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We prove a transcendence theorem concerning values of holomorphic maps from a disk to a quasiprojective
variety over Q that are integral curves of some algebraic vector field (defined over Q). These maps are
required to satisfy some integrality property, besides a growth condition and a strong form of Zariski-
density that are natural for integral curves of algebraic vector fields.

This result generalizes a theorem of Nesterenko concerning algebraic independence of values of the
Eisenstein series E2, E4, E6. The main technical improvement in our approach is the replacement of
a rather restrictive hypothesis of polynomial growth on Taylor coefficients by a geometric notion of
moderate growth formulated in terms of value distribution theory.
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1. Introduction

1A. A theorem of Nesterenko. This work was motivated by questions related to the following algebraic
independence result.

Let E2, E4, and E6 be the classical Eisenstein series, seen as holomorphic functions on the complex
unit disk D := {q ∈ C | |q|< 1}, explicitly defined by

E2(q)= 1− 24
∞∑
j=1

σ1( j)q j , E4(q)= 1+ 240
∞∑
j=1

σ3( j)q j , E6(q)= 1− 504
∞∑
j=1

σ5( j)q j
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for every q ∈ D, where σk( j) :=
∑

d| j dk
∈ Z. Let us also consider the q-expansion of the j-invariant

J (q)= 1728
E4(q)3

E4(q)3− E6(q)2
=

1
q
+ 744+

∞∑
j=1

c( j)q j .

Theorem 1.1 [Nesterenko 1996]. For every z ∈ D \ {0}, we have

trdegQ Q(z, E2(z), E4(z), E6(z))≥ 3.

This result is an improvement of Barré-Sirieix, Diaz, Gramain, and Philibert’s [Barré-Sirieix et al.
1996] breakthrough concerning the solution of a conjecture of Mahler: for every algebraic z ∈ D \ {0},
J (z) is transcendental.

In order to fully motivate our contributions, we next sketch the main steps of Nesterenko’s original
proof.

In view of an algebraic independence criterion due to Philippon [1986, Théorème 2.11], see also
[Nesterenko 1996, Lemma 2.5], it suffices to construct a sequence of polynomials with integral coefficients
Qn ∈ Z[X0, X1, X2, X3], for n� 0, such that deg Qn = O(n log n), log ‖Qn‖∞ = O(n log2 n)— here,
‖Qn‖∞ denotes the maximum of the absolute values of all the coefficients of Qn — and

−an4
≤ log |Qn(z, E2(z), E4(z), E6(z))| ≤ −bn4

for some real constants a > b > 0.
For this, Nesterenko implemented a method benefiting from the fact that E2, E4, and E6 have integral

Taylor coefficients in their q-expansion and satisfy the so-called Ramanujan equations

q
d E2

dq
=

E2
2 − E4

12
, q

d E4

dq
=

E2 E4− E6

3
, q

d E6

dq
=

E2 E6− E2
4

2
.

It is also essential in his construction that

(i) (growth condition) for each k ∈ {1, 2, 3}, the sequence of Taylor coefficients (E ( j)
2k (0)/j !) j≥0 grows

polynomially in j , and

(ii) (zero lemma)1 there exists a constant C > 0 such that

ordq=0 P(q, E2(q), E4(q), E6(q))≤ C(deg P)4

for every nonzero polynomial P ∈ C[X0, X1, X2, X3] \ {0}.

The first condition can be easily deduced from the explicit description of the Taylor coefficients of E2k

given above. The second, which may be regarded as a strong form of algebraic independence between
the functions q , E2(q), E4(q), and E6(q), is a nontrivial consequence of Nesterenko’s D-property [1996,

1In Diophantine approximation and transcendental number theory, “zero lemma” is an umbrella term covering several
auxiliary results involving estimates of the number of zeros in a certain region, or zeros’ multiplicities, of polynomials composed
with analytic functions.
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Section 6] (see Definition B.1), an algebraic property concerning the global behavior of the foliation
in C4 induced by the vector field

v := x0
∂

∂x0
+
(x2

1 − x2)

12
∂

∂x1
+
(x1x2− x3)

3
∂

∂x2
+
(x1x3− x2

2)

2
∂

∂x3
. (1-1)

A considerable part of [Nesterenko 1996] is devoted to a proof of a stronger form of the estimate in (ii).
Nesterenko’s method goes as follows:

(1) Using that the Taylor coefficients of E2, E4, and E6 are integers of polynomial growth (property (i)
above), we may apply Siegel’s lemma [Lang 1966, I.1, Lemma 1] to obtain auxiliary polynomials with
integral coefficients Pn ∈ Z[X0, X1, X2, X3] \ {0} such that deg Pn = n, log ‖Pn‖∞ = O(n log n), and

ordq=0 Pn(q, E2(q), E4(q), E6(q))≥ cn4

for some constant c > 0.

(2) For a fixed z ∈ D \ {0}, the next step consists in proving the existence of a sequence jn = O(n log n)
and of constants α>β > 0 such that the composed function fn(q) := Pn(q, E2(q), E4(q), E6(q)) satisfies

−αn4
≤ log | f ( jn)

n (z)| ≤ −βn4

for n� 0. The main point for obtaining the above lower bound is that, if all the Taylor coefficients of fn

at q = z up to a sufficiently large order are too small, then its first nonzero Taylor coefficient at q = 0
will have absolute value < 1, thereby contradicting its integrality. Here, we also make essential use of
property (ii) above. This is the most delicate part of the argument.

(3) Finally, for n� 0, if we consider the differential operator

v[ jn] := 12 jnv ◦ (v− 1) ◦ · · · ◦ (v− ( jn − 1)),

then the Ramanujan equations imply that Qn := v
[ jd ](Pn) ∈ Z[X0, X1, X2, X3] satisfies

(12q) jn f ( jn)
n (q)= Qn(q, E2(q), E4(q), E6(q))

for every q ∈ D. The required properties for Qn are now easily deducible from (1) and (2).

1B. A puzzling remark. One of the most striking features of the above method is its generality.
Indeed, a close inspection of the previous arguments suggests that, if f1, . . . , fm are holomorphic

functions on the unit disk D with integral Taylor coefficients at q=0, satisfying some algebraic differential
equations with rational coefficients, and verifying conditions akin to (i) and (ii) above, then, mutatis
mutandis, the above method applied to the system ( f1, . . . , fm) in place of (E2, E4, E6) would produce
another transcendence result.

This was certainly known to specialists; see, for instance, [Nesterenko 2001, Section 3], where the
pertinent properties satisfied by E2, E4, and E6 were axiomatized as above — more generally, see the notion
of K -functions introduced in [Philippon 1998]. Clearly, one may produce examples of such fi ad libitum
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by algebraically manipulating Eisenstein series, but this procedure does not lead to new transcendence
results. The problem on the existence of functions f1, . . . , fm satisfying the above properties, but not
“related” to classical modular forms (in some imprecise sense), was explicitly stated in [Zudilin 2003].

Since the publication of [Candelas et al. 1991a; 1991b; Morrison 1993], it became apparent that the
phenomenon of mirror symmetry provides a large class of functions with integral Taylor coefficients with
respect to some canonical coordinate and which satisfy natural algebraic differential equations — see
[Lian and Yau 1998; Zudilin 2002; Kontsevich et al. 2006; Krattenthaler and Rivoal 2010; Delaygue
et al. 2017] for integrality issues. Zudilin [2000] studied some candidates within mirror symmetry for
playing the role of ( f1, . . . , fm), but the few cases where he is able to prove all the required properties of
Nesterenko’s method — those linked to elliptic curves and K 3 surfaces — are all of modular nature.

It becomes clear in Zudilin’s work that one of the main obstructions in applying this method for such
functions is condition (i) (and, in particular, that the radius of convergence is equal to 1), which is not
verified in general. In a more basic level, computing radii of convergence or getting global information on
the domain of definition of such functions pertaining to mirror symmetry is a current research problem;
see [Krattenthaler and Rivoal 2012] for results on certain families of mirror maps.

The following phenomenon provides further evidence that condition (i) is overly restrictive. Let f be
the holomorphic function on D given by f (q)= q J (q) and set θ := q(d/dq). Since Q(J, θ J, θ2 J )=
Q(E2, E4, E6) (see, for instance, the explicit formulas in [Nesterenko 1996, Paragraph 1]), it follows
from Theorem 1.1 that

trdegQ Q(z, f (z), θ f (z), θ2 f (z))≥ 3

for any z ∈ D \ {0}. However, Nesterenko’s method cannot be directly applied to the system ( f, θ f, θ2 f )
since the sequence c( j) does not grow polynomially in j .2 All the other good properties are nevertheless
satisfied: f , θ f , and θ2 f have integral Taylor coefficients, the Ramanujan equations imply f satisfies a
third-order algebraic differential equation with rational coefficients, and a condition similar to (ii) also
holds.

This paper grew from an observation of J.-B. Bost and H. Randriambololona that the growth condition (i)
in Nesterenko’s method could be replaced by a geometric notion of moderate growth formulated in terms
of characteristic functions a la Nevanlinna theory. Besides being weaker than the growth condition in (i),
which in principle enlarges the domain of application of Nesterenko’s method, this geometric growth
condition is preserved under some algebraic manipulations on the input functions, thereby eliminating the
odd phenomenon explained in last paragraph.

We next explain our main results. Further directions and open problems are indicated below.

1C. Our main results: a geometric approach. Our main theorem is a general geometric formulation
of Nesterenko’s method valid for arbitrary rings of algebraic integers and more general quasiprojective
ambient spaces.

2Actually, c( j)∼ e4π
√

j/(
√

2 j3/4); see [Petersson 1932; Rademacher 1938].
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Let us first informally introduce the geometric notions which will replace conditions (i) and (ii) above.

1C1. Moderate growth. Let X be a smooth projective variety over C, and h be a C∞ Hermitian metric
on the complex manifold X (C). Let ω := − Im h be the positive real (1,1)-form on X (C) associated to h.
To fix ideas, the reader may consider the example X = Pn

C
endowed with the Fubini–Study metric, for

which ω is given in homogeneous coordinates z = (z0 : · · · : zn) by

ω =
i

2π
∂∂̄ log |z|2 =

i
2π

(∑n
j=0 dz j ∧ dz̄ j

|z|2
−

∑n
j,k=0 z̄ j zkdz j ∧ dz̄k

|z|4

)
,

where |z|2 =
∑n

j=0 |z j |
2.

Let R > 0 be a real number and denote by DR := {z ∈ C | |z| < R} the complex disk of radius R
centered at the origin. One may measure the growth of an analytic map ϕ : DR→ X (C) as follows. For
each t ∈ (0, R), the area of the “disk” ϕ(Dt) in X (C) with respect to the metric h is given by

Aϕ(t) :=
∫

Dt

ϕ∗ω.

We may then form the characteristic function

Tϕ : (0, R)→ R≥0, r 7→ Tϕ(r) :=
∫ r

0
Aϕ(t) d log t,

and we say that ϕ has moderate growth in X if

lim sup
r→R−

Tϕ(r)

log 1
1−r/R

<+∞.

By the compactness of X (C), moderate growth does not depend on the choice of Hermitian metric.
When R = 1, any analytic map ϕ : D→ Cn

⊂ Pn(C) whose coordinates have Taylor coefficients of
polynomial growth has moderate growth in Pn

C
(see Example 4.5 below). Therefore, moderate growth

generalizes the growth condition (i) in Nesterenko’s method.
Moderate growth is nonetheless more flexible than polynomial growth on Taylor coefficients. For

instance, as long as the image of ϕ : DR→ X (C) is Zariski-dense in X , moderate growth is a birational
invariant in the following sense: if f : X → Y is a birational morphism between smooth projective
varieties over C, then ϕ has moderate growth in X if and only if f ◦ ϕ has moderate growth in Y (see
Theorem 4.11 and Corollary 4.12 below). In particular, this allows us to define, via compactifications, an
unambiguous notion of moderate growth in smooth quasiprojective varieties.

1C2. ZL-density. Let k be a field, X a projective variety over k of dimension n, and L an ample line
bundle on X . Consider a parametrized formal curve ϕ̂ : Spf k[[q]] → X in X ; i.e., ϕ̂ is a morphism of
formal k-schemes.

We say that ϕ̂ is ZL-dense in X if there exists a constant C > 0 such that, for every integer d ≥ 1 and
every nonzero global section s ∈ 0(X, L⊗d) \ {0}, we have

ordq=0 ϕ̂
∗s ≤ Cdn.
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The exponent n = dim X in the above polynomial bound is the smallest possible (see Proposition 2.6
below). Moreover, since L is ample, a ZL-dense formal curve has Zariski-dense image. Thus, ZL-density
may be regarded as a strong form of Zariski-density.

For a formal curve ϕ̂ : Spf k[[q]] → An
k ⊂ Pn

k the above notion boils down to a classical zero-lemma
property — here, L =OPn

k
(1). For instance, taking k = C, n = 4, and ϕ̂ defined by the system of formal

series (q, E2(q), E4(q), E6(q)), the zero lemma in condition (ii) above amounts to asserting that ϕ̂ is
ZL-dense in P4

C
.

We shall prove that ZL-density does not depend on the choice of L (see Proposition 2.9 below).
Actually, if X is only quasiprojective and the closed point ϕ̂(0) in the image of ϕ̂ is a regular point of X ,
then we shall prove that ZL-density does not depend on the choice of a projective compactification of X
(see Corollary 2.16 below).

1C3. Statement of our main theorem and proof method. Let K be a number field and OK be its ring of
integers. By an arithmetic scheme over OK we mean an integral scheme X endowed with a separated and
flat morphism of finite type X → SpecOK .

The following theorem formalizes and generalizes Nesterenko’s method.

Theorem 1.2. Let X be a quasiprojective arithmetic scheme over OK of relative dimension n ≥ 2, with
smooth generic fiber XK , and let ϕ̂ : SpfOK [[q]] → X be a morphism of formal OK -schemes such that,
for every field embedding σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]] → Xσ , obtained from ϕ̂ by base
change, lifts to an analytic curve ϕσ : DRσ ⊂ C→ X an

σ defined on a disk of radius Rσ > 0 centered at the
origin.

Assume that ∏
σ :K ↪→C

Rσ = 1

and that there exists a vector field v ∈ 0(XK , TXK /K ) \ {0} on the generic fiber of X such that ϕ̂K :

Spf K [[q]] → XK satisfies the differential equation

q
dϕ̂K

dq
= v ◦ ϕ̂K .

If , moreover,

(1) the formal curve ϕ̂K is ZL-dense in XK , and

(2) for each field embedding σ : K ↪→ C, the analytic curve ϕσ : DRσ → X an
σ has moderate growth,

then, for every σ : K ↪→ C, and every z ∈ DRσ r {0}, the field of definition K (ϕσ (z)) of the complex point
ϕσ (z) in XK satisfies

trdegQ K (ϕσ (z))≥ n− 1.

Let us remark that the conditions of ZL-density and of moderate growth, corresponding to conditions (i)
and (ii) in Nesterenko’s method, are actually very mild hypotheses.



Algebraic independence for values of integral curves 649

For instance, ZL-density is automatic whenever ϕ̂ is a smooth integral curve of some vector field
satisfying Nesterenko’s D-property. When the ambient space is an affine space, this is also a theorem of
Nesterenko [1996, Theorem 6], which was recently extended to a geometric framework by Binyamini
[2014]. In Appendix B we explain how to slightly modify Binyamini’s arguments to prove a similar
statement for any smooth quasiprojective variety.

Moderate growth, in turn, is satisfied for curves having uniformly bounded derivative on the disk
(endowed with the Poincaré metric; see Example 4.3 for a precise statement). In particular, a theorem of
Brunella [Fornæss and Sibony 2008, Theorem 16] (see also Theorem 15 of that paper) implies that, for a
generic one-dimensional holomorphic foliation (with singularities) F on Pn(C), any integral curve to F
parametrized by a disk has moderate growth.

In the broader context of transcendental number theory, our result may be regarded as complementary to
the Siegel–Shidlovsky and Schneider–Lang theories, which also deal with algebraic independence or tran-
scendence of values of integral curves of algebraic vector fields (see [Gasbarri 2010; 2013; Herblot 2012]
for general geometric formulations). Indeed, while the Siegel–Shidlovsky and Schneider–Lang criteria
handle curves parametrized by parabolic Riemann surfaces, our theorem deals with the hyperbolic case.

Our proof of Theorem 1.2 bears the same general structure of Nesterenko’s method. We also start
by reducing it to a Diophantine approximation statement: Theorem 7.1 below. This is done via the
same algebraic independence criterion of Philippon; we explain in Appendix A how to generalize it to
arbitrary quasiprojective varieties. The first step in the method, concerning the construction of “auxiliary
polynomials”, is replaced in our geometric framework by a construction of “auxiliary sections” given
by Theorem 5.1 below, the proof of which makes essential use of Bost’s method of slopes [1996] in
Arakelov theory; see also [Bost 2001; 2006]. The second step also involves estimating some higher-order
derivative — here, our main tool is a general result comparing, for a section of a Hermitian line bundle on
a disk, norms of jets at two distinct points; see Proposition 3.13 below and its corollaries. The third and
last step is essentially the same trick using the differential equation as explained above.

