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Artin’s criteria for algebraicity revisited
Jack Hall and David Rydh

Using notions of homogeneity we give new proofs of M. Artin’s algebraicity criteria for functors and
groupoids. Our methods give a more general result, unifying Artin’s two theorems and clarifying their
differences.

Introduction

Classically, moduli spaces in algebraic geometry are constructed using either projective methods or by
forming suitable quotients. In his reshaping of the foundations of algebraic geometry half a century
ago, Grothendieck shifted focus to the functor of points and the central question became whether certain
functors are representable. Early on, he developed formal geometry and deformation theory, with the
intent of using these as the main tools for proving representability. Grothendieck’s proof of the existence
of Hilbert and Picard schemes, however, is based on projective methods. It was not until ten years later
that Artin completed Grothendieck’s vision in a series of landmark papers. In particular, Artin vastly
generalized Grothendieck’s existence result and showed that the Hilbert and Picard schemes exist — as
algebraic spaces — in great generality. It also became clear that the correct setting was that of algebraic
spaces — not schemes — and algebraic stacks.

M. Artin [1969b; 1974] gave precise criteria for algebraicity of functors and stacks. These criteria were
later clarified by B. Conrad and J. de Jong [2002] using Néron–Popescu desingularization, by H. Flenner
[1981] using Exal, and the first author [Hall 2017] using coherent functors. The criterion in this last paper
is very streamlined and elegant and suffices to deal with most problems. It does not, however, supersede
Artin’s criteria as these are more general. Another conundrum is that Artin gives two different criteria —
one for functors in [Artin 1969b, Theorem 5.3] and one for stacks in [Artin 1974, Theorem 5.3] — but
neither completely generalizes the other.

The purpose of this paper is to use the ideas of Flenner and the first author to give a new criterion
that supersedes all present criteria. We also introduce several new ideas that broaden the criteria and
simplify the proofs of [Artin 1969b; 1974; Flenner 1981]. In positive characteristic, we also identify a
subtle issue in Artin’s algebraicity criterion for stacks. With the techniques that we develop, this problem
is circumvented. We now state our criterion for algebraicity.

This collaboration was supported by the Göran Gustafsson foundation. The first author was supported by the Australian Research
Council DE150101799. The second author is also supported by the Swedish Research Council 2011-5599 and 2015-05554.
MSC2010: primary 14D15; secondary 14D23.
Keywords: algebraic stacks, deformation theory, obstruction theories.
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Main Theorem. Let S be an excellent scheme. Then a category X , fibered in groupoids over the category
of S-schemes, Sch/S, is an algebraic stack, locally of finite presentation over S, if and only if it satisfies
the following conditions:

(1) X is a stack over (Sch/S)fppf.

(2) X is limit preserving (Definition 1.7).

(3) X is weakly effective (Definition 9.1).

(4) X is Arttriv-homogeneous (Definition 1.3, also see below).

(5a) X has bounded automorphisms and deformations (Conditions 6.1(i)–(ii)).

(5b) X has constructible automorphisms and deformations (Conditions 6.3(i)–(ii)).

(5c) X has Zariski local automorphisms and deformations (Conditions 6.4(i)–(ii)).

(6b) X has constructible obstructions (Condition 6.3(iii), or Condition 7.3).

(6c) X has Zariski local obstructions (Condition 6.4(iii), or Condition 7.4).

In addition:

(α) If S is Jacobson, then conditions (5c) and (6c) are superfluous.

(β) If X is DVR-homogeneous (Notation 2.14), then conditions (5c) and (6c) are superfluous and
condition (6b) may be replaced with Condition 8.3.

(γ ) Conditions (1) and (4) can be replaced with these:

(1′) X is a stack over (Sch/S)Ét.
(4′) X is Artinsep-homogeneous.

(δ) If the residue fields of S at points of finite type are perfect, then (4) and (4′) are equivalent.

In particular, if S is a scheme of finite type over Spec Z, then conditions (5c) and (6c) are superfluous
and (1) can be replaced with (1′).

The Arttriv-homogeneity (resp. Artinsep-homogeneity) condition is the following Schlessinger–Rim
condition: for every diagram of local artinian S-schemes of finite type [Spec B← Spec A ↪→ Spec A′],
where A′ � A is surjective and the residue field extension B/mB → A/mA is trivial (resp. purely
inseparable), the natural functor

X (Spec(A′×A B))→ X (Spec A′)×X (Spec A) X (Spec B)

is an equivalence of categories.
Perhaps the most striking difference between our conditions and Artin’s conditions is that our homo-

geneity condition (4) only involves local artinian schemes and that we do not need any conditions on étale
localization of deformation and obstruction theories. If S is Jacobson, e.g., of finite type over a field, then
we do not even need compatibility with Zariski localization. There is also no condition on compatibility
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with completions for automorphisms and deformations. We will give a detailed comparison between our
conditions and other versions of Artin’s conditions in Section 11.

All existing algebraicity proofs, including ours, consist of the following four steps:

(i) existence of formally versal deformations;

(ii) algebraization of formally versal deformations;

(iii) openness of formal versality; and

(iv) formal versality implies formal smoothness.

Step (i) was eloquently dealt with by Schlessinger [1968, Theorem 2.11] for functors and by Rim [SGA 7I

1972, Exposé VI] for groupoids. This step uses conditions (4) and (5a) (Arttriv-homogeneity and
boundedness of tangent spaces). Step (ii) begins with the effectivization of formally versal deformations
using condition (3). One may then algebraize this family using either Artin’s results [1969a; 1969b] or
B. Conrad and J. de Jong’s result [2002]. In the latter approach, Artin approximation is replaced with
Néron–Popescu desingularization, and S is only required to be excellent. This step requires condition (2).

The last two steps are more subtle and it is here that [Artin 1969b; 1974; Flenner 1981; Starr 2006;
Hall 2017] and our present treatment diverge — both when it comes to the criteria themselves and the
techniques employed. We begin with discussing step (iv).

Formal versality implies formal smoothness. It is readily seen that our criterion is weaker than Artin’s
two criteria [1969b; 1974] except that, in positive characteristic, we need X to be a stack in the fppf
topology, or otherwise strengthen (4). This is similar to [Artin 1969b, Theorem 5.3] where the functor is
assumed to be an fppf-sheaf. Artin [1969b, Theorem 5.3] deftly uses the fppf sheaf condition to deduce
that formally universal deformations are formally étale [loc. cit., pp. 50–52], settling step (iv) for functors.
This argument relies on the existence of universal deformations and thus does not extend to stacks with
infinite or nonreduced stabilizers. Using a different approach, we extend this result to fppf stacks in
Lemma 1.9.

In his second paper, Artin [1974] only assumes that the groupoid is an étale stack. His proof of
step (iv) for groupoids [loc. cit., Proposition 4.2], however, does not treat inseparable extensions. We do
not understand how this problem can be overcome without strengthening the criteria and assuming that
either (1) the groupoid is a stack in the fppf topology or (4′) requiring (semi)homogeneity for inseparable
extensions (see Lemmas 1.9 and 2.2). We wish to emphasize that if S is of finite type over Spec Z

or a perfect field, then the main result of [loc. cit.] holds without change. See Remark 2.8 for further
discussion. Flenner does not discuss formal smoothness, and in [Hall 2017] formal smoothness is obtained
by strengthening the homogeneity condition (4).

Openness of formal versality. Step (iii) uses constructibility, boundedness, and Zariski localization of
deformations and obstruction theories (Theorem 4.4). In our treatment, localization is only required when
passing to nonclosed points of finite type. Such points only exist when S is not Jacobson, e.g., if S is the
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spectrum of a discrete valuation ring. Our proof is very similar to Flenner’s proof. It may appear that
Flenner does not need Zariski localization in his criterion, but this is due to the fact that his conditions
are expressed in terms of deformation and obstruction sheaves.

As in Flenner’s proof, openness of versality becomes a matter of simple algebra. It comes down to a
criterion for the openness of the vanishing locus of half-exact functors (Theorem 3.3) that easily follows
from the Ogus–Bergman Nakayama Lemma for half-exact functors (Theorem 3.7). Flenner proves a
stronger statement that implies the Ogus–Bergman result (Remark 3.8).

At first, it seems that we need more than Arttriv-homogeneity to even make sense of conditions (5a)–
(6c). This will turn out to not be the case. Using steps (ii) and (iv), we prove that conditions (1)–(4) and
(5a) at fields guarantee that we have homogeneity for arbitrary integral morphisms (Lemma 10.4). It
follows that AutX/S(T,−), DefX/S(T,−) and ObsX/S(T,−) are additive functors.

Applications. We believe that a distinct advantage of the criterion in the present paper contrasted with all
prior criteria is the dramatic weakening of the homogeneity. Whereas the criteria [Hall 2017; Artin 1969b]
require Aff-, and DVR-homogeneity respectively, involving knowledge of the functor over nonnoetherian
rings, we only need homogeneity for artinian rings. This is particularly useful for more subtle moduli
problems such as Angéniol’s Chow functor [1981, Théorème 5.2.1], which is difficult to define over
nonnoetherian rings.

The ideas in this paper have also led to a criterion for a half-exact functor to be coherent [Hall and
Rydh 2013]. Although both the statement and the proof bear a close resemblance to the Main Theorem,
this coherence criterion does not follow from any algebraicity criterion.

Outline. The technical results of the paper are summarized by Proposition 10.2. The Main Theorem
follows from Proposition 10.2 by a bootstrapping process and the relationship between automorphisms,
deformations, obstructions and extensions. A significant part of the paper (Sections 5–9) is devoted to
making this relationship precise. Sections 1–4 form the technical heart of the paper. We now briefly
summarize the contents of the paper in more detail.

In Section 1 we recall the notions of homogeneity, limit preservation and extensions from [Hall 2017].
We also introduce homogeneity that only involves artinian rings and show that residue field extensions are
harmless for stacks in the fppf topology. In Section 2 we then relate formal versality, formal smoothness
and vanishing of Exal.

In Section 3 we study additive functors and their vanishing loci. This is applied in Section 4 where
we give conditions on Exal that assure that the locus of formal versality is open. The results are then
assembled in Theorem 4.4.

In Section 5 we repeat the definitions of automorphisms, deformations and minimal obstruction theories
from [Hall 2017]. In Section 6, we give conditions on Aut, Def and Obs that imply the corresponding
conditions on Exal needed in Theorem 4.4. In Section 7 we introduce n-step obstruction theories. In
Section 8 we formulate the conditions on obstructions without using linear obstruction theories, as
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in [Artin 1969b]. In Section 9, we discuss effectivity. Finally, in Section 10 we prove the Main Theorem.
Comparisons with other criteria are given in Section 11.

Notation. We follow standard conventions and notation. In particular, we adhere to the notation of [Hall
2017]. Recall that if T is a scheme, then a point t ∈ |T | is of finite type if Spec κ(t)→ T is of finite type.
Points of finite type are locally closed. A point of a Jacobson scheme is of finite type if and only if it is
closed. If f : X→ Y is of finite type and x ∈ |X | is of finite type, then f (x) ∈ |Y | is of finite type.

1. Homogeneity, limit preservation, and extensions

Fix a scheme S. An S-groupoid is a category X together with a functor aX : X→ Sch/S that is fibered
in groupoids. A 1-morphism of S-groupoids 8 : (Y, aY )→ (Z , aZ ) is a functor between categories Y
and Z that commutes strictly over Sch/S. We will typically refer to an S-groupoid (X, aX ) as “X”.

A closed immersion of schemes j : V ↪→ V ′ is nilpotent if there exists an integer n > 0 such that
J n
= 0, where J is the quasicoherent sheaf of ideals defining j . A closed immersion of schemes is locally

nilpotent if fppf-locally it is nilpotent.
If X is an S-groupoid and [Spec B← Spec A

j
−→ Spec A′] is a diagram of S-schemes, where j is a

nilpotent closed immersion, then the condition that the functor

X (Spec(B×A A′))→ X (Spec B)×X (Spec A) X (Spec A′)

is an equivalence for a collection of diagrams has been a feature of deformation theory since Schlessinger
[1968] and Rim [SGA 7I 1972, Exposé VI]. Consequently, these are typically called Schlessinger–Rim
conditions.

In this section, we review the concept of homogeneity — a variation of the Schlessinger–Rim conditions
that we attribute to J. Wise [2011, §2] — in the formalism of [Hall 2017, §1–2]. We will also briefly
discuss limit preservation and extensions.

Let X be an S-groupoid. An X -scheme is a pair (T, σT ), where T is an S-scheme and σT : Sch/T→ X
is a 1-morphism of S-groupoids. A morphism of X -schemes U → V is a morphism of S-schemes
f : U → V (which canonically determines a 1-morphism of S-groupoids Sch/ f : Sch/U → Sch/V )
together with a 2-morphism α : σU ⇒ σV ◦ Sch/ f . The collection of all X -schemes forms a 1-category,
which we denote by Sch/X . It is readily seen that Sch/X is an S-groupoid and that there is a natural
equivalence of S-groupoids Sch/X → X . For a 1-morphism of S-groupoids 8 : Y → Z there is an
induced functor Sch/8 : Sch/Y → Sch/Z .

Notation 1.1. Frequently, we will be interested in the following classes of morphisms of S-schemes:

Nil: locally nilpotent closed immersions,

Cl: closed immersions,

rNil: morphisms X→ Y such that there exists (X0→ X) ∈ Nil with the composition (X0→ X→
Y ) ∈ Nil,
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rCl: morphisms X→ Y such that there exists (X0→ X) ∈ Nil with the composition (X0→ X→
Y ) ∈ Cl,

Artfin: morphisms between local artinian schemes of finite type over S,

Artsep: Artfin-morphisms with separable residue field extensions,

Artinsep: Artfin-morphisms with purely inseparable residue field extensions,

Arttriv: Artfin-morphisms with trivial residue field extensions,

Fin: finite morphisms,

Int: integral morphisms, and

Aff: affine morphisms.

We certainly have a containment of classes of morphisms of S-schemes:

rNil ⊆ rCl ⊆ Int ⊆ Aff.

Nil ⊆

⊆

Cl ⊆

⊆

Fin
⊆

Arttriv

⊆

⊆⊆ Artinsep
⊆ Artfin

⊆

Note that for a morphism X→ Y of locally noetherian S-schemes, the properties rNil and rCl simply
mean that Xred→ Y is Nil and Cl respectively. The classes of morphisms above are all closed under
composition.

Let P be a class of morphisms of S-schemes. In [Hall 2017, §1], P-nil pairs and P-homogeneity were
defined. In the present article, it will be necessary to consider some natural refinements of these notions.

Definition 1.2. Fix a scheme S, a class P of morphisms of S-schemes, an S-groupoid X and an X -
scheme V . A P-nil pair over X at V is a pair (V

p
−→ T, V

j
−→ V ′), where p and j are morphisms of

X -schemes, p ∈ P and j ∈ Nil. A P-nil square over X at V is a commutative diagram of X -schemes

V
_�

j
��

p
// T

i
��

V ′
p′
// T ′

(1-1)

where the pair (V
p
−→ T, V

j
−→ V ′) is P-nil over X at V . A P-nil square over X at V is cocartesian if it is

cocartesian in the category of X -schemes. A P-nil square over X at V is geometric if p′ is affine, i is a
locally nilpotent closed immersion, and there is a natural isomorphism

OT ′→ i∗OT ×p′∗ j∗OV p′
∗
OV ′ .

Note that every geometric P-nil square is cartesian [Ferrand 2003, Lemme 1.3c]. Moreover if P ⊆Aff,
then every cocartesian P-nil square is geometric [Hall 2017, Lemma 1.5(1)].
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Definition 1.3 (P-homogeneity). Fix a scheme S and a class P of morphisms of S-schemes. A 1-
morphism of S-groupoids 8 : Y→ Z is P-homogeneous at a Y -scheme V if the following two conditions
are satisfied:

(V HP
1 ) A P-nil square over Y at V is cocartesian if and only if the induced P-nil square over Z at V is

cocartesian.

(V HP
2 ) If a P-nil pair over Y at V can be completed to a cocartesian P-nil square over Z at V , then it

can be completed to a P-nil square over Y at V .

We also say that 8 is P-homogeneous if it is P-homogeneous at every Y -scheme V . Similarly, 8
satisfies (HP

1 ) (resp. (HP
2 )) if it satisfies (V HP

1 ) (resp. (V HP
2 )) for every Y -scheme V . An S-groupoid X

is P-homogeneous at V if its structure 1-morphism is P-homogeneous at V and is P-homogeneous if its
structure morphism is P-homogeneous. If Z satisfies (HP

1 ), then Y satisfies (HP
1 ) if and only if 8 has

P-homogeneous diagonal after pull-back to schemes, see Lemma B.2.
If we only assume (V HP

2 ) in the above, then we obtain the weaker notion of P-semihomogeneity. This
notion was used in the work of Artin and Flenner.

Remark 1.4. In [Hall 2017], a number of results are established for 1-morphisms of P-homogeneous
S-groupoids 8 : Y → Z . With trivial modifications, most of these results hold using the more refined
notion of P-homogeneity at a Y -scheme V . We will use this observation frequently and without further
comment.

By [Wise 2011, Propostion 2.1], every algebraic stack is Aff-homogeneous. Also, rNil-homogeneity
at an artinian scheme V is equivalent to Arttriv-homogeneity at V .

If P is Zariski local (e.g., P is listed in Notation 1.1), then P-homogeneity of an S-groupoid X that is
a stack over (Sch/S)Ét is equivalent to the functor

X (Spec(B×A A′))→ X (Spec B)×X (Spec A) X (Spec A′) (1-2)

being an equivalence for every P-nil pair (Spec A→ Spec B,Spec A→ Spec A′) over S [Hall 2017,
Lemma 1.5(4)]. If X has representable diagonal, then the functor above is always fully faithful for all
Aff-nil pairs over S — even if X is not necessarily Aff-homogeneous (Lemma B.2).

The main computational tools that P-homogeneity bring are contained in [Hall 2017, Lemma 1.5], an
important part of which we now recall.

Lemma 1.5. Let S be a scheme and let P ⊆ Aff be a class of morphisms. Let X be an S-groupoid that

is P-homogeneous at an X-scheme V . If (V
p
−→ T, V

j
−→ V ′) is a P-nil pair at V , then there exists a

cocartesian and geometric P-nil square at V as in (1-1). Moreover if P is listed in Notation 1.1, then p′

is P.

Proof. The main claim is [Hall 2017, Lemma 1.5(3)]. What remains is trivial except for P ∈ {Nil,Cl,Fin,
Int}. In these cases, however, it is known [Ferrand 2003, Proposition 5.6 (3)]. �
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Remark 1.6. Let S be a noetherian scheme. If (Spec A→ Spec B,Spec A ↪→ Spec A′] is a Fin-nil pair,
where Spec B is of finite type over S, then Spec(B ×A A′) is of finite type over S. This follows from
the fact that B×A A′ ⊆ B× A′ is an integral extension [Atiyah and Macdonald 1969, Proposition 7.8].
On the other hand, if Spec A → Spec B is only affine, then Spec(B ×A A′) is typically not of finite
type over S. For example, if B = k[x], A = k[x, x−1

] and A′ = k[x, x−1, y]/y2, then B ′ = B ×A A′ =
k[x, y, yx−1, yx−2, . . . ]/(y, yx−1, . . . )2 which is not of finite type over S = Spec k.

We also recall the following definition (see [Artin 1974, §1; Hall 2017, §3]).

Definition 1.7. Let X be a stack over (Sch/S)Ét. We say that X is limit preserving if for every inverse
system of affine S-schemes {Spec A j } j∈J with inverse limit Spec A, the natural functor:

lim
−−→

j
X (Spec A j )→ X (Spec A)

is an equivalence of categories.

If X is an algebraic stack, then X is limit preserving if and only if X→ S is locally of finite presentation
[Laumon and Moret-Bailly 2000, Proposition 4.15].

By Lemmas B.2 and B.3, if X is a limit preserving stack over (Sch/S)Ét with representable diagonal
and S is locally noetherian, then rCl-homogeneity is equivalent to Artin’s semihomogeneity condition
[1974, 2.2(S1a)] for X .

Homogeneity supplies an S-groupoid with a quantity of linear data, which we now recall from [Hall
2017, §2]. An X -extension is a square zero closed immersion of X -schemes i : T ↪→ T ′. The collection of
X -extensions forms a category, which we denote by ExalX . There is a natural functor ExalX → Sch/X
that takes (i : T ↪→ T ′) to T .

We denote by ExalX (T ) the fiber of the category ExalX over the X -scheme T — we call these the
X -extensions of T . There is a natural functor:

ExalX (T )◦→ QCoh(T ), (i : T ↪→ T ′) 7→ ker(i−1OT ′→OT ).

We denote by ExalX (T, I ) the fiber category of ExalX (T ) over the quasicoherent OT -module I — we
refer to these as the X -extensions of T by I . Denote the set of isomorphism classes of the category
ExalX (T, I ) by ExalX (T, I ).

Let W be a scheme and let J be a quasicoherent OW -module. We let W [J ] denote the W -scheme
Spec

W
(OW [J ]) with structure morphism rW,J : W [J ] → W . If W is an X -scheme, we consider W [J ]

as an X -scheme via rW,J . The X -extension W ↪→ W [J ] is thus trivial in the sense that it admits an
X -retraction.

By [Hall 2017, Proposition 2.4], if the S-groupoid X is Nil-homogeneous at T , then the groupoid
ExalX (T, I ) is a Picard category. Thus, we have additive functors

DerX (T,−) : QCoh(T )→ Ab, I 7→ AutExalX (T,I )(T [I ]); and

ExalX (T,−) : QCoh(T )→ Ab, I 7→ ExalX (T, I ).
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We now record here the following easy consequences of [Hall 2017, 2.3–2.6, 3.4].

Lemma 1.8. Let S be a scheme, let X be an S-groupoid, and let T be an X-scheme.

(1) Let I be a quasicoherent OT -module. Then ExalX (T, I ) = 0 if and only if every X-extension
i : T ↪→ T ′ of T by I admits an X-retraction.

(2) Let P be a class of a morphisms of S-schemes and let p : V → T be an affine morphism in P. If X is
P-homogeneous at V , then for every N ∈ QCoh(V ) there is a natural functor

p# : ExalX (V, N )→ ExalX (T, p∗N ).

(3) If X is rNil-homogeneous at T , then the functor M 7→ ExalX (T,M) is half-exact.

(4) Suppose that X is Nil-homogeneous at T and limit preserving. If T is of finite presentation over S,
then the functor M 7→ ExalX (T,M) preserves direct limits.

(5) Let p : U → T be an affine étale morphism and let N be a quasicoherent OU -module. Then there
is a natural functor ψ : ExalX (T, p∗N )→ ExalX (U, N ). If (i : T ↪→ T ′) ∈ ExalX (T, p∗N ) with
image ( j : U ↪→U ′) ∈ ExalX (U, N ), then there is a cartesian diagram of X-schemes

U �
� j //

p
��

U ′

p′
��

T �
� i // T ′

which is cocartesian as a diagram of S-schemes. If X is Aff-homogeneous at U , then ψ is an
equivalence.

Proof. The claim (1) is [Hall 2017, Lemma 2.3].

For (2), if j : V ↪→V ′ is an X -extension of V by N , then there is an induced P-nil pair (V
p
−→T, V

j
−→V ′)

over X at V . Since X is P-homogeneous at V , by Lemma 1.5, there exists a cocartesian and geometric
P-nil square over X at V as in (1-1) completing the P-nil pair. The resulting morphism i : T ↪→ T ′ is an
X -extension of T by p∗N and we have thus defined the functor p#.

The claim (3) is [Hall 2017, Corollary 2.5]. The claim (4) is [loc. cit., Proposition 3.4(2)]. The claim
(5) is [loc. cit., Corollary 2.6]. �

Finally, we give conditions that imply Artsep- and Artfin-homogeneity.

Lemma 1.9. Let S be a scheme and let X be an S-groupoid that is Arttriv-homogeneous. Consider the
following conditions on X :

(1) X is a stack in the fppf topology.

(2) X is a stack in the étale topology and Artinsep-homogeneous.

(3) X is a stack in the étale topology and S is a Q-scheme.

(4) X is a stack in the étale topology.
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Then any of the conditions (1), (2), or (3) imply that X is Artfin-homogeneous and condition (4) implies
that X is Artsep-homogeneous.

Proof. We begin by noting that trivially (3) implies (2). Next, let (Spec A→ Spec B,Spec A ↪→ Spec A′)
be an Artfin-nil pair over S. Let Spec B ′ = Spec(A′×A B) be the pushout of this diagram in the category
of S-schemes. We have to prove that the functor

ϕ : X (Spec B ′)→ X (Spec A′)×X (Spec A) X (Spec B)

is an equivalence. If X is a stack in either the fppf or étale topology, then the equivalence of ϕ is a local
question for the respective topology on B ′ since fiber products of rings commute with flat base change.

Now there is a finite (resp. finite separable) field extension K/kB such that the residue fields of
kA⊗kB K are trivial (resp. purely inseparable) extensions of K . There is then a local artinian ring B̃ ′ and
a finite flat (resp. finite étale) extension B ′ ↪→ B̃ ′ with k B̃ ′ = K [EGA III1 1961, Corollaire 0.10.3.2]. Let
Ã = A⊗B ′ B̃ ′, Ã′ = A′⊗B ′ B̃ ′ and B̃ = B⊗B ′ B̃ ′. Then Ã, Ã′, B̃ are artinian rings such that all residue
fields equal K (resp. are purely inseparable extensions of K ). However, Ã and Ã′ need not be local.
Now let Ã =

∏n
i=1 Ãi and Ã′ =

∏n
i=1 Ã′i be decompositions such that Ã′� Ãi factors through Ã′i . Then

B̃ ′ = ( Ã′1× Ã1
B̃)×B̃ ( Ã

′

2× Ã2
B̃)×B̃ · · ·×B̃ ( Ã

′
n× Ãn

B̃) is an iterated fiber product of local artinian rings.
If X is Arttriv-homogeneous (resp. Artinsep-homogeneous) and a stack for the fppf (resp. étale) topology,

it follows that ϕ is an equivalence. If the Artfin-nil pair that we started with was an Artsep-nil pair and X
is a stack for the étale topology, then it also follows that ϕ is an equivalence. This proves the result. �

2. Formal versality and formal smoothness

In this section we address a subtle point about the relationship between formal versality and formal
smoothness. We begin by recalling and refining some results of [Hall 2017, §4].

Definition 2.1. Let S be a scheme, let X be an S-groupoid, and let T be an X -scheme. Consider the
following lifting problem in the category of X -schemes: given a pair of morphisms of X -schemes

(V
p
−→ T, V

j
−→ V ′), where j is a locally nilpotent closed immersion, complete the following diagram so

that it commutes:

V
_�

j
��

p // T

V ′

>>
(2-1)

The X -scheme T is

formally smooth if the lifting problem can always be solved Zariski-locally on V ′;

formally smooth at t ∈ |T | if the lifting problem can always be solved whenever the X -schemes V
and V ′ are local artinian, with closed points v and v′, respectively, such that p(v)= t , and the field
extension κ(t)⊆ κ(v) is finite;
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formally versal at t ∈ |T | if the lifting problem can always be solved whenever the X -schemes V and
V ′ are local artinian, with closed points v and v′, respectively, such that p(v) = t , and the field
extension κ(t)⊆ κ(v) is an isomorphism.

We certainly have the following implications:

formally smooth=⇒ formally smooth at all t ∈ |T | =⇒ formally versal at all t ∈ |T |.

Formal smoothness and formal versality at all t ∈ |T | are not obviously equivalent. Even for morphisms
of finite type between noetherian schemes, it is a nontrivial result that they are equivalent [EGA IV4 1967,
Proposition 17.14.2] (also see [Stacks Project, Tag 02HX] and Corollary 2.5).

Formal smoothness at t and formal versality at t are also not obviously equivalent. Moreover without
stronger assumptions, it is not obvious to the authors that formal smoothness or formal versality is
smooth-local on the source. We will see, however, that these subtleties vanish whenever the S-groupoid
is Artfin-homogeneous. For formal versality and formal smoothness at a point, it is sufficient that liftings
exist when κ(v)∼= j−1 ker(OV ′→OV ).

The goal of this section is to give sufficient conditions for a family, formally versal at all closed
points, to be formally smooth. In Artin’s papers, Artin approximation is used to address this. With our
formulation, excellence (or related) assumptions are irrelevant. For some further discussion on Artin’s
approach, see Remark 2.8.

There is a tight connection between formal smoothness (resp. formal versality) and X -extensions in the
affine setting. Most of the next result was proved in [Hall 2017, Lemma 4.3], which utilized arguments
similar to those of [Flenner 1981, Satz 3.2].

Lemma 2.2. Let S be a scheme, let X be an S-groupoid, and let T be an affine X-scheme. Let t ∈ |T | be
a point. Consider the following conditions:

(1) The X-scheme T is formally smooth at t .

(2) The X-scheme T is formally versal at t .

(3) X is Nil-homogeneous at T and ExalX (T, κ(t))= 0.

Then (1) =⇒ (2) and if X is Artfin-semihomogeneous and t is of finite type, then (2) =⇒ (1). If X is
Cl-homogeneous, T is noetherian and t is a closed point, then (2)=⇒ (3). If X is rCl-homogeneous and
t is a closed point, then (3)=⇒ (2).

Thus, assuming that an S-groupoid X is rCl-homogeneous, we can reformulate formal versality of an
affine X -scheme T at a closed point t ∈ |T | in terms of the triviality of the abelian group ExalX (T, κ(t)).
Understanding the set of points U ⊆ |T | where ExalX (T, κ(u))= 0 for u ∈ |U | will be accomplished in
the next section.

Remark 2.3. If X is Aff-homogeneous and ExalX (T,−) ≡ 0, then T is formally smooth [Hall 2017,
Lemma 4.3] but we will not use this. If ExalX commutes with Zariski localization, that is, if for every open
immersion of affine schemes U ⊆ T the canonical map ExalX (T,M)⊗0(OT ) 0(OU )→ ExalX (U,M |U )

http://stacks.math.columbia.edu/tag/02HX
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is bijective, then the implications (2) =⇒ (3) and (3) =⇒ (2) also hold for nonclosed points. This is
essentially what Flenner [1981, Satz 3.2] proves as his Ex(T→ X,M) is the sheafification of the presheaf
U 7→ ExalX (U,M |U ).

Proof of Lemma 2.2. The implication (1)=⇒ (2) follows from the definition. The implications (2)=⇒ (3)
and (3)=⇒ (2) are proved in [Hall 2017, Lemma 4.3]. The implication (2)=⇒ (1) follows from a similar
argument: assume that T is formally versal at t and fix a lifting problem as in diagram (2-1), where
j : V → V ′ is a closed immersion of local artinian schemes with closed points v and v′, respectively, such
that p(v) = t and κ(v)/κ(t) is a finite extension. Let W be the schematic image of V → Spec(OT,t).
Then W is a local artinian scheme with residue field κ(t). As X is Artfin-semihomogeneous, the Artfin-nil
pair (V →W, V

j
−→ V ′) over X can be completed to a geometric Artfin-nil square over X :

V
� _

��

// W
� _

��

V ′ // W ′

where W ↪→ W ′ is a closed immersion of local artinian schemes. Since the closed point of W has the
same residue field as that of t , by formal versality, we obtain a lift of W → T to W ′→ T over X . The
result follows. �

Lemma 2.2 is already quite powerful. In the following Proposition, we give a simple proof of [EGA IV1

1964, Proposition 0.22.1.4] in the case of a finitely generated or separable extension of residue fields
(also see [Stacks Project, Tag 02HT]).

Proposition 2.4. Let f : T → X be a morphism of locally noetherian schemes and let t ∈ |T | with image
x = f (t). Consider the following conditions:

(1) The ring homomorphism OX,x →OT,t is preadically formally smooth [EGA IV1 1964, Définition
0.19.3.1].

(2) f is formally smooth at t .

(3) f is formally versal at t .

Then (1)=⇒ (2)⇐⇒ (3). If κ(x)⊆ κ(t) is finitely generated or separable, then (3)=⇒ (1).

Proof. We recall [EGA IV1 1964, Définition 0.19.3.1] for our situation. The preadic topology on a
noetherian local ring has as a basis of open neighborhoods the powers of the maximal ideal. A local ring
homomorphism (A,m)→ (B, n), where A and B are noetherian and preadically topologized, is smooth
for the preadic topologies if for every discrete and continuous A-algebra C and nilpotent ideal I ⊆ C , all
continuous A-algebra homomorphisms B→ C/I factor continuously as B→ C→ C/I . Since A and B
have their preadic topologies, this means that we can choose n� 0 such that A→ C factors through
A→ A/mn and B→ C/I factors through B→ B/nn . Note that both A/mn and B/nn are local artinian.
Hence, (1)=⇒ (2)=⇒ (3).

http://stacks.math.columbia.edu/tag/02HT
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For (3) =⇒ (2): we may assume that X = SpecOX,x and T = SpecOT,t . In particular, t ∈ |T | is a
finite type point and X is Artfin-homogeneous. By Lemma 2.2, the claim follows.

To prove (3)=⇒ (1) we will take (A,m)= (OX,x ,mx) and (B, n)= (OT,t ,mt) and consider the lifting
problem described above. Take D = im(B → C/I ), which is a local artinian ring with residue field
K = B/n. Next take E = D×C/I C . Then E → D is surjective and E ⊆ C . It remains to show that
there is a lifting B→ E . If E was artinian, then we would be done by formal versality. But E need
not be noetherian and we will instead construct an A-subalgebra E0 ⊆ E which is artinian and such
that E0 → E → D is surjective with nilpotent kernel. Then B → D factors via A-homomorphisms
B→ E0→ E→ D by formal versality.

Let k = A/m and first assume that k→ K is a finitely generated extension. Since E → D→ K is
surjective we may choose t1, . . . , tr ∈ E such that k(t1, . . . , tr )= K . Further choose u1, . . . , us ∈ E such
that their images in D generate the maximal ideal. Let E0 be the total quotient ring of the A-subalgebra
of E generated by t1, . . . , tr , u1, . . . , us . Then E0 ⊆ E is local artinian, E0→ D is surjective, and by
formal versality we have the required lift.

If instead k→ K is separable, then there exists a Cohen A-algebra A′ such that A′⊗A k = K . Recall
that A′ is a complete local noetherian ring and that A→ A′ is preadically formally smooth [EGA IV1 1964,
Théorème 0.19.8.2]. Since E→ D→ K is surjective with nilpotent kernel, we obtain a factorization
A→ A′→ E such that A′→ E induces an isomorphism on residue fields. We can now take E0 as the
A′-subalgebra of E generated by u1, . . . , us . �

We now obtain the following well-known corollary (see [EGA IV4 1967, Proposition 17.14.2]).

Corollary 2.5. Let f : T → X be a locally of finite type morphism of locally noetherian schemes. Let
t ∈ |T |. The following are equivalent:

(1) f is smooth at t [EGA IV4 1967, Définition 17.3.7, p. 62].

(2) f is formally smooth at t ∈ |T |.

(3) f is formally versal at t ∈ |T |.

Proof. Since f is locally of finite type, κ( f (t))⊆ κ(t) is a finitely generated extension. By Proposition 2.4,
it follows that conditions (2) and (3) are equivalent to OX, f (t)→OT,t being preadically formally smooth.
By [EGA IV4 1967, Proposition 17.5.3], we have the claim. We can also argue as follows: the natural
map ExalX (T, κ(t))→ ExalX (SpecOT,t , κ(t)) is an isomorphism. Indeed, the cotangent complex of the
morphism SpecOT,t→T vanishes. By Lemma 2.2, formal versality implies that ExalX (SpecOT,t , κ(t))∼=
0. By [Hall 2017, Lemma 5.4], the functor on quasicoherent OT -modules ExalX (T,−) is coherent and
limit preserving. By [Hall 2014, Corollary 7.7], there is thus an affine open neighborhood j : U ⊆ T of
t such that the functor ExalX (T, j∗(−)) vanishes. But ExalX (T, j∗(−)) ' ExalX (U,−), so U → X is
formally smooth [Hall 2017, Lemma 4.3(1)]. �

Corollary 2.6. Let S be a locally noetherian scheme and let X be a limit preserving S-groupoid. Let T
be an X-scheme that is locally of finite type over S and let t ∈ |T | be a point such that



762 Jack Hall and David Rydh

(1) T is formally smooth at t ∈ |T | as an X-scheme and

(2) the morphism T → X is representable by algebraic spaces.

If W is an X-scheme, then the morphism T ×X W→W is smooth in a neighborhood of every point over t .
In particular, if T → X is formally smooth at every point of finite type, then T → X is formally smooth.

Proof. By a standard limit argument, we can assume that W → S is of finite type. It is then enough to
verify that T ×X W →W is smooth at closed points in the fiber of t . Let u : U → T ×X W be an étale
and surjective morphism, where U is a scheme. Then U →W is formally smooth at closed points in the
fiber of t . By Corollary 2.5, the composition U →W is smooth at every point over t , and we deduce the
claim. The last statement follows from the fact that every closed point of T ×X W maps to a point of
finite type of T . �

Combining Lemma 2.2 and Corollary 2.6 we obtain the following key result.

Corollary 2.7. Let S be a locally noetherian scheme and let X be a limit preserving and Artfin-
semihomogeneous S-groupoid. If T is an X-scheme such that

(1) T → S is locally of finite type,

(2) T → X is formally versal at all points of finite type, and

(3) T → X is representable by algebraic spaces,

then T → X is formally smooth.

Remark 2.8. To establish algebraicity of a functor or groupoid in the spirit of Artin’s criteria, one must
provide conditions for an algebraic family that is formally versal at all points of finite type to be formally
smooth. In the present paper, this is Corollary 2.7, where we use Artfin-semihomogeneity. This result
was known to several experts. Artin [1969b, Lemma 5.4] also proved this result for fppf sheaves that are
Arttriv-homogeneous. By Lemma 1.9, the fppf stack condition together with Arttriv-homogeneity imply
Artfin-homogeneity, so the results of our paper recover Artin’s. As discussed in the Introduction, Artin’s
arguments for functors do not extend to groupoids.

For groupoids, the relationship between formal versality and smoothness is established in [Artin 1974,
Proposition 4.2]. The relevant standing assumption is rCl-semihomogeneity. Assuming rCl-homogeneity
makes no difference to our discussion below. We feel that it is worthwhile to digress into some of the
technicalities that arise here. We wish to assure the reader that, as mentioned in the Introduction, if S is
of finite type over Spec Z or a perfect field, then the proof of the main result of [Artin 1974] is essentially
correct, with only minor modifications to the arguments necessary.

Our interpretation of Artin’s definition of formal smoothness [1974, p. 173] is that it coincides with
ours given in Definition 2.1. In particular, in the notation of that work, to verify formal smoothness the
residue fields of A are unconstrained. But the proof of [loc. cit., Proposition 4.2] relies on Theorem 3.3
in the same reference, which requires that the residue field of A is equal to the residue field of R (here
both A and R are henselian local rings). If the residue field extension is separable, then it is possible
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to conclude using [loc. cit., Proposition 4.3], which uses étale localization of obstruction theories (also
see Proposition 2.9). We do not know how to complete the argument if the residue field extension is
inseparable. The essential problem is the verification that formal versality is smooth-local.

It was suggested by a referee that Artin’s definition of formal smoothness can be interpreted as follows.
In the notation of [Artin 1974, p. 173], the morphism Spec A→ Spec R should induce an isomorphism of
residue fields at every point of finite type over S. With this definition of formal smoothness, Artin’s proof
of [loc. cit., Proposition 4.2] is correct. This definition of formal smoothness seems too limited to prove
his main result [loc. cit., Corollary 5.2] without further assumptions, however. Indeed, it is essential in his
Corollary 5.2 that formal smoothness is stable under base change. Artin omits the proof of this stability
under base change and we were unable to prove it ourselves. Again, it is the presence of inseparable field
extensions that complicates matters. Note that our definition of formal smoothness is obviously stable
under base change.

2.1. Étale localization. We also obtain the following result showing that, under mild hypotheses, formal
versality is stable under étale-localization. This improves [Artin 1974, Proposition 4.3], which requires
the existence of an obstruction theory that is compatible with étale localization.

Proposition 2.9. Let S be a scheme and let X be an Artsep-semihomogeneous S-groupoid (see Lemma 1.9).
Let T be an X-scheme. If (U, u)→ (T, t) is a pointed étale morphism of S-schemes, then formal versality
at t ∈ |T | implies formal versality at u ∈ |U |.

Proof. To see that formal versality at t ∈ |T | implies formal versality at u ∈ |U |, it is enough to show that
the lifting property holds for T and a square-zero extension of local artinian schemes V ↪→ V ′ such that
κ(v)= κ(u). This follows from an identical argument as in the proof of Lemma 2.2(2)=⇒ (1). �

Using Lemma 2.2, one can show that Proposition 2.9 admits a partial converse. Indeed, if u ∈ |U | and
t ∈ |T | are closed, X is rCl-homogeneous, U and T are affine and noetherian, and T→ X is representable
by algebraic spaces, then formal versality at u ∈ |U | implies formal versality at t ∈ |T |. This will not be
used, however.

Remark 2.10. The conditions on obstruction theories in the criteria for algebraicity are used to prove that
formal versality is an open condition. Proposition 2.9 proves that it is enough to find suitable obstruction
theories étale-locally. This idea is present in [Artin 1974, 4.9–4.11]. We do not understand the given
arguments, however, as they rely on [Artin 1974, Proposition 4.3], which requires the existence of a
global obstruction theory. These are isolated remarks, however, having no bearing on the main results of
the article.

2.2. Zariski localization. Next, we give a condition that ensures that if an X -scheme T is formally versal
at all closed points, then it is formally versal at all points of finite type.

Condition 2.11. Let X be Nil-homogeneous and let T be an affine X -scheme. The extensions of X are
Zariski local at T if for every open immersion p : U → T of affine X -schemes and every point u ∈ |U |
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of finite type, the natural map:

ExalX (T, κ(u))→ ExalX (U, κ(u))

is surjective. The extensions of X are Zariski local if they are Zariski local at every affine X -scheme that
is locally of finite type over S.

Note that Lemma 1.8(5) implies that if an S-groupoid X is Aff-homogeneous, then its extensions are
Zariski local. As the following lemma shows, it is also satisfied whenever S is Jacobson.

Lemma 2.12. Let X be a Nil-homogeneous Zariski S-stack and let p : U → T be an open immersion of
affine X-schemes. If u ∈ |U | is a point that is closed in T , then the natural map:

ExalX (T, κ(u))→ ExalX (U, κ(u))

is an isomorphism. In particular, if S is Jacobson, then extensions of X are Zariski local (Condition 2.11).

Proof. We construct an inverse by taking an X -extension U ↪→U ′ of U by κ(u) to the gluing of U ′ and
T \ {u} along U ′ \ {u} ∼=U \ {u}. If S is Jacobson and T → S is locally of finite type, then T is Jacobson
and every point of finite type u ∈ |U | is closed in T so Condition 2.11 holds. �

We now extend the implication (3)=⇒ (2) of Lemma 2.2 to points of finite type.

Proposition 2.13. Fix a scheme S, an rCl-homogeneous S-groupoid X and an affine X-scheme T , locally
of finite type over S. Assume that extensions of X are Zariski local at T (Condition 2.11). If t ∈ |T | is a
point of finite type and ExalX (T, κ(t))= 0, then the X-scheme T is formally versal at t .

Proof. Finite type points are locally closed so there exists an open affine neighborhood U ⊆ T of t such
that t ∈ |U | is closed. By Condition 2.11, 0 = ExalX (T, κ(t))� ExalX (U, κ(t)), so the X -scheme U
is formally versal at t by Lemma 2.2. It then follows, from the definition, that the X -scheme T also is
formally versal at t . �

2.3. DVR-homogeneity. In this subsection, we will increase our homogeneity assumption instead of
assuming that Exal commutes with localization.

Recall that a geometric discrete valuation ring is a discrete valuation ring D such that Spec D→ S is
essentially of finite type and the residue field is of finite type over S [Artin 1969b, p. 38].

Notation 2.14. Let DVR⊆Aff be the class of morphisms (Spec K→Spec D) such that D is a geometric
discrete valuation ring with fraction field K .

Artin’s condition [4a] of his Theorem 3.7 [1969b] implies DVR-semihomogeneity and Artin’s condi-
tions [5′](b) and [4′](a,b) of his Theorem 5.3 in the same work imply DVR-homogeneity. We conclude this
section by showing that DVR-homogeneity implies that formal smoothness is stable under generizations.
This is accomplished by the following lemma, which is a generalization of [Artin 1969b, Lemma 3.10]
from functors to categories fibered in groupoids. To guarantee sufficiently many geometric discrete
valuation rings, we assume that we are over an excellent base.
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Lemma 2.15. Let S be an excellent scheme and let X be a limit preserving DVR-homogeneous S-
groupoid. If T is an X-scheme such that

(1) T → S is locally of finite type,

(2) T → X is representable by algebraic spaces, and

(3) T → X is formally smooth at a point t ∈ |T | of finite type,

then T → X is formally smooth at every generization t ′ ∈ |T | of t .

Proof. Consider a diagram of X -schemes

Z0
_�

��

g // T

��
Z //

>>

X

where Z0 ↪→ Z is a closed immersion of local artinian schemes and the image t ′ = g(z0) of the closed
point z0 ∈ |Z0| is a generization of t ∈ T and κ(z0)/κ(t ′) is finite. We have to prove that every such
diagram admits a lifting as indicated by the dashed arrow.

As X is limit preserving, we can factor Z → X as Z → W → X where W is an S-scheme of finite
type. Let h : T ×X W → T denote the first projection. The pull-back T ×X W →W is smooth at every
point of the fiber h−1(t) by Corollary 2.6. Let Tt denote the local scheme Spec(OT,t). It is enough to
prove that T ×X W →W is smooth at every point of h−1(Tt).

Let y ∈ |T ×X W | be a point of h−1(Tt). It is enough to prove that Y = {y} contains a point at which
T ×X W → W is smooth. If h(y) = t , then we are done. If not, then by Chevalley’s theorem, h(Y ) is
indconstructible, hence contains a constructible neighborhood of h(y). Thus, there is a point t1 ∈ h(Y )∩Tt

such that the closure T1 = {t1} in the local scheme Tt is of dimension 1. By Corollary 2.6, it is enough to
show that T → X is formally smooth at t1. Thus, consider a diagram

Spec K ′
_�

��

g // T

��
Spec K ′′ //

;;

X

of X -schemes where K ′′� K ′ is a surjection of local artinian rings such that g(η)= t1 and κ(η)/κ(t1) is
finite. Let D ⊆ K = κ(η) be a geometric DVR dominating OT1,t (which exists since OT1,t is excellent).
We may then, using DVR-homogeneity, extend the situation to a diagram

Spec K ′
_�

��

// Spec D′
_�

��

// T

��
Spec K ′′ // Spec D′′ //

;;

X
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where D′ = D×K K ′ and D′′ = D×K K ′′ so D′ � D and D′′ � D have nilpotent kernels. Now, by
Corollary 2.6, the pullback T ×X Spec D′′→ Spec D′′ is smooth at the image of Spec D′ so there is a
lifting as indicated by the dashed arrow. Thus T → X is formally smooth at t1 and hence also at t ′. �

In Lemma 10.4 we will show that under mild hypotheses, DVR-homogeneity actually implies Aff-
homogeneity and thus also Condition 2.11.

Remark 2.16. If we replace geometric DVRs with all DVRs in DVR-homogeneity, then it is enough that
S is noetherian instead of excellent and t need not be of finite type.

3. Vanishing loci for additive functors

Let T be a scheme. In this section we will be interested in additive functors F : QCoh(T )→ Ab. It is
readily seen that the collection of all such functors forms an abelian category, with all limits and colimits
computed “pointwise”. For example, given additive functors F , G : QCoh(T )→ Ab as well as a natural
transformation ϕ : F→ G, then kerϕ : QCoh(T )→ Ab is the functor

(kerϕ)(M)= ker(F(M)
ϕ(M)
−−−→ G(M)).

Next, we set A = 0(OT ). Note that the natural action of A on the abelian category QCoh(T ) induces
for every M ∈ QCoh(T ) an action of A on the abelian group F(M). Thus we see that the functor
F is canonically valued in the category Mod(A). It will be convenient to introduce the following
notation: for a morphism between affine schemes g : W → T and a functor F : QCoh(T )→ Ab, define
FW : QCoh(W )→ Ab to be the functor FW (N )= F(g∗N ). If F is additive (resp. preserves direct limits),
then the same is true of FW . The vanishing locus of F is the following subset [Hall 2014, §7.2]:

V(F)= {t ∈ |T | : FSpec(OT,t ) ≡ 0}.

The main result of this section, Theorem 3.3, which gives a criterion for the set V(F) to be Zariski
open, is essentially due to H. Flenner. In [Flenner 1981, Lemma 4.1], for an S-groupoid X and an affine
X -scheme V , locally of finite type over S, a specific result about the vanishing locus of the functor
M 7→ ExalX (V,M) is proved. In that same work, a standing assumption is that the S-groupoid X is
semihomogeneous, thus the functor M 7→ ExalX (T,M) is only set-valued, which complicates matters.
Since we are assuming Nil-homogeneity of X , the functor M 7→ ExalX (T,M) takes values in abelian
groups. As we will see, this simplifies matters considerably.

We now make the following trivial observation.

Lemma 3.1. Let T be an affine scheme and let F : QCoh(T )→ Ab be an additive functor. Then the
subset V(F)⊆ |T | is stable under generization.

By Lemma 3.1, we thus see that the subset V(F) ⊆ |T | will be Zariski open if we can determine
sufficient conditions on the functor F and the scheme T such that the subset V(F) is (ind)constructible.
We make the following definitions:
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Definition 3.2. Let T = Spec A be an affine scheme and let F : QCoh(T )→ Ab be an additive functor.

• The functor F is bounded if the scheme T is noetherian and F(M) is finitely generated for every
finitely generated A-module M .

• The functor F is weakly bounded if the scheme T is noetherian and for every integral closed
subscheme T0 ↪→ T , the 0(OT0)-module F(OT0) is finitely generated.

• The functor F is GI (resp. GS, resp. GB) if there exists a dense open subset U ⊆ |T | such that for all
points u ∈ |U | of finite type, the natural map

F(OT )⊗A κ(u)→ F(κ(u))

is injective (resp. surjective, resp. bijective).

• The functor F is CI (resp. CS, resp. CB) if for every integral closed subscheme T0 ↪→ T , the functor
FT0 is GI (resp. GS, resp. GB).

In the above definition, GI (resp. GS, resp. GB) is an acronym for generically injective (resp. surjective,
resp. bijective). Similarly, CI (resp. CS, resp. CB) is an acronym for constructibly injective (resp. surjective,
resp. bijective).

We can now state the main result of this section.

Theorem 3.3 (Flenner). Let T be an affine noetherian scheme and let F : QCoh(T )→ Ab be a half-exact,
additive, and bounded functor that commutes with direct limits. If the functor F is CS, then the subset
V(F)⊆ |T | is Zariski open.

Functors of the above type occur frequently in algebraic geometry.

Example 3.4. Let T be an affine noetherian scheme and let Q ∈D−Coh(T ). Then, for all i ∈Z, the functors
on quasicoherent OT -modules given by M 7→ExtiOT

(Q,M) and M 7→TorOT
i (Q,M) are additive, bounded,

half-exact, commute with direct limits, and CB.

Example 3.5. Let T be an affine noetherian scheme and let p : X→ T be a morphism that is projective
and flat. Then the functor M 7→ 0(X, p∗M) is CB. Indeed, one interpretation of the Cohomology and
Base Change Theorem asserts that the functor M 7→ 0(X, p∗M) is of the form given in Example 3.4.

Example 3.6. Let T be an affine noetherian scheme. An additive functor F : QCoh(T )→Ab, commuting
with direct limits, is coherent [Auslander 1966] if there exists a homomorphism M → N of coherent
OT -modules such that

F(−)= coker(HomOT (N ,−)−→ HomOT (M,−)).

It is easily seen that a coherent functor is CB and bounded. Indeed, boundedness is obvious and if
i : T0 ↪→ T is an integral closed subscheme, then F |T0 = coker(HomOT0

(i∗N ,−)→ HomOT0
(i∗M,−))

and after passing to a dense open subscheme, we may assume that i∗N and i∗M are flat. Then F |T0(−)=



768 Jack Hall and David Rydh

coker((i∗N )∨→ (i∗M)∨)⊗OT0
(−) commutes with all tensor products. It is well-known, and easily seen,

that the functors of the previous two examples are coherent.
Conversely, let F : QCoh(T )→ Ab be a half-exact bounded additive functor that commutes with

direct limits and is CS. Then for every integral closed subscheme T0 ↪→ T , there is an affine open dense
subscheme U0 ⊆ T0 such that such that F |U0(−)= F(OU0)⊗−, hence F |U0 is coherent. This follows
from Theorem 3.3 and Proposition 3.9; see the proof of [Hall 2014, Corollary 7.8]. In particular, for
half-exact bounded additive functors that commute with direct limits, CS implies CB.

The main ingredient in the proof of Theorem 3.3 is a remarkable Nakayama lemma for half-exact
functors, due to A. Ogus and G. Bergman [1972, Theorem 2.1]. We state the following amplification,
which follows from the mild strengthening given in [Hall 2014, Corollary 7.5] and Lemma 3.1.

Theorem 3.7 (Ogus–Bergman). Let T be an affine noetherian scheme and let F : QCoh(T )→ Ab be a
half-exact, additive, and bounded functor that commutes with direct limits. Then

V(F)= {t ∈ |T | : F(κ(t))= 0}.

In particular, if F(κ(t))= 0 for all closed points t ∈ |T |, then F ≡ 0.

Remark 3.8. Let F be as in Theorem 3.7 and let I ⊆ A be an ideal. Then Flenner proves that the natural
map F(M)⊗A Â/I → lim

←−−n F(M/I n M) is injective for every finitely generated A-module M . In fact,
this is the special case X = Y = Spec A of [Flenner 1981, Korollar 6.3]. The Ogus–Bergman–Nakayama
lemma is an immediate consequence of the injectivity of this map.

Before we address vanishing loci of functors, the following simple application of Lazard’s theorem
[1964], which appeared in [Hall 2014, Proposition 7.2], will be a convenient tool to have at our disposal.

Proposition 3.9. Let T = Spec A be an affine scheme and let F : QCoh(T )→ Ab be an additive functor
that commutes with direct limits. Let M and L be A-modules. If L is flat, then the natural map

F(M)⊗A L→ F(M ⊗A L)

is an isomorphism. In particular, for every A-algebra B and every flat B-module L , the natural map

F(B)⊗B L→ F(L)

is an isomorphism.

We may now prove Flenner’s theorem.

Proof of Theorem 3.3. The subset V(F)⊆ |T | is open if and only if it is closed under generization and its
intersection with any irreducible closed subset T0⊆ |T | contains a nonempty open subset of T0 or is empty
[EGA IV1 1964, Théorème 1.10.1]. By Lemma 3.1, we have witnessed the stability under generization.
Thus it remains to address the latter claim.

Let T0 ↪→ T be an integral closed subscheme. If |T0| ∩V(F) 6= ∅, then the generic point η ∈ |T0|

belongs to V(F) (Lemma 3.1), thus F(κ(η))= 0. Since by assumption the functor F is CS, there exists
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a dense open subset U0 ⊆ |T0| such that the map FT0(OT0)⊗0(OT0 )
κ(u)→ F(κ(u)) is surjective for all

u ∈U0 of finite type.
As κ(η) is a quasicoherent and flat OT0-module, the natural map FT0(OT0)⊗0(OT0 )

κ(η)→ F(κ(η)) is
an isomorphism by Proposition 3.9. But η ∈ V(F), thus the finitely generated 0(OT0)-module FT0(OT0)

is torsion. Hence there is a dense open subset U0 ⊆ |T0| with the property that if u ∈U0 is of finite type,
then F(κ(u))= 0. Using Theorem 3.7 we infer that U0 ⊆ V(F)∩ |T0|. �

We record for future reference a useful lemma.

Lemma 3.10. Let T = Spec A be an affine noetherian scheme and let F : QCoh(T )→ Ab be an additive
functor.

(1) If the functor F is half-exact, then F is bounded if and only if F is weakly bounded.

(2) If the functor F is (weakly) bounded, then every additive subquotient functor of F is (weakly)
bounded.

(3) If F is GS (resp. CS), then so is every additive quotient functor of F.

(4) If F is weakly bounded and CI, then so is every additive subfunctor of F.

(5) Consider an exact sequence of additive functors QCoh(T )→ Ab:

H1 // H2 // H3 // H4.

(a) If H1 and H3 are CS and H4 is CI and weakly bounded, then H2 is CS.
(b) If H1 is CS, H2 and H4 are CI, and H4 is weakly bounded, then H3 is CI.

If T is reduced, then (4), (5a), and (5b) hold with GI and GS instead of CI and CS.

Proof. For claim (1), note that every coherent OT -module M admits a finite filtration whose successive
quotients are of the form i∗OT0 , where i : T0 ↪→ T is an integral closed subscheme. Induction on the
length of the filtration, combined with the half-exactness of the functor F , proves the claim. Claims (2)
and (3) are trivial. For (4), it is sufficient to prove the claim about GI and we can assume that T is a
disjoint union of integral schemes. Fix an additive subfunctor K ⊆ F , then there is an exact sequence of
additive functors: 0→ K → F→ H → 0. By (2) we see that H is weakly bounded and so H(OT ) is a
finitely generated A-module. As A is reduced, generic flatness implies that there is a dense open subset
U ⊆ |T | such that H(OT )u is a flat A-module ∀u ∈U . Thus, for all u ∈U the sequence

0 // K (OT )⊗A κ(u) // F(OT )⊗A κ(u) // H(OT )⊗A κ(u) // 0

is exact. Since F is GI, we may further assume that the map F(OT )⊗A κ(u)→ F(κ(u)) is injective for
all points u ∈U of finite type after shrinking U . We then conclude that K is GI from the commutative
diagram

K (OT )⊗A κ(u)
� � //

��

F(OT )⊗A κ(u)
_�

��
K (κ(u)) �

� // F(κ(u))
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Claims (5a) and (5b) follow from a similar argument and the 4-Lemmas. �

We conclude this section with a criterion for a functor to be GI (and consequently a criterion for a
functor to be CI). This will be of use when we express Artin’s criteria for algebraicity without obstruction
theories in Section 8.

Proposition 3.11. Let T = Spec A be an affine and integral (i.e., reduced and irreducible) noetherian
scheme with function field K . Let F : QCoh(T )→ Ab be an additive functor that commutes with direct
limits. If F(OT ) is a finitely generated A-module, then F is GI if and only if the following condition is
satisfied:

(†) for every f ∈ A, every free A f -module M of finite rank, and ω ∈ F(M) such that for all nonzero A-
module maps ε : M→K we have ε∗ω 6=0 in F(K ), there exists a dense open subset Vω⊆D( f )⊆|T |
such that for every nonzero A-module map γ : M→ κ(v), where v ∈ Vω is of finite type, we have
γ∗ω 6= 0 in F(κ(v)).

Proof. Let M be a free A f -module of finite rank and let M∨ = HomA f (M, A f ). Then the canonical
homomorphism F(A) f ⊗A f M→ F(M) is an isomorphism (Proposition 3.9) so there is a one-to-one
correspondence between elements ω ∈ F(M) and homomorphisms ω̄ : M∨→ F(A) f . Moreover, ω̄ is
injective if and only if ω̄⊗A K : M∨⊗A K → F(A)⊗A K = F(K ) is injective and this happens exactly
when ε∗ω 6= 0 in F(K ) for every nonzero map ε : M→ K .

Let t ∈ |T | and let δt : F(A)⊗A κ(t)→ F(κ(t)) denote the natural map. Then condition (†) can
be reformulated as: for every free A f -module M of finite rank and every injective homomorphism
ω̄ : M∨→ F(A) f , there exists a dense open subset Vω ⊆ D( f ) such that δt ◦ (ω̄⊗A κ(t)) is injective for
all points t ∈ Vω of finite type.

To show that (†) implies that F is GI, choose f ∈ A \ 0 such that F(A) f is free, let M = F(A)∨f and
let ω ∈ F(M) correspond to the inverse of the canonical isomorphism F(A) f → M∨. If (†) holds, then
there exists an open subset Vω such that δt is injective for all t ∈ Vω, i.e., F is GI.

Conversely, if F is GI, then there is an open subset V such that δt is injective for all t ∈ V of finite
type. Given a finite free A f -module M and ω ∈ F(M), we let Vω = V ∩W where W ⊆ D( f ) is an open
dense subset over which the cokernel of ω̄ is flat. If ω̄ is injective, it then follows that δt ◦ (ω̄⊗A κ(t)) is
injective for all t ∈ Vω of finite type, that is, condition (†) holds. �

4. Openness of formal versality

As the title suggests, we now address the openness of the formally versal locus. Let S be a scheme. We
isolate the following conditions for an S-groupoid X .

Condition 4.1. Let T be an affine X -scheme. The extensions of X are bounded at T if X is Nil-
homogeneous at T and the functor M 7→ ExalX (T,M) is bounded. The extensions of X are bounded if
X has bounded extensions at every affine X -scheme T , locally of finite type over S.
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Condition 4.2. Let T be an affine X -scheme. The extensions of X are constructible at T if X is Nil-
homogeneous at T and the functor M 7→ ExalX (T,M) is CS. The extensions of X are constructible if X
has constructible extensions at every affine X -scheme T , locally of finite type over S.

That these conditions are plausible is implied by the following lemma:

Lemma 4.3. Let S be a locally noetherian scheme, let X be an algebraic S-stack, and let T be an affine
X-scheme. If both X and T are locally of finite type over S, then the functors M 7→ DerX (T,M) and
M 7→ ExalX (T,M) are bounded and CB.

Proof. By [Olsson 2006, Theorem 1.1] there is a complex LT/X ∈D
−

Coh(T ) such that for all quasicoherent
OT -modules M , there are natural isomorphisms DerX (T,M) ∼= Ext0OT

(LT/X ,M) and ExalX (T,M) ∼=
Ext1OT

(LT/X ,M). The result now follows from a consideration of Example 3.4. �

In their current form, Conditions 4.1 and 4.2 are difficult to verify. In Section 6, this will be rectified.
Nonetheless, we can now prove the following.

Theorem 4.4. Let S be a locally noetherian scheme, let X be an S-groupoid and let T be an affine
X-scheme, locally of finite type over S. Assume, in addition, that

(1) X is limit preserving,

(2) X is rCl-homogeneous,

(3) X has bounded extensions at T (Condition 4.1),

(4) X has constructible extensions at T (Condition 4.2), and

(5) X has Zariski local extensions at T (Condition 2.11).

Let t ∈ |T | be a closed point. If T is formally versal at t ∈ |T |, then T is formally versal at every point of
finite type in a Zariski open neighborhood of t . In particular, if X is also Artfin-homogeneous and T → X
is representable by algebraic spaces, then T is formally smooth in a Zariski open neighborhood of t .

Proof. By Condition 4.1 and Lemma 1.8, the functor M 7→ ExalX (T,M) is bounded, half-exact, and
preserves direct limits. Condition 4.2 now implies that the functor M 7→ExalX (T,M) satisfies the criteria
of Theorem 3.3. Thus, V(ExalX (T,−)) ⊆ |T | is a Zariski open subset. By Lemma 2.2(2) =⇒ (3) and
Theorem 3.7, we have that t ∈ V(ExalX (T,−)). So, there exists an open neighborhood t ∈U ⊆ |T | with
ExalX (T, κ(u))= 0 for all u ∈U . By Proposition 2.13, every point u ∈U of finite type is formally versal.
The last assertion follows from Corollary 2.7. �

5. Automorphisms, deformations, and obstructions

In this section, we introduce a deformation-theoretic framework that makes it possible to verify Condi-
tions 2.11, 4.1, and 4.2. To do this, we recall the formulation of deformations and obstructions given in
[Hall 2017, §6].
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Let S be a scheme and let 8 : Y → Z be a 1-morphism of S-groupoids. Define the category Def8 to
have objects the pairs (i : T ↪→ T ′, r : T ′→ T ), where i is a Y -extension and r is a Z -retraction of i ,
with the obvious morphisms. Graphically, it is the category of completions of the following diagram:

T
_�

��

// Y

8
��

T [J ]

η
==

// Z

Forgetting the retraction, there is a natural functor Def8→ ExalY . If T is a Y -scheme, then we denote
the fiber of this functor over ExalY (T )⊆ ExalY by Def8(T ). It follows that there is an induced functor
Def8(T )→ QCoh(T )◦, whose fiber over a quasicoherent OT -module I we denote by Def8(T, I ). Note
that the category Def8(T, I ) is naturally pointed by the trivial Y -extension iT,J of T by J . Denote the set of
isomorphism classes of Def8(T, J ) by Def8(T, J ) and let Aut8(T, J ) denote the set AutDef8(T,J )(iT,J ).

If Y and Z are Nil-homogeneous at T , then the groupoid Def8(T, J ) is a Picard category [Hall 2017,
Proposition 6.5]. Thus we obtain 0(T,OT )-linear functors

Def8(T,−) : QCoh(T )→ Ab, J 7→ Def8(T, J ); and

Aut8(T,−) : QCoh(T )→ Ab, J 7→ AutDef8(T,J )(iT,J ).

The lemma that follows is an easy consequence of [Hall 2017, Lemma 6.4].

Lemma 5.1. Let S be a scheme and let 8 : Y → Z be a 1-morphism S-groupoids. Let i : W ↪→ T be a
closed immersion of Y -schemes and let N be a quasicoherent OW -module. If Y and Z are Cl-homogeneous
at W , then the natural maps

Aut8(T, i∗N )→ Aut8(W, N ) and Def8(T, i∗N )→ Def8(W, N )

are bijective.

We recall the exact sequence of [Hall 2017, Proposition 6.7], which is our fundamental computational
tool.

Proposition 5.2. Let S be a scheme and let 8 : Y → Z be a 1-morphism of S-groupoids. Let T be a
Y -scheme and let J be a quasicoherent OT -module. If Y and Z are Nil-homogeneous at T , then there is
a natural 6-term exact sequence of abelian groups

0 // Aut8(T, J ) // DerY (T, J ) // DerZ (T, J )

// Def8(T, J ) // ExalY (T, J ) // ExalZ (T, J )

If Y and Z are Nil-homogeneous at T and J is a quasicoherent OT -module, then we let

Obs8(T, J )= coker(ExalY (T, J )→ ExalZ (T, J )).
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This defines a 0(T,OT )-linear functor

Obs8(T,−) : QCoh(T )→ Ab, J 7→ Obs8(T, J ),

the minimal obstruction theory of 8 at T (see Section 7). If Y and Z are rNil-homogeneous at T , then
Aut8(T,−) and Def8(T,−) are half-exact [Hall 2017, Corollary 6.6]. There is no reason to expect that
Obs8(T,−) is half-exact, however. We have the following analogues of Lemmas 1.8(2) and 5.1 for
obstructions.

Lemma 5.3. Let S be a scheme and let P be a class of morphisms of S-schemes. Let 8 : Y → Z be a
1-morphism of S-groupoids. Let p : V → T be an affine morphism of Y -schemes that is P. If Y and Z
are P-homogeneous at V and Nil-homogeneous at T , then there is a natural map p# : Obs8(V, N )→
Obs8(T, p∗N ), which is injective and functorial in N.

Proof. The existence of p# follows immediately from Lemma 1.8(2). That p# is injective is obvious. �

Lemma 5.4. Let S be a scheme, and let 8 : Y → Z be a 1-morphism of Cl-homogeneous S-groupoids.
Let i : W ↪→ T be a closed immersion of affine noetherian Y -schemes and let N be a quasicoherent
OW -module. If Obs8(T, i∗N ) is a finitely generated 0(T,OT )-module, then there exists an infinitesimal

neighborhood in : Wn→ T of W in T , i.e., a factorization of i as W
j
−→ Wn

in
−→ T , where j is a locally

nilpotent closed immersion, such that

(in)# : Obs8(Wn, j∗N )→ Obs8(T, i∗N )

is an isomorphism.

Proof. Given an obstruction ω ∈ Obs8(T, i∗N ), we can realize it as a Z -extension k : T ↪→ T ′ of T by
i∗N . The ideal sheaf k∗i∗N ⊆OT ′ is then annihilated by the ideal sheaf I defining the closed immersion
k ◦ i : W ↪→ T ′. Thus, by the Artin–Rees lemma, we have that (k∗i∗N )∩ I n

= 0 for some n. Let W ′1 and
W1 be the closed subschemes of T ′ defined by I n and I n

+ k∗i∗N . Then the morphisms in the diagram

W � � j1 // W1
� � i1 //

_�

��

T
_�

��
W ′1
� � // T ′

are closed immersions and the square is cartesian and cocartesian in the category of Z -schemes (because
Z is Cl-homogeneous at W1). If we let ω1 = [W1 ↪→W ′1] ∈ Obs8(W1, ( j1)∗N ) denote the obstruction to
lifting W ′1 to a Y -scheme; then ω = (i1)#(ω1).

We have thus shown that every element ω ∈ Obs8(T, i∗N ) is in the image of Obs8(Wl, ( jl)∗N )
for some infinitesimal neighborhood jl : W ↪→ Wl , depending on ω. Since Obs8(T, i∗N ) is a finitely
generated 0(T,OT )-module and T is affine and noetherian, it follows that there exists an infinitesimal
neighborhood j : W ↪→Wn such that Obs8(Wn, j∗N )→ Obs8(T, i∗N ) is an isomorphism. �
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6. Relative conditions

Let S be a locally noetherian scheme. In this section, we introduce a number of conditions for a 1-
morphism of S-groupoids 8 : Y → Z . These are the relative versions of the conditions that appear in
(5a), (5b), (5c), (6b), and (6c) of the Main Theorem. For any of the conditions given in this section, an
S-groupoid X is said to have that condition if the structure 1-morphism X→ Sch/S has the condition.
These conditions are stated “relatively” for two reasons. The first reason is to make it clear that this paper
subsumes the results of [Starr 2006] on the stability of Artin’s criteria under composition. This follows
immediately from the exact sequence of [Hall 2017, Proposition 6.13] and Lemma 3.10. Secondly, and of
most importance, is that the relative formulation permits a process of bootstrapping the diagonal. This
is an important and subtle point of this paper, which we will discuss in more detail when we prove the
Main Theorem in Section 10.

Condition 6.1. Let T be an affine Y -scheme. Assume that Y and Z are Nil-homogeneous at every closed
subscheme of T . Automorphisms (resp. deformations, resp. obstructions) of 8 are bounded at T if for
every integral closed subscheme i : T0 ↪→ T , condition (i) (resp. (ii), resp. (iii)) below holds:

(i) Aut8(T0,OT0) is a finitely generated 0(OT0)-module;

(ii) Def8(T0,OT0) is a finitely generated 0(OT0)-module;

(iii) Obs8(T, i∗OT0) is a finitely generated 0(OT0)-module.

Automorphisms (resp. deformations, resp. obstructions) of 8 are bounded if they are bounded at every
affine Y -scheme T , locally of finite type over S.

Morphisms of S-groupoids typically have bounded obstructions (Condition 6.1(iii)). For example, if Y is
Nil-homogeneous and Z is algebraic, then Z has bounded extensions (Condition 4.1) and 8 has bounded
obstructions.

Lemma 6.2. Let S be a locally noetherian scheme and let 8 : Y → Z be a 1-morphism of rCl-
homogeneous S-groupoids with bounded deformations (Condition 6.1(ii)) at an affine Y -scheme T ,
locally of finite type over S. If Z has bounded extensions at T (Condition 4.1), then so does Y .

Proof. By Lemma 1.8(3) the functor M 7→ ExalY (T,M) is half-exact. Thus, by Lemma 3.10(1), it is suf-
ficient to prove that for every integral closed subscheme i : T0 ↪→ T , the 0(OT0)-module ExalY (T, i∗OT0)

is finitely generated. Now, by Proposition 5.2, there is an exact sequence

Def8(T, i∗OT0)
// ExalY (T, i∗OT0)

// ExalZ (T, i∗OT0).

By Condition 4.1, the 0(OT0)-module ExalZ (T, i∗OT0) is finitely generated. By Lemma 5.1,

Def8(T, i∗OT0)
∼= Def8(T0,OT0),

which is also a finitely generated 0(OT0)-module by Condition 6.1(ii). The result now follows from the
exact sequence above. �
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Similarly, to enable the verification that an S-groupoid has constructible extensions (Condition 4.2),
we introduce the following conditions.

Condition 6.3. Let T be an affine Y -scheme. Assume that Y and Z are Nil-homogeneous at every closed
subscheme of T . Automorphisms (resp. deformations, resp. obstructions) of 8 are constructible at T if
for every closed subscheme T1 ⊆ T , such that T1 is irreducible and i : T0 ↪→ T1 denotes the reduction,
condition (i) (resp. (ii), resp. (iii)) below holds:

(i) Aut8(T0,−) : QCoh(T0)→ Ab is GB;

(ii) Def8(T0,−) : QCoh(T0)→ Ab is GB;

(iii) Obs8(T1, i∗−) : QCoh(T0)→ Ab is GI.

Automorphisms (resp. deformations, resp. obstructions) of 8 are constructible if they are constructible at
every affine Y -scheme T , locally of finite type over S.

We now proceed to Zariski local extensions (Condition 2.11). Note that the following condition trivially
holds when S is Jacobson. Indeed, in that case, U1 = T1 = {η}.

Condition 6.4. Let T be an affine Y -scheme. Assume that Y and Z are Nil-homogeneous at every closed
subscheme of T . Automorphisms (resp. deformations, resp. obstructions) of 8 are Zariski local at T if
for every closed subscheme T1 ⊆ T and nonempty open subscheme U1 ⊆ T1, such that T1 is irreducible
and the generic point η ∈ |T1| is of finite type over S, and U0 ⊆ T0 denotes the reductions, condition (i)
(resp. (ii), resp. (iii)) below holds:

(i) the natural map Aut8(T0, κ(η))→ Aut8(U0, κ(η)) is bijective;

(ii) the natural map Def8(T0, κ(η))→ Def8(U0, κ(η)) is bijective;

(iii) the natural map Obs8(T1, κ(η))→ Obs8(U1, κ(η)) is injective.

Automorphisms (resp. deformations, resp. obstructions) of 8 are Zariski local if they are Zariski local at
every affine Y -scheme T , locally of finite type over S.

The following proposition is one of the major results of the article.

Proposition 6.5. Let S be a locally noetherian scheme. Let 8 : Y → Z be a 1-morphism of Cl-
homogeneous S-groupoids with bounded obstructions at an affine Y -scheme T , locally of finite type
over S (Condition 6.1(iii)).

(1) Assume, in addition, that 8 has constructible deformations and obstructions at T (Conditions
6.3(ii)–(iii)). If Z has constructible extensions at T (Condition 4.2), then so does Y .

(2) Assume, in addition, that 8 has Zariski local deformations and obstructions at T (Conditions
6.4(ii)–(iii)). If Z has Zariski local extensions at T (Condition 2.11), then so does Y .

Proof. We prove (1). By Proposition 5.2 there is an exact sequence of additive functors QCoh(T )→ Ab

Def8(T,−) // ExalY (T,−) // ExalZ (T,−) // Obs8(T,−) // 0.
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Let i : T0 ↪→ T be an integral closed subscheme. By Lemma 5.1 we have Def8(T0,−)=Def8(T, i∗(−)).
Condition 6.3(ii) gives that Def8(T0,−) is GS, so the functor Def8(T,−) is CS. Condition 4.2 says that
ExalZ (T,−) is CS. The remaining two conditions together with Lemma 5.4 imply that Obs8(T,−) is CI
and weakly bounded. In fact, for every integral closed subscheme i : T0 ↪→T , there is an infinitesimal neigh-
borhood j : T0 ↪→T1 such that Obs8(T1, j∗OT0)

∼=Obs8(T, i∗OT0) and Obs8(T1, κ(t)) ↪→Obs8(T, κ(t))
is injective for all points t of finite type in a dense open subset of T0. It now follows from Lemma 3.10(5a)
that the functor ExalY (T,−) is CS.

The proof of (2) is similar: let u ∈U ⊆ T be as in Condition 2.11, use the exact sequence above, take
T0 = {u}, and apply Lemmas 5.1 and 5.4 as before. �

7. Obstruction theories

Throughout this section, we let S be a locally noetherian scheme and let 8 : Y → Z be a 1-morphism of
Nil-homogeneous S-groupoids. In this section, we will expand the conditions on obstructions given in
the previous sections to obtain more readily verifiable conditions. We begin with recalling the definition
of an n-step relative obstruction theory given in [Hall 2017, Definition 6.8].

An n-step relative obstruction theory for8, denoted {ol(−,−),Ol(−,−)}nl=1, is for each Y -scheme T ,
a sequence of additive functors (the obstruction spaces)

Ol(T,−) : QCoh(T )→ Ab, J 7→ Ol(T, J ), l = 1, . . . , n,

as well as natural transformations of functors (the obstruction maps)

o1(T,−) : ExalZ (T,−)⇒ O1(T,−),

ol(T,−) : ker ol−1(T,−)⇒ Ol(T,−) for l = 2, . . . , n,

such that the natural transformation of functors

ExalY (T,−)⇒ ExalZ (T,−)

has image ker on(T,−). Furthermore, we say that the obstruction theory is

• (weakly) bounded, if for every affine Y -scheme T , locally of finite type over S, the obstruction spaces
M 7→ Ol(T,M) are (weakly) bounded functors;

• Zariski- (resp. étale-) functorial if for every open immersion (resp. étale morphism) of affine Y -
schemes g : V → T , and l = 1, . . . , n, there is a natural transformation of functors

C l
g : Ol(T, g∗(−))⇒ Ol(V,−),
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which for every quasicoherent OV -module N , make the following diagrams commute:

ExalX (T, g∗N ) //

��

O1(T, g∗N )

��

ker ol−1(T, g∗N ) //

��

Ol(T, g∗N )

��
ExalX (V, N ) // O1(V, N ) ker ol−1(V, N ) // Ol(V, N )

Here the leftmost map is the map ψ of Lemma 1.8 (5). We also require for every open immersion
(resp. étale morphism) of affine schemes h : W → V , an isomorphism of functors

αl
g,h : C l

h ◦C l
g⇒ C l

gh .

Remark 7.1 (comparison with Artin’s obstruction theories). An obstruction theory in the sense of [Artin
1974, 2.6] is a 1-step bounded obstruction theory “that is functorial in the obvious sense”. We take this to
mean étale-functorial in the above sense. Obstruction theories are usually half-exact and functorial for
every morphism, but Exal is only contravariantly functorial for étale morphisms so the condition above
does not make sense for arbitrary morphisms. On the other hand, for Aff-homogeneous stacks, Exal is
covariantly functorial for every affine morphism (Lemma 1.8(2)) and the minimal obstruction theory
Obs8 is étale-functorial (Lemma 1.8(5)).

