, {n, 1}.

• For n > 1 we denote by Pn the path with n vertices, i.e., the subgraph of Kn with edges {1, 2},
{2, 3}, . . . , {n− 1, n}.

We denote by G = (V, E) with E =
(V

2

)
\ E the graph complementary to G = (V, E). Let W ⊆ V .

We write GW = (W, {e ∈ E : e ⊆ W }) for the graph induced by G on vertex set W and G −W for the
subgraph induced by G on V \W . In case W = {v} for some v ∈ V we simply write G− v for G−{v}.

A graph G = ([n], E) with n ≥ k + 1 is called k-(vertex)connected if for every W ⊂ V with |W | =
k − 1 the graph G −W is connected. The degree deg(v) of a vertex v of G is |{e ∈ E : v ∈ e}| and
1(G) = maxv∈V deg(v). Clearly, if G = ([n], E) is k-connected then every vertex has degree at least
k and 1(G) ≤ n − k − 1. We denote by ω(G) the clique number of G, i.e., the largest a such that G
contains Ka . The following well known fact follows directly from the definitions.

Lemma 2.1. Given a graph G= ([n], E) and an integer 1≤ d ≤ n the following conditions are equivalent:

(1) G is (n−d)-connected.

(2) G does not contain Ka,b with a+ b = d + 1.
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2B. Basics on LSS-ideals and their generalization to hypergraphs. Let H = ([n], E) be a hypergraph.
For an integer d ≥ 1 we consider the polynomial ring S = k[yi` : i ∈ [n], ` ∈ [d]]. We define for e ∈ E

f (d)e =

d∑
`=1

∏
i∈e

yi`.

If E is a clutter we call the ideal

Lk
H (d)= ( f (d)e : e ∈ E )⊆ S

the LSS-ideal of the hypergraph H .
It will sometimes be useful to consider Lk

H (d) as a multigraded ideal. For that we equip S with the
multigrading induced by deg(yi`)= ei for the i-th unit vector ei in Zn and (i, `) ∈ [n]× [d]. Clearly, for
e ∈ E the polynomial f (d)e is multigraded of degree

∑
i∈e ei . In particular, Lk

H (d) is Zn-multigraded. The
following remark is an immediate consequence of the fact that if E is a clutter the two polynomials f (d)e

and f (d)e′ corresponding to distinct edges e, e′ ∈ E have incomparable multidegrees.

Remark 2.2. Let H = ([n], E) be a hypergraph such that E is clutter. The generators f (d)e , e ∈ E , of
Lk

H (d) form a minimal system of generators. In particular, Lk
H (d) is a complete intersection if and only

if the polynomials f (d)e , e ∈ E , form a regular sequence.

The following alternative description of Lk
G(d) for a graph G turns out to be helpful in some places.

Remark 2.3. Let G = ([n], E) be a graph. Consider the n × d matrix Y = (yi`). Then Lk
G(d) is the

ideal generated by the entries of the matrix Y Y T in positions (i, j) with {i, j} ∈ E . Here Y T denotes the
transpose of Y .

Similarly, for a bipartite graph G, say a subgraph of Km,n , one considers two sets of variables yi j

with (i, j) ∈ [m]× [d], zi j with (i, j) ∈ [d]× [n] and the matrices Y = (yi j ) and Z = (zi j ). Then Lk
G(d)

coincides (after renaming the variables in the obvious way) with the ideal generated by the entries of the
product matrix Y Z in positions (i, j) for {i, j̃} ∈ E .

2C. Gröbner bases. We use the following notations and facts from Gröbner bases theory, see for example
[Bruns and Conca 2003]. Consider the polynomial ring S = k[x1, . . . , xm]. For a vector

w= (wi : i ∈ [m]) ∈ Rm

and a nonzero polynomial

f =
∑
α∈N[m]

aαxα

we set mw( f )=maxaα 6=0{α ·w} and

inw( f )=
∑

α·w=mw( f )

aαxα.

The latter is called the initial form of f with respect to w. For an ideal I we denote by inw(I ) the ideal
generated by inw( f ) with f ∈ I \ {0}. For a term order ≺ we denote similarly by in≺( f ) the largest term
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of f and by in≺(I ) the ideal generated by in≺( f ) with f ∈ I \ {0}. The following will allow us to deduce
properties of ideals from properties of their initial ideals.

Proposition 2.4. Let I be a homogeneous ideal in the polynomial ring S and let τ be either a term order
≺ or a vector w ∈ Rm . If inτ (I ) is radical or a complete intersection or prime then so is I . Moreover, if
I = ( f1, . . . , fr ) and the elements inτ ( f1), . . . , inτ ( fr ) form a regular sequence then f1, . . . , fr form a
regular sequence and inτ (I )= (inτ ( f1), . . . , inτ ( fr )).

3. Known results and counterexamples for Lovász–Saks–Schrijver ideals

We recall results from [Herzog et al. 2015] and present examples showing that Lk
G(3) is not radical in

general. First observe that, for obvious reasons, Lk
G(1) is radical, it is a complete intersection if and only

if G is a matching and it is prime if and only if G has no edges. For d = 2 the following result from
[Herzog et al. 2015] gives a complete answer for two of the three properties under discussion.

Theorem 3.1 [Herzog et al. 2015, Theorems 1.1, 1.2 and Corollary 5.3]. Let G = ([n], E) be a graph. If
char k 6= 2 then the ideal Lk

G(2) is radical. If char k= 2 then Lk
G(2) is radical if and only if G is bipartite.

Furthermore, Lk
G(2) is prime if and only if G is a matching.

Indeed, in [Herzog et al. 2015] the characterization of the graphs G for which Lk
G(2) is prime is given

under the assumption that char k 6= 1, 2 mod (4) but it turns out that the statement holds as well in arbitrary
characteristic (see Proposition 4.4 for the missing details).

The next examples show that Lk
G(3) need not be radical. In the examples we assume that k has

characteristic 0 but we consider it very likely that the ideals are not radical over any field.
A quick criterion implying that an ideal J in a ring S is not radical is to identify an element g ∈ S such

that J : g 6= J : g2. We call such a g a witness (of the fact that J is not radical). Of course the potential
witnesses must be sought among the elements that are “closely related” to J . Alternatively, one can try to
compute the radical of J or even its primary decomposition directly and read off whether J is radical.
But these direct computations are extremely time consuming for LSS-ideals and did not terminate on our
computers in the examples below. Nevertheless, in all examples we have quickly identified witnesses.

Example 3.2. We present three examples of graphs G such that Lk
G(3) is not radical over any field k of

characteristic 0. The first example has 6 vertices and 9 edges and it is the smallest example we have
found (both in terms of edges and vertices). The second example has 7 vertices and 10 edges and it is a
complete intersection. This shows that Lk

G(3) can be a complete intersection without being radical. The
third example is bipartite, a subgraph of K5,4, with 12 edges, and is the smallest bipartite example we
have found. In all cases, since the LSS-ideal Lk

G(3) has integral coefficients, we may assume that k=Q

and exhibit a witness g, i.e., a polynomial g such that Lk
G(3) : g 6= Lk

G(3) : g
2. The latter inequality can

be checked with the help of CoCoA [Abbott et al. 2018] or Macaulay 2 [Grayson and Stillman 1993].

(1) Let G be the graph with 6 vertices and 9 edges depicted in Figure 1, left, i.e., with edges

E =
{
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

}
.
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Figure 1. Graphs G with nonradical Lk

G(3).

Here the witness can be chosen as follows. Denote by Y = (yi j ) a generic 6× 3 matrix. As discussed
in Remark 2.3 the ideal LQ

G(3) is generated by the entries of Y Y T corresponding to the positions in E .
Now g can be taken as the 3-minor of Y with row indices 1, 5, 6.

(2) Let G be the graph with 7 vertices and 10 edges depicted in Figure 1, middle, i.e., with edges

E =
{
{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 7}, {3, 4}, {3, 7}, {4, 5}, {5, 6}, {6, 7}

}
.

Here the witness can be chosen as follows. Denote by Y = (yi j ) a generic 7×3 matrix. Again as discussed
in Remark 2.3 the ideal LQ

G(3) is generated by the entries of Y Y T corresponding to the positions in E .
Now g can be taken as the 3-minor of Y with row indices 1, 2, 4. The fact that LQ

G(3) is a complete
intersection can be checked quickly with CoCoA [Abbott et al. 2018] or Macaulay 2 [Grayson and
Stillman 1993].

(3) Let G be the subgraph of the complete bipartite graph K5,4 depicted in Figure 1, right, i.e., with edges

E =
{
{1, 1̃}, {1, 2̃}, {1, 3̃}, {1, 4̃}, {2, 1̃}, {2, 2̃}, {3, 2̃}, {3, 3̃}, {4, 3̃}, {4, 4̃}, {5, 1̃}, {5, 4̃}

}
.

Denote by X = (xi j ) a generic 5× 3 matrix and by Y = (yi j ) a generic 3× 4 matrix. As explained in
Remark 2.3 the ideal LQ

G(3) is generated by the entries of XY corresponding to the positions in E . Now
the witness g can be taken to be the 3-minor of X corresponding to the column indices 1, 2, 4.

4. Stabilization of algebraic properties of Lk
G(d)

In this section we prove Theorem 1.1 and state some of its consequences. We recall first some facts on
the symmetric algebra of a module stating the results in the way that suit our needs best.

Recall that, given a ring R and an R-module M presented as the cokernel of an R-linear map

f : Rm
→ Rn

the symmetric algebra SymR(M) of M is (isomorphic to) the quotient of SymR(R
n) = R[x1, . . . , xn]

by the ideal J generated by the entries of A (x1, . . . , xn)
T , where A is the m× n matrix representing f .

Vice versa every quotient of R[x1, . . . , xn] by an ideal J generated by homogeneous elements of degree 1
in the xi ’s is the symmetric algebra of an R-module.
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Part (1) of the following is a special case of [Avramov 1981, Proposition 3] and part (2) a special case
of [Huneke 1981, Theorem 1.1]. Here and in the rest of the paper for a matrix A with entries in a ring R
and a number t we denote by It(A) the ideal of R generated by the t-minors of A.

Theorem 4.1. Let R be a complete intersection. Then:

(1) SymR(M) is a complete intersection if and only if height It(A)≥ m− t + 1 for all t = 1, . . . ,m.

(2) SymR(M) is a domain and Im(A) 6= 0 if and only if R is a domain, and height It(A)≥m− t + 2 for
all t = 1, . . . ,m.

The equivalent conditions of (2) imply those of (1).

Remark 4.2. Let G = ([n], E) be a graph. The ideal Lk
G(d)⊆ S = k[yi, j : i ∈ [n], j ∈ [d]] is generated

by elements that have degree at most one in each block of variables. Hence Lk
G(d) can be seen as an

ideal defining a symmetric algebra in various ways.
For example, set G1 =G−n, U = {i ∈ [n−1] : {i, n} ∈ E}, u = |U |, S′ = k[yi, j : i ∈ [n−1], j ∈ [d]]

and R = S′/Lk
G1
(d). Then S/Lk

G(d) is the symmetric algebra of the cokernel of the R-linear map

Ru
→ Rd

associated to the u× d matrix A = (yi j ) with i ∈U and j = 1, . . . , d .

Remark 4.3. In order to apply Theorem 4.1 to the case described in Remark 4.2 it is important to observe
that for every G no minors of the matrix (yi j )(i, j)∈[n]×[d] vanish modulo Lk

G(d). This is because Lk
G(d)

is contained in the ideal J generated by the monomials yik y jk and the terms in the minors of (yi j ) do not
belong to J for obvious reasons.

Proposition 4.4. Let G = ([n], E) be a graph. If Lk
G(d) is prime then G does not contain Ka,b with

a+ b > d.

Proof. Suppose by contradiction that Lk
G(d) is prime and G contains Ka,b for some a+ b > d . We may

decrease either a or b or both and assume right away that a + b = d + 1 with a, b ≥ 1. In particular
a, b ≤ d and a+ b ≤ n. We may assume that Ka,b is a subgraph of G with edges {i, a+ j} for i ∈ [a]
and j ∈ [b]. Set R = S/Lk

G(d) and Y = (yi `) ∈ Ra×d and Z = (z`,i ) ∈ Rd×b with z`,i = yi+a,`. Since
Ka,b is a subgraph of G we have Y Z = 0 in R. By assumption R is a domain and Y Z = 0 can be seen as
a matrix identity over the field of fractions of R. Hence

rank(Y )+ rank(Z)≤ d.

From a+b= d+1 it follows that rank(Y ) < a or rank(Z) < b. This implies that Ia(Y )= 0 or Ib(Z)= 0
as ideals of R. But by Remark 4.3 none of the minors of Y and Z are in Lk

G(d). This is a contradiction
and hence Lk

G(d) is not prime. �

Lemma 4.5. Let A be an m × n matrix with entries in a Noetherian ring R. Assume m ≤ n. Let
S = R[x] = R[x1, . . . , xm] be a polynomial ring over R and let B be the m× (n+ 1) matrix with entries
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in S obtained by adding the column (x1, . . . , xm)
T to A. Then we have height I1(B)= height I1(A)+m

and

height It(B)≥min
{
height It−1(A), height It(A)+m− t + 1

}
for all 1< t ≤ m.

Proof. Set u=min
{
height It−1(A), height It(A)+m−t+1

}
. Let P be a prime ideal of S containing It(B).

We have to prove that height P ≥ u. If P ⊇ It−1(A) then height P ≥ height It−1(A)≥ u. If P 6⊇ It−1(A)
then we may assume that the (t−1)-minor F corresponding to the first (t − 1) rows and columns of
A is not in P . Hence, height P = height P RF [x] and P RF [x] contains It(A)RF [x] and

(
x j − F−1G j :

j = t, . . . ,m
)

with G j ∈ R[x1, . . . , xt−1]. Since the elements x j − F−1G j are algebraically independent
over RF we have

height P RF [x] ≥ height It(A)RF + (m− t + 1)≥ height It(A)+ (m− t + 1). �

Proof of Theorem 1.1. To prove (1) we argue by induction on n. The induction base n ≤ 2 is obvious.
Assume n > 2. We use the notation from Remark 4.2 and set

S = k
[
yi j : i ∈ [n], j ∈ [d]

]
, S′ = k

[
yi, j : i ∈ [n− 1], j ∈ [d]

]
,

G1 = G− n, U = {i ∈ [n− 1] : {i, n} ∈ E}, u = |U |.

Note, that S′/Lk
G1
(d) is an algebra retract of S/Lk

G(d). Therefore Lk
G1
(d)= Lk

G(d)∩ S′ and so Lk
G1
(d)

is prime. By induction, it follows that Lk
G1
(d) is a complete intersection. Since u is the degree of the

vertex n in G we have that K1,u ⊂ G. Since Lk
G(d) is prime Proposition 4.4 implies 1+ u < d + 1, i.e.,

u < d. By virtue of Remark 4.3 we have that the minors of the matrix A are nonzero in S′/Lk
G1
(d). In

particular, Iu(A) 6= 0 in S′/Lk
G1
(d) and hence (2) in Theorem 4.1 holds. Then (1) in Theorem 4.1 holds

as well, i.e., Lk
G(d) is a complete intersection.

To prove (2) we again argue by induction on n. For n ≤ 2 the assertion is obvious. Assume n > 2.
We again use the notation G1 = G − n, U = {i ∈ [n] : {i, n} ∈ E}, u = |U |. In addition we set
Y = (yi j )(i, j)∈U×[d+1], S = k[yi j : i ∈ [n], j ∈ [d + 1]], S′ = k[yi j : i ∈ [n − 1], j ∈ [d + 1]] and
R = S′/Lk

G1
(d + 1). By construction, S/Lk

G(d + 1) is the symmetric algebra of the R-module presented
as the cokernel of the map Ru

→ Rd+1 associated to Y .
By assumption, Lk

G(d) is a complete intersection and hence Lk
G1
(d) is a complete intersection as well.

It then follows by induction that Lk
G1
(d + 1) is prime and hence R is a domain. Since the polynomials

f (d)
{i,n} with i ∈ U are a regular sequence contained in the ideal (ynj : 1 ≤ j ≤ d) we have u ≤ d and by

Remark 4.3 Iu(Y ) 6= 0 in R. Therefore, by Theorem 4.1(2) we have

Lk
G(d + 1) is prime ⇐⇒ height It(Y )≥ u− t + 2 in R for every t = 1, . . . , u.

Equivalently, we have to prove that

height
(
It(Y )+ Lk

G1
(d + 1)

)
≥ u− t + 2+ g in S′ for every t = 1, . . . , u,
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where g = height Lk
G1
(d + 1)= |E | − u.

Consider the weight vector w ∈Rn×(d+1) defined by wi j = 1 and wi d+1 = 0 for all j ∈ [d] and i ∈ [n].
By construction the initial forms of the standard generators of inw(Lk

G1
(d+1)) are the standard generators

of Lk
G1
(d). Since the standard generators of It(Y ) coincide with their initial forms with respect to w it

follows that inw(It(Y ))⊇ It(Y ) (indeed equality holds but we do not need this fact).
Therefore, inw(It(Y )+ Lk

G1
(d + 1))⊇ It(Y )+ Lk

G1
(d) and it is enough to prove that

height
(
It(Y )+ Lk

G1
(d)
)
≥ u− t + 2+ g in S′ for every t = 1, . . . , u

or, equivalently,
height It(Y )≥ u− t + 2 in R′ for every t = 1, . . . , u,

where R′ = S′/Lk
G1
(d).

The variables y1 d+1, . . . , yn−1 d+1 do not appear in the generators of Lk
G1
(d). Hence

R′ = R′′[y1 d+1, . . . , yn−1 d+1] with R′′ = k
[
yi j : (i, j) ∈ [n− 1]× [d]

]
/Lk

G1
(d).

Let Y ′ be the matrix Y with the (d+1)-st column removed. Then S/Lk
G(d) can be regarded as the

symmetric algebra of the R′′-module presented as the cokernel of the map

(R′′)u
Y ′
−→ (R′′)d . (1)

By assumption S/Lk
G(d) is a complete intersection. Hence by Theorem 4.1(1) we know

height It(Y ′)≥ u− t + 1 in R′′ for every t = 1, . . . , u

Since Y is obtained from Y ′ by adding a column of variables over R′′ by Lemma 4.5 we have

height It(Y )≥min
{
height It−1(Y ′), height It(Y ′)+ u− t + 1

}
≥ u− t + 2

in R′ and for all t = 1, . . . , u. �

Proof of Corollary 1.2. Assertion (1) in Corollary 1.2 is a formal consequence of Theorem 1.1. Assertion (2)
is obvious for complete intersections. Finally assume that Lk

G(d) is prime. Then by Theorem 1.1 Lk
G(d)

is a complete intersection. The statement now follows from a general fact: if a regular sequence generates
a prime ideal in a standard graded algebra or in a local ring then so does every subset of the sequence. �

5. Positive matching decompositions

In this section we introduce positive matching decompositions and prove Theorem 1.3.

Definition 5.1. Given a hypergraph H = (V, E) a positive matching of H is a subset M ⊂ E of pairwise
disjoint sets (i.e., a matching) such that there exists a weight function w : V → R satisfying:∑

i∈A

w(i) > 0 if A ∈ M,
∑
i∈A

w(i) < 0 if A ∈ E \M. (2)

The next lemma summarizes some elementary properties of positive matchings.
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Lemma 5.2. Let H = (V, E) be a hypergraph such that E is a clutter, M ⊆ E and VM =
⋃

A∈M A.

(1) M is a positive matching for H if and only if M is a positive matching for the induced hypergraph
(VM , {A ∈ E : A ⊆ VM}).

(2) Assume M is a positive matching on H and A ∈ E is such that M1 = M ∪{A} is a matching. Assume
also there is a vertex a ∈ A such that{

B ∈ E : B ⊂ VM1 and a ∈ B
}
= {A}.

Then M ∪ {A} is a positive matching of H.

(3) If H is a bipartite graph with bipartition V = V1 ∪ V2 then M is a positive matching if and only if M
is a matching and directing the edges e ∈ E from V1 to V2 if e ∈ M and from V2 to V1 if e ∈ E \M
yields an acyclic orientation.

Proof. (1) Set H1 = (VM , {A ∈ E : A ⊆ VM}). Clearly a weight function on V for which M is a positive
matching restricts to VM making M a positive matching of H1. Conversely, assume we are given a weight
function w on VM that makes M a positive matching. Then we extend w to V by assigning to the vertices
in V \ VM a weight sufficiently negative to induce a negative weight on the elements of E which contain
at least one element from V \ VM . For example, one can set w(i)=−|V |max{w( j) : j ∈ VM} for every
i ∈ V \ VM . Such an extension makes M a positive matching for H .

(2) Let w be a weight that makes M a positive matching of H . In view of (1), it is enough to prove
that there is a weight v defined on VM1 making M1 a positive matching for the restriction of H to VM1 .
We set v(i) = w(i) if i ∈ VM1 and i 6= a and we give v(a) a high enough value to have v(A) > 0, i.e.,
v(a) >−

∑
i∈A i 6=a w(i). Since there are no elements in E other than A that are contained in VM1 and

contain a the resulting weight v has the desired properties.

(3) We change the coordinates w(i) to −w(i) for i ∈ V2 in the inequalities defining a positive matchings.
As a simple reformulation of (2) we get that in these coordinates a matching M is positive if and only if
there is a weight function such that for {i, j} ∈ E , i ∈ V1, j ∈ V2 we have

w(i) > w( j) if {i, j} ∈ M, w(i) < w( j) if {i. j} ∈ E \M. (3)

This is equivalent to the existence of a region in the arrangement of hyperplanes w(i) = w( j) for
{i, j} ∈ E in RV satisfying (3). But it is well known that the regions in this arrangement are in one to one
correspondence with the acyclic orientations of G (see [Greene and Zaslavsky 1983, Lemma 7.1]). �

Now we are in position to introduce the key concept of this section.

Definition 5.3. Let H = (V, E) be a hypergraph for which E is a clutter. A positive matching decom-
position (or pm-decomposition) of G is a partition E =

⋃p
i=1 Ei into pairwise disjoint subsets such

that Ei is a positive matching on
(
V, E \

⋃i−1
j=1 E j

)
for i = 1, . . . , p. The Ei are called the parts of the

pm-decomposition. The smallest p for which G admits a pm-decomposition with p parts will be denoted
by pmd(H).
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Note that one has pmd(H)≤ |E | because of the obvious pm-decomposition
⋃

A∈E {A}. On the other
hand pmd(G) is smaller than |E | for most clutters. For graphs we have:

Lemma 5.4. Let G = ([n], E) be a graph. Then:

(1) pmd(G)≤min(2n− 3, |E |).

(2) If G is bipartite then pmd(G)≤min(n− 1, |E |).

(3) pmd(G)≥1(G) with equality if G is a forest.

Proof. (1) Since we have already argued that pmd(G) ≤ |E | to prove the first statement we have to
show that pmd(G)≤ 2n− 3. To this end we may assume that G is the complete graph Kn because any
pm-decomposition of Kn induces a pm-decomposition on its subgraphs. For `= 1, . . . , 2n− 3 we set
E`={{i, j} : i+ j = `+2}. Clearly one has E =

⋃2n−3
`=1 E`. So to prove that this is a pm-decomposition of

Kn we have to prove that Et is a positive matching on G t =
(
[n],

⋃2n−3
`=t E`

)
. To this end we build Et by

inserting the edges one by one starting from those that involve vertices with smaller indices and repeatedly
use Lemma 5.2(2) to prove that we actually get a positive matching. For example for n = 8, to prove that
E7 is a positive matching on G7 we order the elements in E7 as follows {4, 5}, {3, 6}, {2, 7}, {1, 9}. We
assume we know already that {{4, 5}, {3, 6}} is a positive matching and use Lemma 5.2(2) with A= {2, 7}
and a = 2 to prove that {{4, 5}, {3, 6}, {2, 7}} is a positive matching as well.

(2) In this case it is enough to prove that pmd(Km,n) ≤ n +m − 1. For ` = 1, . . . ,m + n − 1 we set
E` = {{i, j̃} : i + j = ` + 1}. Clearly one has E =

⋃m+n−1
`=1 E`. So to prove that this is a positive

matching decomposition of Km,n we have to prove that E` is a positive matching on E \
⋃`−1

k=1 Ek for
`= 1, . . . ,m+ n− 1.

