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Surjectivity of Galois representations in
rational families of abelian varieties

Aaron Landesman, Ashvin A. Swaminathan, James Tao and Yujie Xu
Appendix by Davide Lombardo

In this article, we show that for any nonisotrivial family of abelian varieties over a rational base with big
monodromy, those members that have adelic Galois representation with image as large as possible form
a density-1 subset. Our results can be applied to a number of interesting families of abelian varieties,
such as rational families dominating the moduli of Jacobians of hyperelliptic curves, trigonal curves, or
plane curves. As a consequence, we prove that for any dimension g ≥ 3, there are infinitely many abelian
varieties over Q with adelic Galois representation having image equal to all of GSp2g(Ẑ).

1. Introduction and statement of results

1A. Background. One of the most significant breakthroughs in the theory of Galois representations came
in 1972, when Serre proved the open image theorem for elliptic curves in his seminal paper [Serre 1972].
Serre’s theorem states that for any elliptic curve E over a number field K without complex multiplication,
the image of the associated adelic Galois representation ρE is an open subgroup of the general symplectic
group GSp2(Ẑ).

1 The Open Image Theorem not only gives rise to many important corollaries — from
the simple consequence that the image of ρE has finite index in GSp2(Ẑ), to the intriguing result that the
density of supersingular primes of E is 0 — but recently, within the past two decades, the theorem has
also inspired a body of research concerning the following question:

Question. How large can the image of the adelic Galois representation associated to an elliptic curve be,
and how often do elliptic curves attain this largest possible Galois image?

The first major result addressing the above question was achieved by Duke [1997]. He proved that for
“most” elliptic curves E over Q in the standard family with Weierstrass equation y2

= x3
+ ax + b, the

image of the mod-` reduction of ρE is all of GSp2(Z/`Z) for every prime number `; here and in what
follows, “most” means a density-1 subset of curves ordered by naïve height. Duke’s result does not imply,
however, that ρE surjects onto GSp2(Ẑ) for most E . In fact, as Serre [1972] observes, the image of ρE

has index divisible by 2 in GSp2(Ẑ) for every elliptic curve E/Q. Nonetheless, Jones [2010, Theorem 4]

MSC2010: primary 11F80; secondary 11G10, 11G30, 11N36, 11R32, 12E25.
Keywords: Galois representation, abelian variety, étale fundamental group, large sieve, big monodromy, Hilbert irreducibility

theorem.
1Recall that GSp2(Ẑ)= GL2(Ẑ); here, we prefer to use the less common symplectic notation so as to highlight the analogy

between the elliptic curve case and that of higher dimensional abelian varieties.
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proves that most elliptic curves E in the standard family over Q have adelic Galois representations with
image as large as possible (i.e., with index 2 in GSp2(Ẑ)).

The obstruction to having surjective adelic Galois representation faced by elliptic curves over Q does
not occur over other number fields. Greicius [2010, Theorem 1.5] constructed the first explicit example
of an elliptic curve over a number field with Galois image equal to all of GSp2(Ẑ). Greicius’ example is
not the only elliptic curve with this property: Zywina [2010a, Theorem 1.2] employs the above result of
Jones to show that most elliptic curves in the standard family over a number field K 6=Q have Galois
image equal to all of GSp2(Ẑ) as long as K ∩Qcyc

=Q, where Qcyc is the maximal cyclotomic extension
of Q. Subsequently, Zywina [2010b, Theorem 1.15] achieves an intriguing generalization of this result:
using a variant of Hilbert’s irreducibility theorem, he shows that most members of every nonisotrivial
rational family of elliptic curves over any number field have Galois image as large as possible given the
constraints imposed by the arithmetic and geometric properties of the family. Further results over Q were
obtained in [Grant 2000; Cojocaru and Hall 2005; Cojocaru et al. 2011] (see [Zywina 2010b, p. 6] for a
more detailed overview).

Given that the above question is so well-studied in the context of elliptic curves, it is natural to ask
whether any of the aforementioned theorems extend to abelian varieties of higher dimension. As it
happens, explicit examples of curves whose Jacobians have maximal Galois image have been constructed:
it follows from the results of [Dieulefait 2002; Zywina 2015] that one can algorithmically write down
equations of abelian surfaces and three-folds over Q with Galois image as large as possible. Moreover,
there are several results showing that in a family of abelian varieties, “most” fibers lying over closed
points of the base have Galois image with finite index in the Galois image of the family. For instance,
in [Cadoret 2015] (see also [Cadoret and Moonen 2018]), the author shows that the set of fibers lying
over K-points of the base for which the associated Galois image does not have finite index in that of the
family is a thin set. Furthermore, in [Cadoret and Tamagawa 2012; 2013], the authors show that when
the base of the family is a curve, the set of fibers lying over K-points of the base (and more generally
closed points of bounded degree) for which the associated Galois image does not have finite index in
that of the family is a finite set. However, we are not aware of any results in the literature describing the
density of higher-dimensional abelian varieties whose adelic Galois representations have maximal image
(as opposed to merely having finite index) in that of the family.

1B. Main result. The primary objective of this article is to prove that an analogue of Zywina’s result for
rational families of elliptic curves in [Zywina 2010b, Theorem 1.15] holds for abelian varieties of arbitrary
dimension, subject to a mild hypothesis on the monodromy (i.e., Galois image) of the family under
consideration. Before stating our theorems, we must establish some of the requisite notation; we expatiate
upon this and other important background material in Section 3A, where precise definitions are provided.

Let K be a number field with fixed algebraic closure K , let U ⊂ Pr
K be a dense open subscheme, and

let A→U be a family of g-dimensional principally polarized abelian varieties (henceforth, PPAVs). Let
HA ⊂ GSp2g(Ẑ) be the monodromy of the family and let HAu ⊂ HA be the monodromy of the fiber Au
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over u ∈U . Finally, to facilitate our enumeration of PPAVs, let Ht : Pr (K )→ R>0 denote the absolute
multiplicative height on projective space,2 and define a height function ‖−‖ on the lattice Or

K sending
(t1, . . . , tr ) to maxσ,i |σ(ti )|, where σ varies over all field embeddings σ : K ↪→ C. Our main result is
stated as follows:

Theorem 1.1. Let B, n be arbitrary positive real numbers, and suppose that the rational family A→U
is nonisotrivial and has big monodromy, meaning that HA is open in GSp2g(Ẑ). Let δQ be the index
of the closure of the commutator subgroup of HA in HA ∩ Sp2g(Ẑ), and let δK = 1 for K 6= Q. Then
[HA : HAu ] ≥ δK for all u ∈U (K ), and we have the following asymptotic statements:∣∣{u ∈U (K )∩Or

K : ‖u‖ ≤ B, [HA : HAu ] = δK
}∣∣∣∣{u ∈U (K )∩Or

K : ‖u‖ ≤ B
}∣∣ = 1+ O((log B)−n), and∣∣{u ∈U (K ) : Ht(u)≤ B, [HA : HAu ] = δK

}∣∣∣∣{u ∈U (K ) : Ht(u)≤ B
}∣∣ = 1+ O((log B)−n),

where the implied constants depend only on A→U and n.

Remark 1.2. Notice that Theorem 1.1 holds trivially in dimension 0. In [Zywina 2010b, Theorem 1.15],
where the 1-dimensional case of Theorem 1.1 is treated, Zywina bounds the error more sharply, by
O((log B)B−

1
2 ) as opposed to our bound of O((log B)−n). In what follows, we shall primarily restrict

ourselves to the case where the dimension g is at least 2.

Remark 1.3. Wallace [2014] studies a variant of Theorem 1.1 in the 2-dimensional case. Unfortunately,
his argument relies upon a mistaken Masser–Wüstholz-type result of Kawamura, [2003, Main Theorem 2].
Although Wallace [2014, p. 468] describes how to correct some of the errors in Kawamura’s proof, the
modified argument still appears to be mistaken; see [Lombardo 2016b, p. 27] for a description of one
error in Kawamura’s argument that Wallace does not adequately address. Using the result stated in the
Appendix, written by Davide Lombardo, we are able to patch this error in Wallace’s argument.

Remark 1.4. The locus of u ∈U (K ) with [HA : HAu ]> δK will not in general be Zariski-closed, so the
“sparseness” of this locus can only be quantified by an asymptotic statement. To see why, consider the
family of elliptic curves over K given by the Weierstrass equations y2

= x3
+ x + a for a ∈ K . Note

that the mod-2 reduction of the monodromy is nontrivial for the family but is trivial for infinitely many
members of the family, namely those for which the defining polynomial x3

+ x + a factors completely
over K .

We now outline the proof of Theorem 1.1. Hilbert’s irreducibility theorem is the prototype for results
like Theorem 1.1, but it only applies in the setting of finite groups. Indeed, the phenomenon that Galois
representations associated to elliptic curves over Q never surject onto GSp2(Ẑ) shows that Hilbert’s
irreducibility theorem cannot hold for infinite groups. However, when A→U has big monodromy, in
the sense that HA is open in GSp2g(Ẑ), the problem is essentially reduced to showing that, for most

2See [Hindry and Silverman 2000, Section B.2, p. 174] for the definition.



998 Aaron Landesman, Ashvin A. Swaminathan, James Tao and Yujie Xu

u ∈U (K ), the mod-` reduction of HAu contains GSp2g(Z/`Z) for each sufficiently large prime `. This
reduction uses an infinite version of Goursat’s lemma. Since these mod-` reductions are finite groups, the
naïve expectation is that Hilbert’s irreducibility theorem can be applied once for each `. Unfortunately,
the sum of the resulting error terms does not a priori converge to zero.

To overcome this problem, we divide the primes ` into three regions.

(a) We handle all sufficiently large primes by means of a delicate argument involving the large sieve
that allows us to apply a recent result of Lombardo (namely, [Lombardo 2016a, Theorem 1.2] and
Proposition A.2).

(b) For the smaller primes, Wallace’s effective version of the Hilbert irreducibility theorem gives
sufficiently good error terms. His approach is to complete φ :U→Spec K to a map φ̃ :U→Spec OK

(see Section 3B), and then to apply the large sieve using information gleaned from the special
fibers of φ̃. To ensure that the monodromy maps associated to special fibers of φ̃ capture enough
information about the monodromy of the whole family, we assume the family is nonisotrivial and
has big monodromy. Our main contribution to this step is an application of the Grothendieck
specialization theorem, which shows that Wallace’s Property (A2) — concerning the relation between
the monodromy maps associated to a geometric special fiber and to a geometric generic fiber —
holds in a very general setting.

(c) Lastly, to handle the finitely many primes that remain, the Cohen–Serre version of the Hilbert
irreducibility theorem suffices.

We encourage the reader to refer to Section 4A for a more detailed discussion of the intricate arguments
outlined above.

Remark 1.5. Note that the proof strategy outlined above is greatly influenced by the methods that Zywina
[2010b] employed to handle the case where g = 1 and also by unpublished work of Zureick-Brown and
Zywina. In particular, the idea of formulating the problem in terms of monodromy groups and solving
it by applying effective versions of Hilbert’s irreducibility theorem and Serre’s open image theorem is
largely due to them.

Zureick-Brown and Zywina were the first to state a version of Theorem 1.1. Indeed, in a 2013 talk
at the Institute for Advanced Study, Zywina announced that he and Zureick-Brown had proven a result
very much like Theorem 1.1 using a strategy similar to that outlined above. Following this talk, Deligne
suggested a potential way to strengthen the result by removing the hypothesis that the family has big
monodromy, and it is our understanding that Zywina has been attempting to remove this hypothesis
by following Deligne’s suggestion and that his work is still in progress. As the details of the work of
Zureick-Brown and Zywina are not available, we have worked out a modified approach that utilizes recent
results of Wallace [2014] and Lombardo [2016a] that had not been published at the time of Zywina’s
talk. In light of the above, we would like to extend a special acknowledgment to Zureick-Brown and
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Zywina for formulating the questions that motivated our work and for introducing the ideas that inspired
our proof of Theorem 1.1.

1C. Applications. We record a number of interesting applications of our main result. These and several
further applications are stated and proven in Theorem 5.5.

Theorem 1.6 (Abbreviation of Theorem 5.5). Let Ag denote the moduli stack of g-dimensional PPAVs,
suppose A→ U is a rational family, and let V be the smallest locally closed substack of Ag through
which U → Ag factors. The conclusion of Theorem 1.1 holds if V is normal and contains a dense open
substack of any of the following loci:

(a) the substack of Jacobians of hyperelliptic curves, or

(b) the substack of Jacobians of trigonal curves, or

(c) the substack of Jacobians of plane curves of degree d (see Remark 5.4 for a more precise description
of this substack), or

(d) the substack of Jacobians of all curves in Mg, or

(e) the moduli stack Ag.

Theorem 1.6 has the following noteworthy corollary:

Corollary 1.7. For every g > 2, there exist infinitely many PPAVs A over Q with the property that
ρA(GQ)= GSp2g(Ẑ).

Proof. Let T g(g mod 2)⊂ Ag denote the locus of trigonal curves over Q of lowest Maroni invariant (as
defined at the beginning of Section 5B). We have that T g(g mod 2) is rational and normal when g > 2
(by Theorem 5.5(b)) and has monodromy equal to all of GSp2g(Ẑ) when g > 2 (by Remark 5.6). Since
T g(g mod 2) is a dense open substack of the locus Jacobians of trigonal curves, Theorem 1.6 implies
that Theorem 1.1 applies to T g(g mod 2). �

Remark 1.8. The above proof of Corollary 1.7 is not constructive. For explicit examples of 1-, 2-, and
3-dimensional PPAVs with maximal adelic Galois representations, see [Greicius 2010, Theorem 1.5;
Serre 1972, Sections 5.5.6–8; Landesman et al. 2017a; Zywina 2015, Theorem 1.1].

We conclude this section with a representative example, which has incidentally enjoyed significant
discussion in the literature.

Example 1.9. In this example, we take our family to be the Hilbert scheme H4 of plane curves of degree
4 over Q. There is quite a bit of earlier work concerning Galois representations associated to Jacobians of
such curves. For instance, a single example of a plane quartic such that the adelic Galois representation
associated to its Jacobian has image equal to GSp6(Ẑ) is given in [Zywina 2015, Theorem 1.1]. In
[Anni et al. 2016, Corollary 1.1], an example of a genus-3 hyperelliptic curve whose Jacobian has mod-`
monodromy equal to GSp6(Z/`Z) for primes `≥ 3 is constructed. For any `≥ 13, [Arias-de Reyna et al.
2016, Theorem 0.1] gives an infinite family of 3-dimensional PPAVs with mod-` monodromy equal to
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GSp6(Z/`Z). All of these existence statements are subsumed by the main results of the present article:
indeed, from Remark 5.6 and Theorem 1.6, we obtain the considerably stronger statement that a density-1
subset of this family has Galois representation with image equal to GSp6(Ẑ).

The rest of this paper is organized as follows. In Section 2, we define the symplectic group and prove
properties concerning its open and closed subgroups. In Section 3, we introduce the basic definitions and
properties associated to Galois representations of abelian varieties and families thereof. These definitions
and properties are used heavily in Section 4, which is devoted to proving the main theorem of this article,
Theorem 1.1. In Section 5, we show that Theorem 1.1 can be applied to study many interesting families
of PPAVs, and in so doing, we prove a result that implies Theorem 1.6. Finally, in the Appendix, Davide
Lombardo proves a key input that we employ in Section 4 to handle the genus-2 case of Theorem 1.1.

2. Definitions and properties of symplectic groups

In this section, we first detail the basic definitions and properties of symplectic groups, and we then
proceed to prove a few group-theoretic lemmas that are used in our proof of the main result of this
paper, Theorem 1.1. The reader should feel free to proceed to Section 3 upon reading the statements of
Propositions 2.5 and 2.6.

2A. Symplectic groups. Fix a commutative ring R, a free R-module M of rank 2g for some positive
integer g, and a nondegenerate alternating bilinear form 〈− , −〉 : M × M → R. Define the general
symplectic group (alternatively, the group of symplectic similitudes) GSp(M) to be the subgroup of
GL(M) consisting of all R-automorphisms S such that there exists some mS ∈ R×, called the multiplier
of S, satisfying 〈Sv, Sw〉 = mS · 〈v,w〉 for all v,w ∈ M . One readily observes that the mult map

mult : GSp(M)→ R×, S 7→ mS

is a group homomorphism, and its kernel is the symplectic group, denoted by Sp(M).
By choosing a suitable R-basis for M , we can arrange for the corresponding matrix of the inner product
〈− , −〉 to be given by

�2g =

[
0 idg

−idg 0

]
,

where idg denotes the g × g identity matrix. From this choice of basis we obtain an identification
GL(M)'GL2g(R). We then define GSp2g(R) to be the image of GSp(M) and Sp2g(R) to be the image
of Sp(M) under this identification. Let det : GL2g(R)→ R× be the determinant map. Since the diagram

GSp(M) GSp2g(R)

R×

∼

multg
det
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commutes, where the diagonal map is the multiplier map raised to the g-th power, one deduces that
GSp2g(R) is in fact the subgroup of GL2g(R) consisting of all invertible matrices S satisfying ST�2g S =
(mult S)�2g and that Sp2g(R)= ker(mult : GSp2g(R)→ R×).

Let Mat2g×2g(R) denote the space of 2g× 2g matrices with entries in R. In subsequent subsections,
we will make heavy use of the “Lie algebra” sp2g(R), which is defined by

sp2g(R) ··=
{

M ∈Mat2g×2g(R) : MT�2g +�2g M = 0
}
.

It is easy to see that MT�2g +�2g M = 0 is equivalent to M being a block matrix with g× g blocks of
the form

M =
[

A B

C −AT

]
,

where B and C are symmetric.
For the purpose of studying Galois representations associated to PPAVs, we will be primarily interested

in the cases where the ring R is the profinite completion Ẑ of Z, the ring of `-adic integers Z` for a prime
number `, or the finite cyclic ring Z/mZ for a positive integer m. Note in particular that we have the
identifications

GSp2g(Z`)' lim
←−−

k
GSp2g(Z/`

kZ) and (2-1)∏
prime `

GSp2g(Z`)' GSp2g(Ẑ)' lim
←−−

m
GSp2g(Z/mZ). (2-2)

From (2-1) and (2-2), we obtain the `-adic projection map π` : GSp2g(Ẑ)� GSp2g(Z`) and the mod-m
reduction map rm : GSp2g(Ẑ) � GSp2g(Z/mZ). Observe that (2-1) and (2-2) both hold with GSp2g

replaced by Sp2g.

2B. Notation. In what follows, we study subquotients of Sp2g(Ẑ), Sp2g(Z`), and Sp2g(Z/`
kZ) for ` a

prime number and k a positive integer. We use the following notational conventions:

• Let H ⊂ Sp2g(Ẑ) be a closed subgroup.

• Let H` ··= π`(H)⊂ Sp2g(Z`) be the `-adic reduction of H . More generally, for any set S of prime
numbers, let HS denote the projection of H onto

∏
`∈S Sp2g(Ẑ).

• Let H(m)= rm(H)⊂ Sp2g(Z/mZ) be the mod-m reduction of H . We often take m = `k .

• Let0`k =ker(Sp2g(Z`)→Sp2g(Z/`
kZ)). Notice that the map M 7→ id2g +`

k M gives an isomorphism
of groups

sp2g(Z/`Z)' ker
(
Sp2g(Z/`

k+1Z)→ Sp2g(Z/`
kZ)

)
for every k ≥ 1, so we will use sp2g(Z/`Z) to denote the above kernel.

• For any group G, let [G,G] be its commutator subgroup, and let Gab ··= G/[G,G] be its abelianiza-
tion.
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• For any group G, let Quo(G) the set of isomorphism classes of finite nonabelian simple quotients
of G, and let Occ(G) be the set of isomorphism classes of finite nonabelian simple subquotients of G.

• For any positive integer m, let Sm denote the symmetric group on m letters.

2C. Generalizing Goursat’s lemma. In Sections 2D and 2E, it will be crucial for us to have a theorem
that allows us to express a subgroup of Sp2g(Ẑ) as (roughly) the product of its `-adic projections. A natural
tool for doing this is Goursat’s lemma, but in much of the literature (e.g., [Ribet 1976, Lemma 5.2.1;
Zywina 2010a, Lemma A.4]), this result is stated for finite products or for finite groups. This section is
devoted to proving Lemma 2.2, which generalizes Goursat’s lemma to apply in the setting that we need,
namely for countable products of profinite groups.

Lemma 2.1. Let G =
∏n

i=1 Gi be a product of profinite groups. Then every finite simple quotient of G is
a finite simple quotient of Gi for some i , and vice versa.

Proof. Consider a finite simple quotient φ :G � H . Since each Gi ⊂G is normal, the image φ(Gi )⊂ H is
also normal. For any i , if φ(Gi ) is larger than {1}, then it equals H since H is simple, and the composition
Gi ↪→ G � H expresses H as a quotient of Gi . If no such i exists, then kerφ = G, contradiction. The
“vice versa” statement is obvious. �

Lemma 2.2 (generalized Goursat’s lemma). Let A be a countable set, and suppose {Gα}α∈A is a collection
of profinite groups such that, for all pairs α, β ∈ A with α 6= β, the groups Gα and Gβ have no finite
simple quotients in common. Let G :=

∏
α∈A Gα, and let πα : G → Gα be the natural projections. If

H ⊂ G is a closed subgroup with πα(H)= Gα for all α ∈ A, then H = G.

Proof. First take A = {1, 2}, so that G = G1×G2. The subgroup N1× {1} ··= (G1× {1})∩ H ⊂ G is
normal because π1(H)= G1. This means N1 is a normal subgroup of G1. Similarly for the subgroup
{1}× N2. With these definitions, the closed subgroup H/(N1× N2)⊂ (G1/N1)× (G2/N2) surjects onto
each factor via the natural projections. We have thereby reduced to the case N1= N2= 0. By [Ribet 1976,
Lemma 5.2.1], we know that G1 ' G2 as profinite groups. The result follows because two isomorphic
profinite groups have a nontrivial finite simple quotient in common (and any quotient of Gi/Ni is a priori
a quotient of Gi ).

Now take A = {1, 2, . . . , n} for n ≥ 3, and suppose (by induction) that the result has been proven for
n− 1. For any H ⊂ G =

∏n
i=1 Gi satisfying the hypotheses of the theorem, let H ′ be the image of H

under the projection G �
∏n−1

i=1 Gi . Then H ′ satisfies the hypotheses for n − 1, so we conclude that
H ′ =

∏n−1
i=1 Gi . By Lemma 2.1, the groups

∏n−1
i=1 Gi and Gn have no finite simple quotients in common,

so the n = 2 case tells us that H = G.
The only remaining case is A = {1, 2, . . .}. Consider H ⊂ G satisfying the hypotheses of the theorem.

For each n, let H{1,2,...,n} be the image of H under the projection G �
∏n

i=1 Gi . By the finite case proved
above, we know that H{1,2,...,n} =

∏n
i=1 Gi for each n ≥ 1. Fix an element g ··= (gi )i≥1 ⊂ G, and define a

sequence {h1, h2, . . .} of elements of H as follows: let hn be any element of H whose image in
∏n

i=1 Gi
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equals (g1, . . . , gn). In the product topology, hn → g as n→∞, so g ∈ H since H is closed. Since
g ∈ G was arbitrary, we conclude that H = G. �

2D. Closed subgroups of Sp2g(Ẑ). As before, let H ⊂ Sp2g(Ẑ) be a closed subgroup. The main result
of this section is Proposition 2.5, which shows that properties of H can be deduced from correspond-
ing properties of the `-adic projections H` ⊂ Sp2g(Z`) as ` ranges over the prime numbers. We use
Proposition 2.5 crucially in our proof of the main theorem, Theorem 1.1, and more specifically in the
proof of Proposition 4.2.

The next lemma enables us to verify the conditions required for applying Lemma 2.2:

Lemma 2.3. If g > 2 or ` > 2, we have Quo(Sp2g(Z`))= {PSp2g(Z/`Z)}. Moreover, for all g ≥ 2, we
have Quo(Sp2g(Z`))∩Quo(Sp2g(Z`′))=∅ if ` 6= `′.

Proof. Since 0` is a pro-` group, we have that Quo(Sp2g(Z`)) = Quo(Sp2g(Z/`Z)). Furthermore,
quotienting by {± id2g}, we have that Quo(Sp2g(Z/`Z)) = Quo(Sp2g(Z/`Z)/{± id2g}). By [O’Meara
1978, Theorem 3.4.1], we have that Sp2g(Z/`Z)/{± id2g} = PSp2g(Z/`Z) is simple for g > 2 or ` > 2.
It follows that Quo(Sp2g(Z`))= {PSp2g(Z/`Z)} in this case.

To finish the proof, note that Quo(Sp2g(Z`))∩Quo(Sp2g(Z`′)) = ∅ for g > 2 or `, `′ > 2 because
PSp2g(Z/`Z) 6= PSp2g(Z/`

′Z) for ` 6= `′ because their orders are different. The only remaining case is
where g = 2, `= 2, and `′ > 2. In this case, observe that PSp2g(Z/`

′Z) /∈ Quo(Sp2g(Z/2Z)) for `′ > 2,
since the order of PSp2g(Z/`Z) exceeds that of Sp2g(Z/2Z). �

We next prove Proposition 2.4, which we then use to deduce the main result of this section, Proposition 2.5.

Proposition 2.4. Let g ≥ 2 and let H ⊂ Sp2g(Ẑ) be a closed subgroup. Suppose there is a prime number
p ≥ 2 such that H(`)= Sp2g(Z/`Z) for all ` > p. Then we have that

H = H{`≤p}×
∏
`>p

Sp2g(Z`). (2-3)

The idea of the proof is to apply Lemma 2.2 to conclude that if the group surjects onto each factor,
then it surjects onto the product. We verify the hypotheses of Lemma 2.2 using Lemma 2.3 and the fact
that all simple quotients of H{`≤p} have smaller order than PSp2g(Z`) for ` > p.

Proof. The case where g = 1 is handled by [Zywina 2010b, Lemma 7.6], so take g ≥ 2. By [Landesman
et al. 2017b, Theorem 1], the fact that H(`)= Sp2g(Z/`Z) implies that H` = Sp2g(Z`) for all ` > p.

The proposition follows upon applying Lemma 2.2 to the product H{`≤p}×
∏
`>p Sp2g(Z`). However,

to apply it, we must check that no two of the groups H{`≤p} and Sp2g(Z`) for ` > p have any finite simple
quotients in common. From [Landesman et al. 2017b, Proposition 1(a)], we have that the group Sp2g(Z`)

has trivial abelianization for ` > 2 and thus has no finite abelian simple quotients. Thus, it remains to
verify that the sets of nonabelian simple quotients Quo(H{`≤p}) and Quo(Sp2g(Z`)) for ` > p are all
pairwise disjoint. Our strategy for checking this condition is to bound the sizes of the groups appearing
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in Quo(H{`≤p}). First, observe that

Quo(H{`≤p})⊂ Occ
(∏
`≤p

Sp2g(Z`)

)
=

⋃
`≤p

Occ(Sp2g(Z`)),

where the last step follows from the first displayed equation of [Serre 1998, p. IV-25]. But Occ(Sp2g(Z`))=

Occ(0`) ∪ Occ(Sp2g(Z/`Z)), and Occ(0`) = ∅ because 0` is a pro-` group, so Occ(Sp2g(Z`)) =

Occ(Sp2g(Z/`Z)). Because Sp2g(Z/`Z) is not simple, every element of Occ(Sp2g(Z/`Z)) is bounded
in size by |Sp2g(Z/`Z)|/2, so every element of Quo(H{`≤p}) is bounded in size by |Sp2g(Z/pZ)|/2.
Observing that

1
2 · |Sp2g(Z/pZ)|< |PSp2g(Z/`Z)|

for every ` > p, the desired condition follows by applying Lemma 2.3. �

Proposition 2.5. Let G ⊂ Sp2g(Ẑ) be an open subgroup. There exists a positive integer M such that, for
every closed subgroup H ⊂ G, we have H = G if and only if H(M)= G(M) and H(`)= Sp2g(Z/`Z)

for every prime ` -M.

The idea of the proof is to find a sufficiently large M so that if H(M)=G(M) then H{` - M} =G{` - M},
which reduces the problem to the situation of Proposition 2.4.

Proof. Again, the case where g = 1 is handled in [Zywina 2010b, Lemma 7.6], so take g ≥ 2. Let
p be any prime such that G(`) = Sp2g(Z/`Z) for all primes ` > p. Observe that the groups 0`k are
open in Sp2g(Z`) because they have finite index in Sp2g(Z`). Since G ⊂ Sp2g(Ẑ) is open, the group
G{`≤p} ⊂

∏
`≤p Sp2g(Z`) is open too, so there exist exponents e(`)≥ 1 with the property that∏

`≤p

0`e(`) ⊂ G{`≤p}.

Since the groups 0`k are finitely generated pro-` open normal subgroups of GSp2g(Z`), condition (ii)
from [Serre 1997, Proposition 10.6] is satisfied. Hence, the equivalence of conditions (ii) and (iv) from
[Serre 1997, Proposition 10.6] implies that the Frattini subgroup defined by

8(G{`≤p}) ··=
⋂

S⊂G{`≤p}
S maximal closed in G{`≤p}

S

is open and normal in G{`≤p}. This means we can find exponents e′(`)≥ 1 such that∏
`≤p

0`e′(`) ⊂8(G{`≤p}).

Define M ··=
∏
`≤p `

e′(`). Then H(M)= G(M) implies that H{`≤p} = G{`≤p}.
Now take H satisfying H(M)= G(M) and H(`)= Sp2g(Z/`Z) for every prime ` -M . We have that

H ⊂ G ⊂ H{`≤p}×
∏
`>p

Sp2g(Z`).
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To show that H = G, we need only verify

H = H{`≤p}×
∏
`>p

Sp2g(Z`),

which follows immediately from Proposition 2.4. �

2E. Open subgroups of GSp2g(Ẑ). We now return to studying the general symplectic group GSp2g(Ẑ).
The main result of this subsection tells us that the closure of the commutator subgroup of an open subgroup
of GSp2g(Ẑ) is open:

Proposition 2.6. Let g ≥ 2, and let H ⊂ GSp2g(Ẑ) be an open subgroup. Then the closure of [H, H ] is
an open subgroup of Sp2g(Ẑ).

In order to prove Proposition 2.6, we shall require a number of preliminary lemmas, which are stated
and proven in Sections 2E1 and 2E2.

2E1. Openness condition. The next two lemmas give us a criterion for openness in Sp2g(Ẑ):

Lemma 2.7. Let S be a finite set of prime numbers, and let H ⊂
∏
`∈S Sp2g(Z`) be a closed subgroup. If

each H` ⊂ Sp2g(Z`) is open, then H ⊂
∏
`∈S Sp2g(Z`) is open.

Proof. There exists a finite-index subgroup H ′ ⊂ H such that H ′(`) is trivial for every ` ∈ S, namely
the intersection of the kernels of the mod-` reductions maps H → H(`). Since each H ′` is a pro-` group,
Lemma 2.2 implies that H ′=

∏
`∈S H ′`. Thus, H contains an open subgroup and is therefore itself open. �

Lemma 2.8. Let g ≥ 2 and let H ⊂ Sp2g(Ẑ) be a closed subgroup. If H`′ is open in Sp2g(Z`′) for all `′

and H` = Sp2g(Z`) for all but finitely many `, then H is open in Sp2g(Ẑ).

Proof. Let p be the largest prime with Hp 6= Sp2g(Zp). By Lemma 2.7, we have that H{`≤p} ⊂∏
`≤p Sp2g(Z`) is an open subgroup. The result then follows from Proposition 2.4. �

2E2. Two computational lemmas. The next two results are used in the proof of Proposition 2.6. The
following lemma describes the commutator of an element of 0`m with an element of 0`n .

Lemma 2.9. Let n ≤m be positive integers, and let id2g +`
nU and id2g +`

m V be elements of GL2g(Z`).
Then we have

(id2g +`
nU )−1(id2g +`

m V )(id2g +`
nU )(id2g +`

m V )−1
≡ id2g +`

n+m(V U −U V ) (mod `2n+m).

Proof. We have

(id2g +`
m V )(id2g +`

nU )(id2g +`
m V )−1

= id2g +`
n(id2g +`

m V )U (id2g +`
m V )−1

= id2g +`
n(id2g +`

m V )U
( ∞∑

i=0

(−1)i`im V i
)

= id2g +`
n
∞∑

i=0

[
(−1)i`imU V i

+ (−1)i`(i+1)m V U V i]
= id2g +`

nU + `n+m(V U −U V )(id2g +`
m V )−1.
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Multiplying on the left by (id2g +`
nU )−1 gives the desired result. �

In the next proposition, we show the commutator subalgebra of sp2g(Z/`Z) is sufficiently large for all
primes `.

Proposition 2.10. We have the following results:

(a) For all g ≥ 1 and `≥ 3 we have [sp2g(Z/`Z), sp2g(Z/`Z)] = sp2g(Z/`Z).

(b) For all g ≥ 1 we have [sp2g(Z/4Z), sp2g(Z/4Z)] ⊃ 2 · sp2g(Z/2Z).

Proof. Statement (a) follows immediately from [Steinberg 1961, Theorem 2.6], which states that
sp2g(Z/`Z) is simple for ` ≥ 3. It remains to prove statement (b). For this, we compute several
commutators and make deductions based on each one. For convenience, let g=[sp2g(Z/4Z), sp2g(Z/4Z)],
let A, D denote arbitrary g× g matrices, and let B,C, E, F denote symmetric g× g matrices. Since[[

A 0

0 −AT

]
,

[
D 0

0 −DT

]]
=

[
AD− D A 0

0 AT DT
− DTAT

]
, (2-4)

all block-diagonal matrices in sp2g(Z/4Z) with every diagonal entry equal to 0 are contained in g. This
can be seen by taking A and D to be various elementary matrices. Furthermore,[[

0 B
C 0

]
,

[
0 E
F 0

]]
=

[
B F − EC 0

0 C E − F B

]
, (2-5)

so we can arrange that B F − EC is an elementary matrix with a single nonzero entry on the diagonal.
Summing matrices from (2-4) and (2-5) tells us that all block-diagonal matrices are contained in g.
Additionally, [[

idg 0
0 −idg

]
,

[
0 B
0 0

]]
=

[
0 2B
0 0

]
. (2-6)

Repeating the computation from (2-6) with the other off-diagonal block nonzero implies that 2 times any
matrix in sp2g(Z/2Z) whose diagonal blocks are 0 is an element of g. The desired result follows because
2 · sp2g(Z/2Z) is contained in the subspace generated by the matrices from (2-4), (2-5), and (2-6). �

2E3. Completing the proof. In order to prove Proposition 2.6, we require the following lemma, which
states that the closure of the commutator [0`k , 0`k ] is large.

Lemma 2.11. Fix k ≥ 1. Then if ` 6= 2, the closure of [0`k , 0`k ] contains 0`2k and if `= 2, the closure of
[0`k , 0`k ] contains 0`2k+1 .

Proof. First suppose `≥ 3. Statement (a) of Proposition 2.10 implies that for any W ′ ∈ sp2g(Z/`Z), there
exist U ′, V ′ ∈ sp2g(Z/`Z) such that V ′U ′−U ′V ′=W ′. Choosing lifts W,U, V of W ′,U ′, V ′, it follows
from Lemma 2.9 that for every i and for every such

id2g +`
2k+i W ∈ 0`2k+i , id2g +`

kU ∈ 0`k , and id2g +`
k+i V ∈ 0`k+i ,
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we have that

(id2g +`
kU )−1(id2g +`

k+i V )(id2g +`
kU )(id2g +`

k+i V )−1
≡ id2g +`

2k+i W (mod `2k+i+1).

Take M0 ∈ 0`2k . There exists X1 ∈ [0`2k , 0`2k ] and M1 ∈ 0`2k+1 with the property that M0 = X1 M1.
Proceeding inductively in this manner, we obtain sequences

{X i : i = 1, 2, . . . } ⊂ [0`k , 0`k ] and {Mi : i = 0, 1, 2, . . . } with Mi ∈ 0`2k+i

such that Mi = X i+1 Mi+1 for each i . Then we have the following equalities of matrices in Sp2g(Z`):

M0 = lim
i→∞

( i∏
j=1

X j

)
Mi =

∞∏
j=1

X j .

It follows that 0`2k is contained in the closure of [0`k , 0`k ].
Now suppose `= 2. Observe that for each k ≥ 2 we have

id2g +2k
· sp2g(Z/4Z)= ker

(
Sp2g(Z/2

k+2Z)→ Sp2g(Z/2
kZ)

)
.

It follows from statement (b) of Proposition 2.10 and Lemma 2.9 that for every choice of id2g +22k+i+1W ∈
022k+i+1 and for each nonnegative integer i , there exist id2g +2kU ∈ 02k and id2g +2k+i V ∈ 02k+i with
the property that

(id2g +2kU )−1(id2g +2k+i V )(id2g +2kU )(id2g +2k+i V )−1
≡ id2g +22k+i+1W (mod `2k+i+2).

One may now finish the proof by applying a similar inductive argument to the one used in the case
`≥ 3. �

We are finally in position to prove the main result of this section.

Proof of Proposition 2.6. By Lemma 2.8, it suffices to prove the following two statements:

(a) The closure of [H, H ] surjects onto Sp2g(Z`) for all but finitely many `.

(b) The closure of [H, H ] maps onto an open subgroup of Sp2g(Z`) for each `.

For statement (a), notice that H surjects onto GSp2g(Z`) for all but finitely many `. Note that for `≥ 3,
we have [GSp2g(Z`),GSp2g(Z`)] = Sp2g(Z`) because, by [Landesman et al. 2017b, Proposition 1], we
have that

Sp2g(Z`)= [Sp2g(Z`),Sp2g(Z`)] ⊂ [GSp2g(Z`),GSp2g(Z`)] ⊂ Sp2g(Z`).

Thus, [H, H ] itself surjects onto [GSp2g(Z`),GSp2g(Z`)] = Sp2g(Z`) for all `≥ 3.
To show statement (b), we prove that the closure of [H ′, H ′] is open in Sp2g(Z`) for any open subgroup

H ′ ⊂GSp2g(Z`). Since H ′ is open, there exists some k ≥ 1 such that 0`k ⊂ H ′, so by Lemma 2.11, there
exists m ≥ 2k such that 0`m ⊂ [0`k , 0`k ] ⊂ [H ′, H ′]. Thus, [H ′, H ′] contains an open subgroup and must
therefore itself be open, as desired. �
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3. Background on Galois representations of PPAVs

This section is devoted to describing the basic definitions and properties concerning Galois representations
associated to families of PPAVs. Specifically, in Section 3A, we construct these Galois representations
and provide precise definitions for the various monodromy groups discussed in Section 1B. Then, in
Section 3B, we explain how a family of PPAVs over a number field K may be extended to a family over
the number ring OK . The notation introduced in this section will be utilized throughout the rest of the
paper.

3A. Defining Galois representations for families of PPAVs. Let K be a number field, and let g ≥ 0 be
an integer. Fix a base scheme T (we usually take T to be Spec K or an open subscheme of Spec OK ),
and let U be an integral T -scheme with generic point η (we usually take U to be an open subscheme of
Pr

K or Pr
OK

). Let A→U be a family of g-dimensional PPAVs, by which we mean the following:

• The morphism A→U is flat, proper, and finitely presented with smooth geometrically connected
fibers of dimension g.

• A is a group scheme over U, and the resulting abelian scheme is equipped with a principal polarization.

Note that A→U is automatically abelian, smooth, and projective, and further observe that the fiber Au

over any point u ∈U is a PPAV of dimension g over the residue field κ(u) of u.
Choose a geometric generic point η for U. If κ(η) has characteristic prime to m, the action of the

étale fundamental group π1(U, η)3 on the geometric generic fiber Aη[m] gives rise to a continuous linear
representation whose image is constrained by the Weil pairing to lie in the general symplectic group
GSp2g(Z/mZ). We denote this mod-m representation by

ρA,m : π1(U, η)→ GSp2g(Z/mZ). (3-1)

The map in (3-1) is well-defined up to the choice of base-point η, and choosing a different such η would
only alter the image of ρA,m by an inner automorphism of GSp2g(Z/mZ). For this reason, when it will
not lead to confusion, we may omit the basepoint from our notation and write π1(U ) for π1(U, η).

If ` is a prime not dividing the characteristic of κ(η), then we can take the inverse limit of the mod-`k

representations to obtain the `-adic representation

ρA,`∞ : π1(U )→ lim
←−−

k
GSp2g(Z/`

kZ). (3-2)

Moreover, if κ(η) has characteristic 0, we can take the inverse limit of all the mod-m representations (or
equivalently the product of all the `-adic representations) to obtain an adelic or global representation

ρA : π1(U )→ lim
←−−

m
GSp2g(Z/mZ)' GSp2g(Ẑ). (3-3)

3For a general foundational reference on the étale fundamental group, see [SGA 1 1971].
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Remark 3.1. In the situation that U = Spec K , the choice of η corresponds to a choice of algebraic
closure K of K . Taking GK ··= Gal(K/K ) to be the absolute Galois group, we have that π1(U, η)= GK .
This recovers the notion of a Galois representation of a PPAV over a field as a map ρA : GK →GSp2g(Ẑ).

Remark 3.2. For a commutative ring R, recall from the definition of the general symplectic group that
we have a multiplier map mult : GSp2g(R)→ R×. Let χm be the mod-m cyclotomic character, and
let χ be the cyclotomic character. If U = Spec k, (with k an arbitrary characteristic 0 field) it follows
from Gk-invariance of the Weil pairing that χm =mult ◦ρA,m and χ =mult ◦ρA. More generally, if U is
normal and integral, and φ : π1(U )→ π1(Spec K ), then χ ◦φ =mult ◦ρA, which holds because it holds
for the generic fiber Aη→ Spec K (η), and the map π1(η)→ π1(U ) is surjective.

We now define the monodromy groups associated to the representations defined above. We call the
image of ρA : π1(U )→ GSp2g(Ẑ) the monodromy of the family A→U , and we denote it by HA. When
the base scheme is T = Spec K , we also define the geometric monodromy, denoted by H geom

A , to be
the image of the adelic representation ρAK

: π1(UK )→ GSp2g(Ẑ) associated to the base-changed family
AK →UK . Since the cyclotomic character is trivial on GK , it follows that H geom

A is actually a subgroup
of Sp2g(Ẑ). We write HA(m) and H geom

A (m) for the mod-m reductions of the above-defined monodromy
groups. We say A→U has big monodromy if HA is open in GSp2g(Ẑ) and A→U has big geometric
monodromy if H geom

A is open in Sp2g(Ẑ).
In particular, for each u ∈ U , HAu and H geom

Au
are the monodromy groups associated to the family

Au → Spec κ(u). Since Au is the pullback of A along ι : u → U , ρAu = ι ◦ ρA and we obtain an
inclusion HAu ⊂ HA. Note that if U is normal, then the map π1(η)→ π1(U ) is surjective, so we have
that HAη = HA.

3B. Extending families over K to OK . Recall that, for a single abelian variety Au over u = Spec K ,
good reduction for Au at a prime p∈6K implies that the Galois representation ρAu ,m :GK→GSp(Z/mZ)

is unramified at p, provided that p does not divide m. All but finitely many primes p are primes of good
reduction for Au . Similarly, for a family A→ U over Spec K , extending the definition of this family
“across” a prime p ∈6K reveals constraints on the monodromy of that family and its subfamilies. The
purpose of this section is to explain why any family A→ U can be extended across most primes in
6K . The constructions introduced here become particularly important in Section 4F, where we apply
the results of [Wallace 2014]. A similar treatment of these constructions can be found in [Wallace 2014,
pp. 460–462].

Retain the setting of Theorem 1.1. Start with a family A→U of PPAVs over Spec K . Using standard
spreading out techniques as in [EGA IV3 1966, §8] (see in particular [EGA IV3 1966, 8.10.5(xii), 9.7.7(ii);
EGA IV4 1967, 17.7.8(ii)]), we can extend the family A→U to a family A→ U , where U is an open
subscheme of Pr

OK
, whose generic fiber over Spec K → Spec OK is just A→U. Recall from Section 3A

that the term “family” means that A→ U is smooth and proper with geometrically connected fibers and
that A is an abelian scheme over U with a principal polarization. This construction is depicted in the
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following commutative diagram:

A A

U U Pr
OK

Spec K Spec OK

open emb.

Let Z ··= Pr
K \U be the locus where the original family is not defined, and let Z denote the closure

of Z in Pr
OK

. Since the bottom square in the diagram above is Cartesian, each irreducible component
of Pr

OK
\U that is not contained in Z cannot map generically onto Spec OK and must therefore map to

a single prime p ∈6K . Since there are finitely many irreducible components of Z, the set S of primes
p ∈ Spec OK for which Pr

Fp
\ UFp 6= ZFp is a finite set. The primes in S can be thought of as the “bad

primes” for the family: the smoothness of A→ U implies that any abelian variety Au for u ∈ U (K )
will have good reduction away from the primes in S and the primes lying under the (finite) intersection
{u} ∩Z ⊂ Pr

OK
.

3B1. Monodromy groups of subfamilies. Let m ∈ Z, let Pm ⊂6K be the set of primes dividing m, and
let Spec OPm be the complement of Pm in Spec OK . Then the base change UOPm

of U from Spec OK to
Spec OPm is the open subset of U on which A[m] → U is unramified and hence finite étale. Therefore,
we obtain a finite étale cover AOPm

[m] → UOPm
and hence a map ρ : π1(UOPm

)→ GSp2g(Z/mZ) just as
in Section 3A. The original family of interest can be thought of as a subfamily of this one: we have maps
UK →U → UOPm

, from which we obtain maps

π1(UK ) π1(U ) π1(UOPm
) GSp2g(Z/mZ).

ρ

Lemma 3.3. The continuous map π1(U )→ π1(UOPm
) is surjective.

Proof. This lemma is a consequence of [SGA 1 1971, exposé V, proposition 8.2]; we nonetheless include
a proof because it helps illustrate the constructions introduced in this section. It suffices to show that
the composition of this map with any surjective continuous map π1(UOPm

)→ G onto a finite group G
is surjective. According to [Stacks 2005–, Tag 03SF], a finite quotient of the étale fundamental group
corresponds to a connected finite Galois cover, so let Vm → UOPm

be the cover corresponding to our
chosen surjection. By [Stacks 2005–, Tag 0DV6], the composed map π1(U )→ π1(UOPm

)→ G gives
a π1(U )-action on G which corresponds to the pulled back cover (Vm)K →U . The latter is connected
if and only if the composed map is surjective. Since Vm is connected and étale over Spec OPm , it is
irreducible, which implies that (Vm)K is irreducible (its generic points correspond to those of Vm), hence
connected. �

By [Stacks 2005–, Tag 0DV6], the resulting monodromy representation π1(U )→GSp2g(Z/mZ) equals
that obtained from the pullback of the finite étale cover AOPm

[m] → UOPm
to U. But the pullback is just

https://stacks.math.columbia.edu/tag/03SF
https://stacks.math.columbia.edu/tag/0DV5
https://stacks.math.columbia.edu/tag/0DV5
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the family A[m] →U, so this monodromy representation equals ρA,m , and its image equals HA(m). The
lemma therefore implies that the image of the map π1(UOPm

)→GSp2g(Z/mZ) equals HA(m). Similarly,
the map π1(UK )→ GSp2g(Z/mZ) has image equal to H geom

A (m).
Moreover, for p ∈ 6K not dividing m, we can also consider the subfamilies UFp

→ UFp → UOPm

obtained by extending scalars along the maps OPm → Fp→ Fp for some algebraic closure Fp of Fp. As
before, we obtain maps

π1(UFp
) π1(UFp) π1(UOPm

) GSp2g(Z/mZ).
ρ

We denote by HA,p(m) and H geom
A,p the images of the maps π1(UFp)→ GSp2g(Z/mZ) and π1(UFp

)→

GSp2g(Z/mZ), respectively.

3B2. Notation for Galois étale covers. As explained in the proof of Lemma 3.3, finite quotients of the
étale fundamental group correspond to connected finite Galois étale covers. We now fix notation for the
Galois étale covers introduced in the proof of Lemma 3.3 that will be used later in Section 4 to state and
verify Wallace’s criteria [2014].

• Let Vm be the cover of UOPm
corresponding to the map π1(UOPm

)→ GSp2g(Z/mZ).

• Let Vm be the cover of U corresponding to the map π1(U )→ GSp2g(Z/mZ).

Here, each map from π1(− ) to a finite group gives a quotient of π1(− ) as its image. By the reasoning
of Lemma 3.3, Vm = (Vm)K .

Remark 3.4. The result of Lemma 3.3 is special to the base change OK → K . In general, the other maps
of π1(− ) will not be surjective, nor will the finite Galois étale covers (Vm)K , (Vm)Fp , and (Vm)Fp

be
connected.

4. Proof of Theorem 1.1

4A. Outline of the proof. With the view of making the proof of Theorem 1.1 more readily comprehensi-
ble, we now briefly describe the key aspects of the argument. We encourage the reader to refer to Figure 1
for a schematic diagram illustrating the argument.

We begin in Section 4B by proving Proposition 4.1, showing that a nonisotrivial family with big
monodromy also has big geometric monodromy. Then, in Section 4C, we introduce some of the notation
and standing assumptions employed in the proof. In particular, since our family has big geometric
monodromy, by Proposition 4.1, we are able to define the constant C in point (b) of Section 4C, which
will later be needed to apply the results of [Wallace 2014] (see Section 4F1).