1D. Further directions and open problems. With Theorem 1.2 in hand, we may turn the puzzling
remark explained above into a precise mathematical question: is there any example of an application of
Theorem 1.2 whose resulting transcendence statement is not contained in Theorem 1.1?

As promising as the potential candidates from the theory of mirror symmetry may seem, one must face,
given our current state of knowledge, the logical possibility of a negative answer. However, let us remark
that a proof of this fact would be as remarkable as the discovery of a new example, since it would imply
that modular functions and their derivatives are the only ones satisfying the (quite general) hypotheses of
Theorem 1.2, which make no explicit reference to their geometric nature in terms of moduli of elliptic
curves.

This paper, specially our geometric formulation of Theorem 1.2, should also be seen as a first step in a
larger program aiming to adapt and apply Nesterenko’s method to the study of algebraic independence of
abelian periods of genus g > 1.
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Since values of quasimodular forms can be expressed in terms of periods of elliptic curves, the theorem
of Nesterenko recovers in particular a famous result of Chudnovsky [1980] establishing Grothendieck’s
period conjecture for complex multiplication elliptic curves. A family of analogs of (E2, E4, E6) related to
the Siegel moduli spaces Ag was constructed in [Fonseca 2018]; in this setting involving analytic functions
of several variables, in addition to being easier to read the relevant properties required by Nesterenko’s
method from geometry, the appearance of truly geometric phenomena — such as positive-dimensional
“special subvarieties” of Ag — strongly suggests a geometric approach.

1E. Organization of this article. A great effort has been done to isolate all the different techniques
intervening in Nesterenko’s method and to place them in their natural generality. This distillation process
is aimed not only at improving the readability of our paper, but also at making these techniques suitable
for other applications in Diophantine approximation.

Section 2 contains the definition of ZL-density and some of its basic properties; here we use elementary
intersection theory. Section 3 defines characteristic functions and moderate growth for 2-forms on a disk
and contains basic versions of the jet estimates we shall need later; our main result here is Proposition 3.13
(see also Corollary 3.16). Both Sections 2 and 3 are self-contained and are of independent interest.

Section 4 treats the special case of moderate growth for analytic curves (as explained in this introduction)
and it depends only on the beginning of Section 3. Its main objective is to prove that, under a nondegeneracy
hypothesis, this concept is a birational invariant of the target space (Theorem 4.11); this is essentially
classical material on Nevanlinna theory.

Section 5 is devoted to the construction of “auxiliary sections” in a geometric context. Here, we
combine the concepts of moderate growth developed in Sections 3 and 4 with Bost’s slope inequality to
obtain Theorem 5.1. This section contains a review of the prerequisites in Arakelov theory.

In Section 6 we explain how vector fields induce derivations on global sections of line bundles and we
provide some L∞ estimates. This section is also self-contained and of independent interest.

Section 7 contains a proof of Theorem 1.2. The reader will recognize, in Lemmas 7.2, 7.3, and 7.4,
natural generalizations of the three steps of Nesterenko’s method explained above.

Finally, Appendices A and B concern geometric generalizations of results of Philippon and Binyamini
originally stated only for affine (or projective) spaces, as explained above. In Appendix B we make use
of the basic constructions of Section 6.

1F. Terminology and notation.

1F1. By an (algebraic) variety over a field k we mean a separated integral scheme of finite type over k.

1F2. Recall that a line bundle L on a scheme X is semiample if there exists an integer m ≥ 1 such
that L⊗m is generated by its global sections. Observe that ample line bundles are semiample, and that
semiampleness is preserved under pullbacks.
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1F3. A real (1,1)-formω on a complex manifold M can always be written, in local coordinates (z1, . . . , zn)

on M, as

ω =
i
2

n∑
k,l=1

hkl dzk ∧ dz̄l,

where H := (hkl)1≤k,l≤n is a Hermitian matrix. We say that ω is positive (resp. semipositive) if the
matrix H is positive-definite (resp. positive-semidefinite). Note that semipositive (1,1)-forms are stable
under pullbacks.

1F4. By a Hermitian line bundle L = (L , ‖ ‖) on a complex manifold M, we mean a holomorphic line
bundle L on M endowed with a C∞ Hermitian metric ‖ ‖. If 2 denotes the curvature of the Chern
connection on L associated to ‖ ‖ (locally, 2=−∂∂̄ log ‖e‖2 where e is some trivialization of L), then
we define the Chern curvature of L by

c1(L)=
i

2π
2.

This is a closed real C∞ (1, 1)-form on M whose class in H 2(M,R) coincides with the first Chern
class c1(L). We say that L is positive (resp. semipositive) if c1(L) is positive (resp. semipositive).

1F5. We use the standard notation

dc
=

i
4π
(∂̄ − ∂)=

1
4π

(
r
∂

∂r
⊗ dθ −

1
r
∂

∂θ
⊗ dr

)
,

so that ddc
=

i
2π ∂∂̄ .

1F6. The continuous function log+ : R→ R is defined by

log+ x =
{

log x if x ≥ 1,
0 otherwise.

2. ZL-dense formal curves in quasiprojective varieties

In this section we introduce the purely algebraic concept of ZL-dense formal curves, and we prove some
of its basic properties. This notion refines the property of being Zariski-dense and isolates the content of
the zero lemma necessary in Nesterenko’s method; that is, a formal curve satisfies the zero lemma if and
only if it is ZL-dense.

2A. Degree of a divisor with respect to a line bundle. Let k be a field and X be a variety over k.
Recall from [Fulton 1984, 2.5] that (the isomorphism class of) a line bundle L on X defines an additive

operator
α 7→ c1(L)∩α

on the abelian group of algebraic cycles in X modulo rational equivalence; if α is the class of a subvariety V
of X , then c1(L)∩α is by definition the class of the cycle in V associated to any Cartier divisor D of V for
which L|V ∼=OV (D). The r -fold composition of this operator with itself is denoted by α 7→ c1(L)r ∩α.
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We say that a cycle class α in X is semipositive if there exists an integer m ≥ 1 such that mα can be
represented by a nonnegative cycle in X (i.e., a cycle of the form

∑
i mi [Vi ], with each mi ≥ 0). For

instance, the cycle class of a Cartier divisor D is semipositive if and only if some positive multiple of D
is linearly equivalent to an effective divisor.

Lemma 2.1. Let L be a semiample line bundle on X (see Section 1F2 for a definition). Then c1(L)∩α is
semipositive for any semipositive cycle class α in X.

Proof. Let m ≥ 1 be an integer such that mα is represented by the cycle
∑

i mi [Vi ], with each mi ≥ 0.
As L is semiample, there exists an integer n ≥ 1 such that L⊗n is generated by global sections. In

particular, for any subvariety V of X , the line bundle L⊗n
|V on V admits a nonzero global section sV .

For every i , c1(L⊗n)∩[Vi ] is the cycle class induced by the effective Cartier divisor div(sVi ) on Vi , so
that nm c1(L)∩α = c1(L⊗n)∩mα is represented by the nonnegative cycle

∑
i mi [div(sVi )]. �

Still following the terminology of [Fulton 1984], for any line bundle L on X , and any r -cycle class α
in X , the L-degree of α is defined by

degL α = deg(c1(L)r ∩α),

where deg denotes the degree function on zero-cycle classes. If D is a Cartier divisor on X , then we
denote by

degL D = deg(c1(L)dim X−1
∩ [D])

the L-degree of the cycle class [D] induced by D.
Observe that the degree of a semipositive zero-cycle class is nonnegative. In the next result, we use the

following easy consequence of Lemma 2.1: if L is semiample and α is semipositive, then degL α ≥ 0
[Fulton 1984, Lemma 12.1].

Proposition 2.2. Let X be a projective variety over a field k and L (resp. M) be an ample (resp. semiample)
line bundle on X. Then, there exists an integer m ≥ 1 such that, for any semipositive r-cycle class α in X ,
we have

0≤ degM α ≤ mr degL α.

Proof. Let m ≥ 1 be an integer such that N := L⊗m
⊗M∨ is semiample. For any r-cycle class α in X ,

we have

mr degL α = degL⊗m α = degN⊗M α =

r∑
s=0

(r
s

)
degM(c1(N )s ∩α).

Since N is semiample and α is semipositive, it follows from Lemma 2.1 that each c1(N )s∩α is semipositive.
As M is also semiample, we conclude that each term in the right-hand side of the above equation is
nonnegative, so that mr degL α ≥ degM α ≥ 0. �

Remark 2.3. By combining the above proposition with an induction argument in r , one can actually
prove the following generalization. Let X be a projective variety over a field k, L be an ample line bundle
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on X , and M be any line bundle on X . Then there exists a constant C > 0 such that |degM α| ≤ C degL α

for every semipositive cycle class α in X .

Corollary 2.4. Let X be a projective variety over a field k. If L and M are ample line bundles on X , then
there exist constants C1,C2 > 0 such that

C1 degM D ≤ degL D ≤ C2 degM D

for any effective Cartier divisor D in X. �

2B. ZL-dense formal curves in projective varieties. Let X be an algebraic variety over a field k and
consider the ring of formal power series k[[q]]. By a formal curve in X we mean a morphism of k-schemes
ϕ̂ :Spec k[[q]]→ X , or, equivalently, a morphism of formal k-schemes ϕ̂ :Spf k[[q]]→ X . The k-point of X
obtained by composing the k-point of Spec k[[q]] given by the ideal (q)⊂ k[[q]] with ϕ̂ is denoted by ϕ̂(0).

Let ϕ̂ : Spec k[[q]] → X be a formal curve in X , and D be an effective Cartier divisor in X . We define
the intersection multiplicity of D with ϕ̂ (at ϕ̂(0)) by

multϕ̂ D := ord0 ϕ̂
∗ f,

where f ∈OX,ϕ̂(0) is any local equation for D around ϕ̂(0). This clearly does not depend on the choice
of f . The multiplicity function multϕ̂ is additive and takes values in N∪ {+∞}.

Definition 2.5. Let X be a projective variety of dimension n over a field k and let L be any ample line
bundle on X . We say that a formal curve ϕ̂ : Spec k[[q]] → X in X is ZL-dense if there exists a constant
C > 0 such that

multϕ̂ D ≤ C(degL D)n (2-1)

for every effective Cartier divisor D in X .

Observe that the choice of L in the above definition is irrelevant by Corollary 2.4.
Let us remark that the exponent n = dim X intervening in the polynomial bound (2-1) is the smallest

possible one:

Proposition 2.6. Let X be a projective variety of dimension n over k endowed with an ample line bundle L ,
and ϕ̂ be a formal curve in X. Then there exists ε > 0 and sequence of effective Cartier divisors (Di )i≥1

on X satisfying

lim
i→+∞

degL Di =+∞ and multϕ̂ Di ≥ ε(degL Di )
n for every i ≥ 1.

In the above statement we allow the possibility that multϕ̂ Di = +∞ (i.e., the divisor Di vanishes
identically along the formal curve ϕ̂) by adopting the standard convention that +∞≥ t for every t ∈ R.

Proof. Assume first that X = Pn
k and L =O(1). Consider the natural projection An

k \ {0}→ Pn
k and lift ϕ̂

to some ψ̂ : Spec k[[q]] → An
k \ {0}. Let i ≥ 1 be an integer. If P =

∑
|I |=i aI X I

∈ k[X0, . . . , Xn] is a
homogeneous polynomial of degree i , seen as a regular function on An

k \ {0}, then we may write
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ψ̂∗P =
∞∑
j=0

(∑
|I |=i

aI bI, j

)
q j
∈ k[[q]]

for some bI, j ∈ k depending on the coefficients of the n+ 1 formal series defining ψ̂ . Since

card{I ∈ Nn+1
| |I | = i} =

( i+n
n

)
>

1
n!

in,

it follows from elementary linear algebra that there exists a nonzero homogeneous polynomial Pi of
degree i such that ord0 ψ̂

∗Pi ≥ (1/n!)in. By considering the Cartier divisors Di on Pn
k induced by Pi , we

see that we may take ε = 1/n! in this case.
The general case follows from the above one by considering a finite surjective morphism f : X→ Pn

k

satisfying f ∗O(1)∼= Lm for some m ≥ 1. �

Remark 2.7. It follows from the above proof that the Cartier divisors Di can actually be taken in the
linear system |L⊗mi

| for some fixed integer m ≥ 1.

Any ZL-dense formal curve ϕ̂ in a projective variety X has a dense image in the Zariski topology.
Indeed, since X is projective, any Zariski-closed subset of X is contained in the support of some effective
Cartier divisor of X ; then, one simply remarks that ZL-density implies that multϕ̂ D < +∞ for any
effective Cartier divisor D in X , so that the image of ϕ̂ is not contained in the support of D.

The following example shows that the converse is not true in general.

Example 2.8 (lacunary series). Let k be a field and (ni )i≥0 be an increasing sequence of natural numbers
satisfying limi→+∞ ni+1/n2

i =+∞. If h ∈ k[[q]] is any formal series of the form

h(q)=
∑
i≥0

ai qni , ai 6= 0,

then the formal curve ϕ̂ : Spec k[[q]]→P2
k , given in homogeneous coordinates by ϕ̂(q)= (1 : q : h(q)), is

not ZL-dense. Indeed, for any integer d ≥ 0, we may consider the homogeneous polynomial of degree nd

Pd = Xnd−1
0 X2−

d∑
i=0

ai Xnd−ni
0 Xni

1

so that
multϕ̂ div(Pd)

n2
d

=
nd+1

n2
d
→+∞

as d→+∞.
Observe that the image of ϕ̂ is indeed Zariski-dense. By contradiction, if C ⊂ P2

k is an irreducible
curve containing the image of ϕ̂, then, for any effective Cartier divisor D in P2

k whose support does
not contain C, we have multϕ̂ D = i(ϕ̂(0),C · D) ≤ deg C · deg D. By construction, this is absurd for
D = div(Pd) and d sufficiently large.

For natural examples of ZL-dense formal curves we refer to Appendix B.
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2C. Reformulation in terms of sections of an ample line bundle. Let X be an algebraic variety over a
field k and ϕ̂ : Spec k[[q]] → X be a formal curve. If L is any line bundle on X , and s is a section of L
on a neighborhood of ϕ̂(0), we may consider the vanishing order of ϕ̂∗s ∈ 0(Spec k[[q]], ϕ̂∗L) at q = 0,
which coincides with the intersection multiplicity of the effective Cartier divisor div(s) with ϕ̂:

ord0 ϕ̂
∗s =multϕ̂ div(s).

The next proposition shows that ZL-density is a condition that has to be checked only for Cartier divisors
arising from sections of powers of some fixed ample line bundle.

Proposition 2.9. Let X be a projective variety of dimension n over a field k and L be an ample line
bundle on X. A formal curve ϕ̂ : Spec k[[q]] → X is ZL-dense if and only if there exists a constant C > 0
such that

ord0 ϕ̂
∗s ≤ Cdn

for any integer d ≥ 1, and any s ∈ 0(X, L⊗d) \ {0}.

Proof. The necessity follows from the fact that degL div(s)= (degL X)d for any s ∈ 0(X, L⊗d) \ {0}.
To prove the sufficiency, fix any finite surjective morphism f : X→Pn

k such that f ∗O(1) is isomorphic
to L⊗m for some m ≥ 1. If E is an effective Cartier divisor in Pn

k , then there exists a section s ∈
0(Pn

k ,O(degO(1) E)) satisfying E = div(s), so that

mult f ◦ϕ̂ E = ord0( f ◦ ϕ̂)∗s = ord0 ϕ̂
∗( f ∗s)≤ C(m degO(1) E)n = Cmn(degO(1) E)n. (2-2)

Let D be an effective Cartier divisor in X . Since f is finite and Pn
k is normal, we may define the

pushforward f∗D by taking norms: there is an open affine covering (Ui )i of Pn
k such that D admits a local

equation hi on each f −1(Ui ), and we define f∗D = [(Norm f (hi ),Ui )i ]. As f ∗ f∗D− D is effective, we
obtain

multϕ̂ D ≤multϕ̂ f ∗ f∗D =mult f ◦ϕ̂ f∗D.

Note that the Weil divisor associated to f∗D coincides with the pushforward (of cycles) of the Weil
divisor associated to D [Fulton 1984, Proposition 1.4]. In particular, the projection formula gives

degO(1) f∗D = degL⊗m D = mn−1 degL D

so that, by (2-2),
multϕ̂ D ≤ Cmn(degO(1) f∗D)n = Cmn2

(degL D)n. �

An advantage of considering the above equivalent form of ZL-density stems from the vector space
structure of the sets 0(X, L⊗d), d ≥ 1. In general, a formal curve ϕ̂ : Spec k[[q]] → X induces, for every
integer d ≥ 1, a decreasing filtration by linear subspaces (E i

d)i≥0 on the k-vector space Ed := 0(X, L⊗d)

defined by E i
d := {s ∈ Ed | ord0 ϕ̂

∗s ≥ i}.

