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dynatomic polynomials

David Krumm

Let t and x be indeterminates, let φ(x)= x2
+ t ∈Q(t)[x], and for every positive integer n let 8n(t, x)

denote the n-th dynatomic polynomial of φ. Let Gn be the Galois group of 8n over the function field
Q(t), and for c ∈Q let Gn,c be the Galois group of the specialized polynomial 8n(c, x). It follows from
Hilbert’s irreducibility theorem that for fixed n we have Gn ∼= Gn,c for every c outside a thin set En ⊂Q.
By earlier work of Morton (for n = 3) and the present author (for n = 4), it is known that En is infinite
if n ≤ 4. In contrast, we show here that En is finite if n ∈ {5, 6, 7, 9}. As an application of this result
we show that, for these values of n, the following holds with at most finitely many exceptions: for every
c ∈Q, more than 81% of prime numbers p have the property that the polynomial x2

+ c does not have a
point of period n in the p-adic field Qp.

1. Introduction

Let c be a rational number and let φc(x)= x2
+ c. Given any algebraic number x0, we may consider the

sequence x0, φc(x0), φc(φc(x0)), . . .. If this sequence is periodic with period n, we say that x0 has period
n under iteration of φc. By allowing c and x0 to vary in Q, one can find examples where x0 has period 1,
2, or 3 under φc. For instance, the pairs

(c, x0)= (0, 0), (−1, 0),
(
−29
16 ,

5
4

)
provide examples of periods 1, 2, and 3, respectively.

Poonen [1998] conjectured that if n> 3, then there does not exist c ∈Q such that the polynomial φc has
a rational point of period n. This has been proved for periods 4 and 5, and also for period 6 assuming the
Birch–Swinnerton-Dyer conjecture; see [Morton 1998; Flynn et al. 1997; Stoll 2008]. The present paper is
concerned with a strong form of Poonen’s conjecture which was stated by the author in [Krumm 2016]: if
n> 3, then for every c∈Q there exist infinitely many primes p such that φc does not have a point of period
n in the p-adic field Qp. In fact, we will consider here a further strengthening of Poonen’s conjecture.

Conjecture 1.1. Fix n > 3. For every c ∈Q, let Tn,c denote the set of primes p such that φc does not have
a point of period n in Qp, and let δ(Tn,c) be the Dirichlet density of Tn,c. Then δ(Tn,c) > 0 for all c ∈Q.
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In order to study these conjectures it is useful to consider a family of dynatomic polynomials defined
as follows. For every positive integer n we define a two-variable polynomial 8n ∈Q[t, x] by the formula

8n(t, x)=
∏
d | n

(φd(x)− x)µ(n/d), (1-1)

where µ is the Möbius function, φ(x)= x2
+ t ∈Q(t)[x], and φd denotes the d-fold composition of φ

with itself. The key property linking 8n to the above conjectures is that, for fixed c ∈Q, every algebraic
number having period n under iteration of φc is a root of 8n(c, x), and conversely, every root of 8n(c, x)
has period n under φc except in rare cases when the period may be smaller than n; see [Morton and Patel
1994, Theorem 2.4] for further details.

Questions about the points of period n under φc can thus be phrased as questions about the roots of
8n(c, x). It is therefore to be expected that a good understanding of the Galois group of 8n(c, x) will
yield substantial information about the dynamical properties of the map φc. The results of the article
[Krumm 2018b] provide an example of the type of information that can be obtained in this way. By a
careful analysis of how the Galois group of 84(c, x) can change as c varies in Q, it is proved there that if
α ∈Q has period four under a map φc, then the degree [Q(α) :Q] can only be 2, 4, 8, or 12; in particular
the degree cannot be 1, which implies that φc does not have a rational point of period 4. Furthermore, the
Galois group data is used to show that δ(T4,c) > 0.39 for every c ∈Q, thus proving Conjecture 1.1 for
n = 4. Motivated by these results, we are led to the following problem.

Problem 1.2. Let Gn,c denote the Galois group of 8n(c, x) over Q. For fixed n, determine the structure
of all the groups Gn,c as c varies in Q.

Since the polynomials8n(c, x) for c∈Q are specializations of8n , it follows from Hilbert’s irreducibil-
ity theorem [Serre 2008, Proposition 3.3.5] that for every rational number c outside a thin subset of Q, the
group Gn,c is isomorphic to the Galois group of 8n over the function field Q(t). Moreover, by work of
Bousch [1992, Chapter 3] it is known that 8n is irreducible and that its Galois group, which we denote by
Gn , is isomorphic to a wreath product of a cyclic group and a symmetric group; indeed, Gn ∼= (Z/nZ) o Sr ,
where rn = deg8n . Hence, for most c ∈Q the structure of Gn,c is known. However, a complete solution
of Problem 1.2 would require understanding precisely for which numbers c the specialization t 7→ c fails
to preserve the Galois group of 8n . This raises a new but closely related problem.

Problem 1.3. For fixed n, determine all c ∈Q such that Gn,c 6∼= Gn .

Let En = {c ∈Q | Gn,c 6∼= Gn}. By work of Morton [1992] and the author [Krumm 2018b], the sets En

are well understood for n ≤ 4; in particular, one notable feature of these sets is that they are infinite. In
contrast, empirical evidence suggests that En is finite for every n > 4. The main purpose of this article is
to prove this finiteness statement for several values of n.

Theorem 1.4. The set En is finite if n ∈ {5, 6, 7, 9}.

Using this theorem we can provide further evidence in support of Conjecture 1.1. It follows from
the theorem that, for the above values of n, we have Gn,c ∼= (Z/nZ) o Sr for all but finitely many c ∈Q.
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Excluding this finite set we therefore know the structure of all the Galois groups Gn,c. The Chebotarev
density theorem can then be used to determine the value of δ(Tn,c) by a straightforward calculation within
the group (Z/nZ) o Sr . In this way we obtain the following result.

Theorem 1.5. There exists a finite set E ⊂ Q such that the following lower bounds hold for every
c ∈Q \ E :

δ(T5,c) > 0.81, δ(T6,c) > 0.84, δ(T7,c) > 0.86, δ(T9,c) > 0.89.

The proof of Theorem 1.4 relies on Hilbert’s irreducibility theorem and Faltings’s theorem to reduce
the proof to a problem of showing that certain algebraic curves have genera greater than 1. More precisely,
let S be a splitting field of 8n over Q(t), so that Gn = Gal(S/Q(t)), and let X be the smooth projective
curve over Q whose function field is S. As explained in Section 2, in order to show that the set En is
finite it suffices to show that, for every maximal proper subgroup M < Gn , the quotient curve X/M has
genus greater than 1. Our main objective is therefore to compute the genera of these quotient curves, or
at least to obtain lower bounds for them.

The methods we develop for this purpose allow us to reduce the problem to a series of computations
within the groups Gn . For n ∈ {5, 6} we are able to determine the genera exactly, and for n ∈ {7, 9} we
prove lower bounds which suffice for our purposes. Though the methods used here could in principle be
used to extend our results to higher values of n, there are computational limitations which prevent this.
For instance, the group G11 has order 11186(186)! and the cost of computing its maximal subgroups is
prohibitively expensive. Other computational issues are discussed in Section 7.

Though it would be desirable to explicitly determine the finite sets En in Theorem 1.4, our method
of proof does not suggest a feasible way of doing this. Indeed, one would have to determine the sets of
rational points on several curves of very large genera, a problem which seems impossible with current
methods. Nevertheless, in Section 9 we make some elementary observations regarding the sets En; for
instance, they are always nonempty.

This article is organized as follows. In Section 2 we establish two foundational results for the rest of the
article. In Section 3 we prove a theorem concerning the structure of inertia groups in Galois extensions of
valued fields; this may be of independent interest. In Section 4 we recall various properties of dynatomic
polynomials which were mostly proved by P. Morton. In Section 5 we study the action of Gn on the roots
of 8n . In Sections 6 and 7 we apply the results of earlier sections to carry out the genus computations
from which Theorem 1.4 can be deduced. In Section 8 we prove Theorem 1.5. Finally, in Section 9 we
list the known elements of the sets En .

2. Preliminaries

Let n be a positive integer and let 8n be the polynomial defined in (1-1). Let S be a splitting field of
8n over Q(t), and Gn = Gal(S/Q(t)). Recall that En denotes the set of all rational numbers c such that
Gn,c 6∼= Gn , where Gn,c is the Galois group of 8n(c, x) over Q. The following lemma provides sufficient
conditions for En to be a finite set.
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Lemma 2.1. Let M1, . . . ,Ms be representatives of all the conjugacy classes of maximal subgroups of
Gn , and let L i denote the fixed field of Mi . Suppose that every function field L i has genus greater than 1.
Then En is finite.

Proof. Let X be the smooth projective curve with function field S, and for every index i , let Xi be the
quotient curve X/Mi . It follows from the proof of Proposition 3.3.1 in [Serre 2008] (see also [Krumm
and Sutherland 2017, Theorem 1.1]) that there exist a finite set E ⊂ P1(Q) and morphisms πi : Xi → P1

such that

En ⊆ E ∪
s⋃

i=1

πi (Xi (Q)).

Since L i is the function field of Xi , the hypotheses imply that the smooth projective model of Xi has
genus greater than 1, and hence, by Faltings’s theorem [1983], the set Xi (Q) is finite. The result follows
immediately. �

In view of Lemma 2.1, the main objects of interest in this article are the genera of the minimal
intermediate fields in the extension S/Q(t). Our first step towards understanding these genera will be to
show that in computing them we may replace Q with any subfield of C.

Proposition 2.2. Let F be any field satisfying Q⊆ F⊆ C, and let N be a splitting field of 8n over F(t).
Then there is an isomorphism

ι : Gal(N/F(t))−→ Gal(S/Q(t))

with the following property: if A is a subgroup of Gal(N/F(t)) and B = ι(A), then the fixed fields of A
and B have the same genus.

Proof. Let 6 be a splitting field of 8n over C(t), and let R ⊂ 6 be the set of roots of 8n . By basic
field theory, we may identify N with the field F(t)(R) and S with the field Q(t)(R). Restriction of
automorphisms then yields injective homomorphisms

Gal(6/C(t)) ↪→ Gal(N/F(t)) ↪→ Gal(S/Q(t)). (2-1)

The group Gal(6/C(t)) is naturally isomorphic to a subgroup GC of the symmetric group Sym(R).
(Explicitly, the isomorphism is given by restriction to R.) Similarly, we define groups GF and GQ. By
(2-1) we have

GC ≤ GF ≤ GQ ≤ Sym(R). (2-2)

The polynomial φ(x)= x2
+ t permutes the elements of R (see, for instance, [Krumm 2016, §2.2]); thus

we may regard φ as an element of the group Sym(R). Let C denote the centralizer of φ in Sym(R). Since
φ is a polynomial map, it commutes with every element of Gal(S/Q(t)), and therefore GQ ≤ C. Now, by
Theorem 3 in [Bousch 1992, Chapter 3] we have GC = C. Hence, (2-2) implies that GC = GF = GQ. It
follows that the embeddings (2-1) are in fact isomorphisms; in particular, restriction to S is an isomorphism

ι : Gal(N/F(t))−→∼ Gal(S/Q(t)). (2-3)
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We now digress briefly from the main proof.