For `= 1 the assertion is obvious since E1 contains a single edge. Now assume `≥ 2. By Lemma 5.2(3)
it suffices to show that directing the edges in E` from [m] to [ñ] and the edges in E \

⋃`
k=1 Ek in the

other direction yields an acyclic orientation. Assume the resulting directed graph has a directed cycle.
Let {i, j̃} ∈ E` be the edge from E` in this directed cycle for which j is minimal. The directed edge
following the edge i→ j̃ in the directed cycle is of the form j̃→ i ′ for some i ′ with i ′+ j > `+ 1. This
implies i ′ > i . Now let i ′→ j̃ ′ be the edge following j̃→ i ′ in the directed cycle. Then {i ′, j̃ ′} ∈ E` and
i ′+ j ′ = `+ 1. But this yields j ′ < j which contradicts the minimality of j . Hence there is no directed
cycle and E` is a positive matching on E \

⋃`−1
k=1 Ek .

(3) The inequality 1(G)≤ pmd(G) is obvious. To prove that equality holds if G is a forest we argue by
induction on the number of vertices. We may assume {n− 1, n} ∈ E and that n is a leaf of G. Hence
G1 = G− n is a forest on n− 1 vertices and by induction there exists a positive matching decomposition
E1, . . . , E p of G1 with p = 1(G1). If 1(G1) < 1(G) we may simply set E p+1 = {{n − 1, n}} and
note that, by virtue of Lemma 5.2(1), E1, . . . , E p+1 is a positive matching decomposition of G. If
instead 1(G1) = 1(G) then there exists i such that n − 1 6∈ VEi and hence E ′i = Ei ∪ {{n − 1, n}}
is a matching. Using (1) and (2) of Lemma 5.2 one easily checks that the resulting decomposition
E1, . . . , Ei−1, E ′i , Ei+1 . . . , E p is a positive matching decomposition of G. �
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Next we connect positive matching decompositions to algebraic properties of LSS-ideals.

Lemma 5.5. Let H = (V, E) be a hypergraph such that E is a clutter, d≥ p=pmd(H) and E=
⋃p
`=1 E`

a positive matching decomposition. Then there exists a term order < on S such that for every ` and every
A ∈ E` we have

in<( f (d)A )=
∏
i∈A

yi`. (4)

Proof. To define < we first define weight vectors w1, . . . ,wp ∈ RV×[d]. For that purpose we use the
weight functions w` : V → R, associated to each matching E`, `= 1, . . . , p. The weight vector w` is
defined as follows:

• w`(yik)= 0 if k 6= `, and

• w`(yi`)= w`(i).

By construction it follows that:

inw1( f (d)A )=

{∏
i∈A yi1 if A ∈ E1,∑d
k=2

∏
i∈A yik if A ∈ E \ {E1}.

(5)

We define the term order < as follows: yα < yβ if

(1) |α|< |β|, or

(2) |α| = |β| and w`(yα) <w`(yβ) for the smallest ` such that w`(yα) 6=w`(yβ), or

(3) |α| = |β| and w`(yα)=w`(yβ) for all ` and yα <0 yβ for an arbitrary but fixed term order <0.

Now a simple induction shows that for all ` and for all A ∈ E` we have in<( f (d)A )=
∏

i∈A yi`. �

Proof of Theorem 1.3. Let d ≥ p= pmd(G) and E =
⋃p
`=1 E` a pm-decomposition of G. By Lemma 5.5

there is a term order< satisfying (4). Since each E`, `= 1, . . . , p, is a matching (4) implies that the initial
monomials of the generators f (d)A of Lk

H (d) are pairwise coprime and square free. Then the assertion
follows from Proposition 2.4. The rest follows from Theorem 1.1. �

The following is an immediate consequence of Theorem 1.3 and Lemma 5.4:

Corollary 5.6. Let G = ([n], E) be a graph. Then Lk
G(d) is a radical complete intersection for d ≥

min{2n − 3, |E |} and prime for d ≥ min{2n − 3, |E |} + 1. If G is bipartite then Lk
G(d) is a radical

complete intersection for d ≥min{n− 1, |E |} and prime for d ≥min{n− 1, |E |} + 1.

6. Proofs of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4. (1) By Proposition 4.4 if Lk
G(3) is prime then G does not contain K1,3 and K2,2.

Now assume G does not contain K1,3 and K2,2. In addition, we may assume that k is algebraically
closed. Since the tensor product over k of k-algebras that are domains is a domain (see the Corollary
to Proposition 1 in Bourbaki’s Algebra [Bourbaki 1990, Chapter V, 17]) we may also assume that the
graph is connected. A connected graph not containing K1,3 and K2,2 is either an isolated vertex or a path
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Pn on n > 1 vertices or a cycle Cn with n vertices for n = 3 or n ≥ 5. For an isolated vertex we have
Lk

G(3)= (0). Hence we have to prove that Lk
G(3) is prime when G = Pn for n ≥ 2 or G = Cn for n = 3

or n ≥ 5. If G = Pn then by Lemma 5.4 pmd(Pn)=1(Pn)≤ 2. Hence by Theorem 1.3 it follows that
Lk

Pn
(3) is prime.

Now let G=Cn for n=3 or n≥5 and set m=n−1. To prove that Lk
Cn
(3) is prime we use the symmetric

algebra perspective. Observe that Cn − n is Pm = Pn−1. Set J = Lk
Pm
(3), S = k[yi j : i ∈ [m], j ∈ [3]]

and R = S/J . We have already proved that J is a prime complete intersection of height m− 1. We have
to prove that the symmetric algebra of the cokernel of the R-linear map

R2 Y
−→ R3 with Y =

(
y11 y12 y13

ym1 ym2 ym3

)
is a domain. Since by Remark 4.3 I2(Y ) 6= 0 in R, taking into consideration Remark 4.2 we may apply
Theorem 4.1. Therefore, it is enough to prove that

height I1(Y )≥ 3 and height I2(Y )≥ 2 in R.

Equivalently, it is enough to prove that in S

height I1(Y )+ J ≥ m+ 2, (6)

height I2(Y )+ J ≥ m+ 1. (7)

First we prove (6). Since height I1(Y ) = 6 in S then (6) is obvious for m ≤ 4. For m > 4 observe that
I1(Y )+ J can be written as I1(Y )+H , where H is the LSS-ideal of the path with vertices 2, 3, . . . ,m−1.
Because I1(Y ) and H use disjoint set of variables, we have

height I1(Y )+ H = 6+m− 3= m+ 3

and this proves (6). Now we note that the condition height I2(Y )≥ 1 holds in R because R is a domain
and I2(Y ) 6= 0. Hence we deduce from Theorem 4.1(1) that Lk

Cn
(3) is a complete intersection for all

n ≥ 3.
It remains to prove (7). Since I2(Y ) is a prime ideal of S of height 2 and J 6⊂ I2(Y ) the ideal I2(Y )+ J

has height at least 3. Hence the assertion (7) is obvious for m = 2, i.e., n = 3. Therefore, we may
assume m ≥ 4 (here we use n 6= 4). Let P be a prime ideal of S containing I2(Y )+ J . We have to
prove that height P ≥ m + 1. If P contains I1(Y ) then height P ≥ m + 2 by (6). So we may assume
that P does not contain I1(Y ), say y11 6∈ P , and prove that height P Sx ≥ m + 1, where x = y11. Since
I2(Y )Sx = (ym2− x−1 ym1 y12, ym3− x−1 ym1 y13) we have

f (3)m−1,m = ym−1,1 ym1+ ym−1,2 ym2+ ym−1,3 ym3

= ym−1,1 ym1+ ym−1,2x−1 ym1 y12+ ym−1,3x−1 ym1 y13

= x−1 ym1 f (3)1,m−1 mod I2(Y )Sx .
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From f (3)m−1,m ∈ J it follows that ym1 f (3)1,m−1 ∈ P Sx . This implies that either ym1 ∈ P Sx or f (3)1,m−1 ∈ P Sx .
In the first case P Sx contains ym1, ym2, ym3 and the LSS-ideal associated to the path with vertices
1, . . . ,m− 1. Hence height P Sx ≥ 3+m− 2= m+ 1 as desired. Finally, if f (3)1,m−1 ∈ P Sx we have that
P Sx contains the ideal Lk

Cm−1
(3) associated to the cycle with vertices 1, . . . ,m− 1 and we have already

observed that this ideal is a complete intersection. Since ym2− x−1 ym1 y12, ym3− x−1 ym1 y13 are in P Sx

as well it follows that height P Sx ≥ 2+m− 1= m+ 1.

(2) For the “only if” part we note that if Lk
G(2) is a complete intersection then Lk

G(3) is prime by
Theorem 1.1 and hence G does cannot contain K1,3 by Proposition 4.4. Suppose, by contradiction, that G
contains C2m for some m ≥ 2. Hence Lk

C2m
(2) is a complete intersection of height 2m. But the generators

of Lk
C2m
(2) are (up to sign) among the 2-minors of the matrix(

y11 −y22 y31 . . . y2m−1,1 −y2m,2

y12 y21 y32 . . . y2m−1,2 y2m,1

)
and the ideal of 2-minors of such a matrix has height 2m− 1, a contradiction.

For the converse implication, we may assume that k is algebraically closed. Since the tensor product
over a perfect field k of reduced k-algebras is reduced [Bourbaki 1990, Theorem 3, Chapter V, 15],
we may also assume that G is connected. A connected graph satisfying the assumptions is either an
isolated vertex, or a path or a cycle with an odd number of vertices. We have already observed that
pmd(Pn)=1(Pn)≤ 2. By Theorem 1.3 it follows that Lk

Pn
(2) is a complete intersection. It remains to

prove that Lk
C2m+1

(2) is a complete intersection (of height 2m+ 1). Note that Lk
P2m+1

(2)⊂ Lk
C2m+1

(2) and
we know already that Lk

P2m+1
(2) is a complete intersection of height 2m. Hence it remains to prove that

f (2)1,2m+1 does not belong to any minimal prime of Lk
P2n+1

(2). The generators of Lk
P2n+1

(2) are (up to sign)
the adjacent 2-minors of the matrix(

y11 −y22 y31 . . . y2m−1,1 −y2m,2 y2m+1,1

y12 y21 y32 . . . y2m−1,2 y2m,1 y2m+1,2

)
.

The minimal primes of Lk
P2n+1

(2) are described in the proof of [Diaconis et al. 1998, Theorem 4.3], see
also [Hoşten and Sullivant 2004; Herzog et al. 2010]. By the description given in [Diaconis et al. 1998] it
is easy to see that all minimal primes of Lk

P2n+1
(2) with the exception of I2(Y ) are contained in the ideal

Q = (yi j : 2< i < 2m+ 1, 1≤ j ≤ 2). Clearly, f (2)1,2m+1 6∈ Q. Finally, one has f (2)1,2m+1 6∈ I2(Y ) since the
monomial y11 y2m+1,1 is divisible by no monomials in the support of the generators of I2(Y ). �

We proceed with the proof of Theorem 1.5. We first formulate a more general statement. For this we
need to introduce the concept of Cartwright–Sturmfels ideals. This concept was coined in [Conca et al.
2016] inspired by earlier work in [Conca et al. 2015; Cartwright and Sturmfels 2010]. It was further
developed and applied to various classes of ideals in [Conca et al. 2017; 2018].

Consider for d1, . . . , dn ≥ 1 the polynomial ring S = k[yi j : i ∈ [n], j ∈ [di ]] with multigrading
deg yi j = ei ∈ Zn . The group G =GLd1(k)×· · ·×GLdn (k) acts naturally on S as the group of Zn-graded
K -algebra automorphism. The Borel subgroup of G is B =Ud1(k)× · · ·×Udn (k), where Ud(k) denotes
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the subgroup of upper triangular matrices in GLd(k). A Zn-graded ideal J is Borel fixed if g(J ) = J
for every g ∈ B. A Zn-graded ideal I of S is called a Cartwright–Sturmfels ideal if there exists a radical
Borel fixed ideal J with the same multigraded Hilbert-series.

Theorem 6.1. For d1, . . . , dn ≥ 1 let S = k[yi j : i ∈ [n], j ∈ [di ]] be the polynomial ring with Zn

multigrading induced by deg yi j = ei ∈ Zn and G = (V, E) be a forest. For each e = {i, j} ∈ E let fe ∈ S
be a Zn-graded polynomial of degree ei + e j . Then I = ( fe : e ∈ E) is a Cartwright–Sturmfels ideal. In
particular, I and all its initial ideals are radical.

Proof. First, we observe that we may assume that the generators fe of I form a regular sequence. To
this end we introduce new variables and for each e = {i, j} ∈ E we add to fe a monomial me in the new
variables of degree ei + e j so that me and me′ are coprime if e 6= e′. The new polynomials fe+me with
e ∈ E form a regular sequence by Proposition 2.4 since their initial terms with respect to an appropriate
term order are the pairwise coprime monomials me. The ideal I arises as a multigraded linear section of
the ideal ( fe+me : e ∈ E) by setting all new variables to 0. By [Conca et al. 2015, Theorem 1.16(5)] the
family of Cartwright–Sturmfels ideals is closed under any multigraded linear section. Hence it is enough
to prove the statement for the ideal ( fe+me : e ∈ E). Equivalently we may assume right away that the
generators fe of I form a regular sequences.

The multigraded Hilbert series of a multigraded S-module M can by written as

KM(z1, . . . , zn)∏n
i=1(1− zi )di

.

The numerator KM(z1, . . . , zn) is a Laurent polynomial with integral coefficients called the K -polynomial
of M . Since the fe’s form a regular sequence the K -polynomial of S/I is the polynomial

F(z)= F(z1, . . . , zn)=
∏
{i, j}∈E

(1− zi z j ) ∈Q[z1, . . . , zn].

To prove that I is Cartwright–Sturmfels we have to prove that there is a Borel-fixed radical ideal J
such that the K -polynomial of S/J is F(z). Taking into consideration the duality between Cartwright–
Sturmfels ideals and Cartwright–Sturmfels∗ ideals discussed in [Conca et al. 2016], it is enough to exhibit
a monomial ideal J whose generators are in the polynomial ring S′ = k[y1, y2, . . . , yn] equipped with
the (fine) Zn-grading deg yi = ei ∈ Zn such that the K -polynomial of J regarded as an S′-module is
F(1− z1, . . . , 1− zn), that is, ∏

{i, j}∈E

(zi + z j − zi z j ).

We claim that, under the assumption that ([n], E) is a forest, the ideal

J =
∏
{i, j}∈E

(yi , y j )
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has the desired property. In other words, we have to prove that the tensor product

TE =
⊗
{i, j}∈E

T{i, j}

of the truncated Koszul complexes

T{i, j} : 0→ S′(−ei − e j )→ S′(−ei )⊕ S′(−e j )→ 0

associated to yi , y j resolves the ideal J . Consider a leaf {a, b} of E . Set E ′ = E \ {{a, b}},

J ′ =
∏
{i, j}∈E ′

(yi , y j )

and J ′′ = (ya, yb). Then by induction on the number of edges we have that TE ′ resolves the ideal J ′.
Then the homology of TE is TorS′

∗
(J ′, J ′′). Since {a, b} is a leaf, one of the two variables ya, yb does not

appear at all in the generators of J ′. Hence ya, yb forms a regular J ′-sequence. Then TorS′
≥1(J

′, J ′′)= 0
and hence TE resolves J ′ ⊗ J ′′. Finally, J ′ ⊗ J ′′ = J ′ J ′′ since TorS′

1 (J
′, S/J ′′) = 0. This concludes

the proof that the ideal I is a Cartwright–Sturmfels ideal. Every initial ideal of a Cartwright–Sturmfels
ideal is a Cartwright–Sturmfels ideal as well because this property just depends on the Hilbert series. In
particular, every initial ideal of a Cartwright–Sturmfels ideal is radical. �

Proof of Theorem 1.5. Setting d1 = · · · = dn = d and fe = f (d)e in Theorem 6.1 we have that Lk
G(d)

is a Cartwright–Sturmfels ideal and hence radical. Assertions (2) and (3) follow from Lemma 5.4,
Theorem 1.3, Proposition 4.4 and Theorem 1.1. �

7. Invariant theory, determinantal ideals of matrices with 0’s and their relation to LSS-ideals

The first goal of this section is to recall some classical results from invariant theory, see for example
the paper by De Concini and Procesi [1976]. In particular, we recall how determinantal/Pfaffian rings
arise as invariant rings of group actions. We assume throughout this section that the base field k is of
characteristic 0. After the recap of invariant theory we will establish the connection to LSS-ideals.

7A. Generic determinantal rings as rings of invariants (gen). We take an m × n matrix of variables
Xgen

m,n = (xi j ) and consider the ideal I k
d+1(X

gen
m,n) of Sgen

= k[xi j : (i, j) ∈ [m] × [n]] generated by the
(d+1)-minors of Xgen

m,n . Consider two matrices of variables Y and Z of size m × d and d × n and the
following action of G=GLd(k) on the polynomial ring k[Y, Z ]: The matrix A ∈G acts by the k-algebra
automorphism of k[Y, Z ] that sends Y → Y A and Z→ A−1 Z . The entries of the product matrix Y Z are
clearly invariant under this action. Hence the ring of invariants k[Y, Z ]G contains the subalgebra k[Y Z ]
generated by the entries of the product Y Z . The first main theorem of invariant theory for this action says
that k[Y, Z ]G = k[Y Z ]. We have a surjective k-algebra map

φ : Sgen
→ k[Y, Z ]G = k[Y Z ]
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sending X to Y Z . Clearly the product matrix Y Z has rank d and hence we have I k
d+1(X

gen
m,n) ⊆ Kerφ.

The second main theorem of invariant theory says that I k
d+1(X

gen
m,n)= Kerφ. Hence

S/I k
d+1(X

gen
m,n)' k[Y Z ]. (8)

7B. Generic symmetric determinantal rings as rings of invariants (sym). We take an n× n symmetric
matrix of variables X sym

n = (xi j ) and consider the ideal I k
d+1(X

sym
n ) in Ssym

= k[xi j : 1 ≤ i ≤ j ≤ n]
generated by the (d+1)-minors of X sym

n . Consider a matrix of variables Y of size n×d and the following
action of the orthogonal group G=Od(k)= {A ∈GLd(k) : A−1

= AT
} on the polynomial ring k[Y ]: any

A ∈G acts by the k-algebra automorphism of k[Y ] that sends Y to Y A. The entries of the product matrix
Y Y T are invariant under this action and hence the ring of invariants contains the subalgebra k[Y Y T

]

generated by the entries of Y Y T . The first main theorem of invariant theory for this action asserts that
k[Y ]G = k[Y Y T

]. Then we have a surjective presentation

φ : Ssym
→ k[Y Y T

]

sending X to Y Y T . Since the product matrix Y Y T has rank d we have Id+1(X) ⊆ Kerφ. The second
main theorem of invariant theory then says that Id+1(X)= Kerφ. Hence

Ssym/I k
d+1(X

sym
n )' k[Y Y T

]. (9)

7C. Generic Pfaffian rings as rings of invariants (skew). We take an n× n skew-symmetric matrix of
variables X skew

n = (xi j ) and consider the ideal Pf k
2d+2(X) generated by the Pfaffians of size (2d + 2) of

X skew
n in Sskew

= k[xi j : 1≤ i < j ≤ n]. Consider a matrix of variables Y of size n× 2d and let J be the
2d × 2d block matrix with d blocks (

0 1
−1 0

)
on the diagonal and 0 in the other positions. The symplectic groupG=Sp2d(k)={A∈GL2t(k):AJ AT

= J }
acts on the polynomial ring k[Y ] as follows: an A ∈ G acts on k[Y ] by the automorphism that sends
Y → Y A. The entries of the product matrix Y JY T are invariant under this action and hence the ring of
invariants contains the subalgebra k[Y JY T

] generated by the entries of Y JY T. The first main theorem
of invariant theory for the current action says that k[Y ]G = k[Y JY T

]. Then we have a surjective
presentation: φ : Sskew

→ k[Y Y T
] sending X to Y JY T. The product matrix Y JY T has rank 2d and

hence we have Pf k
2d+2(X)⊆ Kerφ. The second main theorem of invariant theory for this action says that

Pf k
2d+2(X)= Kerφ. Hence

Sskew/Pf k
2d+2(X

skew
n )' k[Y JY T

]. (10)

7D. Determinantal ideals of matrices with 0’s and their relation to LSS-ideals. The classical invariant
theory point of view shows that the generic determinantal and Pfaffian ideals are prime as they are kernels
of ring maps whose codomains are integral domains. Their height is also well known (see for example
[Bruns and Vetter 1988]):
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(gen) The height of the ideal I k
d (X

gen
m,n) of d-minors of a m×n matrix of variables is (n+1−d)(m+1−d).

(sym) The height of the ideal I k
d (X

sym
n ) of d-minors of a symmetric n×n matrix of variables is

(n−d+2
2

)
.

(skew) The height of the ideal of Pfaffians Pf k
2d(X skew

n ) of size 2d (and degree d) of an n × n skew-
symmetric matrix of variables is

(n−2d+2
2

)
.

If one replaces the entries of the matrices with general linear forms in, say, u variables, then Bertini’s
theorem in combination with the fact that the generic determinantal/Pfaffian rings are Cohen–Macaulay
implies that the determinantal/Pfaffian ideals remain prime as long as u ≥ 2+ height and radical if
u ≥ 1+ height.

But what about the case of special linear sections of determinantal ideals of matrices? And what about
the case of coordinate sections? Are the corresponding ideals prime or radical? To describe coordinate
sections we employ the following notation.

(gen) In the generic case we take a bipartite graph G = ([m] ∪ [ñ], E) and denote by Xgen
G the matrix

obtained from the m× n matrix of variables by replacing the entries in position (i, j) with 0 for
all {i, j̃} ∈ E .

(sym) In the generic symmetric case we take a subgraph G = ([n], E) of Kn and denote by X sym
G the

matrix obtained from the n× n symmetric matrix of variables by replacing with 0 the entries in
position (i, j) and ( j, i) for all {i, j} ∈ E .

(skew) In the generic skew-symmetric case we take a subgraph G = ([n], E) of Kn and denote by X skew
G

the matrix obtained from the skew-symmetric matrix of variables by replacing with 0 the entries
in position (i, j) and ( j, i) for all {i, j} ∈ E .

In this terminology I k
d (X

gen
G ) is the ideal of d-minors of Xgen

G in Sgen and similarly in the symmetric
case. We write Pf k

2d(X
skew
G ) for the ideal of Pfaffians of size 2d of X skew

G in Sskew. We ask for conditions
on G that imply that I k

d (X
gen
G ), I k

d (X
sym
G ) or Pf k

2d(X
skew
G ) is radical or prime or has the expected height.

Clearly, special linear sections of generic determinantal ideals can give nonprime and nonradical ideals.
On the positive side, for maximal minors, we have the following results:

Remark 7.1. (1) Eisenbud [1988] proved that the ideal of maximal minors of a 1-generic m× n matrix
of linear forms is prime and remains prime even after modding out any set of ≤ m− 2 linear forms.
In particular, the ideal of maximal minors of an m× n matrix of linear forms is prime provided the
ideal generated by the entries of the matrix has at least m(n− 1)+ 2 generators.

(2) Giusti and Merle [1982] studied the ideal of maximal minors of coordinate sections in the generic case.
One of their main results, [Giusti and Merle 1982, Theorem 1.6.1] characterizes, in combinatorial
terms, the subgraphs G of Km,n , m ≤ n, such that the variety associated to I k

m(X
gen
G ) is irreducible,

i.e., the radical of I k
m(X

gen
G ) is prime.
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(3) Boocher [2012] proved that for any subgraph G of Km,n , m ≤ n, the ideal I k
m(X

gen
G ) is radical.

Combining his result with the result of Giusti and Merle, one obtains a characterization of the graphs
G such that I k

m(X
gen
G ) is prime.

(4) Generalizing the result of Boocher, in [Conca et al. 2015; 2016] it is proved that ideals of maximal
minors of a matrix of linear forms that is either row or column multigraded is radical.

In the generic case every nonzero minor of a matrix of type Xgen
G has no multiple factors because its

multidegree is square-free. This explains, at least partially, why the determinantal ideals of Xgen
G have the

tendency to be radical. However, the following example shows that they are not radical in general.

Example 7.2. Let Xgen
G be the 6× 6 matrix associated to the graph from Example 3.2(3). That is, in the

6× 6 generic matrix we set to 0 the entries in positions

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2), (3, 3), (4, 3), (4, 4), (5, 1), (5, 4).

Then I k
4 (X

gen
G ) is not radical over a field of characteristic 0 and very likely over any field. Here the

“witness” is g = x1,5, i.e., I k
4 (X

gen
G ) : g 6= I k

4 (X
gen
G ) : g2. Since G is contained in K5,4 one can consider as

well I k
4 (X

gen
G ) in the 5× 5 matrix but that ideal turns out to be radical.