Remark 2.10. Since Ed is finite-dimensional, there exists id ≥ 1 such that

E id
d =

⋂
i≥0

E i
d = {s ∈ Ed | ϕ̂

∗s = 0}.
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In other words, for every s ∈ Ed such that ϕ̂∗s 6= 0, we have ord0 ϕ̂
∗s < id . In particular, this shows

that one may replace in Proposition 2.9 the condition “for any integer d ≥ 1” by the weaker “for any
sufficiently large integer d”.

As a first application of Proposition 2.9, we use the filtration (E i
d)i≥0 to show that ZL-density is a

geometric property.

Proposition 2.11. Let X be a geometrically integral projective variety over a field k and ϕ̂ :Spf k[[q]]→ X
be a formal curve. Then, for any field extension K of k, the formal curve ϕ̂K : Spf K [[q]]→ X K , obtained
from ϕ̂ by base change, is ZL-dense in X K if and only if ϕ̂ is ZL-dense in X.

Proof. Let d ≥ 1 and i ≥ 0 be integers. Note that Ed⊗k K may be canonically identified with 0(X K , L⊗d
K ).

Moreover, since E i
d is the kernel of the k-linear map

Ed → 0(Spec k[[q]], ϕ̂∗L⊗d)⊗k k[[q]]/(q i ), s 7→ ϕ̂∗s mod q i ,

we conclude that E i
d ⊗k K = {t ∈ Ed ⊗k K | ord0 ϕ̂

∗

K t ≥ i}.
In particular, for every integer d ≥ 1, and any real number κ > 0, ord0 ϕ̂

∗s ≤ κ for every s ∈
0(X, L⊗d) \ {0} if and only if ord0 ϕ̂

∗

K t ≤ κ for every t ∈ 0(X K , L⊗d
K ) \ {0}. �

As another application of Proposition 2.9, we prove the following result which will be used in our
proof of Proposition 2.15.

Proposition 2.12. Let f : X→ Y be a surjective morphism between projective varieties of dimension n
over a field k and let ϕ̂ : Spec k[[q]] → X be a formal curve in X. If ϕ̂ is ZL-dense in X , then f ◦ ϕ̂ is
ZL-dense in Y.

Proof. Let L be an ample line bundle on X admitting a global section s∈0(X, L)\{0}, and M be any ample
line bundle on Y. Since f ∗M is semiample, N := L⊗ f ∗M is ample [EGA II 1961, Proposition 4.5.6(ii)].

Let d ≥ 1 be an integer, and t ∈ 0(Y,M⊗d) \ {0}. Since f is surjective, f ∗t 6= 0. Thus s⊗d
⊗ f ∗t is a

nonzero global section of N⊗d and, since ϕ̂ is ZL-dense in X , there exists a constant C > 0 independent
of d such that

ord0 ϕ̂
∗(s⊗d

⊗ f ∗t)≤ Cdn.

To complete the proof, it is sufficient to remark that

ord0( f ◦ ϕ̂)∗(t)= ord0 ϕ̂
∗( f ∗t)≤ ord0 ϕ̂

∗(s⊗d
⊗ f ∗t). �

Remark 2.13. The above proposition, combined with the arguments in the proof of Proposition 2.9,
actually shows that for any finite surjective morphism f : X → Y between projective varieties over a
field k, with Y normal, a formal curve ϕ̂ : Spec k[[q]] → X is ZL-dense in X if and only if f ◦ ϕ̂ is
ZL-dense in Y.
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2D. ZL-density in quasiprojective varieties. We defined a notion of ZL-density for formal curves in
projective varieties. In this subsection, under a mild technical condition, we extend this notion, via
compactification, to formal curves in quasiprojective varieties. To assure that we obtain a well-defined
notion, we must show that this does not depend on the choice of compactification.

We start by reformulating ZL-density in terms of Weil divisors in place of Cartier divisors. Let X be
an algebraic variety over a field k, and ϕ̂ : Spec k[[q]] → X be a formal curve. If ϕ̂(0) is a regular point
of X , then we may define the intersection multiplicity of a Weil divisor with ϕ̂: if U is a regular open
neighborhood of ϕ̂(0) and Z is a Weil divisor on X , then Z ∩U is induced by some Cartier divisor D
on U, and we define

multϕ̂ Z =multϕ̂ D.

We may thus mimic the proof of Proposition 2.9 to obtain the following result.

Proposition 2.14. Let X be a projective variety of dimension n over a field k, L be an ample line bundle
on X , and ϕ̂ : Spec k[[q]] → X be a formal curve such that ϕ̂(0) is a regular point of X. Then, ϕ̂ is
ZL-dense in X if and only if there exists a constant C > 0 such that, for every effective Weil divisor Z
on X ,

multϕ̂ Z ≤ C(degL Z)n.

We are now in position to prove that a modification away from ϕ̂ does not affect ZL-density.

Proposition 2.15. Let f : X → Y be a proper morphism between projective varieties over a field k,
and U be an open subset of Y such that f induces an isomorphism f −1(U )−→∼ U. If ϕ̂ : Spec k[[q]] →
f −1(U )⊂ X is a formal curve such that ϕ̂(0) is a regular point of X , then ϕ̂ is ZL-dense in X if and only
if f ◦ ϕ̂ is ZL-dense in Y.

Proof. Since f : X → Y is a proper birational morphism, and Y is irreducible, f is surjective. By
Proposition 2.12, if ϕ̂ is ZL-dense in X , then f ◦ ϕ̂ is ZL-dense in Y.

Conversely, suppose that f ◦ ϕ̂ is ZL-dense in Y. Fix ample line bundles L on X and M on Y, and let
Z be an effective Weil divisor on X . Since f is an isomorphism over U and ϕ̂ factors through f −1(U ),
we have

multϕ̂ Z =mult f ◦ϕ̂ f∗Z .

As f ◦ ϕ̂ is ZL-dense in Y, there is a constant C1 > 0 (not depending on Z ) such that

mult f ◦ϕ̂ f∗Z ≤ C1(degM f∗Z)n,

where n = dim Y = dim X . By the projection formula, degM f∗Z = deg f ∗M Z . Since f ∗M is semiample,
it follows from Proposition 2.2 that there exists a constant C2 > 0 such that deg f ∗M Z ≤ C2 degL Z . We
conclude that

multϕ̂ Z ≤ C1Cn
2 (degL Z)n. �
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Let us remark that it is essential in our proof above to consider the pushforward of a Weil divisor on X
under the proper morphism f . This explains why we reformulated ZL-density in terms of Weil divisors,
as the pushforward of a Cartier divisor under a proper morphism is not well-defined in general.

Corollary 2.16. Let X be a quasiprojective variety over a field k, and ϕ̂ : Spec k[[q]] → X be a formal
curve such that ϕ̂(0) is a regular point of X. If ji : X ↪→ X i , i = 1, 2, are two projective compactifications
of X , then j1 ◦ ϕ̂ is ZL-dense in X1 if and only if j2 ◦ ϕ̂ is ZL-dense in X2.

Proof. Consider the scheme-theoretic image X of ( j1, j2) : X→ X1×k X2 and apply Proposition 2.15 to
the natural projections X→ X i , i = 1, 2. �

This enables us to define a good notion of ZL-density in a quasiprojective variety.

Definition 2.17. Let X be a quasiprojective variety over a field k, and ϕ̂ : Spec k[[q]] → X be a formal
curve such that ϕ̂(0) is a regular point of X . We say that ϕ̂ is ZL-dense in X if there exists a projective
compactification j : X ↪→ X of X such that j ◦ ϕ̂ is ZL-dense in X .

3. Moderate growth and jet estimates on complex disks

In this section we introduce characteristic functions and moderate growth of certain 2-forms on a complex
disk; these are purely analytic notions. We then proceed to establishing natural estimates on jets of
sections of holomorphic line bundles on disks. In a sense, our exposition is more basic than the usual
accounts on value distribution theory, since characteristic functions of analytic curves will be a special
case of our construction.

The kind of jet estimates we consider here play a central role in Diophantine approximation and
transcendence proofs. They notably appear in such proofs using the formalism of Arakelov geometry, to
estimate the height of evaluation maps, when applying Bost’s method of slopes; see, for instance, [Bost
1996; 2001; Graftieaux 2005; Gasbarri 2010; 2013; Herblot 2012].

3A. Characteristic functions. Let r > 0 be a real number, and p ∈ Dr := {z ∈ C | |z|< r}. Recall that
the Green’s function of Dr at p is defined by

gDr ,p : C→ (−∞,+∞], z 7→ log+
∣∣∣∣ r2
− p̄z

r(z− p)

∣∣∣∣.
This is a superharmonic (thus locally integrable) function on C, real-valued and continuous on C \ {p},
strictly positive and harmonic (thus C∞) on Dr \ {p}, and vanishing identically on C \ Dr .

For any locally bounded 2-form α defined on an open neighborhood of Dr , we define

Tα,p(r) :=
∫

C

gDr ,pα.

Remark 3.1. An integration by parts with u(t)=
∫

Dt
α and v(t)= log t shows that

Tα,0(r)=
∫ r

0

(∫
Dt

α

)
dt
t
.
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Since gDr ,p is the composition of gDr ,0 with the automorphism of Dr given by

σr,p(z)=
r2(z− p)
r2− p̄z

,

we obtain

Tα,p(r)=
∫ r

0

(∫
Dt

(σ−1
r,p )
∗α

)
dt
t
.

Let R > 0 be a real number, and α be a locally bounded semipositive (1, 1)-form on the disk DR . The
nondecreasing function

Tα : (0, R)→ R≥0, r 7→ Tα,0(r),

is the characteristic function of α in DR .
We shall be particularly interested in the following special case. Let L = (L , ‖ ‖) be a semipositive

Hermitian line bundle on DR . The characteristic function of L in DR is defined by

TL := Tc1(L).

We also define TL,p(r)= Tc1(L),p(r) for p ∈ Dr ⊂ DR .

Remark 3.2. Let d ≥ 1 be an integer. As c1(L⊗d)= d · c1(L), we have TL⊗d ,p(r)= d · TL,p(r).

3B. Forms of moderate growth. Let R > 0 be a real number, and α be a locally bounded semipositive
(1,1)-form on DR .

Definition 3.3. We say that α has moderate growth if there exist constants a, b > 0 such that

Tα(r)≤ a+ b log
1

1− r/R

for any r ∈ (0, R). When α = c1(L) for some semipositive Hermitian line bundle L on DR , we rather say
that L has moderate growth.

The motivating example of a form of moderate growth is the following one.

Example 3.4 (Poincaré form). Let

dµR :=
i
2

(
R

R2− |z|2

)2

dz ∧ dz̄

be the 2-form associated to the surface element of the Poincaré metric (R/(R2
− |z|2))|dz| on DR . A

direct computation shows that, for any r ∈ (0, R),

TdµR (r)=
π

2
log

1
1+ r/R

+
π

2
log

1
1− r/R

.

Thus, the 2-form dµR on DR has moderate growth.
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We have defined moderate growth for a form α as a growth condition on Tα,0(r) with respect to r . Our
next result shows that a similar growth condition for Tα,p(r) holds uniformly for p varying in a fixed
compact subset.

Lemma 3.5. Let 0< r0 < r1 < R1 < R be real numbers. Then there exists a constant C > 0 such that,
for every p ∈ Dr0 , and every r ∈ [R1, R), we have

gDr ,p ≤ gDr1 ,p +CgDr ,0.

Proof. Let r ∈ [R1, R) and p ∈ Dr0 . We set

Cr,p := max
z∈∂Dr1

gDr ,p(z)
gDr ,0(z)

and

fr,p := gDr ,p − gDr1 ,p −Cr,pgDr ,0.

By the definition of Cr,p, we see that fr,p ≤ 0 over ∂Dr1 . Moreover, fr,p vanishes identically on ∂Dr .
Since fr,p is subharmonic over the domains Dr1 and Dr \ Dr1 , by the maximum principle, we conclude
that fr,p ≤ 0 everywhere.

To finish the proof, it is sufficient to remark that Cr,p is uniformly bounded for r ∈ [R1, R) and p ∈ Dr0 .
Indeed, for z ∈ ∂Dr1 , we have

gDr ,p(z)
gDr ,0(z)

=

log
∣∣∣ r2
− p̄z

r(z− p)

∣∣∣
log |r/z|

≤

log R2
+r0r1

R1(r1−r0)

log(R1/r1)
. �

Proposition 3.6. Let R > 0 be a real number, K ⊂ DR be a compact subset, and α be a locally bounded
semipositive (1,1)-form on DR . Fix R1 ∈ (0, R) such that K ⊂ DR1 . If α has moderate growth, then there
exist real numbers a, b > 0 such that

supp∈K Tα,p(r)≤ a+ b log
1

1− r/R

for every r ∈ [R1, R).

Proof. Let 0< r0 < r1 be real numbers such that K ⊂ Dr0 and r1 < R1. By Lemma 3.5, there exists a
constant C > 0 such that

gDr ,p ≤ gDr1 ,p +CgDr ,0

for every r ∈ [R1, R) and every p ∈ K , so that

Tα,p(r)≤ Tα,p(r1)+CTα,0(r).

Since α has moderate growth, to conclude it is sufficient to remark that the function p 7→ Tα,p(r1) is
continuous, thus bounded on the compact K . �
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3C. Jets and characteristic functions. Let r > 0 be a real number and p ∈ Dr . We define a probability
measure πr,p supported on ∂Dr by∫

ψπr,p =
1

2π

∫ 2π

0
ψ(σ−1

r,p (reiθ )) dθ,

where σr,p is the function defined in Remark 3.1. For the next proposition, we shall need the following
classical result.

Lemma 3.7. As an equality of distributions on C, we have

−2ddcgDr ,p = δp −πr,p.

Proof. Apply Remark 3.1 and Stokes’ theorem (see also Section 1F5). �

Let U be an open subset of C and L = (L , ‖ ‖) be a Hermitian line bundle over U. If s ∈ 0(U, L) and
z ∈U, the m-th jet of s at z is denoted by jm

z s. When s has vanishing order at least m at z, jm
z s is simply

an element of the fiber of L ⊗ (�1
U )
⊗m at z. In this case, if r is a real number strictly greater than |z|, we

denote by
‖ jm

z s‖r

the norm of jm
z s with respect to the metric ‖ ‖ on L and the norm on �1

Dr ,z given by the dual of the
Poincaré metric (r/(r2

− |z|2))|dz| on Dr .
The following result, relating jets of sections with characteristic functions, is a basic tool in Nevanlinna

theory (see, for instance, [Noguchi and Winkelmann 2014, Section 2.3]); variants of it were used in the
context of Diophantine approximation in [Bost 2001, Proposition 4.14; 2004, Section 3; Gasbarri 2010,
Theorem 5.13].

Proposition 3.8. Let R > 0 be a real number, L = (L , ‖ ‖) be a semipositive Hermitian line bundle
on DR , and p ∈ DR . For every real number r ∈ (|p|, R) and every global section s ∈ 0(DR, L) \ {0}, if
m := ordp s denotes the vanishing order of s at p, we have

log ‖ jm
p s‖r = TL,p(r)+

∫
log ‖s‖πr,p −

∫
gDr ,p δdiv(s)−m[p]. (3-1)

We start with a lemma that follows immediately from the explicit formula for the Green’s functions on
disks (see Section 3A).

Lemma 3.9. With the above notation, if E ⊂ DR denotes the support of the divisor div(s), then the
distribution log ‖s‖+mgDr ,p on DR defines a C∞ function over (Dr \ E)∪{p} and a continuous function
over ∂Dr \ E. Moreover,

lim
z→p

(log ‖s(z)‖+mgDr ,p(z))= log ‖ jm
p s‖r . �

Observe now that, for a fixed s, both sides in formula (3-1) are continuous with respect to r . Since E
is discrete, we may thus assume that ∂Dr ∩ E =∅.
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Proof of Proposition 3.8. The Poincaré–Lelong formula yields the identity of currents

ddc log ‖s‖2 = δdiv(s)− c1(L).

Thus, by Lemma 3.7,

c1(L)=−2ddc(log ‖s‖+mgDr ,p)+ δdiv(s)−m[p]+mπr,p.

Since πr,p is supported on ∂Dr , and gDr ,p vanishes identically on ∂Dr , we obtain

TL,p(r)=
∫

gDr ,p · (−2ddc(log ‖s‖+mgDr ,p))+

∫
gDr ,p δdiv(s)−m[p].

Note that, by our choice of r and by Lemma 3.9, the above products of distributions are well-defined.
By another application of Lemma 3.7,

TL,p(r)=
∫
(log ‖s‖+mgDr ,p)(δp −πr,p)+

∫
gDr ,p δdiv(s)−m[p]

=

∫
(log ‖s‖+mgDr ,p) δp −

∫
log ‖s‖πr,p +

∫
gDr ,p δdiv(s)−m[p],

where in the second equality we used once again that gDr ,p vanishes identically on ∂Dr . To conclude,
we apply once more Lemma 3.9, which ensures that the function log ‖s‖+mgDr ,p tends to log ‖ jm

p s‖r
at p. �

Corollary 3.10. Let us keep the notation of Proposition 3.8. Then,

log ‖ jm
p s‖r ≤ TL,p(r)+ log ‖s‖L∞(∂Dr ). (3-2)

If , moreover, p′ is another point of Dr , and m′ denotes the vanishing order of s at p′, then

log ‖ jm
p s‖r ≤ TL,p(r)+ log ‖s‖L∞(∂Dr )−m′gDr ,p(p

′). (3-3)

Proof. Since πr,p is a probability measure over ∂Dr , we have
∫

log ‖s‖πr,p ≤ log ‖s‖L∞(∂Dr ). Thus, the
estimate (3-2) (resp. (3-3)) follows immediately from the nonnegativity both of the function gDr ,p and of
the distribution δdiv(s)−m[p] (resp. δdiv(s)−m[p]−m′[p′]). �

3D. A first application of moderate growth. We shall need the following elementary inequality.