We have the following simple lemma:

Lemma 7.2. Let S be a locally noetherian scheme and let8 : Y→ Z be a 1-morphism of Nil-homogeneous
S-groupoids. Let {ol,Ol

}
n
l=1 be an n-step relative obstruction theory for 8. Let Õl(T,M)⊆ Ol(T,M) be

the image of ol(T,M) for l = 1, . . . , n. Then {ol, Õl
}

n
l=1 is an n-step relative obstruction theory for 8.

Moreover, let Obsl(T,−)= ExalZ (T,−)/ ker ol and Obs0(T,−)= 0. Then Obsn(T,−)= Obs8(T,−)
and we have exact sequences

0 // Õl(T,−) // Obsl(T,−) // Obsl−1(T,−) // 0

for l = 1, 2, . . . , n. In particular, if the obstruction theory is (weakly) bounded, then so is the minimal
obstruction theory Obs8(T,−).

We now introduce variations of Conditions 6.3(iii) and 7.3(iii) (constructible and Zariski local obstruc-
tions) in terms of an n-step relative obstruction theory.

Condition 7.3 (constructible obstructions II). There exists a weakly bounded n-step relative obstruction
theory for 8, {ol(−,−),Ol(−,−)}nl=1, such that for every affine irreducible Y -scheme T that is locally
of finite type over S, the obstruction spaces Ol(T,−)|T0 : QCoh(T0)→ Ab, are GI for l = 1, . . . , n where
T0 = Tred.

Condition 7.4 (Zariski local obstructions II). There exists a functorial, n-step relative obstruction theory
for 8, {ol(−,−),Ol(−,−)}nl=1, such that for every affine irreducible Y -scheme T that is locally of finite
type over S and whose generic point η ∈ |T | is of finite type, and for every open subscheme U ⊆ T , the
canonical maps Ol(T, κ(η))→ Ol(U, κ(η)) are injective for l = 1, . . . , n.
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Lemma 7.5. Let S be a locally noetherian scheme and let 8 : Y → Z be a 1-morphism of Nil-
homogeneous S-groupoids.

(1) (Constructibility) 8 has bounded and constructible obstructions (Conditions 6.1(iii) and 6.3(iii)) if
and only if 8 satisfies Condition 7.3.

(2) (Zariski localization) 8 has Zariski local obstructions (Condition 6.4(iii)) if and only if 8 satisfies
Condition 7.4.

Proof. If 8 has bounded deformations and obstructions (Conditions 6.1(iii) and 6.3(iii)), then the
minimal obstruction theory satisfies Condition 7.3. Conversely, assume that we are given an obstruction
theory Ol(−,−) as in Condition 7.3. Let T be an affine irreducible Y -scheme that is locally of finite
type over S. Then the subfunctors Õl(T,−)|T0 ⊆ Ol(T,−)|T0 of Lemma 7.2 are also GI and weakly
bounded by Lemma 3.10(4). Since Obs8(T,−) is an iterated extension of the Õl(T,−)’s, it follows that
Obs8(T,−)|T0 is GI and weakly bounded by Lemma 3.10(5b) — thus 8 has bounded and constructible
obstructions (Conditions 6.1(iii) and 6.3(iii)).

If Condition 6.4(iii) holds, then the minimal obstruction theory satisfies 7.4. That Condition 7.4 implies
Condition 6.4(iii) follows from Lemma 7.2. �

8. Conditions on obstructions without an obstruction theory

In this section we give conditions without reference to linear obstruction theories, just as in [Artin
1969b, Theorem 5.3 [5′c]; Starr 2006]. In the comparison we provide between our conditions on
obstructions we use Aff-homogeneity, while Artin uses DVR-homogeneity and Starr uses homogeneity
along localization morphisms (not just Zariski localizations). Starr’s localization-homogeneity is stronger
than DVR-homogeneity, but weaker than Aff-homogeneity. In Lemma 10.4, however, we establish that
DVR-homogeneity implies Aff-homogeneity in all cases relevant to the proof of the Main Theorem.

Definition 8.1 [Artin 1969b, 5.1; Starr 2006, Definition 2.1]. By a deformation situation for 8 : Y → Z ,
we will mean data (T ↪→ T ′,M), where T is an irreducible affine Y -scheme that is locally of finite type
over S, where M is a quasicoherent OTred-module, and where T ↪→ T ′ is an Z -extension of T by M .
We say that the deformation situation is obstructed if the Z -extension T ↪→ T ′ cannot be lifted to a
Y -extension T ↪→ T ′.

Notation 8.2. For a deformation situation (T ↪→ T ′,M), let T0 = Tred, let η0 = Spec K0 denote the
generic point of T0, let η = Spec(OT,η0), and let η′ = Spec(OT ′,η0). Thus η ↪→ η′ is a Z -extension of η
by Mη = M ⊗OT0

K0.

Condition 8.3 (constructible obstructions III). Given a deformation situation such that M is a free OT0-
module of finite rank and such that for every nonzero OT0-module map ε : Mη → K0, the resulting
Z -extension η ↪→ η′ε of η by K0 is obstructed, then there exists a dense open subset U0 ⊆ |T0| such
that for all points u ∈U0 of finite type, and all nonzero OT0-module maps γ : M→ κ(u), the resulting
Z -extension T ↪→ T ′γ of T by κ(u) is obstructed.
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Lemma 8.4. Let S be a locally noetherian scheme and let 8 : Y → Z be a 1-morphism of limit pre-
serving, Aff-homogeneous S-groupoids. If 8 has bounded obstructions (Condition 6.1(iii)), then 8 has
constructible obstructions (Condition 6.3(iii)) if and only if 8 satisfies Condition 8.3.

Proof. Fix an irreducible affine Y -scheme T and let T0 be its reduction. To see that Conditions 6.3(iii)
and 8.3 are equivalent we will use condition (†) of Proposition 3.11 for F(−)= Obs8(T,−)|T0 . Some
care is needed, though, as these two conditions are not quite equivalent for a fixed T .

Consider a deformation situation (T ↪→ T ′,M) as in Condition 8.3 and let ω∈ F(M)=Obs8(T,M) be
the obstruction of the deformation situation. Then for every nonzero ε : M→K0, the element ε∗ω∈ F(K0)

is nonzero since its image under F(K0)=Obs8(T, K0)→Obs8(Tη, K0) is nonzero. If F is GI, then con-
dition (†) is satisfied for F , M andω. Thus, there is an open dense subset U0⊆|T0| such that γ∗ω∈ F(κ(u))
is nonzero for all u ∈U0 of finite type and nonzero maps γ : M→ κ(u), that is, Condition 8.3 holds.

Conversely, let f , M and ω be as in condition (†) for F(−). Let V0 = Spec(A f )⊆ T0 = Spec A and
let V ⊆ T denote the corresponding open subscheme. Since Y and Z are Aff-homogeneous, the natural
morphism F(−)|A f = Obs8(T,−)|V0 → Obs8(V,−)|V0 is an isomorphism (Lemma 1.8(5)). Since M
is an A f -module, we may thus consider ω ∈ F(M) as an obstruction class in Obs8(V,M). This class
can be realized by a deformation situation (V ↪→ V ′,M). We assume that Condition 8.3 holds for this
deformation situation.

Since Y and Z are Aff-homogeneous, we also have an isomorphism Obs8(T,−)|η0→Obs8(η,−)|η0 .
In particular, for all ε : Mη→ K0, the resulting Z -extension η ↪→ η′ε of η by K0 is obstructed. Thus, there
exists a dense open subset U0 ⊆ |V0| such that for all points u ∈U0 of finite type and maps γ : M→ κ(u),
the induced Z -extension (V ↪→ V ′γ , κ(u)) is obstructed. In particular, γ∗ω ∈ F(κ(u))=Obs8(T, κ(u))=
Obs8(V, κ(u)) is nonzero. Thus, condition (†) holds for the given f , M and ω with Vω =U0.

Thus, if for a given T , Condition 8.3 holds for all deformation situations (V0 ↪→ V,M) where V ⊆ T
is an open subscheme, then F is GI. �

Remark 8.5. If S is of finite type over a Dedekind domain as in [Artin 1969b] (or Jacobson), then in
Condition 8.3 it is enough to consider closed points u ∈U . Indeed, in the proof of the lemma above, we
are free to pass to open dense subsets and every S-scheme of finite type has a dense open subscheme
which is Jacobson.

9. Effectivity

We begin with the following definition:

Definition 9.1. Let X be a category fibered in groupoids over the category of S-schemes. We say that X
is weakly effective (resp. effective) if for every local noetherian ring (B,m), such that B is m-adically
complete, with an S-scheme structure Spec B→ S such that the induced morphism Spec(B/m)→ S is
locally of finite type, the natural functor:

X (Spec B)→ lim
←−−

n
X (Spec(B/mn+1))
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is dense and fully faithful (resp. an equivalence). Here dense means that for every object (ξn)n≥0 in the
limit and for every k ≥ 0, there exists an object ξ ∈ X (Spec B) such that its image in X (Spec(B/mk+1))

is isomorphic to ξk .

If X is an algebraic stack, then the functor X (Spec B)→ lim
←−−n X (Spec(B/mn+1)) is an equivalence

of categories — thus every algebraic stack is effective. Also, it is clear that effectivity implies weak
effectivity. We will see in Proposition 9.3 that the converse holds under mild hypotheses.

The following lemma is well-known, with the difficult parts attributed to Schlessinger [1968] and Rim
[SGA 7I 1972, Exposé VI].

Lemma 9.2. Let S be a noetherian scheme and let X be an S-groupoid. Let Spec k be an X-scheme,
locally of finite type over S, such that k is a field. If X is

(1) Arttriv-homogeneous,

(2) weakly effective, and

(3) has bounded deformations at Spec k (Condition 6.1(ii)),

then there exists a pointed and affine X-scheme (T, t) such that

(a) the point t ∈ |T | is closed and the X-schemes Spec k and Spec κ(t) are isomorphic;

(b) the X-scheme T is formally versal at t ∈ |T |; and

(c) T is affine, local, noetherian, and complete.

Proof. By Schlessinger–Rim (e.g., [Stacks Project, Tag 06IW]), there exists an affine, local, noetherian,
and complete scheme (T = Spec R,m) and an object (ηn)n≥0 ∈ lim

←−−n X (Tn), where Tn = Spec(R/mn+1),
which is a formally versal deformation (in the sense of Schlessinger–Rim) of the X -scheme structure
on Spec k. Since X is weakly effective, there exists ξ ∈ X (T ) such that ξ |T1 ' η1 in X (T1). By formal
versality, there exists a map of S-schemes φ : T → T which restricts to the identity map on T1 and such
that ξ |Tn ' φ

∗ηn for every n. It is well-known that the first condition implies that φ is an isomorphism,
hence ξ is formally versal. �

We now have the main result of this section.

Proposition 9.3. Let S be a noetherian scheme. Let X be an S-groupoid that is

(1) Arttriv-homogeneous,

(2) weakly effective, and

(3) has bounded deformations at every X-scheme Spec k, locally of finite type over S, such that k is a
field (Condition 6.1(ii)).

Let (B,m) be a local noetherian ring, complete with respect to its m-adic topology, such that Spec(B/m)→
S is locally of finite type. If {Jn}n≥0 is an m-stable filtration of B (e.g., Jn = mn+1), then the natural
functor

X (Spec B)→ lim
←−−

n
X (Spec(B/Jn))

http://stacks.math.columbia.edu/tag/06IW
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is an equivalence. In particular, X is effective.

Proof. Since m-stable filtrations of B have bounded difference [Atiyah and Macdonald 1969, Lemma
10.6] (in particular, there exists an n0 such that Jn+n0 ⊆mn+1 for all n ≥ 0), it is sufficient to prove the
result when Jn = mn+1. In this case, the functor above is already assumed to be fully faithful; thus, it
remains to establish that it is essentially surjective. To see this, let (ξn)n≥0 ∈ lim

←−−n X (Spec(B/mn+1)).
Now apply Lemma 9.2 to the X -scheme structure on Spec(B/m) determined by ξ0. This produces an
affine, local, noetherian, and complete X -scheme T , formally versal at its closed point t , such that the
X -schemes Spec κ(t) and ξ0 are isomorphic. By formal versality, there exists a compatible system of
maps bn : Spec(B/mn+1)→ T lifting the X -scheme structures ξn . It follows that there is an induced
map of schemes Spec B → T which, by construction, defines an object ξ ∈ X (Spec B) with image
(ξn)n≥0 ∈ lim

←−−n X (Spec B/mn+1). The result follows. �

10. Proof of Main Theorem

In this section, we prove the Main Theorem. Before we do this, however, there are several preliminary
results that we must prove. Conrad and de Jong [2002, Theorem 1.5] extended Artin’s algebraization
theorem [1969b, Theorem 1.6] to excellent rings. The following lemma summarizes their result in the
language of this paper.

Theorem 10.1. Let S be an excellent scheme and let X be an S-groupoid. Let Spec k be an X-scheme,
locally of finite type over S, such that k is a field. If X is

(1) limit preserving,

(2) weakly effective,

(3) Arttriv-homogeneous, and

(4) has bounded deformations at Spec k (Condition 6.1(ii)),

then there exists a pointed and affine X-scheme (T, t) such that

(a) T is locally of finite type over S;

(b) the point t ∈ |T | is closed and the X-schemes Spec k and Spec κ(t) are isomorphic; and

(c) the X-scheme T is formally versal at t ∈ |T |.

We now obtain the following algebraicity criterion for groupoids.

Proposition 10.2. Let S be an excellent scheme. An S-groupoid X is an algebraic S-stack, locally of
finite presentation over S, if and only if

(1) X is a stack over (Sch/S)Ét;

(2) X is limit preserving;

(3) X is weakly effective;
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(4) X is Artinsep-homogeneous;

(5) X is rCl-homogeneous;

(6a) X has bounded deformations (Condition 6.1(ii));

(6b) X has constructible extensions (Condition 4.2);

(6c) X has Zariski local extensions (Condition 2.11); and

(7) the diagonal morphism 1X/S : X→ X ×S X is representable by algebraic spaces.

Proof. The hypotheses imply that for every pair (Spec k
x
−→ S, ξ), where k is a field, x is a morphism

locally of finite type, and ξ ∈ X (x), there exists a pointed and affine X -scheme (Tξ , t) as in Theorem 10.1.
Condition (7) implies that Tξ → X is representable by algebraic spaces.

As X is rCl-homogeneous and has bounded deformations (Condition 6.1(ii)), Lemma 6.2 implies that
X has bounded extensions (Condition 4.1). Also by Lemma 1.9, X is Artfin-homogeneous. Since X
has Zariski local, bounded and constructible extensions (Conditions 2.11, 4.1, and 4.2), it follows from
Theorem 4.4 that we are free to assume — by passing to an affine open neighborhood of t — that the
X -scheme Tξ is formally smooth.

We finish the proof in the same manner as the proof of [Hall 2017, Theorem 7.1]: define K to be the set
of all morphisms x : Spec k→ S that are locally of finite type, where k is a field. Set T =

∐
x∈K ,ξ∈X (x) Tξ .

Then the X -scheme T is representable by smooth morphisms of algebraic spaces. We will be done if we
can prove that it is representable by surjective morphisms of algebraic spaces. Since X is limit preserving,
this assertion may be verified on affine X -schemes V of finite type over S. By construction, the image of
the morphism T ×X V → V contains all points of finite type; since the morphism is smooth, this image
is also open. The result follows. �

The following bootstrap result will be applied several times in this section.

Lemma 10.3. Let S be a scheme and let X be an S-groupoid. Let W be an X ×S X-scheme. Let
(1X/S)W : DX/S,W →W be the W -groupoid obtained as the pull-back of 1X/S : X→ X ×S X along W .
This is equivalent to a presheaf on Sch/W .

(1) Let P ⊆ Aff be a class of morphisms and let T be a DX/S,W -scheme. If X→ S is P-homogeneous
at T , then DX/S,W →W is P-homogeneous at T . In particular, if X→ S is P-homogeneous, then
DX/S,W →W is P-homogeneous.

(2) Let T be a DX/S,W -scheme. If X → S is Nil-homogeneous at T , then DX/S,W → W is Nil-
homogeneous at T and there are natural isomorphisms for every quasicoherent OT -module M :

Aut(1X/S)W (T,M)∼= 0, Def(1X/S)W (T,M)∼= AutX/S(T,M), Obs(1X/S)W (T,M)⊆ DefX/S(T,M).

(3) If X is a stack over (Sch/S)Ét (resp. (Sch/S)fppf), then DX/S,W is a sheaf over (Sch/W )Ét (resp.
(Sch/W )fppf).

(4) If X is limit preserving over S, then DX/S,W is limit preserving over W .
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(5) If S is noetherian, W is locally of finite type over S and X is effective over S, then DX/S,W is effective
over W .

Proof. For (1), if X→S is P-homogeneous at T , then so is X×S X and1X/S [Hall 2017, Lemma 1.5(5,7,8)].
Thus, DX/S,W →W is P-homogeneous at T [Hall 2017, Lemma 1.5(6)]. The assertion (2) follows from
(1) and [loc. cit., Corollary 6.14]. The assertions (3) and (5) are straightforward. Finally, (4) follows from
[loc. cit., Lemma 3.2(5,6)]. �

In the following lemma, we establish that under very weak boundedness hypotheses, homogeneity at
artinian schemes is sufficient to imply many other forms of homogeneity.

Lemma 10.4. Let S be an excellent scheme. Let X be an S-groupoid that is

(1) a stack over (Sch/S)Ét;

(2) limit preserving;

(3) weakly effective;

(4) Arttriv-homogeneous; and

(5) has bounded automorphisms and deformations at every X-scheme Spec k, locally of finite type over S,
such that k is a field (Conditions 6.1(i), (ii)).

The following assertions hold:

(a) X is effective.

(b) X is rCl-homogeneous.

(c) If X is Artfin-homogeneous, then X is Int-homogeneous.

(d) If X is Artfin-homogeneous and DVR-homogeneous and 1X/S : X → X ×S X is representable by
algebraic spaces, then X is Aff-homogeneous.

Proof. That X is effective is Proposition 9.3. We first establish that if X satisfies the conditions (1)–
(5) and (HrCl

1 ) (resp. (HInt
1 )), then assertion (b) (resp. (c)) holds. Fix an rCl-nil (resp. Fin-nil) pair

(Spec A→ Spec B,Spec A→ Spec A′) such that B is the completion of an OS-algebra B0 of finite type
at a maximal ideal m0 and A′→ A and B→ A are of finite type. By Lemma B.3(5), it is sufficient to
prove that the functor

X (Spec B ′)→ X (Spec B)×X (Spec A) X (Spec A′)

is essentially surjective, where B ′ = B ×A A′. Since A is complete and B→ A is finite, A =
∏n

i=1 Ai

in the category of B-algebras, where each Ai is a finite and local B-algebra. Arguing as in the proof of
Lemma 1.9, we may thus reduce to the situation where A and A′ are local.

Since B ′→ B is surjective with nilpotent kernel and B is local, B ′ is local with maximal ideal m′. For
each integer n ≥ 0 let B ′n = B ′/m′n+1, Bn = B ⊗B ′ B ′n , An = A⊗B ′ B ′n and A′n = A′⊗B ′ B ′n . The pair
(Spec An → Spec Bn,Spec An → Spec A′n) is Arttriv-nil (resp. Artfin-nil). Let Cn = Bn ×An A′n . Note
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that lim
←−−n Cn = B×A A′ = B ′ and that for every n ≥ `, the induced map Cn/m

′`+1Cn→ C` is surjective
but not necessarily injective. Now Arttriv-homogeneity (resp. Artfin-homogeneity) implies that

X (Spec Cn)→ X (Spec Bn)×X (Spec An) X (Spec A′n)

is an equivalence. By Proposition 9.3, it follows that there is an equivalence

X (Spec B)×X (Spec A) X (Spec A′)' lim
←−−

n
(X (Spec Bn)×X (Spec An) X (Spec A′n)).

It remains to prove that the natural functor X (Spec B ′)→ lim
←−−n X (Spec Cn) is essentially surjective. To

see this, we note that the map B ′→Cn is surjective with kernel Kn = B ′∩mn(B⊕A′). By the Artin–Rees
Lemma [Atiyah and Macdonald 1969, Propositon 10.9], the filtration {Kn}n≥0 on B ′ is m-stable. By
Proposition 9.3, the claim follows.

To deduce (b) (resp. (c)) in general, we apply a bootstrapping procedure. By Lemma B.2(4), to prove
that X satisfies (HrCl

1 ) (resp. (HInt
1 )), it is sufficient to prove that DX/S,W is rCl-homogeneous (resp. Int-

homogeneous) for every affine scheme W of finite type over S. Fix an affine scheme W of finite type
over S. First observe that W is excellent. By Lemma 10.3, DX/S,W satisfies the hypotheses (1)–(5) and
the hypothesis in (b) (resp. (c)). Indeed, Nil-homogeneity at Spec k is equivalent to Arttriv-homogeneity
at Spec k. Thus it is sufficient to prove the Lemma under the additional assumption that the diagonal of
X→ S is a monomorphism. Repeating this process, we see that it is sufficient to prove the Lemma when
X → S is a monomorphism. In this case, however, the diagonal of X → S is an isomorphism, thus is
representable and consequently satisfies (HAff

1 ). The claim follows.
To establish (d), we note that since X has diagonal representable by algebraic spaces, X satisfies (HAff

1 ).
By Lemma B.3(5), it is thus sufficient to prove that

X (Spec A3)→ X (Spec A2)×X (Spec A0) X (Spec A1)

is essentially surjective for every Aff-nil pair (Spec A0→ Spec A2,Spec A0→ Spec A1), where A2 is
the henselization of a finite type OS-algebra B at a maximal ideal m and A2→ A0 and A1→ A0 are of
finite type and A3 = A2×A0 A1.

Fix (a2, a1, α)∈ X (Spec A2)×X (Spec A0) X (Spec A1), which we may regard as a diagram of X -schemes

W0

/�
j ?

p ��

W1

�� ""

W2

/�
?? <<W3

// X

where Wi = Spec Ai , that we must complete. Let k= A2/m; then Spec k inherits an X -scheme structure
from Spec A2. Now apply Theorem 10.1 to the X -scheme Spec k, which produces a pointed affine
X -scheme (T, t), locally of finite type over S, which is formally versal at the closed point t . Let
W ′i = Wi ×X T for i = 0, 1, 2 and let p′ : W ′0 → W ′2 be the pullback of p : W0 → W2. Since X has
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diagonal representable by algebraic spaces, W ′i is an algebraic space, locally of finite type over Wi , for
each i . By construction, the morphism W ′2→W2 even admits a section s2 : W2→W ′2.

For i = 0, 1, 2 let W ′sm
i ⊆ W ′i denote the smooth locus of W ′i → Wi , which is an open subset. By

Lemma 2.2, T is formally smooth at t . Since X is DVR-homogeneous, T is formally smooth at every
generization t ′ ∈ |T | of t (Lemma 2.15). Thus W ′sm

i contains the preimage of Spec(OT,t) under W ′i → T .
Let Z2 = p′(W ′0 \ j ′−1

(W ′sm
1 )), W ′′2 =W ′sm

2 \ Z2, W ′′0 = p′−1(W ′′2 ) and W ′′1 = j ′(W ′′0 ), which we regard
as open subsets of W ′sm

i . We claim that the section s2 : W2→W ′2 factors through W ′′2 . To see this, it is
sufficient to check that Z2 does not contain any points above t . But Z2 does not contain any points above
Spec(OT,t) and since every point of Z2 is a specialization of a point in Z2, the claim follows.

By restriction, there is an induced section s0 : W0→W ′′0 . Since W ′′1 →W1 is smooth and W0 is affine,
the section s0 lifts to a section s1 : W1 → W ′′1 of W ′′1 → W1. By [Hall 2017, Lemma A.4], there is a
commutative diagram of S-schemes

W ′′0

��

xx

� � // W ′′1
xx

��
W ′′2

��

� � // W ′′3

��
W0
� � //

ww
W1

ww
W2
� � // W3

where all faces of the cube are cartesian, the top and bottom faces are cocartesian, and the map W ′′3 →W3

is flat. Since the top square is cocartesian, and there are compatible maps W ′′i → T for i 6= 3, there is
a uniquely induced map W ′′3 → T . The sections si for i = 0, 1, 2 glue to a section s3 : W3→ W ′′3 of
W ′′3 →W3. Taking the composition W3→W ′′3 → T → X proves the result. �

We now prove a version of the Main Theorem where we assume that the diagonal is representable.

Theorem 10.5. Let S be an excellent scheme. Then a category X , fibered in groupoids over the category
of S-schemes, Sch/S, is an algebraic stack, locally of finite presentation over S, if and only if it satisfies
the conditions of the Main Theorem and

(7) the diagonal 1X/S : X→ X ×S X is representable by algebraic spaces.

Proof. We will use the criteria of Proposition 10.2. Clearly the conditions of limit preservation (2),
weak effectivity (3), bounded deformations (6a) and diagonal representable by algebraic spaces (7)
of Proposition 10.2 are satisfied. Either of the stack hypotheses — (1) or (1′) — imply the étale stack
condition (1) of Proposition 10.2.

Either the Artinsep-homogeneity hypothesis (4′), or (1) and Arttriv-homogeneity (4) and Lemma 1.9,
imply that X is Artfin-homogeneous. By Lemma 10.4, (1) or (1′), combined with (2) and (3) and bounded
automorphisms and deformations (5a), implies that X is Int-homogeneous. In particular, (4)–(5) of
Proposition 10.2 are satisfied.

Now X has constructible obstructions, by (6b) and Lemma 7.5(1). Since X also has constructible defor-
mations (5b), it has constructible extensions (Proposition 6.5(1)). Thus, X satisfies (6b) of Proposition 10.2.



786 Jack Hall and David Rydh

Similarly by Lemma 7.5(2) and (6c), X has Zariski local obstructions. Since X also has Zariski local
deformations (5c), Proposition 6.5(2) implies that X satisfies (6c) of Proposition 10.2.

If S is Jacobson (α), then X satisfies (6c) of Proposition 10.2 (Lemma 2.12), without assuming (5c)
and (6c).

If X is DVR-homogeneous (β), then Lemma 10.4(d) implies that X is Aff-homogeneous; thus, X
satisfies (6c) of Proposition 10.2 (Lemma 1.8(5)), without assuming (5c) and (6c). Moreover, Lemma 8.4
implies that (6b) may be substituted for Condition 8.3. The result follows. �

We are now ready to prove the Main Theorem.

Proof of Main Theorem. We will do a bootstrapping process, similar to the proof of [Hall 2017, Theorem A].
In this instance, however, we must be more careful because we are working with a weaker homogeneity
assumption.

The hypotheses (1) and (4), or (γ ), imply that X is Artfin-homogeneous (Lemma 1.9). By Lemma 10.4,
X is effective and Int-homogeneous.

Let W be an X×S X -scheme, affine and locally of finite type over S. By Lemma 10.3, the W -groupoid
(1X/S)W : DX/S,W →W satisfies the conditions of the Main Theorem. Let V be a DX/S,W ×W DX/S,W -
scheme, affine and locally of finite type over W . By Lemma 10.3, the V -groupoid (1DX/S,W /W )V :

DDX/S,W ,V → V satisfies the conditions of the Main Theorem. Note, however, that (1DX/S,W /W )V is
a monomorphism, so has representable diagonal. By Theorem 10.5, (1DX/S,W /W )V is algebraic and
locally of finite presentation over V , so (1X/S)W has diagonal representable by algebraic spaces. By
Theorem 10.5 again, (1X/S)W is algebraic and locally of finite presentation over W ; so X has diagonal
representable by algebraic spaces. A final application of Theorem 10.5 informs us that X is algebraic
and locally of finite presentation over S. �

11. Comparison with other criteria

In this section we compare our algebraicity criterion with Artin’s criteria [1969b; 1974], Starr’s crite-
rion [2006], the criterion of the first author [Hall 2017], the criterion in the stacks project [Stacks Project],
and Flenner’s criterion for openness of versality [1981].

11.1. Artin’s algebraicity criterion for functors. Artin [1969b, Theorem 5.3] assumes [0′] = (1) (fppf
stack), [1′]= (2), (limit preserving) and [2′]= (3) (effectivity). Further [4′](b)+[5′](a) is Nil-homogeneity
for irreducible schemes, which implies (4). His [4′](a)+ (c) is boundedness, Zariski-localization and
constructibility of deformations (Conditions 6.1(ii), 6.4(ii), and 6.3(ii)). His [5′](c) is Condition 8.3 (con-
structibility of obstructions). Finally, [5′](b) together with [4′](a) and [4′](b) implies DVR-homogeneity so
we are in the setting of (β). Conditions on automorphisms are of course redundant for functors. Condition
[3′](a) is only used to assure that the resulting algebraic space is locally separated (resp. separated)
and condition [3′](b) guarantees that it is quasiseparated. If one is willing to accept nonquasiseparated
algebraic spaces, no separation assumptions are necessary.



Artin’s criteria for algebraicity revisited 787

11.2. Artin’s algebraicity criterion for stacks. Let us begin with correcting two typos in the statement
of [Artin 1974, Theorem 5.3]. In (1) the condition should be that (S1′,2) holds for F , not merely (S1,2),
and in (2) the canonical map should be fully faithful with dense image, not merely faithful with dense
image. Otherwise it is not possible to bootstrap and deduce algebraicity of the diagonal.

Artin assumes that X is a stack for the étale topology, and that X is limit preserving. He assumes (1)
that the Schlessinger conditions (S1′,2) hold and boundedness of automorphisms. In our terminology,
(S1′) is rCl-homogeneity, which implies Arttriv-homogeneity, our (4). The other two conditions are
exactly boundedness of automorphisms and deformations (5a). Artin’s condition (2) is our (3) (effectivity).
Artin’s condition (3) is étale localization and constructibility of automorphisms, deformations and
obstructions, and compatibility with completions for automorphisms and deformations. The constructibility
condition is slightly stronger than our (5b)+ (6b) and the étale localization condition implies the much
weaker (5c)+ (6c). We do not use compatibility with completions. Finally, Artin’s condition (4) implies
that the double diagonal of the stack is quasicompact and this condition can be omitted if we work with
stacks without separation conditions. Thus [Artin 1974, Theorem 5.3] follows from our Main Theorem,
except that Artin only assumes that the groupoid is a stack in the étale topology. This is related to the
issue when comparing formal versality to formal smoothness mentioned in the introduction and discussed
in Remark 2.8.

Remark 11.1. That automorphisms and deformations are sufficiently compatible with completions for
Artin’s proof to go through actually follows from the other conditions. In fact, let A be a noetherian
local ring with maximal ideal m, let T = Spec A and let T → X be given. Then the injectivity of the
comparison map

ϕ : DefX/S(T,M)⊗A Â→ lim
←−−

n
DefX/S(T,M/mn M)

for a finitely generated A-module M follows from the boundedness of DefX/S(T,−), see Remark 3.8. If
T→ X is formally versal, then ϕ is also surjective. Indeed, from (S1) it follows that DerS(T,M/mn M)→
DefX/S(T,M/mn M) is surjective for all n, so the composition

DerS(T,M)⊗A Â ∼= lim
←−−

n
DerS(T,M/mn M)→ lim

←−−
n

DefX/S(T,M/mn M),

which factors through ϕ, is surjective.

The variant [Starr 2006, Proposition 1.1] has the same conditions as [Artin 1974, Theorem 5.3] except
that it is phrased in a relative setting. From Section 6, it is clear that our conditions can be composed.
The salient point is that with rCl-homogeneity (or even with just (S1), i.e., rCl-semihomogeneity, as
in [Flenner 1981]), there is always a linear minimal obstruction theory. There is further an exact sequence
relating the minimal obstruction theories for the composition of two morphisms [Hall 2017, Proposition
6.13]. Thus [Starr 2006, Proposition 1.1] also follows from our main theorem.
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We wish to point out that Starr proves openness of versality [2006, Theorem 2.15] using his formalism
of generic extenders [loc. cit., Definition 2.7]. This is similar to our Condition 8.3 (and Artin’s analo-
gous condition in his algebraicity criterion for functors). The main difference is that he also assumes
homogeneity along localizations (not just Zariski localizations), as opposed to DVR-homogeneity.

11.3. The criterion in [Hall 2017] using coherence. There are two differences between [Hall 2017,
Theorem A] and our main theorem. The first is that Condition (4) is strengthened to Aff-homogeneity.
As this includes DVR-homogeneity, (5c) and (6c) become redundant. Zariski localization also fol-
lows immediately from Aff-homogeneity without involving DVR-homogeneity, see the discussion after
Condition 2.11. We thus have the following version of our Main Theorem.

Theorem 11.2. Let S be an excellent scheme. Then a category X that is fibered in groupoids over the
category of S-schemes, Sch/S, is an algebraic stack that is locally of finite presentation over S, if and
only if it satisfies the following conditions:

(1′) X is a stack over (Sch/S)Ét.

(2) X is limit preserving.

(3) X is effective.

(4′′) X is Aff-homogeneous.

(5a) Automorphisms and deformations are bounded (Conditions 6.1(i)–(ii)).

(5b) Automorphisms and deformations are constructible (Conditions 6.3(i)–(ii)).

(6b) Obstructions are constructible (Condition 6.3(iii), or 7.3, or 8.3).

The second difference is that (5a), (5b), and (6b) are replaced with the condition that AutX/S(T,−),
DefX/S(T,−), ObsX/S(T,−) are coherent functors. This implies that the functors are bounded and CB
(Example 3.6), hence satisfy (5a), (5b), and (6b).

11.4. The criterion in the Stacks project. In the Stacks project, the basic version of Artin’s axiom [Stacks
Project, Tags 07XJ, 07Y5] requires that

[0] X is a stack in the étale topology;

[1] X is limit preserving;

[2] X is Artfin-homogeneous (this is the Rim–Schlessinger condition RS);

[3] AutX/S(Spec k, k) and DefX/S(Spec k, k) are finite dimensional;

[4] X is effective;

[5] X , 1X and 11X satisfy openness of versality.

There is also a criterion for when X satisfies openness of versality [Stacks Project, Tag 07YU] using naive
obstruction theories with finitely generated cohomology groups. This uses the (RS*)-condition which is
our Aff-homogeneity [Stacks Project, Tag 07Y8]. The existence of the naive obstruction theory implies

http://stacks.math.columbia.edu/tag/07XJ
http://stacks.math.columbia.edu/tag/07Y5
http://stacks.math.columbia.edu/tag/07YU
http://stacks.math.columbia.edu/tag/07Y8
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that AutX/S(T,−), DefX/S(T,−), ObsX/S(T,−) are bounded and CB (Example 3.4), hence satisfy (5a),
(5b), and (6b) when T is an affine X -scheme that is locally of finite type over S.

In [Stacks Project], the condition that the base scheme S is excellent is replaced with the condition
that its local rings are G-rings. In our treatment, excellency enters at two places: in the application of
Néron–Popescu desingularization in Proposition 10.2 via [Conrad and de Jong 2002] and in the context
of DVR-homogeneity in Lemma 2.15. In both cases, excellency can be replaced with the condition that
the local rings are G-rings without modifying the proofs.

11.5. Flenner’s criterion for openness of versality. Flenner [1981] does not give a precise analogue of
our main theorem, but his main result (Satz 4.3) is a criterion for the openness of versality. In his criterion
he has a limit preserving S-groupoid which satisfies (S1)–(S4). The first condition (S1) is identical to
Artin’s condition (S1), i.e., rCl-semihomogeneity. The second condition (S2) is boundedness and Zariski
localization of deformations. The third condition (S3) is boundedness and Zariski localization of the
minimal obstruction theory. Finally (S4) is constructibility of deformations and obstructions. The Zariski
localization condition is incorporated in the formulation of (S3) and (S4) which deals with sheaves of
deformation and obstructions modules. His (S2)–(S4) are marginally stronger than our conditions, for
example, treating arbitrary schemes instead of irreducible schemes. Satz 4.3 [Flenner 1981] thus becomes
the first part of Theorem 4.4, in view of Section 6, except that we assume rCl-homogeneity instead of
rCl-semihomogeneity. This is a pragmatic choice that simplifies matters since ExalX (T,M) becomes
a module instead of a pointed set. Also, in any algebraicity criterion, we would need homogeneity to
deduce that the diagonal is algebraic and, conversely, if the diagonal is algebraic, then semihomogeneity
implies homogeneity.

11.6. Criterion for local constructibility. There is a useful criterion for when a sheaf (or a stack) is
locally constructible, that is, when it corresponds to an étale algebraic space (or algebraic stack) [Artin
1973, Chapitre VII, Théorème 7.2]:

Theorem 11.3. Let S be an excellent scheme. Then a category X that is fibered in groupoids over Sch/S,
is an algebraic stack that is étale over S, if and only if it satisfies the following conditions:

(1) X is a stack over (Sch/S)Ét.

(2) X is limit preserving.

(3) X (B)→ X (B/m) is an equivalence of categories for every local noetherian ring (B,m), such that
B is m-adically complete, with an S-scheme structure Spec B→ S such that the induced morphism
Spec(B/m)→ S is of finite type.

The necessity of the conditions is clear. That the conditions are sufficient can be proven directly as
follows. Let j : (Sch/S)Ét→ Sét denote the morphism of topoi corresponding to the inclusion of the small
étale site into the big étale site. It is enough to prove that j−1 j∗X→ X is an equivalence. As X is limit
preserving, it is enough to verify that f ∗(X |Sét)→ X |Tét is an equivalence for every morphism f : T → S
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locally of finite type, and this can be checked on stalks at points of finite type. Therefore, it suffices to
prove that X (B)→ X (B/m) is an equivalence when B is the henselization of OT,t , for every t ∈ |T | of
finite type. This follows from general Néron–Popescu desingularization and the three conditions.

A proof more in the lines of this paper goes as follows: from (3) it follows that: X is Artfin-homogeneous;
X is effective; and X→ S is formally étale at every point of finite type. In particular, AutX/S(T, N )=
DefX/S(T, N ) = ObsX/S(T, N ) = 0 for every X -scheme T that is of finite type over S and every
quasicoherent OT -module N with support that is artinian (use Lemmas 5.1 and 5.4). Thus, AutX/S(T,−)=
DefX/S(T,−)= 0 by Theorem 3.7. Theorem 11.3 would follow from the main theorem if we also can
show that ObsX/S(T,−)= 0. As we do not yet know that ObsX/S(T,−) is half-exact, it is unclear to us
how to deduce that ObsX/S(T,−)= 0 without invoking Popescu desingularization. A more elementary
approach, that does not rely on the main theorem, is to note that given an X -scheme T that is locally of
finite presentation over S, and a point t ∈ |T | of finite type, then T → X is formally smooth at t if and
only T → S is formally smooth at t . Thus, openness of formal smoothness for T → X follows.

Appendix A. Approximation of integral morphisms

In this appendix, we give an approximation result for integral homomorphisms of rings.

Lemma A.1. Let A be a ring, let B be an A-algebra and let C be a B-algebra. Assume that B and C
are integral A-algebras. Then there exists a filtered system (Bλ→ Cλ)λ of finite and finitely presented
A-algebras, with direct limit B→ C. In addition, if A→ B (resp. B→ C , resp. A→ C) has one of the
properties:

(1) surjective,

(2) surjective with nilpotent kernel,

then the system can be chosen such that the morphisms A→ Bλ (resp. Bλ→ Cλ, resp. A→ Cλ) all have
the corresponding property.

If we start with a system satisfying the first part of the lemma, then it is not always the case that the
second part holds after increasing λ. Therefore, the approximation Bλ→ Cλ has to be built with the
second part in mind.

Proof of Lemma A.1. Let 3 be the set of finite subsets of BqC , or, if B→ C is surjective, only those
of B. For λ = λB ∪ λC ∈ 3, let B◦λ ⊆ B be the A-subalgebra generated by λB and let C◦λ ⊆ C be the
A-subalgebra generated by λC and the image of λB in C .

Then B = lim
−−→λ∈3

B◦λ and C = lim
−−→λ∈3

C◦λ and we have homomorphisms B◦λ→ C◦λ for all λ. Moreover,
if A→ B (resp. B→C , resp. A→C) is surjective or surjective with nilpotent kernel then so is A→ B◦λ
(resp. B◦λ→ C◦λ, resp. A→ C◦λ) for every λ.

For every λ, let Pλ= A[xi : i ∈ λB] and Qλ= A[y j : j ∈ λ] be polynomial rings and let Pλ→ B◦λ and
Qλ→ C◦λ be the natural surjections. We have homomorphisms Pλ→ Qλ compatible with B◦λ→ C◦λ and
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if B→C is surjective, then Pλ = Qλ. For a finite subset L ⊆3, let PL =
⊗

λ∈L Pλ and QL =
⊗

λ∈L Qλ,
where the tensor products are over A.

For fixed L ⊆3 choose finitely generated ideals IL ⊆ ker(PL→ B) and IL QL ⊆ JL ⊆ ker(QL→ C)
and let BL = PL/IL and CL = QL/JL . If A→ B (resp. A→ C) is surjective, then for sufficiently
large IL (resp. JL ), we have that A→ BL (resp. A→ CL ) is surjective. If B→ C is surjective, then
by construction PL = QL so BL → CL is surjective. If, in addition, B→ C has nilpotent kernel with
nilpotency index n, then we replace IL with IL + J n

L so that BL → CL has nilpotent kernel.
Consider the set 4 of pairs ξ = (L , IL , JL) where L ⊆3 is a finite subset, and IL ⊆ PL and JL ⊆ QL

are finitely generated ideals as in the previous paragraph. Then (BL → CL)ξ is a filtered system of
finite and finitely presented A-algebras with direct limit (B→ C) which satisfies the conditions of the
lemma. �

Lemma A.2. Let f : X→Y be a morphism of affine schemes. Let P be one of the properties Nil, Cl, rNil,
rCl, Int, or Aff (see Section 1). If f has property P , then there exists a filtered system ( fλ : Xλ→ Y )λ
with inverse limit f : X→ Y such that every fλ is of finite presentation with property P.

Proof. The result is standard when P ∈ {Cl,Nil, Int,Aff}. For P = rNil (resp. P = rCl), choose a
nilpotent immersion X0→ X such that X0→ X → Y is Nil (resp. Cl). The lemma then follows from
Lemma A.1 with Y = Spec A, X = Spec B and X0 = Spec C . �

Fix a scheme S and consider the category of diagrams [Y
f
←− X

i
−→ X ′] of S-schemes. A morphism of

diagrams8 : [Y1
f1
←− X1

i1
−→ X ′1]→[Y2

f2
←− X2

i2
−→ X ′2] consists of morphisms8Y : Y1→Y2,8X : X1→ X2

and 8X ′ : X ′1→ X ′2 such that the natural diagram is commutative but not necessarily cartesian. We say
that 8 is affine if 8Y , 8X and 8X ′ are affine. Given an inverse system of diagrams with affine bonding
maps, the inverse limit exists and is calculated component by component.

Proposition A.3. Let S be an affine scheme and let P be one of the properties Nil, Cl, rNil, rCl, Int, or
Aff. Let W = [Y

f
←− X

i
−→ X ′] be a diagram of affine S-schemes where i is Nil, and f is P. Then W

is an inverse limit of diagrams Wλ = [Yλ
fλ
←− Xλ

iλ
−→ X ′λ] of affine finitely presented S-schemes where iλ

is Nil, and fλ is P. Moreover, if we let Y ′ = Y qX X ′ and Y ′λ = YλqXλ X ′λ denote the push-outs, then
Y ′ = lim

←−−λ∈3
Y ′λ.

Proof. We begin by looking at the induced diagram [Y
j
−→Y ′

g
←− X ′]. As j is a nilpotent closed immersion it

follows that g has property P . We will write this diagram as an inverse limit of diagrams [Yλ
jλ
−→Y ′λ

gλ
←− X ′λ]

of finite presentation over S where jλ is Nil and gλ has property P . To this end, we begin by writing
(using Lemma A.2)

(1) Y ′ = lim
←−−

Y ′α where Y ′α→ S are affine and of finite presentation;

(2) X ′ = lim
←−−

X ′β where X ′β→ Y ′ are P and of finite presentation; and

(3) Y = lim
←−−

Yγ where Yγ → Y ′ are Nil and of finite presentation.
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For every pair (β, γ ) there is [EGA IV3 1966, Théorème 8.10.5] an index α0(β, γ ), and a cartesian
diagram

Yγ
� � //

��

Y ′

��

X ′βoo

��
Yα0(β,γ )βγ

� � // Y ′α0(β,γ )
X ′α0(β,γ )βγ

oo

where X ′α0(β,γ )βγ
→ Y ′α0(β,γ )

and Yα0(β,γ )βγ → Y ′α0(β,γ )
are morphisms of finite presentation that are P

and Nil respectively.
For every α ≥ α0(β, γ ) we also let [Yαβγ → Y ′α← X ′αβγ ] denote the pull-back along Y ′α→ Y ′α0(β,γ )

.
Let I = {(β, γ, α)} be the set of indices such that α ≥ α0(β, γ ). For every finite subset J ⊆ I , we let

Y ′J =
∏

(β,γ,α)∈J

Y ′α, YJ =
∏

(β,γ,α)∈J

Yαβγ , and X ′J =
∏

(β,γ,α)∈J

X ′αβγ ,

where the products are taken over S. The finite subsets J ⊆ I form a partially ordered set under inclusion
and the induced morphisms:

Y ′→ lim
←−−

J
Y ′J , Y → lim

←−−
J

YJ , and X ′→ lim
←−−

J
X ′J

are closed immersions. Now, let KYJ = ker(OYJ → (gJ )∗OY ) and similarly for KY ′J
and K X ′J . Note

that KY ′J
OYJ ⊆ KYJ and KY ′J

OX ′J ⊆ K X ′J . We then let 3= {(J, RYJ , RY ′J
, RX ′J )} where J ⊆ I is a finite

subset and RYJ ⊆ KYJ , RY ′J
⊆ KY ′J

and RX ′J ⊆ K X ′J are finitely generated ideals such that RY ′J
OYJ ⊆ RYJ

and RY ′J
OX ′J ⊆ RX ′J . For every λ ∈3 we put

Y ′λ = Spec(OY ′J
/RY ′J

), Yλ = Spec(OYJ /RYJ ), and X ′λ = Spec(OX ′J /RX ′J ).

Then [Y → Y ′← X ′] = lim
←−−λ
[Yλ→ Y ′λ← X ′λ]. Finally, we take Xλ = X ′λ×Y ′λ

Yλ so that

[Y
f
←− X

i
−→ X ′] = lim

←−−
λ

[Yλ
fλ
←− Xλ

iλ
−→ X ′].

Indeed, X = X ′×Y ′ Y and inverse limits commute with fiber products.
For the last assertion, we note that all schemes are affine and that there are exact sequences

0→ 0(OY ′)→ 0(OY )×0(OX ′)→ 0(OX )→ 0,

0→ 0(OY ′λ)→ 0(OYλ)×0(OX ′λ)→ 0(OXλ)→ 0, ∀λ ∈3.

Note that Y ′λ can be different from Y ′λ. As direct limits of rings are exact it follows that Y ′ = lim
←−−

Y ′λ. �

Appendix B. Bootstrapping homogeneity

The following notation will be useful:

Notation B.1. Fix a scheme S and a 1-morphism of S-groupoids 8 : Y → Z .
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• If W is a Y ×Z Y -scheme, let (18)W : D8,W →W denote the W -groupoid obtained by pulling back
18 : Y → Y ×Z Y along W → Y ×Z Y .

• Fix a class P of morphisms of S-schemes. For a P-nil square over S as in (1-1), let

3Y,T ′ : Y (T ′)→ Y (V ′)×Y (V ) Y (T )

denote the natural functor.

The following bootstrapping lemma provides a powerful technique to verify condition (HP
1 ) of

Definition 1.3.

Lemma B.2. Fix a scheme S, a class P ⊆ Aff of morphisms of S-schemes and a 1-morphism of S-
groupoids 8 : Y → Z. If Z satisfies (HP

1 ), then the following conditions are equivalent:

(1) Y satisfies (HP
1 );

(2) for every geometric P-nil square over S as in (1-1), 3Y,T ′ is fully faithful;

(3) for every Y ×Z Y -scheme W , the W -groupoid D8,W is P-homogeneous.

In addition, if Y and Z are limit preserving Zariski stacks and P is Zariski local, then these conditions are
equivalent to the following:

(4) 8 satisfies Condition (3) for all W affine and of finite presentation over S.

In particular, if 1Y/S is representable by algebraic spaces, then Y satisfies (HAff
1 ).

Condition (3) is not equivalent to P-homogeneity of 18 unless we a priori know that Y ×Z Y is
P-homogeneous — an uninteresting situation.

Proof. For (1)=⇒ (2), fix a geometric P-nil square over S as in (1-1). We must prove that the functor3Y,T ′

is fully faithful, that is, if y1 and y2 are two Y -scheme structures on T ′ such that 3Y,T ′(y1)∼=3Y,T ′(y2),
then there is a unique isomorphism of Y -schemes y1 ∼= y2. Since Y satisfies (HP

1 ), any Y -scheme
structure on T ′ makes the resulting P-nil square cocartesian (because geometric P-nil squares over S are
cocartesian). The claim follows.

For (2)=⇒ (3), we fix a Y ×Z Y -scheme W . To establish (HP
1 ) for D8,W , it is sufficient to prove that

a geometric P-nil square over D8,W as in (1-1) is cocartesian. There is a canonical map T ′→W and
this corresponds to two maps y1, y2 : T ′→ Y and a 2-isomorphism τ between 8 ◦ y1 and 8 ◦ y2. If Q is
a D8,W -scheme with compatible maps from T and V ′, we obtain a map T ′→ Q over W and hence two
maps T ′→ D8,W . These two maps correspond to 2-isomorphisms α, β between y1 and y2 compatible
with τ and such that 3Y,T ′(α) = 3Y,T ′(β). Since 3Y,T ′ is faithful, we conclude that α = β and hence
that the square is cocartesian over D8,W .

To establish (HP
2 ) for D8,W , it is sufficient to prove that every P-nil pair over D8,W may be completed

to a P-nil square. Clearly, we can complete such a P-nil pair to a geometric P-nil square over W as
in (1-1). It remains to promote T ′ to a D8,W -scheme. However, T ′→ W → Y ×Z Y factors through
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Y because 3Y,T ′ is full, 3Z ,T ′ is faithful, and T ′ comes from a P-nil pair over Y . Thus, T ′ lifts to a
D8,W -scheme and the claim follows.

For (3)=⇒ (1), we have to prove that a geometric P-nil square over Y as in (1-1) is cocartesian. Thus,
we must prove that if Q is a Y -scheme that fits into the following P-nil square:

V_�

j
��

p // T

a
��

V ′ b // Q

then there is a unique compatible map of Y -schemes T ′→ Q. Note that since Z satisfies (HP
1 ), there is a

unique Z -morphism T ′→ Q. Thus, it is sufficient to prove that the two induced Y -scheme structures on
T ′ coincide. So we may regard T ′ as a (Y ×Z Y )-scheme and let D8,T ′→ T ′ be the pullback of 1Y/Z to
T ′. Since D8,T ′ is P-homogeneous and (V → T, V → V ′) is a P-nil pair over D8,T ′ , it follows that the
geometric P-nil square over Y is uniquely a cocartesian P-nil square over D8,T ′ . The claim follows.

Noting [Hall 2017, Lemma 1.5(7)], the equivalence (4)⇐⇒ (3) is routine. �

The following lemma (compare [Hall 2017, Lemma 1.5(4)]) is particularly useful when combined with
Lemma B.2.

Lemma B.3. Fix a scheme S and a limit preserving étale S-stack X. Let P be one of the properties Nil,
Cl, rNil, rCl, Int, or Aff. If X satisfies (HP

1 ), then the following conditions are equivalent:

(1) X is P-homogeneous;

(2) 3X,T ′ is essentially surjective for every geometric P-nil square over S as in (1-1) where T , V , and
V ′ are affine;

(3) Condition (2) holds when T , V , and V ′ are of finite presentation over S; or

(4) Condition (2) holds when T is the henselization of an affine scheme of finite presentation over S at a
closed point, and V → T , V → V ′ are of finite presentation.

If in addition P ⊆ Int and S is excellent, then these conditions are equivalent to the following:

(5) Condition (2) holds when T ′ is the completion of an affine scheme of finite type over S at a closed
point, and V → T is finite.

In particular, if S is locally noetherian then condition (S1′) of [Artin 1974, 2.3] is equivalent to rCl-
homogeneity for X.

Proof. Note that 3X,T ′ is fully faithful (Lemma B.2) so (1)⇐⇒ (2) by [Hall 2017, Lemma 1.5(4)].
Obviously, (2) =⇒ (3), (4), and (5). To see (3) =⇒ (2), as X is a Zariski stack we may assume that
S = Spec R is affine. By Proposition A.3, every P-nil pair (V

p
−→ T, V

j
−→ V ′), where T is affine, may be

written as an inverse limit of P-nil pairs (Vλ
pλ
−→ Tλ, Vλ

jλ
−→ V ′λ) of finite presentation over S such that Tλ

is affine. Furthermore, T ′ is the inverse limit of the T ′λ, where T ′λ = TλqVλ V ′λ. The assertion then follows
from our assumption that X is limit preserving and [Hall 2017, Lemma 1.5(4)].
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To see (4)=⇒ (3), we fix a geometric P-nil square over S as in (1-1) with the properties prescribed
by (3). On the small flat site T ′fl, we can consider two fibered categories that are stacks for étale covers.
The first, F1, is just the restriction of X . The second, F2, over a flat morphism U ′ → T ′ has fiber
X (V ′×T ′ U ′)×X (V×T ′U ′) X (T ×T ′ U ′). The functor F1→ F2 is fully faithful (Lemma B.2); it remains
to prove that it is locally surjective. Let t ∈ T be a closed point and let T h

t denote the henselization of T
at t . This uniquely lifts to a henselization T ′ht of T ′. By assumption, F1(T ′ht )' F2(T ′ht ). Fix η ∈ F2(T )
and let ηh

t denote its image in F2(T ′ht ). It follows that there exists η̃h
t ∈ F1(T ′ht ) inducing ηh

t . Since F1 is
limit preserving, η̃h

t is induced by some η̃U ′
t ∈ F1(U ′), where (U ′, u)→ (T, t) is étale. Since F1→ F2 is

fully faithful and F2 is limit preserving, we can arrange so that η̃U ′
t agrees ηt |U ′ . The claim follows.

Finally, to see (5)=⇒ (4), we will argue similarly to (4)=⇒ (3). So we fix a geometric P-nil square
over S as in (1-1) with the properties prescribed by (4). Since P ⊆ Int, this implies that T ′ is also the
henselization of an affine scheme of finite type over S at a closed point; in particular, T ′ is excellent.
Defining F1 and F2 analogously, we obtain a fully faithful morphism of groupoids φ : F1→ F2 over T ′fl
which are stacks for étale covers. Let T̂ ′ be the completion of T ′ at its unique closed point, by hypothesis
we have that F1(T̂ ′)' F2(T̂ ′). Since T ′ is excellent, Néron–Popescu desingularization [Popescu 1986]
implies that T̂ ′ is an inverse limit of affine and smooth T ′-schemes. Now argue just as before to deduce
the claim. �
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Differential characters of Drinfeld modules and
de Rham cohomology

James Borger and Arnab Saha

We introduce differential characters of Drinfeld modules. These are function-field analogues of Buium’s
p-adic differential characters of elliptic curves and of Manin’s differential characters of elliptic curves in
differential algebra, both of which have had notable Diophantine applications. We determine the structure
of the group of differential characters. This shows the existence of a family of interesting differential
modular functions on the moduli of Drinfeld modules. It also leads to a canonical F-crystal equipped with
a map to the de Rham cohomology of the Drinfeld module. This F-crystal is of a differential-algebraic
nature and the relation to the classical cohomological realizations is presently not clear.

1. Introduction

The theory of arithmetic jet spaces developed by Buium draws inspiration from the theory of differential
algebra over a function field. In differential algebra, given a scheme E defined over a function field K
with a derivation ∂ on it, one can define the jet spaces J n E for all n ∈N with respect to (K , ∂) and they
form an inverse system of schemes satisfying a universal property with respect to derivations lifting ∂ .
The ring of global functions O(J n E) can be thought of as the ring of n-th order differential functions
on E . In the case when E is an elliptic curve and its structure sheaf OE does not have a derivation lifting ∂
(if it does, then it is the isotrivial case and E will descend to the subfield K ∂=0 of constants), there exists a
differential function 2 ∈O(J 2 E) which is a homomorphism of group schemes from J 2 E to the additive
group Ga . Such a 2 is an example of a differential character of order 2 for E and is known as a Manin
character. Explicitly, if E is given by the Legendre equation y2

= x(x − 1)(x − t) over K = C(t) with
derivation ∂ = d

dt , then

2(x, y, x ′, y′, x ′′, y′′)=
y

2(x − t)2
−

d
dt

[
2t (t − 1)

x ′

y

]
+ 2t (t − 1)x ′

y′

y2 .

The existence of such a 2 is a consequence of the Picard–Fuchs equation. Using the derivation ∂ on K ,
we can lift any K -rational point P ∈ E(K ) canonically to J 2 E(K ), and this defines a homomorphism
∇ : E(K )→ J 2 E(K ). We emphasize that ∇ is merely a map on K -rational points and does not come
from a map of schemes. The composition 2 ◦∇ : E(K )→ Ga(K ) is then a group homomorphism of
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K -points. Note that the torsion points of E(K ) are contained in the kernel of 2 since Ga(K ) is torsion
free. Such a 2 was used by Manin [1963] to give a proof of the Lang–Mordell conjecture for abelian
varieties over function fields. Later Buium [1992] gave a different proof, using other methods, but still
using the Manin map.

The theory of arithmetic jet spaces, as developed by Buium, proceeds similarly. Derivations ∂ are
replaced by what are known as π-derivations δ. They naturally arise from the theory of π-typical Witt
vectors. For instance, when our base ring R is an unramified extension of the ring of p-adic integers Zp,
for a fixed prime π = p, the Fermat quotient operator δx = (φ(x)− x p)/p is the unique p-derivation,
where the endomorphism φ : R→ R is the lift of the p-th power Frobenius endomorphism of R/pR. In
analogy with differential algebra, one can define the n-th order jet space J n E of an elliptic curve E over
R to be the (π -adic) formal scheme over R with functor of points

(J n E)(C)= HomR(Spec Wn(C), E),

where Wn(C) is the ring of π-typical Witt vectors of length n + 1, which we view as the arithmetic
analogue of C[t]/(tn+1). The jet space J n E is also known as the Greenberg transform. As with the
differential jet space, it has relative dimension n+ 1 over the base, in this case Spf R.

Then one can define Xn(E) to be the R-module of all group-scheme homomorphisms from J n E to
the π-adic formal scheme Ĝa. Let X∞(E) be the direct limit of the Xn(E). Now the usual Frobenius
operator on Witt vectors induces a canonical Frobenius morphism φ : J n+1 E → J n E lying over the
endomorphism φ of Spf R. Hence pulling back morphisms via φ as 2 7→ φ∗2, endows X∞(E) with an
action of φ∗ and hence makes X∞(E) into a left module over the twisted polynomial ring R{φ∗} with
commutation law φ∗ · r = φ(r) ·φ∗. Buium [1995] studied the structure of X∞(E). Putting K = R

[ 1
p

]
,

he showed that X∞(E)⊗R K is freely generated by a single element as a K {φ∗}-module. This element
is of order 2 unless E has a Frobenius lift (in particular is a canonical lift of an ordinary curve), in which
case it is of order 1. It is the arithmetic analogue of the Manin character.

In this paper, we study the function-field analogue of Buium’s theory. We emphasize that we take
the function-field analogue in every possible sense. So instead of looking at characters J n E→ Ĝa of
Z-module schemes over Zp, where the Z-module scheme E is an elliptic curve over Zp and J n E is its
p-typical arithmetic jet space defined above, we will look at, for example, characters J n E → Ĝa of
(t-adically formal) Fq [t]-module schemes over Fq [[t]], where E is a Drinfeld Fq [t]-module, Ĝa is the
additive group with the tautological Fq [t]-module structure, and J n E is its function-field arithmetic jet
space — in other words, the Greenberg transform but with “t-typical” Witt vectors. The most important
result in this paper is the construction of a canonical F-crystal H(E) which comes with a Hodge-type
filtration and a morphism H(E)→ HdR(E) to the usual de Rham cohomology preserving the filtration.
As a consequence of the methods that go into the construction of H(E), we also prove that X∞(E) is
freely generated by a single element as an R{φ∗}-module, which is a stronger, integral version of the
equal-characteristic analogue of Buium’s result. Here, we would like to emphasize that all the fundamental
principles that go into our approach also work for p-adic elliptic curves.
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Before we describe our main results in detail, we wish to fix a few notations. Let Fq be the finite field
with q elements and A is the coordinate ring of X\{∞}, where X is a projective, geometrically connected,
smooth curve over Fq and ∞ a Fq-point on it. Let p be a fixed maximal ideal of A, and let π be an
element of p \ p2. Let R be an A-algebra which is a complete discrete valuation ring with maximal ideal
πR and which has a lift φ : R→ R of the q̂-power Frobenius from R/πR, where q̂ = |A/p|. Then one
can consider the operator on R given by δx = (φ(x)− x q̂)/π . It is called the π -derivation associated to φ.

Then as in the mixed-characteristic case above, one can define the t-typical Witt vectors and hence the
t-typical arithmetic jet space functor. For any (formal) A-module scheme E over R, the jet space also
J n E has a natural (formal) A-module-scheme structure. However, we would like to remark here that for
all n ≥ 1, the J n E are not abelian Anderson A-modules (as defined in [Hartl 2017, 1.2]). Then we let
Xn(E) denote the set of A-linear differential characters of order n, that is, the set of homomorphisms
J n E→ Ĝa of (formal) A-module schemes over R. Finally, we form their direct limit X∞(E), which is
naturally an R{φ∗}-module, as above.

We say E splits at m if Xm(E) 6= {0} but Xi (E) = {0} for all 0 ≤ i ≤ m − 1. Then we show that
m satisfies 1 ≤ m ≤ r , where r is the rank of E , and that Xm(E) is a free R-module with a canonical
basis element 2m ∈ Xm(E), depending only on our chosen coordinate on E . In the case when the rank r
is 2, we have m = 2 unless E admits a lift of Frobenius compatible with the A-module structure on E ,
in which case m = 1. Then our first main theorem is a strengthened version of the equal-characteristic
analogue of Buium’s result [1995].

Theorem 1.1. Let E be a Drinfeld module that splits at m. Then the R-module Xm(E) is free of rank 1 and
it freely generates X∞(E) as an R{φ∗}-module in the sense that the canonical map R{φ∗}⊗R Xm(E)→
X∞(E) is an isomorphism.

Let us now proceed to our second result. Let u : J n E → E be the usual projection map and put
N n
= ker u. Since u is A-linear, N n is a formal A-module scheme of relative dimension n over Spf R.

For each n ≥ 1, we show in Proposition 7.2 that there is a lift of Frobenius f : N n+1
→ N n making the

system {N n
} into a prolongation sequence with respect the obvious projection map u : N n+1

→ N n . We
call f the lateral Frobenius. However, f is not compatible with i and φ : J n+1 E→ J n E in the obvious
way, that is, it is not true that φ ◦ i = i ◦ f holds. In fact, we can not expect it to be true because that would
induce an A-linear lift of Frobenius on E which is not the case to start with. Instead we have

φ2
◦ i = φ ◦ i ◦ f.

In Section 9, we construct a canonical F-crystal attached to E . The F-crystal, denoted H(E), is an
R-module which has a semilinear operator f∗ (induced from f) on it and is of rank m, which we emphasize
can be strictly smaller than r . (By the term F-crystal, we mean only a free R-module of finite rank
equipped with a semilinear operator F . We do not assume F is injective, although on H(E) this will be
true generically. The reader can refer to [Laumon 1996, §2.4].) The module H(E) also has a Hodge-type
filtration and canonically maps to the de Rham cohomology of E , with its Hodge filtration.
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Theorem 1.2. There is a canonical map between exact sequences

0 // Xm(E) //

ϒ

��

H(E) //

8

��

I(E) //
� _

��

0

0 // Lie(E)∗ // HdR(E) // Ext(E, Ĝa) // 0

Moreover, the operator f∗ on H(E) descends to its image under 8.

The definitions of the maps ϒ and 8 are given in (9-7), and the proof is given in Section 9B. There
is a close connection between these two theorems — in fact, our proof of Theorem 1.1 goes by way of
Theorem 1.2.

Finally, we conclude the paper with some explicit computations of the structure constants of the
F-crystal H(E), which are new differential modular forms.

To a Drinfeld module E , the crystalline theory also attaches an F-crystal Hcrys(E). It appears that our
H(E) has subtle connections with Hcrys(E), but it also appears that any such connection would be indirect.
This is because H(E), unlike Hcrys(E), has a fundamentally differential-algebraic nature in that it lies
not over a point of the moduli space of Drinfeld modules but over a point of the jet space of the moduli
space. For instance, the computations in Section 10 show the structure constants of H(E) do involve the
higher π -derivatives of the structure constants of the Drinfeld module. The phenomenon of π -differential
invariants depending on higher π-derivatives of modular parameters in the mixed-characteristic setting
can be found in [Borger and Saha 2017a; Buium 1995; Buium and Saha 2011; 2012a; 2012b; 2014].

It would be interesting to understand the exact nature of the relationship between H(E) and the
crystalline cohomology groups, as well as the étale cohomology groups and the other constructions in
π -adic Hodge theory. This is all the more true because, as we remarked before, the techniques developed
in this paper have analogues for p-adic elliptic curves [Borger and Saha 2017a], and as a result, we do
obtain an analogous construction of the F-crystal H(E) for elliptic curves.

2. Notation

Let us fix some notation which will hold throughout the paper. Let q = ph where p is a prime and h ≥ 1.
Let X be a projective, geometrically connected, smooth curve over Fq . Fix an Fq -rational point∞ on X .
Let A denote the Dedekind domain O(X \ {∞}). Let p be a maximal ideal of A, and let Â denote the
p-adic completion of A. Let t be an element of p \ p2, and let π denote its image in Â. Then π generates
the maximal ideal p̂ of Â. Let k denote the residue field A/p and let q̂ denote its cardinality. So, for
example, if A = Fq [u] and p= (t), where t ∈ Fq [u] is an irreducible polynomial, then q̂ = qdeg(t). Note
that the quotient map Â→ k has a unique section. Thus Â is not just an Fq -algebra but also canonically a
k-algebra.

Now let R be an Â-algebra which is p-adically complete and flat, or equivalently π -torsion free. Thus
the composition

θ : A→ Â→ R (2-1)
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is injective (assuming R 6= {0}) and hence one says that θ is of generic characteristic. Let us also fix an
Â-algebra endomorphism φ : R→ R which lifts the q̂-power Frobenius modulo pR:

φ(x)≡ x q̂ mod pR.

Do note that the identity map on Â does indeed lift the q̂-power Frobenius on Â/p̂.
For our main results, R will in the end be a discrete valuation ring, most importantly the completion

Fq [[π ]] of the maximal unramified extension of Â, where φ satisfies φ(c)= cq̂ for c ∈ Fq and φ(π)= π .
So the reader may assume this from the start. (Also note that not all rings R admit such a Frobenius lift;
so the existence of φ does place a restriction on R.) But some form of our results should hold in general,
and with essentially the same proofs. This is of some interest, for instance when R is the coordinate ring
of the ordinary locus of the moduli space of Drinfeld modules of a given rank. (For the representability
of Drinfeld modular varieties, see Laumon’s book [1996, Theorem 1.4.1].) With an eye to the future, we
have not assumed that R is a discrete valuation ring where it is easily avoided, in Sections 3–7.

Let K denote R
[

f rac1π
]
, and for any R-module M write MK = K ⊗R M . Finally, let S denote Spf R.

3. Function-field Witt vectors

Witt vectors over Dedekind domains with finite residue fields were introduced in [Borger 2011a]. We
will only work over Â, which is the ring of integers of a local field of characteristic p, and here they
were introduced earlier in [Drinfeld 1976]. The basic results can be developed exactly as in any of the
usual developments of the p-typical Witt vectors. The only difference is that in all formulas any p in a
coefficient is replaced with a π and any p in an exponent is replaced with a q̂ .

3A. Frobenius lifts and π -derivations. Let B be an R-algebra, and let C be a B-algebra with structure
map u : B→C . In this paper, a ring homomorphism ψ : B→C will be called a lift of Frobenius (relative
to u) if it satisfies the following:

(1) The reduction mod π of ψ is the q̂-power Frobenius relative to u, that is, ψ(x)≡ u(x)q̂ mod πC .

(2) The restriction of ψ to R coincides with the fixed φ on R, that is, the following diagram commutes

B
ψ
// C

R
φ
//

OO

R

OO

A π-derivation δ from B to C means a set-theoretic map δ : B → C satisfying the following for all
x, y ∈ B

δ(x + y)= δ(x)+ δ(y) and δ(xy)= u(x)q̂δ(y)+ δ(x)u(y)q̂ +πδ(x)δ(y)
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such that for all r ∈ R, we have

δ(r)=
φ(r)− r q̂

π
.

When C = B and u is the identity map, we will call this simply a π -derivation on B.
It follows that the map φ : B→ C defined as

φ(x) := u(x)q̂ +πδ(x)

is a lift of Frobenius in the sense above. On the other hand, for any flat R-algebra B with a lift of
Frobenius φ, one can define the π -derivation δ(x)= (φ(x)− x q̂)/π for all x ∈ B.

Note that this definition depends on the choice of uniformizer π , but in a transparent way: if π ′ is
another uniformizer, then δ(x)π/π ′ is a π ′-derivation. This correspondence induces a bijection between
π -derivations B→ C and π ′-derivations B→ C .

3B. Witt vectors. We will present three different points of view on function-field Witt vectors, all parallel
to the mixed characteristic case. But there is perhaps one unfamiliar element below, which is that we will
work relative to our general base R, and it already has a lift of Frobenius. The consequence is that we
need to pay attention to certain twists of the scalars by Frobenius, which are invisible over the absolute
base R = Â. However this unfamiliar element has nothing to do with the difference between mixed and
equal characteristic and only with the difference between the relative and the absolute setting.

Let B be an R-algebra with structure map u : R→ B.

(1) The ring W (B) of π-typical Witt vectors can be defined as the unique (up to unique isomorphism)
R-algebra W (B) with a π-derivation δ on W (B) and an R-algebra homomorphism W (B)→ B such
that, given any R-algebra C with a π -derivation δ on it and an R-algebra map f : C→ B, there exists a
unique R-algebra homomorphism g : C→W (B) such that the diagram

W (B)

��

B C
f

oo

g
bb

commutes and g ◦ δ = δ ◦ g. Thus W is the right adjoint of the forgetful functor from R-algebras with
π-derivation to R-algebras. For details, see Section 1 of [Borger 2011a]. This approach follows that of
[Joyal 1985] to the usual p-typical Witt vectors.

(2) If we restrict to flat R-algebras B, then we can ignore the concept of π -derivation and define W (B)
simply by expressing the universal property above in terms of Frobenius lifts, as follows. Given a flat
R-algebra B, the ring W (B) is the unique (up to unique isomorphism) flat R-algebra W (B) with a lift of
Frobenius (in the sense above) F :W (B)→W (B) and an R-algebra homomorphism W (B)→ B such
that for any flat R-algebra C with a lift of Frobenius φ on it and an R-algebra map f : C → B, there
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exists a unique R-algebra homomorphism g : C→W (B) such that the diagram

W (B)

��

B C
f

oo

g
bb

commutes and g ◦φ = F ◦ g.

(3) Finally, returning to the case of general R-algebras B, one can also define Witt vectors in terms
of the Witt polynomials. For each n ≥ 0 let us define Bφ

n
to be the R-algebra with structure map

R φn
−→ R u

−→ B and define the ghost rings to be the product R-algebras
∏n
φ B = B× Bφ×· · ·× Bφ

n
and∏

∞

φ B = B× Bφ × · · · . Then for all n ≥ 1 there exists a restriction, or truncation, map Tw :
∏n
φ B→∏n−1

φ B given by Tw(w0, · · · , wn) = (w0, · · · , wn−1). We also have the left shift Frobenius operators
Fw :

∏n
φ B→

∏n−1
φ B given by Fw(w0, . . . , wn)= (w1, . . . , wn). Note that Tw is an R-algebra morphism,

but Fw lies over the Frobenius endomorphism φ of R.
Now as sets define

Wn(B)= Bn+1, (3-1)

and define the set map w :Wn(B)→
∏n
φ B by w(x0, . . . , xn)= (w0, . . . , wn) where

wi = x q̂ i

0 +πx q̂ i−1

1 + · · ·+π i xi (3-2)

are the Witt polynomials. The map w is known as the ghost map. (Do note that under the traditional
indexing, used in many sources going back to Witt [1937], our Wn would be denoted Wn+1.) We can
then define the ring Wn(B), the ring of truncated π -typical Witt vectors, by the following theorem as in
the p-typical case [Hesselholt 2015, Proposition 1.2].

Theorem 3.1. For each n ≥ 0, there exists a unique functorial R-algebra structure on Wn(B) such that
w becomes a natural transformation of functors of R-algebras.

Note that, unlike with Witt vectors in mixed characteristic, addition for function-field Witt vectors is
performed componentwise. This is because the Witt polynomials (3-2) are additive. This might appear to
defeat the whole point of Witt vectors and arithmetic jet spaces. But this is not so. The reason is that
while the additive structure is the componentwise one, the A-module structure is not. So the difference
is only that, unlike in mixed characteristic where A = Z, a group structure is weaker than A-module
structure. In fact, because the Witt polynomials are k-linear, the k-vector space structure on Wn(B) is the
componentwise one. This is just like with the p-typical Witt vectors, where multiplication by roots of
x p
− x can be performed componentwise.
For the convenience of the reader, we give some examples the proofs of which we leave as exercises.

If the structure map A→ B factors through A/p and B is perfect, then multiplication is given by the
formula

(x0, x1, . . .) · (y0, y1, . . .)= (z0, z1, . . .), where zn =
∑

i+ j=n

x q̂ j

i yq̂ i

j .
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For example, if B = R = A/p = Fq̂ , then W (B) is identified with the power-series ring B[[π ]], where
π corresponds to the Witt vector (0, 1, 0, 0, . . .). At the opposite extreme, where π is invertible in B,
the ghost map is an isomorphism. So W (B) is isomorphic to the product ring B × B × · · · and not a
power-series ring.

3C. Operations on Witt vectors. Now we recall some important operators on the Witt vectors. There
are the restriction, or truncation, maps T :Wn(B)→Wn−1(B) given by T (x0, . . . , xn)= (x0, . . . , xn−1).
Note that W (B)= lim

←−−
Wn(B). There is also the Frobenius ring homomorphism F :Wn(B)→Wn−1(B),

which can be described in terms of the ghost map. It is the unique map which is functorial in B and
makes the following diagram commutative

Wn(B)
w

//

F
��

∏n
φ B

Fw
��

Wn−1(B) w
//
∏n−1
φ Bn

(3-3)

As with the ghost components, T is an R-algebra map but F lies over the Frobenius endomorphism φ of R.
Next we have the Verschiebung V :Wn−1(B)→Wn(B) given by

V (x0, . . . , xn−1)= (0, x0, . . . , xn−1).

Let Vw :
∏n−1
φ B→

∏n
φ B be the additive map given by

Vw(w0, . . . , wn−1)= (0, πw0, . . . , πwn−1).

Then the Verschiebung V makes the following diagram commute:

Wn−1(B)
w
//

V
��

∏n−1
φ B

Vw
��

Wn(B) w
//
∏n
φ B

(3-4)

For all n ≥ 0 the Frobenius and the Verschiebung satisfy the identity

FV (x)= πx . (3-5)

The Verschiebung is not a ring homomorphism, but it is k-linear.
Finally, we have the multiplicative Teichmüller map [ ] : B→Wn(B) given by x 7→ [x] = (x, 0, 0, . . .).

Here in the function-field setting, [ ] is additive and even a homomorphism of k-algebras but is not a
homomorphism of A-algebras. This can be compared to the mixed-characteristic setting, where it is a
homomorphism of monoids but not a homomorphism of Z-algebras.
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3D. Computing the universal map to Witt vectors. Given an R-algebra C with a π -derivation δ :C→C
and an R-algebra map f : C→ B, we will now describe the universal lift g : C→W (B). The explicit
description of g leads us to Proposition 3.2 which is used in Section 10 in computations for Drinfeld
modules of rank 2. The reader may skip this subsection without breaking continuity till then.

It is enough to work in the case where both B and C are flat over R. Then the ghost map w :W (B)→∏
∞

φ B is injective. Consider the map [φ] : C →
∏
∞

φ C given by x 7→ (x, φ(x), φ2(x), . . .). Then we
have the following commutative diagram:

C
f ◦[φ]

zz

[φ]

��

g

{{

W (B) w
//

F
��

∏
∞

φ B

Fw
��

∏
∞

φ C
f

oo

Fw
��

W (B) w
//
∏
∞

φ B
∏
∞

φ C
f

oo

Thus the map f ◦ [φ] : C→
∏
∞

φ B factors through W (B) as our universal map g : C→W (B).
Let us now give an inductive description of the map g. Write

g(x)= (x0, x1, . . .) ∈W (B).

Then from the above diagram w ◦ g = f ◦ [φ]. Therefore the vector (x0, x1, . . .) is the unique solution to
the system of equations

x q̂n

0 +πx q̂n−1

1 + · · ·+πnxn = f (φn(x)), (3-6)

for n ≥ 0. For example, we have x0 = f (x) and x1 = f (δ(x)).
Now consider the case where B itself has a π-derivation, C = B, and f = 1. For any x ∈ B, let us

write x (n) := δn(x), or simply x ′ = δ(x), x ′′ = δ2(x) and so on.

Proposition 3.2. We have x0 = x , x1 = x ′ and x2 = x ′′+π q̂−2(x ′)q̂ .

Proof. As stated above, equalities x0 = x and x1 = x ′ follow immediately from (3-6). For n = 2, we have

x q̂2

0 +πx q̂
1 +π

2x2 = φ
2(x)

= φ(x q̂
+πx ′)

= φ(x)q̂ +πφ(x ′)

= x q̂2
+π q̂(x ′)q̂ +π((x ′)q̂ +πx ′′)

And therefore we have x2 = x ′′+π q̂−2(x ′)q̂ . �
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4. A-module schemes, jet spaces and preliminaries

An A-module scheme over S = Spf R is by definition a pair (E, ϕE), where E is a commutative group
object in the category of S-schemes and ϕE : A→End(E/S) is a ring map. (Here and below, by a scheme
over the formal scheme S, we mean a formal scheme formed from a compatible family of schemes over
the schemes Spec R/pn R.) Then the tangent space T0 E at the identity has two A-modules structures: one
coming by restriction of the usual R-module structure to A, and the other coming from differentiating ϕE .
We will say that (E, ϕE) is strict if these two A-module structures coincide, that is if the composition

A→ End(E/S)→ EndR(T0 E)

agrees with the composition

A θ
−→ R→ EndR(T0 E).