Similarly for symmetric matrices we have:

Example 7.3. Let X sym
G be the 7×7 generic symmetric matrix associated to the graph from Example 3.2(1).

That is, in the 7× 7 generic symmetric matrix we set to 0 the entries in positions

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

as well as in the symmetric positions. Then I k
4 (X

sym
G ) is not radical over a field of characteristic 0. The

witness here is g = x1,6. Since G is contained in K6 one can consider as well I k
4 (X

sym
G ) in the 6× 6

matrix but that ideal turns out to be radical.

It turns out that Examples 3.2, 7.2 and 7.3 are indeed closely related as we now explain.
Let G = ([m] ∪ [ñ], E) be a subgraph of the complete bipartite graph Km,n . In view of the isomor-

phism (8) we have that

Sgen/
(
I k
d+1(X

gen
m,n)+ (xi j : {i, j̃} ∈ E)

)
' k[Y Z ]/JG(d),

where Y = (yi j ), Z = (zi j ) are respectively m× d and d× n matrices of variables and JG(d) is the ideal
of k[Y Z ] generated by (Y Z)i, j with {i, j̃} ∈ E . Furthermore

I k
d+1(X

gen
m,n)+ (xi j : {i, j̃} ∈ E)= I k

d+1(X
gen
G )+ (xi j : {i, j̃} ∈ E).

The LSS-ideal Lk
G(d)⊂k[Y, Z ] is indeed equal to JG(d)k[Y, Z ]. Now it is a classical result in invariant

theory (derived from the fact that linear groups are reductive in characteristic 0), that k[Y Z ] is a direct
summand of k[Y, Z ] in characteristic 0. This implies that

JG(d)= Lk
G(d)∩ k[Y Z ].
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The next proposition is an immediate consequence.

Proposition 7.4. Let k be a field of characteristic 0, d ≥ 1 and G = ([m] ∪ [ñ], E) be a subgraph
of Km,n . If Lk

G(d) is radical (resp. is a complete intersection, is prime) then I k
d+1(X

gen
G ) is radical (resp.

has maximal height, is prime).

Now we start from a subgraph G of Kn . For d + 1 ≤ n we may consider the coordinate section
I k
d+1(X

sym
G ) of I k

d+1(X
sym
n ). Using the isomorphism (9) we obtain:

Proposition 7.5. Let k be a field of characteristic 0 and G = ([n], E) a graph. If Lk
G(d) is radical (resp.

is a complete intersection, is prime) then I k
d+1(X

sym
G ) is radical (resp. has maximal height, is prime).

For 2d + 2≤ n we may consider the coordinate section Pf k
2d+2(X

skew
G ) of Pf k

2d+2(X
skew
n ). We may as

well consider the associated twisted LSS-ideal L̂k
G(d) defined as follows. For every i ∈ [n] we consider

2d indeterminates yi 1, . . . , yi 2d . For e = {i, j}, 1≤ i < j ≤ n we set f̂ (d)e to be the entry of the matrix
Y JY T in row i and column j , i.e.,

f̂ (d)e =

d∑
k=1

(
yi 2k−1 y j 2k − yi 2k y j 2k−1

)
.

Then we define the twisted LSS-ideal associated to G as follows:

L̂k
G(d)= ( f̂ (d)e : e ∈ E).

For d = 1 the twisted LSS-ideal coincides with the so-called binomial edge ideal defined and studied
in [Herzog et al. 2010; Kiani and Saeedi Madani 2016; Matsuda and Murai 2013; Ohtani 2011].

Remark 7.6. Assume G is bipartite with bipartition [n] = V1 ∪ V2 then the coordinate transformation
(see [Bolognini et al. 2018, Corollary 6.2])

yi 2k−1 7→ yi 2k−1 and yi 2k 7→ yi 2k for i ∈ V1,

y j 2k 7→ y j 2k−1 and y j 2k−1 7→ −y j 2k for j ∈ V2,

sends L̂k
G(d) to Lk

G(2d). In particular, for a bipartite graph G we have that L̂k
G(d) is radical (resp. prime)

if and only if Lk
G(2d) is radical (resp. prime).

Using the isomorphism (10) we obtain:

Proposition 7.7. Let k be a field of characteristic 0 and G = ([n], E) a graph. If L̂k
G(d) is radical (resp.

is a complete intersection, is prime) then Pf k
2d+2(X

skew
G ) is radical (resp. has maximal height, is prime).

Now, in characteristic 0, the results that we have established for LSS-ideals can be turned into statements
concerning coordinate sections of determinantal ideals.

Theorem 7.8. Let k be a field of characteristic 0.

(1) For every subgraph G of Km,n the ideals I k
2 (X

gen
G ) and I k

3 (X
gen
G ) are radical.

(2) For every subgraph G of Kn the ideals I k
2 (X

sym
G ) and I k

3 (X
sym
G ) are radical.
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(3) For every subgraph G of Kn the ideal Pf k
4 (X

skew
G ) is radical.

Furthermore if G is a forest then:

(4) I k
d (X

gen
G ), I k

d (X
sym
G ) and Pf k

2d(X
skew
G ) are radical for all d.

(5) I k
d (X

gen
G ) and I k

d (X
sym
G ) have maximal height if d ≥1(G)+ 1.

(6) I k
d (X

gen
G ) and I k

d (X
sym
G ) are prime if d ≥1(G)+ 2.

Proof. The statements for ideals of 2-minors follow from Propositions 7.4 and 7.5 using the fact that the
edge ideal of a graph is radical. Indeed these results hold over a field of arbitrary characteristic as the
corresponding ideals are “toric.”

By [Herzog et al. 2015, Theorem 1.1] the ideal Lk
G(2) is radical for all graphs G. Using Propositions 7.4

and 7.5 this implies that I k
3 (X

gen
G ) is radical for bipartite graphs G and I k

3 (X
sym
G ) is radical for arbitrary

graphs.
By [Herzog et al. 2010, Corollary 2.2] the ideal L̂k

G(1) is radical for all graphs G. Using Proposition 7.7
this implies that Pf k

4 (X
skew
G ) is radical for arbitrary graphs.

Finally, for a forest G the results in the case of minors are derived from Propositions 7.4, 7.5 and
Theorem 1.5. In the Pfaffian case they follow using Theorem 6.1 and Proposition 7.7. �

The following corollary is an immediate consequence of assertion (3) in Theorem 7.8.

Corollary 7.9. Let G(2, n) be the coordinate ring of the Grassmannian of 2-dimensional subspaces in kn

in its standard Plücker coordinates. Then any subset of the Plücker coordinates generates a radical ideal
in G(2, n).

A statement analogous to Corollary 7.9 for higher order Grassmannians is not true. Indeed, the point is
that a set of m-minors of a generic matrix m× n does not generate a radical ideal in general (as it does
for m = 2). For example, in the Grassmannian G(3, 6) modulo [123], [124], [135], [236] the class of
[125][346] is a nonzero nilpotent.

Next we look into necessary conditions for I k
d (X

gen
G ) and I k

d (X
sym
G ) to be prime.

Lemma 7.10. Let G = ([n],G) be a graph.

(1) If I k
d+1(X

sym
G ) is prime then G does not contain Ka,b for a+ b > d (i.e., G is (n−d)-connected).

(2) If G = Bd with d ≥ 4 and X is the generic (d + 2)× (d + 2) matrix then I k
d+1(X

gen
G ) is not prime.

Proof. (1) Assume by contradiction that G contains Ka,b for a+ b = d + 1. We may assume that the
corresponding set of vertices are [a] and {a+ j : j ∈ [b]}. But then the submatrix of X sym

G of the first
d+ 1 rows and columns is block-diagonal with (at least) two blocks. Hence its determinant is nonzero, is
reducible and has degree d + 1. Since all the generators of I k

d+1(X
sym
G ) have degree d + 1 it follows that

I k
d+1(X

sym
G ) cannot be prime.
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(2) Set Yd = Xgen
Bd

, i.e.,

Yd =



x11 0 · · · 0 x1,d+1 x1,d+2

0 x22 · · · 0 x2,d+1 x2,d+2
...

...
...

...
...

...

0 · · · 0 xdd
...

...

xd+1,1 xd+1,2 · · · · · · xd+1,d+1 xd+1,d+2

xd+2,1 xd+2,2 · · · · · · xd+2,d+1 xd+2,d+2


.

and J = Id+1(Yd) and let S be the polynomial ring whose indeterminates are the nonzero entries of Yd .
First, we prove that for every d ≥ 1 the ideal J has the expected height, i.e., height J = 4. For d = 1, 2, 3
the ideal J is indeed prime of height 4: for d = 1 this is obvious because Y1 is the generic 3 × 3
matrix; for d = 2 and d = 3 it follows from the fact that the corresponding LSS-ideal is prime by virtue
of Proposition 7.4. For d > 3 let P be a prime containing J . If P contains (x11, x22, x33, x44) then
height P ≥ 4. If P does not contain (x11, x22, x33, x44) we may assume x11 6∈ P . Inverting x11 and using
the standard localization trick for determinantal ideals one sees that P Sx11 contains, up to a change of
variables, Id(Yd−1). Hence height P=height P Sx ≥4. Now that we know that J has height 4 to prove that
J is not prime for d ≥ 4 it is enough to observe that J ⊂ (x11, x22, x33, x44). The latter is straightforward
since mod (x11, x22, x33, x44) the submatrix of Y consisting of the first 4-rows has rank 2. �

8. Obstructions to algebraic properties and asymptotic behavior

In this section we return to the study of LSS-ideals Lk
G(d). Using results from Section 4 and results

about Id+1(X
gen
Bd
) from Section 7 we derive necessary conditions for Lk

G(d) to be a complete intersection
or prime. In addition, we discuss the exact asymptotic behavior of these properties for complete and
complete bipartite graphs. To this end it is convenient to introduce the following notation. Given an
algebraic property P of ideals and a graph G we set

asymk(P,G)= inf
{
d : Lk

G(d
′) has property P for all d ′ ≥ d

}
.

Here we are interested in the properties P ∈ {radical, c.i., prime}. By Theorem 1.1, Corollary 1.2 and
Theorem 1.3 we know that for every graph G we have

asymk(c.i.,G)=min{d : Lk
G(d) is c.i.} ≤ pmd(G),

asymk(prime,G)=min{d : Lk
G(d) is prime} ≤ pmd(G)+ 1,

asymk(c.i.,G)≤ asymk(prime,G) ≤ asymk(c.i.,G)+ 1.

Furthermore there are graphs such that asymk(prime,G) = asymk(c.i.,G)+ 1 (e.g., odd cycles or
forests) and others such that asymk(prime,G)= asymk(c.i.,G) (e.g., even cycles). We have the following
obstructions:

Proposition 8.1. Let G = ([n], E). Then:
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(1) If Lk
G(d) is prime then G does not contain Ka,b with a + b = d + 1. Furthermore, if d > 3 and

char k= 0 then G does not contain Bd .

(2) If Lk
G(d) is a complete intersection then G does not contain Ka,b with a+ b = d + 2. Furthermore,

if d > 2 and char k= 0 then G does not contain Bd+1.

Proof. (1) The first assertion has been already proved in Proposition 4.4. For the second let char k= 0
and d > 3. By contradiction, assume G contains Bd . Then by Corollary 1.2 we know that Lk

Bd
(d) is prime

because Lk
G(d) is prime. Then Proposition 7.4 implies that Id+1(X

gen
Bd
) is prime for a generic matrix X of

arbitrary size and this contradicts Lemma 7.10(2).

(2) Assertion (2) follows from (1) by using Theorem 1.1. �

Another obstruction is described in the following proposition.

Proposition 8.2. Let k be a field of characteristic 0 and n ∈N. Let wn be the largest positive integer such
that

(
wn
2

)
≤ n. Then:

(1) Lk
Kn
(d) is not prime for d = n+

(
wn−2

2

)
− 1.

(2) Lk
Kn
(d) is not a complete intersection for d = n+

(
wn+1−2

2

)
− 2.

Proof. (1) We set hn =
(
wn
2

)
and mn =wn+d−1. The numbers are chosen so that, using the formulas for

the height of determinantal ideals mentioned in Section 7, the ideal Id+1(X) of (d+1)-minors of a generic
symmetric mn×mn matrix X has height hn . Consider Kn as the graph

(
[mn],

(
[n]
2

))
on mn vertices where

the vertices n+ 1, . . . ,mn do not appear in edges. Assume, by contradiction, that the ideal Lk
Kn
(d) is

prime. Then by Proposition 7.5 the ideal I k
d+1(X

sym
Kn
) is prime and of height hn . But one has

I k
d+1(X

sym
Kn
)⊂ (x11, x22, . . . , xhnhn ) (11)

which is a contradiction. To check (11) it is enough to prove that the rank of the matrix

X sym
Kn

mod (x11, x22, . . . , xhnhn )

is at most d . That is, we have to check that the rank of an (mn ×mn)-matrix with block decomposition(
0 A
B C

)
,

where 0 is the zero matrix of size (hn×n), is at most d . Since d =mn−n+mn−hn the latter is obvious.

(2) We set hn =
(
wn+1

2

)
and mn = wn+1 + d − 1. As above, the numbers are chosen so that the ideal

Id+1(X) of (d+1)-minors of a generic symmetric mn ×mn matrix X has height hn .
Assume, by contradiction, that Lk

Kn
(d) is a complete intersection. From Proposition 7.5 it follows that

I k
d+1(X

sym
Kn
) has height hn . But

I k
d+1(X

sym
Kn
)⊂ (x11, x22, . . . , xhn−1,hn−1) (12)

which is a contradiction. As above (12) boils down to an obvious statement about the rank of a matrix
with a zero submatrix of a certain size. �
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Using this result we can now analyze the asymptotic behavior of asymk(c.i., Kn) and asymk(prime, Kn).

Corollary 8.3. Let k be a field of characteristic 0. Then

lim
n→∞

asymk(c.i., Kn)

n
= lim

n→∞

asymk(prime, Kn)

n
= 2. (13)

Proof. By Corollary 5.6 we have asymk(prime, Kn)≤ 2n− 2. By Proposition 8.2 we have

n+
(
wn+1−2

2

)
− 1≤ asymk(c.i., Kn)≤ asymk(prime, Kn). (14)

Hence the equalities in (13) follow from the fact that

lim
n→∞

(
wn+1−2

2

)
n

= 1. �

Using Proposition 8.2 and Theorem 1.1 we obtain further obstructions.

Corollary 8.4. Let G be a graph on n vertices and k a field of characteristic 0 and denote by α = ω(G)
the clique number of G. Then Lk

G(d) is not a complete intersection for d ≤ α+
(
wα+1−2

2

)
− 2 and Lk

G(d)
is not prime for d ≤ α+

(
wα−2

2

)
− 1, where wα is defined as in Proposition 8.2.

To give an actual feeling for the obstruction, we present one example:

Example 8.5. For n= 15 one has wn = 6 and Lk
Kn
(d) is not prime for d = 15+

(6−2
2

)
−1= 20. Therefore

Lk
G(20) is not prime if G contains K15, i.e., ω(G)≥ 15.

For the case of complete bipartite graphs Km,n results of De Concini and Strickland [1981] or Musili
and Seshadri [1983] on the varieties of complexes imply the following:

Theorem 8.6. Let G = Km,n . Then:

(1) Lk
G(d) is radical for every d.

(2) Lk
G(d) is a complete intersection if and only if d ≥ m+ n− 1.

(3) Lk
G(d) is prime if and only if d ≥ m+ n.

(4) pmd(G)= m+ n− 1.

Proof. Taking into account Remark 2.3, the assertions (1), (2), and (3) follow form general results on
the variety of complexes proved in [De Concini and Strickland 1981] and, with different techniques, in
[Musili and Seshadri 1983]. It has been observed by Tchernev [2001] that the assertions in [De Concini
and Strickland 1981] that refer to the so-called Hodge algebra structure of the variety of complexes are
not correct. However, those assertions can be replaced with statements concerning Gröbner bases as it is
done, for example, in a similar case in [Tchernev 2001]. Hence, (1), (2) and (3) can still be deduced from
the arguments in [De Concini and Strickland 1981].

Alternative proofs of (2) and (3) are obtained by combining Proposition 8.1 and Corollary 5.6. Finally (4)
is a consequence of Lemma 5.4 and Proposition 8.1. �
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9. Questions and open problems

We have seen that for the properties “complete intersection” and “prime” of Lk
G(d) there is persistence

along the parameter d but Example 3.2 shows persistence does not occur in general for the property of
being radical.

Question 9.1. What patterns can occur in the set {d : Lk
G(d)is radical} for a graph G?

Since the complete intersection property and prime property of Lk
G(d) for a given d are inherited by

subgraphs, the properties can be characterized by means of forbidden subgraphs. We have explicitly
identified the forbidden subgraphs in Theorem 1.4 for d = 2 and complete intersection and for d = 3 and
prime. For d = 3 and complete intersection we do not even have a conjecture for the set of forbidden
graphs. For d = 4 results from Lovász’s book [2009, Chapter 9.4] suggest the following:

Question 9.2. Is it true that Lk
G(4) is prime if and only if G does not contain Ka,b for a+ b= 5 and B4?

Via the fact that primeness of Lk
G(d) implies primeness of I k

d+1(XG) a result by Giusti and Merle
[1982, Theorem 1.6.1] guides the intuition behind the following question.

Question 9.3. Let G be a subgraph of Km,n graph and assume m ≤ n. Is it true that Lk
G(m− 1) is prime

if and only if G does not contain Ka,b for a+ b ≥ m?

By Propositions 7.4 and 7.5 we know that if Lk
G(d) is radical or prime then so are I k

d+1(X
gen
G ) and

I k
d+1(X

sym
G ) respectively. But our general bounds for asymk(radical,G) and asymk(prime,G) from

Corollary 5.6 are not good enough to make use of this implication. Indeed, Corollary 8.3 shows that
for the properties complete intersection and prime and n large enough there are graphs G for which
Proposition 7.5 does not prove primality of an interesting ideal. On the other hand the use of Theorem 1.5
in Theorem 7.8 shows that one can take advantage of this connection in some cases. It would be interesting
to exhibit classes different from forests where this is possible.

Question 9.4. Are there more interesting classes of graphs G = ([n], E) for which asymk(c.i.,G)≤ n−1
or asymk(prime,G)≤ n?

Despite the fact that Proposition 8.2 destroys the hope for using Theorem 7.8 for general graphs, it
would be interesting to replace the asymptotic result by an actual value. By Corollary 8.3 for n large we
have asymk(prime, Kn)= 2n−cn for some numbers cn ∈ o(n) which using the notation of Proposition 8.2
satisfy n−

(
wn−2

2

)
+ 1≥ cn ≥ 2. But we have no conjecture for an actual formula for cn .

Question 9.5. What is the exact value of asymk(prime, Kn)?

For radicality we have a concrete conjecture in the case G = Kn .

Conjecture 9.6.
asymk(radical, Kn)= 1 (at least if char k= 0).

In other words, given a matrix of variables X of size n× d we conjecture the ideal of the off-diagonal
entries of X X T is radical for all n, d.
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It would also be interesting to study the ideal generated by all the entries of X X T . We note that the
symplectic version of this problem has been investigated by De Concini [1979].

Next we turn to open problems about hypergraph LSS-ideals. We know from Theorem 1.3 that for a
hypergraph H = (V, E) for which E is a clutter the ideal Lk

H (d) is a radical complete intersection for
d ≥ pmd(G). But we prove in Theorem 1.3 that Lk

H (d) is prime for d ≥ pmd(H)+ 1 only in the case
that H is a graph.

Question 9.7. Is it true that for a hypergraph H = (V, E), where E is a clutter, we have Lk
H (d) is prime

for d ≥ pmd(H)+ 1?

Similarly, the persistence results from Theorem 1.1 ask for generalizations.

Question 9.8. Let H = (V, E) be a hypergraph, where E is a clutter. Is it true that if Lk
H (d) is a complete

intersection (resp. prime) then so is Lk
H (d + 1)?

For a number r ≥ 1 we call a hypergraph H = (V, E) an r -uniform graph if every element of E has
cardinality r . In particular, E is a clutter. We say that an r -uniform graph H = (V, E) is r -partite if there
is a partition V = V1∪ · · ·∪Vr such that #(A∩Vi )= 1 for all i ∈ [r ] and for all A ∈ E . Now we connect
the study of ideal Lk

H (d) for r-uniform (r-partite) graphs with the study of coordinate sections of the
variety of tensors with a given rank. We consider two mappings:

(φ) Let e1, . . . , en be the standard basis vectors of kn . For vectors vi = (vi, j ) j∈[d] ∈ kd , i ∈ [r ], consider
the map φ that sends (v1, . . . , vr ) ∈ (kd)n to the tensor

d∑
j=1

∑
σ∈Sr

vσ(1), j · · · vσ(r), j eσ(1)⊗ · · ·⊗ eσ(r) ∈ kn
⊗ · · ·⊗ kn︸ ︷︷ ︸

r

.

We take the sums over the different tensors arising from ei1⊗· · ·⊗eir , for numbers 1≤ i1≤· · ·≤ ir ≤n,
by permuting the positions as standard basis of the space of symmetric tensors.

(ψ) Let n = n1+ · · ·+ nr for natural numbers n1, . . . , nr ≥ 1. Let e( j)
i ∈ kn j be the i-th standard basis

vector of kn j , i ∈ [n j ] and j ∈ [r ]. For vectors v( j)
i = (vi, j ) j∈[d] ∈ kd for i ∈ [n j ] and j ∈ [r ] consider

the map ψ that sends (v( j)
i )(i, j)∈[n j ]×[r ] to∑

(i1,...,ir )∈[n1]×···×[nr ]

v
(1)
i1
· · · v

(r)
ir

e(1)i1
⊗ · · ·⊗ e(r)ir

∈ kn1 ⊗ · · ·⊗ knr .

We take the tensors e(1)i1
⊗· · ·⊗e(r)ir

for numbers i j ∈[n j ], j ∈[r ] as the standard basis of kn1⊗· · ·⊗knr .

Recall that a (symmetric) tensor has (symmetric) rank≤d it can be written as a sum of≤d decomposable
(symmetric) tensors. For more details on tensor rank and the geometry of bounded rank tensors we refer
the reader to [Landsberg 2012]. Let H = (V, E) be a hypergraph. We write V(Lk

H (d)) for the vanishing
locus of Lk

H (d). The definition of the maps φ and ψ immediately implies the following proposition.

Proposition 9.9. Let H = ([n], E) be an r-uniform hypergraph and k an algebraically closed field.
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(1) Then the restriction of the map φ to V(Lk
H (d)) is a parametrization of the variety of symmetric

tensors in kn
⊗ · · ·⊗ kn (with r factors kn) of rank ≤ d which when expanded in the standard basis

has coefficient zero for the basis elements indexed by 1≤ i1 < · · ·< ir ≤ n and {i1, . . . , ir } ∈ E. In
particular, the Zariski-closure of the image of the restriction is irreducible if Lk

H (d) is prime.

(2) If H is r-partite with respect to the partition V = V1 ∪ · · · ∪ Vr , where |Vi | = ni , i ∈ [r ], then the
restriction of the map ψ to V(Lk

H (d)) is a parametrization of the variety of tensors in kn1⊗· · ·⊗knr

of rank ≤ d which when expanded in the standard basis have coefficient zero for the basis elements
indexed by i1, . . . , ir where {i1, . . . , ir } ∈ E. In particular, the Zariski-closure of the image of the
restriction is irreducible if Lk

H (d) is prime.

Proposition 9.9 gives further motivation to Question 9.7. Indeed, it suggests to strengthen Question 9.4.

Question 9.10. Let k be an algebraically closed field. Can one describe classes of r -uniform hypergraphs
H for which Lk

H (d) is prime for some d bounded from above by the maximal symmetric rank of a
symmetric tensor in kn

⊗ · · ·⊗ kn (with r factors kn)?

An analogous question can be asked for r -partite r -uniform hypergraphs and tensors of bounded rank.
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On rational singularities and counting points
of schemes over finite rings

Itay Glazer

We study the connection between the singularities of a finite type Z-scheme X and the asymptotic point
count of X over various finite rings. In particular, if the generic fiber XQ = X ×SpecZ Spec Q is a local
complete intersection, we show that the boundedness of |X (Z/pnZ)|/pndimXQ in p and n is in fact
equivalent to the condition that XQ is reduced and has rational singularities. This paper completes a recent
result of Aizenbud and Avni.