Lemma 3.11. Let A, B, and R be positive real numbers. Set

r := R
B

A+ B
.

If log(B/A)≥ 2, then

A log
(

1
1− r/R

)
− B log r ≤ 2A log

(
B
A

)
− B log R.

Proof. By homogeneity, we may assume that A = R = 1, so that r = B/(1+ B) and our statement is
equivalent to

log(1+ B)− B log(B/(1+ B))≤ 2 log B
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when log B ≥ 2. By subtracting log B from both sides, we see that this is yet equivalent to

(1+ B) log(1+ 1/B)≤ log B,

when log B ≥ 2. Now, this last inequality follows trivially from the fact that log(1+ 1/B)≤ 1/B. �

Note that r as above is the minimum of the real function t 7→ A log(1/(1− t/R))− B log t defined on
the open interval (0, R).

Proposition 3.12. Let R > 0 be a real number and L = (L , ‖ ‖) be a semipositive Hermitian line bundle
on DR . If L has moderate growth, then there exist constants κ1, κ2 > 0 such that for every integer d ≥ 1
and every bounded global section s ∈ 0(DR, L⊗d) \ {0}, if we set m := ord0 s, then

log ‖ jm
0 s‖R ≤ κ1d + κ2d log+m+ log ‖s‖L∞(DR).

Proof. Since L has moderate growth, there exist real numbers a, b > 0 such that

TL(r)≤ a+ b log
(

1
1− r/R

)
for any r ∈ (0, R). We may assume that b > 1. By the jet estimate (3-2), for any r ∈ (0, R), we have

log ‖ jm
0 s‖r ≤ d · TL(r)+ log ‖s‖L∞(∂Dr ) ≤ d · TL(r)+ log ‖s‖L∞(DR).

As

‖ jm
0 s‖r = ‖ jm

0 s‖R

(
r
R

)m

,

we obtain

log ‖ jm
0 s‖R ≤ ad + bd log

(
1

1− r/R

)
−m log r +m log R+ log ‖s‖L∞(DR). (3-4)

The result being trivial for m = 0, we may assume that m > 0. We now consider two cases. If
log(m/(bd)) < 2, then we may take r := R/2 in (3-4) to obtain

log ‖ jm
0 s‖R ≤ (a+ (1+ e2)b log 2)d + log ‖s‖L∞(DR).

If log(m/(bd))≥ 2, we apply Lemma 3.11 for A = bd and B = m:

log ‖ jm
0 s‖R ≤ ad + 2bd log

(
m
bd

)
+ log ‖s‖L∞(DR) ≤ ad + 2bd log m+ log ‖s‖L∞(DR). �

3E. Bounding jets via Taylor coefficients at another point. In this subsection, we compare Taylor
coefficients at different points. We start with a general result, and next we explain how moderate growth
improves the estimate.

Proposition 3.13. Let R > 0 be a real number, L = (L , ‖ ‖) be a semipositive Hermitian line bundle
on DR , and q ∈ DR \ {0}. Fix a real number R0 satisfying |q| < R0 < R, and a global holomorphic
section s0 ∈ 0(DR, L) such that s0(q) 6= 0. Then there exists a real number κ > 1 such that, for every
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integer J ≥ 1, every integer d ≥ 1, and every global section s ∈ 0(DR, L⊗d) \ {0}, if f denotes the germ
of holomorphic function at q such that s = f s⊗d

0 in a neighborhood of q, and if m := ord0 s, then

log ‖ jm
0 s‖R ≤ log

((
R0

|q|

)−J( R
R0

)m

‖s‖L∞(∂DR0 )
+ κd+m+J max

0≤ j<J

| f ( j)(q)|
j !

)
+ d · TL(R0).

Let us first remark that if such a constant κ > 0 exists for s0 ∈ 0(DR, L) trivializing L at q, then an
analogous constant κ̄ > 0 will exist for any other trivialization s̄0 of L in a neighborhood of q — we do
not require s̄0 to be a global section. Indeed, if we write s = f̄ s̄⊗d

0 and s̄0 = us0 in a neighborhood of q ,
then f = f̄ ud and

max
0≤ j<J

| f ( j)(q)|
j !

≤ max
0≤ j<J

∑
k+l= j

| f̄ (k)(q)|
k!

|(ud)(l)(q)|
l!

≤

(
J max

0≤ j<J

|(ud)( j)(q)|
j !

)
max

0≤ j<J

| f̄ ( j)(q)|
j !

.

We conclude by the Cauchy inequalities, which ensure that max0≤ j<J |(ud)( j)(q)|/ j ! grows at most
exponentially in d + J.

Proof. By the above remark, up to replacing s0 by z− ord0(s0)s0, we can assume that s0 trivializes L both at
q and at 0. Let aj ∈ C be defined by the expansion

f (z)= zm
∞∑
j=0

aj (z− q) j

in a neighborhood of q , and set

g(z) := zm
J−1∑
j=0

aj (z− q) j .

Note that g extends uniquely to a holomorphic function on DR . Let s1, s2 ∈ 0(DR, L⊗d) be given by
s1 := gs⊗d

0 and s2 := s− s1. Observe that both s1 and s2 have vanishing order at least m at 0.
Next, we estimate ‖ jm

0 si‖R0 , i = 1, 2; for this, we shall first assume that each jm
0 si 6= 0. By the jet

estimate (3-2) for p = 0, we have

log ‖ jm
0 s1‖R0 ≤ d · TL(R0)+ log ‖s1‖L∞(∂DR0 )

.

Since ordq s2 ≥ J, by the jet estimate (3-3) for p = 0 and p′ = q , we have

log ‖ jm
0 s2‖R0 ≤ d · TL(R0)+ log ‖s2‖L∞(∂DR0 )

− log
(

R0

|q|

)
J.

Thus

‖ jm
0 s‖R = ‖ jm

0 s‖R0

(
R
R0

)m

≤ (‖ jm
0 s1‖R0 +‖ jm

0 s2‖R0)

(
R
R0

)m

≤

((
R
R0

)m

‖s1‖L∞(∂DR0 )
+

(
R0

|q|

)−J( R
R0

)m

‖s2‖L∞(∂DR0 )

)
exp(d · TL(R0)).
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Using that ‖s2‖L∞(∂DR0 )
≤ ‖s1‖L∞(∂DR0 )

+‖s‖L∞(∂DR0 )
, we get

‖ jm
0 s‖R ≤

((
R0

|q|

)−J( R
R0

)m

‖s‖L∞(∂DR0 )
+

(
1+

(
R0

|q|

)−J)( R
R0

)m

‖s1‖L∞(∂DR0 )

)
exp(d · TL(R0)).

It should be clear at this point that the same estimate holds if jm
0 s1 = 0 or jm

0 s2 = 0.
We now estimate ‖s1‖L∞(∂DR0 )

. For any z ∈ ∂DR0 , we have

|g(z)| = Rm
0

∣∣∣∣J−1∑
j=0

aj (z− q) j
∣∣∣∣≤ Rm

0

(J−1∑
j=0

(2R0)
j
)

max
0≤ j<J

|aj | ≤ J Rm
0 max{1, (2R0)

J
} max

0≤ j<J
|aj |,

so that

‖s1‖L∞(∂DR0 )
= sup

z∈∂DR0

|g(z)|‖s0(z)‖d ≤ ‖s0‖
d
L∞(∂DR0 )

J Rm
0 max{1, (2R0)

J
} max

0≤ j<J
|aj |.

To finish, we must bound the coefficients aj . By definition, for any j ∈ N,

aj =
1
j !

d j

dz j

∣∣∣∣
z=q

(
f (z)
zm

)
=

j∑
k=0

(
(−1)k

qm+k

(k+m−1
k

) f ( j−k)(q)
( j − k)!

)
.

If j < J, then, for any 0≤ k ≤ j , we have the (crude but sufficient) estimate(k+m−1
k

)
<
( J+m−1

J

)
< 2m+J−1 < 2m+J ,

so that

|aj | ≤

( j∑
k=0

1
|q|m+k

)
2m+J max

0≤k≤ j

| f (k)(q)|
k!

.

Thus,

max
0≤ j<J

|aj | ≤ J (2 max{1, |q|−1
})m+J max

0≤ j<J

| f ( j)(q)|
j !

. �

Proposition 3.14. Let R > 0 be a real number, L = (L , ‖ ‖) be a semipositive Hermitian line bundle
over DR , and let K ⊂ DR be a compact subset. If L has moderate growth, then there exist real
numbers κ0, κ1 > 1 and an integer d0 ≥ 1 such that, for any integer d ≥ d0 and any bounded section
s ∈ 0(DR, L⊗d) \ {0} for which m := ord0 s satisfies m ≥ κ0d, we have

‖s(z)‖ ≤ mκ1d
(
|z|
R

)m

‖s‖L∞(DR)

for every z ∈ K \ {0}.

Proof. Fix any R1 ∈ (0, R) such that K ⊂ DR1 . By Proposition 3.6, there exist real numbers a, b > 0
such that

TL,z(r)≤ a+ b log
1

1− r/R

for any z ∈ K and every r ∈ [R1, R).
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Let s ∈ 0(DR, L⊗d) \ {0} be a bounded section, and z ∈ K \ {0}. We may assume that ordz s = 0. By
the jet estimate (3-3) for p = z and p′ = 0, we have, for every r ∈ [R1, R),

log ‖s(z)‖ ≤ d · TL,z(r)+ log ‖s‖L∞(∂Dr )−m log
r
|z|

≤ ad + bd log
1

1− r/R
−m log r +m log |z| + log ‖s‖L∞(DR).

Assume m ≥ e2bd (i.e., log(m/(bd))≥ 2). It follows from Lemma 3.11 for A = bd and B = m that, if

r := R
m

bd +m
,

then

bd log
1

1− r/R
−m log r ≤ 2bd log

m
bd
−m log R.

If we also require that m ≥ b(R1/(R− R1))d , then r ≥ R1, so that

log ‖s(z)‖ ≤ 2bd log m+ (ad − 2bd log bd)+m log
|z|
R
+ log ‖s‖L∞(DR).

Now, for every integer d ≥ ea/b/b, we have ad − 2bd log bd ≤ 0, and we get

log ‖s(z)‖ ≤ 2bd log m+m log
|z|
R
+ log ‖s‖L∞(DR).

We may thus take κ0 := b max{e2, R1/(R− R1)}, κ1 := 2b, and d0 := dea/b/be. �

The following result is a combination of Proposition 3.13 together with the existence of a nonzero
global section of L (see the remark following the statement; actually, L is holomorphically trivial on DR)
and Proposition 3.14.

Corollary 3.15. Let R> 0 be a real number, L = (L , ‖ ‖) be a semipositive Hermitian line bundle on DR ,
q ∈ DR \ {0}, and s0 be a holomorphic trivialization of L in a neighborhood of q. Assume moreover that
L has moderate growth. Then there exist real numbers κi > 1, i = 0, . . . , 4, and an integer d0 ≥ 1, such
that, for any integer J ≥ 1, any integer d ≥ d0, and every bounded section s ∈0(DR, L⊗d)\{0} for which
m := ord0 s satisfies m ≥ κ0d , if f denotes the germ of holomorphic function at q such that s = f s⊗d

0 in a
neighborhood of q, we have

log ‖ jm
0 s‖R ≤ log

(
mκ1d

κ J
2
‖s‖L∞(DR)+ κ

d+m+J
3 max

0≤ j<J

| f ( j)(q)|
j !

)
+ κ4d.

Proof. Fix any real number R0 ∈ (|q|, R). We take κ2 := R0/|q|, κ3 := κ given by Proposition 3.13, and
κ4 := TL(R0). Since L has moderate growth, we may apply Proposition 3.14 to the compact K = ∂DR0

to obtain real numbers κ0, κ1 > 0 and an integer d0 ≥ 1 such that

‖s‖L∞(∂DR0 )
≤ mκ1d

(
R0

R

)m

‖s‖L∞(DR)
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for any integer d ≥ d0 and any bounded section s ∈ 0(DR, L⊗d) \ {0} such that m := ord0 s ≥ κ0d. We
conclude by combining this bound with the estimate given by Proposition 3.13. �

In practice, we shall be concerned with the following particular situation.

Corollary 3.16. Let R > 0 be a real number, L = (L , ‖ ‖) be a semipositive Hermitian line bundle of
moderate growth on DR , and q ∈ DR \ {0}. Fix a holomorphic trivialization s0 of L in a neighborhood
of q, real constants c0, c1, c2 > 0, with c0 < c1, and an integer n ≥ 2. For any real number C > 0, there
exist real numbers γ0, γ1 > 0 such that, for any sufficiently large integer d, and any bounded section
s ∈ 0(DR, L⊗d) satisfying

c0dn
≤ m := ord0 s ≤ c1dn, log ‖s‖L∞(DR) ≤ c2d log d,

and

max
0≤ j<dγ0d log de

log
| f ( j)(q)|

j !
≤ −γ1dn,

where s = f s⊗d
0 on a neighborhood of q, we have

log ‖ jm
0 s‖R ≤−Cd log d.

Proof. Let κi > 1, i = 0, . . . , 4, be the constants given by Corollary 3.15. We claim that it suffices to
take γ0 > (log κ2)

−1(nκ1+ c2+C) and γ1 > c1 log κ3.
Indeed, let s ∈ 0(DR, L⊗d) be as in the statement. Since n ≥ 2 and m ≥ c0dn , if d is sufficiently large,

we have m ≥ κ0d , so that the conclusion of Corollary 3.15 for J := dγ0d log de applies:

log ‖ jm
0 s‖R ≤ log

(
mκ1d

κ J
2
‖s‖L∞(DR)+ κ

d+m+J
3 max

0≤ j<J

| f ( j)(q)|
j !

)
+ κ4d. (3-5)

Since m ≤ c1dn , log ‖s‖L∞(DR) ≤ c2d log d , and J ≥ γ0d log d, we obtain

log
(

mκ1d

κ J
2
‖s‖L∞(DR)

)
≤ (nκ1+ c2− (log κ2)γ0)d log d + κ1(log c1)d.

Thus, by our choice of γ0, if d is sufficiently large, we get

log
(

mκ1d

κ J
2
‖s‖L∞(DR)

)
≤−(C + ε1)d log d (3-6)

for some ε1 > 0.
Since m ≤ c1dn , J ≤ γ0d log d + 1, and

max
0≤ j<J

log
| f ( j)(q)|

j !
≤ −γ1dn,

we have

log
(
κd+m+J

3 max
0≤ j<J

| f ( j)(q)|
j !

)
≤ (c1 log κ3− γ1)dn

+ γ0(log κ3)d log d + (log κ3)(d + 1).
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Thus, as n ≥ 2, and by our choice of γ1, if d is sufficiently large, we obtain

log
(
κd+m+J

3 max
0≤ j<J

| f ( j)(q)|
j !

)
≤−ε2dn (3-7)

for some ε2 > 0.
We conclude by applying (3-6) and (3-7) in (3-5), and by taking d to be sufficiently large. �

4. Analytic curves of moderate growth in quasiprojective varieties

This section contains mostly well-known techniques and results in Nevanlinna theory. These are never-
theless written in the literature in a form not suitable for our purposes. Although our proofs may vary,
much of the theory concerning growth of entire analytic maps (“parabolic case”) easily translates into our
hyperbolic situation; we refer the reader to the recent monograph [Noguchi and Winkelmann 2014] for a
thorough exposition of the general parabolic theory (in several variables).

4A. Analytic curves of moderate growth in compact complex manifolds. Let R > 0 be a real number,
M be a compact complex manifold, and ϕ : DR→M be an analytic map. Fix any Hermitian metric h on M,
and let ω :=− Im h be the positive (1, 1)-form associated to h; in other words, if h =

∑n
k,l=1 hkldzk⊗dz̄l

in a local chart (z1, . . . , zn) of M, then ω = i
2

∑n
k,l=1 hkldzk ∧ dz̄l .

Definition 4.1. We say that ϕ : DR→ M has moderate growth if the semipositive (1,1)-form ϕ∗ω on DR

has moderate growth (see Definition 3.3).

This notion does not depend on the choice of the Hermitian metric h. Indeed, since M is compact, any
two Hermitian metrics on M are “comparable”: if h0 is another Hermitian metric on M, then there exist
real numbers α, β > 0 such that α‖ ‖h0 ≤ ‖ ‖h ≤ β‖ ‖h0 .

