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Cycle integrals of modular functions,
Markov geodesics and a conjecture of Kaneko

Paloma Bengoechea and Özlem Imamoglu

In this paper we study the values of modular functions at the Markov quadratics which are defined in
terms of their cycle integrals along the associated closed geodesics. These numbers are shown to satisfy
two properties that were conjectured by Kaneko. More precisely we show that the values of a modular
function f , along any branch B of the Markov tree, converge to the value of f at the Markov number
which is the predecessor of the tip of B. We also prove an interlacing property for these values.

1. Introduction

A well known theorem of Dirichlet asserts that for any irrational number x , there are infinitely many
rational numbers p/q satisfying |x − p/q| < 1/q2. For irrational numbers that are algebraic, thanks
to a theorem of Roth [1955], the exponent 2 is optimal. The constant factor, on the other hand, can
be improved and a classical theorem of Hurwitz asserts that for every irrational number x there exist
infinitely many rational numbers p/q satisfying∣∣∣∣x − p

q

∣∣∣∣< 1
√

5q2
.

The constant 1/
√

5 is best possible but if we exclude as x the numbers that are PGL(2,Z)-equivalent to
the golden ratio (1+

√
5)/2, the constant 1/

√
5 improves to 1/

√
8. If we also exclude the numbers that

are PGL(2,Z)-equivalent to
√

2, then the constant improves to 5/
√

221. By proceeding in this way, one
obtains the Lagrange spectrum defined by

L := {ν(x)}x∈R ⊆ [0, 1/
√

5] with ν(x)= lim inf
q→∞

q‖qx‖,

where ‖x‖ denotes the distance from a real number x to a closest integer. The quantity ν(x) provides
a measure of approximation of x by the rationals. For almost all x ∈ R we have ν(x) = 0 and when
ν(x) > 0 we call x badly approximable. Real quadratic irrationals are badly approximable, the worst ones
being the golden ratio and its PGL(2,Z)-equivalents, followed by

√
2 and its PGL(2,Z)-equivalents, etc.

The Lagrange spectrum is not discrete (see [Hall 1947]) but the part of the spectrum in the subinterval( 1
3 , 1/
√

5
]

corresponding to classes of worst irrational numbers is, with 1
3 as its only accumulation point.
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L∩
( 1

3 , 1/
√

5
]

is well understood thanks to the work of Markov [1879; 1880] which connects this question
of Diophantine approximation to the Diophantine equation

x2
+ y2
+ z2
= 3xyz. (1)

The set of Markov triples comprising the positive integer solutions (x, y, z) of (1) can be obtained
starting with (1, 1, 1), (1, 1, 2), (2, 1, 5) and then proceeding recursively going from (x, y, z) to the new
triples obtained by Vieta involutions (z, y, 3yz− x) and (x, z, 3xz− y). The Markov numbers are the
greatest coordinates of Markov triples. They form the Markov sequence

{mi }
∞

i=1 =
{
1, 2, 5, 13, 29, 34, 89, 169, 194, . . .

}
.

The Markov number mi is associated to a quadratic irrationality

θi =
3mi − 2ki +

√
9m2

i − 4
2mi

,

where ki is an integer that satisfies ai ki ≡ bi (mod mi ) and (ai , bi ,mi ) is a solution to (1) with mi

maximal. Since ki is uniquely defined modulo mi , θi is uniquely defined modulo 1. Markov showed that
ν(θi )=

√

9− 4/m2
i , and L∩

(1
3 , 1/
√

5
]
={ν(θi )}i≥1.Moreover, any x ∈R for which ν(x)∈ L∩

( 1
3 , 1/
√

5
]

is PGL(2,Z)-equivalent to a Markov quadratic θi .
Markov numbers come with a tree structure, inherited from Vieta involutions, that arranges them as

1
(1, 1, 1)

2
(1, 1, 2)

5
(2, 1, 5)

13
(5, 1, 13)

34
(13, 1, 34)

...
...

194
(5, 13, 194)

...
...

29
(2, 5, 29)

433
(29, 5, 433)

...
...

169
(2, 29, 169)

...
...

Here (a, b, c) is a solution to (1). The Markov quadratics inherit the same tree structure which can be
given in terms of their continued fractions as
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[12] [22]

[22, 12]

[22, 14]

[22, 16]

...
...

[22, 12, 22, 14]

...
...

[24, 12]

[24, 12, 22, 12]

...
...

[26, 12]

...
...

where bn means that b is repeated n times. We note that it is more convenient to write [12] instead of [1]
in connection with the conjunction operator in (5). The fact that all of the partial quotients of Markov
quadratics are 1 or 2 and many of their other properties can be found in [Aigner 2013; Bombieri 2007;
Malyshev 1977] (See for example Corollary 1.27 in [Aigner 2013].)

Markov numbers arise in many different contexts: see [Bourgain et al. 2016b; 2016a; Ghosh and
Sarnak 2017] for some recent developments regarding the Markov surfaces.

The main goal of this paper is to study the values of modular functions along the tree associated to the
Markov quadratics.

Let 0 = PSL(2,Z). For a general quadratic irrationality w ∈ Q(
√

D) and a modular function f
for 0, the “value” of f at w is defined in terms of the integral of f along the geodesic cycle Cw ⊂ 0\H
associated to w. More precisely

f (w) :=
∫

Cw
f (z) ds,

where ds is the hyperbolic arc length. We can normalize the number f (w) by the length of the geodesic
Cw and define

f nor(w) :=
f (w)

2 log εD
,

where εD is the fundamental unit (see Section 2A).
The values of modular functions at real quadratic irrationalities were introduced in [Duke et al. 2011]

and independently in [Kaneko 2009]. In [Duke et al. 2011] their averages over ideal classes were shown
to be coefficients of mock modular forms whereas Kaneko [2009] studied their individual values f nor(w)

(in the case that the modular function is the Klein’s j invariant), and based on numerical calculations he
made several interesting observations and conjectures.