Then, in Section 4D, we reduce the problem to checking (1) that for an appropriately chosen integer
M ′ depending on the family, most members of the family have the same mod-M ′ image as that of the
family; and (2) that for all sufficiently large primes `, most members of the family have the same mod-`
image as that of the family.
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Prop. 4.4 Lem. 4.27 Lem. 4.26 Prop. 4.22

Thm. 1.1 Prop. 4.2 Prop. 4.17 Lem. 4.21 Lem. 4.25

Prop. 4.8 Prop. 4.13 Lem. 4.18 Prop. 4.24

Prop. 4.10

Cohen–Serre,
[Zywina 2010b, Thm. 1.2]

[Ekedahl 1990, Lem. 1.2]

Cond. (A3)

Thm. 4.15(2)

[Wallace 2014, Thm. 4.3]

Cond. (A2)

Thm. 4.15(1)

Cond. (G)

Figure 1. A schematic diagram for the proof of the main theorem, Theorem 1.1.

The mod-M ′ image is dealt with in Section 4E using Proposition 4.4, which is the Cohen–Serre version
of the Hilbert irreducibility theorem. For dealing with the mod-` images, there are two regimes of primes
to consider, a medium regime and a high regime, when ` is bigger than a suitable power of log B. We
handle both of these regimes in Section 4F by applying a result of Wallace [2014, Theorem 3.9], for
which we must verify the following four conditions: (G), (A1), (A2), and (A3). The rest of Section 4 is
devoted to verifying that these conditions hold in our setting.

Conditions (G) and (A1), which are fairly easy to check, are treated in Sections 4F and 4G. Next,
condition (A2) is dealt with in Section 4H by applying the Grothendieck specialization theorem in
Proposition 4.13. These first three conditions together essentially yield an effective version of the Hilbert
irreducibility theorem, which allows us to check primes ` in the medium regime. Finally, in Section 4I,
we verify condition (A3), which allows us to dispense with primes in the high regime. The key input
to checking this condition is a recent result of Lombardo, stated in Theorem 4.15. In order to apply
Lombardo’s result to our setting, as is done in Proposition 4.17, we must verify two hypotheses and relate
the naïve height we are using to the Faltings height used in Theorem 4.15. The first hypothesis is verified
in Lemma 4.18 using [Ellenberg et al. 2009, Proposition 5]. The second hypothesis is a somewhat trickier
condition, and we verify it in Proposition 4.21 using the large sieve, Theorem 4.19. In order to apply the
large sieve, we must bound contributions at each prime, which is done in Proposition 4.24 using a general
scheme-theoretic result of Ekedahl [1990, Lemma 1.2] together with Proposition 4.22. We conclude the
section with a brief appendix concerning the relationship between the naïve height and the Faltings height
(see Lemma 4.27).

4B. Equivalence of big geometric monodromy and big monodromy. In the course of the proof, it will
be useful to know that our given family A→U not only has big monodromy, but also has big geometric
monodromy. In particular, this is crucially needed to define the constant C in point (b) of Section 4C,
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which is used in applying the results of [Wallace 2014] (see Section 4F1). We now prove the following
result, implying that our given family has big geometric monodromy.

Proposition 4.1. Suppose A→U is a nonisotrivial family of abelian varieties of relative dimension g≥ 2,
with U a smooth geometrically connected scheme over a number field K . Then, A has big geometric
monodromy if and only if it has big monodromy.

Proof. We first show the easier direction: if the family A→ U has big geometric monodromy then
A→ U also has big monodromy, in the sense that HA is open in GSp2g(Ẑ). To see this, consider the
exact sequence

0 Sp2g(Ẑ) GSp2g(Ẑ) Ẑ× 0.mult

Since H geom
A ⊂ HA, the big geometric monodromy assumption tells us that HA ∩ Sp2g(Ẑ) is open in

Sp2g(Ẑ). It therefore suffices to show that mult(HA) is open in Ẑ×. But mult(HA)=χ(GK ), as mentioned
in Remark 3.2, and χ(GK ) has finite index because K/Q has finite degree.

It only remains to prove that if the family has big monodromy and is nonisotrivial, it has big geometric
monodromy. To show this, from the exact sequence

1 π1(UK ) π1(U ) π1(K ) 1

π1(UK ) ⊂ π1(U ) is normal. Therefore, H geom
A is a normal subgroup of HA, and hence also a normal

subgroup of HA ∩ Sp2g(Ẑ). Let ψ : Sp2g(Z)→ Sp2g(Ẑ) denote the natural profinite completion map.
Since H geom

A ⊂ HA ∩ Sp2g(Ẑ) is normal, it follows that ψ−1(H geom
A ) ⊂ ψ−1(HA ∩ Sp2g(Ẑ)) is normal.

Since HA has finite index in GSp2g(Ẑ), ψ
−1(HA ∩Sp2g(Ẑ)) has finite index in Sp2g(Z). Since g ≥ 2 (so

that Sp2g(Z) has rank at least 2), by the Margulis normal subgroup theorem (see, for example [Morris
2015, Theorem 17.1.1]), ψ−1(H geom

A ) either has finite index in ψ−1(HA ∩Sp2g(Ẑ)) or is finite. We will
show that in the first case A has big geometric monodromy and in the second case A is isotrivial.

In the case that ψ−1(H geom
A ) has finite index in ψ−1(HA∩Sp2g(Ẑ)), ψ

−1(H geom
A ) also has finite index

in Sp2g(Z). Then, since H geom
A is closed, the finite set Sp2g(Z)/ψ

−1(H geom
A ) is dense in the profinite space

Sp2g(Ẑ)/H geom
A . It follows that H geom

A also has finite index in Sp2g(Ẑ), meaning A has big geometric
monodromy.

To conclude the proof, it only remains to show that if ψ−1(H geom
A ) is finite, then A is isotrivial. In this

case, let Mgeom
A denote the image of the topological monodromy representation π top

1 (UC)→ Sp2g(Z). By
[SGA 1 1971, exposé XIII, proposition 4.6], we have π1(UC)' π1(UK ), and therefore the comparison
theorem tells us that H geom

A is the profinite completion of Mgeom
A . This implies Mgeom

A ⊂ψ−1(H geom
A ) and

so Mgeom
A is finite. It follows that H geom

A is finite, being the profinite completion of Mgeom
A . After making

a finite base change, we may assume H geom
A is trivial. Then, it is a standard fact that A is isotrivial when

its monodromy representation is trivial. For example, this follows from [Grothendieck 1966]. �

4C. Notation and standing assumptions. Before proceeding with the proof, we set some notation and
assumptions, which will remain in place for the remainder of this section.
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(a) As mentioned in Remark 1.2, the case where g = 1 is handled in [Zywina 2010b, Theorem 7.1], so
we will restrict our consideration to the case where g ≥ 2.

(b) Since we are assuming that A→U has big monodromy, it follows that A→U has big geometric
monodromy, by Proposition 4.1. Define C to be the smallest integer bigger than 2, depending
only on U , with the property that for all primes ` > C we have H geom

A (`) = Sp2g(Z/`Z) and
HA(`)= GSp2g(Z/`Z).

(c) Using [Zywina 2010b, Proposition 6.1] and the explanation given after the statement of [Zywina
2010b, Theorem 7.1], one readily checks that in Theorem 1.1, the asymptotic statement for K-valued
points (i.e., points in U (K )) can be deduced immediately from the statement for lattice points
(i.e., points in U (K )∩Or

K ). In what follows, we will work with K-valued points or lattice points
depending on what is most convenient.

(d) Let K cyc
⊂ K denote the maximal cyclotomic extension of K , and let K ab

⊂ K denote the maximal
abelian extension of K .

(e) In what follows, for a subgroup H of a topological group G, let [H, H ] denote the closure of the
usual commutator subgroup.

4D. Main body of the proof. We begin by reducing the proof of Theorem 1.1 to proving Proposition 4.2.

Proof of Theorem 1.1 assuming Proposition 4.2. As argued in [Zywina 2010b, Proof of Theorem 7.1], for
any u ∈U (K ) we have

[HA : HAu ] =
[
HA ∩Sp2g(Ẑ) : ρAu (Gal(K/K cyc))

]
.

In the case that K =Q, the Kronecker–Weber Theorem tells us that Qcyc
=Qab, so we have

[HA : HAu ] = δQ ·
[
[HA, HA] : ρAu (Gal(Q/Qab))

]
,

where δQ is the index of [HA, HA] in HA ∩ Sp2g(Ẑ). Then Theorem 1.1 follows immediately from point
(c) of Section 4C and the following proposition. �

Proposition 4.2. Let B, n > 0. We have the following asymptotic statements, where the implied constants
depend only on U and n:

(1) For every number field K ,∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, ρAu (Gal(K/K ab))= [HA, HA]

}∣∣
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
= 1+ O((log B)−n).

(2) Furthermore, if K 6=Q,∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, ρAu (Gal(K/K cyc))= HA ∩Sp2g(Ẑ)

}∣∣
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
= 1+ O((log B)−n).
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Remark 4.3. Proposition 4.2 is a generalization of [Zywina 2010b, Proposition 7.9] from the case g = 1
to all dimensions. We shall prove it assuming Proposition 4.4 and Proposition 4.8. The basic idea behind
the argument is to reduce the problem of studying the (global) monodromy groups to one of studying the
mod-M ′ and mod-` monodromy groups.

Proof assuming Proposition 4.4 and Proposition 4.8. Assuming point (1), the proof of point (2) is
completely analogous to the proof of [Zywina 2010b, Proposition 7.9(ii)], which consists of two key
steps. The first is the fact that [HA, HA] is an open normal subgroup of HA ∩ Sp2g(Ẑ), which follows
from Proposition 2.6. The second is [Zywina 2010b, Proposition 7.7], which is a variant of Hilbert’s
irreducibility theorem and does not depend in any way on the context of elliptic curves (with which
[Zywina 2010b, Section 7] is concerned). It therefore suffices to prove point (1).

Since Gal(K/K ab)= [GK ,GK ], it follows by the continuity of ρAu and the compactness of profinite
groups that ρAu (Gal(K/K ab))= [HAu , HAu ]. Thus ρAu (Gal(K/K ab)) is a closed subgroup of [HA, HA].
Moreover, by Proposition 2.6, [HA, HA] is an open subgroup of Sp2g(Ẑ), so we may apply Proposition 2.5
with G = [HA, HA] and H = ρAu (Gal(K/K ab)). In so doing, we obtain a positive integer M so that the
only closed subgroup of [HA, HA] whose mod-M reduction equals [HA, HA](M)= [HA(M), HA(M)]
and whose mod-` reduction equals Sp2g(Z/`Z) for every prime number `-M is [HA, HA] itself. The
same property is true when M is replaced by any multiple M ′ of M , and we choose a multiple M ′ which
is divisible by all primes less than C , where C is defined as in point (b) of Section 4C. The defining
property of M ′ then implies that∣∣{u ∈U (K )∩Or

K : ‖u‖ ≤ B, ρAu (Gal(K/K ab)) 6= [HA, HA]
}∣∣

|{u ∈U (K )∩Or
K : ‖u‖ ≤ B}|

≤

∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, ρAu ,M ′(Gal(K/K ab)) 6= [HA(M ′), HA(M ′)]

}∣∣
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
(4-1)

+

∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, ρAu ,`(Gal(K/K ab)) 6= Sp2g(Z/`Z) for some ` -M ′

}∣∣
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
. (4-2)

The rest of this section is devoted to finding upper bounds for (4-1) and (4-2). To bound (4-1), notice that
we have

ρAu ,M ′(Gal(K/K ab)) 6= [HA(M ′), HA(M ′)] H⇒ HAu (M
′) 6= HA(M ′).

It then follows from Proposition 4.4 that (4-1) is bounded by O((log B)/B[K :Q]/2). To bound (4-2), notice
that for `≥ 3 we have

ρAu ,`(Gal(K/K ab)) 6= Sp2g(Z/`Z)H⇒ HAu (`) 6⊃ Sp2g(Z/`Z),

because [Landesman et al. 2017b, Proposition 1(a)] tells us that Sp2g(Z/`Z) has trivial abelianization for
`≥ 3. Since C ≥ 3 by definition, it follows from Proposition 4.8 that (4-2) is O((log B)−n), since `-M ′

implies that ` > C . Combining the above estimates completes the proof of point (1). �

It now remains to bound the terms (4-1) and (4-2).
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4E. Bounding the contribution of (4-1). The next result is the means by which we bound (4-1); it is an
immediate corollary of the Cohen–Serre version of Hilbert’s irreducibility theorem (see [Zywina 2010b,
Theorem 1.2]) since the set in the numerator of (4-3) is a “thin set.”

Proposition 4.4. For every integer M ′ ≥ 2, we have∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, HAu (M

′) 6= HA(M ′)
}∣∣

|{u ∈U (K )∩Or
K : ‖u‖ ≤ B}|

�
log B

B[K :Q]/2
, (4-3)

where the implied constant depends only in U and M ′.4

4F. Bounding the contribution of (4-2). To complete the proof of Theorem 1.1, it remains to bound (4-2).
We do this in Proposition 4.8, which relies on a strong version of Hilbert’s irreducibility theorem due
to Wallace [2014, Theorem 3.9]. Before we can state and apply Wallace’s result, we must introduce the
various conditions upon which it depends. The setup detailed in [Wallace 2014, Section 3.2] applies in a
more general context than the one described below, but we specialize our discussion for the sake of brevity.

4F1. Setup and statement of [Wallace 2014, Theorem 3.9]. We start by introducing some notation to
help us count points u ∈U (K ) whose associated monodromy groups HAu are not maximal. Let B > 0,
and make the following two definitions:

E`(B) ··=
{
u ∈U (K ) : Ht(u)≤ B, H geom

A (`) 6⊂ Hu(`)
}
, and

E(B) ··=
⋃

prime `>C

E`(B),

where C is defined as in point (b) of Section 4C. The set E`(B) should be thought of as the set of
exceptional points of height bounded by B for the `-adic representation, and the set E(B) should likewise
be thought of as the set of points of height bounded by B that are exceptional for some ` > C . Note in
particular that for any ` > C we have HA(`)/H geom

A (`)' (Z/`Z)×; this condition is important for the
proof of [Wallace 2014, Theorem 3.9] to go through, so we impose the following restriction:

For the rest of this section, we will maintain ` > C as a standing assumption. (4-4)

For ease of notation, we redefine the set S ⊂6K of “bad” primes, defined in Section 3B, by adjoining to
it all primes ` < C .

Remark 4.5. Note that our definition of the exceptional set E(B) differs slightly from that given in
[Wallace 2014, Theorem 1.1], where it is defined to be the union over all primes ` of the `-adic exceptional
sets E`(B). This difference is inconsequential, as we can always deal with a finite collection of primes
using Proposition 4.4. Indeed, this is exactly why we replace M by a multiple M ′ divisible by all primes
` < C in the proof of Proposition 4.2.

4For functions f, g in the variable B, we say that f (B)� g(B) if there exists a constant c > 0 such that | f (B)| ≤ c · |g(B)|
for all sufficiently large B.
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Now that we have introduced the setup needed for stating [Wallace 2014, Theorem 3.9], we declare
the four criteria required for the theorem to be applied. For this, it will now be crucial to recall notation
from the geometric setup detailed in Section 3B.

Conditions 4.6. Recall from Section 3B that Pm denotes the set of primes of OK dividing an integer m
and that V` denotes the connected Galois étale cover of U giving rise to the monodromy group HA(`) for
a prime `. In order to apply [Wallace 2014, Theorem 3.9], we need to verify the following geometric
condition on the covers V`→U as ` ranges through the primes greater than C :

(G) Let ζ` denote a primitive `th root of unity. Each connected component of the base-change (V`)K (ζ`)

is geometrically irreducible.

We also need the following three asymptotic conditions concerning the monodromy groups HA(`),
H geom

A (`), and HA,p(`) for [Wallace 2014, Theorem 3.9] to be applied:

(A1) There exist constants β1, β2 > 0 such that

|HA(`)| � `β1 and |{conjugacy classes of HA(`)}| � `β2,

where the implied constants depend only on U .

(A2) There exists a constant β3 > 0 such that

T` ··=
∣∣{prime p⊂OK : p ∈ S ∪ P` or H geom

A,p (`) 6' H geom
A (`)

}∣∣� `β3,

where the implied constant depends only on A→U .

(A3) For each B > 0, there exists a subset

F(B)⊂ {u ∈U (K ) : Ht(u)≤ B}

and constants c, γ > 0 depending only on A→U such that

lim
B→∞

|F(B)|
|{u ∈U (K ) : Ht(u)≤ B}|

= 1 and F(B)∩ E(B)⊂
⋃

`≤c(log B)γ
E`(B).

We are now in a position to state Wallace’s main result:

Theorem 4.7 [Wallace 2014, Theorem 3.9]. Suppose that condition (G) holds and that conditions
(A1)–(A3) hold with the values β1, β2, β3, γ .5 Then we have the following bound on the proportion of
exceptional points of height bounded by B:

|E(B)|
|{u ∈U (K ) : Ht(u)≤ B}|

�
|{u ∈U (K ) : Ht(u)≤ B} \ F(B)|
|{u ∈U (K ) : Ht(u)≤ B}|

+
(log B)(β1+β2+2)γ+1

B
1
2

, (4-5)

where the implied constant depends only on U.

5The constant c from condition (A3) is absorbed into the implied constant in (4-5).
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4F2. Bounding (4-2), conditional on verifying (G), (A2), and (A3). We have not yet determined that
Conditions 4.6 hold in our setting. We defer the verification of these conditions to Sections 4G, 4H,
and 4I. Nevertheless, assuming that these conditions hold, we obtain the following consequence:

Proposition 4.8. Let n > 0. Then we have∣∣{u ∈U (K )∩Or
K : ‖u‖ ≤ B, HAu (`) 6⊂ Sp2g(Z/`Z) for some ` > C

}∣∣
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
� (log B)−n, (4-6)

where the implied constant depends only on U and n.

Proof assuming Propositions 4.10, 4.13, and 4.17. Note that condition (A1) holds trivially in our setting,
because

max
{
|HA(`)|, |{conjugacy classes of HA(`)}|

}
≤ |GSp2g(Z/`Z)|,

and |GSp2g(Z/`Z)| = O(`β) for some positive constant β depending only on g because GSp2g(Z/`Z)⊂

GL2g(Z/`Z).
Condition (G) holds by Proposition 4.10, and condition (A2) holds by Proposition 4.13. Proposition 4.17

constructs F(B) that not only satisfy condition (A3), but also have the property that∣∣{u ∈U (K ) : Ht(u)≤ B} \ F(B)
∣∣

|{u ∈U (K ) : Ht(u)≤ B}|
� (log B)−n

for every n > 0. Upon applying the argument in point (c) of Section 4C, which relates the left-hand sides
of (4-5) and (4-6), the proposition follows from Theorem 4.7. �

The rest of this section is devoted to verifying the conditions necessary for the proof of Proposition 4.8.

4G. Verifying condition (G). In this section, we will consider the base-change of the setting established
in 3B from K to a finite extension L ⊂ K of K ; in this setting, we obtain a family AL →UL and a (not
necessarily connected) finite Galois étale cover (V`)L → UL . To verify condition (G), we employ the
following lemma:

Lemma 4.9. Let L ⊂ K be a finite extension of K . We have that HAL (m)' H geom
AL

(m) if and only if all
connected components of (Vm)L are geometrically connected over L.

Proof. Observe that (Vm)L and (Vm)K are finite Galois étale covers of UL and UK , which need not be
connected.

Let W ⊂ (Vm)L be a connected component, and let W̃ ⊂ (Vm)K be a connected component mapping
to W. By construction, W → UL is the connected Galois étale cover corresponding to the surjection
π1(UL)� HAL (m). Likewise, W̃→UK corresponds to π1(UK )� H geom

A (m)= H geom
AL

(m). This implies
that:

• The degree d1 of W →UL equals |HAL (m)|.

• The degree d2 of W̃ →UK equals |H geom
AL

(m)|.
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On the other hand, the maps (Vm)L →UL and (Vm)K →UK have equal degrees. Therefore d1 = d2 if
and only if all connected components of (Vm)L are geometrically connected. �

We are now in position to prove condition (G).

Proposition 4.10. Condition (G) holds in the setting of Section 3B.

Proof. Let L = K (ζ`), and recall the assumption (4-4). Since (V`)L → UL is étale and UL is smooth
over L , it follows that (V`)L is smooth over L . Therefore (V`)L is geometrically irreducible over L if
and only if it is geometrically connected over L . Now, by Lemma 4.9, it suffices to show that HAL (`)=

H geom
A (`). Since we always have HAL (`)⊃ H geom

A (`), it suffices to prove the reverse inclusion HAL (`)⊂

H geom
A (`)= Sp2g(Z/`Z). Since χ` is trivial on GL = π1(Spec K (ζ`)), it follows from Remark 3.2 that

HAL (`)⊂ Sp2g(Z/`Z). �

4H. Verifying condition (A2). Before we carry out the verification of condition (A2) in Proposition 4.13,
we need to introduce a modified version of the geometric setup developed in [Zywina 2010b, Section 5.2]
and in the proof of [Zywina 2010b, Theorem 5.3].

4H1. Geometric setup from [Zywina 2010b]. Fix the following notation: for a prime p ⊂ OK , let Kp

be the completion of K at p, let K un
p be the maximal unramified extension of Kp, let Op be the ring

of integers of Kp, and let Oun
p be the ring of integers of K un

p . For a ring R, define GrR(1, r) to be the
Grassmannian of lines in Pr

R and let LR ⊂ Pr
R ×GrR(1, r) denote the universal line over GrR(1, r). Let

Z and Z be as defined in Section 3B.
We now construct a closed subscheme W of the Grassmannian parametrizing all lines whose intersec-

tions with Z are not étale over the base. Define the projection p :LOK ∩ (Z×GrOK (1, r))→GrOK (1, r).
Let X1 be the open subscheme of LOK ∩(Z×GrOK (1, r)) on which p is étale with nonempty fibers. Define
W ··= p

(
LOK ∩(Z×GrOK (1, r))\X1

)
with reduced subscheme structure and define X ··=GrOK (1, r)\W .

Note that W is closed because p is proper. Considering W and X as schemes over OK , let W and X
denote their fibers over K .

Lemma 4.11. The scheme W , as defined above, is a proper closed subscheme of GrOK (1, r).

Proof. It suffices to show that X is nonempty. In turn, it suffices to show X is nonempty. Since X is the
set of points in GrK (1, r) over which p is étale, by generic flatness, we need only verify that there is an
open subscheme of GrK (1, r) on which the fibers of pK are étale. Since Z is reduced, hence generically
smooth, and the fiber of pK over [L] is identified with Z ∩ L , a Bertini theorem (specifically [Jouanolou
1983, Theoreme I.6.10(2)] applied to the smooth locus of Z over K ) implies that Z ∩ L is indeed étale
over κ([L]) for [L] general in GrK (1, r). �

Remark 4.12. By Lemma 4.11, W is a proper closed subscheme of GrOK (1, r). Observe that for any
line [L] ∈ (GrOK (1, r)\W)(Fp), there exists a lift [L] ∈ (GrOK (1, r)\W)(Op). The purpose of the above
construction is to ensure that L∩ZOp is étale over Op, which we use in the proof of Proposition 4.13.
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4H2. Applying the setup to check (A2). In the following proposition, we use the Grothendieck special-
ization theorem to verify that condition (A2) holds in our situation:

Proposition 4.13. For a prime ideal p⊂OK let N(p) denote its norm and define S′ to be the finite set of
primes over which the fiber of W is empty. Then,

T` ≤ |S′ ∪ P`| +
∣∣{primes p⊂OK : gcd

(
N(p), |Sp2g(Z/`Z)|

)
6= 1

}∣∣.
In particular, we have that T` is bounded by a fixed power of `, so condition (A2) holds in the setting of
Section 3B.

Remark 4.14. In fact, it is true that T`� log `. Apart from a finite number of primes depending only on
the family A→U , we need only throw out those primes whose norms are not coprime to |GSp2g(Z/`Z)|.
Since |GSp2g(Z/`Z)| grows polynomially in `, the number of distinct primes dividing |GSp2g(Z/`Z)|

is at most logarithmic in `.

Proof of Proposition 4.13. Take a prime ideal p /∈ S′ ∪ P` so that gcd
(
N(p), |GSp2g(Z/`Z)|

)
= 1. It

suffices to show H geom
A,p (`)= Sp2g(Z/`Z)= H geom

A (`).
Choose [L] ∈ (GrOK (1, r)\W)(Op), which exists by Remark 4.12. Furthermore, define D ··= L∩ZOp

and Y ··= L \D. We have the commutative diagram

YK UK

YOun
p

UOun
p

U

YFp
UFp

where all of the horizontal arrows are embeddings. Let π (p)1 denote the largest prime to p quo-
tient of the fundamental group. Note that ρA,` factors through π (p)1 (U) because we are assuming
gcd

(
N(p), |GSp2g(Z/`Z)|

)
= 1. By applying the prime to N(p) étale fundamental group functor to

the above diagram, we obtain

π
(N(p))
1 (YK ) π

(N(p))
1 (UK )

π
(N(p))
1 (YOun

p
) π

(N(p))
1 (UOun

p
) π

(N(p))
1 (U) GSp2g(Z/`Z)

π
(N(p))
1 (YFp

) π
(N(p))
1 (UFp

)

ιK

αK

φ

βK

ιOun
p

βOun
p ρA,`

αFp

ιFp

βFp

(4-7)

By Remark 4.12, D is étale over Op. By the Grothendieck specialization theorem, [Orgogozo and Vidal
2000, théorème 4.4], there is a map φ : π (N(p))1 (YK )−→

∼ π
(N(p))
1 (YK p

)→ π
(N(p))
1 (YFp

) which makes the
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triangle on the left in (4-7) commute and induces an isomorphism on the largest prime-to-N(p) quotients
of the source and target. Note that π (N(p))1 (YK ) −→

∼ π
(N(p))
1 (YK p

) is an isomorphism by [SGA 1 1971,
exposé XIII, proposition 4.6]. Since the rest of the diagram (4-7) commutes, the entire diagram commutes.

Now, observe that we have

(ρA,` ◦βK )(π
(N(p))
1 (UK ))= H geom

A (`)= Sp2g(Z/`Z)

where the last step follows from the Equation (4-4). By [Zywina 2010b, Lemma 5.2], (since the scheme
W used in [Zywina 2010b, Lemma 5.2] is contained in the scheme W we have constructed above) we
have that

(ρA,` ◦βK ◦ ιK )(π
(N(p))
1 (YK ))= H geom

A (`)= Sp2g(Z/`Z).

Since φ is an isomorphism, we deduce that

(ρA,` ◦βFp
◦ ιFp

)(π
(N(p))
1 (YFp

))= (ρA,` ◦βFp
◦ ιFp
◦φ)(π

(N(p))
1 (YK ))

= (ρA,` ◦βK ◦ ιK )(π
(N(p))
1 (YK ))

= Sp2g(Z/`Z).

Therefore, Sp2g(Z/`Z)⊂ (ρA,` ◦βFp
)(π

(N(p))
1 (UFp

))= H geom
A,p (`). Since ` -N(p), we have that Fp contains

nontrivial `th roots of unity. Thus, the mod-` cyclotomic character is trivial on π (N(p))1 (UFp
), and so

Sp2g(Z/`Z)⊃ H geom
A,p (`). Hence, we have that

H geom
A,p (`)= Sp2g(Z/`Z)= H geom

A (`). �

4I. Verifying condition (A3). It remains to check that condition (A3) is satisfied in our setting. As usual,
before carrying out the argument, we must fix some notation. Let 6K denote the set of nonzero prime
ideals of OK , and for a prime p∈6K of good reduction, let Frobp ∈GK denote a corresponding Frobenius
element.

Given a PPAV A/K , let chA(Frobp) denote the characteristic polynomial of ρA(Frobp) ∈ GSp2g(Ẑ),
and observe that chA(Frobp) has coefficients in Z. Finally, let h(A) denote the absolute logarithmic
Faltings height of A, obtained by passing to any field extension over which A has semi-stable reduction.

4I1. Applying Lombardo’s result. The key input for our proof of this condition is the following theorem
of Lombardo, which is an effective version of the open image theorem:

Theorem 4.15 ([Lombardo 2016a, Theorem 1.2] and Proposition A.2 in the Appendix). Let A/K be a
PPAV of dimension g ≥ 2. Suppose that we have the following two conditions:

(1) EndK (A)= Z.

(2) There exists a prime p ∈ 6K at which A has good reduction and such that the splitting field of
chA(Frobp) has Galois group isomorphic to (Z/2Z)g o Sg.
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Then there are constants c1, c2 > 0 and γ1, γ2, depending only on g and K , for which the following
statement is true: For every prime ` unramified in K and strictly larger than

max
{
c1(N(p))γ1, c2(h(A))γ2

}
,

the `-adic Galois representation surjects onto GSp2g(Z`).

Remark 4.16. The group structure of (Z/2Z)g o Sg is defined by how Sg acts on (Z/2Z)g, namely by
permuting the g factors. This group appears because it is the largest possible Galois group of a reciprocal
polynomial, by which we mean a polynomial P(T ) satisfying P(T )= P(1/T ) · T deg P.

Now, the proof of condition (A3) will follow from Theorem 4.15 once we know that the two hypotheses
of Theorem 4.15 hold for a density-1 subset of the K-valued points of the family. We shall first check
condition (A3) under the assumption that these hypotheses hold most of the time. To this end, it will be
convenient to introduce notation to help us count the points that fail to satisfy one of the hypotheses in
Theorem 4.15. For a given family A→U , define the following two sets:

D1(B) ··=
{
u ∈U (K ) : Ht(u)≤ B, Au fails hypothesis (1)

}
, and

D2(B) ··=
{
u ∈U (K ) : Ht(u)≤ B, Au fails hypothesis (2) for all p with N(p)≤ (log B)n+1}.

In the next proposition, we verify condition (A3), conditional upon the assumptions that sets D1(B)
and D2(B) are sufficiently small (these assumptions are proven in Lemma 4.18 and Proposition 4.21
respectively):

Proposition 4.17. Let n > 0. There are constants c, γ depending only on U such that the following holds:
if we define

F(B) ··=
{
u ∈U (K ) : Ht(u)≤ B, HAu (`)⊃ Sp2g(Z/`Z) for all ` > c(log B)γ

}
,

then we have
|F(B)|

|{u ∈U (K ) : Ht(u)≤ B}|
= 1+ O((log B)−n), (4-8)

where the implied constant depends only on U and n.

Proof assuming Lemma 4.18, Proposition 4.21, and Lemma 4.27. Let c1, c2 and γ1, γ2 be as in
Theorem 4.15. There exist constants c′2, γ

′

2, chosen appropriately in terms of the constants c0, d0 provided
by Lemma 4.27, such that the following holds: for u ∈U (K ) with Ht(u) > B0, where B0 is a positive
constant depending only on U , we have that

c2(h(Au))
γ2 ≤ c′2(log Ht(u))γ

′

2 .

The requirement that Ht(u) be sufficiently large is insignificant because

|{u ∈U (K ) : Ht(u)≤ B0}|

|{u ∈U (K ) : Ht(u)≤ B}|
�

1
B[K :Q](r+1) , (4-9)
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and the right-hand side of (4-9) is dominated by the right-hand side of (4-8). If we take

c =max{c1, c′2} and γ =max{(n+ 1)γ1, γ
′

2},

Theorem 4.15 tells us that

{u ∈U (K ) : Ht(u)≤ B} \ F(B)⊂ D1(B)∪ D2(B).

The desired result follows from Lemmas 4.18 and 4.21, from which we deduce that

|D1(B)∪ D2(B)|
|{u ∈U (K ) : Ht(u)≤ B}|

� (log B)−n. �

In what follows, we prove the results upon which the above proof of Proposition 4.17 depends. To
begin with, we check that hypotheses (1) and (2) from Theorem 4.15 hold in our setting by bounding
D1 in Lemma 4.18 (thus verifying hypothesis (1)) and bounding D2 in Proposition 4.21 (thus verifying
hypothesis (2)).

4I2. Verifying hypothesis (1). We check that hypothesis (1) holds in our setting via the following:

Lemma 4.18. We have that
|D1(B)|

|{u ∈U (K ) : Ht(u)≤ B}|
�

log B
B[K :Q]/2

, (4-10)

where the implied constant depends only on U.

Proof. Choose ` > max{C, `1(g)}, where C is defined in (4-4) and `1(g) is the constant, depending
only on the dimension g, given in [Ellenberg et al. 2009, Proposition 4]. By that proposition we have
that |D1(B)| is bounded above by |{u ∈U (K ) : HAu (`)⊃ Sp2g(Z/`Z)}|. The lemma then follows from
Proposition 4.4, where we are using point (c) of Section 4C to pass from lattice points to K-valued
points. �

4I3. Verifying hypothesis (2). In Proposition 4.21 we complete the verification of hypothesis (2) by
means of an argument involving the large sieve, which lets one bound a set in terms of its reduction
modulo primes. The large sieve is stated as follows:

Theorem 4.19 (large sieve, [Zywina 2010a, Theorem 4.1]). Let ‖−‖ be a norm on R⊗Z Or
K , and fix a

subset Y ⊂Or
K . Let B ≥ 1 and Q > 0 be real numbers, and for every prime p ∈6K , let 0≤ ωp < 1 be a

real number. Suppose that we have the following two conditions:

(a) The image of Y in R⊗Z Or
K is contained in a ball of radius B.

(b) For every p ∈6K with N(p) < Q, we have |Yp| ≤ (1−ωp) · N(p)r , where Yp is the image of Y under
reduction modulo p.

Then we have that

|Y | �
B[K :Q]r + Q2r

L(Q)
, where L(Q) ··=

∑
a⊂OK squarefree

N(a)≤Q

∏
prime p | a

ωp

1−ωp
,
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and the implied constant depends only on K , r , and ‖−‖.

We must now specialize the abstract setup in Theorem 4.19 to our setting. To do so, we define the
various objects at play in the large sieve as follows:

Definition 4.20. Introduce the following notation:

• Let ‖−‖ be the norm defined in Section 1B.

• Let B ≥ 1, take Q ··= (log B)n+1.

• Let m be the positive integer produced by Proposition 4.22, let ζm denote a primitive m-th root of
unity, and let 6m

K ⊂6K be the set of p ∈6K which split completely in K (ζm). Now, with σ , τ as in
Lemma 4.25, we may take ωp = σ for all p ∈6m

K with N(p) > τ and ωp = 0 for all other p ∈6K .

• We take Y to be the following set:

Y ··=
{
u ∈U (K )∩Or

K : ‖u‖ ≤ B, Au fails hypothesis (2) for all p with N(p)≤ (log B)n+1}.
As above, Yp denotes the mod-p reduction of Y .

• Define Tp by

Tp ··=
{

x ∈ UFp : splitting field of chA(Frobp) has Galois group (Z/2Z)g o Sg
}
.

The motivation for defining Tp is that its complement contains Yp.

To ensure that the choices made in Definition 4.20 are suitable, we must prove Proposition 4.22 and
Lemma 4.25, which when taken together assert that there exist a positive integer m and σ, τ > 0 such that
|Yp| ≤ (1− σ) · N(p)r for all p ∈6m

K . However, the proof of this result is rather laborious, and stating it
now would serve to distract the reader from the primary thrust of the argument. We therefore defer the
proof of Lemma 4.25 to Section 4I4, and conditional upon this, we now use the large sieve to check that
hypothesis (2) holds in our setting.

Proposition 4.21. For n > 0, we have that

|D2(B)|
|{u ∈U (K ) : Ht(u)≤ B}|

� (log B)−n.

Proof assuming Proposition 4.22 and Lemma 4.25. Theorem 4.19 yields the estimate

|Y | �
B[K :Q]r + (log B)2n(n+1)

L((log B)n+1)
,

whose denominator is bounded below by

L((log B)n) >
∑
p∈6m

K
τ<N(p)<(log B)n+1

σ

1− σ

> σ ·
∣∣{p ∈6m

K : τ < N(p)≤ (log B)n+1}∣∣.
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Applying the Chebotarev Density Theorem yields that∣∣{p ∈6m
K : τ < N(p)≤ (log B)n+1}∣∣� ∣∣{p ∈6K : τ < N(p)≤ (log B)n+1}∣∣.

Applying the Prime Number Theorem yields that∣∣{p ∈6K : τ < N(p)≤ (log B)n+1}∣∣� (log B)n+1

log((log B)n+1)
.

Combining the above estimates, we deduce that

|Y |
|{u ∈U (K )∩Or

K : ‖u‖ ≤ B}|
�

B[K :Q]r + (log B)2n(n+1)

(log B)n+1/log((log B)n+1)
·

1
B[K :Q]r

�
log((log B)n+1)

(log B)n+1 � (log B)−n.

Finally, employing point (c) of Section 4C to translate the above estimate from lattice points to K-valued
points yields the desired result. �

4I4. Validating the sieve setup. This section is devoted to proving Proposition 4.22 and Lemma 4.25,
which together verify that the sieve setup introduced in Definition 4.20 satisfies the necessary conditions
for applying the large sieve as we did in the proof of Proposition 4.21. We start by constructing the value
of m that we use in our application of the large sieve:

Proposition 4.22. There is a positive integer m and a subset C⊂Sp2g(Z/mZ) invariant under conjugation
in Sp2g(Z/mZ), and hence in GSp2g(Z/mZ), such that the following holds:

(a) We have HA(m)= GSp2g(Z/mZ) and H geom
A (m)= Sp2g(Z/mZ).

(b) For any p /∈ S and any closed point x ∈ UFp, if ρA,m(Frobx) ∈ C, then the splitting field of ch(Frobx)

has Galois group (Z/2Z)g o Sg.6

Note that it is easy to construct many m satisfying (a) by the big monodromy hypothesis. The main
point of this proposition is to show there is an m which also satisfies (b).

Proof. We construct the desired m as a product of four appropriate primes, depending on the family
A→U . By, for example, Hilbert irreducibility, or more precisely [Serre 1997, §9.2, Proposition 1] in
conjunction with [Serre 1997, §13.1, Theorem 3] applied to the extension

Q(x1, . . . , xg)[T ]
/(

T 2g
+

g−1∑
i=1

(−1)i xi (T 2g−i
+ T i )+ (−1)gxgT g

+ 1
)

over Q(x1, . . . , xg),

there exists a degree-2g polynomial P(T ) ∈ Z[T ] satisfying P(T )= P(1/T ) · T deg P with Galois group
(Z/2Z)g o Sg. It is easy to exhibit elements of (Z/2Z)g o Sg whose left-action on (Z/2Z)g o Sg is
described by one of the following four cycle types:

2+ 1+ · · ·+ 1, 4+ 1+ · · ·+ 1, (2g− 2)+ 1+ 1, 2g. (4-11)

6For the definition of S, see the sentence immediately preceding Remark 4.5.
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We choose these cycle types because any subgroup of (Z/2Z)g o Sg containing an element with each
of these cycle types is in fact all of (Z/2Z)g o Sg by [Kowalski 2006, Lemma 7.1]. For each such
partition, the Chebotarev density theorem tells us that there are infinitely many primes ` such that
P(T ) (mod `) splits according to the chosen partition. For ` > C we have ρA,`(π1(U ))= GSp2g(Z/`Z)

and ρA,`(π1(UK )) = Sp2g(Z/`Z). So, for i ∈ {1, 2, 3, 4} we can find `i > C such that P(T ) (mod `i )

splits according to the i-th partition above. By the Chinese remainder theorem, (a) holds.
To complete the proof, we construct C and verify (b). Since characteristic polynomials are conjugacy-

invariant, the set

C ··=
{

M ′ ∈ GSp2g(Z/mZ) : ch(M ′) (mod `i ) splits as in (4-11) for all i ∈ {1, 2, 3, 4}
}

is a union of conjugacy classes of GSp2g(Z/mZ). By [Rivin 2008, Theorem A.1] there exists an
M ∈ Sp2g(Z) such that ch(M)(T ) = P(T ), which shows that C is nonempty. For this choice of C,
conclusion (b) follows from [Kowalski 2006, Lemma 7.1], which says that any subgroup of (Z/2Z)g o Sg

that contains elements realizing all four cycle types in (4-11) must actually equal all of (Z/2Z)g o Sg. �

The reason why we constructed m in Proposition 4.22 in the way that we did is that it allows us to
apply the following theorem, which is a crucial tool for bounding the set of Frobenius elements with
certain Galois groups modulo each prime.

Theorem 4.23 [Ekedahl 1990, Lemma 1.2]. Let X be a scheme, and let π : X→ Spec OK be a morphism
of finite type. Let φ : Y → X be a connected finite Galois étale cover with Galois group G, and let
ρ : π1(X) → G denote the corresponding finite quotient. Suppose that π ◦ φ has a geometrically
irreducible generic fiber, and let C be a conjugacy-invariant subset of G. For every p ∈6K , we have

|{x ∈ X (Fp) : ρ(Frobx) ∈ C}|
|X (Fp)|

=
|C|
|G|
+ O((N(p))−

1
2 ),

with implicit constants depending only on the family Y → X. By Frobx we mean the Frobenius element in
π1(X) corresponding to x ∈ X.

We now apply Theorem 4.23 to the conjugacy-invariant set C from Proposition 4.22 in order to obtain
a lower bound on |Tp|, the number of points u ∈ U (K ) with the splitting field of chAu (Frobp) having
Galois group equal to (Z/2Z)g o Sg.

Proposition 4.24. As p ranges through the elements of 6m
K , where m is defined as in Proposition 4.22, we

have that |Tp| � (N(p))r .

Proof. Let L ··= K (ζm). As in Section 3B, let Vm→ UOPm
be the connected Galois étale cover associated

to the mod-m Galois representation ρ : π1(UOPm
)→ GSp2g(Z/mZ), and let X be one of the connected

components of (Vm)L . The map X → (UOPm
)L is the connected Galois étale cover associated to the map

ρ ′ : π1((UOPm
)L) π1(UOPm

) GSp2g(Z/mZ);
ρ
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note that the image of this composite map equals ρ(π1(UOPm
))∩Sp2g(Z/mZ) by Remark 3.2, since χm

is trivial on K (ζm). By Proposition 4.22(a), we have ρ(π1(UOPm
))=GSp2g(Z/mZ), so we conclude that

ρ ′(π1((UOPm
)L))= Sp2g(Z/mZ).

We seek to apply Theorem 4.23 with

X → (UOPm
)L → Spec OL in place of Y → X→ Spec OK .

To do so, we must check that this composition has geometrically irreducible generic fiber, which follows
from the second part of Proposition 4.22(a) in conjunction with Lemma 4.9.

Now let C ⊂ Sp2g(Z/mZ) be as in Proposition 4.22(b). For any p ∈6m
K \ S and p′ ∈6L lying over p,

we have (UL)Fp′ ' UFp , and so there is a bijection between

{x ∈ UL(Fp′) : ρ
′(Frobx) ∈ C} and {x ∈ U(Fp) : ρ(Frobx) ∈ C}.

By Proposition 4.22(b), Tp contains the latter set, so we have

|Tp| ≥ |{x ∈ U(Fp′) : ρ(Frobx) ∈ C}| = |{x ∈ UL(Fp′) : ρ
′(Frobx) ∈ C}|

=

(
|C|
|G|
+ O((N(p′))−

1
2 )

)
· |UL(Fp′)|,

where the last step above follows from Theorem 4.23. Now, we have the estimate

|UL(Fp′)| � (N(p′))r ,

because the complement of (UL)Fp′ in (Pr
OL
)Fp′

has codimension at least 1, since p /∈ S. Combining our
results, and using that S is a finite set, we find that

|Tp| ≥
(
|C|
|G|
+ O(N(p′)−

1
2 )

)
· |UL(Fp′)| � N(p′)r = N(p)r . �

The following lemma completes our verification of the sieve setup by constructing the necessary
constants σ, τ .

Lemma 4.25. There are constants σ , τ > 0 such that for all p ∈ 6m
K with N(p) > τ , we have |Yp| ≤

(1− σ) · N(p)r .

Proof. By Proposition 4.24, there are constants σ ′, τ ′ > 0 such that, for all p ∈6m
K with N(p) > τ ′, we

have |Tp| ≥ σ ′ ·(N(p))r . For such p, we have that

|Yp| ≤ (1− σ ′) · (N(p))r + O((N(p))r−1),

where the error term is on order of N(p) smaller than the main term because Z has codimension at least 1
in Pr

OK
. By replacing σ ′ with a slightly smaller σ and τ ′ with a slightly larger τ , we may write

|Yp| ≤ (1− σ) · (N(p))r . �
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4I5. Discussion of heights. In this section, we prove a result that describes the relationship between the
absolute multiplicative height on projective space and the absolute logarithmic Faltings height. Let Ht be
the height on Pr

K as defined in 1B, and let h be the Faltings height. Let log Ht be the absolute logarithmic
height on Pr (K ), and note that log Ht naturally restricts to a logarithmic height function defined on the
open subscheme U ⊂ Pr

K .
Let Ag be the moduli stack of g-dimensional PPAVs, and let p : Ug → Ag be the universal family

of abelian varieties. Let π : Ag→ Ag be its coarse moduli space, and let j (A) ∈ Ag(K ) be the closed
point represented by A. As in [Faltings 1983, Section 2], we choose n ∈ N such that the line bundle
L = ((π ◦ p)∗ωUg/Ag )

⊗n is very ample, where ωUg/Ag is the canonical sheaf of p : Ug → Ag. Fix an
embedding i : Ag ↪→PN with i∗OPN (1)'L . The modular height log Ht( j (A)) of A is then the restriction
along i of the absolute logarithmic height (i.e., the absolute logarithmic height of j (A) considered as a
point of PN (K )). On the other hand, OPN (1) is a metrized line bundle and restricts to give a metric on L

[Faltings et al. 1992, p. 36]; we denote by log HtL the corresponding height function on Ag.
We now relate the height on projective space and the Faltings height by piecing together results from

the literature on heights:

Lemma 4.26. Let g be a positive integer, K a number field, and let n ∈ N be as in the definition of the
modular height. Then there exist constants α and β such that for every principally polarized abelian
variety A over K , we have

|n · h(A)− log Ht( j (A))| ≤ α · log max{1, log Ht( j (A))}+β.

Proof. By [Faltings 1983, Proof of Lemma 3], there exist constants α1 and β1 such that for all abelian
varieties A/K , we have

|n · h(A)− log HtL ( j (A))| ≤ α1 · log
(
log HtL ( j (A))

)
+β1.

By [Hindry and Silverman 2000, B.3.2(b)], there is a constant β2 such that∣∣log HtL ( j (A))− log Ht( j (A))
∣∣≤ β2. �

Lemma 4.27. There exist constants c0 and d0 depending only on A→U such that

h(Au)≤ c0 log Ht(u)+ d0

for all u ∈U (K ).

Proof. By [Serre 1997, p. 19, Section 2.6, Theorem], Ht( j (Au))� Ht(u) and Ht(u)� Ht( j (Au)) for all
u ∈U . The result then follows from Lemma 4.26. �

5. Applications of Theorem 1.1

The purpose of this section is to demonstrate that the main result, Theorem 1.1, can be applied to a
number of interesting families of PPAVs, such as families containing a dense open substack of the locus
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of Jacobians of hyperelliptic curves, trigonal curves, or plane curves. In Section 5A, we prove a general
tool that is needed to guarantee big monodromy for the loci in our applications, and in Section 5B, we
examine each of these applications in detail.

5A. Finite-index criterion. In this section we prove Proposition 5.2, which will be applied in the setting of
Theorem 1.1 to determine that U has big monodromy when its image in the moduli stack of abelian varieties
has big monodromy. We begin by recalling an elementary criterion giving surjectivity for the map on étale
fundamental groups induced by a morphism of Deligne–Mumford stacks. By Deligne–Mumford stack,
we mean a stack in the étale topology with representable diagonal (i.e., representable by algebraic spaces),
which has an étale surjective morphism from a scheme. For a general reference on stacks, see [Olsson
2016] or [Laumon and Moret-Bailly 2000]; also, see [Stacks 2005–] for a more comprehensive reference.

Lemma 5.1. Suppose f : X → Y is a map of Deligne–Mumford stacks. The fiber product U ×Y X is
connected for all finite connected étale maps U → Y if and only if the induced map π1(X)→ π1(Y ) is
surjective. In particular, if X and Y are normal, integral, and Noetherian, and f : X→ Y is a flat map
with connected geometric generic fiber, then the induced map π1(X)→ π1(Y ) is surjective.

Proof. The first part holds in greater generality as a statement about Galois categories; see [Stacks 2005–,
Tag 0BN6]. As for the second part, we only need verify that a connected finite étale cover U → Y pulls
back to a connected cover of X . Note that because X and Y are normal and integral, étale covers of X and
Y are connected if and only if they are irreducible. Here, we are using that normal and connected implies
irreducible and that normality is local in the étale topology over Noetherian stacks. To see why normality
is local in the étale topology over a Deligne–Mumford stack, note first that normality is local in the étale
topology over any base scheme by [Stacks 2005–, Tag 03E7]. Using this, one defines a Deligne–Mumford
stack to be normal if any étale cover by a scheme is normal. From this definition, it follows that normality
of a Deligne–Mumford stack is equivalent to normality of any étale cover.

Thus, we only need show that if U → Y is any irreducible finite étale cover, then so is X ×Y U → X .
But this follows from the assumptions that f is flat and U is integral, which implies all generic points of
X ×Y U map to the generic point of U . So, if X ×Y U were reducible, the geometric generic fiber over U
would also be reducible, which contradicts the assumption that f has connected geometric generic fiber,
since a geometric generic fiber of X ×Y U is also a geometric generic fiber of f . �

Proposition 5.2. Let k be an arbitrary field of characteristic 0. Suppose X is a scheme and Y is a
Deligne–Mumford stack over k, both of which are normal, integral, separated, and finite type over k, and
let f : X→ Y be a dominant map. Then, the image of the induced map π1(X)→ π1(Y ) has finite index
in π1(Y ). If , in addition, the geometric generic fiber of f is connected, then the map π1(X)→ π1(Y ) is
surjective.