1. Introduction

1A. Motivation. Given a finite type Z-scheme X , the study of the quantity |X (Z/mZ)| and its asymptotic
behavior is a fundamental question in number theory. The case when m = p, or more generally the
quantity |X (Fq)| with q = pn , has been studied by many authors, most famously by Lang and Weil [1954],
Dwork [1960], Grothendieck [1965] and Deligne [1974; 1980]. The Lang–Weil estimates (see [Lang and
Weil 1954]) give a good asymptotic description of |X (Fq)|:

|X (Fq)| = qdim XFq (CX + O(q−
1
2 )),

where CX is the number of top dimension irreducible components of XFq
that are defined over Fq . From

these estimates and the fact that

|X (F)| = |U (F)| + |(X \U )(F)|, (1-1)

for any open subscheme U ⊆ X and any finite field F , one can see that the asymptotics of |X (Fpn )|,
in p or in n, does not depend on the singularity properties of X . For finite rings, however, (1-1) is no
longer true (e.g., |A1(A)| = |A| and |(A1

−{0})(A)| = |A×|) and indeed, the number |X (Z/mZ)| and its
asymptotics have much to do with the singularities of X . The case when m = pn is a prime power was
studied by Borevich and Shafarevich, among others (see the works of Denef [1991], Igusa [2000], du
Sautoy and Grunewald [2000], and a recent overview by Mustat,ă [2011]).

For a finite ring A, set h X (A) := |X (A)|/|A|dim XQ . If XQ is smooth, one can show that for almost every
prime p, we have h X (Z/pnZ) = h X (Z/pZ) for all n, which by the Lang–Weil estimates is uniformly
bounded. On the other hand, if XQ is singular, then h X (Z/pnZ) need not be bounded in n or in p. The
goal of this paper is to investigate this phenomena and to complete the main result presented in [Aizenbud
and Avni 2018], which we describe next.

MSC2010: primary 14B05; secondary 14G05.
Keywords: rational singularities, complete intersection, analysis on p-adic varieties, asymptotic point count.
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1B. Related work. Aizenbud and Avni [2018] proved the following:

Theorem 1.1 [Aizenbud and Avni 2018, Theorem 3.0.3]. Let X be a finite type Z-scheme such that XQ

is equidimensional and a local complete intersection. Then the following are equivalent:

(i) For any n, limp→∞ h X (Z/pnZ)= 1.

(ii) There exists a finite set of prime numbers S and a constant C , such that |h X (Z/pnZ)− 1|< Cp−
1
2

for any prime p /∈ S and any n ∈ N.

(iii) XQ is reduced, irreducible and has rational singularities.

Definition 1.2 [Aizenbud and Avni 2016, 1.2, Definition II]. Let X and Y be smooth varieties over a
field k of characteristic 0. We say that a morphism ϕ : X→ Y is (FRS) if it is flat and any geometric fiber
is reduced and has rational singularities. We say that ϕ is (FRS) at x ∈ X (k) if there exists a Zariski open
neighborhood U of x such that U ×Y {ϕ(x)} is reduced and has rational singularities.

Aizenbud and Avni introduced an analytic criterion for a morphism ϕ to be (FRS), which played a key
role in the proof of Theorem 1.1:

Theorem 1.3 [Aizenbud and Avni 2016, Theorem 3.4]. Let ϕ : X→Y be a map between smooth algebraic
varieties defined over a finitely generated field k of characteristic 0, and let x ∈ X (k). Then the following
conditions are equivalent:

(a) ϕ is (FRS) at x.

(b) There exists a Zariski open neighborhood x ∈U ⊆ X , such that for any non-Archimedean local field
F ⊇ k and any Schwartz measure m on U (F), the measure (ϕ|U (F))∗(m) has continuous density (see
Definition 2.5 for the notion of Schwartz measure and continuous density of a measure).

(c) For any finite extension k ′/k, there exists a non-Archimedean local field F ⊇ k ′ and a nonnegative
Schwartz measure m on X (F) that does not vanish at x such that ϕ∗(m) has continuous density.

1C. Main results. In this paper, we strengthen Theorem 1.1 as follows:

Theorem 1.4. Let X be a finite type Z-scheme such that XQ is equidimensional and a local complete
intersection. Then (i), (ii) and (iii) in Theorem 1.1 are also equivalent to:

(iv) XQ is irreducible and there exists C > 0 such that h X (Z/pnZ) < C for any prime p and any n ∈N.

(v) XQ is irreducible and there exists a finite set of primes S, such that for any p /∈ S, the sequence
n 7→ h X (Z/pnZ) is bounded.

Remark. In fact, one can drop the demand that XQ is irreducible in conditions (iii), (iv) and (v), such
that they will stay equivalent. For a slightly stronger statement, see Theorem 4.1.

There are two main difficulties in the proof of Theorem 1.4. The first one is portrayed in the fact that
condition (v) seems a-priori too weak, as it requires the bound on h X (Z/pnZ) to be uniform only in n,
while in condition (ii), the demand is that the bound is uniform both in p and in n.

In order to show that condition (v) implies the other conditions, we first reduce to the case when XQ

is a complete intersection in an affine space, and thus can be written as the fiber at 0 of a morphism
ϕ : AM

Q
→ AN

Q
, which is flat above 0. We can then translate condition (iii), i.e., the condition that XQ

is reduced and has rational singularities, to the condition that ϕ : AM
Q
→ AN

Q
is (FRS) above 0, i.e., at
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any point x ∈ (ϕ−1(0))(Q). After some technical argument, one can show that condition (v) implies the
following:

Condition 1.5. For any finite extensions k/Q and k ′/k, and any x ∈ (ϕ−1(0))(k), there exists a prime p
with k ′ ↪→Qp, x ∈ (ϕ−1(0))(Zp), such that the sequence n 7→ ϕ∗(µ)(pnZN

p )/p−nN is bounded, where
µ is the normalized Haar measure on ZM

p .

Hence, we would like to strengthen Theorem 1.3, such that Condition 1.5 will imply the (FRS) property
of ϕ above 0.

The measure ϕ∗(m) as in Condition 1.5 is said to be bounded with respect to the local basis {pnZN
p }n

for the topology of QN
p at 0 (see Definition 3.1).We introduce the notion of bounded eccentricity of a

local basis to the topology of an F-analytic manifold (Section 3A), and prove the following stronger
version of Theorem 1.3:

Theorem 1.6. Let ϕ : X → Y be a map between smooth algebraic varieties defined over a finitely
generated field k of characteristic 0, and let x ∈ X (k). Then (a), (b), (c) in Theorem 1.3 are also equivalent
to:

(c′) For any finite extension k ′/k, there exists a non-Archimedean local field F ⊇ k ′ and a nonnegative
Schwartz measure m on X (F) that does not vanish at x , such that ϕ∗(m) is bounded with respect to
some local basis N of bounded eccentricity at ϕ(x).

We then use Theorem 1.6 and the fact that the local basis {pnZN
p }n is of bounded eccentricity to show

that (v) implies condition (iii).
The second difficulty is to show that if h X (Z/pnZ) is bounded for almost any prime p, then it is in

fact bounded for any p. We first prove this for the case that X is a complete intersection in an affine
space, denoted (CIA) (Proposition 4.5). We then deal with the case when XQ is a (CIA), by constructing
a finite type Z-scheme X̂ , which is a (CIA) and a morphism ψ : X −→ X̂ , such that ψQ : XQ −→ X̂Q is
an isomorphism (Lemma 4.6). We prove this case by showing the existence of c, N ∈ N such that

|X (Z/pnZ)| ≤ pNc
· |X̂(Z/pnZ)|,

(Lemma 4.7). For the general case, we first cover XQ by affine Q-schemes {Ui } such that Ui is a (CIA),
and then consider a collection of Z-schemes {Ũi }, such that Ũi 'Ui over Q. Finally, using the explicit
construction of Ũi we show that

h X (Z/pnZ)≤
∑

i

hŨi
(Z/pnZ),

and since (Ũi )Q 'Ui is a (CIA), we are done by the last case.

2. Preliminaries

In this section, we recall some definitions and facts in algebraic geometry and the theory of F-analytic
manifolds, for a non-Archimedean local field F .
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2A. Preliminaries in algebraic geometry. Let A be a commutative ring. A sequence x1, . . . , xr ∈ A
is called a regular sequence if xi is not a zero-divisor in A/(x1, . . . , xi−1) for each i , and we have a
proper inclusion (x1, . . . , xr ) ( A. If (A,m) is a Noetherian local ring then the depth of A, denoted
depth(A), is defined to be the length of the longest regular sequence with elements in m. It follows from
Krull’s principal ideal theorem that depth(A) is smaller or equal to dim(A), the Krull dimension of A. A
Noetherian local ring (A,m) is Cohen–Macaulay if depth(A)= dim(A). A locally Noetherian scheme X
is said to be Cohen–Macaulay if for any x ∈ X , the local ring OX,x is Cohen–Macaulay.

Let X be an algebraic variety over a field k. We say that X has a resolution of singularities, if there
exists a proper morphism p : X̃→ X such that X̃ is smooth and p is a birational equivalence. A strong
resolution of singularities of X is a resolution of singularities p : X̃→ X which is an isomorphism over
the smooth locus of X , denoted X sm. It is a theorem of Hironaka [1964], that any variety X over a field k
of characteristic zero admits a strong resolution of singularities p : X̃→ X .

For the following definition, see [Kempf et al. 1973, I.3 pages 50–51] or [Aizenbud and Avni 2016,
Definition 6.1]; a variety X over a field k of characteristic zero is said to have rational singularities
if for any (or equivalently, for some) resolution of singularities p : X̃ −→ X , the natural morphism
OX → Rp∗(OX̃ ) is a quasi-isomorphism, where Rp∗ is the higher direct image. A point x ∈ X (k) is a
rational singularity if there exists a Zariski open neighborhood U ⊆ X of x that has rational singularities.

We denote by �r
X the sheaf of differential r-forms on X and by �r

X [X ] (resp. �r
X (X)) the regular

(resp. rational) r -forms. The following lemma gives a local characterization of rational singularities:

Lemma 2.1 [Aizenbud and Avni 2016, Proposition 6.2]. An affine k-variety X has rational singularities
if and only if X is Cohen–Macaulay, normal, and for any, or equivalently, some strong resolution of
singularities p : X̃→ X and any top differential form ω ∈�

top
X sm[X sm

], there exists a top differential form
ω̃ ∈�

top
X̃
[X̃ ] such that ω = ω̃|X sm .

Let X be a finite type scheme over a ring R. Then X is called:

(1) A complete intersection (CI) if there exists an affine scheme Y , a smooth morphism Y → SpecR, a
closed embedding X ↪→ Y over SpecR, and a regular sequence f1, . . . , fr ∈OY (Y ), such that the
ideal of X in Y is generated by the { fi }. In this case, we say that X is a complete intersection in Y .

(2) A local complete intersection (LCI) if there is an open cover {Ui } of X such that each Ui is a (CI).

(3) A complete intersection in an affine space (CIA) if X is a complete intersection in Y , with Y = An
R

an affine space.

(4) A local complete intersection in an affine space (LCIA) if there is an open affine cover {Ui } of X
such that each Ui is a (CIA).

Remark 2.2. For an affine k-variety, the notion of (CIA) is not equivalent to (CI) (e.g., consider X to be
any affine smooth k-variety which is not a (CIA)). On the other hand, the notion of (LCI) is equivalent to
(LCIA) for finite type k-schemes. We will therefore use the notation (LCI) for both notions.

The following Proposition 2.3 and Proposition 2.4 are a consequence of the above remark and the
miracle flatness theorem (e.g., [Vakil 2017, Theorems 26.2.10 and 26.2.11]).

Proposition 2.3. Let X be k-variety. If X is an (LCI) then there exists an open affine cover {Ui } of X and
morphisms ϕi , ψi , where ϕi : A

mi
k −→ A

ni
k is flat above 0, and ψi :Ui ↪→ A

mi
k is a closed embedding that

induces a k-isomorphism ψi :Ui ' ϕ
−1
i (0).
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Proposition 2.4. Let X be a finite type Z-scheme. If X is a (CIA) then there exist Z-morphisms ϕ,ψ ,
where ϕ :Am

Z −→An
Z is flat above 0, andψ : X ↪→Am

Z is a closed embedding that induces a Z-isomorphism
ψ : X ' ϕ−1(0).

A commutative Noetherian local ring A is called Gorenstein if it has finite injective dimension as an
A-module. A locally Noetherian scheme X is said to be Gorenstein if all its local rings are Gorenstein.
Any locally Noetherian scheme X which is a local complete intersection is also Gorenstein.

2B. Some facts on F-analytic manifolds. Let X be a d-dimensional smooth algebraic k-variety and
F ⊇ k be a non-Archimedean local field, with ring of integers OF . Then X (F) has a structure of an
F-analytic manifold. Given ω ∈ �top

X (X), we can define a measure |ω|F on X (F) as follows. For a
compact open set U ⊆ X (F) and an F-analytic diffeomorphism φ between an open subset W ⊆ Fd

and U , we can write φ∗ω = g · dx1 ∧ · · · ∧ dxn , for some g :W → F , and define

|ω|F (U )=
∫

W
|g|F dλ,

where | · |F is the normalized absolute value on F and λ is the normalized Haar measure on Fd . Note that
this definition is independent of the diffeomorphism φ, and that this uniquely defines a measure on X (F).

Definition 2.5. (1) A measure m on X (F) is called smooth if every point x ∈ X (F) has an analytic
neighborhood U and an F-analytic diffeomorphism f :U→Od

F such that f∗m is some Haar measure
on Od

F .

(2) A measure on X (F) is called Schwartz if it is smooth and compactly supported.

(3) We say that a measure µ on X (F) has continuous density, if there is a smooth measure m and a
continuous function f : X (F)→ C such that µ= f ·m.

The following proposition characterizes Schwartz measures and measures with continuous density:

Proposition 2.6 [Aizenbud and Avni 2016, Proposition 3.3]. Let X be a smooth variety over a non-
Archimedean local field F.

(1) A measure m on X (F) is Schwartz if and only if it is a linear combination of measures of the form
f |ω|F , where f is a Schwartz function (i.e., locally constant and compactly supported) on X (F),
and ω ∈�top

X (X) has no zeros or poles in the support of f .

(2) A measure µ on X (F) has continuous density if and only if for every point x ∈ X (F) there is an
analytic neighborhood U of x , a continuous function f :U → C, and ω ∈�top

X (X) with no poles in
U such that µ= f |ω|F .

Proposition 2.7 [Aizenbud and Avni 2016, Proposition 3.5]. Let ϕ : X→ Y be a smooth map between
smooth varieties defined over a non-Archimedean local field F.

(1) If m is a Schwartz measure on X (F), then ϕ∗m is a Schwartz measure on Y (F).

(2) Assume that ωX ∈ �
top
X [X ] and ωY ∈ �

top
Y [Y ], where ωY is nowhere vanishing, and that f is a

Schwartz function on X (F). Then the measure ϕ∗( f |ωX |F ) is absolutely continuous with respect to
|ωY |F , and its density at a point y ∈ Y (F) is

∫
ϕ−1(y)(F) f ·

∣∣(ωX/ϕ
∗ωY )|ϕ−1(y)

∣∣
F .
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3. An analytic criterion for the (FRS) property

Our goal in this section is to prove Theorem 1.6, which is a stronger version of Theorem 1.3, and the main
ingredient in the proof of the implication (v)⇒ (iii) of Theorem 1.4. As discussed in the introduction, we
want to relax condition (c) of Theorem 1.3, and get a weaker condition (c′) that is similar to Condition 1.5,
such that it will imply the (FRS) property (condition (a) of Theorem 1.3).

Definition 3.1. Let F be a non-Archimedean local field, X be an F-analytic manifold and µ be a measure
on X . Let N = {Ni }i∈I be a local basis for the topology of X at a point x ∈ X . We say that µ is bounded
with respect to N , if there exists a smooth measure λ on X and an open analytic neighborhood U of x ,
such that |µ(Ni )/λ(Ni )| is uniformly bounded on NU := {Ni ∈N | Ni ⊆U }.

Let ϕ : X→ Y , m and F be as in Theorem 1.3. A possible relaxation (c′) of (c), is to require ϕ∗(m)
to be bounded with respect to any local basis of the topology of Y (F) at ϕ(x). While this condition is
equivalent to (a) and (b) it is still not weak enough for our purpose of proving Theorem 1.4. A much
weaker condition (c′′) is to demand that ϕ∗(m) is bounded with respect to some local basis at ϕ(x).
Unfortunately, the following example shows that the latter demand is too weak:

Example. Consider the map ϕ : A2
Q
−→ AQ defined by (x, y) 7−→ x2. The fiber over 0 is not reduced,

and thus ϕ is not (FRS) over 0. Fix a finite extension k/Q and embed k in Qp for some prime p
(see Lemma 4.3). Let λ1, λ2 be the normalized Haar measure on Qp,Q2

p and let m = 1Z2
p
· λ2 be a

Schwartz measure. Now consider the following collection N of sets Bn constructed as follows. Define
B1

n := {x ∈ Zp | |x | ≤ p−2n2
} and B2

n := {x ∈ Zp | |x − an| ≤ p−4n
}, where an = p2n+1. Note that any

x ∈ B2
n has norm p−2n−1 and thus is not a square, so ϕ−1(B2

n ) = ∅. Denote Bn = B1
n ∪ B2

n and notice
that N := {Bn}

∞

n=1 is a local basis at 0 and that:

lim
n→∞

ϕ∗m(Bn)

λ1(Bn)
= lim

n→∞

m(ϕ−1(B1
n ))

p−2n2
+ p−4n

= lim
n→∞

p−n2

p−2n2
+ p−4n

→ 0.

This shows that ϕ satisfies condition (c′′) but is not (FRS) at (0, 0).

Luckily, we can relax (c) by demanding that ϕ∗(m) is bounded with respect to some local basis at ϕ(x),
if this basis is nice enough. In order to define precisely what we mean, we introduce the notion of a local
basis of bounded eccentricity.

3A. Local basis of bounded eccentricity.

Definition 3.2. Let F be a local field, and λ be a Haar measure on Fn .

(1) A collection of sets N = {Ni }i∈I in Fn is said to have bounded eccentricity at x ∈ Fn , if there exists
a constant C > 0 such that supi (λ(Bmini (x))/λ(Bmaxi (x)))≤ C , where Bmaxi (x) is the maximal ball
around x that is contained in Ni and Bmini (x) is the minimal ball around x that contains Ni .

(2) We call N = {Ni }i∈I a local basis of bounded eccentricity at x , if it is a local basis of the topology
of Fn at x , and there exists ε > 0, such that Nε := {Ni ∈N | Ni ⊆ Bε(x)} has bounded eccentricity.

Remark. Note that Nε 6=∅ for any ε > 0 since it is a local basis at x .

Lemma 3.3. Let φ : Fn
→ Fn be an F-analytic diffeomorphism. Let N = {Ni }i∈α be a local basis of

bounded eccentricity at x ∈ Fn . Then φ(N ) is a local basis of bounded eccentricity at φ(x).
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Proof. Let dφx = A be the differential of φ at x . Since φ is a diffeomorphism, then for any C > 1, there
exists δ, δ′ > 0 such that for any y ∈ Bδ(x):

1
C
<
|φ(y)−φ(x)|F
|A · (y− x)|F

< C,

and for any z ∈ Bδ′(φ(x)) we have:

1
C
<
|φ−1(z)− x |F
|A−1 · (z−φ(x))|F

< C.

We can choose small enough δ, δ′ such that Nδ is a collection of sets which has bounded eccentricity
and φ(Nδ) ⊇ φ(N )δ′ . We now claim that Mδ′ := φ(N )δ′ is a collection of sets which has bounded
eccentricity at φ(x). Let Bmini (x) be the minimal ball that contains Ni ∈Nδ and Bmaxi (x) be the maximal
ball that is contained in Ni . Notice that for any y ∈ Bmini (x)⊆ Bδ(x) we have

|φ(y)−φ(x)|F < C · |A · (y− x)|F ≤ C · ‖A‖ · |y− x |F ≤ C ·mini ·‖A‖,

thus φ(Ni )⊆ φ(Bmini (x))⊆ BC ·mini ·‖A‖(φ(x)). Similarly, for any z ∈ Bmaxi /(C ·‖A−1‖)(φ(x)) we have that

|φ−1(z)− x |F < C · |A−1
· (z−φ(x))|F ≤ C · ‖A−1

‖ ·
maxi

C · ‖A−1‖
=maxi .

Therefore, φ−1
(
Bmaxi /(C ·‖A−1‖)(φ(x))

)
⊆ Bmaxi (x)⊆Ni and thus Bmaxi /(C ·‖A−1‖)(φ(x))⊆φ(Ni ). Thus

we get that

Bmaxi /(C ·‖A−1‖)(φ(x))⊆ φ(Ni )⊆ BC ·mini ·‖A‖(φ(x)),

for any i . By assumption, there exists some D > 0 such that λ(Bmini (x))/λ(Bmaxi (x)) < D for any set
Ni ∈Nδ. Hence:

λ
(
BC ·mini ·‖A‖(φ(x))

)
λ
(
Bmaxi /(C ·‖A−1‖)(φ(x))

) ≤ C2n
‖A‖n · ‖A−1

‖
n
· D,

and Mδ′ has bounded eccentricity. �

Lemma 3.3 implies that the following notion is well defined:

Definition 3.4. Let X be an F-analytic manifold and λ be a Haar measure on Fn .

(1) A local basis N at x ∈ X is said to have bounded eccentricity if given an F-analytic diffeomorphism
φ between an open subset W ⊆ Fn and an open neighborhood U of x , we have that

Ñ = {φ−1(N ) | N ∈N , N ⊆U }

is a local basis of bounded eccentricity.

(2) A measure m on X is said to be N -bounded, if there exists ε > 0 such that:

sup
N∈Nε

m(N )
λ(N )

<∞.
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3B. Proof of Theorem 1.6. It is easy to see that (c)⇒ (c′). The proof of the implication (c′)⇒ (a) is
a variation of the proof of (c)⇒ (a) of Theorem 1.3 (see [Aizenbud and Avni 2016, Section 3.7]). Let
k be a finitely generated field of characteristic 0, ϕ : X → Y be a morphism of smooth k-varieties X ,
Y and let x ∈ X (k). Assume that condition (c′) of Theorem 1.6 holds. Let Z = ϕ−1(ϕ(x)) and denote
by X S the smooth locus of ϕ. The following lemma is a slight variation of [Aizenbud and Avni 2016,
Claim 3.19]. Since we use the constructions presented in the proof of [loc. cit.], and for the convenience
of the reader, we write the full steps and use similar notation as well.

Lemma 3.5. There exists a Zariski neighborhood U of x such that Z ∩ X S
∩U is a dense subvariety

of Z ∩U.

Proof. Let Z1, . . . , Zn be the absolutely irreducible components of Z containing x . After restricting to an
open neighborhood of x that does not intersect the other irreducible components, it is enough to show that
Zi ∩ X S is Zariski dense in Zi for any i . Since X S is open, it is enough to show that Zi ∩ X S is nonempty
for any i .

Assume that Zi ∩ X S
=∅ for some i . Then dim ker dϕz > dim X − dim Y for any z ∈ Zi (k̄). By the

upper semicontinuity of dim ker dϕ, there is a nonempty open set Wi ⊆ Zi and an integer r ≥ 1 such that
dim ker dϕ|z = dim X − dim Y + r for all z ∈Wi (k̄) and such that Wi ∩ Z j =∅ for any j 6= i . Let k ′/k
be a finite extension such that both Zi ,Wi are defined over k ′ and W sm

i (k ′) 6=∅. By [Aizenbud and Avni
2016, Lemma 3.14], we can choose k ′ such that x ∈W sm

i (F) for any non-Archimedean local field F ⊇ k ′.
By our assumption, there exists a non-Archimedean local field F ⊇ k ′ and a nonnegative Schwartz

measure m on X (F) that does not vanish at x and such that ϕ∗m is bounded with respect to some local
basis N (at ϕ(x)) of bounded eccentricity. Since x ∈W sm

i (F), there exists a point p ∈W sm
i (F)∩supp(m).