In this paper we prove two of Kaneko’s conjectures which involve the values of modular functions at
the Markov quadratics. Let B be any branch of the Markov tree where with a branch we mean a path
on the tree without any zigzags. Our first theorem shows that if wB

n is the n-th Markov quadratic on a
branch B and wB

0 is the predecessor of the tip of B then the normalized values f nor(wB
n ), for any modular
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function f , converge to the value f nor(wB
0 ). (For more precise definitions of the tip of a branch and its

predecessor see Section 3A.) More precisely:

Theorem 1.1. Let f be a modular function defined on H. For any branch B of the Markov tree we have

lim
n→∞

f nor(wB
n )= f nor(wB

0 ).

Our second theorem proves an eventual monotonicity result which also partially proves the interlacing
property of the values for the Markov quadratics that was conjectured by Kaneko.

Theorem 1.2. Let f be a modular function on H, let B be any branch of the Markov tree. Then there
exists a constant N f,B such that, for all n ≥ N f,B , the real and imaginary parts of f nor(wB

n+1) lie between
the real and respectively imaginary parts of f nor(wB

0 ) and f nor(wB
n ).

The rest of the paper is organized as follows. In the next section we give the preliminaries about cycle
integrals and continued fractions. In Section 3, we give the basic properties of the Markov quadratics and
the Markov tree. In Sections 4 and 5 we study the values of modular functions on the Markov tree and
prove Theorems 1.1 and 1.2 respectively.

2. Preliminaries

2A. Cycle integrals. Let w be a real quadratic irrationality and w̃ be its conjugate, so w and w̃ are the
roots of a quadratic equation

ax2
+ bx + c = 0 (a, b, c ∈ Z, (a, b, c)= 1)

with discriminant D = b2
− 4ac > 0. We change [a, b, c] to −[a, b, c] if necessary and write

w =
−b+

√
D

2a
, w̃ =

−b−
√

D
2a

.

The geodesic Sw in H joining w and w̃ is given by the equation

a|z|2+ b Re(z)+ c = 0 (z ∈H).

The stabilizer 0w of w in 0 preserves the quadratic form Qw = [a, b, c], and hence Sw. The group 0w is
infinite cyclic; it corresponds to the group U 2

D of units of norm one of Q(
√

D) via the isomorphism:

0w −→U 2
D,

(
a b
c d

)
7→ (a− cw)2. (2)

We denote by Aw the generator of 0w,

Aw =
(1

2(t − bu) −cu
au 1

2(t + bu)

)
,

where (t, u) is the smallest positive solution to Pell’s equation t2
− Du2

= 4, and we denote by ε the
generator of the infinite cyclic part of UD whose square corresponds to Aw by the isomorphism (2).
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For any modular function f , since the group 0w preserves the expression f (z)Qw(z, 1)−1 dz, one can
define the cycle integral of f along Cw = Sw/0w, also viewed as the “value” of f at w, by the complex
number

f (w) :=
∫

Cw

√
D f (z)

Qw(z, 1)
dz. (3)

The factor
√

D is introduced here for convenience but is also natural since with the constant function
f ≡ 1, (3) gives the length of the geodesic Cw. The integral defining f (w) is 0-invariant and can in
fact be taken along any path in H from z0 to A−1

w z0, where z0 is any point in H. Note that this gives an
orientation on Sw from w to w̃, which is counterclockwise if a > 0 and clockwise if a < 0. We normalize
the number f (w) by the length of the geodesic Cw which is given by∫

Cw

√
D

Qw(z, 1)
dz = 2 log ε

and we define the normalized value as

f nor(w) :=
f (w)

2 log ε
.

2B. The “+” and “−” continued fractions. Let (b0, b1, b2, . . .) denote the “−” continued fraction

(b0, b1, b2, . . .)= b0−
1

b1−
1

b2−
1
. . .

and [a0, a1, a2, . . .] be the “+” continued fraction

[a0, a1, a2, . . .] = a0+
1

a1+
1

a2+
1
. . .

.

Every real number w has a “−” continued fraction expansion w = (b0, b1, b2, . . .) with bi ∈ Z and bi ≥ 2
for i ≥ 1 and a unique “+” continued fraction expansion w = [a0, a1, a2, . . .] with ai ∈ Z and ai ≥ 1
for i ≥ 1. The “−” continued fraction expansion of w is obtained by setting w0 = w and inductively
bi = dwie, wi+1 = 1/(bi −wi )= ST−bi (wi ), where S(x)=−1/x and T (x)= x+1. The “+” continued
fraction expansion is obtained by setting ai = bwic, wi+1 = 1/(wi −ai )= εT−ai (wi ), where ε(x)= 1/x .
Hence the “−” continued fraction is given by transformations of 0 on the real line, whereas the “+”
continued fraction corresponds to transformations of GL(2,Z). To go from the “+” to the “−” continued
fraction expansions, the general rule is

[a0, a1, a2, . . .] →
(
a0+ 1, 2, . . . , 2︸ ︷︷ ︸

a1−1

, a2+ 2, 2, . . . , 2︸ ︷︷ ︸
a3−1

, a4+ 2, . . .
)
. (4)
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It is well known that a real number w is a quadratic irrationality if and only if its “−” continued
fraction expansion (or equivalently, its “+” continued fraction) is eventually periodic:

w = (b0, b1, . . . , bk, bk+1, . . . , bk+r ),

where the line over bk+1, . . . , bk+r denotes the period. We say that w is purely periodic when all the
partial quotients repeat. It will be useful for the rest of the paper to remember the following statements:

(I) Two quadratic irrationalities have the same “−” period if and only if they are 0-equivalent.