Proof. To begin, we reduce to the case in which f is smooth. By generic smoothness, we may replace X
by a dense open X ′ ⊂ X so that f |X ′ is smooth. Since, π1(X ′)→ π1(X) is a surjection by Lemma 5.1,
in order to prove the proposition, we may replace X by X ′.

https://stacks.math.columbia.edu/tag/0BN6
http://stacks.math.columbia.edu/tag/03E7
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The last sentence of this proposition follows from Lemma 5.1 (here we only needed that the map
be f be flat, but we have already reduced to the case it is smooth). To conclude, we only need prove
that the image of π1(X)→ π1(Y ) has finite index in π1(Y ), without the assumption that the geometric
generic fiber of f is connected. Since f is smooth and Y is Deligne–Mumford, we can find a scheme
U and a dominant étale map U → X such that U → Y factors through AN

Y , where N is the dimension
of the geometric generic fiber of f and U → AN

Y étale. So, after passing to a dense open substack of
W ⊂ AN

Y and a dense open subscheme U ′ ⊂U , we may assume that U ′→W is a finite étale cover: To
see why, take a smooth cover of AN

Y by a scheme. The pullback to U is a separated algebraic space, so
it has a dense open subspace that is a scheme by [Olsson 2016, Theorem 6.4.1]. The finiteness claim
then follows because the resulting étale morphism of schemes is locally quasifinite, of finite type, and
quasiseparated, hence generically finite on the target. Since U ′→W is finite étale, π1(U ′)→ π1(W ) has
finite index. Because the maps π1(W )→ π1(A

N
Y ) and π1(A

N
Y )→ π1(Y ) are surjective by Lemma 5.1,

the composition π1(U ′)→ π1(Y ) has finite index in π1(Y ), and hence so does π1(X)→ π1(Y ). �

5B. Applications. Let K be a number field with fixed algebraic closure K , let Mg denote the moduli
stack of curves of genus g over K , and let Ag denote the moduli stack of PPAVs of dimension g over K .
We have a natural map τg :Mg→ Ag given by the Torelli map, which sends a curve to its Jacobian. Let
Ug denote the universal family over Ag. Note that if U is any scheme and A→U is a family of PPAVs,
then there exist maps A→ Ug and U → Ag such that A equals the fiber product U ×Ag Ug.

We will also be interested in the locus of smooth hyperelliptic curves of genus g, Hg ⊂Mg, and the
locus of trigonal curves of genus g, T g

⊂Mg. If a curve C is trigonal, there exists a unique nonnegative
integer M , called the Maroni invariant, with the property that there is a canonical embedding into the
Hirzebruch surface FM ··= PP1(OP1 ⊕OP1(M)). As mentioned in [Patel and Vakil 2015], the Maroni
invariant takes on all integer values between 0 and (g+2)/3 with the same parity as g. Let T g(M)⊂Mg

denote the substack of trigonal curves of Maroni invariant M .
In order to more easily utilize Proposition 5.2 for the purpose of giving interesting examples of

Theorem 1.1, we record the following easy consequence of Proposition 5.2:

Corollary 5.3. Let U ⊂ Pr
K be an open subscheme, and let A→U be a family of g-dimensional PPAVs.

Let φ : U → Ag be the map induced by the universal property of Ag. Let V be the smallest locally
closed substack of Ag through which U factors, and let W ⊂ Ag be a normal integral substack. Suppose
further that W ∩ V is dense in W and that V is normal. Then, if W has big monodromy, so do V and U.
Furthermore, if the geometric generic fiber of φ is irreducible, then the monodromy of V agrees with that
of U. In particular, the conclusion of Theorem 1.1 holds for U.

Proof. By Lemma 5.1, if W has big monodromy so does the dense open subset W ∩ V ⊂W . Therefore,
V has big monodromy, because it contains W ∩ V , which has big monodromy. The result then follows
from Proposition 5.2, once we verify that both U and V are normal, irreducible, separated, and finite
type over K , with V Deligne–Mumford. All of these conditions are immediate except possibly that V is
generically smooth, which holds by generic smoothness on a smooth cover of V by a scheme. �
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Before stating the main theorem of this section, we pause to describe more precisely what we mean by
“the locus of plane curves.”

Remark 5.4. In Theorem 1.6(c) and Theorem 5.5(d), we refer to the “substack of Jacobians of plane
curves of degree d ,” for d ≥ 3, and we now make more precise what we mean by this locus. When d = 3,
all 1-dimensional abelian varieties can be realized as the Jacobian of a degree-3 plane curve, so in this
case we take the locus to be all of M1,1. For d ≥ 4, we will define a locally closed substack of Mg, where
g =

(d−1
2

)
, and the locus of Jacobians of plane curves of degree d will denote the image of this under the

Torelli map. For d≥ 4, let πd :Vd→P(
d+2

2 )−1 denote the universal family over the Hilbert scheme of plane
curves of degree d, and let Ud ⊂ P(

d+2
2 )−1 denote the dense open subscheme over which πd is smooth.

Since Vd |Ud ⊂Ud×P2, the action of PGL3 on P2 induces an action on Vd |Ud and hence on Ud . Then, we
define the substack of Jacobians of plane curves of degree d to be the stack theoretic quotient [Ud/PGL3].

Note that there is a natural map [Ud/PGL3] →Mg. It can be verified that this map is a locally closed
immersion of stacks. Further, one can show [Ud/PGL3] represents the functor associating to any base
scheme T projective flat morphisms f : C→ T where each geometric fiber is a proper smooth curve of
genus g :=

(d−1
2

)
with a degree d invertible sheaf on C which commutes with base change. In this sense,

[Ud/PGL3] may naturally be referred to as “the locus of plane curves of degree d” and it is evidently
smooth, since Ud is smooth, being a dense open subscheme of projective space.

Let us now briefly sketch the proof of the two facts claimed above. First, one can first see that
[Ud/PGL3] represents the claimed functor by defining natural maps both ways and verifying they
are mutually inverse. To show [Ud/PGL3] → Mg is a locally closed immersion, one can factor
[Ud/PGL3] → Mg through the stack G2

d parametrizing the g2
d on the universal curve over Mg, via

a natural generalization of the definition given in [Arbarello et al. 2011, Chapter XXI, Definition 3.12].
One can check the map [Ud/PGL3] → G2

d is an open immersion from the definitions. Finally, one can
verify that the map G2

d →Mg is a locally closed immersion, using that every smooth plane curve of
degree at least 4 has a unique g2

d , see [Arbarello et al. 1985, Appendix A, Exercises 17 and 18], and the
valuative criterion for locally closed immersions [Mochizuki 1999, Chapter 1, Corollary 2.13].

We are now in position to state and prove the main theorem of this section:

Theorem 5.5. Suppose A→U is a rational family of principally polarized abelian varieties and define V
to be the smallest locally closed substack of Ag through which U factors. The conclusion of Theorem 1.1
holds whenever V is normal and contains a dense open substack of one of the following loci:

(a) The locus τg(Hg) for any g ≥ 1. For every g ≥ 1, there exists a U dominating τg(Hg) because Hg is
unirational.

(b) The locus τg(T
g(M)) of Jacobians of trigonal curves with Maroni invariant M <

g
3 − 1 for any

g ≥ 5. In this case, there exists U dominating τg(T
g(M)) because T g(M) is unirational.

(c) The locus of trigonal curves T g in any g ≥ 3. We can take U to be any open subscheme of T g, as
T g is rational.
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(d) The locus of Jacobians of degree-d plane curves for any d ≥ 3. In this case, the open subscheme of
the Hilbert scheme of degree-d plane curves parametrizing smooth curves is rational and dominates
the locus of Jacobians of degree-d plane curves.

(e) The locus τg(Mg) for any g ≥ 1. In this case, when 1≤ g ≤ 14, Mg is unirational, so there exists a
U dominating Mg. Moreover, when 3≤ g ≤ 6, Mg is rational, and so we may take U to be any open
subscheme of Mg.

(f) The locus Ag for any g ≥ 1. When 1≤ g ≤ 5, Ag is unirational, so such a U exists.

Proof. By Corollary 5.3, it suffices to check that each of the families enumerated above has a dense
open substack which has big monodromy, is irreducible, and is normal, and to verify the rationality and
unirationality claims made above. Irreducibility of these loci is well-known. Note that in the first five
cases, if we denote the locus in question by τg(W )⊂ Ag, it suffices to verify that W ⊂Mg is smooth as
a substack of Mg, as we now explain. First, τg(W ) ⊂ Ag is generically smooth because it is reduced,
since it is the image of W , which is reduced. Taking a smooth dense open Z ′ ⊂ τg(W ), we have that
τ−1

g (Z ′)⊂ W is a dense open substack, hence it is also smooth and has big monodromy. This implies
Z ′ also has big monodromy since the monodromy of a locus in Mg agrees with the monodromy of its
image in Ag under τg, as both can be identified with the monodromy action on the first cohomology
group. We now conclude the proof by verifying that each locus in Mg (in the first five cases) is normal,
has big monodromy, and is rational or unirational when claimed. In fact, we just show the substack has
big geometric monodromy, since this implies it has big monodromy by Proposition 4.1.

(a) The hyperelliptic locus, Hg, has big geometric monodromy as was shown independently in [Mumford
2007, Lemma 8.12; A’Campo 1979, théorème 1]. The hyperelliptic locus Hg is smooth and unirational
because it is the quotient of an open subscheme of P

2g+2
K by the smooth action of PGL2.

(b) By [Bolognesi and Lönne 2016, Theorem, p. 2], T g(M) has big geometric monodromy when
M<

g
3−1. Additionally, T g(M) is smooth and unirational because it can be expressed as a quotient [U/G]

of a smooth rational scheme U by a smooth group scheme G. Here, G is the group of automorphisms of
the Hirzebruch surface FM and U is an open subscheme of the projectivization of the linear system of
class 3e+ ((g+3M+2)/2) f on FM , where f is the class of the fiber over P1 and e is the unique section
with negative self-intersection (see [Bolognesi and Lönne 2016, p. 8] for an explanation of this description
of U ). Note that in this application, we are implicitly translating between the topological monodromy
representation of Mg described in [Bolognesi and Lönne 2016, Theorem, p. 2] and the algebraic Galois
representation in Ag, but these two representations are compatible, essentially because both are given by
the action of the fundamental group on the first cohomology group.

(c) In the case that g≥ 5, we have T g(g mod 2) is birational to T g, so T g has a smooth dense open with
big geometric monodromy by the previous part. Next, T g is rational for g ≥ 5 by [Ma 2015, Theorem,
p. 1]. The cases g = 3, 4 hold because for such g, T g forms a dense open in Mg, which is itself rational
and smooth, as shown in the proof of part (e) below.
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(d) By Remark 5.4, the locus of plane curves (as was also defined in Remark 5.4) in Mg is smooth. By
[Beauville 1986, théorème 4], the locus of smooth degree-d plane curves in the Hilbert scheme has big
geometric monodromy. It follows from Lemma 5.1 that the locus of plane curves has big monodromy.
The locus of smooth degree-d plane curves in the Hilbert scheme is certainly rational, as it is an open
subscheme of the Hilbert scheme of degree-d plane curves, which is itself isomorphic to P

(d+2
2 )−1

K .

(e) By [Deligne and Mumford 1969, (5.12)], the geometric monodromy of Mg is all of Sp2g(Ẑ) for every
g ≥ 1. (Alternatively, the fact that Mg has big geometric monodromy follows immediately from the
corresponding fact for any one of parts (a)–(d).) Next, Mg is smooth by [Deligne and Mumford 1969,
Theorem (5.2)]. We have that Mg is unirational for 1≤ g≤ 14 by [Verra 2005]. Moreover, when 3≤ g≤ 6,
we have that Mg is rational; see [Casnati and Fontanari 2007, p. 2] for comprehensive references.

(f) Note that Ag has geometric big monodromy because Ag contains Mg and Mg has monodromy
Sp2g(Ẑ), as argued in point (d). Further, Ag is smooth by [Oort 1971, Theorem 2.4.1]. We have that Ag

is unirational for 1≤ g ≤ 5 as shown in [Verra 2005, p. 1]. �

Remark 5.6. In most of the cases enumerated in Theorem 5.5, we actually know that the geometric
monodromy is not only big, but also equal to Sp2g(Ẑ). By Corollary 5.3, this occurs when U has
irreducible geometric generic fiber over any of the following loci:

(a) the locus T g(M) for any M <
g
3 − 1, by [Bolognesi and Lönne 2016, Theorem, p. 2];

(b) the locus of plane curves of degree d with d even, by [Beauville 1986, théorème 4(i)];

(c) the locus Mg for any g, by [Deligne and Mumford 1969, (5.12)];

(d) the locus Ag for any g, because Mg ⊂ Ag and Mg has full monodromy by point (d).

Remark 5.7. If A→ U is a family with H geom
A = Sp2g(Ẑ), then the group HA can be determined as

follows. The intersection K ∩Qcyc is of the form Q(ζn) for some n ≥ 2. Let rn : Ẑ→ Z/nZ be the
reduction map. Then

HA = ker(rn ◦mult)= {M ∈ Sp2g(Ẑ) :mult M ≡ 1 (mod n)},

which follows from Remark 3.2. Thus, when the conclusion of the preceding remark holds, Theorem 1.1
tells us the following:

• If K 6=Q, or if K =Q and g ≥ 3, then most u ∈U (K ) have HAu = ker(rn ◦mult).

• If K =Q and g ∈ {1, 2}, then most u ∈U (K ) are such that [GSp2g(Ẑ) : HAu ] = 2.

Remark 5.8. Theorem 5.5(a) tells us that if U dominates Hg, then the conclusion of Theorem 1.1 holds
for U . In the case where U has irreducible geometric generic fiber, we can say explicitly what the
monodromy group of the family is and what its commutator is. For example, let Y2g+2,K denote the
family of genus-g hyperelliptic curves over K with Weierstrass equation given by

y2
= x2g+2

+ a2g+1x2g+1
+ · · ·+ a0.
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We show in [Landesman et al. 2017a, Theorem 1.2] that most members of Y2g+2,K have monodromy
equal to HY2g+2,K (which we explicitly compute) over K 6=Q, and have index-2 monodromy when K =Q.
We neither prove nor state this result precisely here, but a complete statement and proof is given in
[Landesman et al. 2017a].

Appendix: Explicit surjectivity for abelian surfaces
By Davide Lombardo

Let K be a number field and A/K be an abelian surface such that EndK (A)= Z. For every place w of K
at which A has good reduction, let Frobw be the corresponding Frobenius element of Gal(K/K ) and let
fw(x) be the characteristic polynomial of Frobw acting on T`A, where ` is any prime different from the
residual characteristic of w (as is well known, this definition is well-posed). Let F(w) be the splitting
field over Q of fw(x). By Remark 4.16, the Galois group of F(w)/Q is isomorphic to a subgroup of
(Z/2Z)2 o S2 ' D4, the dihedral group on 4 points.

To state our result we need the following function:

Definition A.1. Let α(g)= 210g3 and set b(d, g, h)=
(
(14g)64g2

d(max{h, log d, 1})2
)α(g)

.

We shall show the following result, which extends [Lombardo 2016a, Theorem 1.2] to the case of
abelian surfaces:

Proposition A.2. Let v be a place of K , of good reduction for A, such that the Galois group of fv(x) is
isomorphic to D4. Let qv be the order of the residue field at v. For all primes `, let

ρ`∞ : Gal(K/K )→ Aut(T`A)∼= GL4(Z`)

be the natural `-adic Galois representation attached to A/K . We have Im ρ`∞ = GSp4(Z`) for all primes
` that are unramified in K and strictly larger than

max
{
b(2[K :Q], 4, 2h(A))

1
4 , (2qv)8

}
.

From now on, let v be a place as in the statement of Proposition A.2. Notice that fv(x) is irreducible by
assumption, hence all its roots are simple. Moreover, fv(x) doesn’t have any real roots, because (by the
Weil conjectures) every root of fv(x) has absolute value

√
qv , hence its only possible real roots are ±

√
qv .

But these are algebraic numbers of degree at most 2 over Q, while fv(x) is irreducible of degree 4,
contradiction. In particular, the roots of fv(x) come in complex conjugate pairs, so we shall denote them
by µ1, µ2, ι(µ1), ι(µ2), where ι : C→ C is complex conjugation. We shall need the following lemma:

Lemma A.3. Let x, y, z be three distinct eigenvalues of Frobv. We have y2
6= xz.

Proof. Suppose first that z = ι(x). Then y2
= xι(x)= qv , which implies that y =±

√
qv is a root of fv(x).

As we have already seen, this is a contradiction. Hence, up to renaming the eigenvalues of Frobv if
necessary, we can assume x = µ1, z = µ2 and y = ι(µ1). Since Gal(F(v)/Q) is isomorphic to D4 by
assumption, there is a σ ∈ Gal(F(v)/Q) such that σ(µ1)= µ1, σ(ι(µ1))= ι(µ1), σ(µ2)= ι(µ2) and
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σ(ι(µ2)) = µ2. Applying σ to the equality y2
= xz, that is, ι(µ1)

2
= µ1µ2, we get ι(µ1)

2
= µ1ι(µ2),

whence ι(µ2)= µ2. But this implies that µ2 is real, which is once again a contradiction. �

Proof of Proposition A.2. Let ` be a prime unramified in K and strictly larger than b(2[K :Q], 4, 2h(A))
1
4 .

Let ρ` : Gal(K/K )→ Aut A[`] be the natural Galois representation associated with the `-torsion of A.
Much of the proof of [Lombardo 2016b, Theorem 3.19] still applies in the current setting, and shows

that one of the following holds:

(a) Im(ρ`∞)= GSp4(Z`),

(b) the image of ρ` is contained in a maximal subgroup of GSp4(F`) of type (2) in the sense of
Theorem 3.3 in [Lombardo 2016b].

If we are in case (a) we are done, so assume we are in case (b). To conclude the proof, we shall show that
`≤ (2qv)8. If ` is equal to the residual characteristic of v this inequality is obvious, so we can assume
that v -`. In this case, the characteristic polynomial of the action of Frobv on T`A is fv(x). By [Lombardo
2016b, Lemma 3.4], the eigenvalues of any x ∈ Im(ρ`) can be written as λ · λ3

1, λ · λ
2
1λ2, λ · λ1λ

2
2, λ · λ

3
2

for some λ, λ1, λ2 ∈ F×
`2 . Taking g ··= ρ`(Frobv), we may assume the four eigenvalues ν1, . . . , ν4 of g

satisfy ν2
2 = ν1ν3.

Let λ be a place of F(v) of characteristic ` and identify λ with a maximal ideal of OF(v). Since
fv(x) splits completely in F(v) by definition, its four roots µ1, µ2, ι(µ1), ι(µ2) all belong to OF(v).
Upon reduction modulo λ, these four roots yield four elements of OF(v)/λ, which is a finite field of
characteristic `. Moreover, as {µ1, µ2, ι(µ1), ι(µ2)} is a Galois-stable set, its image in F` is independent
of the choice embedding of OF(v)/λ into F`, and hence well defined. Denote by µ1, µ2, ι(µ1), ι(µ2) the
images of µ1, µ2, ι(µ1), ι(µ2) in F`.

Now observe that the characteristic polynomial of g is the reduction modulo ` of fv(x), so its roots
ν1, . . . , ν4 ∈ F`

× must coincide with µ1, µ2, ι(µ1), ι(µ2) in some order. Given that ν2
2 = ν1ν3, there are

three (necessarily distinct) eigenvalues of Frobv, call them x, y, z, that satisfy y2
− xz ≡ 0 (mod λ). By

Lemma A.3, NF(v)/Q(y2
− xz) is a nonzero integer. Therefore, NF(v)/Q(y2

− xz) has positive valuation
at λ, hence it is divisible by `. In turn, this gives

`≤ |NF(v)/Q(y2
− xz)| =

∏
σ∈Gal(F(v)/Q)

|σ(y)2− σ(x)σ (z)| ≤ (2qv)8,

where the inequality |σ(y)2− σ(x)σ (z)| ≤ 2qv follows immediately from the triangle inequality and the
Weil conjectures. �
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A unified and improved Chebotarev density theorem
Jesse Thorner and Asif Zaman

We establish an unconditional effective Chebotarev density theorem that improves uniformly over the
well-known result of Lagarias and Odlyzko. As a consequence, we give a new asymptotic form of the
Chebotarev density theorem that can count much smaller primes with arbitrary log-power savings, even
in the case where a Landau–Siegel zero is present. Our main theorem also interpolates the strongest
unconditional upper bound for the least prime ideal with a given Artin symbol as well as the Chebotarev
analogue of the Brun–Titchmarsh theorem proved by the authors.

1. Introduction and statement of results

1A. Introduction. Let L/F be a Galois extension of number fields with Galois group G. For each prime
ideal p of F that is unramified in L , we use the Artin symbol

[ L/F
p

]
to denote the conjugacy class of G

consisting of the set of Frobenius automorphisms attached to the prime ideals P of L which lie over p.
For any conjugacy class C ⊆ G, define the function

πC(x)= πC(x, L/F)= #
{
NF/Qp≤ x : p unramified in L ,

[ L/F
p

]
= C

}
, (1-1)

where NF/Q is the absolute norm of F/Q. The Chebotarev density theorem states that

πC(x)∼
|C |
|G|

Li(x) as x→∞.

It follows from work of V.K. Murty [1997, Section 4] that there exists an absolute, effective, and
positive constant c1 such that

πC(x)=
|C |
|G|

(Li(x)− θ1 Li(xβ1)+ O(xe−c1

√
log x
nL )), log x �

(log DL)
2

nL
+ nL(log nL)

2, (1-2)

which refines a well-known result of Lagarias and Odlyzko [1977, Theorem 1.2]. Here, DL is the absolute
discriminant of L , nL = [L :Q] is the degree of L over Q, β1 is a possible Landau–Siegel zero of the
Dedekind zeta function ζL(s) of L , and θ1 = θ1(C) ∈ {−1, 0, 1} depends on C ; in particular, θ1(C)= 0 if
and only if β1 does not exist. For comparison, Lagarias and Odlyzko [1977, Theorem 1.1] proved that the
generalized Riemann hypothesis for ζL(s) implies the more uniform result

πC(x)=
|C |
|G|

(Li(x)+ O(
√

x log(DL xnL ))), x � (log DL)
2(log log DL)

4. (1-3)

MSC2010: 11R44.
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As of now, the best bound for β1 is due to Stark [1974, Theorem 1’, p. 148]; it implies that

1−β1� (nnL
L log DL + D1/nL

L )−1. (1-4)

Therefore, in order to ensure that |C |
|G| Li(x) dominates all other terms in (1-2), one must take the range of

x to be

log x � n−1
L (log DL)

2
+ nL(log nL)

2
+ (1−β1)

−1 (1-5)

and apply (1-4) if β1 exists. Otherwise, one omits the last term in (1-5) if β1 does not exist. Regardless,
(1-5) is very prohibitive in many applications where uniformity in L/F is crucial. Thus it often helps
in applications to have upper and lower bounds for πC(x) of order Li(x) in ranges of x which are more
commensurate with (1-3). Lagarias, Montgomery, and Odlyzko [1979] made substantial progress on
these problems; their work has been improved upon by Weiss [1983], the authors [Thorner and Zaman
2017; 2018], and Zaman [2017]. In particular, it follows from the joint work of the authors [Thorner
and Zaman 2017; 2018] that there exist absolute, effective constants A > 2 and B > 2 such that if DL is
sufficiently large, then

1
(DLnnL

L )
A

|C |
|G|

Li(x)� πC(x) < (2+ o(1))
|C |
|G|

Li(x) for x ≥ (DLnnL
L )

B, (1-6)

where the o(1) term tends to zero as (log x)/ log(DLnnL
L ) tends to infinity.1

To summarize the above discussion, suppose that we are in the worst case scenario with θ1 = 1 and
β1 is as bad as (1-4) permits. If one is willing to sacrifice an asymptotic equality for πC(x) in order to
obtain estimates in noticeably better ranges than (1-5), then one might use (1-6). On the other hand, if
one needs an asymptotic equality for πC(x), then one uses (1-2) in the prohibitive range (1-5).

1B. Results. Our main result, Theorem 1.4, is a new asymptotic equality for πC(x) which interpolates
both of the aforementioned options while providing several new options. In other words, we prove a
new asymptotic equality for πC(x) from which one may deduce both (1-2) and (1-6). First, we present a
simplified version of the main result.

Theorem 1.1. Let L/F be a Galois extension of number fields with Galois group G, and let C ⊆ G be a
conjugacy class. Let β1 denote the Landau–Siegel zero of the Dedekind zeta function ζL(s), if it exists.
There exist absolute and effective constants c2 > 0 and c3 > 0 such that if L 6=Q and x ≥ (DLnnL

L )
c2 , then

πC(x)=
|C |
|G|

(Li(x)− θ1 Li(xβ1))

(
1+ O

(
exp

[
−

c3 log x
log(DLnnL

L )

]
+ exp

[
−
(c3 log x)1/2

n1/2
L

]))
,

where θ1 = θ1(C) ∈ {−1, 0, 1}. In particular, θ1 = 0 precisely when β1 does not exist.

1The term nnL
L is usually negligible compared to a power of DL . If not, one might appeal to [Zaman 2017, Theorem 1.3.1]

which states that πC (x)� D−A
L
|C |
|G| Li(x) for x ≥ DB

L .
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The inequality

exp
[
−
(c3 log x)1/2

n1/2
L

]
� exp

[
−

c3 log x
log(DLnnL

L )

]
,

holds when log x � (log DL)
2/nL + nL(log nL)

2, so we see that Theorem 1.1 recovers (1-2) and is
therefore a uniform improvement over it. Also, it follows from the mean value theorem and (1-4) that

Li(x)− θ1 Li(xβ1)� ((1−β1) log(DLnnL
L ))Li(x)�

log(DLnnL
L )

D1/nL
L + nnL

L log DL
Li(x). (1-7)

With this lower bound at our disposal, one can see that Theorem 1.1 recovers (1-6). Thus Theorem 1.1
unifies and improves both (1-2) and (1-6).

As noted above, if one wants |C |
|G| Li(x) to dominate all other terms in (1-2), then one must take x in

the range (1-5). However, one can plainly see that

|C |
|G|(Li(x)− θ1 Li(xβ1)) (1-8)

dominates all other terms in Theorem 1.1 for all x in the claimed range, provided that c2 is suitably
large compared to c3. At first glance, it may seem awkward that we adjoin the contribution from β1 to
the “main term” when it is classically viewed as an error term. But without eliminating the existence of
β1, it is well known that in situations where θ1 6= 0 and x is small, say log x � log(DLnnL

L ), the term
−θ1

|C |
|G| Li(xβ1) is more properly treated as a secondary term than an error term. When θ1 = 1 and β1

is especially close to 1, this secondary term causes serious difficulties in the proof of Linnik’s bound
[1944] for the least prime in an arithmetic progression. Fortunately, it follows from (1-7) that regardless
of whether β1 exists, we have

Li(x)�L Li(x)− θ1 Li(xβ1) < 2 Li(x). (1-9)

Therefore, in the range of x where− |C |
|G|θ1 Li(xβ1) acts like a secondary term, (1-9) shows that Theorem 1.1

recovers upper and lower bounds of order Li(x) precisely because (1-8) dominates all other terms in
Theorem 1.1. This perspective is implicit in Linnik’s work. On the other hand, when x is sufficiently large
in terms of L/F per (1-5), the contribution from β1 can be safely absorbed into the O-term in Theorem 1.1.
In light of these observations, we believe that viewing (1-8) as the “main term” in Theorem 1.1 helps to
clarify the role of the contribution from β1 when one transitions from small values of x to large values of x .

Upon considering the O-term in Theorem 1.1, we see that Theorem 1.1 noticeably improves the range
of x in which we have an asymptotic equality for πC(x).

Corollary 1.2. If log x/log(DLnnL
L )→∞, then πC(x)∼

|C |
|G|(Li(x)− θ1 Li(xβ1)).

Theorem 1.1 also produces a new asymptotic equality in which the error term saves an arbitrarily large
power of log x in a much stronger range of x than (1-2).

Corollary 1.3. Let A > 1. If log x �A (log DL)(log log DL)+ nL(log nL)
2, then

πC(x)=
|C |
|G|(Li(x)− θ1 Li(xβ1))(1+ OA((log x)−A)). (1-10)
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In order to state the main result from which Theorem 1.1 follows, we introduce some additional notation.
Let H⊆G be an abelian subgroup of G such that H∩C is nonempty, and let K = L H be the fixed field of H .
The characters χ in the dual group Ĥ are Hecke characters; we write the conductor of χ as fχ . Define

Q=Q(L/K )=max
χ∈Ĥ

NK/Qfχ . (1-11)

We write the L-function associated to such a Hecke character as L(s, χ, L/K ). From work of Stark
[1974], at most one real Hecke character χ1 ∈ Ĥ has an associated Hecke L-function L(s, χ1, L/K ) with
a Landau–Siegel zero β1 = 1− λ1/ log(DKQnnK

K ), where 0< λ1 <
1
8 .

Theorem 1.4. Let L/F be a Galois extension of number fields with Galois group G, and let C ⊆ G be a
conjugacy class. Let H ⊆ G be an abelian subgroup such that C ∩ H is nonempty, let K be the fixed field
of H , and choose gC ∈ C ∩ H. If x ≥ (DKQnnK

K )
c2 , then

πC(x)=
|C |
|G|

(Li(x)− θ1 Li(xβ1))

(
1+ O

(
exp

[
−

c3 log x
log(DKQnnK

K )

]
+ exp

[
−
(c3 log x)1/2

n1/2
K

]))
,

where θ1 = χ1(gC) if β1 exists and θ1 = 0 otherwise and Q is given by (1-11). The constants c2 and c3 are
the same as in Theorem 1.1.

Remark 1.5. As a group-theoretic quantity, θ1 depends on the choice of gC ∈C ∩H . However, if θ1 6= 0,
then the existence of β1 implies that θ1 is well defined.

1C. An application. While it is aesthetically appealing to be able to encapsulate the work in [Lagarias
et al. 1979; Lagarias and Odlyzko 1977; Murty 1997; Thorner and Zaman 2017; 2018; Weiss 1983]
with a single asymptotic equality, Theorem 1.4 can make progress in certain sieve-theoretic problems
when one must compute the local densities. As an example, we prove a new result in the study of primes
represented by binary quadratic forms. Let

f (u, v)= au2
+ buv+ cv2

∈ Z[u, v]

be a positive definite binary quadratic form of discriminant D = b2
− 4ac < 0. We do not assume that D

is fundamental. The group SL2(Z) naturally acts on such forms by (T · f )(x)= f (T x) for T ∈ SL2(Z).
The class number h(D) is the number of such forms up to SL2-equivalence. If f is primitive (that is,
(a, b, c)=1) then it is a classical consequence of the Chebotarev density theorem and class field theory that

1
|stab( f )|

∑∑
u,v∈Z

au2
+buv+cv2

≤x

1P(au2
+ buv+ cv2)∼

Li(x)
h(D)

as x→∞, (1-12)

where 1P is the indicator function for the odd primes and

stab( f )= {T ∈ SL2(Z) : T · f = f }.

Note |stab( f )| = 2 unless D =−3 or −4 in which case it equals 6 and 4 respectively.
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We consider the question of imposing restrictions on the integers u and v which comprise a solution to
the equation p = f (u, v). In the special case of f (u, v)= u2

+ v2, Fouvry and Iwaniec [1997] proved
that there are infinitely many primes p such that p = u2

+v2 and u is prime. Their proof, which relies on
sieve methods, enables them to asymptotically count such primes.

One might ask whether their methods extend to all positive definite primitive f (u, v) with strong
uniformity in the discriminant D.2 The answer is not clear to the authors. Nevertheless, Theorem 1.4
enables us to study the distribution of primes p = f (u, v) with some control over the divisors of u and v
while maintaining strong uniformity in D. We prove the following result in Section 7.

Theorem 1.6. Let D≤−3 be an integer and let f (u, v)= au2
+buv+cv2 be a positive definite primitive

integral binary quadratic form with discriminant D = b2
−4ac. Let P be any integer dividing the product

of primes p ≤ z. For all A ≥ 1, there exists a sufficiently small constant η = η(A) > 0 such that if
3≤ z ≤ xη/ log log x and 3≤ |D| ≤ xη/ log log z , then

1
|stab( f )|

∑∑
u,v∈Z

au2
+buv+cv2

≤x
(uv,P)=1

1P(au2
+ buv+ cv2)= δ f (P)

Li(x)−Li(xβ1)

h(D)
{1+ OA((log z)−A)}. (1-13)

Here, β1 is a real simple zero of the Dedekind zeta function ζQ(
√

D)(s) (if it exists),

δ f (P)=
∏
p | P

(
1−

2− 1p | a(p)− 1p | c(p)

p−
( D

p

) )
, (1-14)

( D
p

)
is the Legendre symbol for p 6= 2,

( D
2

)
is defined by (7-6), and the term Li(xβ1) is omitted if β1 does

not exist.

Remark 1.7. The constant δ f (P) is always nonnegative. It is possible that δ f (P)= 0 due to the local
factor at p = 2 in the product but this occurs precisely when the form f (u, v) does not represent any
odd primes. Since 1P is the indicator function for the odd primes, (1-13) trivially holds in this case. The
details of this casework are verified in Section 7A1.

While it is natural to think of P as equal to the product of primes up to z, we immediately obtain
from Theorem 1.6 the following corollary when P is a fixed divisor of the product of primes up to z and
z→∞ arbitrarily slowly.

Corollary 1.8. Keep the assumptions of Theorem 1.6. If the integer P ≥ 1 is fixed, then

1
|stab( f )|

∑∑
u,v∈Z

au2
+buv+cv2

≤x
(uv,P)=1

1P(au2
+ buv+ cv2)∼ δ f (P)

Li(x)−Li(xβ1)

h(D)
as

log x
log|D|

→∞.

2Added in proof, 17 June 2019: Lam, Schindler, and Xiao [2018] recently extended Fouvry and Iwaniec’s result to all
positive-definite primitive binary quadratic forms. However, their error terms do not possess uniformity in the discriminant.
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In particular, there exists a prime p ≤ |D|α and u, v ∈ Z such that p = f (u, v), p -D, and (uv, P)= 1,
where α = α(P) > 0 is a sufficiently large constant depending only on P.

In order to prove Theorem 1.6 with strong uniformity in z and |D|, one needs asymptotic control over
sums like (1-12) (see (7-4) below) when x is as small as a polynomial in the discriminant, regardless
of whether ζQ(

√
D)(s) has a Landau–Siegel zero. This is precisely what Theorem 1.4 provides. For

comparison, a slightly stronger version of (1-2) that follows from [Murty 1997] along with the effective
bound (1−β1)

−1
� |D|1/2 log|D| can produce (1-13) with the inferior ranges

3≤ |D| � (log x)2/(log log x)2 and 3≤ z ≤ exp(c
√

log x)

where c > 0 is an absolute constant. As one can plainly see, Theorem 1.4 yields substantial gains over
earlier versions of the Chebotarev density theorem. See Remark 7.3 for further discussion.

1D. Overview of the methods. We now give an overview of how the proof of Theorem 1.4 differs from
the proofs in [Lagarias et al. 1979; Lagarias and Odlyzko 1977; Murty 1997; Thorner and Zaman 2017;
2018; Weiss 1983]. For convenience, we refer to

|C |
|G|

(Li(x)− θ1 Li(xβ1))

as the “main term” in Theorem 1.4 and all other terms as the “error term”.
The key difference between the proof of (1-2) and the proof of Theorem 1.4 lies in the study of the

nontrivial low-lying zeros of ζL(s). The standard zero-free region for ζL(s) indicates that the low-lying
zeros of ζL(s) lie further away from the edge of the critical strip {s ∈C : 0<Re(s)< 1} than zeros of large
height. However, the treatments in [Lagarias and Odlyzko 1977; Murty 1997] handle the contribution
from the all of the nontrivial zeros by assuming that the low-lying zeros (other than β1, if it exists) lie
just as close to the edge of the critical strip as zeros of large height. This unduly inflates the contribution
from the low-lying zeros, leading to the poor field uniformity in (1-2) along with the poor dependence on
the Landau–Siegel zero β1 if it exists. Consequently, both the range of x and the quality the error term in
(1-2) directly depend on the quality of zero-free region available for ζL(s).

In order to efficiently handle the contribution to πC(x) which arises from the low-lying zeros of ζL(s),
we factor ζL(s) as a product of Hecke L-functions associated to the Hecke characters of the abelian
extension L/K and apply a log-free zero density estimate and the zero repulsion phenomenon for these
L-functions. As in Linnik’s work on arithmetic progressions, one typically uses these tools to establish
upper and lower bounds of πC(x) when x is small instead of asymptotic equalities [Thorner and Zaman
2017; 2018; Weiss 1983]. In order to facilitate the analysis involving the log-free zero density estimate,
we weigh the contribution of each prime ideal counted by πC(x) with a weight whose Mellin transform
has carefully chosen decay properties (Lemma 2.2). Similar variations are a critical component in the
proofs of (1-6) in [Thorner and Zaman 2017; 2018; Weiss 1983].

By using a log-free zero density estimate and the zero repulsion phenomenon, we ensure that the main
term in Theorem 1.4 always dominates the error term in Theorem 1.4 when x is at least a polynomial in
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DKQnnK
K , regardless of whether β1 exists. As one can see from the ensuing analysis, the quality of the

zero-free region dictates the quality of the error term but has no direct impact on the valid range of x .
This “decoupling” feature contrasts with the proof of (1-2), where the quality of the zero-free region
simultaneously determines both the quality of the error term and the range of x in which the main term
dominates.

After we “decouple” the range of x from the influence of the zero-free region, we are finally prepared
to separate the contribution of the low-lying zeros from the contribution of the zeros with large height
using a dyadic decomposition. This leads to savings over (1-2) only because we have already ensured via
the log-free zero density estimate and zero repulsion that the main term in Theorem 1.4 dominate the
error term regardless of whether β1 exists. An additional benefit of this argument is an expression for the
error term in Theorem 1.4 as a straightforward single-variable optimization problem involving x and the
zero-free region (Lemma 4.5 and (4-13)). This simplification allows us to easily determine the error term
with complete uniformity in DK , [K :Q], Q, and x (Lemma 4.6).

The fact that Theorem 1.4 holds for all Galois extensions L/F is a fairly subtle matter. In the case
where F =Q and L/Q is a cyclotomic extension, the Chebotarev density theorem reduces to the prime
number theorem for arithmetic progressions. Stark’s bound for β1 (Theorem 3.3, a refinement of (1-4))
recovers a lower bound for 1−β1 which is commensurate with the lower bound for 1−β1 that follows
from Dirichlet’s analytic class number formula for cyclotomic extensions; this suffices for our purposes.
In the cyclotomic setting, our proofs only need to quantify the zero repulsion from a Landau–Siegel zero
with a strong zero-free region for low-lying zeros (Theorem A.1 with t ≤ 4). However, if L/F is a Galois
extension where the root discriminant of L is especially small, which can happen in infinite class field
towers, then Stark’s lower bound for 1−β1 is quite small. In this case, the approach which worked well
for cyclotomic extensions of Q appears insufficient to prove Theorem 1.1 for all x in our claimed range.

To address this problem, we use a log-free zero density estimate for Hecke L-functions that naturally
incorporates the zero repulsion phenomenon. Roughly speaking, when β1 is especially close to 1, the
quality of the log-free zero density estimate improves by a factor of 1− β1; this is stronger than the
classical formulation of the zero repulsion phenomenon. Therefore, if 1−β1 happens to be as small as
Stark’s lower bound allows, the quality of the log-free zero density estimate increases dramatically. This
offsets the adverse effect of β1 in the small root discriminant case. The idea of incorporating the zero
repulsion phenomenon directly into the log-free zero density estimate goes back to Bombieri [1987] in
the case of Dirichlet characters. For Hecke L-functions over number fields, this was first proved by Weiss
(see Theorem 3.2 below). The details of this obstacle and why we genuinely need the particular log-free
zero density estimate in Theorem 3.2 are contained in the Appendix, especially Remark A.3.

2. Setup and notation

Throughout the paper, let c1, c2, c3, . . . be a sequence of absolute, effective, and positive constants. All
implied constants in the inequalities f � g and f =O(g) are absolute and effective unless noted otherwise.
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Recall F is a number field with ring of integers OF , absolute norm N= NF/Q, absolute discriminant
DF = |disc(F/Q)|, and degree nF = [F :Q]. Integral ideals will be denoted by n and prime ideals by p.
Moreover, L/F is a Galois extension of number fields with Galois group G = Gal(L/F). For prime
ideals p of F unramified in L , the Artin symbol

[ L/F
p

]
is the conjugacy class of Frobenius automorphisms

of G associated to prime ideals P of L lying above p.

2A. Prime counting functions. For a conjugacy class C of G and x ≥ 2, let πC(x) be as in (1-1) and
define

ψC(x)= ψC(x, L/F)=
|C |
|G|

∑
ψ

ψ(C)
1

2π i

∫ 2+i∞

2−i∞
−

L ′

L
(s, ψ, L/F)

x s

s
ds, (2-1)

where ψ runs over the irreducible Artin characters of G = Gal(L/F) and L(s, ψ, L/F) is the Artin
L-function of ψ . It follows from Mellin inversion [Lagarias et al. 1979, p.283] that

ψC(x)=
∑

Nn≤x

3F (n)1C(n), (2-2)

where

3F (n)=

{
log Np if n= p j for some prime ideal p and some integer j ≥ 1,
0 otherwise.

(2-3)

Here, 0≤ 1C(n)≤ 1 for all ideals n and for prime ideals p unramified in L and j ≥ 1,

1C(p
j )=

{
1 if

[ L/F
p

] j
⊆ C,

0 otherwise.
(2-4)

The prime counting functions πC and ψC are related via partial summation.

Lemma 2.1. For x ≥ 2,

πC(x)=
ψC(x)
log x

+

∫ x

√
x

ψC(t)
t (log t)2

dt + O
(

log DL +
nF x1/2

log x

)
.

Proof. Note the norm of the product of ramified prime ideals divides DL and the number of prime ideals
p with norm equal to a given rational prime p is at most nF . Thus,

πC(x)=
∑

√
x<Np≤x

1C(p)+ O
(

nF x1/2

log x
+ log DL

)
.

Define θC(x)=
∑

Np≤x 1C(p) log Np. It follows by partial summation as well as the previous observations
that ∑

√
x<Np≤x

1C(p)=

∫ x

√
x

θC(t)
t (log t)2

dt +
θC(x)
log x

Finally, one can verify that |θC(x)−ψC(x)| � nF x1/2 by trivially estimating the number of prime ideal
powers with norm at most x . Collecting all of these estimates yields the lemma. �
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2B. Choice of weight. We now define a weight function which will be used to count prime ideals with
norm between

√
x and x .

Lemma 2.2. Choose x ≥ 3, ε ∈
(
0, 1

4

)
, and a positive integer `≥ 1. Define A= ε/(2` log x). There exists

a continuous function f (t)= f (t; x, `, ε) of a real variable t such that:

(i) 0≤ f (t)≤ 1 for all t ∈ R, and f (t)≡ 1 for 1
2 ≤ t ≤ 1.

(ii) The support of f is contained in the interval
[1

2 −
ε

log x , 1+ ε
log x

]
.

(iii) Its Laplace transform F(z)=
∫

R
f (t)e−zt dt is entire and is given by

F(z)= e−(1+2`A)z
·

(
1− e(1/2+2`A)z

−z

)(
1− e2Az

−2Az

)`
. (2-5)

(iv) Let s = σ + i t, σ > 0, t ∈ R and α be any real number satisfying 0≤ α ≤ `. Then

|F(−s log x)| ≤
eσεxσ

|s| log x
· (1+ x−σ/2) ·

(
2`
ε|s|

)α
.

Moreover, |F(−s log x)| ≤ eσεxσ and 1
2 < F(0) < 3

4 .

(v) If 3
4 < σ ≤ 1 and x ≥ 10, then

F(− log x)± F(−σ log x)=
(

x
log x

±
xσ

σ log x

)
{1+ O(ε)}+ O

(
x1/2

log x

)
. (2-6)

(vi) Let s =− 1
2 + i t with t ∈ R. Then

|F(−s log x)| ≤
5x−1/4

log x

(
2`
ε

)`( 1
4 + t2)−`/2.

Proof. These are the contents of [Thorner and Zaman 2018, Lemma 2.2] except for (2-6), which we now
prove. Let 3

4 < σ ≤ 1. From (iii), we observe that

F(−σ log x)=
xσ

σ log x

(
eεσ/`− 1
εσ/`

)`
+ O

(
xσ/2

σ log x

)
. (2-7)

The two cases of F(− log x)± F(−σ log x) are proved differently; we first handle the + case. It follows
from (2-7) that

F(− log x)+ F(−σ log x)=
x

log x

(
eε/`− 1
ε/`

)`
+

xσ

σ log x

(
eεσ/`− 1
εσ/`

)`
+ O

(
xσ/2

σ log x

)
.

The desired asymptotic for F(− log x)+ F(−σ log x) now follows from the Taylor series expansion(
eεσ/`− 1
εσ/`

)`
= 1+ O(σε),

which is valid for 0< σ ≤ 1.
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For the case of F(− log x)− F(−σ log x), we first observe that (2-7) implies

(log x)(F(− log x)− F(−σ log x))= x
(

eε/`− 1
ε/`

)`
−

xσ

σ

(
eεσ/`− 1
εσ/`

)`
+ O(x1/2). (2-8)

Set

a =
eε/`− 1
ε/`

, b =
eσε/`− 1
σε/`

so that a > b ≥ 1. With this convention, we rewrite (2-8) as

(log x)(F(− log x)− F(−σ log x))= xa`−
xσ

σ
b`+ O(x1/2). (2-9)

Since a > b ≥ 1, it follows from the bound a`− b`� (a− b) · `a` that

xa`−
xσ

σ
b` =

(
x −

xσ

σ

)
a`+

xσ

σ
(a`− b`)=

(
x −

xσ

σ

)
a`+ O

(
xσ

σ
(a− b)`a`

)
. (2-10)

Since 3
4 < σ ≤ 1, it follows from taking Taylor series expansions that a` = 1+ O(ε) and

a− b =
∞∑

n=1

(1− σ n)(ε/`)n

(n+ 1)!
≤

∞∑
n=1

n(1− σ)(ε/`)n

(n+ 1)!
� (1− σ)

ε

`
.

We apply these two Taylor expansions to (2-9) and (2-10) to obtain

(log x)(F(− log x)− F(−σ log x))=
(

x −
xσ

σ

)
(1+ O(ε))+ O

(
xσ

σ
(1− σ)ε

)
+ O(x1/2). (2-11)

Finally, we observe that since σ−2xσ ≤ x for σ > 3
4 and x ≥ 10, we have that

xσ

σ
(1− σ)= σ

(
xσ

σ 2 −
xσ

σ

)
≤ σ

(
x −

xσ

σ

)
.

We apply this observation to (2-11) to obtain

(log x)(F(− log x)− F(−σ log x))=
(

x −
xσ

σ

)
(1+ O(ε))+ O(x1/2). (2-12)

The desired result follows by dividing both sides of (2-12) by log x . �

Let `≥ 2 be an integer, x ≥ 3, and ε ∈
(
0, 1

4

)
. Define

ψ̃C(x; f )= ψ̃C(x, L/F; f )=
∑
n

3F (n)1C(n) f
(

log Nn

log x

)
, (2-13)

where f = f ( · ; x, `, ε) is given by Lemma 2.2. To understand ψC , it suffices to study the smooth
variant ψ̃C .

Lemma 2.3. Let `≥ 2 be an integer, x ≥ 3, and ε ∈
(
0, 1

4

)
. Then

ψC(x)≤ ψ̃C(x; f )+ O(nF x1/2)≤ ψC(xeε).
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Moreover, ψ̃C(x; f )= ψC(x)+ O(nF x1/2
+ εx).

Proof. By Lemma 2.2(i,ii) and definitions (2-2) and (2-13), we observe that∑
√

x≤Nn≤x

3F (n)1C(n)≤ ψ̃C(x; f )≤ ψC(xeε).

The lemma now follows from (2-2) and the trivial estimate∑
z≤Nn≤y

3F (n)1C(n)≤ nF

∑
z≤n≤y

3Q(n)� nF (y− z) for 2≤ z ≤ y. �

2C. Dedekind zeta functions and Hecke L-functions. Now, assume L/K is an abelian extension of
number fields. The Dedekind zeta function ζL(s) satisfies

ζL(s)=
∏
χ

L(s, χ, L/K ), (2-14)

where χ runs over the irreducible 1-dimensional Artin characters of Gal(L/K ). By class field theory,
each Artin L-function L(s, χ, L/K ) is equal to a Hecke L-function L(s, χ, K ), where (abusing notation)
χ is a certain primitive Hecke character of K . For simplicity, write L(s, χ) in place of L(s, χ, L/K )
or L(s, χ, K ). Let the integral fχ ⊆ OK denote the conductor associated to χ . For each χ , there exist
nonnegative integers a(χ) and b(χ) satisfying a(χ)+ b(χ)= nK such that if we define

γ (s, χ)=
[
π−

s
20

(
s
2

)]a(χ)[
π−(s+1)/20

(
s+ 1

2

)]b(χ)

and

δ(χ)=

{
1 if χ is trivial,
0 otherwise,

then ξ(s, χ) := [s(1− s)]δ(χ)(DK Nfχ )
s/2γ (s, χ)L(s, χ) satisfies the functional equation

ξ(s, χ)= ε(χ)ξ(1− s, χ), (2-15)

where ε(χ) is a complex number with unit modulus. Furthermore, ξ(s, χ) is an entire function of order 1
which does not vanish at s = 0. Note L(s, χ) has a simple pole at s = 1 if and only if χ is trivial. The
nontrivial zeros ρ of L(s, χ) (which are the zeros of ξ(s, χ)) satisfy 0<Re(ρ)< 1, and the trivial zeros ω
of L(s, χ) (which offset the poles of γ (s, χ)) are at the nonnegative integers, each with order at most nK .