We say it is admissible if it is both strict and isomorphic to the additive group Ĝa= Ĝa/S as a group scheme.
We will denote this induced map to tangent space as θ : A→ R. (Note that it is best practice to require

only the isomorphism with Ĝa to exist locally on S. So below, our Drinfeld modules would more properly
be called coordinatized Drinfeld modules.)

A Drinfeld module (E, ϕE) of rank r is an admissible A-module scheme over S such that for each
nonzero a ∈ A, the group scheme ker(ϕE(a)) is finite flat of degree |a|r = q−rord∞(a) over S. (See [Gekeler
1990b, (1.4)] or [Laumon 1996, p. 4].)

Proposition 4.1. Let f be an endomorphism of the Fq-module scheme Ĝa/S over S. Then given any
coordinate x on E , the map f is of the form

f (x)=
∞∑

i=0

ai xq i
,

where f is a restricted power series, meaning ai → 0 π -adically as i→∞.

Proof. Let f ∈ Hom(Ĝa, Ĝa) be an additive endomorphism of Ĝa. Then f is given a restricted power
series

∑
i bi x i such that bi → 0 as i→∞. Since f is additive, we have bi = 0 unless i is a power of p.

Second, because f is Fq -linear, we have
∑

i bpi (cx)pi
= c

∑
i bpi x pi

for all c ∈ Fq . Considering the case
where c is a generator of F∗q , we see this implies bpi = 0 unless pi is a power of q . �

Let R{τ}ˆ be the subring of R{{τ}} consisting of (twisted) restricted power series. Then by Proposition 4.1,
the Fq -linear morphisms between two admissible A-module schemes E1 and E2 over Spf R are given in
coordinates by elements in R{τ }ˆ where τ acts as τ(x)= xq :

HomFq (E1, E2)= R{τ }ˆ. (4-1)

4A. Prolongation sequences and jet spaces. Let X and Y be schemes over S = Spf R. We say a pair
(u, δ) is a prolongation, and write Y (u,δ)

−−−→X , if u :Y→ X is a map of schemes over S and δ :OX→u∗OY
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is a π -derivation making the following diagram commute:

R // u∗OY

R

δ

OO

// OX

δ

OO

Following [Buium 2000], a prolongation sequence is a sequence of prolongations

Spf R (u,δ)
←−−− T 0 (u,δ)

←−−− T 1 (u,δ)
←−−− · · · ,

where each T n is a scheme over S. We will often use the notation T ∗ or {Tn}n≥0. Note that if the T n are
flat over Spf R then having a π -derivation δ is equivalent to having lifts of Frobenius φ : T n+1

→ T n .
Prolongation sequences form a category CS∗ , where a morphism f : T ∗→U∗ is a family of morphisms

f n
: T n
→U n commuting with both the u and δ, in the evident sense. This category has a final object S∗

given by Sn
= Spf R for all n, where each u is the identity and each δ is the given π -derivation on R.

For any scheme Y over S, for all n ≥ 0 we define the n-th jet space J n X (relative to S) as

J n X (Y ) := HomS(W ∗n (Y ), X)

where W ∗n (Y ) is defined in Section 10.3 of [Borger 2011b]. We will not define W ∗n (Y ) in full generality
here. Instead, we will define HomS(W ∗n (Y ), X) in the affine case, and that will be sufficient for the
purposes of this paper. Write X = Spf C and Y = Spf B. Then W ∗n (Y )= Spf Wn(B) and so J n X (B) is
the set of R-algebra homomorphisms C→Wn(B):

J n X (B)= HomR(C,Wn(B)). (4-2)

Then J ∗X := {J n X}n≥0 forms a prolongation sequence, called the canonical prolongation sequence.
As in the mixed-characteristic case [Buium 2000, Proposition 1.1], J ∗X satisfies the following universal
property — for any T ∗ ∈ CS∗ and X a scheme over S0, we have

Hom(T 0, X)= HomCS∗ (T
∗, J ∗X)

Let X be a scheme over S = Spf R. Define Xφn
by Xφn

(B) := X (Bφ
n
) for any R-algebra B. In other

words, Xφn
is X ×S,φn S, the pull-back of X under the map φn

: S→ S. Next define
n∏
φ

X = X ×S Xφ
×S · · · ×S Xφn

.

Then for any R-algebra B we have X
(∏n

φ B
)
= X (B)×S · · · ×S Xφn

(B). Thus the ghost map w in
Theorem 3.1 defines a map of S-schemes

w : J n X→
n∏
φ

X.

Note that w is injective when evaluated on points with coordinates in any flat R-algebra.
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The operators F and Fw in (3-3) induce maps φ and φw as follows

J n X w
//

φ

��

∏n
φ X

φw
��

J n−1 X
w
//
∏n−1
φ X

(4-3)

where φw is the left-shift operator given by

φw(w0, . . . , wn)= (φS(w1), . . . , φS(wn)),

and where φS : Xφi
→ Xφi−1

is the composition given in the following diagram:

Xφi ∼
// Xφi−1

×S,φ S

��

// Xφi−1

��

S
φ

// S.

(4-4)

Now let E be an A-module scheme over S with action map A ϕE−→ EndS(E). Then the functor it
represents takes values in A-modules, and hence so does the functor B 7→ E(Wn(B)). In this way, for each
n ≥ 0, the S-scheme J n E comes with an A-module structure. We denote it by ϕJ n E : A→ EndS(J n E).
Similarly, ϕE induces an A-linear structure ϕEφn on each Eφ

n
. In this case, it is easy to describe explicitly.

It is the componentwise one:

ϕ∏n
φ E(w0, . . . , wn)= (ϕE(w0), . . . , ϕEφn (wn)).

The ghost map w : J n E →
∏n
φ E and the truncation map u : J n E → J n−1 E homomorphisms of A-

module schemes over S. This is because they are given by applying the A-module scheme E to the
R-algebra maps w :Wn(B)→

∏n
φ B and T :Wn(B)→Wn−1(B). On the other hand, the Frobenius map

φ : J n E→ J n−1 E is a homomorphisms of A-module schemes lying over the Frobenius endomorphism
φ of S. In other words, the induced map J n E→ (J n−1 E)φ is a homomorphism of A-module schemes
over S.

4B. Coordinates on jet spaces. Given an isomorphism of S-schemes E → Ĝa, we have an induced
bijection, by (4-2),

(J n E)(B)−→∼ Wn(B). (4-5)

Now recall the bijection Wn(B)−→∼ Bn+1 of (3-1). Combining the two, we see that given a coordinate x
on an admissible A-module scheme E , we have a canonical system of coordinates (x0, . . . , xn) on J n E .
We will use these Witt coordinates without further comment. We emphasize once again that there are other
canonical systems of coordinates on J n E , for instance the Buium–Joyal coordinates denoted x, x ′, x ′′, . . ..
They are related by the formulas of Proposition 3.2. Each has their own advantages.
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We will now describe the above maps explicitly in the Buium–Joyal coordinates. Let O(E)= R[x]ˆ.
Then, for each n, O(J n E) = R[x, x ′, . . . , x (n)] and the corresponding algebra maps u∗ and φ∗ from
O(J n E)→O(J n+1 E) are given as follows, for all i :

u∗(x (i))= x (i),

φ∗(x (i))= (x (i))q̂ +πx (i+1). (4-6)

4C. Character groups. Let Ĝa denote the additive group over S, i.e., the formal spectrum of the π -adic
completion of R[x], with the tautological A-module structure ϕ

Ĝa
given by the usual multiplication of

scalars: ϕ
Ĝa
(a)= aτ 0. We will maintain this convention throughout the paper.

Given a prolongation sequence T ∗ we can define its shift T ∗+n by (T ∗+n) j
:= T n+ j for all j (as in

[Buium 2000, p. 106]).

Spf R (u,δ)
←−−− T n (u,δ)

←−−− T n+1
· · ·

We define a δ-morphism of order n from X to Y to be a morphism J ∗+n X → J ∗Y of prolongation
sequences. We define a character of order n, 2 : (E, ϕE)→ (Ĝa, ϕĜa

) to be a δ-morphism of order n

from E to Ĝa which is also a homomorphism of A-module objects. By the same argument as in the mixed
characteristic case [Buium 2000, Proposition 1.9], an order n character is equivalent to a homomorphism
2 : J n E→ Ĝa of A-module schemes over S. We denote the group of characters of order n by Xn(E).
So we have

Xn(E)= HomA(J n E, Ĝa),

which one could take as an alternative definition. Note that Xn(E) comes with an R-module structure
since Ĝa is an R-module scheme over S. Also the inverse system J n+1 E u

−→ J n E defines a directed
system

Xn(E) u∗
−→ Xn+1(E) u∗

−→· · ·

via pull back. Each morphism u∗ is injective because each u has a section (typically not A-linear). We
then define X∞(E) to be the R-module direct limit lim

−−→
Xn(E).

Similarly, precomposing with the Frobenius map φ : J n+1 E → J n E induces a Frobenius operator
φ : Xn(E)→ Xn+1(E). However since φ : J n+1 E→ J n E is not a morphism over Spf R but instead lies
over the Frobenius endomorphism φ of Spf R, some care is required. Consider the relative Frobenius
morphism φE/R , defined to be the unique morphism making the following diagram commute:

J n+1 E
φE/R

((

φ

))

$$

J n E ×(Spf R),φ Spf R

��

// J n E

��

Spf R
φ

// Spf R
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Then φE/R is a morphism of A-module formal schemes over Spf R. Now given a δ-character2 : J n E→ Ĝa,
define φ∗2 to be the composition

J n+1 E φE/R
−−−→ J n E ×(Spf R),φ Spf R 2×1

−−−→ Ĝa×(Spf R),φ Spf R ι
−→ Ĝa, (4-7)

where ι is the isomorphism of A-module schemes over S coming from the fact that Ĝa descends to Â as
an A-module scheme. For any R-algebra B, the induced morphism on B-points is

E(Wn+1(B)) E(F)
−−−→ E(Wn(B)φ)

2
φ
B−−−→ Bφ b 7→b

−−−→ B.

Note that this composition E(Wn+1(B))→ B is indeed a morphism of A-modules because identity map
Bφ→ B is A-linear, which is true because φ restricted to Â is the identity.

Thus we have an additive map Xn(E)→ Xn+1(E) given by 2 7→ φ∗2. Note that this map is not
R-linear. However, the map

φ∗ : Xn(E)→ Xn+1(E)φ, 2 7→ φ∗2

is R-linear, where Xn+1(E)φ denotes the abelian group Xn+1(E) with R-module structure defined by the
law r ·2 := φ(r)2. Taking direct limits in n, we obtain an R-linear map

X∞(E)→ X∞(E)φ, 2 7→ φ∗2.

In this way, X∞(E) is a left module over the twisted polynomial ring R{φ∗} with commutation law
φ∗r = φ(r)φ∗.

5. Admissible modules

Let (E, ϕE) be an admissible A-module scheme over S = Spf R. By (4-1), we can write

ϕE(t)=
∑

aiτ
i (5-1)

with ai ∈ R ai → 0, and a0 = π = θ(t). For brevity, we will typically write the pair (E, ϕE) as E . We
remind the reader that Ĝa implicitly has the tautological A-module structure defined in Section 4C.

The main purpose of this section is to establish some facts that will be used in the proof of Theorem 6.2
below. We emphasize that in this application E will not be a Drinfeld module.

Proposition 5.1. Any A-linear morphism f : E → G between admissible A-modules is determined
by the induced morphism on tangent spaces. More precisely, if we write ϕE(t) = πτ 0

+
∑

j≥1 a jτ
j ,

ϕG(t)= πτ 0
+
∑

j≥1 c jτ
j , and f =

∑
i biτ

i , then f is determined by b0, as follows:

br =
1

π −πqr

r−1∑
i=0

(bi a
q i

r−i − cr−i b
qr−i

i ).
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Proof. Because f is B-linear, we have(∑
i≥0

biτ
i
)(
πτ 0
+

∑
j≥1

a jτ
j
)
=

(
πτ 0
+

∑
j≥1

c jτ
j
)(∑

i≥0

biτ
i
)
.

Comparing the coefficients of τ r , we have

b0aq0

r + · · ·+ br−1aqr−1

1 + brπ
qr
= πbr + c1bq

r−1+ · · ·+ cr bqr

0 .

Therefore we have

br (π −π
qr
)=

r−1∑
i=0

(bi a
q i

r−i − cr−i b
qr−i

i ).

Since R is π -torsion free and 1−πqr
−1 is invertible for r ≥ 1, this determines each br uniquely in terms

of b0, . . . , br−1. Therefore b0 determines each br . �

Corollary 5.2. The R-module map R→ HomA(Ĝa, Ĝa) defined by b 7→ bτ 0 is an isomorphism.

Now consider the subset S†
⊂ R{τ }ˆ defined by

S†
:=

{∑
i≥0

biτ
i
∈ R{τ }ˆ | v(bi )≥ i, for all i and b0 ∈ R∗

}
. (5-2)

Here, and below, we write v(b) for the minimal i such that b ∈ pi R. (Note that v may not be a valuation
if R is not a discrete valuation ring.)

Proposition 5.3. S† is a group under composition.

Note that a similar group of automorphisms appears in [Dupuy 2014, §4.3].

Proof. The fact that S† is a submonoid of R{τ }ˆ under composition follows immediately from the law
bτ i
◦ cτ j

= bcq i
τ i+ j and linearity. Indeed if v(b)≥ i and v(c)≥ j , then v(bcq i

)≥ i + j .
Now let us show that any element f =

∑
biτ

i
∈ S† has an inverse under composition. Let g =∑

∞

n=0 cnτ
n , where c0 = b−1

0 and we define inductively cn = −b−qn

0 (c0bn + c1bq
n−1 + · · · + cn−1bqn−1

1 ).
Then it is easy to check that g ◦ f = 1. Take n ≥ 1 and assume v(ci )≥ i for all i = 0, . . . , n− 1. Then it
is enough to show v(cn)≥ n. We have v(cn)≥min{v(ci b

q i

n−i ) | i = 0, . . . , n− 1}. Now

v(ci b
q i

n−i )= v(ci )+ q iv(bn−i )= i + q i (n− i)≥ i + (n− i)= n.

Therefore the left inverse g of f lies in S†.
Now consider g′ =

∑
∞

n=0 dnτ
n
∈ R{{τ }}, where d0 = b−1

0 and we inductively define

dn =−b−1
0 (b1dq1

n−1+ b2dq2

n−2+ · · ·+ bndqn

0 ).

Then as above, one can easily check that f ◦ g′ = 1 and hence it is a right inverse of f in R{{τ }}. But
using the associativity property of R{{τ }} we get g′ = (g ◦ f )◦ g′ = g ◦ ( f ◦ g′)= g and hence g is both a
left and right inverse of f in S†. �
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Proposition 5.4. Let B denote the subring Fq [t] ⊆ A. Let f : E→ G be a B-linear homomorphism of
admissible A-module schemes over Spf R. Then f is A-linear.

Proof. Given any element a ∈ A, we will show ϕG(a) ◦ f = f ◦ ϕE(a). Both sides are B-linear
homomorphisms E→ G; indeed, f is B-linear by assumption, and both ϕG(a) and ϕE(a) are B-linear
because A is commutative. Furthermore, on tangent spaces, ϕG(a) ◦ f is multiplication by a f ′(0), and
f ◦ϕE(a) is multiplication by f ′(0)a; this is because the A-module schemes are admissible. Thus the
two morphisms agree on tangent spaces and therefore they agree, by Proposition 5.1. �

In other words, the forgetful functor from admissible A-modules schemes over R to admissible B-
module schemes over R is fully faithful. This remains true if we allow B to be not just Fq [t] but any
sub-Fq -algebra of A strictly containing Fq .

Lemma 5.5. If q ≥ 3, then q i
− q i− j

− j − 1≥ 0 for all j = 1, . . . , i .

Proof. Consider f (x) = q i
− q i−x

− x − 1, for 1 ≤ x ≤ i . Then f (1) ≥ 0 since q ≥ 3. Now f ′(x) =
q i−x ln q − 1. Since ln q > 1 for q ≥ 3, we have f ′(x)≥ 0 for all 1≤ x ≤ i and hence f (x)≥ 0 for all
1≤ x ≤ i and we are done. �

Lemma 5.6. For q = 2 and i ≥ 2, q i
− i − 1≥ 1.

Proof. Consider the function h(x)= qx
− x for x ≥ 2. Then h′(x)= qx ln q − 1= ln qqx

− 1> 0 since
x ≥ 2. Therefore h is a strictly increasing function and hence the minimum is attained at i=2. Therefore
q i
− i ≥ q2

− 2= 2 and the result follows. �

Lemma 5.7. For q = 2 and i ≥ 2 and j = 1, . . . , i

q i
− q i− j

− j ≥ 1

Proof. For j = i , the result follows from Lemma 5.6. So we may assume 1 ≤ j ≤ i − 1. Let H(x) :=
q i
− q i−x

− x where 1≤ x ≤ i − 1. Then H ′(x)= q i−x ln q − 1. Since x ≤ i − 1 implies i − x ≥ 1 and
hence q i−x

≥ q . Therefore we get

H ′(x)≥ q ln q − 1= ln qq
− 1= ln 4− 1> 0,

where the last equality follows since q = 2.
Hence H(x) is a strictly increasing function within the interval 1≤ x ≤ i − 1. Therefore the minimum

is achieved at x = 1 and we have

q i
− q i− j

− j ≥ q i
− q i−1

− 1

= q i−1(q − 1)− 1

= q i−1
− 1 (because q = 2)

≥ q − 1 (since i ≥ 2)

= 1 �
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Theorem 5.8. Suppose v(ai ) ≥ q i
− 1 for all i ≥ 1, where the ai are as in (5-1). Then there exists a

unique homomorphism f : E→ Ĝa of A-module schemes over S, written f =
∑
∞

i=0 biτ
i in coordinates,

with b0 = 1. Moreover,

(1) if q ≥ 3, then v(bi )≥ i and f is an isomorphism of A-module schemes;

(2) if q = 2, then v(bi )≥ i − 1.

Proof. Let f =
∑
∞

i=0 biτ
i , bi ∈ R, where b0 = 1 and

bi = π
−1(1−πq i

−1)−1
i∑

j=1

bi− j a
q i− j

j . (5-3)

Indeed, this is the only possible choice for f , by Corollary 5.2. Conversely, it is easy to see that f satisfies
ϕ(t) ◦ f = f ◦ϕ(t), which implies ϕ(b) ◦ f = f ◦ϕ(b) for all b ∈ B.

(1) Assume q ≥ 3. Let us now show v(bi )≥ i . For i = 0, it is clear. For i ≥ 1, we may assume by induction
that v(b j )≥ j for all j = 1, . . . , i − 1. By (5-3), we have v(bi )≥min{v(bi− j a

q i− j

j )− 1 | j = 1, . . . , i}.
Now

v(bi− j a
q i− j

j )− 1≥ v(bi− j )+ v(a
q i− j

j )− 1

≥ i − j + q i− j (q j
− 1)− 1

= i − j + q i
− q i− j

− 1

≥ i (by Lemma 5.5).

Therefore we have v(bi )≥ i .
Therefore f is a restricted power series and hence defines a map between π -formal schemes f : E→ Ĝa

which is A-linear.
Let us show that f is an isomorphism. By Proposition 5.3, there exists a linear map g : Ĝa → E

such that f ◦ g = g ◦ f = 1. Then g is also A-linear for formal reasons: for any a ∈ A, we have
f (g(ϕ(a)x))= ϕ(a)x = f (ϕ(a)g(x)). Since f is injective, we must have g(ϕ(a)x)= ϕ(a)g(x) which
shows the A-linearity of g and we are done.

(2) Now assume q = 2. We want to show that v(bi ) ≥ i − 1 for all i ≥ 1. For i = 1, we have
b1 = π

−1(1−πq−1)−1(b0a1) and hence v(b1)≥ q − 1− 1= 0. For i ≥ 2 and j = 1, . . . , i ,

v(bi− j a
q i− j

j )= v(bi− j )+ q i− jv(a j )≥ (i − j − 1)+ (q i
− q i− j ) (since v(a j )≥ q j

− 1).

Hence to show v(bi )≥ i−1, it is enough to show that q i
−q i− j

− j ≥ 0 and that follows from Lemma 5.7.
�

The remainder of this section consists of an interesting observation which will not however be used in
this paper. Letting Gfor

a denote the formal completion of Ĝa along the identity section Spf R→ Ĝa. Thus
we have Gfor

a = Spf R[[x]], where R[[x]] has the (π, x)-adic topology. We want to extend the A-action on
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Gfor
a to an action of Â:

Â→ EndFq (G
for
a /S). (5-4)

Recall that EndFq (G
for
a ) agrees with the noncommutative power-series ring R{{τ }}, with commutation law

τb = bqτ for b ∈ R. (See for example [Drinfeld 1974, §2].) Therefore for any a ∈ A, we can write

ϕ(a)=
∑

j

α jτ
j

where α j ∈ R. Each α j can be thought of as a function of a ∈ A. To construct (5-4) it is enough to prove
that these functions are p-adically continuous, which also implies that such an extension to a continuous
Â-action is unique. This is a consequence of the following result.

Proposition 5.9. If a ∈ pn , then α j ∈ p
n− j R.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose a ∈ pn+1 and write
a = πb, where b ∈ pn . Let ϕ(b)=

∑
j β jτ

j and ϕ(π)=
∑

k γkτ
k . Then we have∑

j

α jτ
j
= ϕ(a)= ϕ(π)ϕ(b)=

∑
k

γkτ
k
∑

j

β jτ
j
=

∑
k, j

γkβ
qk

j τ
j+k

and hence α j =
∑ j

k=0 γkβ
qk

j−k . So to show α j ∈ p
n+1− j R, it suffices to show

γkβ
qk

j−k ∈ p
n+1− j R, for 0≤ k ≤ j ≤ n+ 1.

By induction we have β j−k ∈p
n−( j−k)R and hence γkβ

qk

j−k ∈p
(n−( j−k))qk

R. Since we have (n−( j−k))qk
≥

n− j + 1 for k ≥ 1, we then have γkβ
qk

j−k ∈ p
n− j+1 R. For k = 0, because ϕ is a strict module structure,

we have γ0 = π and hence γ0β j ∈ πp
n− j R = p1+n− j R. �

6. Characters of Nn — upper bounds

We continue to let E denote the admissible A-module scheme over S of (5-1). Let N n denote the kernel
of the projection u : J n E→ E . Thus we have a short exact sequence of A-module schemes over S:

0→ N n
→ J n E u

−→ E→ 0

The purpose of this section is to analyze the character group of N n . In the applications of this section, E
will eventually be a Drinfeld module, but we do not need to assume this yet.

Let us fix a coordinate x on E , and denote the corresponding Buium–Joyal coordinates on J n E by
x, x ′, . . . , x (n). From now on, let us abusively write φ for the Frobenius pull back φ∗ of (4-6).

Lemma 6.1. For all n ≥ 0, φn(x)= πnx (n)+ O(n− 1), where O(n− 1) are elements of order less than
or equal to n− 1.
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Proof. For n = 0, it is clear. For n ≥ 1, we have by induction

φn(x)= φ(πn−1x (n−1)
+ O(n− 2))

= πn−1φ(x (n−1))+ O(n− 1)

= πn−1(πδ(x (n−1))+ (x (n−1))q̂)+ O(n− 1)

= πnx (n)+ O(n− 1). �

Theorem 6.2. For any n ≥ 1, let H n denote the kernel of the projection u : J n E→ J n−1 E. Then there is
a unique A-linear homomorphism ϑn : H n

→ Ĝa of the form

ϑn(x (n))= x (n)+ b1(x (n))q + b2(x (n))q
2
+ · · · ,

where bi ∈ R. Moreover, ϑn freely generates HomA(H n, Ĝa) as an R-module, and

(1) if q ≥ 3, then v(bi )≥ i and ϑn is an isomorphism of A-module schemes;

(2) if q = 2, then v(bi )≥ i − 1.

Proof. First observe that we have

ϕE(t)φn(x)= φn(ϕE(t))= φn(π)φn(x)+φn(a1)φ
n(x)q + · · ·+φn(ar )φ

n(x)q
r
.

Second, the subscheme H n is defined by setting the x, x ′, . . . , x (n−1) coordinates to 0. Combining these
two observations and Lemma 6.1, we obtain

πnϕE(t)x (n) = ππnx (n)+φn(a1)(π
nx (n))q + · · ·+φn(ar )(π

nx (n))q
r

and hence

ϕE(t)x (n) = πx (n)+φn(a1)π
n(q−1)(x (n))q + · · ·+φn(ar )π

n(qr
−1)(x (n))q

r
.

But then by Theorem 5.8, there is a unique A-linear homomorphism ϑn of the kind desired for the
respective cases of q ≥ 3 and q = 2. Moreover by Proposition 5.1, HomA(H n, Ĝa) is freely generated by
ϑn as an R-module. Finally, by Proposition 5.3, ϑn an isomorphism when q ≥ 3. �

Now consider the exact sequence

0→ H n
→ N n

→ N n−1
→ 0

and the corresponding long exact sequence

0→ HomA(N n−1, Ĝa)→ HomA(N n, Ĝa)→ HomA(H n, Ĝa)→ · · · .

The image of the map HomA(N n, Ĝa)→ HomA(H n, Ĝa) can be regarded as a sub-R-module of R, by
Theorem 6.2 above. Therefore in the R-module filtration

HomA(N n, Ĝa)⊇ HomA(N n−1, Ĝa)⊇ · · · ⊇ HomA(N 0, Ĝa)= 0,

each associated graded piece is canonically a submodule of R.
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In particular, we have the following:

Proposition 6.3. If R is a discrete valuation ring, then HomA(N n, Ĝa) is a free R-module of rank at
most n.

7. The lateral Frobenius and characters of Nn

We continue to let E denote the admissible A-module scheme over S of (5-1).
Now we will construct a family of important operators which we call the lateral Frobenius operators.

That is, for all n, we will construct maps f : N n+1
→ N n which are lifts of Frobenius relative to the

projections u : N n+1
→ N n and hence make the system {N n

}
∞

n=0 into a prolongation sequence. Do note
that a priori the A-modules N n do not form a prolongation sequence to start with.

Let N∞ denote the inverse limit the projection maps u : N n+1
→ N n . (Here and below, we take inverse

limits in the category of presheaves on R-algebras in which π is nilpotent. They are representable by affine
formal schemes.) Then the maps f induce a lift of Frobenius on N∞. Similarly on J∞E = limn J n E , the
maps φ induce a lift of Frobenius. Now for all n ≥ 1, the inclusion N n ↪→ J n E is a closed immersion
and hence induces a closed immersion of schemes N∞ ↪→ J∞E . But f is not obtained by restricting φ
to N∞. In fact, φ does not even preserve N∞. So f is an interesting operator which is distinct from φ,
although it does satisfy a certain relation with φ which we will explain below.

Here we would also like to remark that the lateral Frobenius can also be constructed in the mixed-
characteristic setting of p-jet spaces of arbitrary schemes [Borger and Saha 2017b], but it is much more
involved.

Let F :Wn→Wn−1 and V :Wn−1→Wn denote the Frobenius and Verschiebung maps of Section 3C.
Let us arrange them in the following diagram, although it does not commute.

Wn
V
//

F
��

Wn+1

F
��

Wn−1
V

// Wn

F
��

Wn−1

(7-1)

Rather the following is true

F FV = FV F. (7-2)

Indeed, the operator FV is multiplication by π = θ(t), and F is a morphism of A-algebras.
We can reexpress this in terms of jet spaces using the natural identifications J n E 'Wn and N n

'Wn−1.
For jet spaces, let us switch to the notation i := V and φ := F for the right column of (7-1). Then we
define the lateral Frobenius

f : N n+1
→ N n



Differential characters of Drinfeld modules and de Rham cohomology 817

simply to be the map F :Wn→Wn−1 in left column. Thus (7-1) becomes the following:

N n+1 i
//

f
��

J n+1 E

φ

��

N n i
// J n E

φ
��

J n−1 E

(7-3)

Note again that this diagram is not commutative. However rewriting (7-2) in the above notation, we do have

φ◦2 ◦ i = φ ◦ i ◦ f. (7-4)

We emphasize that when we use the notation N n , the A-module structure will always be understood to
be the one that makes i an A-linear morphism. It should not be confused with the A-module structure
coming by transport of structure from the isomorphism N n

'Wn−1 = J n−1 E of group schemes.
We also emphasize that while i is a morphism of S-schemes, the vertical arrows φ and f in the diagram

above lie over the Frobenius endomorphism φ of S, rather than the identity morphism.

Lemma 7.1. For any torsion-free R-algebra B, the map FV :Wn(B)→Wn(B) is injective.

Proof. Since B is torsion free, the ghost map Wn(B)→ B × · · · × B is injective, and hence Wn(B) is
torsion free. The result then follows because FV is multiplication by π . �

Proposition 7.2. The morphism f : N n
→ N n−1 is A-linear.

Proof. We want to show that for any a ∈ A, the two morphisms N n+1
→ N n given by x 7→ af(x) and

by x 7→ f(ax) are equal. Since the N i are flat over R, it is enough to consider B-points x , where B is a
π -torsion free R-algebra.

Since both φ and i are A-linear morphisms, so are φi and φ2i . Therefore we have

φi(f(ax))= φ2i(ax)= aφ2i(x)= aφi(f(x))= φi(af(x)).

Thus the points f(ax) and af(x) of N n(B) become equal after the application of φi . Now translating
from the notation of diagram (7-3) to that of diagram (7-1), we have two elements of Wn−1(B) which
become equal after applying FV . But since FV = π and B is torsion free, Lemma 7.1 implies these two
elements must be equal. �

For 0≤ i ≤ k− 1, let us abusively write f◦i for the composition

f◦i : N n

i times︷ ︸︸ ︷
f ◦ · · · ◦ f
−−−→ N n−i u

−→ N n−k .

Then for all 1≤ i ≤ n, we define the canonical characters 9i ∈HomA(N n, Ĝa) (associated to our implicit
coordinate x on E) by

9i = ϑ1 ◦ f
◦i−1 (7-5)
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where ϑ1 is as in Theorem 6.2. Clearly, the maps 9i are A-linear since each one of the maps above is.
Finally, given a character 9 ∈ HomA(N n−1, Ĝa), we will write f∗9 =9 ◦ f. Note that f∗ is semilinear:
for λ ∈ R, we have

f∗(λ9)= φ(λ) f∗(9). (7-6)

The points of J n E contained in N n are those with Witt coordinates of the form (0, x1, x2, . . . , xn).
We will use the abbreviated coordinates (x1, . . . , xn) on N n instead.

Lemma 7.3. For all i = 1, . . . , n, we have

9i (x1, . . . , xn)≡

{
x q̂ i−1

1 mod π if q ≥ 3,

x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 mod π if q = 2,

where a1 is the first of the structure constants of the Drinfeld module E , as in (5-1).

Proof. Since f is identified with the Frobenius map F : Wn → Wn−1, it reduces modulo π to the q̂-th
power of the projection map. Therefore, we have

9i (x1, . . . , xn)= ϑ1 ◦ f
◦(i−1)(x1, . . . , xn)≡ ϑ1(x

q̂ i−1

1 ) mod π.

q ≥ 3 By part (1) of Theorem 6.2, the map ϑ1 is congruent to the identity modulo π . Therefore 9i is
congruent to x q̂ i−1

1 modulo π .

q = 2 By part (2) of Theorem 6.2, we have ϑ1(x1)≡ x1+ b1xq
1 mod π , where by (5-3), we have

b1 = π
−1(1−πq−1)−1πq−1φ(a1)≡ φ(a1) mod π.

Therefore we have ϑ1(x1)≡ x1+φ(a1)x
q
1 mod π , and so 9i is congruent to x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 mod π .
�

Proposition 7.4. If R is a discrete valuation ring, then the elements 91, . . . , 9n form an R-basis for
HomA(N n, Ĝa).

Proof. By Proposition 6.3, the R-module HomA(N n, Ĝa) is free of rank at most n. So to show the elements
91, . . . , 9n form a basis, it is enough by Nakayama’s lemma to show they are linearly independent
modulo π .

We can view HomA(N n, Ĝa) as the set of additive functions in O(N n). Further since N n is flat,
O(N n) is π-torsion free, and so any function f ∈ O(N n) is additive if π f is. Therefore the map
R/πR⊗R HomA(N n, Ĝa)→ R/πR⊗R O(N n) remains injective.

So to show they are linearly independent in R/πR ⊗R HomA(N n, Ĝa), it is enough to show that
R/πR⊗R HomA(N n, Ĝa) maps injectively to R/πR⊗R O(N n). Now by Lemma 7.3, we have 9i ≡

x q̂ i−1

1 mod π for q ≥ 3 (and 9i ≡ x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 for q = 2). So the 9i map to linearly independent
elements of R/πR⊗R O(N n). �
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8. X∞(E)

We now assume further that R is a discrete valuation ring and E is a Drinfeld module over Spf R. Let r
denote the rank of E . We continue to write ϕE(t)= a0τ

0
+ a1τ

1
+ · · ·+ arτ

r , where a0 = π , ai ∈ R for
all i , and ar ∈ R∗.

In this section and the next, we will determine the structure of X∞(E). In the case of elliptic curves,
it falls in two distinct cases as to when the elliptic curve admits a lift of Frobenius and when not. In
particular, canonical lifts of ordinary elliptic curves all fall into one case. A similar story happens in our
case when E is a Drinfeld module of rank 2, which one might consider the closest analogue of an elliptic
curve. However, when the rank exceeds 2, the behavior of X∞(E) offers much more interesting cases
which leads us to introduce the concept of the splitting order m of a Drinfeld module E . The splitting
order is always less than or equal to the rank of E . When the rank equals 2, the splitting order is 1 if and
only if E admits a lift of Frobenius.

We would like to point out here that our structure result for X∞(E) is an integral version of the
equal-characteristic analogue of [Buium 1995]. He shows that X∞(E)⊗R K is generated by a single
element as a K {φ∗}-module where K = R

[ 1
p

]
. But here we show that the module X∞(E) itself is

generated by a single element as a R{φ∗}-module. These methods also work in the setting of elliptic
curves over p-adic rings, and hence this stronger result can be achieved in that case too. (See [Borger and
Saha 2017a].)

The following theorem should be viewed as an analogue of the fact that an elliptic curve has no nonzero
homomorphism of Z-module schemes to Ga. In our case, we show that no Drinfeld module admits a
nonzero homomorphism of A-module schemes to Ĝa.

Theorem 8.1. We have X0(E)= {0}.

Proof. Any character f =
∑

i≥0 biτ
i
∈ X0(E) satisfies the following chain of equalities, where θ is as

in (2-1):
ϕ

Ĝa
(t) ◦ f = f ◦ϕE(t)

θ(t)τ 0
◦

∑
i≥0

biτ
i
=

∑
i≥0

biτ
i
◦

∑
j≥0

a jτ
j

∑
i≥0

θ(t)biτ
i
=

∑
i≥0

( r∑
j=0

bi− j a
q i− j

j

)
τ i

Comparing the coefficients of τ i for i > r , and using the equality a0 = θ(t), we have

bi (1− θ(t)q
i
−1)θ(t)= aq i−r

r bi−r + aq i−r+1

r−1 bi−r+1+ · · ·+ aq i−1

1 bi−1. (8-1)

Suppose f is nonzero. There exists an N such that bN−r 6= 0 and v(bN−r ) < v(bi ) for all i ≥ N − r + 1.
Then the valuation of the right-hand side of (8-1), for i = N , becomes v(aq i−r

r bN−r ) = v(bN−r ), since
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v(ar )= 0. But then, by taking the valuation of both sides of (8-1), we have

v(bN )= v(bN−r )− 1< v(bN−r )

and N ≥ N − r + 1, which is a contradiction. Therefore f must be 0. �

As a consequence the short exact sequence of A-module schemes over S

0→ N n i
−→ J n E→ E→ 0, (8-2)

induces an exact sequence

0→ Xn(E) i∗
−→HomA(N n, Ĝa)

∂
−→ExtA(E, Ĝa), (8-3)

where ExtA(E, Ĝa) denotes the group of extension classes of A-module schemes over R, as defined in
Gekeler [1990a, §5]. He further defines an exact sequence

0→ Lie(E)∗→ Ext]A(E, Ĝa)→ ExtA(E, Ĝa)→ 0 (8-4)

of R-modules, where Ext]A(E, Ĝa) denotes the group of classes of an extension together with a splitting
of the corresponding extension of Lie algebras. Finally one defines

HdR(E)= Ext]A(E, Ĝa). (8-5)

Theorem 8.2. The exact sequence (8-4) is split. The rank of ExtA(E, Ĝa) is r − 1, and the rank of
Ext]A(E, Ĝa) is r .

Proof. See Diagram (5.2) and Corollary 3.7 in [Gekeler 1990a]. �

The following is the equal-characteristic analogue of a result of Buium [1995, Proposition 3.2].

Theorem 8.3. Let (E, ϕE) be a Drinfeld module of rank r .

(1) Xr (E) is nonzero.

(2) We have

X1(E)'
{

R if E has a lift of Frobenius,
{0} otherwise.

Proof. (1) Consider the exact sequence (8-3). By Proposition 7.4, the R-module HomA(N n, Ĝa) is free
of rank n. But also ExtA(E, Ĝa) is free of rank r − 1, by Theorem 8.2 above. Therefore when n = r , the
kernel Xn(E) is nonzero.

(2) Now consider X1(E). It is contained in HomA(N 1, Ĝa), which is free of rank 1, and the quotient is con-
tained in ExtA(E, Ĝa), which is torsion free. Therefore X1(E) is either {0} or all of HomA(N 1, Ĝa)' R.

Let 1 denote the identity map in HomA(Ĝa, Ĝa). Then its image ∂(1) in ExtA(E, Ĝa) is the class
of the extension (8-2). Therefore we have the equivalences X1(E) ' R ⇐⇒ i∗ is an isomorphism
⇐⇒ ∂(1)= 0⇐⇒ (8-2) is split⇐⇒ E has a lift of Frobenius. �

Define the splitting order of the Drinfeld module E to be the integer m such that Xm(E) 6= {0} and
Xm−1(E)= {0}. We also say that E splits at order m. By Theorems 8.1 and 8.3 above, we have 1≤m ≤ r
and additionally m = 1 if and only if E has a Frobenius lift.
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Computation of the character of the Carlitz module. Let A = Fq [t] with q ≥ 3. Let E be the Carlitz
module over R satisfying

ϕE(t)(x)= πx + xq .

Then the operator ϕE(t) itself is a lift of Frobenius and hence, by the universal property of J 1 E , defines
the A-linear splitting of the exact sequence

0→ N 1
→ J 1 E→ E→ 0

that is, an A-linear morphism ν : J 1 E → N 1 given in Buium–Joyal coordinates by ν(x, x ′) = x ′ − x .
Then our normalized character 21 : J 1 E→ Ĝa is given by 21 = ϑ1 ◦ ν.

Define L i = (π
q
−π) · · · (πq i

−π). Then from Theorem 6.2, we have ϑ1 : N 1
→ Ĝa given by

ϑ1(x ′)=
1
π

∞∑
i=0

(−1)i

L i
(πx ′)q

i
. (8-6)

Hence we have

21(x, x ′)=
1
π

∞∑
i=0

(−1)i

L i
(π(x ′− x))q

i
=

1
π

logC(π(x
′
− x)), (8-7)

where logC denotes the Carlitz logarithm, as in [Goss 1996, p. 57]. One can check that this is the exact
analogue of Buium’s character 1

p log
(
1+ p x ′

x p

)
for Ĝm in the mixed-characteristic setting.

8A. Splitting of J n(E). The exact sequence (8-2) is split by the Teichmüller section v : E → J n E ,
as defined in Section 3. We emphasize that v is only a morphism of Fq-module schemes and is not a
morphism of A-module schemes. Nevertheless, it induces an isomorphism

J n(E)−→∼ E × N n

of Fq -module schemes. Therefore for any character 2 ∈ Xn(E), we can write 2= g2⊕92 or

2(x0, . . . , xn)= g2(x0)+92(x1, . . . , xn), (8-8)

where 92 = i∗2 ∈ HomA(N n, Ĝa) and g2 = v∗2. We call g2 the Teichmüller component of 2. Note
that because v is only Fq -linear, g2 is also only Fq -linear. It still can, however, be expressed as an additive
restricted power series. On the other hand, the restriction 92 of 2 to N n does remain A-linear.

Now consider the morphism

(φ ◦ i − i ◦ f) : N n+1
→ J n E, (8-9)

in the notation of (7-3). It is an A-linear morphism by Proposition 7.2.

Proposition 8.4. There exists a morphism h (necessarily unique and A-linear) making the diagram

N n+1

u
��

φ◦i−i◦f
// J n E

N 1
h

77
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commute. In coordinates, it has the form

h(x1)= (πx1, c1x q̂
1 , c2x q̂2

1 , . . .),

for some c j ∈ R.

Proof. By (7-1)–(7-3), the first statement is equivalent to showing that for any R-algebra B, there exists a
map h : B→Wn(B) such that

Wn(B)

��

FV−V F
// Wn(B)

B
h

99

commutes, where the vertical map is the projection onto the zeroth component. Now for any y ∈Wn−1(B),
we have

(FV − V F)(V y)= FV V y− V FV y = πV y− V (πy)= 0.

So such a function h exists.
To conclude that h(x) is of the given form, we use a homogeneity argument. Let (z0, z1, . . .) denote

the ghost components of (x0, x1, . . .). If interpret each x j as an indeterminate of degree q̂ j , then each z j

is a homogenous polynomial in the x0, . . . , x j of degree q̂ j and with coefficients in A: z1 = x q̂
0 +πx1,

and so on. Solving for x j in terms of z0, . . . , z j , we see that x j is a homogenous polynomial in the
z0, . . . , z j with coefficients in A

[ 1
π

]
.

Now let (y0, y1, . . .) denote (FV − V F)(x0, x1, . . .), where y j ∈ R[x0, . . . , x j ]. Then the ghost
components of (y0, y1, . . .) are (π z0, 0, 0, . . .)= (πx0, 0, 0, . . .). It follows that y0 = πx0. Further, by
the above, y j is an element of R[x0, . . . , x j ] but also a homogeneous polynomial in πx0 of degree q̂ j

and with coefficients in A
[ 1
π

]
. Therefore it is of the form c j x

q̂ j

0 for some c j ∈ R. �

Proposition 8.5. Let 2 be a character in Xn(E).

(1) We have
i∗φ∗2= f∗(i∗2)+ γ91,

where γ = πg′2(0) and g′2(x0) denotes the usual derivative of the polynomial g2(x0) ∈ R[x0]

of (8-8).

(2) For n ≥ 1, we have
i∗(φ◦n)∗2= (fn−1)∗i∗φ∗2.

Proof. (1) By Proposition 8.4, we have

(φ ◦ i − i ◦ f)(x1, . . . , xn+1)= (πx1, c1x q̂
1 , c2x q̂2

1 , . . .),

where c j ∈ R. Therefore we have

((i∗φ∗− f∗i∗)2)(x1, . . . , xn+1)=2(πx1, c1x q̂
1 , . . .)= g2(πx1)+92(c1x q̂

1 , . . .). (8-10)
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In particular, the character (i∗φ∗− f∗i∗)2 depends only on x1. Therefore it is of the form γ91, for some
γ ∈ R. Further since by Theorem 6.2 we have 9 ′1(0)= 1, the coefficient γ is simply the linear coefficient
of (i∗φ∗− f∗i∗)2, which by (8-10) is πg′2(0).

(2) This is another way of expressing φ◦n ◦ i = φ ◦ i ◦ f◦(n−1), which follows from (7-4) by induction. �

8B. Frobenius and the filtration by order. We would like to fix a notational convention here. Let
u : J n E → J n′E denote the canonical projection map for any n′ < n, given in Witt coordinates by
u(x0, . . . , xn)= (x0, . . . , xn′).

Consider the following morphism of exact sequences of A-modules

0 // N n

u
����

i
// J n E

u
����

u
// E // 0

0 // N n−1 i
// J n−1 E u

// E // 0.

Since X0(E) = {0} by Theorem 8.1, applying HomA(−, Ĝa) to the above, we obtain the following
morphism of exact sequences of R-modules

0 // Xn(E)
i∗

// HomA(N n, Ĝa)
∂

// ExtA(E, Ĝa)

0 // Xn−1(E)
?�

u∗

OO

i∗
// HomA(N n−1, Ĝa)

?�
u∗

OO

∂
// ExtA(E, Ĝa).

Proposition 8.6. For any n ≥ 0, the diagram

Xn(E)/Xn−1(E)
� � φ∗

//
� _

i∗
��

Xn+1(E)/Xn(E)� _

i∗
��

HomA(N n, Ĝa)/HomA(N n−1, Ĝa)
f∗

∼
// HomA(N n+1, Ĝa)/HomA(N n, Ĝa)

is commutative. The morphisms i∗ and φ∗ are injective, and f∗ is bijective.

In fact, we will show in Corollary 9.9 that all the morphisms in the diagram of Proposition 8.6 are
isomorphisms.

Proof. For n ≥ 1, commutativity of the diagram follows from Proposition 8.5; for n = 0, it follows from
Theorem 8.1.

The maps i∗ are injective because the projections J n E → J n−1 E and N n
→ N n−1 have the same

kernel, and f∗ is an isomorphism by Proposition 7.4. It follows that φ∗ is an injection. �

8C. The character 2m. Recall the exact sequence (8-3)

0→ Xn(E) i∗
−→HomA(N n, Ĝa)

∂
−→ExtA(E, Ĝa).
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Let m denote the splitting order of E . Then for all n < m, the map

∂ : HomA(N n, Ĝa)→ ExtA(E, Ĝa)

is injective since Xn(E)= {0}. But at n = m, we have Xm(E) 6= {0}, and so there is a nonzero character
9 ∈ HomA(N m, Ĝa) in the kernel of ∂ . Write 9 in terms of the basis of canonical characters 9i defined
in (7-5):

9 = λ̃m9m − λ̃m−19m−1− · · ·− λ̃191,

where λ̃i ∈ R for all i = 0, . . . ,m− 1. Then we necessarily have λ̃m 6= 0 since Xm−1 = {0}. Therefore
we have

∂9m = λm−1∂9m−1+ · · ·+ λ1∂91 ∈ ExtA(E, Ĝa)K (8-11)

where λi = λ̃i/λ̃m for all i = 1, . . . ,m− 1. This implies that the character

9m − λ19m−1− · · ·− λm−191

is in ker(∂) and hence by the main exact sequence (8-3), there exists a unique 2m ∈ Xm(E)K such that

i∗2m =9m − λm−19m−1− · · ·− λ191. (8-12)

It then follows immediately that 2m is a K -linear basis for Xm(E)K , say by Propositions 7.4 and 8.6.
(We will show in Corollary 9.9 that 2m actually lies in the group Xm(E) of integral characters, and is in
fact an integral basis for it.)

Proposition 8.7. Let m denote the splitting order of E. Then for any j ≥ 0, the character i∗(φ∗) j2m

agrees with9m+ j modulo rational characters of lower order, and the elements2m, φ
∗2m, · · · , φ

n−m∗2m

are a basis of the K -vector space Xn(E)K .

Proof. By Proposition 8.6, each character φi ∗2m lies in Xm+i (E) but not in Xm+i−1(E). Therefore they
are linearly independent. In particular, the rank of Xn(E) is at least n−m+ 1.

At the same time, by Proposition 8.6, each Xm+i (E)/Xm+i−1(E) has rank at most 1. Thus the rank of
Xn(E) actually equals n−m+ 1, and so the elements in question form a K -basis of Xn(E)K . �

Do note that this result will be improved to an integral version in Theorem 9.10.

9. Ext groups and de Rham cohomology

We will prove Theorem 1.1 in this section. We continue with the notation from the previous section. In
particular, R is a discrete valuation ring.

We will briefly describe our strategy in the next few lines. Recall from (8-12) the equality

i∗2m =9m − λm−19m−1− · · ·− λ191

where λ j ∈ K . A priori, the elements λ j need not belong to R, but we prove in Theorem 9.8 that they
actually do. This implies that i∗2m lies in HomA(N m, Ĝa) and ker(∂), and hence by the exact sequence
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(8-3), we have 2m ∈ Xm(E)— that is, the character 2m is integral. From there, it is an easy consequence
that Xn(E) is generated by 2m, . . . ,2

φn−m

m as an R-module.
To prove Theorem 9.8, which says that all λ j belong to R, requires some preparation. For all n ≥ 1,

we will define maps from HomA(N n, Ĝa) to Ext](E, Ĝa) which is also interpreted as the de Rham
cohomology from associated to the Drinfeld module E . These maps are obtained by push-outs of J n E
by 9 ∈ HomA(N n, Ĝa). To give an idea, do note that, for every n ≥ 1, there are canonical elements
E∗9 ∈ ExtA(E, Ĝa) where the E∗9 is a push-out of J n E by 9 as follows

0 // N n

9

��

i
// J n E

e9
��

u
//// E // 0

0 // Ĝa // E∗9 // E // 0

as E∗9 ∈ ExtA(E, Ĝa). It leads to a very interesting theory of δ-modular forms over the moduli space of
Drinfeld modules and will be studied in a subsequent paper. And similar to previous cases, the main
principles carry over to the case of elliptic curves or abelian schemes as well.

Now we introduce the theory of extensions of A-module group schemes. Given an extension ηC ∈

Ext(G, T ) and f : T → T ′ where G, T and T ′ are A-modules and f is an A-linear map we have the
following diagram of the push-forward extension f∗C .

0 // T //

f
��

C //

��

G // 0

0 // T ′ // f∗C // G // 0

The class of f∗C is obtained as follows — the class of ηC is represented by a linear (not necessarily
A-linear) function ηC : G→ T . Then η f∗C is represented by the class η f∗C = [ f ◦ ηC ] ∈ Ext(E, T ′). In
terms of the action of t ∈ A, ϕC(t) is given by

(
ϕG(t)
ηC

0
ϕT (t)

)
where ηC : G→ T . Then ϕ f∗C(t) is given by(

ϕG(t) 0
f (ηC) ϕT ′(t)

)
(9-1)

Now consider the exact sequence

0→ N n i
−→ J n E u

−→ E→ 0 (9-2)

Given a 9 ∈ HomA(N n, Ĝa) consider the push out

0 // N n

9

��

i
// J n E

e9
��

u
//// E // 0

0 // Ĝa
i
// E∗9 // E // 0
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where E∗9 = (J
n E × Ĝa)/0(N n) and 0(N n) = {(i(z),−9(z)) | z ∈ N n

} ⊂ J n E × Ĝa and e9(x) =
[x, 0] ∈ E∗9 .

The Teichmüller section v : E→ J n(E) is an Fq-linear splitting of the sequence (9-2). The induced
retraction

ρ = 1− v ◦ u : J n(E)→ N n

is given in coordinates simply by ρ : (x0, . . . , xn) 7→ (x1, . . . , xn). Let us denote by sWitt the morphism
on Lie algebras induced by ρ. Thus we have the following split exact sequence of R-modules

0 // Lie N n Di
// Lie J n E

sWitt

mm

Du
// Lie(E) // 0.

Let s9 denote the induced splitting of the push out extension

0 // Lie Ĝa // Lie(E∗9)
s9

ll
// Lie(E) // 0.

It is given explicitly by s̃9 : Lie J n E ×Lie Ĝa→ Lie Ĝa

s̃9(x, y) := D9(sWitt(x))+ y

and

s9 : Lie(E∗9)=
Lie J n E ×Lie Ĝa

Lie0(N n)
→ Lie Ĝa.

Recall that Ext](E, Ĝa) consists of an extension of A-module schemes together with a splitting s of
the corresponding extension of Lie algebras. (See (8-4) above or [Gekeler 1990a, §5].) Therefore we
have the following morphism of exact sequences

0 // Xn(E) //

��

HomA(N n, Ĝa) //

9 7→(E∗9 ,s9 )
��

Ext(E, Ĝa)

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0.

(9-3)

Proposition 9.1. Let 2 be a character in Xn(E), and put 2̃= φ∗2.

(1) The map Xn(E)→ Lie(E)∗ of (9-3) sends 2 to −Dg2.

(2) We have g2̃(x)= g2(x q̂) and

92̃(y)=92(ρ(φ(i(y))))+ g2(πy1).

Proof. (1) Let us recall in explicit terms how the map is given. For the split extension E × Ĝa, the
retractions Lie(E)× Lie Ĝa = Lie(E × Ĝa)→ Lie Ĝa are in bijection with maps Lie(E)→ Lie Ĝa, a
retraction s corresponding to map x 7→ s(x, 0). Therefore to determine the image of 2, we need to
identify E∗92 with a split extension and then apply this map to s92 .
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A trivialization of the extension E∗92 is given by the map

J n E × Ĝa

0(N n)
= E∗92 −→

∼ E × Ĝa

defined by [a, b] 7→ (u(a),2(a)+ b). The inverse isomorphism H is then given by the expression

H(x, y)= [v(x), y−2(v(x))],

and so the composition E→ E × Ĝa→ E∗92→ Ĝa is simply −2 ◦ v =−g2, which induces the map
−Dg2 on the Lie algebras.

(2) We have

2̃(x)=2(φ(x))=92(ρ(φ(x)))+ g2(x
q̂
0 +πx1)= (92(ρ(φ(x)))+ g2(πx1))+ g2(x

q̂
0 ).

In other words, we have 9̃(ρ(x))=92(ρ(φ(x)))+ g2(πx1) and g̃(x0)= g2(x
q̂
0 ). Setting x = i(y), we

obtain the desired result. �

Proposition 9.2. If 9 ∈ i∗φ∗(Xn(E)), then the class (E∗9, s9) ∈ Ext](E, Ĝa) is zero.

Proof. Write 9 = i∗φ∗2. We know from diagram (9-3) that E∗9 is a trivial extension since 9 lies in
i∗Xn+1(E). Now by part (2) of Proposition 9.1, we have gφ∗2(x0) = g2(x

q̂
0 ) and hence Dgφ∗2 = 0.

Therefore by part (1) of that proposition, the class in Ext](E, Ĝa) is zero. �

9A. The F-crystal H(E). The φ-linear map φ∗ : Xn−1(E)→ Xn(E) induces a linear map Xn−1(E)′→
Xn(E), which we will abusively also denote φ∗. Here, for any R-module M , we write M ′ for its base
change R⊗φ,R M via φ : R→ R. We then define

Hn(E)=
HomA(N n, Ĝa)

i∗φ∗(Xn−1(E)′)
.

Then u : N n+1
→ N n induces u∗ : HomA(N n, Ĝa)→ HomA(N n+1, Ĝa). And since u∗i∗φ∗(Xn(E)) =

i∗u∗φ∗(Xn(E)) = i∗φ∗u∗(Xn(E)) ⊂ i∗φ∗(Xn+1(E)), it also induces a map u∗ : Hn(E)→ Hn+1(E).
Define

H(E)= lim
−−→

Hn(E), (9-4)

where the limit is taken in the category of R-modules.
Similarly, f : N n+1

→ N n induces f∗ : HomA(N n, Ĝa)→ HomA(N n+1, Ĝa), which descends to a
φ-linear morphism of R-modules

f∗ : Hn(E)→ Hn+1(E)

because we have f∗i∗φ∗(Xn−1(E)) = i∗φ∗φ∗(Xn−1(E) ⊂ i∗φ∗Xn(E). This then induces a φ-linear
endomorphism f∗ : H(E)→ H(E).

Finally, let In(E) denote the image of ∂:

In(E)= im[Hom(N n, Ĝa)
∂
−→ExtA(E, Ĝa)]. (9-5)
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So Hom(N n, Ĝa)/Xn(E)' In(E). Then u induces maps u∗ : In(E)→ In+1(E), and we put

I(E)= lim
−−→

In(E), (9-6)

where again the limit is taken in the category of R-modules.

Proposition 9.3. The morphism

u∗ : Hn(E)⊗ K → Hn+1(E)⊗ K

is injective. For n ≥ m, it is an isomorphism.

Proof. Consider the following diagram of exact sequences:

0 0

K 〈φ◦(n−m)∗2〉′

OO

i∗φ∗
// K 〈9n+1〉

OO

0 // Xn(E)′K

OO

i∗φ∗
// HomA(N n+1, Ĝa)K

OO

// Hn+1(E)K // 0

0 // Xn−1(E)′K

u∗

OO

i∗φ∗
// HomA(N n, Ĝa)K

u∗

OO

// Hn(E)K //

u∗

OO

0

0

OO

0

OO

The cokernel of each of the left two maps labeled u∗ is of the displayed form by Propositions 7.4 and 8.7. If
n<m, the expression K 〈φ◦(n−m)∗2〉 is understood to be zero. The map i∗φ∗ :K 〈φ◦(n−m)∗2〉′→K 〈9n+1〉

is injective, by Proposition 8.6. Therefore the map u∗ : Hn(E)K → Hn+1(E)K is also injective. It is an
isomorphism if n ≥ m, because K 〈φ◦(n−m)∗2〉 is 1-dimensional and hence the map

i∗φ∗ : K 〈φ◦(n−m)∗2〉′→ K 〈9n+1〉

is an isomorphism. �

Corollary 9.4. We have

Hn(E)⊗ K '
{

K 〈91, . . . , 9n〉 if n ≤ m,
K 〈91, . . . , 9m〉 if n ≥ m.

Do note that we will promote this to an integral result in Section 9B. But before we get there, we will
need some preparation.

Proposition 9.5. We have

In(E)⊗ K '
{

K 〈91, . . . , 9n〉 if n ≤ m− 1,
K 〈91, . . . , 9m−1〉 if n ≥ m− 1.
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Proof. The case n≤m−1 is clear. So suppose n≥m−1. Then HomA(N j , Ĝa)⊗K has basis91, . . . , 9 j ,
and Xn(E)⊗ K has basis 2m, . . . , (φ

n−m)∗2m . Since each (φ j )∗2m equals 9m+ j plus lower order
terms, K 〈91, . . . , 9m−1〉 is a complement to the subspace Xn(E) of HomA(N n, Ĝa). Therefore the map
∂ from K 〈91, . . . , 9m−1〉 to the quotient In(E) is an isomorphism. �

Finally the morphism HomA(N n, Ĝa)→ Ext](E, Ĝa) of diagram (9-3) vanishes on φ∗(Xn−1(E)), by
Proposition 9.2, and hence induces a morphism of exact sequences

0 // Xn(E)
φ∗(Xn−1(E)′)

//

ϒ

��

Hn(E) //

8

��

In(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

(9-7)

where as in (9-5), In(E) denotes the image of ∂ : Hom(N n, Ĝa)→ ExtA(E, Ĝa).

Proposition 9.6. The map 8 : Hn(E)⊗ K → Ext](E, Ĝa)⊗ K is injective if and only if γ 6= 0, where
γ ∈ R is defined as in Proposition 8.5.

Proof. It is enough to show that ϒ is injective if and only if γ 6= 0. By Proposition 8.7, the class of 2m

is a K -linear basis for (Xn(E)/φ∗(Xn−1(E)′))⊗ K , and so it is enough to show 8 is injective if and
only if ϒ(2m) 6= 0. As in (8-8), write 2m =92m + g2m . Then by Proposition 9.1, it is enough to show
g′2m

(0) 6= 0 if and only if γ 6= 0. But this holds because by Proposition 8.5, we have γ = πg′2m
(0). �

Lemma 9.7. Consider the φ-linear endomorphism F of K m with matrix
0 0 . . . 0 µm

1 0 0 µm−1

0 1 0 µm−2
...

. . .
...

...

0 0 1 µ1

 ,

for some given µ1, . . . , µm ∈ K . If K m admits an R-lattice which is stable under F , then we have
µ1, . . . , µm ∈ R.

Proof. We use Dieudonné–Manin theory. Without loss of generality, we may assume that R/πR is
algebraically closed. Let P denote the polynomial Fm

−µ1 Fm−1
−· · ·−µm in the twisted polynomial ring

K {F}. Then by [Laumon 1996, B.1.5, p. 257], there exists an integer r ≥ 1 and elements β1, . . . , βm ∈

K (π1/r ) such that we have

P = (F −β1) · · · (F −βm)

in the ring K (π1/r ){F} with commutation law Fπ1/r
= π1/r F . (Note that the results of [Laumon 1996]

are stated under the assumption that the residue field of R is an algebraic closure of Fp, but they hold
if it is any algebraically closed field of characteristic p.) Since R = K ∩ R[π1/r

], it is enough to show
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µi ∈ R[π1/r
]. Therefore, by replacing R[π1/r

] with R, it is enough to assume that P factors as above
where in addition all βi lie in K .

Now fix i , and let us show βi ∈ R. Assume βi 6= 0, the case βi = 0 being immediate. Because the (left)
K {F}-module K m has an F-stable integral lattice M , every quotient of K m also has a F-stable integral
lattice, namely the image of M . By [Laumon 1996, B.1.9, p. 360], for each i , the K {F}-module K m has
a quotient (in fact, a summand) isomorphic to N = K {F}/K {F}(F − πv(βi )). Therefore N also has a
F-stable integral lattice. But this can happen only if v(βi )≥ 0, because F sends the basis element 1 ∈ N
to πv(βi ) ∈ N . �

Theorem 9.8. If E splits at m, then we have λ1, . . . , λm−1 ∈ R, where the λi are as defined in Section 8C.

Proof. We will prove the cases when γ = 0 and γ 6= 0 separately, where γ is defined as in Proposition 8.5.

Case γ = 0: When γ = 0 we have f∗i∗ = i∗φ∗, and hence for all n ≥ 1, this induces a φ-linear map
f∗ : In−1(E)→ In(E) as follows

0 // Xn(E)
i∗

// HomA(N n, Ĝa)
∂
// In(E) // 0

0 // Xn−1(E)

φ

OO

i∗
// HomA(N n−1, Ĝa)

∂
//

f∗

OO

In−1(E) //

f∗

OO

0

Let I(E) = lim
−−→

In(E) ⊆ Ext(E, Ĝa). Then by Proposition 9.5, the vector space I(E)K has a K -basis
∂91, . . . , ∂9m−1, and with respect to this basis, the φ-linear endomorphism f∗ has matrix

00 =


0 0 . . . 0 λ1

1 0 0 λ2

0 1 0 λ3
...

. . .
...

...

0 0 1 λm−1


Since I(E) is contained in Ext(E, Ĝa), it is a finitely generated free R-module and hence an integral
lattice in I(E)K . But then Lemma 9.7 implies λ1, . . . , λm−1 ∈ R.

Case γ 6= 0: Let H(E)= lim
−−→

Hn(E). Let us consider the matrix 0 of the φ-linear endomorphism f of
H(E)K with respect to the K -basis 91, . . . , 9m given by Corollary 9.4. Then by Proposition 8.5 and
(8-12), we have

i∗φ∗2m = f∗i∗2m + γ91

= f∗(9m − λm−19m−1− · · ·− λ191)+ γ91

= f∗(9m)−φ(λm−1)9m − · · ·−φ(λ1)92+ γ91.

Therefore we have

f∗(9m)≡ φ(λm−1)9m + · · ·+φ(λ1)92− γ91 mod i∗φ∗(X ′m)
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and hence

0 =



0 0 . . . 0 −γ

1 0 0 φ(λ1)

0 1 0 φ(λ2)
...

. . .
. . .

...
...

0 0 0 φ(λm−2)

0 0 1 φ(λm−1)


We will now apply Lemma 9.7 to the operator f∗ on H(E)K , but to do this we need to produce an integral
lattice M . Consider the commutative square

H(E) 8
//

��

Ext](E, Ĝa)

j
��

H(E)K
8K
// Ext](E, Ĝa)K .

Let M denote the image of H(E) in H(E)K . It is clearly stable under f∗. But also the maps 8K and j
are injective, by Proposition 9.6 and because Ext](E, Ĝa)' Rr ; so M agrees with the image of H(E) in
Ext](E, Ĝa) and is therefore finitely generated.

We can then apply Lemma 9.7 and deduce φ(λm−1), . . . , φ(λ1) ∈ R. This implies λm−1, . . . , λ1 ∈ R,
since R/πR is a field and hence the Frobenius map on it is injective. �

Corollary 9.9. (1) The element 2m ∈ Xm(E)K lies in Xm(E).

(2) For n ≥ m, all the maps in the diagram

Xn(E)/Xn−1(E)
φ∗

//

i∗
��

Xn+1(E)/Xn(E)

i∗
��

HomA(N n, Ĝa)/HomA(N n−1, Ĝa)
f∗
// HomA(N n+1, Ĝa)/HomA(N n, Ĝa)

are isomorphisms.

Proof. (1) By Theorem 9.8, the element i∗2m of HomA(N m, Ĝa)K actually lies in HomA(N m, Ĝa), and
therefore by the exact sequence (8-3) we have 2m ∈ Xm(E).

(2) By Proposition 8.6, we know f∗ is an isomorphism.
Also by Proposition 8.6, the maps i∗ are injective for all n ≥ m. So to show they are isomorphisms, it

is enough to show they are surjective. The R-linear generator 9m of HomA(N n, Ĝa)/HomA(N n−1, Ĝa)

is the image of 2m , which by part (1), lies in Xm(E). Therefore i∗ is surjective for n =m. Then because
f∗ is an isomorphism, it follows by induction that i∗ is surjective for all n ≥ m.

Finally, φ∗ is an isomorphism because all the other morphisms in the diagram are. �

We knew before that i∗(φ j )∗2m agrees with9m+ j plus lower order rational characters, but the corollary
above implies that these lower order characters are in fact integral.
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Theorem 9.10. Let E be a Drinfeld module that splits at m.

(1) For any n ≥ m, the composition

Xn(E)→ HomA(N n, Ĝa)→ HomA(N n, Ĝa)/HomA(N m−1, Ĝa) (9-8)

is an isomorphism of R-modules.

(2) Xn(E) is freely generated as an R-module by 2m, . . . , (φ
∗)n−m2m .

Proof. (1) By Corollary 9.9, the induced morphism on each graded piece is an isomorphism. It follows
that the map in question is also an isomorphism.

(2) This follows formally from (1) and the fact, which follows from Corollary 9.9, that the map (9-8)
sends any (φ∗) j2m to 9m+ j plus lower order terms. �

9B. H(E) and de Rham cohomology. Collecting the results above, we can now prove Theorem 1.2.
Let m denote the splitting order of E , as defined in section 8. We have isomorphisms

R〈91, . . . , 9m−1〉=HomA(N m−1, Ĝa)−→
∼ In(E) and R〈91, . . . , 9m〉=HomA(N m, Ĝa)−→

∼ Hn(E)

for n ≥ m, and hence in the limit

R〈91, . . . , 9m−1〉 −→
∼ I(E) and R〈91, . . . , 9m〉 −→

∼ H(E)

And so the K -linear bases of K ⊗ I(E) and K ⊗ H(E)— the ones respect to which the action of f∗ is
described by the matrices 00 and 0 in the proof of Theorem 9.8 — are in fact R-linear bases of I(E)
and H(E).

We also have isomorphisms for n ≥ m

R〈2m〉 = Xm(E)−→∼ Xn(E)/φ∗(Xn−1(E)′).

Combining these, we have the following map between exact sequences of R-modules, as in (9-7):

0 // Xm(E) //

ϒ

��

H(E) //

8
��

I(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where ϒ sends 2m to γ /π (in coordinates). It follows that 8 is injective if and only if γ 6= 0.

10. Computation of λ1 and γ in the rank 2 case

In this section, we compute λ1 and γ for Drinfeld modules of rank 2, the first nontrivial case. Recall
from (8-8), Proposition 8.5(1), and (8-12) that we have

22 =92(x ′, x ′′)− λ191(x ′)+π−1γ x + (higher-degree terms in x) (10-1)
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assuming the splitting number m is 2. The result below shows that λ1 and γ depend on the higher Buium
derivatives a′i , a′′i , . . . of the modular parameters ai , and not only on the modular parameters themselves.
So it seems that our F-crystal H is not determined by the classical realizations, such as the crystalline
realization or the Tate module, in any straightforward manner.

Theorem 10.1. Let A = Fq [v] with q ≥ 3, let t ∈ A be an irreducible polynomial of degree f , and let E
be a Drinfeld module over R satisfying

ϕE(t)(x)= πx + a1xq
+ a2xq2

. (10-2)

Then we have

λ1 ≡ (−1) fw(q
f−1(q f

−1))/(q−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π,

where w = a1a−1
2 , and

γ mod π2
≡


πλ1/a1 if f = 1,
−πλ1/a2 if a1 ≡ 0 mod π and f = 2,
0 if a1 6≡ 0 mod π or f ≥ 3.

Observe that when ϕE(t)(x) is of the form πx + axq
+ xq2

, which is always true after changing the
coordinate x (perhaps passing to a cover of S), we have the simplified forms

λ1 ≡ (−1) f a(q
f−1(q f

−1))/(q−1)(1− a′aq f−1
)q

f
−1 mod π, (10-3)

γ mod π2
≡


πλ1/a if f = 1,
−πλ1 if a ≡ 0 mod π and f = 2,
0 if a 6≡ 0 mod π or f ≥ 3.

(10-4)

Proof. Let ϑ1 : N 1
→ Ĝa be the isomorphism defined in Theorem 6.2. Then ϑ1 ≡ τ

0 mod π . Also
ϑ1 induces the isomorphism (ϑ1)∗ : Ext(E, N 1)→ Ext(E, Ĝa). In order to determine the action of A
on J 1 E and J 2 E we need to determine how t acts on the coordinates x ′ and x ′′. Now we note that
J n E ' Wn can be endowed with the δ-coordinates (denoted [z, z′, z′′, . . .]) or the Witt coordinates
(denoted (z0, z1, z2, . . .)) and they are related by the following in J 2 E by Proposition 3.2

[z, z′, z′′] = (z, z′, z′′+π q̂−2(z′)q̂). (10-5)

Taking π -derivatives of both sides of (10-2) using the formula

δ(axq j
)= a′x q̂q i

+φ(a)πq i
−1(x ′)q

i
,

we obtain

ϕ(t)(x ′)= π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂
+πx ′+φ(a1)π

q−1(x ′)q +φ(a2)π
q2
−1(x ′)q

2
(10-6)

and

ϕ(t)(x ′′)= π ′′x q̂2
+ a′′1 xqq̂2

+ a′′2 xq2q̂2
+ {terms with x ′ and x ′′}. (10-7)
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Then the A-action ϕJ 1 E : A→ End(J 1 E) is given in Witt coordinates by the 2× 2 matrix

ϕJ 1 E(t)=
(
ϕE(t) 0
ηJ 1 E ϕN 1(t)

)
where ηJ 1 E = π

′x q̂
+ a′1xqq̂

+ a′2xq2q̂ . By (10-7) and (10-5), the A-action A→ End(J 2 E) is given by
the (1+ 2)× (1+ 2) block matrix

ϕJ 2 E(t)=
(
ϕE(t) 0
ηJ 2 E ϕN 2(t)

)
where (using (10-5)) ηJ 2 E is the column vector

ηJ 2 E =

(
π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂

1(π)x q̂2
+1(a1)xqq̂2

+1(a2)xq2q̂2

)

and where 1(y)= y′′+π q̂−2(y′)q̂ .
Now we will consider two cases:

(1) Consider η91∗(J 1 E) ∈ Ext(E, Ĝa) which is the image of 91 under the connecting morphism

HomA(Ĝa, Ĝa)
∂
−→Ext(E, Ĝa)

and 91 = ϑ1 : N 1
→ Ĝa is the isomorphism defined in Theorem 6.2 and satisfies 91 = τ

0 mod π .

0 // N 1 //

91
��

J 1 E //

��

E // 0

0 // Ĝa // f∗(J 1 E) // E // 0

where ηJ 1 E = [π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂
] ∈ Ext(E, N 1). Hence

η91∗(J 1 E) = [π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂
] ∈ Ext(E, Ĝa) and ∂(91)≡ [x q̂

+ a′1xqq̂
+ a′2xq2q̂

] mod π.

(2) Now consider η92∗(J 2 E) ∈ Ext(E, Ĝa) obtained as

0 // N 2 //

92
��

J 2 E //

��

E // 0

0 // Ĝa // f∗(J 2 E) // E // 0

Now we have

ηJ 2 E =

[(
π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂

1(π)x q̂2
+1(a1)xqq̂2

+1(a2)xq2q̂2

)]
∈ Ext(E, N 2)
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Let F(y)= (y′)q̂ +π1(y). Then applying 92 = ϑ1 ◦ f and f(z1, z2)= zq̂
1 +π z2, we have

∂(92)= η92∗(J 2 E) = [ϑ1(F(π)x q̂2
+F(a1)xqq̂2

+F(a2)xq2q̂2
)] ∈ Ext(E, Ĝa)

∂(92)≡ [F(π)x q̂2
+F(a1)xqq̂2

+F(a2)xq2q̂2
] mod π

≡ [(π ′)q̂ x q̂2
+ (a′1)

q̂ xqq̂2
+ (a′2)

q̂ xq2q̂2
] mod π

≡ [x q̂2
+ (a′1)

q̂ xqq̂2
+ (a′2)

q̂ xq2q̂2
] mod π.

Recall [Gekeler 1990a, §5] that the map R{τ }ˆ→ Ext(E, Ĝa) given by η 7→ [η] is surjective and the
kernel consists of the inner derivations, which is to say all η of the form

πα−α ◦ϕE(t),

for some α ∈ R{τ }ˆ. Let us now work out these relations explicitly for α = τ 0, τ 1, τ 2. If α = τ j , with
j ≥ 0, we get the relation

πτ j
= τ j (πτ 0

+ a1τ
1
+ a2τ

2)

τ j+2
= a−q j

2 [(π −π
q j
)τ j
− aq j

1 τ
j+1
]

τ j+2
≡−(a1a−1

2 )q
j
τ j+1 mod π

and hence we have by induction the relations

τ i+1
≡ (−1)iw(q

i
−1)/(q−1)τ 1 mod π (10-8)

where w = a1a−1
2 , for all i ≥ 0.

Therefore writing q̂ = q f , we have

∂(91)≡ x q̂
+ a′1xqq̂

+ a′2xq2q̂

≡ xq f
+ a′1xq f+1

+ a′2xq f+2

≡ τ f
+ a′1τ

f+1
+ a′2τ

f+2

≡ (−1) f+1w1+···+q f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)τ 1

and
∂(92)≡ x q̂2

+ (a′1)
q̂ xqq̂2

+ (a′2)
q̂ xq2q̂2

≡ τ 2 f
+ (a′1)

q f
τ 2 f+1

+ (a′2)
q f
τ 2 f+2

≡ (−1)2 f+1w1+···+q2 f−2
(1− (a′1)

q f
wq2 f−1

+ (a′2)
q f
wq2 f−1

+q2 f
)τ 1

≡ (−1)2 f+1w1+···+q2 f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)q
f
τ 1.

and hence

λ1 =
∂(92)

∂(91)
≡ (−1) fwq f−1

+···+q2 f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π

≡ (−1) fwq f−1(1+···+q f−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π

≡ (−1) fw(q
f−1(q f

−1))/(q−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π
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Now we determine γ . Write g = g22 =
∑

i αiτ
i . Then from Proposition 8.5, we know γ = πα0. Now

we will compute α0. Let (z0, z1, z2) := ϕJ 2 E(t)(x, 0, 0). Then

22(ϕJ 2 E(t)(x, 0, 0))=92(z1, z2)− λ191(z1)+ g(z0)

= ϑ1(z
q̂
1 +π z2)− λ1ϑ1(z1)+ g(z0)

≡ zq̂
1 − λ1z1+ g(z0) mod π

where z0 = πx + a1xq
+ a2xq2

and z1 = π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂ . On the other hand from the A-linearity
of 22 we have

22(ϕJ 2 E(t)(x, 0, 0))= ϕ
Ĝa
(t)22(x, 0, 0)= π22(x, 0, 0)≡ 0 mod π

and hence zq̂
1 − λ1z1+ g(z0)≡ 0 mod π . Substituting z0 and z1 in, we obtain

0≡ (π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂)q̂ − λ1(π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂)+ g(πx + a1xq
+ a2xq2

)

≡ (x q̂
+ a′1xqq̂

+ a′2xq2q̂)q̂ − λ1(x q̂
+ a′1xqq̂

+ a′2xq2q̂)+ g(a1xq
+ a2xq2

)

Now substitute g(x) =
∑

j≥0 α j xq j
into this and consider the coefficient of xq . If q̂ = q, we obtain

λ1 ≡ α0a1 and hence

γ = πα0 ≡
πλ1

a1
mod π2.

If q̂ 6= q , we obtain α0a1 ≡ 0 and hence γ ≡ 0 mod π2 if a1 6≡ 0 mod π . If a1 ≡ 0 mod π , we consider
the coefficient of xq2

which is α0a2+ λ1 if f = 2 and α0a2 otherwise. In the case when f = 2 we have
α0≡ λ1/a2 mod π since a2 is invertible and hence γ ≡−πλ1/a2 mod π2. When f ≥ 3 we have α0≡ 0
mod π and hence the result follows. �
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Quadratic twists of abelian varieties and
disparity in Selmer ranks

Adam Morgan

We study the parity of 2-Selmer ranks in the family of quadratic twists of a fixed principally polarized
abelian variety over a number field. Specifically, we determine the proportion of twists having odd
(respectively even) 2-Selmer rank. This generalizes work of Klagsbrun–Mazur–Rubin for elliptic curves
and Yu for Jacobians of hyperelliptic curves. Several differences in the statistics arise due to the possibility
that the Shafarevich–Tate group (if finite) may have order twice a square. In particular, the statistics for
parities of 2-Selmer ranks and 2-infinity Selmer ranks need no longer agree and we describe both.

1. Introduction 839
2. Group cohomology and group extensions 844
3. Quadratic forms on finite dimensional F2-vector spaces 846
4. Quadratic forms associated to abelian varieties 850
5. Controlling the parity of dimF2 Xnd(A/K )[2] under quadratic twist 856
6. Disparity in Selmer ranks: definitions and recollections 865
7. Disparity in Selmer ranks: statement and first cases 869
8. Disparity in Selmer ranks: local symbols and global characters 873
9. Disparity in Selmer ranks: remaining cases 877
10. Twisting data for abelian varieties (p = 2) 885
11. Twisting data for abelian varieties (p > 2) 895
Acknowledgements 898
References 898

1. Introduction

In this paper we study how various invariants of principally polarized abelian varieties behave under
quadratic twist.