(II) w has a purely periodic “−” continued fraction expansion if and only if 0< w̃ < 1<w, where w̃ is
the conjugate of w.

(III) If w = (b0, . . . , br ), then 1/w̃ = (br , . . . , b0).

These statements and more information about negative continued fractions can be found in [Zagier 1981,
p. 126 ff].

The following lemma gives an upper bound for the distance between two real numbers in terms of the
number of first partial quotients for which they coincide.

Lemma 2.1. If the “−” continued fraction expansions of u and v coincide in the first r + 1 partial
quotients and their “+” continued fraction expansions have only 1’s and 2’s, then

|u− v| ≤ 10
(

2

1+
√

5

)2r

.

Proof. Let u and v be as in the statement of the lemma. Then one can see, by applying the rule (4), that
also the “+” continued fraction expansions of u and v coincide in the first r + 1 partial quotients. Hence,
if we set a0, . . . , ar to be those partial quotients, the rational number p/q = [a0, . . . , ar ] is a convergent
of both u and v. Then it is well known that∣∣∣∣u− p

q

∣∣∣∣≤ 1
q2 ,

∣∣∣∣v− p
q

∣∣∣∣≤ 1
q2

and

q ≥
1
√

5

(
1+
√

5
2

)r

.

Therefore,

|u− v| ≤
∣∣∣∣u− p

q

∣∣∣∣+ ∣∣∣∣v− p
q

∣∣∣∣≤ 10
(

2

1+
√

5

)2r

. �

3. Markov Tree

3A. Markov’s quadratics. Let {mi }
∞

i=1 =
{
1, 2, 5, 13, 29, 34, 89, 169, 194, . . .

}
be the set of Markov

numbers. As in the introduction, for each Markov number mi , we let

θi =
3mi − 2ki +

√
9m2

i − 4
2mi



Cycle integrals of modular functions, Markov geodesics and a conjecture of Kaneko 949

be the Markov quadratic where ki is an integer that satisfies ai ki ≡ bi (mod mi ) and (ai , bi ,mi ) is a
solution to (1) with mi maximal. Changing the representative for ki mod mi does not change the 0
orbit of θi . In Markov’s theory, only PGL(2,Z)-equivalence classes are relevant, which implies that the
order of (ai , bi ) does not matter. Since we need 0-equivalence, which distinguishes nonreal f (θi ) and its
conjugate, here the order of (ai , bi ) becomes relevant. We fix it so that Im( f (w)) > 0.

The Markov tree T associated to the Markov quadratics given in the introduction is in terms of the “+”
continued fractions. Since the cycle integrals are 0 and not PGL(2,Z) invariant, we will rather work with
the “−” continued fraction. By following the rule (4), the Markov tree T becomes in the “−” continued
fraction

(2, 3) (3, 2, 4)

(3, 2, 3, 4)

(3, 2, 32, 4)

(3, 2, 33, 4)

...
...

(3, 2, 3, 4, 2, 32, 4)

...
...

(3, 2, 4, 2, 3, 4)

(3, 2, 4, (2, 3, 4)2)

...
...

(3, (2, 4)2, 2, 3, 4)

...
...

Note that each branch (a path with no zigzags) in the tree T comes with a left or right orientation. We
call a branch a left (right) branch if starting from its first vertex on the top and going downwards the
branch leans towards left (right). Since no zigzag paths are allowed, each branch has a unique orientation.
For example, the branch with the quadratics (3, 2, 3, 4), (3, 2, 32, 4), (3, 2, 33, 4) is a left branch, whereas
the branch with (3, 2, 3, 4), (3, 2, 4, 2, 3, 4), (3, (2, 4)2, 2, 3, 4) is a right branch. We call the first vertex
at the top of any branch its tip. Except for the two singular cases of (2, 3) and (3, 2, 4), each Markov
number lies both on a right and a left branch but it is the tip of only a left or a right branch, except for
(3, 2, 3, 4) which is the tip of both the leftmost and the rightmost branches.

In the case of “+” continued fractions we consider a conjunction operation of two periods as

[s0, . . . , sn]� [t0, . . . , tm] = [s0, . . . , sn, t0, . . . , tm]. (5)

All Markov quadratics can be constructed by using this operation, starting with [12] and [22]. Indeed,
each Markov quadratic is the result of the conjunction operation of its predecessor on the same branch
and the predecessor of the tip of the branch.

For the “−” continued fraction, the rule is also the conjunction of periods except for the leftmost
branch, where the n-th Markov quadratic is (3, 2, 3n, 4). Indeed, let x = [s0, . . . , sn] = (b0, b1, . . . , bk)

and y = [t0, . . . , tm] = (c0, c1, . . . , c`). For any branch different from the rightmost branch, by applying
(4) together with the observation that sn = tm = 1 are in odd positions, so they do not contribute in the



950 Paloma Bengoechea and Özlem Imamoglu

“−” expansion, we obtain

x � y = (b0, b1, . . . , bk−1, t0+ 2, c1, . . . , c`−1, s0+ 2).