Remark 4.2. It follows from Remark 3.1 that Tϕ∗ω(r) =
∫ r

0

(∫
Dt
ϕ∗ω

)
d log t can be thought of as a

logarithmic integral of the areas of the disks ϕ(Dt) in M for 0< t < r .

We next consider a simple example of curves of moderate growth.

Example 4.3 (bounded derivative). Let ϕ : DR→ M be an analytic map, and h be a Hermitian metric
on M. Then we can write

ϕ∗ω = ‖ϕ′(z)‖2R,hdµR,

where dµR is the Poincaré form defined in Example 3.4, and ‖ϕ′(z)‖R,h denotes the norm of the tangent
map Dzϕ : Tz DR→ Tϕ(z)M with respect to the Poincaré metric on DR , and the Hermitian metric h on M.
Since dµR has moderate growth, the analytic curve ϕ has moderate growth in M whenever the function
z 7→ ‖ϕ′(z)‖R,h is bounded on DR (e.g., ϕ extends continuously to DR ⊂ C).

4B. Nevanlinna’s characteristic function. Let M be a complex manifold, L= (L , ‖ ‖) be a semipositive
Hermitian line bundle on M, and s0 ∈ 0(M, L) \ {0} be a nonzero global section.
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Let R > 0 be a real number and ϕ : DR→ M be an analytic map whose image is not contained in the
support of div(s0). We define, for every r ∈ (0, R),

mϕ,L,s0
(r) :=

1
2π

∫ 2π

0
log

1
‖s0(ϕ(reiθ ))‖

dθ

and

Nϕ,L,s0
(r) := (ord0 ϕ

∗s0) log r +
∑

0<|z|<r

(ordz ϕ
∗s0) log

r
|z|
.

Then we can form the Nevanlinna characteristic function on the interval (0, R)

Tϕ,L,s0
:= mϕ,L,s0

+ Nϕ,L,s0
.

For the next proposition, we introduce a temporary notation. If s is a global section of ϕ∗L and
m=ord0 s, we denote by `(s) the unique element of the fiber of ϕ∗L at 0∈DR such that jm

0 s=`(s)⊗dz⊗m

(the “leading coefficient” of s).
The following classical identity, see [Noguchi and Winkelmann 2014, Theorem 2.3.31], is an immediate

corollary of Proposition 3.8 applied to the section s = ϕ∗s0 and the point p = 0.

Proposition 4.4 (Nevanlinna’s first fundamental theorem). For every r ∈ (0, R), we have

Tϕ∗L(r)= Tϕ,L,s0
(r)+ log ‖`(ϕ∗s0)‖. �

As an application we show that, when R= 1, polynomial growth of Taylor coefficients implies moderate
growth.

Example 4.5. Let ϕ = (ϕ1, . . . , ϕn) : D→ Cn be an analytic map with coordinates ϕi (z)=
∑
∞

j=0 ai j z j .
Assume that there exist a real number C > 1 and an integer d ≥ 1 such that

|ai j | ≤ C jd

for every 1≤ i ≤ n and j ≥ 0. Then, when identifying Cn with the open affine subset

U0 = {(p0 : · · · : pn) ∈ Pn(C) | p0 6= 0}

of Pn(C) via (z1, . . . , zn) 7→ (1 : z1 : · · · : zn), the analytic curve ϕ : D→ Pn(C) has moderate growth.
Indeed, let O(1) denote the line bundle O(1) on Pn(C) endowed with the Fubini–Study metric; that is,

‖X i (p)‖ =
|pi |√

|p0|2+ · · ·+ |pn|
2

for every 0≤ i≤n, and p= (p0 : · · · : pn)∈Pn(C). Since Nϕ,O(1),X0
vanishes identically, by Proposition 4.4,

it is sufficient to prove that there exist a, b > 0 such that

mϕ,O(1),X0
(r)≤ a+ b log

1
1− r

for every r ∈ (0, 1).



670 Tiago J. Fonseca

For any real numbers t1, . . . , tm ≥ 0, we have log+
(∑m

i=1 ti
)
≤
∑m

i=1 log+ ti + log m, so that

log
1

‖X0(ϕ(reiθ ))‖
= log

√
1+

n∑
i=1

|ϕi (reiθ )|2 ≤

n∑
i=1

log+ |ϕi (reiθ )| + log(
√

1+ n).

Since

|ϕi (reiθ )| ≤ C
∞∑
j=0

jdr j
≤ Cd!

(
1

1− r

)d+1

,

we may take a = log(
√

1+ n)+ n log(Cd!) and b = n(d + 1).

4C. The field of moderate functions on a disk. In this subsection we study more closely the case
M = P1(C). We refer to [Tsuji 1959, Chapters V–VII] for a survey on the classical work on this subject.

Let R > 0 be a real number and f be a meromorphic function on DR , i.e., an analytic map f : DR→

P1(C) which is not constantly equal to∞= (0 : 1).

Definition 4.6. We say that f is a moderate function on DR if the analytic map f : DR → P1(C) has
moderated growth.

If O(1) denotes the line bundle O(1) on P1(C) endowed with the Fubini–Study metric (see Example 4.5),
we define

T f := T f ∗O(1).

By Proposition 4.4, we have

T f = m f,O(1),X0
+ N f,O(1),X0

+ O(1),

where O(1) denotes a constant. To lighten the notation, we shall write m f = m f,O(1),X0
and N f =

N f,O(1),X0
.

Let KDR denote the field of meromorphic functions on DR . It is classical (and easy to prove) that
characteristic functions are compatible with the algebraic structure of KDR in the following sense: for
f, g ∈ KDR \ {0} and n ∈ Z \ {0}, we have

T f+g ≤ T f + Tg + O(1), T f g ≤ T f + Tg + O(1), T f n = |n|T f + O(1). (4-1)

It follows from the above relations that the subset Km
DR

of KDR consisting of moderate meromorphic
functions is a field.

Proposition 4.7 (cf. [Noguchi and Winkelmann 2014, Lemma 2.5.15]). Let f, f1, . . . , fn be meromorphic
functions on DR . If f is algebraic over the field C( f1, . . . , fn) ⊂ KDR , then there exist real numbers
a, b > 0 such that

T f ≤ a+ b
n∑

i=1

T fi .
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Proof. Let d be the degree of f over C( f1, . . . , fn). If d = 0, then the result follows immediately from
formulas (4-1). Assume that d ≥ 1, and let P = Xd

− gd−1 Xd−1
− · · · − g0 ∈ C( f1, . . . , fn)[X ] be the

minimal polynomial of f . Since each gi ∈ C( f1, . . . , fn), it suffices to prove that T f ≤
∑d−1

i=0 Tgi +O(1).
By formulas (4-1), we have

T f d = T(gd−1 f d−2+···+g1) f+g0 ≤ Tgd−1 f d−2+···+g1 + T f + Tg0 + O(1).

By descending induction, we get

T f d ≤ (d − 1)T f +

d−1∑
i=0

Tgi + O(1).

As T f d = d · T f + O(1), we obtain

T f ≤

d−1∑
i=0

Tgi + O(1). �

Corollary 4.8. The field of moderate functions Km
DR

is algebraically closed in KDR . �

In particular, since the inclusion DR→ P1(C) is easily seen to be an analytic map of moderate growth
(see Example 4.3), the field Km

DR
contains the field of (univalued) algebraic meromorphic functions on DR .

4D. Birational invariance and moderate growth in quasiprojective varieties. In this subsection, we
establish the birational invariance of moderate growth under a nondegeneracy hypothesis. Our arguments
follow closely those of [Noguchi and Winkelmann 2014, Section 2.5]; we claim no originality here.

In what follows, if f is a meromorphic function on DR , we denote the divisor of zeros of f by div0( f )
and the divisor of poles of f by div∞( f ), so that div( f )= div0( f )− div∞( f ).

Lemma 4.9 (cf. [Noguchi and Winkelmann 2014, Theorem 2.5.7]). Let M be a compact complex manifold
endowed with a semipositive Hermitian line bundle L = (L , ‖ ‖). Fix global sections s0, s1 ∈ 0(M, L),
with s0 6= 0. Then, for any analytic map ϕ : DR → M whose image is not contained in the support of
div(s0), if we denote by f the unique meromorphic function on DR such that f ϕ∗s0 = ϕ

∗s1, we have

T f ≤ Tϕ,L,s0
+ O(1).

Proof. Let H be the support of div(s0). For p ∈ M \ H, we have

log

√
1+
‖s1(p)‖2

‖s0(p)‖2
= log

1
‖s0(p)‖

+ log
√
‖s0(p)‖2+‖s1(p)‖2.

Since M is compact, the functions ‖si‖ on M are bounded, so that

log

√
1+
‖s1‖

2

‖s0‖2
≤ log

1
‖s0‖
+ O(1)

over M \ H. In particular, we get
m f ≤ mϕ,L,s0

+ O(1).
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Since div∞( f )≤ div(ϕ∗s0), the bound
N f ≤ Nϕ,L,s0

is trivial. �

For the next lemma, we endow the line bundle O(1) over Pn(C) with the Fubini–Study metric as in
Example 4.5. Moreover, if E =

∑
z∈DR

nz[z] is a divisor in DR , we set i(z, E) := nz .

Lemma 4.10. Let ϕ : DR → Pn(C) be an analytic map whose image is not contained in the support
of div(X0). For 1 ≤ j ≤ n, let us denote by f j the unique meromorphic function on DR such that
f jϕ
∗X0 = ϕ

∗X j . Then

Tϕ,O(1),X0
≤

n∑
j=1

T f j + O(1).

Proof. We first prove that mϕ,O(1),X0
≤
∑n

j=1m f j . For any real numbers t1, . . . , tn ≥ 0, we have

log
(

1+
n∑

j=1

tj

)
≤

n∑
j=1

log(1+ tj ).

Thus, for any r ∈ (0, R),

mϕ,O(1),X0
(r)=

1
2π

∫ 2π

0
log

√
1+

n∑
j=1

| f j (reiθ )|2 dθ

≤

n∑
j=1

1
2π

∫ 2π

0
log

√
1+ | f j (reiθ )|2 dθ =

n∑
j=1

m f j (r).

Next, observe that to prove that Nϕ,O(1),X0
≤
∑n

j=1 N f j it suffices to show that

div(ϕ∗X0)≤

n∑
j=1

div∞( f j ).

Since each div∞( f j ) is an effective divisor, it is sufficient to prove that, for every z ∈ DR , there exists
1 ≤ j ≤ n such that i(z, div(ϕ∗X0)) ≤ i(z, div∞( f j )). Now, for any 1 ≤ j ≤ n, since f jϕ

∗X0 = ϕ
∗X j ,

we may write
div∞( f j )= div(ϕ∗X0)+ div0( f j )− div(ϕ∗X j ).

Finally, we simply remark that for any z ∈ DR for which X0(ϕ(z))= 0 (i.e., ordz ϕ
∗X0> 0 or, equivalently,

i(z, div(ϕ∗X0)) > 0), there exists 1 ≤ j ≤ n such that X j (ϕ(z)) 6= 0 (i.e., ordz ϕ
∗X j = 0), so that

i(z, div∞( f j ))= i(z, div(ϕ∗X0))+ i(z, div0( f j ))≥ i(z, div(ϕ∗X0)). �

Let f, g : I→R be real functions defined on some interval I ⊂R. We say that f and g are comparable
if there exist real numbers a, b, c, d > 0 such that

a f − b ≤ g ≤ c f + d

everywhere on I.
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Theorem 4.11 (cf. [Noguchi and Winkelmann 2014, Theorem 2.5.18]). Let R> 0 be a real number, X be
a smooth projective variety of dimension n over C, and ϕ : DR→ X an be an analytic map whose image is
Zariski-dense in X. Then, for any positive (1, 1)-form ω on X , and any transcendence basis ( f1, . . . , fn)

of the function field C(X) of X , the real functions Tϕ∗ω and
∑n

j=1 T f j◦ϕ on (0, R) are comparable. In
particular, ϕ has moderate growth in X if and only if f j ◦ ϕ are moderate functions on DR for every
1≤ j ≤ n.

Observe that the Zariski-density hypothesis above ensures that, for any rational function f on X , the
image of ϕ is not contained in the indeterminacy locus of f , so that f ◦ϕ is a well-defined meromorphic
function on DR .

Proof. Let i : X→PN
C
= Proj C[X0, . . . , X N ] be a closed immersion such that i ◦ϕ(DR) is not contained

in the support of div(X0), and consider the rational functions gj ∈ C(X), 1≤ j ≤ N, given by restriction
of X j/X0 to X .

It follows from the compactness of X an (see remark following Definition 4.1), and from Proposition 4.4,
that the functions Tϕ∗ω and Ti◦ϕ,O(1),X0

are comparable. By Lemmas 4.9 and 4.10, the functions Ti◦ϕ,O(1),X0

and
∑N

j=1 Tgj◦ϕ are comparable. Furthermore, as C(X) = C(g1, . . . , gN ) is an algebraic extension of
C( f1, . . . , fn), we deduce from formulas (4-1) and from Proposition 4.7 that

∑N
j=1 Tgj◦ϕ and

∑n
j=1 T f j◦ϕ

are comparable. Our statement follows by transitivity of comparability. �

In particular, moderate growth in projective varieties is a birational invariant.

Corollary 4.12. Let f : X→ Y be a birational morphism between smooth projective varieties over C. If
R > 0 is a real number, then an analytic map ϕ : DR → X an with Zariski-dense image has moderated
growth if and only if f ◦ϕ : DR→ Y an has moderate growth. �

Combining the standard argument in the proof of Corollary 2.16 with a resolution of singularities
yields the following.

Corollary 4.13. Let X be a smooth quasiprojective variety over C, and let ji : X ↪→ X i , i = 1, 2, be
smooth projective compactifications of X. If R > 0 is a real number and ϕ : DR→ X an is an analytic map
with Zariski-dense image, then j1 ◦ϕ has moderate growth if and only if j2 ◦ϕ has moderate growth. �

We may thus define an unambiguous notion of moderate growth for Zariski-dense analytic curves in
smooth quasiprojective varieties.

Definition 4.14. Let X be a smooth quasiprojective variety, R > 0 be a real number, and ϕ : DR→ X an

be an analytic map with Zariski-dense image. We say that ϕ has moderate growth if there exists a smooth
projective compactification j : X ↪→ X of X such that j ◦ϕ : DR→ X an has moderate growth.

5. Construction of auxiliary sections

We prove in this section Theorem 5.1 below, generalizing the construction of auxiliary polynomials
in Nesterenko’s method. Our approach, based on Bost’s method of slopes, differs from the classical
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combinatorial one. However, the backbone of the argument remains the same: Minkowski’s theorem on
minima of lattices (see Proposition 5.7 below).

5A. Notation and statement. Let K be a number field and OK be its ring of integers. Recall that, if X is
an arithmetic scheme over OK (i.e., an integral scheme X with a separated and flat morphism of finite type
X→SpecOK ) with smooth generic fiber XK , a Hermitian line bundle L= (L , (‖ ‖σ )σ :K ↪→C) over X is the
data of a line bundle L on X and a family of C∞ Hermitian metrics ‖ ‖σ on the holomorphic line bundles Lσ
over X an

σ deduced from L by the field embeddings σ : K ↪→C that is invariant under complex conjugation.
If d ≥ 1 is an integer, and s ∈ 0(X , L⊗d) is a global section, we define

‖s‖X :=max
σ
‖s‖σ,L∞(X an

σ )
.

This section is devoted to the proof of the following theorem.

Theorem 5.1. Let X be a projective arithmetic scheme of relative dimension n ≥ 1 over OK with smooth
generic fiber XK , and fix any Hermitian line bundle L = (L , (‖ ‖σ )σ :K ↪→C) on X such that L K is ample
on XK . Let ϕ̂ :SpfOK [[q]]→X be a morphism of formal OK -schemes such that, for every field embedding
σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]] → Xσ lifts to an analytic map ϕσ : DRσ → X an

σ defined on
some complex disk of radius Rσ > 0, and assume that∏

σ :K ↪→C

Rσ = 1.

If , moreover,

(1) the image of ϕ̂K : Spf K [[q]] → XK is Zariski-dense, and

(2) for every field embedding σ : K ↪→ C, ϕσ has moderate growth in X an
σ ,

then, there are constants c1, c2, c3 > 0 such that, for every large enough positive integer d, there exists
s ∈ 0(X , L⊗d) \ {0} such that

m := ord0 ϕ̂
∗s > c1dn

and
log ‖s‖X ≤ c2d + c3d log m.

Remark 5.2. By Section 4D one could also assume that X is only quasiprojective over SpecOK , and
then construct “auxiliary sections” on any projective compactification of X having smooth generic fiber.

If we require the stronger condition of ZL-density of ϕ̂K instead of Zariski-density, we obtain the
following.

Corollary 5.3. With hypotheses and notation as in Theorem 5.1, if moreover ϕ̂K : Spf K [[q]] → XK is
ZL-dense, then there exist constants c1, c2 > 0 such that, for every large enough positive integer d , there
exists s ∈ 0(X , L⊗d) \ {0} such that

ord0 ϕ̂
∗s > c1dn

and
log ‖s‖X ≤ c2d log d.
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5B. Recollections of Arakelov theory; the slope inequality. For the convenience of the reader, we
recollect in this subsection some fundamental notions and results concerning Hermitian vector bundles
over rings of algebraic integers. Proofs and further developments can be found in [Bost 1996, Appendix A;
2001, Sections 4.1–4.2; Bost and Künnemann 2010, Sections 3.1–3.3].

