Vol. 13, No. 2, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 8, 1765–1981
Issue 7, 1509–1763
Issue 6, 1243–1507
Issue 5, 995–1242
Issue 4, 749–993
Issue 3, 531–747
Issue 2, 251–530
Issue 1, 1–249

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editors' Interests
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Le théorème de Fermat sur certains corps de nombres totalement réels

Alain Kraus

Vol. 13 (2019), No. 2, 301–332
Abstract

Soit K un corps de nombres totalement réel. Pour tout nombre premier p 5, notons Fp la courbe de Fermat d’équation xp + yp + zp = 0. Sous l’hypothèse que 2 est totalement ramifié dans K, on établit quelques résultats sur l’ensemble Fp(K) des points de Fp rationnels sur K. On obtient un critère pour que le théorème de Fermat asymptotique soit vrai sur K, critère relatif à l’ensemble des newforms modulaires paraboliques de Hilbert sur K, de poids parallèle 2 et de niveau l’idéal premier au-dessus de 2. Il peut souvent se tester simplement numériquement, notamment quand le nombre de classes restreint de K vaut 1. Par ailleurs, en utilisant la méthode modulaire, on démontre le théorème de Fermat de façon effective, sur certains corps de nombres dont les degrés sur sont 3,4,5,6 et 8.

Let K be a totally real number field. For all prime number p 5, let us denote by Fp the Fermat curve of equation xp + yp + zp = 0. Under the assumption that 2 is totally ramified in K, we establish some results about the set Fp(K) of points of Fp rational over K. We obtain a criterion so that the asymptotic Fermat’s last theorem is true over K, criterion related to the set of Hilbert modular cuspidal newforms over K, of parallel weight 2 and of level the prime ideal above 2. It is often simply testable numerically, particularly if the narrow class number of K is 1. Furthermore, using the modular method, we prove Fermat’s last theorem effectively, over some number fields whose degrees over are 3,4,5,6 and 8.

Keywords
Fermat equation, number fields, elliptic curves, modular method
Mathematical Subject Classification 2010
Primary: 11D41
Secondary: 11G05, 11R37
Milestones
Received: 24 September 2017
Revised: 13 April 2018
Accepted: 23 September 2018
Published: 2 March 2019
Authors
Alain Kraus
Institut de Mathématiques de Jussieu - Paris Rive Gauche
Sorbonne Université
UMR 7586 CNRS - Paris Diderot
75005 Paris
France