Our first result determines the distribution of the parities of 2-Selmer ranks in the quadratic twist family
of an arbitrary principally polarized abelian variety. Specifically, for a number field K (with absolute
Galois group G K ) and real number X > 0 set

C(K , X)= {χ ∈ Homcnt(G K , {±1}) : Norm(p) < X for all primes p at which χ ramifies}.
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Theorem 1.1. Let A/K be a principally polarized abelian variety and let

ε : Gal(K (A[2])/K )→ {±1}

be the map

σ 7→ (−1)dimF2 A[2]σ .

(i) If ε is a homomorphism then, for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimF2 Sel2(A/K )

· δ

2

where δ is a finite product of explicit local terms δv (see the statement of Theorem 10.13 for their
definition).

(ii) If ε fails to be a homomorphism then, for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(Here for χ ∈ Homcnt(Gal(K/K ), {±1}) we let Aχ/K denote the quadratic twist of A by χ .)

Theorem 1.1 is known for elliptic curves by work of Klagsbrun, Mazur and Rubin [2013, Theorem A]
and, more generally, for Jacobians of odd degree hyperelliptic curves by work of Yu [2016, Theorem 1].
These previous results both fall into case (i) of Theorem 1.1, thus the failure of ε to be a homomorphism
forcing parity in the distribution is a phenomenon new to this work. Despite this, case (ii) of Theorem 1.1
is in some sense the “generic” case since if Gal(K (A[2])/K ) is the full symplectic group Sp2g(F2) for
g = dim A ≥ 3 then the simplicity of Sp2g(F2) prevents ε from being a homomorphism. For a discussion
of when ε is or is not a homomorphism for various families of abelian varieties, see Section 10C.

In the two previously known cases above, finiteness of the 2-primary subgroup of the Shafarevich–Tate
group is known to imply that the parity of the 2-Selmer rank agrees with that of the Mordell–Weil rank, so
that Theorem 1.1 is conjecturally satisfied by Mordell–Weil ranks also. For general principally polarized
abelian varieties, however, this need not be true due to a phenomenon first observed by Poonen and Stoll
[1999]: the 2-primary subgroup of the Shafarevich–Tate group, if finite, need not have square order. Thus
to see how one expects the parity of Mordell–Weil ranks to behave in quadratic twist families we also
prove a version of Theorem 1.1 for 2∞-Selmer ranks (by definition the 2∞-Selmer rank, denoted rk2,
is equal to the sum of the Mordell–Weil rank and the (conjecturally trivial) Z2-corank of the 2-primary
subgroup of the Shafarevich–Tate group).

Theorem 1.2. Let A/K be a principally polarized abelian variety. Then, for all sufficiently large X > 0,

|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)rk2(A/K )

· κ

2

where κ is an explicit finite product of local terms κv given in Definition 10.21.
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We remark that if dim A is odd and K has a real place then κ = 0. In general however κ is often
nonzero: see [Klagsbrun et al. 2013, Example 7.11] for an example of an elliptic curve for which κ is
dense in [−1, 1] as the base field K varies, and [Yu 2016, Proposition 8.1] for an example of an abelian
surface over Q for which κ = 1.

Combining Theorems 1.1 and 1.2 we see that the distribution of parities of 2-Selmer ranks and
2∞-Selmer ranks in general behave quite differently, as the following example illustrates.

Example 1.3 (see Example 10.24). Let J/Q be the Jacobian of the genus 2 hyperelliptic curve C : y2
=

x6
+ x4
+ x+3. Then the function ε is not a homomorphism for J/Q so that half of the 2-Selmer ranks of

the quadratic twists of J are even and are half odd. On the other hand, J has κ = 3
16 and odd 2∞-Selmer

rank, so that 19
32 of the twists of J have even 2∞-Selmer rank and 13

32 have odd 2∞-Selmer rank.

In fact, in the case where ε fails to be a homomorphism we show that the parity of the 2∞-Selmer
ranks behaves in some sense independently of the parity of the 2-Selmer ranks. See Remark 10.26 for the
proof of this statement and Corollary 10.29 for a description of the joint distribution of the parities of
2-Selmer ranks and 2-infinity Selmer ranks in all cases.

A key step in passing between Theorem 1.1 and Theorem 1.2 is the study of how the “nonsquare order
Shafarevich–Tate group” phenomenon behaves under quadratic twist. Our main result here is:

Theorem 1.4. Let A/K be an abelian variety equipped with a principal polarization λ defined over K
and let χ ∈ Homcnt(G K , {±1}) correspond to a quadratic extension L/K .

Then dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] ≡ 0 (mod 2) if and only if∑
v nonsplit in L/K

invv g(A/Kv, λ, χv)= 0 in Q/Z

where the local terms g(A/Kv, λ, χv) ∈ Br(Kv)[2] are given in Definition 5.15. (Here χv denotes the
restriction of χ to the completion Kv and Xnd(A/K ) denotes the quotient of the Shafarevich–Tate group
of A/K by its maximal divisible subgroup.)

In particular, Theorem 1.4 shows that the sum

dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] (mod 2)

is controlled by purely local behavior. In the case where A/K is the Jacobian of a curve, it is a result of
Poonen and Stoll [1999, Corollary 12] that this is in fact true for the parity of dimF2 Xnd(A/K )[2] itself,
but whether or not this holds for an arbitrary principally polarized abelian variety remains open.

In general, the definition of the local terms g(A/Kv, λ, χv) appearing in Theorem 1.4 is somewhat
involved but if the principal polarization λ on A/Kv is induced by a Kv-rational symmetric line bundle
Lv then they take a simple form. Specifically, associated to Lv is a Gal(Kv/Kv)-invariant quadratic
refinement q of the Weil pairing on A[2] (we review this classical construction in Section 4B). As a
consequence, Gal(Kv/Kv) acts on A[2] through the orthogonal group O(q). In particular we obtain a
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quadratic character ψv of Kv as the composition

ψv : Gal(Kv/Kv)→ O(q)/SO(q)∼= {±1}.

We then have
g(A/Kv, λ, χv)= χv ∪ψv ∈ Br(Kv).

This allows the explicit evaluation of g(A/Kv, λ, χv) for archimedean places and for nonarchimedean
places v -2 at which A has good reduction (Proposition 5.16). The implications for arithmetic of the
difference in characteristic 2 between quadratic forms and symmetric bilinear pairings will be a recurring
theme throughout this paper.

Theorem 1.4 may also be used to prove the analogue of Theorem 1.1 for the parity of the dimension of
the 2-torsion of the Shafarevich–Tate group in the family of quadratic twists of a principally polarized
abelian variety. This quantifies the failure of the Shafarevich–Tate group to have square order in the
family of quadratic twists. See Theorem 10.27 for the precise statement.

To explain the remaining results of the paper we briefly indicate how we prove Theorem 1.1. As
in [Klagsbrun et al. 2013], which proves the elliptic curve case, we deduce Theorem 1.1 from a more
general theorem that determines the distribution of parities of ranks of certain Selmer groups Sel(T, χ)
associated to a finite dimensional Fp-vector space T equipped with a Gal(K/K )-action, an alternating
pairing, and abstract “twisting data”. The general result is Theorem 7.4, the case dim T = 2 of which
combines Theorem 7.6 and Theorem 8.2 of [loc. cit.]. Taking T = A[2] along with the Weil pairing and
the twisting data detailed in Section 10 recovers Theorem 1.1.

On the other hand, taking p>2 and T = A[p] for a principally polarized abelian variety A/K , along with
the twisting data described in Section 11, enables us to prove an analogue of Theorem 1.1 which applies
to Selmer groups of certain p-cyclic twists of Ap−1 (again, the case where A is an elliptic curve is shown
by Klagsbrun, Mazur and Rubin [2013]). To state the result, let C(K ) and C(K , X) for p> 2 be defined in
the identical way to p = 2, replacing Homcnt(Gal(K/K ), {±1}) (the group of quadratic characters) with
the group Homcnt(Gal(K/K ),µp) (of p-cyclic characters). For χ ∈ C(K ) nontrivial, let L = K ker(χ) and
denote by Aχ/K the p− 1-dimensional abelian variety defined as the kernel of the norm homomorphism
ResL/K A→ A (here ResL/K denotes the restriction of scalars from L to K ). There is a natural inclusion of
Z[µp] into EndK (Aχ ) and, in this way, any generator π of the unique prime of Z[µp] lying over p yields
a self-isogeny of Aχ . Denote by Selπ (Aχ/K ) the associated π -Selmer group which may be shown to be
independent of the choice of π (see Section 11 for more details of the above constructions). We then have:

Theorem 1.5. Let p be an odd prime, K a number field, A/K a principally polarized abelian variety,
and 6 the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing p. Define ε : Gal(K (A[p])/K )→ {±1} by σ 7→ (−1)dimFp A[p]σ .

(i) Suppose ε is trivial when restricted to Gal(K (A[p])/K (µp)). Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Selp(A/K )

· δ

2
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where δ is an explicit finite product of local terms δv (see the statement of Corollary 11.6 for their
definition). Moreover (unlike the case p = 2) δ is always nonzero.

(ii) If ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

When A is an elliptic curve and p > 2, ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) if
and only if p divides [K (A[p]) : K ] (see [Klagsbrun et al. 2013, Lemma 4.3]), so now both cases of
Theorem 1.5 can occur. In particular, we see that allowing the dimension of A to be arbitrary uncovers a
more uniform picture between p = 2 and p > 2 than was visible for elliptic curves. See Remark 11.8 for
a discussion on conditions on the Gal(K/K )-action on A[p] which result in case (i) and (ii), respectively,
of Theorem 1.5. We simply note here that if the Galois action on A[p] is as large as possible, so that
Gal(K (A[p])/K ) is isomorphic to the general symplectic group GSp2g(Fp) for g = dim A, then case (ii)
applies.

Finally, we remark that a key step in proving Theorem 7.4 (the version of Theorems 1.1 and 1.5 for
general T ) is, for a character χ , to describe the quantity

dimFp Sel(T, χ)− dimFp Sel(T,1) (mod 2)

as a sum of local terms (see Theorem 6.12). Upon taking T = A[2] for a principally polarized abelian
variety A/K one obtains (Theorem 10.12) a local formula for the difference between the parity of the
2-Selmer rank of A/K and the 2-Selmer rank of the quadratic twist Aχ/K . This generalizes a theorem
of Kramer [1981, Theorem 1] for elliptic curves, and Yu [2016, Theorem 5.11] for Jacobians of odd
degree hyperelliptic curves. Combining this with Theorem 1.4, one obtains (Theorem 10.20) a purely
local formula for the parity of the 2∞-Selmer rank of A over the quadratic extension cut out by χ . Such
local formulae for (the parity of) 2∞-Selmer ranks have applications to the 2-parity conjecture and we
plan to examine this in future work.

Layout of the paper. In Section 2 we review some standard results in group cohomology which will be
used in the sequel. In Section 3 we review and study quadratic forms on finite dimensional F2-vector
spaces. The main result is Proposition 3.9 which forms a key technical step in the proof of Theorem 1.4.
Section 4 recalls the constructions of certain quadratic forms associated to abelian varieties and examines
how these behave under quadratic twist. Of particular importance is Lemma 4.20 which plays a crucial
role in associating twisting data to the group of 2-torsion points of a principally polarized abelian variety.
Theorem 1.4 is proven in Section 4. The analogue of Theorems 1.1 and 1.5 for general T is proven in
Sections 6–9 which broadly follow the layout and strategy of [Klagsbrun et al. 2013, §3–4 and §6–8].
Specifically, in Section 6 we recall the notions of metabolic structure and twisting data from [loc. cit.]
and generalize them to arbitrary (finite) dimensional Fp-vector spaces, as well as defining the associated
Selmer groups. Section 7 states the main result, Theorem 7.4, and proves the analogue of case (i) of
Theorems 1.1 and 1.5 in this setting. Section 8 uses class field theory to produce certain global characters
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with specified local behavior and is a more or less direct generalization of [Klagsbrun et al. 2013, §6],
albeit with different proofs. The results of Section 8 are then applied in Section 9 to prove the remaining
cases of Theorem 7.4. Section 10 associates a metabolic structure and twisting data to the 2-torsion in a
principally polarized abelian variety and deduces Theorems 1.1 and 1.2. Finally, Section 11 associates a
metabolic structure and twisting data to the p-torsion in a principally polarized abelian variety for p odd
and deduces Theorem 1.5.

Notation. For a group G acting on an abelian group M , for σ ∈ G we write

Mσ
:= {m ∈ M : σ(m)= m}.

For a field F we denote its separable closure by F , its absolute Galois group by G F and, for p different
from the characteristic of F , we denote by µp the G F -module of p-th roots of unity in F . We denote by
Br(F) the Brauer group of F .

For an abelian variety A/F we write A∨/F for the dual of A. A principally polarized abelian variety
over F is a pair (A/F, λ) consisting of an abelian variety A/F and a principal polarization λ : A→ A∨

defined over F . For a quadratic character χ ∈ Homcnt(G F , {±1}) the quadratic twist of A by χ is the
pair (Aχ , ψ) consisting of an abelian variety Aχ/F and an F-isomorphism ψ : A → Aχ such that
ψ−1ψσ = [χ(σ)] for all σ ∈ G F .

For a number field K we denote by MK the set of places of K and write Kv for the completion of
K at v ∈ MK . We denote by invv : Br(Kv)→Q/Z the local invariant map and, if v is nonarchimedean,
denote by K ur

v the maximal unramified extension of Kv. We implicitly fix embeddings K ↪→ Kv for
each v ∈ MK and view G Kv

as a subgroup of G K for each v. In particular, for a (finite) Galois extension
L/K of number fields and a nonarchimedean place v ∈ MK unramified in L/K we have a well defined
Frobenius element Frobv in Gal(L/K ).

For a G K -module M , the injections G Kv
↪→G K induce restriction maps on cohomology H i (K ,M)→

H i (Kv,M) for each i ≥ 0 and v ∈ MK . For a cocycle ξ we write ξv for its restriction to Kv (see Section 2
for our notation and conventions concerning group cohomology). We define, for v a nonarchimedean
place of K ,

H i
ur(Kv,M) := ker(H i (Kv,M) res

−→ H i (K ur
v ,M)).

2. Group cohomology and group extensions

In the following sections we will make several computations involving group cohomology. Here we set
up the relevant notation and review some basic results. All material in this section is standard; see e.g.,
[Atiyah and Wall 1967].

2A. Group cohomology. Let G be a finite group and M a G-module. For i ≥ 0 we write C i (G,M) for
the group of i-cochains with values in M and d : C i (G,M)→ C i+1(G,M) for the usual differential.
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When i = 0 we have (dm)(g)= gm−m for m ∈ M = C0(G,M) and g ∈ G, and when i = 1 we have

(d f )(g, h)= f (g)+ g f (h)− f (gh)

for f ∈ C1(G,M) and g, h ∈ G. We write Z i (G,M) and Bi (G,M) for the group of i-cocycles and
i-coboundaries, respectively, with values in M . We will always think of the i-th-cohomology group
H i (G,M) as the quotient Z i (G,M)/Bi (G,M). When making computations involving group cohomol-
ogy, we’ll make the convention that fraktur letters such as a, b etc. denote cohomology classes and that the
corresponding lower case Roman letters a, b etc., denote cocycles representing these cohomology classes.
More generally, if G is a profinite group we consider continuous cochains, cocycles and coboundaries,
using the same notation and conventions to talk about them.

2B. Cup product on cochains. Let G be a finite (or profinite) group and let M and N be G-modules.
Then for i, j ≥ 0 the cup-product map

∪ : C i (G,M)×C j (G, N )→ C i+ j (G,M ⊗ N )

is defined by

(a ∪ b)(g1, . . . , gi+ j )= a(g1, . . . , gi )⊗ g1 · · · gi b(gi+1, . . . , gi+ j ).

For a ∈ C i (G,M) and b ∈ C j (G, N ) we have the equality

d(a ∪ b)= da ∪ b+ (−1)i a ∪ db (2.1)

inside C i+ j+1(G,M ⊗ N ).
For i, j ≥ 0 the cup product map above induces a cup product map on cohomology

∪ : H i (G,M)× H j (G, N )→ H i+ j (G,M ⊗ N )

which satisfies a∪ b= (−1)i jb∪ a.

2C. Group extensions. Let G be a finite group and M an abelian group with trivial G-action. In what
follows we write the group law on G multiplicatively and the group law on M additively. Let a∈H 2(G,M)
and a be a 2-cocycle representing a. Define a group structure on the set G×M by the rule

(g,m) · (g′,m′)= (gg′,m+m′+ a(g, g′))

and let Ea denote the resulting group. The maps α : M → Ea and β : Ea → G defined by m 7→
(1,m− a(1, 1)) and (g,m) 7→ g respectively give rise to the short exact sequence

0→ M α
−→ Ea

β
−→G→ 0

realizing Ea as a central extension of G by M . The isomorphism class of this extension is independent
of the choice of cocycle representing a and the sequence splits if and only if a is the trivial class
in H 2(G,M). More specifically, let s : G → Ea denote the set section g 7→ (g, 0) to β. Then if
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φ : Ea→ M is a homomorphism splitting the exact sequence (i.e., giving a section to α) then the function
f = φ ◦ s ∈ C1(G,M) is a 1-cochain satisfying d f = a.

Remark 2.2. The above correspondence in fact gives rise to a bijection between elements of H 2(G,M)
and the set of isomorphism classes of central extensions of G by M , and one can generalize this
correspondence to include the case where the action of G on M is nontrivial (though now the relevant
extensions are, in general, no longer central). See [Atiyah and Wall 1967, §2] for more details.

3. Quadratic forms on finite dimensional F2-vector spaces

The aim of this section is to prove Propositions 3.9 and 3.10 which are needed for the proof of Theorem 1.4.
In Sections 3A, 3B and 3C we review the theory of quadratic forms on finite dimensional F2-vector spaces.
The material in Sections 3A, and 3B is standard, see e.g., [Scharlau 1985, Section 9.4]. In Section 3C we
review a construction due to Pollatsek [1971] (given in the discussion preceding Theorem 1.11 of that
work) which we use in the proof of Proposition 3.9.

For the rest of this section fix a finite dimensional F2-vector space V equipped with a nondegenerate
alternating pairing

〈 · , · 〉 : V × V → F2

(so in particular dim V is even). We denote by Sp(V ) the symplectic group of linear automorphisms of V
preserving the pairing.

3A. Quadratic refinements and the class c ∈ H1(Sp(V ), V ).

Definition 3.1 (quadratic refinement). A function q : V → F2 is called a quadratic refinement of 〈 · , · 〉 if
we have

q(v+ v′)+ q(v)+ q(v′)= 〈v, v′〉

for all v, v′ ∈ V .

Let Q denote the set of all quadratic refinements of 〈 · , · 〉. It is a principal homogeneous space for V
where, for v ∈ V , we define q + v ∈Q by setting

(q + v)(v′)= q(v′)+〈v, v′〉

for v′ ∈ V . The symplectic group Sp(V ) acts on the set of quadratic refinements via q 7→ q ◦ σ−1 (for
σ ∈ Sp(V )). This action is compatible with addition by elements of V and so associated to Q is a class

c ∈ H 1(Sp(V ), V ).

Explicitly, picking a quadratic refinement q and defining λ : V → V ∗ := Hom(V, F2) to be the map
v 7→ 〈v,−〉, the function cq : Sp(V )→ V given by setting

cq(σ )= λ
−1(q ◦ σ−1

− q)

is a 1-cocycle representing c.
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Remark 3.2. Let Alt denote the group of (possibly degenerate) alternating pairings on V under addition.
It has an action of Sp(V ) given by σ · 〈〈 · , · 〉〉 = 〈〈σ−1(·), σ−1(·)〉〉. Similarly, let Quad denote the group
of quadratic forms on V under addition which also carries an action of Sp(V ) via σ · q = q ◦ σ−1. Then
we have a short exact sequence of Sp(V )-modules

0→ V ∗→ Quad → Alt → 0 (3.3)

where the map V ∗→Quad is inclusion and the map Quad →Alt sends a quadratic form to its associated
pairing. The associated long exact sequence for cohomology gives a map

δ : H 0(Sp(V ),Alt )→ H 1(Sp(V ), V ∗).

Our pairing 〈 · , · 〉 is an element of H 0(Sp(V ),Alt ) and the class c ∈ H 1(Sp(V ), V ) constructed above is
the image of 〈 · , · 〉 under δ, once we use the map λ above to identify H 1(Sp(V ), V ) with H 1(Sp(V ), V ∗).

Remark 3.4. It is shown in [Pollatsek 1971, Theorems 4.1 and 4.4] that if dim(V )≥4 then H 1(Sp(V ),V )∼=
Z/2Z, generated by c.

3B. Orthogonal groups, special orthogonal groups and the Dickson homomorphism. For a given qua-
dratic refinement q, denote by O(q) the corresponding orthogonal group of linear automorphisms
preserving q rather than just the pairing. The orthogonal group O(q) has an index 2 subgroup SO(q)
which is by definition the kernel of the Dickson homomorphism, whose definition we now recall. Let C(q)
denote the Clifford algebra associated to q (see [Scharlau 1985, Definition 9.2.1]), C0(q) its even graded
subalgebra and Z(q) the center of C0(q). Then Z(q) is a rank 2 étale algebra over F2 (see Theorem 9.4.8
of [loc. cit.]). Since O(q) acts naturally on C(q) and preserves the grading, it acts on Z(q) by F2-algebra
homomorphisms. Noting that the automorphism group of any rank 2 étale algebra over F2 (or indeed any
field) is canonically isomorphic to Z/2Z, we obtain a homomorphism dq : O(q)→ Z/2Z, the Dickson
homomorphism.

We will also need the following alternative characterization of the Dickson homomorphism.

Proposition 3.5. Let q be a quadratic refinement of 〈 · , · 〉 and σ ∈ O(q). Then

dq(σ )= dim V σ (mod 2).

Proof. This is [Dye 1977, Theorem 3]. �

3C. An extension of the Dickson homomorphism to the full symplectic group. The following is a
version of a construction due to Pollatsek [1971] which gives an extension of the Dickson homomorphism to
the whole of Sp(V ). We caution however that the resulting function Sp(V )→Z/2Z is not a homomorphism
(we cannot ask for this since for dim V ≥ 6 the group Sp(V ) is simple).

Construction 3.6 (Pollatsek). Fix a quadratic refinement q of 〈 · , · 〉. Set U = F2
2 equipped with its unique

nondegenerate alternating form 〈 · , · 〉U . Further, let qU denote the unique quadratic refinement of 〈 · , · 〉U
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with Arf invariant 1. Thus for (λ, λ′) ∈U we have

qU ((λ, λ
′))= λ+ λ′+ λλ′.

Let x = (1, 0) and y = (0, 1) so that qU (x)= 1= qU (y) and 〈x, y〉U = 1. Now let W := V ⊕U be the
orthogonal direct sum of V and U , so that W comes equipped with the quadratic form qW := q + qU ,
whose associated (nondegenerate, alternating) pairing is 〈 · , · 〉W := 〈 · , · 〉 + 〈 · , · 〉U .

Now given g = (σ, α) ∈ Sp(V )× F2, define the linear automorphism φq(g) of W by setting

φq(g)(x)= x and φq(g)(y)= αx + cq(σ )+ y,

and for v ∈ V ,

φq(g)(v)= σ(v)+〈cq(σ ), σ (v)〉x

and extending linearly.

A key property of this construction, as shown in the discussion preceding [Pollatsek 1971, The-
orem 1.11], is that for each g ∈ Sp(V )× F2 we have φq(g) ∈ O(qW ). Moreover, Pollatsek shows in
[loc. cit.] that for each σ ∈Sp(V ), there is a unique α(σ)∈ F2 such that φq((σ, α(σ )))∈SO(qW ). One has
α(σ)= dq(σ ) for all σ ∈ O(q), so the map σ 7→ α(σ) gives an extension of the Dickson homomorphism
to the full symplectic group Sp(V ).

3D. Triviality of c∪ c. The pairing 〈 · , · 〉 induces a cup-product map

∪ : H 1(Sp(V ), V )× H 1(Sp(V ), V )→ H 2(Sp(V ), F2).

We now use the construction of the previous subsection to analyze the element c∪ c ∈ H 2(Sp(V ), F2).

Notation 3.7. Given a quadratic refinement q ∈Q, let Eq denote the central extension of Sp(V ) by F2

corresponding to the 2-cocycle cq ∪ cq , so that as a set Eq = Sp(V )× F2, and is equipped with the group
structure

(σ, α) · (σ ′, α′)= (σσ ′, α+α′+ (cq ∪ cq)(σ, σ
′)).

We then have:

Lemma 3.8. The function φq of Construction 3.6 is a homomorphism Eq → O(qW ).

Proof. As above, φq gives a map from Eq into O(qW ). An easy computation shows additionally that it is
a homomorphism. �

We may now prove the main result of the section.

Proposition 3.9. For each quadratic refinement q ∈Q there is a unique function fq : Sp(V )→ F2 such
that d fq = cq ∪ cq ∈ Z2(Sp(V ), F2) and such that the restriction of fq to the orthogonal group O(q) is
the Dickson homomorphism. In particular, we have

c∪ c= 0 ∈ H 2(Sp(V ), F2).
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Proof. We first show uniqueness. If f ′q is another function with d f ′q = cq ∪ cq then the difference fq − f ′q
is a homomorphism from Sp(V ) to F2. If dim V ≥ 6 then Sp(V ) is simple and hence fq = f ′q . If dim V
(which is necessarily even) is 2 or 4 then Sp(V ) has a unique index 2 subgroup and hence a unique
nontrivial homomorphism to F2. In each case this homomorphism is nontrivial when restricted to O(q)
for each quadratic refinement q , whence the result.

In the notation of Construction 3.6, associated to qW is the Dickson homomorphism

dqW : O(qW )→ F2.

We claim that dqW ◦φq : Eq → F2 gives a section to the map F2→ Eq sending α to (1, α), thus splitting
the extension Eq . Indeed, let α ∈ F2. Then φq((1, α)) = idV ⊕mα where mα ∈ O(qU ) is defined by
mα(x)= x , mα(y)= αx + y. One sees (either using the definition in terms of Clifford algebras, or by
applying Proposition 3.5) that idV ⊕mα is in SO(qW ) if and only if α = 0, whence dqW ((1, α))= α as
desired.

It now follows that the function fq : Sp(V )→ F2 defined by fq(σ ) = (dqW ◦ φq)((σ, 0)) satisfies
d fq = cq ∪ cq (see Section 2C and note that (cq ∪ cq)(1, 1)= 0).

It remains to show that the restriction of fq to O(q) is the Dickson homomorphism dq . To see this
note that for any σ ∈ O(q) we have cq(σ )= 0 and so

φq((σ, 0))= σ ⊕ idU .

Since this is in SO(qW ) if and only if σ is in SO(q) (again by looking at Clifford algebras or using
Proposition 3.5), we have the claim. �

We now describe how fq changes upon changing the quadratic refinement q .

Proposition 3.10. Let q and q ′ be two quadratic refinements of 〈 · , · 〉 and let v∈V be such that q ′=q+v,
so that cq ′ = cq + dv. Then we have

fq ′ = fq + cq ∪ v+ v ∪ cq + v ∪ dv

as cochains in C1(Sp(V ), F2).

Proof. One readily computes

d( fq + cq ∪ v+ v ∪ cq + v ∪ dv)= cq ′ ∪ cq ′,

so it remains to show that the restriction of fq + cq ∪ v + v ∪ cq + v ∪ dv to O(q ′) is the Dickson
homomorphism dq ′ . To do this we’ll use the characterization of the Dickson homomorphism given in
Proposition 3.5.

Fix σ ∈ O(q ′). Then cq(σ )= (dv)(σ ). In the notation of Construction 3.6, given w ∈W and writing
w = z+ ε1x + ε2 y with z ∈ V and ε1, ε2 ∈ F2, one sees that w is fixed by φq((σ, 0)) if and only if

σ(z)− z = ε2(dv)(σ ) (3.11)
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and
〈(dv)(σ ), σ (z)〉 = 0. (3.12)

Now (3.11) is equivalent to z = z′+ ε2v for some z′ ∈ V σ . If z has this form, then using invariance of z′

under σ one computes
〈(dv)(σ ), σ (z)〉 = ε2〈σ(v), v〉.

Thus if 〈σ(v), v〉 = 0 then the second condition (3.12) is redundant, whilst if 〈σ(v), v〉 = 1 then it may
be replaced with the condition ε2 = 0. We conclude that

dim W φq ((σ,0)) ≡ dim V σ
+〈σ(v), v〉 (mod 2)

and hence (using Proposition 3.5)

fq(σ )= dq ′(σ )+〈σ(v), v〉 = dq ′(σ )+ (v ∪ dv)(σ ).

Thus the restriction of fq to O(q ′) is equal to dq ′ + v∪dv. Noting also that the restriction of cq to O(q ′)
is equal to dv the result follows easily. �

Remark 3.13. Let Ṽ denote the group whose underlying set is V × F2, endowed with the group law

(v, α) · (v′, α′)= (v+ v′, α+α′+〈v, v′〉).

Then Ṽ sits in a short exact sequence

0→ F2→ Ṽ → V → 0, (3.14)

the map F2→ Ṽ sending α to (0, α) and the map Ṽ → V being projection onto the first factor. Making
Sp(V ) act trivially on F2 and diagonally on Ṽ this sequence becomes an exact sequence of Sp(V )-
modules. Using the relation d fq = cq ∪ cq one can show that for each quadratic refinement q the function
c̃q : Sp(V )→ Ṽ defined by

c̃q(σ )= (cq(σ ), fq(σ ))

is a 1-cocycle. One may then use the relationship between fq and f ′q given in Proposition 3.10 to show
that the class c̃ of c̃q in H 1(Sp(V ), Ṽ ) does not depend on q so that the results of this section prove that
c ∈ H 1(Sp(V ), V ) admits a canonical lift to H 1(Sp(V ), Ṽ ). (It is shown in [Poonen and Rains 2011,
Corollary 2.8(b)] that the connecting homomorphism H 1(Sp(V ), V )→ H 2(Sp(V ), F2) arising from
(3.14) sends a ∈ H 1(Sp(V ), V ) to a∪ a, so that the triviality of c∪ c is equivalent to the existence of
some lift of c to H 1(Sp(V ), Ṽ ).)

4. Quadratic forms associated to abelian varieties

In this section we study the behavior under quadratic twist of certain quadratic forms associated to
abelian varieties. Though several results in this section will be used in what follows, the most important is
Lemma 4.20 which provides the technical input required to generalize [Yu 2016, Theorem 5.10] to the case
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of arbitrary principally polarized abelian varieties (this is done in Lemma 10.6). Sections 4A–4C review
some standard results in the theory of abelian varieties as can be found, for example, in [Mumford 1966].

For the rest of this section, fix a field F of characteristic 0 (which for applications will be either a
number field or the completion of one). Let A/F be an abelian variety. For x ∈ A(F) denote by τx the
translation-by-x map τx : A→ A.

4A. Line bundles and self-dual homomorphisms. Let L be a line bundle on A/F . We denote by φL
the homomorphism A→ A∨ sending x ∈ A(F) to the element of A∨(F) corresponding to the line bundle
τ ∗x L⊗L−1. We write K (L) for the kernel of φL. If L is ample then K (L) is a finite subgroup of A.

We have a short exact sequence of G F -modules

0→ A∨(F)→ Pic AF → Homself-dual(AF , A∨F )→ 0, (4.1)

the map A∨(F) → Pic AF being the natural inclusion and the map Pic AF → Homself-dual(AF , A∨
F
)

sending a line bundle L to φL. As in [Poonen and Rains 2011, §3.2], (4.1) induces a short exact sequence
of G F -modules

0→ A∨[2] → Picsym AF → Homself-dual(AF , A∨F )→ 0, (4.2)

where here Picsym AF denotes the group of symmetric line bundles on A (i.e., those satisfying [−1]∗L∼=L).

4B. Quadratic refinements of the Weil pairing on A[2]. Let ( · , · )e2 : A[2] × A∨[2] → µ2 denote the
Weil pairing. It is bilinear, nondegenerate and G F -equivariant. If λ : A→ A∨ is a self-dual homomorphism
then it induces an alternating pairing

( · , · )λ : A[2]× A[2] → µ2

defined by (a, b)λ = (a, λ(b))e2 for a, b ∈ A[2]. If λ is defined over F then ( · , · )λ is G F -invariant. In
general, for a line bundle L on A set ( · , · )L := ( · , · )φL .

Definition 4.3. Let L be a symmetric line bundle on A. Define the map qL : A[2] → µ2 as follows.
Given x ∈ A[2], we have x∗[−1]∗L= x∗L. In particular, the restriction of the normalized1 isomorphism
τ : L−→∼ [−1]∗L to x is multiplication by an element ηx ∈ F× on x∗L. One in fact has ηx ∈ µ2 and we
set qL(x) := ηx .

Remark 4.4. The map qL defined above is denoted eL
∗

in [Mumford 1966, fourth definition in §2].

The following well known lemma summarizes the properties of qL.

Lemma 4.5. Let L be a symmetric line bundle on A. Then we have:

(i) If L∼= L′ then qL = qL′ .

1Writing e ∈ A(F) for the identity section, an isomorphism τ : L−−→∼ [−1]∗L is called normalized if

e∗(τ ) : e∗L−−→∼ e∗[−1]∗L= e∗L

is the identity. There is a unique such τ for each symmetric line bundle (see [Mumford 1966, §2]).
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(ii) The function qL is a quadratic form on A[2] (valued in µ2) whose associated bilinear pairing is
( · , · )L.

(iii) If M is another symmetric line bundle then qL⊗M = qL · qM.

Proof. Part (i) is immediate. For parts (ii) and (iii) see e.g., [Mumford 1966, §2; Poonen and Rains 2011,
Proposition 3.2]. �

For a principal polarization λ : A→ A∨ defined over F , we can use Lemma 4.5 to give a geometric
interpretation of the principal homogeneous space for A[2] associated to the set of quadratic refinements
of the Weil pairing ( · , · )λ on A[2].

Definition 4.6. Let λ : A → A∨ be a self-dual homomorphism defined over F . We define cλ ∈

H 1(F, A∨[2]) to be the image of λ under the connecting homomorphism in the long exact for Galois
cohomology associated to (4.2). If λ is a principal polarization we will also, by an abuse of notation,
write cλ for the element λ−1(cλ) ∈ H 1(F, A[2]).

Lemma 4.7. Let λ : A→ A∨ be a principal polarization defined over F , so that ( · , · )λ is a nondegenerate,
G F -equivariant, alternating pairing on A[2]. Then G F acts on A[2] through the symplectic group
Sp(A[2]) associated to the pairing ( · , · )λ. Let c ∈ H 1(F, A[2]) be the cohomology class associated to
the set of quadratic refinements of ( · , · )λ as in Section 3A.

Then we have the equality c= cλ inside H 1(F, A[2]).

Proof. We remark that this is implicit in [Poonen and Rains 2011, §3]. First note that by Lemma 4.5(ii), for
any symmetric line bundle L for which λ= φL, the function qL is a quadratic refinement of ( · , · )λ. The
result now follows either by an explicit computation using the association L 7→ qL or, more conceptually,
from the long exact sequences for cohomology associated to the commutative diagram (16) of [Poonen
and Rains 2011, §3.4], the top row of which is our sequence (4.2) and the bottom row of which is the
exact sequence (3.3) of Remark 3.2. �

4C. Theta groups. In this subsection we suppose that L is an ample line bundle on A so that K (L) is
finite. We recall the definition of the Theta group associated to L (see [Mumford 1966] for more details
of what follows).

Definition 4.8. The Theta group G(L) associated to L is the set of pairs (x, ϕ) where x ∈ K (L) and ϕ is
an isomorphism ϕ : L−→∼ τ ∗x L (over F). The group operation is given by

(x, ϕ) · (x ′, ϕ′)= (x + x ′, τ ∗x ′(ϕ) ◦ϕ
′).

Remark 4.9. If L∼=L′ then fixing an isomorphism α :L−→∼ L′ we obtain an isomorphism G(L)−→∼ G(L′)
given by

(x, ϕ) 7→ (x, τ ∗x (α) ◦ϕ ◦α
−1)

which is independent of α (since any two choices differ by a scalar). As such, G(L) is canonically
isomorphic to G(L′).
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Remark 4.10. The group G(L) sits in a short exact sequence

0→ F×→ G(L)→ K (L)→ 0, (4.11)

the map G(L)→ K (L) being projection onto the first factor and the map F×→ G(L) sending η ∈ F× to
the pair (0, multiplication by η).

Lemma 4.12. We have the following functorial properties of G:

(i) Let A/F and B/F be abelian varieties, let L be an ample line bundle on B and let f : A→ B be an
isomorphism. Then the map f̃ : G( f ∗L)−→∼ G(L) given by

(x, ϕ) 7→ ( f (x), ( f −1)∗(ϕ))

is an isomorphism making the diagram

0 // F× // G( f ∗L)

f̃
��

// K ( f ∗L)

f
��

// 0

0 // F× // G(L) // K (L) // 0

commute.

(ii) Gven abelian varieties A/F, B/F and C/F , isomorphisms f1 : A→ B and f2 : B → C and an
ample line bundle L on C , we have

f̃2 ◦ f1 = f̃2 ◦ f̃1 : G( f ∗1 f ∗2 L)−→∼ G(L).

Proof. In both cases this is a simple computation. We remark that we crucially require that f is an
isomorphism in (i), the situation for a general homomorphism being more subtle. See, for example,
[Mumford 1966, Proposition 2] and the surrounding discussion. �

4D. Theta groups in the main case of interest. Suppose that A is equipped with a fixed principal
polarization λ : A→ A∨ defined over F and take L= (1, λ)∗P where P is the Poincaré line bundle on
A× A∨ (here, for a homomorphism µ : A→ A∨ we denote by (1, µ) : A→ A× A∨ the composition
of the diagonal morphism 1 : A→ A× A with the morphism 1×µ : A× A→ A× A∨). Then L is
an F-rational, ample, symmetric line bundle on A such that φL = 2λ (see [Poonen and Rains 2012,
Remark 4.5]). In particular, we have K (L)= ker(2λ)= A[2].

Since [−1]∗L∼= L we have an induced automorphism [̃−1] of G(L) as in Lemma 4.12.

Lemma 4.13. With L= (1, λ)∗P as above, the automorphism [̃−1] of G(L) is trivial.

Proof. By [Mumford 1966, Proposition 3], if F is any ample symmetric line bundle on A and (x, ϕ)∈G(F)
is such that x ∈ A[2], then the automorphism [̃−1] of G(F) sends (x, ϕ) to (x, qF (x)ϕ).

In particular, since K (L)= A[2] in our case, it suffices to show that qL is trivial. Pick a symmetric
line bundle M such that λ = φM (whilst it may not be possible to choose an F-rational such M, this
is always possible over F). By standard properties of the Poincaré line bundle we have (1×φM)∗P ∼=
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m∗M⊗ p∗1M
−1
⊗ p∗2M

−1, where m : A× A→ A is addition and p1 and p2 denote projection onto the
first and second factors. Pulling back along the diagonal morphism 1 : A→ A× A we obtain

L∼= [2]∗M⊗M−2 ∼=M2

where for the second isomorphism above we use the symmetry of M along with the fact that for any line
bundle F on A we have [2]∗F ∼=F3

⊗[−1]∗F (see e.g., [Milne 1986, Corollary 6.6]). By Lemma 4.5(iii)
we conclude that qL = (qM)

2
= 1 as desired. �

Remark 4.14. As L is F-rational, the group G(L) carries a natural G F -action. Explicitly, for σ ∈ G F

and (x, ϕ) ∈ G(L), we have

σ · (x, ϕ)= (σ (x), σ ∗(ϕ)) ∈ G(σ ∗L)= G(L)

where for the equality G(σ ∗L)= G(L) we combine Remark 4.9 with the assumption that L is F-rational.
In particular, the exact sequence of Remark 4.10 becomes a short exact sequence of G F groups

0→ F×→ G(L)→ A[2] → 0 (4.15)

(we caution here that G(L) is nonabelian). This short exact sequence will be important in what fol-
lows. More specifically, as in [Poonen and Rains 2012, Corollary 4.7], the associated connecting map
H 1(F, A[2])→ H 2(F, F×) is a quadratic form whose associated bilinear pairing is that arising from
cup-product and the Weil pairing ( · , · )λ : A[2]× A[2] → µ2 ↪→ F×.

4E. Quadratic twists. Maintaining the notation of Section 4D (so in particular L = (1, λ)∗P) let χ :
G F→µ2 be a quadratic character. Write (Aχ , ψ) for the quadratic twist of A by χ (so that ψ : A→ Aχ

is an F-isomorphism with ψ−1
◦ψσ = [χ(σ)] for all σ ∈ G F ). We now consider the effect of quadratic

twisting on the constructions appearing earlier in this section. Note that ψ restricts to a G F -equivariant
isomorphism A[2] −→∼ Aχ [2].

Lemma 4.16. The morphism λχ := (ψ
∨)−1λψ−1

: Aχ→ Aχ∨ is a principal polarization defined over F.

Proof. This is a manifestation of the fact that [−1]∗ acts trivially on the Néron–Severi group. More
precisely, one computes immediately that λχ is defined over F , and it’s a polarization since if M
is a line bundle on A (not necessarily F-rational) such that λ = φM then one has λχ = φMχ

where
Mχ = (ψ

−1)∗M. �

More generally, we have:

Lemma 4.17. We have a commutative diagram of G F -modules

0 // Aχ∨[2]

ψ∨

��

// Picsym Aχ
F

ψ∗

��

// Homself-dual(A
χ

F
, Aχ∨

F
)

��

// 0

0 // A∨[2] // Picsym AF
// Homself-dual(AF , A∨

F
) // 0,

where the rightmost vertical map sends µ to ψµψ∨.
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Proof. As with Lemma 4.16 this follows from an explicit computation, and results from the fact that [−1]
acts trivially on each group appearing. �

Corollary 4.18. Let ψ−1 denote the isomorphism H 1(F, Aχ [2])→ H 1(F, A[2]) induced by ψ−1 and let
cλ ∈ H 1(F, A[2]) and cλχ ∈ H 1(F, Aχ [2]) be the cohomology class associated to λ and λχ , respectively,
as in Definition 4.6. Then we have ψ−1(cλχ )= cλ.

Proof. This follows immediately from the long exact sequences for cohomology associated to the
commutative diagram of Lemma 4.17. �

We now consider the effect of quadratic twisting on the Theta group associated to L= (1, λ)∗P .

Lemma 4.19. Let L= (1, λ)∗P , write Pχ for the Poincaré line bundle on Aχ × Aχ∨ and define Lχ :=
(1, λχ )∗Pχ . Then ψ∗Lχ ∼= L.

Proof. Standard properties of the Poincaré line bundle (see e.g., [Milne 1986, §11]) give

(1×ψ∨)∗P ∼= (ψ × 1)∗Pχ

as line bundles on A× Aχ∨. Since ψ∨ is an isomorphism we obtain

L= (1, λ)∗P ∼= (1, λ)∗(1× (ψ∨)−1)∗(ψ × 1)∗Pχ .

The right-hand side of the above expression is easily seen to be equal to

ψ∗1∗(1× λχ )∗Pχ = ψ∗Lχ

as desired (here 1 : A→ A× A is the diagonal morphism). �

Lemma 4.20. The isomorphism ψ̃ : G(L)→ G(Lχ ) (arising from Lemmas 4.12 and 4.19) is Galois
equivariant. In particular, ψ̃ fits into a commutative diagram of G F -modules

0 // F× // G(L)

ψ̃

��

// A[2]

ψ

��

// 0

0 // F× // G(Lχ ) // Aχ [2] // 0,

where all vertical maps are isomorphisms.

Proof. Write IsomL,Lχ (A, Aχ ) for the set of F-isomorphisms f : A → Aχ for which f ∗Lχ ∼= L.
Then using the explicit Galois action given in Remark 4.14 one sees that the map IsomL,Lχ (A, Aχ )→
Isom(G(L),G(Lχ )) given by f 7→ f̃ is Galois equivariant. It then follows from Lemma 4.12 that we
have, for all σ ∈ G F ,

(ψ̃)σ = ψ̃σ = ˜ψ ◦ [χ(σ)] = ψ̃ ◦ [̃χ(σ)] = ψ̃

where the last equality follows from Lemma 4.13. �
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5. Controlling the parity of dimF2 Xnd(A/K )[2] under quadratic twist

In this section we prove Theorem 1.4 concerning the behavior under quadratic twist of the Shafarevich–Tate
group of a principally polarized abelian variety.

For the rest of the section, fix a number field K and let (A/K , λ) be a principally polarized abelian vari-
ety. To fix notation, we briefly recall the definition of the 2-Selmer and Shafarevich–Tate groups of A/K .

5A. The 2-Selmer group and the Shafarevich–Tate group. For a place v of K we denote by δv :
A(Kv)/2A(Kv) ↪→ H 1(Kv, A[2]) the connecting homomorphism associated to the multiplication-by-two
Kummer sequence

0→ A[2] → A(Kv) [2]−→ A(Kv)→ 0 (5.1)

over the completion Kv of K at v.
The 2-Selmer group of A/K is the group

Sel2(A/K ) := {ξ ∈ H 1(K , A[2]) : ξv ∈ im(δv) ∀v ∈ MK }.

It sits in a short exact sequence

0→ A(K )/2A(K )→ Sel2(A/K )→X(A/K )[2] → 0 (5.2)

where

X(A/K ) := ker(H 1(K , A)→
∏
v∈MK

H 1(Kv, A))

is the Shafarevich–Tate group of A/K .

5B. The Cassels–Tate pairing. Denote by Xnd(A/K ) the quotient of X(A/K ) by its maximal divisible
subgroup. The Cassels–Tate pairing is a bilinear pairing

〈 · , · 〉CT :X(A/K )×X(A∨/K )→Q/Z

the left and right kernels of which are Xnd(A/K ) and Xnd(A∨/K ), respectively. The principal polariza-
tion λ : A→ A∨ induces a nondegenerate bilinear pairing

〈 · , · 〉CT,λ :Xnd(A/K )×Xnd(A/K )→Q/Z

defined by 〈a, b〉CT,λ = 〈a, λ(b)〉CT for a, b ∈X(A/K ). This pairing is antisymmetric [Flach 1990,
Theorem 2; Poonen and Stoll 1999, Corollary 6].

Via the map Sel2(A/K ) → X(A/K )[2] of (5.2) the Cassels–Tate pairing 〈 · , · 〉CT,λ induces an
antisymmetric pairing on Sel2(A/K ) (though this is no longer nondegenerate). By an abuse of notation
we denote this by 〈 · , · 〉CT,λ also.
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5C. Description of the Cassels–Tate pairing on Sel2(A/K ). We will need an explicit description of the
Cassels–Tate pairing 〈 · , · 〉CT,λ on Sel2(A/K ). We use the “Weil pairing” definition as in [Poonen and
Stoll 1999, §12.2] which we copy almost verbatim and to which we refer for more details.

Definition 5.3 (Cassels–Tate pairing). Let a, b ∈ Sel2(A/K ). There will be several choices involved in
the definition of 〈a, b〉CT,λ. We begin with the global choices.

Pick cocycles a and b representing a and b respectively. Next, pick σ ∈C1(K , A[4]) such that 2σ = a.
Then dσ is a 2-cocycle with values in A[2], i.e., an element of Z2(K , A[2]). The Weil pairing ( · , · )λ :
A[2] × A[2] → µ2 ↪→ K× induces a cup-product map ∪ : Z2(K , A[2])× Z1(K , A[2])→ Z3(K , K×).
As K is a number field H 3(K , K×)= 0, so we may choose ε ∈ C2(K , K×) such that dσ ∪ b = dε.

Now for the local choices. Fix a place v of K . The class of av is trivial in H 1(Kv, A(Kv)) so we may
choose Pv ∈ A(Kv) with av = d Pv . Pick Qv ∈ A(Kv) with 2Qv = Pv . Then ρv := d Qv is an element of
Z1(Kv, A[4]) and σv − ρv takes values in A[2], i.e., is an element of C1(Kv, A[2]). Then we may form
the element (σv − ρv)∪ bv of C2(Kv, Kv×) (again defining the cup-product map using the Weil pairing
on A[2]). The difference (σv −ρv)∪ bv − εv is a 2-cocycle with values in Kv×. Let dv denote its class in
H 2(Kv, Kv×)= Br(Kv). Then 〈a, b〉CT,λ is defined as

〈a, b〉CT,λ :=
∑
v∈MK

invv(dv) ∈Q/Z.

The value of the sum above is independent of all choices made.

5D. Controlling the parity of dimF2 Xnd(A/K )[2] globally. If A is an elliptic curve and λ its canonical
principal polarization then it is well known that 〈 · , · 〉CT,λ is in fact alternating and it follows that
dimF2 Xnd(A/K )[2] is even. For general principally polarized abelian varieties however, Poonen and
Stoll [1999] showed that dimF2 Xnd(A/K )[2] need not be even and gave a criterion for determining
whether or not this is the case. Specifically, let cλ ∈ H 1(K , A[2]) be the cohomology class associated to
λ as in Definition 4.6. By [Poonen and Stoll 1999, Lemma 1] we in fact have cλ ∈ Sel2(A/K ).

We then have the following theorem of Poonen–Stoll.

Theorem 5.4. The group Xnd(A/K )[2] has even F2-dimension if and only if

〈cλ, cλ〉CT,λ = 0 ∈Q/Z.

Proof. The image of cλ in X(A/K )[2] is the homogeneous space associated to λ as in [Poonen and Stoll
1999, §2]. Theorem 8 of [loc. cit.] now gives the result. �

Remark 5.5. Since the image of cλ in X(A/K ) is annihilated by 2 we have 〈cλ, cλ〉CT,λ ∈
{
0, 1

2

}
.

5E. Quadratic twists. For the rest of the section fix a quadratic character χ and let (Aχ , ψ) be the
quadratic twist of A by χ . We now set up the notation which we will use when computing with Aχ

in what follows. We endow Aχ with the K -rational principal polarization λχ := (ψ∨)−1λψ−1 (see
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Section 4E). Associated to λχ is the Weil pairing

( · , · )λχ : Aχ [2]× Aχ [2] → µ2

and the Cassels–Tate pairing

〈 · , · 〉CT,λχ :X(Aχ/K )[2]×X(Aχ/K )[2] →Q/Z

(which we also view as a pairing on Sel2(Aχ/K )). Using the isomorphism ψ we identify Aχ [2] and A[2]
as G K -modules. Note that this identification also respects the Weil pairing (i.e., identifies ( · , · )λχ with
( · , · )λ; to see this e.g., combine Lemma 4.5(ii) and Lemma 4.17). In this way, we identify H 1(K , Aχ [2])
with H 1(K , A[2]) and thus view the 2-Selmer group Sel2(Aχ/K ) inside H 1(K , A[2]). In particular, we
may talk about the intersection of Sel2(A/K ) and Sel2(Aχ/K ).

We also use ψ to identify A[4](K ) with Aχ [4](K ). This last identification does not respect the
G K -action. Thus for each i , we have identified C i (K , Aχ [4]) with C i (K , A[4]) but the differential
d : C i (K , Aχ [4])→ C i+1(K , Aχ [4]) is not identified with the usual differential on C i (K , A[4]); we
write dχ for the map C i (K , A[4])→ C i+1(K , A[4]) to which is does correspond. For example, the map
d : C1(K , Aχ [4])→ C2(K , Aχ [4]) corresponds to the map dχ : C1(K , A[4])→ C2(K , A[4]) defined by

(dχ f )(σ, τ )= f (σ )+χ(σ)σ f (τ )− f (στ).

Similarly, we use ψ to identify C i (K , Aχ (K )) and C i (K , A(K )) for each i , and define differentials dχ
on C i (K , A(K )) similarly.

5F. Strategy of the proof of Theorem 1.4. To motivate what follows, we briefly sketch the proof of
Theorem 1.4.

For a, b ∈X(A/K ), in the definition of 〈a, b〉CT,λ the local terms dv (in the notation of Definition 5.3)
depend on the global choices. In particular, it is not clear that 〈cλ, cλ〉CT,λ, and hence the parity of
dimF2 Xnd(A/K )[2], may be expressed as a sum of local terms whose definition requires no global
choices (this is, however, known to be true if A/K is the Jacobian of a curve, see [Poonen and Stoll 1999,
Corollary 12]).

When considering A along with its quadratic twist Aχ , we eliminate the global choices as follows.
Associated to λχ is the class cλχ ∈ Sel2(Aχ/K ) (viewed inside H 1(K , A[2]) as in Section 5E). By
Corollary 4.18 we have cλχ = cλ and in particular, cλ lies in Sel2(A/K )∩Sel2(Aχ/K ). Now the sum of
the pairings 〈 · , · 〉CT,λ and 〈 · , · 〉CT,λχ gives a new pairing on Sel2(A/K )∩Sel2(Aχ/K ). By Theorem 5.4,
dimF2 Xnd(A/K )[2]+ dimF2 Xnd(Aχ/K )[2] is even if and only if cλ pairs trivially with itself under this
new pairing.

We show in Lemma 5.8 that the global choices involved in computing the sum of the two Cassels–Tate
pairings are milder than those for the individual pairings (we remark that this simplification of the
Cassels–Tate pairing under quadratic twist has also been observed in the recent preprint of Smith [2016,
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proof of Theorem 3.2]). Specifically, the global choices involved in computing

〈cλ, cλ〉CT,λ+〈cλ, cλ〉CT,λχ

are: a choice of cocycle cλ ∈ Z1(K , A[2]) representing cλ and a choice of cochain F : G K → µ2 such
that d F = cλ ∪ cλ ∈ Z2(K ,µ2).

By Lemma 4.7, cλ ∈ H 1(K , A[2]) is the cohomology class parametrizing quadratic refinements of
the Weil pairing. In particular, a choice of cocycle representing cλ amounts to a choice of quadratic
refinement q . For each such q we have already constructed a canonical choice for the function F above,
namely that given by Proposition 3.9. Thus the only global choice remaining is that of q . Proposition 3.10
shows how this choice for F changes upon changing q, allowing us to prove that the local terms then
arising do not, in fact, depend on the choice of quadratic refinement either.

5G. Pairings on Sel2(A/K )∩ Sel2(Aχ/K ). Define Sχ := Sel2(A/K )∩ Sel2(Aχ/K ). Here we define
a pairing 〈 · , · 〉Sχ on Sχ with values in Q/Z which we shall see is the sum of the Cassels–Tate pairings
for A and its twist Aχ . However, for clarity when using this pairing later, we define it separately.

Definition 5.6 (the pairing 〈 · , · 〉Sχ ). Let a,b ∈ Sχ = Sel2(A/K )∩Sel2(Aχ/K ). As with the definition of
the Cassels–Tate pairing, we begin with the global choices. We first claim that a∪ b= 0 ∈ H 2(K ,µ2)=

Br(K )[2]. Indeed, for each place v of K both av and bv are in the image of A(Kv)/2A(Kv) under the
connecting homomorphism associated to the multiplication-by-2 Kummer sequence. Since this image is
its own orthogonal complement under the cup-product pairing

H 1(Kv, A[2])× H 1(Kv, A[2])→ H 2(Kv, Kv×)= Br(Kv)

(this results from Tate local duality, see e.g., [Milne 2006, I.3.4]) we have (a∪b)v = 0 ∈ Br(Kv) for each
place v of K . Reciprocity for the Brauer group now gives the claim.

Now represent a and b by cocycles a and b respectively and, as is possible by the above discussion,
pick f ∈ C1(K ,µ2) with d f = a ∪ b ∈ Z2(K ,µ2).

We now turn to the local choices. Fix a place v of K . Since a ∈ Sel2(A/K ) there is Pv ∈ A(Kv)
with d Pv = av. Pick Qv ∈ A(Kv) with 2Qv = Pv. Then ρv := d Qv is an element of Z1(Kv, A[4]).
Since a is also in Sel2(Aχ/K ) we can similarly (i.e., by replacing d by dχ throughout) define Pv,χ ,
Qv,χ and ρv,χ = dχQv,χ ∈ C1(Kv, A[4]). Then ρv + ρv,χ takes values in A[2]. One checks that
d(ρv + ρv,χ )= χv ∪ av ∈ Z2(Kv, A[2]). Thus the difference

(ρv + ρv,χ )∪ bv −χv ∪ fv

is a 2-cocycle with values in µ2. Denote by dv its class in Br(Kv)[2].
Now define

〈a, b〉Sχ :=
∑
v∈MK

invv(dv) ∈Q/Z.
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One easily checks that once the initial global choices are made the cocycle class dv ∈Br(Kv) is independent
of the local choices. That the resulting sum is independent of all choices follows from reciprocity for the
Brauer group.

Remark 5.7. If a place v of K splits in the quadratic extension L/K associated to χ then χv is trivial
and ψ gives an isomorphism between A and Aχ over Kv. It follows easily that the local terms invv(dv)
are trivial at all such v. Thus in the definition of 〈 · , · 〉Sχ we may replace the sum over all places of K by
the sum over all places of K nonsplit in L/K .

Lemma 5.8. The pairing 〈 · , · 〉Sχ is the sum of the Cassels–Tate pairings for A and Aχ :

〈 · , · 〉Sχ = 〈 · , · 〉CT,λ+〈 · , · 〉CT,λχ .

In particular, it is (anti)symmetric.

Remark 5.9. This lemma is implicit in the recent preprint of Smith [2016, proof of Theorem 3.2].

Proof. Fix a, b ∈ Sχ . We begin by making the global choices involved in computing 〈a, b〉CT,λ. We pick
cocycles a and b representing a and b respectively and pick σ ∈ C1(K , A[4]) with 2σ = a. Next, we
pick ε ∈ C2(K , K×) with dε = dσ ∪ b.

We now make the corresponding choices involved in computing 〈a, b〉CT,λχ . As we are at liberty to do,
we pick the same cocycle representatives a and b chosen above. We similarly pick the same element σ of
C1(K , A[4]) satisfying 2σ = a (here using the identification of A[4] with Aχ [4] via ψ as discussed). We
then pick εχ ∈ C2(K , K×) such that dεχ = dχσ ∪ b. Note that we cannot chose ε = εχ in general due to
the difference between the differentials d and dχ . However, we have

d(ε+ εχ )= (dσ + dχσ)∪ b = (χ ∪ a)∪ b,

the last equality following from the definition of dχ and a simple computation.
Now let f ∈C1(K ,µ2) be such that d f = a∪b. By (2.1) and associativity of the cup-product we have

d(χ ∪ f )= d(ε+ εχ ) whence χ ∪ f = ε+ εχ + ν for some cocycle ν ∈ Z2(K , K×).
We now make the local choices involved in computing 〈a, b〉CT,λ. We choose Pv ∈ A(Kv) with

d Pv = av and then pick Qv ∈ A(Kv) with 2Qv = Pv . Next, set ρv := d Qv ∈ C1(Kv, A[4]) and define dv

to be the class of (σv − ρv)∪ bv − εv in H 2(Kv, Kv×).
Finally, we make the local choices involved in computing 〈a, b〉CT,λχ . Thus we pick Pv,χ with

dχ Pv,χ = av , Qv,χ with 2Qv,χ = Pv,χ , set ρv,χ = dχQv,χ and define dv,χ to be the class of (σv−ρv,χ )∪
bv − εχ,v in H 2(Kv, Kv×).

With these choices in place dv + dv,χ is the class in Br(Kv) of

(av − (ρv + ρv,χ ))∪ bv −χv ∪ fv + νv.

Noting that ρv + ρv,χ takes values in A[2] and that av ∪ bv = 0 (as discussed previously) we see that

invv(dv)+ invv(dv,χ )= invv((ρv + ρv,χ )∪ bv −χv ∪ fv)+ invv(νv).
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Summing over all places and noting that by reciprocity for the Brauer group we have∑
v∈MK

invv(νv)= 0 ∈Q/Z,

we have

〈a, b〉CT +〈a, b〉CT,χ =
∑
v∈MK

invv((ρv + ρv,χ )∪ bv −χv ∪ fv).

But this is precisely how the quantity 〈a, b〉Sχ was defined. �

5H. The local terms g(A, λ, χ). In this subsection we study the local terms which arise in computing
〈cλ, cλ〉Sχ , and show in particular that they are independent of certain choices involved. We work purely
locally and take F to be a local field of characteristic 0. Let (A/F, λ) be a principally polarized abelian
variety. Let χ ∈ Homcnt(G F ,µ2) be a quadratic character of F and (Aχ/F, ψ) be the quadratic twist of
A by χ . We use the same conventions and notation as in Section 5E when talking about objects associated
to Aχ . We will need to identify µ2 with the additive group of F2 in the following, and we write the group
law on µ2 additively to avoid confusion when doing this.

Denote by cλ ∈ H 1(F, A[2]) the cohomology class associated to λ as in Definition 4.6. By [Poonen
and Stoll 1999, Lemma 1] its image in H 1(F, A)[2] is trivial. By Corollary 4.18, it follows also that
the image of cλ in H 1(F, Aχ )[2] is trivial too (here the map H 1(F, A[2])→ H 1(F, Aχ )[2] comes from
identifying A[2] with Aχ [2] via ψ).

Remark 5.10. By Lemma 4.7 cλ is equal to the cohomology class associated to the set of quadratic
refinements of the Weil pairing ( · , · )λ on A[2]. In particular, for each quadratic refinement q of ( · , · )λ,
the function cq : G F → A[2] sending σ ∈ G F to the unique element cq(σ ) ∈ A[2] such that

q(σ−1v)− q(v)= (v, cq(σ ))λ

for all v ∈ A[2], is a cocycle in Z1(F, A[2]) representing the class cλ.

Definition 5.11. Let q : A[2]→µ2 be a quadratic refinement of the Weil pairing ( · , · )λ. Then we define
the function Fq : G F → µ2 as the composition

Fq : G F → Sp(A[2]) fq
−→ F2 ∼= µ2,

where the map G F → Sp(A[2]) is the homomorphism coming from the action of G F on A[2] and
fq : Sp(A[2])→ F2 is the map afforded by Proposition 3.9.

Remark 5.12. For each quadratic refinement q of ( · , · )λ it follows from Proposition 3.9 that we have
d Fq = cq ∪ cq ∈ Z2(F,µ2).

Definition 5.13. Let χ ∈ Homcnt(G F ,µ2) be a quadratic character, let q be a quadratic refinement of
( · , · )λ and let cq be the associated cocycle representing cλ. As in the definition of the local choices
for the pairing 〈 · , · 〉Sχ , pick Pq ∈ A(F) with d Pq = cq , let Qq ∈ A(F) be such that 2Qq = Pq and set
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ρq = d Qq . Similarly, pick Pχ,q ∈ A(F) with dχ Pχ,q = cq , let Qχ,q ∈ A(F) be such that 2Qχ,q = Pχ,q
and set ρχ,q = dχQχ,q .

We then define g(A, λ, χ, q) to be the class of the cocycle

g(A, λ, χ, q) := (ρq + ρχ,q)∪ cq −χ ∪ Fq

in Br(F)[2]. As in Section 5G, g(A, λ, χ, q) does not depend on the choices of Pq , Qq , Pχ,q or Qχ,q .

The following lemma is key to the proof of Theorem 1.4.

Lemma 5.14. The quantity g(A, λ, χ, q) ∈ Br(F)[2] is independent of the choice of quadratic refine-
ment q.

Proof. Keep the notation of Definition 5.13 in what follows. Let q and q ′ be two quadratic refinements.
Then q − q ′ = (−, v)λ for some v ∈ A[2] and cq ′ = cq + dv. By Proposition 3.10 we have

Fq ′ = Fq + cq ∪ v+ v ∪ cq + v ∪ dv.

Now fix choices for Pq , Qq , Pχ,q and Qχ,q as in Definition 5.13. Then we may take Pq ′ = Pq + v and
Pχ,q ′ = Pχ,q + v. Pick T ∈ A[4] with 2T = v. Then we may take Qq ′ = Qq + T and Qχ,q ′ = Qχ,q + T .
Thus

ρq ′ + ρχ,q ′ = ρq + ρχ,q + dT + dχT .

An easy computation gives dT + dχT = dv+χ ∪ v. Combining this with the expressions for Fq ′ and cq ′

in terms of Fq and cq respectively, we see that we have an equality of cocycles

g(A, λ, χ, q ′)= g(A, λ, χ, q)+(ρq+ρχ,q)∪dv+(dv+χ∪v)∪(cq+dv)−χ∪(cq∪v+v∪cq+v∪dv)

inside Z2(F,µ2).
Now cq + dv ∈ C1(F, A[2]) is a cocycle whilst dv ∈ C1(F, A[2]) is a coboundary. Thus the class

of dv ∪ (cq + dv) is trivial in Br(F)[2]. Using this observation, canceling like terms in the previous
expression, and passing to classes in the Brauer group, one has

g(A, λ, χ, q ′)= g(A, λ, χ, q)+ [(ρq + ρχ,q)∪ dv−χ ∪ cq ∪ v]

(where here “[ ]” denotes the operation of taking classes in the Brauer group).
Now, as remarked in the definition of the pairing 〈 · , · 〉Sχ , we have d(ρq + ρχ,q)= χ ∪ cq . Thus by

standard properties of cup product on cochains (see Section 2B) we have

d((ρq + ρχ,q)∪ v)= (ρq + ρχ,q)∪ dv−χ ∪ cq ∪ v.

In particular, the class of (ρq + ρχ,q) ∪ dv − χ ∪ cq ∪ v is trivial in Br(F), whence g(A, λ, χ, q ′) =
g(A, λ, χ, q) as desired. �

Lemma 5.14 allows us to make the following refinement of Definition 5.13.
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Definition 5.15. Define g(A, λ, χ)∈Br(F)[2] to be the quantity g(A, λ, χ, q) for any choice of quadratic
refinement q of ( · , · )λ.

The following proposition computes explicitly the terms g(A, λ, χ) in certain cases.

Proposition 5.16. Let g(A, λ, χ) ∈ Br(F)[2] be as in Definition 5.15.

(i) We have g(A, λ,1)= 0 where 1 is the trivial character of F.

(ii) Suppose that q is a G F -invariant quadratic refinement of the Weil pairing ( · , · )λ on A[2] and let
α : G F → µ2 be the quadratic character corresponding to the homomorphism

G F → O(q)/SO(q)∼= Z/2Z∼= µ2

coming from the action of G F on A[2]. Then

g(A, λ, χ)= α ∪χ ∈ Br(F)[2].

(iii) Suppose that F is nonarchimedean with odd residue characteristic and that A has good reduction.
Then we have

invF g(A, λ, χ)=
{

0 χ unramified,
1
2 dimF2 A(F)[2] ∈Q/Z χ ramified.

(iv) Suppose that F is archimedean. Then we have

invF g(A, λ, χ)=
{

0 F = C or χ trivial,
1
2 dimF2 A(F)[2] ∈Q/Z F = R and χ nontrivial.

Proof.

(i) Clear.

(ii) If there is an F-rational quadratic refinement q then cq is identically zero and it follows immediately
from Lemma 5.14 and the definition of g(A, λ, χ, q) that

g(A, λ, χ)= g(A, λ, χ, q)=−χ ∪ Fq = χ ∪α

where for the last equality we use that the restriction of Fq to elements of O(q) agrees with the Dickson
homomorphism dq (see Proposition 3.9).

(iii) By [Poonen and Rains 2011, Proposition 3.6(d)], our assumptions on F and the reduction of A
imply that there is a G F -invariant quadratic refinement q of the Weil pairing on A[2]. Let α be the
associated quadratic character so that g(A, λ, χ)= α ∪χ by (ii). Now by definition, α factors through
Gal(F(A[2])/F) and our assumptions on F and A mean that F(A[2])/F is unramified. Consequently, α
is unramified. In fact, let σ denote the Frobenius element in F(A[2])/F . Then by Proposition 3.5 we
have

α(σ)= (−1)dimF2 A[2]σ
= (−1)dimF2 A(F)[2].
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In particular, we see that if dimF2 A(F)[2] is even then α is the trivial character, whilst if dimF2 A(F)[2]
is odd then α is the unique nontrivial unramified quadratic character of F . Since F is assumed to have
odd residue characteristic, standard properties of the cup-product of two quadratic characters gives the
result (we review these later in Section 8A: see, in particular, Lemma 8.4).

(iv) The argument here is similar to that of (iii). First note that if χ is trivial then g(A, λ, χ) = 0 by
(i). In particular, the only case we have not already covered is when F = R and χ is the quadratic
character corresponding to the extension C/R. By [Poonen and Rains 2011, Proposition 3.6(d)] there
is an R-rational quadratic refinement q of the Weil pairing ( · , · )λ. Let α be the associated quadratic
character and write σ for the unique nontrivial element of Gal(C/R). By Proposition 3.5 we see that α
is trivial if dimF2 A[2]σ = dimF2 A(R)[2] is even, and is the quadratic character corresponding to C/R

otherwise. The result now follows from (ii). �

Remark 5.17. As in Lemma 4.5, if the polarization λ is of the form φL for an F-rational symmetric line
bundle L then there is an associated G F -invariant quadratic refinement of the Weil pairing on A[2]. Thus
combined with Proposition 5.16(ii) this gives a geometric condition for when the local terms g(A, λ, χ)
may be evaluated.

Remark 5.18. It is natural to ask if the terms g(A, λ, χ) are independent of the choice of principal
polarization λ. The above proposition shows that this is true when χ is trivial, when A/F has good
reduction and F has odd residue characteristic, or when F is archimedean. We have been unable to prove
this in general however.

Remark 5.19. Write L= F(A[2]) and let χ be any quadratic character. Since for any quadratic refinement
q the cocycle cq factors through Gal(L/F), the points Pq and Pχ,q of Definition 5.13 lie in A(L) and
Aχ (L) respectively. In particular, it follows that the cocycle g(A, λ, χ) factors through Gal(L ′/F), where
L ′ is the compositum of all the (finitely many) quadratic extensions of F(A[2]).

5I. Controlling the parity of dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] via local contributions.
We return to the notation of Section 5A–5G so that, in particular, K is a number field and (A/K , λ) a
principally polarized abelian variety.

Theorem 5.20 (Theorem 1.4). Let χ be a quadratic character of K and for each place v of K write χv
for the restriction of χ to G Kv

, A/Kv for the base change of A to Kv , and λv for the principal polarization
on A/Kv corresponding to λ.

Then dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] ≡ 0 (mod 2) if and only if∑
v∈MK

invv g(A/Kv, λv, χv)= 0 ∈Q/Z.

Remark 5.21. Before proving Theorem 5.20 we remark that if v is a nonarchimedean place of K , not
dividing 2 and such that both A has good reduction and χ is unramified at v, then g(A/Kv, λv, χv)= 0
by Proposition 5.16(iii). In particular, the sum in the statement of Theorem 5.20 is finite.
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Proof of Theorem 5.20. By Corollary 4.18, Theorem 5.4 applied to both A and Aχ (along with their prin-
cipal polarizations λ and λχ ), and Lemma 5.8, we see that dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2]
is even if and only if 〈cλ, cλ〉Sχ = 0.

We now follow Definition 5.6 to compute 〈cλ, cλ〉Sχ . For the global choices, fix a quadratic refinement q
of the Weil pairing ( · , · )λ on A[2]. Then as in the local case (Remark 5.10) the function cq : G K → A[2]
sending σ ∈ G K to the unique element cq(σ ) ∈ A[2] such that

q(σ−1v)− q(v)= (v, cq(σ ))λ

for all v∈ A[2], is a cocycle in Z1(F, A[2]) representing the class cλ. Similarly, the function Fq :G K→µ2

defined as the composition

Fq : G K → Sp(A[2]) fq
−→ F2 ∼= µ2,

(where the map G K → Sp(A[2]) is the homomorphism coming from the action of G K on A[2] and
fq : Sp(A[2]) → F2 is the map afforded by Proposition 3.9) is an element of C1(K ,µ2) satisfying
d Fq = cq ∪ cq ∈ Z2(K , K×).

With these global choices in place, the local terms arising in the definition of 〈cλ, cλ〉Sχ are precisely
the terms g(A/Kv, λv, χv, q) of Definition 5.13. By Lemma 5.14 (for fixed v) they are independent of q ,
their common value being by definition g(A/Kv, λv, χv).

Thus

〈cλ, cλ〉Sχ =
∑
v∈MK

invv g(A/Kv, λv, χv)

and the result follows. �

6. Disparity in Selmer ranks: definitions and recollections

The next four sections are devoted to proving Theorem 7.4 concerning the parity of certain Selmer groups
defined in terms of abstract twisting data. Our approach follows closely the strategy of [Klagsbrun et al.
2013], which proves the result for Galois modules of dimension 2 (whilst we handle arbitrary (even)
dimension). Many of the statements of [loc. cit.] go through with some minor changes however in order
to highlight the differences it is necessary to recall much of their setup and basic results. Thus in this
section we recall the setup of [loc. cit.]. Where notions need to be generalized or slightly adapted we
state the differences in a remark immediately following the definition.

6A. Notation. Here we fix some notation which will remain in place for the entirety of Sections 6–9. Fix
first a prime p and number field K . Following [loc. cit.], for a field L (either K or Kv for some v ∈ MK )
we define C(L) := Homcnt(GL ,µp), the group of characters of order dividing p. We denote the trivial
character by 1L . Further, we define F(L) to be the quotient of C(L) by the action of Aut(µp) (the action
given by post-composition). The set F(L) is naturally identified with the set of cyclic extensions of L of
degree dividing p, the map being given by sending the equivalence class of χ ∈ C(L) to the fixed field
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K ker(χ). When L is a nonarchimedean local field we write Cram(L) and Cur(L) for the subsets of C(L)
consisting of ramified and unramified characters, and similarly write Fram(L) and Fur(L) for the subsets
of F(L) corresponding to ramified and unramified extensions. Note that if L has residue characteristic
coprime to p then Cram(L) (and hence also Fram(L)) is nonempty if and only if µp ⊆ L .

For an finite dimensional Fp-vector space M we say that a map q : M→Q/Z is a quadratic form if
q(nx)= n2q(x) for all n ∈ Z and x ∈ M , and if the map (x, y) 7→ q(x+ y)−q(x)−q(y) is a symmetric
bilinear pairing on M . We say that q is nondegenerate if the associated pairing is (i.e., if it has trivial
kernel). If q is a quadratic form on M with associated pairing 〈 · , · 〉 then for a subspace W of M we write

W⊥ = {m ∈ M : 〈w,m〉 = 0, ∀w ∈W }

for the orthogonal complement of W and say that W is a Lagrangian subspace of (M, q) if W =W⊥ and
q(W )= 0. We call (M, q) a metabolic space if q is nondegenerate and if M has a Lagrangian subspace.

6B. The module T and the finite set of places 6. Fix, for the remainder of Sections 6–9, a finite dimen-
sional Fp-vector space T equipped with a continuous G K -action and a nondegenerate G K -equivariant
alternating pairing

( · , · ) : T × T → µp

(so that, in particular, dimFp T is necessarily even). For v ∈ MK , if the inertia subgroup of G Kv
acts

trivially on T then we say that T is unramified at v, and ramified at v otherwise. We denote by K (T ) the
field of definition of the elements of T , i.e., the fixed field of the kernel of the action of G K on T . Note
that the presence of the pairing forces K (µp)⊆ K (T ).

We also fix a finite set 6 of places of K containing all archimedean places, all places over p, and all
places where T is ramified (and possibly some more to be specified later).

6C. The local Tate pairing and Tate quadratic forms. For each place v ∈ MK write 〈 · , · 〉v for the local
Tate pairing

H 1(Kv, T )× H 1(Kv, T )→Q/Z

given by the composition

H 1(Kv, T )× H 1(Kv, T ) ∪−→ H 2(Kv,µp)
invv−−−→Q/Z,

where the first map is induced by cup-product and the pairing ( · , · ). It is nondegenerate, bilinear and
symmetric.

Definition 6.1. Let v be a place of K . We say a quadratic form qv : H 1(Kv, T )→Q/Z is a Tate quadratic
form if its associated bilinear form is the local Tate pairing 〈 · , · 〉v. If v /∈ 6 then we say that qv is
unramified if it vanishes on H 1

ur(Kv, T ) (in which case H 1
ur(Kv, T ) is a Lagrangian subspace for qv).

Remark 6.2. If p= 2 then our definition differs slightly from that of Klagsbrun, Mazur and Rubin [2013,
Definition 3.2] since it allows quadratic forms valued in 1

4 Z/Z whilst their definition only allows quadratic
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forms taking values in 1
2 Z/Z. This extra generality is necessary when dimFp T > 2 in order to allow

T = A[2] for a principally polarized abelian variety A/K (see Remark 10.4).

As in [loc. cit., Lemma 3.4], if p > 2 then there is a unique Tate quadratic form qv on H 1(Kv, T )
given by

qv = 1
2〈 · , · 〉v.

6D. Global metabolic structures. With our slightly modified definition of a Tate quadratic form in hand
we can define a global metabolic structure on T in an identical way to [loc. cit., Definition 3.3].

Definition 6.3. A global metabolic structure q on T consists of a collection q = (qv)v (v ∈ MK ) of Tate
quadratic forms such that:

(i) For each v ∈ MK the pair (H 1(Kv, T ), qv) is a metabolic space.

(ii) The quadratic form qv is unramified at each place v /∈6.

(iii) If c ∈ H 1(K , T ) then
∑

v qv(cv)= 0.

As in [loc. cit., Lemma 3.4], if p > 2 then the unique Tate quadratic forms on H 1(Kv, T ) defined
above do indeed give a global metabolic structure on T , so specifying a global metabolic structure is only
necessary when p = 2.

6E. Selmer structures and Selmer groups. We define Selmer structures for (T, q), along with the
associated Selmer groups, as in [loc. cit., Definition 3.8].

Definition 6.4. A Selmer structure S for (T, q) is the data:

(i) A finite set 6S of places of K containing 6.

(ii) For each v ∈6S a Lagrangian subspace HS(Kv, T ) of (H 1(Kv, T ), qv).

Definition 6.5. Let S be a Selmer structure for (T, q). For each v /∈6S we set H 1
S(Kv, T )= H 1

ur(Kv, T )
and define the Selmer group associated to S as

H 1
S(K , T ) := ker

(
H 1(K , T )→

⊕
v∈MK

H 1(Kv, T )/H 1
S(Kv, T )

)
.

The following theorem, which is a very slight generalization of [loc. cit., Theorem 3.9], allows us to
compare the dimensions of two Selmer groups modulo 2.

Theorem 6.6. Let S and S ′ be two Selmer structures for (T, q). Then

dimFp H 1
S(K , T )− dimFp H 1

S ′(K , T )≡
∑

6S∪6S′

dimFp H 1
S(Kv, T )/(H 1

S(Kv, T )∩ H 1
S ′(Kv, T )) (mod 2).