But t0 is equal to 1 on the leftmost branch and 2 on any other branch, and s0 = 2. For the rightmost
branch, (4) also gives

x � y = (b0, b1, . . . , bk−1, 4, c1, . . . , c`−1, s0+ 2)

and s0 = 2.
Throughout the paper, we denote by wB

n (n ≥ 1) the n-th Markov quadratic on a branch B of the
tree and wB

0 the left (right) predecessor of the tip wB
1 of B if B is a left (right) branch. For example, if

B = L is the leftmost branch, then wL
0 = (2, 3), wL

1 = (3, 2, 3, 4), wL
2 = (3, 2, 32, 4), wL

3 = (3, 2, 33, 4),
etc. If B = R is the rightmost branch, then wR

0 = (3, 2, 4), wR
1 = (3, 2, 3, 4), wR

2 = (3, 2, 4, 2, 3, 4),
wR

3 = (3, (2, 4)2, 2, 3, 4), etc.
The n-th Markov quadratic on a left branch B 6= L can be written as

wB
n = (3, a1, . . . , as, (b1, . . . , br )n), (6)

where wB
0 = (3, b1, . . . , br ) and a1, . . . , as depend only on B. On a right branch B, we have

wB
n = (3, (b1, . . . , br )n−1, a1, . . . , as), (7)

and on the leftmost branch L we have

wL
n = (3, 2, 3n, 4). (8)

Remark 3.1. The leftmost branch in the Markov tree is also called the Fibonacci branch since the
associated Markov numbers on this branch are the odd indexed Fibonacci numbers. Similarly the
rightmost branch is associated with the odd indexed Pell numbers which are defined by the recurrence
P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 (see [Aigner 2013, p. 49]).

3B. The cycle of quadratics of a Markov number. For any quadratic irrationality w, it is known that
the hyperbolic element Aw is conjugate to a word in T and V , where

T =
(

1 1
0 1

)
, V =

(
1 0
1 1

)
.

If in particular w = wB
n is a quadratic on T (n ≥ 0), then the associated hyperbolic element AwB

n
can be

written as a word in T and V . More specifically, AwB
n
= A−1

0 · · · A
−1
`n

, where A0= I and Ai ∈ {T−1, V−1
}

for 1≤ i ≤ `n are given by the algorithm:

wB
n,0 = w

B
n , wB

n,i+1 = Ai+1(w
B
n,i ) (i ≥ 0),

where
Ai+1 =

{
T−1 if bwB

n,ic ≥ 1,
V−1 otherwise.
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Hence

wB
n,i = Ai · · · A0w

B
n , i = 0, . . . , `n, (9)

and `n is the length of the word AwB
n

, or equivalently, the length of the cycle of quadratics {wB
n,i }i of wB

n .
As the following example demonstrates, this procedure applied to a Markov quadratic in fact cycles back
and hence terminates.

Example 3.2. For example, the cycle of wL
1 = (3, 2, 3, 4) on the leftmost branch is:

wL
1,0 = (3, 2, 3, 4),

wL
1,1 = T−1(wL

1,0)= (2, 2, 3, 4),

wL
1,2 = T−1(wL

1,1)= (1, 2, 3, 4),

wL
1,3 = V−1(wL

1,2)= (1, 3, 4, 2),

wL
1,4 = V−1(wL

1,3)= (2, 4, 2, 3),

wL
1,5 = T−1(wL

1,4)= (1, 4, 2, 3),

wL
1,6 = V−1(wL

1,5)= (3, 2, 3, 4)= wL
1,0.

The length is `1 = 6 and AwL
1
= I T T V V T V .

From now on we restrict to a left branch but not the leftmost branch. All the following arguments
apply in the same way if B is a right branch or B = L , the leftmost branch. The small difference in the
arguments arise due to the different conjunction operations necessary, which are given in (7) for the right
and in (8) for the leftmost branches.

We now consider wB
n , in a left branch B 6= L , written as in (6). Then

`n = n`0+

s∑
i=1

(ai − 1), (10)

where

`0 =

r∑
i=1

(bi − 1)

is the length of the cycle of wB
0 . The number of partial quotients in the period of wB

1 is s + r and the
conjunction operation ensures that this is ≤ 2r . Hence s ≤ r and since ai ≤ 4, we have

`n ≤ 3r(n+ 1). (11)

It is convenient to set

a =
s∑

i=1

(ai − 1)

and

p= (b1, . . . , br ), pk = (b1, . . . , br )k, qk = (br , . . . , b1)k,
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where the subindex k means that the continued fraction is repeated k times. With these notations, the
cycle of wB

n is of the form:

wB
n,0 = (3, a1, . . . , as, pn),

wB
n,1 = (2, a1, . . . , as, pn),

wB
n,2 = (1, a1, . . . , as, pn),

wB
n,3 = (a1− 1, a2, . . . , as, pn, a1),

...

wB
n,a = (3, pn, a1, . . . , as),

...

wB
n,a+`0

= (3, pn−1, a1, . . . , as, p),
...

wB
n,a+n`0

= (3, a1, . . . , as, pn)= w
B
n,0.

Remark 3.3. One can easily write the continued fraction expansion for the Galois conjugate −w̃B
n,i of

−wB
n,i in terms of that of wB

n,i . Indeed, let (d0, d1, . . . , dm) be the continued fraction expansion of wB
n,i .

The quadratic ST−d0(wB
n,i ) is purely periodic with continued fraction (d1, . . . , dm) so, by the property (III),

its Galois conjugate is 1/(dm, . . . , d1). Therefore,

w̃B
n,i = T d0 S(1/(dm, . . . , d1))=−(dm − d0, dm−1, . . . , d1, dm).

4. Convergence property

In this section we study the values of a modular function on the Markov tree. Let B be any branch
of the tree and wB

n be the n-th Markov quadratic on B. Let AwB
n
= A−1

0 · · · A
−1
`n

, where A0 = I and
Ai ∈ {T−1, V−1

} for 1≤ i ≤ `n . Let ρ = eπ i/3 and zi = A−1
0 · · · A

−1
i ρ2. Then using the modularity of f

we have

f (wB
n )=−

√
D
`n−1∑
i=0

∫ zi+1

zi

f (z)
QwB

n
(z, 1)

dz

=−
√

D
`n−1∑
i=0

∫ A−1
i+1ρ

2

ρ2

f (z)

(QwB
n
|A−1

0 · · · A
−1
i )(z, 1)

dz

=−

`n−1∑
i=0

∫ A−1
i+1ρ

2

ρ2
f (z)

(
1

z−wB
n,i
−

1
z− w̃B

n,i

)
dz.