The Dedekind zeta function ζL(s) possesses the same qualities (by considering the case K = L and χ
trivial). Namely, its completed L-function is

ξL(s)= [s(1− s)]Ds/2
L

[
π−s/20

( s
2

)]aL
[
(2π)−s0

( s+1
2

)]bL
ζL(s) (2-16)
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for certain integers aL , bL ≥ 0 satisfying aL + bL = [L : Q]. The trivial zeros ω of ζL(s) are at the
nonnegative integers with orders

ord
s=ω

ζL(s)=


aL ω =−2,−4, . . . ,
bL ω =−1,−3, . . . ,
aL − 1 ω = 0.

(2-17)

Moreover, the conductor-discriminant formula states that

log DL =
∑
χ

log(DK Nfχ ). (2-18)

From (1-11) with Q=Q(L/K ), it follows that

log DL ≤ [L : K ] log(DKQ). (2-19)

From this we deduce a somewhat crude bound for log DL in terms of DK , Q, and nK .

Lemma 2.4. If L/K is abelian, then log DL � (DKQnnK
K )

2.

Proof. By class field theory, L is contained in some ray class field L ′ of K whose Artin conductor has
norm at most Q. From [Weiss 1983, Lemma 1.16], it follows that [L : K ] ≤ [L ′ : K ] ≤ DKQeO(nK ). The
result now follows from (2-19). �

We also record a few standard estimates for Hecke L-functions.

Lemma 2.5 [Lagarias and Odlyzko 1977, Lemma 5.4]. If t ∈ R and χ is a Hecke character of K , then

#{ρ = β + iγ : L(ρ, χ)= 0, 0< β < 1, |γ − t | ≤ 1} � log(DK Nfχ )+ nK log(|t | + 3),

where the zeros ρ are counted with multiplicity.

Lemma 2.6 [Lagarias and Odlyzko 1977, Lemma 5.6]. Let χ be a Hecke character of K . Then

−
L ′

L
(s, χ)� log(DK Nfχ )+ nK log(|Im(s)| + 3)

uniformly for Re(s)=− 1
2 .

3. The distribution of zeros

For Sections 3 and 4, we will assume that the extension L/K is abelian. For notational simplicity, define

Q = Q(L/K ) := DKQnnK
K , (3-1)

where Q = Q(L/K ) is given by (1-11). Any sum
∑

χ or product
∏
χ is over the primitive Hecke

characters χ associated with L/K per the factorization in (2-14). Here we list three key results regarding
the distribution of zeros of Hecke L-functions.
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Theorem 3.1 (zero-free region). There exists c4 > 0 such that the Dedekind zeta function

ζL(s)=
∏
χ

L(s, χ, L/K )

has at most one zero in the region Re(s) > 1−1(|Im(s)| + 3), where the function 1 satisfies

1(t)≥
c4

log(QtnK )
for t ≥ 3. (3-2)

If such an exceptional zero β1 exists then it is real, simple, and attached to the L-function of a real Hecke
character χ1.

Proof. This is well known; see, for example, [Weiss 1983, Theorem 1.9]. �

We also refer to the exceptional zero β1 as a Landau–Siegel zero. Now, for 0≤ σ ≤ 1, T ≥ 1 and any
Hecke character χ , define

N (σ, T, χ)= #{ρ = β + iγ : L(ρ, χ)= 0, σ < β < 1, |γ | ≤ T }, (3-3)

where the zeros ρ are counted with multiplicity.

Theorem 3.2 (log-free zero density estimate). There exists an integer c5 ≥ 1 such that∑
χ

N (σ, T, χ)� B1(QT nK )c5(1−σ) (3-4)

uniformly for any 0< σ < 1 and T ≥ 1, where

B1 = B1(T )=min{1, (1−β1) log(QT nK )}. (3-5)

Proof. Let ε0 > 0 be a sufficiently small absolute and effective constant. It follows from [Thorner and
Zaman 2017, Theorem 3.2] or its variant [Thorner and Zaman 2018, Theorem 4.5] that if 1− ε0 < σ < 1
and T ≥ 1, then ∑

χ

N (σ, T, χ)� (QT nK )c5(1−σ)

regardless of whether β1 exists. Weiss [1983, Theorem 4.3] proved that if β1 exists, then for 1−ε0<σ < 1
and T ≥ 1, ∑

χ

N (σ, T, χ)� (1−β1) log(QT nK )(QT nK )c5(1−σ).

Thus for T ≥ 1, (3-4) holds with B1 given by (3-5) in the range 1− ε0 < σ < 1. By enlarging c5 if
necessary and using Stark’s bound from Theorem 3.3, one can extend (3-4) to the remaining interval
0< σ < 1− ε0 by employing the trivial bound that follows from Lemma 2.5. �

Theorems 3.1 and 3.2 comprise the three principles used to prove Linnik’s theorem on the least prime
in an arithmetic progression: a zero-free region, a log-free zero density estimate, and a quantitative form
of the zero repulsion phenomenon. Theorem 3.2 combines the second and third principles by following
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the ideas of Bombieri [1987], and this is crucial to our arguments for certain choices of Galois extensions
(see the Appendix).

We record an effective lower bound for the size of 1−β1 which follows from [Stark 1974, Theorem 1’,
p.148].

Theorem 3.3 (Stark’s bound). Let β1 = 1− λ1/ log Q be a real zero of a real Hecke character χ of the
abelian extension L/K . Then λ1� Q−2.

Proof. This follows readily from (1-4) for 1−β when β is the real zero of a Dedekind zeta function. If χ
is trivial then consider the Dedekind zeta function ζK (s). If χ is quadratic then consider the Dedekind
zeta function ζK (s)L(s, χ, L/K ) corresponding to the quadratic extension of K defined by χ . �

As we shall see, these three theorems yield a unified Chebotarev density theorem which produces an
asymptotic count for primes even in the presence of a Landau–Siegel zero.

4. Weighted counts of primes in abelian extensions

4A. Main technical result. The proof of Theorem 1.4 rests on the analysis on the weighted prime
counting function ψ̃C(x; f ) = ψ̃C(x, L/K ; f ) given by (2-13), where f is given by Lemma 2.2 and
L/K is abelian. The goal of this section is to prove the following proposition.

Proposition 4.1. Assume L/K is abelian with Galois group G. Let C ⊆ G be a conjugacy class of G.
Let f = f ( · ; x, `, ε) be defined as in Lemma 2.2 with

ε = 8`x−1/8`, `= 4c5nK . (4-1)

If 2≤ Q ≤ x1/(36c5) and ε < 1
4 , then

|G|
|C |

ψ̃C(x; f )=
(

x −χ1(C)
xβ1

β1

)
(1+ O(e−

c4
2

log x
log Q + e−

√
c4(log x)/4nK )). (4-2)

Remark 4.2. The constants c4 and c5 are defined in Theorems 3.1 and 3.2 respectively.

While f and its parameters are chosen in Proposition 4.1, we will assume throughout this section that
ε ∈

(
0, 1

4

)
and `≥ 2 are arbitrary, unless otherwise specified. The arguments leading to Proposition 4.1

are divided into natural steps: shifting a contour, estimating the arising zeros with the log-free zero density
estimate, and optimizing the error term with a classical zero-free region.

4B. Shifting the contour.

Lemma 4.3. If x ≥ 3, then

|G|
|C |

ψ̃C(x; f )
log x

= F(− log x)−χ1(C)F(−β1 log x)−
∑
χ

χ(C)
∑?

ρχ

F(−ρχ log x)+ O
(
(2`/ε)` log DL

x1/4 log x
+

nL

log x

)
,
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where the sum
∑? is over all nontrivial zeros ρχ 6= β1 of L(s, χ), counted with multiplicity. Here the term

F(−β1 log x) may be omitted if the exceptional zero β1 does not exist.

Proof. By (2-1), (2-13), Lemma 2.2 and a standard Mellin inversion calculation,

|G|
|C |

ψ̃C(x; f )=
∑
χ

χ(C)Iχ , where Iχ =
log x
2π i

∫ 2+i∞

2−i∞
−

L ′

L
(s, χ)F(−s log x) ds. (4-3)

For each Hecke character χ , shift the contour Iχ to the line Re(s)=−1
2 . Note F is entire by Lemma 2.2(iii),

so we need only consider the zeros and poles of L(s, χ). We pick up the simple pole at s = 1 of L(s, χ)
when χ is trivial and the trivial zero at s = 0 of L(s, χ) of order at most nK . Moreover, we also pick
up all of the nontrivial zeros ρχ of L(s, χ). For the remaining contour along Re(s) = − 1

2 , we apply
Lemma 2.6, Minkowski’s estimate nK � log DK , and Lemma 2.2(vi) to deduce that

−
log x
2π i

∫
−1/2+i∞

−1/2−i∞

L ′

L
(s, χ, L/K )F(−s log x) ds�

(2`/ε)` log(DK Nfχ )

x1/4 .

Combining all of these observations yields

(log x)−1 Iχ = δ(χ)F(− log x)−
∑
ρχ

F(−ρχ log x)+ O
(

F(0)nK +
(2`/ε)` log(DK Nfχ )

x1/4 log x

)
. (4-4)

Here, ρχ runs over all nontrivial zeros of L(s, χ), including β1 if it exists. Substituting (4-4) into (4-3)
and dividing through by log x , we obtain the desired result but with an error term of

O
(
|F(0)|nK

log x

∑
χ

|χ(C)| +
(2`/ε)`

x1/4 log x

∑
χ

|χ(C)| log(DK Nfχ )

)
.

As L/K is abelian, the characters χ are 1-dimensional so |χ(C)| = 1. Thus, applying the conductor-
discriminant formula (2-18), the observation nK

∑
χ 1= [L : K ]nK = nL , and Lemma 2.2(iv), we obtain

the desired error term. �

4C. Estimating the zeros. Now we estimate the sum over nontrivial zeros ρ in Lemma 4.3, beginning
with those ρ of small modulus.

Lemma 4.4. If x ≥ 3, then ∑
χ

∑
ρχ

|ρχ |≤1/4

|F(−ρχ log x)| � x1/4 log DL .

Proof. From Lemmas 2.2(iv) and 2.5,∑
χ

∑
ρχ

|ρχ |≤1/4

|F(−ρχ log x)| �
∑
χ

∑
ρχ

|ρχ |≤1/4

x1/4
� x1/4

∑
χ

(log(DK Nfχ )+ nK ).

The result now follows from Minkowski’s estimate nK � log DK and (2-18). �
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Next, we use the log-free zero density estimate to analyze the remaining contribution.

Lemma 4.5. Keep the assumptions and notation of Lemma 4.3. Select ε and ` as in (4-1) and assume
ε < 1

4 . For 2≤ Q ≤ x1/(8c5),

log x
∑
χ

∑?

ρχ
|ρχ |≥1/4

|F(−ρχ log x)| � ν1xe−η(x)/2, (4-5)

where

ν1 =

{
(1−β1) log Q if β1 exists,
1 otherwise,

(4-6)

and η is given by

η(x)= inf
t≥3
[1(t) log x + log t]. (4-7)

Proof. We dyadically estimate the zeros. For j ≥ 1, set T0= 0 and T j = 2 j−1 for j ≥ 1. Consider the sum

Z j :=
log x

x

∑
χ

∑
ρχ=βχ+iγχ

T j−1≤|γχ |≤T j
|ρχ |≥1/4

|F(−ρχ log x)| (4-8)

for j ≥ 1. First, we estimate the contribution of each zero ρ = ρχ appearing in Z j . Let ρ = β+ iγ satisfy
T j−1 ≤ |γ | ≤ T j and |ρ| ≥ 1

4 , so |ρ| ≥ max
{
T j−1,

1
4

}
≥ T j/4 and |ρ| � |γ | + 3. Thus, Lemma 2.2(iv)

with α = `(1−β) and our choice of ε imply that

log x
x
|F(−ρ log x)| �

xβ−1

|ρ|

(
2`
ε|ρ|

)`(1−β)
� T−1/2

j (|γ | + 3)−1/2
· x−(1−β)/2 · (x3/8T `

j )
−(1−β).

Since Q ≤ x1/(8c5) and `= 4c5nK , it follows that

log x
x
|F(−ρ log x)| � T−1/2

j · (|γ | + 3)−1/2x−(1−β)/2(QT nK
j )−2c5(1−β). (4-9)

From Theorem 3.1 and (4-7), we deduce

(|γ | + 3)−1/2x−(1−β)/2 ≤ (|γ | + 3)−1/2x−1(|γ |+3)/2
≤ e−η(x)/2.

Note the right-hand side is uniform over all nontrivial zeros ρ appearing in (4-5). Combining (4-9) and
the above inequality with (4-8), we deduce that

Z j � e−η(x)/2T−1/2
j

∑
χ

∑
ρχ=βχ+iγχ

T j−1≤|γχ |≤T j

(QT nK
j )−2c5(1−β).
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Defining N (σ, T )=
∑

χ N (σ, T, χ), we use partial summation and Theorem 3.2 to see that

eη(x)/2T 1/2
j Z j �

∫ 1

0
(QT nK

j )−2c5α d N (1−α, T j )

�

[
(QT nK

j )−2c5 N (0, T j )+ log(QT nK
j )

∫ 1

0
(QT nK

j )−2c5αN (1−α, T j ) dα
]

� B1(T j )

[
(QT nK

j )−c5 + log(QT nK
j )

∫ 1

0
(QT nK

j )−c5α dα
]

� B1(T j ).

If a Landau–Siegel zero does not exist then B1(T j )= 1= ν1. Otherwise, if a Landau–Siegel zero exists
then one can verify by (3-5) and a direct calculation that

B1(T j )T
−1/4
j ≤ (1−β1) · sup

t≥1
[log(QtnK )t−1/4

] � (1−β1) log Q = ν1.

The supremum occurs at t � 1 since nK ≤ log Q. Therefore,∑
j≥1

Z j � e−η(x)/2
∑
j≥1

B1(T j )

T 1/4
j

·
1

T 1/4
j

� ν1e−η(x)/2
∑
j≥1

2− j/4
� ν1e−η(x)/2,

which yields the lemma by definition (4-8). �

4D. Error term with a classical zero-free region. The quality of the error term in Lemma 4.5, and hence
in Proposition 4.1, is reduced to computing η(x). This is a single-variable optimization problem.

Lemma 4.6. Let η be defined by (4-7). If x ≥ 2 then e−η(x) ≤ e−c4
log x
log Q + e−

√
c4(log x)/nK .

Proof. It follows from Theorem 3.1, (4-7), and a change of variables t = eu that

η(x)≥ inf
u≥0

φx(u) where φx(u)=
c4 log x

log Q+ nK u
+ u.

Note that φx(u)→∞ as u→∞. By standard calculus arguments, one can verify that

η(x)≥


c4 log x
log Q if 2≤ x ≤ exp

(
(log Q)2

c4nK

)
,√

c4 log x
nK

if x ≥ exp
(
(log Q)2

c4nK

)
.

(4-10)

This proves the lemma. �

4E. Proof of Proposition 4.1. Choose ε and ` as in (4-1) and continue to assume ε < 1
4 . By Lemmas

4.3–4.5, it follows for 2≤ Q ≤ x1/(36c5) that

|G|
|C |

ψ̃C(x; f )= (log x)[F(− log x)−χ1(C)F(−β1 log x)] + O(ν1xe−η(x)/2+ E(x)),

where E(x) = x−1/4(2`/ε)` log DL + nL + x1/4(log x)(log DL). From (4-1) and Minkowski’s estimate
nL � log DL , we see that E(x)� x1/4(log DL)(log x). From Lemma 2.4, log DL � Q2

� x1/10 since
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x ≥ Q36c5 and c5≥ 1. Hence, E(x)� x1/2. Using Lemma 2.2(v), (4-1), and noting β1>
1
2 , we deduce that

|G|
|C |

ψ̃C(x; f )=
(

x −χ1(C)
xβ1

β1

)
(1+ O(nK x−1/(32c5nK )))+ O(ν1xe−η(x)/2+ x1/2) (4-11)

for 2≤ Q ≤ x1/36c5 . Now, we claim that

x −χ1(C)
xβ1

β1
� ν1x � x3/4. (4-12)

If β1 does not exist, then ν1 = 1 and (4-12) is immediate. If β1 exists and (1−β1) log x < 1, then since
x ≥ Q36c5 and e−t

≥ 1− t for 0< t < 1, we have

x −χ1(C)
xβ1

β1
≥ x

(
1−

x−(1−β1)

β1

)
≥ (1−β1)x log

(
x
e

)
� (1−β1)x log Q = ν1x .

Otherwise, β1 exists and (1−β1) log x ≥ 1 so β1 >
1
2 implies that

x −χ1(C)
xβ1

β1
≥ x

(
1−

x−(1−β1)

β1

)
≥ x(1− 2e−1)� x � ν1x,

Thus, the claim (4-12) follows upon noting that ν1� Q−2
� x−1/4 by Stark’s bound Theorem 3.3 and

the condition x ≥ Q36c5 . Combining (4-12) with (4-11), it follows that

|G|
|C |

ψ̃C(x; f )=
(

x −χ1(C)
xβ1

β1

)
(1+ O(e−η(x)/2+ nK x−1/(32c5nK ))). (4-13)

Finally, we apply Lemma 4.6 and note nK x−1/(32c5nK )� x−1/(300c5nK )� e−
√

c4(log x)/(4nK ) for x ≥ Q36c5 .
This completes the proof of Proposition 4.1. �

5. Proof of Theorems 1.1 and 1.4

5A. Abelian extensions. First, we prove Theorem 1.4 in the case of abelian extensions.

Theorem 5.1. Assume L/K is abelian with Galois group G. Let C ⊆ G be a conjugacy class. Define Q
by (3-1). for 2≤ Q ≤ x1/c2 ,

πC(x, L/K )=
|C |
|G|

(Li(x)−χ1(C)Li(xβ1))(1+ O(e−
c4
4

log x
log Q + e−

√
c4(log x)/8nK )). (5-1)

Here β1 is a putative exceptional zero with associated real Hecke character χ1 of L/K .

Proof. Write g(x)= x−χ1(C)xβ1/β1. Select ε as in (4-1). Note the assumption 2≤ Q ≤ x1/c2 guarantees
ε < 1

4 provided c2 is sufficiently large. From Proposition 4.1 and Lemma 2.3, it follows that

ψC(x)≤
|C |
|G|

g(x)(1+ O(e−
c4
2

log x
log Q + e−

√
c4(log x)/4nK )) for x ≥ Q36c5 . (5-2)
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On the other hand, writing y = xeε, Proposition 4.1 and Lemma 2.3 also imply

ψC(y)≥
|C |
|G|

g(ye−ε)(1+ O(e−
c4
2

log y
log Q + e−

√
c4(log y)/4nK ))

for y ≥ 2Q36c5 . By (4-12) and elementary arguments,

|g(ye−ε)− g(y)e−ε| ≤
yβ1

β1
(e−εβ1 − e−ε)� yε(1−β1)� εg(y).

In particular, g(ye−ε) = g(y)(1+ O(ε)). From our choice of ε in (4-1) and the condition y ≥ 2Q36c5 ,
one can see that ε� nK y−1/32c5nK � y−1/300c5nK � e−

√
c4(log y)/4nK so

ψC(y)≥
|C |
|G|

g(y)(1+ O(e−
c4
2

log y
log Q + e−

√
c4(log y)/4nK )) for y ≥ 2Q36c5 .

Comparing the above with (5-2), we conclude that

ψC(x)=
|C |
|G|

g(x)(1+ O(e−
c4
2

log x
log Q + e−

√
c4(log x)/4nK ))

for x ≥ Q40c5 . By partial summation (Lemma 2.1) and the observation that, for 1
2 < σ ≤ 1,

xσ

σ log x
+

∫ x

√
x

tσ−1

σ(log t)2
dt =

∫ xσ

xσ/2

1
log t

dt = Li(xσ )+ O
(

x1/2

log x

)
, (5-3)

it follows for x ≥ Q40c5 that

|G|
|C |

πC(x)= (Li(x)−χ1(C)Li(xβ1))(1+ O(e−
c4
4

log x
log Q + e−

√
c4(log x)/8nK ))+ E0(x),

where E0(x) = log DL + nK x1/2/ log x . By Lemma 2.4 and the observation that nK � log x , one can
verify that E0(x)� x1/2 for x ≥ Q40c5 . Hence, by (4-12), E0(x) can be absorbed into the error term of
Section 5A. As c2 is sufficiently large, this completes the proof of Theorem 5.1. �

5B. Proof of Theorem 1.4. Now we finish the proof of Theorem 1.4 for any Galois extension L/F with
any Galois group G. Using well-known arguments from class field theory, we reduce to the case of
abelian extensions.

Lemma 5.2 (Murty, Murty and Saradha). Let L/F be a Galois extension of number fields with Galois
group G, and let C ⊆ G be a conjugacy class. Let H be a subgroup of G such that C ∩ H is nonempty,
and let K be the fixed field of L by H. Let g ∈ C ∩ H , and let CH (g) denote the conjugacy class of H
which contains g. If x ≥ 2, then∣∣∣∣πC(x, L/F)−

|C |
|G|
|H |
|CH |

πCH (x, L/K )
∣∣∣∣≤ |C ||G|

(
nL x1/2

+
2

log 2
log DL

)
.

Proof. This is carried out during the proof of [Murty et al. 1988, Proposition 3.9]. �
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Now, we apply Lemma 5.2 and subsequently Theorem 5.1 to πCH (x, L/K ) of the abelian extension
L/K . Consequently, for 2≤ Q ≤ x1/c2 ,

|G|
|C |

πC(x, L/F)= (Li(x)−χ1(C)Li(xβ1))(1+O(e−
c4
4

log x
log Q + e−

√
c4(log x)/8nK ))+O(nL x1/2

+ log DL),

(5-4)
where Q = Q(L/K ) is defined by (3-1). Since we may assume c2 ≥ 20, it follows from Lemma 2.4
and Minkowski’s estimate nL � log DL that nL x1/2

+ log DL � x5/8 for x ≥ Qc2 . From (4-12), this
estimate may be absorbed into the first error term of (5-4) since x5/8−3/4

= x−1/8
� e−

√
c4(log x)/8nK . This

completes the proof of Theorem 1.4. �

Theorem 1.4 implies Theorem 1.1. Fix g ∈ C , let H in Theorem 1.4 be the cyclic group generated by g,
and let K be the fixed field of H . Clearly nK ≤ nL , and the centered equation immediately below [Thorner
and Zaman 2017, Equation 1-7] states D1/|H |

L ≤ DKQ≤ D1/ϕ(|H |)
L . Theorem 1.1 now follows. �

6. Reduced composition of beta-sieves

Before proceeding to the proof of Theorem 1.6, we require some sieve machinery that follows from
standard results. The setup and discussion here closely follow [Friedlander and Iwaniec 2010, Sections 5.9
and 6.3–6.5]. Let 3′ = (λ′d) and 3′′ = (λ′′d) be beta sieve weights with the same sifting level z and same
level of distribution R. That is, λ′d and λ′′d satisfy

λ′1 = λ
′′

1 = 1, |λ′d | ≤ 1, |λ′′d | ≤ 1,

and are supported on squarefree numbers d < R consisting of prime factors ≤ z. Let

s =
log R
log z

be the sifting variable for both sieves. Let g′ and g′′ be multiplicative functions satisfying

0≤ g′(p) < 1, 0≤ g′′(p) < 1, g′(p)+ g′′(p) < 1 for all primes p. (6-1)

Assume there exists K > 1 and κ > 0 such that, for all 2≤ w ≤ z, we have

∏
w≤p<z

(
1−

g′(p)
1− g′(p)− g′′(p)

)−1

≤ K
(

log z
logw

)κ
,

∏
w≤p<z

(
1−

g′′(p)
1− g′(p)− g′′(p)

)−1

≤ K
(

log z
logw

)κ
.

(6-2)

The goal of this section is to estimate the reduced composition given by

G :=
∑∑
(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2). (6-3)
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This expression can arise as the main term when two different sieves are applied to two different sequences
that are linearly independent. Keeping this setup, the remainder of this section will be dedicated to the
proof of the following theorem.

Theorem 6.1. Assume s > 9κ + 1+ 10 log K , (6-1) holds, and (6-2) holds. If 3′ and 3′′ are upper bound
beta sieves, then ∑∑

(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2)≤
∏

p

(1− g′(p)− g′′(p)){1+ e9−s K 10
}

2.

If 3′ is a lower bound beta sieve and 3′′ is an upper bound beta sieve, then∑∑
(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2)≥
∏

p

(1− g′(p)− g′′(p)){1− e9−s K 10
}.

Assume 3′ is a lower bound beta sieve and 3′′ is an upper bound beta sieve. The other case is entirely
analogous. Thus, if θ ′ = 1 ∗ λ′ and θ ′′ = 1 ∗ λ′′ then

θ ′1 = θ
′′

1 = 1 and θ ′n ≤ 0≤ θ ′′n for n ≥ 2. (6-4)

First, we apply [Friedlander and Iwaniec 2010, Lemma 5.6] to (6-3) and, keeping with their notation, we
see that

G =
∑∑
(b1,b2)=1

θ ′b1
θ ′′b2

g′(b1)g′′(b2)
∏

p -b1b2

(1− g′(p)− g′′(p)). (6-5)

Define h̃′, h̃′′ and g̃′, g̃′′ to be multiplicative functions supported on squarefree numbers with

h̃′(p)=
g′(p)

1− g′(p)− g′′(p)
, h̃′′(p)=

g′′(p)
1− g′(p)− g′′(p)

, g̃′(p)=
g′(p)

1− g′′(p)
, g̃′′(p)=

g′′(p)
1− g′(p)

.

Thus we obtain the usual relations

h̃′(p)=
g̃′(p)

1− g̃′(p)
and h̃′′(p)=

g̃′′(p)
1− g̃′′(p)

. (6-6)

Note h̃′(p), h̃′′(p) ≥ 0 and 0 ≤ g̃′(p), g̃′′(p) < 1 by (6-1). Inserting these definitions into (6-5), we
observe that

G =
(∏

p

(1− g′(p)− g′′(p))
)∑∑
(b1,b2)=1

θ ′b1
θ ′′b2

h̃′(b1)h̃′′(b2).

If (b1, b2) 6= 1 then the expression θ ′b1
θ ′′b2

h̃′(b1)h̃′′(b2) is nonpositive by (6-4), so we may introduce all of
these terms at the cost of a lower bound for G. Thus

G ≥
(∏

p

(1− g′(p)− g′′(p))
)(∑

b1

θ ′b1
h̃′(b1)

)(∑
b2

θ ′′b2
h̃′′(b2)

)
. (6-7)

The two sums in (6-7) are prepared for standard beta-sieve analysis.
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Lemma 6.2. If 3′ is a lower bound beta-sieve with β = 9κ + 1 and s ≥ β then∑
b

θ ′bh̃′(b)≥ 1− e9κ−s K 10.

If 3′′ is an upper bound beta-sieve with β = 9κ + 1 and s ≥ β then∑
b

θ ′′b h̃′′(b)≤ 1+ e9κ−s K 10.

Proof. This statement is essentially the fundamental lemma [Friedlander and Iwaniec 2010, Lemma 6.8].
To make the comparison clear with [loc. cit., Sections 6.3–6.5], one begins with [loc. cit., Equation 6.40]
with their D, h, g replaced by our R, h̃′, g̃′ (or R, h̃′′, g̃′′, respectively). Per the definition of V (z) on
[loc. cit., p. 56], it follows that

V (z)=
∏
p<z

(1− g̃′(p)).

Thus the assumption [loc. cit., Equation 5.38] corresponds to our (6-2). Next, one defines Vn just as in
the equation at the top of [loc. cit., p. 63]; in doing so, we obtain [loc. cit., Equations 6.43 and 6.44].
Finally, using the same truncation parameters, the analysis of [loc. cit., Section 6.5] leading up to [loc. cit.,
Lemma 6.8] yields our result. �

Now, we apply Lemma 6.2 to the sum over b1 (the lower bound sieve 3′) in (6-7). Note that the
assumption s > 9κ + 1+ 10 log K implies that this sum over b1 is positive. By the positivity of h̃ and
(6-4), we may trivially estimate the sum over b2 in (6-7) by∑

b2

h̃′′(b2) θ
′′

b2
≥ h̃′′(1) θ ′′1 = 1.

This proves the lower bound in Theorem 6.1. For the upper bound, we follow the same arguments and
apply Lemma 6.2 twice (once to each sieve) in these final steps. �

7. Restricted primes represented by binary quadratic forms

We recall the setup in Section 1C. Let

f (u, v)= au2
+ buv+ cv2

∈ Z[u, v]

be a positive definite binary quadratic form of discriminant D= b2
−4ac< 0, not necessarily fundamental.

The group SL2(Z) naturally acts on such forms by (T · f )(x) = f (T x) for T ∈ SL2(Z). The class
number h(D) is the number of such forms up to SL2-equivalence. We assume that f is primitive (that is,
(a, b, c)= 1), and we define

stab( f )= {T ∈ SL2(Z) : T · f = f }.

Note |stab( f )| = 2 unless D =−3 or −4 in which case it equals 6 and 4 respectively.
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7A. Proof of Theorem 1.6. Recall by assumption that 3 ≤ z ≤ xη/ log log x where η = η(A) > 0 is
sufficiently small. Further, P is any integer dividing the product of primes ≤ z. Let 1 ≤ R ≤ x1/10 be
a parameter yet to be specified. Let 3′ = (λ′d) and 3′′ = (λ′′d) be sieve weights supported on squarefree
integers d | P satisfying

λ′1 = λ
′′

1 = 1, |λ′d | ≤ 1, |λ′′d | ≤ 1 for d ≥ 1, λ′d = λ
′′

d = 0 for d ≥ R. (7-1)

We approximate the condition (uv, P)= 1 in (1-13) by considering the sieved sum

S(x)= S(x;3′,3′′) :=
1

|stab( f )|

∑∑
u,v∈Z

f (u,v)≤x

1P( f (u, v))
(∑

d1 | u

λ′d1

)(∑
d2 | v

λ′′d2

)
. (7-2)

By swapping the order of summation,

S(x)=
∑∑

d1,d2
(d1,d2)=1

λ′d1
λ′′d2

Ad1,d2(x), (7-3)

where

Ad1,d2(x)=
1

|stab( f )|

∑∑
f (u,v)≤x

d1 | u,d2 | v

1P( f (u, v)). (7-4)

Before computing the congruence sums Ad1,d2(x), we introduce the local densities g′ and g′′. These are
multiplicative functions defined by

g′(p)=
{(

p−
( D

p

))−1 if p | P and p -c,
0 otherwise,

and g′′(p)=
{(

p−
( D

p

))−1 if p | P and p -a,
0 otherwise.

(7-5)

Here
( D

p

)
is the usual Legendre symbol for p 6= 2 and

(
D
2

)
=


0 if 2 | D,
1 if D ≡ 1 (mod 8),
−1 if D ≡ 5 (mod 8).

(7-6)

Our main result on the Chebotarev density theorem, Theorem 1.4, yields the following key lemma whose
proof is postponed to Section 7B.

Lemma 7.1. Let γ > 0 and ϑ > 0 be a sufficiently small absolute constants, and let d1, d2 be relatively
prime integers dividing P. If |d1d2 D| ≤ xγ then

Ad1,d2(x)= g′(d1)g′′(d2)
Li(x)−Li(xβ1)

h(D)
{1+ O(εd1d2(x))}+ O(

√
x log x), (7-7)

where β1 is a simple real zero of the Dedekind zeta function ζQ(
√

D)(s) (if it exists) and

εd(x)= εd(x; D)= exp
[
−ϑ

log x
log|d D|

]
+ exp[−(ϑ log x)1/2] for d ≥ 1. (7-8)
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Remark 7.2. For the remainder of the proof of Theorem 1.6, the constant ϑ may be allowed to vary from
line-to-line. This will occurs finitely many times, so this is no cause for concern.

Remark 7.3. For the sieve to succeed, one crucially requires an asymptotic equality for Ad1,d2(x) as
in (7-7) with small remainder terms. Proceeding via the Chebotarev density theorem, one might use a
stronger version of (1-2) in [Murty 1997] to obtain the asymptotic

Ad1,d2(x)=
g′(d1)g′′(d2)

h(D)
(Li(x)+ O(xe−c1

√
log x)), for log x � (log|d1d2 D|)2+

1
1−β1

. (7-9)

Currently, (1−β1)
−1
� |D|1/2 log|D| is the best unconditional effective bound for β1. Thus x must be

quite large with respect to |D|, d1, and d2; this adversely impacts the permissible ranges of |D| and z in
Theorem 1.6. To improve the range of x , one might instead appeal to variants of (1-6) found in [Thorner
and Zaman 2017; 2018; Weiss 1983] but this only yields lower and upper bounds for Ad1,d2(x), rendering
the sieve powerless. Fortunately, Theorem 1.4 addresses all of these obstacles simultaneously. Regardless
of whether β1 exists, it maintains an asymptotic with an improved range of x that is polynomial in |D|, d1,
and d2 while keeping satisfactory control on the error terms. This allows us to strengthen the uniformity
of both z and |D| in Theorem 1.6 beyond what earlier versions of the Chebotarev density theorem permit.

Now, set the level of distribution to be

R := z
1
√
η

log log z
. (7-10)

Recall the constant η = η(A) > 0 should be thought of as very small. Since z ≤ xη/ log log x and |D| ≤
xη/ log log z by assumption, we have that R ≤ x1/10 and also |d1d2 D| ≤ x4

√
η for any integers d1, d2 < R.

Thus, by Lemma 7.1 and (7-1), it follows that

S(x)= (G+ O(R))
Li(x)−Li(xβ1)

h(D)
+ O(x3/4), (7-11)

where

G =
∑∑

d1,d2
(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2), R=
∑

d<R2

d | P

τ(d)
ϕ(d)

εd(x).

Here τ is the divisor function and ϕ is Euler phi function. We obtained R by observing that∑∑
d1,d2<R
d1,d2 | P
(d1,d2)=1

.|λ′d1
λ′′d2
|g′(d1)g′′(d2)εd1d2(x)≤

∑
d<R2

d | P

εd(x)
∑

d1d2=d
(d1,d2)=1

g′(d1)g′′(d2)≤R

since g′(d1)g′′(d2)≤ 1/(ϕ(d1)ϕ(d2))= 1/ϕ(d) from (7-5) and
∑

d1d2=d
(d1,d2)=1

1≤ τ(d). Now, we proceed to

calculate the main term G and remainder terms R.
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7A1. Main term G. For the main term G, suppose we have chosen a lower bound sieve for the sum in
(1-13); namely, suppose 3′ is a lower bound beta sieve and 3′′ is an upper bound beta sieve, each with
level of distribution R. Our aim is to apply the Fundamental Lemma in the form of Theorem 6.1. One
can see that g′ and g′′ each satisfy (6-2) with κ = 1 and K absolutely bounded. Moreover, our choice of
sieve has a sufficiently large sifting variable s = log R/log z� η−1 because η > 0 is sufficiently small.

We claim that we may assume

g′(p)+ g′′(p) < 1 for all primes p

and hence g′ and g′′ also satisfy (6-1). From (7-5), the only concern occurs when p = 2 and 2 | P . We
prove the claim by checking cases and verifying that g′(2)+ g′′(2)≥ 1 only if Theorem 1.6 is trivially
true.

• Suppose D ≡ 5 (mod 8). By (7-5), we have g′(2)+ g′′(2)≤ 1
3 +

1
3 < 1.

• Suppose D≡ 1 (mod 8) so b≡ 1 (mod 2) and ac≡ 0 (mod 2). If a+b+c≡ 0 (mod 2) then the sum
in (1-13) is necessarily empty because 1P only detects odd primes. In this case, a and c have opposite
parity so g′(2)+ g′′(2)= 1. Hence, δ f (P)= 0 by (1-14) and Theorem 1.6 is therefore trivially true.
Otherwise, if a+ b+ c ≡ 1 (mod 2) then a and c have the same parity. As ac ≡ 0 (mod 2), it must
be that a ≡ c ≡ 0 (mod 2) implying g′(2)+ g′′(2)= 0< 1 by definition (7-5).

• Suppose 2 | D so b ≡ 0 (mod 2). If one of a or c is even then g′(2)+ g′′(2)≤ 1
2 < 1. Otherwise, if

both a and c are odd then g′(2)+ g′′(2) = 1 and a+ b+ c ≡ 0 (mod 2). This implies δ f (P) = 0
and also the sum in (1-13) is necessarily empty so Theorem 1.6 is trivially true.

This proves the claim. Therefore, by Theorem 6.1 and (7-10), it follows that

G ≥ δ f (P){1+ OA((log z)−A)} (7-12)

since η= η(A) is sufficiently small. If3′ and3′′ are both upper bound beta sieves with level of distribution
x1/10 then one similarly obtains the reverse inequality.

7A2. Remainder terms R. We estimate R dyadically. By the Cauchy–Schwarz inequality and standard
estimates for τ and ϕ, we see for 0≤ N ≤ d2 log R/log ze that∑

zN
≤d<zN+1

d | P

τ(d)
ϕ(d)

εd(x)� εzN+1(x)
( ∑

zN
≤d<zN+1

p | d=⇒p≤z

1
d

)1/2( ∑
zN
≤d<zN+1

τ(d)2d
ϕ(d)2

)1/2

� εzN+1(x)((N + 1) log z)3/2
( ∑

zN
≤d<zN+1

p | d=⇒p≤z

1
d

)1/2

.

By (7-10), one has that Rη
′/ log log R

≤ z ≤ R where η′ > 0 is sufficiently small depending only on η. In
other words, log R/log z� log log z. Thus, we may apply Hildebrand’s estimate [1986, Theorem 1] for
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z-smooth numbers via partial summation to conclude from (7-8) that the above is

� (e−ϑ
log x

(N+1) log z + e−ϑ
log x

log|D| + e−ϑ
√

log x)ρ(N )(N + 1)2 log2 z,

where ρ is the Dickman–de Bruijn function. Recall we allow the constant ϑ > 0 to change from line-to-line
and be replaced by a smaller value if necessary. Summing this estimate over 0 ≤ N ≤ d2 log R/log ze
and using the crude estimate ρ(N )� N−N for N ≥ 1, we deduce that

R� (max
N≥1

e−
c log x
N log z N−N+2) log2 z+ (e−ϑ

log x
log z + e−ϑ

log x
log|D| + e−ϑ

√
log x) log2 z

� (e−ϑ
√

log x log log x
log z + e−ϑ

log x
log z + e−ϑ

log x
log|D| + e−ϑ

√
log x) log2 z.

Since |D| ≤ xη/ log log z and z ≤ xη/ log log x with η = η(A) > 0 sufficiently small, we have that

R�A (log z)−A. (7-13)

7A3. Concluding the proof. Inserting (7-12) and (7-13) into (7-11) along with the fact that δ f (P)�
(log z)−2 from Mertens’ estimate, we conclude that∑∑

u,v∈Z

au2
+buv+cv2

≤x
(uv,P)=1

1P(au2
+ buv+ cv2)

|stab( f )|
≥ δ f (P)

Li(x)−Li(xβ1)

h(D)
{1+ OA((log z)−A)}+ O(x3/4).

By using an upper bound sieve instead (as mentioned at the end of Section 7A1), one also obtains the
reverse inequality. Thus, it remains to show the secondary error term O(x3/4) may be absorbed into the
primary error term. If δ f (P) = 0 then the arguments in Section 7A1 imply Theorem 1.6 trivially true
so we may assume δ f (P) > 0. By the effective lower bound that 1− β1 �ε |D|−1/2−ε, the fact that
h(D)�ε |D|1/2+ε, and the assumption that |D| ≤ xη/ log log z , we see

Li(x)−Li(xβ1)

h(D)
� x4/5.

As δ f (P)� (log z)−2, this implies the claim and hence proves Theorem 1.6. �

7B. Proof of Lemma 7.1. The pair (d1, d2) induces another form fd1,d2 given by

fd1,d2(s, t) := f (d1s, d2t).

Note its discriminant is D(d1d2)
2. With this definition, it follows that

Ad1,d2(x)=
1

|stab( f )|

∑
p≤x

#{(s, t) ∈ Z2
: p = fd1,d2(s, t)}. (7-14)

Observe

Ad1,d2(x)� 1 if (d1, c) 6= 1 or (d2, a) 6= 1
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since, in this case, fd1,d2 is not primitive and hence represents an absolutely bounded number of primes.
This trivially establishes Lemma 7.1 in this case. To evaluate Ad1,d2(x) for all other d1 and d2, we use
class field theory.

Lemma 7.4. Let OK be the ring of integers of K =Q(
√

D). For d ≥ 1, let Od be the order of discriminant
−Dd2 in K and let Ld be the ring class field of Od . If F is a primitive binary quadratic form of
discriminant −Dd2 then

|O×d | = |stab(F)|.

Moreover, if CF is the conjugacy class corresponding to F in the Galois group of Ld/K then

#{(s, t) ∈ Z2
: p = F(s, t)} = |O×d | · #

{
p⊆OK : Np= p,

[ Ld/K
p

]
= CF

}
for p -Dd.

Here
[ Ld/K

p

]
is the Artin symbol of p and N= NK/Q is the absolute norm of K/Q.

Proof. These are straightforward consequences of the theory for positive definite binary quadratic forms,
so we only sketch the details. Standard references include for example [Cassels 1978; Cox 1989]. First,
one can verify that O×d = {±1} unless Od is the ring of integers for Q(i) or Q(

√
−3). Similarly, the

SL2-automorphism group of F is
{
±
( 1

0
0
1

)}
unless F is properly equivalent to either x2

+y2 or x2
+xy+y2.

These are respectively the unique reduced forms of discriminant −4 or −3. These remaining two cases
can be checked by direct calculation.

The second claim follows from the first claim and the one-to-one correspondence between inequivalent
representations of a prime p by F and degree 1 prime ideals p⊆OK in the class CF . For more details,
see [Cox 1989, Theorem 7.7]. �

Now, assuming (d1, c) = (d2, a) = 1, we return to computing Ad1,d2(x). It follows that fd1,d2 is
primitive so by Lemma 7.4 with F = fd1,d2 and d = d1d2,we deduce that

Ad1,d2(x)=
1

|stab( f )|

∑†

Np≤x
deg(p)=1

|O×d1d2
| + O

( ∑
p | Dd1d2

1
)
, (7-15)

where
∑† runs over prime ideals p in OK unramified in Ld1d2 satisfying [(Ld1d2/K )/p] = C fd1,d2

. Note,
for the primes p | Dd1d2 in (7-15), we have used that each prime p is represented by f with absolutely
bounded multiplicity. We may add the remaining degree 2 prime ideals p to the †-marked sum with error
at most O(|O×d1d2

|
√

x log x)= O(
√

x log x). Further, we have∑
p | Dd1d2

1� log|Dd1d2| � log x

since |d1d2 D| ≤ xγ . Collecting these observations, it follows that

Ad1,d2(x)=
|O×d1d2

|

|stab( f )|

∑†

Np≤x

1+ O(
√

x log x). (7-16)
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We invoke Theorem 1.4 to compute the sum in (7-16), thus∑†

Np≤x

1=
Li(x)− θ1 Li(xβ1)

h(D(d1d2)2)
{1+ O(εd1d2(x))} for |d1d2 D| ≤ xγ , (7-17)

where εd1d2(x) is defined by (7-8) and γ > 0 is fixed and sufficiently small. We make two simplifications
for (7-17). First, we claim that θ1 = 1 if the exceptional zero β1 exists. By a theorem of Heilbronn [1972]
generalized by Stark [1974, Theorem 3], since β1 is a real simple zero of ζLd1d2

(s) and Ld1d2 is Galois
over Q with K being its only quadratic subfield, it follows that ζK (β1)= 0. Hence, the exceptional Hecke
character χ1 of K from Theorem 1.4 is trivial implying θ1 = 1. Second, we have for d ≥ 1 that

h(Dd2)=
h(D)
[O× :O×d ]

d
∏
p | d

(
1−

(
D
p

)
1
p

)
. (7-18)

For a proof, see for example [Cox 1989, Theorem 7.4 and Corollary 7.28].
Finally, with these observations, Lemma 7.1 follows by inserting (7-17) and (7-18) into (7-16) and

noting that [O×1 :O
×

d ] · |O
×

d | = |O
×

1 | = |stab( f )| from Lemma 7.4. �

Appendix: Error term with an exceptional zero

Theorem 3.2 states that if T ≥ 1, then∑
χ

N (σ, T, χ)� B1(QT nK )c5(1−σ), B1 =min{1, (1−β1) log(QT nK )}. (A-1)

This clearly implies that regardless of whether β1 exists, we have∑
χ

N (σ, T, χ)� (QT nK )c5(1−σ). (A-2)

If β1 exists, Theorem 3.2 produces the following strong zero-free region:

Theorem A.1 (zero repulsion). Suppose the exceptional zero β1 of Theorem 3.1 exists. There exists c6 > 0
such that if 1 is given in Theorem 3.1, then

1(t)≥min
{

1
2
,

c6 log([(1−β1) log(QtnK )]−1)

log(QtnK )

}
.

Let q ≥ 1 be an integer. In the context of arithmetic progressions, in which case L = Q(e2π i/q)

and F = K = Q, it is preferable to use (A-2) and Theorem A.1 instead of (A-1), as one can typically
obtain numerically superior results with the former. However, in the context of arithmetic progressions,
one has the benefit of working with characters of an extension which is abelian over Q, in which case
Theorem 3.3 gives an adequate upper bound for β1 (should it exist). However, for abelian extensions
L/K where the root discriminant of K is rather small, Theorem 3.3 gives an upper bound for β1 which
is not commensurate with the corresponding result for cyclotomic extensions of Q. In fact, this weak
upper bound leads us to actually require a version of the log-free zero density estimate that improves as
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β1 approaches 1 to handle the case when K has a small root discriminant. This is why we use (A-1) in
our proofs instead of using (A-2) and Theorem A.1 separately.

For comparison with Lemma 4.6, we quantify the effect of (A-2) and Theorem A.1 on the error term
in Lemma 4.5 and subsequently (4-13) in the proof of Proposition 4.1. Since the calculations are tedious,
we omit the proof.

Lemma A.2. Let η be defined by (4-7). Suppose the exceptional zero β1 = 1− λ1/log Q of Theorem 3.1
exists. There exists absolute constants c7, c8, c9 > 0 such that if λ1 ≤ c7 and Q ≤ x1/c9 ,

e−η(x)� x−1/2
+ λ10

1 (e
−

c6 log x
2 log Q + e−c8

√
(log x)/nK ) if λ1 ≥ Q−20/nK , (A-3)

e−η(x)� x−1/2
+ e−10

√
log(1/λ1)(e−

c6 log x
2 log Q + e−c8

√
(log x)/nK ) if λ1 < Q−20/nK . (A-4)

Remark A.3. Recall the definition of ν1 in (4-6). From (4-11) and (4-12), one can see it is critical to
prove an estimate at least as strong as

ν1xe−η(x) = o(λ1x). (A-5)

Notice that the density estimate in (A-1) decays linearly with respect to 1−β1 (that is, ν1 = λ1), so we
easily obtain (A-5). Suppose we instead use (A-2), which is tantamount to the trivial estimate ν1≤ 1 when
β1 exists. From (A-3), one obtains (A-5) when λ1 ≥ Q−20/nK . Otherwise, from (A-4), if λ1 < Q−20/nK

then we can at best show xe−η(x) = o(e−10
√

log(1/λ1)x). The situation λ1 < Q−20/nK is not uniformly
excluded by Stark’s bound (1-4). For example, when the root discriminant D1/nK

K is bounded and the
extension L/K is unramified (that is, Q= 1), then

Q100/nK = (DKQ)100/nK n100
K � n100

K

and Stark’s bound (1-4) implies λ−1
1 � nnK

K log DK so it may very well be the case that λ−1
1 � n100

K �

Q100/nK . This situation with a bounded root discriminant is entirely possible as Minkowski’s unconditional
estimate nK � log DK is tight when varying over all number fields K . Infinite class field towers are well
known sources of this scenario. Thus, we cannot see how to unconditionally obtain the desired linear
decay demanded by (A-5) with only (A-2) and Theorem A.1.
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On the Brauer–Siegel ratio
for abelian varieties over function fields

Douglas Ulmer

Hindry has proposed an analog of the classical Brauer–Siegel theorem for abelian varieties over global
fields. Roughly speaking, it says that the product of the regulator of the Mordell–Weil group and the
order of the Tate–Shafarevich group should have size comparable to the exponential differential height.
Hindry–Pacheco and Griffon have proved this for certain families of elliptic curves over function fields
using analytic techniques. Our goal in this work is to prove similar results by more algebraic arguments,
namely by a direct approach to the Tate–Shafarevich group and the regulator. We recover the results of
Hindry–Pacheco and Griffon and extend them to new families, including families of higher-dimensional
abelian varieties.

1. Introduction

The classical Brauer–Siegel theorem [Brauer 1950] says that if K runs through a sequence of Galois
extensions of Q with discriminants d = dK satisfying [K :Q]/ log d→ 0, then

log(Rh)

log
√

d
→ 1

where R = RK and h = hK are the regulator and class number of K . The proof uses the class number
formula

Ress=1 ζK (s)=
2r1(2π)r2 Rh

w
√

d

and analytic methods.
Hindry [2007] conjectured an analog of the Brauer–Siegel theorem for abelian varieties. If A is an

abelian variety over a global field K with regulator R, Tate–Shafarevich group X (assumed to be finite),
and exponential differential height H (definitions below), Hindry proposed that the Brauer–Siegel ratio

BS(A) :=
log(R|X|)

log(H)

should tend to 1 for any sequence of abelian varieties over a fixed K with H →∞.