Proof. This is proven for dimFp T = 2 in [loc. cit., Theorem 3.9] and the proof generalizes verbatim
to the case where T has arbitrary (even) dimension with one subtlety: their proof relies on [loc. cit.,
Proposition 2.4] which is a general result concerning the dimension of the intersection of Lagrangian
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subspaces of a finite dimensional metabolic space. The one difference from the case there is that now our
quadratic forms (in general) take values in Q/Z rather than just Fp as they assume. However, one readily
verifies that this assumption is not used in the proof of the cited result. Alternatively, see [Česnavičius
2018, Theorem 5.9] which gives a further generalization of [Klagsbrun et al. 2013, Theorem 3.9] which
includes our case. �

6F. Twisting data and twisted Selmer groups. Fix from now on a global metabolic structure q on T .

Definition 6.7. For each place v ∈ MK , write H(qv) for the set of Lagrangian subspaces for qv and,
for v /∈ 6, write Hram(qv) for the subset of H(qv) consisting of Lagrangian subspaces X for which
X ∩ H 1

ur(Kv, T )= 0.

Definition 6.8 (twisting data). We define twisting data α for (T, q, 6) to consist of

(i) for each v ∈6 a map

αv : F(Kv)→H(qv),

(ii) for each v /∈6 for which µp ⊆ Kv, a map

αv : Fram(Kv)→Hram(qv).

Remark 6.9. Our definition of twisting data is slightly different to that of [Klagsbrun et al. 2013,
Definition 4.4]. In their case, since T has dimension 2, for v /∈ 6 and with µp ⊆ Kv, Hram(qv) has
cardinality 0,1, or p according to dim T G Kv = 0, 1 or 2 respectively. In the first two cases they do not
specify a map αv as there is a unique such. In the final case they additionally insist that αv is a bijection,
as is possible since Fram(Kv) has order p.

Since for us T is allowed to have dimension greater that 2 we in general have |Hram(qv)|> p and thus
cannot insist that αv is a bijection once it ceases to be unique. Although omitting this condition does not
impact what follows, and is in fact not used in the main results of [Klagsbrun et al. 2013], we remark that
it is used crucially in a follow up paper to that paper: [Klagsbrun et al. 2014].

Definition 6.10 (twisted Selmer groups). Let (T, q, 6,α) as above be fixed, and let χ ∈ C(K ). Let Pχ
denote the set of primes of K for which χ ramifies. Then we define a Selmer structure S(χ) by taking
6S(χ) to be 6 ∪ Pχ and setting H 1

S(χ)(Kv, T ) := αv(χv) for v ∈ 6 ∪ Pχ . We write Sel(T, χ) for the
associated Selmer group

Sel(T, χ) := H 1
S(χ)(K , T ).

6G. Comparing the parity of dimensions of twisted Selmer groups. From now on we fix T , the set of
places 6, a global metabolic structure q, and twisting data α.

The following theorem, which is a slight variant of [Klagsbrun et al. 2013, Theorem 4.11] allows us to
compare the parity of the dimensions of the Selmer groups Sel(T, χ) as we vary χ . We first make one
further definition.
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Definition 6.11. Let v be a place of K and χ1 and χ2 be elements of C(Kv). Then we set

hv(χ1, χ2) := dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

Note that since any two Lagrangian subspaces of H 1(Kv, T ) have the same dimension this is symmetric
in χ1 and χ2.

Theorem 6.12. For any χ ∈ C(K ) we have

dimFp Sel(T, χ)− dimFp Sel(T,1K )≡
∑
v∈6

hv(1Kv
, χv)+

∑
v /∈6,χv ram

dimFp T G Kv (mod 2)

(here the second sum is taken over places v /∈6 for which the character χv is ramified).

Proof. This is essentially [Klagsbrun et al. 2013, Theorem 4.11]. Let S(χ) and S(1K ) be the Selmer
structures associated to the characters χ and 1K respectively. Then

6S(χ) ∪6S(1K ) =6 t {v /∈6 : χv ramified}.

Applying Theorem 6.6 to S(χ) and S(1K ) and noting that, by the definition of the twisting data,
H 1

ur(Kv, T )∩αv(χv)= 0 for all v /∈6 for which χv is ramified, we obtain

dimFp Sel(T, χ)− dimFp Sel(T,1K )≡
∑
v∈6

hv(1Kv
, χv)+

∑
v /∈6,χv ram

dimFp H 1
ur(Kv, T ) (mod 2).

The result now follows since for each v /∈6 we have dimFp H 1
ur(Kv, T )= dimFp T G Kv . This is shown in

(the proof of) [Klagsbrun et al. 2013, Lemma 3.7] in the case that T has dimension 2. The general case is
identical. �

7. Disparity in Selmer ranks: statement and first cases

In this section we fix (T, 6, q,α) as in the previous section and consider the proportion of characters
χ for which the associated Selmer groups Sel(T, χ) have odd (resp. even) Fp-dimension. To make this
precise, one has to order the elements of C(K ).

7A. Ordering twists. We use the same ordering as in [Klagsbrun et al. 2013, Definition 7.3].

Definition 7.1. For χ ∈ C(K ), set

‖χ‖ =max{N (p) : χ is ramified at p}

(where here for a prime pCOK , N (p) denotes the norm of p). If this set is empty, our convention is that
‖χ‖ = 1. Now for each X > 0 define

C(K , X)= {χ ∈ C(K ) : ‖χ‖< X}.
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For each X ≥ 1 this is a finite subgroup of C(K ) and each element of C(K ) appears in C(K , X) for
some X . We will make crucial use of the group structure on the C(K , X) to facilitate with counting
problems.

We will repeatedly use the following fact.

Lemma 7.2. For all sufficiently large X > 0 the restriction homomorphism

C(K , X)→
∏
v∈6

C(Kv)

sending χ to (χv)v∈6 is surjective.

Proof. This follows immediately from the Grunwald–Wang theorem. See for example [Neukirch et al.
2008, Theorem 9.2.3(ii)]. See also [Klagsbrun et al. 2013, Proposition 6.8(i)] but note that they have a
running hypothesis on the set of places 6 which we do not wish to impose at this stage. �

7B. Statement of the result. The proportion of characters for which dimFp Sel(T, χ) is even (resp. odd)
will depend heavily on the action of G K on T . More specifically, it will depend on the behavior of the
following function. Recall that K (T ) denotes the field of definition of the elements of T .

Definition 7.3. Write G := Gal(K (T )/K ) and define the function:

ε : G→ {±1}

σ 7→ (−1)dimFp T σ

The result is then the following.

Theorem 7.4. We have:

(i) If either p = 2 and ε fails to be a homomorphism, or p > 2 and ε is nontrivial when restricted to
Gal(K (T )/K (µp)), then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
.

Moreover, if p = 2 then it suffices to take X sufficiently large as opposed to taking the limit X→∞.

(ii) If either p=2 and ε is a homomorphism, or p>2 and ε is trivial when restricted to Gal(K(T )/K(µp)),
then for all sufficiently large X we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Sel(T,1K ) · δ

2

with δ =
∏
v∈6 δv given in Definition 7.8.

The proof of Theorem 7.4, which is a combination of Theorems 7.10 and 9.5, will occupy the remainder
of Sections 7–9.
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Remark 7.5. Here we briefly discuss the function ε. For convenience we identify µp with the additive
group of Fp and think of the pairing ( · , · ) as landing in Fp. Due to this pairing, the group G =
Gal(K (T )/K ) is a subgroup of the general symplectic group

GSp(T )= {g ∈ GL(V ) : ∀v,w ∈ T, (gv, gw)= λ(g)(v,w) for some λ(g) ∈ F×p }.

First suppose p=2 so that GSp(T )=Sp(T ) is the symplectic group associated to ( · , · ). If dimF2 T >4
then Sp(T ) is simple and since any symplectic transvection σ (i.e., element of Sp(T ) of the form
v 7→ v+ (v,w)w for fixed 0 6=w ∈ T ) has dimF2 T σ odd, if G is isomorphic to Sp(T ) (i.e., is as large as
possible) then ε is not a homomorphism. Thus case (i) of Theorem 7.4 is, in some sense, the “generic”
case. When dimF2 T = 2 one can check that ε is always a homomorphism, whilst if dimF2 T = 4 then
Sp(T ) is isomorphic to the symmetric group S6. One can check (see Example 10.17 later) that when G is
either the whole of S6 or the alternating group A6 then ε is not a homomorphism, so again case (i) of
Theorem 7.4 holds for G “large enough”. On the other hand, Proposition 3.5 gives a supply of examples
where ε is a homomorphism. Namely, if G fixes a quadratic refinement q of ( · , · ) then G is a subgroup
of the orthogonal group O(q), in which case ε is the Dickson homomorphism.

Now suppose that p > 2. The subgroup Gal(K (T )/K (µp)) consists of those elements g ∈ G for
which λ(g) = 1. That is, it is the intersection of G with the symplectic group Sp(T ). If G contains a
symplectic transvection σ (which as now p > 2 is an element of Sp(T ) of the form v 7→ v+β · (v,w)w

for β ∈ F×p , 0 6= w ∈ T ) then one sees easily that ε(σ ) = −1, so that ε is nontrivial when restricted to
Gal(K (T )/K (µp)). Thus again case (i) of Theorem 7.4 holds for G “large enough”.

7C. The cases p = 2 and ε is a homomorphism, and p > 2 and ε is trivial when restricted to
Gal(K (T )/K (µ p)). Suppose now that either p = 2 and ε is a homomorphism, or p > 2 and ε is
trivial for all σ ∈ Gal(K (T )/K (µp)).

Definition 7.6. Let v ∈6 and χ ∈ C(Kv). If p > 2 we define

ωv(χ) := (−1)hv(1Kv ,χ).

If p = 2 view ε as a quadratic character of K and let 1 ∈ K×/K×2 be such that the corresponding
quadratic extension is given by K (

√
1)/K . We then define

ωv(χ) := χ(1)(−1)hv(1Kv ,χ)

where here for a place v of K we evaluate χv at 1 via local class field theory.

Lemma 7.7. For any χ ∈ C(K ) we have

(−1)dimFp Sel(T,χ)
= (−1)dimFp Sel(T,1K )

∏
v∈6

ωv(χv).

Proof. Fix v /∈6 with µp ⊆ Kv , and let Frobv ∈ G denote the Frobenius element at v in K (T )/K . Then
as T is unramified at v we have

(−1)dimFp T G Kv
= ε(Frobv).
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If p > 2 then ε(Frobv)= 1 for all v /∈6 by assumption, whence the result follows from Theorem 6.12.
Now suppose that p = 2. As above, view ε as a quadratic character of K . Since ε factors through

Gal(K (T )/K ) it is unramified outside 6. In particular, if v /∈6 is such that χv is unramified, then both
εv and χv are unramified at v and so χv(1)= 1. On the other hand, if v /∈6 is such that χv ramifies at v
then since Kv has odd residue characteristic, we have χv(1) = ε(Frobv) (see Lemma 8.4(ii)). Global
class field theory gives

∏
v∈MK

χv(1)= 1 from which it follows that∏
v /∈6,χv ram

(−1)dimFp T G Kv
=

∏
v∈6

χv(1).

We now conclude by Theorem 6.12. �

The proof of Theorem 7.4(ii) now proceeds as in [Klagsbrun et al. 2013, §7].

Definition 7.8. For each v ∈6 define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ωv(χ) and δ :=
∏
v∈6

δv.

Remark 7.9. We have decided to define δ slightly differently to [Klagsbrun et al. 2013, §7] so that it is a
product of local terms. Our definition of the δv is consistent with theirs however.

Theorem 7.10. Suppose that either p = 2 and ε is a homomorphism, or p > 2 and ε is trivial when
restricted to Gal(K (T )/K (µp)). Then for all sufficiently large X > 0 we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Sel(T,1K )δ

2
.

Proof. The argument is the same as in [Klagsbrun et al. 2013, Theorem 7.6]. We repeat it for convenience.
Write 0=

∏
v∈6 C(Kv) and for χ ∈ C(K ), write χ |0 for the image of χ under the natural restriction homo-

morphism C(K )→ 0 sending χ to (χv)v∈6 . From Lemma 7.7 we see that the parity of dimFp Sel(T, χ)
depends only on χ |0 and that dimFp Sel(T, χ) is even if and only if∏

v∈6

ω(χv)= (−1)dimFp Sel(T,1K ).

As is possible by Lemma 7.2, take X sufficiently large that C(K , X) surjects onto 0 under restriction.
Since restriction is a group homomorphism, its fibers all have the same size (being cosets of the kernel)
and, in particular, we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
|{γ ∈ 0 :

∏
v∈6 ω(γv)= (−1)dimFp Sel(T,1K )}|

|0|

where here, for γ ∈ 0 we denote by γv its projection onto C(Kv).
To evaluate the right-hand side of the above expression, define

N :=
∣∣∣∣{γ ∈ 0 :∏

v∈6

ω(γv)= 1
}∣∣∣∣.
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Then we have

N − (|0| − N )=
∑
γ∈0

∏
v∈6

ω(γv)=
∏
v∈6

∑
χv∈C(Kv)

ω(χv).

Dividing the above expression through by 2|0| gives

|{γ ∈ 0 :
∏
v∈6 ω(γv)= 1}|
|0|

=
1+ δ

2

and the result follows immediately. �

8. Disparity in Selmer ranks: local symbols and global characters

In order to prove the remaining cases of Theorem 7.4 we now recall and slightly generalize (as well as
rephrase for convenience in Section 9) the results of [Klagsbrun et al. 2013, §6], which uses class field
theory to analyze which collections of local characters arise from a global character.

8A. Local symbols. For each nonarchimedean place v of K , Tate local duality gives a nondegenerate
pairing

H 1(Kv,µp)× H 1(Kv,Z/pZ)→Q/Z, (8.1)

defined as the composition

H 1(Kv,µp)× H 1(Kv,Z/pZ) ∪−→ H 2(K ,µp) ↪→ Br(Kv)
invv−−−→Q/Z

(here the map “∪” is the cup product map on cohomology combined with the canonical isomorphism
Z/pZ⊗µp ∼= µp).

We now slightly modify this pairing. As the Galois action on Z/pZ is trivial we have H 1(Kv,Z/pZ)=

Homcnt(G Kv
,Z/pZ). Picking an isomorphism of abstract groups θ :µp

∼
→ Z/pZ induces isomorphisms

C(Kv)∼= H 1(Kv,Z/pZ) and 1
p Z/Z∼= µp (8.2)

where for the latter we identify Z/pZ with 1
p Z/Z by sending 1 ∈ Z/pZ to 1

p . Noting that H 2(Kv,µp)⊆

Br(Kv) is mapped by invv into 1
p Z/Z, combining the pairing (8.1) with the isomorphisms of (8.2) yields

a nondegenerate pairing

[ · , · ]v : H 1(Kv,µp)× C(Kv)→ µp (8.3)

which is easily seen to be independent of the choice of θ .
The following well-known lemma summarizes the properties of this local pairing.

Lemma 8.4. Let v be a nonarchimedean place of K . Then:

(i) If v - p then the groups H 1
ur(Kv,µp) and Cur(Kv) are orthogonal complements with respect to the

pairing [ · , · ]v.
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(ii) Let x ∈ K×v and write φx ∈ H 1(Kv,µp) for the image of x under the boundary map associated to
the Kummer sequence

1→ µp→ Kv× x 7→x p
−−−→ Kv×→ 1.

Then for any χ ∈ C(Kv) we have

[φx , χ]v = χ(ArtKv
(x))−1,

where here ArtKv
: K×v → Gab

Kv
denotes the local Artin map.

(iii) Suppose v is such that µp ⊆ Kv so that H 1(Kv,µp)= C(Kv). Then the resulting pairing

[ · , · ]v : C(Kv)× C(Kv)→ µp

is antisymmetric.

Proof. Part (i) is [Neukirch et al. 2008, Theorem 7.2.15] whilst part (ii) is Corollary 7.2.13 of [loc. cit.].
(The cited results are stated for the pairing of (8.1) rather than the altered pairing [ · , · ]v but in each case
they immediately imply the claimed results.) Finally, antisymmetry of the cup product

H 1(Kv,Z/pZ)× H 1(Kv,Z/pZ)→ H 2(Kv,Z/pZ⊗Z/pZ)

gives part (iii). �

8B. Existence of global characters with specified restriction and ramification. We will need the fol-
lowing lemma which is the analogue of [Klagsbrun et al. 2013, Proposition 6.8(iii)] in the case that the
dimension of T is allowed to be larger than 2.

Notation 8.5. Writing 0 :=
∏
v∈6 C(Kv), we denote by [ · , · ]6 the nondegenerate bilinear pairing

[ · , · ]6 :

(∏
v∈6

H 1(Kv,µp)

)
×0→ µp

defined as the sum (or rather product) over v ∈6 of the pairings [ · , · ]v of (8.3).

Lemma 8.6. Let P denote the set of primes of K not in 6 which split completely in K (T )/K , and fix
γ ∈ 0. Then there is a character χ ∈ C(K ) unramified outside 6 ∪ P and with χ |0 = γ , if and only if
[c, γ ]6 = 0 for each c in the image of the restriction homomorphism

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp).

Proof. Exactness at the middle term of the Poitou–Tate exact sequence (see, for example, [Milne 2006,
Theorem I.4.10]) applied to the set 6 ∪ P of places and the G K -module Z/pZ (and its dual µp), shows
that

im
(

H 1(K6∪P/K ,Z/pZ)→
∏′

v∈6∪P

H 1(Kv,Z/pZ)

)
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is the orthogonal complement of

im
(

H 1(K6∪P/K ,µp)→
∏′

v∈6∪P

H 1(Kv,µp)

)
under the sum of the local pairings of (8.1), where here K6∪P denotes the maximal extension of K
unramified outside 6 ∪ P and the restricted direct products are taken with respect to unramified classes.

Now fix any choice of isomorphism µp ∼= Z/pZ and use it to identify C(K ) with H 1(K ,Z/pZ), and
C(Kv) with H 1(Kv,Z/pZ) for each v similarly. Then the group H 1(K6∪P/K ,Z/pZ) corresponds to the
group of characters unramified outside6∪P , which we denote by C(K )6∪P . Making these identifications
and projecting onto

∏
v∈6 C(Kv), it follows formally that the image of C(K )6∪P in

∏
v∈6 C(Kv) is the

orthogonal complement with respect to the pairing [ · , · ]6 of the image of

ker
(

H 1(K6∪P/K ,µp)→
∏′

v∈P

H 1(Kv,µp)

)
in
∏
v∈6 H 1(Kv,µp). We now conclude by the following lemma. �

Lemma 8.7. Let P denote the set of primes of K not in 6 and which split completely in K (T )/K , and
let K6∪P denote the maximal extension of K unramified outside 6 ∪ P. Then we have

H 1(K (T )/K ,µp)= ker
(

H 1(K6∪P/K ,µp)→
∏′

v∈P

H 1(Kv,µp)

)
,

the groups being compared inside H 1(K ,µp) (and the restricted direct product being taken with respect
to unramified classes as above).

Proof. Since K (T ) is unramified outside 6 we have K (T )⊆ K6∪P . Thus it suffices to show that we have

H 1(K (T )/K ,µp)= ker
(

H 1(K ,µp)
res
−→

∏′

v∈P

H 1(Kv,µp)

)
.

Since each prime in P splits completely in K (T )/K the restriction map above factors as

H 1(K ,µp)
f1−→ H 1(K (T ),µp)

f2−→

∏′

v∈P

H 1(Kv,µp),

where both maps are given by restriction. Since the inflation-restriction exact sequence identifies
H 1(K (T )/K ,µp) with ker( f1), it suffices to show that f2 is injective. Since K (T ) and each Kv (v ∈ P)
contain µp, we may reinterpret f2 as the restriction map on characters

C(K (T ))→
∏′

v∈P

C(Kv).

Suppose χ ∈ C(K (T )) is a character of K (T ) which is trivial in C(Kv) for each v ∈ P , let L/K (T )
denote the extension corresponding to the fixed field of the kernel of χ , and let L ′/K denote the Galois
closure of L/K . Then our assumption on χ means that every prime v ∈ P splits completely in L ′/K . By
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the Chebotarev density theorem this gives [L ′ : K ] ≤ [K (T ) : K ]. Since we already know that K (T )⊆ L ′

we must have L ′ = K (T ) whence χ is the trivial character. �

8C. Assumptions on the set of places 6. We now impose conditions on the finite set of places 6 (in
addition to containing all archimedean places, all primes over p and all places for which T is ramified)
which will be necessary for the proof of the remaining cases of Theorem 7.4.

Assumption 8.8. We henceforth impose the following conditions on the finite set of places 6:

(i) The restriction homomorphism

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp)

is injective.

(ii) Pic(OK ,6)= 0.

(iii) The natural map
O×K ,6/(O

×

K ,6)
p
→

∏
v∈6

K×v /(K
×

v )
p

is injective.

(In (ii) and (iii), OK ,6 denotes the elements of K integral outside 6.)

Lemma 8.9. A set of places 6 satisfying Assumption 8.8 exists.

Proof. We begin by taking 6 large enough that it contains all archimedean places, all primes over p and
all places where T ramifies. By the Grunwald–Wang theorem [Neukirch et al. 2008, Theorem 9.1.9(ii)]
the map

H 1(K ,µp)→
∏
v∈MK

H 1(Kv,µp)

is injective. In particular, as H 1(K (T )/K ,µp) is a finite subgroup of H 1(K ,µp), we see that by enlarging
6 if necessary we may additionally ensure that (i) holds.

Finally, [Klagsbrun et al. 2013, Lemma 6.1] shows that any finite set of places may be further enlarged
so that (ii) and (iii) hold. �

Lemma 8.10. Suppose Assumption 8.8 is satisfied and let p be a prime of K with p /∈6 and µp ⊆ K×p .
Write

δp : K×p /K×p
p −→

∼ C(Kp)

for the isomorphism (coming from the Kummer sequence) sending x ∈ K×p to the character σ 7→ σ(y)/y
where y ∈ K×p is such that y p

= x (any two choices for y yield the same character since µp ⊆ Kp).
Then there is a (global) character ϕ(p) ∈ C(K ) satisfying the following three conditions:

ϕ(p) ramifies at p.

ϕ(p) is unramified outside 6 ∪ {p}.

The restriction of ϕ(p) to C(Kp) is equal to δp($) for some uniformizer $ of Kp.

(8.11)
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Proof. Given the assumptions on6, the existence of a character ϕ(p) which ramifies at p and is unramified
outside 6 ∪ {p} follows from [Klagsbrun et al. 2013, Proposition 6.8 (ii)]. Fix one such and pick x ∈ K×p
such that the restriction of ϕ(p) is equal to δp(x). Since ϕ(p) ramifies at p the extension of K×p obtained
by adjoining a p-th root of x ramifies. In particular, since Kp has residue characteristic coprime to p
(as p /∈ 6), the valuation vp(x) of x is coprime to p. Noting that replacing ϕ(p) with ϕ(p)m for any m
coprime to p yields another character which ramifies at p and is unramified outside 6 ∪ {p}, we may
suppose that vp(x) is congruent to 1 modulo p. Finally, since K×p

p is in the kernel of δp we may now
shift x by a p-th power of a uniformizer to suppose that x has valuation 1 as desired. �

The following lemma evaluates the pairing [ · , · ]6 of Notation 8.5 between the characters ϕ(p) of
Lemma 8.10 and elements of H 1(K (T )/K ,µp).

Lemma 8.12. Let p be a prime of K not in 6, let ϕ(p) satisfy (8.11), and let c ∈ H 1(K (T )/K ,µp). Then
writing Frobp for the Frobenius element at p in Gal(K (T )/K ) we have

[c, ϕ(p)]6 = c(Frobp).

Proof. By global class field theory the product of [c, ϕ(p)]v over all places of K is equal to 1. In particular,
we have

[c, ϕ(p)]6 =
∏
v /∈6

[c, ϕ(p)]v.

If q is a prime of K not in 6 then q - p and, additionally, K (T )/K is unramified at q whence the restriction
of c to H 1(Kq,µp) is in the unramified subgroup H 1

ur(Kq,µp). If q 6= p then ϕ(p) is also unramified at q
whence [c, ϕ(p)]q = 1 by Lemma 8.4(i).

It now follows that [c, ϕ(p)]6 = [c, ϕ(p)]p and to conclude we must show that [c, ϕ(p)]p = c(Frobp).
Since µp ⊆ Kp and we’ve chosen ϕ(p) so that its restriction to C(Kp) agrees with δp($) for some
uniformizer $ of Kp, parts (ii) and (iii) of Lemma 8.4 combine to give

[c, ϕ(p)]p = c(ArtKp($)).

Now c is unramified at p and by standard properties of the local Artin map we have ArtKp($)|Kp
nr=FrobKp .

On the other hand, since c came from H 1(K (T )/K ,µp), its restriction to H 1(Kp,µp) factors through
Gal(Kp(T )/Kp). As the restriction of FrobKp to Gal(Kp(T )/Kp) is precisely Frobp, we have the result. �

9. Disparity in Selmer ranks: remaining cases

We now treat the remaining cases of Theorem 7.4, namely when p= 2 and ε fails to be a homomorphism,
or when p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)). Our strategy is broadly based
on that of [Klagsbrun et al. 2013, §8], although the arguments are more involved.

We begin by fixing a finite set of places 6 satisfying Assumption 8.8. As before let G denote the
Galois group of K (T )/K and write 0 :=

∏
v∈6 C(Kv). For χ ∈ C(K ) we denote by χ |0 the image of χ

in 0 under the (product of the) natural restriction map(s).
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Definition 9.1. Define a map w : C(K )→ {±1} by

w(χ) :=
∏

v /∈6,χv ram

(−1)dimFp T G Kv
=

∏
v /∈6,χv ram

ε(Frobv),

where here Frobv ∈ G denotes the Frobenius element at v in K (T )/K .

Remark 9.2. By Theorem 6.12, for each χ ∈ C(K ) we have

(−1)dimF2 Sel(T,χ)
= w(χ)(−1)dimF2 Sel(T,1K )

∏
v∈6

(−1)hv(1K ,χv).

We now examine the extent to which w(χ) behaves “independently” of the restriction of χ to 0. To
this end, we make the following definition.

Definition 9.3. For each X ≥ 1 and γ ∈ 0, define

sX (γ )=
|{χ ∈ C(K , X) : χ |0 = γ,w(χ)= 1}|
|{χ ∈ C(K , X) : χ |0 = γ }|

.

The rest of the section is occupied with the proof of the following theorem.

Theorem 9.4. We have:

(i) If p = 2 and ε fails to be a homomorphism then, for all sufficiently large X , sX (γ )=
1
2 for all γ ∈ 0.

(ii) If p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)) then limX→∞ sX (γ )=
1
2 for all

γ ∈ 0.

Assuming this for the moment we get as a corollary the remaining cases of Theorem 7.4.

Theorem 9.5. We have:

(i) If p = 2 and ε fails to be a homomorphism then, for all sufficiently large X.

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
,

(ii) If p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
.

Proof. Fix γ ∈ 0 and suppose that χ ∈ C(K , X) is such that χ |0 = γ . Then by Remark 9.2 we have

dimF2 Sel(T, χ) is even⇔ w(χ)= (−1)dimF2 Sel(T,1K )
∏
v∈6

(−1)hv(1K ,γv),

and the right-hand side depends only on γ . In particular, by Theorem 9.4 we have

lim
X→∞

|{χ ∈ C(K , X) : χ |0 = γ and dimF2 Sel(T, χ) is even}|
|{χ ∈ C(K , X) : χ |0 = γ }|

=
1
2
,

and if p = 2 then this is in fact an equality for all sufficiently large X rather than a limit. Averaging over
all γ ∈0 gives the result (note that the sets {χ ∈ C(K , X) : χ |0 = γ } all have the same size for sufficiently
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large X as the restriction map χ 7→ χ |0 is a homomorphism and is surjective for X sufficiently large by
Lemma 7.2). �

We now turn to the proof of Theorem 9.4.

Definition 9.6. Fix an Fp-basis {φ1, . . . , φr } for H 1(K (T )/K ,µp). Further, define the homomorphism
f : 0→ µr

p by setting

f (γ )= ([φi , γ ]6)
r
i=1

where here we view the φi inside
∏
v∈6 H 1(Kv,µp) via the product of the natural restriction maps, and

[ · , · ]6 is the pairing of Notation 8.5 (we allow the case r = 0 in which case µr
p is the trivial group).

Remark 9.7. Since we have taken 6 large enough that the map

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp)

is injective, it follows from the nondegeneracy of the pairing [ · , · ]6 that f is surjective.

Definition 9.8. For each n ≥ 1 and η ∈ µr
p, define

tX (η)=
|{χ ∈ C(K , X) : f (χ |0)= η,w(χ)= 1}|

|{χ ∈ C(K , X) : f (χ |0)= η}|
.

The following lemma reduces the problem of understanding sX (γ ) as γ ranges over the elements of 0,
to understanding tX (η) as η ranges over the elements of µr

p.

Lemma 9.9 [Klagsbrun et al. 2013, Lemma 8.4]. Let γ ∈ 0. Then for X sufficiently large we have

sX (γ )= tX ( f (γ )).

Proof. Let P denote the set of primes of K not in6 and which split completely in K (T )/K , and let γ ′ ∈0
be such that f (γ ′) = f (γ ). Then γ ′γ−1 is in the kernel of f so by Lemma 8.6 there is χγ,γ ′ ∈ C(K )
with χγ,γ ′ |0 = γ ′γ−1 and such that χγ,γ ′ is unramified outside 6 ∪ P . Now for any χ ∈ C(K ) we have
w(χ)=w(χχγ,γ ′) since the sets of primes not in 6 where χ and χγ,γ ′ ramify differ only at primes p∈ P ,
and at such primes we have

ε(Frobp)= ε(1)= (−1)dim T
= 1

(where as usual Frobp denotes the Frobenius element at p in K (T )/K ). Thus if X is sufficiently large
that χγ,γ ′ is in C(K , X), multiplication by χγ,γ ′ gives a bijection between the set

{χ ∈ C(K , X) : χ |0 = γ, w(χ)= 1}

and the set

{χ ∈ C(K , X) : χ |0 = γ ′, w(χ)= 1},

as well as between the same two sets with the conditions on w(χ) removed.
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Writing η = f (γ ), it follows that for X sufficiently large we have

tX (η)=

∑
γ ′∈ f −1({η})|{χ ∈ C(K , X) : χ |0 = γ ′, w(χ)= 1}|∑

γ ′∈ f −1({η})|{χ ∈ C(K , X) : χ |0 = γ ′}|

=
| f −1({η})| · |{χ ∈ C(K , X) : χ |0 = γ, w(χ)= 1}|

| f −1({η})| · |{χ ∈ C(K , X) : χ |0 = γ }|
= sX (γ )

as desired. �

We now study the quantities tX (η) as η ranges over µr
p, splitting into cases according to p= 2 or p> 2.

9A. The case where p = 2 and ε fails to be a homomorphism. Suppose now that p = 2 and ε fails to
be a homomorphism.

Definition 9.10. Define the map θ : C(K )→ µr
2×{±1} by setting

θ(χ) := ( f (χ |0), w(χ)).

The following observation will be crucial to our method. We remark that it fails for p > 2.

Lemma 9.11. The map θ is a homomorphism.

Proof. Since both the restriction map C(K )→ 0 and the map f : 0→µr
2 are homomorphisms, it suffices

to show that w : C(K )→ {±1} is a homomorphism.
For each v /∈6, define a map wv : C(Kv)→ {±1} by

wv(χ)=

{
(−1)dimF2 T G Kv

χ ramified,
1 else.

Since w is the product of the wv over v /∈6, it suffices to show that each wv is a homomorphism. To see
this, note that as v /∈6, Kv has odd residue characteristic. In particular, the product of any two ramified
characters of Kv is unramified, and the product of a ramified character with an unramified character is
again ramified. �

Remark 9.12. For X > 0 write θX for the restriction of θ to C(K , X). Then for each η ∈ µr
2 we have

tX (η)=
|θ−1

X ((η, 1))|

|θ−1
X ((η, 1))| + |θ−1

X ((η,−1))|
.

Now (for X > 1), C(K , X) is a group and θX is a homomorphism. Thus the fibers over points in the
image of θX have the same size, being cosets of the kernel. In light of Lemma 9.9, Theorem 9.4(i) is
equivalent to the statement that, if ε fails to be a homomorphism, then θX is surjective for sufficiently large
X > 0. Since µr

2×{±1} is a finite group this is, in turn, equivalent to the statement that if ε fails to be a
homomorphism then θ is surjective. This is the statement we now study, and prove in Proposition 9.14.

We now fix a collection of global characters {ϕ(p)}p/∈6 satisfying (8.11). Each ϕ(p) is ramified at p,
yet unramified outside 6 ∪ {p}. Lemma 8.12 allows us to evaluate the map θ on the ϕ(p).
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Lemma 9.13. For each p /∈6 we have

θ(ϕ(p))= ((φi (Frobp))ri=1, ε(Frobp))

where here Frobp ∈ G denotes the Frobenius element at p in K (T )/K .

Proof. Since amongst the primes not in 6 the character ϕ(p) only ramifies at p, we have w(ϕ(p)) =
ε(Frobp) by definition. We have f (ϕ(p)|0)= (φi (Frobp))ri=1 by Lemma 8.12. �

Proposition 9.14. The map θ : C(K )→µr
2×{±1} is surjective if and only if ε fails to be a homomorphism.

Proof. Note that the subgroup U of C(K ) consisting of characters unramified outside 6 is in the kernel
of θ , and the quotient C(K )/U is generated by the ϕ(p) as p ranges over primes not in 6.

By the Chebotarev density theorem, each conjugacy class in G = Gal(K (T )/K ) arises as Frobp for
some p /∈6 and so by Lemma 9.13 it follows that the image of θ is the subgroup of µr

2×{±1} generated
by the set

{((φi (σ ))
r
i=1, ε(σ )) : σ ∈ G}

(note that for σ ∈ G, both ε(σ ) and the φi (σ ) depend only on the conjugacy class of σ in G).
Recall that the set {φi : 1≤ i ≤ r} is a basis for H 1(K (T )/K ,µ2)= Hom(G,µ2). To make this more

explicit denote by G2 the subgroup of G generated by the squares of all the elements of G. It’s a normal
subgroup and the quotient G/G2 is an abelian group of exponent 2. That is, G/G2 is a finite dimensional
F2-vector space. Since every homomorphism from G to µ2 factors through G/G2 we have

Hom(G,µ2)= Hom(G/G2,µ2)

and the right-hand group is just the dual of G/G2 as an F2-vector space. In particular, the map G/G2
→µr

2

sending σ to (φi (σ ))
r
i=1 is an isomorphism.

Combining the above we arrive at a purely group theoretic criterion: θ is surjective if and only if the set

S := {(σ , ε(σ )) : σ ∈ G}

generates G/G2
×{±1}, where here for σ ∈ G we write σ for the image of σ in G/G2.

Suppose now that ε is a homomorphism. Then ε necessarily factors through G/G2 and we see that S
generates an index 2 subgroup of G/G2

×{±1}, so that θ is not surjective in this case.
Conversely, suppose that ε fails to be a homomorphism and write H for the subgroup of G/G2

×{±1}
generated by S. By assumption, we may find σ and τ in G with ε(στ)=−ε(σ )ε(τ ). Then

(σ , ε(σ )) · (τ , ε(τ )) · (στ , ε(στ))= ((στ)2,−1)= (1,−1)

is in H (here the first 1 denotes the identity in G/G2). Then for any σ ∈ G, both (σ , ε(σ )) and

(σ ,−ε(σ ))= (1,−1) · (σ , ε(σ ))

are in H . Thus H = G/G2
×{±1} and θ is surjective. �
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Proof of Theorem 9.4(i). By Remark 9.12 we see that Theorem 9.4(i) holds if and only if θ is surjective
whenever ε fails to be a homomorphism. The result now follows from Proposition 9.14. �

9B. The case where p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µ p)). Suppose now
that p > 2 and that the restriction of ε to Gal(K (T )/K (µp)) is nontrivial.

We begin by defining a slight refinement of the quantity tX (η).

Definition 9.15. Fix an enumeration of the primes p /∈6 such that if i ≤ j then N (pi )≤ N (p j ), and for
each n ≥ 1 define the subgroup Cn(K ) of C(K ) by

Cn(K ) := {χ ∈ C(K ) : χ is unramified outside 6 ∪ {p1, . . . , pn}}.

Further, for each n ≥ 1 and η ∈ µr
p, define

t̂n(η) :=
|{χ ∈ Cn(K ) : f (χ |0)= η,w(χ)= 1}|

|{χ ∈ Cn(K ) : f (χ |0)= η}|
−

1
2
.

Remark 9.16. Note that we subtract 1
2 in the definition of t̂n(η) whilst we did not in the definition of

tX (η). This will neaten the statement of some results in the rest of the section. Clearly for any η ∈ µr
p, to

show that limX→∞ tX (η)=
1
2 it suffices to show that limn→∞ t̂n(η)= 0.

As in the case p = 2 we now fix a collection of global characters {ϕ(p)}p/∈6,µp⊆Kp satisfying (8.11).

Lemma 9.17. Fix n≥ 1. Then if µp ( Kpn+1 we have Cn+1(K )= Cn(K ). On the other hand, if µp⊆ Kpn+1

then we have

Cn+1(K )=
p−1⊔
i=0

ϕ(pn+1)
i
· Cn(K ).

Proof. In each case this follows from the structure of C(Kpn+1); see [Klagsbrun et al. 2013, Lemma 8.3]. �

Definition 9.18. Let V be the regular representation of µr
p over C, so that V has basis {eη : η ∈ µr

p} on
which µr

p acts via η′ · eη = eη′η. For each n ≥ 1 define

t̂n :=
∑
η∈µr

p

t̂n(η)eη ∈ V .

Further, for σ ∈ Gal(K (T )/K (µp)), define ρ(σ) := (φi (σ ))
r
i=1 ∈ µ

r
p and

M(σ ) := 1
p

(
1+ ε(σ )

p−1∑
i=1

ρ(σ)i
)
∈ End(V ).

Remark 9.19. For σ ∈ Gal(K (T )/K (µp)) the element M(σ ) depends only on the conjugacy class of σ
in G. Indeed, for each 1≤ i ≤ r and g ∈G, the cocycle relation for φi gives φi (gσg−1)= gφi (σ ). It now
follows that for each i ,

∑p−1
j=1 φi (σ )

j depends only on the conjugacy class of σ in G. Since the same is
true for ε(σ ) we are done.
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Lemma 9.20. Fix n ≥ 1. If µp ( Kpn+1 then we have t̂n+1 = t̂n . On the other hand, if µp ⊆ Kpn+1 then
we have the following recurrence relation for t̂n:

t̂n+1 = M(Frobpn+1) t̂n,

where here Frobpn+1 ∈ G denotes the Frobenius element at pn+1 in K (T )/K .

Proof. If µp ( Kpn+1 then Cn+1(K )= Cn(K ) and the result is clear.
Suppose now that µp ⊆ Kpn+1 and define the map θ : C(K )→ µr

p×{±1} by

θ(χ) := ( f (χ |0), w(χ))

(note that, unlike the case p = 2 this is not a homomorphism). Then Lemma 8.12 gives

θ(ϕ(pn))= (ρ(Frobpn ), ε(Frobpn )).

Moreover, if χ0 ∈ Cn(K ) then we have

θ(χ0 ·ϕ(pn+1)
i )= θ(χ0) · θ(ϕ(pn+1)

i )

since the sets of primes not in 6 at which χ0 and ϕ(pn+1)
i ramify are disjoint. Writing σ for Frobpn+1 ,

this gives

θ(χ0 ·ϕ(pn+1)
i )=

{
θ(χ0) i = 0,
θ(χ0) · (ρ(σ )

i , ε(σ )) 1≤ i ≤ p− 1.

It now follows from Lemma 9.17 that for each η ∈ µr
p we have

|{χ ∈ Cn+1(K ) : θ(χ)= (η, 1)}|

=

p−1∑
i=0

|{χ ∈ ϕ(pn+1)
i
· Cn(K ) : θ(χ)= (η, 1)}|

= |{χ0 ∈ Cn(K ) : θ(χ0)= (η, 1)}| +
p−1∑
i=1

|{χ0 ∈ Cn(K ) : θ(χ0)= (η · ρ(σ)
−i , ε(σ ))}|.

Dividing through by |Cn+1(K )| = p|Cn(K )| gives

t̂n+1(η)=
1
p

(
t̂n(η)+ ε(σ )

p−1∑
i=1

t̂n(ρ(σ )−i
· η)

)
and the result now follows from the definition of M(σ ). �

Lemma 9.21. For any m ≥ 1 and σ ∈ Gal(K (T )/K (µp)) we have

M(σ )m =
{

M(σ ) ε(σ )= 1,( 2
p

( 2−p
p

)m
−

2−p
p

( 2
p

)m) idV +
(( 2

p

)m
−
( 2−p

p

)m)M(σ ) ε(σ )=−1.
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In particular, for p > 2 and writing ‖·‖ for the operator norm on End(V ), we have

lim
m→∞
‖M(σ )m‖ =

{
‖M(σ )‖ ε(σ )= 1,
0 ε(σ )=−1.

Proof. Fix σ ∈ Gal(K (T )/K (µp)) and define

T (σ ) := 1
p

p−1∑
i=0

ρ(σ)i .

Then T (σ ) is an idempotent in End(V ) (e.g., by orthogonality of characters of µp or by explicit compu-
tation) so that T (σ )m = T (σ ) for each m ≥ 1. Note that we have

M(σ )=
{

T (σ ) ε(σ )= 1,
2
p − T (σ ) ε(σ )=−1.

If ε(σ )= 1 this immediately gives M(σ )m = M(σ ), whilst if ε(σ )=−1 the result now follows easily
either by induction on m or by expanding

( 2
p − T (σ )

)m with the binomial theorem.
Since p > 2 we have both

lim
m→∞

(
2
p

)m

= 0 and lim
m→∞

(
2− p

p

)m

= 0,

from which the statement about limm→∞‖M(σ )m‖ follows immediately. �

Proposition 9.22. Suppose that p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)). Then
for each η ∈ µr

p we have

lim
n→∞

t̂n(η)= 0.

Proof. Write H := Gal(K (T )/K (µp)), and note that this is a normal subgroup of G. For each n ≥ 1 we
have µp ⊆ Kpn if and only if Frobpn ∈ H . By Lemma 9.20, for each n ≥ 1 we have

t̂n =
( n∏

i=2
Frobpi ∈H

M(Frobpi )

)
t̂1. (9.23)

Write C1, . . . ,Cl for the conjugacy classes in G that are contained in H and, for each i , fix a
representative σi for Ci . Further, for each 1≤ i ≤ l, define

mi (n) := |{2≤ j ≤ n : Frobp j ∈ Ci }|.

Since the group ring C[µr
p] is commutative, the matrices M(σi ) all mutually commute and we may group

like terms in (9.23) to obtain (cf. Remark 9.19)

t̂n =
( l∏

i=1

M(σi )
mi (n)

)
t̂1.



Quadratic twists of abelian varieties and disparity in Selmer ranks 885

Writing ‖·‖ for the usual Euclidean norm on V (with respect to the basis {eη : η ∈ µr
p}), we have

‖ t̂n‖ =
∥∥∥∥( l∏

i=1

M(σi )
mi (n)

)
t̂1
∥∥∥∥≤ ( l∏

i=1

‖M(σi )‖
mi (n)

)
‖ t̂1‖.

By the Chebotarev density theorem each of the mi (n) tend to infinity with n and, since we have assumed
there is at least one i with ε(σi )=−1, it follows from Lemma 9.21 that

lim
n→∞
‖ t̂n‖ = 0.

That is, limn→∞ t̂n(η)= 0 for each η ∈ µr
p. �

Proof of Theorem 9.4(ii). Fix γ ∈ 0 and write η = f (γ ). Then by Lemma 9.9, for all X sufficiently large
we have sX (γ )= tX (η). It follows from Proposition 9.22 that limX→∞ tX (η)=

1
2 , from which the result

follows. �

10. Twisting data for abelian varieties ( p = 2)

In this section let K be a number field and (A/K , λ) a principally polarized abelian variety. In the notation
of Sections 6–9 we take p = 2 and T = A[2] endowed with the Weil pairing ( · , · )λ. Let 6 be a finite set
of places of K containing all archimedean places, all places dividing 2, and all places at which A has bad
reduction. Then T is unramified outside 6.

We now endow T with a global metabolic structure and twisting data in such a way that for χ ∈ C(K )
the associated Selmer group Sel(A[2], χ) agrees with the 2-Selmer group Sel2(Aχ/K ) of the quadratic
twist of A by χ . For elliptic curves this is done in [Klagsbrun et al. 2013, §5]. Our definition of the
global metabolic structure and twisting data will be a direct generalization of theirs. The main difficulty
is establishing Lemma 10.6 which for elliptic curves is [Klagsbrun et al. 2013, Lemma 5.2(ii)] and for
Jacobians of odd degree hyperelliptic curves is [Yu 2016, Theorem 5.10]. We will deduce the general
case from the results of Section 4E concerning the behavior of certain Theta groups under quadratic twist.

10A. A global metabolic structure on A[2]. For a place v of K write

δv : A(Kv)/2A(Kv) ↪→ H 1(Kv, A[2])

for the connecting homomorphism in the multiplication-by-2 Kummer sequence.

Definition 10.1. Let P denote the Poincaré line bundle on A× A∨. For each place v of K write Lv for
the pull back of L= (1, λ)∗P to a line bundle on A/Kv and let G(Lv) denote the associated Theta group.
Then we define qA,λ,v to be the map

qA,λ,v : H 1(Kv, A[2])→ H 2(Kv, Kv×)= Br(Kv)
invv−−−→Q/Z

where the first map is the connecting map associated to the short exact sequence of G Kv
-modules

0→ Kv×→ G(Lv)→ A[2] → 0 (10.2)

of Remark 4.14.
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Lemma 10.3. Let v be a place of K . Then:

(i) qA,λ,v is a quadratic form on H 1(Kv, A[2]) whose associated bilinear pairing is the local Tate
pairing corresponding to ( · , · )λ.

(ii) The image of A(Kv)/2A(Kv) under δv is a Lagrangian subspace of H 1(Kv, A[2]) with respect to
qA,λ,v.

In particular, qA,λ,v is a Tate quadratic form on H 1(Kv, A[2]) in the sense of Definition 6.1.

Proof. Part (i) is [Poonen and Rains 2012, Corollary 4.7] whilst Proposition 4.9 of op. cit. gives (ii). �

Remark 10.4. In contrast to the case of elliptic curves the quadratic form qA,λ,v in general takes values in
1
4 Z/Z rather than just 1

2 Z/Z, which is the reason for allowing Q/Z-valued quadratic forms in Definition 6.1
rather than just those valued in F2. See [Poonen and Rains 2012, Remark 4.16] for an example of this
phenomenon.

Corollary 10.5. The collection q = (qA,λ,v)v defines a global metabolic structure on A[2].

Proof. By Lemma 10.3(ii) qA,λ,v admits a Lagrangian subspace making (H 1(Kv, T ), qA,λ,v) into a
metabolic space for each place v of K . Moreover, if v /∈ 6 then im(δv) = H 1

ur(Kv, A[2]) (see e.g.,
[Poonen and Rains 2012, Proposition 4.12] and the preceding remark). In particular, by Lemma 10.3(ii),
qA,λ,v is unramified at each such place.

Finally, let a ∈ H 1(K , A[2]). Write

q : H 1(K , A[2])→ H 2(K , K×)= Br(K )

for the connecting homomorphism associated to the sequence (10.2) viewed over K instead of Kv (with
Lv replaced by L := (1, λ)∗P). Then q(a) ∈ Br(K ) and we have∑

v∈MK

qv(av)=
∑
v∈MK

invv q(a)= 0,

the last equality following from reciprocity for the Brauer group of K . �

10B. Twisting data associated to A/K. We now define the twisting data α.
Fix a place v of K and χ ∈C(Kv), and let (Aχ , ψ) denote the quadratic twist of A by χ . By Lemma 4.16

λχ := (ψ
∨)−1λψ−1 is a principal polarization on Aχ , defined over Kv. In particular, associated to the

pair (Aχ , λχ ) we have a quadratic form qAχ ,λχ ,v on H 1(Kv, Aχ [2]).

Lemma 10.6. The isomorphism H 1(Kv, Aχ [2])∼= H 1(Kv, A[2]) induced by ψ identifies the quadratic
forms qA,λ,v and qAχ ,λχ ,v.

Proof. Take the long exact sequences for Galois cohomology associated to the commutative diagram of
Lemma 4.20. �
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Definition 10.7. For χ ∈ C(Kv) define αv(χ)⊆ H 1(Kv, A[2]) to be the image of the map

Aχ (Kv)/2Aχ (Kv) ↪→ H 1(Kv, Aχ [2])−→∼ H 1(Kv, A[2])

the first map arising from the multiplication-by-2 Kummer sequence for Aχ and the latter being induced
by ψ−1. Note that by combining Lemma 10.6 with Lemma 10.3(ii) applied to Aχ/Kv we see that αv(χ)
is a Lagrangian subspace of H 1(Kv, A[2]).

As in Definition 6.11, for χ1 and χ2 elements of C(Kv) we set

hv(χ1, χ2)= dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

Lemma 10.8. For each quadratic character χ ∈ C(Kv), let Lχ denote the extension of Kv cut out by χ .
Then

hv(1, χv)= dimF2 A(Kv)/NLχ/Kv
A(Lχ )

where here NLχ/Kv
: A(Lχ )→ A(Kv) is the “local norm map” sending P ∈ A(Lχ ) to

NLχ/Kv
(P) :=

∑
σ∈Gal(Lχ/Kv)

σ(P).

Proof. This is shown in [Mazur and Rubin 2007, Proposition 5.2]. Whilst that statement is for the case of
elliptic curves and for twists by characters of order p > 2, the proof carries over unchanged to our case.
See also [Kramer 1981, Proposition 7]. �

The following lemma evaluates the cokernel of the local norm map in certain cases.

Lemma 10.9. Let v be a place of K and χ ∈ C(Kv). As above, let Lχ denote the extension of Kv cut out
by χ .

(i) Suppose v -2 is nonarchimedean and that A has good reduction at v. If χ is unramified then

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= 0.

On the other hand, if χ is ramified then NLχ/Kv
A(Lχ )= 2A(Kv) and, in particular, we have

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= dimF2 A(Kv)[2].

(ii) Suppose v is archimedean and χ nontrivial. Then

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= dimF2 A(Kv)[2] − g

where g = dim A is the dimension of A.

Proof.

(i) The case where χ is unramified is a result of Mazur [Mazur 1972, Corollary 4.4]. For χ ramified the
case where A is an elliptic curve is [Mazur and Rubin 2007, Lemma 5.5(ii)] and the argument for general
abelian varieties is identical.
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(ii) By assumption Lχ/Kv is the extension C/R. Since A/Kv is an abelian variety of dimension g over
the reals we have an isomorphism of real Lie groups

A(Kv)∼= (R/Z)
g
× (Z/2Z)m (10.10)

for some 0 ≤ m ≤ g (see, for example, [Silhol 1989, Proposition 1.9 and Remark.12]). Now NLχ/Kv

is a continuous map from the connected group A(Lχ ) to A(Kv) (for the complex and real topologies
respectively) and it follows that the image of NLχ/Kv

is contained in the connected component of the
identity in A(Kv), which we denote A0(Kv). Under the isomorphism (10.10), A0(Kv) is the factor
corresponding to (R/Z)g. On the other hand, we have 2A(Kv)⊆ NLχ/Kv

A(Lχ ) and we see again from
(10.10) that multiplication by 2 is surjective on A0(Kv). Thus NLχ/Kv

A(Lχ )= A0(Kv). Appealing to
(10.10) one last time we obtain |A(Kv)/NLχ/Kv

A(Lχ )| = 2−g
|A(Kv)[2]|. �

Proposition 10.11. The collection of maps α = (αv)v defines twisting data with respect to (A[2], q, 6).
Moreover, we have

Sel(A[2], χ)∼= Sel2(Aχ/K )

where Sel(A[2], χ) is defined with respect to (A[2], q, 6,α) as in Definition 6.10.

Proof. Note that since p = 2 the group F(Kv) appearing in the definition of twisting data (Definition 6.8)
is equal to C(Kv). For each place v of K and χv ∈ C(Kv), the subspace αv(χv) of H 1(Kv, A[2]) is
Lagrangian by Lemmas 10.6 and 10.3(ii) applied to Aχ/Kv . Moreover, if v /∈6 and χv is ramified then
αv(χv) is an element of Hram(qv). Indeed, by definition we need to show that αv(χv)∩H 1

ur(Kv, A[2])= 0.
As before, as v /∈6 we have

H 1
ur(Kv, A[2])= δv(A(Kv)/2A(Kv))= αv(1v).

Combining Lemma 10.8 with Lemma 10.9 gives

dimF2(α(1v)/αv(χv)∩αv(1v))= dimF2 A(Kv)/2A(Kv)= dimF2 α(1v)

whence αv(χv)∩αv(1v)= 0 as desired. Thus α defines twisting data.
Finally, we will show that for χ ∈ C(K ) the associated Selmer group Sel(A[2], χ) agrees with the

classical Selmer group Sel2(Aχ/K ). By the definition of Sel2(Aχ/K ) and the maps αv we have

Sel2(Aχ/K )= {a ∈ H 1(K , A[2]) : av ∈ αv(χv) for all v ∈ MK }.

On the other hand, we have

Sel(A[2], χ)= {a ∈ H 1(K , A[2]) : av ∈ H 1
S(χ)(Kv, A[2]) for all v ∈ MK }

where, as in Definition 6.10, H 1
S(χ)(Kv, A[2]) = α(χv) if v ∈ 6 or χv is ramified at v, and is equal to

H 1
ur(Kv, A[2]) otherwise.
In particular, to show that Sel(A[2], χ)= Sel2(Aχ/K ) it suffices to show that α(χv)= H 1

ur(Kv, A[2])
whenever v /∈6 and χv is unramified. But for such places we have α(1v)= H 1

ur(Kv, A[2]) and since χv is
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unramified Lemma 10.9(i) gives h(1v, χv)= 0. It now follows immediately that α(χv)= H 1
ur(Kv, A[2])

as desired. �

10C. Main theorems for 2-Selmer ranks. Having interpreted the groups Sel2(Aχ/K ) as those arising
from twisting data we apply the results of the previous sections to deduce results about abelian varieties.

The following generalizes a theorem of Kramer [1981, Theorem 1] for elliptic curves and Yu [2016,
Theorem 5.11] for odd degree hyperelliptic curves.

Theorem 10.12. Let K be a number field, χ a quadratic character of K corresponding to the extension
L/K , and A/K a principally polarized abelian variety. Then

dimF2 Sel2(Aχ/K )≡ dimF2 Sel2(A/K )+
∑
v∈MK

dimF2 A(Kv)/NLw/Kv
A(Lw) (mod 2)

(here w denotes any place of L extending v).

Proof. Combine Theorem 6.12, Proposition 10.11 and Lemma 10.8. �

Theorem 10.13 (Theorem 1.1). Let K be a number field, A/K a principally polarized abelian variety,
and 6 the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2. Define ε : Gal(K (A[2])/K )→ {±1} by σ 7→ (−1)dimF2 A[2]σ .

(i) If ε fails to be a homomorphism then for all sufficiently large X

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(ii) If ε is a homomorphism, let K (
√
1)/K be the fixed field of the kernel of ε. For each v ∈ 6 and

quadratic character χ ∈ C(Kv) write Lχ/Kv for the extension cut out by χ and define

ωv(χ) := χ(1)(−1)dimF2 A(Lχ )/NLχ /Kv A(Lχ ).

Finally, define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ω(χ) and δ :=
∏
v∈6

δv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimF2 Sel2(A/K )

· δ

2
.

Proof. Combine Proposition 10.11, Theorem 7.4 and Lemma 10.8. �

Remark 10.14. Lemma 10.9(ii) enables one to evaluate the local terms δv for archimedean places. For
nonarchimedean places of odd residue characteristic, the dimension of the cokernel of the norm map may
be expressed in terms of Tamagawa numbers, see [Morgan 2015, Lemma 2.5].

In the following examples we examine when ε is (or is not) a homomorphism for certain families of
abelian varieties.
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Example 10.15 (generic 2-torsion). For any principally polarized abelian variety A/K of dimension g,
Gal(K (A[2])/K ) is a subgroup of the symplectic group Sp2g(F2). As in Remark 7.5, if g ≥ 2 and
Gal(K (A[2])/K )∼= Sp2g(F2) then ε is not a homomorphism.

Example 10.16 (elliptic curves). Suppose that A/K is an elliptic curve, say given by a Weierstrass equa-
tion of the form y2

= f (x) for some monic (separable) cubic polynomial f (x). Then Gal(K (A[2])/K )=
Gal( f ) is the Galois group of the splitting field of f (x) and as such may be viewed as a subgroup of the
symmetric group S3. One readily checks that the map σ 7→ (−1)dimF2 A[2]σ is the sign homomorphism.
Thus ε is always a homomorphism and we may take 1 to be the discriminant of the elliptic curve. Thus
Theorem 10.13 recovers [Klagsbrun et al. 2013, Theorem A]. See Proposition 7.9 of that work for a table
computing the local terms δv as a function of the reduction of the elliptic curve.

Example 10.17 (hyperelliptic curves). Let C/K be a hyperelliptic curve of genus g ≥ 2, say given
by a Weierstrass equation y2

= f (x) for a (separable, not necessarily monic) polynomial f (x) with
deg( f ) ∈ {2g+ 1, 2g+ 2}. Take A/K to be the Jacobian of C so that A/K is a principally polarized
abelian variety of dimension g. Then again Gal(K (A[2])/K )= Gal( f ) which we view as a subgroup
of the symmetric group Sdeg( f ). Write sgn : Sn→ {±1} for the sign homomorphism and fix σ ∈ Gal( f )
with cycle type (d1 · · · ds). Then we have

ε(σ )=

{
− sgn(σ ) all di even and deg( f ) (mod 2),
sgn(σ ) else.

(10.18)

Indeed, this follows from [Cornelissen 2001, Theorem 1.4] (whilst [loc. cit.] is stated for hyperelliptic
curves over finite fields of odd residue characteristic, the proof yields the above statement for all fields of
characteristic not 2; note also the erratum [Cornelissen 2005]).

Suppose now that either g is odd or deg( f ) is odd. Then by (10.18) ε is always a homomorphism and
again we may take 1 to be the discriminant of the hyperelliptic curve C . In particular, the case deg( f )
odd recovers [Yu 2016, Theorem 1].

Now suppose that both g and deg( f ) are even, or equivalently deg( f )≡ 2 (mod 4). Suppose further
that either Gal( f )∼= S2g+2 or Gal( f )∼= A2g+2. Then by (10.18) we see that ε is not a homomorphism
(indeed, the only nontrivial homomorphism from S2g+2 to {±1} is sgn yet (10.18) shows that ε is nontrivial
when restricted to A2g+2).

Example 10.19 (abelian varieties with principal polarization induced by a rational symmetric line bundle).
Suppose that (A/K , λ) is a principally polarized abelian variety and that the polarization λ is induced by a
rational (i.e., G K -invariant) symmetric line bundle L. Then the associated quadratic refinement qL of the
Weil-pairing ( · , · )λ on A[2] (as in Definition 4.3) is G K -invariant also, whence Gal(K (A[2])/K ) acts on
A[2] through the orthogonal group O(qL). Then ε is the Dickson homomorphism dqL (Proposition 3.5).
We remark that this case includes both elliptic curves and Jacobians of hyperelliptic curves of either odd
degree or odd genus, see [Poonen and Rains 2011, Proposition 3.11].
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10D. Main theorems for 2∞-Selmer ranks. We now incorporate the results of Section 5 to move from
2-Selmer ranks to 2∞-Selmer ranks.

Theorem 10.20. Let K be a number field and (A/K , λ) a principally polarized abelian variety. Let 6
be the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2, and let L/K be a quadratic extension with associated quadratic character χ . Then

rk2(A/L)≡
∑
v∈6

v nonsplit in L/K

(2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)) (mod 2)

where the local terms 2 g(A/Kv, λv, χv) ∈ Br(Kv)[2] are given in Definition 5.15, and w denotes any
place of L extending v.

Proof. First note that rk2(A/L)= rk2(A/K )+ rk2(Aχ/K ). Moreover, we have

dimF2 Sel2(A/K )= rk2(A/K )+ dimF2 A(K )[2] + dimF2 Xnd(A/K )[2]

and the analogous equality for Aχ/K . Noting that dimF2 A(K )[2] = dimF2 Aχ (K )[2] the above observa-
tions combine to give

rk2(A/L)

≡ dimF2 Sel2(A/K )+ dimF2 Sel2(Aχ/K )+ dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] (mod 2).

Combining Theorem 10.12 with Theorem 5.20 then gives

rk2(A/L)≡
∑
v∈MK

(2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)) (mod 2).

Finally, combining Proposition 5.16 with Lemma 10.9 shows that

2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)≡ 0 (mod 2)

for each place v /∈6, and similarly for each place v ∈6 which split in L/K . �

We now prove Theorem 1.2, after first defining the local terms appearing in the statement.

Definition 10.21. Let K be a number field, (A/K , λ) a principally polarized abelian variety, and let 6
denote the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2.

For each v ∈6 and χ ∈ C(Kv) define

�v(χ) := (−1)2 invv g(A/Kv,λv,χ)+dimF2 A(Kv)/NLχ /Kv A(Lχ )

2Here and in Definition 10.21 we think of invv g(A/Kv, λv, χv) as being equal to 0 or 1
2 (as opposed to the class of this in

Q/Z) so that 2 invv g(A/Kv, λv, χv) is either 0 or 1 accordingly.
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where here Lχ is the extension of Kv cut out by χ . Further, we define (for each v ∈6)

κv =
1

|C(Kv)|

∑
χ∈C(Kv)

�v(χ) and κ =
∏
v∈6

κv.

Remark 10.22. If v is archimedean then by Theorem 10.20 we have

�v(χv)=

{
1 χv trivial,
(−1)dim A else.

In particular, if v is a real place and dim A is odd then κv = 0 (hence also κ = 0), whilst if v is complex
or dim A is even, we have κv = 1.

Theorem 10.23. Let A/K be a principally polarized abelian variety. Then for all sufficiently large X > 0,

|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)rk2(A/K )

· κ

2
.

Proof. As noted previously, for any χ ∈ C(K ) corresponding to the quadratic extension L/K , we have

rk2(A/L)= rk2(A/K )+ rk2(Aχ/K ).

Thus for each χ ∈ C(K ), Theorem 10.20 gives

(−1)rk2(Aχ/K )
= (−1)rk2(A/K )

∏
v∈6

�(χv)

with �(χv) ∈ {±1} depending only on the restriction of χ to Kv. The argument is now identical to that
in the proof of Theorem 7.10. As is the case there, “sufficiently large X > 0” means that we require only
that X is large enough that the restriction homomorphism from C(K , X) to

∏
v∈6 C(Kv) is surjective. �

The following example shows that the proportion of twists having even 2-Selmer rank can differ from
the proportion having even 2∞-Selmer rank.

Example 10.24. Consider the genus 2 hyperelliptic curve C : y2
= x6
+x4
+x+3 over Q. The polynomial

f (x)= x6
+x4
+x+3 has Galois group S6. By Theorem 10.13 (see also Example 10.17) the 2-Selmer ranks

are distributed half-and-half amongst even/odd in the quadratic twist family of the Jacobian J/K of C .
On the other hand, we claim that κ = 3

16 so that 19
32 of the twists of J have even 2∞-Selmer rank whilst

13
32 have odd 2∞-Selmer rank. The discriminant of f (x) is −5 ·2670719, so J/K has good reduction away
from 2, 5 and 2670719. Thus we have 6 = {2, 5, 2670719,∞}. Using the computer algebra package
MAGMA [Bosma et al. 1997], one computes that rk2(J/K ) is odd. By Remark 10.22, κ∞= 1. To compute
κ2, κ5 and κ2670719, one may use the following trick. By Theorem 10.20 and the above discussion, for
a quadratic character χ of Q corresponding to the extension L/Q, one has

(−1)rk2(Jχ/Q) =−
∏

v∈{2,5,2670719}
v nonsplit in L

�v(χv). (10.25)
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Now for 0 6= n ∈ Z, the quadratic twist of J by Q(
√

n)/Q is the Jacobian of the hyperelliptic curve
y2
= n f (x). Thus one may use MAGMA to compute (−1)rk2(Jχ/Q) for various (finitely many) quadratic

characters χ , from which one may then determine all the �v(χv) by (10.25). Upon doing this one obtains
κ2 =

3
4 , κ5 =−

1
2 and κ2670719 =

1
2 and the claim follows.

Remark 10.26. Since by Theorem 10.20 the parity of rk2(Aχ/K ) depends only on the restriction of
χ to the archimedean places, the places of bad reduction for A, and the places over 2, it follows from
Theorem 9.4(i) (along with Proposition 10.11) that when ε fails to be a homomorphism we in fact have

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even and rk2(Aχ/K ) is even}|
|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|

=
1
2

for all sufficiently large X (assuming the denominator is nonzero) and that the same holds when we
condition on rk2(Aχ/K ) being odd also. Thus when ε fails to be a homomorphism the parities of Selmer
ranks and the parities of 2-infinity Selmer ranks behave “independently”.

10E. The proportion of twists having nonsquare Shafarevich–Tate group. We now prove an analogue
of Theorem 1.1 for dimF2 Xnd(A/K )[2] rather than for dimF2 Sel2(A/K ). Since the Shafarevich–Tate
group of a principally polarized abelian variety, if finite, has square order if and only if dimF2 Xnd(A/K )[2]
is even (see e.g., [Poonen and Stoll 1999, Theorem 8]), this may be viewed as quantifying the failure of
the Shafarevich–Tate group to have square order in quadratic twist families. The proof of the theorem is
identical to its analogue for 2-Selmer ranks, so we only sketch the proof.

Theorem 10.27. Let K be a number field, (A/K , λ) a principally polarized abelian variety, and 6 the
set consisting of all archimedean places of K , all places of bad reduction for A, and all places dividing 2.
Define ε : Gal(K (A[2])/K )→ {±1} by σ 7→ (−1)dimF2 A[2]σ .

(i) If ε fails to be a homomorphism then for all sufficiently large X

|{χ ∈ C(K , X) : dimF2 Xnd(Aχ/K )[2] is even}|
|C(K , X)|

=
1
2
.

(ii) If ε is a homomorphism, let K (
√
1)/K be the fixed field of the kernel of ε. For each v ∈ 6 and

quadratic character χ ∈ C(Kv) write Lχ/Kv for the extension cut out by χ and define

ϒv(χ) := χ(1)(−1)2 invv g(A/Kv,λv,χv).

Finally, define

ρv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ϒ(χ) and ρ :=
∏
v∈6

ρv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Xnd(Aχ/K )[2] is even}|
|C(K , X)|

=
1+ (−1)dimF2 Xnd(A/K )[2]

· ρ

2
.
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Proof. Fix a quadratic character χ of K . As in Definition 9.1, set

w(χ) :=
∏

v /∈6,χv ram

(−1)dimFp A(Kv)[2] =
∏

v /∈6,χv ram

ε(Frobv).

Combining Theorem 5.20 with Proposition 5.16 we obtain

(−1)dimF2 Xnd(Aχ/K )[2]
= w(χ)(−1)dimF2 Xnd(A/K )[2]

∏
v∈6

(−1)2 invv g(A/Kv,λv,χv). (10.28)

If ε is a homomorphism then, as in the proof of Lemma 7.7, we have w(χ)=
∏
v∈6 χv(1), whence

(−1)dimF2 Xnd(Aχ/K )[2]
= (−1)dimF2 Xnd(A/K )[2]

∏
v∈6

ϒv(χ)

and the same argument as in the proof of Theorem 7.10 gives the result.
On the other hand, suppose that ε is a homomorphism and enlarge6 if necessary so that Assumption 8.8

holds, noting that (10.28) still remains true. The result now follows from Theorem 9.4 (cf. proof of
Theorem 9.5). �

10F. The joint distribution of parities of 2-Selmer ranks and 2-infinity Selmer ranks. By combining
Theorem 10.27 with Theorems 10.13 and 10.23 we are able to push Remark 10.26 further to determine
the “joint distribution” of parities of 2-Selmer ranks and 2-infinity Selmer ranks.

Corollary 10.29 (of Theorem 10.27). Let K be a number field, A/K a principally polarized abelian
variety, and ε : Gal(K (A[2])/K )→ {±1} the map σ 7→ (−1)dimF2 A[2]σ . Let the constants δ, κ and ρ be
as in Theorem 10.13, Definition 10.21 and Theorem 10.27 respectively. Then for m, n ∈ {0, 1} we have,
for all sufficiently large X ,∣∣{χ ∈ C(K , X) : rk2(Aχ/K )≡ m (mod 2), dimF2 Sel2(Aχ/K )≡ n (mod 2)}

∣∣/|C(K , X)|

=
1
4 + (−1)ma1+ (−1)na2+ (−1)m+na3

where

a1 =
1
4(−1)rk2(A/K )κ,

and a2 = a3 = 0 if ε fails to be a homomorphism whilst

a2 =
1
4(−1)dimF2 Sel2(A/K )δ and a3 =

1
4(−1)dimF2 Sel2(A/K )+rk2(A/K )ρ

otherwise.

Proof. Follows from Theorems 10.27, 10.13 and 10.23 upon noting that, for any χ ∈ C(K ), we have

dimF2 Sel2(Aχ/K )= rk2(Aχ/K )+ dimF2 A(K )[2] + dimF2 Xnd(Aχ/K )[2]. �
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11. Twisting data for abelian varieties ( p> 2)

As in the previous section, let K be a number field and (A/K , λ) a principally polarized abelian variety.
This time we take p to be an odd prime and T = A[p]. As with A[2] in the previous section, we endow
T with a canonical global metabolic structure and twisting data so that the resulting Selmer groups have a
classical interpretation. For elliptic curves this is done by Klagsbrun, Mazur and Rubin [2013, §5]. This
time the case of an arbitrary principally polarized abelian variety is almost identical to that of [loc. cit.],
though to fix notation we repeat the relevant material.

11A. The global metabolic structure on A[ p]. As with the case p = 2, the polarization λ along with
the Weil-pairing

( · , · )ep : A[p]× A∨[p]

provides the desired (nondegenerate, alternating, G K -equivariant) bilinear pairing

( · , · )λ : T × T → µp

(defined by setting (x, y)λ = (x, λ(y))ep for x, y ∈ T ). We take 6 to be a finite set of places of K
containing all archimedean places, all primes over p, and all primes at which A has bad reduction. Then
T is unramified outside 6.

Since p is odd, the quadratic forms qv = 1
2〈 · , · 〉v (here v a place of K and 〈 · , · 〉v denotes the local

Tate pairing associated to ( · , · )λ) are Tate quadratic forms which endow T with a global metabolic
structure q (cf. Section 6C).

11B. Twisting data associated to A[ p]. Here we associate canonical twisting data to (A[p], 6, q).

Definition 11.1. Let χ ∈C(K ) be nontrivial and let L denote the associated cyclic p-extension L=K ker(χ)

of K . We write Aχ for the abelian variety denoted AL in [Mazur et al. 2007, Definition 5.1], so that
Aχ/K is an abelian variety of dimension (p−1) dim A which may be defined as the kernel of the “norm”
homomorphism ResL/K A→ A (here ResL/K A denotes the restriction of scalars of A from L to K ).

By [Mazur et al. 2007, Theorem 5.5(iv)], χ induces an inclusion of Z[µp] into EndK (Aχ ). Moreover,
by Theorem 2.2(iii) of [loc. cit.] we have a canonical isomorphism ψ : A[p] −→∼ Aχ [p] where p denotes
the unique prime of Z[µp] lying over p.

If 1Kv
6= χ ∈ C(Kv) for some place of K then we define Aχ/Kv similarly.

Remark 11.2. Fix χ ∈ C(K ) nontrivial, and let π be a generator of the prime p of Z[µp] lying over p.
View π inside EndK (Aχ ) as above. Then π is an isogeny and we have an associated π -Selmer group

Selπ (Aχ/K )= {a ∈ H 1(K , Aχ [p]) : av ∈ im(δv) ∀v ∈ MK },

where here for each place v of K , δv : Aχ (Kv)/π Aχ (Kv) ↪→ H 1(Kv, Aχ [p]) is the connecting homo-
morphism associated to the multiplication-by-π Kummer sequence for Aχ/Kv.

One checks that Selπ (Aχ/K ) does not depend on the choice of generator π for p.
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We now define the twisting data.

Definition 11.3. Let v be a place of K and χ ∈ C(Kv). Define αv(χ)⊆ H 1(Kv, A[p]) as follows:

(i) If χ is trivial, define αv(χ) to be the image of A(K )/p A(K ) under the connecting homomorphism
associated to the multiplication-by-p Kummer sequence for A/Kv,

(ii) If χ is nontrivial, let π be a generator of the prime p of Z[µp] lying over p. Then we define αv(χ)
to be the image of Aχ (Kv)/π Aχ (Kv) under the composition

Aχ (Kv)/π Aχ (Kv)
δv−→ H 1(Kv, Aχ [p])−→∼ H 1(Kv, A[p]),

where the rightmost map is induced by the isomorphism ψ : A[p] −→∼ A[p] of Definition 11.1. One
sees easily that αv(χ) does not depend on the choice of π , and depends only on the extension cut
out by χ .

As usual, for v a place of K and χ1, χ2 ∈ C(Kv), write

hv(χ1, χ2)= dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

As in the case p = 2, we have.

Lemma 11.4. Let v be a place of K , χ ∈ C(Kv) and Lχ the extension of Kv cut out by χ . Then

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )

where NLχ/Kv
: A(Lχ )→ A(Kv) is the norm map.

Moreover, if v - p is a nonarchimedean place of K at which A has good reduction then:

(i) If χ is unramified, we have

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )= 0.

(ii) If χ is ramified, we have

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )= dimFp A(Kv)[p].

Proof. As in the case p = 2 the first claim is shown for elliptic curves in [Mazur and Rubin 2007,
Proposition 5.2] and the argument is identical. The evaluation of the cokernel of the local norm map is
[Mazur 1972, Corollary 4.4] for χ unramified, and for χ ramified the case where A is an elliptic curve is
[Mazur and Rubin 2007, Lemma 5.5(ii)] and the same argument works in general. �

Proposition 11.5. The maps α = (αv)v define twisting data for T = (A[p], q, 6) and the associated
Selmer groups Sel(A[p], χ) satisfy

Sel(A[p], χ)∼= Selπ (Aχ/K ).
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Proof. We first claim that for each place v of K and χ ∈ C(Kv), we have αv(χ) ∈H(qv) (i.e., αv(χ) is
Lagrangian). That is (since p is odd), that αv(χ) ⊆ H 1(Kv, A[p]) is its own orthogonal complement
under the Tate pairing. For χ trivial, that (the image in H 1(Kv, A[p]) of) A(Kv)/p A(Kv) is its own
orthogonal complement is a well known consequence of Tate local duality, see e.g., [Milne 2006, I.3.4].
For χ nontrivial this is shown for A an elliptic curve in [Mazur and Rubin 2007, Proposition A.7] and the
argument for a general principally polarized abelian variety is identical (with the Weil pairing associated to
the principal polarization λ providing the pairing on the p-adic Tate-module Tp(A) required for Definition
A.5 of [loc. cit.]). We remark that in the above, unlike the case p = 2, the twist Aχ need not possess a
principal polarization (see [Howe 2001, Theorem 1.1]) so one cannot deduce the result by just applying
Tate duality to Aχ/Kv, as one does not have an appropriate Weil-pairing on A[p].

To show that α defines twisting data, it remains to show that for each place v /∈6 with µp ⊆ Kv, we
have αv(χ) ∈Hram(qv). That is, that αv(χ)∩ H 1

ur(Kv, A[p])= 0. Again, the argument is the same as in
the case p = 2. Indeed, for such places we have αv(1Kv

)= H 1
ur(Kv, A[p]) (again, see e.g., [Poonen and

Rains 2012, Proposition 4.12] and the preceding remark) and we conclude by Lemma 11.4(ii).
The isomorphism Sel(A[p], χ)∼=Selπ (Aχ/K ) is also proven identically to the case p=2 by comparing

the local conditions defining the two Selmer groups. �

Corollary 11.6 (Theorem 1.5). Let p be an odd prime, K a number field, A/K a principally polarized
abelian variety, and 6 the set consisting of all archimedean places of K , all places of bad reduction for A,
and all places dividing p. Define ε : Gal(K (A[p])/K )→ {±1} by σ 7→ (−1)dimFp A[p]σ .

(i) If ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(ii) Suppose ε is trivial when restricted to Gal(K (A[p])/K (µp)). For each v ∈ 6 and character
χ ∈ C(Kv), write Lχ/Kv for the extension cut out by χ and define

ωv(χ) := (−1)dimFp A(Lχ )/NLχ /Kv A(Lχ ).

Finally, define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ω(χ) and δ :=
∏
v∈6

δv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Selp(A/K )

· δ

2
.

Proof. Combine Theorem 7.4 with Proposition 11.5 and Lemma 11.4. �

Remark 11.7. As observed by Klagsbrun, Mazur and Rubin [2013, immediately before the statement of
Theorem 8.2 ], as each |C(Kv)| has odd size we cannot have δ = 0 in case (ii) above.
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Remark 11.8. As in Remark 7.5, a sufficient condition to ensure that ε is nontrivial when restricted
to Gal(K (A[p])/K (µp)) is that Gal(K (A[p])/K ) (viewed as a subgroup of GSp2g(Fp) for g = dim A)
contains a symplectic transvection. In particular, if the Galois action on A[p] is as large as possible,
so that Gal(K (A[p])/K ) ∼= GSp2g(Fp), then case (i) of Corollary 11.6 applies. It is also known that
Gal(K (A[p])/K ) contains a transvection if there is a place v of K , not dividing p, such that A has
semistable reduction of toric dimension 1 at v, and such that the order of the Néron component group of
A/Kv is coprime to p (see [Le Duff 1998, Proposition 1.3]).
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Iwasawa theory for Rankin-Selberg products of
p -nonordinary eigenforms

Kâzım Büyükboduk, Antonio Lei, David Loeffler and Guhan Venkat

Let f and g be two modular forms which are nonordinary at p. The theory of Beilinson–Flach elements
gives rise to four rank-one nonintegral Euler systems for the Rankin–Selberg convolution f ⊗ g, one for
each choice of p-stabilisations of f and g. We prove (modulo a hypothesis on nonvanishing of p-adic L-
functions) that the p-parts of these four objects arise as the images under appropriate projection maps of a
single class in the wedge square of Iwasawa cohomology, confirming a conjecture of Lei–Loeffler–Zerbes.