Since V (ρ2)= T (ρ2)= ρ, we obtain:

Lemma 4.1. For n ≥ 0 we have

f (wB
n )=

∫ ρ2

ρ

`n−1∑
i=0

f (z)
(

1
z−wB

n,i
−

1
z− w̃B

n,i

)
dz. (12)
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Lemma 4.1 is the main tool we use to estimate the values of modular functions at real quadratic
irrationalities.

Throughout the paper, we denote by C the arc of circle joining ρ2 and ρ. We denote by εB
n the image

of AB
wn

under the isomorphism (2), so the length of CwB
n

equals 2 log εB
n .

Our first goal is to show that the normalized values f nor(wB
n ) for any modular function f along any

branch B converge to the value f nor(wB
0 ). We call this property “convergence property” and prove it in

this section. The main idea of the proof is to divide the sum in Lemma 4.1 into several ranges and bound
each piece making repeated use of Lemma 2.1. For simplicity of the notation, as mentioned before, we
restrict to a left but not the leftmost branch. However, the argument in the proof of Theorem 4.2 applies
in the same way if B is a right branch or B = L . Only the bound δ1(r, N ) will be slightly modified but
will still be of the form O(r Nλr N ) where λ= (2/(1+

√
5))2. Hence Corollary 4.4 also remains true for

any branch.

Theorem 4.2. Let f be a modular function, B be any left branch 6= L of the Markov tree T and N ≥ 1.
There exists a complex number K = K f,B,N such that for all n ≥ N ,∣∣ f (wB

n )− n f (wB
0 )− K

∣∣≤ δ1(r, N )max
z∈C
| f (z)|, (13)

where

δ1(r, N )= 80π
3
(2+ r(N + 1))

(
2

1+
√

5

)2(r N−1)

(14)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. By applying Lemma 4.1 for f (wB
n ) and f (wB

0 ) we have:

f (wB
n )− n f (wB

0 )=

∫ ρ2

ρ

f (z)(S1(n, N , z)+ S2(n, N , z)+ S3(n, N , z)) dz, (15)

where

S1(n, N , z)=
a−1∑
i=0

1
z−wB

n,i
+

`n−1∑
i=a+(n−N )`0

1
z−wB

n,i
−

a+N`0−1∑
i=0

1
z− w̃B

n,i
−N

`0−1∑
i=0

(
1

z−wB
0,i
−

1
z− w̃B

0,i

)
,

S2(n, N , z)=
a+(n−N )`0−1∑

i=a

1
z−wB

n,i
−(n−N )

`0−1∑
i=0

1
z−wB

0,i
,

S3(n, N , z)=−
a+n`0−1∑
i=a+N`0

1
z− w̃B

n,i
+(n−N )

`0−1∑
i=0

1
z− w̃B

0,i
.

Moreover, we can also write

S1(n, N , z)= S1(N , N , z)+ (S1(n, N , z)− S1(N , N , z)). (16)
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Define

K :=
∫ ρ2

ρ

f (z)S1(N , N , z) dz

and
c(n, z) := |S1(n, N , z)− S1(N , N , z)| + |S2(n, N , z)| + |S3(n, N , z)|.

Then

| f (wB
n )− n f (wB

0 )− K | ≤
∫ ρ2

ρ

c(n, z)| f (z)| |dz|. (17)

These divisions are guided by the continued fraction expansions of all the terms in the cycle of wB
n and

wB
0 and their conjugates. As we will see shortly, the repeated use of Lemma 2.1 will allow us to bound

all the other sums after we separate the main term K .
Let λ= (2/(1+

√
5))2. If we can show that

c(n, z)≤ 80(2+ r(N + 1))λr N−1 (18)

for z ∈ C, then the theorem is proved. Next we show (18).

Bound for |S2(n, N , z)|. We have that

|S2(n, N , z)| ≤
n−N−2∑

k=0

`0∑
i=1

|wB
n,2+a+k`0+i −w

B
0,2+i |

|z−wB
n,2+a+k`0+i ||z−w

B
0,2+i |

+

2∑
i=0

|wB
n,a+i −w

B
0,i |

|z−wB
n,a+i ||z−w

B
0,i |

+

`0−3∑
i=1

|wB
n,2+a+(n−N−1)`0+i −w

B
0,2+i |

|z−wB
n,2+a+(n−N−1)`0+i ||z−w

B
0,2+i |

.

Clearly for any z ∈ C and x ∈ R, we have that |z− x | ≥ Im(e2π i/3)=
√

3/2. Hence the denominators
are bounded below by 3

4 when z ∈ C since the points w are real. The numerators can be bounded by using
Lemma 2.1. For i = 0, 1, 2,

wB
n,a+i = (3− i, pn, a1, . . . , as) and wB

0,i = (3− i, p)

coincide at least in the first rn+1 partial quotients. For each 0≤ k≤ n−N−2, we have: For 1≤ i ≤ b1−1,

wB
n,2+a+k`0+i =

(
b1− i, b2, . . . , br , pn−1−k, a1, . . . , as, pk, b1

)
. (19)