Let K be number field, OK be its ring of integers, and set S := SpecOK . Recall that a Hermitian
vector bundle over S is a pair E = (E, (‖ ‖σ )σ :K ↪→C), where E is a projective OK -module of finite type,
and (‖ ‖σ )σ :K ↪→C is a family of Hermitian norms over Eσ := E ⊗σ :OK ↪→C C, invariant under complex
conjugation. If rk E = 1, we say that E is a Hermitian line bundle over S.

The multilinear constructions in the category of projective modules over OK (e.g., tensor products,
quotients, Hom) make sense in the category of Hermitian vector bundles over S.

Definition 5.4. Let E = (E, (‖ ‖σ )σ :K ↪→C) be a Hermitian vector bundle over S, and fix s ∈ det E r {0},
where det E :=

∧rk E E . We define the Arakelov degree of E by

d̂eg(E) := log |(det E)/OK s| −
∑

σ :K ↪→C

log ‖s‖σ ∈ R.

This is easily seen not to depend on the choice of s. We define moreover the normalized Arakelov degree
of E by

d̂egn(E) :=
1

[K :Q]
d̂eg(E)

and the slope of E by

µ̂(E) :=
1

rk E
d̂egn(E)

when rk E > 0, and µ̂(E) := −∞ when rk E = 0.

Proposition 5.5 [Bost 2001, Section 4.1.1]. The following properties hold:

(1) If L and M are Hermitian line bundles over S, we have

d̂eg(L ⊗M)= d̂eg(L)+ d̂eg(M).

(2) Let E be a Hermitian vector bundle over S and

E = E0
⊃ E1

⊃ · · · ⊃ E N
⊃ {0}

be a filtration of E by saturated OK -submodules. Then

d̂eg(E)= d̂eg(E N )+

N−1∑
i=0

d̂eg(E i/E i+1),

where E N and E i/E i+1 denote the Hermitian vector bundles with underlying modules E N and E i/E i+1,
respectively, and Hermitian structure induced by E.

(3) For every Hermitian vector bundle E over S, and every Hermitian line bundle L over S, we have

µ̂(E ⊗ L)= µ̂(E)+ d̂egn(L).
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Let E and F be Hermitian vector bundles over S. For every maximal ideal p of OK , we denote by Kp

the completion of K at p and by ‖ ‖p the nonarchimedean norm over HomKp(EKp, FKp) associated to the
OKp-lattice HomOKp

(EOKp
, FOKp

); explicitly, if ϕ ∈HomKp(EKp, FKp)\{0}, then ‖ϕ‖p := |OK /p|
−vp(ϕ),

where vp(ϕ) = max{n ∈ Z | π−n
p ϕ ∈ HomOKp

(EOKp
, FOKp

)} and πp denotes some uniformizer of OKp .
For a field embedding σ : K ↪→ C, we consider the operator norm on HomC(Eσ , Fσ ):

‖ϕ‖σ = max
v∈Eσ \{0}

‖ϕ(v)‖σ

‖v‖σ
.

Then, the height of a nonzero K -linear map ϕ : EK → FK is defined by

hE,F (ϕ)=
1

[K :Q]

(∑
p

log ‖ϕ‖p+
∑
σ

log ‖ϕ‖σ

)
.

If ϕ = 0, our convention is that hE,F (ϕ) := −∞.

Proposition 5.6 (slope inequality; [Bost 2001, Proposition 4.5]). With the above notation, if ϕ : EK→ FK

is injective, then

µ̂(E)≤ µ̂max(F)+ hE,F (ϕ),

where µ̂max(F) := sup{µ̂(F ′) | F ′ is an OK -submodule of F}.

Let us point out that µ̂max(F) is attained by a saturated submodule of F ; see [Bost 1996, Section A.3].
In particular, if rk F = 1, then µ̂max(F)= µ̂(F).

5C. Short vectors in filtered Hermitian vector bundles. Let K be a field, OK be its ring of integers, and
S = SpecOK . Let E = (E, (‖ ‖σ )σ :K ↪→C) be a nonzero Hermitian vector bundle over S; we denote its
first successive minimum by

λ1(E) := inf
{
max
σ
‖s‖σ

∣∣ s ∈ E \ {0}
}
.

Since s 7→ s⊗ 1 identifies E with a lattice in the R-vector space E ⊗Z R, the first successive minimum is
attained by some element s ∈ E \ {0}.

Proposition 5.7 (Minkowski). Let E be a nonzero Hermitian vector bundle over S. Then

log λ1(E)≤−µ̂(E)+ 1
2 log(rk E)+

log |1K |

2[K :Q]
+

1
2 log[K :Q],

where 1K denotes the discriminant of K over Q.

This statement may be obtained from [Bost and Künnemann 2010, pp. 1027–1028] by considering the
Hermitian vector bundle over Spec Z given by the direct image of E via S→ Spec Z.

Let (Ed)d≥1 be a family of Hermitian vector bundles over S such that

rd := rk Ed →+∞
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as d→+∞. Assume that, for each d ≥ 1, we are given a separated filtration

E0
d = Ed ⊃ E1

d ⊃ E2
d ⊃ · · ·

by saturated OK -submodules. We endow each Em
d with the Hermitian vector bundle structure induced

from Ed .

Proposition 5.8. With the above notation, assume that there exists an integer k ≥ 1 and a double sequence
(ad,m)d≥1,m≥0 of positive real numbers, nondecreasing in m for every d ≥ 1, such that

rk(Em
d /Em+1

d )≤ k (5-1)

and

µ̂(Em
d /Em+1

d )≤ ad,m (5-2)

for every d ≥ 1 and m ≥ 0. Then, for every d ≥ 1 such that rd 6= 0, there exists m ≥ brd/(2k)c and
s ∈ Em

d \ Em+1
d satisfying

max
σ

log ‖s‖σ ≤max{0,−2µ̂(Ed)}+ ad,m +
1
2 log rd +

log |1K |

2[K :Q]
+

1
2 log[K :Q].

Proof. Let d ≥ 1 such that rd 6= 0 and set

m′ :=
⌊

rd

2k

⌋
,

so that, by (5-1),

rm′
d := rk Em′

d ≥ rd − km′ ≥ 1
2rd > 0.

By Proposition 5.5 (2), we have

µ̂(Ed)=
rm′

d

rd
µ̂(Em′

d )+
1
rd

∑
0≤i<m′

rk(E i
d/E i+1

d )µ̂(E i
d/E i+1

d ).

(When E i
d/E i+1

d =0, we set rk(E i
d/E i+1

d )=0 and µ̂(E i
d/E i+1

d )=−∞, so that rk(E i
d/E i+1

d )µ̂(E i
d/E i+1

d )=

0 by convention.) Using hypotheses (5-1) and (5-2), and that (ad,m) is nondecreasing in m for every d,
we obtain

µ̂(Ed)≤
rm′

d

rd
µ̂(Em′

d )+
m′kad,m′

rd
,

or, equivalently,

−µ̂(Em′
d )≤−

rd

rm′
d

µ̂(Ed)+
m′k

rm′
d

ad,m′ .

Since rd ≤ 2rm′
d and m′ ≤ rd/(2k), we conclude that

−µ̂(Em′
d )≤max{0,−2µ̂(Ed)}+ ad,m′ .
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Let s ∈ Em′
d \ {0} be such that maxσ ‖s‖σ = λ1(Em′

d ). Then Proposition 5.7 yields

max
σ

log ‖s‖σ ≤−µ̂(Em′
d )+

1
2 log rm′

d +
log |1K |

2[K :Q]
+

1
2 log[K :Q]

≤max{0,−2µ̂(Ed)}+ ad,m′ +
1
2 log rm′

d +
log |1K |

2[K :Q]
+

1
2 log[K :Q]. �

Thus m :=max{i ∈ N | s ∈ E i
d} ≥ m′ satisfies the conclusion of our statement.

5D. Proof of Theorem 5.1. Consider the notation and hypotheses of Theorem 5.1. Let us first observe
that if Theorem 5.1 holds for some particular choice of Hermitian metric (‖ ‖σ )σ :K ↪→C on L , then a
similar statement holds for any other choice of metric, up to modifying the constant c2. We may thus
assume that each (Lσ , ‖ ‖σ ) is a positive Hermitian line bundle on X an

σ .
For every integer d ≥ 1,

Ed := 0(X , L⊗d)

is a projective OK -module of finite type. For each field embedding σ : K ↪→ C, we may consider the
uniform norm ‖ ‖L∞(X an

σ )
on Ed,σ induced by the Hermitian metric ‖ ‖σ on Lσ .

Note that the norm ‖ ‖L∞(X an
σ )

is not Hermitian in general. We denote by ‖ ‖d,σ the John norm on Ed,σ

attached to ‖ ‖L∞(X an
σ )

(see [Bost 2015, Appendix F]); this is a Hermitian norm on Ed,σ satisfying

‖ ‖L∞(X an
σ )
≤ ‖ ‖d,σ ≤ (2 rk Ed)

1/2
‖ ‖L∞(X an

σ )
. (5-3)

We may thus consider the Hermitian vector bundle over SpecOK

Ed := (Ed , (‖ ‖d,σ )σ :K ↪→C).

We define a decreasing filtration (Em
d )m≥0 by saturated submodules on Ed via

Em
d := {s ∈ Ed | ord0 ϕ̂

∗s ≥ m}.

Since the image of ϕ̂K : Spf K [[q]]→ XK is Zariski-dense, (Em
d )m≥0 is a separated filtration. The subquo-

tients Em
d /Em+1

d bear Hermitian vector bundle structures Em
d /Em+1

d induced by Ed .
Let us denote by � the fiber of coherent sheaf �1

SpfOK [[q]]/OK
at the point of SpfOK [[q]] given by the

ideal (q)⊂OK [[q]]. This is a trivial OK -module generated by dq. In what follows, we endow � with a
structure of Hermitian line bundle �, defined by

‖αdq‖σ = |σ(α)|

for any α ∈OK and any embedding σ : K ↪→ C. Observe that � is isomorphic to the trivial Hermitian
line bundle, and therefore d̂eg�= 0.

Let ϕ̂(0) : SpecOK →X denote the reduction of ϕ̂ modulo q , i.e., the composition of ϕ̂ with the closed
immersion SpecOK → SpfOK [[q]] associated to the ideal (q). The Hermitian structure on L endows
ϕ̂(0)∗L with the structure of a Hermitian line bundle over SpecOK .
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For all integers d ≥ 1 and m ≥ 0, we have an injective OK -linear map

γ m
d : E

m
d /Em+1

d → ϕ̂(0)∗L⊗d
⊗OK �

⊗m

defined by mapping the class [s] ∈ Em
d /Em+1

d of s ∈ Em
d to jm

0 ϕ̂
∗s (the jet of order m at q = 0 of ϕ̂∗s).

Lemma 5.9. There exist constants κ1, κ2 > 0 such that for all integers d ≥ 1 and m ≥ 0 we have

h(γ m
d,K )≤ κ1d + κ2d log+m,

where h denotes the height of γ m
d,K with respect to the Hermitian vector bundles Em

d /Em+1
d and

ϕ̂(0)∗L⊗d
⊗OK �

⊗m .

Proof. Let σ : K ↪→ C be a field embedding. Since ϕσ : DRσ → X an
σ has moderate growth, it follows

from Proposition 3.12 that there exist constants κ1,σ , κ2,σ > 0 such that, for any integers d ≥ 1 and m ≥ 0
for which and Em

d /Em+1
d 6= 0, and any s ∈ Em

d,σ \ Em+1
d,σ , we have

log ‖ jm
0 ϕ
∗

σ s‖Rσ − log ‖s‖L∞(X an
σ )
≤ κ1,σd + κ2,σd log+m. (5-4)

Here, the norm ‖ ‖Rσ is the norm ‖ ‖r , introduced before Proposition 3.8, in the special case where
r = Rσ and L is ϕ∗σ Lσ equipped with the pullback of ‖ ‖σ .

Note that
‖ jm

0 ϕ̂
∗s‖σ = R−m

σ ‖ jm
0 ϕ
∗

σ s‖Rσ ,

where ‖ jm
0 ϕ̂
∗s‖σ denotes the norm of jm

0 ϕ̂
∗s = γ m

d ([s]) with respect to the Hermitian structure of
ϕ̂(0)∗L⊗d

⊗�⊗m. The estimate (5-4), together with (5-3), shows that

log ‖γ m
d ‖σ +m log Rσ ≤ κ1,σd + κ2,σd log+m.

Since
∏
σ :K ↪→C Rσ = 1, we obtain∑

σ

log ‖γ m
d ‖σ ≤

(∑
σ

κ1,σ

)
d +

(∑
σ

κ2,σ

)
d log+m.

Since γ m
d is defined over OK , we have ‖γ m

d,K‖p ≤ 1 for every maximal ideal p of OK , so that

h(γ m
d,K )≤

1
[K :Q]

∑
σ

log ‖γ m
d ‖σ ≤

1
[K :Q]

(∑
σ

κ1,σ

)
d +

1
[K :Q]

(∑
σ

κ2,σ

)
d log+m. �

End of proof of Theorem 5.1. Let us first remark that, as L K is ample, we have

rd = rk Ed = dim0(XK , L⊗d
K )∼d→+∞

degL K
XK

n!
dn.

In particular, log rd = O(d) as d→+∞. We shall apply Proposition 5.8 for (Em
d )d≥1,m≥0 defined as

above. This suffices by the estimates (5-3).
Note that condition (5-1) is trivially verified for k = 1. Moreover, by the same argument of [Bost 2001,

Proposition 4.4] (see also Lemma 4.1 of that paper) and by the estimates (5-3), there exists a constant
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c > 0 such that −µ̂(Ed)≤ cd for every d ≥ 1. Thus, to finish our proof, it is sufficient to find constants
a, b > 0 such that

µ̂(Em
d /Em+1

d )≤ ad,m := ad + bd log+m

for every d ≥ 1 and m ≥ 0 (condition (5-2)).
By Lemma 5.9, there exist constants κ1, κ2 > 0 such that, for every d ≥ 1 and m ≥ 0 such that

Em
d /Em+1

d 6= 0, we have

h(γ m
d,K )≤ κ1d + κ2d log+m.

Thus, since γ m
d,K is injective, we may apply the slope inequality (Proposition 5.6) to obtain

µ̂(Em
d /Em+1

d )≤ µ̂(ϕ̂(0)∗L⊗d
⊗OK �

⊗m)+ h(γ m
d,K )

≤ (κ1+ µ̂(ϕ̂(0)∗L))d + κ2d log+m. �

6. Derivatives of sections of line bundles along vector fields

A crucial step in Nesterenko’s method involves applying a certain differential operator (deduced from the
Ramanujan equations) to auxiliary polynomials. It is also important to understand how this differential
operator affects the degree and the norm ‖ ‖∞ of a polynomial.

Our generalization of Nesterenko’s proof replaces polynomials of degree d by global sections of the
d-th tensor power of some ample line bundle. In this section we explain how to differentiate global
sections of tensor powers of a line bundle L along a vector field v. Under a projectivity hypothesis, we
also explain how L∞ norms with respect to some Hermitian metric on L are affected by a differential
operator deduced from v.

6A. The basic definition. Let M be a compact connected complex manifold, and L be a line bundle
over M endowed with a global holomorphic section s0 ∈ 0(M, L) \ {0}. To L is associated the graded
ring R =

⊕
d≥0 Rd , where Rd := 0(M, L⊗d).

Let v be a meromorphic vector field on M, and assume that v is holomorphic on the open subset
Ms0 := {p ∈ M | s0(p) 6= 0}. Then there is a smallest integer k ≥ 0, the “order of pole of v at div(s0)”,
such that v⊗ s⊗k

0 defines a global holomorphic section of T M ⊗ L⊗k.
The vector field v induces a C-derivation of degree k+ 1 of the graded ring R

∂v : R→ R

given as follows. By definition, ∂v is the zero map on R0 ∼= C. Let d ≥ 1 be an integer, s ∈ Rd , and
f : Ms0→C be the holomorphic function for which s = f s⊗d

0 over Ms0 . Then ∂vs ∈ Rd+k+1 is defined as
the unique global section of L⊗d+k+1 such that ∂vs = v( f )s⊗d+k+1

0 over Ms0 . The next lemma guarantees
that this is well-defined.

Lemma 6.1. With the above notation, v( f )s⊗d+k+1
0 extends to a global holomorphic section of L⊗d+k+1.
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Proof. The pair (L , s0) corresponds canonically to an effective analytic Cartier divisor E on M ; let
(gi ,Ui )i∈I be a family of local equations of E for some open covering M =

⋃
i∈I Ui . By hypothesis, gk

i v

extends to a holomorphic vector field on Ui for every i ∈ I.
An element s ∈ Rd might be identified with a meromorphic function f = s/s⊗d

0 on M having pole of
order at most d on E , i.e., such that gd

i f defines a holomorphic function on Ui for every i ∈ I. Under
this identification, our statement is equivalent to the assertion that gd+k+1

i v( f ) defines a holomorphic
function on Ui for every i ∈ I.