Furthermore, we define an explicit logarithmic matrix using the theory of Wach modules, and show
that this describes the growth of the Euler systems and p-adic L-functions associated to f ⊗ g in the
cyclotomic tower. This allows us to formulate “signed” Iwasawa main conjectures for f ⊗ g in the spirit
of Kobayashi’s ±-Iwasawa theory for supersingular elliptic curves; and we prove one inclusion in these
conjectures under our running hypotheses.

1. Introduction 901
2. Review on p-adic power series 905
3. Euler systems of rank 2 for Rankin–Selberg products (Conjectures) 907
4. Logarithmic matrix and factorisations 918
5. Equivariant Perrin-Riou maps and (#, [)-splitting 924
6. Signed main conjectures 928
7. Analytic main conjectures 934
Appendix: Images of Coleman maps 938
Acknowledgement 939
References 939

1. Introduction

1.1. The setting. Throughout this article, we fix an odd prime p and embeddings ι∞ : Q ↪→ C and
ιp : Q ↪→ Cp. Let f and g be two normalised, new cuspidal modular eigenforms, of weights k f + 2,
kg + 2, levels N f , Ng, and characters ε f , εg respectively. We assume that k f , kg ≥ 0, that p -N f Ng, and
that f and g are both nonordinary at p (with respect to the embeddings we fixed).
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Let E/Qp be a finite extension containing the coefficients of f and g, as well as the roots of the Hecke
polynomials of f and g at p. We shall write α f , β f , αg and βg for these roots; we assume throughout
that α f 6= β f and αg 6= βg.

Let O denote the ring of integers of E . For each h ∈ { f, g}, we fix a Galois-stable O-lattice Rh inside
Deligne’s E-linear representation of GQ. The goal of this article is to study the Iwasawa theory of
T := R∗f ⊗ R∗g = Hom(R f ⊗ Rg,O) over Q(µp∞).

1.2. Main results.

Beilinson–Flach elements. For each of the four choices of pairs (λ, µ), where λ ∈ {α f , β f } and µ ∈
{αg, βg}, and each integer m ≥ 1 coprime to p, there exists a Beilinson–Flach class

BFλ,µ,m ∈H⊗ H 1
Iw(Q(µmp∞), T ),

as constructed in [Loeffler and Zerbes 2016b]. For the definition of H and H 1
Iw, see Section 2 below. The

classes BFλ,µ,m satisfy Euler-system norm relations as m varies. However, they are not integral; that
is, they do not lie H 1

Iw(Q(µmp∞), T ). This is the chief difficulty in using these elements to study the
Iwasawa theory of T .

In Section 3.4 below, we recall the relevant properties of these classes, focussing on their dependence
on the choice of the p-stabilisation data (λ, µ). We also recall the explicit reciprocity law relating the
Beilinson–Flach classes for m = 1 to p-adic Rankin–Selberg L-functions: applying the Perrin-Riou
regulator map to the four classes BFλ,µ,1 and projecting to suitable eigenspaces, we obtain the four
unbounded p-adic L-functions associated to f and g studied in [Loeffler and Zerbes 2016b].

As a by-product of this analysis we also obtain four new p-adic L-functions, which are defined and
studied in Section 3.7. We conjecture that these fall into two pairs, with each pair differing only by a sign.
This gives a total of 6 p-adic L-functions for f and g, which is consistent with a conjecture of Perrin-Riou,
predicting one p-adic L-function for every ϕ-eigenspace in the 6-dimensional space

∧2
E Dcris(V ).

A “rank 2” Beilinson–Flach element. In [Lei et al. 2014], it was conjectured that the four Beilinson–Flach
elements associated to f and g can be seen as the images, under suitable linear functionals, of a single
element in the wedge square of Iwasawa cohomology. We recall this conjecture (in a slightly strengthened
form) as Conjecture 3.5.1 below. Our first main result gives a partial confirmation of this conjecture,
assuming m = 1 and some technical hypotheses:

Theorem A. Suppose that all four p-adic Rankin–Selberg L-functions given as in (3.6.1) are non-zero-
divisors in H, and that the following “big image” hypotheses hold:

• The representation V is absolutely irreducible.

• There exists an element τ ∈ Gal(Q/Q(µp∞)) such that the E-vector space V/(τ − 1)V is 1-
dimensional.
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Then there exists a class BF1 ∈ FracH⊗3
∧2 H 1

Iw(Q(µp∞), T ) whose image under the appropri-
ate choice of Perrin-Riou functional (corresponding to the choice λ ∈ {α f , β f } and µ ∈ {αg, βg})

equals BFλ,µ,1.

See Theorem 3.9.1 below for a more precise formulation of Theorem A.

Decompositions using matrices of logarithms. By analogy with earlier work on Iwasawa theory of p-
supersingular motives (such as [Kobayashi 2003; Lei 2011; Lei et al. 2010; 2011; Büyükboduk and
Lei 2016]), one naturally expects the growth of the denominators of the Beilinson–Flach elements and
p-adic L-functions for f ⊗ g to be governed by a suitable “matrix of logarithms”, depending only on the
restriction of T to the decomposition group at p.

In this paper, we construct such a logarithmic matrix for the representation T. More precisely, we show
that there exists a 4× 4 matrix M defined over H allowing us to decompose Perrin-Riou’s regulator map
L : H 1

Iw(Qp, T )→H⊗Dcris(T ). That is, there exist four bounded Coleman maps

Col•,◦ : H 1
Iw(Qp, T )→O[[Gal(Qp(µp∞)/Qp)]], •, ◦ ∈ {#, [}

such that

L=
(
v1 v2 v3 v4

)
·M ·


Col#,#
Col#,[
Col[,#
Col[,[


for some basis {v1, v2, v3, v4} of Dcris(T ).

We conjecture that this logarithmic matrix can be used to decompose the unbounded Beilinson–Flach
elements BFλ,µ,m into bounded classes. The precise formulation (Conjecture 5.3.1 below) is that there
should exist elements BF•,◦,m ∈ H 1

Iw(Q(µmp∞), T ) for •, ◦ ∈ {#, [} such that
BFα,α,m
BFα,β,m
BFβ,α,m
BFβ,β,m

= M ·


BF#,#,m

BF#,[,m

BF[,[,m
BF[,[,m

. (†)

We refer to these conjectural BF•,◦,m as doubly signed Beilinson–Flach elements, since they depend
on the two choices of symbols (•, ◦).

While we are currently unable to prove such a decomposition, we show a partial result in this direction
in Section 5.4, where we consider the images of the unbounded Beilinson–Flach elements at locally
algebraic characters in a certain range. We also show that if our Conjecture 3.5.1 on the existence of
integral rank-two classes {BFm} holds for some m, then Conjecture 5.3.1 follows as a consequence.

Bounded p-adic L-functions and Iwasawa main conjectures. On assuming that integral classes BF•,◦,1
exist satisfying (†) for m = 1, we may define bounded p-adic L-functions by applying the integral
Coleman maps Col4,� to these elements. Here (4,�) ∈ {#, [}2 is a second pair of symbols; we refer
to these p-adic L-functions as quadruply signed. This gives a factorisation of the unbounded p-adic
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L-functions into bounded ones. We formulate an Iwasawa main conjecture (Conjecture 6.2.1 below)
relating these p-adic L-functions to the characteristic ideals of the Selmer groups defined using the
intersection of the kernels of Col•,◦ and Col4,�. Using the classical Euler system machine, we are able
to show that one inclusion of this main conjecture holds under various technical hypotheses:

Theorem B. Suppose that |k f −kg| ≥ 3 and p> k f +kg+2. Assume the validity of Conjecture 5.3.1, and
of the hypotheses (A–Sym), (H.nA), (BI0) and at least one of (BI1)–(BI2) stated in Section 6.2 below.
For any integer j with 1+ (k f + kg)/2 < j ≤ max(k f , kg), there exists at least one choice of symbols
S= {(4,�), (•, ◦)} with (4,�), (•, ◦) ∈ {#, [}2 such that the ω j -isotypic component of the quadruply
signed Selmer group SelS(T∨(1)/Q(µp∞)) is O[[01]]-cotorsion and

eω jLS ∈ charO[[01]]

(
eω j SelS(T∨(1)/Q(µp∞))

∨
)

as ideals of O[[01]]⊗Qp.

See Definition 6.1.2 below where we define the quadruply signed Selmer group SelS(T∨(1)/Q(µp∞))

and the quadruply signed p-adic L-function LS. See also Theorem 6.2.4 for a more precise formulation
of Theorem B as well as Proposition 5.3.4 where we give a sufficient condition for the validity of the
condition (A–Sym).

Triangulordinary Selmer groups. An alternative approach to Iwasawa theory for supersingular motives
is given by Pottharst’s theory of triangulordinary Selmer groups. This allows us to associate a Selmer
group to each of the six ϕ-eigenspaces in Dcris(V ); these Selmer groups are finitely generated over the
distribution algebra H, rather than the Iwasawa algebra, and one expects their characteristic ideals to
be generated by the associated unbounded p-adic L-functions. As a consequence of our results on the
Iwasawa main conjectures for the bounded, quadruply signed p-adic L-functions, we obtain one inclusion
in the Pottharst-style main conjectures, under our running hypotheses:

Theorem C (Corollary 7.4.9 below). Suppose that all hypotheses in Theorem B hold true and choose
S= {(4,�), (•, ◦)} that ensures the validity of the conclusions of Theorem B. Then for each λ∈ {α f , β f }

we have the divisibility

char(H 2(Q,V†
;Dλ)) | char(coker Col•,◦)L p( fλ, g)

taking place in the ring H. Here, H 2(Q,V†
;Dλ) is the Pottharst-style Selmer group defined in Section 7.2

below and L p( fλ, g) is the Rankin–Selberg p-adic L-function associated to the p-stabilisation fλ of f .

Forthcoming work. We shall study the special case when f = g with ap = 0 in the subsequent article
[Büyükboduk et al. 2018]. In that case, the rank-four module T decomposes into the direct sum of the
symmetric square of R∗f and a rank-one representation, and we use the results in the present paper to study
the Iwasawa theory of the symmetric square of f (which is complementary to the work of Loeffler and
Zerbes [2016a] in the ordinary case). In this special case, we are able to verify the nonvanishing condition
that is the key hypothesis in Theorem A, allowing us to prove unconditional versions of Theorems B and
C for the symmetric square.
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2. Review on p-adic power series

We recall the definitions and basic properties of the rings appearing in nonordinary Iwasawa theory,
following [Lei et al. 2017, §2]. We fix a finite extension E/Qp with ring of integers O, which will be the
coefficient field for all the representations we shall consider.

2.1. Iwasawa algebras and distribution algebras. Let 0 = Gal(Q(µp∞)/Q). This group is isomorphic
to a direct product 1×01, where 1 is a finite group of order p− 1 and 01 =Gal(Q(µp∞)/Q(µp)). We
choose a topological generator γ of 01, which determines an isomorphism 01 ∼= Zp.

We write 3 = O[[0]], the Iwasawa algebra of 0. The subalgebra O[[01]] can be identified with the
formal power series ring O[[X ]], via the isomorphism sending γ to 1+ X ; this extends to an isomorphism

3=O[1][[X ]]. (2.1.1)

We may consider 3 as a subring of the ring H of locally analytic E-valued distributions on 0. The
isomorphism (2.1.1) extends to an identification between H and the subring of power series F ∈ E[1][[X ]]
which converge on the open unit disc |X |< 1.

For n ≥ 0, we write ωn(X) for the polynomial (1+ X)pn
− 1. We set 80(X) = X , and 8n(X) =

ωn(X)/ωn−1(X) for n ≥ 1. We write Tw for the ring automorphism of H defined by σ 7→ χ(σ)σ for
σ ∈ 0. Let u = χ(γ ) be the image of our topological generator γ under the cyclotomic character, so that
Tw maps X to u(1+ X)− 1. If m ≥ 1 is an integer, we define

ωn,m(X)=
m−1∏
i=0

Tw−i (ωn(X)); 8n,m(X)=
m−1∏
i=0

Tw−i (8n(X))

Let logp be the p-adic logarithm in H. We define similarly

logp,m =

m−1∏
i=0

Tw−i (logp).

Finally, we define

nm =

m−1∏
i=0

Tw−i
( logp(1+ X)

X

)
.

2.2. Power series rings. Let A+
Qp
= O[[π ]], where π is a formal variable. We equip this ring with a

O-linear Frobenius endomorphism ϕ, defined by π 7→ (1+π)p
− 1, and with an O-linear action of 0

defined by π 7→ (1+π)χ(σ)− 1 for σ ∈ 0, where χ denotes the p-adic cyclotomic character.
The Frobenius ϕ has a left inverse ψ , satisfying

(ϕ ◦ψ)(F)(π)= 1
p

∑
ζ :ζ p=1

F(ζ(1+π)− 1).

The map ψ is not a morphism of rings, but it is O-linear, and commutes with the action of 0.



906 Kâzım Büyükboduk, Antonio Lei, David Loeffler and Guhan Venkat

We regard A+
Qp

as a subring of the larger ring

B+rig,Qp
=
{

F(π) ∈ E[[π ]] : F converges on the open unit disc
}
.

The actions of ϕ, ψ , and 0 extend to B+rig,Qp
, via the same formulae as before. We shall write q =

ϕ(π)/π ∈ A+
Qp

, and t = logp(1+π) ∈ B+rig,Qp
.

2.3. The Mellin transform. The action of 0 on 1+ π ∈ (A+
Qp
)ψ=0 extends to an isomorphism of 3-

modules

M :3
∼=
−→(A+

Qp
)ψ=0, 1 7−→ 1+π,

called the Mellin transform. This can be further extended to an isomorphism of H-modules

H
∼=
−→(B+rig,Qp

)ψ=0

which we denote by the same symbol.

Theorem 2.3.1. For all integers m, n ≥ 1, the Mellin transform induces an isomorphism of 3-modules

8n,m(X)3∼= ϕn(qm)(A+
Qp
)ψ=0.

Proof. See [Lei et al. 2017, Theorem 2.1 and Equation (2.2)]. �

2.4. Classical and analytic Iwasawa cohomology. Let T be a finite-rank free O-module with a continu-
ous action of GF , where F is a finite unramified extension of Qp. Then the Iwasawa cohomology groups
of T are classically defined by

H i
Iw(F(µp∞), T ) := lim

←−−
n

H i (F(µpn ), T ).

Alternatively, these can be defined using a version of Shapiro’s lemma: set T= T ⊗3ι, where 3ι denotes
the free rank 1 3-module on which GF acts via the inverse of the canonical character GF � 0 ↪→3×.
Then one has

H i
Iw(F(µp∞), T )∼= H 1(F,T).

If F is a number field, and 6 a finite set of places of F containing all v | p∞ and all primes where T is
ramified, then we can define similarly

H i
Iw,6(F(µp∞), T ) := lim

←−−
n

H i (F6/F(µpn ), T )∼= H i (F6/F,T),

where F6 is the maximal extension unramified outside 6. In both local and global settings, the Iwasawa
cohomology groups are finitely generated as 3-modules, and zero unless i ∈ {1, 2}. We define Iwasawa
cohomology of V = T [1/p] by tensoring the above groups with Qp.

Remark 2.4.1. The group H 1
Iw,6(F(µp∞), T ) is actually independent of the choice of 6, and we will

frequently drop 6 from the notation. This is not the case for H 2
Iw,6 .
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The “analytic” variants of these modules, which play a key role in Pottharst’s approach [2013], to
cyclotomic Iwasawa theory of nonordinary motives are obtained by systematically replacing 3 with the
larger ring H. We define V†

= V ⊗Hι; then for F a p-adic field we have

H i
an(F(µp∞),V) := H i (F,V†)∼=H⊗3[1/p] H i

Iw(F(µp∞),V),

and similarly for the global setting. The importance of the analytic Iwasawa cohomology groups is that
for F a p-adic field, the analytic Iwasawa cohomology of V is encoded in its Robba-ring (ϕ, 0)-module;
see Section 7.1 below.

2.5. The Perrin-Riou regulator map. Let F be an unramified extension of Qp, and T an O-representation
of GF as before; and assume that V = T [1/p] is crystalline, with all Hodge–Tate weights1

≥ 0, and
with no quotient isomorphic to the trivial representation. We also fix a choice of p-power roots of unity
ζpn ∈Qp, for n ≥ 1.

Then there is a canonical homomorphism of H-modules, the Perrin-Riou regulator,

LF,V : H 1
Iw(F(µp∞),V)→H⊗Dcris(F,V)

which interpolates the values of the Bloch–Kato logarithm and dual-exponential maps for twists of V by
locally algebraic characters of 0.

It will be important to us later to consider how these maps interact with change of the field F . If K/F
is an unramified extension with Galois group U , then Dcris(K ,V)= K ⊗F Dcris(F,V); so the source and
target of the regulator map LK ,V are naturally modules over the larger group K (µp∞)/F ∼= 0×U , and it
follows easily from the construction that LK ,V commutes with the action of this group.

Moreover, we have an interaction with restriction and corestriction maps which can be summarised by
the following diagram:

H 1
Iw(K (µp∞),V) H⊗Dcris(K ,V)

H 1
Iw(F(µp∞),V) H⊗Dcris(F,V).

LK ,V

cores traceres

LF,V

⊆ (2.5.1)

3. Euler systems of rank 2 for Rankin–Selberg products (Conjectures)

We expect that the Beilinson–Flach Euler system may be obtained by applying a suitable “rank-lowering
operator” to a rank-2 Euler system. Our goal in this section is to present a precise account of this
expectation and formulate a conjecture. Even though we are currently unable to verify this conjecture in
general, it serves as a signpost for the signed-splitting procedure for the p-stabilised Beilinson–Flach
elements that we will develop in the later sections.

1Our convention is that the Hodge–Tate weight of the cyclotomic character is +1.
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3.1. Review of Perrin-Riou’s theory. Let T be a free O-module of finite rank with a continuous action of
the absolute Galois group GQ, which is unramified outside a finite set of primes 6 3 p. Let V = T ⊗O E .

Let P denote a set of primes disjoint from 6, and let N(P) denote the set of square-free integers
whose prime divisors are in P . For an integer m ∈ N(P), we set 1m = Gal(Q(µm)/Q) and 3m :=

O[[Gal(Q(µmp∞)/Q)]] ∼=3⊗Zp Zp[1m].

Definition 3.1.1. An Euler system of rank r ≥ 0 is a collection of classes

cm ∈

r∧
3m

H 1
Iw(Q(µmp∞), T )

for each m ∈N(P), such that if ` is a prime with `,m` ∈N(P), then

corQ(µm`p∞ )/Q(µmp∞ )(cm`)=

{
P`(σ−1

` )cm if `-m,
cm if ` |m.

(3.1.1)

Here P`(X) := detE(1− Frob−1
` X | V ∗(1)) ∈ O[X ], and σ` denotes the image in Gal(Q(µmp∞)/Q)

of Frob`, the arithmetic Frobenius at `.

Remark 3.1.2. Perrin-Riou in fact requires r ≥ 1, but we feel that the case r = 0 should not be neglected.
For r = 0 we have

∧r
3m

H 1
Iw(Q(µmp∞), T ) = 3m , and a rank 0 Euler system is therefore a collection

of elements cm ∈ 3m for m ∈ N(P), satisfying the compatibilities (3.1.1) under the projection maps
3m`→3m . Such collections of elements arise naturally in the theory of p-adic L-functions: for instance,
both the Stickelberger elements for an odd Dirichlet character, and the Mazur–Tate elements for a
p-ordinary modular form, can be viewed as rank 0 Euler systems in this sense.

Given an Euler system of rank r > 1, one can construct a multitude of Euler systems of rank 1 with
the aid of auxiliary choices of functionals on the Iwasawa cohomology, following a recipe originally set
out by Rubin [1996] and later formalised by Perrin-Riou [1998].

Definition 3.1.3. A Perrin-Riou functional of rank s ≥ 1 is a collection of linear functionals

{8m : m ∈N(P)},

where

8m ∈

s∧
3m

Hom3m

(
H 1

Iw(Q(µmp∞), T ),3m
)
,

such that if ` is a prime with `,m` ∈N(P), we have

8m` ◦ resQ(µm`p∞ )/Q(µmp∞ ) = ιm`/m ◦8m, (3.1.2)

where ιml/m denotes the isomorphism 3m ∼= (3m`)
1` sending 1 to

∑
σ∈1`
[σ ].
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As in [Rubin 1996, Corollary 1.3], one may interpret a rank r − 1 Perrin-Riou functional 8= {8m} as
a collection of maps

8m :

r∧
3m

H 1
Iw(Q(µmp∞), T )→ H 1

Iw(Q(µmp∞), T ).

Proposition 3.1.4 (Perrin-Riou). If {cm}m∈N (P) is an Euler system of rank r and {8m} is a Perrin-Riou
functional of rank r − 1, then

8m(cm) ∈ H 1
Iw(Q(µmp∞), T )

is a rank one Euler system.

Proof. See [Perrin-Riou 1998, Lemma 1.2.3; Rubin 1996, §6]. �

Remark 3.1.5. More generally, one may interpret a rank s Perrin-Riou functional as a “rank-lowering
operator” sending rank r Euler systems to rank r − s Euler systems. This includes the case r = s, where
we understand rank 0 Euler systems as in Remark 3.1.2 above.

3.2. Analytic Euler systems. For the applications below, we will need to consider compatible families of
classes not lying in Iwasawa cohomology, but in the larger “analytic” cohomology modules of Pottharst.
For simplicity, we shall only describe this construction in rank 1.

We recall that H can be written as an inverse limit lim
←−−n H[n], where H[n] are reduced affinoid algebras,

and for each n we have

H[n]⊗H H 1
an(Q(µmp∞),V)= H 1(Q(µm),Hn ⊗E V)

by [Pottharst 2013, Theorem 1.7]. Each H[n] has a canonical supremum norm; if H[n]◦ denotes the
unit ball for this norm, then there is a seminorm ‖ · ‖n on H 1(Q(µm),H[n] ⊗E V) for which the unit
ball is the image of H 1(Q(µm),H[n]◦⊗O T ). (In fact this is a norm, by [Loeffler and Zerbes 2016b,
Proposition 2.1.2(1)], but we do not need this.)

Definition 3.2.1. An analytic Euler system (of rank 1) forV is a collection of classes cm∈H 1
an(Q(µmp∞),V),

for each m ∈N(P), satisfying the following two conditions:

(1) if ` is prime and m,m` ∈N(P), then the norm-compatibility condition (3.1.1) holds;

(2) for each n, there is a constant Cn (independent of m) such that ‖cm‖n ≤ Cn for all m ∈N(P).

Remark 3.2.2. Condition (1), asserting that there is no “growth in the tame direction”, is technical to state
but absolutely vital in order to obtain an interesting theory; it is trivial that any class in H 1

an(Q(µp∞),V)
can be extended to a compatible family of classes satisfying (2) alone.

3.3. Unbounded Perrin-Riou functionals. In this section, building on [Otsuki 2009; Lei et al. 2014],
we will construct canonical Perrin-Riou functionals using another construction of Perrin-Riou, namely the
p-adic regulator map. The price we pay for this canonicity is that our functionals are no longer bounded
in general.
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We now assume V is crystalline, with all Hodge–Tate weights ≥ 0, and that V|GQp
has no quotient

isomorphic to the trivial representation. We have already chosen a compatible family of p-power roots of
unity ζpr . For P as above, let us also choose a primitive n-th root of unity ζ` for each ` ∈ P . One checks
easily that if m ∈ N(P), then ξm =

∏
`|m(−ζ`) is a basis vector of the ring of integers Z[µm] as a free

rank 1 module over the group ring Z[1m]; and we have the trace-compatibility

tracem`/m(ξm`)= ξm .

Definition 3.3.1. For m ∈N(P), let νm : Z[ζm] → Z[1m] denote the unique Z[1m]-linear map sending
ξm to 1.

Let us now set Hm = Zp[1m] ⊗H, which we regard as an “analytification” of 3m . For V as above,
the sum of the Perrin-Riou regulators at the primes of Q(µm) above p gives a map

H 1
Iw(Q(µmp∞)⊗Qp,V)→Q(µm)⊗Q H⊗E Dcris(Qp,V),

and composing this with νm we obtain a morphism of Hm-modules

Lm,V : H 1
Iw(Q(µmp∞)⊗Qp,V)→Hm ⊗Dcris(Qp,V). (3.3.1)

(We shall abbreviate L1,V by LV .)

Definition 3.3.2. If t ∈ Dcris(Qp,V∗(1)), and m ∈N(P), then we define a map

8(t)m : H
1
Iw(Q(µmp∞),V)→Hm, 8(t)m (z) :=

〈
Lm,V(locp z), t

〉
.

One sees easily that, for any fixed t , the collection 8(t) = {8(t)m : m ∈N(P)} satisfies the compatibility
condition (3.1.2), and thus may be regarded as a (rank 1) unbounded Perrin-Riou functional. Pairing with
8(t) therefore defines a homomorphism from Euler systems of rank 2 to (possibly unbounded) analytic
Euler systems of rank 1.

Remark 3.3.3. Via exactly the same construction, for any s ≥ 1 we may use elements of the wedge
power

∧s
E Dcris(Qp,V∗(1)) to define unbounded Perrin-Riou functionals of rank s.

3.4. The Beilinson–Flach Euler systems. We now focus on the particular case which interests us: the
Rankin–Selberg convolution of two modular forms. As in the introduction, f and g denote two normalised,
new cuspidal modular eigenforms, of weights k f + 2, kg + 2, levels N f , Ng, and characters ε f , εg

respectively. We assume that p -N f Ng. We let T denote the rank 4 representation R∗f ⊗ R∗g over O and
write V = T ⊗Zp Qp.

We take 6 to be the set of primes dividing pN f Ng, and for ` /∈6, we write

P`(X)= det
(
1−Frob−1

` X
∣∣ T ∗(1)

)
= 1−

a`( f )a`(g)
`

X + · · · ∈O[X ].

We now review the construction of Beilinson–Flach elements from [Loeffler and Zerbes 2016b].
For λ ∈ {α, β} and h ∈ { f, g}, we write hλ for the p-stabilisation of h at λh . We shall identify R∗h
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with R∗hλ following [op. cit., §3.5]. More specifically, let pr1 and pr2 be the two degeneracy maps on
the modular curves Y1(pNh)→ Y1(Nh) as defined in [Kings et al. 2017, Definition 2.4.1] and write
Prλ = pr1− (λ

′/pkh+1)pr2, where λ′ denotes the unique element of {α, β} \ {λ}. Realising R∗hλ and R∗h
as quotients of the étale cohomology of Y1(pNh) and Y1(Nh) respectively, Prλ

∗
gives an isomorphism

between these two Galois representations.

Definition 3.4.1. For λ,µ ∈ {α, β}, c > 1 coprime to 6pN f Ng, m ≥ 1 coprime to pc, and a ∈
(Z/mp∞Z)×, let

cBFλ,µ
m,a ∈ Dordp(λ f µg)(0)⊗3 H 1

Iw(Q(µmp∞), T )

be the Beilinson–Flach element as constructed in [Loeffler and Zerbes 2016b, Theorem 5.4.2].

Here Dordp(λ f µg)(0, E) denotes the 3-submodule of H consisting of tempered distributions of order
ordp(λ fµg). We shall take a = 1 throughout, and restrict to integers m ∈ N(P), where P is the set of
primes not dividing pcN f Ng.

Remark 3.4.2. If ε f εg is nontrivial, then we may remove the dependence on the auxiliary integer c, but
this will not greatly concern us here: we shall simply fix a value of c and drop it from the notation.

These elements satisfy a norm-compatibility relation which is close, but not identical, to Equation (3.1.1).
As explained in [Lei et al. 2014, Lemma 7.3.2], we can modify these elements to “correct” the norm
relation: there exists a collection of elements BFλ,µ,m for m ∈N(P) such that

• the BFλ,µ,m for m varying satisfy Equation (3.1.1) exactly,

• BFλ,µ,1 = cBF
λ,µ

1,1 ,

• each BFλ,µ,m is an O[1m]-linear combination of the elements cBF
λ,µ

m′,1 for m′ |m.

As in [Loeffler and Zerbes 2016b, Theorem 8.1.4(ii)], if H 0(Q(µp∞), V )=0, the collection of elements
BFλ,µ,m for varying m ∈N(P) form an analytic Euler system in the sense of Definition 3.2.1. We thus
obtain four rank 1 analytic Euler systems for T , one for each of the possible choices of p-stabilisations λ,µ.

One of the key themes in the present paper will be to understand the relations among these Euler systems,
for a fixed f and g and different choices of p-stabilisations. Our first result in this direction is the following
straightforward compatibility. For χ any continuous character of 0, and z ∈H⊗ H 1

Iw(Q(µmp∞), V ), let
us write z(χ) for the image of z in H 1(Q(µm), V (χ−1)).

Lemma 3.4.3. Let m ∈N(P), and let χ be a character of 0 of the form z 7→ z jθ(z), where j ∈ Z and θ
is a finite-order character of conductor pr .

(i) If 0≤ j ≤min(k f , kg), then
(λ fµg)

r
·BFλ,µ,m(χ)

is independent of the choice of λ and µ.

(ii) If kg < j ≤ k f then this class is independent of λ (but may depend on µ); and similarly if k f < j ≤ kg

it is independent of µ.
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If χ is the character z 7→ z j , the same conclusions hold for the class(
1−

λµ

p1+ jσp

)(
1−

p jσp

λµ

)−1

BFλ,µ,m(χ).

Proof. Part (i) follows from the same proof as [Büyükboduk and Lei 2016, Proposition 3.3 and Corol-
lary 3.4] since the infinite part of χ (the character z 7→ z j ) has the effect of sending the Beilinson–Flach
element for the representation T to that for the Tate twist T (− j). For part (ii), we assume kg < j ≤ k f

without loss of generality, and deform gµ in a Coleman family G (while keeping f and θ fixed). By
Theorem A of [Loeffler and Zerbes 2016b], we obtain two families of cohomology classes BFα,G,m(χ)
and BFβ,G,m(χ), and by part (i) the specialisations of these at integer points r ′ ≥ j are equal. Hence the
two families of classes are equal identically, and we obtain (ii) by specialising back to gµ. �

3.5. A conjectural rank 2 Euler system. Recall that T is a free O-module of rank 4 and observe that
both −1 and +1-eigenspaces for the action of complex conjugation on T have rank 2. In this situation,
we expect to have an Euler system of rank r = 2.

We are now ready to state our conjecture on the relation of p-stabilised Beilinson–Flach classes and
rank-2 Euler systems. Let Lm,V : H 1

Iw(Q(µmp∞), V )→ Hm ⊗Dcris(V ) be the equivariant Perrin-Riou
regulator as in Equation (3.3.1), and let {vλµ}λ,µ∈{α,β} be an eigenvector basis of Dcris(V ) in which the
matrix of ϕ is given by

D :=


1

α f αg
1

α f βg
1

β f αg
1

β f βg

.
Further, let {v∗λµ} be the dual basis to {vλµ}.

These vectors are a priori only determined up to scaling; we may normalise them canonically as follows.
The 1-dimensional space Dcris(V f )/Fil1 has a canonical basis vector η′f , as defined in [Kings et al. 2015,
§6.1]. Since we are assuming f to be nonordinary, the two eigenspaces are both complementary to Fil1,
and we can thus define v f,α and v f,β to be the unique vectors in the ϕ-eigenspaces satisfying

v f,α = v f,β = η
′

f mod Fil1 .

Defining vg,µ analogously, we can choose our eigenvector basis of Dcris(V ∗)= Dcris(V f )⊗Dcris(Vg) by
setting v∗λµ = v f,λ⊗ vg,µ.

Conjecture 3.5.1. There exists a collection of classes BFm ∈
∧2 H 1

Iw(Q(µm), T ), for all m ∈ N(P),
which form a rank 2 Euler system, and are such that for all λ,µ ∈ {α, β}, we have〈

Lm,V (BFm), v
∗

λ,µ

〉
= BFλ,µ,m .
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Equivalently, the four rank 1 analytic Euler systems (BFλ,µ,m)m∈N(P), for different choices of λ and µ,
are all obtained from the single rank 2 Euler system (BFm) via the Perrin-Riou functionals associated to
the four eigenvectors v∗λ,µ.

Remark 3.5.2. This conjecture is an extension to higher-weight modular forms of the conjectures
formulated in [Lei et al. 2014, §8] for pairs of weight 2 modular forms. At the time, this conjecture was
somewhat tentative since the methods of [op. cit.] only suffice to construct the classes BFλ,µ,m when
vp(λµ) < 1, which is satisfied for at most two of the four possible choices, and sometimes for none at all.
However, this restriction has since been removed in [Loeffler and Zerbes 2016b] via the use of Coleman
families.

3.6. p-adic L-functions and explicit reciprocity laws. For λ ∈ {α f , β f } and µ ∈ {αg, βg}, there exist
Coleman families F and G passing through the p-stabilisations fλ and gµ; these are families of overcon-
vergent eigenforms over some affinoid discs V1 and V2 in the weight space W . We suppose (temporarily)
that our coefficient field E contains a primitive N -th root of unity, where N = LCM(N f , Ng).

Theorem 3.6.1 [Loeffler and Zerbes 2016b]. There exists a 3-variable p-adic L-function Lgeom
p (F,G) ∈

O(V1×V2×W) with the following interpolation property. Let (r, r ′, j) be an integer point in V1×V2×W
such that r ≥ 0, r ′ ≥ −1 and (r + r ′ + 1)/2 ≤ j ≤ r . Suppose that the specialisations Fr and Gr ′ are
p-stabilisations of classical newforms fr and gr ′ of prime-to-p level. Then,

Lgeom
p (F,G)(r, r ′, j)=

E( fr , gr ′, 1+ j)
E( fr )E∗( fr )

j !( j−r ′−1)!
(
c2
−c2 j−r−r ′εF (c)−1εG(c)−1

)
π2 j−r ′+1(−1)r−r ′22 j+2+r−r ′

L( fr , gr ′, 1+ j)
〈 fr , fr 〉N f

,

where

E( fr )=

(
1−

λ′r

pλr

)
, E∗( fr )=

(
1−

λ′r

λr

)
,

E( fr , g′r , 1+ j)=
(

1−
p j

λrµr

)(
1−

p j

λrµ′r

)(
1−

λ′rµr

p1+ j

)(
1−

λ′rµ
′
r

p1+ j

)
.

Here, λr , µr ′ are the respective specialisations of the Up-eigenvalues on F and G at r and r ′, whereas λ′r
and µ′r are defined by the requirement that {λr , λ

′
r } = {α fr , β fr } and {µ,µ′} = {αgr ′

, βgr ′
}.

Remark 3.6.2. The construction of this function in [Loeffler and Zerbes 2016b] relies on deforming
Beilinson–Flach elements in families. An alternative, more direct construction (not using Euler systems)
has subsequently been given by Urban [2017].

Proposition 3.6.3. Let L p(F, gµ) denote the function on V1×W obtained by specialising Lgeom
p (F,G)

at the point of V2 corresponding to gµ. Then the functions L p(F, gα) and L p(F, gβ) coincide.

Proof. From the preceding theorem, one sees that these two functions agree at all points (r, j) with r , j
integers satisfying the inequalities r ≥ 0 and (r+kg+1)/2≤ j ≤ r . These points are clearly Zariski-dense
in V1×W . �
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Definition 3.6.4. For λ ∈ {α f , β f }, define L p( fλ, g) ∈O(W) to be the specialisation of[
w( f )G(ε−1

f )G(ε
−1
g )E( f )E∗( f )

]
· L p(F, g)

at the point fλ of V1, where L p(F, g) is the common value L p(F, gα)= L p(F, gβ), G( · ) are the Gauss
sums, and w( f ) is the Atkin–Lehner pseudo-eigenvalue of f .

One can check that L p( fλ, g) is defined over any p-adic field containing the coefficients of fα and g
(not necessarily containing an N -th root of unity); this is the reason for renormalising by the Gauss sums.
Since there is a canonical isomorphism O(W)∼=H, we shall regard L p( fλ, g) as an element of H. We
therefore have four p-adic L-functions attached to the pair { f, g}, namely{

L p( fα, g), L p( fα, g), L p(gα, f ), L p(gβ, f )
}
. (3.6.1)

Theorem 3.6.5 (explicit reciprocity law). For each pair (λ, µ) we have〈
LV (BFλ,µ,1), v∗λ,µ

〉
= 0,〈

LV (BFλ,µ,1), v∗λ,µ′
〉
=

Ag logp,1+kg

(µ′−µ)
· L p( fλ, g),

〈
LV (BFλ,µ,1), v∗λ′,µ

〉
=

A f logp,1+k f

(λ′− λ)
· L p(gµ, f )

where A f and Ag are nonzero constants independent of λ and µ. In particular we have the antisymmetry
relations〈

LV (BFλ,µ,1), v∗λ,µ′
〉
=−

〈
LV (BFλ,µ′,1), v∗λ,µ

〉
,

〈
LV (BFλ,µ,1), v∗λ′,µ

〉
=−

〈
LV (BFλ′,µ,1), v∗λ,µ

〉
.

Proof. The vanishing of
〈
LV (BFλ,µ), v∗λ,µ

〉
is a consequence of Theorem 7.1.2 of [Loeffler and Zerbes

2016b]. The other two formulae follow directly from the definition of the geometric p-adic L-function
[op. cit., Definition 9.1.1] after a somewhat tedious comparison of conventions. The factor logp,1+kg

arises from the normalisation of the Perrin-Riou regulator for a certain subquotient of the (ϕ, 0)-module
of V [op. cit., Theorem 7.1.4]. The quantity Ag/(µ

′
−µ) and its cousin arise from comparing the families

of eigenvectors constructed there with our present conventions; some handle-turning shows that the
specialisation of the family ηF in their notation corresponds to

1

w( f )G(ε−1
f )E( fλ)E∗( fλ)

v f,α,

while the family ωG specialises to
(−1)kg 〈ϕ(ω′g), ω

′
g∗〉

(µ′−µ)Nεg G(ε−1
g )

vg,β,

where ω′g is the basis vector of Fil1 Dcris(Rg) defined in [Kings et al. 2015, §6.1], and ω′g∗ its analogue
for the conjugate form g∗. �
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3.7. Some “extra” p-adic L-functions.

Definition 3.7.1. For λ ∈ {α f , β f } and µ ∈ {αg, βg}, we set

L?
p( fλ, gµ) :=

1
logp,ν+1

〈
LV (BFλ,µ,1), v∗λ′,µ′

〉
,

where ν =min(k f , kg).

These elements lie in H, because BFλ,µ,1(χ) is in H 1
f for every locally algebraic χ of weight in the

range [0, . . . , ν], so LV (BFλ,µ,1) vanishes at these characters and thus is divisible by logp,ν+1.

Proposition 3.7.2. Suppose k f > kg, and let χ be a character of 0 of the form z 7→ z jθ(z), where
kg + 1≤ j ≤ k f and θ is a Dirichlet character of conductor pn . Then we have

L?
p( fλ, gµ)(χ)= R ·

Ag

µ′−µ
· L p( fλ′, g)(χ),

where Ag is as in the statement of Theorem 3.6.5; R = (λ′/λ)n if n ≥ 1, and if n = 0 then

R =
(

1−
λ′µ

p1+ jσp

)(
1−

p jσp

λ′µ

)−1/((
1−

λµ

p1+ jσp

)(
1−

p jσp

λµ

)−1)
.

Proof. Applying 〈LV ( · ), v
∗

λ′,µ′〉(χ) to both BFλ,µ,1 and BFλ′,µ,1, we deduce that

L?
p( fλ, gµ)(χ)=

〈
LV (BFλ,µ,1), v∗λ′,µ′

〉
(χ)

logp,ν+1

= R ·

〈
LV (BFλ′,µ,1), v∗λ′,µ′

〉
(χ)

logp,ν+1

= R ·
Ag

µ′−µ
L p( fλ′, g)(χ),

where the second equality follows from Lemma 3.4.3, the final equality from Theorem 3.6.5 and the first
from definitions. �

Note that for n = 0 the right-hand side is an explicit multiple of a complex L-value, by the explicit
reciprocity law (and we expect this also to hold for n ≥ 1). This construction gives rise to four extra
elements associated to f and g, in addition to the more familiar four given by (3.6.1). It seems natural to
conjecture that

L?
p( fλ, gµ)=−L?

p( fλ′, gµ′), (3.7.1)

so that these four extra elements fall into two pairs differing by signs; this would, for instance, follow easily
from Conjecture 3.5.1. However, we do not know how to prove this symmetry property unconditionally,
since these elements do not seem to deform in Coleman families, and their growth (which is always
O(logp,1+max(k f ,kg)

)) is just too rapid for the interpolating property to imply (3.7.1).
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Remark 3.7.3. In the analogous case when f is supersingular but g is an ordinary CM form, these extra
L-functions correspond to the extra two p-adic L-functions constructed in [Loeffler 2014] using modular
symbols for Bianchi groups.

3.8. Nontriviality of Beilinson–Flach elements.

Corollary 3.8.1. If |k f − kg| ≥ 3 then for each choice of λ and µ, the class resp(BFλ,µ,1) is nontrivial.

Proof. By symmetry, we may suppose that k f − kg ≥ 3. Notice that the Euler product for the Rankin–
Selberg L-series L( f, g, s) converges absolutely at s= k f+1 (since k f+1>(k f+kg)/2+2). In particular,
L( f, g, k f + 1) is nonzero. For either value λ ∈ {α f , β f }, the factors (c2

− · · · ) and E( f, g, 1+ k f )

appearing in Theorem 3.6.1 are easily seen to be nonzero as well, using the fact that α f , β f are Weil
numbers of weight (k f + 1)/2> (kg + 1)/2+ 1, whereas αg, βg are Weil numbers of weight (kg + 1)/2.
Hence L p( fλ, g)(k f ) is nonzero for both values of λ. By the explicit reciprocity law, this forces all four
elements resp(BFλ,µ,1) to be nonzero. �

Definition 3.8.2. For a character η of 1= 0tor, we let eη ∈3 denote the corresponding idempotent.

Remark 3.8.3. One may show that the projection resp(eω j BFλ,µ,1) is nontrivial for 1+ (k f + kg)/2<
j ≤max(k f , kg), by arguing as in the proof of Corollary 3.8.1.

Remark 3.8.4. Note that the interpolation formula for Lgeom
p (F,G) we have recorded in Theorem 3.6.1

does not say anything about its value at (r, r ′, j + χ) where χ is a nontrivial finite order character of
p-power conductor. This is the reason why we assume |k f − kg| ≥ 3 in Corollary 3.8.1; with a stronger
interpolation formula we could reduce this to |k f − kg| ≥ 2, and even |k f − kg| ≥ 1 conditionally on
standard nonvanishing conjectures for complex L-functions.

In the sequel [Büyükboduk et al. 2018], we need a similar nonvanishing result in the case f = g. In
this particular situation, note that we have k f = kg and the Rankin–Selberg L-series does not possess a
single critical value. In order to prove the nonvanishing of the geometric p-adic L-function associated
to the symmetric square, one needs to factor the p-adic Rankin–Selberg L-function as a product of the
symmetric square p-adic L-function and a Kubota–Leopoldt p-adic L-function (extending the work of
Dasgupta in the p-ordinary case). This is the subject of a forthcoming work of Alessandro Arlandini.

3.9. A partial result towards Conjecture 3.5.1.

Theorem 3.9.1. Suppose that all four p-adic Rankin–Selberg L-functions (3.6.1) are non-zero-divisors
in H, and that the following “big image” hypotheses hold:

• The representation V is absolutely irreducible.

• There exists an element τ ∈ Gal(Q/Q(µp∞)) such that the E-vector space V/(τ − 1)V is 1-
dimensional.

Then there exists a class BF1 ∈ FracH⊗3
∧2 H 1

Iw(Q(µp∞), T ) satisfying〈
LV (BF1), v

∗

λ,µ

〉
= BFλ,µ,1
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for all choices of p-stabilisations λ, µ. In particular the “extra” antisymmetry property (3.7.1) holds.

The proof of this theorem will proceed in several steps.

Proposition 3.9.2. If any one of the four p-adic L-functions is a non-zero-divisor and the “big image”
conditions hold, then H 1

an(Q(µp∞), V ) has rank 2 over H, and the map

H 1
an(Q(µp∞), V )→H⊕4

given by pairing LV ◦ locp with the four basis vectors {v∗αα, v
∗

αβ, v
∗

ββ, v
∗

βα} of Dcris(V ∗) (in that order) is
an injection.

Proof. Since the Perrin-Riou regulator LV is injective, it suffices to show that H 1
an(Q(µp∞), V ) has rank

2 and injects into H 1
an(Qp(µp∞), V ) via locp. Note that H 1

an(Q(µp∞), V ) is free thanks to our big image
conditions, and its rank is at least 2 by Tate’s Euler characteristic formula.

By symmetry we may suppose that L( fα, g) is a non-zero-divisor. Choose a character χ of 0 in each
1-isotypic component at which this p-adic L-function does not vanish, and away from the support of the
torsion module H 2

Iw(Qp, V ). By the explicit reciprocity law, this implies that BFα,α,1(χ) and BFα,β,1(χ)
are both nonzero, and moreover that their images in H 1(Qp, V (χ−1)) are linearly independent. By the
Euler system machinery and an application of Poitou–Tate duality, precisely as in Theorem 8.2.1 and
Corollary 8.3.2 of [Loeffler and Zerbes 2016b], one sees that the relaxed Selmer group H 1

relaxed(Q, V (χ−1))

is 2-dimensional and injects into the local cohomology at p. Since there is an injection

H 1
an(Q(µp∞), V )/(γ −χ(γ )) ↪→ H 1

relaxed(Q, V (χ−1)),

the result follows. �

We now assume, for the remainder of this section, that the hypotheses in the statement of Theorem 3.9.1
are satisfied. Let M denote the image of H 1

an(Q(µp∞), V ) in H⊕4 as given by Proposition 3.9.2. Then
M has rank 2, as we have just established. Given an element x ∈H⊕4 and i ∈ {1, 2, 3, 4}, we write xi for
its i-th coordinate (understood modulo 4, so that x5 = x1). For each i , let M(i)

= {x ∈M : xi = 0} be the
kernel of the i-th coordinate projection.

We write m(1), . . . ,m(4) for the images in M of the four analytic Iwasawa cohomology classes
BFαα1 ,BFαβ1 ,BFββ1 ,BFβα1 (in that order).

Proposition 3.9.3. For each i ∈ {1, . . . , 4}, we have the following:

• m(i)
∈M(i);

• (m(i))i+1 =−(m(i+1))i , and this value is a non-zero-divisor;

• M(i) has rank 1;

• M(i)/〈m(i)
〉 is H-torsion.

Proof. The first two statements follow directly from the explicit reciprocity law (Theorem 3.6.5); the
theorem in particular shows that the common value (m(i))i+1 = −(m(i+1))i is one of the four p-adic
L-functions (3.6.1), which are non-zero-divisors by assumption.
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In particular, this shows that the images of M under all four coordinate projections have rank ≥ 1.
Since M has rank 2, it follows that the submodules M(i) all have rank 1, and that each m(i) spans a rank
1 submodule of M(i), so the quotient M(i)/〈m(i)

〉 is torsion. �

Proof of Theorem 3.9.1. Let {u, v} denote the image in M of a basis of H 1
Iw(Q(µp∞), T ). Then {u, v} is

a basis of M, and for each i , the vector

ui · v− vi · u

lies in M(i). It is also nonzero, since u, v are linearly independent over H. Since M(i) has rank 1, it
follows that there is a non-zero-divisor ci in the total ring of fractions of H such that

m(i)
= ci · (ui · v− vi · u).

Substituting the definition of the ci into the formula (m(i))i+1 =−(m(i+1))i , we deduce that

ci · (uivi+1− vi ui+1)= ci+1 · (uivi+1− vi ui+1),

and moreover that the common value is a non-zero-divisor. Hence ci = ci+1. Repeating this argument for
each i , we see that the quantities ci are all equal to some common value c ∈ Frac(H). Let ũ and ṽ be the
preimages of u and v in H 1

Iw(Q(µp∞), T ). On unravelling the notation, we see that m(i) is equal to the
image of c · ũ∧ ṽ ∈ Frac(H)⊗3

∧2 H 1
Iw(Q(µp∞), T ) under the map sending x ∧ y to the i-th coordinate

of
〈
LV (x)y −L(y)x, v(i)

〉
, where v(i) is the i-th element of our basis

(
v∗αα, v

∗

αβ, v
∗

ββ, v
∗

βα

)
of Dcris(V )∗.

So we may take BF1 = c · ũ ∧ ṽ. �

Remark 3.9.4. We can carry out the same argument after applying the idempotent eη, if we assume that
the eη isotypic parts of the L-functions (3.6.1) are nonzero. It suffices to have nonvanishing of any three
of the four, as is clear from the proof.

More subtly, if one assumes that the symmetry property (3.7.1) for the “extra” L-functions is true,
then one can prove the same theorem assuming that two of the four functions (3.6.1) and one of the
“extra” L-functions is nonzero. This nonvanishing can be deduced from the explicit reciprocity law when
|k f − kg| ≥ 3 and appropriate η, as above.

4. Logarithmic matrix and factorisations

In the following sections of the paper, we explore some of the consequences of Conjecture 3.5.1, and
show that it implies factorisations of the Beilinson–Flach elements via a matrix of logarithms.

4.1. Integral p-adic Hodge theory for V . In this section, we assume (as in the introduction) that both
f and g are nonordinary at p. We also impose the following Fontaine–Laffaille hypothesis:

p > k f + kg + 2.

We describe our constructions assuming k f ≤ kg for simplicity; the case k f ≥ kg is similar.
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For h ∈ { f, g}, we have the basis ωh , ϕ(ωh) of Dcris(R∗h) with ωh generating Fil0 Dcris(R∗h). As worked
out in [Lei et al. 2017, §3.1], the matrix of ϕ with respect to this basis is

Ah =

(
0 −εh(p)/pkh+1

1 ap(h)/pkh+1

)
.

Let T be the representation R∗f ⊗ R∗g . Then we consider the basis v1 = ω f ⊗ωg, v2 = ω f ⊗ ϕ(ωg),
v3 = ϕ(ω f )⊗ωg, v4 = ϕ(ω f )⊗ϕ(ωg) for Dcris(T ). We note in particular that it respects the filtration of
Dcris(T ) in the following sense:

Fili Dcris(T )=



〈v1, v2, v3, v4〉, i ≤−k f − kg − 2,
〈v1, v2, v3〉, −k f − kg − 1≤ i ≤−kg − 1,
〈v1, v2〉, −kg ≤ i ≤−k f − 1,
〈v1〉, −k f ≤ i ≤ 0,
0, i ≥ 1.

(4.1.1)

The matrix of ϕ with respect to this basis is

A = A0 ·


1

1/pk f+1

1/pkg+1

1/pk f+kg+2

,
where A0 is the matrix defined by

0 0 0 ε f (p)εg(p)
0 0 −ε f (p) −ε f (p)ap(g)
0 −εg(p) 0 −εg(p)ap( f )
1 ap(g) ap( f ) ap( f )ap(g)

.
We introduce the following convention.

Convention 4.1.1. Let n ≥ 1 be an integer and U an E-vector space. If M = (mi j ) is an n× n matrix
defined over E and u1, . . . , un are elements in U , we write(

u1 · · · un
)
·M

for the row vector of elements in U given by
∑n

i=1 ui mi j , j = 1, . . . , n.

Under this convention, we have the equation(
ϕ(v1) ϕ(v2) ϕ(v3) ϕ(v4)

)
=
(
v1 v2 v3 v4

)
· A. (4.1.2)

Recall that the Wach module N(T ) is a free module of rank 4 over A+
Qp

, equipped with a canonical
isomorphism

N(T )/πN(T )∼= Dcris(T ). (4.1.3)
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By [Berger 2004, proof of Proposition V.2.3] (see also [Lei 2017, Proposition 4.1]), our Fontaine–Laffaille
hypothesis allows us to lift the basis {vi } of Dcris(T ) as an O-module to a basis {ni } of N(T ) as an
A+

Qp
-module, and the matrix of ϕ with respect to the basis {ni } is given by

P := A0 ·


µk f+kg+2

µkg+1/qk f+1

µk f+1/qkg+1

1/qk f+kg+2

,
where µ = p/(q − π p−1) ∈ 1 + πA+

Qp
. Note that P−1 is integral. Furthermore, similar to the

Equation (4.1.2), we have (
ϕ(n1) ϕ(n2) ϕ(n3) ϕ(n4)

)
=
(
n1 n2 n3 n4

)
· P. (4.1.4)

4.2. The logarithmic matrix. There is an isomorphism

B+rig,Qp

[ t
π

]
⊗A+

Qp
N(T )∼= B+rig,Qp

[ t
π

]
⊗Zp Dcris(T ) (4.2.1)

compatible with (4.1.3) via reduction mod π . Let M ∈GL4
(
B+rig,Qp

[ t
π

])
be the matrix of this isomorphism

with respect to our bases {vi } and {ni }, so that(
n1 n2 n3 n4

)
=
(
v1 v2 v3 v4

)
·M (4.2.2)

under Convention 4.1.1. By [Lei 2017, Proposition 4.2], we can (and do) choose the ni such that

M ≡ I4 mod π k f+kg+2. (4.2.3)

If we apply ϕ, we deduce from (4.1.2) and (4.1.4) that

M = Aϕ(M)P−1.

If we repeatedly apply ϕ, we get

M = Anϕn(M)ϕn−1(P−1) · · ·ϕ(P−1)P−1.

So, in particular,

M ≡ Anϕn−1(P−1) · · ·ϕ(P−1)P−1 mod ϕn(π k f+kg+2) (4.2.4)

thanks to (4.2.3). We define the logarithmic matrix to be the 4× 4 matrix over H given by

Mlog :=M−1((1+π)Aϕ(M)),
where M is the Mellin transform (applied individually to each entry of the matrix (1+π)Aϕ(M)). Recall
from [Lei et al. 2011, §3] that, up to a unit, the determinant of Mlog is given by

nk f+1 · nkg+1 · nk f+kg+2.
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Furthermore, by Theorem 2.3.1 and (4.2.4), we have the congruence

Mlog ≡ An+1
· Hn mod ωn,k f+kg+2, (4.2.5)

where Hn =M−1(ϕn(P−1) · · ·ϕ(P−1)).

Lemma 4.2.1. The adjugate matrix adj(Mlog)= det(Mlog)M−1
log is divisible by nk f+1nkg+1.

Proof. By (4.2.5), we have
Mlog ≡ An+1

· Hn mod 8n,k f+kg+2.

So, it is enough to show that adj(Hn) is divisible by 8n,k f+18n,kg+1 for all n. Recall that,

M(Hn)= ϕ
n(P−1) · · ·ϕ(P−1).

From the construction of P , the last three rows of P−1 are divisible by qk f+1, qkg+1 and qk f+kg+2 respec-
tively. Therefore, the last three rows of M(Hn) are divisible by ϕn(qk f+1), ϕn(qkg+1) and ϕn(qk f+kg+2)

respectively. Theorem 2.3.1 then tells us that the last three rows of Hn are divisible by 8n,k f+1, 8n,kg+1

and 8n,k f+kg+2. Hence, when we take adjugate, every entry will be divisible by 8n,k f+18n,kg+1 as
required. �

Let {vλ,µ}λ,µ∈{α,β} be the eigenvector basis of Dcris(V ) as given in Section 3.5. The matrix of ϕ with
respect to this basis is

D :=



1
α f αg

1
α f βg

1
β f αg

1
β f βg


.

Recall that we defined vλµ= v∗f,λ⊗v
∗
g,µ, where vh,α and vh,β are eigenvectors in Dcris(Vh) with vh,α= vh,β

mod Fil1 for h ∈ { f, g}. Since 〈v∗h,α+v
∗

h,β, vh,α−vh,β〉= 0 by duality, we have v∗h,α+v
∗

h,β = 0 mod Fil0.
After multiplying ωh by a scalar if necessary, we may choose

v∗h,α = αh(ωh −βhϕ(ωh)), and v∗h,β =−βh(ωh −αhϕ(ωh)).

We let Q be the change-of-basis matrix from the basis {vi } to this eigenvector basis, so that D = Q−1 AQ.
Explicitly, we have

Q =


α f αg −α f βg −β f αg β f βg

−α f αgβg α f αgβg −αgβ f βg αgβ f βg

−α f αgβ f α f β f βg −α f αgβ f α f β f βg

α f αgβ f βg −α f αgβ f βg −α f αgβ f βg α f αgβ f βg

.
Using this matrix, we may rewrite (4.2.5) as

Q−1 Mlog ≡ Dn+1 Q−1 Hn mod ωn,k f+kg+2. (4.2.6)
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Lemma 4.2.2. The entries in the first column of Q−1 Mlog are all O(logvp(α f αg)
p ), and similarly for the

other three columns.

Proof. Recall that Hn is a matrix defined over 3. The congruence relation (4.2.6) tells us that the entries
of the first column of Q−1 Mlog modulo ωn,k f+kg+2 have denominator O(pvp(α f αg)). Hence, our result
follows from [Büyükboduk and Lei 2016, Lemma 2.2], which is a slight generalisation of [Perrin-Riou
1994, §1.2.1]. �

4.3. Characterising the image. Here we prove an important linear-algebra result describing the 3-
submodule of H⊕4 generated by the logarithmic matrix; we shall see that it consists exactly of those
elements which “look like” they are in the image of the Perrin-Riou regulator map.

Proposition 4.3.1. Let Fλ,µ ∈ H, λ,µ ∈ {α, β}, be four functions. Suppose that, for some integer
j ∈ {0, . . . , k f + kg + 1} and some Dirichlet character θ of conductor pn with n > 1, we have∑

λ,µ

(λµ)n Fλ,µ(χ jθ)vλ,µ ∈Qp,n ⊗Fil− j Dcris(T ).

Then,

adj(Q−1 Mlog)

nk f+1nkg+1
·


Fα,α
Fα,β
Fβ,α
Fβ,β

 (χ jθ)= 0.

Proof. When we evaluate an element in 3 at χ jθ , the result only depends on the given element modulo
Tw− j8n−1(X). By (4.2.5),

adj(Q−1 Mlog)≡ adj(Dn Q−1 Hn−1)≡
det(Dn)

det(Q)
adj(Hn−1)Q D−n mod Tw− j8n−1.

We recall from the proof of Lemma 4.2.1 that the last three rows of Hn−1 are divisible by 8n−1,k f+1,
8n−1,kg+1 and 8n−1,k f+kg+2 respectively. So, after dividing by nk f+1nkg+1, the first column of adj(Hn−1)

is divisible by 8n−1,k f+kg+2, the second column is divisible by 8n−1,k f+kg+2/8n−1,k f+1, whereas the
third one is divisible by 8n−1,k f+kg+2/8n−1,kg+1. In particular, when evaluated at a character of the form
χ jθ , we have

adj(Hn−1)

nk f+1nkg+1
(χ jθ)=


0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 ∗


if kg + 1≤ j ≤ k f + kg + 1. When j is in this range, our assumption on Fλ,µ tells us that

Q D−n


Fα,α
Fα,β
Fβ,α
Fβ,β

 (χ jθ)=


∗

∗

∗

0
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thanks to the description of the filtration in (4.1.1). The result then follows from multiplying the two
equations above.

For the other cases, we have

adj(Hn−1)

nk f+1nkg+1
(χ jθ)=


0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 , Q D−n


Fα,α
Fα,β
Fβ,α
Fβ,β

 (χ jθ)=


∗

∗

0
0


if k f − 1≤ j ≤ kg and

adj(Hn−1)

nk f+1nkg+1
(χ jθ)=


0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 , Q D−n


Fα,α
Fα,β
Fβ,α
Fβ,β

 (χ jθ)=


∗

0
0
0


if 0≤ j ≤ k f , so we are done. �

Theorem 4.3.2. Let Fλ,µ ∈H, λ,µ∈ {α, β} be four functions such that for all integers 0≤ j ≤ k f +kg+1
and all Dirichlet characters θ of conductor pn with n > 1,∑

λ,µ

(λµ)n Fλ,µ(χ jθ)vλ,µ ∈Qp,n ⊗Fil− j Dcris(T ).

Then, 
Fα,α
Fα,β
Fβ,α
Fβ,β

= Q−1 Mlog ·


F#,#

F#,[

F[,#
F[,[


for some F•,◦ ∈H.

Furthermore, if Fλ,µ = O(logvp(λ f µg)
p ) for all four choices of λ and µ, then F•,◦ = O(1) for all • and ◦.

Proof. Proposition 4.3.1 tells us that

adj(Q−1 Mlog)

nk f+1nkg+1
·


Fα,α
Fα,β
Fβ,α
Fβ,β

 ∈ nk f+kg+2H⊕4.

But since the determinant of Q−1 Mlog is up to a unit nk f+1nkg+1nk f+kg+2,

adj(Q−1 Mlog)

nk f+1nkg+1nk f+kg+2

is (again up to a unit) (Q−1 Mlog)
−1, hence the decomposition as claimed.

If furthermore Fλ,µ = O(logvp(λ f µg)
p ), then Lemma 4.2.2 tells us that all entries in the product

adj(Q−1 Mlog)

nk f+1nkg+1
·


Fα,α
Fα,β
Fβ,α
Fβ,β
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are O(logk f+kg+2
p ). This says that the quotient

adj(Q−1 Mlog)

nk f+1nkg+1nk f+kg+2
·


Fα,α
Fα,β
Fβ,α
Fβ,β


is in O(1) and we are done. �

Remark 4.3.3. Note that the condition on Fαβ is automatically satisfied if the Fαβ are the components in
our eigenvector basis of an element of the Perrin-Riou regulator map, since the regulator interpolates
the Bloch–Kato dual exponential for j ≥ 0, and the dual exponential map for T (− j) factors through
Fil− j Dcris. The above result should be viewed as a sort of converse to this statement, showing that
these vanishing conditions force a factorisation via the matrix of logarithms, of the same form as the
factorisation established for the Perrin-Riou regulator in [Lei et al. 2010].

5. Equivariant Perrin-Riou maps and (#, [)-splitting

5.1. Perrin-Riou maps and signed Coleman map. Let f and g be two modular forms as in the previous
section. We shall write T = R∗f ⊗ R∗g as before. Let F/Qp be a finite unramified extension. We write
NF (T ) and Dcris(F, T ) for the Wach module and Dieudonné module of T over F . We have already fixed
bases {ni } and {vi } of NQp(T ) and Dcris(Qp, T ) respectively. Given that

NF (T )=OF ⊗Zp NQp(T ), Dcris(F, T )=OF ⊗Zp Dcris(Qp, T ),

we may extend the bases we have chosen to NF (T ) and Dcris(F, T ) naturally.
We recall from (4.2.2) that the change of basis matrix M between the two bases above results in

a logarithmic matrix Mlog. Furthermore, given that M ≡ I4 mod π2 by (4.2.4), [Lei et al. 2017,
Theorem 2.5] says that {(1 + π)ϕ(ni )} is a 3-basis of ϕ∗(N(T )). We recall from [Lei et al. 2010,
Remark 3.4] that (1− ϕ)NF (T )ψ=1

⊂ (ϕ∗NF (T ))ψ=0. This allows us to define four Coleman maps
ColF,•,◦ : NF (T )ψ=1

→OF ⊗3 via the relation

(1−ϕ)z =
(
v1 v2 v3 v4

)
·Mlog ·


ColF,#,#(z)
ColF,#,[(z)
ColF,[,#(z)
ColF,[,[(z)


for z ∈ NF (T )ψ=1 (see [Lei et al. 2011, §3] for details).

A result of Berger [2003, Theorem A.3] tells us that there is an isomorphism

h1
F,T : NF (T )ψ=1

→ H 1
Iw(F, T ).

We shall abuse notation and denote ColF,•,◦◦(h1
F,T )

−1 by simply ColF,•,◦ for •, ◦∈{#, [}. The Perrin-Riou
regulator map

LT,F : H 1
Iw(F, T )→H⊗Dcris(F, T )
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is given by

(M−1
⊗ 1) ◦ (1−ϕ) ◦ (h1

F,T )
−1.

Hence, we have the decomposition

LT,F (z)=
(
v1 v2 v3 v4

)
·Mlog ·


ColF,#,#(z)
ColF,#,[(z)
ColF,[,#(z)
ColF,[,[(z)

. (5.1.1)

Exactly as in (3.3.1), for m ≥ 1 we can combine the maps ColQ(µm)v,•,◦ for primes v | p of Q(µm), and
the map νm , to obtain maps

Colm,•,◦ : H 1
Iw(Q(µmp∞)⊗Qp, T )→3m .

5.2. Signed Selmer groups. Let 3ι be the free rank 1 3-module on which GQ acts via the inverse of
the canonical character GQ � 0 ↪→ 3×. We write T := T ⊗3ι, and we define the (compact) signed
Selmer group H 1

F•,◦(Q(µm),T) by setting

H 1
F•,◦(Q(µm),T) := ker

(
H 1(Q(µm),T)→

∏
v | p

H 1(Q(µm)v,T)

ker(Col•,◦,Q(µm)v )

)
.

We next define discrete signed Selmer groups for the dual Galois representation T∨(1). Let F/Qp be
a finite unramified extension. By Tate duality, there is a perfect pairing

H 1
Iw(F, T )× H 1(F(µp∞), T∨(1))→Qp/Zp.

For •, ◦ ∈ {#, [}, we define

H 1
•,◦(F(µp∞), T∨(1))⊂ H 1(F(µp∞), T∨(1))

to be the orthogonal complement of ker(Col•,◦,F ).

Definition 5.2.1. The discrete signed Selmer group Sel•,◦(T∨(1)/Q(µmp∞)) is the kernel of the restriction
map

H 1(Q(µmp∞), T∨(1))→
∏
v | p

H 1(Q(µmp∞)v, T∨(1))
H 1
•,◦(Q(µmp∞)v, T∨(1))

×

∏
v - p

H 1(Q(µmp∞)v, T∨(1))
H 1

f (Q(µmp∞)v, T∨(1))
,

where v runs through all primes of Q(µmp∞).

5.3. (#, [)-splitting and rank-2 Euler systems. Our goal in this section is to formulate a weaker alterna-
tive to Conjecture 3.5.1, which we are able to verify in many cases of interest (in [Büyükboduk and Lei
2016; Büyükboduk et al. 2018]), allowing us to make full use of the Euler system machinery in these
scenarios.
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Conjecture 5.3.1. There exists a nonzero r0 ∈Z, and a collection of elements BF•,◦,m ∈ H 1
F•,◦(Q(µm),T)

for each m ∈N(P) and each choice of •, ◦ ∈ {#, [}, such that

r0 ·


BFα,α,m
BFα,β,m
BFβ,α,m
BFβ,β,m

= Q−1 Mlog ·


BF#,#,m

BF#,[,m

BF[,#,m
BF[,[,m

. (5.3.1)

Note that the BF•,◦,m are uniquely determined if they exist, since the determinant of Q−1 Mlog is a
non-zero-divisor in H.

Proposition 5.3.2. If Conjecture 3.5.1 holds, then Conjecture 5.3.1 holds (and we may take r0 = 1).

Proof. Suppose that Conjecture 3.5.1 is true. For each m ∈N(P) and each •, ◦ ∈ {#, [}, we can regard
Colm,•,◦ ◦ locp as a map

2∧
H 1

Iw(Q(µmp∞), T )→ H 1
Iw(Q(µmp∞), T ).

Let us set BF•,◦,m := Col•,◦,m(BFm) ∈ H 1
Iw(Q(µm), T ), where BFm is the element of Conjecture 3.5.1.

Then it is clear that BF•,◦,m ∈ H 1
F•,◦(Q(µm),T); and the formula (5.1.1) relating the Perrin-Riou regulator

LV,m to the Coleman maps implies that we have
〈Lm,V (BFm), v

∗
α,α〉

〈Lm,V (BFm), v
∗

α,β〉

〈Lm,V (BFm), v
∗

β,α〉

〈Lm,V (BFm), v
∗

β,β〉

= Q−1 Mlog ·


BF#,#,m

BF#,[,m

BF[,#,m
BF[,[,m

,
where v∗αα, . . . , v

∗

ββ is the eigenvector basis of Dcris(V ∗). By the defining property of BFm , we have
〈LV,m(BFm), v

∗

λ,µ〉 = BFλ,µ,m for each λ,µ, which gives the required factorisation. �

Consider the following antisymmetry condition:

(A–Sym) For all possible choices of the symbols 4,�, •, ◦ ∈ {#, [} and every m ∈N (P) we have

Colm,4,� ◦ resp(BF•,◦,m)=−Colm,•,◦ ◦ resp(BF4,�,m).

Remark 5.3.3. Assume that Conjecture 5.3.1 and the hypothesis (A–Sym) hold true. Then for each
choice of •, ◦ ∈ {#, [}, the collection {BF•,◦,m}m is a (rank 1) locally restricted Euler system in the sense
of [Büyükboduk and Lei 2015, Appendix A], since each collection of p-stabilised Beilinson–Flach classes
{BFλ,µ,m}m (for λ,µ ∈ {α, β}) verifies the Euler system distribution relations as m varies.

See Section 5.4, where we partially verify Conjecture 5.3.1 and Proposition 5.3.4, where we give a
sufficient condition for the validity of (A–Sym). In the sequel [Büyükboduk et al. 2018], we prove an
appropriate variant of this conjecture for the twist Sym2 f ⊗χ of the symmetric square motive with a
Dirichlet character.
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Finally, we note that a factorisation similar to (5.3.1) is proved in [Büyükboduk and Lei 2016]
unconditionally when the newform g is taken to be a p-ordinary CM form.

Proposition 5.3.4. Suppose one of the following conditions:

(i) Conjecture 3.5.1 holds;

(ii) Conjecture 5.3.1 holds and the hypotheses of Theorem 3.9.1 are satisfied for Rankin–Selberg convo-
lutions f ⊗ g⊗ η, where η runs through characters of Gal(Q(m)/Q) with m ∈N (P).

Then (A–Sym) holds true.

Proof. If (i) holds, then the elements BF•,◦,m must arise as the images of BF1 under the Coleman maps, as
in the preceding proposition (by the uniqueness of the factorisation (5.3.1)); the above symmetry property
is then obvious. If we assume (ii) holds, then we may carry out exactly the same argument on passing to
η-isotypic components (where η runs through characters of Gal(Q(m)/Q)) and after extending scalars to
FracH. �

5.4. Partial (#, [)-splitting of Beilinson–Flach classes. Here we give evidence towards Conjecture 5.3.1
by proving a partial (#, [)-factorisation of Beilinson–Flach classes.

Let m ≥ 1 be an integer coprime to p. We write

BFλ,µ,m ∈ H 1(Q(m), R∗f ⊗ R∗g ⊗Hι
)

for the Beilinson–Flach element at tame level m associated to the p-stabilisations f λ and gµ.

Theorem 5.4.1. Let h = max(k f , kg). Then there exist B̃F•,◦,m ∈ H 1
Iw

(
Q(m), R∗f ⊗ R∗g ⊗Hι

)
, for each

•, ◦ ∈ {#, [}2, such that

nk f+kg+2

nh+1


BFα,α,m
BFα,β,m
BFβ,α,m
BFβ,β,m

= Q−1 Mlog ·


B̃F#,#,m

B̃F#,[,m

B̃F[,#,m
B̃F[,[,m

.
Proof. We fix a basis {zi } of H 1

(
Q(m), R∗f ⊗ R∗g ⊗ 3

ι
)

and write BFλ,µ,m =
∑

Fλ,µ,i zi for some
Fλ,µ,i ∈ H. For a fixed i , the coefficients Fλ,µ,i satisfy the conditions given in Proposition 4.3.1 for
0 ≤ j ≤ h and all θ of conductor pn > 1, thanks to Lemma 3.4.3 (using case (i) of the lemma for
0≤ j ≤min(k f , kg), and case (ii) for min(k f , kg) < j ≤ h). Therefore,

adj(Q−1 Mlog)

nk f+1nkg+1
·


Fα,α,m
Fα,β,m
Fβ,α,m
Fβ,β,m

 ∈ nh+1H⊕4.

Hence the result on multiplying nk f+kg+2/nh+1 on both sides and the fact that

adj(Q−1 Mlog)

nk f+1nkg+1nk f+kg+2
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is up to a unit (Q−1 Mlog)
−1. �

Remark 5.4.2. Clearly, if one could show that the coefficients Fλ,µ,i also satisfied the conditions of
Proposition 4.3.1 in the “antigeometric” range max(k f , kg)+1≤ j ≤ k f +kg+1, then the same argument
as above would prove the full strength of Conjecture 5.3.1. However, we have not been able to prove this.

6. Signed main conjectures

We shall start this section with the definition of quadruply signed Selmer groups associated to the Rankin–
Selberg product f ⊗g. We expect that the quadruply signed Selmer groups approximate (in an appropriate
sense) the Bloch–Kato Selmer groups over finite layers of the cyclotomic tower. Unfortunately, we are
unable to present a justification of this expectation.

We shall formulate our quadruply signed Iwasawa main conjecture that relates the quadruply signed
Selmer groups to quadruply signed p-adic L-functions (which we also define in this section). Assuming
the validity of Conjecture 5.3.1 (signed-splitting for Beilinson–Flach elements), we shall prove (under
mild hypotheses) a divisibility towards the quadruply signed Iwasawa main conjecture.

6.1. Quadruply signed Selmer groups and p-adic L-functions.

Definition 6.1.1. Let S denote the set of unordered pairs {(4,�), (•, ◦)} of ordered pairs, where each of
4,�, •, ◦ is one of the symbols {#, [}, and (4,�) 6= (•, ◦).

Note that S has 6 elements. We shall define a Selmer group, and formulate a main conjecture, for each
S ∈ S.

Definition 6.1.2. Let S= {(4,�), (•, ◦)} ∈ S. We define the following objects:

• A compact Selmer group H 1
FS
(Q,T), given by

H 1
FS
(Q,T) := ker

(
H 1(Q,T)→

H 1(Qp,T)

ker(Col4,�,Qp)∩ ker(Col•,◦,Qp)

)
.

• A discrete Selmer group SelS(T∨(1)/Q(µp∞)), given by the kernel of the restriction map

H 1(Q(µp∞), T∨(1))→
∏
v | p

H 1(Q(µp∞)v, T∨(1))
H 1
S(Q(µp∞)v, T∨(1))

×

∏
v - p

H 1(Q(µp∞)v, T∨(1))
H 1

f (Q(µp∞)v, T∨(1))
,

where v runs through all primes of Q(µp∞), and for v | p the local condition H 1
S(Q(µp∞)v, T∨(1))

is the orthogonal complement of ker(Col4,�,Qp)∩ ker(Col•,◦,Qp) under the local Tate pairing.

• Assuming the hypotheses of Proposition 5.3.4, we define a quadruply signed p-adic L-function by

LS := Col4,�,Qp ◦ resp(BF•,◦,1) ∈3.

Remark 6.1.3. The element LS is only well-defined up to sign, since interchanging the role of (4,�) and
(•, ◦) has the effect of multiplying the p-adic L-function by −1 (this is the content of Proposition 5.3.4).
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However, we shall only be interested in the ideal generated by LS, so the ambiguity of signs is no problem
for us.

Remark 6.1.4. We conjecture below an explicit relation between the quadruply signed Selmer group
and the quadruply signed p-adic L-function, and offer some partial results towards its validity. For
motivational purposes, we shall provide here one philosophical reason why quadruply signed Selmer
groups are the correct choice (over doubly signed Selmer groups).

Since rank T− = rank T+ = 2, one may deduce using Poitou–Tate global duality (as utilised in the
proof of Theorem 5.2.15 and Lemma 5.3.16 of [Mazur and Rubin 2004]) that

rank3 H 1
F?
(Q,T)− rank3 Sel?

(
T∨(1)/Q(µp∞)

)
=

{
1 if ?= (•, ◦) ∈ {#, [}2,
0 if ?=S ∈ S,

and one expects, in the spirit of weak Leopoldt conjecture, that rank3 H 1
F?
(Q,T) should be as small as

possible subject to these conditions. Moreover, in line with Bloch–Kato conjectures, one would also
expect that rank3 H 1

F?
(Q,T) is given as the generic order of vanishing of (appropriate linear combinations

of) L-values associated to the motives M( f )⊗M(g)⊗χ , where χ ranges among Dirichlet characters of
p-power conductor. In the critical range, note that the generic order of vanishing of these L-values is
zero and this should also be the case for at least one of the said linear combinations. This tells us that the
corresponding Selmer group ought to have rank zero as well. That is the reason why quadruply signed
Selmer groups are the correct candidates which should relate to the quadruply signed p-adic L-functions
(that interpolate linear combinations of critical L-values) we have defined above.

6.2. Quadruply signed main conjectures. We are now ready to state the quadruply signed main con-
jectures for the Rankin–Selberg convolutions of two p-nonordinary forms. We suppose throughout
this section that the hypotheses of Proposition 5.3.4 are satisfied; in particular, we are assuming that
Conjecture 5.3.1 holds.

Conjecture 6.2.1. For S= {(4,�), (•, ◦)} ∈ S and every character η of 0tor, the η-isotypic component
eη SelS(T∨(1)/Q(µp∞)) of the quadruply signed Selmer group is O[[01]]-cotorsion and

charO[[01]]

(
eη SelS(T∨(1)/Q(µp∞))

∨
) ∣∣ (eηLS)

as ideals of O[[01]], with equality away from the support of coker(Col4,�) and coker(Col•,◦).

Remark 6.2.2. It is easy to prove that eηLS is divisible by char
(
coker(Col4,�)

)
in Qp⊗O[[01]]. This

is the reason why the equality in the asserted divisibility in Conjecture 6.2.1 excludes the support of
coker(Col4,�). As illustrated by our main result (Corollary 7.4.9 below) towards the Pottharst-style
analytic main conjectures, the error that is accounted by coker(Col4,�) is inessential and it can be
recovered.

On the other hand, the reason why we have to avoid the support of coker(Col•,◦) is more subtle. In view
of Proposition 5.3.2, we expect that the Euler system {BF•,◦,m} be imprimitive when coker(eηCol•,◦) is not
the unit ideal, in the sense that the bound it yields on the Selmer group will be off by char

(
coker(eηCol•,◦)

)
.
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In this case, it is not clear to us whether or not it is possible to improve {BF•,◦,m} to a primitive Euler
system. These observations are also visible in Corollary 7.4.9 below.

In the remaining portions of this article we shall present evidence in favour of this conjecture. Until the
end, we assume that |k f − kg| ≥ 3 and η= ω j for a fixed j such that 1+ (k f + kg)/2< j ≤max(k f , kg).

Proposition 6.2.3. There exists a choice of S ∈ S such that eηLS 6= 0.