Lemma 2.3. The field Q is algebraically closed in S.

Proof. Let k be the algebraic closure of Q in S. By general theory of algebraic function fields, the
extension k/Q is finite; moreover, it can easily be shown to be a Galois extension. To see that k/Q is
normal, let p(x) ∈Q[x] be an irreducible polynomial having a root in k. Then p remains irreducible in
Q(t)[x] (see Lemma 3.1.10 in [Stichtenoth 2009]) and has a root in S; therefore p splits in S. However,
by definition of k, every root of p in S belongs to k. Hence, p splits in k.

Since k(t) is the composite of k and Q(t), the extension k(t)/Q(t) is Galois, and restriction to k yields
an isomorphism

Gal(k(t)/Q(t))∼= Gal(k/k ∩Q(t))= Gal(k/Q).

It follows that there is a surjective homomorphism Gal(S/Q(t))→Gal(k/Q)with kernel H :=Gal(S/k(t)).
Now, taking F = k in (2-3), the image of ι is clearly contained in H , so that in fact H = Gal(S/Q(t)).
Therefore Gal(k/Q) must be trivial, and k =Q. �

Returning to the proof of the proposition, let A ≤ Gal(N/F(t)) and set B = ι(A). Let U and V be the
fixed fields of A and B, respectively. Thus, U and V are intermediate fields in the extensions N/F(t)
and S/Q(t). We claim that U is the composite of V and F. The fact that U ⊇ V follows immediately
from the definitions, and it is clear that U ⊇ F; hence U ⊇ V F. To prove that U = V F we will show that
[U : F(t)] = [V F : F(t)]. Since ι is an isomorphism mapping A to B, we have

[U : F(t)] = |Gal(N/F(t)) : A| = |Gal(S/Q(t)) : B| = [V :Q(t)].

Thus, it suffices to show that [V :Q(t)] = [V F : F(t)]. Let α be a primitive element for V over Q(t), and
let p ∈Q(t)[x] be the minimal polynomial of α. Clearly V F= F(t)(α), so it is enough to show that p
remains irreducible over F(t). Since p is irreducible over Q(t), the group Gal(S/Q(t)) acts transitively
on the roots of p. This, together with the fact that ι is given by restriction to N , imply that Gal(N/F(t))
also acts transitively on the roots of p, and therefore p is irreducible over F(t). This completes the proof
that U = V F.

It remains only to show that U and V have the same genus. Since F contains the constant field of V
(by Lemma 2.3), U = V F is a constant field extension of V (in the terminology of [Stichtenoth 2009,
§3.6]). Equality between the genera of U and V now follows from Theorem 22 in [Artin 2006, p. 291];
see also Theorem 3.6.3 in [Stichtenoth 2009]. �

From Lemma 2.1 and Proposition 2.2 we deduce the following proposition, which is the key result of
this section.

Proposition 2.4. Let N be a splitting field of 8n over Q(t). Let M1, . . . ,Ms be representatives of all the
conjugacy classes of maximal subgroups of the group G = Gal(N/Q(t)), and let L i be the fixed field of
Mi . Suppose that the genus of L i is greater than 1 for every index i . Then the set En is finite.
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3. A result in valuation theory

Let K be a field, and let v : K ∗→ R be a discrete valuation of K with perfect residue field k. Let N be a
finite Galois extension of K with Galois group G =Gal(N/K ). For any elements σ, τ ∈ G we will write
τ σ to denote the conjugate σ−1τσ ; similarly, for any subgroup A ≤ G we let Aσ = σ−1 Aσ .

If L is an intermediate field in the extension N/K and w is a valuation of N extending a valuation u
of L , we denote by Dw|u and Iw|u the decomposition and inertia groups of w over u. If u extends the
valuation v of K , we let eu|v and fu|v denote the ramification index and residue degree of u over v.

Lemma 3.1. Let w be a valuation of N extending v, and let D= Dw|v and I = Iw|v . Let H be a subgroup
of G with fixed field L , and let SL be the set of all valuations of L extending v. Then there is a well-defined
bijection

D\G/H −→∼ SL

given by DσH 7→ (w ◦ σ)|L . Furthermore, if u = (w ◦ σ)|L , then

eu|v · fu|v = |Dσ
: Dσ
∩ H | and eu|v = |I σ : I σ ∩ H |. (3-1)

Proof. The first statement is well known; a proof may be found in Lemma 17.1.2 and Corollary 17.1.3 of
[Efrat 2006]. Suppose now that u = (w◦σ)|L , and let w̃=w◦σ . It is then a simple exercise to show that

Dw̃|u = Dσ
∩ H and Iw̃|u = I σ ∩ H. (3-2)

Note that Dσ
= Dw̃|v and I σ = Iw̃|v . Now, since k is perfect, we have |Dw̃|v| = ew̃|v · fw̃|v and |Iw̃|v| = ew̃|v

(see [Neukirch 1999, Chapter I, Proposition 9.6]). The relations (3-1) now follow easily from (3-2). �

Proposition 3.2. Suppose that N is the splitting field of an irreducible polynomial P(x) ∈ K [x]. Let F
be a subextension of N/K obtained by adjoining one root of P(x) to K . Let u1, . . . , um be the distinct
valuations of F extending v, and set ei = eui |v and fi = fui |v . Let w be a valuation of N extending v, and
assume that ew|v is not divisible by the characteristic of k. Then the inertia group Iw|v is generated by an
element whose disjoint cycle decomposition (as a permutation of the roots of P) has the form

(e1-cycle) · · · (e1-cycle)︸ ︷︷ ︸
f1 times

· · · (em-cycle) · · · (em-cycle)︸ ︷︷ ︸
fm times

. (3-3)

Proof. Set D = Dw|v and I = Iw|v . The assumption that the characteristic of k does not divide |I | implies
that I is a cyclic group; see [Stichtenoth 2009, Proposition 3.8.5] or [Efrat 2006, §16.2]. Let R denote
the set of roots of P(x) in N , and consider the natural action of I on R. Let O be the set of orbits of this
action. We will show that O can be partitioned into subsets S1, . . . , Sm such that every orbit in Si has
cardinality ei , and #Si = fi . Note that this implies that every generator of I has a cycle decomposition of
the form (3-3).

For every x ∈ R let Ox and Ix , respectively, denote the orbit of x (under the action of I ) and the
stabilizer of x in I . Let r ∈ R be such that F = K (r), and set H = Gal(N/F). Note that H is the
stabilizer of r in G.
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By Lemma 3.1, there exist distinct double cosets Dσ1 H, . . . , Dσm H such that ui = (w ◦ σi )|F . For
i = 1, . . . ,m we define a map ψi as follows:

I σi\Dσi /(Dσi ∩ H) ψi−→O,

I σi τ(Dσi ∩ H) 7−→Oσi τ(r).

A straightforward calculation shows that ψi is well defined and injective. Letting Si ⊆O be the image of
ψi , we claim that the sets S1, . . . , Sm have the properties stated above.

We begin by showing that every orbit in Si has cardinality ei . To ease notation, let us fix an index
i and set σ = σi and M = Dσ

∩ H . Letting τ ∈ Dσ , we must show that #Oστ(r) = ei . Note that
(Iστ(r))στ = I στ ∩ H , so that |Iστ(r)| = |I στ ∩ H |, and therefore

#Oστ(r) = |I : Iστ(r)| =
|I |
|Iστ(r)|

=
|I στ |
|Iστ(r)|

=
|I στ |
|Iστ ∩ H |

= |I στ : I στ ∩ H |.

Now, since τ ∈ Dσ , we have στ ∈ DσH . Lemma 3.1 then implies that (w ◦στ)|F = (w ◦σ)|F = ui and
|I στ : I στ ∩ H | = ei . Hence #Oστ(r) = ei .

Next we show that #Si = fi . Note that #Si = #I σ\Dσ/M since ψi is injective. The fact that I is a
normal subgroup of D implies that

I σ\Dσ/M = Dσ/(I σ M).

Thus, using Lemma 3.1 we obtain

#Si = |Dσ
|/|I σ M | =

|Dσ
| · |I σ ∩ H |

|Dσ ∩ H | · |I σ |
=
|Dσ
: Dσ
∩ H |

|I σ : I σ ∩ H |
=

ei fi

ei
= fi .

Now we show that the sets S1, . . . , Sm are pairwise disjoint. Suppose, by contradiction, that there
exist distinct indices i, j such that Si ∩ S j 6=∅. Then there exist α ∈ Dσi , β ∈ Dσ j , and γ ∈ I such that
σiα(r)=γ σ jβ(r). Writing α=σ−1

i δσi and β=σ−1
j dσ j with δ, d ∈D, this implies that δσi (r)=γ dσ j (r);

hence, there exists h ∈ H such that σi = δ
−1γ dσ j h. Note that δ−1γ d ∈ D, so the previous equality

implies that σi ∈ Dσ j H and therefore Dσi H = Dσ j H , a contradiction.
Finally, we show that O =

⋃m
i=1 Si . Let R1, . . . , Rm be the subsets of R defined by Ri =

⋃
C∈Si

C .
From the results proved above it follows that #Ri = ei fi and that the sets R1, . . . , Rm are pairwise disjoint.
Given that v is a discrete valuation, we have the relation [F : K ] =

∑m
i=1 ei fi . Hence

#R = deg(P)= [F : K ] =
m∑

i=1

ei fi =

m∑
i=1

#Ri = #
m⋃

i=1

Ri .

It follows that R =
⋃m

i=1 Ri , which implies that O =
⋃m

i=1 Si . �

Remark 3.3. Proposition 3.2 was inspired by a theorem of Beckmann [1994] concerning inertia groups
in Galois extensions of Q; indeed, Beckmann’s result is essentially the case K =Q of the proposition.
However, the proof given here has little in common with the proof in [loc. cit.].
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Proposition 3.4. With notation and assumptions as in Proposition 3.2, let γ be a generator of Iw|v and
let H be a subgroup of G with fixed field L. Suppose that Dw|v = Iw|v. Then the number of valuations u
of L extending v such that eu|v = 1 is given by

|CG(γ )| · s(H, γ )
|H |

, (3-4)

where CG(γ ) is the centralizer of γ in G and s(H, γ ) is the number of G-conjugates of γ that belong
to H.

Proof. Let D = Dw|v and define sets A = {σ ∈ G | γ σ ∈ H} and

1= {DσH ∈ D\G/H | σ ∈ A}.

It follows from Lemma 3.1 that the cardinality of 1 is equal to the number of valuations u of L extending
v such that eu|v = 1. Thus, in order to prove the proposition it suffices to show that |H | · (#1) =
|CG(γ )| · s(H, γ ).