For the next b2− 1 values of i (b1 ≤ i ≤ b1+ b2− 2),

wB
n,2+a+k`0+i =

(
b2− j, b3, . . . , br , pn−1−k, a1, . . . , as, pk, b1, b2

)
(20)

with 1≤ j ≤ b2− 1. This process goes on until the last br − 1 values of i , where

wB
n,2+a+k`0+i =

(
br − j, pn−1−k, a1, . . . , as, pk+1

)
with 1≤ j ≤ br − 1. For k = n− N − 1, we have the same pattern as before except for the last block of
values of i , where we only have br − 3 of them.
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Now, for each 0≤ k ≤ n− N − 1, for 1≤ i ≤ b1− 1, (19) and

wB
0,2+i = (b1− i, b2, . . . , br , b1)

coincide in the first rn− rk partial quotients. For the next b2− 1 values of i , (20) and

wB
0,2+i = (b2− j, b3, . . . , br , b1, b2) (1≤ j ≤ b2− 1)

coincide in the first rn− rk− 1 partial quotients, similarly for the next b3− 1 values of i , wB
n,2+a+k`0+i

and wB
0,2+i coincide in the first rn− rk− 2 partial quotients, etc. Therefore, using Lemma 2.1, for z ∈ C,

we have

|S2(n, N , z)| ≤ 40
3

(
3λrn
+

r∑
i=1

(bi − 1)
n−N−1∑

k=0

λr(n−k)−i
)

≤
40
3

(
3λrn
+ 3

( r∑
i=1

λ−i
)( n∑

k=N+1

λrk
))

≤
40
3

(
3λrn
+ 3

( r∑
i=1

λr−i
)( n−1∑

k=N

λrk
))

≤
40
3

(
3λrn
+ 3

(r−1∑
i=0

λi
)( n−1∑

k=N

λrk
))

≤ 40λr N
(

1+
1

(1− λ)(1− λr )

)
≤ 120λr N . (21)

In the second inequality we used that bi ≤ 4, whereas the last inequality follows from the numerical value
1/1− λ= 1.618 . . .

Bound for |S3(n, N , z)|. In a similar way we bound |S3(n, N , z)|. We have that

|S3(n, N , z)| ≤
n−2∑
k=N

`0∑
i=1

|w̃B
n,2+a+k`0+i − w̃

B
0,2+i |

|z− w̃B
n,2+a+k`0+i ||z− w̃

B
0,2+i |

+

2∑
i=0

|w̃B
n,a+N`0+i − w̃

B
0,i |

|z− w̃B
n,a+N`0+i ||z− w̃

B
0,i |

+

`0−3∑
i=1

|w̃B
n,2+a+(n−1)`0+i − w̃

B
0,2+i |

|z− w̃B
n,2+a+(n−1)`0+i ||z− w̃

B
0,2+i |

.

For i = 0, 1, 2, using Remark 3.3, we have that

−w̃B
n,a+N`0+i =

(
1+ i, br−1, . . . , b1, qN−1, as, . . . , a1, qn−N , br

)
and

−w̃B
0,i = (1+ i, br−1, . . . , b1, br )
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coincide in the first r N partial quotients. For each N ≤ k ≤ n− 2, we have: For 1≤ i ≤ b1− 1,

−w̃B
n,2+a+k`0+i = (i, qk, as . . . , a1, qn−k). (22)

For the next b2− 1 values of i (b1 ≤ i ≤ b1+ b2− 2),

−w̃B
n,2+a+k`0+i =

(
j, b1, qk, as . . . , a1, qn−1−k, br , . . . , b3, b2

)
(23)

with 1≤ j ≤ b2− 1. This process goes on until the last br − 1 values of i , where

−w̃B
n,2+a+k`0+i =

(
j, br−1, . . . , b1, qk, as, . . . , a1, qn−1−k, br

)
with 1≤ j ≤ br − 1.

For k = n− 1, we have the same pattern as before except for the last block of values of i , where we
only have br −3 of them. Now, for each N ≤ k ≤ n−1, for the first b1−1 values of i , (22) coincide with

−w̃B
0,2+i = (i, q)

in the first rk+ 1 partial quotients. For the next b2− 1 values of i , (23) coincide with

−w̃B
0,2+i = ( j, b1, br , . . . , b2) (1≤ j ≤ b2− 1)

in the first rk+ 2 partial quotients, for the next b3− 1 i-values, −w̃B
n,2+a+k`0+i and −w̃B

0,2+i coincide in
the first rk+ 3 partial quotients, etc. Once again using Lemma 2.1, and the fact that bi ≤ 4 together with
the numerical value of λ, we have, for z ∈ C,

|S3(n, N , z)| ≤ 40
3

(
3λr N−1

+

r∑
i=1

(bi − 1)
n−1∑
k=N

λrk+i−1
)

≤
40
3

(
3λr N−1

+ 3
( r∑

i=1

λi−1
)( n−1∑

k=N

λrk
))

≤ 40λr N−1
(

1+
λ

(1− λ)(1− λr )

)
≤ 80λr N−1. (24)

Bound for |S1(n, N , z)− S1(N , N , z)|. We have

|S1(n, N , z)− S1(N , N , z)|

≤

a−1∑
i=0

|wB
n,i −w

B
N ,i |

|z−wB
n,i ||z−w

B
N ,i |
+

`N−1∑
i=a

|wB
n,i+(n−N )`0

−wB
N ,i |

|z−wB
n,i+(n−N )`0

||z−wB
N ,i |
+

a+N`0−1∑
i=0

|w̃B
n,i − w̃

B
N ,i |

|z− w̃B
n,i ||z− w̃

B
N ,i |

.

Again the denominators are bounded below by 3
4 for z ∈ C and we use Lemma 2.1 to bound the numerators.