Proof. Let T = {#, [}2, and let Msign denote the 4× 4 matrix, with rows and columns indexed by T ,
whose (x, y) entry is Colx,Qp(BFy,1). Similarly, let Tan = {α f , β f } × {αg, βg}, and let Man denote the
4× 4 matrix whose x, y entry is Lx(BFy,1). By Proposition 5.3.4, both matrices are antisymmetric (see
Remark 6.1.3).

Among the six pairs of nondiagonal entries of Man, four of them are given by p-adic Rankin–Selberg
L-functions. By Corollary 3.8.1 and Remark 3.8.3, our hypotheses therefore imply that eηMan is not the
zero matrix.

However, our two matrices are related by the factorisation formula

Man = (Q−1 Mlog) ·Msign · (Q−1 Mlog)
T ,

so it follows that eηMsign is also nonzero. Since the six pairs of nondiagonal entries of Msign are exactly
the quadruply signed p-adic L-functions LS, it follows that at least one of the eηLS is nonzero as
required. �

In order to apply the locally restricted Euler system argument devised in [Büyükboduk and Lei 2015,
Appendix A], we will require the validity of the following hypothesis:

(H.nA) Neither ρ f |GQp
nor ρ f |GQp

⊗ω−1 is isomorphic to ρ∨g |GQp
, where ρ f and ρg stand for Deligne’s

(cohomological) representations.

This assumption ensures that H 0(Qp, T )= H 2(Qp, T )= 0. We will also need to assume that

(BI0) ε f εg is nontrivial, gcd(N f , Ng)= 1.

as well as at least one of the following conditions:

(BI1) Neither f nor g is of CM type, and g has odd weight.

(BI2) f is not of CM-type, g is of CM-type and εg is neither the trivial character, nor the quadratic
character attached to the CM field.

Thanks to [Loeffler 2017], when (BI0) and either (BI1) or (BI2) holds, one may choose a completion of
the compositum of the Hecke fields of f and g (and set our coefficient ring O to be a finite flat extension
of its ring of integers) in a way that the residue characteristic p of O is > k f + kg + 2 and the resulting
Galois representation T verifies the following “Big Image” condition that is required to run the Euler
system machinery:

• The residual representation T is absolutely irreducible.
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• There exists an element τ ∈ Gal(Q/Q(µp∞)) such that T/(τ − 1)T is a free O-module of rank one.

• There exists an element σ ∈ Gal(Q/Q(µp∞)) which acts on T by multiplication by −1.

Theorem 6.2.4. Suppose that |k f − kg| ≥ 3 and p> k f + kg+2. Assume the validity of Conjecture 5.3.1,
(A–Sym), (H.nA), (BI0) and at least one of (BI1)–(BI2). Suppose j is an integer with 1+ (k f + kg)/2<
j ≤max(k f , kg) and choose S that verifies the conclusion of Proposition 6.2.3 with η= ω j . Then the ω j -
isotypic component of the quadruply signed Selmer group eω j SelS(T∨(1)/Q(µp∞)) is O[[01]]-cotorsion
and

eω jLS ∈ charO[[01]]

(
eω j SelS(T∨(1)/Q(µp∞))

∨
)

as ideals of O[[01]]⊗Qp.

Remark 6.2.5. See Proposition 5.3.4 above where we provide a sufficient condition for the validity of
(A–Sym).

Proof of Theorem 6.2.4. This is a direct consequence of [Büyükboduk and Lei 2015, Theorem A.14],
once we translate the language therein to our set up. Suppose S= {(4,�), (•, ◦)}. Then the morphism
9 in [loc. cit.] corresponds to the map

eω j Col4,�⊕ eω j Col•,◦ : eω j H 1(Qp,T)→O[[01]]
⊕2.

The so-called 9-strict Selmer group that is denoted by H 1
F9 (−, −) in [op. cit.] corresponds to our

quadruply signed compact Selmer group eω j H 1
FS
(Q,T) and its dual H 1

F∗9
(−, −) to our quadruply signed

discrete Selmer group eω j SelS(T∨(1)/Q(µp∞)). Moreover, the integer g in [loc. cit.] equals to 2 in our
case and the expression det([9(ci)

g
i=1]) in the statement of [Büyükboduk and Lei 2015, Theorem A.14(i)]

is precisely r−1
0 eω jLS in our notation here (where r0 ∈ Z is as in the formulation of Conjecture 5.3.1;

note that since we have inverted p, this quantity does not make an appearance in the statement of our
theorem).

Our running hypotheses guarantee the validity of all required assumptions for this result; only checking
the validity of the condition (H.V) of [Büyükboduk and Lei 2015, Appendix A] (which translates in
our setting to the condition that the quadruply signed compact Selmer group eω j H 1

FS
(Q,T) be trivial)

requires some work. The remainder of this proof is dedicated to show that the hypothesis (H.V) holds
true in our set up.

We start with the reformulation of this condition. The Selmer group denoted by H 1
FL
(−, −) in

[Büyükboduk and Lei 2015, Appendix A] corresponds to our Selmer group eω j H 1
F•,◦(Q,T) and the

condition (H.V) requires that the map

eω j H 1
F•,◦(Q,T)

(e
ω j Col4,�⊕ e

ω j Col•,◦)◦resp
// O[[01]]

⊕2

be injective. By the defining property of H 1
F•,◦(Q,T), this is equivalent to checking that the map

eω j H 1
F•,◦(Q,T)

e
ω j Col4,�◦resp

// O[[01]]
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is injective. Since we already have BF•,◦,1 ∈ H 1
F•,◦(Q,T) (as given by Conjecture 5.3.1, which we assume

to hold) and we know (thanks to our choice of S) that

eω j Col4,� ◦ resp(eω j BF•,◦,1)= eω jLS 6= 0,

the condition (H.V) is equivalent to the requirement that eω j H 1
F•,◦(Q,T) has rank one. By Poitou–Tate

global duality, this is in turn equivalent to checking that eω j Sel•,◦(T∨(1)/Q(µp∞)) is O[[01]]-cotorsion.
We shall explain how to verify this fact.

Let us set T1 := T⊗O[[01]]
ι (with diagonal Galois action). Choose a degree one polynomial l ∈O[[01]]

that does not divide eω jLS · char
(
coker(Col•,◦)

)
and define X := T1⊗ω

− j/ l. Observe that we have (for
F =Qp or any finite abelian extension of Q unramified at p)

H 1(F,T1⊗ω
− j )−→∼ eω j H 1

Iw(F(µp), T ) (6.2.1)

by the inflation-restriction sequence. We define

H 1
F•,◦(Qp,T1⊗ω

− j )⊂ H 1(Qp,T1⊗ω
− j )

as the submodule that gets mapped isomorphically onto eω j H 1
F•,◦(Q,T) under the map (6.2.1). The

isomorphism together with eω j Col•,◦ also induces a map

H 1(Qp,T1⊗ω
− j )→O[[01]]

(which we shall denote by the same symbol), whose kernel is precisely the submodule H 1
F•,◦(Qp,T1⊗ω

− j ).
For primes ` 6= p, we shall also set H 1

F•,◦(Q`,T1⊗ω
− j ) := H 1(Q`,T1⊗ω

− j ) so that F•,◦ is a Selmer
structure on T1⊗ω

−1 in the sense of [Mazur and Rubin 2004]. It is easy to see that the dual Selmer group
H 1

F∗•,◦
(Q,T∨1 (1)⊗ω

j )∨ is O[[01]]-torsion if and only if eω j Sel•,◦(T∨(1)/Q(µp∞))
∨ is O[[01]]-torsion.

Thanks to [Mazur and Rubin 2004, Lemma 3.5.3], our claim that eω j Sel•,◦(T∨(1)/Q(µp∞)) is cotorsion
follows once we verify that

H 1
F∗•,◦(Q,T∨1 (1)⊗ω

j )[l] ∼= H 1
F∗•,◦(Q, X∨(1))

has finite cardinality. Note that we have written F•,◦ (resp. F∗
•,◦) for the propagation of the Selmer

structure F•,◦ to X (resp. for the Selmer structure on X∨(1) dual to F•,◦ on X ).
Consider the following diagram with exact rows and Cartesian squares:

0 // H 1
F•,◦(Qp,T1⊗ω

− j ) //

��

H 1(Qp,T1⊗ω
− j )

Col•,◦
//

����

O[[01]]

����

0 // H 1
F (Qp, X) // H 1(Qp, X)

φ
// O

where the vertical arrows are induced by reduction modulo l (which we henceforth denote by πX ); the
map φ is defined by the Cartesian square on the right; the submodule H 1

F (Qp, X) by the exactness of the
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second row and the dotted arrow by chasing the diagram. Note that the map φ is not the zero map thanks
to our choice of l.

For ` 6= p, let us also define

H 1
F (Q`, X) := ker

(
H 1(Q`, X)→ H 1(Qur

` , X ⊗Qp)
)
.

It follows from [Mazur and Rubin 2004, Lemma 5.3.1(i)] (together with the dotted arrow in the diagram
above) that the reduction map modulo l induces a map

H 1
F•,◦(Q`,T1⊗ω

− j )→ H 1
F (Q`, X) (6.2.2)

for every prime ` (including p), which factors through the injection H 1
F•,◦(Q`, X) ⊂ H 1

F (Q`, X). In
particular, we have F•,◦ ≤ F in the sense of [Mazur and Rubin 2004, Definition 2.1.1] and we have an
injective map

KS(X,F•,◦) ↪→ KS(X,F) (6.2.3)

between the corresponding modules of Kolyvagin systems.
Using Lemma 3.7.1 of [op. cit.], it follows that the Selmer structure F is cartesian (in the sense of

[Mazur and Rubin 2004, Definition 1.1.4]). Moreover, it is easy to see (recalling that the map φ is not the
zero map) that the core Selmer rank of F equals one. In particular, by [Mazur and Rubin 2004, Corollary
5.2.13], the finiteness of H 1

F (Q`, X) is equivalent to exhibiting a single Kolyvagin system in KS(X,F),
whose initial term is nonzero. We shall prove that the Euler system {eω j BF•,◦,n} of doubly signed
Beilinson–Flach classes descend to a Kolyvagin system with this property and this completes the proof.

Let us write BFω
j

•,◦ ∈ H 1(Q(µn),T1⊗ω
− j ) for the class that maps to eω j BF•,◦,n under the isomorphism

(6.2.1) and let us set BFω
j

•,◦ := {BFω
j

•,◦,n}. As we have explained in Remark 5.3.3, {BFω
j

•,◦} is a locally
restricted Euler system. Moreover, [Büyükboduk and Lei 2015, Theorem A.11] applies (with our choices
here, recall that the Selmer structure FL in [loc. cit.] corresponds to our F•,◦) and produces a Kolyvagin
system

κ•,◦ = {κ•,◦n } ∈ KS(T1⊗ω
− j ,F•,◦).

We remark that the Kolyvagin system κ•,◦ is obtained from the Euler system BFω
j

•,◦,n via [Mazur
and Rubin 2004, Theorem 5.3.3]. However, the results of Mazur and Rubin show a priori only that
κ•,◦ ∈ KS(T1⊗ω

− j ,F3) (namely, κ•,◦ is a Kolyvagin system for the canonical Selmer structure F3
of [Mazur and Rubin 2004, Definition 5.3.2]). The fact that the classes κ•,◦n verify the required local
conditions at p follows from the fact that BFω

j

•,◦ is in fact locally restricted, as explained in detail in the
proof of [Büyükboduk and Lei 2015, Theorem A.11].

On projecting κ•,◦ via πX and composing with the injection (6.2.3), we obtain a Kolyvagin system
πX (κ

•,◦) ∈ KS(X,F). We have

πX (κ
•,◦)1 = πX (κ

•,◦
1 )= πX (BFω

j

•,◦,1)
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for the initial term of this Kolyvagin system. We are reduced to prove that πX (BFω
j

•,◦,1) 6= 0 for the choices
above.

We now recall that l -eω jLS = Col4,� ◦ resp(BFω
j

•,◦,1) by the choice we made on the degree one
polynomial l. This in turn implies that πX (BFω

j

•,◦,1) 6= 0, as required. �

Remark 6.2.6. In the proof of Theorem 6.2.4, we only needed the antisymmetry property in (A–Sym) to
hold for {(4,�), (•, ◦)} with m = 1 and {(•, ◦), (•, ◦)} for all m ∈N (P).

7. Analytic main conjectures

Our goal in this section is to translate our results on signed Iwasawa main conjectures into the “analytic”
language of Pottharst and Benois (see [Pottharst 2013; Benois 2015]). This gives main conjectures
which directly involve the p-adic Rankin–Selberg L-functions (3.6.1), which is advantageous since the
interpolating properties of these L-functions are much more explicit than those of the signed p-adic
L-functions LS of the previous section. However, it has the disadvantage of throwing away all p-torsion
information.

7.1. Cohomology of (ϕ, 0)-modules. For each 0≤ r < 1, let

ann(r, 1) := {x ∈ Cp : r ≤ |x |p < 1}.

For E the finite extension of Qp in Section 1, we define the Robba ring

RE :=

{
f (π)=

∞∑
n=−∞

anπ
n
∈ E[[π ]]

∣∣∣ f (π) converges on ann(r, 1) for some r
}
.

The Robba ring comes equipped with actions of 0 and the Frobenius ϕ, via the same formulae as in
Section 2 above.

Definition 7.1.1. A (ϕ, 0)-module over RE is a free module of finite rank d endowed with a semilinear
Frobenius ϕ such that Mat(ϕ) ∈ GLd(RE) and with a continuous commuting semilinear action of 0.

There exists a functor V 7→ D
†
rig(V ) between the category of p-adic representations of Gp :=

Gal(Qp/Qp) with coefficients in E and the category of (ϕ, 0)-modules over RE (see [Cherbonnier
and Colmez 1999; Fontaine 1990; Berger 2002]).

For any (ϕ, 0)-module D, we define its analytic Iwasawa cohomology H•an(D) to be the cohomology
of the complex [

D
ψ−1
−−→ D

]
,

where ψ is the left inverse of ϕ and the terms are placed in degrees 1 and 2 respectively. If V is a p-adic
representation of Gp, then the results of [Pottharst 2013] show that

H i
an(Qp(µp∞), V )∼= H i

an(D
†
rig(V )),
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where H i
an(Qp(µp∞), V ) = H i (Qp,V†) denotes the analytic Iwasawa cohomology of V as defined in

Section 2.4.

7.2. Selmer complexes. Now let V be a continuous E-linear representation of GQ which is unramified
at almost all primes. Following Benois and Pottharst, we now recall the complexes defined in Section 2.3
of [Benois 2015], which are an “analytic” version of the Selmer complexes of Nekovář [2006]. Letting
D be any (ϕ, 0)-submodule of D

†
rig(V |GQp

), we obtain a Selmer complex S(Q,V†
;D) in the derived

category of H-modules. This is defined by a mapping fibre

cone
[

C •(GQ,6,V†)⊕
⊕
v∈6

U+v
resv−i+v
−−−−→

⊕
v∈6

C •(GQv
,V†)

]
[−1],

where 6 is any sufficiently large finite set of places, and the U+v are appropriate “local condition”
complexes; we choose these to be the unramified local conditions for v 6= p, and the local condition at p is
given by the analytic Iwasawa cohomology of the submodule D⊆ D

†
rig(V |GQp

). We write H •(Q,V†
;D)

for the cohomology groups of the Selmer complex.
We shall apply this with V = R∗f ⊗ R∗g and with local conditions D given by ϕ-stable subspaces of

Dcris(V ). We set

Dcris(V )λ := Dcris(V )λ f λg ⊕Dcris(V )λ f µg

= Dcris(R∗f )
λ f ⊗Dcris(R∗g)

and
Dcris(V )λ,µ := Dcris(R∗f )

λ f ⊗Dcris(R∗g)+Dcris(R∗f )⊗Dcris(R∗g)
µg .

Let Dλ,µ and Dλ be the (ϕ, 0)-submodules of D
†
rig(T ) corresponding to Dcris(T )λ and Dcris(T )λ,µ respec-

tively (see [Berger 2008] for an explicit description). We note that Dλ,µ and Dλ play the role of regular
submodules defined by Benois [2015].

7.3. Analytic main conjectures. We are now ready to state the analytic Iwasawa main conjecture for-
mulated by Benois and Pottharst, specialised to our setting.

Conjecture 7.3.1. The module H 2(Q,V†
;Dλ) is torsion, and its characteristic ideal is given by

charH H 2(Q,V†
;Dλ)= L p( fλ, g) ·H,

where L p( fλ, g) denotes the geometric p-adic L-function attached to f and g.

(One can similarly define a Selmer group and formulate a main conjecture for the “extra” p-adic
L-functions L?

p introduced above, but we shall not give the details here.) We now proceed to show how
our results in the previous sections on signed Selmer groups aid us to deduce some partial results towards
Conjecture 7.3.1.
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7.4. Bounds for analytic Selmer groups. Throughout the remainder of this section, the hypotheses of
Theorem 6.2.4 are in effect. We begin by reformulating the result of Theorem 6.2.4 as a bound for
H 2(Q,T); we shall then translate this into a bound for the analytic Selmer group.

Proposition 7.4.1. There exists a choice (•, ◦) and (4,�) such that neither eηCol4,� ◦ resp(BF•,◦,1) nor
eηCol•,◦ ◦ resp(BF4,�,1) is zero.

Proof. This follows from Propositions 6.2.3 and 5.3.4. �

From now on, we fix (•, ◦) and (4,�) such that eηCol4,� ◦ resp(BF•,◦,1) 6= 0.
As in Proposition 3.9.2, this implies that eηH 1(Q,T) is free of rank two. Choose an eη3-basis {c1, c2}

of this module.

Definition 7.4.2. Let r1, r2, D ∈3 be nonzero elements such that

E ·BF•,◦,1 = r1
(
Col•,◦ ◦ resp(c1)c2−Col•,◦ ◦ resp(c2)c1

)
E ·BF4,�,1 = r2

(
Col4,� ◦ resp(c1)c2−Col4,� ◦ resp(c2)c1

)
.

Here, the first equality takes place in H 1
F•,◦(Q,T), whereas the second in H 1

F4,�(Q,T).

Note that E, r1, r2 with the required properties exist since both modules H 1
F•,◦(Q,T) and H 1

F4,�(Q,T)

have rank one.

Lemma 7.4.3. r1 =−r2.

Proof. This is an immediate consequence of Proposition 5.3.4. �

Proposition 7.4.4. E · char
(
H 2(Q,T)

)
divides r1 · char

(
coker(Col•,◦)

)
.

Proof. Let us set H 1
/•,◦(Qp,T) := H 1(Qp,T)/H 1

F•,◦(Qp,T) and write ress
•,◦ for the compositum of the

arrows
H 1(Q,T)

resp
−−→ H 1(Qp,T)→ H 1

/•,◦(Qp,T).

Poitou–Tate global duality gives rise to the following five-term exact sequence:

0→ H 1
F•,◦(Q,T)/3 ·BF•,◦,1→ H 1(Q,T)/(BF•,◦,1,BF4,�,1)→

H 1
/•,◦(Qp,T)

ress
•,◦(BF4,�,1)

→ H 1
F∗•,◦(Q,T∨(1))∨→ H 2(Q,T)→ 0. (7.4.1)

The locally restricted Euler system machinery shows that

char
(
H 1

F∗•,◦(Q,T∨(1))∨
) ∣∣ char

(
H 1

F•,◦(Q,T)/3 ·BF•,◦,1
)
. (7.4.2)

Combining (7.4.1) with the divisibility (7.4.2), we infer that

char
(
H 2(Q,T)

)
char

(
coker(Col•,◦)

)−1Col•,◦ ◦ resp(BF4,�,1)

divides char
(

H 1(Q,T)(
BF•,◦,1,BF4,�,1

)). (7.4.3)
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Moreover, we have
Col•,◦(BF4,�,1)= E−1r2 det ◦Col(4,�, •, ◦) (7.4.4)

where we have set

det ◦Col(4,�, •, ◦) := det
(

Col4,� ◦ resp(c1) Col•,◦ ◦ resp(c1)

Col4,� ◦ resp(c2) Col•,◦ ◦ resp(c2)

)
.

Let f4,� := Col4,� ◦ resp (and we similarly define f•,◦). Note that since we have

char
(

E(c1, c2)
/(

r1( f•,◦(c1)c2− f•,◦(c2)c1), r2( f4,�(c1)c2− f4,�(c2)c1)
))

= E−2r1r2 det ◦Col(4,�, •, ◦) . (7.4.5)

it follows from definitions that

char
(

H 1(Q,T)

(BF•,◦,1,BF4,�,1)

)
= E−2r1r2 det ◦Col(4,�, •, ◦). (7.4.6)

Combining (7.4.3), (7.4.4) and (7.4.6), the asserted divisibility follows. �

Let us choose F, s1, s2 ∈H \ {0} so that

F ·BFλ,µ = s1
(
Lλ,µ ◦ resp(c1)c2−Lλ,µ ◦ resp(c2)c1

)
F ·BFλ,µ′ = s2

(
Lλ,µ′ ◦ resp(c1)c2−Lλ,µ′ ◦ resp(c2)c1

)
.

We also set

det ◦L(λ, µ, λ, µ′) := det
(
Lλ,µ ◦ resp(c1) Lλ,µ′ ◦ resp(c1)

Lλ,µ ◦ resp(c2) Lλ,µ′ ◦ resp(c2)

)
.

Lemma 7.4.5. s1 =−s2.

Proof. This follows from Theorem 3.9.1. �

Proposition 7.4.6. We have the following divisibility of H-ideals:

char
(
H 2(Q,V†

;Dλ,µ)
) ∣∣ r1 F

s1 E
· char

(
coker Col•,◦

)
· char

(
H 1(Q,V†

;Dλ,µ)

H ·BFλ,µ,1

)
.

Proof. The proof of this assertion is essentially the proof of Proposition 7.4.4 in reverse, starting off with
the 5-term exact sequence of H-modules

0→
H 1(Q,V†

;Dλ,µ)

H ·BFλ,µ,1
→

H 1(Q,V†)

H ·BFλ,µ,1+H ·BFλ,µ′,1
→

H 1
/λ,µ(Qp,V†)

ress
p(BFλ,µ′)

→ H 2(Q,V†
;Dλ,µ)→ H 2(Q,V†)→ 0,

where H 1
/λ,µ(Qp,V†) := H 1(Qp,V†)/H 1

an(Qp,Dλ,µ) and ress
p is the natural map

ress
p : H

1(Q,V)→ H 1
/λ,µ(Qp,V†).

Notice that we also rely on the fact that Lλ,µ : H 1
/λ,µ(Qp,V†) → H is surjective, and the fact that

H 2(Q,V†)=H⊗3 H 2(Q,T) when we use here the statement of Proposition 7.4.4. �
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Corollary 7.4.7. The ideal char
(
H 2(Q,V†

;Dλ)
)

divides the ideal

char
(
coker Col•,◦

)
E−1r1 Fs−1

1 Lλ,µ′(BFλ,µ,1).

Proposition 7.4.8. r1 F = r0s1 E.

Proof. Recall the element BF1 ∈ FracH⊗3
∧2 H 1

Iw(Q(µp∞), T ) given as in Theorem 3.9.1. Let us
choose h ∈ Frac(H)× so that we have eηBF1 = h · (c1 ∧ c2). It follows from (5.3.1) together with the
defining property of E and r1 that r0h = r1/E . Comparing the definition of h and s1/F , we also see that
h = s1/F . Our assertion follows. �

Corollary 7.4.9. The ideal char
(
H 2(Q,V†

;Dλ)
)

divides

char
(
coker Col•,◦

)
L p( fλ, g).

Proof. This follows on combining Corollary 7.4.7 and Proposition 7.4.8, together with the observation
that r0 ∈ Z is invertible in the ring H. �

Appendix: Images of Coleman maps

We describe the images of various Coleman maps up to pseudo-isomorphisms, which is relevant to our
discussion in Remark 6.2.2. Throughout, T denotes the representation R∗f ⊗ R∗g and

LT : H 1
Iw(Qp, T )→H⊗Dcris(T )

as before. We recall the following result from [Lei et al. 2011].

Proposition A.1. Let z∈H 1
Iw(Qp, T ), δ a Dirichlet character of conductor pn>1 and 0≤ j ≤ k f +kg+1,

then
(1− p jϕ)−1(1− p− j−1ϕ−1)χ j (LT (z)) ∈ Fil− j Dcris(T ),

(p jϕ)−n(χ jδ(LT (z))
)
∈Qp(µpn−1)⊗Fil− j Dcris(T ).

Proof. This is [Lei et al. 2011, Proposition 4.8]. �

Given a character η ∈ 1̂ and an integer 0≤ j ≤ k f + kg + 1, we define

Vη, j :=

{
(1− p jϕ)(ϕ− p− j−1)−1 Fil− j Dcris(T ) if η = ω j ,

Fil− j Dcris(T ) otherwise.

Via our chosen basis {v1, v2, v3, v4} of Dcris(T ), we identify Dcris(T )⊗Qp with L . Let us write Col :
H 1

Iw(Qp, T )→O⊗3⊕4 for the morphism given by (Col#,#,Col#,[,Col[,#,Col[,[). For each η ∈ 1̂, we
may then identify eηCol as a map landing inside O[[X ]]⊕4 as before via 1+ X = γ , where γ is our chosen
topological generator of 01. Recall that u = χ(γ ).

Corollary A.2. Let z ∈ H 1
Iw(Qp, T ), 0≤ j ≤ k f + kg + 1 and η ∈ 1̂. Then,

eηCol(z)|X=u j−1 ∈ Vη, j .
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Proof. Note that eηLT (z)|X=u j−1 = χ
j (ηω− j )(LT (z)). Therefore, Proposition A.1 says that

eηLT (z)|X=u j−1 ∈ Pη, j (Fil− j Dcris(T )),

where Pη, j is given by {
(1− p jϕ)(1− p− j−1ϕ−1)−1 if η = ω j ,

vp otherwise.
Recall from (5.1.1) that

LT (z)=
(
v1 v2 v3 v4

)
·Mlog ·


Col#,#(z)
Col#,[(z)
Col[,#(z)
Col[,[(z)

.
Note that eηMlog|X=u j−1 = A, which is a consequence of (4.2.3). Recall that A is the matrix of ϕ with
respect to the basis {v1, v2, v3, v4}, which implies our result. �

Following [Lei et al. 2011, Proposition 4.11], this allows us to deduce the following description of the
image of Col.

Corollary A.3. Let η ∈ 1̂, then

eηIm(Col)⊗ E =
{

F ∈O[[X ]]⊗ E : F(u j
− 1) ∈ Vη, j , 0≤ j ≤ k f + kg + 1

}
.

If S= {(4,�), (•, ◦)} ∈ S, this corresponds to a two-dimensional subspace in Dcris(T )⊗E , generated
by two elements of the basis {v1, v2, v3, v4}, which we denote by VS. If we write ColS for the wedge
product

Col4,� ∧Col•,◦ :
2∧

H 1
Iw(Qp, T )→3,

then we may describe its image by

eηIm(ColS)⊗ E =
k f+kg+1∏

j=0

(X − u j
+ 1)nS,η, jO[[X ]]⊗ E,

where nS,η, j = dimE VS ∩ Vη, j . If we do not tensor our image by E , we have that eηIm(ColS) is
pseudo-isomorphic to pµS,η

∏k f+kg+1
j=0 (X − u j

+ 1)nS,η, jO[[X ]] for some integer µS,η.
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Cycle integrals of modular functions,
Markov geodesics and a conjecture of Kaneko

Paloma Bengoechea and Özlem Imamoglu

In this paper we study the values of modular functions at the Markov quadratics which are defined in
terms of their cycle integrals along the associated closed geodesics. These numbers are shown to satisfy
two properties that were conjectured by Kaneko. More precisely we show that the values of a modular
function f , along any branch B of the Markov tree, converge to the value of f at the Markov number
which is the predecessor of the tip of B. We also prove an interlacing property for these values.

1. Introduction

A well known theorem of Dirichlet asserts that for any irrational number x , there are infinitely many
rational numbers p/q satisfying |x − p/q| < 1/q2. For irrational numbers that are algebraic, thanks
to a theorem of Roth [1955], the exponent 2 is optimal. The constant factor, on the other hand, can
be improved and a classical theorem of Hurwitz asserts that for every irrational number x there exist
infinitely many rational numbers p/q satisfying∣∣∣∣x − p

q

∣∣∣∣< 1
√

5q2
.

The constant 1/
√

5 is best possible but if we exclude as x the numbers that are PGL(2,Z)-equivalent to
the golden ratio (1+

√
5)/2, the constant 1/

√
5 improves to 1/

√
8. If we also exclude the numbers that

are PGL(2,Z)-equivalent to
√

2, then the constant improves to 5/
√

221. By proceeding in this way, one
obtains the Lagrange spectrum defined by

L := {ν(x)}x∈R ⊆ [0, 1/
√

5] with ν(x)= lim inf
q→∞

q‖qx‖,

where ‖x‖ denotes the distance from a real number x to a closest integer. The quantity ν(x) provides
a measure of approximation of x by the rationals. For almost all x ∈ R we have ν(x) = 0 and when
ν(x) > 0 we call x badly approximable. Real quadratic irrationals are badly approximable, the worst ones
being the golden ratio and its PGL(2,Z)-equivalents, followed by

√
2 and its PGL(2,Z)-equivalents, etc.

The Lagrange spectrum is not discrete (see [Hall 1947]) but the part of the spectrum in the subinterval( 1
3 , 1/
√

5
]

corresponding to classes of worst irrational numbers is, with 1
3 as its only accumulation point.

Bengoechea’s research is supported by SNF grant 173976.
MSC2010: primary 11F03; secondary 11J06.
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L∩
( 1

3 , 1/
√

5
]

is well understood thanks to the work of Markov [1879; 1880] which connects this question
of Diophantine approximation to the Diophantine equation

x2
+ y2
+ z2
= 3xyz. (1)

The set of Markov triples comprising the positive integer solutions (x, y, z) of (1) can be obtained
starting with (1, 1, 1), (1, 1, 2), (2, 1, 5) and then proceeding recursively going from (x, y, z) to the new
triples obtained by Vieta involutions (z, y, 3yz− x) and (x, z, 3xz− y). The Markov numbers are the
greatest coordinates of Markov triples. They form the Markov sequence

{mi }
∞

i=1 =
{
1, 2, 5, 13, 29, 34, 89, 169, 194, . . .

}
.

The Markov number mi is associated to a quadratic irrationality

θi =
3mi − 2ki +

√
9m2

i − 4
2mi

,

where ki is an integer that satisfies ai ki ≡ bi (mod mi ) and (ai , bi ,mi ) is a solution to (1) with mi

maximal. Since ki is uniquely defined modulo mi , θi is uniquely defined modulo 1. Markov showed that
ν(θi )=

√

9− 4/m2
i , and L∩

(1
3 , 1/
√

5
]
={ν(θi )}i≥1.Moreover, any x ∈R for which ν(x)∈ L∩

( 1
3 , 1/
√

5
]

is PGL(2,Z)-equivalent to a Markov quadratic θi .
Markov numbers come with a tree structure, inherited from Vieta involutions, that arranges them as

1
(1, 1, 1)

2
(1, 1, 2)

5
(2, 1, 5)

13
(5, 1, 13)

34
(13, 1, 34)

...
...

194
(5, 13, 194)

...
...

29
(2, 5, 29)

433
(29, 5, 433)

...
...

169
(2, 29, 169)

...
...

Here (a, b, c) is a solution to (1). The Markov quadratics inherit the same tree structure which can be
given in terms of their continued fractions as
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[12] [22]

[22, 12]

[22, 14]

[22, 16]

...
...

[22, 12, 22, 14]

...
...

[24, 12]

[24, 12, 22, 12]

...
...

[26, 12]

...
...

where bn means that b is repeated n times. We note that it is more convenient to write [12] instead of [1]
in connection with the conjunction operator in (5). The fact that all of the partial quotients of Markov
quadratics are 1 or 2 and many of their other properties can be found in [Aigner 2013; Bombieri 2007;
Malyshev 1977] (See for example Corollary 1.27 in [Aigner 2013].)

Markov numbers arise in many different contexts: see [Bourgain et al. 2016b; 2016a; Ghosh and
Sarnak 2017] for some recent developments regarding the Markov surfaces.

The main goal of this paper is to study the values of modular functions along the tree associated to the
Markov quadratics.

Let 0 = PSL(2,Z). For a general quadratic irrationality w ∈ Q(
√

D) and a modular function f
for 0, the “value” of f at w is defined in terms of the integral of f along the geodesic cycle Cw ⊂ 0\H
associated to w. More precisely

f (w) :=
∫

Cw
f (z) ds,

where ds is the hyperbolic arc length. We can normalize the number f (w) by the length of the geodesic
Cw and define

f nor(w) :=
f (w)

2 log εD
,

where εD is the fundamental unit (see Section 2A).
The values of modular functions at real quadratic irrationalities were introduced in [Duke et al. 2011]

and independently in [Kaneko 2009]. In [Duke et al. 2011] their averages over ideal classes were shown
to be coefficients of mock modular forms whereas Kaneko [2009] studied their individual values f nor(w)

(in the case that the modular function is the Klein’s j invariant), and based on numerical calculations he
made several interesting observations and conjectures.

In this paper we prove two of Kaneko’s conjectures which involve the values of modular functions at
the Markov quadratics. Let B be any branch of the Markov tree where with a branch we mean a path
on the tree without any zigzags. Our first theorem shows that if wB

n is the n-th Markov quadratic on a
branch B and wB

0 is the predecessor of the tip of B then the normalized values f nor(wB
n ), for any modular
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function f , converge to the value f nor(wB
0 ). (For more precise definitions of the tip of a branch and its

predecessor see Section 3A.) More precisely:

Theorem 1.1. Let f be a modular function defined on H. For any branch B of the Markov tree we have

lim
n→∞

f nor(wB
n )= f nor(wB

0 ).

Our second theorem proves an eventual monotonicity result which also partially proves the interlacing
property of the values for the Markov quadratics that was conjectured by Kaneko.

Theorem 1.2. Let f be a modular function on H, let B be any branch of the Markov tree. Then there
exists a constant N f,B such that, for all n ≥ N f,B , the real and imaginary parts of f nor(wB

n+1) lie between
the real and respectively imaginary parts of f nor(wB

0 ) and f nor(wB
n ).

The rest of the paper is organized as follows. In the next section we give the preliminaries about cycle
integrals and continued fractions. In Section 3, we give the basic properties of the Markov quadratics and
the Markov tree. In Sections 4 and 5 we study the values of modular functions on the Markov tree and
prove Theorems 1.1 and 1.2 respectively.

2. Preliminaries

2A. Cycle integrals. Let w be a real quadratic irrationality and w̃ be its conjugate, so w and w̃ are the
roots of a quadratic equation

ax2
+ bx + c = 0 (a, b, c ∈ Z, (a, b, c)= 1)

with discriminant D = b2
− 4ac > 0. We change [a, b, c] to −[a, b, c] if necessary and write

w =
−b+

√
D

2a
, w̃ =

−b−
√

D
2a

.

The geodesic Sw in H joining w and w̃ is given by the equation

a|z|2+ b Re(z)+ c = 0 (z ∈H).

The stabilizer 0w of w in 0 preserves the quadratic form Qw = [a, b, c], and hence Sw. The group 0w is
infinite cyclic; it corresponds to the group U 2

D of units of norm one of Q(
√

D) via the isomorphism:

0w −→U 2
D,

(
a b
c d

)
7→ (a− cw)2. (2)

We denote by Aw the generator of 0w,

Aw =
(1

2(t − bu) −cu
au 1

2(t + bu)

)
,

where (t, u) is the smallest positive solution to Pell’s equation t2
− Du2

= 4, and we denote by ε the
generator of the infinite cyclic part of UD whose square corresponds to Aw by the isomorphism (2).
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For any modular function f , since the group 0w preserves the expression f (z)Qw(z, 1)−1 dz, one can
define the cycle integral of f along Cw = Sw/0w, also viewed as the “value” of f at w, by the complex
number

f (w) :=
∫

Cw

√
D f (z)

Qw(z, 1)
dz. (3)

The factor
√

D is introduced here for convenience but is also natural since with the constant function
f ≡ 1, (3) gives the length of the geodesic Cw. The integral defining f (w) is 0-invariant and can in
fact be taken along any path in H from z0 to A−1

w z0, where z0 is any point in H. Note that this gives an
orientation on Sw from w to w̃, which is counterclockwise if a > 0 and clockwise if a < 0. We normalize
the number f (w) by the length of the geodesic Cw which is given by∫

Cw

√
D

Qw(z, 1)
dz = 2 log ε

and we define the normalized value as

f nor(w) :=
f (w)

2 log ε
.

2B. The “+” and “−” continued fractions. Let (b0, b1, b2, . . .) denote the “−” continued fraction

(b0, b1, b2, . . .)= b0−
1

b1−
1

b2−
1
. . .

and [a0, a1, a2, . . .] be the “+” continued fraction

[a0, a1, a2, . . .] = a0+
1

a1+
1

a2+
1
. . .

.

Every real number w has a “−” continued fraction expansion w = (b0, b1, b2, . . .) with bi ∈ Z and bi ≥ 2
for i ≥ 1 and a unique “+” continued fraction expansion w = [a0, a1, a2, . . .] with ai ∈ Z and ai ≥ 1
for i ≥ 1. The “−” continued fraction expansion of w is obtained by setting w0 = w and inductively
bi = dwie, wi+1 = 1/(bi −wi )= ST−bi (wi ), where S(x)=−1/x and T (x)= x+1. The “+” continued
fraction expansion is obtained by setting ai = bwic, wi+1 = 1/(wi −ai )= εT−ai (wi ), where ε(x)= 1/x .
Hence the “−” continued fraction is given by transformations of 0 on the real line, whereas the “+”
continued fraction corresponds to transformations of GL(2,Z). To go from the “+” to the “−” continued
fraction expansions, the general rule is

[a0, a1, a2, . . .] →
(
a0+ 1, 2, . . . , 2︸ ︷︷ ︸

a1−1

, a2+ 2, 2, . . . , 2︸ ︷︷ ︸
a3−1

, a4+ 2, . . .
)
. (4)
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It is well known that a real number w is a quadratic irrationality if and only if its “−” continued
fraction expansion (or equivalently, its “+” continued fraction) is eventually periodic:

w = (b0, b1, . . . , bk, bk+1, . . . , bk+r ),

where the line over bk+1, . . . , bk+r denotes the period. We say that w is purely periodic when all the
partial quotients repeat. It will be useful for the rest of the paper to remember the following statements:

(I) Two quadratic irrationalities have the same “−” period if and only if they are 0-equivalent.

(II) w has a purely periodic “−” continued fraction expansion if and only if 0< w̃ < 1<w, where w̃ is
the conjugate of w.

(III) If w = (b0, . . . , br ), then 1/w̃ = (br , . . . , b0).

These statements and more information about negative continued fractions can be found in [Zagier 1981,
p. 126 ff].

The following lemma gives an upper bound for the distance between two real numbers in terms of the
number of first partial quotients for which they coincide.

Lemma 2.1. If the “−” continued fraction expansions of u and v coincide in the first r + 1 partial
quotients and their “+” continued fraction expansions have only 1’s and 2’s, then

|u− v| ≤ 10
(

2

1+
√

5

)2r

.

Proof. Let u and v be as in the statement of the lemma. Then one can see, by applying the rule (4), that
also the “+” continued fraction expansions of u and v coincide in the first r + 1 partial quotients. Hence,
if we set a0, . . . , ar to be those partial quotients, the rational number p/q = [a0, . . . , ar ] is a convergent
of both u and v. Then it is well known that∣∣∣∣u− p

q

∣∣∣∣≤ 1
q2 ,

∣∣∣∣v− p
q

∣∣∣∣≤ 1
q2

and

q ≥
1
√

5

(
1+
√

5
2

)r

.

Therefore,

|u− v| ≤
∣∣∣∣u− p

q

∣∣∣∣+ ∣∣∣∣v− p
q

∣∣∣∣≤ 10
(

2

1+
√

5

)2r

. �

3. Markov Tree

3A. Markov’s quadratics. Let {mi }
∞

i=1 =
{
1, 2, 5, 13, 29, 34, 89, 169, 194, . . .

}
be the set of Markov

numbers. As in the introduction, for each Markov number mi , we let

θi =
3mi − 2ki +

√
9m2

i − 4
2mi
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be the Markov quadratic where ki is an integer that satisfies ai ki ≡ bi (mod mi ) and (ai , bi ,mi ) is a
solution to (1) with mi maximal. Changing the representative for ki mod mi does not change the 0
orbit of θi . In Markov’s theory, only PGL(2,Z)-equivalence classes are relevant, which implies that the
order of (ai , bi ) does not matter. Since we need 0-equivalence, which distinguishes nonreal f (θi ) and its
conjugate, here the order of (ai , bi ) becomes relevant. We fix it so that Im( f (w)) > 0.

The Markov tree T associated to the Markov quadratics given in the introduction is in terms of the “+”
continued fractions. Since the cycle integrals are 0 and not PGL(2,Z) invariant, we will rather work with
the “−” continued fraction. By following the rule (4), the Markov tree T becomes in the “−” continued
fraction

(2, 3) (3, 2, 4)

(3, 2, 3, 4)

(3, 2, 32, 4)

(3, 2, 33, 4)

...
...

(3, 2, 3, 4, 2, 32, 4)

...
...

(3, 2, 4, 2, 3, 4)

(3, 2, 4, (2, 3, 4)2)

...
...

(3, (2, 4)2, 2, 3, 4)

...
...

Note that each branch (a path with no zigzags) in the tree T comes with a left or right orientation. We
call a branch a left (right) branch if starting from its first vertex on the top and going downwards the
branch leans towards left (right). Since no zigzag paths are allowed, each branch has a unique orientation.
For example, the branch with the quadratics (3, 2, 3, 4), (3, 2, 32, 4), (3, 2, 33, 4) is a left branch, whereas
the branch with (3, 2, 3, 4), (3, 2, 4, 2, 3, 4), (3, (2, 4)2, 2, 3, 4) is a right branch. We call the first vertex
at the top of any branch its tip. Except for the two singular cases of (2, 3) and (3, 2, 4), each Markov
number lies both on a right and a left branch but it is the tip of only a left or a right branch, except for
(3, 2, 3, 4) which is the tip of both the leftmost and the rightmost branches.

In the case of “+” continued fractions we consider a conjunction operation of two periods as

[s0, . . . , sn]� [t0, . . . , tm] = [s0, . . . , sn, t0, . . . , tm]. (5)

All Markov quadratics can be constructed by using this operation, starting with [12] and [22]. Indeed,
each Markov quadratic is the result of the conjunction operation of its predecessor on the same branch
and the predecessor of the tip of the branch.

For the “−” continued fraction, the rule is also the conjunction of periods except for the leftmost
branch, where the n-th Markov quadratic is (3, 2, 3n, 4). Indeed, let x = [s0, . . . , sn] = (b0, b1, . . . , bk)

and y = [t0, . . . , tm] = (c0, c1, . . . , c`). For any branch different from the rightmost branch, by applying
(4) together with the observation that sn = tm = 1 are in odd positions, so they do not contribute in the
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“−” expansion, we obtain

x � y = (b0, b1, . . . , bk−1, t0+ 2, c1, . . . , c`−1, s0+ 2).

But t0 is equal to 1 on the leftmost branch and 2 on any other branch, and s0 = 2. For the rightmost
branch, (4) also gives

x � y = (b0, b1, . . . , bk−1, 4, c1, . . . , c`−1, s0+ 2)

and s0 = 2.
Throughout the paper, we denote by wB

n (n ≥ 1) the n-th Markov quadratic on a branch B of the
tree and wB

0 the left (right) predecessor of the tip wB
1 of B if B is a left (right) branch. For example, if

B = L is the leftmost branch, then wL
0 = (2, 3), wL

1 = (3, 2, 3, 4), wL
2 = (3, 2, 32, 4), wL

3 = (3, 2, 33, 4),
etc. If B = R is the rightmost branch, then wR

0 = (3, 2, 4), wR
1 = (3, 2, 3, 4), wR

2 = (3, 2, 4, 2, 3, 4),
wR

3 = (3, (2, 4)2, 2, 3, 4), etc.
The n-th Markov quadratic on a left branch B 6= L can be written as

wB
n = (3, a1, . . . , as, (b1, . . . , br )n), (6)

where wB
0 = (3, b1, . . . , br ) and a1, . . . , as depend only on B. On a right branch B, we have

wB
n = (3, (b1, . . . , br )n−1, a1, . . . , as), (7)

and on the leftmost branch L we have

wL
n = (3, 2, 3n, 4). (8)

Remark 3.1. The leftmost branch in the Markov tree is also called the Fibonacci branch since the
associated Markov numbers on this branch are the odd indexed Fibonacci numbers. Similarly the
rightmost branch is associated with the odd indexed Pell numbers which are defined by the recurrence
P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 (see [Aigner 2013, p. 49]).

3B. The cycle of quadratics of a Markov number. For any quadratic irrationality w, it is known that
the hyperbolic element Aw is conjugate to a word in T and V , where

T =
(

1 1
0 1

)
, V =

(
1 0
1 1

)
.

If in particular w = wB
n is a quadratic on T (n ≥ 0), then the associated hyperbolic element AwB

n
can be

written as a word in T and V . More specifically, AwB
n
= A−1

0 · · · A
−1
`n

, where A0= I and Ai ∈ {T−1, V−1
}

for 1≤ i ≤ `n are given by the algorithm:

wB
n,0 = w

B
n , wB

n,i+1 = Ai+1(w
B
n,i ) (i ≥ 0),

where
Ai+1 =

{
T−1 if bwB

n,ic ≥ 1,
V−1 otherwise.
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Hence

wB
n,i = Ai · · · A0w

B
n , i = 0, . . . , `n, (9)

and `n is the length of the word AwB
n

, or equivalently, the length of the cycle of quadratics {wB
n,i }i of wB

n .
As the following example demonstrates, this procedure applied to a Markov quadratic in fact cycles back
and hence terminates.

Example 3.2. For example, the cycle of wL
1 = (3, 2, 3, 4) on the leftmost branch is:

wL
1,0 = (3, 2, 3, 4),

wL
1,1 = T−1(wL

1,0)= (2, 2, 3, 4),

wL
1,2 = T−1(wL

1,1)= (1, 2, 3, 4),

wL
1,3 = V−1(wL

1,2)= (1, 3, 4, 2),

wL
1,4 = V−1(wL

1,3)= (2, 4, 2, 3),

wL
1,5 = T−1(wL

1,4)= (1, 4, 2, 3),

wL
1,6 = V−1(wL

1,5)= (3, 2, 3, 4)= wL
1,0.

The length is `1 = 6 and AwL
1
= I T T V V T V .

From now on we restrict to a left branch but not the leftmost branch. All the following arguments
apply in the same way if B is a right branch or B = L , the leftmost branch. The small difference in the
arguments arise due to the different conjunction operations necessary, which are given in (7) for the right
and in (8) for the leftmost branches.

We now consider wB
n , in a left branch B 6= L , written as in (6). Then

`n = n`0+

s∑
i=1

(ai − 1), (10)

where

`0 =

r∑
i=1

(bi − 1)

is the length of the cycle of wB
0 . The number of partial quotients in the period of wB

1 is s + r and the
conjunction operation ensures that this is ≤ 2r . Hence s ≤ r and since ai ≤ 4, we have

`n ≤ 3r(n+ 1). (11)

It is convenient to set

a =
s∑

i=1

(ai − 1)

and

p= (b1, . . . , br ), pk = (b1, . . . , br )k, qk = (br , . . . , b1)k,
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where the subindex k means that the continued fraction is repeated k times. With these notations, the
cycle of wB

n is of the form:

wB
n,0 = (3, a1, . . . , as, pn),

wB
n,1 = (2, a1, . . . , as, pn),

wB
n,2 = (1, a1, . . . , as, pn),

wB
n,3 = (a1− 1, a2, . . . , as, pn, a1),

...

wB
n,a = (3, pn, a1, . . . , as),

...

wB
n,a+`0

= (3, pn−1, a1, . . . , as, p),
...

wB
n,a+n`0

= (3, a1, . . . , as, pn)= w
B
n,0.

Remark 3.3. One can easily write the continued fraction expansion for the Galois conjugate −w̃B
n,i of

−wB
n,i in terms of that of wB

n,i . Indeed, let (d0, d1, . . . , dm) be the continued fraction expansion of wB
n,i .

The quadratic ST−d0(wB
n,i ) is purely periodic with continued fraction (d1, . . . , dm) so, by the property (III),

its Galois conjugate is 1/(dm, . . . , d1). Therefore,

w̃B
n,i = T d0 S(1/(dm, . . . , d1))=−(dm − d0, dm−1, . . . , d1, dm).

4. Convergence property

In this section we study the values of a modular function on the Markov tree. Let B be any branch
of the tree and wB

n be the n-th Markov quadratic on B. Let AwB
n
= A−1

0 · · · A
−1
`n

, where A0 = I and
Ai ∈ {T−1, V−1

} for 1≤ i ≤ `n . Let ρ = eπ i/3 and zi = A−1
0 · · · A

−1
i ρ2. Then using the modularity of f

we have

f (wB
n )=−

√
D
`n−1∑
i=0

∫ zi+1

zi

f (z)
QwB

n
(z, 1)

dz

=−
√

D
`n−1∑
i=0

∫ A−1
i+1ρ

2

ρ2

f (z)

(QwB
n
|A−1

0 · · · A
−1
i )(z, 1)

dz

=−

`n−1∑
i=0

∫ A−1
i+1ρ

2

ρ2
f (z)

(
1

z−wB
n,i
−

1
z− w̃B

n,i

)
dz.

Since V (ρ2)= T (ρ2)= ρ, we obtain:

Lemma 4.1. For n ≥ 0 we have

f (wB
n )=

∫ ρ2

ρ

`n−1∑
i=0

f (z)
(

1
z−wB

n,i
−

1
z− w̃B

n,i

)
dz. (12)
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Lemma 4.1 is the main tool we use to estimate the values of modular functions at real quadratic
irrationalities.

Throughout the paper, we denote by C the arc of circle joining ρ2 and ρ. We denote by εB
n the image

of AB
wn

under the isomorphism (2), so the length of CwB
n

equals 2 log εB
n .

Our first goal is to show that the normalized values f nor(wB
n ) for any modular function f along any

branch B converge to the value f nor(wB
0 ). We call this property “convergence property” and prove it in

this section. The main idea of the proof is to divide the sum in Lemma 4.1 into several ranges and bound
each piece making repeated use of Lemma 2.1. For simplicity of the notation, as mentioned before, we
restrict to a left but not the leftmost branch. However, the argument in the proof of Theorem 4.2 applies
in the same way if B is a right branch or B = L . Only the bound δ1(r, N ) will be slightly modified but
will still be of the form O(r Nλr N ) where λ= (2/(1+

√
5))2. Hence Corollary 4.4 also remains true for

any branch.

Theorem 4.2. Let f be a modular function, B be any left branch 6= L of the Markov tree T and N ≥ 1.
There exists a complex number K = K f,B,N such that for all n ≥ N ,∣∣ f (wB

n )− n f (wB
0 )− K

∣∣≤ δ1(r, N )max
z∈C
| f (z)|, (13)

where

δ1(r, N )= 80π
3
(2+ r(N + 1))

(
2

1+
√

5

)2(r N−1)

(14)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. By applying Lemma 4.1 for f (wB
n ) and f (wB

0 ) we have:

f (wB
n )− n f (wB

0 )=

∫ ρ2

ρ

f (z)(S1(n, N , z)+ S2(n, N , z)+ S3(n, N , z)) dz, (15)

where

S1(n, N , z)=
a−1∑
i=0

1
z−wB

n,i
+

`n−1∑
i=a+(n−N )`0

1
z−wB

n,i
−

a+N`0−1∑
i=0

1
z− w̃B

n,i
−N

`0−1∑
i=0

(
1

z−wB
0,i
−

1
z− w̃B

0,i

)
,

S2(n, N , z)=
a+(n−N )`0−1∑

i=a

1
z−wB

n,i
−(n−N )

`0−1∑
i=0

1
z−wB

0,i
,

S3(n, N , z)=−
a+n`0−1∑
i=a+N`0

1
z− w̃B

n,i
+(n−N )

`0−1∑
i=0

1
z− w̃B

0,i
.

Moreover, we can also write

S1(n, N , z)= S1(N , N , z)+ (S1(n, N , z)− S1(N , N , z)). (16)
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Define

K :=
∫ ρ2

ρ

f (z)S1(N , N , z) dz

and
c(n, z) := |S1(n, N , z)− S1(N , N , z)| + |S2(n, N , z)| + |S3(n, N , z)|.

Then

| f (wB
n )− n f (wB

0 )− K | ≤
∫ ρ2

ρ

c(n, z)| f (z)| |dz|. (17)

These divisions are guided by the continued fraction expansions of all the terms in the cycle of wB
n and

wB
0 and their conjugates. As we will see shortly, the repeated use of Lemma 2.1 will allow us to bound

all the other sums after we separate the main term K .
Let λ= (2/(1+

√
5))2. If we can show that

c(n, z)≤ 80(2+ r(N + 1))λr N−1 (18)

for z ∈ C, then the theorem is proved. Next we show (18).

Bound for |S2(n, N , z)|. We have that

|S2(n, N , z)| ≤
n−N−2∑

k=0

`0∑
i=1

|wB
n,2+a+k`0+i −w

B
0,2+i |

|z−wB
n,2+a+k`0+i ||z−w

B
0,2+i |

+

2∑
i=0

|wB
n,a+i −w

B
0,i |

|z−wB
n,a+i ||z−w

B
0,i |

+

`0−3∑
i=1

|wB
n,2+a+(n−N−1)`0+i −w

B
0,2+i |

|z−wB
n,2+a+(n−N−1)`0+i ||z−w

B
0,2+i |

.

Clearly for any z ∈ C and x ∈ R, we have that |z− x | ≥ Im(e2π i/3)=
√

3/2. Hence the denominators
are bounded below by 3

4 when z ∈ C since the points w are real. The numerators can be bounded by using
Lemma 2.1. For i = 0, 1, 2,

wB
n,a+i = (3− i, pn, a1, . . . , as) and wB

0,i = (3− i, p)

coincide at least in the first rn+1 partial quotients. For each 0≤ k≤ n−N−2, we have: For 1≤ i ≤ b1−1,

wB
n,2+a+k`0+i =

(
b1− i, b2, . . . , br , pn−1−k, a1, . . . , as, pk, b1

)
. (19)

For the next b2− 1 values of i (b1 ≤ i ≤ b1+ b2− 2),

wB
n,2+a+k`0+i =

(
b2− j, b3, . . . , br , pn−1−k, a1, . . . , as, pk, b1, b2

)
(20)

with 1≤ j ≤ b2− 1. This process goes on until the last br − 1 values of i , where

wB
n,2+a+k`0+i =

(
br − j, pn−1−k, a1, . . . , as, pk+1

)
with 1≤ j ≤ br − 1. For k = n− N − 1, we have the same pattern as before except for the last block of
values of i , where we only have br − 3 of them.
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Now, for each 0≤ k ≤ n− N − 1, for 1≤ i ≤ b1− 1, (19) and

wB
0,2+i = (b1− i, b2, . . . , br , b1)

coincide in the first rn− rk partial quotients. For the next b2− 1 values of i , (20) and

wB
0,2+i = (b2− j, b3, . . . , br , b1, b2) (1≤ j ≤ b2− 1)

coincide in the first rn− rk− 1 partial quotients, similarly for the next b3− 1 values of i , wB
n,2+a+k`0+i

and wB
0,2+i coincide in the first rn− rk− 2 partial quotients, etc. Therefore, using Lemma 2.1, for z ∈ C,

we have

|S2(n, N , z)| ≤ 40
3

(
3λrn
+

r∑
i=1

(bi − 1)
n−N−1∑

k=0

λr(n−k)−i
)

≤
40
3

(
3λrn
+ 3

( r∑
i=1

λ−i
)( n∑

k=N+1

λrk
))

≤
40
3

(
3λrn
+ 3

( r∑
i=1

λr−i
)( n−1∑

k=N

λrk
))

≤
40
3

(
3λrn
+ 3

(r−1∑
i=0

λi
)( n−1∑

k=N

λrk
))

≤ 40λr N
(

1+
1

(1− λ)(1− λr )

)
≤ 120λr N . (21)

In the second inequality we used that bi ≤ 4, whereas the last inequality follows from the numerical value
1/1− λ= 1.618 . . .

Bound for |S3(n, N , z)|. In a similar way we bound |S3(n, N , z)|. We have that

|S3(n, N , z)| ≤
n−2∑
k=N

`0∑
i=1

|w̃B
n,2+a+k`0+i − w̃

B
0,2+i |

|z− w̃B
n,2+a+k`0+i ||z− w̃

B
0,2+i |

+

2∑
i=0

|w̃B
n,a+N`0+i − w̃

B
0,i |

|z− w̃B
n,a+N`0+i ||z− w̃

B
0,i |

+

`0−3∑
i=1

|w̃B
n,2+a+(n−1)`0+i − w̃

B
0,2+i |

|z− w̃B
n,2+a+(n−1)`0+i ||z− w̃

B
0,2+i |

.

For i = 0, 1, 2, using Remark 3.3, we have that

−w̃B
n,a+N`0+i =

(
1+ i, br−1, . . . , b1, qN−1, as, . . . , a1, qn−N , br

)
and

−w̃B
0,i = (1+ i, br−1, . . . , b1, br )
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coincide in the first r N partial quotients. For each N ≤ k ≤ n− 2, we have: For 1≤ i ≤ b1− 1,

−w̃B
n,2+a+k`0+i = (i, qk, as . . . , a1, qn−k). (22)

For the next b2− 1 values of i (b1 ≤ i ≤ b1+ b2− 2),

−w̃B
n,2+a+k`0+i =

(
j, b1, qk, as . . . , a1, qn−1−k, br , . . . , b3, b2

)
(23)

with 1≤ j ≤ b2− 1. This process goes on until the last br − 1 values of i , where

−w̃B
n,2+a+k`0+i =

(
j, br−1, . . . , b1, qk, as, . . . , a1, qn−1−k, br

)
with 1≤ j ≤ br − 1.

For k = n− 1, we have the same pattern as before except for the last block of values of i , where we
only have br −3 of them. Now, for each N ≤ k ≤ n−1, for the first b1−1 values of i , (22) coincide with

−w̃B
0,2+i = (i, q)

in the first rk+ 1 partial quotients. For the next b2− 1 values of i , (23) coincide with

−w̃B
0,2+i = ( j, b1, br , . . . , b2) (1≤ j ≤ b2− 1)

in the first rk+ 2 partial quotients, for the next b3− 1 i-values, −w̃B
n,2+a+k`0+i and −w̃B

0,2+i coincide in
the first rk+ 3 partial quotients, etc. Once again using Lemma 2.1, and the fact that bi ≤ 4 together with
the numerical value of λ, we have, for z ∈ C,

|S3(n, N , z)| ≤ 40
3

(
3λr N−1

+

r∑
i=1

(bi − 1)
n−1∑
k=N

λrk+i−1
)

≤
40
3

(
3λr N−1

+ 3
( r∑

i=1

λi−1
)( n−1∑

k=N

λrk
))

≤ 40λr N−1
(

1+
λ

(1− λ)(1− λr )

)
≤ 80λr N−1. (24)

Bound for |S1(n, N , z)− S1(N , N , z)|. We have

|S1(n, N , z)− S1(N , N , z)|

≤

a−1∑
i=0

|wB
n,i −w

B
N ,i |

|z−wB
n,i ||z−w

B
N ,i |
+

`N−1∑
i=a

|wB
n,i+(n−N )`0

−wB
N ,i |

|z−wB
n,i+(n−N )`0

||z−wB
N ,i |
+

a+N`0−1∑
i=0

|w̃B
n,i − w̃

B
N ,i |

|z− w̃B
n,i ||z− w̃

B
N ,i |

.

Again the denominators are bounded below by 3
4 for z ∈ C and we use Lemma 2.1 to bound the numerators.

For the first term in the first sum, using

wB
n,0 = (3, a1, . . . , as, pn) (25)
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and
wB

N ,0 = (3, a1, . . . , as, pN ), (26)

one can see that the successive terms wB
n,i and wB

N ,i (up to i = a − 1) coincide at least in the first r N
partial quotients. This is also true for the second sum, where we have

wB
n,a+(n−N )`0

= (3, pn−N , a1, . . . , as, pN ) and wB
N ,a = (3, pN , a1, . . . , as),

as well as for the third and fourth sums, where we can use Remark 3.3 and the continued fractions of (25)
and (26), and

wB
n,a+n`0

= (3, a1, . . . , as, pn), and wB
n,a+N`0

= (3, a1, . . . , as, pN ),

respectively. Hence, using (11), we have

|S1(n, N , z)− S1(N , N , z)| ≤ 80
3 `Nλ

r N−1 (11)
≤ 80r(N + 1)λr N−1. (27)

Finally, since λ < 2
3 , the bounds (21), (24) and (27) give

c(n, z)≤ 80(2+ r(N + 1))λr N−1. �

In particular, Theorem 4.2 applied to the function f = 1 gives:

Corollary 4.3. Let B be any left branch 6= L of T and N ≥ 1. For all n ≥ N , there exists K = K B,N ∈ R

such that
| log εB

n − n log εB
0 − K | ≤ δ1(r, N ) (28)

with δ1(r, N ) and r as in (14).

The next corollary proves Theorem 1.1 from the introduction.

Corollary 4.4. Let f be a modular function. For any left branch B 6= L of T ,

lim
n→∞

f nor(wB
n )= f nor(wB

0 ).

Proof. It follows from Theorem 4.2 and Corollary 4.3 that | f (wB
n )− n f (wB

0 )| and | log εB
n − n log εB

0 |

are bounded above and below by absolute constants (not depending on n). Then

0= lim
n→∞

| f (wB
n )− n f (wB

0 )|

log εB
n

= lim
n→∞

∣∣∣∣ f (wB
n )

log εB
n
−

f (wB
0 )

log εB
0

∣∣∣∣. �

5. Interlacing property

In this section we prove Theorem 1.2. As in the proof of the convergence property we restrict again to a
left but not the leftmost branch in what follows.The argument applies in the same way to any branch, with
the bound δ2(n, r) slightly modified. It will still be of the form O(rnλrn). Hence Theorem 1.2 applies in
fact to any branch of the Markov tree and it is a consequence of the next theorem whose proof is similar
to the proof of Theorem 4.2.
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Theorem 5.1. Let f be a modular function. For every left branch B 6= L of the Markov tree T and for all
n ≥ 1, ∣∣ f (wB

n+1)− f (wB
n )− f (wB

0 )
∣∣≤ δ2(n, r)max

z∈C
| f (z)| (29)

where

δ2(n, r)=
80π

3
(n+ 2)r

(
2

1+
√

5

)2(rn−1)

(30)

and r + 1 is the number of partial quotients in the period of wB
0 .

Proof. Once again, applying Lemma 4.1 and (10) gives

f (wB
n+1)− f (wB

n )= f (wB
0 )+

∫ ρ2

ρ

f (z)R1(n, z) dz+
∫ ρ2

ρ

f (z)R2(n, z) dz, (31)

where

R1(n, z)=
a−1∑
i=0

(
1

z−wB
n+1,i
−

1
z−wB

n,i

)
+

`n−1∑
i=a

(
1

z−wB
n+1,`0+i

−
1

z−wB
n,i

)

−

`n−1∑
i=0

(
1

z− w̃B
n+1,i
−

1
z− w̃B

n,i

)
,

R2(n, z)=
`0−1∑
i=0

(
1

z−wB
n+1,a+i

−
1

z−wB
0,i
−

1
z− w̃B

n+1,`n+i
+

1
z− w̃B

0,i

)
.

Next we give upper bounds for the norms of the two sums above when z ∈ C. We set again λ =
(2/(1+

√
5))2.

Bound for |R1(n, z)|. For z ∈ C, we have

|R1(n, z)| ≤
a−1∑
i=0

|wB
n+1,i −w

B
n,i |

|z−wB
n+1,i ||z−w

B
n,i |
+

`n−1∑
i=a

|wB
n+1,i+`0

−wB
n,i |

|z−wB
n+1,i+`0

||z−wB
n,i |
+

a+n`0−1∑
i=0

|w̃B
n+1,i − w̃

B
n,i |

|z− w̃B
n+1,i ||z− w̃

B
n,i |

+

`n−1∑
i=a+n`0

|w̃B
n+1,i − w̃

B
n,i |

|z− w̃B
n+1,i ||z− w̃

B
n,i |
.

As before we use the bound of 3
4 for the denominators and Lemma 2.1 for the numerators. In the first

sum using
wB

n+1,0 = (3, a1, . . . , as, pn+1) (32)

and
wB

n,0 = (3, a1, . . . , as, pn), (33)

one can see that the successive terms wB
n+1,i and wB

n,i (up to i = a− 1) coincide at least in the first rn
partial quotients. The same is true for the second sum, where

wB
n+1,a+`0

= (3, pn, a1, . . . , as, p) and wB
n,a = (3, pn, a1, . . . , as).
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For the third and fourth sums, we use once again Remark 3.3 together with (32) and (33), and

wB
n+1,a+n`0

= (3, a1, . . . , as, pn+1) and wB
n,a+n`0

= (3, a1, . . . , as, pn)

respectively.
Hence

|R1(n, z)| ≤ 80
3 `nλ

rn−1 (11)
≤ 80r(n+ 1)λrn−1.

Bound for |R2(n, z)|. In a similar way we bound this second sum when z ∈ C:

|R2(n, z)| ≤
`0−1∑
i=0

|wB
n+1,a+i −w

B
0,i |

|z−wB
n+1,a+i ||z−w

B
0,i |
+

|w̃B
n+1,`n+i − w̃

B
0,i |

|z− w̃B
n+1,`n+i ||z− w̃

B
0,i |
.

Again using
wB

n+1,a = (3, pn+1)

and
wB

0,0 = (3, p), (34)

one can see that all the successive terms wB
n+1,a+i and wB

0,i in the sum coincide at least in the first rn
partial quotients. For the conjugate terms, one can see from (34) and

wB
n+1,`n

= (3, p, a1, . . . , as, pn)

that −w̃B
n+1,`n+i and −w̃B

0,i coincide as well in the first rn partial quotients. Hence

|R2(n, z)| ≤ 80
3 `0λ

rn−1 (11)
≤ 80rλrn−1.

Therefore,

| f (wn+1)− f (wn)− f (w0)| ≤

∫ ρ2

ρ

| f (z)|(|R1(n, z)| + |R2(n, z)|) |dz| ≤ δ2(n, r)max
z∈C
| f (z)|

with
δ2(n, r)=

80π
3

r(n+ 2)λrn−1. �

Theorem 5.1 applied to the function f = 1 gives:

Corollary 5.2. For every left branch B 6= L of T and for all n ≥ 1,∣∣log εB
n+1− log εB

n − log εB
0

∣∣≤ δ2(n, r)

with δ2(n, r) and r as in (30).

We finish this section by giving the proof of Theorem 1.2 in the case that the branch B is any left
branch 6= L . The proof of the general case goes along the same lines.

Theorem 5.3. Let f be a modular function, B be any left branch 6= L of the Markov tree T . There exists
a constant N f,B such that, for all n ≥ N f,B , the real and imaginary parts of f nor(wB

n+1) lie between the
real and imaginary parts respectively of f nor(wB

0 ) and f nor(wB
n ).
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Proof. By definition, the inequality

Re( f nor(wB
n )) < Re( f nor(wB

0 ))

holds if and only if
Re( f (wB

n )) log εB
0 < Re( f (wB

0 )) log εB
n . (35)

Let N ,M be positive constants. For all n ≥max(N ,M), we can write

Re( f (wB
n ))= n Re( f (wB

0 ))+ K f,B,N + ε1(n, N ), (36)

log εB
n = n log εB

0 + K1,B,M + ε2(n,M), (37)

where K f,B,N , K1,B,M are the real parts of the constants in Theorem 4.2 and Corollary 4.3 respectively,
|ε1(n, N )| ≤ δ1(N )maxz∈C | f (z)| and |ε2(n,M)| ≤ δ1(M). Therefore (35) is equivalent to

Re( f nor(wB
0 )) >

K f,B,N

K1,B,M
+
ε1(n, N )− ε2(n,M)Re( f nor(wB

0 ))

K1,B,M
. (38)

There exists a constant C1( f, B) depending on f and B such that, for max(N ,M) ≥ C1( f, B), (38) is
equivalent to either

Re( f nor(wB
0 )) >

K f,B,N

K1,B,M
(39)

or (39) with the strict inequality replaced by ≥, according to whether the error term in (38) is positive
or negative. If we can choose N ,M ≥ C1( f, B) satisfying Re( f nor(wB

0 )) 6= K f,B,N/K1,B,M , then (38)
is equivalent to (39) for those N ,M . If we cannot choose such N ,M , then K f,B,N , K1,B,M would be
constants that do not depend on N ,M , and in particular ε1(n, N ) = ε2(n,M) = 0. Hence, also in this
case (38) is equivalent to (39) for all N ,M ≥ C1( f, B).

In a similar way, the inequality

Re( f nor(wB
n )) > Re( f nor(wB

0 ))

is equivalent to

Re( f nor(wB
0 )) <

K f,B,N

K1,B,M
(40)

for N ,M chosen as before. Since (39) and (40) do not depend on n, we have either

Re( f nor(wB
n )) < Re( f nor(wB

0 ))

simultaneously for all n ≥max(N ,M) with N ,M chosen as before, or

Re( f nor(wB
n )) > Re( f nor(wB

0 )).

Similarly, the inequality
Re( f nor(wB

n+1)) < Re( f nor(wB
n ))

holds if and only if
Re( f (wB

n+1)) log εB
n < Re( f (wB

n )) log εB
n+1. (41)
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Theorem 5.1 and Corollary 5.2 respectively imply that

Re( f (wB
n+1))= Re( f (wB

n ))+Re( f (wB
0 ))+µ(n)

with |µ(n)| ≤ δ2(n)maxz∈C | f (z)| and

log εB
n+1 = log εB

n + log εB
0 + ν(n)

with |ν(n)| ≤ δ2(n). Hence (41) is equivalent to

(Re( f (wB
0 ))+µ(n)) log εB

n < Re( f (wB
n ))(log εB

0 + ν(n)). (42)

Now, there exists a constant C2( f, B)≥ C1( f, B) such that, for n ≥ C2( f, B), we have that

Re( f nor(wB
n )) 6= Re( f nor(wB

0 ))

and that (42) is equivalent to

Re( f (wB
0 )) log εB

n < Re( f (wB
n )) log εB

0 . (43)

Using (36) and (37) again, we obtain that (43) is equivalent to

Re( f nor(wB
0 )) <

K f,B,N

K1,B,M
, (44)

where N ,M are chosen as before.
Therefore, we finally have that either

Re( f nor(wB
0 )) < Re( f nor(wB

n+1)) < Re( f nor(wB
n ))

for all n ≥max(C2( f, B), N ,M) or

Re( f nor(wB
n )) < Re( f nor(wB

n+1)) < Re( f nor(wB
0 )).

The same argument applies to the imaginary parts of f nor(wB
n+1), f nor(wB

n ) and f nor(wB
0 ). �
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A finiteness theorem for specializations of
dynatomic polynomials

David Krumm

Let t and x be indeterminates, let φ(x)= x2
+ t ∈Q(t)[x], and for every positive integer n let 8n(t, x)

denote the n-th dynatomic polynomial of φ. Let Gn be the Galois group of 8n over the function field
Q(t), and for c ∈Q let Gn,c be the Galois group of the specialized polynomial 8n(c, x). It follows from
Hilbert’s irreducibility theorem that for fixed n we have Gn ∼= Gn,c for every c outside a thin set En ⊂Q.
By earlier work of Morton (for n = 3) and the present author (for n = 4), it is known that En is infinite
if n ≤ 4. In contrast, we show here that En is finite if n ∈ {5, 6, 7, 9}. As an application of this result
we show that, for these values of n, the following holds with at most finitely many exceptions: for every
c ∈Q, more than 81% of prime numbers p have the property that the polynomial x2

+ c does not have a
point of period n in the p-adic field Qp.

1. Introduction

Let c be a rational number and let φc(x)= x2
+ c. Given any algebraic number x0, we may consider the

sequence x0, φc(x0), φc(φc(x0)), . . .. If this sequence is periodic with period n, we say that x0 has period
n under iteration of φc. By allowing c and x0 to vary in Q, one can find examples where x0 has period 1,
2, or 3 under φc. For instance, the pairs

(c, x0)= (0, 0), (−1, 0),
(
−29
16 ,

5
4

)
provide examples of periods 1, 2, and 3, respectively.

Poonen [1998] conjectured that if n> 3, then there does not exist c ∈Q such that the polynomial φc has
a rational point of period n. This has been proved for periods 4 and 5, and also for period 6 assuming the
Birch–Swinnerton-Dyer conjecture; see [Morton 1998; Flynn et al. 1997; Stoll 2008]. The present paper is
concerned with a strong form of Poonen’s conjecture which was stated by the author in [Krumm 2016]: if
n> 3, then for every c∈Q there exist infinitely many primes p such that φc does not have a point of period
n in the p-adic field Qp. In fact, we will consider here a further strengthening of Poonen’s conjecture.

Conjecture 1.1. Fix n > 3. For every c ∈Q, let Tn,c denote the set of primes p such that φc does not have
a point of period n in Qp, and let δ(Tn,c) be the Dirichlet density of Tn,c. Then δ(Tn,c) > 0 for all c ∈Q.

MSC2010: primary 37P05; secondary 11S15, 37P35.
Keywords: arithmetic dynamics, function fields, Galois theory.
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In order to study these conjectures it is useful to consider a family of dynatomic polynomials defined
as follows. For every positive integer n we define a two-variable polynomial 8n ∈Q[t, x] by the formula

8n(t, x)=
∏
d | n

(φd(x)− x)µ(n/d), (1-1)

where µ is the Möbius function, φ(x)= x2
+ t ∈Q(t)[x], and φd denotes the d-fold composition of φ

with itself. The key property linking 8n to the above conjectures is that, for fixed c ∈Q, every algebraic
number having period n under iteration of φc is a root of 8n(c, x), and conversely, every root of 8n(c, x)
has period n under φc except in rare cases when the period may be smaller than n; see [Morton and Patel
1994, Theorem 2.4] for further details.

Questions about the points of period n under φc can thus be phrased as questions about the roots of
8n(c, x). It is therefore to be expected that a good understanding of the Galois group of 8n(c, x) will
yield substantial information about the dynamical properties of the map φc. The results of the article
[Krumm 2018b] provide an example of the type of information that can be obtained in this way. By a
careful analysis of how the Galois group of 84(c, x) can change as c varies in Q, it is proved there that if
α ∈Q has period four under a map φc, then the degree [Q(α) :Q] can only be 2, 4, 8, or 12; in particular
the degree cannot be 1, which implies that φc does not have a rational point of period 4. Furthermore, the
Galois group data is used to show that δ(T4,c) > 0.39 for every c ∈Q, thus proving Conjecture 1.1 for
n = 4. Motivated by these results, we are led to the following problem.

Problem 1.2. Let Gn,c denote the Galois group of 8n(c, x) over Q. For fixed n, determine the structure
of all the groups Gn,c as c varies in Q.

Since the polynomials8n(c, x) for c∈Q are specializations of8n , it follows from Hilbert’s irreducibil-
ity theorem [Serre 2008, Proposition 3.3.5] that for every rational number c outside a thin subset of Q, the
group Gn,c is isomorphic to the Galois group of 8n over the function field Q(t). Moreover, by work of
Bousch [1992, Chapter 3] it is known that 8n is irreducible and that its Galois group, which we denote by
Gn , is isomorphic to a wreath product of a cyclic group and a symmetric group; indeed, Gn ∼= (Z/nZ) o Sr ,
where rn = deg8n . Hence, for most c ∈Q the structure of Gn,c is known. However, a complete solution
of Problem 1.2 would require understanding precisely for which numbers c the specialization t 7→ c fails
to preserve the Galois group of 8n . This raises a new but closely related problem.

Problem 1.3. For fixed n, determine all c ∈Q such that Gn,c 6∼= Gn .

Let En = {c ∈Q | Gn,c 6∼= Gn}. By work of Morton [1992] and the author [Krumm 2018b], the sets En

are well understood for n ≤ 4; in particular, one notable feature of these sets is that they are infinite. In
contrast, empirical evidence suggests that En is finite for every n > 4. The main purpose of this article is
to prove this finiteness statement for several values of n.

Theorem 1.4. The set En is finite if n ∈ {5, 6, 7, 9}.

Using this theorem we can provide further evidence in support of Conjecture 1.1. It follows from
the theorem that, for the above values of n, we have Gn,c ∼= (Z/nZ) o Sr for all but finitely many c ∈Q.
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Excluding this finite set we therefore know the structure of all the Galois groups Gn,c. The Chebotarev
density theorem can then be used to determine the value of δ(Tn,c) by a straightforward calculation within
the group (Z/nZ) o Sr . In this way we obtain the following result.

Theorem 1.5. There exists a finite set E ⊂ Q such that the following lower bounds hold for every
c ∈Q \ E :

δ(T5,c) > 0.81, δ(T6,c) > 0.84, δ(T7,c) > 0.86, δ(T9,c) > 0.89.

The proof of Theorem 1.4 relies on Hilbert’s irreducibility theorem and Faltings’s theorem to reduce
the proof to a problem of showing that certain algebraic curves have genera greater than 1. More precisely,
let S be a splitting field of 8n over Q(t), so that Gn = Gal(S/Q(t)), and let X be the smooth projective
curve over Q whose function field is S. As explained in Section 2, in order to show that the set En is
finite it suffices to show that, for every maximal proper subgroup M < Gn , the quotient curve X/M has
genus greater than 1. Our main objective is therefore to compute the genera of these quotient curves, or
at least to obtain lower bounds for them.

The methods we develop for this purpose allow us to reduce the problem to a series of computations
within the groups Gn . For n ∈ {5, 6} we are able to determine the genera exactly, and for n ∈ {7, 9} we
prove lower bounds which suffice for our purposes. Though the methods used here could in principle be
used to extend our results to higher values of n, there are computational limitations which prevent this.
For instance, the group G11 has order 11186(186)! and the cost of computing its maximal subgroups is
prohibitively expensive. Other computational issues are discussed in Section 7.

Though it would be desirable to explicitly determine the finite sets En in Theorem 1.4, our method
of proof does not suggest a feasible way of doing this. Indeed, one would have to determine the sets of
rational points on several curves of very large genera, a problem which seems impossible with current
methods. Nevertheless, in Section 9 we make some elementary observations regarding the sets En; for
instance, they are always nonempty.