For every element a∈ A the right coset CG(γ )·a is contained in A; hence, the set U ={CG(γ )·a |a∈ A}
is a partition of A into subsets of size |CG(γ )|. Thus #A= |CG(γ )| ·(#U ). Now let B = {γ σ | σ ∈G}∩H ,
so that #B= s(H, γ ). Note that #U =#B; indeed, there is a bijective map U→ B given by CG(γ )·a 7→γ a .
Therefore,

#A = |CG(γ )| · (#B)= |CG(γ )| · s(H, γ ). (3-5)

Let f : A � 1 be the surjective map given by f (σ ) = DσH . We claim that, for every a ∈ A,
f −1( f (a))= aH . It is clear that aH ⊆ f −1( f (a)). Now suppose that f (a′)= f (a), so that a′ = dah
for some d ∈ D and h ∈ H . Since γ a

∈ H , we may write γ a = ah′ for some h′ ∈ H . Furthermore, since
D = Iw|v = 〈γ 〉, we have d = γ n for some positive integer n. Thus

a′ = dah = γ nah = a(h′)nh ∈ aH,

which proves the claim. Since every fiber of f has cardinality |H |, we have #A = |H | · (#1), and hence,
by (3-5), |H | · (#1)= |CG(γ )| · s(H, γ ). �

For later reference, we include here a combined statement of Propositions 3.2 and 3.4 in the special
case where K is the function field Q(t) and the valuation v corresponds to a place p of K . Note that in
this case all residue degrees fu|v are equal to 1.

Corollary 3.5. Let t be an indeterminate and K =Q(t). Suppose that P(x) ∈ K [x] is irreducible, and
let N be a splitting field for P(x). Let F be a subextension of N/K obtained by adjoining one root of
P(x) to K . Let p be a place of K , and let p1, . . . , pm be the distinct places of F lying over p. Then,
for every place P of N lying over p, the inertia group IP|p is generated by an element γ whose disjoint
cycle decomposition has the form (e1-cycle) · · · (em-cycle), where ei is the ramification index of pi over p.
Furthermore, if H is a subgroup of G = Gal(N/K ) with fixed field L , then the number of places of L
lying over p which are unramified over K is given by the formula (3-4).
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4. Ramification data for dynatomic polynomials

Let us fix a positive integer n. We will henceforth regard the polynomial 8n(x) as an element of the ring
Q(t)[x]. As such, it is known by work of Bousch [1992, Chapter 3] that 8n is irreducible. In this section
we will apply Corollary 3.5 to study inertia groups in the Galois group of 8n .

Let K =Q(t), let N/K be a splitting field of 8n , and let G =Gal(N/K ). Let F be a subextension of
N/K obtained by adjoining one root of 8n to K . Morton [1996, §3] studies the ramification of places in
the extension F/K by using certain polynomials1n,d ∈Z[t], where d is a divisor of n. These polynomials
had previously been defined in [Morton and Vivaldi 1995, §1]; we refer the reader to that article for the
definition. We now recall a few results from [Morton 1996; Morton and Vivaldi 1995] which will be
needed here.

For every positive integer s, let
ν(s)= 1

2

∑
d | s

µ(s/d)2d .

Lemma 4.1 (Morton–Vivaldi). For every divisor d of n, let Rn,d ⊂Q denote the set of roots of1n,d . Then
the following hold:

(a) #Rn,d = deg1n,d for every d.

(b) If d and e are distinct divisors of n, then Rn,d ∩ Rn,e =∅.

(c) Letting ϕ denote Euler’s phi function, the degree of 1n,d is given by

deg1n,d =

{
ν(d)ϕ(n/d) if d < n,
ν(n)−

∑
k | n
k<n

ν(k)ϕ(n/k) if d = n.

Proof. All statements are proved in [Morton and Vivaldi 1995]. Indeed, (a) and (b) follow from
Proposition 3.2, and (c) follows from Corollary 3.3. �

Recall that for every place p of K , the conorm of p with respect to the extension F/K is the divisor,
which we write multiplicatively, defined by

iF/K (p)= pe1
1 · · · p

es
s ,

where p1, . . . , ps are the distinct places of F lying over p and ei is the ramification index of pi over p. A
discussion of the basic properties of the conorm map may be found in [Stichtenoth 2009, §3.1] or [Rosen
2002, Chapter 7].

Let D = deg8n; note that D = 2ν(n). As explained in Section 5, the set of roots of 8n can be
partitioned into sets of cardinality n, and therefore n divides D. Let r = D/n.

Lemma 4.2 (Morton). Let p∞ be the infinite place of K , i.e., the place corresponding to the valuation
v∞ of K given by v∞( f/g)= deg g− deg f . For b ∈Q, let pb denote the place of K corresponding to
the polynomial t − b.

(a) The places of K that ramify in F are p∞ and pb for b ∈
⋃

d | n Rn,d .
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(b) The conorm of p∞ has the form

iF/K (p∞)= p2
1 · · · p

2
ν(n).

(c) For every b ∈ Rn,n , the conorm of pb has the form

iF/K (pb)= p2
1 · · · p

2
n · q1 · · · qn(r−2).

(d) For every b ∈ Rn,d , where d < n, the conorm of pb has the form

iF/K (pb)= p
n/d
1 · · · p

n/d
d · q1 · · · qn(r−1).

Proof. All statements are proved in [Morton 1996]; (a), (c) and (d) follow from the proof of Proposition 9,
and (b) follows from Proposition 10. �

Let P= {p∞}∪
{

pb | b ∈
⋃

d | n Rn,d
}

be the set of places of K that ramify in F . For any intermediate
field L in the extension N/K and any place p of K , let PL(p) denote the set of places of L lying over p.

We introduce some terminology to be used throughout the article. Suppose that G is a group acting on
a finite set X , and let g ∈ G. We say that g has cycle type (a, b), where a and b are positive integers, if
the disjoint cycle decomposition of g, disregarding 1-cycles, is a product of b a-cycles.

Applying Corollary 3.5 to the polynomial 8n and using Lemma 4.2, we immediately obtain the
following description of inertia groups in G.

Proposition 4.3. Let p ∈ P and P ∈ PN (p). Then the inertia group IP | p has a generator with cycle type
(a, b) satisfying

(a, b)=


(2, D/2) if p = p∞,
(2, n) if p = pb with b ∈ Rn,n,

(n/d, d) if p = pb with b ∈ Rn,d , d < n.

In addition to the data on ramification of places in F/K provided by Lemma 4.2, in later sections we
will need some ramification data for a subfield F0 ⊂ F defined as follows. Let θ be a root of 8n such
that F = K (θ). The field F has an automorphism1 given by θ 7→ φ(θ)= θ2

+ t ; we define F0 to be the
fixed field of this automorphism.

Proposition 4.4 (Morton). Let p ∈ P and let S(p)=
∑

q∈PF0 (p)
(eq | p − 1).

(a) If p = p∞, then S(p)= r − en , where

en =
1

2n

∑
d | (n,2)

ϕ(d)2 ·
∑

k∈Un,d

µ(n/k)2k/d .

Here Un,d = {k ∈ Z>0 : k | n, d | k, and (n/k, d)= 1}.

(b) If p = pb, where b ∈ Rn,n , then S(p)= 1.

(c) If p = pb, where b ∈ Rn,d for some d < n, then S(p)= 0.
1Note that φ(θ) is a root of 8n , so there is an isomorphism F → K (φ(θ)) mapping θ to φ(θ). Moreover, the fact that

φn(θ)= θ implies that F = K (φ(θ)), so this map is in fact an automorphism of F .
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Proof. All statements are proved in [Morton 1996]; (a) follows Theorem 13, while (b) and (c) can be
deduced from the proof of Proposition 9. Indeed, it is shown in that proposition that if p = pb, where b ∈
Rn,n , then there is a unique ramified place of F0 lying over p, and its ramification index is 2; this implies (b).
Similarly, if p = pb, where b ∈ Rn,d for some d < n, then p is unramified in F0, which implies (c). �

5. The action of the Galois group of 8n

We continue using here the notation introduced in the previous section. The genus computations in
Sections 6 and 7, which form the core of this article, rely fundamentally on Propositions 3.4 and 4.3. In
order to apply these propositions effectively, we require a precise understanding of the elements of G
whose cycle decompositions have the forms described in Proposition 4.3. In addition, explicit formulas
for the orders of the centralizers of these elements will be needed when applying Proposition 3.4. The
purpose of this section is to carry out a detailed analysis of the action of G on the roots of 8n . In the
process we address both of the above requirements, the key result being Proposition 5.5.

Recall the notion of an isomorphism of group actions: if A and B are groups acting on sets X and Y ,
respectively, we write A ≡ B if there exist a group isomorphism ϕ : A→ B and a bijection ε : X→ Y
such that ε(ax)= ϕ(a)ε(x) for all a ∈ A and x ∈ X . Though the notation A≡ B does not make reference
to the sets X and Y , this should cause no confusion here because the sets being acted on will be clear
from context.

Let R be the set of roots of 8n in the splitting field N , and consider the natural action of G on R. In
this section we will discuss three group actions, which we refer to as realizations of G, that are isomorphic
to G with its action on R. The first realization is the automorphism group of a graph acting on its set
of vertices; this is helpful as a visual aid for understanding the action of G. The second realization is a
particular subgroup of the symmetric group SD acting on the set {1, . . . , D}; this is useful for carrying out
explicit computations with elements of G. The third realization is a wreath product (Z/nZ) o Sr acting on
the set (Z/nZ)×{1, . . . , r}. Though somewhat more technical, we find that this realization is the most
convenient for purposes of proving the main results of this section. The key fact needed to show that these
realizations are isomorphic is a well-known theorem of Bousch [1992, Chapter 3], namely Theorem 3.

5A. The group G as a graph automorphism group. It is a simple consequence of the definition of 8n

that the map φ(x)= x2
+ t permutes the elements of R (see [Krumm 2016, §2.2] for details). Regarding

φ as an element of the symmetric group Sym(R), we may therefore partition the set R into φ-orbits. By
[Morton and Patel 1994, Theorem 2.4(c)], the fact that 8n is irreducible implies that every orbit has size
n; hence, the number of orbits is (#R)/n = D/n = r .

Let G be the natural embedding of G in Sym(R), and note that G ≡ G. Let 0 be the directed graph
whose vertices are the elements of R and which has an edge x→ φ(x) for every x ∈ R. An illustration
of 0 is shown in Figure 1 below. By Bousch’s theorem, G is the centralizer of φ in Sym(R). (More
explicitly, this is a consequence of the proof of Proposition 2.2. In the notation of that proof, we have
G = GF, where F=Q.) It follows that G = Aut(0) and therefore G ≡ Aut(0).
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Figure 1. A directed graph whose automorphism group is isomorphic to the Galois
group of 8n . Every cycle in the graph has n vertices, and there are r cycles in total.

5B. The group G as a permutation group. Let SD be the symmetric group on the set {1, . . . , D} and
let σ ∈ SD be the permutation defined by

σ = (1, . . . , n)(n+ 1, . . . , 2n) · · · (D− n+ 1, . . . , D).