By the implicit function theorem, there exist neighborhoods UX ⊆ X (F) and UY ⊆ Y (F) of p
and ϕ(x) = ϕ(p) respectively, analytic diffeomorphisms αX : UX → Odim X

F , αY : UY → Odim Y
F and

αZi :UX∩W sm
i (F)→Odim Zi

F such that αX (p)=0, αY (ϕ(p))=0, and an analytic mapψ :Odim X
F →Odim Y

F
such that the following diagram commutes:

UX ∩W sm
i (F) �

�
//

αZi
��

UX

ϕ|UX
//

αX

��

UY

αY

��

Odim Zi
F

� �
j

// Odim X
F

ψ
// Odim Y

F

where j :Odim Zi
F →Odim X

F is the inclusion to the first dim Zi coordinates. After an analytic change of
coordinates we may assume that:

ker dψz = span{e1, . . . , edim X−dim Y+r },

for any z ∈Odim Zi
F . By Lemma 3.3, we have that M := αY (N ) is a local basis of bounded eccentricity at

0 ∈Odim Y
F . Note that µ := (αX )∗(1UX ·m) is a nonnegative Schwartz measure that does not vanish at 0,

and that ψ∗(µ) is M-bounded. By Proposition 2.6, after restricting to a small enough ball around 0 and
applying a homothety, we can assume that µ is the normalized Haar measure.

As part of the data, for any M j ∈M we are given by Bmax j (0) and Bmin j (0), and there exists δ,C > 0
such that for any M j ∈Mδ := {M j ∈M | M j ⊆ Bδ(0)}, we have Bmax j (0) ⊆ M j ⊆ Bmin j (0) and
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λ(Bmin j )/λ(Bmax j )≤ C . For any 0< ε < 1, set

Aε :=
{
(x1, . . . , xdim X ) ∈Odim X

F | |xk |< ε
nk
}
,

where nk = 0 if 1 ≤ k ≤ dim Zi ; nk = 1 for dim Zi + 1 ≤ k ≤ dim X − dim Y + r ; and nk = 2 for
dim X − dim Y + r + 1≤ k ≤ dim X .

By choosing δ small enough, we may find a constant D> 0 such that ψ(AD
√
ε)⊆ Bε(0) for every ε < δ.

In particular, for any M j ∈Mδ we get that ψ(AD·√max j ) ⊆ Bmax j (0), so ψ−1(Bmax j (0)) ⊇ AD·√max j .
Denote √max j by ε j and notice that there exists a constant L > 0 such that for any j with M j ∈Mδ , it
holds that

µ(ADε j )≥ L · (Dε j )
dim X−dim Y+r−dim Zi+2(dim Y−r)

= D′ · εdim X+dim Y−r−dim Zi
j

≥ D′ · ε2 dim Y−r
j ,

where D′ is some positive constant. Altogether, we have:

ψ∗(µ)(M j )

λ(M j )
≥
ψ∗(µ)(Bmax j (0))
λ(Bmin j (0))

≥
1
C
ψ∗(µ)(Bmax j (0))
λ(Bmax j (0))

≥
1
C

µ(ADε j )

λ(Bmax j (0))
≥

D′

C

ε2 dim Y−r
j

ε2 dim Y
j

≥
D′

C
ε−r

j .

Since Mδ is a local basis, the above equation is true for arbitrary small ε j , so we have a contradiction to
the M-boundedness of ψ∗(µ). �

Corollary 3.6. We have that ϕ is flat at x , and that there is a Zariski neighborhood U0 of x such that
Z ∩U0 is reduced and a local complete intersection (LCI).

Proof. Let Z1, . . . , Zn be the absolutely irreducible components of Z containing x . By the previous
lemma, each Zi contains a smooth point of ϕ, so dimx Z :=maxi dim Zi = dim X − dim Y . Hence, we
may find a neighborhood U0 of x such that ϕ|U0 is flat over ϕ(x) (and in particular flat at x). As a
consequence, we get that Z ∩U0 is an (LCI), and in particular Cohen–Macaulay. Since Z ∩ X S

∩U0

is dense in Z ∩U0 and Z ∩ X S
= Z sm (see, e.g., [Hartshorne 1977, III.10.2]) it follows that Z ∩U0

is generically reduced. Since Z ∩U0 is also Cohen–Macaulay, it now follows from (e.g., [Vakil 2017,
Exercise 26.3.B]) that it is reduced. �

Without loss of generality, we assume X =U0. The following lemma implies that ϕ is (FRS) at x , and
thus finishes the proof of Theorem 1.6:

Lemma 3.7. The element x is a rational singularity of Z.

Proof. After further restricting to Zariski open neighborhoods of x and ϕ(x), we may assume that X and
Y are affine, with �top

X , �
top
Y free. Fix invertible top forms ωX ∈�

top
X [X ], ωY ∈�

top
Y [Y ]. We may find an

invertible section η ∈�top
Z [Z ], such that η|Z sm = ωX |X S/ϕ∗(ωY ) (for more details see the last part of the

proof of [Aizenbud and Avni 2016, Theorem 3.4]). We denote ωZ := η|Z sm .
Fix a finite extension k ′/k. By assumption, there exists a non-Archimedean local field F ⊇ k ′ and

a nonnegative Schwartz measure m on X (F) that does not vanish at x , such that ϕ∗(m) is bounded
with respect to a local basis N of bounded eccentricity. Write m as m = f · |ωX |F . Since Z is an
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(LCI), it is also Gorenstein, so by [Aizenbud and Avni 2016, Corollary 3.15], it is enough to prove that∫
X S∩Z(F) f |ωZ |F <∞ for any such k ′/k and F .

Fix some embedding of X into an affine space, and let d be the metric on X (F) induced from the
valuation metric. Define a function hε : X (F)→ R by hε(x ′)= 1 if d(x ′, (X S(F))C)≥ ε and hε(x ′)= 0
otherwise. Notice that hε is smooth, and f · hε is a Schwartz function whose support lies in X S(F).

Using Proposition 2.7, we have ϕ∗( f · hε |ωX |F )= gε |ωY |F , where gε(ϕ(x))=
∫

X S∩Z(F) f · hε |ωZ |F .
Note that f is nonnegative and f · hε is monotonically increasing when ε→ 0, and converges pointwise
to f . By Lebesgue’s monotone convergence theorem we have:∫

X S∩Z(F)
f |ωZ |F = lim

ε→0

∫
X S∩Z(F)

f hε |ωZ |F = lim
ε→0

gε(ϕ(x)).

It is left to show that gε(ϕ(x)) is bounded in ε and we are done. By our assumption, ϕ∗( f · |ωX |F ) is
N -bounded, so there exists δ > 0 and M > 0 such that for all Ni ∈Nδ,

sup
i

ϕ∗( f |ωX |F )(Ni )

|ωY |F (Ni )
< M.

Note that we used the fact that for small enough δ, |ωY |F is just the normalized Haar measure up to
homothety. Finally, we obtain:∫

X S∩Z(F)
f |ωZ |F = lim

ε→0
gε(ϕ(x))= lim

ε→0

(
lim

i→∞

ϕ∗( f · hε |ωX |F )(Ni )

|ωY |F (Ni )

)
≤

(
sup

i

ϕ∗( f |ωX |F )(Ni )

|ωY |F (Ni )

)
< M.

�

4. Proof of the main theorem

For any prime power q = pr , we denote the unique unramified extension of Qp of degree r by Qq , its
ring of integers by Zq , and the maximal ideal of Zq by mq . Recall that for a finite type Z-scheme X and a
finite ring A, we have defined h X (A) := |X (A)|/|A|dim XQ . In this section we prove the following slightly
stronger version of Theorem 1.4:

Theorem 4.1. Let X be a scheme of finite type over Z such that XQ is equidimensional and a local
complete intersection. Then the following conditions are equivalent:

(i) For any n ∈ N, limp→∞ h X (Z/pnZ)= 1.

(ii) There is a finite set S of prime numbers and a constant C , such that |h X (Z/pnZ)− 1|< Cp−
1
2 for

any prime p /∈ S and any n ∈ N.

(iii) XQ is reduced, irreducible and has rational singularities.

(iv) XQ is irreducible and there exists C > 0 such that h X (Z/pnZ) < C for any prime p and n ∈ N.

(iv′) XQ is irreducible and for any prime power q, the sequence n 7→ h X (Zq/m
n
q) is bounded.

(v) XQ is irreducible and there exists a finite set S of primes, such that for any p /∈ S, the sequence
n 7→ h X (Z/pnZ) is bounded.

Moreover, conditions (iii), (iv), (iv′) and (v) are equivalent without demanding that XQ is irreducible.

We divide the proof of the theorem into two main parts that correspond to the implications (v)⇒ (iii)
(Section 4A) and (iii)⇒ (iv′) (Section 4B). Theorem 4.1 can then be deduced as follows; the equivalence
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of conditions (i), (ii) and (iii) was proved in [Aizenbud and Avni 2018, Theorem 3.0.3] (see Theorem 1.1).
The implications (ii)⇒ (v) and (iv′)⇒ (v) are trivial, so it follows that conditions (i), (ii), (iii), (iv′) and
(v) are equivalent. The implication (iv)⇒ (v) is also trivial. Finally, (iv) follows from the rest of the
conditions by first setting q = p in (iv′) and getting that {h X (Z/pnZ)}n∈N is bounded for any prime p,
and then by using (ii) to obtain a bound on {h X (Z/pnZ)}n∈N which is uniform over all primes p.

Lemma 4.2 [Aizenbud and Avni 2018, Lemma 3.1.1]. Let X =U1 ∪U2 be an open cover of a scheme.
Then for any finite local ring A, we have:

(1) |X (A)| = |U1(A)| + |U2(A)| − |U1 ∩U2(A)|.

(2) |X (A)| ≥ |U1(A)|.

The following lemma is a consequence of Chebotarev’s density theorem and Hensel’s lemma.

Lemma 4.3 [Glazer and Hendel 2018, Lemma 3.15]. Let X be a finite type Z-scheme and let x ∈ X (Q).
Then:

(1) There exists a finite extension k of Q, such that x ∈ X (k).

(2) For any finite extension k/Q as in (1), there exist infinitely many primes p with i p : k ↪→Qp such
that i p∗(x) ∈ X (Zp), where i p∗ : X (k) ↪→ X (Qp).

4A. Boundedness implies rational singularities.

Theorem 4.4. Let X be a finite type Z-scheme such that XQ is a local complete intersection. Assume that
there exists a finite set of primes S, such that for any p /∈ S, the sequence n 7→ h X (Z/pnZ) is bounded.
Then XQ is reduced and has rational singularities.

Proof. Step 1: Reduction to the case when XQ is a complete intersection in an affine space (CIA).
Let

⋃l
i=1 X i be an affine cover of XQ, with each X i a (CIA). For any i , there is a finite set Si of primes,

such that X i is defined over Z[S−1
i ] and thus it has a finite type Z-model, denoted X i . By Lemma 4.2,

for each p /∈ Si we have |X i (Z/pnZ)| ≤ |X (Z/pnZ)| and thus n 7→ h X i (Z/pnZ) is bounded for each
p /∈ Si ∪ S. By our assumption, this implies that each (X i )Q is reduced and has rational singularities, and
thus also XQ.

Step 2: Proof for the case when XQ is a (CIA).
By Proposition 2.3 we have an inclusion ψ : XQ ↪→AM

Q
and a morphism ϕ :AM

Q
→AN

Q
, flat over 0, such

that ψ : XQ ' ϕ
−1(0). As in Step 1, there exists a set S1 of primes, and morphisms ϕ : AM

Z[S−1
1 ]
→ AN

Z[S−1
1 ]

and ψ : XZ[S−1
1 ]
↪→ AM

Z[S−1
1 ]

, such that ϕQ = ϕ, ψQ = ψ , ϕ is flat over 0, and ψ : XZ[S−1
1 ]
' ϕ−1(0).

It is enough to prove that for any finite extension k/Q and any y ∈ (ϕ−1(0))(k), the map ϕk :A
M
k →AN

k
is (FRS) at y.

Fix y ∈ (ϕ−1(0))(k) and let k ′ be a finite extension of k. By Lemma 4.3, there exists an infinite set
of primes T such that for any p ∈ T we have an inclusion i p : k ′ ↪→ Qp and i p∗(y) ∈ ZM

p . Choose
p ∈ T \(S∪ S1) and consider the local basis of balls {pnZN

p }n at 0, which clearly has bounded eccentricity.
Let µ be the normalized Haar measure on ZM

p and notice that µ does not vanish at y. By Theorem 1.6, in
order to prove that ϕk : A

M
k → AN

k is (FRS) at y it is enough to show that the sequence

n 7→
((ϕZp)∗µ)(p

nZN
p )

λ(pnZN
p )
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is bounded (for any k ′ and p as above), where λ is the normalized Haar measure on QN
p . Consider

πN ,n : Z
N
p → (Z/pnZ)N and notice that the following diagram is commutative:

ZM
p

ϕZp
//

πM,n

��

ZN
p

πN ,n

��

(Z/pnZ)M
ϕZ/pn

// (Z/pnZ)N

Therefore we have

µ(ϕ−1
Zp
(pnZN

p ))= µ(ϕ
−1
Zp
◦π−1

N ,n(0))= µ(π
−1
M,n ◦ϕ

−1
Z/pn (0))= p−Mn

· |ϕ−1
Z/pn (0)| = p−Mn

· |X (Z/pnZ)|,

and hence
((ϕZp)∗µ)(p

nZN
p )

λ(pnZN
p )

=
|X (Z/pnZ)|

p(M−N )·n = h X (Z/pnZ)

is bounded and we are done. �

4B. Rational singularities implies boundedness. In the last section we proved the implication (v)⇒ (iii)
of Theorem 4.1. In this subsection we prove that (iii) implies (iv′). We divide the proof into three cases:

(1) X is a (CIA).

(2) XQ is a (CIA).

(3) XQ is an (LCI).

4B1. Proof for the case that X is a (CIA).

Proposition 4.5. If X is a (CIA), then (iii)⇒ (iv′).

Proof. By Proposition 2.4, there exists an inclusion X ↪→ AM
Z and a morphism ϕ : AM

Z → AN
Z , flat over 0,

such that X ' ϕ−1(0). Consider ϕQ : A
M
Q
→ AN

Q
and notice that ϕQ is (FRS) at any x ∈ ϕ−1

Q
(0)(Q), as

XQ has rational singularities.
Let µ be the normalized Haar measure on ZM

q . As in the proof of Step 2 of Theorem 4.4, we have the
following commutative diagram:

ZM
q

ϕZq
//

πn,M

��

ZN
q

πn,N

��

(Zq/m
n
q)

M
ϕZq /mn

q
// (Zq/m

n
q)

N

In order to show that h X (Zq/m
n
q) is bounded, it is enough to show that (ϕZq )∗µ has bounded density with

respect to the local basis {pnZN
q }n .

After base change to Qq , we have a map ϕQq : A
M
Qq
→ AN

Qq
, which is (FRS) at any point x ∈ X (Qq).

For any t ∈ N, consider the set Ut = ϕ
−1
Zq
(pt ZN

q ) and note that it is open, closed and compact. We
claim that there exists R ∈N, such that for any t > R we have that ϕ is (FRS) at any point y ∈Ut . Indeed,
otherwise we may construct a sequence xt ∈ Ut such that ϕ is not (FRS) at xt . By a theorem of Elkik
[1978] (see also [Aizenbud and Avni 2016, Theorem 6.3]), the (FRS) locus of ϕ is an open set. After
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choosing a convergent subsequence {xt j }, we obtain that ϕQq is not (FRS) at the limit x0 ∈ ZM
q . But

ϕQq (x0) ∈
⋂

t ϕQq (Ut)= {0} so x0 ∈ X (Qq) and we get a contradiction.
Finally, by Theorem 1.3, the measure (ϕZq )∗µ|UR has continuous density, and in particular bounded

with respect to the local basis {pnZN
q }n . Hence, from the definition of UR , we have for n > R:

h X (Zq/m
n
q)=

(ϕZq )∗µ(p
nZN

q )

q−nN =
(ϕZq )∗µ|UR (p

nZN
q )

q−nN < C,

for some constant C > 0 and we are done. �

4B2. Some constructions. Let X be an affine Z-scheme with a coordinate ring

Z[X ] := Z[x1, . . . , xc]/( f1, . . . , fm),

and fix K ∈ N.

(1) For any g∈Z[x1, . . . , xc] denote by gK ∈Q[x1, . . . , xc] the function gK (x1, . . . , xc) :=g
( x1

K , . . . ,
xl
K

)
.

(2) For any ϕ : AM
Z → AN

Z of the form ϕ = (ϕ1, . . . , ϕN ), we denote by ϕK : A
M
Q
→ AN

Q
the morphism

ϕK := ((ϕ1)K , . . . , (ϕN )K ).

(3) Let r(K ) ∈N be minimal such that K r(K )( fi )K has integer coefficients for any i . Denote by X̃ K the
Z-scheme with the following coordinate ring:

Z[X̃ K ] := Z[x1, . . . , xc]/
(
K r(K )( f1)K , . . . , K r(K )( fm)K

)
.

(4) For any Q-morphismψ : XQ→AM
Q

of the formψ=(ψ1, . . . , ψN ) let Kψ denote (K ·ψ1, . . . , K ·ψN ).

(5) For any affine Q-scheme Z , with Q[Z ]=Q[y1, . . . , yd ]/(g1, . . . , gk) and a Q-morphism φ : Z→ XQ,
we may define a morphism Kφ : Z→ (X̃ K )Q by Kφ(y1, . . . , yd) := K ·φ(y1, . . . , yd).

4B3. Proof for the case that XQ is a (CIA). In this case, we have an inclusion ψ : XQ ↪→ AM
Q

and a
morphism ϕ : AM

Q
→ AN

Q
, flat over 0, such that XQ ' ϕ

−1(0).

Lemma 4.6. Let X be a finite type Z-scheme, such that XQ is a (CIA), defined by the morphisms ϕ, ψ as
above. Then there exists a Z-scheme X̂ϕ,ψ , which is a (CIA), and a Z-morphism φ : X→ X̂ϕ,ψ , such that
φQ is an isomorphism.

Proof. Let Z[X ] := Z[x1, . . . , xc]/( f1, . . . , fm) be the coordinate ring of X . Denote by S = {p1, . . . , ps}

the set of all prime numbers that appear in the denominators of the polynomial maps ψ and ϕ, and set
P ′ :=

∏
pi∈S pi . Let t ∈ N be minimal such that (P ′)tψ has integer coefficients. Denote P := (P ′)t and

notice that Pψ is a Z-morphism. Let ϕP :A
M
Q
→AN

Q
be as defined in 4B2. Notice that there exists m ∈N

such that PmϕP has coefficients in Z. We now have the following Z-morphisms:

X
Pψ
−−→ AM

Z

PmϕP
−−−→ AN

Z .

Set X̂ϕ,ψ to be the fiber (PmϕP)
−1(0) and notice that φ := Pψ is a Z-morphism from X to X̂ϕ,ψ , such

that φQ is an isomorphism, and X̂ϕ,ψ is a (CIA). �

Lemma 4.7. Let X and Y be affine Z-schemes and φ : X → Y be a Z-morphism, such that φQ is an
isomorphism. Then there exist c, N ∈ N, such that for any prime power q and any n:

|X (Zq/m
n
q)| ≤ q N ·c

· |Y (Zq/m
n
q)|.
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Proof. The morphism φ induces a map φn : X (Zq/m
n
q)→ Y (Zq/m

n
q). It is enough to show that φn has

fibers of size at most q N ·c. Assume that Z[X ] = Z[x1, . . . , xc]/( f1, . . . , fm). As in Section 4B2, we may
choose K , r(K ) ∈ N such that X̃ K is a Z-scheme with a coordinate ring

Z[X̃ K ] := Z[x1, . . . , xc]/
(
K r(K )( f1)K , . . . , K r(K )( fm)K

)
,

and Kφ−1
: Y → X̃ K is a Z-morphism. The map (Kφ−1

◦ φ) : X → X̃ K is just coordinatewise
multiplication by K . Thus (Kφ−1)n ◦φn : X (Zq/m

n
q)→ X̃ K (Zq/m

n
q) sends (a1, . . . , ac) ∈ X (Zq/m

n
q) to

(K a1, . . . , K ac) ∈ X̃ K (Zq/m
n
q).

For any prime p, let N (p) be the maximal integer such that pN (p)
|K . Note that the map (a1, . . . , an) 7→

(K a1, . . . , K an) from (Zq/m
n
q)

c to (Zq/m
n
q)

c has fibers of size q N (p)·c for n > N (p). Indeed, for
(b1, . . . , bc)∈ (Zq/m

n
q)

c, (K a1, . . . , K ac)= (b1, . . . , bc) if and only if K ai = bi for any 1≤ i ≤ c. Since
K/pN (p) is invertible in Zq/m

n
q , it is equivalent to demand that pN (p)ai=ci for some multiple ci of bi by an

invertible element. Hence, we can reduce to the case of the map (a1, . . . , ac) 7→ (pN (p)a1, . . . , pN (p)ac),
which clearly has fibers of size q N (p)·c for n > N (p). Note that for any y ∈ Y (Zq/m

n
q) we have

|φ−1
n (y)| ≤

∣∣((Kφ−1)n ◦φn)
−1(x)

∣∣, where x = (Kφ−1)n(y). Since the fibers of (Kφ−1)n ◦φn are of size
bounded by q N (p)c, so are the fibers of φn . We may take N := K > N (p) and we are done. �

Corollary 4.8. Let X be a finite type Z-scheme such that XQ is a (CIA). Then condition (iii) of
Theorem 4.1 implies condition (iv′).

Proof. By Lemma 4.6, we may choose a Z-scheme X̂ , which is a (CIA), and a Z-morphism φ : X→ X̂ ,
such that φQ is an isomorphism. By Proposition 4.5 and Lemma 4.7, there exists c, N ∈N, such that for
any prime power q , there exists C > 0 such that:

h X (Zq/m
n
q)=
|X (Zq/m

n
q)|

qn dim XQ
≤ qc·N

·
|X̂(Zq/m

n
q)|

qn dim XQ
≤ qc·N

·C,

and hence condition (iv′) holds. �

4B4. Proof for the case when XQ is an (LCI). Using Lemma 4.2, we may reduce to the case when X
is affine, with coordinate ring Z[X ] := Z[x1, . . . , xc]/( f1, . . . , fm). Since XQ is an (LCI), we have an
affine open cover {βi :Ui ↪→ XQ}i of XQ with inclusions ψi :Ui ↪→ A

Mi
Q

and maps ϕi : A
Mi
Q
→ A

Ni
Q

, flat
over 0, such that ψi :Ui ' ϕ

−1
i (0). We may assume that Ui is isomorphic to a basic open set D(gi ) for

gi ∈Q[X ] and β∗i :Q[X ]→Q[X, t]/(gi t −1) is the natural map. Since {D(gi )}i is a cover of XQ, there
exist c′i ∈ Z[X ] and di ∈ Z such that

∑
c′i · gi/di = 1. Thus, by multiplying by all the di ’s, we obtain∑

ci gi = D for some ci ∈ Z[X ] and D ∈ Z. Choose large enough P ∈ N such that the following algebra

Z[x1, . . . , xc, t]/( f1, . . . , fm, Pgi t − D · P)

is a coordinate ring of a Z-scheme Ũi , for any i . Moreover, notice that Ũi 'Ui over Q.

Lemma 4.9. There exists N ∈ N, such that for any prime power q = pr and any n > N we have

|X (Zq/m
n
q)| ≤

∑
i

|Ũi (Zq/m
n
q)|.