This article is organized as follows. In Section 2 we establish two foundational results for the rest of the
article. In Section 3 we prove a theorem concerning the structure of inertia groups in Galois extensions of
valued fields; this may be of independent interest. In Section 4 we recall various properties of dynatomic
polynomials which were mostly proved by P. Morton. In Section 5 we study the action of Gn on the roots
of 8n . In Sections 6 and 7 we apply the results of earlier sections to carry out the genus computations
from which Theorem 1.4 can be deduced. In Section 8 we prove Theorem 1.5. Finally, in Section 9 we
list the known elements of the sets En .

2. Preliminaries

Let n be a positive integer and let 8n be the polynomial defined in (1-1). Let S be a splitting field of
8n over Q(t), and Gn = Gal(S/Q(t)). Recall that En denotes the set of all rational numbers c such that
Gn,c 6∼= Gn , where Gn,c is the Galois group of 8n(c, x) over Q. The following lemma provides sufficient
conditions for En to be a finite set.
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Lemma 2.1. Let M1, . . . ,Ms be representatives of all the conjugacy classes of maximal subgroups of
Gn , and let L i denote the fixed field of Mi . Suppose that every function field L i has genus greater than 1.
Then En is finite.

Proof. Let X be the smooth projective curve with function field S, and for every index i , let Xi be the
quotient curve X/Mi . It follows from the proof of Proposition 3.3.1 in [Serre 2008] (see also [Krumm
and Sutherland 2017, Theorem 1.1]) that there exist a finite set E ⊂ P1(Q) and morphisms πi : Xi → P1

such that

En ⊆ E ∪
s⋃

i=1

πi (Xi (Q)).

Since L i is the function field of Xi , the hypotheses imply that the smooth projective model of Xi has
genus greater than 1, and hence, by Faltings’s theorem [1983], the set Xi (Q) is finite. The result follows
immediately. �

In view of Lemma 2.1, the main objects of interest in this article are the genera of the minimal
intermediate fields in the extension S/Q(t). Our first step towards understanding these genera will be to
show that in computing them we may replace Q with any subfield of C.

Proposition 2.2. Let F be any field satisfying Q⊆ F⊆ C, and let N be a splitting field of 8n over F(t).
Then there is an isomorphism

ι : Gal(N/F(t))−→ Gal(S/Q(t))

with the following property: if A is a subgroup of Gal(N/F(t)) and B = ι(A), then the fixed fields of A
and B have the same genus.

Proof. Let 6 be a splitting field of 8n over C(t), and let R ⊂ 6 be the set of roots of 8n . By basic
field theory, we may identify N with the field F(t)(R) and S with the field Q(t)(R). Restriction of
automorphisms then yields injective homomorphisms

Gal(6/C(t)) ↪→ Gal(N/F(t)) ↪→ Gal(S/Q(t)). (2-1)

The group Gal(6/C(t)) is naturally isomorphic to a subgroup GC of the symmetric group Sym(R).
(Explicitly, the isomorphism is given by restriction to R.) Similarly, we define groups GF and GQ. By
(2-1) we have

GC ≤ GF ≤ GQ ≤ Sym(R). (2-2)

The polynomial φ(x)= x2
+ t permutes the elements of R (see, for instance, [Krumm 2016, §2.2]); thus

we may regard φ as an element of the group Sym(R). Let C denote the centralizer of φ in Sym(R). Since
φ is a polynomial map, it commutes with every element of Gal(S/Q(t)), and therefore GQ ≤ C. Now, by
Theorem 3 in [Bousch 1992, Chapter 3] we have GC = C. Hence, (2-2) implies that GC = GF = GQ. It
follows that the embeddings (2-1) are in fact isomorphisms; in particular, restriction to S is an isomorphism

ι : Gal(N/F(t))−→∼ Gal(S/Q(t)). (2-3)
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We now digress briefly from the main proof.

Lemma 2.3. The field Q is algebraically closed in S.

Proof. Let k be the algebraic closure of Q in S. By general theory of algebraic function fields, the
extension k/Q is finite; moreover, it can easily be shown to be a Galois extension. To see that k/Q is
normal, let p(x) ∈Q[x] be an irreducible polynomial having a root in k. Then p remains irreducible in
Q(t)[x] (see Lemma 3.1.10 in [Stichtenoth 2009]) and has a root in S; therefore p splits in S. However,
by definition of k, every root of p in S belongs to k. Hence, p splits in k.

Since k(t) is the composite of k and Q(t), the extension k(t)/Q(t) is Galois, and restriction to k yields
an isomorphism

Gal(k(t)/Q(t))∼= Gal(k/k ∩Q(t))= Gal(k/Q).

It follows that there is a surjective homomorphism Gal(S/Q(t))→Gal(k/Q)with kernel H :=Gal(S/k(t)).
Now, taking F = k in (2-3), the image of ι is clearly contained in H , so that in fact H = Gal(S/Q(t)).
Therefore Gal(k/Q) must be trivial, and k =Q. �

Returning to the proof of the proposition, let A ≤ Gal(N/F(t)) and set B = ι(A). Let U and V be the
fixed fields of A and B, respectively. Thus, U and V are intermediate fields in the extensions N/F(t)
and S/Q(t). We claim that U is the composite of V and F. The fact that U ⊇ V follows immediately
from the definitions, and it is clear that U ⊇ F; hence U ⊇ V F. To prove that U = V F we will show that
[U : F(t)] = [V F : F(t)]. Since ι is an isomorphism mapping A to B, we have

[U : F(t)] = |Gal(N/F(t)) : A| = |Gal(S/Q(t)) : B| = [V :Q(t)].

Thus, it suffices to show that [V :Q(t)] = [V F : F(t)]. Let α be a primitive element for V over Q(t), and
let p ∈Q(t)[x] be the minimal polynomial of α. Clearly V F= F(t)(α), so it is enough to show that p
remains irreducible over F(t). Since p is irreducible over Q(t), the group Gal(S/Q(t)) acts transitively
on the roots of p. This, together with the fact that ι is given by restriction to N , imply that Gal(N/F(t))
also acts transitively on the roots of p, and therefore p is irreducible over F(t). This completes the proof
that U = V F.

It remains only to show that U and V have the same genus. Since F contains the constant field of V
(by Lemma 2.3), U = V F is a constant field extension of V (in the terminology of [Stichtenoth 2009,
§3.6]). Equality between the genera of U and V now follows from Theorem 22 in [Artin 2006, p. 291];
see also Theorem 3.6.3 in [Stichtenoth 2009]. �

From Lemma 2.1 and Proposition 2.2 we deduce the following proposition, which is the key result of
this section.

Proposition 2.4. Let N be a splitting field of 8n over Q(t). Let M1, . . . ,Ms be representatives of all the
conjugacy classes of maximal subgroups of the group G = Gal(N/Q(t)), and let L i be the fixed field of
Mi . Suppose that the genus of L i is greater than 1 for every index i . Then the set En is finite.
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3. A result in valuation theory

Let K be a field, and let v : K ∗→ R be a discrete valuation of K with perfect residue field k. Let N be a
finite Galois extension of K with Galois group G =Gal(N/K ). For any elements σ, τ ∈ G we will write
τ σ to denote the conjugate σ−1τσ ; similarly, for any subgroup A ≤ G we let Aσ = σ−1 Aσ .

If L is an intermediate field in the extension N/K and w is a valuation of N extending a valuation u
of L , we denote by Dw|u and Iw|u the decomposition and inertia groups of w over u. If u extends the
valuation v of K , we let eu|v and fu|v denote the ramification index and residue degree of u over v.

Lemma 3.1. Let w be a valuation of N extending v, and let D= Dw|v and I = Iw|v . Let H be a subgroup
of G with fixed field L , and let SL be the set of all valuations of L extending v. Then there is a well-defined
bijection

D\G/H −→∼ SL

given by DσH 7→ (w ◦ σ)|L . Furthermore, if u = (w ◦ σ)|L , then

eu|v · fu|v = |Dσ
: Dσ
∩ H | and eu|v = |I σ : I σ ∩ H |. (3-1)

Proof. The first statement is well known; a proof may be found in Lemma 17.1.2 and Corollary 17.1.3 of
[Efrat 2006]. Suppose now that u = (w◦σ)|L , and let w̃=w◦σ . It is then a simple exercise to show that

Dw̃|u = Dσ
∩ H and Iw̃|u = I σ ∩ H. (3-2)

Note that Dσ
= Dw̃|v and I σ = Iw̃|v . Now, since k is perfect, we have |Dw̃|v| = ew̃|v · fw̃|v and |Iw̃|v| = ew̃|v

(see [Neukirch 1999, Chapter I, Proposition 9.6]). The relations (3-1) now follow easily from (3-2). �

Proposition 3.2. Suppose that N is the splitting field of an irreducible polynomial P(x) ∈ K [x]. Let F
be a subextension of N/K obtained by adjoining one root of P(x) to K . Let u1, . . . , um be the distinct
valuations of F extending v, and set ei = eui |v and fi = fui |v . Let w be a valuation of N extending v, and
assume that ew|v is not divisible by the characteristic of k. Then the inertia group Iw|v is generated by an
element whose disjoint cycle decomposition (as a permutation of the roots of P) has the form

(e1-cycle) · · · (e1-cycle)︸ ︷︷ ︸
f1 times

· · · (em-cycle) · · · (em-cycle)︸ ︷︷ ︸
fm times

. (3-3)

Proof. Set D = Dw|v and I = Iw|v . The assumption that the characteristic of k does not divide |I | implies
that I is a cyclic group; see [Stichtenoth 2009, Proposition 3.8.5] or [Efrat 2006, §16.2]. Let R denote
the set of roots of P(x) in N , and consider the natural action of I on R. Let O be the set of orbits of this
action. We will show that O can be partitioned into subsets S1, . . . , Sm such that every orbit in Si has
cardinality ei , and #Si = fi . Note that this implies that every generator of I has a cycle decomposition of
the form (3-3).

For every x ∈ R let Ox and Ix , respectively, denote the orbit of x (under the action of I ) and the
stabilizer of x in I . Let r ∈ R be such that F = K (r), and set H = Gal(N/F). Note that H is the
stabilizer of r in G.
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By Lemma 3.1, there exist distinct double cosets Dσ1 H, . . . , Dσm H such that ui = (w ◦ σi )|F . For
i = 1, . . . ,m we define a map ψi as follows:

I σi\Dσi /(Dσi ∩ H) ψi−→O,

I σi τ(Dσi ∩ H) 7−→Oσi τ(r).

A straightforward calculation shows that ψi is well defined and injective. Letting Si ⊆O be the image of
ψi , we claim that the sets S1, . . . , Sm have the properties stated above.

We begin by showing that every orbit in Si has cardinality ei . To ease notation, let us fix an index
i and set σ = σi and M = Dσ

∩ H . Letting τ ∈ Dσ , we must show that #Oστ(r) = ei . Note that
(Iστ(r))στ = I στ ∩ H , so that |Iστ(r)| = |I στ ∩ H |, and therefore

#Oστ(r) = |I : Iστ(r)| =
|I |
|Iστ(r)|

=
|I στ |
|Iστ(r)|

=
|I στ |
|Iστ ∩ H |

= |I στ : I στ ∩ H |.

Now, since τ ∈ Dσ , we have στ ∈ DσH . Lemma 3.1 then implies that (w ◦στ)|F = (w ◦σ)|F = ui and
|I στ : I στ ∩ H | = ei . Hence #Oστ(r) = ei .

Next we show that #Si = fi . Note that #Si = #I σ\Dσ/M since ψi is injective. The fact that I is a
normal subgroup of D implies that

I σ\Dσ/M = Dσ/(I σ M).

Thus, using Lemma 3.1 we obtain

#Si = |Dσ
|/|I σ M | =

|Dσ
| · |I σ ∩ H |

|Dσ ∩ H | · |I σ |
=
|Dσ
: Dσ
∩ H |

|I σ : I σ ∩ H |
=

ei fi

ei
= fi .

Now we show that the sets S1, . . . , Sm are pairwise disjoint. Suppose, by contradiction, that there
exist distinct indices i, j such that Si ∩ S j 6=∅. Then there exist α ∈ Dσi , β ∈ Dσ j , and γ ∈ I such that
σiα(r)=γ σ jβ(r). Writing α=σ−1

i δσi and β=σ−1
j dσ j with δ, d ∈D, this implies that δσi (r)=γ dσ j (r);

hence, there exists h ∈ H such that σi = δ
−1γ dσ j h. Note that δ−1γ d ∈ D, so the previous equality

implies that σi ∈ Dσ j H and therefore Dσi H = Dσ j H , a contradiction.
Finally, we show that O =

⋃m
i=1 Si . Let R1, . . . , Rm be the subsets of R defined by Ri =

⋃
C∈Si

C .
From the results proved above it follows that #Ri = ei fi and that the sets R1, . . . , Rm are pairwise disjoint.
Given that v is a discrete valuation, we have the relation [F : K ] =

∑m
i=1 ei fi . Hence

#R = deg(P)= [F : K ] =
m∑

i=1

ei fi =

m∑
i=1

#Ri = #
m⋃

i=1

Ri .

It follows that R =
⋃m

i=1 Ri , which implies that O =
⋃m

i=1 Si . �

Remark 3.3. Proposition 3.2 was inspired by a theorem of Beckmann [1994] concerning inertia groups
in Galois extensions of Q; indeed, Beckmann’s result is essentially the case K =Q of the proposition.
However, the proof given here has little in common with the proof in [loc. cit.].
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Proposition 3.4. With notation and assumptions as in Proposition 3.2, let γ be a generator of Iw|v and
let H be a subgroup of G with fixed field L. Suppose that Dw|v = Iw|v. Then the number of valuations u
of L extending v such that eu|v = 1 is given by

|CG(γ )| · s(H, γ )
|H |

, (3-4)

where CG(γ ) is the centralizer of γ in G and s(H, γ ) is the number of G-conjugates of γ that belong
to H.

Proof. Let D = Dw|v and define sets A = {σ ∈ G | γ σ ∈ H} and

1= {DσH ∈ D\G/H | σ ∈ A}.

It follows from Lemma 3.1 that the cardinality of 1 is equal to the number of valuations u of L extending
v such that eu|v = 1. Thus, in order to prove the proposition it suffices to show that |H | · (#1) =
|CG(γ )| · s(H, γ ).

For every element a∈ A the right coset CG(γ )·a is contained in A; hence, the set U ={CG(γ )·a |a∈ A}
is a partition of A into subsets of size |CG(γ )|. Thus #A= |CG(γ )| ·(#U ). Now let B = {γ σ | σ ∈G}∩H ,
so that #B= s(H, γ ). Note that #U =#B; indeed, there is a bijective map U→ B given by CG(γ )·a 7→γ a .
Therefore,

#A = |CG(γ )| · (#B)= |CG(γ )| · s(H, γ ). (3-5)

Let f : A � 1 be the surjective map given by f (σ ) = DσH . We claim that, for every a ∈ A,
f −1( f (a))= aH . It is clear that aH ⊆ f −1( f (a)). Now suppose that f (a′)= f (a), so that a′ = dah
for some d ∈ D and h ∈ H . Since γ a

∈ H , we may write γ a = ah′ for some h′ ∈ H . Furthermore, since
D = Iw|v = 〈γ 〉, we have d = γ n for some positive integer n. Thus

a′ = dah = γ nah = a(h′)nh ∈ aH,

which proves the claim. Since every fiber of f has cardinality |H |, we have #A = |H | · (#1), and hence,
by (3-5), |H | · (#1)= |CG(γ )| · s(H, γ ). �

For later reference, we include here a combined statement of Propositions 3.2 and 3.4 in the special
case where K is the function field Q(t) and the valuation v corresponds to a place p of K . Note that in
this case all residue degrees fu|v are equal to 1.

Corollary 3.5. Let t be an indeterminate and K =Q(t). Suppose that P(x) ∈ K [x] is irreducible, and
let N be a splitting field for P(x). Let F be a subextension of N/K obtained by adjoining one root of
P(x) to K . Let p be a place of K , and let p1, . . . , pm be the distinct places of F lying over p. Then,
for every place P of N lying over p, the inertia group IP|p is generated by an element γ whose disjoint
cycle decomposition has the form (e1-cycle) · · · (em-cycle), where ei is the ramification index of pi over p.
Furthermore, if H is a subgroup of G = Gal(N/K ) with fixed field L , then the number of places of L
lying over p which are unramified over K is given by the formula (3-4).
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4. Ramification data for dynatomic polynomials

Let us fix a positive integer n. We will henceforth regard the polynomial 8n(x) as an element of the ring
Q(t)[x]. As such, it is known by work of Bousch [1992, Chapter 3] that 8n is irreducible. In this section
we will apply Corollary 3.5 to study inertia groups in the Galois group of 8n .

Let K =Q(t), let N/K be a splitting field of 8n , and let G =Gal(N/K ). Let F be a subextension of
N/K obtained by adjoining one root of 8n to K . Morton [1996, §3] studies the ramification of places in
the extension F/K by using certain polynomials1n,d ∈Z[t], where d is a divisor of n. These polynomials
had previously been defined in [Morton and Vivaldi 1995, §1]; we refer the reader to that article for the
definition. We now recall a few results from [Morton 1996; Morton and Vivaldi 1995] which will be
needed here.

For every positive integer s, let
ν(s)= 1

2

∑
d | s

µ(s/d)2d .

Lemma 4.1 (Morton–Vivaldi). For every divisor d of n, let Rn,d ⊂Q denote the set of roots of1n,d . Then
the following hold:

(a) #Rn,d = deg1n,d for every d.

(b) If d and e are distinct divisors of n, then Rn,d ∩ Rn,e =∅.

(c) Letting ϕ denote Euler’s phi function, the degree of 1n,d is given by

deg1n,d =

{
ν(d)ϕ(n/d) if d < n,
ν(n)−

∑
k | n
k<n

ν(k)ϕ(n/k) if d = n.

Proof. All statements are proved in [Morton and Vivaldi 1995]. Indeed, (a) and (b) follow from
Proposition 3.2, and (c) follows from Corollary 3.3. �

Recall that for every place p of K , the conorm of p with respect to the extension F/K is the divisor,
which we write multiplicatively, defined by

iF/K (p)= pe1
1 · · · p

es
s ,

where p1, . . . , ps are the distinct places of F lying over p and ei is the ramification index of pi over p. A
discussion of the basic properties of the conorm map may be found in [Stichtenoth 2009, §3.1] or [Rosen
2002, Chapter 7].

Let D = deg8n; note that D = 2ν(n). As explained in Section 5, the set of roots of 8n can be
partitioned into sets of cardinality n, and therefore n divides D. Let r = D/n.

Lemma 4.2 (Morton). Let p∞ be the infinite place of K , i.e., the place corresponding to the valuation
v∞ of K given by v∞( f/g)= deg g− deg f . For b ∈Q, let pb denote the place of K corresponding to
the polynomial t − b.

(a) The places of K that ramify in F are p∞ and pb for b ∈
⋃

d | n Rn,d .
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(b) The conorm of p∞ has the form

iF/K (p∞)= p2
1 · · · p

2
ν(n).

(c) For every b ∈ Rn,n , the conorm of pb has the form

iF/K (pb)= p2
1 · · · p

2
n · q1 · · · qn(r−2).

(d) For every b ∈ Rn,d , where d < n, the conorm of pb has the form

iF/K (pb)= p
n/d
1 · · · p

n/d
d · q1 · · · qn(r−1).

Proof. All statements are proved in [Morton 1996]; (a), (c) and (d) follow from the proof of Proposition 9,
and (b) follows from Proposition 10. �

Let P= {p∞}∪
{

pb | b ∈
⋃

d | n Rn,d
}

be the set of places of K that ramify in F . For any intermediate
field L in the extension N/K and any place p of K , let PL(p) denote the set of places of L lying over p.

We introduce some terminology to be used throughout the article. Suppose that G is a group acting on
a finite set X , and let g ∈ G. We say that g has cycle type (a, b), where a and b are positive integers, if
the disjoint cycle decomposition of g, disregarding 1-cycles, is a product of b a-cycles.

Applying Corollary 3.5 to the polynomial 8n and using Lemma 4.2, we immediately obtain the
following description of inertia groups in G.

Proposition 4.3. Let p ∈ P and P ∈ PN (p). Then the inertia group IP | p has a generator with cycle type
(a, b) satisfying

(a, b)=


(2, D/2) if p = p∞,
(2, n) if p = pb with b ∈ Rn,n,

(n/d, d) if p = pb with b ∈ Rn,d , d < n.

In addition to the data on ramification of places in F/K provided by Lemma 4.2, in later sections we
will need some ramification data for a subfield F0 ⊂ F defined as follows. Let θ be a root of 8n such
that F = K (θ). The field F has an automorphism1 given by θ 7→ φ(θ)= θ2

+ t ; we define F0 to be the
fixed field of this automorphism.

Proposition 4.4 (Morton). Let p ∈ P and let S(p)=
∑

q∈PF0 (p)
(eq | p − 1).

(a) If p = p∞, then S(p)= r − en , where

en =
1

2n

∑
d | (n,2)

ϕ(d)2 ·
∑

k∈Un,d

µ(n/k)2k/d .

Here Un,d = {k ∈ Z>0 : k | n, d | k, and (n/k, d)= 1}.

(b) If p = pb, where b ∈ Rn,n , then S(p)= 1.

(c) If p = pb, where b ∈ Rn,d for some d < n, then S(p)= 0.
1Note that φ(θ) is a root of 8n , so there is an isomorphism F → K (φ(θ)) mapping θ to φ(θ). Moreover, the fact that

φn(θ)= θ implies that F = K (φ(θ)), so this map is in fact an automorphism of F .
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Proof. All statements are proved in [Morton 1996]; (a) follows Theorem 13, while (b) and (c) can be
deduced from the proof of Proposition 9. Indeed, it is shown in that proposition that if p = pb, where b ∈
Rn,n , then there is a unique ramified place of F0 lying over p, and its ramification index is 2; this implies (b).
Similarly, if p = pb, where b ∈ Rn,d for some d < n, then p is unramified in F0, which implies (c). �

5. The action of the Galois group of 8n

We continue using here the notation introduced in the previous section. The genus computations in
Sections 6 and 7, which form the core of this article, rely fundamentally on Propositions 3.4 and 4.3. In
order to apply these propositions effectively, we require a precise understanding of the elements of G
whose cycle decompositions have the forms described in Proposition 4.3. In addition, explicit formulas
for the orders of the centralizers of these elements will be needed when applying Proposition 3.4. The
purpose of this section is to carry out a detailed analysis of the action of G on the roots of 8n . In the
process we address both of the above requirements, the key result being Proposition 5.5.

Recall the notion of an isomorphism of group actions: if A and B are groups acting on sets X and Y ,
respectively, we write A ≡ B if there exist a group isomorphism ϕ : A→ B and a bijection ε : X→ Y
such that ε(ax)= ϕ(a)ε(x) for all a ∈ A and x ∈ X . Though the notation A≡ B does not make reference
to the sets X and Y , this should cause no confusion here because the sets being acted on will be clear
from context.

Let R be the set of roots of 8n in the splitting field N , and consider the natural action of G on R. In
this section we will discuss three group actions, which we refer to as realizations of G, that are isomorphic
to G with its action on R. The first realization is the automorphism group of a graph acting on its set
of vertices; this is helpful as a visual aid for understanding the action of G. The second realization is a
particular subgroup of the symmetric group SD acting on the set {1, . . . , D}; this is useful for carrying out
explicit computations with elements of G. The third realization is a wreath product (Z/nZ) o Sr acting on
the set (Z/nZ)×{1, . . . , r}. Though somewhat more technical, we find that this realization is the most
convenient for purposes of proving the main results of this section. The key fact needed to show that these
realizations are isomorphic is a well-known theorem of Bousch [1992, Chapter 3], namely Theorem 3.

5A. The group G as a graph automorphism group. It is a simple consequence of the definition of 8n

that the map φ(x)= x2
+ t permutes the elements of R (see [Krumm 2016, §2.2] for details). Regarding

φ as an element of the symmetric group Sym(R), we may therefore partition the set R into φ-orbits. By
[Morton and Patel 1994, Theorem 2.4(c)], the fact that 8n is irreducible implies that every orbit has size
n; hence, the number of orbits is (#R)/n = D/n = r .

Let G be the natural embedding of G in Sym(R), and note that G ≡ G. Let 0 be the directed graph
whose vertices are the elements of R and which has an edge x→ φ(x) for every x ∈ R. An illustration
of 0 is shown in Figure 1 below. By Bousch’s theorem, G is the centralizer of φ in Sym(R). (More
explicitly, this is a consequence of the proof of Proposition 2.2. In the notation of that proof, we have
G = GF, where F=Q.) It follows that G = Aut(0) and therefore G ≡ Aut(0).
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Figure 1. A directed graph whose automorphism group is isomorphic to the Galois
group of 8n . Every cycle in the graph has n vertices, and there are r cycles in total.

5B. The group G as a permutation group. Let SD be the symmetric group on the set {1, . . . , D} and
let σ ∈ SD be the permutation defined by

σ = (1, . . . , n)(n+ 1, . . . , 2n) · · · (D− n+ 1, . . . , D).

There is a bijection ` : {1, . . . , D} → R under which the cycles in the decomposition of σ correspond to
the cycles in the graph 0. Indeed, if we choose representatives η1, . . . , ηr of the distinct cycles in 0, then
one such map ` is given by

`(ni − j)= φn− j (ηi ) for 1≤ i ≤ r and 0≤ j < n.

The map ` induces an isomorphism ι : SD→ Sym(R) under which σ maps to φ. Let Z be the centralizer
of σ in SD . Since G is the centralizer of φ in Sym(R), the image of Z under ι is equal to G. Moreover,
the maps ι and ` induce an isomorphism of group actions between Z and G; hence G ≡ Z .

5C. Background on wreath products. Before discussing the realization of G as a wreath product, we
recall the basic construction of wreath products. For further information on this topic we refer the reader
to [Dixon and Mortimer 1996, §2.6; Rotman 1995, Chapter 7; Kerber 1971, Chapter I].

Let Sr denote the symmetric group on the set �= {1, . . . , r}. Let A be a group, and consider the direct
product Ar consisting of functions f :�→ A with pointwise multiplication. There is an action of Sr on
Ar given by π · f = fπ , where fπ is the function

fπ (i)= f (π−1(i)) for every i ∈�.

This action induces a homomorphism Sr → Aut(Ar ), so we may form the semidirect product W =
Ar o Sr . Elements of W have the form ( f, π), where f ∈ Ar and π ∈ Sr ; the group operation in W is
given by

( f, π)(g, σ )= ( f gπ , πσ).

The group W is the wreath product of A with Sr , denoted A o Sr . Letting e and 1, respectively, denote
the identity elements of Ar and Sr , there are embeddings Ar ↪→W and Sr ↪→W given by f 7→ ( f, 1)
and π 7→ (e, π); we will henceforth identify Ar and Sr with their images under these maps. The group
B = Ar , called the base group of the wreath product, is a normal subgroup of W; indeed, B is the kernel
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of the projection map W→ Sr given by ( f, π) 7→ π . Furthermore, Sr is a complement for B in the sense
that B ∩ Sr is trivial and BSr =W .

Suppose now that A acts on a set 1. Then there is an action of W on the Cartesian product 1×�
given by

( f, π) · (d, i)= ( f (π(i)) · d, π(i)). (5-1)

Moreover, this action is faithful if A acts faithfully on 1.

5D. The group G as a wreath product. For the remainder of this section we assume that A = Z/nZ, so
that W = (Z/nZ) o Sr . The action of A on itself by addition induces a faithful action of W on the set
X = A×� given by (5-1). We will show that W ≡ G.

Let η1, . . . , ηr be representatives of the distinct φ-orbits of R. For every w = ( f, π) ∈W we define
ζw ∈ G = Aut(0) by

ζw(φ
a(ηi ))= φ

f (π(i))+a(ηπ(i)) for a ∈ A and i ∈�.

Note that the notation φa for a ∈ A is unambiguous since φn is the identity element of Sym(R). Using
the fact that G is the centralizer of φ in Sym(R), it is a simple exercise to show that ζw is a well-defined
element of G, and that the map ζ :W→ G given by w 7→ ζw is a group isomorphism.

Let ε : X → R be the map defined by ε(a, i) = φa(ηi ). From the definitions it follows that ε is a
bijection and that for every w ∈W and α ∈ X we have ε(wα)= ζ(w)ε(α). Hence W ≡ G, and therefore
G ≡W . Using this realization of G as a wreath product, we will now study the action of G.

Remark 5.1. It follows from the above discussion that

Aut(0)∼= (Z/nZ) o Sr .

This is a special case of a well-known theorem of Frucht in graph theory. As shown in [Frucht 1949]
(see also [Harary 1969, Theorem 14.5]), if 3 is a finite connected graph and 0 is a graph consisting of r
disjoint copies of 3, then Aut(0)∼= Aut(3) o Sr .

5E. Conjugacy in W . Our main reason for using the realization of G as a wreath product is that it
provides convenient ways of deciding whether two elements of G are conjugates of each other, and of
calculating the order of the centralizer of any element of G. The key notion needed for these tasks is the
type of an element of W , defined below.

For every cycle C = (i1, i2, . . . , ik) ∈ Sr and every element f ∈ Ar , we denote by f (C) the element
of A given by f (C)= f (i1)+ · · ·+ f (ik).

For every element w = ( f, π) ∈W , we define a map Tw : X→ Z≥0 as follows: for a ∈ A and k ∈�,
Tw(a, k) is the number of k-cycles C in the cycle decomposition of π such that f (C)= a. The map Tw
will be called the type of w. When w is clear from context, we will denote Tw(a, k) simply by tak and we
will use matrix notation (tak) to denote the map Tw.
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Proposition 5.2. (1) Let w1, w2 ∈ W . Then w1 and w2 are conjugates if and only if they have the
same type.

(2) If w has type (tak), then the order of the centralizer of w in W is given by the formula∏
a∈A

∏
k∈�

(tak)!(kn)tak .

Proof. Both statements can be deduced from more general results proved in [Kerber 1971]. Specifically,
(1) follows from item 3.7 on page 44, and (2) follows from item 3.9 on page 47. �

5F. The action of W . In this section we prove various properties of the action of W on X . For elements
w = ( f, π) ∈W and α = (a, i) ∈ X , we will denote by w(α) the action of w on α. Thus,

w(α)= ( f (π(i))+ a, π(i)). (5-2)

Let Ci = A× {i} for 1 ≤ i ≤ r . Under the map ε defined in Section 5D, Ci corresponds to the i-th
cycle in the graph 0, i.e., the cycle containing ηi .

The base group Ar
≤W is generated by the elements ρ1, . . . , ρr defined by ρi = (δi , 1), where δi ( j)=0

if j 6= i and δi (i)= 1. Note that ρi maps Ci to itself and acts as the identity on C j if j 6= i . Viewed as an
element of Aut(0) (via the map ζ defined in Section 5D), ρi acts as a 1/n rotation on the i-th cycle. Let
ρ = ρ1 · · · ρr = (δ, 1), where δ(i)= 1 for all i ∈�. Then ζ(ρ)= φ, so ρ is in the center of W . A simple
calculation shows that for all s ∈ Z, a ∈ A, and i ∈� we have

ρs(a, i)= ρs
i (a, i)= (a+ s, i). (5-3)

For every w ∈W and every i ∈�, let w(Ci )= {w(α) | α ∈ Ci }.

Lemma 5.3. Let w = ( f, π) ∈W and let i ∈�.

(1) Letting j = π(i), we have w(Ci )= C j .

(2) If w(Ci )= Ci , then there exists 0≤ s < n such that w(α)= ρs
i (α) for every α ∈ Ci . Moreover, the

w-orbit of every element of Ci has cardinality n/ gcd(n, s).

Proof. For every element (a, i) ∈ Ci we have w(a, i) = ( f ( j)+ a, j) ∈ C j , so w(Ci ) ⊆ C j . Since
#Ci = #C j and w acts as a bijection on X , this implies that w(Ci )= C j , proving (1). Suppose now that
w(Ci )= Ci , and let 0≤ s < n be such that w(0, i)= (s, i). By (5-3) we have w(0, i)= ρs(0, i). Given
α ∈ Ci , we may write α in the form α = (k, i) = ρk(0, i) for some integer k. Using (5-3) and the fact
that w commutes with ρ we obtain

w(α)= wρk(0, i)= ρkw(0, i)= ρkρs(0, i)= ρsρk(0, i)= ρs(α)= ρs
i (α).

This proves the first statement in (2). Since w acts like ρs
i on Ci , the orbit of α under w is equal to its

orbit under ρs
i . The cyclic group generated by ρs

i has order n/ gcd(n, s), and it follows from (5-3) that
the stabilizer of α in this group is trivial; hence the orbit of α has cardinality n/ gcd(n, s). This completes
the proof of (2). �
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Lemma 5.4. Let w = ( f, π) ∈W . Suppose that i, j ∈ � are such that w(Ci ) = C j , w(C j ) = Ci , and
w2(α) = α for every α ∈ Ci ∪C j . Then there exists 0 ≤ s < n such that w(α) = ρ−s

i πρs
i (α) for every

α ∈ Ci ∪C j .

Proof. Let w(0, i)= (s, j) and w(0, j)= (t, i) with 0≤ s, t < n. From (5-3) and the fact that w commutes
with ρ it follows that for every integer k we have w(k, i) = (s + k, j) and w(k, j) = (t + k, i). Using
this we calculate w2(0, i)= w(s, j)= (t + s, i). Since w2(0, i)= (0, i), this implies that t =−s; thus,
for every integer k we have

w(k, i)= (k+ s, j) and w(k, j)= (k− s, i). (5-4)

Since w(Ci )=C j and w(C j )=Ci , Lemma 5.3 implies that π(i)= j and π( j)= i . It follows that for
every a ∈ A we have π(a, i)= (a, j) and π(a, j)= (a, i). Let w′ = ρ−s

i πρs
i . If α = (k, i) ∈ Ci , then a

simple calculation shows that w′(α)= (k+ s, j), so w′(α)=w(α) by (5-4). Similarly, if α= (k, j) ∈C j ,
then w′(α)= (k− s, i)= w(α). Therefore w(α)= ρ−s

i πρs
i (α) for every α ∈ Ci ∪C j . �

We can now prove the main result of this section.

Proposition 5.5. Let w ∈W and let C be the centralizer of w in W .

(1) Suppose that w has cycle type (2, D/2). Then the following hold:

(a) Assume that w(Ci ) 6= Ci for all i ∈ �. Then r is even, w is conjugate to the permutation
(1, 2)(3, 4) · · · (r − 1, r) ∈ Sr , and |C| = (r/2)!(2n)r/2.

(b) Assume w(Ci )= Ci for some i ∈�. Then n is even and there exists 0< `≤ r such that r − ` is
even and w is conjugate to the element (ρ1 · · · ρ`)

n/2ε, where ε= (`+1, `+2) · · · (r−1, r)∈ Sr .
Moreover, we have |C| = `!((r − `)/2)!n`(2n)(r−`)/2.

(2) Suppose that w has cycle type (2, n). Then the following hold:

(a) Assume w(Ci ) = Ci for all i ∈ �. Then n is even, there exist indices i < j ∈ � such that
w = (ρiρ j )

n/2, and |C| = 2(r − 2)!nr .
(b) Assume w(Ci ) 6= Ci for some i ∈�. Then there exist indices i < j ∈� and an integer 0≤ s < n

such that w = ρ−s
i τρs

i , where τ = (i, j) ∈ Sr . In this case, |C| = 2(r − 2)!nr−1.

(3) Suppose that w moves exactly n elements of X. Then w = ρs
i for some i ∈ � and some integer

0< s < n. Moreover, |C| = (r − 1)!nr .

Proof. Let f ∈ Ar and π ∈ Sr be such that w= ( f, π), and let (tak) be the type of w. We begin by proving
1(a). The hypothesis in (1) together with the fact that W acts faithfully on X imply that w2

= ( f + fπ , π2)

is the identity element (e, 1); in particular, π2
= 1. Moreover, by Lemma 5.3 we have w(Ci )= Cπ(i) for

every i ∈�, so π(i) 6= i for every i . Hence the π -orbit of every element of � has cardinality 2. It follows
that r is even, say r = 2m, and π is a product of m disjoint transpositions. We can now determine the
type of w.

Let {i1, π(i1)}, . . . , {im, π(im)} be the orbits of π . Since π has no k-cycles if k=1 or k>2, then tak=0
for all such k. When k = 2, tak is the number of indices 1≤ v ≤m such that f (iv)+ f (π(iv))= a. Since
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π2
= 1, this is equivalent to f (iv)+ fπ (iv)= a. Now, as mentioned above, w2

= ( f + fπ , π2)= (e, 1),
so f + fπ = e and therefore f (i)+ fπ (i)= 0 for every i ∈�. Hence, the condition f (iv)+ fπ (iv)= a is
equivalent to a = 0. Thus we have ta2 = 0 if a 6= 0, and t02 =m. This determines the type of w. It is now
trivial to check that w has the same type as the permutation τ = (1, 2)(3, 4) · · · (r − 1, r) ∈ Sr . It follows
from Proposition 5.2 that w is conjugate to τ and that |C| = m!(2n)m ; this completes the proof of 1(a).

Next we prove 1(b). Suppose that i ∈� satisfies w(Ci )= Ci . By Lemma 5.3, there exists 0≤ s < n
such that w acts like ρs

i on Ci , and the w-orbit of every element of Ci has cardinality n/ gcd(n, s). By
hypothesis every orbit has size 2, so n/ gcd(n, s)= 2, and hence n must be even and s = n/2.

Let i1, . . . , i` be all the indices i in � such that w(Ci ) = Ci . Clearly, 0 < ` ≤ r . Arguing as in the
proof of 1(a), we see that π fixes ik for each k, and that if i ∈� \ {i1, . . . , i`}, then the orbit of i under π
has size 2. This implies that r − ` is even, say r − `= 2q , and the disjoint cycle decomposition of π is a
product of ` 1-cycles and q transpositions. The type of w is now easy to determine as done in case 1(a).

Clearly, tak = 0 if k > 2. Let {i1}, . . . , {i`}, { j1, π( j1)}, . . . , { jq , π( jq)} be the orbits of π . Then
ta2 is the number of indices 1 ≤ v ≤ q such that f ( jv)+ fπ ( jv) = a. But f + fπ = e, so ta2 = 0 if
a 6= 0, and t02 = q. To determine ta1 we need an additional observation. We know that for every index
1 ≤ v ≤ `, w acts like ρs

iv on Civ . In particular, by (5-3) we have w(0, iv)= (s, iv). However, by (5-2),
w(0, iv) = ( f (iv), iv). Thus f (iv) = s for all v. Now, ta1 is the number of indices 1 ≤ v ≤ ` such that
f (iv)= a. Clearly then, ta1 = 0 if a 6= s and ts1 = `. This determines the type of w.

Proposition 5.2 yields

|C| = `!q!n`(2n)q .

Let w′ = (ρ1 · · · ρ`)
sε, where ε = (`+ 1,`+ 2) · · · (r − 1,r) ∈ Sr . A straightforward calculation shows

that w′ has the same type as w, and is therefore conjugate to w. This completes the proof of 1(b).
We now prove 2(a). If w acts nontrivially on m of the sets Ci , then the number of elements moved

by w is mn; hence m = 2, so w acts trivially on all but two of these sets, say Ci and C j with i < j . By
Lemma 5.3, there exist integers 0 < u, v < n such that w acts like ρu

i on Ci and like ρvj on C j . The
w-orbit of every element of Ci then has size n/ gcd(n, u) = 2, so n is even and u = n/2. Similarly,
v = n/2. Thus w acts like (ρiρ j )

n/2 on all of X , and therefore w = (ρiρ j )
n/2. Letting s = n/2, we have

w = (sδi + sδ j , 1); the type of w is now easily determined.
We have tak = 0 if k > 1, and ta1 is the number of indices k ∈� such that sδi (k)+ sδ j (k)= a. Now,

note that

sδi (k)+ sδ j (k)= 0, if k 6= i, j, and sδi (k)+ sδ j (k)= s, if k = i or j.

Hence ta1 = 0 if a /∈ {0, s}, ts1 = 2, and t01 = r − 2. Proposition 5.2 now yields |C| = 2(r − 2)!nr ; this
proves 2(a).

Next we prove 2(b). By Lemma 5.3 we have w(Ci )= C j for some j 6= i . Then w(C j ) must equal Ci ,
for otherwise w would move more than 2n elements of X . Thus w(Ci )= C j , w(C j )= Ci , and w acts
trivially on Ck for all k 6= i, j . It follows from Lemma 5.3 that π = (i, j). Reversing the roles of i and j if
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necessary, we may assume that i < j . By Lemma 5.4, there exists 0≤ s < n such that w(α)= ρ−s
i πρs

i (α)

for every α ∈ Ci ∪C j . Clearly, this equality also holds if α ∈ Ck with k /∈ {i, j}, so w = ρ−s
i πρs

i . We can
now determine the type of w.

Since w and π = (i, j) are conjugate, they have the same type. We thus find that tak = 0 if k> 2; ta2= 0
if a 6= 0, and t02 = 1; ta1 = 0 if a 6= 0, and t01 = r − 2. Proposition 5.2 now yields |C| = 2(r − 2)!nr−1;
this completes the proof of 2(b).

Finally, we prove (3). It is easy to see that the n elements moved by w must form one of the sets
Ci . This implies that w(Ci )= Ci and w acts trivially on C j for all j 6= i . By Lemma 5.3, there exists
0 < s < n such that w(α) = ρs

i (α) for every α ∈ Ci . This equality clearly holds for α /∈ Ci as well, so
w = ρs

i . Using the relation w = ρs
i = (sδi , 1), it is now a simple calculation to show that tak = 0 if k > 1,

ta1 = 0 if a /∈ {0, s}, ts1 = 1, and t01 = r − 1. Proposition 5.2 now yields |C| = (r − 1)!nr . �

Having developed all of the necessary tools, we proceed to prove the main results of this article.

6. Genus computations for n = 5 and 6

Recall the following notation from Section 4: K =Q(t), N/K is a splitting field of 8n , G =Gal(N/K ),
F is a subfield of N obtained by adjoining one root of 8n to K , and P= {p∞}∪

{
pb | b ∈

⋃
d | n Rn,d

}
is

the set of places of K that ramify in F . Finally, for any intermediate field L in the extension N/K and
any place p of K , PL(p) denotes the set of places of L lying over p.

We begin this section by discussing an approach to the problem of computing the genera of subextensions
of N/K . Let H be a subgroup of G with fixed field L , and let g(L) denote the genus of L . We claim
that if p is a place of K which ramifies in L , then p ∈ P. Indeed, if p ramifies in L , then it ramifies in N .
Letting P be a place of N lying over p, the inertia group IP | p is nontrivial, so Corollary 3.5 implies that
p ramifies in F . Hence p ∈ P.

The Hurwitz genus formula [Stichtenoth 2009, Corollary 3.5.6] now yields

2g(L)− 2= (−2)|G : H | +
∑
p∈P

∑
q∈PL (p)

(eq | p − 1). (6-1)

Let us define
gn,∞(H)=

∑
q∈PL (p∞)

(eq | p∞ − 1),

and for every divisor d of n,
gn,d(H)=

∑
b∈Rn,d

∑
q∈PL (pb)

(eq | pb − 1).

By (6-1) we have the following expression for the genus of L:

g(L)= 1− |G : H | + 1
2

(
gn,∞(H)+

∑
d | n

gn,d(H)
)
. (6-2)

The problem of computing g(L) is thus reduced to the following: given any place p ∈ P, compute the
ramification index eq | p for every q ∈ PL(p). Our method for doing this is based on the following lemma.
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Lemma 6.1. Let p ∈ P, P ∈ PN (p), and I = IP | p. Let σ1, . . . , σm be representatives of the distinct
double cosets in I\G/H. Then

{eq | p : q ∈ PL(p)} = {|I σi : I σi ∩ H | : 1≤ i ≤ m}.

Proof. Since K is a function field over Q, we have fP | p = 1 and therefore DP | p = IP | p = I . Using
Lemma 3.1 we see that the set PL(p) consists of the places σi (P)∩ L; moreover, if q= σi (P)∩ L , then
eq | p = |I σi : I σi ∩ H |. The result follows immediately. �

For purposes of explicit computation it is convenient to use the isomorphisms G ≡W ≡ Z proved in
Sections 5B–5D. With notation as in Lemma 6.1, suppose that one is able to identify the subgroup of W
(or Z) which corresponds to the inertia group I . It is then a finite computation to determine representatives
σ1, . . . , σm and to compute the indices |I σi : I σi ∩ H |. Carrying out this calculation for every p ∈ P, one
obtains all the data needed to determine the numbers gn,∞ and gn,d , and hence the genus of L .

The remainder of this section is devoted to showing that when n = 5 or 6 it is possible — and
computationally feasible — to identify inertia groups IP | p for every p ∈P, and thus to compute the genus
of any intermediate field in the extension N/K . In particular, this allows us to obtain the genera of the
fixed fields of all the maximal subgroup of G, and by applying Proposition 2.4, to show that the sets E5

and E6 are finite.
In order to carry out all the necessary computations we have used version 2.23-1 of MAGMA [Bosma

et al. 1997] running on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 GB of memory. The in-
terested reader can find the code for our computations in [Krumm 2018a]. The code relies primarily on four
intrinsic MAGMA functions: WreathProduct, MaximalSubgroups, DoubleCosetRepresentatives,
and meet. The first function applied to Z/nZ and Sr constructs the group W together with the natural
embeddings Sr ↪→W and (Z/nZ)r ↪→W . (It should be noted, however, that internally W is constructed
as the group Z .) Once W is constructed, the second function can be used to obtain the maximal subgroups
of W up to conjugacy; the algorithm used is described in [Cannon and Holt 2004]. Given subgroups I
and H of W , the third function computes representatives of the double cosets in I\W/H . Finally, the
fourth function can be used to compute the intersection of two subgroups of W; the algorithm uses a
backtrack method described in [Leon 1997].

Throughout this section we use the following notation. For 1≤ i ≤ r we let ρi be the element of W
defined in Section 5F. As an automorphism of the graph 0, ρi is a 1/n rotation of the i-th cycle. As
an element of the group Z, ρi is the i-th cycle in the decomposition of the permutation σ defined in
Section 5B. For distinct indices 1 ≤ i, j ≤ r we let τi, j be the transposition (i, j) ∈ Sr regarded as an
element of W . As an automorphism of 0, τi, j interchanges the i-th and j-th cycles without performing
any rotations.

Lemma 6.2. The elements ρ1, . . . , ρr are conjugate in W . Moreover, if i, j, u, v ∈ {1, . . . , r} with i 6= j
and u 6= v, then ρiρ j is conjugate to ρuρv.
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Proof. This follows from Proposition 5.2. The type (tak) of ρi is independent of i ; indeed, we have
tak = 0 if k > 1, ta1 = 0 if a 6= 0, 1, t01 = r − 1, and t11 = 1. Similarly, if i 6= j , then the type (tak) of
ρiρ j independent of i and j : we have tak = 0 if k > 1, ta1 = 0 if a 6= 0, 1, t01 = r − 2, and t11 = 2. �

6A. The case n = 5. The polynomial 85 has D = 2ν(5) = 30 roots which can be partitioned into
r = D/5 = 6 cycles. Hence, the graph 0 consists of six 5-cycles. The group W is (Z/5Z) o S6, so
|G| = 566! = 11,250,000. The set of places of K which ramify in F is

P= {p∞} ∪ {pb | b ∈ R5,5 ∪ R5,1};

using Lemma 4.1 we obtain #R5,5 = 11 and #R5,1 = 4. We will henceforth identify G and W using the
isomorphism G ≡W , where G acts on the roots of 85 and W acts on the set X = (Z/5Z)×{1, . . . , 6}.

We define three subgroups of W by A = 〈τ1,2τ3,4τ5,6〉, B = 〈τ1,2〉,C = 〈ρ1〉.

Lemma 6.3. Up to conjugation, A is the only subgroup of W generated by an element with cycle type
(2, 15); similarly, B is uniquely determined by the cycle type (2, 5), and C by the cycle type (5, 1).

Proof. Suppose that Ã is a subgroup of W generated by an element w with cycle type (2, 15). We are
then in the context of case 1 of Proposition 5.5. Moreover, since n = 5 is odd, case 1(b) is ruled out.
Hence, by case 1(a), w is conjugate to τ1,2τ3,4τ5,6, and therefore Ã is conjugate to A.

Now suppose that a subgroup B̃ is generated by an element w with cycle type (2, 5). By case 2(b) of
Proposition 5.5, w is conjugate to τi, j for some indices i, j . Clearly the permutations (i, j) and (1, 2) are
conjugates in S6, so τi, j is conjugate to τ1,2 and therefore B̃ is conjugate to B.

Finally, suppose that a subgroup C̃ is generated by an element w with cycle type (5, 1). By case 3
of Proposition 5.5, we have w = ρs

i for some i and 0< s < 5. Note that 〈ρs
i 〉 = 〈ρi 〉 since |ρi | = 5. By

Lemma 6.2, w is conjugate to ρs
1, and therefore C̃ = 〈w〉 is conjugate to 〈ρs

1〉 = 〈ρ1〉 = C . �

Lemma 6.4. (1) There exists P ∈ PN (p∞) such that IP | p∞ = A.

(2) For every b ∈ R5,5 there exists P ∈ PN (pb) such that IP | pb = B.

(3) For every b ∈ R5,1 there exists P ∈ PN (pb) such that IP | pb = C.

Proof. Let P ∈ PN (p∞). By Proposition 4.3 we have IP | p∞ = 〈w〉, where w ∈W has cycle type (2, 15).
Thus, by Lemma 6.3, IP | p∞ is conjugate to A. Replacing P by a conjugate place if necessary, we then
have IP | p∞ = A. This proves (1); the proofs of (2) and (3) are similar. �

Proposition 6.5. Let H be a subgroup of W with fixed field L. Suppose that α1, . . . , αt are double
coset representatives for A\W/H , β1, . . . , βu are representatives for B\W/H , and γ1, . . . , γv are
representatives for C\W/H. Then the genus of L is given by

g(L)= 1− |W : H | + 1
2(g5,∞(H)+ g5,5(H)+ g5,1(H)),
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where

g5,∞(H)=
t∑

i=1

(|Aαi : Aαi ∩ H | − 1), (6-3)

g5,5(H)= 11 ·
u∑

i=1

(|Bβi : Bβi ∩ H | − 1), (6-4)

g5,1(H)= 4 ·
v∑

i=1

(|Cγi : Cγi ∩ H | − 1). (6-5)

Proof. The formula for g(L) follows from (6-2). Let p = p∞. By Lemma 6.4, there exists P ∈ PN (p)
such that IP | p = A. By Lemma 6.1 we have

{eq | p : q ∈ PL(p)} = {|Aαi : Aαi ∩ H | : 1≤ i ≤ t},

which implies (6-3). Now suppose that b ∈ R5,5 and let p = pb. By Lemma 6.4, there exists P ∈ PN (p)
such that IP | p = B. Thus, by Lemma 6.1,

{eq | p : q ∈ PL(p)} = {|Bβi : Bβi ∩ H | : 1≤ i ≤ u},

and therefore ∑
q∈PL (p)

(eq | p − 1)=
u∑

i=1

(|Bβi : Bβi ∩ H | − 1).

Since the value of this sum is independent of b, and #R5,5 = 11, then

g5,5(H)=
∑

b∈R5,5

∑
q∈PL (pb)

(eq | pb − 1)= 11 ·
u∑

i=1

(|Bβi : Bβi ∩ H | − 1),

which proves (6-4). The proof of (6-5) is similar. �

We can now begin to prove Theorem 1.4.

Theorem 6.6. The set E5 is finite.

Proof. Computing representatives for the conjugacy classes of maximal subgroups of W , we obtain 8 sub-
groups which we denote by M1, . . . ,M8. The indices of these subgroups in W are given, respectively, by

|W : Mi | : 3125, 15, 15, 10, 6, 6, 5, 2.

Let L i be the fixed field of Mi . Fixing an index i , we may compute representatives for the double cosets in
A\W/Mi , B\W/Mi , and C\W/Mi . The genus of L i can then be obtained by applying Proposition 6.5.
Carrying out these computations for i = 1, . . . , 8 we obtain, respectively, the genera

9526, 21, 11, 9, 2, 12, 4, 5.
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M1 M2 M3 M4 M5 M6 M7 M8

g5,∞ 1550 4 6 3 3 1 0 1
g5,5 13750 66 44 33 11 33 0 11
g5,1 10000 0 0 0 0 0 16 0

Table 1. Ramification data for the maximal subgroups of W .

The result now follows from Proposition 2.4. The values of g5,∞(Mi ), g5,5(Mi ), and g5,1(Mi ) are shown
in Table 1. �

6B. The case n = 6. Our next objective is to show that the set E6 is finite. The structure of the proof
is similar to the case n = 5, though the process of identifying the necessary inertia groups requires an
additional step that was not present in that case.

The polynomial86 has D= 2ν(6)= 54 roots which can be partitioned into r = D/6= 9 cycles. Hence,
the graph 0 consists of nine 6-cycles. The group W is (Z/6Z) o S9, so |G| = 699! = 3,656,994,324,480.
The set of places of K which ramify in F is P = {p∞} ∪

{
pb | b ∈

⋃
d | 6 R6,d

}
. Using Lemma 4.1 we

find that
#R6,6 = 20, #R6,3 = 3, #R6,2 = 2, #R6,1 = 2. (6-6)

We define several cyclic subgroups of W . For 0≤ j ≤ 4, let

γ j =

(9−2 j∏
i=1

ρ3
i

)( j−1∏
i=0

τ8−2i,9−2i

)
and A j = 〈γ j 〉.

In addition, let B0 = 〈ρ
3
1ρ

3
2〉, B1 = 〈τ1,2〉, C = 〈ρ3

1〉, D = 〈ρ2
1〉, E = 〈ρ1〉.

Lemma 6.7. Up to conjugation, the groups A j are the only subgroups of W generated by an element
with cycle type (2, 27), B0 and B1 are the only subgroups generated by an element with cycle type (2, 6),
and C, D, E are uniquely determined by the cycle types (2, 3), (3, 2), and (6, 1), respectively.

Proof. Suppose that Ã= 〈w〉, where w ∈W has cycle type (2, 27). We are then in the context of case 1 of
Proposition 5.5. Moreover, since r = 9 is odd, case 1(b) must hold. Thus, there exists 0< `≤ 9 such that
9− ` is even and w is conjugate to v = (ρ1 · · · ρ`)

3(τ`+1,`+2) · · · τ8,9. Writing 9− `= 2 j with 0≤ j ≤ 4,
we have v = γ j . Hence, Ã is conjugate to A j .

Suppose now that B̃ = 〈w〉, where w ∈W has cycle type (2, 6). We are then in the context of case 2 of
Proposition 5.5. In case 2(a) of the proposition, w = (ρiρ j )

3 for some indices i 6= j . By Lemma 6.2, this
implies that w is conjugate to (ρ1ρ2)

3, and therefore B̃ is conjugate to B0. In case 2(b) of the proposition,
w is conjugate to τ1,2 and B̃ is conjugate to B1.

We now prove the uniqueness of the group C and omit the proofs for D and E , which are similar.
Suppose that C̃ = 〈w〉, where w ∈W has cycle type (2, 3). By case (3) of Proposition 5.5, we have
w = ρs

i with 1≤ i ≤ 9 and 0< s < 6. In order for w to have cycle type (2, 3) we must have s = 3; thus,
by Lemma 6.2, w is conjugate to ρ3

1 and C̃ is conjugate to C . �
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Before continuing with the main discussion of this section, we prove a couple of auxiliary results.
Returning to the general case of an arbitrary positive integer n, let θ be a root of 8n such that F = K (θ).
Recall from Section 4 that F has an automorphism given by θ 7→ φ(θ), and that F0 denotes the fixed
field of this automorphism.

Lemma 6.8. Let τ = θ +φ(θ)+ · · ·+φn−1(θ). Then F0 = K (τ ).

Proof. Following Morton [1996], we define the trace of a cycle in the graph 0 to be the sum of the elements
in the cycle. Note that τ is the trace of the cycle containing θ . Let P ∈ K [x] be the monic polynomial of
degree r whose roots are the traces of all the cycles in 0. By [Morton 1996, Corollary 3, p. 335], P is
irreducible; hence P is the minimal polynomial of τ , and therefore [K (τ ) : K ] = r . Clearly τ is fixed
by φ, so K (τ )⊆ F0. Now, since [F : K ] = D and [F : F0] = n, then [F0 : K ] = D/n = r = [K (τ ) : K ].
Thus F0 = K (τ ). �

We can now describe the subgroup of G corresponding to F0.

Lemma 6.9. Let O = {θ, φ(θ), . . . , φn−1(θ)} and let H0 be the setwise stabilizer of O in G. Then F0 is
the fixed field of H0.

Proof. Let U and V be the subgroups of G defined by

U = {σ ∈ G | σ(x)= x for every x ∈O} and V = {σ ∈ G | σ(x)= x for every x ∈ R \O}.

A simple argument shows that H0 =U V ; see Example 2 in [Dummit and Foote 2004, p. 172].
The fact that φ is in the center of G implies that U is equal to the stabilizer of θ in G; thus U=Gal(N/F).

It follows that F is the fixed field of U . Let L be the fixed field of H0. Since U ≤ H0, then L ⊆ F .
Defining τ as in Lemma 6.8, it is clear that τ is fixed by every element of H0; hence F0 = K (τ )⊆ L . We
have thus shown that F0 ⊆ L ⊆ F . To complete the proof we will show that [F : L] = [F : F0].

Identifying G with Aut(0) we see that V consists of the elements of G that act trivially on every cycle
of 0 except possibly on the cycle containing θ . Thus the elements of V are the n rotations of the latter
cycle, so |V | = n. By Galois theory we have [F : L] = |U V |/|U | = |V |, where the second equality uses
the fact that U ∩ V = {1}. We conclude that [F : L] = n = [F : F0]. �

We return now to the case n = 6.

Lemma 6.10. (1) There exists P ∈ PN (p∞) such that IP | p∞ = A4.

(2) For every b ∈ R6,6 there exists P ∈ PN (pb) such that IP | pb = B1.

(3) For every b ∈ R6,3 there exists P ∈ PN (pb) such that IP | pb = C.

(4) For every b ∈ R6,2 there exists P ∈ PN (pb) such that IP | pb = D.

(5) For every b ∈ R6,1 there exists P ∈ PN (pb) such that IP | pb = E.

Proof. Let p = p∞, P ∈ PN (p), and I = IP | p. By Proposition 4.3, I has a generator with cycle type
(2, 27). By Lemma 6.7, I must be conjugate to one of the groups A j . Replacing P by a conjugate ideal
if necessary, we then have I = A j for some j . We claim that I = A4.
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To prove this we will use the number S(p) defined in Proposition 4.4. By part (a) of the proposition,
S(p)= 9− e6 = 4. We can calculate S(p) in a different way by using the inertia group I as follows. Let
H0 be the subgroup of W defined in Lemma 6.9. Applying Lemma 6.1 we see that

S(p)=
m∑

i=1

(|I σi : I σi ∩ H0| − 1),

where σ1, . . . , σm are double coset representatives for I\W/H0. Assuming that I = A0, A1, A2, A3, A4,
respectively, we compute representatives σi and use the above formula to obtain S(p) = 0, 1, 2, 3, 4.
However, we know that S(p)= 4, so necessarily I = A4, as claimed. This proves (1). For the purposes
of this computation, we identify W with the group Z ≤ S54, so that H0 is identified with the setwise
stabilizer of the set {1, . . . , 6} in Z . The code used for these computations is available in [Krumm 2018a].

Let b ∈ R6,6, p = pb, P ∈ PN (p), and I = IP | p. By Proposition 4.3, I has a generator with cycle
type (2, 6). By Lemma 6.7, I must be conjugate to either B0 or B1. Replacing P by a conjugate ideal
if necessary, we then have I = B0 or B1. We know that S(p)= 1 by part (b) of Proposition 4.4. Now,
assuming that I = B0, B1, respectively, the above displayed formula yields S(p)= 0, 1; hence I = B1.
This proves (2).

Statements (3)-(5) follow easily from Proposition 4.3 and Lemma 6.7. �

Proposition 6.11. Let H be a subgroup of W with fixed field L. For every group I ∈ {A4, B1,C, D, E}
let

qH (I )=
m∑

i=1

(|I σi : I σi ∩ H | − 1),

where σ1, . . . , σm are representatives of all the double cosets in I\W/H. Then the genus of L is given by

g(L)= 1− |W : H | + 1
2(qH (A4)+ 20qH (B1)+ 3qH (C)+ 2qH (D)+ 2qH (E)).

Proof. Let p = p∞. By Lemma 6.10, there exists P ∈ PN (p) such that IP | p = A4. Using Lemma 6.1
we see that g6,∞(H) = qH (A4). Now let b ∈ R6,6, p = pb, and let P ∈ PN (p) satisfy IP | p = B1. By
Lemma 6.1,

qH (B1)=
∑

q∈PL (p)

(eq | p − 1).

Since this holds for every b ∈ R6,6, then (6-6) yields g6,6(H) = 20qH (B1). By a similar argument we
show that

g6,3(H)= 3qH (C), g6,2(H)= 2qH (D), and g6,1(H)= 2qH (E).

The stated formula for the genus of L is now a consequence of (6-1). �

We can now prove a second part of Theorem 1.4.

Theorem 6.12. The set E6 is finite.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

qMi (A4) 416 132 120 60 40 16 4 0 1 0 1
qMi (B1) 420 105 64 35 21 7 1 0 1 1 0
qMi (C) 0 0 128 0 0 0 0 0 1 0 1
qMi (D) 0 0 0 0 0 0 0 2 0 0 0
qMi (E) 0 0 128 0 0 0 0 2 1 0 1

Table 2. Ramification data for the maximal subgroups of W .

Proof. Computing representatives for the conjugacy classes of maximal subgroups of W , we obtain 11 sub-
groups which we denote by M1, . . . ,M11. The indices of these subgroups in W are given, respectively, by

|W : Mi | : 840, 280, 256, 126, 84, 36, 9, 3, 2, 2, 2.

Let L i be the fixed field of Mi . Fixing an index i , we may compute the numbers qMi (I ) for I ∈
{A4, B1,C, D, E}. The genus of L i can then be obtained by applying Proposition 6.11. Carrying out
these computations for i = 1, . . . , 11 we obtain, respectively, the genera

3569, 837, 765, 255, 147, 43, 4, 2, 12, 9, 2.

By Proposition 2.4, this implies that E6 is finite. The values of qMi (I ) are shown in Table 2. �

7. Genus bounds for n > 6

The methods used in the previous section for n = 5 and 6 can, in principle, be applied to higher values
of n; however, there are computational limitations which make this impractical. Firstly, for n > 10 there
are issues of both memory and time which prevent us from computing the maximal subgroups of W .
Thus, we are restricted to considering only n = 7, 8, 9, 10. Furthermore, even for these values of n there
are similar complications in the crucial step of computing double coset representatives. Hence, it would
appear that our methods cannot be extended beyond n = 6. However, a modification of the method will
allow us to show that E7 and E9 are finite.

Recall that our main goal is to show that the genera of the function fields corresponding to maximal
subgroups of G are all greater than 1. In the cases n = 5, 6 we did this by calculating the exact values
of these genera, although it would be sufficient to prove a lower bound greater than 1. In this section
we will show that, as long as the maximal subgroups of W can be computed, it is possible to obtain
lower bounds for the required genera. In the cases n = 7, 9 these bounds will suffice to prove the desired
result. Unfortunately, the bounds are not good enough when n = 8, 10; the difficulties are explained in
Section 7B. We keep here all of the notation introduced in earlier sections.

Lemma 7.1. Let H be a subgroup of G with fixed field L , and a = |G : H |. Let p be a place of K , let
{q1, . . . , qs} = PL(p), and ei = eqi | p. Suppose that u is an upper bound for the number of indices i such
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that ei = 1. Then
s∑

i=1

(ei − 1)≥
⌈

a−b(u+ a)/2c
⌉
.

Proof. Let x be the number of indices i such that ei =1, and let y= s−x . Note that a=e1+· · ·+es≥ x+2y.
Since x ≤ u, this implies x + y ≤ (u+ a)/2. Thus s ≤ b(u+ a)/2c and therefore

s∑
i=1

(ei − 1)= a− s ≥ a−b(u+ a)/2c,

from which the result follows immediately. �

7A. The case of odd n. Assume that n is odd. Using Lemma 7.1, we now explain how to obtain lower
bounds for the genera of subextensions of N/K . Define subsets 2n and 3n of W by

2n = {ρ
s
i | 1≤ i ≤ r, 0< s < n}, and 3n = {ρ

−s
i τi, jρ

s
i | 1≤ i < j ≤ r, 0≤ s < n}.

For every subgroup H of W and every divisor d of n, let

un,d(H)=
{
(r − 1)!nr #(H ∩2n,d)/|H | if d < n,
2(r − 2)!nr−1#(H ∩3n)/|H | if d = n,

and

g′n,d(H)= (deg1n,d)

⌈
|W : H | −

⌊un,d(H)+ |W : H |
2

⌋⌉
.

Here, 2n,d denotes the set of elements of 2n having cycle type (n/d, d).

Proposition 7.2. With notation as above, let L be the fixed field of H. Then the genus of L satisfies

g(L)≥
⌈

1− |W : H | + 1
2

∑
d | n

max(g′n,d(H), 0)
⌉
. (7-1)

Proof. Let d be a proper divisor of n, and let b ∈ Rn,d . If P is a place of N lying over pb, Proposition 4.3
implies that the inertia group IP | pb is generated by an element γ with cycle type (n/d, d). By part (3) of
Proposition 5.5, we have γ = ρs

i with 1≤ i ≤ r and 0< s < n. Moreover, the order of the centralizer of
γ is given by |CW(γ )| = (r − 1)!nr . Thus, by Corollary 3.5, the number of places q ∈ PL(pb) such that
eq | pb = 1 is equal to

(r − 1)!nr s(H, γ )/|H |,

where s(H, γ ) is the number of conjugates of γ which belong to H . Note that every conjugate of γ
belongs to 2n,d , so that s(H, γ )≤ #(H ∩2n,d). It follows that the number of places q ∈ PL(pb) such
that eq | pb = 1 is bounded above by un,d(H). Letting a = |W : H |, Lemma 7.1 implies that∑

q∈PL (pb)

(eq | pb − 1)≥
⌈

a−b(un,d(H)+ a)/2c
⌉
.
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Recalling the number gn,d(H) defined in Section 6, the above inequality implies that gn,d(H)≥ g′n,d(H)
and therefore gn,d(H)≥max(g′n,d(H), 0).

By a similar argument we can show that gn,n(H)≥max(g′n,n(H), 0). Let b ∈ Rn,n and P ∈ PN (pb).
Then IP | pb = 〈γ 〉, where γ has cycle type (2, n). Since n is odd, part 2(b) of Proposition 5.5 implies that
γ = ρ−s

i τi, jρ
s
i for some 1≤ i < j ≤ r and 0≤ s < n. Moreover, |CW(γ )| = 2(r − 2)!nr−1. The number

of places q ∈ PL(pb) such that eq | pb = 1 is therefore given by

2(r − 2)!nr−1s(H, γ )/|H |.

Now, every conjugate of γ belongs to 3n , so s(H, γ )≤ #(H ∩3n). The number of places q ∈ PL(pb)

with eq | pb = 1 is thus bounded above by un,n . Letting a = |W : H |, we have∑
q∈PL (pb)

(eq | pb − 1)≥
⌈

a−b(un,n(H)+ a)/2c
⌉
,

which implies that gn,n(H)≥ g′n,n(H). We have thus proved:

gn,d(H)≥max(g′n,d(H), 0), for every divisor d of n.

Now (7-1) follows from the genus formula (6-2). �

Remark 7.3. Note that in proving the bound (7-1) we have disregarded the contribution to the genus
coming from ramified places lying over p∞. Though the bound would certainly be improved if these
places were considered, doing so would substantially increase the amount of time and memory required
to compute the bound. In particular, it would require determining the intersection H ∩C , where C is the
set of all conjugates in W of the permutation (1, 2)(3, 4) · · · (r − 1, r). Now, part 1(a) of Proposition 5.5
implies that #C = (nrr !)/((r/2)!(2n)r/2) ≥ nr/2, which suggests that C might be difficult to construct
in practice. And indeed, our attempts to compute all the elements of C in the case n = 7 failed due to
excessive memory requirements.

Remark 7.4. In order to compute the number on the right-hand side of (7-1), the key step is to determine
the cardinalities of the sets H ∩2n,d and H ∩3n , which would be difficult to do if all the sets involved
were quite large. Fortunately, while the group H may be extremely large (for instance, H might be the
largest maximal subgroup of the Galois group of 89, in which case |H | ≈ 9.73× 10127), the sets 3n

and 2n,d are small. Indeed, #2n,d ≤ #2n = r(n− 1) and #3n = n ·
(r

2

)
. This makes it computationally

feasible to construct the sets H ∩3n and H ∩2n,d , and hence to compute the desired lower bound.

We can now complete the proof of Theorem 1.4. The finiteness of E7 and E9 is proved by a series of com-
putations carried out using MAGMA; the code used for these computations is available in [Krumm 2018a].

Theorem 7.5. The sets E7 and E9 are finite.

Proof. We consider first the case of E7. The polynomial 87 has D = 126 roots which can be partitioned
into r = 18 cycles. Thus, W = (Z/7Z) o S18. Constructing the group W and computing representatives for
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the conjugacy classes of maximal subgroups of W , we obtain 16 groups which we denote by M1, . . . ,M16.
The sets 27 and 37 are easily constructed; we find that #27 = 108 and #37 = 1071.

Let L i denote the fixed field of Mi . For each subgroup Mi we compute the numbers u7,7(Mi ) and
u7,1(Mi ), and use these to calculate g′7,7(Mi ) and g′7,1(Mi ). This is a trivial computation given the small
size of the sets 27 and 37. The inequality (7-1) then yields a lower bound for g(L i ).

Carrying out these calculations, the lowest lower bound we obtain for the genera g(L i ) is 6; hence
g(L i ) > 1 for every i , which implies that E7 is finite. The total time required for all of the above
computations is 0.42 s.

The proof of finiteness of E9 follows the same steps as above. In this case the lowest lower bound we
obtain for g(L i ) is 4. Total computation time is 197 s, with 179 s spent computing the maximal subgroups
of W . �

7B. The case of even n. In the case where n is even, a bound similar to (7-1) can be proved; indeed,
this only requires modifying the definition of the number un,n(H). Unfortunately, when n = 8 or 10 the
bounds for the genera g(L i ) obtained in this way are not greater than 1; in fact many of them are negative.
We suspect, therefore, that most of the ramification in the extensions L i/K occurs over the place p∞. In
order to improve the bounds for g(L i ) we would have to determine the genus contribution coming from
places lying over p∞. However, as discussed in Remark 7.3, it is computationally infeasible to do this.
Thus, we are unable to improve the bounds enough to show that E8 and E10 are finite.

8. Density results

Having proved Theorem 1.4, we now turn our attention to Theorem 1.5. Recall that if n is a positive
integer and c ∈Q, we denote by Tn,c the set of prime numbers p such that the map φc(x)= x2

+ c does
not have a point of period n in Qp. By applying Lemma 8.1 below we will be able to calculate the density
of Tn,c for n ∈ {5, 6, 7, 9} and all but finitely many c ∈Q.

For every polynomial F ∈Q[x], let SF be the set of all primes p such that F has a root in Qp. The
Chebotarev density theorem implies that the density of SF , which we denote by δ(SF ), exists and can be
computed if the Galois group of F is known. More precisely, we have the following result.

Lemma 8.1. Let F ∈Q[x] be a separable polynomial of degree D ≥ 1. Let S be a splitting field for F ,
and set G = Gal(S/Q). Let α1, . . . , αD be the roots of F in S and, for each index i , let Gi denote the
stabilizer of αi under the action of G. Then the Dirichlet density of SF is given by

δ(SF )=

∣∣⋃D
i=1 Gi

∣∣
|G|

. (8-1)

Proof. This follows from Theorem 2.1 in [Krumm 2016]. �

Note that for the purpose of computing δ(SF ) using the formula (8-1), the group G may be replaced
with any permutation group G such that G ≡ G. Fixing a positive integer n, let Gn be the Galois group of
8n over Q(t) and let G = Aut(0), where 0 is the graph defined in Section 5A. Recall that Gn ≡ G.
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Lemma 8.2. Let M be the set of all elements of G having no fixed point. The cardinality of M is given
by the formula

#M=
r∑

i=0

(n− 1)i · nr−i
· d(r, i),

where

d(r, i)=
(r

i

)
(r − i)!

r−i∑
k=0

(−1)k

k!
.

Proof. The number d(r, i) counts the permutations in Sr which fix exactly i elements of the set {1, . . . , r}.
The above formula for d(r, i) is proved by an inclusion-exclusion argument; see Example 2.2.1 in [Stanley
2012].

For 0 ≤ i ≤ r , let Mi be the set of elements of M which fix exactly i cycles of 0. Clearly M is a
disjoint union of the sets Mi , so in order to prove the lemma it suffices to show that

#Mi = (n− 1)i · nr−i
· d(r, i).

Recall that every element σ ∈ G has a unique representation of the form ρ
a1
1 · · · ρ

ar
r π , where π ∈ Sr

describes the action of σ on the set of cycles of 0, ρk represents a (1/n) rotation on the k-th cycle, and
0≤ ak < n.

Let 0≤ i ≤ r . Then an element σ ∈ G represented as above belongs to Mi if and only if there exist
indices k1, . . . , ki ∈ {1, . . . , r} such that π fixes k1, . . . , ki and has no other fixed points; and ak j > 0 for
j = 1, . . . , i . In constructing elements of Mi we therefore have d(r, i) choices for π , n−1 choices for the
exponents ak j , and n choices for the remaining r−i exponents. It follows that #Mi = (n−1)i ·nr−i

·d(r, i),
as required. �

Proof of Theorem 1.5. Let 1(t) be the discriminant of 8n and let

E = {c ∈Q |1(c)= 0} ∪ E5 ∪ E6 ∪ E7 ∪ E9.

By the results of Sections 6 and 7, E is a finite set. Fix n ∈ {5, 6, 7, 9} and c ∈Q \ E . Since c /∈ En , we
have Gn,c ∼= Gn . This implies that Gn,c ≡ Gn , where Gn,c acts on the roots of 8n(c, x). Indeed, since
1(c) 6= 0, there is a subgroup H of Gn such that Gn,c≡ H (see Theorem 2.9 in [Lang 2002, Chapter VII]).
By order considerations, H must be equal to Gn .

Let Sn,c be the set of primes p such that 8n(c, x) has a root in Qp. The fact that 1(c) 6= 0 implies that
Sn,c is the complement of Tn,c. Indeed, every root of 8n(c, x) has period n under φc; see Theorem 2.4(c)
in [Morton and Patel 1994].

Since Gn,c ≡ Gn ≡ G, Lemma 8.1 applied to F(x)=8n(c, x) yields

δ(Sn,c)=

∣∣⋃
α∈0 Gα

∣∣
|G|

,
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where Gα is the stabilizer of α in G. It follows that δ(Tn,c) = (#M)/|G|, where M is defined as in
Lemma 8.2. Using this lemma we obtain

δ(T5,c)=
9210721

6!56 ≈ 0.8187,

δ(T6,c)=
3095578863701

9!69 ≈ 0.8465,

δ(T7,c)≈ 0.8669,

δ(T9,c)≈ 0.8948.

This completes the proof of the theorem. �

9. The exceptional sets En

We end this article with a brief discussion concerning the elements of the sets En . Recall the following
notation introduced in Section 2: S is a splitting field of 8n over Q(t), Gn = Gal(S/Q(t)), M1, . . . ,Ms

are representatives of the conjugacy classes of maximal subgroups of Gn , and X is the smooth projective
curve with function field S.

Our approach to proving the finiteness of En for n > 4 is based on Lemma 2.1, which shows that En

is finite if every quotient curve X/Mi has genus greater than 1. The proof of the lemma suggests that we
may determine the elements of En by finding a certain finite set E and determining all the rational points
on the curves X/Mi . The set E as well as affine models for these curves can be obtained using the methods
of the article [Krumm and Sutherland 2017]; however, the rational points on X/Mi seem impossible to
determine due to the large genera of the curves. (For instance, when n = 5 one of the curves has genus
9526, as seen in the proof of Theorem 6.6.) Hence, the problem of explicitly determining En seems
intractable at present. Nevertheless, it is possible to prove some basic results about the elements of En .

Proposition 9.1. For every positive integer n we have {0,−2} ⊆ En .

Proof. For every c ∈Q, the polynomial 8n(c, x) divides φn
c (x)− x , where φc(x)= x2

+ c. In particular,
8n(0, x) divides x2n

− x , which implies that 8n(0, x) splits over a cyclotomic field. It follows that the
Galois group Gn,0 is abelian, hence not isomorphic to Gn , since Gn ∼= (Z/nZ) o Sr . Thus 0 ∈ En .

For c =−2 the polynomial φc is a Chebyshev polynomial satisfying

φc(x + 1/x)= x2
+ 1/x2.

We claim that the polynomial 8n(−2, x) splits over the cyclotomic field Q(ζ ), where ζ is a primitive
(22n
− 1)-th root of unity; as above, this will imply that −2 ∈ En . Suppose that α ∈ Q is a root of

8n(−2, x), and let β ∈ Q satisfy β + 1/β = α. Then β2n
+ 1/β2n

= β + 1/β, which implies that
(β2n

+1
−1)(β2n

−1
−1)= 0 and hence β22n

−1
= 1. Thus β, and therefore α, belongs to Q(ζ ). This proves

the claim. �

Given a positive integer n for which En is finite, one can attempt to find all the elements of En by
carrying out an exhaustive search within specified height bounds. Recall that the height of a rational
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number a
b with gcd(a, b) = 1 is given by max(|a|, |b|). Fixing a height bound h, it a straightforward

procedure to construct the set B(h) of all rational numbers having height at most h. One can then
construct all the polynomials 8n(c, x) for c ∈ B(h), compute their Galois groups Gn,c (for instance,
using the algorithm of Fieker and Klüners [2014], which is implemented in MAGMA), and check whether
Gn,c ∼= (Z/nZ) o Sr . The cost of carrying out this computation grows quickly with n, given the large
degree of 8n . For n = 7 the degree of 8n is 126, and the above computation is very slow even for small
height bounds h. However, for n = 5 and 6 we have the following result.

Proposition 9.2. Let B(h) denote the set of all rational numbers with height at most h. Then

E5 ∩ B(50)=
{
−2,− 16

9 ,−
3
2 ,−

4
3 ,−

5
8 , 0

}
and E6 ∩ B(20)= {−4,−2, 0}.
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