Now, for i ∈ I, we have

gk+1
i v(gd

i f )= gk+1
i (d · gd−1

i v(gi ) f + gd
i v( f ))= d · gk

i v(gi )gd
i f + gd+k+1

i v( f ),

so that gd+k+1
i v( f ) defines a holomorphic function on Ui . �

Finally, it is easy to see that the C-linear map ∂v : R→ R satisfies Leibniz’s rule: if s ∈ Rd and t ∈ Re,
then

∂v(s⊗ t)= ∂vs⊗ t + s⊗ ∂vt

in Rd+e+k+1.

6B. Estimates of uniform norms. Let us keep the notation of the last subsection and fix once and for
all some t ∈ Rk+1 (recall that k denotes the “order of pole of v at div(s0)”).

For any integer j ≥ 1 and d ≥ 1, we define a differential operator of degree j (k+ 1)

∂ [ j]v : R→ R

as the composition

∂ [ j]v = ∂v ◦ (∂v − t) ◦ · · · ◦ (∂v − ( j − 1)t).

Proposition 6.2. With the above notation, assume moreover that L = i∗O(1) for some projectively normal
embedding i : M ↪→ Pn(C). Let ‖ ‖ be a Hermitian metric on L. Then there exists a constant C > 0 such
that, for any integer j ≥ 1, any sufficiently large positive integer d, and any s ∈ Rd , we have

‖∂ [ j]v s‖L∞(M) ≤ C j+d( j + d) j
‖s‖L∞(M),

where ‖∂ [ j]v (s)‖L∞(M) and ‖s‖L∞(M) denote the uniform norms on M with respect to the Hermitian metrics
on L⊗d+ j (k+1) and L⊗d , respectively, induced by ‖ ‖.

Our proof is a reduction to the case M = Pn(C). Let ‖ ‖ denote the Fubini–Study metric on the line
bundle O(1) over Pn

C
= Proj C[X0, . . . , Xn] (see Example 4.5), and let us identify 0(Pn

C
,O(d)) with

the C-vector space C[X0, . . . , Xn]d of homogeneous polynomials of degree d . If P =
∑
|I |=d aI X I, we

consider the norms

‖P‖∞ := max
|I |=d
|aI |, ‖P‖1 :=

∑
|I |=d

|aI |.
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The uniform norm of P , seen as an element of 0(Pn(C),O(d)), with O(1) equipped with the Fubini–Study
metric, is given by

‖P‖L∞(Pn(C)) = sup
z∈Cn+1\{0}

|P(z)|(∑n
i=0 |zi |

2
)d/2 .

Lemma 6.3. For any P ∈ 0(Pn
C
,O(d)), we have

(n+ 1)−d/2
‖P‖∞ ≤ ‖P‖L∞(Pn(C)) ≤ ‖P‖1 ≤

(d+n
n

)
‖P‖∞.

Proof. If we write P =
∑
|I |=d aI X I, then Cauchy’s integral formula gives, for any multi-index I,

aI =
1

(2π i)n+1

∫
(∂D)n+1

P(z)
z I+1 dz0 · · · dzn,

where D denotes the unit disk in C and 1 the multi-index of order n + 1 having 1 at each coordinate.
Thus, if [z] denotes the image in Pn(C) of a point z ∈ Cn+1

\ {0},

|aI | ≤ sup
z∈(∂D)n+1

|P(z)| = (n+ 1)d/2 sup
z∈(∂D)n+1

‖P([z])‖.

This proves that (n+ 1)−d/2
‖P‖∞ ≤ ‖P‖L∞(Pn(C)).

For any z ∈ Cn+1
\ {0}, we have

‖P([z])‖ =
|P(z)|(∑n

i=0 |zi |
2
)d/2 ≤

∑
|I |=d |aI ||z I

|(∑n
i=0 |zi |

2
)d/2 ≤

max|I |=d |z I
|(∑n

i=0 |zi |
2
)d/2 ‖P‖1.

Now, if I = (i0, . . . , in) is a multi-index satisfying |I | = d, then it is clear that

|z I
|
2
= (|z0|

2)i0 · · · (|zn|
2)in ≤

( n∑
i=0

|zi |
2
)d

.

We thus obtain ‖P‖L∞(Pn(C)) ≤ ‖P‖1.
The inequality ‖P‖1 ≤

(n+d
n

)
‖P‖∞ is an immediate consequence of dim0(Pn(C),O(d))=

(n+d
n

)
. �

Proof of Proposition 6.2. Since M is compact, if the conclusion of the statement holds for some Hermitian
metric ‖ ‖, then, up to replacing the constant C, it also holds for any other Hermitian metric on L . We
may thus assume that ‖ ‖ is induced by the Fubini–Study metric on O(1) via the embedding i .

Let (X0, . . . , Xn) denote the projective coordinates of Pn(C), seen as global sections of O(1), and let
tj ∈ R1 be the restriction of X j to M for every 0≤ j ≤ n. Since i : M ↪→ Pn(C) is projectively normal,
for any integer d ≥ 1, Rd is generated as a C-vector space by the monomials of degree d in t0, . . . , tn .

We lift v to Pn(C) as follows. For every 0≤ j ≤ n, let

Pj ∈ 0(P
n(C),O(k+ 2))= C[X0, . . . , Xn]k+2

be a lifting of ∂vtj ∈ Rk+2. Then there exists a unique C-derivation ∂ of
⊕

d≥0 0(P
n(C),O(d)) =

C[X0, . . . , Xn], of degree k+ 1, such that ∂X j = Pj for every 0≤ j ≤ n. It is easy to see that, for every
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integer d ≥ 0, the diagram

C[X0, . . . , Xn]d C[X0, . . . , Xn]d+k+1

Rd Rd+k+1

∂

i∗ i∗

∂v

commutes. Moreover, if Q ∈ C[X0, . . . , Xn]k+1 is any lifting of t ∈ Rk+1, then it is clear that, for any
j ≥ 1,

∂ [ j] := ∂ ◦ (∂ − Q) ◦ · · · ◦ (∂ − ( j − 1)Q)

makes the diagram

C[X0, . . . , Xn]d C[X0, . . . , Xn]d+ j (k+1)

Rd Rd+ j (k+1)

∂ [ j]

i∗ i∗

∂
[ j]
v

commute.
For every multi-index I ∈ Nn+1, we have

‖∂X I
‖∞ ≤ |I | max

0≤i≤n
‖Pi‖∞.

This implies that, for any d ≥ 1 and any homogeneous polynomial P ∈ C[X0, . . . , Xn]d ,

‖∂P‖∞ ≤ d
(

max
0≤i≤n

‖Pi‖∞
)
‖P‖∞.

Thus, if

κ := ‖Q‖∞+ (k+ 1) max
0≤i≤n

‖Pi‖∞

and S ∈ C[X0, . . . , Xn] is a homogeneous polynomial of degree d +m(k+ 1) for some 0≤ m ≤ j − 1,
we have

‖(∂ −m Q)S‖∞ ≤
(
(d +m(k+ 1))

(
max

0≤i≤n
‖Pi‖∞

)
+m‖Q‖∞

)
‖S‖∞ ≤ κ(d + j)‖S‖∞.

By induction, we conclude that, for any d ≥ 1 and any P ∈ C[X0, . . . , Xn]d , we have

‖∂ [ j]P‖∞ ≤ κ j (d + j) j
‖P‖∞. (6-1)

To complete our proof, we apply a lifting argument. By [Bost 2004, Proposition 3.5], there exists a
constant C0 > 0 such that, for every sufficiently large integer d and every s ∈ 0(M, L⊗d), there exists a
lifting P ∈ 0(Pn

C
,O(d)) of s such that

‖P‖L∞(Pn(C)) ≤ Cd
0 ‖s‖L∞(M). (6-2)
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Thus, for any j ≥ 1,

‖∂ [ j]v s‖L∞(M) ≤ ‖∂
[ j]P‖L∞(Pn(C)) ≤ ‖∂

[ j]P‖1 ≤
(d+ j (k+1)

j (k+1)

)
‖∂ [ j]P‖∞ by Lemma 6.3

≤ 2d+ j (k+1)
‖∂ [ j]P‖∞

≤ 2d+ j (k+1)κ j (d + j) j
‖P‖∞ by (6-1)

≤ 2d+ j (k+1)κ j (d + j) j (n+ 1)d/2‖P‖L∞(Pn(C)) by Lemma 6.3

≤ 2d+ j (k+1)κ j (d + j) j (n+ 1)d/2Cd
0 ‖s‖L∞(M) by (6-2). �

6C. The arithmetic case. We shall actually need an arithmetic variant of the above constructions.
Consider the notation and terminology of Section 5A. Let K be a number field, X be a projective

arithmetic scheme over S = SpecOK with smooth generic fiber, and L be a line bundle over X endowed
with a global section s0 ∈0(X , L)\{0}. Arguing as above, we see that a section w ∈0(Xs0,DerOS (OX ))

induces an OK -derivation ∂w of the ring
⊕

d≥0 0(X , L⊗d).
Let us fix t ∈ 0(X , Lk+1), where k ≥ 0 is the “order of pole of w at div(s0)”, and consider the

differential operators ∂ [ j]w = ∂w ◦ (∂w − t) ◦ · · · ◦ (∂w − ( j − 1)t), for j ≥ 0, as above.
By applying Proposition 6.2 for each projective embedding σ : K ↪→ C, we obtain the following

corollary.

Corollary 6.4. With the above notation, assume moreover that L = i∗O(1) for some closed immersion
i : X ↪→ Pn

OK
over S such that iK : XK ↪→ Pn

K is projectively normal. Let (‖ ‖σ )σ :K ↪→C be a Hermitian
structure on L. Then, there exists a constant C > 0 such that, for any integer j ≥ 1, any sufficiently large
positive integer d, and any s ∈ 0(X , L⊗d), we have

‖∂ [ j]w s‖X ≤ C j+d( j + d) j
‖s‖X .

7. Proof of Theorem 1.2

Recall the notation and hypotheses of Theorem 1.2: X is a quasiprojective arithmetic scheme over OK of
relative dimension n ≥ 2 with smooth generic fiber, and ϕ̂ : SpfOK [[q]] → X is a morphism of formal
OK -schemes such that

(i) the formal curve ϕ̂K : Spf K [[q]] → XK is ZL-dense in XK and satisfies the differential equation

q
dϕ̂K

dq
= v ◦ ϕ̂K ;

(ii) for any field embedding σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]]→ Xσ lifts to an analytic curve
ϕσ : DRσ ⊂ C→ X an

σ of moderate growth. We also assume that
∏
σ :K ↪→C Rσ = 1.

Let X be some projective compactification with smooth generic fiber of the arithmetic variety X
over OK . Fix a Hermitian line bundle L = (L , (‖ ‖σ )σ :K ↪→C) over X such that L K is ample and
(Lσ , ‖ ‖σ ) over X an

σ is positive for every σ : K ↪→ C.
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In view of Philippon’s algebraic independence criterion (Theorem A.1), Theorem 1.2 will be a direct
consequence of the following.

Theorem 7.1. With the above notation, for any field embedding σ : K ↪→C, and any z ∈ DRσ \ {0}, there
exist real constants c0, c1, c2, c3 > 0 such that, for every sufficiently large positive integer d , there exists
a positive integer d ′ ≤ c0d log d , and t ∈ 0(X , L⊗d ′) satisfying

log ‖t‖X ≤ c1d log2 d

and
−c2dn

≤ log ‖t (ϕσ (z))‖σ ≤−c3dn.

We shall prove this theorem in three steps corresponding to the next three lemmas.

Lemma 7.2 (auxiliary sections). There exist constants a, b, c > 0 such that, for every sufficiently large
positive integer d, there is a global section s ∈ 0(X , L⊗d) such that

adn < ord0 ϕ̂
∗s ≤ bdn (7-1)

and
log ‖s‖X ≤ cd log d. (7-2)

Proof. Since ϕ̂K is ZL-dense in XK , and ϕτ has moderate growth in X an
τ for every embedding τ : K ↪→C,

our statement follows immediately from Corollary 5.3. �

Fix a field embedding σ : K ↪→ C and z ∈ DRσ \ {0}. By the projective prime avoidance lemma, there
is an integer k ≥ 1, and a global section s0 ∈ 0(X , L⊗k) such that X s0 := (s0 6= 0)⊂X and ϕσ (z) ∈X an

s0,σ
.

Up to replacing L by L⊗k, we may assume that k = 1 (see Remark A.2).

Lemma 7.3. There exist constants γ0, γ1, γ2 > 0 such that, for every sufficiently large positive integer d ,
and every s ∈ 0(X , L⊗d) as in Lemma 7.2, there exists j ≤ γ0d log d such that, if we write s = f s⊗d

0

over X s0 , then
−γ1dn

≤ log |(ϕ∗σ f )( j)(z)| ≤ −γ2dn.

Proof. Let d be a sufficiently large positive integer and s ∈ 0(X , L⊗d) be as in Lemma 7.2. Set
m := ord0 ϕ̂

∗s.
According to Proposition 3.12 and to the bounds (7-1) and (7-2), for every embedding τ 6= σ , there is

a constant κτ (not depending on d or s) such that

log ‖ jm
0 ϕ
∗

τ s‖Rτ ≤ κτd log d. (7-3)

We recall that the norm ‖ ‖Rτ above is the norm ‖ ‖r , introduced before Proposition 3.8, in the special
case where r = Rτ and L is ϕ∗τ Lτ equipped with the pullback of ‖ ‖τ .

Fix any constant C >
∑

τ 6=σ κτ . Then Corollary 3.16 shows that there exist real numbers γ0, γ1 > 0
such that, for sufficiently large d , if

max
0≤ j≤bγ0d log dc

log
|(ϕ∗σ f )( j)(z)|

j !
<−γ1dn (7-4)
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then
log ‖ jm

0 ϕ
∗

σ s‖Rσ ≤−Cd log d. (7-5)

By contradiction, assume that (7-4) holds. Observe that jm
0 ϕ̂
∗s is an element of ϕ̂(0)∗L⊗d

⊗�⊗m ,
and the Hermitian structure on ϕ̂(0)∗L⊗d

⊗�⊗m allows us to consider its norms (‖ jm
0 ϕ̂
∗s‖τ )τ :K ↪→C. For

every field embedding τ : K ↪→ C, we have

‖ jm
0 ϕ̂
∗s‖τ = R−m

τ ‖ jm
0 ϕ
∗

τ s‖Rτ .

Thus, since
∏
τ :K ↪→C Rτ = 1, we obtain from (7-3) and (7-5)∑

τ :K ↪→C

log ‖ jm
0 ϕ̂
∗s‖τ ≤−

(
C −

∑
τ 6=σ

κτ

)
d log d.

On the other hand, by definition of the Arakelov degree, we have∑
τ :K ↪→C

log ‖ jm
0 ϕ̂
∗s‖τ ≥− d̂eg(ϕ̂(0)∗L⊗d

⊗�⊗m)=− d̂eg(ϕ̂(0)∗L)d.

This contradicts our choice of C for d � 0. We conclude that, for sufficiently large d , (7-4) cannot hold,
so that there exists an integer j ≤ γ0d log d for which

log |(ϕ∗σ f )( j)(z)| ≥ log
|(ϕ∗σ f )( j)(z)|

j !
≥ −γ1dn. (7-6)

Next, we bound log |(ϕ∗σ f )( j)(z)| from above. Let 1 be a disk centered in z, of radius ε > 0 small
enough so that 1̄⊂ ϕ−1

σ (X an
s0,σ
). It follows from Proposition 3.14, and bounds (7-1) and (7-2), that there

is a constant c′ > 0 such that
log max

ζ∈∂1
|ϕ∗σ f (ζ )| ≤ −c′dn.

By the Cauchy inequalities, we have

|(ϕ∗σ f )( j)(z)|
j !

≤
maxζ∈∂1 |ϕ∗σ f (ζ )|

ε j ,

so that
log |(ϕ∗σ f )( j)(z)| ≤ −c′dn

+ log j ! − j log ε.

Since j = O(d log d), we have log j ! = O(d log2 d), and we conclude that there is a constant γ2 > 0 (not
depending on d or s) such that

log |(ϕ∗σ f )( j)(z)| ≤ −γ2dn (7-7)

for every sufficiently large d. �

Again by Remark A.2, up to replacing L by a sufficiently large tensor power of itself, we may assume
that there exists a closed immersion i : X ↪→ Pn

OK
over OK such that iK : X K ↪→ Pn

K is projectively
normal and L = i∗O(1).
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Fix any α ∈ OK \ {0} that “clears the denominators of v”, i.e., such that w := αv defines a nonzero
global section of DerOK (OX ). Let k ≥ 0 be the smallest integer for which w⊗s⊗k

0 defines a global section
of DerOK (OX )⊗ L⊗k, and let ∂w be the OK -derivation of degree k + 1 of the ring

⊕
d≥0 0(X , L⊗d)

defined in Section 6. For any integer j ≥ 1, set

∂ [ j]w = ∂w ◦ (∂w −αs⊗k+1
0 ) ◦ · · · ◦ (∂w − ( j − 1)αs⊗k+1

0 ).