Proof. Let N (p) be the maximal integer such that pN (p)
| D · P . We first claim that for any n > N (p)+1

and (a1, . . . , ac) ∈ X (Zq/m
n
q), there exists some i such that Pgi (a1, . . . , ac) /∈m

N (p)+1
q /mn

q . Indeed, if
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Pgi (a1, . . . , ac)∈m
N (p)+1
q /mn

q for any i , then
∑

Pgi (a1, . . . , ac) ·ci (a1, . . . , ac)= D · P ∈mN (p)+1
q /mn

q
and hence pN (p)+1

| D · P leading to a contradiction. Set N := D · P + 1 and notice that N > N (p)+ 1
for any prime p. Fix n > N and let i such that Pgi (a1, . . . , ac) /∈m

N (p)+1
q /mn

q . We now claim that the
equation Pgi (a1, . . . , ac)t − P D = 0 has a solution in Zq/m

n
q . Indeed, if Pgi (a1, . . . , ac) is invertible

in Zq/m
n
q , we are done. Otherwise, we have that Pgi (a1, . . . , ac)= pl

· b ∈ml
q/m

n
q for some l ≤ N (p),

where b is invertible. Write P D = pl
· a. We can rewrite the equation as pl

· (bt − a)= 0, which has a
solution d ∈ Zq/m

n
q since b is invertible. We see that for any n > N and any (a1, . . . , ac) ∈ X (Zq/m

n
q)

there exists i and d ∈ Zq/m
n
q such that (a1, . . . , ac, d) ∈ Ũi (Zq/m

n
q). This implies the lemma. �

Since (Ũi )Q 'Ui is a (CIA) for any i , we obtain

h X (Zq/m
n
q)= q−n dim XQ · |X (Zq/m

n
q)| ≤

∑
i

q−n dim XQ · |Ũi (Zq/m
n
q)|<

∑
Ci ,

where Ci = supn hŨi
(Zq/m

n
q). The implication (iii)⇒ (iv′) of Theorem 4.1 now follows.
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The Maillot–Rössler current
and the polylogarithm on abelian schemes

Guido Kings and Danny Scarponi

We give a structural proof of the fact that the realization of the degree-zero part of the polylogarithm on
abelian schemes in analytic Deligne cohomology can be described in terms of the Bismut–Köhler higher
analytic torsion form of the Poincaré bundle. Furthermore, we provide a new axiomatic characterization
of the arithmetic Chern character of the Poincaré bundle using only invariance properties under isogenies.
For this we obtain a decomposition result for the arithmetic Chow group of independent interest.

Introduction

In an important contribution Maillot and Rössler constructed a Green current gA∨ for the zero section
of an abelian scheme A which is norm compatible (i.e., [n]∗gA∨ = gA∨) and is the push-forward of the
arithmetic Chern character of the (canonically metrized) Poincaré bundle. In particular, on the complement
of the zero section the Green current gA∨ is the degree-(g− 1) part of the analytic torsion form of the
Poincaré bundle. Moreover, certain linear combinations of translates of these currents are even motivic in
the sense that their classes in analytic Deligne cohomology are in the image of the regulator from motivic
cohomology.

In the special case of a family of elliptic curves, the current gA∨ is described by a Siegel-function whose
usefulness for many arithmetic problems (in particular for special values of L-functions and Iwasawa
theory) is well known and one could hope that the Maillot–Rössler current plays a similar role for abelian
schemes.

On the other hand the first author has constructed the motivic polylogarithm pol0 ∈ H 2g−1
M (A\A[N ], g)

of the abelian scheme A without its N -torsion points A \A[N ] [Kings and Rössler 2017]. Here g is the
relative dimension of A. The polylogarithm is also norm-compatible [n]∗ pol0 = pol0 for n coprime to N ,
and in the elliptic case it is directly related to Siegel functions and modular units.

It is natural to ask how pol0 is related to gA∨ . This question was answered completely in [Kings
and Rössler 2017], and it turns out that the image of −2 pol0 in analytic Deligne cohomology is the
Maillot–Rössler current [N ]∗gA∨ − N 2ggA∨ . Due to the fact that in analytic Deligne cohomology there is
no residue sequence, the proof of this fact in [Kings and Rössler 2017] was much more complicated than

MSC2010: primary 11G55; secondary 14G40.
Keywords: abelian polylogarithm, arithmetic Chow groups, Arakelov geometry, Deligne cohomology.
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it should be and proceeded by a reduction to the case of a product of elliptic curves via the moduli space
of abelian varieties and an explicit computation.

In this paper we give a much simpler and very structural proof of the identity between the polylogarithm
and the Maillot–Rössler current (see Theorem 8). We circumvent the difficulties of the approach in
[Kings and Rössler 2017] by working in Betti cohomology instead of analytic Deligne cohomology. As a
result one only has to compare the residues of the classes. In fact we achieve much more and give an
axiomatic characterization of the Maillot–Rössler current which does not involve the Poincaré bundle
(see Theorem 11). More precisely, we prove that any class ξ̂ ∈ ĈHg

(A)Q in the arithmetic Chow group
which satisfies that its image in the Chow group CHg(A)Q is the zero section and such that

([n]∗− n2g)(ξ̂ )= 0 in ĈHg
(A)Q

holds for some n ≥ 2 is in fact equal to (−1)g p1,∗(ĉh(P))[g]. This characterization of the Maillot–Rössler
current relies on a decomposition into generalized eigenspaces for the action of [n]∗ on the arithmetic
groups ĈHg

(A)Q, which might be of independent interest (see Corollary 10).
Here is a short synopsis of our paper. In Section 1 we give some background on motivic cohomology

and arithmetic Chow groups. In Section 2 we review the polylogarithm and the Maillot–Rössler current.
In Section 3 we carry out the comparison between the Maillot–Rössler current and the polylogarithm. In
Section 4 we prove a decomposition of the arithmetic Chow group, and in Section 5 we give an axiomatic
characterization of the Maillot–Rössler current.

1. Preliminaries on motivic cohomology, Arakelov theory, and Deligne cohomology

Motivic cohomology. Let π :A→ S be an abelian scheme of relative dimension g, let ε : S→A be the
zero section, let N > 1 be an integer, and let A[N ] be the finite group scheme of N -torsion points. Here
S is smooth over a subfield k of the complex numbers. We will write S0 for the image of ε in A. We
denote by A∨ the dual abelian scheme of A and by ε∨ its zero section.

C. Soulé [1985] and A. Beilinson [1985] defined motivic cohomology for any variety V over a field

H i
M(V, j) := Gr j

γ K2 j−i (V )⊗Q.

Remark. In this paper we work with the above rather old-fashioned definition of motivic cohomology
for the compatibility with earlier references. This and the requirement that S is smooth over a base field k
are not necessary. The latter condition does no harm as we are mainly interested in the arithmetic Chow
groups and Deligne cohomology. For a much more general setting we refer to the paper [Huber and
Kings 2018] where also the decomposition of motivic cohomology is considered in an up-to-date fashion.

For any integer a > 1 and any W ⊆A open subscheme such that

j : [a]−1(W ) ↪→W
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is an open immersion (here [a] :A→A is the a-multiplication on A), the trace map with respect to a is
defined as

tr[a] : H ·M(W, ∗ )
j∗
−→ H ·M([a]

−1(W ), ∗ )
[a]∗
−−→ H ·M(W, ∗ ). (1)

For any integer r we let

H ·M(W, ∗ )
(r)
:= {ψ ∈ H ·M(W, ∗ ) | (tr[a]−ar Id)kψ = 0 for some k ≥ 1}

be the generalized eigenspace of tr[a] of degree (or weight) r . One can prove that there is a decomposition
into tr[a]-eigenspaces

H ·M(A, ∗ )∼=
2g⊕

r=0

H ·M(A, ∗ )
(r)

which is independent of a and that
H ·M(A \ S0, ∗ )

(0)
= 0

(see Proposition 2.2.1 in [Kings and Rössler 2017]).

Arithmetic varieties. An arithmetic ring is a triple (R, 6, F∞) where

• R is an excellent regular Noetherian integral domain,

• 6 is a finite nonempty set of monomorphisms σ : R→ C,

• F∞ is an antilinear involution of the C−algebra C6 := C× · · ·×︸ ︷︷ ︸
|6|

C, such that the diagram

R δ
//

Id
��

C6

F∞
��

R δ
// C6

commutes (here by δ we mean the natural map to the product induced by the family of maps 6).

An arithmetic variety X over R is a scheme of finite type over R, which is flat, quasiprojective, and
regular. As usual we write

X (C) :=
∐
σ∈6

(X ×R,σ C)(C).

Note that F∞ induces an involution F∞ : X (C)→ X (C).

Arithmetic Chow groups. Let p ∈ N. We denote by

• E p,p(XR) the R-vector space of smooth real forms ω on X (C) of type (p, p) such that F∗
∞
ζ =

(−1)pω,

• Ẽ p,p(XR) the quotient E p,p(XR)/(Im ∂ + Im ∂),

• D p,p(XR) the R-vector space of real currents ζ on X (C) of type (p, p) such that F∗
∞
ζ = (−1)pζ ,

• D̃ p,p(XR) the quotient D p,p(XR)/(Im ∂ + Im ∂).
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If ω or ζ is a form in E p,p(XR) or a current in D p,p(XR), we write ω̃ or ζ̃ for its class in Ẽ p,p(XR) or
D̃ p,p(XR), respectively.

We briefly recall the definition of the arithmetic Chow groups of X , as given in [Gillet and Soulé 1990,
§3.3]. Let Zq(X) denote the group of cycles of codimension q in X and CHq(X) denote the q-th Chow
group of X . We write Ẑq(X) for the subgroup of

Zq(X)⊕ D̃q−1,q−1(XR)

consisting of pairs (z, h̃) where z ∈ Zq(X) and h ∈ Dq−1,q−1(XR) satisfy

ddc h+ δz ∈ Eq,q(XR).

By definition, the class h̃ is then a Green current for z. Note that if h̃ is a Green current for z, the form
ddc h+ δz is closed.

For any codimension-(q − 1) integral subscheme i :W ↪→ X and any f ∈ k(W )∗, one can verify, by
means of the Poincaré–Lelong lemma, that the pair

d̂iv( f ) := (div( f ),−i∗ log| f |2)

is an element in Ẑq(X). Then the q-th arithmetic Chow group of X is the quotient

ĈHq
(X) := Ẑq(X)/R̂q(X)

where R̂q(X) is the subgroup generated by all pairs d̂iv( f ), for any f ∈ k(W )∗ and any W ⊂ X as above.
If Zq,q(XR)⊆ Eq,q(XR) denotes the subspace of closed forms, we have a well defined map

ω : ĈHq
(X)→ Zq,q(XR)

sending the class of (z, h̃) to ddc h+ δz . Finally we have a map

ζ : ĈHq
(X)→ CHq(X)

sending the class of (z, h̃) to the class of z.

Analytic Deligne cohomology of arithmetic varieties. If X is an arithmetic variety over R we write

Hq
Dan(XR,R(p)) := {γ ∈ Hq

Dan(X (C),R(p)) | F∗
∞
γ = (−1)pγ },

where H∗Dan(X (C),R(p)) is the analytic Deligne cohomology of the complex manifold X (C), i.e., the
hypercohomology of the complex

0→ (2π i)pR→ OX (C)
d
−→�1

X (C)→ · · · →�
p−1
X (C)→ 0

(�∗X (C) denotes the de Rham complex of holomorphic forms on X (C)). In the following sections we will
need the characterization [Burgos 1997, §2]

H2p−1
Dan (XR,R(p))= {x̃ ∈ (2π i)p−1 Ẽ p−1,p−1(XR) | ∂∂x = 0}. (2)
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Analytic Deligne cohomology and Betti cohomology. By definition of analytic Deligne cohomology
there is a canonical map to Betti cohomology

φB : H
2g−1
Dan ((A \A[N ])R,R(g))→ H 2g−1

B ((A \A[N ])(C),R(g)).

Later we will need an explicit description of this map: first we compute the group H 2g−1
B ((A\A[N ])(C), g)

with the cohomology of the complex of currents D∗((A \A[N ])(C), g) := (2π i)g D∗((A \A[N ])(C)),
so

H 2g−1
B ((A \A[N ])(C), g)=

{η ∈ D2g−1((A \A[N ])(C), g) | dη = 0}
{dω | ω ∈ D2g−2((A \A[N ])(C), g)}

.

Lemma 1. Using the description (2), the map φB sends the class x̃ of x ∈ (2π i)g−1 Eg−1,g−1((A\A[N ])R)
with ∂∂x = 0 to

φB(x̃)= [4π idcx]. (3)

Proof. This is [Burgos 1997, Theorem 2.6]. �

We also need an explicit description of the connecting homomorphism, which we call the residue
homomorphism

resB : H
2g−1
B ((A \A[N ])(C),R(g))→ H 2g

B,A[N ]\S0
((A \ S0)(C),R(g)).

For this we compute H 2g
B,A[N ]\S0

((A \ S0)(C),R(g)) with the cohomology of the simple complex of the
restriction morphism D∗((A \ S0)(C), g)→ D∗((A \A[N ])(C), g) and get

H 2g
B,A[N ]\S0

((A \ S0)(C),R(g))

=
{(ξ, τ ) ∈ D2g((A \ S0)(C), g)⊕ D2g−1((A \A[N ])(C), g) | dξ = 0 and ξ |A\A[N ] = dτ }
{(dθ, θ |A\A[N ]− dα) | θ ∈ D2g−1((A \ S0)(C), g), α ∈ D2g−2((A \A[N ])(C), g)}

.

Note that we are using the simple complex as in [Burgos 1997, §1] (and not the cone in the sense of
Verdier) of the restriction morphism to compute cohomology with support. From the definitions one gets
immediately:

Lemma 2. The residue resB sends the class of η, which we denote by [η], to

resB([η])= [0,−η],

where [0,−η] denotes the class of (0,−η).

2. Review of the polylog and the Maillot–Rössler current

The axiomatic definition of pol0. G. Kings and D. Rössler [2017] have provided a simple axiomatic
description of the degree-zero part of the polylogarithm on abelian schemes. We briefly recall it here.

The degree-zero part of the motivic polylogarithm is by definition a class in motivic cohomology

pol0 ∈ H 2g−1
M (A \A[N ], g)(0).
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To describe it more precisely, consider the residue map along A[N ]

H 2g−1
M (A \A[N ], g)→ H 0

M(A[N ] \ S0, 0).

This map induces an isomorphism

res : H 2g−1
M (A \A[N ], g)(0) ∼= H 0

M(A[N ] \ S0, 0)(0)

(see Corollary 2.2.2 in [Kings and Rössler 2017]).

Definition 3. The degree-zero part of the polylog pol0 is the unique element of H 2g−1
M (A \A[N ], g)(0)

mapping under res to the fundamental class 1◦N of A[N ] \ S0.

We recall now that we have a map regan defined as the composition

H 2g−1
M (A \A[N ], g)

reg
−→ H2g−1

D ((A \A[N ])R,R(g))
forget
−−−→ H2g−1

Dan ((A \A[N ])R,R(g))

where reg is the regulator map into Deligne–Beilinson cohomology and the second map is the forgetful
map from Deligne–Beilinson cohomology to analytic Deligne cohomology.

The Maillot–Rössler current gA∨ . V. Maillot and D. Rössler [2015] proved the following theorem.

Theorem 4 [Maillot and Rössler 2015, Theorem 1.1]. There exists a unique a class of currents gA∨ ∈

D̃g−1,g−1(AR) which satisfies the following three properties:

(i) gA∨ is a Green current for S0,

(ii) (S0, gA∨)= (−1)g p1,∗(ĉh(P))[g] in the group ĈHg
(A)Q,

(iii) [n]∗gA∨ = gA∨ for all n > 0.

Here we take P to be the Poincaré bundle on A×S A∨ equipped with a canonical hermitian metric,
p1 : A×S A∨→ A is the first projection, and ĈHg

(A) denotes the g-th arithmetic Chow group of A.
The term ĉh(P) ∈

⊕
i ĈHi

(A×S A∨) is the arithmetic Chern character of P, and p1,∗(ĉh(P))[g] denotes
the homogeneous component of degree g of p1,∗(ĉh(P)) in the graded ring

⊕
i ĈHi

(A).
We now consider the arithmetic cycle

(N S0,N gA∨) := ([N ]∗− N 2g)(S0, gA∨).

Thanks to the geometry of the Poincaré bundle, one can show that the class of (N S0,N gA∨) in ĈHg
(A)Q

is zero [Scarponi 2017, Proposition 5.2]. In particular, ddc(NgA∨ |A\A[N ])= 0, and by Theorem 1.2.2(i)
in [Gillet and Soulé 1990], there exists a smooth form in the class of currents NgA∨ |A\A[N ]. Equivalently,

NgA∨ |A\A[N ] lies in the image of the inclusion

Ẽg−1,g−1((A \A[N ])R) ↪→ D̃g−1,g−1((A \A[N ])R).

The group H 2g−1
Dan ((A\A[N ])R,R(g)) can be represented by classes in (2π i)g−1 Ẽg−1,g−1((A\A[N ])R)

with ddc equal to zero by (2), so we get:
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Lemma 5. The Maillot–Rössler current defines a class

(2π i)g−1(NgA∨)|A\A[N ] ∈ H 2g−1
Dan ((A \A[N ])R,R(g)).

The exact sequence (see the theorem and remark in [Gillet and Soulé 1990, §3.3.5])

H 2g−1
M (A \A[N ], g)

regan
−−→ H 2g−1

Dan ((A \A[N ])R,R(g))
r
−→ ĈHg

(A \A[N ])Q

where r sends x̃ to the class of (0, x̃/(2π i)g−1), with the vanishing of (N S0,N gA∨) in ĈHg
(A \A[N ])Q,

then implies that the Maillot–Rössler current is motivic, i.e.,

(2π i)g−1(NgA∨)|A\A[N ] ∈ regan(H
2g−1
M (A \A[N ], g)).

Since the operator tr[a] defined in (1) obviously operates on analytic Deligne cohomology and the map
regan intertwines this operator with tr[a], we deduce from Theorem 4(iii) the fact:

Lemma 6. The Maillot–Rössler current is in the image of the regulator from H 2g−1
M (A \A[N ], g)(0):

(2π i)g−1(NgA∨)|A\A[N ] ∈ regan(H
2g−1
M (A \A[N ], g)(0)).

3. The comparison between pol0 and the class gA∨

In this section we give an easy conceptual proof of the comparison result between pol0 and the class gA∨ .

A commutative diagram. The following lemma, proved by Rössler and Kings, is the key for the proof of
our comparison result.

Lemma 7 [Kings and Rössler 2017, Lemma 4.2.6]. The diagram

H 2g−1
M (A \A[N ], g)(0)

'

res
//

regan
��

H 2g
M,A[N ]\S0

(A \ S0, g)(0)

regB

��

H 2g−1
Dan ((A \A[N ])R,R(g))

φB
��

H 2g−1
B ((A \A[N ])(C),R(g))

resB
// H 2g

B,A[N ]\S0
((A \ S0)(C),R(g))

is commutative, and the map regB is injective.

The comparison result. We are now ready to reprove the comparison result of Kings and Rössler.

Theorem 8 [Kings and Rössler 2017]. We have the equality

−2 · regan(pol0)= (2π i)g−1(NgA∨)|A\A[N ].

Proof. Let ψ ∈ H 2g−1
M (A\A[N ], g)(0) be such that regan(ψ)=−

1
2(2π i)g−1(NgA∨)|A\A[N ]. By Lemma 7,

it is sufficient to show that ψ and pol0 have the same image under regB ◦ res.
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Now, by definition of pol0 we have

regB(res(pol0))= regB(1
◦

N )= [(2π i)gδ1◦N , 0],

and by the description of resB in Lemma 2 we have

regB(res(ψ))= resB(φB(regan(ψ)))= resB([−(2π i)gdc(NgA∨ |A\A[N ])])

= [0, (2π i)gdc(NgA∨)|A\A[N ]].

The difference regB(res((pol0−ψ))) is then represented by the pair

((2π i)gδ1◦N ,−(2π i)gdc(NgA∨)|A\A[N ]),

which is a coboundary, since (by [Scarponi 2017, Proposition 5.2])

(2π i)gδ1◦N + (2π i)g ddc(NgA∨ |A\S0)= 0. �

4. A decomposition of the arithmetic Chow group

Recall the exact sequence (see the theorem and remark in [Gillet and Soulé 1990, §3.3.5])

H 2p−1
M (A, p)→ Ẽ p−1,p−1(AR)→ ĈHp

(A)Q→ CHp(A)Q→ 0. (4)

The endomorphism [n]∗ acts on this sequence, and we want to study the decomposition into generalized
eigenspaces. Denote by E p,q

A the sheaf of p, q-forms on A(C). For the next result observe that we have
an isomorphism of sheaves π∗ε∗E p,q

A
∼= E p,q

A , which identifies the pull-back of sections of ε∗E p,q
A on the

base with the translation invariant differential forms on A. For a C∞ section a : S(C)→A(C), we denote
by τa :A(C)→A(C) the translation by a. A differential form ω is translation invariant, if τ ∗aω = ω for
all sections a.

Theorem 9. Let n ≥ 2 and ω ∈ Ẽ p,q(AR). Assume that ω is a generalized eigenvector for [n]∗ with
eigenvalue λ, i.e., ([n]∗ − λ)kω = 0, for some k ≥ 1. Then the form ω is translation invariant. In
particular, there is a section η ∈ ε∗E p,q

A (SR) with ω = π∗η. Moreover, one has [n]∗ω = n p+qω, i.e., ω is
an eigenvector with eigenvalue n p+q .

Proof. The statement that ω is translation invariant does not depend on the complex structure. We use
that locally on the base the family of complex tori π :A(C)→ S(C) is as a C∞-manifold of the form
U × (S1)2g, where U ⊂ S(C) is open and S1

= R/Z is a real torus. In this situation it suffices to show
that ω is translation invariant under a dense subset of points of (S1)2g.

We start to prove the following claim: if the form η := ([n]∗− λ)ω is translation invariant, then ω is
translation invariant.

First note that λ 6= 0 because [n]∗[n]∗ω = n2gω, which implies that [n]∗ is injective. As the set
{a ∈ (S1)2g

| [nr
](a)= 0 for some r ≥ 0} is dense in (S1)2g, by induction over r it suffices to show that
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τ ∗aω= ω for a with [nr
](a)= 0. The case r = 0 is trivial because then a = 0. Suppose we know that ω is

translation invariant for all b with [nr−1
](b)= 0, and let a be such that [nr

](a)= 0. We compute

λτ ∗aω = τ
∗

a ([n]
∗ω− η)= [n]∗τ ∗

[n]aω− τ
∗

a η = [n]
∗ω− η = λω.

As λ 6= 0, it follows that τ ∗aω = ω. This completes the induction step.
We now show by induction on k that ω with ([n]∗− λ)kω = 0 is translation invariant. For k = 1 this

follows from the claim by setting η = 0. Suppose that all forms η with ([n]∗−λ)k−1η = 0 are translation
invariant. Then η := ([n]∗ − λ)ω is translation invariant, and it follows from the claim that also ω is
translation invariant.

For the final statement we just observe that [n]∗ acts via n p+q-multiplication on the bundle ε∗E p,q
A

whose sections identify with the translation invariant forms on A(C). �

For the next result we have to consider generalized eigenspaces for [n]∗, and to distinguish these from
the generalized eigenspaces for [n]∗, we write

V (a) := {v ∈ V | ([n]∗− na)kv = 0 for some k ≥ 1}.

Corollary 10. For each a = 0, . . . , 2g there is an exact sequence

H 2p−1
M (A, p)(a)→ Ẽ p−1,p−1(AR)(a)→ ĈHp

(A)Q(a)→ CHp(A)Q(a)

of generalized [n]∗-eigenspaces for the eigenvalue na . In particular, for a 6= 2(p−1) one has an injection

ĈHp
(A)Q(a) ↪→ CHp(A)Q(a).

Proof. The sequence (4) is a sequence of modules under the principal ideal domain C[X ], where X acts
as [n]∗. Note that taking the torsion submodule

T M := ker(M→ M ⊗C[X ]Quot C[X ])

is a left exact functor on short exact sequences

0→ M ′→ M→ M ′′→ 0.

If M ′ is torsion, the functor T is even exact. As H 2p−1
M (A, p) is torsion, the exact sequence (4) gives rise

to an exact sequence

0→ T im(H 2p−1
M (A, p))→ T Ẽ p−1,p−1(AR)→ T ĈHp

(A)Q→ T CHp(A)Q.

As a torsion C[X ]-module is the direct sum of its generalized eigenspaces, the first claim follows. The
second statement follows from the first, as Ẽ p−1,p−1(AR)(a)= 0 for a 6= 2(p− 1) by Theorem 9. �



510 Guido Kings and Danny Scarponi

5. An axiomatic characterization of the Maillot–Rössler current

We want to prove an axiomatic characterization of (−1)g p1,∗(ĉh(P))[g]. The result is the following:

Theorem 11. Let ξ̂ be an element of ĈHg
(A)Q satisfying the following two properties:

• ζ(ξ̂ )= S0 in CHg(A)Q,

• ([n]∗− n2g)k(ξ̂ )= 0 in ĈHg
(A)Q for some n ≥ 2 and some k ≥ 1.

Then ξ̂ = (−1)g p1,∗(ĉh(P))[g] = (S0, gA∨).

Remark. (1) Notice that, even if (−1)g p1,∗(ĉh(P))[g] satisfies the second property for every n [Scarponi
2017, Proposition 6], it is sufficient to ask that this property holds for one integer greater than one to
uniquely characterize it.