There is a bijection ` : {1, . . . , D} → R under which the cycles in the decomposition of σ correspond to
the cycles in the graph 0. Indeed, if we choose representatives η1, . . . , ηr of the distinct cycles in 0, then
one such map ` is given by

`(ni − j)= φn− j (ηi ) for 1≤ i ≤ r and 0≤ j < n.

The map ` induces an isomorphism ι : SD→ Sym(R) under which σ maps to φ. Let Z be the centralizer
of σ in SD . Since G is the centralizer of φ in Sym(R), the image of Z under ι is equal to G. Moreover,
the maps ι and ` induce an isomorphism of group actions between Z and G; hence G ≡ Z .

5C. Background on wreath products. Before discussing the realization of G as a wreath product, we
recall the basic construction of wreath products. For further information on this topic we refer the reader
to [Dixon and Mortimer 1996, §2.6; Rotman 1995, Chapter 7; Kerber 1971, Chapter I].

Let Sr denote the symmetric group on the set �= {1, . . . , r}. Let A be a group, and consider the direct
product Ar consisting of functions f :�→ A with pointwise multiplication. There is an action of Sr on
Ar given by π · f = fπ , where fπ is the function

fπ (i)= f (π−1(i)) for every i ∈�.

This action induces a homomorphism Sr → Aut(Ar ), so we may form the semidirect product W =
Ar o Sr . Elements of W have the form ( f, π), where f ∈ Ar and π ∈ Sr ; the group operation in W is
given by

( f, π)(g, σ )= ( f gπ , πσ).

The group W is the wreath product of A with Sr , denoted A o Sr . Letting e and 1, respectively, denote
the identity elements of Ar and Sr , there are embeddings Ar ↪→W and Sr ↪→W given by f 7→ ( f, 1)
and π 7→ (e, π); we will henceforth identify Ar and Sr with their images under these maps. The group
B = Ar , called the base group of the wreath product, is a normal subgroup of W; indeed, B is the kernel
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of the projection map W→ Sr given by ( f, π) 7→ π . Furthermore, Sr is a complement for B in the sense
that B ∩ Sr is trivial and BSr =W .

Suppose now that A acts on a set 1. Then there is an action of W on the Cartesian product 1×�
given by

( f, π) · (d, i)= ( f (π(i)) · d, π(i)). (5-1)

Moreover, this action is faithful if A acts faithfully on 1.

5D. The group G as a wreath product. For the remainder of this section we assume that A = Z/nZ, so
that W = (Z/nZ) o Sr . The action of A on itself by addition induces a faithful action of W on the set
X = A×� given by (5-1). We will show that W ≡ G.

Let η1, . . . , ηr be representatives of the distinct φ-orbits of R. For every w = ( f, π) ∈W we define
ζw ∈ G = Aut(0) by

ζw(φ
a(ηi ))= φ

f (π(i))+a(ηπ(i)) for a ∈ A and i ∈�.

Note that the notation φa for a ∈ A is unambiguous since φn is the identity element of Sym(R). Using
the fact that G is the centralizer of φ in Sym(R), it is a simple exercise to show that ζw is a well-defined
element of G, and that the map ζ :W→ G given by w 7→ ζw is a group isomorphism.

Let ε : X → R be the map defined by ε(a, i) = φa(ηi ). From the definitions it follows that ε is a
bijection and that for every w ∈W and α ∈ X we have ε(wα)= ζ(w)ε(α). Hence W ≡ G, and therefore
G ≡W . Using this realization of G as a wreath product, we will now study the action of G.

Remark 5.1. It follows from the above discussion that

Aut(0)∼= (Z/nZ) o Sr .

This is a special case of a well-known theorem of Frucht in graph theory. As shown in [Frucht 1949]
(see also [Harary 1969, Theorem 14.5]), if 3 is a finite connected graph and 0 is a graph consisting of r
disjoint copies of 3, then Aut(0)∼= Aut(3) o Sr .

5E. Conjugacy in W . Our main reason for using the realization of G as a wreath product is that it
provides convenient ways of deciding whether two elements of G are conjugates of each other, and of
calculating the order of the centralizer of any element of G. The key notion needed for these tasks is the
type of an element of W , defined below.

For every cycle C = (i1, i2, . . . , ik) ∈ Sr and every element f ∈ Ar , we denote by f (C) the element
of A given by f (C)= f (i1)+ · · ·+ f (ik).

For every element w = ( f, π) ∈W , we define a map Tw : X→ Z≥0 as follows: for a ∈ A and k ∈�,
Tw(a, k) is the number of k-cycles C in the cycle decomposition of π such that f (C)= a. The map Tw
will be called the type of w. When w is clear from context, we will denote Tw(a, k) simply by tak and we
will use matrix notation (tak) to denote the map Tw.
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Proposition 5.2. (1) Let w1, w2 ∈ W . Then w1 and w2 are conjugates if and only if they have the
same type.

(2) If w has type (tak), then the order of the centralizer of w in W is given by the formula∏
a∈A

∏
k∈�

(tak)!(kn)tak .

Proof. Both statements can be deduced from more general results proved in [Kerber 1971]. Specifically,
(1) follows from item 3.7 on page 44, and (2) follows from item 3.9 on page 47. �

5F. The action of W . In this section we prove various properties of the action of W on X . For elements
w = ( f, π) ∈W and α = (a, i) ∈ X , we will denote by w(α) the action of w on α. Thus,

w(α)= ( f (π(i))+ a, π(i)). (5-2)

Let Ci = A× {i} for 1 ≤ i ≤ r . Under the map ε defined in Section 5D, Ci corresponds to the i-th
cycle in the graph 0, i.e., the cycle containing ηi .

The base group Ar
≤W is generated by the elements ρ1, . . . , ρr defined by ρi = (δi , 1), where δi ( j)=0

if j 6= i and δi (i)= 1. Note that ρi maps Ci to itself and acts as the identity on C j if j 6= i . Viewed as an
element of Aut(0) (via the map ζ defined in Section 5D), ρi acts as a 1/n rotation on the i-th cycle. Let
ρ = ρ1 · · · ρr = (δ, 1), where δ(i)= 1 for all i ∈�. Then ζ(ρ)= φ, so ρ is in the center of W . A simple
calculation shows that for all s ∈ Z, a ∈ A, and i ∈� we have

ρs(a, i)= ρs
i (a, i)= (a+ s, i). (5-3)

For every w ∈W and every i ∈�, let w(Ci )= {w(α) | α ∈ Ci }.

Lemma 5.3. Let w = ( f, π) ∈W and let i ∈�.

(1) Letting j = π(i), we have w(Ci )= C j .

(2) If w(Ci )= Ci , then there exists 0≤ s < n such that w(α)= ρs
i (α) for every α ∈ Ci . Moreover, the

w-orbit of every element of Ci has cardinality n/ gcd(n, s).

Proof. For every element (a, i) ∈ Ci we have w(a, i) = ( f ( j)+ a, j) ∈ C j , so w(Ci ) ⊆ C j . Since
#Ci = #C j and w acts as a bijection on X , this implies that w(Ci )= C j , proving (1). Suppose now that
w(Ci )= Ci , and let 0≤ s < n be such that w(0, i)= (s, i). By (5-3) we have w(0, i)= ρs(0, i). Given
α ∈ Ci , we may write α in the form α = (k, i) = ρk(0, i) for some integer k. Using (5-3) and the fact
that w commutes with ρ we obtain

w(α)= wρk(0, i)= ρkw(0, i)= ρkρs(0, i)= ρsρk(0, i)= ρs(α)= ρs
i (α).

This proves the first statement in (2). Since w acts like ρs
i on Ci , the orbit of α under w is equal to its

orbit under ρs
i . The cyclic group generated by ρs

i has order n/ gcd(n, s), and it follows from (5-3) that
the stabilizer of α in this group is trivial; hence the orbit of α has cardinality n/ gcd(n, s). This completes
the proof of (2). �
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Lemma 5.4. Let w = ( f, π) ∈W . Suppose that i, j ∈ � are such that w(Ci ) = C j , w(C j ) = Ci , and
w2(α) = α for every α ∈ Ci ∪C j . Then there exists 0 ≤ s < n such that w(α) = ρ−s

i πρs
i (α) for every

α ∈ Ci ∪C j .

Proof. Let w(0, i)= (s, j) and w(0, j)= (t, i) with 0≤ s, t < n. From (5-3) and the fact that w commutes
with ρ it follows that for every integer k we have w(k, i) = (s + k, j) and w(k, j) = (t + k, i). Using
this we calculate w2(0, i)= w(s, j)= (t + s, i). Since w2(0, i)= (0, i), this implies that t =−s; thus,
for every integer k we have

w(k, i)= (k+ s, j) and w(k, j)= (k− s, i). (5-4)

Since w(Ci )=C j and w(C j )=Ci , Lemma 5.3 implies that π(i)= j and π( j)= i . It follows that for
every a ∈ A we have π(a, i)= (a, j) and π(a, j)= (a, i). Let w′ = ρ−s

i πρs
i . If α = (k, i) ∈ Ci , then a

simple calculation shows that w′(α)= (k+ s, j), so w′(α)=w(α) by (5-4). Similarly, if α= (k, j) ∈C j ,
then w′(α)= (k− s, i)= w(α). Therefore w(α)= ρ−s

i πρs
i (α) for every α ∈ Ci ∪C j . �

We can now prove the main result of this section.

Proposition 5.5. Let w ∈W and let C be the centralizer of w in W .

(1) Suppose that w has cycle type (2, D/2). Then the following hold:

(a) Assume that w(Ci ) 6= Ci for all i ∈ �. Then r is even, w is conjugate to the permutation
(1, 2)(3, 4) · · · (r − 1, r) ∈ Sr , and |C| = (r/2)!(2n)r/2.

(b) Assume w(Ci )= Ci for some i ∈�. Then n is even and there exists 0< `≤ r such that r − ` is
even and w is conjugate to the element (ρ1 · · · ρ`)

n/2ε, where ε= (`+1, `+2) · · · (r−1, r)∈ Sr .
Moreover, we have |C| = `!((r − `)/2)!n`(2n)(r−`)/2.

(2) Suppose that w has cycle type (2, n). Then the following hold:

(a) Assume w(Ci ) = Ci for all i ∈ �. Then n is even, there exist indices i < j ∈ � such that
w = (ρiρ j )

n/2, and |C| = 2(r − 2)!nr .
(b) Assume w(Ci ) 6= Ci for some i ∈�. Then there exist indices i < j ∈� and an integer 0≤ s < n

such that w = ρ−s
i τρs

i , where τ = (i, j) ∈ Sr . In this case, |C| = 2(r − 2)!nr−1.

(3) Suppose that w moves exactly n elements of X. Then w = ρs
i for some i ∈ � and some integer

0< s < n. Moreover, |C| = (r − 1)!nr .