MSC2010: primary 11G05; secondary 11G10, 11G40.
Keywords: abelian variety, Tate–Shafarevich group, regulator, height, Brauer–Siegel ratio, function field.
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Hindry and Pacheco [2016] considered the case where K is a global function field of characteristic
p > 0. Assuming the finiteness of X, they proved (Corollary 1.13) that

0≤ lim inf
A

BS(A)≤ lim sup
A

BS(A)= 1, (1.1)

where the limits are over the family of all nonconstant abelian varieties of a fixed dimension over K ordered
by height. Note that this leaves open the possibility of a sequence of abelian varieties with Brauer–Siegel
ratio tending to a limit < 1, a possibility not envisioned in Hindry’s earlier paper. Hindry and Pacheco also
conjectured and gave evidence for the claim that the lower bound 0≤ lim infA BS(A) should be an equality
when A runs through the family of quadratic twists of a fixed elliptic curve. Moreover, they gave an example
(Theorem 1.4) of a family of elliptic curves E with H→∞ and proved limE BS(E)= 1 without having
to assume any unproven conjectures. In his Paris VII thesis, Griffon [2016] gave several other examples
of families of elliptic curves where limE BS(E)= 1 again without assuming unproven conjectures.

As with the original Brauer–Siegel theorem, the analyses of Hindry–Pacheco and Griffon use analytic
techniques. More precisely, finiteness of the Tate–Shafarevich group implies the conjecture of Birch and
Swinnerton-Dyer (in its strong form), and so a class number formula of the shape

L∗(A)= α
|X|R

H

where L∗(A) is the leading Taylor coefficient of the L-function at s = 1 and α is a relatively innocuous,
nonzero factor. (We will give the precise statement below.) Hindry–Pacheco and Griffon then prove their
results by estimating (and in some cases calculating quite explicitly) L∗(A).

Our goal in this work is to prove several results about Brauer–Siegel ratios by more algebraic arguments,
in other words through a direct approach to the Tate–Shafarevich group and the regulator. More precisely,
we prove the following results without recourse to L-functions:

(1) a transparent and conceptual proof that lim infA BS(A)≥ 0 via a lower bound on the regulator;

(2) a new connection between the growth of |X| as the finite ground field is extended and the number
R|X| over the given field;

(3) a general calculation of the limiting Brauer–Siegel ratio for the sequence E (p
n) of Frobenius pull-

backs of an elliptic curve E ;

(4) a new proof that limd BS(Ed)= 1 in the families of elliptic curves studied by Hindry–Pacheco and
Griffon;

(5) proofs that limd BS(Jd)= 1 for families of Jacobians of all dimensions;

(6) and results on quadratic twists that illustrate the limitations of our p-adic techniques.

“Without recourse to L-functions” means by algebraic methods. We do use the BSD formula, but this
is just a bookkeeping device for the connections between cohomology and other invariants. We do not
use the Euler product or any properties of L(A, s) as a function of s. That said, we have not eliminated
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analysis entirely: points (4–6) above all require an equidistribution result for the action of multiplication
by p on Z/dZ.

The plan of the paper is as follows: In Section 2, we set up notation, review and extend certain auxiliary
results of Hindry–Pacheco on component groups, and prove a lemma useful for estimating heights. In
Section 3, we prove a general integrality result on regulators of abelian varieties which leads immediately
to a lower bound on the Brauer–Siegel ratio. In Section 4, we introduce “dimX(A)”, a new and extremely
useful technical device which is closely related to slopes of L-functions and which is computable in many
interesting situations. As a first application, in Section 5 we compute the limiting Brauer–Siegel ratio for
the sequence of Frobenius pull-backs of an elliptic curve. Sections 6–9 develop p-adic cohomological
machinery that allows one to compute dimX(A) and estimate BS(A) for Jacobians of curves with Néron
models related to products of Fermat curves. In the rest of the paper, we use this machinery to recover
the results of Hindry–Pacheco and Griffon and to extend them to higher genus Jacobians. Section 10
discusses curves defined by equations involving 4 monomials. Section 11 discusses curves coming from
Berger’s construction [2008]. Finally, in Section 12 we consider twists of constant elliptic curves.

It is a pleasure to thank Richard Griffon for several helpful comments and an anonymous referee for
his or her careful reading of the paper and valuable suggestions.

2. Preliminaries

2.1. Notation and definitions. We set notation and recall definitions which will be used throughout the
paper.

Fix a prime number p, a power q of p, and a smooth, projective, absolutely irreducible curve C of
genus gC over k = Fq , the field of q elements. Let K be the function field Fq(C). We write v for a place
of K , dv for the degree of v, Kv for the completion of K at v, Ov for the ring if integers in Kv, and kv
for the residue field, a finite extension of k of degree dv

Let A be an abelian variety over K with dual Â. A theorem of Lang and Néron guarantees that the
Mordell–Weil groups A(K ) and Â(K ) are finitely generated abelian groups. (See [Lang and Néron 1959],
or [Conrad 2006] for a more modern account.)

There is a bilinear pairing

〈 · , · 〉 : A(K )× Â(K )→Q

which is nondegenerate modulo torsion. (This is the canonical Néron–Tate height divided by log q.
See [Néron 1965] for the definition and [Hindry and Silverman 2000, B.5] for a friendly introduction.)
Choosing a basis P1, . . . , Pr for A(K ) modulo torsion and a basis P̂1, . . . , P̂r for Â(K ) modulo torsion,
we define the regulator of A as

Reg(A) := |det〈Pi , P̂j 〉1≤i, j≤r |.

The regulator is a positive rational number, well-defined independently of the choice of bases.
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We write H 1(K , A) for the étale cohomology of K with coefficients in A and similarly for H 1(Kv, A).
The Tate–Shafarevich group of A is defined as

X(A) := ker
(

H 1(K , A)→
∏
v

H 1(Kv, A)
)
,

where the product of over the places of K and the map is the product of the restriction maps. This group
is conjectured to be finite, and we assume this conjecture throughout the paper. However, in all of the
explicit calculations below, we can in fact prove that X(A) is finite without additional assumptions.

Let A→ C be the Néron model of A/K . This is a smooth group scheme over C with a certain universal
property whose generic fiber is A/K . See [Bosch et al. 1990] for a modern account. Let s : C→A be
the zero-section. We define an invertible sheaf ω on C by

ω := s∗(�dim(A)
A/C )=

∧dim(A)s∗(�1
A/C).

The exponential differential height of A (which we often refer to simply as the height) is

H(A) := qdegω.

If A is an elliptic curve and C = P1, then degω has simple interpretation in terms of the degrees of the
coefficients in a Weierstrass equation defining A. See [Ulmer 2011, Lecture 3] for details.

For each place v of K , we write cv for the number of connected components of the special fiber of A
at v which are defined over the residue field. We define the Tamagawa number of A as

τ(A) :=
∏
v

cv.

(This usage is in conflict with our earlier papers, in particular [Ulmer 2014a], where the Tamagawa
number is defined to be

τ(A)
H(A)qdim(A)(gC−1) .

The earlier usage is historically more appropriate, as the definition there is a volume defined in close
analogy with Tamagawa’s work on linear algebraic groups, see [Weil 1982], but the terminology we adopt
here is more convenient for our current purposes.)

Next we consider the Hasse–Weil L-function of A over K , denoted L(A, s). It is a function of a
complex variable s defined as an Euler product over the places of K which is convergent in the half-plane
<s > 3

2 and which is known to have a meromorphic continuation to the whole s-plane. More precisely,
L(A, s) is a rational function in q−s , and if the K/k-trace of A is trivial, then L(A, s) is in fact a
polynomial in q−s of the form ∏

i

(1−αi q−s),

where the inverse root αi are Weil integers of size q .
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We define the leading coefficient of the L-function as

L∗(A) :=
1

(log q)r
1
r !

(
d
ds

)r

L(A, s)
∣∣∣∣
s=1

where r is the order of vanishing r := ords=1 L(A, s). (With the factor 1/(log q)r , this is the leading
coefficient of L as a rational function in T = q−s , and with this normalization, it has the virtue of being a
rational number.)

All of the invariants mentioned above are connected by the conjecture of Birch and Swinnerton-Dyer
(“BSD conjecture”), which we take to be the conjunction of the following three statements:

(1) ords=1 L(A, s)= Rank A(K ).

(2) X(A) is finite (with order denoted |X(A)|).

(3) We have an equality

L∗(A)=
Reg(A)|X(A)|

H(A)
τ (A)

qdim(A)(gC−1)|A(K )tor | · | Â(K )tor |
.

It is known that parts (1) and (2) are equivalent, and when they hold, part (3) holds as well. (See [Kato
and Trihan 2003] for the end of a long line of reasoning leading to these results.)

From the point of view of the Brauer–Siegel ratio, the main terms of interest in the third part of the BSD
conjecture are Reg(A), |X(A)|, and H(A), whereas the other factors are either constant (qdim(A)(gC−1))
or turn out to be negligible (τ(A) and |A(K )tor × Â(K )tor |). We will discuss the Tamagawa number and
the results of Hindry and Pacheco on it in the next section, whereas the torsion subgroups A(K )tor and
Â(K )tor will play almost no role in our analysis.

2.2. Bounds on Tamagawa numbers (1). Hindry and Pacheco [2016, Proposition 6.8] bound the Tama-
gawa number in terms of the height under certain tameness assumptions. More precisely, they showed
that for a fixed global field K , as A varies over all abelian varieties of fixed dimension d over K , we have

τ(A)= O(H ε)

for all ε > 0, provided that p > 2 dim(A)+ 1 or A has everywhere semistable reduction.
In this section and Sections 2.5 and 2.6, we outline three improvements of this result, all motivated by

applications later in the paper.

Lemma 2.2.1. Let E run through the set of all elliptic curves over a global function field K . Then

τ(E)= O(H(E)ε)

for every ε > 0.

The point is that we allow arbitrary characteristic and make no semistability hypothesis. This result
was also proven by Griffon [2016, Theorem 1.5.4], but we include a proof here for the convenience of the
reader.
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Proof. This follows easily from Ogg’s formula [1967] (see also [Saito 1988] for a more general result
proven with modern methods). Indeed, if1v is a minimal discriminant for E at the place v, Ogg’s formula
says that

ordv(1v)= cv + fv − 1

where fv is the exponent of the conductor of E at v. Summing over places where E has bad reduction
(i.e., where ordv(1v)≥ 1) and using that fv − 1≥ 0 at these places, we have∑

v

cvdv ≤
∑
v

ordv(1v)dv ≤ 12 deg(ω)

where dv is the degree of v and where the last inequality holds because 1 can be interpreted as a section
of ω⊗12. This recovers the main bound (Theorem 6.5 of [Hindry and Pacheco 2016]), and the rest of the
argument — converting this additive bound to a multiplicative bound — proceeds exactly as in [Hindry
and Pacheco 2016, Proposition 6.8]. �

2.3. Families from towers of fields. Let A be an abelian variety over a function field K . For each positive
integer d (or positive integer d prime to p), let Kd be a geometric extension of K , and let Ad = A×K Kd .
This gives a sequence of abelian varieties and one may ask about the behavior of BS(Ad) as d→∞.

For most of the paper, we will be concerned with the special case where there are isomorphisms
Kd ∼= K for all d. In this case, we may view the sequence Ad as a sequence of abelian varieties over a
fixed function field. This is the context of the results and conjectures of Hinry and Pacheco, and we will
give four examples in the rest of this section. Nevertheless, the general case is also interesting, and we
will give develop foundational results in a more general context in Section 2.4.

2.3.1. Kummer families. Let K = Fq(t), and for each positive integer d prime to p, let Kd = Fq(u) where
ud
= t . Note that the extension Kd/K is unramified away from the places t = 0 and t =∞ of K . Let A

be an abelian variety over K , and let Ad be the abelian variety over K obtained by base change to Kd ,
followed by the isomorphism of fields Fq(u)∼= Fq(t), u 7→ t . (In more vivid terms, Ad is the result of
substituting td for each appearance of t in the equations defining A.) We say that the sequence of abelian
varieties Ad is the family associated to A and the Kummer tower. Such families have been a prime source
of examples for the Brauer–Siegel ratio.

2.3.2. Artin–Schreier families. We may proceed analogously with the tower of Artin–Schreier extensions.
Again, let K = Fq(t), and for each positive integer d, let Kd = Fq(u) where u pd

− u = t . Note that the
extension Kd/K is unramified away from the place t =∞ of K . Let A be an abelian variety over K ,
and let Ad be the abelian variety over K obtained by base change to Kd followed by the isomorphism
of fields Fq(u) ∼= Fq(t), u 7→ t . (In more vivid terms, Ad is the result of substituting t pd

− t for each
appearance of t in the equations defining A.) We say that the sequence of abelian varieties Ad is the
family associated to A and the Artin–Schreier tower.
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2.3.3. Division tower families. One may also consider an elliptic curve variant: Let K be the function
field Fq(E) where E is an elliptic curve over Fq . For each positive integer d prime to p, consider the
field extension Kd/K associated to the multiplication map d : E→ E . Thus [Kd : K ] = d2, but Kd is
canonically isomorphic as a field (even as an Fq-algebra) to K . Given an abelian variety A over K , let
Ad be the abelian variety over K obtained by base-changing A to Kd and then using the isomorphism
of fields Kd ∼= K . We say that the sequence Ad of abelian varieties over K is the family associated to a
division tower. Everything we say about Kummer and Artin–Schreier towers has an obvious analog for
division towers. In most cases the latter is simpler because in the division case, Kd/K is unramified.

2.3.4. PGL2 families. Let K = Fq(t) and for each positive integer d let Kd = Fq(u) where Fq(u)/Fq(t)
is the field extension associated to the quotient morphism

P1
→ P1/PGL2(Fpd )∼= P1.

We normalize the isomorphism so that the Fpd -rational points on the upper P1 map to 0 and P1(Fp2d ) \

P1(Fpd ) maps to 1. Then the extension Kd/K is unramified away from the places t = 0 and t = 1 of K ,
and it is tamely ramified over t = 1. Given an abelian variety A over K , let Ad be the abelian variety over
K obtained by base-changing A to Kd and then using the isomorphism of fields Fq(u)∼= Fq(t), u 7→ t .
We say that the sequence Ad of abelian varieties over K is the family associated to the PGL2 tower.

The discussion above gives four different meanings to the notations Kd and Ad! Which meaning is
intended in each use below should be clear from the context.

We end this section with a simple lemma that plays a key role in our analysis of Tamagawa numbers in
families associated to towers.

Lemma 2.3.5. Let K = Fq(C) be a function field, and let Kd be a sequence of geometric extensions of K
such that the genus of (the curve associated to) Kd is ≤ 1 for all d. Then for every place v of K , there is a
constant Cv depending only on q and deg v such that for all d , the number of places of Kd dividing v is at
most Cv[Kd : K ]/ log[Kd : K ].

Proof. Write D = [Kd : K ] and set x = log D/ log q. Fix a place v of K . Then the number of places w
of Kd dividing v and of absolute degree ≥ x is at most

D
x/ deg v

= deg v log q
D

log D
.

On the other hand, by the Weil bound, the total number of places of Kd of degree ≤ x is bounded by
Cqx/x = C ′D/ log D where C and C ′ depend only on q, deg v and the genus of Kd . Since the latter is
either 0 or 1, the constant can be taken to depend only on q and deg v. This shows that the total number
of places of Kd dividing v is ≤ CvD/ log D where Cv depends only on q and deg v. �

2.4. Towers of geometrically Galois extensions. In this section, we discuss a more general class of
towers of fields Kd where we are able to bound Tamagawa numbers of the associated sequences of abelian
varieties. This additional generality was suggested by the anonymous referee, to whom we are grateful.
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Readers who are mainly interested in the applications to the Kummer tower later in the paper are invited
to skip ahead to Section 2.5

2.4.1. Geometrically Galois extensions. Let k be a field and let K = k(C) be the function field of a
smooth, projective, geometrically irreducible curve over k. We say that a finite, geometric extension
Kd/K is geometrically Galois if the Galois closure Ld of Kd over K has the form Ld = kd Kd where
kd is a finite Galois extension of k. Equivalently, there is a finite Galois extension kd of k such that
kd Kd is Galois over kd K . (We take kd to be minimal such extension.) Let Gd = Gal(Ld/kd K ) and
0d =Gal(kd/k)∼=Gal(kd K/K )∼=Gal(Ld/Kd), so that 0d acts on Gd by conjugation and Gal(Ld/K ) is
the semidirect product Gdo0d . We call Gd , with its action of 0d , the geometric Galois group of Kd/K
and we call kd the splitting field of Gd . (We remark that there is a finite étale group scheme Gd over k
attached to Gd with its 0d action, and Gd becomes a constant group over kd , see [Milne 1980, §II.1].)

2.4.2. Towers of geometrically Galois extensions. We now consider a tower of geometrically Galois
extensions Kd/K indexed by positive integers d (or positive integers relatively prime to p) with contain-
ments Kd ⊂ Kd ′ whenever d divides d ′. These containments induce surjections Gd ′→ Gd and 0d ′→ 0d

which are compatible in the obvious sense with the actions of 0d and 0d ′ on Gd and Gd ′ respectively.
Each of the families of towers in Section 2.3 gives an example of a tower of geometrically Galois

extensions.
In the case of the Kummer tower, the geometric Galois group is Gd = µd(Fq), the splitting field kd is

Fq(µd), and 0d = Gal(Fq(µd)/Fq) is the subgroup of (Z/dZ)× generated by q.
In the Artin–Schreier tower, the geometric Galois group is Gd = Fpd , the splitting field kd is the

compositum FqFpd , and 0d = Gal(FqFpd/Fq) is the cyclic group generated by the q-power Frobenius.
In the division tower corresponding to an elliptic curve E over Fq , the geometric Galois group is E[d],

the splitting field kd is Fq(E[d]), and 0d = Gal(kd/Fq) is the cyclic group generated by the action of the
q-power Frobenius on the d torsion points.

In the PGL2 tower, the geometric Galois group is Gd = PGL2(Fpd ), the splitting field kd is FqFpd , and
0d = Gal(FqFpd/Fq) is the cyclic group generated by the q-power Frobenius.

For a more general class of examples, let Kd/K be any of the towers above, and fix an extension F/K
which is linearly disjoint from each Kd over K . Then the fields Fd := F Kd form a tower of geometrically
Galois extensions with the geometric Galois group of Fd/F isomorphic to that of Kd/K . Note however,
that in general the genus of Fd tends to infinity with d .

We next consider two group-theoretic results related to these towers, both concerning the number of
orbits of 0d acting on Gd . (As motivation, we note that the orbits of 0d on Gd are in bijection with the
closed points of the scheme Gd .)

To state the first result, we make a somewhat elaborate hypothesis on the system of groups Gd with
their 0d actions.

Hypothesis 2.4.3. (1) There exists a function φ of positive integers such that |Gd | =
∑

e | d φ(e) for all d .

(2) There a decomposition Gd = ∪e | d G ′d,e such that |G ′d,e| = φ(e).
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(3) The action of 0d on Gd respects the decomposition above, and the orbits of 0d on G ′d,e have
cardinality ≥ C log|Ge| for some constant C independent of d and e.

This hypothesis clearly implies that the splitting field kd has degree [kd : k] = |0d | ≥ C log|Gd |. It
would be interesting to know whether the converse holds.

Lemma 2.4.4. Hypothesis 2.4.3 is satisfied by the Kummer, Artin–Schreier, division, and PGL2 towers.

Proof. In the Kummer case, Gd consists of the d-th roots of unity in Fq , and we let G ′d,e be those of order
exactly e. Then |G ′d,e| is independent of d, and we set φ(e)= |G ′d,e|. The orbit of 0 through ζ ∈ G ′d,e
has size f where f is the smallest positive integer such that ζ q f

= ζ . Since ζ has order exactly e, this is
the smallest f such that q f

≡ 1 (mod e). Clearly this f satisfies f ≥ log e/ log q and this establishes
Hypothesis 2.4.3.

In the Artin–Schreier case, Gd is the additive group of Fpd , and we let G ′d,e consists of those elements
of Fpe ⊂ Fpd which do not lie in any smaller extension of Fp, i.e., α ∈G ′d,e if and only if Fp(α)= Fpe . We
set φ(e)= |G ′d,e| (which is independent of d). Since α p f

6= α for 0< f < e, it follows immediately that
the orbit of the q-power Frobenius through α ∈G ′d,e has size at least e/(log q/ log p), and this establishes
Hypothesis 2.4.3.

In the division case, Gd consists of the Fq -points of E of order dividing d . We let G ′d,e be the subset of
points of order exactly e, and φ(e)=|G ′d,e| (which is independent of d). If P ∈G ′d,e and Fr f

q (P)= P , then
P ∈ E(Fq f ), and this implies that |E(Fq f )| ≥ e. But the Weil bound implies that |E(Fq f )| ≤ (q f/2

+ 1)2

which in turn implies that f ≥ C log e for some constant C independent of e.
In the PGL2 case, Gd is PGL2(Fpd ). For g∈Gd , let Fp(g) be defined as follows: choose a representative

of g in GL2(Fpd ) one of whose entries is 1, and let Fp(g) be the extension of Fp generated by the other
entries. It is easy to see that Fp(g) is well defined independent of the choice of representative and that
Fr f

p (g)= g if and only if Fr f
p fixes Fp(g). We let G ′d,e consists of those elements g ∈Gd with Fp(g)= Fpe .

We set φ(e)= |G ′d,e| (which is independent of d). Since Fr f
p (g) 6= g for 0< f < e, it follows immediately

that the orbit of the q-power Frobenius through g ∈ G ′d,e has size at least e/(log q/ log p), and this
establishes Hypothesis 2.4.3. �

Remark 2.4.5. A “dual” perspective makes Hypothesis 2.4.3 more transparent in the cases considered in
Lemma 2.4.4. Namely, let F = Fq(C) be the function field of a curve of genus 0 or 1 over Fq . (These are
the cases where AutFq

(C) is infinite.) For each d , let Gd be a subgroup of AutFq
(C) which is stable under

the q-power Frobenius, and let 0d be the group of automorphisms of Gd generated by Frobenius. The
quotient (C× Fq)/Gd has a canonical model over Fq ; let Fd be its function field. With this notation, the
extension F/Fd is geometrically Galois with group (Gd , 0d). Suppose further that if e | d then Ge ⊂ Gd ,
so that Fd ⊂ Fe. Then it is natural to define G ′d as the set of elements in Gd which are not in Ge for any
divisor of d with e < d. Clearly G ′e depends only on e, and the decomposition Gd = ∪e | d G ′e is evident.
All of the examples of Lemma 2.4.4 can be recast in this form.

The following lemma is modeled on [Griffon 2016, Lemme 3.1.1].
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Lemma 2.4.6. Let Kd/K be a tower of geometrically Galois extensions such that for all d , |Gd | ≥ d and
such that Hypothesis 2.4.3 holds. Then there is a constant C1 such that the number of orbits of 0d on Gd

satisfies

|Gd/0d | ≤ C1
|Gd |

log|Gd |

for all d > 1.

Proof. Let ψ(d) = |Gd |, so that ψ(d) =
∑

e | d φ(e). Extend ψ to a function of real numbers which is
continuous, increasing, and satisfies ψ(x)≥ x for all x . By Hypothesis 2.4.3, for all d > 1 the number of
orbits of 0d on G ′d,e satisfies

|G ′d,e/0d | ≤ C−1 φ(e)
logψ(e)

.

Let x > 1 be a parameter to be chosen later. We have

|0d | ≤ C2
∑

1<e | d

φ(e)
logψ(e)

(C2 to compensate for omitting e = 1)

= C2
∑

1<e | d
e≤x

φ(e)
logψ(e)

+C2
∑

1<e | d
e>x

φ(e)
logψ(e)

≤ C2
∑

1<e | d
e≤x

φ(e)
logψ(e)

+C2
ψ(d)

logψ(x)

(∑
φ(e)= ψ(d) and ψ increasing

)

≤ C2
∑

1<e | d
e≤x

ψ(e)
logψ(e)

+C2
ψ(d)

logψ(x)
(φ(e)≤ ψ(e))

≤ C3
ψ(x)

logψ(x)

∑
1<e | d

e≤x

1+C2
ψ(d)

logψ(x)
(x 7→ ψ(x) 7→ ψ(x)/ logψ(x), increasing for x > 2.72)

≤ C3
xψ(x)

logψ(x)
+C2

ψ(d)
logψ(x)

≤ C3
ψ(x)2

logψ(x)
+C2

ψ(d)
logψ(x)

(ψ(x)≥ x)

Now since ψ is increasing and continuous, we may choose x so that ψ(x)2 = ψ(d), and for this choice
we have

|Gd/0d | ≤ (2C3+ 2C2)
ψ(d)

logψ(d)
.

Thus setting C1 = 2C3+ 2C2 completes the proof. �

We now consider the set of orbits of 0 on a homogeneous space for G.

Lemma 2.4.7. Let G be a finite group and let T be a principal homogeneous space for G. Let 0 be a
group acting on G (by group automorphisms) and on T (by permutations), and suppose that the actions
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of 0 on G and T are compatible with the action of G on T (i.e., for all γ ∈ 0, g ∈ G, and t ∈ T ,
γ (gt)= γ (g)γ (t). Then

|T/0| ≤ |G/0|.

Proof. We use the orbit counting lemma:

|G/0| =
1
|0|

∑
γ∈0

|Gγ
|

where Gγ denotes the set of fixed points of γ acting on G. Similarly,

|T/0| =
1
|0|

∑
γ∈0

|T γ
|

where T γ denotes the set of fixed points of γ acting on G. We claim that if T γ is not empty, then it
is a principal homogeneous space for Gγ . Indeed, it is clear that if g ∈ Gγ and t ∈ T γ , then gt ∈ T γ .
Conversely, if t, t ′ ∈ T γ and g ∈ G is the unique element such that gt = t ′, then

γ (g)t = γ (g)γ (t)= γ (gt)= γ (t ′)= t ′ = gt,

and so γ (g)= g. Therefore, for each γ ∈ 0, |T γ
| ≤ |Gγ

|. We conclude that

|T/0| =
1
|0|

∑
γ∈0

|T γ
| ≤

1
|0|

∑
γ∈0

|Gγ
| = |G/0|,

and this completes the proof of the lemma. �

Remark 2.4.8. In fact, the conclusion of the lemma holds when we assume only that G acts transitively
on T . To see this, it suffices to check that for all γ ∈ 0, |T γ

| ≤ |Gγ
|. If T γ is empty, there is nothing to

prove. If not, choose t0 ∈ T γ , let G0 be the stabilizer of t0 in G, and set

F(γ )= {g ∈ G | γ (gt0)= gt0} = {g ∈ G | g−1γ (g) ∈ G0}.

Then G0 acts freely on F(γ ) by right multiplication, and the quotient is T γ . Thus |F(γ )| = |G0| · |T γ
|.

On the other hand, Gγ acts freely on F(γ ) by left multiplication, and the quotient maps injectively to G0

by g 7→ g−1γ (g). Thus we find

|G0| · |T γ
| = |F(γ )| ≤ |Gγ

| · |G0|

and so |T γ
| ≤ |Gγ

|. It is also clear that GγG0 ⊂ F(γ ) so in all we have

|Gγ
|

|Gγ

0 |
≤ |T γ

| ≤ |Gγ
|.

Simple examples show that both bounds are sharp. Thanks to Alex Ryba for the proofs in this remark
and the preceding lemma.
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Corollary 2.4.9. Suppose that Kd is a tower of geometrically Galois extensions of K such that [Kd : K ] ≥
d and such that Hypothesis 2.4.3 holds. Let v be a place of K . Then there is a constant Cv depending
only on K and v such that for all d the number of place of Kd over v is at most Cv[Kd : K ]/ log[Kd : K ].

Proof. First assume that v is unramified in Kd . Let Td be the set of geometric points in the fiber over v (i.e.,
in the fiber of the map of curves corresponding to the extension Kd/K ) and let G = Gd be the geometric
Galois group of Kd over K . Let kv be the residue field at v and let 0d = Gal(kd/kv), a subgroup of the
Galois group of the splitting field of Gd . Then Td is a principal homogeneous space for Gd , and 0d

acts on Gd and Td compatibly with the action of Gd on Td . By Lemma 2.4.7, |Td/0d | ≤ |Gd/0d |. But
Td/0d is in bijection with the set of places of Kd over v, and by Lemma 2.4.6 (applied to the extensions
kvKd/kvK ), there is a constant Cv (depending on v because the tower in question depends on v) such that

|Gd/0d | ≤ Cv
[Kd : K ]

log[Kd : K ]
.

This completes the proof of the corollary when v is unramified in Kd . The general case follows from the
same argument using Remark 2.4.8 in place of Lemma 2.4.7. �

2.5. Bounds on Tamagawa numbers (2). We now turn to a second improvement on the Hindry–Pacheco
bound on Tamagawa numbers. We consider towers of fields satisfying the conclusions of Lemma 2.3.5
and Corollary 2.4.9, and we bound Tamagawa numbers using only a mild (local) semistability hypothesis
and no restriction on the characteristic of the ground field.

Recall the line bundle ωA associated to an abelian variety A defined in Section 2.1.

Proposition 2.5.1. Let K be a global function field of characteristic p, let Z be a finite set of places
of K , and let Kd be a tower of geometrically Galois extensions of K . Assume that [Kd : K ] ≥ d and
that for each place v of K there is a constant Cv such that the number of places of Kd dividing v is
≤ Cv[Kd : K ]/ log[Kd : K ] for all d. Suppose that each Kd/K is unramified outside Z. Let A be an
abelian variety over K which has semistable reduction at each place v ∈ Z and such that degωA > 0. Let
Ad = A×K Kd . Then

τ(Ad)= O(H(Ad)
ε)

for every ε > 0.

Proof. To lighten notation, let D = [Kd : K ]. Since A has semistable reduction at the possibly ramified
places Z , we have degωAd = D degωA ≥ D, so it will suffice to show that

τ(Ad)= O(q Dε)

for all ε > 0.
For each place v of K , let cv be the order of the group of connected components of the special fiber of

the Néron model of A at v. Let cv be the order of the group of connected components of the special fiber
of the Néron model of A at a place of Fq K over v. (The order is independent of the choice.) Since the
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former group is a subgroup of the latter, cv divides cv . If w is a place of Kd over v, let cw be the order of
the component group of the Néron model of A over Kd .

Consider a place v 6∈ Z . Since Kd/K is unramified at v, cw divides cv . By assumption, the number of
places w over v is bounded by CvD/ log D. Since there are only finitely many places of K where A has
bad reduction, we may set C1 =max{cCv

v | v of bad reduction} and conclude that∏
w | v 6∈Z

cw ≤
∏
v 6∈Z

cCvD/ log D
v ≤ C D/ log D

1 .

Now consider a place v ∈ Z , let w be a place of Kd over v, and let r be the ramification index of w
over v. Since Kd/K is geometrically Galois, r depends only on v. Since A is assumed to have semistable
reduction, [Halle and Nicaise 2010, Theorem 5.7] implies that

cw ≤ crdim(A).

Moreover, by assumption, the number of places of Kd over v is at most min{D/r,CvD/ log D} for some
constant Cv which is independent of D. If r ≤ (log D)/Cv, we have∏

w | v

cw ≤ (cvrdim(A))CvD/ log D
≤ C D/(log D/ log log D)

2

where C2 depends only on v and A. If r ≥ (log D)/Cv, we have∏
w | v

cw ≤ (cvrdim(A))D/r
≤ C D log r/r

3 ≤ C D/(log D/ log log D)
4

where again C3 and C4 depend only on v and A.
Taking the product over all place w of Kd and setting C5 =max{C2,C4}, we have∏

w

cw =
( ∏
w | v 6∈Z

cw

)( ∏
w | v∈Z

cw

)
≤ (C D/ log D

1 )(C D/(log D/ log log D)
5 )|Z |

and this is clearly O(q Dε) as d (and therefore D) tends to infinity. �

We now give the main application of the results in this section. Assume K = Fq(t) or K = Fq(E)
for an elliptic curve E , and consider a family of abelian varieties Ad over K associated to the Kummer,
Artin–Schreier, division, or PGL2 towers. Recall the line bundle ω = ωA defined in the Section 2.1.

Corollary 2.5.2. As d runs through positive integers prime to p (or all positive integers in the Artin–
Schreier case), we have

τ(Ad)= O(H(Ad)
ε)

for every ε > 0 in any of the following situations:

(1) A is an abelian variety over K = Fq(t), Ad is the family associated to the Kummer tower, deg(ω)> 0,
and A has semistable reduction at t = 0 and t =∞.
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(2) A is an abelian variety over K = Fq(t), Ad is the family associated to the Artin–Schreier tower,
deg(ω) > 0, and A has semistable reduction at t =∞.

(3) A is an abelian variety over K = Fq(E), Ad is the family associated to the division tower, and
deg(ω) > 0.

(4) A is an abelian variety over K = Fq(t), Ad is the family associated to the PGL2 tower, deg(ω) > 0,
and A has semistable reduction at t = 0 and t = 1.

Proof. This is an immediate consequence of Proposition 2.5.1 together with Lemma 2.3.5. �

2.6. Bounds on Tamagawa numbers (3). Our third improvement on the Hindry–Pacheco bound on
Tamagawa numbers is to note that we can get by with a weaker hypotheses in case (1) of Corollary 2.5.2.
Namely, we claim that the conclusion of the corollary holds if there exists an integer e relatively prime
to p such that A has semistable reduction at the places u = 0 and u =∞ of Fq(u) where ue

= t . (The
corollary is the case where e = 1.)

To check the claim, we first recall a result of Halle and Nicaise: Let A be an abelian variety over
Fp((t)). For d prime to p, let cd denote the order of the component group of the special fiber of the Néron
model of A over Fp((t1/d)). Then [Halle and Nicaise 2010, Theorem 6.5] states that if we assume that A
acquires semistable reduction over Fp((t1/e)) for some e prime to p, then the series∑

(p,d)=1

cd T d

is a rational function in T and 1/(T j
− 1) for j ≥ 1. This implies in particular that the cd have at worst

polynomial growth: cd = O(d N ) for some N .
Applying this result in the context of part (1) of the lemma for the places t = 0 and t =∞ of Fq(t),

we see that

τ(Ad)≤ Cd/ log d
1 dC6 = O(H(Ad)

ε)

for all ε > 0.

2.7. Estimating deg(ωJ ). When A = J is the Jacobian of a curve X over a function field, computing
deg(ωJ ) typically involves knowledge of a regular model of X (or a mildly singular model), information
which is sometimes difficult to obtain. The following lemma allows us to reduce to easy cases in two
examples later in the paper.

Lemma 2.7.1. Let K = k(C) be the function field of a curve over a perfect field k. Let X be a smooth,
projective curve of genus g over K . Let J be the Jacobian of X , let π : X → C be a regular minimal
model of X over K , and let J → C be the Néron model of J with zero-section z : C→ J . Let

ωJ :=
∧g
(z∗�1

J /C)

be the Hodge bundle of J .
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Let K ′ be a finite, separable, geometric extension of K , and let ρ : C′ → C be the corresponding
morphism of curves over k. Let R = (2gC′ − 2)− [K ′ : K ](2gC − 2).

Let X ′ = X ×K K ′ with Jacobian J ′, models X ′ and J ′, and Hodge bundle ωJ ′ . Then

[K ′ : K ] deg(ωJ )≤ deg(ωJ ′)+ gR.

The point of the lemma is that we do not lose much information in passing to a finite extension.

Proof of Lemma 2.7.1. Since X is regular and π has a section, we have that

ωJ ∼=
∧g
(π∗�

2
X/k ⊗ (�

1
C/k)

−1)∼=
(∧g

π∗�
2
X/k

)
⊗ (�1

C/k)
⊗
−g

and similarly for ωJ ′ . This argument, which uses results on Néron models and relative duality, is given in
the proof of [Berger et al. 2015, Prop. 7.4].

There is a dominant rational map X ′99KX covering ρ, so pull back of 2-forms induces a nonzero
morphism of sheaves

ρ∗
∧g
(π∗�

2
X/k)→

∧g
(π ′
∗
�2

X ′/k).

By Riemann–Hurwitz, we have

ρ∗(�1
C/K )
∼=�

1
C′/k ⊗OC′(D)

where D is a divisor on C′ of degree R.
Thus we get a nonzero morphism of sheaves

ρ∗(ωJ )→ ωJ ′ ⊗OC′(gD).

Taking degrees, we conclude that

[K ′ : K ] deg(ωJ )≤ deg(ωJ ′)+ gR

as desired. �

3. Integrality of the regulator and general lower bounds

In this section, we give a lower bound on the regulator Reg(A) in terms of Tamagawa numbers. Combined
with the bounds on τ(A) given in the preceding section, this yields a lower bound on the Brauer–Siegel
ratio. A more general version of the same lower bound was proven in [Hindry and Pacheco 2016,
Proposition 7.6], but our proof is arguably simpler and more uniform, and avoids a forward reference in
[Hindry and Pacheco 2016].

3.1. Integrality of regulators. We continue with the standard notations introduced in Section 2. In
particular, A is an abelian variety over the function field K = k(C) with Néron model A and dual abelian
variety Â. We consider the height pairing A(K )× Â(K )→Q (which we recall is the canonical Néron–Tate
height divided by log q and which takes values in Q) and its determinant Reg(A).
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Our main goal in this section is to bound the denominator of the regulator in terms of the orders cv of
the component groups of A at places v of K . Recall that τ(A)=

∏
v cv.

Proposition 3.1.1. The rational number
τ(A)Reg(A)

is an integer.

Proof. We refer to [Hindry and Silverman 2000] for general background on heights. Given an invertible
sheaf L on A and a point x ∈ A(K ), the general theory of heights on abelian varieties defines a rational
number hL(x). The canonical height pairing we are discussing is defined using this machine and the
identification of Â with Pic0(A), the group of invertible sheaves algebraically equivalent to zero. In other
words, given x ∈ A(K ) and y ∈ Â(K ), we take L to be the invertible sheaf associated to y and define

〈x, y〉 = hL(x).

Néron’s theory [1965] decomposes the height hL(x) into a sum of local terms indexed by the places of
K . In [Moret-Bailly 1985, III.1], Moret-Bailly proves that the contribution at a place v has denominator
at most 2cv, and at most cv if cv is odd. Moreover, he gives an example which shows that this is in
general best possible. The upper bound on the denominator comes from a property of “pointed maps of
degree 2,” [Moret-Bailly 1985, I.5.6], namely that a pointed map of degree 2 from a group of exponent n
has exponent at worst 2n, or n if n is odd. (These terms will be defined just below.)

In our situation there is slightly more structure: Since L is algebraically equivalent to zero, it is
antisymmetric, i.e., if [−1] is the inverse map on A, the [−1]∗L∼=L−1. The functoriality in [Moret-Bailly
1985, III.1.1] then shows that the corresponding pointed map of degree 2 is also antisymmetric. In the
next lemma, we define antisymmetric pointed maps of degree 2, and we prove that such a map from a
group of exponent c has exponent dividing c.

Thus we see that 〈x, y〉 is a sum of local terms, and the term at a place v has denominator at worst cv .
It follows from the bilinearity of the local terms 〈, 〉v that if x passes through the identity component at v,
then 〈x, y〉v is an integer. We define a “reduced Mordell–Weil group”

A(K )red
:= {x ∈ A(K ) | x meets the identity component of A at every v},

and note that if x ∈ A(K )red, then 〈x, y〉 is an integer for every y ∈ Â(K ). Since the index of A(K )red in
A(K ) divides τ(A)=

∏
v cv, we see that

Reg(A) ∈ τ−1Z

as desired. The proposition thus follows from the next lemma. �

Lemma 3.1.2. Let A and G be abelian groups and let f : A→ G be a function such that:

(1) f is a “pointed map of degree 2,” namely,

f (x1+ x2+ x3)− f (x1+ x2)− f (x1+ x3)− f (x2+ x3)+ f (x1)+ f (x2)+ f (x3)= 0
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for all x1, x2, x3 ∈ A.

(2) f is “antisymmetric,” i.e., f (−x)=− f (x) for all x ∈ A.

Then for all integers n and all x ∈ A, f (nx)= n f (x). In particular, if A has exponent c, then c f = 0, i.e.,
c f (x)= 0 for all x ∈ A.

Proof. This follows from a simple inductive argument. Clearly it suffices to treat the case n ≥ 0. Taking
x1 = x2 = x3 = 0 in the pointed map property shows that f (0) = 0. Taking x1 = x2 = x and x3 = −x
then shows that f (2x)= 2 f (x). Finally, for n ≥ 2, taking x1 = (n− 1)x , x2 = x3 = x , we have

f ((n+ 1)x)= f ((n− 1)x + x + x)

= f (nx)+ f (nx)+ f (2x)− f ((n− 1)x)− f (x)− f (x)

= (n+ n+ 2− (n− 1)− 1− 1) f (x)

= (n+ 1)x,

where we use induction to pass from the second displayed line to the third. This yields the lemma. �

Without the antisymmetry hypothesis, we would have

f (nx)=
n(n+ 1)

2
f (x)+

n(n− 1)
2

f (−x),

by the same argument leading from the theorem of the cube [Hindry and Silverman 2000, A.7.2.1] to
Mumford’s formula [Hindry and Silverman 2000, A.7.2.5].

3.2. Further comments on integrality. Let X → C be a fibered surface with generic fiber X/K and
assume X has a K -rational point. Let A be the Jacobian JX . In [Berger et al. 2015, Proposition 7.2], we
proved that the rational number

|NS(X )tor |
2

|A(K )tor |
2 τ(A)Reg(A) (3.2.1)

is an integer. (By the factorization of birational maps into blow-ups and the blow-up formula, NS(X )tor

is a birational invariant, so the displayed quantity depends only on X and K .)
Note that this bound on the denominator of Reg(A) is in general stronger than that of Proposition 3.1.1.

For example, for the Jacobians studied in [Ulmer 2014b; Berger et al. 2015], (3.2.1) is stronger than
Proposition 3.1.1.

When X has genus 1, it is known that NS(X )tor is trivial, so (3.2.1) says that

τ(A)
|A(K )tor |

2 Reg(A) ∈ Z (3.2.2)

This bound (unlike (3.2.1)) makes sense for general abelian varieties, and it is reasonable to ask whether
it holds in general. In the rest of this subsection, we sketch a proof that (3.2.2) does not hold in general,
not even for Jacobians over Fq(t).
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Let Y be a classical Enriques surface over Fp. It is known that

NS(Y)tor ∼= Z/2Z, NS(Y)/tor ∼= Z10, and det(NS(Y))= 1;

see [Cossec and Dolgachev 1989].
Next, embed Y in some projective space and take a Lefschetz pencil, extending Fp to Fq if necessary.

Let X be the result of blowing up Y at the base points of the pencil. Thus we have π : X → P1 over Fq

whose fibers are irreducible and either smooth or with single a node. Moreover π has a section. Choose
such a section O and a fiber F . We have intersection pairings O2

=−1, F2
= 0, and F.O = 1. Also, the

Néron–Severi groups satisfy
NS(X )= NS(Y)⊕〈−1〉d

where the direct sum is orthogonal, 〈−1〉 stands for a copy of Z whose generator has self-intersection −1,
and d is the number of blow-ups. Thus det(NS(X ))= 1.

Let X/K = Fq(t) be the generic fiber of π . This is a smooth curve with a K -rational point. Let A= JX

be its Jacobian. We will see shortly that A is a counterexample to (3.2.2).
Since Pic0(X ) = Pic0(Y) = 0, we have TrK/Fq (A) = 0. The Shioda–Tate theorem gives an exact

sequence
0→ (ZO +ZF)→ NS(X )→ A(K )→ 0.

Moreover, the fact that π has irreducible fibers implies that there is a splitting A(K )→ NS(X ) which
sends the canonical height (divided by log q) to the intersection pairing on NS(X ). It follows from the
intersection formulas for O and F noted above that

Reg(A) := det(A(K )/tor)= det(N S(X )/tor)= 1.

Since π has irreducible fibers, τ(A)= 1. The Shioda–Tate exact sequence above shows that A(K )tor

has order at least 2 (in fact, exactly 2), so

τ(A)
|A(K )tor |

2 Reg(A)=
1
4
.

Thus (3.2.2). fails for A.

3.3. Lower bounds on Brauer–Siegel ratio from integrality. We now state the main consequence for
the Brauer–Siegel ratio of our Proposition 3.1.1.

Proposition 3.3.1. Let Ad be a family of abelian varieties over K with H(Ad) → ∞. Assume that
τ(Ad)= O(H(Ad)

ε) for all ε > 0. Then lim inf BS(Ad)≥ 0.

Proof. Noting that |X(Ad)| is a positive integer and is therefore ≥ 1, we have that

log(|X(Ad)|Reg(Ad))≥ log(Reg(Ad)).

Proposition 3.1.1 implies that
log(Reg(Ad))≥− log(τ (Ad)).
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It follows from the hypothesis τ(Ad)= O(H(Ad)
ε) that

BS(Ad)=
log(|X(Ad)|Reg(Ad))

log(H(Ad))
≥
− log(τ (Ad))

log(H(Ad))

has lim inf≥ 0 as d→∞. �

Corollary 3.3.2. If Ad is a family of abelian varieties over K such that H(Ad)→∞, then in any of the
following situations lim inf BS(Ad)≥ 0:

(1) dim(Ad)= 1 for all d.

(2) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the Kummer tower, and
A has semistable reduction at t = 0 and t =∞.

(3) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the Artin–Schreier
tower, and A has semistable reduction at t =∞.

(4) A is an abelian variety over K = Fq(E), and Ad is the family associated to A and the division tower.

(5) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the PGL2 tower, and A
has semistable reduction at t = 0 and t = 1.

Proof. This is immediate from Lemma 2.2.1, Corollary 2.5.2, and Proposition 3.3.1. �

4. Lower bounds via the dimension of the Tate–Shafarevich functor

In this section, we assume that the conjecture of Birch and Swinnerton-Dyer (more precisely, the finiteness
of X(A)) holds for all abelian varieties considered. Given an abelian variety A over K = Fq(C), we will
consider the functor from finite extensions of Fq to groups given by

Fqn 7→X(A×Fq (C) Fqn (C))

and we will show that the dimension of this functor (to be defined below) gives information on the
Brauer–Siegel ratio of A over K . This technical device will be extremely convenient as it allows us to
bound the Brauer–Siegel ratio without considering the regulator.

Proposition/Definition 4.1. For each positive integer n, let Kn := Fqn (C). Given an abelian variety A
over K = K1, write A/Kn for A×K Kn . Then the limit

lim
n→∞

log|X(A/Kn)[p∞]|
log(qn)

exists and is an integer. We call it the dimension of X(A), and denote it dimX(A).

The proof of the proposition will be given later in this section, after giving a formula for dimX(A) in
terms of the L-function of A. We give a justification of the terminology “dimension” in Remarks 4.3
below.
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In order to state a formula for dimX(A), we recall some well-known results on the L-function L(A, s).
Let A0 = TrK/k(A) be the K/k-trace of A, an abelian variety over k (where as usual k = Fq). (See
[Conrad 2006] for a modern account of the K/k-trace.) Then L(A, s) has the form

L(A, s)=
P(q−s)

Q(q−s)Q(q1−s)

where P and Q are polynomials with the following properties:

(1) P(T )=
∏

i (1−αi T ) where the αi are Weil numbers of size q .

(2) Q has degree 2 dim(A0) and Q(T )=
∏

j (1−β j T ) where the β j are the Weil numbers of size q1/2

associated to A0. (In other words, they are the eigenvalues of Frobenius on H 1(A0× Fq ,Q`) for
any ` 6= p.)

(3) Q(1)= |A0(Fq)| and Q(q−1)= q−d0 |A0(Fq)|.

(4) Replacing A with A/Kn has the effect of replacing the αi and β j with αn
i and βn

j .

Let F be the number field generated by the αi , and choose a prime of F over p with associated
valuation v normalized so that v(q)= 1. We define the slopes associated to A to be the rational numbers
λi = v(αi ). It is known that the set of slopes (with multiplicities) is independent of the choice of v, that
0≤ λi ≤ 2 for all i , and that the set of slopes is invariant under λi 7→ 2− λi .

We can now state a formula for the dimension of X(A).

Proposition 4.2. dimX(A)= deg(ω)+ dim(A)(gC − 1)+ dim(A0)−
∑
λi<1

(1− λi ).

The last sum is over indices i such that λi < 1.

Before giving the proof of Propositions 4.1 and 4.2, we record an elementary lemma on p-adic numbers.

Lemma 4.2.1. Let E be a finite extension of Qp, let m be the maximal ideal of E , and let ord : E×→ Z

be the valuation of E. If γ ∈ E× has ord(γ )= 0 and is not a root of unity, then

ord(1− γ n)= O(log n).

Proof. First we note that replacing γ with γ a , we may assume without loss of generality that γ is a 1-unit,
i.e., that ord(1− γ ) > 0. Next, if n = pem with p -m, then

1− γ n

1− γ pe = 1+ γ pe
+ · · ·+ γ pe(m−1)

≡ m 6≡ 0 (mod m),

so ord(1− γ n)= ord(1− γ pe
). Thus it suffices to treat the case where n = pe.

We write expp and logp for the p-adic exponential and logarithm respectively. (See, e.g., [Koblitz 1984,
IV.1] for basic facts on these functions.) For y sufficiently close to 1 (namely for |y− 1|< |p1/(p−1)

|),
we have y = expp(logp(y)). Also, it follows from the power series definition of expp, the ultrametric
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property of E , and the estimate vp(n!) ≤ n/(p− 1) that if x 6= 0 and ord(x) is sufficiently large (e.g.,
ord(x) > 2/(p− 1) suffices), then

ord(1− expp(x))= ord(x).

Now if e is sufficiently large, then γ pe
is close to 1, and x = logp(γ

pe
)= pe logp(γ ) has large valuation

and is not zero, so we may apply the estimate above to deduce that

ord(1− γ pe
)= ord(1− expp(logp(γ

pe
)))= ord(logp(γ

pe
))= ord(pe)+ ord(logp(γ )).