(2) Notice also that the condition ([n]∗ − n2g)(ξ̂ ) = 0 implies [n]∗(ξ̂ ) = ξ̂ , thanks to the projection
formula [n]∗[n]∗ = n2g. In the case of an abelian scheme over the ring of integers of a number field,
K. Künnemann [1994] showed that there exists a decomposition of the Arakelov Chow groups as
a direct sum of eigenspaces for the pullback [n]∗. As a consequence, in this particular case the
conditions ([n]∗− n2g)(ξ̂ )= 0 and [n]∗(ξ̂ )= ξ̂ are equivalent, if ξ̂ belongs to the Arakelov Chow
group.

Proof. By definition ξ̂ ∈ ĈHg
(A)Q(2g) and by Corollary 10 one has an injection

ĈHg
(A)Q(2g) ↪→ CHg(A)Q(2g).

This shows that ξ̂ is uniquely determined by its image in CHg(A)Q. As this image is the same as that of
(S0, gA∨), this shows the theorem. �

Theorems 8 and 11 give us the following axiomatic characterization of gA∨ and therefore of pol0.

Theorem 12. The class gA∨ is the unique element g ∈ D̃g−1,g−1(AR) such that

(i) g is a Green current for S0,

(ii) ([n]∗− n2g)k(S0, g)= 0 in ĈHg
(A)Q for some n ≥ 2 and some k ≥ 1,

(iii) [m]∗g= g for some m > 1.

Furthermore, pol0 is the unique element in H 2g−1
M (A \A[N ], g)(0) such that

−2 · regan(pol0)= (2π i)g−1([N ]∗gA∨ − N 2ggA∨)|A\A[N ] ∈ H2g−1
Dan ((A \A[N ])R,R(g)).

Proof. By Theorem 11 we know that the first two conditions of our theorem are equivalent to the
first two conditions in Theorem 4, so that gA∨ satisfies the three properties above. Suppose now that
g ∈ D̃g−1,g−1(AR) is another element satisfying the three properties of our theorem, and let m > 1 be
such that [m]∗g= g. We want to show that gA∨ = g. Since by Theorem 11

(S0, g)= (−1)g p1,∗(ĉh(P))[g] = (S0, gA∨),
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the exact sequence (4) implies that the difference gA∨ − g belongs to the image of the regulator
H 2g−1

M (A, g) → Ẽg−1,g−1(AR). Since H 2g−1
M (A, g) is a torsion module over C[X ] (with X acting

as [m]∗), then gA∨ − g lies in T Ẽg−1,g−1(AR). The projection formula and Theorem 9 give

m2g(gA∨ − g)= [m]∗[m]∗(gA∨ − g)= m2g−2
[m]∗(gA∨ − g),

i.e., [m]∗(gA∨−g)=m2(gA∨−g), but property (iii) in our theorem implies that [m]∗(gA∨−g)= (gA∨−g).
This is possible only if gA∨ − g is zero.

The second statement is a simple consequence of Theorem 8 and the fact that regan is injective when
restricted to H 2g−1

M (A \A[N ], g)(0) [Kings and Rössler 2017, Lemma 4.2.6]. �
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Essential dimension of inseparable field extensions
Zinovy Reichstein and Abhishek Kumar Shukla

Let k be a base field, K be a field containing k, and L/K be a field extension of degree n. The essential
dimension ed(L/K ) over k is a numerical invariant measuring “the complexity” of L/K . Of particular
interest is

τ(n)=max
{
ed(L/K ) | L/K is a separable extension of degree n

}
,

also known as the essential dimension of the symmetric group Sn . The exact value of τ(n) is known
only for n 6 7. In this paper we assume that k is a field of characteristic p > 0 and study the essential
dimension of inseparable extensions L/K . Here the degree n = [L : K ] is replaced by a pair (n, e) which
accounts for the size of the separable and the purely inseparable parts of L/K , respectively, and τ(n) is
replaced by

τ(n, e)=max
{
ed(L/K ) | L/K is a field extension of type (n, e)

}
.

The symmetric group Sn is replaced by a certain group scheme Gn,e over k. This group scheme is neither
finite nor smooth; nevertheless, computing its essential dimension turns out to be easier than computing
the essential dimension of Sn . Our main result is a simple formula for τ(n, e).

1. Introduction

Throughout this paper k will denote a base field. All other fields will be assumed to contain k. A field
extension L/K of finite degree is said to descend to a subfield K0 ⊂ K if there exists an intermediate
field K0 ⊂ L0 ⊂ L such that L0 and K generate L and [L0 : K0] = [L : K ]. Equivalently, L is isomorphic
to L0⊗K0 K over K , as is shown in the diagram

L

L0 K

K0

The essential dimension of L/K (over k) is defined as

ed(L/K )=min
{
trdeg(K0/k) | L/K descends to K0 and k ⊂ K0

}
.
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Essential dimension of separable field extensions was studied in [Buhler and Reichstein 1997]. Of
particular interest is

τ(n)=max
{
ed(L/K ) | L/K is a separable extension of degree n and k ⊂ K

}
, (1-1)

otherwise known as the essential dimension of the symmetric group Sn . It is shown in [Buhler and
Reichstein 1997] that if char(k)= 0, then bn/2c6 τ(n)6 n−3 for every n > 5.1 A. Duncan [2010] later
strengthened the lower bound as follows.

Theorem 1.1. If char(k)= 0, then b(n+ 1)/2c6 τ(n)6 n− 3 for every n > 6.

This paper is a sequel to [Buhler and Reichstein 1997]. Here we will assume that char(k)= p > 0 and
study inseparable field extensions L/K . The role of the degree, n = [L : K ] in the separable case, will be
played by a pair (n, e). The first component of this pair is the separable degree, n= [S : K ], where S is the
separable closure of K in L . The second component is the so-called type e= (e1, . . . , er ) of the purely
inseparable extension [L : S], where e1 > e2 > · · ·> er > 1 are integers; see Section 4 for the definition.
Note that the type e= (e1, . . . , er ) uniquely determines the inseparable degree [L : S] = pe1+···+er of L/K
but not conversely. By analogy with (1-1) it is natural to define

τ(n, e)=max
{
ed(L/K ) | L/K is a field extension of type (n, e) and k ⊂ K

}
. (1-2)

Our main result is the following:

Theorem 1.2. Let k be a base field of characteristic p > 0, n > 1 and e1 > e2 > · · ·> er > 1 be integers,
e= (e1, . . . , er ), and si = e1+ · · ·+ ei for i = 1, . . . , r . Then

τ(n, e)= n
r∑

i=1

psi−iei .

Some remarks are in order.

(1) Theorem 1.2 gives the exact value for τ(n, e). This is in contrast to the separable case, where
Theorem 1.1 only gives estimates and the exact value of τ(n) is unknown for any n > 8.

(2) A priori, the integers ed(L/K ), τ(n), and τ(n, e) all depend on the base field k. However, Theorem 1.2
shows that for a fixed p = char(k), τ(n, e) is independent of the choice of k.

(3) Theorem 1.2 implies that for any inseparable extension L/K of finite degree,

ed(L/K )6 1
p
[L : K ];

see Remark 5.3. This is again in contrast to the separable case, where Theorem 1.1 tells us that there
exists an extension L/K of degree n such that ed(L/K ) > 1

2 [L : K ] for every odd n > 7 (assuming
char(k)= 0).

1These inequalities hold for any base field k of characteristic 6= 2. On the other hand, the stronger lower bound of Theorem 1.1,
due to Duncan, is only known in characteristic 0.
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(4) We will also show that the formula for τ(n, e) remains valid if we replace the essential dimension
ed(L/K ) in the definition (1-2) by the essential dimension at p, edp(L/K ); see Theorem 7.1. For the
definition of the essential dimension at a prime, see Section 5 in [Reichstein 2010] or Section 3 below.

The number τ(n) has two natural interpretations. On the one hand, τ(n) is the essential dimension
of the functor Etn which associates to a field K the set of isomorphism classes of étale algebras of
degree n over K . On the other hand, τ(n) is the essential dimension of the symmetric group Sn . Recall
that an étale algebra L/K is a direct product L = L1 × · · · × Lm of separable field extensions L i/K .
Equivalently, an étale algebra of degree n over K can be thought of as a twisted K -form of the split
algebra kn

= k× · · · × k (n times). The symmetric group Sn arises as the automorphism group of this
split algebra, so that Etn = H 1(K ,Sn); see Example 3.5.

Our proof of Theorem 1.2 relies on interpreting τ(n, e) in a similar manner. Here the role of the split
étale algebra kn will be played by the algebra 3n,e, which is the direct product of n copies of the truncated
polynomial algebra

3e = k[x1, . . . , xr ]/
(
x

pe
1

1 , . . . , x per

r
)
.

Note that the k-algebra 3n,e is finite-dimensional, associative, and commutative, but not semisimple.
Étale algebras over K will get replaced by K -forms of 3n,e. The role of the symmetric group Sn will
be played by the algebraic group scheme Gn,e = Autk(3n,e) over k. We will show that τ(n, e) is the
essential dimension of Gn,e, just like τ(n) is the essential dimension of Sn in the separable case. The
group scheme Gn,e is neither finite nor smooth; however, much to our surprise, computing its essential
dimension turned out to be easier than computing the essential dimension of Sn .

The remainder of this paper is structured as follows. Sections 2 and 3 contain preliminary results on
finite-dimensional algebras, their automorphism groups, and essential dimension. In Section 4 we recall
the structure theory of inseparable field extensions. Section 6 is devoted to versal algebras. The upper
bound of Theorem 1.2 is proved in Section 5; alternative proofs are outlined in Section 8. The lower
bound of Theorem 1.2 is established in Section 7; our proof relies on the inequality (7-2) due to D. Tossici
and A. Vistoli [2013]. Finally, in Section 9 we prove a stronger version of Theorem 1.2 in the special
case where n = 1, e1 = · · · = er , and k is perfect.

2. Finite-dimensional algebras and their automorphisms

Recall that in the introduction we defined the essential dimension of a field extension L/K of finite
degree, where K contains k. The same definition is valid for any finite-dimensional algebra A/K . That is,
we say that A descends to a subfield K0 if there exists a K0-algebra A0 such that A0⊗K0 K is isomorphic
to A (as a K -algebra). The essential dimension ed(A) is then the minimal value of trdeg(K0/k), where
the minimum is taken over the intermediate fields k ⊂ K0 ⊂ K such that A descends to K0.

Here by a K -algebra A we mean a K -vector space with a bilinear “multiplication” map m : A× A→ A.
Later on we will primarily be interested in commutative associative algebras with 1, but at this stage m
can be arbitrary: we will not assume that A is commutative or associative or has an identity element. (For
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example, one can talk of the essential dimension of a finite-dimensional Lie algebra A/K .) Recall that to
each basis x1, . . . , xn of A one can associate a set of n3 structure constants ch

i j ∈ K , where

xi · x j =

n∑
h=1

ch
i j xh . (2-1)

Lemma 2.1. Let A be an n-dimensional K -algebra with structure constants ch
i j (relative to some K -basis

of A). Suppose a subfield K0 ⊂ K contains ch
i j for every i, j, h = 1, . . . , n. Then A descends to K0. In

particular, ed(A)6 trdeg(K0/k).

Proof. Let A0 be the K0-vector space with basis b1, . . . , bn . Define the K0-algebra structure on A0 by
(2-1). Clearly A0⊗K0 K = A, and the lemma follows. �

The following lemma will be helpful to us in the sequel.

Lemma 2.2. Suppose k ⊂ K ⊂ S are field extensions, such that S/K is separable of degree n. Let A be a
finite-dimensional algebra over S. If A descends to a subfield S0 of S such that K (S0)= S, then

ed(A/K )6 n trdeg(S0/k).

Here ed(A/K ) is the essential dimension of A, viewed as a K -algebra.

Proof. By our assumption there exists an S0-algebra A0 such that A = A0⊗S0 S.
Denote the normal closure of S over K by Snorm, and the associated Galois groups by G=Gal(Snorm/K )

and H = Gal(Snorm/S) ⊂ G. Now define S1 = k(g(s) | s ∈ S0, g ∈ G). Choose a transcendence basis
t1, . . . , td for S0 over k, where d = trdeg(S0/k). Clearly S1 is algebraic over k(g(ti ) | g ∈G, i = 1, . . . , d).
Since H fixes every element of S, each ti has at most [G : H ] = n distinct translates of the form g(ti ),
g ∈ G. This shows that trdeg(S1/k)6 nd .

Now let K1 = SG
1 ⊂ K and A1 = A0⊗K0 K1. Since S1 is algebraic over K1, we have

trdeg(K1/k)= trdeg(S1/k)6 nd.

Examining the diagram
A0 A1 A

S0 S1 S

K1 K

we see that A/K descends to K1, and the lemma follows. �

Now let3 be a finite-dimensional k-algebra with multiplication map m :3×3→3. The general linear
group GLk(3) acts on the vector space 3∗⊗k3

∗
⊗k3 of bilinear maps 3×3→3. The automorphism

group scheme G = Autk(3) of 3 is defined as the stabilizer of m under this action. It is a closed
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subgroup scheme of GLk(3) defined over k. The reason we use the term “group scheme” here, rather
than “algebraic group”, is that G may not be smooth; see the Remark after Lemma III.1.1 in [Serre 1997].

Proposition 2.3. Let 3 be a commutative finite-dimensional local k-algebra with residue field k, and
G = Autk(3) be its automorphism group scheme. Then the natural map

f : Gn oSn→ Autk(3n)

is an isomorphism. Here Gn
= G×· · ·×G (n times) acts on 3n

=3×· · ·×3 (n times) componentwise
and Sn acts by permuting the factors.

Before proceeding with the proof of the proposition, recall that an element α of a ring R is called an
idempotent if α2

= α.

Lemma 2.4. Let 3 be a commutative finite-dimensional local k-algebra with residue field k and R be an
arbitrary commutative k-algebra with 1. Then the only idempotents of 3R =3⊗k R are those in R (more
precisely in 1⊗ R).

Proof. By Lemma 6.2 in [Waterhouse 1979], the maximal ideal M of 3 consists of nilpotent elements.
Tensoring the natural projection 3→3/M ' k with R, we obtain a surjective homomorphism 3R→ R
whose kernel again consists of nilpotent elements. By Proposition 7.14 in [Jacobson 1980], every
idempotent in R lifts to a unique idempotent in 3R , and the lemma follows. �

Proof of Proposition 2.3. Let αi = (0, . . . , 1, . . . , 0) where 1 appears in the i-th position. Then
⊕n

i=1 Rαi

is an R-subalgebra of 3n
R .

Let f ∈ AutR(3
n
R). Since each αi is an idempotent in 3n

R , so is each f (αi ). The components of
each f (αi ) are idempotents in 3R . By Lemma 2.4, they lie in R. Thus, f (αi ) ∈

⊕n
i=1 Rαi for every

i = 1, . . . , n. As a result, we obtain a morphism

AutR(3
n
R)

τR
−→ AutR

( n⊕
i=1

Rαi

)
= Sn(R).

For the second equality, see, e.g., p. 59 in [Waterhouse 1979]. These maps are functorial in R and thus
give rise to a morphism τ : Aut(3n)→ Sn of group schemes over k. The kernel of τ is Aut(3)n , and τ
clearly has a section. The proposition follows. �

Remark 2.5. The assumption that 3 is commutative in Proposition 2.3 can be dropped, as long as we
assume that the center of3 is a finite-dimensional local k-algebra with residue field k. The proof proceeds
along similar lines, except that we restrict f to an automorphism of the center Z(3n)= Z(3)n and apply
Lemma 2.4 to Z(3), rather than 3 itself. This more general variant of Proposition 2.3 will not be needed
in the sequel.

Remark 2.6. On the other hand, the assumption that the residue field of 3 is k cannot be dropped. For
example, if 3 is a separable field extension of k of degree d , then Autk(3n) is a twisted form of

Autk(3
n
⊗k k)= Autk(k

dn)= Snd .
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Here k denotes the separable closure of k. Similarly, Autk(3)n o Sd is a twisted form of (Sd)
n o Sn . For

d, n > 1, these groups have different orders, so they cannot be isomorphic.

3. Essential dimension of a functor

In the sequel we will need the following general notion of essential dimension, due to A. Merkurjev [Berhuy
and Favi 2003]. Let F : Fieldsk→ Sets be a covariant functor from the category of field extensions K/k
to the category of sets. Here k is assumed to be fixed throughout, and K ranges over all fields containing k.
We say that an object a ∈ F(K ) descends to a subfield K0 ⊂ K if a lies in the image of the natural
restriction map F(K0)→ F(K ). The essential dimension ed(a) of a is defined as the minimal value
of trdeg(K0/k), where k ⊂ K0 and a descends to K0. The essential dimension of the functor F , denoted
by ed(F), is the supremum of ed(a) for all a ∈ F(K ), and all fields K in Fieldsk .

If l is a prime, there is also a related notion of essential dimension at l, which we denote by edl . For an
object a ∈ F , we define edl(a) as the minimal value of ed(a′), where a′ is the image of a in F(K ′), and
the minimum is taken over all field extensions K ′/K such that the degree [K ′ : K ] is finite and prime to l.
The essential dimension edl(F) of the functor F at l is defined as the supremum of edl(a) for all a ∈ F(K )
and all fields K in Fieldsk . Note that the prime l in this definition is unrelated to p = char(k); we allow
both l = p and l 6= p.

Example 3.1. Let G be a group scheme over a base field k and FG : K → H 1(K ,G) be the functor
defined by

FG(K )= {isomorphism classes of G-torsors T → Spec(K )}.

Here by a torsor we mean a torsor in the flat (fppf) topology. If G is smooth, then H 1(K ,G) is the
first Galois cohomology set, as in [Serre 1997]; see Section II.1. The essential dimension ed(G) is, by
definition, ed(FG), and similarly for the essential dimension edl(G) of G at prime l. These numerical
invariants of G have been extensively studied; see, e.g., [Merkurjev 2009] or [Reichstein 2010] for a survey.

Example 3.2. Define the functor Algn : K → H 1(K ,G) by

Algn(K )= {isomorphism classes of n-dimensional K -algebras}.

If A is an n-dimensional algebra, and [A] is its class in Algn(K ), then ed([A]) coincides with ed(A)
defined at the beginning of Section 2. By Lemma 2.1, ed(Algn)6 n3; the exact value is unknown (except
for very small n).

We will now restrict our attention to certain subfunctors of Algn which are better understood.

Definition 3.3. Let 3/k be a finite-dimensional algebra and K/k be a field extension (not necessarily
finite or separable). We say that an algebra A/K is a K -form of 3 if there exists a field L containing K
such that 3⊗k L is isomorphic to A⊗K L as an L-algebra. We will write

Alg3 : Fieldsk→ Sets

for the functor which sends a field K/k to the set of K -isomorphism classes of K -forms of 3.
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Proposition 3.4. Let3 be a finite-dimensional k-algebra and G=Autk(3)⊂GL(3) be its automorphism
group scheme. Then the functors Alg3 and FG = H 1(∗,G) are isomorphic. In particular, ed(Alg3)=
ed(G) and edl(Alg3)= edl(G) for every prime l.

Proof. For the proof of the first assertion, see Proposition X.2.4 in [Serre 1979] or Proposition III.2.2.2 in
[Knus 1991]. The second assertion is an immediate consequence of the first, since isomorphic functors
have the same essential dimension. �

Example 3.5. The K -forms of 3n = k×· · ·× k (n times) are called étale algebras of degree n. An étale
algebra L/K of degree n is a direct products of separable field extensions,

L = L1× · · ·× Lr , where
r∑

i=1

[L i : K ] = n.

The functor Alg3n
is usually denoted by Etn . The automorphism group Autk(3n) is the symmetric

group Sn , acting on 3n by permuting the n factors of k; see Proposition 2.3. Thus, Etn = H 1(K , Sn); see,
e.g., Examples 2.1 and 3.2 in [Serre 2003].

4. Field extensions of type (n, e)

Let L/S be a purely inseparable extension of finite degree. For x ∈ L we define the exponent of x over S
as the smallest integer e such that x pe

∈ S. We will denote this number by e(x, S). We will say that
x ∈ L is normal in L/S if e(x, S)=max{e(y, S) | y ∈ L}. A sequence x1, . . . , xr in L is called normal if
each xi is normal in L i/L i−1 and xi /∈ L i−1. Here L i = S(x1, . . . , xi−1) and L0= S. If L = S(x1, . . . , xr ),
where x1, . . . , xr is a normal sequence in L/S, then we call x1, . . . , xr a normal generating sequence
of L/S. We will say that this sequence is of type e = (e1, . . . , er ) if ei := e(xi , L i−1) for each i . Here
L i = S(x1, . . . , xi ), as above. It is clear that e1 > e2 > · · ·> er .

Proposition 4.1 (G. Pickert [1949]). Let L/S be a purely inseparable field extension of finite degree.

(a) For any generating set 3 of L/S there exists a normal generating sequence x1, . . . , xr with each
xi ∈3.

(b) If x1, . . . , xr and y1, . . . , ys are two normal generating sequences for L/S, of types (e1, . . . , er ) and
( f1, . . . , fs), respectively, then r = s and ei = fi for each i = 1, . . . , r .

Proof. For modern proofs of both parts, see Propositions 6 and 8 in [Rasala 1971] or Lemma 1.2 and
Corollary 1.5 in [Karpilovsky 1989]. �

Proposition 4.1 allows us to talk about the type of a purely inseparable extension L/S. We say that
L/S is of type e= (e1, . . . , er ) if it admits a normal generating sequence x1, . . . , xr of type e.

Now suppose L/K is an arbitrary inseparable (but not necessarily purely inseparable) field extension
L/K of finite degree. Denote the separable closure of K in L by S. We will say that L/K is of type (n, e)
if [S : K ] = n and the purely inseparable extension L/S is of type e.
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Remark 4.2. Note that we will assume throughout that r > 1, i.e., that L/K is not separable. In particular,
a finite field K does not admit an extension of type (n, e) for any n and e.

Remark 4.3. It follows from Proposition 4.1 that L/K cannot be generated by fewer than r elements.
Note also that the integer r can be determined directly, without constructing a normal generating sequence.
Indeed, by Theorem 6 in [Becker and MacLane 1940], [L : K (L p)] = pr . Here K (L p) denotes the
subfield of L generated by L p and K .

Lemma 4.4. Let n > 1 and e1 > e2 > · · ·> er > 1 be integers. Then there exist

(a) a separable field extension E/F of degree n with k ⊂ F and

(b) a field extension L/K of type (n, e) with k ⊂ K and e= (e1, . . . , er ).

In particular, this lemma shows that the maxima in definitions (1-1) and (1-2) are taken over a nonempty
set of integers.

Proof. (a) Let x1, . . . , xn be independent variables over k. Set E = k(x1, . . . , xn) and F = EC , where
C is the cyclic group of order n acting on E by permuting the variables. Clearly E/F is a Galois (and
hence, separable) extension of degree n.

(b) Let E/F be as in part (a) and y1, . . . , yr be independent variables over F . Set L = E(y1, . . . , yr ) and
K = F(z1, . . . , zr ), where zi = y pei

i . One readily checks that S = E(z1, . . . , zn) is the separable closure
of K in L and L/S is a purely inseparable extension of type e. �

Now suppose n > 1 and e = (e1, . . . , er ) are as above, with e1 > e2 > · · · > er > 1. The following
finite-dimensional commutative k-algebras will play an important role in the sequel:

3n,e =3e× · · ·×3e (n times), where 3e = k[x1, . . . , xr ]/(x
pe1

1 , . . . , x per

r ) (4-1)

is a truncated polynomial algebra.

Lemma 4.5. 3n,e is isomorphic to 3m, f if and only if m = n and e= f .

Proof. One direction is obvious: if m = n and e= f , then 3n,e is isomorphic to 3m, f

To prove the converse, note that 3e is a finite-dimensional local k-algebra with residue field k. By
Lemma 2.4, the only idempotents in 3e are 0 and 1. This readily implies that the only idempotents
in 3n,e are of the form (ε1, . . . , εn), where each εi is 0 or 1, and the only minimal idempotents are

α1 = (1, 0, . . . , 0), . . . , αn = (0, . . . , 0, 1).

(Recall that idempotents α and β are called orthogonal if αβ = βα = 0. If α and β are orthogonal, then
one readily checks that α+β is also an idempotent. An idempotent is minimal if it cannot be written as a
sum of two orthogonal idempotents.)