Proof. Let f ∈ Ar and π ∈ Sr be such that w= ( f, π), and let (tak) be the type of w. We begin by proving
1(a). The hypothesis in (1) together with the fact that W acts faithfully on X imply that w2

= ( f + fπ , π2)

is the identity element (e, 1); in particular, π2
= 1. Moreover, by Lemma 5.3 we have w(Ci )= Cπ(i) for

every i ∈�, so π(i) 6= i for every i . Hence the π -orbit of every element of � has cardinality 2. It follows
that r is even, say r = 2m, and π is a product of m disjoint transpositions. We can now determine the
type of w.

Let {i1, π(i1)}, . . . , {im, π(im)} be the orbits of π . Since π has no k-cycles if k=1 or k>2, then tak=0
for all such k. When k = 2, tak is the number of indices 1≤ v ≤m such that f (iv)+ f (π(iv))= a. Since
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π2
= 1, this is equivalent to f (iv)+ fπ (iv)= a. Now, as mentioned above, w2

= ( f + fπ , π2)= (e, 1),
so f + fπ = e and therefore f (i)+ fπ (i)= 0 for every i ∈�. Hence, the condition f (iv)+ fπ (iv)= a is
equivalent to a = 0. Thus we have ta2 = 0 if a 6= 0, and t02 =m. This determines the type of w. It is now
trivial to check that w has the same type as the permutation τ = (1, 2)(3, 4) · · · (r − 1, r) ∈ Sr . It follows
from Proposition 5.2 that w is conjugate to τ and that |C| = m!(2n)m ; this completes the proof of 1(a).

Next we prove 1(b). Suppose that i ∈� satisfies w(Ci )= Ci . By Lemma 5.3, there exists 0≤ s < n
such that w acts like ρs

i on Ci , and the w-orbit of every element of Ci has cardinality n/ gcd(n, s). By
hypothesis every orbit has size 2, so n/ gcd(n, s)= 2, and hence n must be even and s = n/2.

Let i1, . . . , i` be all the indices i in � such that w(Ci ) = Ci . Clearly, 0 < ` ≤ r . Arguing as in the
proof of 1(a), we see that π fixes ik for each k, and that if i ∈� \ {i1, . . . , i`}, then the orbit of i under π
has size 2. This implies that r − ` is even, say r − `= 2q , and the disjoint cycle decomposition of π is a
product of ` 1-cycles and q transpositions. The type of w is now easy to determine as done in case 1(a).

Clearly, tak = 0 if k > 2. Let {i1}, . . . , {i`}, { j1, π( j1)}, . . . , { jq , π( jq)} be the orbits of π . Then
ta2 is the number of indices 1 ≤ v ≤ q such that f ( jv)+ fπ ( jv) = a. But f + fπ = e, so ta2 = 0 if
a 6= 0, and t02 = q. To determine ta1 we need an additional observation. We know that for every index
1 ≤ v ≤ `, w acts like ρs

iv on Civ . In particular, by (5-3) we have w(0, iv)= (s, iv). However, by (5-2),
w(0, iv) = ( f (iv), iv). Thus f (iv) = s for all v. Now, ta1 is the number of indices 1 ≤ v ≤ ` such that
f (iv)= a. Clearly then, ta1 = 0 if a 6= s and ts1 = `. This determines the type of w.

Proposition 5.2 yields

|C| = `!q!n`(2n)q .

Let w′ = (ρ1 · · · ρ`)
sε, where ε = (`+ 1,`+ 2) · · · (r − 1,r) ∈ Sr . A straightforward calculation shows

that w′ has the same type as w, and is therefore conjugate to w. This completes the proof of 1(b).
We now prove 2(a). If w acts nontrivially on m of the sets Ci , then the number of elements moved

by w is mn; hence m = 2, so w acts trivially on all but two of these sets, say Ci and C j with i < j . By
Lemma 5.3, there exist integers 0 < u, v < n such that w acts like ρu

i on Ci and like ρvj on C j . The
w-orbit of every element of Ci then has size n/ gcd(n, u) = 2, so n is even and u = n/2. Similarly,
v = n/2. Thus w acts like (ρiρ j )

n/2 on all of X , and therefore w = (ρiρ j )
n/2. Letting s = n/2, we have

w = (sδi + sδ j , 1); the type of w is now easily determined.
We have tak = 0 if k > 1, and ta1 is the number of indices k ∈� such that sδi (k)+ sδ j (k)= a. Now,

note that

sδi (k)+ sδ j (k)= 0, if k 6= i, j, and sδi (k)+ sδ j (k)= s, if k = i or j.

Hence ta1 = 0 if a /∈ {0, s}, ts1 = 2, and t01 = r − 2. Proposition 5.2 now yields |C| = 2(r − 2)!nr ; this
proves 2(a).

Next we prove 2(b). By Lemma 5.3 we have w(Ci )= C j for some j 6= i . Then w(C j ) must equal Ci ,
for otherwise w would move more than 2n elements of X . Thus w(Ci )= C j , w(C j )= Ci , and w acts
trivially on Ck for all k 6= i, j . It follows from Lemma 5.3 that π = (i, j). Reversing the roles of i and j if
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necessary, we may assume that i < j . By Lemma 5.4, there exists 0≤ s < n such that w(α)= ρ−s
i πρs

i (α)

for every α ∈ Ci ∪C j . Clearly, this equality also holds if α ∈ Ck with k /∈ {i, j}, so w = ρ−s
i πρs

i . We can
now determine the type of w.

Since w and π = (i, j) are conjugate, they have the same type. We thus find that tak = 0 if k> 2; ta2= 0
if a 6= 0, and t02 = 1; ta1 = 0 if a 6= 0, and t01 = r − 2. Proposition 5.2 now yields |C| = 2(r − 2)!nr−1;
this completes the proof of 2(b).

Finally, we prove (3). It is easy to see that the n elements moved by w must form one of the sets
Ci . This implies that w(Ci )= Ci and w acts trivially on C j for all j 6= i . By Lemma 5.3, there exists
0 < s < n such that w(α) = ρs

i (α) for every α ∈ Ci . This equality clearly holds for α /∈ Ci as well, so
w = ρs

i . Using the relation w = ρs
i = (sδi , 1), it is now a simple calculation to show that tak = 0 if k > 1,

ta1 = 0 if a /∈ {0, s}, ts1 = 1, and t01 = r − 1. Proposition 5.2 now yields |C| = (r − 1)!nr . �

Having developed all of the necessary tools, we proceed to prove the main results of this article.

6. Genus computations for n = 5 and 6

Recall the following notation from Section 4: K =Q(t), N/K is a splitting field of 8n , G =Gal(N/K ),
F is a subfield of N obtained by adjoining one root of 8n to K , and P= {p∞}∪

{
pb | b ∈

⋃
d | n Rn,d

}
is

the set of places of K that ramify in F . Finally, for any intermediate field L in the extension N/K and
any place p of K , PL(p) denotes the set of places of L lying over p.

We begin this section by discussing an approach to the problem of computing the genera of subextensions
of N/K . Let H be a subgroup of G with fixed field L , and let g(L) denote the genus of L . We claim
that if p is a place of K which ramifies in L , then p ∈ P. Indeed, if p ramifies in L , then it ramifies in N .
Letting P be a place of N lying over p, the inertia group IP | p is nontrivial, so Corollary 3.5 implies that
p ramifies in F . Hence p ∈ P.

The Hurwitz genus formula [Stichtenoth 2009, Corollary 3.5.6] now yields

2g(L)− 2= (−2)|G : H | +
∑
p∈P

∑
q∈PL (p)

(eq | p − 1). (6-1)

Let us define
gn,∞(H)=

∑
q∈PL (p∞)

(eq | p∞ − 1),

and for every divisor d of n,
gn,d(H)=

∑
b∈Rn,d

∑
q∈PL (pb)

(eq | pb − 1).

By (6-1) we have the following expression for the genus of L:

g(L)= 1− |G : H | + 1
2

(
gn,∞(H)+

∑
d | n

gn,d(H)
)
. (6-2)

The problem of computing g(L) is thus reduced to the following: given any place p ∈ P, compute the
ramification index eq | p for every q ∈ PL(p). Our method for doing this is based on the following lemma.
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Lemma 6.1. Let p ∈ P, P ∈ PN (p), and I = IP | p. Let σ1, . . . , σm be representatives of the distinct
double cosets in I\G/H. Then

{eq | p : q ∈ PL(p)} = {|I σi : I σi ∩ H | : 1≤ i ≤ m}.

Proof. Since K is a function field over Q, we have fP | p = 1 and therefore DP | p = IP | p = I . Using
Lemma 3.1 we see that the set PL(p) consists of the places σi (P)∩ L; moreover, if q= σi (P)∩ L , then
eq | p = |I σi : I σi ∩ H |. The result follows immediately. �

For purposes of explicit computation it is convenient to use the isomorphisms G ≡W ≡ Z proved in
Sections 5B–5D. With notation as in Lemma 6.1, suppose that one is able to identify the subgroup of W
(or Z) which corresponds to the inertia group I . It is then a finite computation to determine representatives
σ1, . . . , σm and to compute the indices |I σi : I σi ∩ H |. Carrying out this calculation for every p ∈ P, one
obtains all the data needed to determine the numbers gn,∞ and gn,d , and hence the genus of L .

The remainder of this section is devoted to showing that when n = 5 or 6 it is possible — and
computationally feasible — to identify inertia groups IP | p for every p ∈P, and thus to compute the genus
of any intermediate field in the extension N/K . In particular, this allows us to obtain the genera of the
fixed fields of all the maximal subgroup of G, and by applying Proposition 2.4, to show that the sets E5

and E6 are finite.
In order to carry out all the necessary computations we have used version 2.23-1 of MAGMA [Bosma

et al. 1997] running on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 GB of memory. The in-
terested reader can find the code for our computations in [Krumm 2018a]. The code relies primarily on four
intrinsic MAGMA functions: WreathProduct, MaximalSubgroups, DoubleCosetRepresentatives,
and meet. The first function applied to Z/nZ and Sr constructs the group W together with the natural
embeddings Sr ↪→W and (Z/nZ)r ↪→W . (It should be noted, however, that internally W is constructed
as the group Z .) Once W is constructed, the second function can be used to obtain the maximal subgroups
of W up to conjugacy; the algorithm used is described in [Cannon and Holt 2004]. Given subgroups I
and H of W , the third function computes representatives of the double cosets in I\W/H . Finally, the
fourth function can be used to compute the intersection of two subgroups of W; the algorithm uses a
backtrack method described in [Leon 1997].

Throughout this section we use the following notation. For 1≤ i ≤ r we let ρi be the element of W
defined in Section 5F. As an automorphism of the graph 0, ρi is a 1/n rotation of the i-th cycle. As
an element of the group Z, ρi is the i-th cycle in the decomposition of the permutation σ defined in
Section 5B. For distinct indices 1 ≤ i, j ≤ r we let τi, j be the transposition (i, j) ∈ Sr regarded as an
element of W . As an automorphism of 0, τi, j interchanges the i-th and j-th cycles without performing
any rotations.