This last quantity is a linear function of e and thus a linear function of log(pe), and this proves our
claim. �

Proof of Propositions 4.1 and 4.2. We use the leading coefficient part of the BSD conjecture and consider
the p-adic valuations of the elements of the formula. For simplicity, we first consider the case where
A0 := TrK/k(A)= 0 and then discuss the modifications needed to handle the general case at the end.

As a first step, we establish that several factors in the BSD formula do not contribute to the limit in
Proposition/Definition 4.1. More precisely, as n varies, Reg(A/Kn), τ(A/Kn), and |A(Kn)tor |·| Â(Kn)tor |

are bounded. To see that Reg(A/Kn) is bounded, we note that it is sensitive to the ground field Fqn only
via the Mordell–Weil group A(Kn)/tor . In other words, if A(Kn)/tor = A(Km)/tor , then Reg(A/Kn)=

Reg(A/Km). This follows from the geometric nature of the definition of Reg (i.e, its definition in terms
of intersection numbers). From the Lang–Néron theorem on the finite generation of A(K Fq), it follows
that there are only finitely many possibilities for A(Kn)/tor , so only finitely many possibilities for
Reg(A/Kn). It also follows that |A(Kn)tor | and | Â(Kn)tor | are bounded. (Our use of the Lang–Néron
theorem here depends on the assumption that A0 = 0.) Similarly, since the orders of the component
groups of the fibers of the Néron model of A over Fq(C) are bounded, there are only finitely possibilities
for τ(A/Kn). Finally, we note that the geometric quantities deg(ω), dim(A), and gC do not vary with n.

Write L∗(A/Kn)p for the p-part of the rational number L∗(A/Kn). Then the BSD formula and the
remarks above imply that

lim
n→∞

log|X(A/Kn)[p∞]|
log(qn)

= lim
n→∞

log(L∗(A/Kn)pqn(deg(ω)+dim(A)(gC−1)))

log(qn)

= lim
n→∞

log(L∗(A/Kn)p)

log(qn)
+ deg(ω)+ dim(A)(gC − 1).

Thus to complete the proof of the existence of the limit in Proposition/Definition 4.1 and the formula
of Proposition 4.2 in the case A0 = 0, we need only check that

lim
n→∞

log(L∗(A/Kn)p)

log qn =

∑
λi<1

(λi − 1).
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Again under the assumption that A0 = 0, we have

L∗(A/Kn)=
∏′

i

(1− (αi/q)n)

where
∏
′

i is the product over indices i such that (αi/q)n 6= 1. We view the right hand side as an element
of the number field F introduced above to define the slopes, and we let E (as in Lemma 4.2.1) be the
completion of F at the chosen prime of F over p. If λ= v(αi ) < 1, then

v(1− (αi/q)n)= v((αi/q)n)= n(λi − 1),

whereas is λi > 1, then

v(1− (αi/q)n)= v(1)= 0.

In the intermediate case where λi = 1, there are two cases: if αi/q is not a root of unity, then Lemma 4.2.1
implies that

v(1− (αi/q)n)= O(log n).

If αi/q is a root of unity, then there are only finitely many possibilities for v(1−(αi/q)n) with (αi/q)n 6= 1,
and if (αi/q)n = 1, then it does not contribute to L∗(A/Kn). Taking the product over i , we find that

lim
n→∞

log(L∗(A/Kn)p)

log qn =

∑
λi<1

(λi − 1).

This establishes the formula in Proposition 4.2.
Since the break points of a Newton polygon have integer coordinates,

∑
λi<1(λi − 1) is an integer. In

the case A0 = 0, we have thus established that the limit in Proposition/Definition 4.1 exists and is an
integer, and we have established the formula in Proposition 4.2 for the limit, i.e., for dimX(A).

In case A0 = TrK/k(A) is nonzero, the L-function is more complicated, the torsion is not uniformly
bounded, and we have to be slightly more careful with the regulator. Here are the details: The Lang–Néron
theorem says that A(K Fq)/A0(Fq) is finitely generated. This implies that there are only finitely many
possibilities for A(Kn)/A0(Fqn ) and for the regulator (since A(Kn)/tor is a quotient of A(Kn)/A0(Fqn )).
Moreover,

|A(Kn)tor | = |(A(Kn)/A0(Fqn ))tor | · |A0(Fqn )tor |

and similarly for Â. On the other hand, writing

L(A, s)=
P(q−s)

Q(q−s)Q(q1−s)
=

∏
i (1−αi q−s)∏

j (1−β j q−s)(1−β j q1−s)
,

we have that

L∗(A/Kn)=

∏
(αi/q)n 6=1(1− (αi/q)n)∏

j (1− (β j/q)n)(1−βn
j )
.
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The denominator is

q−n dim(A0)|A0(Fqn )|2 = q−n dim(A0)|A0(Fqn )| · | Â0(Fqn )|

so the ratio

|A(Kn)tor | · | Â(Kn)tor |∏
j (1− (β j/q)n)(1−βn

j )
= qn dim(A0)|(A(Kn)/A0(Fqn ))tor | · |( Â(Kn)/ Â0(Fqn ))tor |

is qn dim(A0) times a quantity which is bounded as n varies. It then follows that

lim
n→∞

log(|A(Kn)tor | · | Â(Kn)tor | · L∗(A/Kn)p)

log qn = dim(A0)+
∑
λi<1

(λi − 1).

Therefore,

lim
n→∞

log|X(A/Kn)|

log(qn)
= lim

n→∞

log(|A(Kn)tor | · | Â(Kn)tor | · L∗(A/Kn)qn(deg(ω)+dim(A)(gC−1)))

log(qn)

= dim(A0)+
∑
λi<1

(λi − 1)+ deg(ω)+ dim(A)(gC − 1).

This completes the proof of Propositions 4.1 and 4.2. �

Remarks 4.3. (1) In our applications, we will compute dimX(A) directly from its definition using
crystalline methods. Proposition 4.2 suggests that these methods will succeed exactly in those
situations where one can compute the slopes λi , i.e., exactly in the cases where the methods of
Hindry–Pacheco and Griffon succeed.

(2) We explain why the terminology “dimension of X(A)” is reasonable. Assume that A is a Jacobian. If
Sel(A, pm) denotes the Selmer group for multiplication by pm on A, then it is known that the functor
Fqn 7→ Sel(A×K K Fqn , pm) from finite extensions of Fq to groups is represented by a group scheme
which is an extension of an étale group scheme by a unipotent connected quasialgebraic group
U [pm

], and the dimension of U [pm
] is constant for large m [Artin 1974]. (One may even replace

“finite extensions of Fq” with “affine perfect Fq -schemes,” but unfortunately, not with “general affine
schemes.”) Since the order of A(K Fqn )/pm A(K Fqn ) is bounded for varying n, we may detect the
dimension of U [pm

] by computing the order of X(A× K Fqn )[pm
] asymptotically as n→∞. Thus

dimX(A) as we have defined it in this paper is equal to the dimension of the unipotent quasialgebraic
group U [pm

]. (Note however that Fqn 7→X(A×k K Fqn )[p∞] is not in general represented by a
group scheme.)

(3) The formula in Proposition 4.2 for dimX(A) is proven using the BSD formula. Conversely, in
case A is a Jacobian, Milne [1975, §7] computes the dimension of the group scheme mentioned
in the previous remark, and this calculation is a key input into his proof of the leading coefficient
formula of the BSD and Artin–Tate conjectures. Our approach is thus somewhat ahistorical, but it is
elementary (modulo the BSD conjecture) and completely general.
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(4) In the case where A is a Jacobian, the formula of Proposition 4.2 is equivalent to the formula of
Milne for the unipotent group scheme mentioned above, i.e., to the last displayed equation in [Milne
1975, §7].

(5) The proof of Proposition 4.2 suggests that dimX(A) can be viewed as an analog of the Iwasawa
µ-invariant.

(6) If Kn=Fqn (C), A is an abelian variety over K1 with deg(ωA)>0, and we define the “p-Brauer–Siegel
ratio of A” by

BSp(A) :=
log(R|X(A)|)p

log H(A)

where (x)p denotes the p-part of the rational number x , then we have

lim
n→∞

BSp(A/Kn)=
dimX(A)
deg(ωA)

.

This gives an interpretation of dimX in terms of a modified Brauer–Siegel ratio.

In situations where we can control τ(A), the following proposition gives a tool to bound the Brauer–
Siegel ratio of A from below.

Proposition 4.4. We have
log(|X(A)|Reg(A)τ (A))

log(q)
≥ dimX(A).

Proof. We keep the notation of the proof of Proposition 4.2. In particular, A0 denotes the K/k trace of A.
Using the BSD formula and estimating the denominator of L∗(A), we have

|X(A)|Reg(A)τ (A)≥
|X(A)|Reg(A)τ (A)

|(A(Kn)/A0(Fqn ))tor | · |( Â(Kn)/ Â0(Fqn ))tor |

= |A0(Fqn )| · | Â0(Fqn )|L∗(A)qdeg(ω)+dim(A)(gC−1)

≥ qdeg(ω)+dim(A)(gC−1)+dim(A0)−
∑
(1−λi )

= qdimX(A)

and this yields the proposition. �

Remark 4.5. The bound of the proposition is more subtle than it may seem at first: dimX(A) is defined
in terms of the asymptotic growth of X(A) as the ground field grows (i.e., replacing Fq with Fqn ), whereas
the left-hand side of the inequality concerns invariants over the given ground field Fq . In fact, a lower
bound on the dimension of X(A) is not sufficient to give nontrivial lower bounds on X(A) itself. (This
is related to the nonrepresentability of X mentioned above.) For example, if E denotes the Legendre
curve studied in [Ulmer 2014b] over K = Fp2 f (t1/(p f

+1)), then [Ulmer 2014b, Corollary 10.2] shows
that dimX(E)= (p f

− 1)/2, whereas [Ulmer 2014c, Theorem 1.1] shows that when f ≤ 2, X(E) is
trivial. This example also shows that the second inequality displayed above is sharp.

Next, we state the result which is our main motivation for considering dimX(A).
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Proposition 4.6. Let Ad be a family of abelian varieties over K with H(Ad) → ∞. Assume that
τ(Ad)= O(H(Ad)

ε) for all ε > 0. Then

lim inf
d→∞

BS(Ad)≥ lim inf
d→∞

dimX(Ad)

deg(ωAd )
.

Proof. The hypothesis τ(Ad)= O(H(Ad)
ε) for all ε > 0 implies that

lim
d→∞

log(τ (Ad))/ log(H(Ad))= 0,

so the proposition follows immediately from the estimate of Proposition 4.4. �

Corollary 4.7. If Ad is a family of abelian varieties over K such that H(Ad)→∞, then

lim inf
d→∞

BS(Ad)≥ lim inf
d→∞

dimX(Ad)

deg(ωAd )

in any of the following situations:

(1) dim(Ad)= 1 for all n

(2) A is an abelian variety over K = Fq(t), Ad is the family associated to the Kummer tower, and A has
semistable reduction at t = 0 and t =∞.

(3) A is an abelian variety over K = Fq(t), Ad is the family associated to the Artin–Schreier tower, and
A has semistable reduction at t =∞.

(4) A is an abelian variety over K = Fq(E), and Ad is the family associated to the division tower.

(5) A is an abelian variety over K = Fq(t), Ad is the family associated to the PGL2 tower, and A has
semistable reduction at t = 0 and t = 1.

Proof. This is immediate from Lemma 2.2.1, Corollary 2.5.2, and Proposition 4.6. �

5. Brauer–Siegel ratio and Frobenius

As a first application of our results on the dimension of X, we compute the Brauer–Siegel ratio for
sequences of abelian varieties associated to the Frobenius isogeny.

More precisely, let E be an elliptic curve over the function field K = Fq(C), and for n ≥ 1, let En be
the Frobenius base change:

En := E (p
n)
= E ×K K

where the right hand morphism K → K is the pn-power Frobenius.
Our goal is the following result.

Theorem 5.1. Assume that E is nonisotrivial. Then

lim
n→∞

BS(En)= 1.
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Proof. First we note that since E is nonisotrivial, H(En)→∞ as n→∞. Indeed, the j-invariant of E
has a pole, say of order e, at some place of K , so the j invariant of En has a pole of order epn at the
same place. This implies that the degrees of the divisors of one or both of c4(En) and c6(En) also tend to
infinity, and this is possible only if deg(ωEn ) also tends to infinity. Since H(En) = qdeg(ωEn ), we have
that H(En)→∞.

Next we note that Proposition 4.2 shows that dimX(En)− deg(ωEn ) depends only on the L-function
of En , indeed only on the slopes of the L-function. Since E and En are isogenous, they have the same
L-function, so we have

dimX(En)− degωEn = dimX(E)− degωE

for all n.
Dividing the last displayed equation by degωEn and taking the limit as n→∞, we get

dimX(En)

degωEn

→ 1

since deg(ωEn )→∞.
Applying part (1) of Corollary 4.7, we see that lim infn→∞ BS(En)≥ 1. On the other hand, by [Hindry

and Pacheco 2016, Corollary 1.13], lim supn→∞ BS(En) ≤ 1, so we find that limn→∞ BS(En) = 1, as
desired. �

Remark 5.2. The same argument works for an abelian variety A as long as deg(ωA(pn ))→∞ with n and
τ(A(p

n))= o(H(A(p
n)).

Remark 5.3. The theorem says that the product |X(En)|Reg(En) grows with n. Our earlier results on
p-descent [Ulmer 1991] can be used to show directly that X(En) grows with n. Full details require an
unilluminating consideration of many cases, so we limit ourselves to a sketch in the simplest situation.
First, let V : E (p)→ E be the Verschiebung isogeny, and note that the Selmer group Sel(E (p), p) contains
Sel(E, V ). Also, let L be the (Galois) extension of K obtained by adjoining the (p−1)-st root of a Hasse
invariant of E , and let G =Gal(L/K ). In [Ulmer 1991, Theorem 3.2 and Lemma 1.4], we computed that

Sel(E, V )∼= Hom(Jm/< cusps>,Z/pZ)G

where Jm is the generalized Jacobian of the curve whose function field is L for a “modulus” m related to
the places of bad and/or supersingular reduction of E . Rosenlicht showed that Jm is an extension of J
by a linear group (see [Serre 1988]), and the unipotent part of this group contributes to the “dimension”
of Sel(E, V ) and therefore to dimX(E (p)). The contribution is roughly the number of zeroes (with
multiplicity) of the Hasse invariant, namely (p−1) deg(ωE) which is approximately deg(ωE (p))−deg(ω).
Thus we find

dimX(E (p))≥ deg(ωE (p))− deg(ω),

in agreement with what we deduced from Proposition 4.2.
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6. Bounding X for a class of Jacobians

In this section, we review a general method for computing the p-part of the Tate–Shafarevich group of
certain Jacobians, generalizing our previous work [Ulmer 2014c] on the Legendre elliptic curve. Although
these methods suffice to compute the p-part of X on the nose, for simplicity we focus just on dimX as
this is what is needed to bound the Brauer–Siegel ratio from below.

6.1. Jacobians related to products of curves. Let k be the finite field Fq of characteristic p with q
elements. Let C and D be curves over k, and let S= C×kD. Suppose that1 is a group of k-automorphisms
of S with order prime to p and such that

1⊂ Autk(C)×Autk(D)⊂ Autk(S).

Suppose that the quotient S/1 is birational to a smooth, projective surface X over k and that X is
equipped with a surjective and generically smooth morphism π : X → C where C is a smooth projective
curve over k. Let K = k(C) and let X be the generic fiber of π , a smooth projective curve over K . We
assume that X has a K -rational point. (A vast supply of such data is given in [Berger 2008; Ulmer 2013].)

Let J be the Jacobian of X . We write Br(X ) for the cohomological Brauer group of X : Br(X ) =
H 2(X ,Gm).

Proposition 6.2. (1) X(JX ) and Br(X ) are finite groups.

(2) There is a canonical isomorphism X(JX )∼= Br(X ).

(3) There is a canonical isomorphism

Br(X )[p∞] ∼= (Br(S)[p∞])1.

Proof. In substance, parts (2) and (3) are due to Grothendieck [1968] and part (1) is due to Tate [1966].
The details to deduce the statements here are given in [Ulmer 2014c, §4]. �

6.3. Brauer group of a product of curves. We keep the notation of the preceding subsection. In addition,
let W =W (k) be the ring of Witt vectors over k with Frobenius endomorphism σ . We write H 1(C) for
the crystalline cohomology H 1

crys(C/W ) and similarly for H 1(D). These are modules over the Dieudonné
ring A =W {F, V }, which is the noncommutative polynomial ring generated over W by symbols F and
V with relations FV = V F = p, Fα = σ(α)F , and αV = Vσ(α) for all α ∈W .

The following crystalline calculation of the p part of the Brauer group of S is originally due to
Dummigan (with additional hypotheses) using results of Milne, and is proven in general in [Ulmer 2014c,
§10].

Proposition 6.4. There is a canonical isomorphism

Br(S)[pn
] ∼=

HomA(H 1(C)/pn, H 1(D)/pn)

HomA(H 1(C), H 1(D))/pn

which is compatible with the actions of 1 on both sides.
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Here HomA denotes W -linear homomorphisms which commute with F and V .
Propositions 6.2 and 6.4 give us a powerful tool for bounding dimX(J ) from below. Recall that this

means bounding the growth of the order of X(J ) as we extend the ground field from Fq to Fqν . The
denominator on the right hand side of the displayed equation in Proposition 6.4 is known to be bounded
as ν varies (a fact we will see explicitly in Section 8 for the examples we consider), so we have:

Corollary 6.5. For all sufficiently large n,

dimX(J )= dim HomA(H 1(C)/pn, H 1(D)/pn)1.

Here the dim on the right-hand side is defined analogously to that on the left:

dim HomA(H 1(C)/pn, H 1(D)/pn)1 := lim
ν→∞

log|HomA(H 1(C×k Fqν )/pn, H 1(D×k Fqν )/pn)1|

log(qν)
.

Computing the cardinality of the numerator on the right amounts to an interesting exercise in p-linear
algebra, at least for certain curves C and D. We carry out these exercises in Section 8.

7. Cohomology of Fermat curves

We review some well-known result on the cohomology of Fermat curves.
As usual, let k = Fq be the finite field of cardinality q and characteristic p. We write k for the algebraic

closure of k. For a positive integer d relatively prime to p, let Fd be the smooth projective curve over k
given by

xd
0 + xd

1 + xd
2 = 0.

We write µd for the group of d-th roots of unity in k. There is an evident action of µ3
d on Fd ×k k

under which (ζi ) ∈ µ
3
d acts via xi 7→ ζi xi , and the diagonal (ζ0 = ζ1 = ζ2) acts trivially, so we have

G := µ3
d/µd ⊂ Aut k(Fd).

Let

A =
{
(a0, a1, a2)

∣∣∣ ∑ ai = 0
}
⊂ (Z/dZ)3.

Abusively writing ζ both for a root of unity in k and for its Teichmüller lift to the Witt vectors W (k), we
may identify A with the character group Hom(G,W (k)×). Let

A′ = {(ai ) ∈ A | ai 6= 0, i = 0, 1, 2}.

Given (a0, a1, a2) ∈ A, let 〈ai/d〉 be the fractional part of ãi/d , where ãi is any representative in Z of the
class ai . Define subsets A0 and A1 as follows:

A0 =

{
(ai ) ∈ A′

∣∣∣ 〈a0

d

〉
+

〈
a1

d

〉
+

〈
a2

d

〉
= 2

}
and

A1 =

{
(ai ) ∈ A′

∣∣∣ 〈a0

d

〉
+

〈
a1

d

〉
+

〈
a2

d

〉
= 1

}



On the Brauer–Siegel ratio for abelian varieties over function fields 1097

It is a simple exercise to see that A′ is the disjoint union of A0 and A1. Let 〈p〉 be the subgroup of Q×

generated by p. Then 〈p〉 acts on A′ coordinatewise: p(a0, a1, a2)= (pa0, pa1, pa2).
Let H = H 1

crys(Fd/W (k)) be the crystalline cohomology of Fd equipped with its action of the p-power
Frobenius F and Verschiebung V . Then H := H ⊗W (k) W (k) inherits an action of G.

The following summarizes the main results on H . The argument in [Dummigan 1995, §6], stated in
the special case where d = q + 1, works for general d prime to p.

Proposition 7.1. There is W -basis {ea} of H indexed by a ∈ A′ with the following properties:

(1) F(ea)= caepa where ca ∈W (k) and

ordp(ca)=

{
0 if a ∈ A0,

1 if a ∈ A1.

(2) For (ζi ) ∈ G and a ∈ A′,

(ζi )ea = a(ζi )ea = ζ
a0
0 ζ

a1
1 ζ

a2
2 ea

(an equality in H ).

7.2. A remark on twists. It is sometimes convenient to work with a different model of the Fermat curve,
namely

F ′d : y
d
0 + yd

1 = yd
2 .

This is a twist of Fd in the sense that they Fd and F ′d become isomorphic over k via

(x0, x1, x2) 7→ (y0, y1, εy2)

where ε is a d-th root of −1. It follows that Proposition 7.1 holds for F ′d as well, with possibly different
constants ca which nevertheless continue to satisfy the valuation formula in part (1).

7.3. A remark on quotients. If C is the quotient of Fd by a subgroup of G ′ ⊂ G, then the crystalline
cohomology of C can be identified with the W -submodule of H generated by the ea whose indices a are
trivial on G ′.

For example, the hyperelliptic curve

C2,d : y2
= xd
+ 1

is the quotient of F ′2d by a subgroup of G isomorphic to µd ×µ2. (If d is even, it is also a quotient of F ′d ,
but it is more convenient to have a uniform statement.)

More generally, the superelliptic curve

Cr,d : yr
= xd
+ 1

is the quotient of F ′rd by a subgroup of G isomorphic to µd ×µr .
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The crystalline cohomology H 1
crys(Cr,d/W (k)) can then be identified with the W -submodule of

H 1
crys(F

′

rd/W (k)) generated by the ea where a has the form

a = (a0, a1, a2)= (ir,−ir − jd, jd) 0< i < d, 0< j < r, ir + jd 6≡ 0 (mod rd).

The set I of such indices has cardinality (r − 1)(d − 1)− gcd(r, d)+ 1, and it is the disjoint union
I = I0 ∪ I1 where

I0 = I ∩ A0 ∼= {(i, j) | 0< i < d, 0< j < r, ir + jd > rd}

and

I1 = I ∩ A1 ∼= {(i, j) | 0< i < d, 0< j < r, ir + jd < rd}.

In the case where r = 2 we may further simplify this to

I0 ∼=
{
i | d

2 < i < d
}

and I1 ∼=
{
i | 0< i < d

2

}
.

These sets, with their action of 〈p〉, will play a key role in the p-adic exercises that compute dimX

for the Jacobians introduced in Section 6.

8. p-adic exercises

In this section, we carry out the exercises in semilinear algebra needed to compute the dimension of X
for several families of abelian varieties.

Let p be a prime and let Fq be the field of cardinality q and characteristic p. Let W =W (Fq) be the
Witt vectors over Fq , and let Wn =W/pn . Write σ for the p-power Witt-vector Frobenius. For a positive
integer ν, we write Fqν for the field of qν elements, Wν =W (Fqν ) for the corresponding Witt ring, and
Wn,ν for Wν/pn .

Let A =W {F, V } be the Dieudonné ring of noncommutative polynomials in F and V with relations
FV = V F = p, Fα = σ(α)F , and αV = Vσ(α) for α ∈ W . Also, let Aν be the ring Wν{F, V } with
analogous relations.

Let 〈p〉 be the cyclic subgroup of Q× generated by p.

8.1. Data. Fix a finite set I equipped with an action of 〈p〉, which we write multiplicatively: i 7→ pi .
(In the applications below, I will typically be a subset of Z/dZ for some d not divisible by p.) Let M be
the free W -module with basis indexed by I :

M :=
⊕
i∈I

W ei .

Write I as a disjoint union I = I0 ∪ I1 and choose elements ci ∈W such that

ord(ci )=

{
0 if i ∈ I0,
1 if i ∈ I1.
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Define a σ -semilinear map F : M→ M by setting

F(ei )= ci epi

and a σ−1-semilinear map V : M→ M by setting

V (ei )=
p

σ−1(ci/p)
ei/p.

These definitions give M the structure of an A-module, and there is an induced A-module structure on
Mn := M⊗W Wn . Parallel definitions make Mν := M⊗W Wν and Mn,ν := M⊗W Wn,ν into Aν-modules.

Fix another finite set J equipped with an action of 〈p〉, write J as a disjoint union J = J0 ∪ J1, and
choose elements d j ∈W with

ord(d j )=

{
0 if j ∈ J0,
1 if j ∈ J1.

Define

N :=
⊕
j∈J

W f j ,

with semilinear maps F : N → N and V : N → N defined by

F( f j )= d j f pj

and

V ( f j )=
p

σ−1(d j/p)
f j/p.

Then N and Nn := N ⊗W Wn are A-modules, and parallel definitions make Nν := N ⊗W Wν and
Nn,ν := N ⊗W Wn,ν into Aν-modules.

Let 〈p〉 act on I × J diagonally, and let O be the set of orbits of this action. For an orbit o ∈ O , define

d(o) :=min(|((I0× J1)∩ o)|, |((I1× J0)∩ o)|).

Consider HomWν
(Nν,Mν), a free Wν-module with basis ϕi j defined by

ϕi j ( f j ′)=

{
ei if j ′ = j ,
0 if j ′ 6= j .

These elements induce elements of

HomWν
(Nn,ν,Mn,ν)= HomWν

(Nν,Mν)/pn

which form a basis over Wn,ν and which we abusively also denote ϕi j .
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8.2. Statement. Our main objects of study in this section are the subgroups

Hν := HomAν (Nν,Mν)⊂ HomWν
(Nν,Mν)

and

Hn,ν := HomAν (Nn,ν,Mn,ν)⊂ HomWν
(Nn,ν,Mn,ν)

consisting of Aν-module homomorphisms, i.e., homomorphisms ϕ such that F◦ϕ=ϕ◦F and V ◦ϕ=ϕ◦V .
To state the results, we first decompose the groups of interest into components indexed by the set of

orbits O . For o ∈ O , let

HomWν
(Nν,Mν)

o
:=

{
ϕ =

∑
i, j

αi, jϕi, j | αi, j = 0 for all (i, j) 6∈ o
}

and

HomWν
(Nn,ν,Mn,ν)

o
:=

{
ϕ =

∑
i, j

αi, jϕi, j | αi, j = 0 for all (i, j) 6∈ o
}
.

We define

H o
ν := Hν ∩HomWν

(Nν,Mν)
o and H o

n,ν := Hn,ν ∩HomWν
(Nn,ν,Mn,ν)

o.

Here is the main result of this section:

Theorem 8.3. (1) Hν =⊕o∈O H o
ν and Hn,ν =⊕o∈O H o

n,ν .

(2) |H o
ν /pn
| is at most pn|o| and in particular is bounded independently of ν.

(3) For all sufficiently large n,

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o).

Proof. Let

ϕ =
∑

(i, j)∈I×J

αi, jϕi, j

be a typical element of HomWν
(Nν,Mν) (with αi, j ∈Wν) or HomWν

(Nn,ν,Mn,ν) (with αi, j ∈Wn,ν). Then
a straightforward calculation shows that F ◦ϕ = ϕ ◦ F if and only if

ciσ(αi, j )= d jαp(i, j) for all (i, j) ∈ I × J, (8.3.1)

and V ◦ϕ = ϕ ◦ V if and only if(
p

d j

)
σ(αi, j )=

(
p
ci

)
αp(i, j) for all (i, j) ∈ I × J. (8.3.2)

Defining

ϕo
=

∑
(i, j)∈o

αi, jϕi, j ,
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it is clear that ϕo
∈ H o

ν or H o
n,ν and that ϕ =

∑
o∈O ϕ

o. This shows that Hν =
∑

o∈O H o
ν and Hn,ν =∑

o∈O H o
n,ν , and it is immediate that the sums are direct. This proves part (1) of the theorem.

For part (2), take a typical element ϕo
=
∑

(i, j)∈o αi, jϕi, j of H o
ν . Since Wν is torsion-free, the conditions

(8.3.1) and (8.3.2) are equivalent, so we focus on (8.3.1). Fix a base point (i0, j0) ∈ o and note that αi0, j0

determines the other coefficients αi, j with (i, j) ∈ o by repeatedly using (8.3.1). Indeed, we have

ci0σ(αi0, j0)= d j0αp(i0, j0)

cpi0σ(ci0)σ
2(αi0, j0)= dpj0σ(d j0)αp2(i0, j0)

...

cp|o|−1i0σ(cp|o|−2i0) · · · σ
|o|−1(ci0)σ

|o|(αi0, j0)= dp|o|−1 j0σ(dp|o|−2 j0) · · · σ
|o|−1(d j0)αi0, j0

Here |o| is the cardinality of o and in the last line we use that p|o|(i0, j0) = (i0, j0). Moreover, αi0, j0

determines a solution to (8.3.1) only if the last displayed line holds. (There may be other integrality
conditions, but they are not important for our argument.) If the valuations of

cp|o|−1i0σ(cp|o|−2i0) · · · σ
|o|−1(ci0) and dp|o|−1 j0σ(dp|o|−2 j0) · · · σ

|o|−1(d j0)

are distinct, then it is clear that the only solution is αi0, j0 = 0. On the other hand, if the valuations are
the same, the last equation is equivalent to one of the form σ |o|(αi0, j0)= γαi0, j0 where γ ∈Wν is a unit.
Written in terms of Witt vector components, this last equation is a polynomial of degree p|o| in each
component of αi0, j0 (with coefficients given by γ and the lower Witt components of αi0, j0). Therefore,
taking αi0, j0 modulo pn , there are at most pn|o| solutions, and this proves part (2) of the theorem.

We now turn to part (3) of the theorem, which follows from a somewhat more elaborate version of the
calculation of [Ulmer 2014c, §7, §10]. Namely, we fix an orbit o and consider (8.3.1) and (8.3.2) with
(i, j) ∈ o and αi, j ∈Wn,ν . These are the equations defining H o

n,ν as a subset of HomWν
(Nn,ν,Mn,ν)

o, and
analyzing them will allow us to estimate the size of H o

n,ν .
Fix an orbit o ∈ O and a base point (i0, j0) ∈ o. We associate a word w on the alphabet {u, l,m} to o

as follows: w = w1w2 · · ·w|o| where

w` =


u if p`−1(i0, j0) ∈ I1× J0,
l if p`−1(i0, j0) ∈ I0× J1,
m if p`−1(i0, j0) ∈ (I0× J0)∪ (I1× J1).

Changing the base point changes w by a cyclic permutation. Note that d(o) is the smaller of the number
of appearances of l or u in w.

The motivation for these letters is as follows: If w` = u, then in (8.3.1) and (8.3.2) for (i, j) =
p`−1(i0, j0), d j is a unit and p/c j is a unit. It follows that the two equations are equivalent and either of
them determines αp`(io, j0) in terms of αp`−1(io, j0). i.e., the “upper” αp`(io, j0) is determined by the “lower”
αp`−1(io, j0). Similarly, if w` = l, the “lower” αp`−1(io, j0) is determined by the “upper” αp`(io, j0). Finally, if
w` = m, then one of (8.3.1) and (8.3.2) implies other and shows that αp`−1(io, j0) and αp`(io, j0) determine
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each other. We will use these observations to eliminate most of the variables in the systems (8.3.1) and
(8.3.2), and use the simplified system to estimate the size of H o

n,ν and prove part (3) of the theorem.
We first deal with three degenerate cases, namely those where w is a power of m, or has no letters l, or

has no letters u. In all three cases, d(o)= 0, so it will suffice to prove that |H o
n,ν | is bounded independently

of ν. If w = m|o|, then αi0, j0 determines all of the αp`(i0, j0), and the system ((8.3.1)–(8.3.2)) reduces to a
single equation

σ |o|αi0, j0 = γαi0, j0

where γ ∈ W us a unit. This is easily seen to have at most pn|o| solutions for any ν, as desired. If w
contains no letters l, then again αi0, j0 determines all of the αp`(i0, j0), and the system ((8.3.1)–(8.3.2))
reduces to a single equation

peσ |o|αi0, j0 = γαi0, j0

where e ≥ 0 and γ ∈W is a unit. (Here e is the number of appearances of u in w.) If e= 0, we are in the
previous case, and the equation has at most pn|o| solutions for any ν, whereas if e > 0, then this equation
is easily seen to have no solutions. Finally, if w has no letter u, then the system again reduces to a single
equation of the form

σ |o|αi0, j0 = γ peαi0, j0

which has at most pn|o| solutions for any ν if e = 0 and has no solutions if e > 0.
For the rest of the argument, we may assume w contains at least one u and at least one l. Define a

function a : {0, 1, . . . , |o|} → Z by setting a(0)= 0 and

a(`)= a(`− 1)+


1 if w` = u,
−1 if w` = l,
0 if w` = m.

for 1≤ `≤ |o|.
Define the height of o, denoted ht (o), to be the maximum value of a minus the minimum value of a.

Note that this is independent of the choice of a base point for o.
We divide into two cases depending on whether a(|o|)≥ 0 or a(|o|)≤ 0.
If a(|o|)≥ 0, we may change base point so that 0= a(0) is the minimum value of a (i.e., a(`)≥ 0 for

0≤ `≤ |o|) and a(|o|−1) > a(|o|). Indeed, start with any base point (i0, j0) and let `0 be such that a(`0)

is minimum among the a(`). Then replacing (i0, j0) with (i1, j1)= p`0(i0, j0) ensures that a(`)≥ 0 for
all 0 ≤ ` ≤ |o|. If the new word w ends with m or u, we may replace (i1, j1) with p−1(i1, j1) without
affecting the inequality a(`)≥ 0. Iterate until the last letter is l, thus yielding the desired base point. We
fix such as base point and denote it (i0, j0).

Choose

0= `0 < `
0 < `1 < `

1
· · ·< `k−1 < `k = |o|
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such that a is nondecreasing on {`λ, . . . , `λ} and nonincreasing on {`λ, . . . , `λ+1} for 0≤ λ≤ k− 1. In
particular, the `λ are the arguments of local minima of a. Now let

βλ = αp`λ (i0, j0) 0≤ λ≤ k.

(Note that βk = β0.) Then the motivating remarks above about the letters u, l, m show that the βλ
determine all the αi, j with (i, j) ∈ o. The equations (8.3.1) and (8.3.2) hold if and only if the βλ satisfy
the system:

pe1σ `1−`0β0 = γ1 pe2β1

pe3σ `2−`1β1 = γ2 pe4β2

...

pe2k−1σ `k−`k−1βk−1 = γk pe2kβk

(8.3.3)

where
e2λ−1 = # of appearances of u in the subword w`λ−1+1 · · ·w`λ

e2λ = # of appearances of l in the subword w`λ−1+1 · · ·w`λ

and the units γλ are defined by

γλ = pe2λ−1−e2λ

`λ−1∏
`=`λ−1

σ `λ−1−`
(

dp` j0

cp`i0

)
.

To recap, the assignment ϕ 7→ (βλ) gives an injection H o
n,ν ↪→W k

n,ν whose image is the set of solutions
to equations (8.3.3). We will finish the proof of part (3) of the theorem by estimating the number of such
solutions.

Since the theorem is an assertion about H o
n,ν for sufficiently large n, we will assume for the rest of the

proof that n ≥ ht (o). Then we have an exact sequence

0→ pn−ht (o)H o
n,ν→ H o

n,ν→Wn−ht (o),ν

where the right hand map sends a tuple (βλ) to the reduction modulo pn−ht (o) of β0. (Exactness in the
middle follows from the fact that if µ≤ n− ht (o), then we may recover the Witt components β(µ)λ from
β0 modulo pn−ht (o) using the equations (8.3.3) and the fact that a(`)≥ a(0) for all `.) Moreover, we have

β0 ≡ (γ1 · · · γk)
−1 pa(|o|)σ |o|β0 (mod pn−ht (o)).

It follows that the image of H o
n,ν in Wn−ht (o),ν has order at most p|o|(n−ht (o)) independently of ν. (We may

even conclude that it is 0 if a(|o|) > 0.) Thus this image does not contribute to the limit in the theorem,
and it will suffice to bound pn−ht (o)H o

n,ν .
Note also that if n′ > n ≥ ht (o), then

pn−ht (o)H o
n,ν −→
∼ pn′−ht (o)H o

n′,ν



1104 Douglas Ulmer

via (βλ) 7→ (pn′−nβλ). Thus we may assume that n = ht (o) for the rest of the proof.
To finish the estimation, we “break” the circular system (8.3.3) into a triangular system, as in [Ulmer

2014c, §7.6]. To that end, choose λ so that a(`λ) is the maximum of a, and note that ht (0)=a(`λ)−a(0)=
a(`λ). Then we have

ht (o)= a(`λ)= e1− e2+ · · ·+ e2λ+1

and

0= pht (o)β0 = pe1−e2+···+e2λ+1β0 = pe3−e4+···+e2λ+1σ−`1(γ1β1)= · · · = pe2λ+1σ−`1(γ1) · · · σ
−`λ(γλβλ).

It follows that pe2λ+1βλ = 0. Using this in (8.3.3) and reordering, we obtain a lower-triangular system

0= γλ+1 pe2λ+2βλ+1

0=−pe2λ+3σ `λ+2−`λ+1βλ+1+ γλ+2 pe2λ+4βλ+2

...

0=−pe2k−1σ `k−`k−1βk−1+ γk pe2kβk

0=−pe1σ `1−`0β0+ γ1 pe2β1

...

0=−pe2λ−1σ `λ−`λ−1βλ−1+ γλ pe2λβλ.

This system can be rewritten in the form

U1 BU2



βλ+1
...

βk

β1
...

βλ


= 0

where U1 and U2 are diagonal with powers of σ and products of the units γi in the diagonal entries and
where

B =



pe2λ+2

−pe2λ+3 pe2λ+4

. . .

−pe2k−1 pe2k

−pe1 pe2

. . .

−pe2λ−1 pe2λ


.
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It follows that the number of solutions to this system is

qν(e2+e4+···+e2k).

On the other hand, e2+ e4+ · · ·+ e2k is the total number of appearances of l in the word w, and since
a(|o|)≥ 0, w has at least as many appearances of u as of l, so this sum is equal to d(o). It follows that
|H o

ht (o),ν | = qνd(o) and that

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o)

for any n≥ ht (o). This completes the proof of part (3) of the theorem under the hypothesis that a(|o|)≥ 0.
The proof when a(|o|)≤ 0 is very similar. Roughly speaking, one proceeds as above, but with a base

point so that a(|o|) is the minimum of a and with βk playing the role of β0. More precisely, assuming
that w has at least one u and at least one l and that a(|o|) ≤ 0, we may choose a base point for o such
that a(|o|) is the minimum value of a and a(1) > a(0)= 0. Fix such a base point, denoted (i0, j0), for
the rest of the argument.

As before, choose

0= `0 < `
0 < `1 < `

1
· · ·< `k−1 < `k = |o|

such that a is nondecreasing on {`λ, . . . , `λ} and nonincreasing on {`λ, . . . , `λ+1} for 0≤ λ≤ k− 1. Let

βλ = αp`λ (i0, j0) 0≤ λ≤ k.

Then as before, the coefficients αi, j satisfy equations (8.3.1) and (8.3.2) if and only if the βλ satisfy
(8.3.3).

The same dévissage as before shows that it suffices to estimate the order of H o
n,ν in the case where

n = ht (o). We make the circular system (8.3.3) triangular as follows: Choose λ so that a(`λ) is the
maximum of a. Then

ht (o)= a(`λ)− a(|o|)= e2k − e2k−1+ · · ·+ e2λ+2.

Therefore,

0= pht (o)βk = pe2k−e2k−1+···+e2λ+2βk

= pe2k−2−e2k−3+···+e2λ+2γ−1
k σ `k−`k−1(βk−1)

...

= pe2λ+2γ−1
k σ `k−`k−1(γ−1

k−1)σ
`k−`k−2(γ−1

k−2) · · · σ
`k−`λ+1(βλ+1).

It follows that pe2λ+2βλ+1 = 0. Using this in (8.3.3) and reordering, we obtain (up to units and powers of
σ ) an upper-triangular system whose diagonal entries are pe1, pe3, . . . , pe2k−1 .

It follows that the number of solutions to (8.3.3) with coefficients in Wn,ν (with n = ht (o)) is
qν(e1+···+e2k−1). Observing that a(|o|)≤0 implies that d(o)=e1+· · ·+e2k−1, we find that |H o

ht (o),ν |=qνd(o)
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and that

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o)

for any n ≥ ht (o). This completes the proof of part (3) of the theorem in the remaining case when
a(|o|)≤ 0. �

9. Equidistribution

We record three equidistribution statements to be used to control the average behavior of the invariant d(o)
from the preceding section. The first is a consequence of what is proven in [Griffon 2018, Theorem 4.1].
The second is a straightforward “two-variable” generalization, and the third is a simple corollary of the
first. We omit the proofs since they are orthogonal to our main concerns.

Proposition 9.1 (Helfgott, Hindry–Pacheco, Griffon). Let A ⊂ [0, 1] be an interval of length α. Let p be
a prime number and let d run through positive integers prime to p. Let 〈p〉 act on Z/dZ by multiplication,
and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{a ∈ o | 〈a/d〉 ∈ A}|
|o|

−α

∣∣∣∣= 0.

Proposition 9.2. Let p be a prime number, let r be a fixed integer prime to p and let d run through
integers prime to p. Let 〈p〉 act on (Z/rZ)× (Z/dZ) diagonally, and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{(a, b) ∈ o | 〈a/r〉+ 〈b/d〉< 1}|
|o|

−
1
2

∣∣∣∣= 0.

Proposition 9.3. Let p be a prime number, let I = Z/dZ with d prime to p equipped with the multiplica-
tion action of 〈p〉, and let J = {0, 1} be a two-element set equipped with the nontrivial action of 〈p〉. Let
〈p〉 act on I × J diagonally, and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{(a, b) ∈ o | 〈a/d〉< 1/2, b = 0}| + |{(a, b) ∈ o | 〈a/d〉> 1/2, b = 1}|
|o|

−
1
2

∣∣∣∣= 0.

10. Calculations for curves defined by four monomials

In this section we compute the limit of Brauer–Siegel ratios for a family of elliptic curves related to the
constructions in [Shioda 1986; Ulmer 2002]. We then explain how the same can be done for families of
Jacobians of every genus in every positive characteristic.

Throughout, let k = Fq , the finite field of cardinality q and characteristic p, and let K = k(t), the
rational function field over k.

10.1. The curve of [Ulmer 2002]. Let p be a prime number, let d be a positive integer prime to p, and
let Ed be the elliptic curve over K defined by

y2
+ xy = x3

− td (10.1.1)
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This family of curves was introduced in [Ulmer 2002] where it was shown that X(Ed) is finite and the
rank of Ed(K ) is unbounded as d varies. Hindry and Pacheco [2016] computed the Brauer–Siegel ratio
of Ed as d→∞ by analytic means, i.e., by a careful study of the L-function of Ed . Here we compute it
via algebraic means, more precisely, through a consideration of dimX(Ed).

Theorem 10.2. We have
lim

d→∞
BS(Ed)= 1.

Proof. Because E pd = E (p)d , Theorem 5.1 implies that it will suffice to compute the limit as d runs through
positive integers relatively prime to p and tending to infinity.

We are going to bound BS(Ed) from below by estimating dimX(Ed). Since the latter is invariant
under extension of the ground field, we are free to extend k as needed and will do so in the geometric
argument below.

Let Ed be the smooth projective surface equipped with a relatively minimal morphism π : Ed → P1

whose generic fiber is Ed . The procedure for constructing a model Ed is explained in general in [Ulmer
2011, Lecture 3], and this particular example is carried out in detail in [Ulmer 2002, §3]. The important
thing to know about Ed is that it is birational to the hypersurface in A3

(x,y,t) defined by (10.1.1).
Using the method of [Shioda 1986], it is proven in [Ulmer 2002, §4] that Ed is birational to the quotient

of the Fermat surface of degree d by a group of order d2. It is proven in [Shioda and Katsura 1979] that
the Fermat surface of degree d is birational to the quotient of the product of two Fermat curves of degree
d by a group of order d. (Here we may need to extend k so that it contains the 2d-th roots of unity.)
Putting these together, we find that Ed is birational to the quotient of Fd × Fd by the group

1⊂ (µ3
d/µd)

2
⊂ Aut(Fd)×Aut(Fd)

generated by
([ζ 2, ζ, 1], [1, 1, 1]), ([1, ζ, 1], [ζ 3, 1, 1]), and ([1, 1, ζ ], [1, 1, ζ ])

where ζ is a primitive d-th root of unity in k.
It follows from Corollary 6.5 that

dimX(Ed)= dim HomA(H 1(Fd)/pn, H 1(Fd)/pn)1 (10.2.1)

for all sufficiently large n. Section 7 and Proposition 7.1 describe the cohomology group H 1(Fd) with its
action of Frobenius. They show in particular that the dimension in the last display can be computed by
the methods of Section 8.

To spell this out, recall that the cohomology of Fd splits into lines indexed by

A′ =
{
(a0, a1, a2) | ai 6= 0,

∑
ai = 0

}
⊂ (Z/dZ)3

and that A′ is the disjoint union of A0 and A1 as in Section 7. The curves Fd and their cohomology
furnish data M = N = H 1

crys(Fd/W (k)), I = J = A′, and (ci , d j ) as in Section 8.1.
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A short calculation reveals that the basis elements ϕi j which contribute to the right hand side of (10.2.1)
are those indexed by (i, j) of the form

(i, j)= (a0, a1, a2, b0, b1, b2)= b1(−3, 6,−3, 2, 1,−3)

where b1 ∈ dZ is such that 6b1 6= 0. In other words, projection to the b1 coordinate allows us to identify
the orbits of 〈p〉 on I × J which contribute to (10.2.1) with the orbits of 〈p〉 on

B = {b ∈ Z/dZ | 6b 6= 0}.

Under this identification, (i, j) ∈ I0× J1 if and only if

0<
〈

b
d

〉
<

1
6

and (i, j) ∈ I1× J0 if and only if
5
6
<

〈
b
d

〉
< 1

where 〈·〉 denotes the fractional part. Thus, the invariant d(o) of Section 8.1 becomes the following
invariant of orbits of 〈p〉 on B: Setting

B0 =

{
b ∈ Z/dZ | 0<

〈
b
d

〉
<

1
6

}
and B1 =

{
b ∈ Z/dZ |

5
6
<

〈
b
d

〉
< 1

}
,

we have
d(o)=min(|o∩ B0|, |o∩ B1|).

Finally, the equidistribution result Proposition 9.1 yields that∑
o∈O

d(o)= d
6 + ε

where ε/d→ 0 as d→∞, and so
dimX(Ed)=

d
6 + ε.

It follows from [Ulmer 2002, §2] that degωEd =
⌈d

6

⌉
, so by applying Corollary 4.7, we conclude that

lim inf
d→∞

BS(Ed)≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we finally conclude that

lim
d→∞

BS(Ed)= 1. �

10.3. Other elliptic curves. The methods employed in the previous subsection can be used to compute
the limiting Brauer–Siegel ratio for several other families of elliptic curves, namely those defined by
equations involving 4 monomials. This includes the Hessian family studied in [Griffon 2016, Chapter 5]
and a closely related family introduced by Davis and Occhipinti [2016] and studied in [Griffon 2016,
Chapter 7]. We will not give the details here, since no fundamentally new phenomena arise.



On the Brauer–Siegel ratio for abelian varieties over function fields 1109

10.4. Higher genus Jacobians. For every prime p and every g>0, there is a sequence of curves of genus
g over Fp(t) whose Jacobians are absolutely simple, satisfy the Birch and Swinnerton-Dyer conjecture,
and have unbounded analytic and algebraic ranks; see [Ulmer 2007, §7]. Since these curves are defined
by four monomials, the methods of this paper suffice to compute the limit of their Brauer–Siegel ratios.
In the rest of this subsection, we explain the details for the main case, namely when g is a positive integer
and p is a prime such that p -(2g + 2)(2g + 1). The other cases are similar and we omit them in the
interest of brevity.

Fix a positive integer g, a prime p such that p -(2g+ 2)(2g+ 1), and a positive integer d. Let Xd be
the smooth, proper curve of genus g over K = Fp(t) defined by

y2
= x2g+2

+ x2g+1
+ td (10.4.1)

and let Jd be its Jacobian.

Theorem 10.5. lim
d→∞

BS(Jd)= 1.

Proof. Once again, it suffices to restrict to d not divisible by p. We will bound BS(Jd) from below by
estimating dimX(Jd) using that Xd has a model which is dominated by a product of Fermat curves. As
usual, we are free to expand the ground field Fp and we do so as needed below.