If 3n,e and 3m, f are isomorphic, then they have the same number of minimal idempotents; hence,
m = n. Denote the minimal idempotents of 3m, f by

β1 = (1, 0, . . . , 0), . . . , βm = (0, . . . , 0, 1).
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A k-algebra isomorphism 3n,e → 3m, f takes α1 to β j for some j = 1, . . . , n and, hence, induces a
k-algebra isomorphism between α13n,e '3e and β j3m, f '3 f . To complete the proof, we appeal to
Proposition 8 in [Rasala 1971], which asserts that 3e and 3 f are isomorphic if and only if e= f . �

Lemma 4.6. Let L/K be a field extension of finite degree. Then the following are equivalent.

(a) L/K is of type (n, e).

(b) L is a K -form of 3n,e. In other words, L ⊗K K ′ is isomorphic to 3n,e⊗k K ′ as a K ′-algebra for
some field extension K ′/K .

Proof. (a) =⇒ (b). Assume L/K is a field extension of type (n, e). Let S be the separable closure of K
in L and K ′ be an algebraic closure of S (which is also an algebraic closure of K ). Then

L ⊗K K ′ = L ⊗S (S⊗K K ′)= (L ⊗S K ′)× · · ·× (L ⊗S K ′) (n times).

On the other hand, by [Rasala 1971, Theorem 3], L ⊗S K ′ is isomorphic to 3e as a K ′-algebra, and
part (b) follows.

(b) =⇒ (a). Assume L⊗K K ′ is isomorphic to 3n,e⊗k K ′ as a K ′-algebra for some field extension K ′/K .
After replacing K ′ by a larger field, we may assume that K ′ contains the normal closure of S over K .
Since 3n,e⊗k K ′ is not separable over K ′, L is not separable over K . Thus, L/K is of type (m, f ) for
some m> 1 and f = ( f1, . . . , fs) with f1> f2> · · ·> fs > 1. As shown above, this implies that L⊗K K ′′

is isomorphic to 3m, f ⊗k K ′′ for a suitable field extension K ′′/K . After enlarging K ′′, we may assume
without loss of generality that K ′ ⊂ K ′′. We conclude that 3n,e⊗k K ′′ is isomorphic to 3m, f ⊗k K ′′ as a
K ′′-algebra. By Lemma 4.5, with k replaced by K ′′, this is only possible if (n, e)= (m, f ). �

5. Proof of the upper bound of Theorem 1.2

In this section we will prove the following proposition.

Proposition 5.1. Let n>1, e= (e1, . . . , er ), where e1> · · ·> er >1, and si = e1+· · ·+ei for i =1, . . . , r .
Then

τ(n, e)6 n
r∑

i=1

psi−iei .

Our proof of Proposition 5.1 will be facilitated by the following lemma.

Lemma 5.2. Let K be an infinite field of characteristic p, q be a power of p, S/K be a separable field
extension of finite degree, and 0 6= a ∈ S. Then there exists an s ∈ S such that asq is a primitive element
for S/K .

Proof. Assume the contrary. It is well known that there are only finitely many intermediate fields between
K and S; see, e.g., [Lang 1984, Theorem V.4.6]. Denote the intermediate fields properly contained in S
by S1, . . . , Sn ( S, and let AK (S) be the affine space associated to S. (Here we view S as a K -vector
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space.) The nongenerators of S/K may now be viewed as K -points of the finite union

Z =
n⋃

i=1

AK (Si ).

Since we are assuming that every element of S of the form asq is a nongenerator, and K is an infinite field,
the image of the K -morphism f :A(S)→A(S) given by s 7→ asq lies in Z =

⋃n
i=1 AK (Si ). Since AK (S)

is irreducible, we conclude that the image of f lies in one of the affine subspaces AK (Si ), say in AK (S1).
Equivalently, asq

∈ S1 for every s ∈ S. Setting s = 1, we see that a ∈ S1. Dividing asq
∈ S1 by 0 6= a ∈ S1,

we conclude that sq
∈ S1 for every s ∈ S. Thus, S is purely inseparable over S1, contradicting our

assumption that S/K is separable. �

Proof of Proposition 5.1. Let L/K be a field extension of type (n, e). Our goal is to show that ed(L/K )6
n
∑r

j=1 ps j− je j . By Remark 4.2, K is infinite.
Let S be the separable closure of K in L and x1, . . . , xr be a normal generating sequence for the purely

inseparable extension L/S of type e. Set qi = pei . Recall that by the definition of normal sequence,
xq1

1 ∈ S. We are free to replace x1 by x1s for any 0 6= s ∈ S; clearly x1s, x2, . . . , xr is another normal
generating sequence. By Lemma 5.2, we may choose s ∈ S so that (x1s)q1 is a primitive element for S/K .
In other words, we may assume without loss of generality that xq1

1 is a primitive element for S/K .
By the structure theorem of Pickert, each xqi

i lies in S[xqi
1 , . . . , xqi

i−1], where qi = pei [Rasala 1971,
Theorem 1]. In other words, for each i = 1, . . . , r ,

xqi
i =

∑
ad1,...,di−1 xqi d1

1 · · · xqi di−1
i−1 (5-1)

for some ad1,...,di−1 ∈ S. Here the sum is taken over all integers d1, . . . , di−1, where each 06 d j < pe j−ei .
Note that for i = 1 (5-1) reduces to

xq1
1 = a∅,

for some a∅ ∈ S. By Lemma 2.1, L (viewed as an S-algebra), descends to

S0 = k(ad1,...,di−1 | i = 1, . . . , r and 06 d j < pe j−ei ).

Note that for each i = 1, . . . , r , there are exactly

pe1−ei · pe2−ei · · · · · pei−1−ei = psi−iei

choices of the subscripts d1, . . . , di−1. Hence, S0 is generated over k by
∑r

i=1 psi−iei elements and
consequently,

trdeg(S0/k)6
r∑

i=1

psi−iei .

Moreover, since S0 contains a∅ = xq
1 , which is a primitive element for S/K , we conclude that K (S0)= S.

Thus, Lemma 2.2 can be applied to A = L; it yields ed(L/K ) 6 n trdeg(S0/k), and the proposition
follows. �
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Remark 5.3. Suppose L/K is an extension of type (n, e), where e = (e1, . . . , er ). Here, as usual, K
is assumed to contain the base field k of characteristic p > 0. Dividing both sides of the inequality in
Proposition 5.1 by [L : K ] = npe1+···+er , we readily deduce that

ed(L/K )
[L : K ]

6
τ(n)
[L : K ]

6
r∑

i=1

p−iei−ei+1−···−er 6
r
pr 6

1
p
.

In particular, ed(L/K )6 1
2 [L : K ] for any inseparable extension [L : K ] of finite degree, in any (positive)

characteristic. As we pointed out in the introduction, this inequality fails in characteristic 0 (even for
k = C).

6. Versal algebras

Let K be a field and A be a finite-dimensional associative K -algebra with 1. Every a ∈ A gives rise to the
K -linear map la : A→ A given by la(x)= ax (left multiplication by a). Note that lab = la · lb. It readily
follows from this that a has a multiplicative inverse in A if and only if la is nonsingular.

Proposition 6.1. Let l be a prime integer and 3 be a finite-dimensional associative k-algebra with 1.
Assume that there exists a field extension K/k and a K -form A of3 such that A is a division algebra. Then:

(a) There exists a field Kver containing k and a Kver-form Aver of 3 such that

ed(Aver)= ed(Alg3), edl(Aver)= edl(Alg3) for every prime integer l, and

Aver is a division algebra.

(b) If G is the automorphism group scheme of 3, then

ed(G)= ed(Alg3) =max
{
ed(A/K ) | A is a K -form of 3 and a division algebra

}
,

edl(G)= edl(Alg3)=max
{
edl(A/K ) | A is a K -form of 3 and a division algebra

}
.

Here the subscript “ver” is meant to indicate that Aver/Kver is a versal object for Alg3 = H 1(∗,G).
For a discussion of versal torsors, see Section I.5 in [Serre 2003] or [Duncan and Reichstein 2015].

Proof. (a) We begin by constructing a versal G-torsor Tver → Spec(Kver). Recall that G = Autk(3)
is defined as a closed subgroup of the general linear group GLk(3). This general linear group admits
a generically free linear action on some vector space V (e.g., we can take V = Endk(3), with the
natural left G-action). Restricting to G we obtain a generically free representation G→ GL(V ). We can
now choose a dense open G-invariant subscheme U ⊂ V over k which is the total space of a G-torsor
π :U→ B; see, e.g., Example 5.4 in [Serre 2003]. Passing to the generic point of B, we obtain a G-torsor
Tver→ Spec(Kver), where Kver is the function field of B over k. Then ed(Tver/Kver)= ed(G) (see, e.g.,
Section 4 in [Berhuy and Favi 2003]) and edl(Tver/Kver)= edl(G) (see Lemma 6.6 in [Reichstein and
Youssin 2000] or Theorem 4.1 in [Merkurjev 2009]).

Let T → Spec(K ) be the torsor associated to the K -algebra A and Aver be the Kver-algebra associated
to Tver→ Spec(Kver) under the isomorphism between the functors Alg3 and H 1(∗,G) of Proposition 3.4.
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By the characteristic-free version of the no-name lemma, proved in [Reichstein and Vistoli 2006, §2],
T ×V is G-equivariantly birationally isomorphic to T ×Ad

k , where d = dim V and G acts trivially on Ad
k .

In other words, we have a Cartesian diagram of rational maps defined over k:

T ×Ad '
//

��

T × V
pr2

// U

��

Ad
K Spec(K )×Ad // B

Here all direct products are over Spec(k), and pr2 denotes the rational G-equivariant projection map
taking (t, v)∈ T×V to v ∈ V for v ∈U . The map Spec(K )×Ad 99K B in the bottom row is induced from
the dominant G-equivariant map T ×Ad 99KU on top. Passing to generic points, we obtain an inclusion
of field Kver ↪→ K (x1, . . . , xd) such that the induced map H 1(Kver,G)→ H 1(K (x1, . . . , xd),G) sends
the class of Tver → Spec(Kver) to the class associated to T × Ad

→ Ad
K . Under the isomorphism of

Proposition 3.4 between the functors Alg3 and FG = H 1(∗,G), this translates to

Aver⊗Kver K (x1, . . . , xd)' A⊗K K (x1, . . . , xd)

as K (x1, . . . , xd)-algebras.
For simplicity we will write A(x1, . . . , xd) in place of A⊗K K (x1, . . . , xd). Since A is a division

algebra, so is A(x1, . . . , xd). Thus, the linear map la : A(x1, . . . , xd)→ A(x1, . . . , xd) is nonsingular (i.e.,
has trivial kernel) for every a ∈ Aver. Hence, the same is true for the restriction of la to Aver. We conclude
that Aver is a division algebra. Remembering that Aver corresponds to Tver under the isomorphism of
functors between Alg3 and FG , we see that

ed(Aver)= ed(Tver/Kver) = ed(G) = ed(Alg3),

edl(Aver)= edl(Tver/Kver)= edl(G)= edl(Alg3),

as desired.

(b) The first equality in both formulas follows from Proposition 3.4, and the second from part (a). �

We will now revisit the finite-dimensional k-algebras 3e and 3n,e =3e× · · ·×3e (n times) defined
in Section 4; see (4-1). We will write

Gn,e = Aut(3n,e)⊂ GLk(3n,e)

for the automorphism group scheme of 3n,e and Algn,e for the functor Alg3n,e
: Fieldsk→ Sets. Recall

that this functor associates to a field K/k the set of isomorphism classes of K -forms of 3n,e.
Replacing essential dimension by essential dimension at a prime l in the definitions (1-1) and (1-2),

we set

τl(n)=max
{
edl(L/K ) | L/K is a separable field extension of degree n and k ⊂ K

}
,

τl(n, e)=max
{
edl(L/K ) | L/K is a field extension of type (n, e) and k ⊂ K

}
.
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Corollary 6.2. Let l be a prime integer. Then:

(a) ed(Sn)= ed(Etn)= τ(n) and edl(Sn)= edl(Etn)= τl(n). Here Etn is the functor of n-dimensional
étale algebras, as in Example 3.5.

(b) ed(Gn,e)= ed(Algn,e)= τ(n, e) and edl(Gn,e)= edl(Algn,e)= τl(n, e).

Proof. (a) Recall that étale algebras are, by definition, commutative and associative with identity. For
such algebras “division algebra” is the same as “field”. By Lemma 4.4(a) there exists a separable field
extension E/F of degree n with k ⊂ F . The desired equality follows from Proposition 6.1(b).

(b) The same argument as in part (a) goes through, with part (a) of Lemma 4.4 replaced by part (b). �

Remark 6.3. The value of edl(Sn) is known for every integer n > and every prime l > 2:

edl(Sn)=


bn/ lc if char(k) 6= l,
1 if char(k)= l 6 n,
0 if char(k)= l > n.

See respectively [Meyer and Reichstein 2009, Corollary 4.2], [Reichstein and Vistoli 2018, Theorem 1],
and either [Meyer and Reichstein 2009, Lemma 4.1] or [Reichstein and Vistoli 2018, Theorem 1].

7. Conclusion of the proof of Theorem 1.2

In this section we will prove Theorem 1.2 in the following strengthened form.

Theorem 7.1. Let k be a base field of characteristic p > 0, n > 1 and e1 > e2 > · · ·> er > 1 be integers,
e= (e1, . . . , er ), and si = e1+ · · ·+ ei for i = 1, . . . , r . Then

τp(n, e)= τ(n, e)= n
r∑

i=1

psi−iei .

By definition τp(n, e) 6 τ(n, e) and by Proposition 5.1, τ(n, e) 6 n
∑r

i=1 psi−iei . Moreover, by
Corollary 6.2(b), τp(n, e)= edp(Gn,e). It thus remains to show that

edp(Gn,e)> n
r∑

i=1

psi−iei . (7-1)

Our proof of (7-1) will be based on the general inequality, due to Tossici and Vistoli [2013],

edp(G)> dim Lie(G)− dim G (7-2)

for any group scheme G of finite type over a field k of characteristic p. Now recall that Ge = Autk(3e),
and Gn,e =Autk(3n,e), where 3n,e =3

n
e . Since 3e is a commutative local k-algebra with residue field k,

Proposition 2.3 tells us that Gn,e = Gn
e o Sn (see also Proposition 5.1 in [Sancho de Salas 2000]). We

conclude that

dim Gn,e = n dim Ge and dim Lie(Gn,e)= n dim Lie(Ge).
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Substituting these formulas into (7-2), we see that the proof of the inequality (7-1) (and thus of Theorem 7.1)
reduces to the following:

Proposition 7.2. Let e= (e1, . . . , er ), where e1 > · · ·> er > 1 are integers. Then

(a) dim Lie(Ge)= r pe1+···+er , and

(b) dim Ge = r pe1+···+er −
∑r

i=1 psi−iei .

The remainder of this section will be devoted to proving Proposition 7.2. We will use the following
notations.

(1) We fix the type e= (e1, . . . , er ) and set qi = pei .

(2) The infinitesimal group scheme αpl over a commutative ring S of characteristic p is defined as the
kernel of the j-th power of the Frobenius map, Ga→ Ga , x 7→ x p j

, viewed as a homomorphism of
group schemes over S. We will be particularly interested in the case where S =3e.

(3) Suppose X is a scheme over 3, where 3 is a finite-dimensional commutative k-algebra. We will
denote the Weil restriction of the 3-scheme X to k by R3/k(X). For generalities on Weil restriction,
see Chapter 2 and the Appendix in [Milne 2017].

(4) We will denote by End(3e) the functor

Commk→ Sets, R→ EndR-alg(3e⊗k R)

of algebra endomorphisms of 3e. Here Commk denotes the category of commutative associative
k-algebras with 1 and Sets denotes the category of sets.

Lemma 7.3. (a) The functor End(3e) is represented by an irreducible, nonreduced, affine k-scheme Xe.

(b) dim Xe = r pe1+···+er −
∑r

i=1 psi−iei .

(c) dim Tγ (Xe)= r pe1+···+er for any k-point γ of Xe. Here Tγ (Xe) denotes the tangent space to Xe at γ .

Proof. An endomorphism F in End(3e)(R) is uniquely determined by the images

F(x1), F(x2), . . . , F(xr ) ∈3e(R)

of the generators x1, . . . , xr of 3e. These elements of 3e satisfy F(xi )
qi = 0. Conversely, any r elements

F1, . . . , Fr in 3e⊗ R satisfying Fqi
i = 0 give rise to an algebra endomorphism F in End(3e)(R). We

thus have
End(3e)(R)= HomR-alg(3e⊗k R,3e⊗ R)

∼= αq1(3e⊗ R)× · · ·×αqr (3e⊗ R)
∼= R3e/k(αq1)(R)× · · ·× R3e/k(αqr )(R)

∼=

r∏
i=1

R3e/k(αqi )(R).
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We conclude that End(3e) is represented by an affine k-scheme Xe =
∏r

i=1 R3e/k(αqi ). Note that Xe is
isomorphic to

∏r
i=1 R3e/k(αqi ) as a k-scheme only, not as a group scheme. To complete the proof of the

lemma it remains to establish the following assertions, claimed for all q j ∈ {q1, . . . , qr }:

(a′) R3e/k(αq j ) is irreducible.

(b′) dim R3e/k(αq j )= pe1+···+er − ps j− je j .

(c′) dim Tγ (R3e/k(αq j ))= pe1+···+er for any k-point γ of R3e/k(αq j ).

To prove (a′), (b′), and (c′), we will write out explicit equations for R3e/k(αq j ) in R3e/k(A
1)'Ak(3e).

We will work in the basis {x i1
1 x i2

2 · · · x
ir
r } of monomials in3e, where 06 i1<q1, 06 i2<q2, . . . , 06 ir <qr .

Over3e, αq j is cut out (scheme-theoretically) in A1 by the single equation tq j = 0, where t is a coordinate
function on A1. Since xqi

i = 0 for every i , writing

t =
∑

yi1,...,ir x i1
1 x i2

2 · · · x
ir
r

and expanding

tq j =

∑
yq j

i1,...,ir
xq j i1

1 xq j i2
2 · · · xq j ir

r

we see that the only monomials appearing in the above sum are those for which

q j i1 < q1, q j i2 < q2, . . . , q j ir < qr .

Thus, R3e/k(αq j ) is cut out (again, scheme-theoretically) in R3e/k(A
1)' A(3e) by

yq j
i1,...,i j−1,0,...,0 = 0 for 06 i1 <

q1

q j
, . . . , 06 i j−1 <

q j−1

q j
,

where yi1,...,ir are the coordinates in A(3e). In other words, R3e/k(αq j ) is the subscheme of R3e/k(A
1)'

Ak(3e)' A
pe1+···+er

k cut out (again, scheme-theoretically) by q j -th powers of

q1

q j

q2

q j
· · ·

q j−1

q j
= ps j− je j

distinct coordinate functions. The reduced scheme R3e/k(αq j )red is thus isomorphic to an affine space
of dimension pe1+···+er −

∑r
j=1 ps j− je j . On the other hand, since q j is a power of p, the Jacobian

criterion tells us that the tangent space to R3e/k(αql ) at any k-point is the same as the tangent space
to A(3e)= Ape1+···+er , and (a′), (b′), and (c′) follow. �

Conclusion of the proof of Proposition 7.2. The automorphism group scheme Ge is the group of invertible
elements in End(3e). In other words, the natural diagram

Ge //

��

GLN

��

End(3e) // MatN×N
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where N = dim3e = pe1+···+er , is Cartesian. Hence, Ge is an open subscheme of Xe. Since Xe is
irreducible, Proposition 7.2 follows from Lemma 7.3. This completes the proof of Proposition 7.2 and
thus of Theorem 7.1. �

8. Alternative proofs of Theorem 1.2

The proof of the lower bound of Theorem 1.2 given in Section 7 is the only one we know. However, we
have two other proofs for the upper bound (Proposition 5.1), in addition to the one given in Section 5. In
this section we will briefly outline these arguments for the interested reader.

Our first alternative proof of Proposition 5.1 is based on an explicit construction of the versal algebra Aver

of type (n, e) whose existence is asserted by Proposition 6.1. This construction is via generators and
relations, by taking “the most general” structure constants in (5-1). Versality of Aver constructed this way
takes some work to prove; however, once versality is established, it is easy to see directly that Aver is a
field and thus

τ(n, e)= ed(Aver)6 trdeg(Kver/k)= n
r∑

i=1

psi−iei .

Our second alternative proof of Proposition 5.1 is based on showing that the natural representation
of Gn,e on V =3r

n,e is generically free. Intuitively speaking, this is clear: 3n,e is generated by r elements
as a k-algebra, so r-tuples of generators of 3n,e are dense in V and have trivial stabilizer in Gn,e. The
actual proof involves checking that the stabilizer in general position is trivial scheme-theoretically and
not just on the level of points. Once generic freeness of this linear action is established, the upper bound
of Proposition 5.1 follows from the inequality

ed(Gn,e)6 dim V − dim Gn,e;

see, e.g., Proposition 4.11 in [Berhuy and Favi 2003]. To deduce the upper bound of Proposition 5.1 from
this inequality, recall that

• τ(n, e)= ed(Gn,e) (see Corollary 6.2(b)),

• dim V = r dim3n,e = nr dim3e = nr pe1+···+er (clear from the definition), and

• dim Gn,e = n dim Ge = nr pe1+···+er − n
∑r

i=1 psi−iei (see Proposition 7.2(b)).

9. The case, where e1 = · · · = er

In the special case where n = 1 and e1 = · · · = er , Theorem 1.2 tells us that τ(n, e)= r . In this section,
we will give a short proof of the following stronger assertion under the assumption that k is perfect.

Proposition 9.1. Let e = (e, . . . , e) (r times) and L/K be purely inseparable extension of type e, with
k ⊂ K . Assume that the base field k is perfect. Then edp(L/K )= ed(L/K )= r .

The assumption that k is perfect is crucial here. Indeed, by Lemma 4.4(b), there exists a field extension
L/K of type e. If we do not require k to be perfect, then we may set k = K . In this case ed(L/K )= 0,
and the proposition fails.
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The remainder of this section will be devoted to proving Proposition 9.1. We begin with two reductions.

(1) It suffices to show that

ed(L/K )= r for every field extension L/K of type e; (9-1)

the identity edp(L/K ) will then follow. Indeed, edp(L/K ) is defined as the minimal value of ed(L ′/K ′)
taken over all finite extensions K ′/K of degree prime to p. Here L ′ = L⊗K K ′. Since [L : K ] is a power
of p, L ′ is a field, so (9-1) tells us that ed(L ′/K ′)= r .

(2) The proof of the upper bound,

ed(L/K )6 r, (9-2)

is the same as in Section 5, but in this special case the argument is much simplified. For the sake of
completeness we reproduce it here. Let x1, . . . , xr be a normal generating sequence for L/K . By a theorem
of Pickert [Rasala 1971, Theorem 1], xq

1 , . . . , xq
r ∈ K , where q = pe. Set ai = xq

i and K0= k(a1, . . . , ar ).
The structure constants of L relative to the K -basis xd1

1 · · · x
dr
r of L , with 06 d1, . . . , dr 6 q − 1 all lie

in K0. Clearly trdeg(K0/k)6 r ; the inequality (9-2) now follows from Lemma 2.1.

It remains to prove the lower bound, ed(L/K )> r . Assume the contrary: L/K descends to L0/K0 with
trdeg(K0/k) < r . By Lemma 2.1, L0/K0 further descends to L1/K1, where K1 is finitely generated over
k. By Lemma 4.6, L1/K1 is a purely inseparable extension of type e. After replacing L/K by L1/K1, it
remains to prove the following:

Lemma 9.2. Let k be a perfect field and K/k be a finitely generated field extension of transcendence
degree < r . There does not exist a purely inseparable field extension L/K of type e= (e1, . . . , er ), where
e1 > · · ·> er > 1.

Proof. Assume the contrary. Let a1, . . . , as be a transcendence basis for K/k. That is, a1, . . . , as are
algebraically independent over k, K is algebraic and finitely generated (hence, finite) over k(a1, . . . , as),
and s 6 r − 1. By Remark 4.3,

[L : L p
]> [L : (L p

· K )] = pr . (9-3)

On the other hand, since [L : k(a1, . . . , as)]<∞, Theorem 3 in [Becker and MacLane 1940] tells us that

[L : L p
] = [k(a1, . . . , as) : k(a1, . . . , as)

p
] = [k(a1, . . . , as) : k(a

p
1 , . . . , a p

s )] = ps < pr . (9-4)

Note that the second equality relies on our assumption that k is perfect. The contradiction between (9-3)
and (9-4) completes the proof of Lemma 9.2 and thus of Proposition 9.1. �
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