Lemma 7.4. There exist constants c1, c2, c3 > 0 such that, for every sufficiently large positive integer d ,
and every s ∈ 0(X , L⊗d) as in Lemma 7.2, if j denotes the integer constructed in Lemma 7.3, then the
section t := ∂ [ j]w (s) ∈ 0(X , L⊗d+ j (k+1)) satisfies

log ‖t‖X ≤ c1d log2 d

and
−c2dn

≤ log ‖t (ϕσ (z))‖σ ≤−c3dn.

Proof. Since j grows on the order of d log d , by Corollary 6.4 and bound (7-2), there exists c1 > 0 such
that

log ‖t‖X ≤ c1d log2 d.

In order to bound ‖t (ϕσ (z))‖σ , we first remark that the formal identity of differential operators

q j d j

dq j = q
d

dq

(
q

d
dq
− 1
)
· · ·

(
q

d
dq
− ( j − 1)

)
and the differential equation

Dϕ̂K

(
q

d
dq

)
= ϕ̂∗Kv

yield

ϕ̂∗t = ϕ̂∗(∂w(∂w−αs⊗k+1
0 ) · · ·(∂w−( j−1)αs⊗k+1

0 )(s))

=α j
[

q
d

dq

(
q

d
dq
−1
)
· · ·

(
q

d
dq
−( j−1)

)
ϕ̂∗( f )

]
ϕ̂∗(s0)

⊗d+ j (k+1)
= (αq) j d j ϕ̂∗( f )

dq j ϕ̂∗(s0)
⊗d+ j (k+1).

A similar formula holds for ϕσ . Thus

log ‖t (ϕσ (z))‖σ = log |(ϕ∗σ f )( j)(z)| + j log |αz| + (d + j (k+ 1)) log ‖ϕ∗σ s0(z)‖σ .

Since j grows on the order of d log d, we conclude from (7-6) and (7-7) that there exist real constants
c2 > c3 > 0 such that

−c2dn
≤ log ‖t (ϕσ (z))‖σ ≤−c3dn

for sufficiently large d . �

To finish the proof, we simply remark that, if c0 is any real number satisfying c0 > (k+ 1)γ0, then the
degree d ′ := d + j (k + 1) of t constructed above satisfies d ′ ≤ d + (k + 1)γ0d log d ≤ c0d log d, for d
sufficiently large.
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Appendix A: Philippon’s algebraic independence criterion for projective varieties

Let K be a number field, X be a projective arithmetic scheme over OK of relative dimension n ≥ 2
(see the definition in Section 5A), and L = (L , (‖ ‖σ )σ :K ↪→C) be a Hermitian line bundle over X with
L relatively ample over SpecOK . Recall that, if s ∈ 0(X , L⊗d) for some integer d ≥ 1, then we set
‖s‖X =maxσ ‖s‖σ,L∞(X an

σ )
, where σ runs through the set of field embeddings of K in C.

The proof of the main theorem of this article relies on the following generalized version of an algebraic
independence criterion of Philippon [1986, Théorème 2.11]; see also [Nesterenko 1996, Lemma 2.5].

Theorem A.1. Let σ : K ↪→ C be a field embedding and p ∈ Xσ (C). Suppose that there exist an integer
m ∈[2, n], a nondecreasing sequence of positive real numbers (`d)d≥1 satisfying `m−1

d =o(d) as d→+∞,
and real constants a > b > 0 such that, for every sufficiently large positive integer d, there exists an
integer d ′ ≤ d`d and a section s ∈ 0(X , L⊗d ′) satisfying

log ‖s‖X ≤ d`d

and
−adm

≤ log ‖sσ (p)‖σ ≤−bdm .

Then the field of definition K (p) of the complex point p in XK satisfies

trdegQ K (p)≥ m− 1.

Remark A.2. For any integer k ≥ 1, the conditions in the above statement are verified for the Hermitian
line bundle L if and only if similar conditions hold for the tensor power L⊗k of L (up to multiplying `d ,
a, and b by suitable constants).

Moreover, since X is proper over SpecOK , it is easy to see that if the above statement is true for a
particular choice of Hermitian structure on L , then it also holds for any other Hermitian structure on L .

In what follows, we explain how to deduce the above statement from Philippon’s original result
concerning X = Pn

OK
. The main technical tool is the following “integral lifting lemma”.

Lemma A.3. Let X and Y be projective arithmetic schemes over OK , L be a Hermitian line bundle
over X , with L relatively ample over SpecOK , and Y→ X be a closed immersion over SpecOK . Endow
L|Y with the induced Hermitian structure. Then, there exists a real number C > 0 such that, for every
sufficiently large positive integer d, any section s ∈ 0(Y, L|⊗d

Y ) can be lifted to a section s̃ ∈ 0(X , L⊗d)

satisfying
‖s̃‖X ≤ Cd

‖s‖Y .

This type of result is well known in Arakelov geometry and goes back to Zhang’s work [1992] on
arithmetic ampleness. For lack of reference, we sketch a proof.

Sketch of the proof. If R is a ring, we set 0(X , L⊗d)R := 0(X , L⊗d)⊗Z R.
Let d be large enough so that the restriction map ρd : 0(X , L⊗d)→ 0(Y, L|⊗d

Y ) is surjective. Since⊕
σ 0(Xσ , L⊗d

σ )∼= 0(X , L⊗d)C, we may apply [Bost 2004, Proposition 3.5] to obtain a constant C0 > 0,
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not depending on d or s, and an element t ∈0(X , L⊗d)R⊂0(X , L⊗d)C lifting s (i.e., (ρd⊗1)(t)= s⊗1)
and satisfying

‖t‖X ≤ Cd
0 ‖s‖Y .

The idea now is to define s̃ as the element of ρ−1
d (s) minimizing the distance ‖t − s̃‖X in 0(X , L⊗d)R.

To finish the proof, we must show that the diameter of the fundamental domain of the lattice
0(X , IY⊗L⊗d)= ker ρd in 0(X , IY⊗L⊗d)R grows at most exponentially in d . We mimic the argument
in the proof of [Charles 2017, Proposition 2.5]. Since L is ample, there exists an integer n ≥ 1 such that,
for any sufficiently large integer r , and any positive integer q , the morphism

0(X , IY ⊗ L⊗r )⊗Z 0(X , L⊗n)⊗q
→ 0(X , IY ⊗ L⊗nq+r )

is surjective. Choose sufficiently large integers r1, . . . , rn forming a complete residue system modulo n.
Fixing bases of the finite free Z-modules 0(X , L⊗n), 0(X , IY ⊗ L⊗r1), . . . , 0(X , IY ⊗ L⊗rn ), we see
that there exists a constant B > 1 such that any 0(X , IY ⊗ L⊗nq+ri ) admits a full-rank submodule
having a basis whose elements have norm bounded by Bq. By [Zhang 1992, Lemma 1.7], the Z-module
0(X , IY⊗ L⊗nq+ri ) admits a basis whose elements have norm bounded by r Bq, where r denotes the rank
of 0(X , IY ⊗ L⊗nq+ri ). Since r grows polynomially in q , and r1, . . . , rn form a complete residue system
modulo n, we conclude that there exists a constant κ > 0 such that, for any sufficiently large integer d,
the Z-module 0(X , IY ⊗ L⊗d) admits a basis consisting of elements with norm bounded by κd. �

To handle the case X = Pn
OK

, we compare the height h̄(P) of a homogeneous polynomial P ∈
OK [X0, . . . , Xn] of degree d used in [Philippon 1986] with the Fubini–Study norm ‖s‖Pn

OK
of the

corresponding section s ∈ 0(Pn
OK
,O(d)). By definition,

h̄(P)=
1

[K :Q]

∑
σ :K ↪→C

log+ Mσ (P),

where, for any field embedding σ : K ↪→ C, we set

Mσ (P) := exp
(

1
(2π)n+1

∫ 2π

0
· · ·

∫ 2π

0
log |Pσ (eiθ0, . . . , eiθn )| dθ0 · · · dθn

)
.

Lemma A.4. Let (‖ ‖σ )σ :K ↪→C denote the Fubini–Study Hermitian structure on the line bundle O(1)
over the arithmetic scheme Pn

OK
. For any integer d ≥ 1, and any section s ∈ 0(Pn

OK
,O(d)), if P ∈

OK [X0, . . . , Xn] denotes the homogeneous polynomial of degree d corresponding to s, then

h̄(P)≤ log+ ‖s‖Pn
OK
+
(n+ 1)

2
d.

Proof. For any field embedding σ : K ↪→ C, and any (θ0, . . . , θn) ∈ [0, 2π ]n+1, we have

‖sσ (eiθ0 : · · · : eiθn )‖σ =
|Pσ (eiθ0, . . . , eiθn )|

(n+ 1)d/2
,
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so that

log Mσ (P)≤ log ‖s‖σ,L∞(Pn(C))+
(n+ 1)

2
d ≤ log ‖s‖Pn

OK
+
(n+ 1)

2
d.

Clearly, a similar inequality holds with log+ in place of log. The result follows by taking the arithmetic
mean over all σ : K ↪→ C. �

Proof of Theorem A.1. The case where X = Pn
OK

and L is given by O(1) endowed with the Fubini–Study
metric follows from Lemma A.4 and [Philippon 1986, Théorème 2.11]; see also [Nesterenko 1996,
Lemma 2.5].

The general case follows from this one by considering a closed immersion i : X → Pn
OK

over OK

satisfying i∗O(1)= L⊗k for some k ≥ 1, and by applying Lemma A.3 and Remark A.2. �

Appendix B: D-property and ZL-density in quasiprojective varieties

Let k be a field, X be a smooth quasiprojective variety over k, and F be an OX -submodule of rank 1 of
the tangent bundle TX/k such that the quotient TX/k/F is torsion-free, i.e., a one-dimensional (possibly
singular) foliation on X .

Let p ∈ X (k) be a k-point of X . We say that a formal curve ϕ̂ : Spf k[[q]] → X is an integral curve of
F at p if ϕ̂(0)= p and if the image of the tangent map

Dϕ̂ : TSpf k[[q]]/k→ ϕ̂∗TX/k

factors through the subbundle ϕ̂∗F of ϕ̂∗TX/k . Moreover, if F(p) := 0(Spec k, p∗F) denotes the fiber of
F at p, we say that ϕ̂ is smooth if ϕ̂′(0) := D0ϕ̂(d/dq) ∈ F(p) is nonzero.

From now on, we assume that k has characteristic 0. By a formal version of the Frobenius theorem,
for every p ∈ X (k) such that F(p) 6= 0, there exists a unique smooth integral curve ϕ̂ of F at p, up to
composition by an automorphism of Spf k[[q]].

We say that a closed subscheme Y of X is F-invariant if the ideal of Y in OX is stable under the
derivations of F ⊂ TX/k = Derk(OX ).

Definition B.1. Let X be a smooth quasiprojective variety over the field k, let F be a one-dimensional
foliation on X , and let ϕ̂ : Spf k[[q]] → X be a formal integral curve of F . We say that ϕ̂ satisfies the
D-property for F if there exists a constant C > 0 such that, for every F-invariant closed subvariety Y
of X , there exists a Cartier divisor D whose support contains Y satisfying

multϕ̂ D ≤ C.

Observe that, if ϕ̂ satisfies the D-property, then its image is Zariski-dense in X . Indeed, the Zariski-
closure of the image of an integral curve of F is F-invariant.

Theorem B.2 (Nesterenko–Binyamini). Let X be a smooth quasiprojective variety over an algebraically
closed field k of characteristic 0, v ∈ 0(X, TX/k) \ {0} be a vector field on X , and ϕ̂ : Spf k[[q]] → X be a
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smooth formal curve satisfying the differential equation

q
dϕ̂
dq
= v ◦ ϕ̂.

If ϕ̂ satisfies the D-property for the foliation generated by v, then ϕ̂ is ZL-dense in X.

Note that ϕ̂(0) is a singular point of v. In the nonsingular case, i.e., ϕ̂ satisfies the differential equation
dϕ̂/dq = v ◦ ϕ̂, stronger statements are true (see [Binyamini 2014, Theorem 2]), but an analog of the
above result may be also obtained by virtually the same proof.

Binyamini’s original result [2014, Corollary 3] builds on ideas of Nesterenko and concerns the case of
an analytic integral curve of a polynomial vector field on some affine space over C. In what follows, we
merely indicate how a slight modification of the geometric methods of Binyamini may be used to prove
Theorem B.2 above.

We start by recasting the D-property into a more workable form.

Proposition B.3. Let X be any projective compactification of X and L be an ample line bundle on X.
Then, a formal curve ϕ̂ : Spf k[[q]] → X satisfies the D-property for a one-dimensional foliation F on X
if and only if there exists a constant C > 0 such that, for every F-invariant closed subvariety Y of X ,
there exists an integer d ≥ 1, and a global section s ∈ 0(X , L⊗d) vanishing identically on Y such that
ord0 ϕ̂

∗s ≤ C.

Proof. The sufficiency is clear: consider the divisors div(s).
Conversely, suppose that ϕ̂ satisfies the D-property for F with constant C > 0 and let Y be an F-

invariant closed subvariety of X . Since L is ample, we may assume that Y contains ϕ̂(0); otherwise,
there exists an integer d ≥ 1 and a section s ∈ 0(X , L⊗d) vanishing on Y such that s(ϕ̂(0)) 6= 0, so that
ord0 ϕ̂

∗s = 0≤ C.
Let D be a divisor whose support contains Y such that multϕ̂ D ≤ C, and let f be a local equation

for D on some open neighborhood U of ϕ̂(0). Since L is ample, there exists an integer m ≥ 1 and a
section s0 ∈ 0(X , L⊗m) such that ϕ̂(0) ∈ X s0 and X s0 ⊂ U. Now, there exists an integer n ≥ 1, and a
global section s ∈ 0(X , L⊗mn) such that s = f s⊗mn

0 over X s0 . It is clear that s vanishes identically on Y
and satisfies ord0 ϕ̂

∗s = ord0 ϕ̂
∗ f =multϕ̂ D ≤ C. �

Consider the hypotheses and notation of Theorem B.2. Fix a projective compactification X of X , and
an ample line bundle L on X endowed with a global section s0 ∈ 0(X , L) satisfying X s0 ⊂ X . Recall
from Section 6 that v defines a k-derivation ∂v on the ring

⊕
d≥0 0(X , L⊗d).

Let p = ϕ̂(0). By a formal cycle of X at p, we mean a cycle in the scheme Spec ÔX,p, where ÔX,p

denotes the completion of the local ring OX,p with respect to its maximal ideal. Note that every (global)
cycle of X induces, by localization and formal completion, a formal cycle of X at p.

Let Y be a prime formal cycle of X at p corresponding to the prime ideal p of ÔX,p and denote by Iϕ̂
the ideal of im ϕ̂ in ÔX,p. Assume that Iϕ̂ does not contain p (i.e., Y does not contain the image of ϕ̂).
Since ϕ̂ : Spf k[[q]] → X is smooth, the image of Iϕ̂ in the local ring ÔX,p/p contains some power of the
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maximal ideal. We may thus consider the Samuel multiplicity

multϕ̂ Y := eIϕ̂/Iϕ̂∩p(ÔX,p/p).

By additivity, we may extend this definition to every formal cycle of X at p whose components do not
contain the image of ϕ̂. By abuse of notation, if Z is a (global) cycle of X , we denote by multϕ̂ Z the
multiplicity multϕ̂ Ẑ of its completion at p.

Proposition B.4. The multiplicity function constructed above satisfies the following properties:

(1) If Z = div( f ), for some f ∈ ÔX,p, then multϕ̂(Z)= ord0 ϕ̂
∗ f .

(2) If Z = p, then multϕ̂(Z)= 1.

(3) For any closed subvariety Y of X , any integer d≥1, and any s ∈0(X , L⊗d)\{0} vanishing identically
on Y, we have multϕ̂(Y )≤ ord0 ϕ̂

∗s ·multp(Y ).

(4) For any closed subvariety Y of X , any integer d≥1, and any s ∈0(X , L⊗d)\{0} vanishing identically
on Y for which ∂vs does not vanish identically on Y, we have multϕ̂(Y )≤multϕ̂(Y · div(∂vs)).

(5) There is an integer n0≥ 0 such that, for every closed subvariety Y of X not contained in a v-invariant
subvariety of X , if d ≥ 1 is the smallest integer for which there is s ∈ 0(X , L⊗d) \ {0} vanishing
identically on Y, then min{n | ∂n

v s does not vanish identically on Y } ≤ n0.

Properties (1) and (2) are easy. For properties (3) and (4), see [Binyamini 2014, Lemma 8 and
Proposition 9]. Finally, property (5) follows by an adaptation of the arguments in [loc. cit., Section 3].

Once this is established, the proof Theorem B.2 becomes completely analogous to the proof of [loc. cit.,
Theorem 3].
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