Let Xd be the smooth projective surface equipped with a relatively minimal morphism π : Xd → P1

with generic fiber Xd . Again, what is most important is that Xd is birational to the hypersurface in A3

defined by (10.4.1).
Using the method of [Shioda 1986] (see also [Ulmer 2007]), one sees that Xd is birational to the

quotient of the Fermat surface of degree 2d by a group of order (2d)2, and therefore birational to the
quotient of F2d × F2d by a group of order (2d)3. (Here we enlarge Fp to a finite extension k that contains
the 2d-th roots of unity.) More precisely, carrying out the procedure of [Ulmer 2007, §6] and using
[Shioda and Katsura 1979], one finds that Xd is birational to the quotient of F2d × F2d by the group

1⊂ (µ3
2d/µ2d)

2
⊂ Aut(F2d)×Aut(F2d)

generated by

([ζ 2, 1, 1], [1, 1, 1]), ([1, 1, 1], [1, ζ d , 1]), ([1, 1, 1], [ζ, ζ 2g+2, 1]), and ([1, 1, ζ ], [1, 1, ζ ])

where ζ is a primitive 2d-th root of unity in k.
It follows from Corollary 6.5 that

dimX(Ed)= dim HomA(H 1(Fd)/pn, H 1(Fd)/pn)1 (10.5.1)

for all sufficiently large n.
As in the previous subsections, the curves F2d and their cohomology furnish data M = N =

H 1
crys(F2d/W (k)), I = J = A′, and (ci , d j ) as in Section 8.1.
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A short calculation reveals that the basis elements ϕi j which contribute to the right hand side of (10.5.1)
are those indexed by (i, j) of the form

(i, j)= (a0, a1, a2, b0, b1, b2)= (−(4g+ 4)b, 2b, (4g+ 2)b, d, d − (4g+ 2)b, (4g+ 2)b)

where b ∈ Z/dZ is such that none of the coordinates a0, . . . , b2 are zero in Z/2dZ. (Note that all of the
coefficients of b above are even, so the display gives a well-defined element of (Z/2dZ)6 even though b
lies in Z/dZ.) Thus the relevant orbits of 〈p〉 on I × J can be identified with the orbits of 〈p〉 on the
subset B of Z/dZ where none of the coordinates of (i, j) is 0.

Next we work out conditions on b for the corresponding (i, j) to lie in I0× J1 or I1× J0. One finds
that

i = (a0, a1, a2)= (−(4g+ 4)b, 2b, (4g+ 2)b)

lies in I0 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
k+ 1

2g+ 2
,

k+ 1
2g+ 1

)
, k = 0, . . . , 2g

and i lies in I1 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
k

2g+ 1
,

k+ 1
2g+ 2

)
, k = 0, . . . , 2g.

On the other hand,

j = (b0, b1, b2)= (d, d − (4g+ 2)b, (4g+ 2)b)

lies in J0 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
2`+ 1
4g+ 2

,
2`+ 2
4g+ 2

)
, `= 0, . . . , 2g

and j lies in J1 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
2`

4g+ 2
,

2`+ 1
4g+ 2

)
, `= 0, . . . , 2g.

It follows that (i, j) lies in I0× J1 if and only if〈
b
d

〉
∈

(
k+ 1

2g+ 2
,

2k+ 1
4g+ 2

)
with k = g+ 1, . . . , 2g and it lies in I1× J0 if and only if〈

b
d

〉
∈

(
2k+ 1
4g+ 2

,
k+ 1

2g+ 2

)
with k = 0, . . . , g− 1.
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The total length of the intervals corresponding to I0× J1 is

2g∑
k=g+1

(
2k+ 1
4g+ 2

−
k+ 1

2g+ 2

)
=

g
8g+ 4

and the total length of the intervals corresponding to I1× J0 is

g−1∑
k=0

(
k+ 1

2g+ 2
−

2k+ 1
4g+ 2

)
=

g
8g+ 4

.

Transferring the definition of d(o) to B and applying the equidistribution result Proposition 9.1, we
find that

dimX(Jd)=
∑

o

d(o)=
dg

8g+ 4
+ ε

where ε/d→ 0 as d→∞.
We pause briefly to consider the case g = 1. By [Weil 1954], the Jacobian of Xd is the elliptic curve

y2
= x3
− 4td x + td .

It is easy to see that the bundle ωd attached to Jd has degree
⌈ d

12

⌉
. It then follows from our estimation of

dimX(Jd) and Corollary 4.7 that lim infd→∞ BS(Jd)≥ 1 and thus, by the Hindry–Pacheco upper bound
(1.1), that limd→∞ BS(Jd)= 1.

To extend this to higher genus, we will give an upper bound on the degree of ωd of the form
dg/(8g+ 4)+ ε where ε/d→ 0 as d→∞. More precisely, we will show that deg(ωd)= dg/(8g+ 4)
for all d divisible by (2g+ 1)(2g+ 2). For a general d, we let

d ′ = lcm(d, (2g+ 1)(2g+ 2))

and apply Lemma 2.7.1 to conclude that

deg(ωd)≤
dg

(8g+ 4)
+ 2g((2g+ 1)(2g+ 2)− 1)

which gives the desired estimate.
For i = 1, . . . , g, let ωi be the 1-form x i−1dx/y on Xd over K . These 1-forms are regular and give a

basis of H 0(X, �1
X/K ). We will consider their extensions to a suitable model π : X → P1 of X and use

them to compute deg(ωd).
In [Ulmer 2007, §7.7], a model of X over U = P1

\ {0,∞} is constructed which is regular and a
Lefschetz pencil, i.e., its singular fibers are irreducible with one ordinary node each. It is easy to see that
the differentials ωi extend to this model and

σ := ω1 ∧ · · · ∧ωg
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defines a nowhere vanishing section of ωd over U . To compute deg(ωd) it will thus suffice to compute
the order of vanishing of σ at t = 0 and t =∞. This is where we use the hypothesis that d is a multiple
of (2g+ 1)(2g+ 2).

Indeed, if d = 2(2g+ 1)k, then the change of coordinates x→ t2k x ′, y→ t (2g+1)k y′ brings X into the
form

y′2 = t2k x ′2g+2
+ x ′2g+1

+ 1

which has good reduction at t = 0. Moreover, we see that ωi = t (2i−2g−1)kω′i where ω′i = (x
′i−1dx ′)/y′,

and that the ω′i have linearly independent reductions at t = 0. This shows that σ has a pole at t = 0 of
order

g∑
i=1

(2g+ 1− 2i)d
2(2g+ 1)

.

Similarly, when d = (2g+ 2)`, the change of coordinates x→ t2`x , y→ t (2g+2)`y brings X into the
form

y2
= x2g+2

+ t−`x2g+1
+ 1,

which has good reduction at t =∞. Moreover, we see that ωi = t (i−g−1)`ω′i where ω′i = (x
′i−1dx ′)/y′,

and that the ω′i have linearly independent reductions at t =∞. This shows that σ has a zero at t =∞ of
order

g∑
i=1

(g+ 1− i)d
2g+ 2

.

A short computation then shows that deg(ωd) is dg/(8g+ 4).
Note that these calculations also show that Jd has good reduction at t = 0 and t =∞ when d is divisible

by (2g+ 1)(2g+ 2). Using Section 2.6, these reduction results imply that τ(Jd) = O(H(Jd)
ε) for all

ε > 0. Then Proposition 4.6 shows that

lim inf
d→∞

BS(Jd)≥ lim inf
d→∞

dim(X(Jd))

deg(ωJd )
≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we finally conclude that

lim
d→∞

BS(Jd)= 1. �

11. Calculations for Jacobians related to Berger’s construction

In this section we compute the limiting Brauer–Siegel ratio for some families of curves related to the
construction in [Berger 2008; Ulmer 2013].

Throughout, let k = Fq , the finite field of cardinality q and characteristic p, and let K = k(t), the
rational function field over k.
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11.1. The Legendre curve. Assume that p > 2, let d be a positive integer, and let Ed be the elliptic
curve over K defined by

y2
= x(x + 1)(x + td). (11.1.1)

This family of curves has been studied extensively, in particular in [Ulmer 2014b; Conceição et al. 2014;
Ulmer 2014c; Griffon 2016, Chapter 4]. In the latter, the limit of the Brauer–Siegel ratio of Ed as d→∞
was computed by analytic means, i.e., by a careful study of the L-function of Ed . Here we compute it via
algebraic means, more precisely, through a consideration of dimX(Ed).

Theorem 11.2. We have

lim
d→∞

BS(Ed)= 1.

Proof. As usual, it suffices to consider values of d not divisible by p.
Let Ed be the smooth projective surface equipped with a relatively minimal morphism π : Ed → P1

whose generic fiber is Ed . This is constructed in [Ulmer 2014b] (under the simplifying hypothesis that d
is even, but the odd case is similar). The main thing we need to know about Ed is that it is birational to
the hypersurface in A3

(x,y,t) defined by the (11.1.1).
Let Cd be the curve with affine equation

x2
= zd
+ 1

and let Dd be the curve with affine equation

y2
= wd

+ 1.

Both curves admit an evident action of 1= µ2×µd (over k). Let 1 act “antidiagonally” on Cd ×Dd :

(ζ2, ζd)(x, z, y, w)= (ζ2x, ζd z, ζ−1
2 y, ζ−1

d w).

Our first main claim is that Ed is birational to the quotient Cd ×Dd/1 via the map

(x, z, y, w) 7→ (x = zd , y = zd xy, t = wz).

Indeed, it is evident that this defines a dominant rational map from Cd×Dd to Ed which factors through the
quotient by 1. Degree considerations then show that the induced map has degree 1, i.e., it is a birational
isomorphism.

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Ed)= dim HomA(H 1(Cd)/pn, H 1(Dd)/pn)1 (11.2.1)

for all sufficiently large n. Section 7.3 and Proposition 7.1 describe the cohomology groups H 1(Cd) and
H 1(Dd) with their actions of Frobenius. They show in particular, that the dimension in the last display
can be computed by the methods of Section 8.
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To spell this out, let
I = J = Z/dZ \ {0, d/2 (if d is even)},

decomposed as I0 = J0 = {i | d/2 < i < d} and I1 = J1 = {i | 0 < i < d/2}. Section 7 shows that
the crystalline cohomology groups H 1(Cd) and H 1(Dd) with their action of Frobenius furnish data
(M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉 on I × J .

Since 1 acts antidiagonally, the orbits that contribute to the right hand side of (11.2.1) are those whose
elements (i, j) satisfy j =−i . Write O1 for the set of such orbits. Applying Theorem 8.3, we conclude
that

dimX(Ed)=
∑

o∈O1

d(o). (11.2.2)

We may identify the orbits in O1 with the orbits of 〈p〉 on I via the projection πI : I × J → I . Also,
since (i,−i) ∈ I0× J1 if and only if i ∈ I0, and (i,−i) ∈ I1× J0 if and only if i ∈ I1, we have

d(o)=min(|πI (o)∩ I0|, |πI (o)∩ I1|).

Thus the sum on the right hand side of (11.2.2) becomes a sum over orbits of 〈p〉 on I , and the invariant
d(o) is described “on average” in Section 9. In particular, the equidistribution result Proposition 9.1
implies that

dimX(Ed)=
∑

o∈O1

d(o)= d
2 + εd

where εd/d→ 0 as d→∞.
Since deg(ωEd )=

⌈ d
2

⌉
(e.g., by [Ulmer 2014b, Lemma 7.1]), Corollary 4.7 implies that

lim inf
d→∞

BS(Ed)≥ lim inf
d→∞

dimX(Ed)

deg(ωEd )
= 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Jd)= 1. �

11.3. Other elliptic curves. The methods employed in the previous subsection can be used to compute
the limiting Brauer–Siegel ratio for several other families of elliptic curves, namely those coming from
Berger’s construction where the dominating curves are related to Fermat curves. This is the case in
particular for the universal curve over X1(4) studied in [Griffon 2016, Chapter 6] and the curve “B1/2,d”
introduced in [Berger 2008, §4] and studied in [Griffon 2016, Chapter 8]. We will not give the details
here, since no fundamentally new phenomena arise.

11.4. Higher dimensional Jacobians. Let p be a prime number, let q be a power of p, and let k = Fq .
Let r and d be integers relatively prime to p. Let X = Xr,d be the smooth projective curve over K = k(t)
associated to the equation

yr
= xr−1(x + 1)(x + td). (11.4.1)
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This is a curve of genus r − 1, and the case r = 2 is the Legendre curve of Section 11.1. Let J = Jr,d be
the Jacobian of X . This family of Jacobians was studied in [Berger et al. 2015], where among other things
it was proven that X(Jr,d) is finite for all p, q, r , and d as above. Here we will compute the limiting
Brauer–Siegel ratio for fixed q and r as d→∞.

Theorem 11.5. For all q and r as above,

lim
d→∞
(p,d)=1

BS(Jr,d)= 1.

Here the limit is through integers prime to p. It would be possible to include those d divisible by p
using a straightforward generalization of the ideas in Section 5, but will not do that here.

Proof. Since r will be fixed throughout, we omit it from the notation. Let Xd be the smooth projective
surface equipped with a relatively minimal morphism π : Xd → P1 whose generic fiber is Xd . This is
constructed in [Berger et al. 2015, §3.1]. The important thing to know about Xd is that it is birational to
the hypersurface in A3

(x,y,t) defined by (11.4.1).
Let Cd be the curve with affine equation

xr
= zd
+ 1

and let Dd be the curve with affine equation

yr
= wd

+ 1.

Both curves admit an evident action of 1= µr ×µd (over k). Let 1 act “antidiagonally” on Cd ×Dd :

(ζr , ζd)(x, z, y, w)= (ζr x, ζd z, ζ−1
r y, ζ−1

d w).

It is proven in [Berger et al. 2015, §3.3] that Xd is birational to the quotient Cd ×Dd/1 via the map

(x, z, y, w) 7→ (x = zd , y = zd xy, t = wz).

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Jd)= dim HomA(H 1(Cd)/pn, H 1(Dd)/pn)1 (11.5.1)

for all sufficiently large n. Section 7.3 and Proposition 7.1 describe the cohomology groups H 1(Cd) and
H 1(Dd) with their actions of Frobenius. They show in particular, that the dimension in the last display
can be computed by the methods of Section 8.
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To spell this out, let

I = J =
{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
6= 1

}
,

I0 = J0 =

{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
> 1

}
, and

I1 = J1 =

{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
< 1

}
.

Section 7 shows that the crystalline cohomology groups H 1(Cd) and H 1(Dd)with their action of Frobenius
furnish data (M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉
on I × J .

Since 1 acts antidiagonally, the orbits that contribute to the right hand side of (11.5.1) are those whose
elements (i, j)= (a, b, a′, b′) satisfy j =−i , i.e., a′ =−a and b′ =−b. Write O1 for the set of such
orbits. Applying Theorem 8.3, we conclude that

dimX(Jd)=
∑

o∈O1

d(o). (11.5.2)

We may identify the orbits in O1 with the orbits of 〈p〉 on I via the projection πI : I × J → I . Also,
since (i,−i) ∈ I0× J1 if and only if i ∈ I0, and (i,−i) ∈ I1× J0 if and only if i ∈ I1, we have

d(o)=min(|πI (o)∩ I0|, |πI (o)∩ I1|).

We note that

|I0| = |I1| =
1
2((r − 1)(d − 1)− (gcd(r, d)− 1)),

which for fixed r is asymptotic to d(r − 1)/2 as d→∞.
Thus the sum on the right hand side of (11.5.2) becomes a sum over orbits of 〈p〉 on I , and the invariant

d(o) is described “on average” in Section 9. In particular, the equidistribution result Proposition 9.2
implies that

dimX(Jd)=
∑

o∈O1

d(o)= 1
2 d(r − 1)+ εd

where εd/d→ 0 as d→∞.
To finish the proof, we will show that τ(Jd) = O(H(Jd)

ε) for all ε > 0 and that deg(ωJd ) ≤

d(r − 1)/2 + εd where εd/d → 0 as d → ∞. Once these claims are established, Proposition 4.6
implies that

lim inf
d→∞

BS(Jd)≥ lim inf
d→∞

dimX(Jd)

deg(ωJd )
≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Jd)= 1.
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The assertion about τ(Jd) follows from the discussion of Section 2.6 and the fact (proven in [Berger
et al. 2015, §3.1]) that Xd has semistable reduction at t = 0 and t =∞ whenever r divides d .

It is proven in [Berger et al. 2015, Proof of Proposition 7.5] that when r divides d , we have deg(ωJd )=

d(r − 1)/2. In general, if d ′ = lcm(d, r), we have deg(ωJd′
)= d ′(r − 1)/2 and Lemma 2.7.1 shows that

deg(ωJd )≤
d(r − 1)

2
+

2(r − 1)2

d ′/d
=

d(r − 1)
2

+ εd .

Since d ′/d is an integer, εd is bounded independently of d, so εd/d→ 0 as d→∞.
This completes the proof of the theorem. �

12. Quadratic twists of constant curves

We conclude the paper with a study of Brauer–Siegel ratios of quadratic twists of constant elliptic curves.
Throughout we let p be an odd prime number, Fq a finite field of characteristic p, and K = Fq(t).

12.1. Twists of a constant supersingular curve. Fix a supersingular elliptic curve E0 over Fq and let
E = E0×Fq K . For a positive integer d relatively prime to p, let Ed be the twist of E by the quadratic
extension Fq(t,

√
td + 1) of K . By results of Milne, the Tate–Shafarevich group of Ed is finite.

Theorem 12.2. We have
lim

d→∞
(p,d)=1

BS(Ed)= 1.

Proof. Let Ed → P1 be the Néron model of Ed/K , and let Cd be the smooth projective curve over Fq

defined by y2
= xd

+ 1 and equipped with the action of µ2 given by the hyperelliptic involution. It is
easy to see that Ed is birational to the quotient of Cd ×Fq E0 by the (anti) diagonal action of µ2, i.e., by
µ2 acting via the hyperelliptic involution on both factors.

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Ed)= dim HomA(H 1(Cd)/pn, H 1(E0)/pn)µ2 (12.2.1)

for all sufficiently large n.
Section 7.3 and Proposition 7.1 describe the cohomology group H 1(Cd). We recall the well-known

description of H 1(E0): It is a free W -module of rank 2 with a basis e0, e1 such that F(e0)= d0e1 and
F(e1)= d1e0 where d0 is a unit of W and d1 is p times a unit. (See [Dummigan 1995, §5] for a detailed
account.) To harmonize with earlier notation, let J0 = {0}, J1 = {1}, and J = J0 ∪ J1, and equip J with
the nontrivial action of 〈p〉.

Also, let
I = Z/dZ \

{
0, d

2 (if d is even)
}
,

decomposed as I0 =
{
i | d

2 < i < d
}

and I1 =
{
i | 0 < i < d

2

}
. Section 7 and the preceding paragraph

show that the crystalline cohomology groups H 1(Cd) and H 1(E0) with their actions of Frobenius furnish
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data (M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉 on I × J .
We may thus compute the dimension in the last display by the methods of Section 8.

Since Cd and E0 are hyperelliptic, the µ2-invariant part of their cohomology is trivial, so

HomA(H 1(Cd)/pn, H 1(E0)/pn)µ2 = HomA(H 1(Cd)/pn, H 1(E0)/pn).

Applying Theorem 8.3, we conclude that

dimX(Ed)=
∑
o∈O

d(o) (12.2.2)

where the sum is over all orbits of 〈p〉 on I × J .
The equidistribution result Proposition 9.3 implies that∑

o∈O

d(o)= d
2 + εd

where εd/d→ 0 as d→∞.
Since td

+ 1 has distinct roots, it is easy to see that deg(ωEd )=
⌈ d

2

⌉
. Thus Corollary 4.7 implies that

lim inf
d→∞

BS(Ed)≥ lim inf
d→∞

dimX(Ed)

deg(ωEd )
= 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Ed)= 1. �

12.3. Twists of an constant ordinary curve. Now let E0 be an ordinary elliptic curve over Fq and set
E = E0×Fq K . One could use methods similar to those in the last section to compute dimX(Ed) for the
twist of E by Fq(t,

√
td + 1), but much more is easily deduced from results of Katz in p-adic cohomology.

Theorem 12.4. Let E ′ be any quadratic twist of E. Then

dimX(E ′)= 0.

Proof. A variety X over a finite field is said to be Hodge–Witt if all of its deRham–Witt cohomology
groups H i (X,W�

j
X ) are finitely generated. A curve is automatically Hodge–Witt, and a surface which

satisfies the Tate conjecture is Hodge–Witt if and only if the dimension of its Brauer group (in the sense
of Proposition/Definition 4.1) is 0 [Milne 1975, §1]. In other words, a surface X over Fq satisfying the
Tate conjecture is Hodge–Witt if and only if

lim
n→∞

log|H 2(X ×Fq Fqn ,Gm)[p∞]|
log(qn)

= 0.

A theorem of Katz [1983] says that a product of varieties is Hodge–Witt if and only if one of the
factors is ordinary and the other is Hodge–Witt.

Now let C→P1 be a double cover corresponding to a quadratic extension K ′/K . Then the Néron model
E ′→ P1 of E ′/K is birational to the quotient of C×Fq E0 by µ2 acting diagonally by the hyperelliptic
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involutions. Since p > 2, the Brauer group of the quotient is the µ2-invariant part of the Brauer group of
C×Fq E0, and the latter has dimension 0 since E0 is ordinary. It follows that the Brauer group of E ′ has
dimension 0 and so X(E ′) has dimension zero. �

Thus for a quadratic twist of a constant, ordinary elliptic curve, our p-adic methods do not give a
nontrivial lower bound on the Brauer–Siegel ratio. This is compatible with Conjecture 1.7 of [Hindry and
Pacheco 2016], which predicts that the lim inf of BS(E ′) as E ′ runs over all quadratic twists is 0.

We finish by remarking that Griffon [2015] has shown that if Ed is the twist of a constant ordinary
E/K by the quadratic extension Fq(t,

√
td + 1), then as d runs through “supersingular” integers, i.e.,

those that divide p f
+ 1 for some f , the limit of BS(Ed) is 1. In conjunction with Theorem 12.4, this

shows that the Brauer–Siegel ratio of an elliptic curve E ′ may be large even when the dimension of
X(E ′) is zero.
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A five-term exact sequence for Kac cohomology
César Galindo and Yiby Morales

Dedicated to Nicolás Andruskiewitsch on the occasion of his 60th birthday

We use relative group cohomologies to compute the Kac cohomology of matched pairs of finite groups.
This cohomology naturally appears in the theory of abelian extensions of finite dimensional Hopf algebras.
We prove that Kac cohomology can be computed using relative cohomology and relatively projective
resolutions. This allows us to use other resolutions, besides the bar resolution, for computations. We
compute, in terms of relative cohomology, the first two pages of a spectral sequence which converges to
the Kac cohomology and its associated five-term exact sequence. Through several examples, we show the
usefulness of the five-term exact sequence in computing groups of abelian extensions.

1. Introduction

Extension theory of groups plays a significant role in the construction and the classification of finite groups.
In the same way, the extension theory of Hopf algebras has led to results on the still wide open problem of
construction and classification of finite-dimensional semisimple Hopf algebras, [Kashina 2000; Masuoka
1995; Natale 1999; 2001; 2004]. The set of equivalence classes of extensions of a group G by a G-module
M is an abelian group with the Baer product of extensions, which is isomorphic to the second cohomology
group H 2(G,M). A generalization of this theory to Hopf algebras is obtained for the so-called abelian
extensions, that is, cleft Hopf algebra extensions of a commutative Hopf algebra K by a cocommutative
Hopf algebra H , see [Hofstetter 1994; Kac 1969; Masuoka 1997a; 1999; 2000; Singer 1972].

In this paper, we deal with H = k F , a group algebra, and K = kG , the dual of such an algebra, where
F and G are finite groups. In this case, each abelian extension has an associated matched pair, that is, a
larger group 6 such that G and F are subgroups of 6 satisfying G ∩ F = {e} and 6 = G F . The set of
equivalence classes of abelian extensions associated to a fixed matched pair, denoted by Opext(k F, kG),
is an abelian group that can be computed as the second total cohomology of a certain double complex
whose cohomology is called Kac cohomology.

Obtaining a computation for the Opext(k F, kG) of a matched pair of groups can be quite difficult.
In fact, there are few general computations in the literature [Masuoka 1997a]. One obstacle for the
computation of Opext(k F, kG) comes from the fact that it is defined as the cohomology of a very specific
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total complex, and the unique “cocycle free” tool is the so-called Kac exact sequence (see [Masuoka
1997a] and Corollary 3.10). Perhaps one of the first results that provide a cocycle free description and
interpretation of the Kac cohomology is given in [Baaj et al. 2005, Proposition 7.1], where the authors
describe the Kac cohomology as the singular cohomology of the mapping cone BG t B F→ B6.

In this paper, we use two different kinds of relative cohomology groups to compute Opext(k F, kG):
Auslander relative cohomology and Hochschild relative cohomology (see Section 3). We prove that
Opext(k F, kG) can be computed using Auslander relative cohomology and that Auslander relative
cohomology of a matched pair can be computed using relatively projective resolutions. This allows
us to use other resolutions, besides the bar resolution, for computing Opext(k F, kG). In addition, we
compute the first and second page of a spectral sequence which converges to the Kac cohomology. As a
consequence, we compute the associated five-term exact sequence, whose second term is Opext(k F, kG).
In the particular case of a semidirect product, the five-term exact sequence is described in terms of
ordinary group cohomology. Finally, doing use of the five-term exact sequence and some nonstandard
resolutions, we compute Opext(k F, kG) for several families of matched pairs.

The organization of the paper is as follows: In Section 2 we discuss preliminaries on group cohomology
and abelian extensions of Hopf algebras. In Section 3 we recall the definitions of Auslander relative
cohomology [Auslander and Solberg 1993] and Hochschild relative cohomology [Hochschild 1956]. We
prove that Opext(k F, kG) can be computed using Auslander Relative cohomology and Auslander relative
cohomology of matched pairs can be computed using relatively projective resolutions. In Section 4 we
compute the first and second page of a spectral sequence which converges to the Kac cohomology. We
also compute, in terms of Hochschild relative cohomology, the associated five-term exact sequence, whose
second term is Opext(k F, kG). Finally, in Section 5 we compute Opext(k F, kG) for several families of
matched pairs.

2. Preliminaries

Cohomology of groups. Let G be a group and let M be a G-module. The n-th cohomology group of G
with coefficients in M is defined as

H n(G,M)= ExtnG(Z,M).

We will use occasionally the normalized bar resolution (Z ε
←− Pi , δ) of Z as a trivial G-module. That is

Pi = ZG[G]i := ZG[s1| · · · |si ],

where si ∈ G, si 6= e for all i . The differentials are given by

δ([s1| · · · |sp+1])= s1[s2| · · · |sp+1] +

p∑
i=1

(−1)i [s1| · · · |si si+1| · · · |sp+1] + (−1)p+1
[s1| · · · |sp].



A five-term exact sequence for Kac cohomology 1123

For a finite cyclic group Cn = 〈g〉 of order n, we occasionally use a periodic resolution of Z, defined as

· · · → ZCn
g−1
−−−→ZCn

N
−→ZCn

g−1
−−−→ZCn

ε
−→Z, (2-1)

where, N =
∑n−1

i=0 gi . From this, we have that

H m(Cn,M)=
{

MCn/Im(N ) m = 2k,
Ker(N )/Im(g− 1) m = 2k+ 1.

(2-2)

Resolutions and cohomology for direct products. Let G = G1×G2 be a direct product of groups. Let
(Z ε
←− Pi , δi ) and (Z ε

←− Qi , δ
′

i ) be projective resolutions of Z as a G1-module and a G2-module,
respectively. Then, the total complex Tot(Pi ⊗Qi ) is a G-projective resolution of Z. A useful description
of the cohomology for direct products is the following. If M is a trivial G-module, then it holds that (see
e.g., [Karpilovsky 1985])

H 2(G1×G2,M)∼= H 2(G1,M)⊕ H 2(G2,M)⊕ P(G1,G2;M), (2-3)

where P(G1,G2;M) is the abelian group of all pairings from G1×G2 to M . An isomorphism is given
by α 7→ (α1, α2, φα), where αi is the restriction of α to Qi × Qi and

φα(x, y)= Alt(α)= α(x, y)−α(y, x).

the inverse isomorphism is defined by (α1, α2, φ) 7→ α with

α((x1, y1), (x2, y2))= α1(x1, x2)α2(y1, y2)φ(x1, y2).

Second cohomology group and skewsymmetric matrices. Another useful description of the second coho-
mology group in the case that V is a finite abelian group is provided by using the universal coefficient
theorem. Let k be a field and let us consider the group k× of units of k as a trivial V -module. There is a
short exact sequence

0→ Ext(V, k×)→ H 2(V, k×) Alt
−−−→Hom(∧2(V ), k×)→ 0. (2-4)

If V has exponent n and (k×)n = k×, then Ext(V, k×)= 0. Therefore, the map

Alt : H 2(V, k×)→∧2V̂ , (2-5)

where V̂ = Hom(V, k×), defines an isomorphism H 2(V, k×)∼= ∧2V̂ .

Extensions of Hopf algebras. Let k be a field. A sequence of finite dimensional Hopf algebras and Hopf
algebra maps

(A) : k→ K i
−→ A π

−→ H → k

is called an extension of H by K if, i is injective, π is surjective, and K = AcoH (see [Andruskiewitsch
and Devoto 1995; Kac 1969; Majid 1990]).
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Two extensions (A) and (A′) of H by K are said to be equivalent if there is an homomorphism
f : A→ A′ of Hopf algebras such that the following diagram commutes:

A

f

��

π

  

k // K

i
>>

i ′   

H // k

A′
π ′

>>

Matched pairs of groups. Let us recall (see e.g., [Takeuchi 1981]) that a matched pair of groups is a
collection (F,G,B,C) where G, F are groups and B,C are permutation actions

G C
←−G× F B

−→ F

such that
sB xy = (sB x)((sC x)B y), st C x = (sC (t B x))(t C x),

for all s, t ∈ G and x, y ∈ F .
Having groups G and F with a matched pair structure is equivalent to having a group 6 with an exact

factorization; the actions B and C are determined by the relations

sx = (sB x)(sC x),

where x ∈ F and s ∈ G.
The group 6 associated to a matched pair of groups will be denoted by F FG G; it is F × G with

product given by
(x, s)(y, t)= (x(sB y), (sC y)t).

It is easy to see that the following conditions are equivalent:

(i) The action B is trivial.

(ii) The action C : G× F→ G is by group automorphisms.

In this case, the associated group 6 = F nG is a semidirect product of groups.

Abelian extensions. Let (F,G,B,C) be a matched pair of groups and let us consider 2-cocycles σ ∈
Z2(F, (kG)×) and τ ∈ Z2(G, (k F )×). On the vector space

kG#σ,τ k F := Spank{es#x : s ∈ G, x ∈ F},

we can define a unital associative algebra and counital coassociate coalgebra structure by

(es#x)(et #y)= δsCx,tσ(s; x, y)es#xy,

1(es#x)=
∑
s=ab

τ(a, b; x)ea#(bB x)⊗ eb#x .
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Here the 2-cocycles σ and τ are seen as functions

σ : G× F × F→ k×, (s, x, y) 7→ σ(s; x, y),

τ : G×G× F→ k×, (s, t, x) 7→ τ(s, t; x).

The map 1 is an algebra map if and only if the 2-cocycles satisfy the following compatibility condition

σ(st; x, y)τ (s, t; xy)= σ(s; t B x, (t C x)B y)σ (t; x, y)× τ(s, t; x)τ (sC (t B x), t C x; y),

for all x, y ∈ G and s, t ∈ F . In the case that the 2-cocycles are compatible, the sequence

k→ kG i
−→ kG#σ,τ k F π

−→ k F→ k,

is a Hopf algebra extension, where i(es)= es#e and π(es#x)= x . These kinds of extensions are called
abelian extensions of Hopf algebras.

The set of equivalence classes of abelian extensions associated to a fixed matched pair (F,G,B,C)
is an abelian group with the Baer product of extensions and will be denoted by OpextB,C(k F, kG) (see
[Masuoka 2002] for more details).

3. Kac cohomology and relative cohomology

In this section, we recall the definitions of two different kinds of relative group cohomology: the Auslander
relative cohomology [Auslander and Solberg 1993] and the Hochschild relative cohomology [Hochschild
1956]. Our aim is to prove that OpextB,C(k F, kG) can be computed using Auslander relative cohomology
which, in the case of matched pairs, can be computed using relatively projective resolutions. This allows
us to use other resolutions besides the bar resolution for computing OpextB,C(k F, kG).

Auslander relative cohomology of groups. Let 6 be a group and X a 6-set. We will denote by 3X the
kernel of the augmentation map

εX : Z[X ] → Z, x 7→ 1, (3-1)

where Z[X ] is the 6-module associated to X .

Definition 3.1. Given a 6-module A, the n-th cohomology group of 6 relative to X with coefficients in
A is defined by

H k
A (6, X; A) := Extk−1

Z6 (3X , A), k ≥ 1.

Let X be a 6-set and RX a set of representatives of the 6-orbits in X . Using Shapiro’s lemma, we
have that

Extk6(Z[X ], A)=
∏

x∈RX

Extk6(Z[O(x)], A)∼=
∏

x∈RX

ExtkSt(x)(Z, A),

where St(x) denotes the stabilizer of x ∈ X . Hence,

Extk6(Z[X ], A)=
∏

x∈RX

H k(St(x), A).
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If we apply the functor Ext6(−, A) to the exact sequence of 6-modules

0→3X → Z[X ] → Z→ 0,

we obtain the well-known long exact sequence for relative cohomology

· · · → H k(6, A)→
∏

x∈RX

H k(St(x), A)→ H k+1
A (6, X, A)→ H k+1(6, A)→ · · · (3-2)

Hochschild Relative cohomology of groups. Relative cohomology of groups was originally defined by
Hochschild [1956] and Adamson [1954]. We follow the description given in [Alperin 1986].

Let U be a G-module and S a subgroup of G. We say that U is relatively S-projective if it satisfies the
following equivalent properties (see [Alperin 1986, Proposition 1, page 65]):

(i) If ψ :U � V is a surjective G-homomorphism and ψ splits as an S-homomorphism then ψ splits
as a G-homomorphism.

(ii) If ψ : V � W is a surjective G-homomorphism and φ : U → W is a G-homomorphism, then
there is a G-homomorphism λ :U → V with ψλ= φ, provided that there is an S-homomorphisms
λ0 :U → V with the same property.

(iii) U is a direct summand of U↓S↑G .

Here, ↓S means the restriction to S, and ↑G the induction to G.
A complex

R : · · · → R3
δ3−→ R2

δ2−→ R1
δ1−→ R0

ε
−→M→ 0

of G-modules is called a relatively S-projective resolution if:

(1) each G-module Ri is relatively S-projective,

(2) the sequence has a contracting homotopy as S-modules.

Remarks 3.2. • Since the canonical map M↓S↑G→ M splits as an S-homomorphism, if T is a
projective S-resolution of M↓S , then T ↑G is a relatively S-projective resolution of M .

• If S is the trivial subgroup of G, the relatively S-projective resolutions of G-module are the same as
projective resolutions of G-modules.

Definition 3.3. Given a relatively S-projective resolution R of M , the n-th relative S-cohomology group
of G is defined by

H m(G, S;M)= H n(HomG(R,M), δ∗).

As expected, this definition does not depend on the chosen relatively S-projective resolution of M ,
(see, e.g., [Hochschild 1956]).

From now on, all relatively projective resolutions are assumed to be free as Z-modules.
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Example 3.4 (Standard complex [Snapper 1964]). Let X be a transitive left G-set. Let Ci = ZX (i+1) be
the free Z-module generated by all (i + 1)-tuples of elements of X . The group G acts diagonally on Ci

and the sequence
C X
∗
:= · · · → C3

δ3−→C2
δ2−→C1

δ1−→C0
ε
−→Z→ 0,

where

δi (x1, . . . , xr+1)=

r+1∑
j=1

(−1) j+1(x1, . . . , x̂ j , . . . , xr+1) (3-3)

and ε(x)= 1 for all x ∈ X , is a complex of G-modules.
If F denotes the stabilizer subgroup of x0 ∈ X , the complex C X

∗
is relatively F-projective resolution of

Z called the standard complex of (G, X).

Proposition 3.5. Let 6 = F FG G be a matched pair and Q := (Z εQ←− Qi , δ
′

i ) be the normalized right
bar resolution of the trivial G-module Z. Then the group 6 acts on Qi by

[si | · · · |s2|s1]s0 · (x, s)= [si C ((si−1 . . . s0)B x)| · · · |s1C (s0B x)](s0C x)s. (3-4)

and Q is a relatively F-projective resolution of right 6-modules.

Proof. Since 6 is a matched pair, the right 6-set of cosets F\6 can be identified with the set G and
6-action s ·( f, g)= (sC f )g. This6-set will be denoted by X . Applying the construction of Example 3.4
to X , we obtain a relatively F-projective resolution C :=Ci

ε
−→Z, since F is the stabilizer of e ∈ G. The

resolution C coincides with the standard G-free resolution of Z as a trivial G-module. A G-basis of Ci

(called bar basis) is given by

[si | · · · |s2|s1] = (si · · · s1, · · · , s2s1, s1, e).

The action of 6 in this basis is given by (3-4). The normalized bar resolution is a quotient of the bar
resolution, and it is easy to see that this is also relatively F-projective. �

Remarks 3.6. • In Proposition 3.5, we may consider the normalized left bar resolution (Z εP←− Pi , δ
′

i )

for the trivial G-module Z: with action of 6 given by

(s, x) · x0[x1| · · · |xi ] = x(sB x0)[(sC x0)B x1| · · · |(sC x0x1 . . . xi−1)B xi ]. (3-5)

This is a relatively G-projective resolution.

• The formulas (3-4) and (3-5) appear in [Masuoka 1997a].

Theorem 3.7. Let 6 = F FG G be a matched pair. Let (Z εP←− Pi , δi ) and (Z εQ
←− Qi , δ

′

i ) be a relatively
F-projective and a relatively G-projective 6-resolutions of Z, respectively. Then the total complex of the
tensor product double complex

Pi ⊗ Q j for i, j ≥ 0.

is a projective 6-resolution of Z.
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Proof. Since Pi is relatively F-projective, Pi↓F↑
6
= Pi ⊕ P ′i as 6-modules. Analogously, Q j↓G↑

6
=

Qi ⊕ Q′i .
Using the fact that (F,G) is an exact factorization of 6 and the Mackey’s tensor product theorem (see

e.g., [Curtis and Reiner 1990, Theorem 10.18]), we have that

(Pi ⊗ Q j )↓{e}↑
6 ∼= Pi↓F↑

6
⊗Q j↓G↑

6,

= (Pi ⊕ P ′i )⊗ (Q j ⊕ Q′j )

= Pi ⊗ Q j ⊕ (Pi ⊗ Q′j ⊕ P ′i ⊗ Q j ⊕ P ′i ⊗ Q j ⊕ P ′i ⊗ Q′j ).

Hence Pi ⊗Q j is direct summand of the 6-free module (Pi ⊗Q j )↓{e}↑
6 , that is, Pi ⊗Q j is a projective

6-module.
Finally, since each Pi and Q j are flat Z-modules, it follows from the Künneth formula that, for n > 0,

Hn(Tot(P∗⊗ Q∗))= 0. �

Theorem 3.7 generalizes the results of [Masuoka 1997b; 2003] about the construction of nonstandard
free resolutions of Z associated to a matched pairs of groups. In fact, taking the relatively projective
resolutions of Proposition 3.5 and Remarks 3.6 we can obtain the resolutions in [Masuoka 1997b; 2003].

Kac cohomology as relative group cohomology. Using the bijective maps,

6/G→ F, ( f, g)G 7→ f,

F\6→ G, F( f, g) 7→ g

we can endow the set F with a left 6-action ( f, g)x = f (gB x) and G with a right 6-action s( f, g)=
(s C f )g. From now on, X will denote the left 6-set defined as the disjoint union F tG, where G is
considered a left 6-set using the inverse. We denote by 3X the kernel of the augmentation map (3-1).

Proposition 3.8. Let 6 = F FGG be a matched pair. Let (Z εP←− Pi , δi ) and (Z εQ
←−Qi , δ

′

i ) be a relatively
F-projective and a relatively G-projective 6-resolutions of Z, respectively. Let D∗,∗ be the truncated
tensor product double complex

Di, j := Pi+1⊗ Q j+1, for i, j ≥ 0. (3-6)

Then, the total complex (Tot(D∗,∗), di ) completed with the map

P0⊗ Q0
−δ1⊗δ

′

1←−−−Tot(D∗,∗),

is a projective 6-resolution of 3X .

Proof. Let 3 be the kernel of the map ε : P0⊕ Q0→ Z defined by ε(x ⊕ y) = εP(x)+ εQ(y). Let us
consider the total complex (Tot(D∗,∗), di ) completed with the maps

0←3 θ
←− P0⊗ Q0

−δ1⊗δ
′

1←−−−Tot(D∗,∗), (3-7)
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where θ(p⊗ q)=−pεQ(q)⊕ εP(p)q . Let us see that Hn(Tot(D∗,∗))= 0 for all n ≥ 1. Let B∗,∗ be the
subcomplex of P∗⊗ Q∗ consisting of the first row and first column, that is,

Bi, j = 0 for i, j ≥ 1,

Bi, j = Pi ⊗ Q j for i = 0∨ j = 0.

Let S∗,∗ = P∗⊗ Q∗/B∗,∗. Note that Totn(D∗,∗)= Totn+2(S∗,∗) for all n.
Let us now see that (3-7) is exact in Tot0(D∗,∗)= P1⊗Q1. The map d1 : P2⊗Q1⊕P1⊗Q2→ P1⊗Q1

in Tot(D∗,∗) is defined by d1(a⊕ b)= (δ2⊗ id)(a)− (id⊗ δ′2)(b), where a ∈ P2⊗ Q1 and b ∈ P1⊗ Q2.
Hence, the composed map is given by

(−δ1⊗ δ
′

1) ◦ d1(a, b)= (−δ1⊗ δ
′

1)(δ2⊗ id)(a)+ (δ1⊗ δ
′

1)(id⊗ δ
′

2)(b)= 0.

Thus, Im(d1)⊆ Ker(−δ1⊗ δ
′

1). Now, since Pi and Qi are free Z-modules, then

Ker(−δ1⊗ δ
′

1)= Ker(δ1)⊗ Q1+ P1⊗Ker(−δ′1)= Im(δ2)⊗ Q1− P1⊗ Im(δ′2).

so Ker(−δ1⊗ δ
′

1)⊆ Im(d1). To see the exactness in P0⊗ Q0, note that

θ ◦ (δ1⊗ δ
′

1)(p⊗ q)= δ1(p)εQ(δ
′

1(q))⊕ εP(δ1(p))δ1(q)= 0.

Hence, Im(δ1⊗ δ
′

1)⊆ Ker(θ). To see that Ker(θ)⊆ Im(δ1⊗ δ
′

1), let us consider the tensor product of the
two chain complexes 0← Z εP←− Pi and 0← Z

εQ
←− Qi . That is,

Z⊗ Q1

−id⊗δ′1
��

P0⊗ Q1

id⊗δ′1
��

εP⊗id
oo P1⊗ Q1

δ1⊗id
oo

−id⊗δ′1
��

Z⊗ Q0

−id⊗εQ

��

P0⊗ Q0
εP⊗id
oo

id⊗εQ

��

P1⊗ Q0
δ1⊗id
oo

−id⊗εQ

��

Z P0⊗Z
εP⊗id

oo P1⊗Z.
δ1⊗id
oo

(3-8)

whose total complex is given by the exact sequence

0← Z⊗Z ε
←− P0⊗Z⊕Z⊗ Q0

d1←− P1⊗Z⊕ P0⊗ Q0⊕Z⊗ Q1← · · · (3-9)

which can be written as

Z ε
←− P0⊕ Q0

d1←− P1⊕ P0⊗ Q0⊕ Q1← · · · (3-10)

Note that θ is the restriction of d1 to P0⊗Q0. Suppose that c∈Ker(θ). Then, (id⊗εQ)(c)= (εP⊗id)(c)=0.
Let b2, b3 be the preimages of c under the vertical and horizontal differentials in (3-8) respectively. There
is a tuple b = (b1, b2,−b3,−b4) such that d2(b)= 0. Since the total complex of (3-8) is acyclic, there
is a tuple a = (a1, a2, a3, a4, a5) such that d3(a)= b, and, it can be verified that a3 ∈ P1⊗ Q1 satisfies
θ(a3)= c. Therefore, Ker(θ)⊆ Im(δ1⊗ δ

′

1).
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To see that θ is surjective, note that ε = εP + εQ in (3-10), and

d1(a⊕ b⊕ c)= (δ1(a)+ (id⊗ εQ)(b))⊕ ((εP ⊗ id)(b)− δ′1(c)).

Let p0 ∈ d1(P1)= Ker(εP) and let q ∈ Q0 such that εQ(q)= 1. Then,

d1(p0⊗ q)= (−id⊗ εQ + εP ⊗ id)(p0⊗ q)= p0,

so d1(P1)⊆ d1(P0⊗ Q0). Similarly, d1(Q1)⊆ d1(P0⊗ Q0). Hence,

3= Ker(ε)= Im(d1)= Span{d1(P1)∪ d1(P0⊗ Q0)∪ d1(Q1)} = d1(P0⊗ Q0).

Also, the map d1 restricted to P0⊗Q0 is given by −id⊗ εQ⊕ εP⊗ id= θ , then 3= Im(θ) and therefore
the sequence (3-7) is exact.

Finally, we see that 3 and 3X are isomorphic as 6-modules. Let us take P ′
∗
= CG

∗
and Q′

∗
= C F

∗
, the

standard resolutions as in Example 3.4, were F and G are consider as 6-sets. In this case,

CG
0 ⊕C F

0 = Z[G]⊕Z[F] ∼= Z[G t F] = Z[X ],

and ε is the augmentation map (3-1). Then, for this resolution 3=3X .
If (Z εP←− Pi , δi ) and (Z εQ

←− Qi , δi ) are relatively projective resolutions, there exists homotopy equiva-
lences

s : P∗→ CG
∗
, l : Q∗→ C F

∗

This implies that P0 ⊗ Q0
−δ1⊗δ

′

1←−−− Tot(D∗,∗) is homotopically equivalent to P ′0 ⊗ Q′0
−δ1⊗δ

′

1←−−− Tot(D∗,∗).
Hence,

3X ∼= Coker(P ′1⊗ Q′1→ P ′0⊗ Q′0)∼= Coker(P1⊗ Q1→ P0⊗ Q0)∼=3. �

Theorem 3.9. Let k be a field and 6 = F FG G a matched pair of groups. Then,

OpextB,C(k F, kG)∼= H 3
A (6, X; k×),

where k× is considered as a trivial 6-module.

Proof. Let (Z εP←−Pi , δi ) and (Z εQ
←−Qi , δ

′

i ) be the resolutions in Proposition 3.5. These are the resolutions
used in [Masuoka 1997b] to compute OpextB,C(k F, kG); they consider the truncated tensor product Di, j

of the two resolutions to get

OpextB,C(k F, kG)∼= H 1(Tot(Hom6(Di, j ))).

If3 is the kernel of the map ε : P0⊕Q0→Z defined by ε(x⊕ y)= εP(x)+εQ(y), (here, P0 :=ZF =ZX
and Q0 := ZY for the 6-sets X = F and Y = G) then, by Proposition 3.8, the total complex of
Ei, j := Pi+1⊗ Q j+1 for i, j ≥ 0 completed in the following way

0←−3 θ
←− P0⊗ Q0

−δ1⊗δ
′

1←−−−Tot(D∗,∗),
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is a resolution of 3, and 3=3X . Therefore, if we apply Hom6(−, k×) to this total complex, we get the
relative cohomology groups H n

A (6, X; A). That is

H k(Hom6(Tot(D∗,∗)))∼= H k+2
A (6, X; A). (3-11)

In particular, since Hom6(Tot(D∗,∗))∼= Tot(Hom6(D∗,∗)), then,

OpextB,C(k F, kG)∼= H 1(Tot(Hom6(D∗,∗)))∼= H 3
A (6, X; k×), (3-12)

which completes the proof. �

As a consequence of Theorem 3.9 and the long exact sequence (3-2) we obtain Kac’s exact sequence
(see [Masuoka 1997a; Kac 1969]).

Corollary 3.10 (Kac’s exact sequence). For a fixed matched pair of groups (F,G,B,C), we have a long
exact sequence

0→ H 1(F FG G, k×)→ H 1(F, k×)⊕ H 1(G, k×)→ H 3
A (6, X; k×)

→ H 2(F FG G, k×)→ H 2(F, k×)⊕ H 2(G, k×)→ OpextB,C(k F, kG)

→ H 3(F FG G, k×)→ H 3(F, k×)⊕ H 3(G, k×)→ H 4
A (6, X; k×).

4. The five-term exact sequence for Kac double complex

The group OpextB,C(k F, kG) can be obtained, as described in [Masuoka 1997a], as the first cohomology
group of a double cochain complex, which can be computed by means of a spectral sequence. We compute
the first pages of the spectral sequence associated to the double cochain complex D∗,∗ in (3-6), which is
a particular case of the double cochain complex of Kac. The five-term exact sequence for this spectral
sequence will be useful for computing the group OpextB,C(k F, kG) for different kinds of matched pairs.

Spectral sequence of a double cochain complex. Through this section we deal with a first quadrant
double complex, that is, a double cochain complex M p,q such that M p,q

= {0} when p, q < 0. There is a
spectral sequence associated to a first quadrant double complex, whose first pages are obtained taking
vertical and horizontal cohomology of the double complex.

Let M∗,∗ be a first quadrant double complex with vertical and horizontal differentials given by δv, δh .
Let Tot(M∗,∗) be the total complex associated to M∗,∗. There is a spectral sequence (E∗,∗r , dr ) with
differentials d p,q

r : E pq
r → E p+r,q−r+1

r , which converges to H∗(Tot(M∗,∗)), whose first pages are given by

E p,q
0 = M p,q , E p,q

1 = Hq(M p,∗, d0), E p,q
2 = H p(E∗,q1 , d1),

see [McCleary 2001] for more details. The differentials for each page are given by

d p,q
0 = dv, d p,q

1 = d ′h, d p,q
2 (α)= dh(γ ), (4-1)
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where d ′h is the differential induced by dh on Hq(M p,∗, d0) and γ ∈M p+1,q−1 is such that dh(α)= dv(γ ).
Associated to the spectral sequence (E∗,∗r , dr ), there is a five-term exact sequence

0→ E1,0
2

i
−→ H 1(Tot(M∗,∗)) p

−→ E0,1
2

d0,1
2−→ E2,0

2
i
−→ H 2(Tot(M∗,∗)), (4-2)

where i is a restriction map, the map p is a projection map.