Lemma 6.2. The elements ρ1, . . . , ρr are conjugate in W . Moreover, if i, j, u, v ∈ {1, . . . , r} with i 6= j
and u 6= v, then ρiρ j is conjugate to ρuρv.
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Proof. This follows from Proposition 5.2. The type (tak) of ρi is independent of i ; indeed, we have
tak = 0 if k > 1, ta1 = 0 if a 6= 0, 1, t01 = r − 1, and t11 = 1. Similarly, if i 6= j , then the type (tak) of
ρiρ j independent of i and j : we have tak = 0 if k > 1, ta1 = 0 if a 6= 0, 1, t01 = r − 2, and t11 = 2. �

6A. The case n = 5. The polynomial 85 has D = 2ν(5) = 30 roots which can be partitioned into
r = D/5 = 6 cycles. Hence, the graph 0 consists of six 5-cycles. The group W is (Z/5Z) o S6, so
|G| = 566! = 11,250,000. The set of places of K which ramify in F is

P= {p∞} ∪ {pb | b ∈ R5,5 ∪ R5,1};

using Lemma 4.1 we obtain #R5,5 = 11 and #R5,1 = 4. We will henceforth identify G and W using the
isomorphism G ≡W , where G acts on the roots of 85 and W acts on the set X = (Z/5Z)×{1, . . . , 6}.

We define three subgroups of W by A = 〈τ1,2τ3,4τ5,6〉, B = 〈τ1,2〉,C = 〈ρ1〉.

Lemma 6.3. Up to conjugation, A is the only subgroup of W generated by an element with cycle type
(2, 15); similarly, B is uniquely determined by the cycle type (2, 5), and C by the cycle type (5, 1).

Proof. Suppose that Ã is a subgroup of W generated by an element w with cycle type (2, 15). We are
then in the context of case 1 of Proposition 5.5. Moreover, since n = 5 is odd, case 1(b) is ruled out.
Hence, by case 1(a), w is conjugate to τ1,2τ3,4τ5,6, and therefore Ã is conjugate to A.

Now suppose that a subgroup B̃ is generated by an element w with cycle type (2, 5). By case 2(b) of
Proposition 5.5, w is conjugate to τi, j for some indices i, j . Clearly the permutations (i, j) and (1, 2) are
conjugates in S6, so τi, j is conjugate to τ1,2 and therefore B̃ is conjugate to B.

Finally, suppose that a subgroup C̃ is generated by an element w with cycle type (5, 1). By case 3
of Proposition 5.5, we have w = ρs

i for some i and 0< s < 5. Note that 〈ρs
i 〉 = 〈ρi 〉 since |ρi | = 5. By

Lemma 6.2, w is conjugate to ρs
1, and therefore C̃ = 〈w〉 is conjugate to 〈ρs

1〉 = 〈ρ1〉 = C . �

Lemma 6.4. (1) There exists P ∈ PN (p∞) such that IP | p∞ = A.

(2) For every b ∈ R5,5 there exists P ∈ PN (pb) such that IP | pb = B.

(3) For every b ∈ R5,1 there exists P ∈ PN (pb) such that IP | pb = C.

Proof. Let P ∈ PN (p∞). By Proposition 4.3 we have IP | p∞ = 〈w〉, where w ∈W has cycle type (2, 15).
Thus, by Lemma 6.3, IP | p∞ is conjugate to A. Replacing P by a conjugate place if necessary, we then
have IP | p∞ = A. This proves (1); the proofs of (2) and (3) are similar. �

Proposition 6.5. Let H be a subgroup of W with fixed field L. Suppose that α1, . . . , αt are double
coset representatives for A\W/H , β1, . . . , βu are representatives for B\W/H , and γ1, . . . , γv are
representatives for C\W/H. Then the genus of L is given by

g(L)= 1− |W : H | + 1
2(g5,∞(H)+ g5,5(H)+ g5,1(H)),
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where

g5,∞(H)=
t∑

i=1

(|Aαi : Aαi ∩ H | − 1), (6-3)

g5,5(H)= 11 ·
u∑

i=1

(|Bβi : Bβi ∩ H | − 1), (6-4)

g5,1(H)= 4 ·
v∑

i=1

(|Cγi : Cγi ∩ H | − 1). (6-5)

Proof. The formula for g(L) follows from (6-2). Let p = p∞. By Lemma 6.4, there exists P ∈ PN (p)
such that IP | p = A. By Lemma 6.1 we have

{eq | p : q ∈ PL(p)} = {|Aαi : Aαi ∩ H | : 1≤ i ≤ t},

which implies (6-3). Now suppose that b ∈ R5,5 and let p = pb. By Lemma 6.4, there exists P ∈ PN (p)
such that IP | p = B. Thus, by Lemma 6.1,

{eq | p : q ∈ PL(p)} = {|Bβi : Bβi ∩ H | : 1≤ i ≤ u},

and therefore ∑
q∈PL (p)

(eq | p − 1)=
u∑

i=1

(|Bβi : Bβi ∩ H | − 1).

Since the value of this sum is independent of b, and #R5,5 = 11, then

g5,5(H)=
∑

b∈R5,5

∑
q∈PL (pb)

(eq | pb − 1)= 11 ·
u∑

i=1

(|Bβi : Bβi ∩ H | − 1),

which proves (6-4). The proof of (6-5) is similar. �

We can now begin to prove Theorem 1.4.

Theorem 6.6. The set E5 is finite.

Proof. Computing representatives for the conjugacy classes of maximal subgroups of W , we obtain 8 sub-
groups which we denote by M1, . . . ,M8. The indices of these subgroups in W are given, respectively, by

|W : Mi | : 3125, 15, 15, 10, 6, 6, 5, 2.

Let L i be the fixed field of Mi . Fixing an index i , we may compute representatives for the double cosets in
A\W/Mi , B\W/Mi , and C\W/Mi . The genus of L i can then be obtained by applying Proposition 6.5.
Carrying out these computations for i = 1, . . . , 8 we obtain, respectively, the genera

9526, 21, 11, 9, 2, 12, 4, 5.
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M1 M2 M3 M4 M5 M6 M7 M8

g5,∞ 1550 4 6 3 3 1 0 1
g5,5 13750 66 44 33 11 33 0 11
g5,1 10000 0 0 0 0 0 16 0

Table 1. Ramification data for the maximal subgroups of W .

The result now follows from Proposition 2.4. The values of g5,∞(Mi ), g5,5(Mi ), and g5,1(Mi ) are shown
in Table 1. �

6B. The case n = 6. Our next objective is to show that the set E6 is finite. The structure of the proof
is similar to the case n = 5, though the process of identifying the necessary inertia groups requires an
additional step that was not present in that case.

The polynomial86 has D= 2ν(6)= 54 roots which can be partitioned into r = D/6= 9 cycles. Hence,
the graph 0 consists of nine 6-cycles. The group W is (Z/6Z) o S9, so |G| = 699! = 3,656,994,324,480.
The set of places of K which ramify in F is P = {p∞} ∪

{
pb | b ∈

⋃
d | 6 R6,d

}
. Using Lemma 4.1 we

find that
#R6,6 = 20, #R6,3 = 3, #R6,2 = 2, #R6,1 = 2. (6-6)

We define several cyclic subgroups of W . For 0≤ j ≤ 4, let

γ j =

(9−2 j∏
i=1

ρ3
i

)( j−1∏
i=0

τ8−2i,9−2i

)
and A j = 〈γ j 〉.

In addition, let B0 = 〈ρ
3
1ρ

3
2〉, B1 = 〈τ1,2〉, C = 〈ρ3

1〉, D = 〈ρ2
1〉, E = 〈ρ1〉.

Lemma 6.7. Up to conjugation, the groups A j are the only subgroups of W generated by an element
with cycle type (2, 27), B0 and B1 are the only subgroups generated by an element with cycle type (2, 6),
and C, D, E are uniquely determined by the cycle types (2, 3), (3, 2), and (6, 1), respectively.

Proof. Suppose that Ã= 〈w〉, where w ∈W has cycle type (2, 27). We are then in the context of case 1 of
Proposition 5.5. Moreover, since r = 9 is odd, case 1(b) must hold. Thus, there exists 0< `≤ 9 such that
9− ` is even and w is conjugate to v = (ρ1 · · · ρ`)

3(τ`+1,`+2) · · · τ8,9. Writing 9− `= 2 j with 0≤ j ≤ 4,
we have v = γ j . Hence, Ã is conjugate to A j .

Suppose now that B̃ = 〈w〉, where w ∈W has cycle type (2, 6). We are then in the context of case 2 of
Proposition 5.5. In case 2(a) of the proposition, w = (ρiρ j )

3 for some indices i 6= j . By Lemma 6.2, this
implies that w is conjugate to (ρ1ρ2)

3, and therefore B̃ is conjugate to B0. In case 2(b) of the proposition,
w is conjugate to τ1,2 and B̃ is conjugate to B1.

We now prove the uniqueness of the group C and omit the proofs for D and E , which are similar.
Suppose that C̃ = 〈w〉, where w ∈W has cycle type (2, 3). By case (3) of Proposition 5.5, we have
w = ρs

i with 1≤ i ≤ 9 and 0< s < 6. In order for w to have cycle type (2, 3) we must have s = 3; thus,
by Lemma 6.2, w is conjugate to ρ3

1 and C̃ is conjugate to C . �



984 David Krumm

Before continuing with the main discussion of this section, we prove a couple of auxiliary results.
Returning to the general case of an arbitrary positive integer n, let θ be a root of 8n such that F = K (θ).
Recall from Section 4 that F has an automorphism given by θ 7→ φ(θ), and that F0 denotes the fixed
field of this automorphism.

Lemma 6.8. Let τ = θ +φ(θ)+ · · ·+φn−1(θ). Then F0 = K (τ ).

Proof. Following Morton [1996], we define the trace of a cycle in the graph 0 to be the sum of the elements
in the cycle. Note that τ is the trace of the cycle containing θ . Let P ∈ K [x] be the monic polynomial of
degree r whose roots are the traces of all the cycles in 0. By [Morton 1996, Corollary 3, p. 335], P is
irreducible; hence P is the minimal polynomial of τ , and therefore [K (τ ) : K ] = r . Clearly τ is fixed
by φ, so K (τ )⊆ F0. Now, since [F : K ] = D and [F : F0] = n, then [F0 : K ] = D/n = r = [K (τ ) : K ].
Thus F0 = K (τ ). �

We can now describe the subgroup of G corresponding to F0.

Lemma 6.9. Let O = {θ, φ(θ), . . . , φn−1(θ)} and let H0 be the setwise stabilizer of O in G. Then F0 is
the fixed field of H0.

Proof. Let U and V be the subgroups of G defined by

U = {σ ∈ G | σ(x)= x for every x ∈O} and V = {σ ∈ G | σ(x)= x for every x ∈ R \O}.

A simple argument shows that H0 =U V ; see Example 2 in [Dummit and Foote 2004, p. 172].
The fact that φ is in the center of G implies that U is equal to the stabilizer of θ in G; thus U=Gal(N/F).