For the first term in the first sum, using

wB
n,0 = (3, a1, . . . , as, pn) (25)
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and
wB

N ,0 = (3, a1, . . . , as, pN ), (26)

one can see that the successive terms wB
n,i and wB

N ,i (up to i = a − 1) coincide at least in the first r N
partial quotients. This is also true for the second sum, where we have

wB
n,a+(n−N )`0

= (3, pn−N , a1, . . . , as, pN ) and wB
N ,a = (3, pN , a1, . . . , as),

as well as for the third and fourth sums, where we can use Remark 3.3 and the continued fractions of (25)
and (26), and

wB
n,a+n`0

= (3, a1, . . . , as, pn), and wB
n,a+N`0

= (3, a1, . . . , as, pN ),

respectively. Hence, using (11), we have

|S1(n, N , z)− S1(N , N , z)| ≤ 80
3 `Nλ

r N−1 (11)
≤ 80r(N + 1)λr N−1. (27)

Finally, since λ < 2
3 , the bounds (21), (24) and (27) give

c(n, z)≤ 80(2+ r(N + 1))λr N−1. �

In particular, Theorem 4.2 applied to the function f = 1 gives:

Corollary 4.3. Let B be any left branch 6= L of T and N ≥ 1. For all n ≥ N , there exists K = K B,N ∈ R

such that
| log εB

n − n log εB
0 − K | ≤ δ1(r, N ) (28)

with δ1(r, N ) and r as in (14).

The next corollary proves Theorem 1.1 from the introduction.

Corollary 4.4. Let f be a modular function. For any left branch B 6= L of T ,

lim
n→∞

f nor(wB
n )= f nor(wB

0 ).

Proof. It follows from Theorem 4.2 and Corollary 4.3 that | f (wB
n )− n f (wB

0 )| and | log εB
n − n log εB

0 |

are bounded above and below by absolute constants (not depending on n). Then

0= lim
n→∞

| f (wB
n )− n f (wB

0 )|

log εB
n

= lim
n→∞

∣∣∣∣ f (wB
n )

log εB
n
−

f (wB
0 )

log εB
0

∣∣∣∣. �

5. Interlacing property

In this section we prove Theorem 1.2. As in the proof of the convergence property we restrict again to a
left but not the leftmost branch in what follows.The argument applies in the same way to any branch, with
the bound δ2(n, r) slightly modified. It will still be of the form O(rnλrn). Hence Theorem 1.2 applies in
fact to any branch of the Markov tree and it is a consequence of the next theorem whose proof is similar
to the proof of Theorem 4.2.
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Theorem 5.1. Let f be a modular function. For every left branch B 6= L of the Markov tree T and for all
n ≥ 1, ∣∣ f (wB

n+1)− f (wB
n )− f (wB

0 )
∣∣≤ δ2(n, r)max

z∈C
| f (z)| (29)

where

δ2(n, r)=
80π

3
(n+ 2)r

(
2

1+
√

5

)2(rn−1)

(30)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. Once again, applying Lemma 4.1 and (10) gives

f (wB
n+1)− f (wB

n )= f (wB
0 )+

∫ ρ2

ρ

f (z)R1(n, z) dz+
∫ ρ2

ρ

f (z)R2(n, z) dz, (31)

where

R1(n, z)=
a−1∑
i=0

(
1

z−wB
n+1,i
−

1
z−wB

n,i

)
+

`n−1∑
i=a

(
1

z−wB
n+1,`0+i

−
1

z−wB
n,i

)

−

`n−1∑
i=0

(
1

z− w̃B
n+1,i
−

1
z− w̃B

n,i

)
,

R2(n, z)=
`0−1∑
i=0

(
1

z−wB
n+1,a+i

−
1

z−wB
0,i
−

1
z− w̃B

n+1,`n+i
+

1
z− w̃B

0,i

)
.

Next we give upper bounds for the norms of the two sums above when z ∈ C. We set again λ =
(2/(1+

√
5))2.

Bound for |R1(n, z)|. For z ∈ C, we have

|R1(n, z)| ≤
a−1∑
i=0

|wB
n+1,i −w

B
n,i |

|z−wB
n+1,i ||z−w

B
n,i |
+

`n−1∑
i=a

|wB
n+1,i+`0

−wB
n,i |

|z−wB
n+1,i+`0

||z−wB
n,i |
+

a+n`0−1∑
i=0

|w̃B
n+1,i − w̃

B
n,i |

|z− w̃B
n+1,i ||z− w̃

B
n,i |

+

`n−1∑
i=a+n`0

|w̃B
n+1,i − w̃

B
n,i |

|z− w̃B
n+1,i ||z− w̃

B
n,i |
.

As before we use the bound of 3
4 for the denominators and Lemma 2.1 for the numerators. In the first

sum using
wB

n+1,0 = (3, a1, . . . , as, pn+1) (32)

and
wB

n,0 = (3, a1, . . . , as, pn), (33)

one can see that the successive terms wB
n+1,i and wB

n,i (up to i = a− 1) coincide at least in the first rn
partial quotients. The same is true for the second sum, where

wB
n+1,a+`0

= (3, pn, a1, . . . , as, p) and wB
n,a = (3, pn, a1, . . . , as).
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For the third and fourth sums, we use once again Remark 3.3 together with (32) and (33), and

wB
n+1,a+n`0

= (3, a1, . . . , as, pn+1) and wB
n,a+n`0

= (3, a1, . . . , as, pn)

respectively.
Hence

|R1(n, z)| ≤ 80
3 `nλ

rn−1 (11)
≤ 80r(n+ 1)λrn−1.

Bound for |R2(n, z)|. In a similar way we bound this second sum when z ∈ C:

|R2(n, z)| ≤
`0−1∑
i=0

|wB
n+1,a+i −w

B
0,i |

|z−wB
n+1,a+i ||z−w

B
0,i |
+

|w̃B
n+1,`n+i − w̃

B
0,i |

|z− w̃B
n+1,`n+i ||z− w̃

B
0,i |
.