It follows that F is the fixed field of U . Let L be the fixed field of H0. Since U ≤ H0, then L ⊆ F .
Defining τ as in Lemma 6.8, it is clear that τ is fixed by every element of H0; hence F0 = K (τ )⊆ L . We
have thus shown that F0 ⊆ L ⊆ F . To complete the proof we will show that [F : L] = [F : F0].

Identifying G with Aut(0) we see that V consists of the elements of G that act trivially on every cycle
of 0 except possibly on the cycle containing θ . Thus the elements of V are the n rotations of the latter
cycle, so |V | = n. By Galois theory we have [F : L] = |U V |/|U | = |V |, where the second equality uses
the fact that U ∩ V = {1}. We conclude that [F : L] = n = [F : F0]. �

We return now to the case n = 6.

Lemma 6.10. (1) There exists P ∈ PN (p∞) such that IP | p∞ = A4.

(2) For every b ∈ R6,6 there exists P ∈ PN (pb) such that IP | pb = B1.

(3) For every b ∈ R6,3 there exists P ∈ PN (pb) such that IP | pb = C.

(4) For every b ∈ R6,2 there exists P ∈ PN (pb) such that IP | pb = D.

(5) For every b ∈ R6,1 there exists P ∈ PN (pb) such that IP | pb = E.

Proof. Let p = p∞, P ∈ PN (p), and I = IP | p. By Proposition 4.3, I has a generator with cycle type
(2, 27). By Lemma 6.7, I must be conjugate to one of the groups A j . Replacing P by a conjugate ideal
if necessary, we then have I = A j for some j . We claim that I = A4.
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To prove this we will use the number S(p) defined in Proposition 4.4. By part (a) of the proposition,
S(p)= 9− e6 = 4. We can calculate S(p) in a different way by using the inertia group I as follows. Let
H0 be the subgroup of W defined in Lemma 6.9. Applying Lemma 6.1 we see that

S(p)=
m∑

i=1

(|I σi : I σi ∩ H0| − 1),

where σ1, . . . , σm are double coset representatives for I\W/H0. Assuming that I = A0, A1, A2, A3, A4,
respectively, we compute representatives σi and use the above formula to obtain S(p) = 0, 1, 2, 3, 4.
However, we know that S(p)= 4, so necessarily I = A4, as claimed. This proves (1). For the purposes
of this computation, we identify W with the group Z ≤ S54, so that H0 is identified with the setwise
stabilizer of the set {1, . . . , 6} in Z . The code used for these computations is available in [Krumm 2018a].

Let b ∈ R6,6, p = pb, P ∈ PN (p), and I = IP | p. By Proposition 4.3, I has a generator with cycle
type (2, 6). By Lemma 6.7, I must be conjugate to either B0 or B1. Replacing P by a conjugate ideal
if necessary, we then have I = B0 or B1. We know that S(p)= 1 by part (b) of Proposition 4.4. Now,
assuming that I = B0, B1, respectively, the above displayed formula yields S(p)= 0, 1; hence I = B1.
This proves (2).

Statements (3)-(5) follow easily from Proposition 4.3 and Lemma 6.7. �

Proposition 6.11. Let H be a subgroup of W with fixed field L. For every group I ∈ {A4, B1,C, D, E}
let

qH (I )=
m∑

i=1

(|I σi : I σi ∩ H | − 1),

where σ1, . . . , σm are representatives of all the double cosets in I\W/H. Then the genus of L is given by

g(L)= 1− |W : H | + 1
2(qH (A4)+ 20qH (B1)+ 3qH (C)+ 2qH (D)+ 2qH (E)).

Proof. Let p = p∞. By Lemma 6.10, there exists P ∈ PN (p) such that IP | p = A4. Using Lemma 6.1
we see that g6,∞(H) = qH (A4). Now let b ∈ R6,6, p = pb, and let P ∈ PN (p) satisfy IP | p = B1. By
Lemma 6.1,

qH (B1)=
∑

q∈PL (p)

(eq | p − 1).

Since this holds for every b ∈ R6,6, then (6-6) yields g6,6(H) = 20qH (B1). By a similar argument we
show that

g6,3(H)= 3qH (C), g6,2(H)= 2qH (D), and g6,1(H)= 2qH (E).

The stated formula for the genus of L is now a consequence of (6-1). �

We can now prove a second part of Theorem 1.4.

Theorem 6.12. The set E6 is finite.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

qMi (A4) 416 132 120 60 40 16 4 0 1 0 1
qMi (B1) 420 105 64 35 21 7 1 0 1 1 0
qMi (C) 0 0 128 0 0 0 0 0 1 0 1
qMi (D) 0 0 0 0 0 0 0 2 0 0 0
qMi (E) 0 0 128 0 0 0 0 2 1 0 1

Table 2. Ramification data for the maximal subgroups of W .

Proof. Computing representatives for the conjugacy classes of maximal subgroups of W , we obtain 11 sub-
groups which we denote by M1, . . . ,M11. The indices of these subgroups in W are given, respectively, by

|W : Mi | : 840, 280, 256, 126, 84, 36, 9, 3, 2, 2, 2.

Let L i be the fixed field of Mi . Fixing an index i , we may compute the numbers qMi (I ) for I ∈
{A4, B1,C, D, E}. The genus of L i can then be obtained by applying Proposition 6.11. Carrying out
these computations for i = 1, . . . , 11 we obtain, respectively, the genera

3569, 837, 765, 255, 147, 43, 4, 2, 12, 9, 2.

By Proposition 2.4, this implies that E6 is finite. The values of qMi (I ) are shown in Table 2. �

7. Genus bounds for n > 6

The methods used in the previous section for n = 5 and 6 can, in principle, be applied to higher values
of n; however, there are computational limitations which make this impractical. Firstly, for n > 10 there
are issues of both memory and time which prevent us from computing the maximal subgroups of W .
Thus, we are restricted to considering only n = 7, 8, 9, 10. Furthermore, even for these values of n there
are similar complications in the crucial step of computing double coset representatives. Hence, it would
appear that our methods cannot be extended beyond n = 6. However, a modification of the method will
allow us to show that E7 and E9 are finite.

Recall that our main goal is to show that the genera of the function fields corresponding to maximal
subgroups of G are all greater than 1. In the cases n = 5, 6 we did this by calculating the exact values
of these genera, although it would be sufficient to prove a lower bound greater than 1. In this section
we will show that, as long as the maximal subgroups of W can be computed, it is possible to obtain
lower bounds for the required genera. In the cases n = 7, 9 these bounds will suffice to prove the desired
result. Unfortunately, the bounds are not good enough when n = 8, 10; the difficulties are explained in
Section 7B. We keep here all of the notation introduced in earlier sections.

Lemma 7.1. Let H be a subgroup of G with fixed field L , and a = |G : H |. Let p be a place of K , let
{q1, . . . , qs} = PL(p), and ei = eqi | p. Suppose that u is an upper bound for the number of indices i such
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that ei = 1. Then
s∑

i=1

(ei − 1)≥
⌈

a−b(u+ a)/2c
⌉
.

Proof. Let x be the number of indices i such that ei =1, and let y= s−x . Note that a=e1+· · ·+es≥ x+2y.
Since x ≤ u, this implies x + y ≤ (u+ a)/2. Thus s ≤ b(u+ a)/2c and therefore

s∑
i=1

(ei − 1)= a− s ≥ a−b(u+ a)/2c,

from which the result follows immediately. �

7A. The case of odd n. Assume that n is odd. Using Lemma 7.1, we now explain how to obtain lower
bounds for the genera of subextensions of N/K . Define subsets 2n and 3n of W by

2n = {ρ
s
i | 1≤ i ≤ r, 0< s < n}, and 3n = {ρ

−s
i τi, jρ

s
i | 1≤ i < j ≤ r, 0≤ s < n}.

For every subgroup H of W and every divisor d of n, let

un,d(H)=
{
(r − 1)!nr #(H ∩2n,d)/|H | if d < n,
2(r − 2)!nr−1#(H ∩3n)/|H | if d = n,

and

g′n,d(H)= (deg1n,d)

⌈
|W : H | −

⌊un,d(H)+ |W : H |
2

⌋⌉
.

Here, 2n,d denotes the set of elements of 2n having cycle type (n/d, d).

Proposition 7.2. With notation as above, let L be the fixed field of H. Then the genus of L satisfies

g(L)≥
⌈

1− |W : H | + 1
2

∑
d | n

max(g′n,d(H), 0)
⌉
. (7-1)

Proof. Let d be a proper divisor of n, and let b ∈ Rn,d . If P is a place of N lying over pb, Proposition 4.3
implies that the inertia group IP | pb is generated by an element γ with cycle type (n/d, d). By part (3) of
Proposition 5.5, we have γ = ρs

i with 1≤ i ≤ r and 0< s < n. Moreover, the order of the centralizer of
γ is given by |CW(γ )| = (r − 1)!nr . Thus, by Corollary 3.5, the number of places q ∈ PL(pb) such that
eq | pb = 1 is equal to

(r − 1)!nr s(H, γ )/|H |,

where s(H, γ ) is the number of conjugates of γ which belong to H . Note that every conjugate of γ
belongs to 2n,d , so that s(H, γ )≤ #(H ∩2n,d). It follows that the number of places q ∈ PL(pb) such
that eq | pb = 1 is bounded above by un,d(H). Letting a = |W : H |, Lemma 7.1 implies that∑

q∈PL (pb)

(eq | pb − 1)≥
⌈

a−b(un,d(H)+ a)/2c
⌉
.
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Recalling the number gn,d(H) defined in Section 6, the above inequality implies that gn,d(H)≥ g′n,d(H)
and therefore gn,d(H)≥max(g′n,d(H), 0).

By a similar argument we can show that gn,n(H)≥max(g′n,n(H), 0). Let b ∈ Rn,n and P ∈ PN (pb).
Then IP | pb = 〈γ 〉, where γ has cycle type (2, n). Since n is odd, part 2(b) of Proposition 5.5 implies that
γ = ρ−s

i τi, jρ
s
i for some 1≤ i < j ≤ r and 0≤ s < n. Moreover, |CW(γ )| = 2(r − 2)!nr−1. The number

of places q ∈ PL(pb) such that eq | pb = 1 is therefore given by

2(r − 2)!nr−1s(H, γ )/|H |.

Now, every conjugate of γ belongs to 3n , so s(H, γ )≤ #(H ∩3n). The number of places q ∈ PL(pb)

with eq | pb = 1 is thus bounded above by un,n . Letting a = |W : H |, we have∑
q∈PL (pb)

(eq | pb − 1)≥
⌈

a−b(un,n(H)+ a)/2c
⌉
,

which implies that gn,n(H)≥ g′n,n(H). We have thus proved:

gn,d(H)≥max(g′n,d(H), 0), for every divisor d of n.

Now (7-1) follows from the genus formula (6-2). �

Remark 7.3. Note that in proving the bound (7-1) we have disregarded the contribution to the genus
coming from ramified places lying over p∞. Though the bound would certainly be improved if these
places were considered, doing so would substantially increase the amount of time and memory required
to compute the bound. In particular, it would require determining the intersection H ∩C , where C is the
set of all conjugates in W of the permutation (1, 2)(3, 4) · · · (r − 1, r). Now, part 1(a) of Proposition 5.5
implies that #C = (nrr !)/((r/2)!(2n)r/2) ≥ nr/2, which suggests that C might be difficult to construct
in practice. And indeed, our attempts to compute all the elements of C in the case n = 7 failed due to
excessive memory requirements.

Remark 7.4. In order to compute the number on the right-hand side of (7-1), the key step is to determine
the cardinalities of the sets H ∩2n,d and H ∩3n , which would be difficult to do if all the sets involved
were quite large. Fortunately, while the group H may be extremely large (for instance, H might be the
largest maximal subgroup of the Galois group of 89, in which case |H | ≈ 9.73× 10127), the sets 3n

and 2n,d are small. Indeed, #2n,d ≤ #2n = r(n− 1) and #3n = n ·
(r

2

)
. This makes it computationally

feasible to construct the sets H ∩3n and H ∩2n,d , and hence to compute the desired lower bound.

We can now complete the proof of Theorem 1.4. The finiteness of E7 and E9 is proved by a series of com-
putations carried out using MAGMA; the code used for these computations is available in [Krumm 2018a].

Theorem 7.5. The sets E7 and E9 are finite.

Proof. We consider first the case of E7. The polynomial 87 has D = 126 roots which can be partitioned
into r = 18 cycles. Thus, W = (Z/7Z) o S18. Constructing the group W and computing representatives for
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the conjugacy classes of maximal subgroups of W , we obtain 16 groups which we denote by M1, . . . ,M16.
The sets 27 and 37 are easily constructed; we find that #27 = 108 and #37 = 1071.

Let L i denote the fixed field of Mi . For each subgroup Mi we compute the numbers u7,7(Mi ) and
u7,1(Mi ), and use these to calculate g′7,7(Mi ) and g′7,1(Mi ). This is a trivial computation given the small
size of the sets 27 and 37. The inequality (7-1) then yields a lower bound for g(L i ).

Carrying out these calculations, the lowest lower bound we obtain for the genera g(L i ) is 6; hence
g(L i ) > 1 for every i , which implies that E7 is finite. The total time required for all of the above
computations is 0.42 s.

The proof of finiteness of E9 follows the same steps as above. In this case the lowest lower bound we
obtain for g(L i ) is 4. Total computation time is 197 s, with 179 s spent computing the maximal subgroups
of W . �

7B. The case of even n. In the case where n is even, a bound similar to (7-1) can be proved; indeed,
this only requires modifying the definition of the number un,n(H). Unfortunately, when n = 8 or 10 the
bounds for the genera g(L i ) obtained in this way are not greater than 1; in fact many of them are negative.
We suspect, therefore, that most of the ramification in the extensions L i/K occurs over the place p∞. In
order to improve the bounds for g(L i ) we would have to determine the genus contribution coming from
places lying over p∞. However, as discussed in Remark 7.3, it is computationally infeasible to do this.
Thus, we are unable to improve the bounds enough to show that E8 and E10 are finite.

8. Density results

Having proved Theorem 1.4, we now turn our attention to Theorem 1.5. Recall that if n is a positive
integer and c ∈Q, we denote by Tn,c the set of prime numbers p such that the map φc(x)= x2

+ c does
not have a point of period n in Qp. By applying Lemma 8.1 below we will be able to calculate the density
of Tn,c for n ∈ {5, 6, 7, 9} and all but finitely many c ∈Q.

For every polynomial F ∈Q[x], let SF be the set of all primes p such that F has a root in Qp. The
Chebotarev density theorem implies that the density of SF , which we denote by δ(SF ), exists and can be
computed if the Galois group of F is known. More precisely, we have the following result.

Lemma 8.1. Let F ∈Q[x] be a separable polynomial of degree D ≥ 1. Let S be a splitting field for F ,
and set G = Gal(S/Q). Let α1, . . . , αD be the roots of F in S and, for each index i , let Gi denote the
stabilizer of αi under the action of G. Then the Dirichlet density of SF is given by

δ(SF )=

∣∣⋃D
i=1 Gi

∣∣
|G|

. (8-1)

Proof. This follows from Theorem 2.1 in [Krumm 2016]. �

Note that for the purpose of computing δ(SF ) using the formula (8-1), the group G may be replaced
with any permutation group G such that G ≡ G. Fixing a positive integer n, let Gn be the Galois group of
8n over Q(t) and let G = Aut(0), where 0 is the graph defined in Section 5A. Recall that Gn ≡ G.
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Lemma 8.2. Let M be the set of all elements of G having no fixed point. The cardinality of M is given
by the formula

#M=
r∑

i=0

(n− 1)i · nr−i
· d(r, i),

where

d(r, i)=
(r

i

)
(r − i)!

r−i∑
k=0

(−1)k

k!
.

Proof. The number d(r, i) counts the permutations in Sr which fix exactly i elements of the set {1, . . . , r}.
The above formula for d(r, i) is proved by an inclusion-exclusion argument; see Example 2.2.1 in [Stanley
2012].

For 0 ≤ i ≤ r , let Mi be the set of elements of M which fix exactly i cycles of 0. Clearly M is a
disjoint union of the sets Mi , so in order to prove the lemma it suffices to show that

#Mi = (n− 1)i · nr−i
· d(r, i).

Recall that every element σ ∈ G has a unique representation of the form ρ
a1
1 · · · ρ

ar
r π , where π ∈ Sr

describes the action of σ on the set of cycles of 0, ρk represents a (1/n) rotation on the k-th cycle, and
0≤ ak < n.

Let 0≤ i ≤ r . Then an element σ ∈ G represented as above belongs to Mi if and only if there exist
indices k1, . . . , ki ∈ {1, . . . , r} such that π fixes k1, . . . , ki and has no other fixed points; and ak j > 0 for
j = 1, . . . , i . In constructing elements of Mi we therefore have d(r, i) choices for π , n−1 choices for the
exponents ak j , and n choices for the remaining r−i exponents. It follows that #Mi = (n−1)i ·nr−i

·d(r, i),
as required. �

Proof of Theorem 1.5. Let 1(t) be the discriminant of 8n and let

E = {c ∈Q |1(c)= 0} ∪ E5 ∪ E6 ∪ E7 ∪ E9.

By the results of Sections 6 and 7, E is a finite set. Fix n ∈ {5, 6, 7, 9} and c ∈Q \ E . Since c /∈ En , we
have Gn,c ∼= Gn . This implies that Gn,c ≡ Gn , where Gn,c acts on the roots of 8n(c, x). Indeed, since
1(c) 6= 0, there is a subgroup H of Gn such that Gn,c≡ H (see Theorem 2.9 in [Lang 2002, Chapter VII]).
By order considerations, H must be equal to Gn .

Let Sn,c be the set of primes p such that 8n(c, x) has a root in Qp. The fact that 1(c) 6= 0 implies that
Sn,c is the complement of Tn,c. Indeed, every root of 8n(c, x) has period n under φc; see Theorem 2.4(c)
in [Morton and Patel 1994].

Since Gn,c ≡ Gn ≡ G, Lemma 8.1 applied to F(x)=8n(c, x) yields

δ(Sn,c)=

∣∣⋃
α∈0 Gα

∣∣
|G|

,
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where Gα is the stabilizer of α in G. It follows that δ(Tn,c) = (#M)/|G|, where M is defined as in
Lemma 8.2. Using this lemma we obtain

δ(T5,c)=
9210721

6!56 ≈ 0.8187,

δ(T6,c)=
3095578863701

9!69 ≈ 0.8465,

δ(T7,c)≈ 0.8669,

δ(T9,c)≈ 0.8948.

This completes the proof of the theorem. �

9. The exceptional sets En

We end this article with a brief discussion concerning the elements of the sets En . Recall the following
notation introduced in Section 2: S is a splitting field of 8n over Q(t), Gn = Gal(S/Q(t)), M1, . . . ,Ms

are representatives of the conjugacy classes of maximal subgroups of Gn , and X is the smooth projective
curve with function field S.

Our approach to proving the finiteness of En for n > 4 is based on Lemma 2.1, which shows that En

is finite if every quotient curve X/Mi has genus greater than 1. The proof of the lemma suggests that we
may determine the elements of En by finding a certain finite set E and determining all the rational points
on the curves X/Mi . The set E as well as affine models for these curves can be obtained using the methods
of the article [Krumm and Sutherland 2017]; however, the rational points on X/Mi seem impossible to
determine due to the large genera of the curves. (For instance, when n = 5 one of the curves has genus
9526, as seen in the proof of Theorem 6.6.) Hence, the problem of explicitly determining En seems
intractable at present. Nevertheless, it is possible to prove some basic results about the elements of En .

Proposition 9.1. For every positive integer n we have {0,−2} ⊆ En .

Proof. For every c ∈Q, the polynomial 8n(c, x) divides φn
c (x)− x , where φc(x)= x2

+ c. In particular,
8n(0, x) divides x2n

− x , which implies that 8n(0, x) splits over a cyclotomic field. It follows that the
Galois group Gn,0 is abelian, hence not isomorphic to Gn , since Gn ∼= (Z/nZ) o Sr . Thus 0 ∈ En .

For c =−2 the polynomial φc is a Chebyshev polynomial satisfying

φc(x + 1/x)= x2
+ 1/x2.

We claim that the polynomial 8n(−2, x) splits over the cyclotomic field Q(ζ ), where ζ is a primitive
(22n
− 1)-th root of unity; as above, this will imply that −2 ∈ En . Suppose that α ∈ Q is a root of

8n(−2, x), and let β ∈ Q satisfy β + 1/β = α. Then β2n
+ 1/β2n

= β + 1/β, which implies that
(β2n

+1
−1)(β2n

−1
−1)= 0 and hence β22n

−1
= 1. Thus β, and therefore α, belongs to Q(ζ ). This proves

the claim. �

Given a positive integer n for which En is finite, one can attempt to find all the elements of En by
carrying out an exhaustive search within specified height bounds. Recall that the height of a rational
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number a
b with gcd(a, b) = 1 is given by max(|a|, |b|). Fixing a height bound h, it a straightforward

procedure to construct the set B(h) of all rational numbers having height at most h. One can then
construct all the polynomials 8n(c, x) for c ∈ B(h), compute their Galois groups Gn,c (for instance,
using the algorithm of Fieker and Klüners [2014], which is implemented in MAGMA), and check whether
Gn,c ∼= (Z/nZ) o Sr . The cost of carrying out this computation grows quickly with n, given the large
degree of 8n . For n = 7 the degree of 8n is 126, and the above computation is very slow even for small
height bounds h. However, for n = 5 and 6 we have the following result.

Proposition 9.2. Let B(h) denote the set of all rational numbers with height at most h. Then

E5 ∩ B(50)=
{
−2,− 16

9 ,−
3
2 ,−

4
3 ,−

5
8 , 0

}
and E6 ∩ B(20)= {−4,−2, 0}.
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