Again using
wB

n+1,a = (3, pn+1)

and
wB

0,0 = (3, p), (34)

one can see that all the successive terms wB
n+1,a+i and wB

0,i in the sum coincide at least in the first rn
partial quotients. For the conjugate terms, one can see from (34) and

wB
n+1,`n

= (3, p, a1, . . . , as, pn)

that −w̃B
n+1,`n+i and −w̃B

0,i coincide as well in the first rn partial quotients. Hence

|R2(n, z)| ≤ 80
3 `0λ

rn−1 (11)
≤ 80rλrn−1.

Therefore,

| f (wn+1)− f (wn)− f (w0)| ≤

∫ ρ2

ρ

| f (z)|(|R1(n, z)| + |R2(n, z)|) |dz| ≤ δ2(n, r)max
z∈C
| f (z)|

with
δ2(n, r)=

80π
3

r(n+ 2)λrn−1. �

Theorem 5.1 applied to the function f = 1 gives:

Corollary 5.2. For every left branch B 6= L of T and for all n ≥ 1,∣∣log εB
n+1− log εB

n − log εB
0

∣∣≤ δ2(n, r)

with δ2(n, r) and r as in (30).

We finish this section by giving the proof of Theorem 1.2 in the case that the branch B is any left
branch 6= L . The proof of the general case goes along the same lines.

Theorem 5.3. Let f be a modular function, B be any left branch 6= L of the Markov tree T . There exists
a constant N f,B such that, for all n ≥ N f,B , the real and imaginary parts of f nor(wB

n+1) lie between the
real and imaginary parts respectively of f nor(wB

0 ) and f nor(wB
n ).
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Proof. By definition, the inequality

Re( f nor(wB
n )) < Re( f nor(wB

0 ))

holds if and only if
Re( f (wB

n )) log εB
0 < Re( f (wB

0 )) log εB
n . (35)

Let N ,M be positive constants. For all n ≥max(N ,M), we can write

Re( f (wB
n ))= n Re( f (wB

0 ))+ K f,B,N + ε1(n, N ), (36)

log εB
n = n log εB

0 + K1,B,M + ε2(n,M), (37)

where K f,B,N , K1,B,M are the real parts of the constants in Theorem 4.2 and Corollary 4.3 respectively,
|ε1(n, N )| ≤ δ1(N )maxz∈C | f (z)| and |ε2(n,M)| ≤ δ1(M). Therefore (35) is equivalent to

Re( f nor(wB
0 )) >

K f,B,N

K1,B,M
+
ε1(n, N )− ε2(n,M)Re( f nor(wB

0 ))

K1,B,M
. (38)

There exists a constant C1( f, B) depending on f and B such that, for max(N ,M) ≥ C1( f, B), (38) is
equivalent to either

Re( f nor(wB
0 )) >

K f,B,N

K1,B,M
(39)

or (39) with the strict inequality replaced by ≥, according to whether the error term in (38) is positive
or negative. If we can choose N ,M ≥ C1( f, B) satisfying Re( f nor(wB

0 )) 6= K f,B,N/K1,B,M , then (38)
is equivalent to (39) for those N ,M . If we cannot choose such N ,M , then K f,B,N , K1,B,M would be
constants that do not depend on N ,M , and in particular ε1(n, N ) = ε2(n,M) = 0. Hence, also in this
case (38) is equivalent to (39) for all N ,M ≥ C1( f, B).

In a similar way, the inequality

Re( f nor(wB
n )) > Re( f nor(wB

0 ))

is equivalent to

Re( f nor(wB
0 )) <

K f,B,N

K1,B,M
(40)

for N ,M chosen as before. Since (39) and (40) do not depend on n, we have either

Re( f nor(wB
n )) < Re( f nor(wB

0 ))

simultaneously for all n ≥max(N ,M) with N ,M chosen as before, or

Re( f nor(wB
n )) > Re( f nor(wB

0 )).

Similarly, the inequality
Re( f nor(wB

n+1)) < Re( f nor(wB
n ))

holds if and only if
Re( f (wB

n+1)) log εB
n < Re( f (wB

n )) log εB
n+1. (41)
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Theorem 5.1 and Corollary 5.2 respectively imply that

Re( f (wB
n+1))= Re( f (wB

n ))+Re( f (wB
0 ))+µ(n)

with |µ(n)| ≤ δ2(n)maxz∈C | f (z)| and

log εB
n+1 = log εB

n + log εB
0 + ν(n)

with |ν(n)| ≤ δ2(n). Hence (41) is equivalent to

(Re( f (wB
0 ))+µ(n)) log εB

n < Re( f (wB
n ))(log εB

0 + ν(n)). (42)

Now, there exists a constant C2( f, B)≥ C1( f, B) such that, for n ≥ C2( f, B), we have that

Re( f nor(wB
n )) 6= Re( f nor(wB

0 ))

and that (42) is equivalent to

Re( f (wB
0 )) log εB

n < Re( f (wB
n )) log εB

0 . (43)

Using (36) and (37) again, we obtain that (43) is equivalent to

Re( f nor(wB
0 )) <

K f,B,N

K1,B,M
, (44)

where N ,M are chosen as before.
Therefore, we finally have that either

Re( f nor(wB
0 )) < Re( f nor(wB

n+1)) < Re( f nor(wB
n ))

for all n ≥max(C2( f, B), N ,M) or

Re( f nor(wB
n )) < Re( f nor(wB

n+1)) < Re( f nor(wB
0 )).

The same argument applies to the imaginary parts of f nor(wB
n+1), f nor(wB

n ) and f nor(wB
0 ). �
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