The five-term exact sequence. Given a matched pair (F,GB,C) we compute a five-term exact sequence
to calculate OpextB,C(k F, kG).

Theorem 4.1. Let 6 = F FG G be a matched pair and A be a 6-module. The first and second pages of
the spectral sequence associated to the double complex Hom6(D∗,∗, A), where Di, j

:= Pi+1⊗ Q j+1, for
i, j ≥ 0, is the double complex defined in Proposition 3.8, are given by

E i,n
1 = H n(6,G;Hom(Pi , A)), En,m

2 = H m(H n(6,G;Hom(P∗, A))),

for m, n > 0. The first page does not depend on the resolution Q∗ and En,m
2 (m, n > 0) depends neither

on the resolution P∗ nor the resolution Q∗.

Proof. The double complex Hom6(D∗,∗, A) with only the vertical differentials is the zeroth page of the
spectral sequence

E i, j
0 := Hom6(Pi ⊗ Q j , A)∼= Hom6(Q j ,HomZ(Pi , A)). (4-3)

Since (Z εQ
←− Qi , δ

′

i ) is a relatively projective resolution of Z, the first page of the spectral sequence is

E i,n
1 = H n(6,G,Hom(Pi , A))= Fn(Pi ), i > 0.

where Fn :6-Mod→ Ab is the functor given by H n
1 (6,G;Hom(−, A)). Hence it does not depend on

the resolution Qi . The second page is

En,m
2 = H m(Fn(P∗)), m, n > 0.

To see that En,m
2 = H m(Fn(P∗)), m, n > 0 do not depend on the resolution, let P ′i be another relatively

F-projective resolution of Z. Then, there exists a homotopy equivalence f : Pi → P ′i as F-modules, that
is, there exists g : P ′i → Pi and hi : Pi → Pi−1 such that

δi h+ hδi = f g− id.

Since the functor Fn is additive, we get

Fn(δi )Fn(hi )+ Fn(hi )Fn(δi )= Fn( f )Fn( f −1)− Fn(id)

for each n, so the map Fn( f ) is a homotopy equivalence between the resolutions Fn(Pi ) and Fn(P ′i ).
This means that the second page, which consist on the cohomology groups of the resolutions Fn(Pi ) and
Fn(P ′i ) with the respective induced differentials, is isomorphic to the first one. �
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Theorem 4.2. Let (F,G,B,C) be a matched pair where the action B is trivial and let k be a field. The
spectral sequence in Theorem 4.1 associated to the group 6 = F FG G has second page given by

E p,q
2 =H p+1(F, Hq+1(G, k×)), E p,0

2
∼= H p+1(F, Ĝ),

E0,q
2
∼=Der(F, Hq+1(G, k×)), E0,0

2 = Der(F, Ĝ),

for p ≥ 1, q ≥ 1. Therefore, we have the five-term exact sequence:

0→H 2(F, Ĝ)) i
−→OpextB,C(k F, kG) π

−→Der(F, H 2(G, k×)) d2−→H 3(F, Ĝ)→H 4
A (6, X, k×). (4-4)

Proof. According to (4-3), the zeroth page is given by

E i, j
0 := Hom6(Pi ⊗ Q j , k×)∼= Hom6(Q j ,HomZ(Pi , k×)).

If we take (Z εP←− Pi , δi ) and (Z εQ
←− Qi , δ

′

i ) to be the resolutions in Proposition 3.5, then we have the
group isomorphism

Hom6(Pi ⊗ Q j , k×)∼=Map+(G
q+1
× F p+1, k×),

and the vertical and horizontal differentials of the double complex of groups

Map+(G
q+1
× F p+1, k×),

are respectively given by

δi f (si+1, · · · , s1; x1, · · · , x p)
(−1)p

= f (si+1, · · · , s2; s1B x1, (s1C x1)B x2, · · · · · · , (s1C x1 · · · x p−1)B x p)

×

i∏
k=1

f (si+1, · · · , si+1si , · · · , s1; x1, · · · , x p)
(−1)k
× f (si , · · · , s1; x1, · · · , x p)

(−1)q+1
.

and

δ′i f (sq , · · · , s1; x1, · · · , xi+1)

= f (sq C (sq−1 · · · s1B x1), · · · · · · , s2C (s1B x1), s1C x1; x2, · · · , x p+1)

×

i∏
k=1

f (sq , · · · , s1; x1, · · · , xi xi+1, · · · , xi+1)
(−1)k
× f (sq , · · · , s1; x1, · · · , xi )

(−1)i+1
.

Since the action C is trivial, the vertical differentials are given by

δ( f )(sq+1, · · · , s1; x1, · · · , x p)
(−1)p

= f (sq+1, · · · , s2; x1, · · · , x p)

q∏
i=1

f (sq+1, · · · , si+1si , · · · , s1; x1, · · · , x p)
(−1)i f (sq , · · · , s1; x1, · · · , x p)

(−1)q+1
.
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We have that Map+(G
q
× F p, k×) ∼= Cq(G,C p(F, k×)), where Cq(G,C p(F, k×)) denotes the group

of functions f : Gq
→ C p(F, k×) (with a normalization property) and the group G acts trivially on the

group C p(F, k×).
Taking vertical cohomology to the zeroth page, we get Hq(G,C p(F, k×)). Therefore, the first page

E∗,∗1 of the spectral sequence is given by

E p,q
1 = Hq+1(G,C p+1(F, k×))∼= C p+1(F, Hq+1(G, k×)) for q ≥ 1

E p,0
1 = Der(G,C p+1(F, k×))∼= C p+1(F,Der(G, k×)),

where the isomorphisms hold since the vertical differential leaves every element of F fixed. On the other
hand, the horizontal differentials are given by

δ′( f )(sq , · · · , s1; x1, · · · , x p+1)

= f (sq C x1, · · · , s1C x1; x2, · · · , x p+1)

p∏
i=1

f (sq , · · · , s1; x1, · · · , xi xi+1, · · · , x p+1)
(−1)i f (sq , · · · , s1; x1, · · · , x p)

(−1)p+1
,

by differentiating each row by the induced horizontal differentials,

E p,q
2 = H p+1(F, Hq+1(G, k×)), E p,0

2
∼= H p+1(F, Ĝ)

E0,q
2
∼= Der(F, Hq+1(G, k×)), E0,0

2 = Der(F, Ĝ)
(4-5)

Since k× is a trivial G-module, the sequence (4-2) turns into

0→ H 2(F,Der(G, k×)) i
−→ H 1(Tot(Hom6(Pi ⊗ Q j , k×))) p

−→Der(F, H 2(G, k×))
d0,1

2−→H 3(F,Der(G, k×)) i
−→ H 2(Tot(Hom6(Pi ⊗ Q j , k×))),

From (3-11) and (3-12) we get the five-term exact sequence

0→ H 2(F, Ĝ)→ OpextB,C(k F, kG)→ Der(F, H 2(G, k×)) d0,1
2−→ H 3(F, Ĝ)→ H 4(6, X, k×). �

Note that, in the case that B is a trivial action, the terms E p,q
2 with p ≥ 1, q ≥ 1 of the second page of

the spectral sequence associated to the semidirect product 6 = F nG coincide with the second page of
the Lyndon–Hochschild–Serre spectral sequence [Evens 1991].

Corollary 4.3. Let (F,G,B,C) be a matched pair with trivial B action and let k be a field. Then:

(1) If H 2(G, k×)= 1 then OpextB,C(k F, kG)∼= H 2(F, Ĝ).

(2) If (|F |, |Ĝ|)= 1, then OpextB,C(k F, kG)∼= Der(F, H 2(G, k×)).

(3) If G is a perfect group, then OpextB,C(k F, kG)= Der(F, H 2(G, k×))

(4) If |F | = 2k+ 1 and G = Sn with n ≥ 4, then, OpextB,C(CF,CG)= 0.
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Proof. Part (1) is straightforward.

(2) Since (|F |, |Ĝ|)= 1, then H n(F, Ĝ)= H n(F, Ĝ)= {1} and the result holds.

(3) Since the abelianization of G is trivial, then Ĝ ∼= {0}. Therefore, H 2(F, Ĝ) = H 2(F, Ĝ) = {0},
similarly H 3(F, Ĝ)= 0, then, OpextB,C(k F, kG)= Der(F, H 2(G, k×)).

(4) Under the given conditions (|F |, |Ĝ|)= 1, as in (2). So OpextB,C(CF,CG)= Der(F, H 2(G,C×)).
Now, H 2(Sn,C×)= Z/2, for n ≥ 4 and Der(F, H 2(G,C×))=Hom(F,Z/2)= 0, so the result holds. �

5. Computations

We compute some examples of the group OpextB,C(k F, kG) for different semidirect products: the right
action B is trivial, so we denote the group OpextBC(k F, kG) by OpextC(k F, kG)). The first calculation
generalizes one from Masuoka [1997b].

Theorem 5.1. Let k be a field. Let G be a group and Z/2 n (G × G) be the semidirect product with
(a, b)C 1= (b, a). Then

OpextC(kZ/2, kG×G)∼= H 2(G, k×)⊕ PSym(G,G; k×),

where PSym(G,G; k×) is the groups of all symmetric bicharacters of G.

Proof. It follows from (2-2) that H n(Z/2, H 1(G × G, k×)) = 0 for n ≥ 1. Then, the sequence (4-4)
implies that

OpextC(kZ/2, kG×G)∼= Der(Z/2, H 2(G×G, k×)).

According to (2-3), we have H 2(G × G, k×)
ψ
∼=H 2(G, k×) ⊕ P(G,G, k×) ⊕ H 2(G, k×). Given α ∈

Z2(G×G, k×), we have (α1, α2, φα)= ψ(α) ∈ H 2(G, k×)⊕ H 2(G, k×)⊕ P(G,G, k×) given by

α1(x, y)= α((x, e), (y, e)), α2(x, y)= α((e, x), (e, y)), φα(x, y)=
α((x, e), (e, y))
α((e, y), (x, e))

.

Hence the induced action of 1 ∈ Z/2 on H 2(G, k×)× H 2(G, k×)× P(G,G; k×) is

1(α1, α2, φα)(x, y)= (1α1(x, y), 1α2(x, y), 1φα(x, y))

= (α2(x, y), α1(x, y), φ−1
α (y, x))

:= (α2, α1, (φ
T
α )
−1)(x, y).

Then α ∈ Der(Z/2, H 2(G×G, k×)) if and only if α := α(1) satisfies α1α = 1, that is,

(α1, α2, φα)(α2, α1, (φ
T
α )
−1)= 1⇔ α1 = α

−1
2 ,

and φα is a symmetric bicharacter. �

The following example includes the previous one in the case that b = c = 1, a = 0.
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Theorem 5.2. Let Z/2n(Z/n⊕Z/n) be the semidirect product where the action of Z/2 on (Z/n⊕Z/n)
is defined by the matrix

A =
(

a b
c −a

)
with Det(A)=−1. Let k be a field such that k×/(k×)2n

= 0. Then,

OpextB(kZ/2, kZ/n⊕Z/n)∼=
Ker(A− I )
Im(A+ I )

⊕µn(k),

where µn(k) is the group of n-th roots of unity in k.

Proof. In this case the sequence (4-4) is given by

0→ H 2(Z/2,Der(Z/n⊕Z/n, k×)) i
−→OpextC(kZ/2, kZ/n⊕Z/n)

π
−→Der(Z/2, H 2(Z/n⊕Z/n, k×)) d0,1

2−→ H 3(Z/2,Der(Z/n⊕Z/n, k×))→ H 4(6, X, A).

We will see that:

(i) H 2(Z/2, H 1(Z/n⊕Z/n, k×))∼= Ker(A− I )/Im(A+ I ).

(ii) Der(Z/2, H 2(Z/n⊕Z/n, k×))∼= µn(k).

(iii) d0,1
2 = 0.

Therefore, OpextC(kZ/2, kZ/n⊕Z/n) fits in a short exact sequence

0→
Ker(A− I )
Im(A+ I )

i
−→OpextC(kZ/2, kZ/n⊕Z/n) π

−→µn(k)→ 0, (5-1)

moreover, we will see (5-1) is split, so

OpextC(kZ/2, kZ/n⊕Z/n)∼=
Ker(A− I )
Im(A+ I )

⊕µn(k).

(i) It follows immediately from (2-2).

(ii) We identify ∧2(Z/n⊕Z/n) with the abelian group of alternating 2× 2 matrices over the ring Z/nZ.
Therefore, ∧2(Z/n⊕Z/n)∼= Z/n and

H 2(Z/n⊕Z/n, k×)∼= Hom(∧2(Z/n⊕Z/n), k×)∼= µn(k),

where µn(k) is the group of n-th roots unit. Since AT M A =−M for all M ∈ ∧2(Z/n⊕Z/n) we have
that

Der(Z/2, H 2(Z/n⊕Z/n, k×))∼= µn(k).

(iii) To compute

d0,1
2 : µn(k)= Der(Z/2, H 2(Z/n⊕Z/n, k×))→ H 3(Z/2,Der(Z/n⊕Z/n, k×)),
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we follow (4-1). Given ζ ∈ µn(k)= Der(Z/2, H 2(Z/n⊕Z/n, k×)), we need to find

γ ∈Map+((Z/n⊕Z/n)× (Z/2)2, k×)∼= C2(Z/2,C1(Z/n⊕Z/n, k×))

such that

δh(αζ )= δv(γ ), (5-2)

where

αζ ∈ C2(Z/n⊕Z/n, k×), αζ (x, y)= ζ x1 y2 (5-3)

and then compute the cohomology class of δh(γ ) in H 3(Z/2,Der(Z/n⊕Z/n, k×)). We have that

δh(αζ )(1, 1)(x, y)= αζ (Ax, Ay)αζ (x, y)= ζ xT
(

ac
bc

bc
−ab

)
y
.

This is a bicharacter with associated quadratic form

ω(x, y)= ζ−acx2
−2bcxy+aby2

.

Therefore, the cochain γ ∈ C2(Z/2,C1(Z/n⊕Z/n, k×)) defined by

γ (1, 1)= ζ−(acx2)/2−bcxy+(aby2)/2, (x, y) ∈ Z/n⊕Z/n, (5-4)

and γ (0, 1)= γ (1, 0)= γ (0, 0)= 1, satisfies (5-2).
Finally, the horizontal differential of γ is given by

δh(γ )(1, 1, 1)= γ (1, 1)γ (1, 0)(1(γ (1, 1))γ (0, 1))−1
= γ (1, 1)(1(γ (1, 1))−1

= 1.

Hence, d2(ζ )= 1.
A section of π in the exact sequence (5-1) is given by cohomology of s(ζ )= (αζ , γζ ), where αζ and γζ

are given by (5-3) and (5-4), respectively. It is clear from the definition that s is a group homomorphism,
that is, (5-1) splits. �

Theorem 5.3. Let F be an arbitrary group acting on a finite abelian group V with odd order. Suppose
that (k×)n = k×, where n is the exponent of V . Then

OpextC(k F, kV )∼=H 2(F, V̂ )⊕Der(F,∧2V̂ ),

where V̂ = Hom(V, k×).

Proof. By (2-4), we have H 2(V, k×)∼= ∧2V̂ . The sequence (4-4) is given by

0→ H 2(F, V̂ ) i
−→OpextC(k F, kV ) π

−→Der(F,∧2V̂ ) d2−→→ H 3(F, V̂ )→ H 4(6, X, A),

where 6 = V o F . We will see that d2 = 0 and the resulting short exact sequence splits, hence we get the
result.
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Let α ∈Der(F,∧2V̂ ), that is, α : F→∧2V̂ such that α(gh)= gα(h)α(g). By (2-5), α can be identified
with a map α : F→ H 2(V, k×) which can be lifted to a map α̃ : F→ Z2(V, k×) considering that, since
V has odd order, the map

Alt : ∧2V̂ →∧2V̂

given by Alt(φ)(x, y)= φ(x, y)/φ(y, x)= φ(x, y)2 is an isomorphism, so we can define the lifting map
by α̃ : F→ Z2(V, k×) by

α̃(g)= α(g)1/2.

In order to compute d2(α), we must find a function γ ∈ C2(F,C1(V, k×)) such that

δ(γ (g, h))=
gα̃(h)α̃(g)
α̃(gh)

=

g̃α(h)α̃(g)
α̃(gh)

=

( gα(h)α(g)
α(gh)

)1/2

= 1.

Hence γ can be taken to be the constant cochain and, therefore, d2(α)= 1 for all α ∈ Der(F,∧2V̂ ). �

Corollary 5.4. Let F = Cm = 〈σ 〉 be a cyclic group of order m acting on a finite abelian group V with
odd order. Suppose that (k×)n = k×, where n is the exponent of V . Then

OpextC(k F, kV )∼= {ψ ∈ V̂ : σψ = ψ}/{Nσψ : ψ ∈ V̂ }⊕ {b ∈ ∧2V̂ : Nσb = 0},

where Nσ = 1+ σ + · · ·+ σm−1.

An example with nontrivial differential d2. The next example illustrates the fact that the hypothesis in
Theorem 5.3 stating that the order of the order of V must be odd, can not be avoided since otherwise the
differential d2 can be not trivial.

Remarks 5.5. (a) Let G be an elementary abelian p-group of rank n. Once a basis of G is fixed, using
the isomorphism (2-5) we can identify H 2(G,C×) with alternating matrices over Z/p. A representative
2-cocycle αM ∈ H 2(G,C×) corresponding to a matrix M is defined by

αM(x, y)= exp
(

2π i
n

xT M̃y
)
, (5-5)

where M̃ is the upper triangular part of M .

(b) Let F = 〈t1〉⊕ 〈t2〉 be a product of cyclic groups and let M be an left F-module. If (Z ε
←− Pi ) and

(Z ε
←− P ′i ) are periodic resolutions as in (2-1) for the groups 〈t1〉 and 〈t2〉 respectively, then the total

complex Tot(P ⊗ P ′) is a free F-resolution of Z. Therefore, given a F-module M , we can compute
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H∗(F,M) as the cohomology of total complex of

...
...

...

M
t1−1
//

t2−1

OO

M

t2−1

OO

Nt1
// M

t1−1
//

t2−1

OO

· · ·

M
t1−1
//

Nt2

OO

M

Nt2

OO

Nt1
// M

Nt2

OO

t1−1
// · · ·

M
t1−1
//

t2−1

OO

M

t2−1

OO

Nt1
// M

t2−1

OO

t1−1
// · · ·

Since we are mainly interested in H 2(F,M), the second and third differentials δ2 :M⊕M→M⊕M⊕M
and δ3 : M ⊕M ⊕M→ M ⊕M ⊕M ⊕M of the total complex are given by

δ2(A, B)= (A+ g1A, A− g2A− (B− g1B), B+ g2B), (5-6)

δ3(A, B,C)= (g1A− A, g2A− A+ B+ g1B, B+ g2B+ g1C −C, g2C −C). (5-7)

Lemma 5.6. Let F = 〈t1, t2〉, G = 〈s1, . . . , s4〉 be elementary abelian 2-groups of rank 2 and 4, respec-
tively. Consider the (right) action of F on G determined by the matrices

F1 =


1 0 0 0
0 1 0 0
1 1 1 0
0 1 0 1

 , F2 =


1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

 .
and the induced left action of F on H 2(G,C×). Then:

(1) The group Der(F, H 2(G,C×)) is in correspondence with the set of pairs of matrices

A =


0 0 b c
0 0 d e
b d 0 f
c e f 0

 , B =


0 0 b′ c′

0 0 d ′ e′

b′ d ′ 0 f ′

c′ e′ f ′ 0


with entries in Z/p, such that

c′+ b′+ d ′ = 0

c+ d + e = 0

b+ e+ c′+ d ′+ e = 0.

(5-8)

(2) The group H 2(F, H 1(G,C×)) is isomorphic to Z/22.
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Proof. (1) By (5-6), elements in Der(F, H 2(G,C×)) are in correspondence with pairs (A, B) of alternating
4× 4 matrices such that

A+ F1 AFT
1 = 0

B+ F2 B FT
2 = 0

A− F2 AFT
2 − B+ F1 B FT

1 = 0.

(5-9)

The system (5-9) is equivalent to (5-8).

(2) In order to compute H 2(F, H 1(G,C×)) we use the canonical identification

H 1(G,C×)= Hom(G,C×)∼= G

as left F-modules. By (5-7), we have that Ker(δ3) is in correspondence with 4×3 matrices S=[na, nb, nc]

over Z/2 such that
(F1− I)na = 0, (F2− I)nc = 0,

(I−F1)nc = (F2+ I)nb, (I+F1)nb = (I−F2)na.

Thus, the space Ker(δ3) corresponds with all 4× 3 matrices over F2 such that Si j = 0 for 1≤ i ≤ 2 and
1≤ j ≤ 3. On the other hand, by (5-6) we have

Im(δ2)= {(la + F1la, la − lb+ F1lb− F2la, lb+ F2lb) : la, lb ∈ N },

that is, Im(δ2) is in correspondence with all matrices of the form
0 0 0
0 0 0

x1+ x2 x1+ y1+ y2 y1

x2 x1+ x2+ y2 y1+ y2


where xi , yi ∈ Z/2. Hence H 2(F, H 1(G,C×))∼= Z/22. �

Lemma 5.7. Let 6 = F nG be a semidirect product and let

· · · → R3→ R2→ R1→ R0, (5-10)

be a free resolution of a right F-modules M. The action of F on Ri can be extended to an action of 6 by
r · ( f, g)= r · f . With this action, the sequence (5-10) turns out to be a relatively G-projective resolution
of the right 6-module M. �

Theorem 5.8. Let F = 〈t1, t2〉 and G = 〈s1, . . . , s4〉 be elementary abelian 2-groups of rank 2 and 4,
respectively. Consider the (right) action of F on G determined by the matrices

F1 =


1 0 0 0
0 1 0 0
1 1 1 0
0 1 0 1

 , F2 =


1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

 .
Then OpextC(CF,CG)∼= (Z/2)3⊕ (Z/4)2.
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Proof. The five-term exact sequence (4-4) for this case is

0→ H 2(F,Der(G,C×)) i
−→OpextC(CF,CG)

π
−→Der(F, H 2(G,C×)) d2−→ H 3(F,Der(G,C×))→ H 2(Tot(M∗,∗)).

For this computation the relatively F-projective resolution used in Theorem 4.1 (Z εQ
←− Qi , δ

′

i ) will be
as in Proposition 3.5, and the relatively G-projective resolution (Z εP←− Pi , δi ) will be the total complex
of the tensor product of the cyclic resolutions for 〈t1〉 and 〈t2〉, considered as a relatively G-projective
6-resolution of Z using Lemma 5.7.

The zeroth page of the spectral sequence in Theorem 4.1 is given by

E i, j
0 = HomZ6(Pi+1⊗ Q j+1,C×)= HomZ6

( i+2⊕
k=1

ZF ⊗ZG[G] j+1,C×
)

The horizontal and vertical differentials dh and dv are induced by the differentials of the resolutions
(Z εP←− Pi ) and (Z εQ

←− Qi ), respectively. Each 6-module ZF ⊗ZG[G] j+1 is free with basis

{e⊗[g1| · · · |g j+1] : e 6= g1, · · · g j+1 ∈ N }.

Therefore, an element in E i, j
0 is defined by a tuple (h1, . . . , hi+2) with hk ∈ C j+1(F,C×), where

hk( f1, · · · , f j+1) = 1 if any of the entries is the identity of F . Similarly, the differentials dk,0
0 :

Hom6(Pk+1
⊗ Q1,C×) of the zeroth page, induced by the vertical differentials of the double complex

are given by

d0( f )(e⊗[g1|g2])= f (e⊗ (g1[g2] − [g1g2] + [g1])).

Since we are considering C× as a trivial6-module, the elements in Ek,0
1 =Ker(dk,0

0 ) are in correspondence
to tuples (χ1, . . . , χi+2) with χi ∈ Ĝ.

First, we will compute Ker(d2). By Lemma 5.6, the group E0,1
2 = Der(F, H 2(G,C×)) is in corre-

spondence with pairs (A, B) of alternating 4× 4 matrices satisfying the equations in (5-8). According
to Remarks 5.5(a), a representative element for (A, B) in E0,1

0 = Hom6((ZF ⊕ZF)⊗ZG[G]2,C×) is
defined by α = (αA, αB), where αA, αB are 2-cocycles defined in (5-5).

By (4-1), we have that d2(A, B)= dh(γ ) were

γ ∈ E1,0
0 = Hom6((ZF ⊕ZF ⊕ZF)⊗ZG[G]),

satisfies dh(αA, αB)= dv(γ ).
By (5-6) we have that

dh(αA, αB)= (bM1, bM2, bM3) ∈ E1,1
0 = Hom6((ZF ⊕ZF ⊕ZF)⊗ZG[G]2,C×), (5-11)
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where bMi (x, y)= (−1)x
T Mi y and

M1 = Ã+ F1 ÃFT
1 =


0 0 0 0
0 0 0 0
0 0 b+ d d
0 0 d e



M2 = Ã− F2 ÃFT
2 − (B̃− F1 B̃ FT

1 )=


0 0 0 0
0 0 0 0
0 0 b+ b′+ d ′ b+ d + d ′

0 b+ d + d ′ c+ e+ e′



M3 = B̃+ F2 B̃ FT
2 =


0 0 0 0
0 0 0 0
0 0 b′ c′

0 0 c′ c′+ e′

 .
The cochain γ = (γM1, γM2, γM3) ∈ E1,0

0 = Hom6((ZF ⊕ZF ⊕ZF)⊗ZG[G]2,C×) defined by

γM1(x)= exp
(
−
π
2 ((b+ d)x2

3 + 2dx3x4+ ex2
4)
)
,

γM2(x)= exp
(
−
π
2 ((b+ b′+ d ′)x2

3 + 2(b+ d + d ′)x3x4+ (c+ e+ e′)x2
4)
)
,

γM3(x)= exp
(
−
π
2 (b
′x2

3 + 2c′x3x4+ (c′+ e′)x2
4)
)
,

(5-12)

satisfies (5-11). Therefore,

δh(γM1, γM2, γM3)=

( t1γM1

γM1

,
t2γM1γM2(

t1γM2)

γM1

,
γM2(

t2γM2)
t1γ γM3

γM3

,
t2γM3

γM3

)
= (1, γ 2

M2
, γ 2

M2
, 1) ∈ ker(d1 : E

2,0
1 → E3,0

1 ).

Since G is an elementary abelian 2-group, we will use the canonical identification of Ĝ with G. Under
this identification we have that γ 2

M2
= (0, 0, b+ b′+ d ′, c+ e+ e′).

The pair (A, B) belongs to Ker(d2) if and only if (0, γ 2
M2
, γ 2

M2
, 0) belongs to the image of d1 : E

1,0
1 →

E2,0
1 if and only if there exists (µA, µB, µC) ∈ E1,0

1 = F×3 such that dh(µA, µB, µC)= (0, γ 2
M2
, γ 2

M2
, 0).

This means that

(F1− I )µA=0, (F2− I )µC =0, (F2− I )µA+(F1+ I )µB=γ
2
M2
, (F1− I )µC+(F2+ I )µB=γ

2
M2
.

From this equation we obtain b+ b′+ d ′ = c+ e+ e′ = 0. Joining these two equations with (5-8) we get
a system of equation with 5 free variables, hence Ker(d2)= (Z/2)5.

Hence we have the exact sequence

0→ H 2(F,G)→ OpextC(CF,CG) π
−→Ker(d2)→ 0. (5-13)

An element in Ker(d2) is represented by a pair of matrices A, B as in Lemma 5.6. Let us assign
c′ = 1 and consider the remaining variables zero, and let us call the respective pair of matrices (A′c, B ′c).
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A section of the sequence (5-13) send (Ac, Bc) to the class of the extension

(αc, γc) ∈ H 1(Hom6(Tot(D∗,∗,C∗))∼= OpextC(CF,CG)

where αc is the 2-cocycle associated to (A′c, B ′c) and γc is given according to (5-12), by

γM1(x)= exp
(
−
π
2 (x

2
3 + x2

4)
)
, γM2(x)= exp

(
−
π
2 (x

2
3)
)
, γM3(x)= exp

(
−
π
2 (x

2
4)
)
.

It can be verified that the class of (αc, γc) has order 4 in OpextB,C(CF,CG). In the same way, if we
take the variable d ′ to be 1 and consider the remaining variables null we get an element (αd , γd) of
order 4. Any other element outside the subgroup 〈(αc, γc), (αd , γd)〉 ∼= (Z/4)2 has order 2, otherwise the
order of OpextB,C(CF,CG) could not be 27. That is why OpextC(CF,CG) ∼= (Z/2)3⊕ (Z/4)2. Since
Hn(P)= Hn(Q)= 0 for n> 0, then Hn(P⊗Q)= 0 for n> 1 and H1(P⊗Q)=Tor1(H0(P), Hq(Q)). �
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Generalizing the method of Faltings–Serre, we rigorously verify that certain abelian surfaces without
extra endomorphisms are paramodular. To compute the required Hecke eigenvalues, we develop a method
of specialization of Siegel paramodular forms to modular curves.
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1. Introduction

1.1. Paramodularity. The Langlands program predicts deep connections between geometry and auto-
morphic forms, encoded in associated L-functions and Galois representations. The celebrated modularity
of elliptic curves E over Q [Wiles 1995; Taylor and Wiles 1995; Breuil et al. 2001] provides an
important instance of this program: to the isogeny class of E of conductor N , we associate a classical
cuspidal newform f ∈ S2(00(N )) of weight 2 and level N with rational Hecke eigenvalues such that
L(E, s)= L( f, s), and conversely. In particular, L(E, s) shares the good analytic properties of L( f, s)
including analytic continuation and functional equation, and the `-adic Galois representations of E and of
f are equivalent. More generally, by work of Ribet [1992] and the proof of Serre’s conjecture by Khare
and Wintenberger [2009a; 2009b], isogeny classes of abelian varieties A of dimension d , of GL2-type over
Q, and of conductor N d are in bijection with Galois orbits of classical cuspidal newforms f ∈ S2(01(N )),
with matching (imprimitive) L-functions and `-adic Galois representations.

Continuing this program, let A be an abelian surface over Q; for instance, we may take A= Jac(X) the
Jacobian of a curve of genus 2 over Q. We suppose that End(A)= Z, i.e., A has minimal endomorphisms
defined over Q, and in particular A is not of GL2-type over Q. For example, if A has prime conductor,
then End(A)= Z by a theorem of Ribet (see Lemma 4.1.2). A conjecture of H. Yoshida [1980; 2007]
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compatible with the Langlands program is made precise by a conjecture of Brumer and Kramer [2014,
Conjecture 1.1], restricted here for simplicity.

Conjecture 1.1.1 (Brumer and Kramer). To every abelian surface A over Q of conductor N with
End(A)= Z, there exists a cuspidal Siegel paramodular newform f of degree 2, weight 2, and level N
with rational Hecke eigenvalues that is not a Gritsenko lift, such that

L(A, s)= L( f, s, spin). (1.1.2)

Moreover, f is unique up to (nonzero) scaling and depends only on the isogeny class of A; and if N is
squarefree, then this association is bijective.

Conjecture 1.1.1 is often referred to as the paramodular conjecture; in what follows, we say nonlift
for not a Gritsenko lift. As pointed out by Frank Calegari, in general it is necessary to include abelian
fourfolds with quaternionic multiplication for the converse assertion: for a precise statement for arbitrary
N and further discussion, see [Brumer and Kramer 2019, Section 8].

Extensive experimental evidence supports Conjecture 1.1.1 [Brumer and Kramer 2014; Poor and Yuen
2015]. There is also theoretical evidence for this conjecture when the abelian surface A is potentially of
GL2-type, acquiring extra endomorphisms over a quadratic field: see Johnson-Leung and Roberts [2012]
for real quadratic fields, Berger, Dembélé, Pacetti, and Şengün [2015] for imaginary quadratic fields, and
Dembélé and Kumar [2016] for explicit examples. For a complete treatment of the many possibilities for
the association of modular forms to abelian surfaces with potentially extra endomorphisms, see work of
Booker, Sijsling, Sutherland, Voight, and Yasaki [2016]. What remains is the case where End(AQal)= Z,
which is to say that A has minimal endomorphisms defined over the algebraic closure Qal; we say then
that A is typical. (We do not say generic, since it is not a Zariski open condition on the moduli space.)

Recently, there has been dramatic progress in modularity lifting theorems for nonlift Siegel modular
forms (i.e., forms not of endoscopic type): see Pilloni [2012] for p-adic overconvergent modularity lifting,
as well as recent work by Calegari and Geraghty [2016, §1.2], Berger and Klosin with Poor, Shurman and
Yuen [Berger and Klosin 2017] establishing modularity in the reducible case when certain congruences
are provided, and a recent manuscript by Boxer, Calegari, Gee, and Pilloni [2018] establishing potential
modularity over totally real fields.

1.2. Main result. For all prime levels N < 277, the paramodular conjecture is known: there are no
paramodular forms of the specified type by work of Poor and Yuen [2015, Theorem 1.2], and correspond-
ingly there are no abelian surfaces by work of Brumer and Kramer [2014, Proposition 1.5]. At level
N = 277, there exists a cuspidal, nonlift Siegel paramodular cusp form, unique up to scalar multiple,
by work of Poor and Yuen [2015, Theorem 1.3]: this form is given explicitly as a rational function in
Gritsenko lifts of ten weight 2 theta blocks — see (6.2.2).

Our main result is as follows.

Theorem 1.2.1. Let X be the curve over Q defined by

y2
+ (x3

+ x2
+ x + 1)y =−x2

− x;
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let A = Jac(X) be its Jacobian, a typical abelian surface over Q of conductor 277. Let f be the cuspidal,
nonlift Siegel paramodular form of genus 2, weight 2, and conductor 277, unique up to scalar multiple.
Then

L(A, s)= L( f, s, spin).

Theorem 1.2.1 is not implied by any of the published or announced results on paramodularity, and its
announcement in October 2015 makes it the first established typical case of the paramodular conjecture.
More recently, Berger and Klosin with Poor, Shurman, and Yuen [Berger and Klosin 2017] recently
established the paramodularity of an abelian surface of conductor 731 using a congruence with a Siegel
Saito–Kurokawa lift.

Returning to the paramodular conjecture, by work of Brumer and Kramer [2018, Theorem 1.2] there is
a unique isogeny class of abelian surfaces (LMFDB label 277.a) of conductor 277. Therefore, the proof
of Conjecture 1.1.1 for N = 277 is completed by Theorem 1.2.1. (More generally, Brumer and Kramer
[2014] also consider odd semistable conductors at most 1000.)

The theorem implies, and we prove directly, the equality of polynomials L p(A, T ) = Q p( f, T ) for
all primes p arising in the Euler product for the corresponding L-series. These equalities are useful in
two ways. On the one hand, the Euler factors L p(A, T ) can be computed much more efficiently than
for Q p( f, T ): without modularity, to compute the eigenvalues of a Siegel modular form f is difficult
and sensitive to the manner in which f was constructed, whereas computing L p(A, T ) can be done in
average polynomial time [Harvey 2014] and also efficiently in practice [Harvey and Sutherland 2016].
On the other hand, the L-series L(A, s) is endowed with the good analytic properties of L( f, s, spin):
without (potential) modularity, one knows little about L(A, s) beyond convergence in a right half-plane.

By work of Johnson-Leung and Roberts [2014, Main Theorem] there are infinitely many quadratic
characters χ such that the twist fχ of the paramodular cusp form by χ is nonzero. By a local calculation
[Johnson-Leung and Roberts 2017, Theorem 3.1], we have Q p( fχ , T )= Q p( f, χ(p)T ) and similarly
L p(Aχ , T )= L p(A, χ(p)T ) for good primes p. Consequently, we have L(Aχ , s)= L( fχ , s, spin) for
infinitely many characters χ , and in this way we also establish the paramodularity of infinitely many twists.

We also establish paramodularity for two other isogeny classes in this article of conductors N = 353
and N = 587, and our method is general enough to establish paramodularity in a wide variety of cases.

1.3. The method of Faltings–Serre. We now briefly discuss the method of proof and a few relevant
details. Let GalQ := Gal(Qal

|Q) be the absolute Galois group of Q. To establish paramodularity, we
associate 2-adic Galois representations ρA, ρ f : GalQ→ GSp4(Q

al
2 ) to A and f , and then we prove by

an extension of the Faltings–Serre method that these Galois representations are equivalent. The Galois
representation for A arises via its Tate module. By contrast, the construction of the Galois representation
for the Siegel paramodular form — for which the archimedean component of the associated automorphic
representation is a holomorphic limit of discrete series — is much deeper: see Theorem 4.3.4 for a precise
statement, attribution, and further discussion.
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The first step in carrying out the Faltings–Serre method is to prove equivalence modulo 2, which can
be done using information on ρ f obtained by computing Q p( f, T ) modulo 2 for a few small primes p.
For example, p = 3, 5 are enough for N = 277 (see Lemma 7.1.4) and in this case the mod 2 residual
Galois representations

ρA, ρ f : GalQ→ GSp4(F2)' S6

have common image S5(b) up to conjugation. (There are two nonconjugate subgroups of S6 isomorphic
to S5, interchanged by an outer automorphism of S6: see (5.1.8).)

The second step is to show that the traces of the two representations agree for an effectively computable
set of primes p. For example, to finish the proof of Theorem 1.2.1 in level N = 277, it suffices to show
equality of traces for primes p ≤ 43.

We also carry out this strategy to prove paramodularity for two other isogeny classes of abelian surfaces.
For N = 353, we have the isogeny class with LMFDB label 353.a; we again represent the paramodular
form as a rational function in Gritsenko lifts; and the common mod 2 image is instead the wreath product
S3 o S2 of order 72. For N = 587, we have the class with label 587.a; instead, we represent the form as a
Borcherds product; and in this case the mod 2 image is the full group S6.

1.4. Contributions and organization. Our contributions in this article are threefold. First, we show how
to extend the Faltings–Serre method from GL2 to a general algebraic group when the residual mod `
representations are absolutely irreducible. We then discuss making this practical by consideration of core-
free subgroups in a general context, and we hope this will be useful in future investigations. We then make
these extensions explicit for GSp4 and `=2. Whereas for GL2, Serre’s original “quartic method” considers
extensions whose Galois groups are no larger than S4, for GSp4 we must contemplate large polycyclic
extensions of S6-extensions — accordingly, the Galois theory and class field theory required to make the
method explicit and to work in practice are much more involved. It would be much more difficult (perhaps
hopeless) to work with GL4 instead of GSp4, so our formulation is crucial for practical implementation.

By other known means, the task of calculating the required traces for ρ f would be extremely difficult.
Our second contribution in this article is to devise and implement a method of specialization of the Siegel
modular form to a classical modular form, making this calculation a manageable task.

Our third contribution is to carry out the required computations. There are nine absolutely irreducible
subgroups of GSp4(F2). The three examples we present cover each of the three possibilities for the residual
image when it is absolutely irreducible and the level is squarefree (see Lemma 5.2.1). Our methods work
for any abelian surface whose mod 2 image is absolutely irreducible, as well as situations for paramodular
forms of higher weight. Our implementations are suitable for further investigations along these lines.

The paper is organized as follows. In Section 2, we explain the extension of the method of Faltings–Serre
in a general (theoretical) algorithmic context; we continue in Section 3 by noting a practical extension of
this method using some explicit Galois theory. We then consider abelian surfaces, paramodular forms,
and their associated Galois representations tailored to our setting in Section 4. Coming to our intended
application, we provide in Section 5 the group theory and Galois theory needed for the Faltings–Serre
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method for GSp4(Z2). In Section 6, we explain a method to compute Hecke eigenvalues of Siegel
paramodular forms using restriction to a modular curve. Finally, in Section 7, we combine these to
complete our task and verify paramodularity.

2. A general Faltings–Serre method

In this section, from the point of view of general algorithmic theory, we formulate the Faltings–Serre
method to show that two `-adic Galois representations are equivalent, under the hypothesis that the
residual representations are absolutely irreducible. A practical method for the group GSp4(Z2) is given in
Section 5. For further reading on the Faltings–Serre method, see the original criterion given by Serre
[1985] for elliptic curves over Q, an extension for residually reducible representations by Livné [1987,
§4], the general overview for GL2 over number fields by Dieulefait, Guerberoff, and Pacetti [2010, §4],
and the description for GLn by Schütt [2006, §5]. For an algorithmic approach in the pro-p setting, see
[Grenié 2007].

2.1. Trace computable representations. Let F be a number field with ring of integers ZF . Let Fal be
an algebraic closure of F ; we take all algebraic extensions of F inside Fal. Let GalF := Gal(Fal

| F) be
the absolute Galois group of F . Let S be a finite set of places of F , let GalF,S be the Galois group of the
maximal subextension of Fal

⊇ F unramified away from S. By a prime of F we mean a nonzero prime
ideal p⊂ ZF , or equivalently, a finite place of F .

Let G ⊆ GLn be an embedded algebraic group over Q. Let ` be a prime of good reduction for the
inclusion G⊆ GLn . A representation GalF,S→ G(Z`) is a continuous homomorphism.

Definition 2.1.1. Let ρ1, ρ2 : GalF,S → G(Z`) be two representations. We say ρ1 and ρ2 are (GLn-)
equivalent, and we write ρ1 ' ρ2, if there exists g ∈ GLn(Z`) such that

ρ1(σ )= gρ2(σ )g−1, for all σ ∈ GalF,S .

Definition 2.1.2. A representation ρ : GalF,S → G(Z`) is trace computable if tr ρ takes values in a
computable subring of Z` and there exists a deterministic algorithm to compute tr(Frobp) for p 6∈ S, where
Frobp denotes the conjugacy class of the Frobenius automorphism at p.

For precise definitions and a thorough survey of the subject of computable rings, see [Stoltenberg-
Hansen and Tucker 1999]. See [Cohen 1993] for background on algorithmic number theory.

Remark 2.1.3. Galois representations arising in arithmetic geometry are often trace computable. For
example, by counting points over finite fields, we may access the trace of Frobenius acting on Galois
representations arising from the étale cohomology of a nice variety: then the trace takes values in Z⊆ Z`

(independent of `). Similarly, algorithms to compute modular forms give as output Hecke eigenvalues,
which can then be interpreted in terms of the trace of Frobenius on the associated Galois representation.
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Looking only at the trace of a representation is justified in certain cases by the following theorem, a
cousin to the Brauer–Nesbitt theorem. For r ≥ 1, write

ρ mod `r
: GalF,S→ G(Z/`r Z)

for the reduction of ρ modulo `r , and as a shorthand write

ρ : GalF,S→ G(F`)

for the residual representation ρ = ρ mod `. Given two representations ρ1, ρ2 : GalF,S → G(Z`), we
write ρ1 ' ρ2 (mod `r ) to mean that (ρ1 mod `r ) ' (ρ2 mod `r ) are equivalent as in Definition 2.1.1
but over Z/`r Z; we write ρ1 ≡ ρ2 (mod `r ) to mean that (ρ1 mod `r ) = (ρ2 mod `r ); and we write
tr ρ1 ≡ tr ρ2 (mod `r ) if tr ρ1(σ ) ≡ tr ρ2(σ ) (mod `r ) for all σ ∈ GalF,S . Finally, we say that ρ is
absolutely irreducible if the representation GalF,S→ G(F`) ↪→ GLn(F`) is absolutely irreducible.

Theorem 2.1.4 (Carayol). Let ρ1, ρ2 : GalF,S→ G(Z`) be two representations such that ρ1 is absolutely
irreducible and let r ≥ 1. Then ρ1 ' ρ2 mod `r if and only if tr ρ1 ≡ tr ρ2 modulo `r .

Proof. See [Carayol 1994, Théorème 1]. �

We now state the main result of this section. We say that a prime p of F is a witness to the fact that
ρ1 6' ρ2 if tr ρ1(Frobp) 6= tr ρ2(Frobp).

Theorem 2.1.5. There is a deterministic algorithm that takes as input

an algebraic group G over Q, a number field F,

a finite set S of primes of F, a prime `, and

ρ1, ρ2 : GalF,S→ G(Z`) trace computable representations

with ρ1, ρ2 absolutely irreducible,

(2.1.6)

and gives as output {
true if ρ1 ' ρ2;

false and a witness prime p 6∈ S if ρ1 6' ρ2.

The algorithm does not operate on the representations ρ1, ρ2 themselves, only their traces. The proof
of Theorem 2.1.5 will occupy us throughout this section.

2.2. Testing equivalence of residual representations. We first prove a variant of our theorem for the
residual representations. For a finite extension K0⊇ F of fields with [K0 : F] = n and with Galois closure
K , we write Gal(K0 | F)≤ Sn for the Galois group Gal(K | F) as a permutation group on the roots of a
minimal polynomial of a primitive element for K0.

Lemma 2.2.1. There exists a deterministic algorithm that takes as input

a number field F,

a finite set S of places of F, and

a transitive group G ≤ Sn,
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and gives as output

all extensions K0 ⊇ F(up to isomorphism) of degree n unramified at all places v 6∈ S

such that Gal(K0 | F)' G as permutation groups.

Moreover, every Galois extension K ⊇ F unramified outside S such that Gal(K | F) ' G as groups
appears as the Galois closure of at least one such K0 ⊇ F.

Proof. The extensions K0 have degree n and are unramified away from S, so they have effectively bounded
discriminant by Krasner’s lemma. Therefore, there are finitely many such fields up to isomorphism, by a
classical theorem of Hermite. The enumeration can be accomplished algorithmically by a Hunter search:
see [Cohen 2000, §9.3]. The computation and verification of Galois groups can also be accomplished
effectively.

The second statement follows from basic Galois theory. �

Remark 2.2.2. For theoretical purposes, it is enough to consider G ↪→ Sn in its regular representation
(n = #G), for which the algorithm yields Galois extensions K = K0 ⊇ F . For practical purposes, it is
crucial to work with small permutation representations.

Algorithm 2.2.3. The following algorithm takes as input the data (2.1.6) and gives as output{
true if ρ1 ' ρ2;

false and a witness prime p 6∈ S if ρ1 6' ρ2.

1. Using the algorithm of Lemma 2.2.1, enumerate all Galois extensions K ⊇ F up to isomorphism
that are unramified away from S and such that Gal(K | F) is isomorphic to a subgroup of G(F`).

2. For each of these finitely many fields, enumerate all injective group homomorphisms θ :Gal(K | F) ↪→
G(F`) up to conjugation by GLn(F`).

3. Looping over primes p 6∈ S of F , rule out pairs (K , θ) such that

tr ρ1(Frobp) 6≡ tr θ(Frobp) (mod `)

for some p until only one possibility (K1, θ1) remains.

4. Let P be the set of primes used in Step 3. If

tr ρ2(Frobp)≡ tr θ1(Frobp) (mod `)

for all p ∈ P , return true; otherwise, return false and a prime p ∈ P such that tr ρ2(Frobp) 6≡
tr θ1(Frobp).

Proof of correctness. Let K1 be the fixed field under ker ρ1; then K1 is unramified away from S, and we
have an injective homomorphism ρ1 : Gal(K1 | F) ↪→ G(F`). Thus (K1, ρ1) is among the finite list of
pairs (K , θ) computed in Step 2.

Combining Theorem 2.1.4 (for r = 1) and the Chebotarev density theorem, we can effectively determine
if ρ1 6' θ by finding a prime p such that tr ρ1(Frobp) 6≡ tr θ(Frobp) (mod `). So by looping over the
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primes p 6∈ S of F in Step 3, we will eventually rule out all of the finitely many candidates except one
(K ′1, θ

′

1) and, in the style of Sherlock Holmes, we must have K1 = K ′1 and ρ1 ' θ1.
For the same reason, if tr ρ2(Frobp)≡ tr θ1(Frobp) (mod `) for all p ∈ P we must have ρ2 ' θ1 ' ρ1.

Otherwise, we find a witness prime p ∈ P . �

Remark 2.2.4. In practice, we may also use the characteristic polynomial of ρi (Frobp) when it is
computable, since it gives more information about the residual image and thereby limits the possible
subgroups of G(F`) we need to consider in Step 1. This allows for a smaller list of pairs (K , θ) and a
smaller list of primes: see Lemma 7.1.4 for an example.

2.3. Faltings–Serre and deformation. With the residual representations identified, we now explain the
key idea of the Faltings–Serre method: we exhibit another representation that measures the failure of
two representations to be equivalent. This construction is quite natural when viewed in the language of
deformation theory: see [Gouvêa 2001, Lecture 4] for background.

For the remainder of this section, let ρ1, ρ2 : GalF,S → G(Z`) be representations such that ρ1 '

ρ2 (mod `r ) for some r ≥1. Conjugating ρ2, we may assume ρ1≡ρ2 (mod `r ), and we write ρ :=ρ1=ρ2

for the common residual representation modulo `. We suppose throughout that ρ is absolutely irreducible.
Let Lie(G)≤Mn be the Lie algebra of G over Q as a commutative algebraic group. Attached to ρ is

the adjoint residual representation

ad ρ : GalF,S→ AutF`(Mn(F`))

σ 7→ σad
(2.3.1)

defined by σad(a) := ρ(σ)aρ(σ)−1 for a ∈Mn(F`). The adjoint residual representation ad ρ also restricts
to take values in AutF`(Lie(G)(F`)), but we will not need to introduce new notation for this restriction.

Because we consider representations with values in G up to equivalence in GLn , it is natural that our
deformations will take values in Lie(G) up to equivalence in Mn . With this in mind, we define the group
of cocycles

Z1(F, ad ρ;Lie(G)(F`))

:=
{
(µ : GalF,S→ Lie(G)(F`)) : µ(στ)= µ(σ)+ σad(µ(τ)), ∀σ, τ ∈ GalF,S

}
(2.3.2)

and the subgroup of coboundaries

B1(F, ad ρ;Mn(F`))

:=
{
µ ∈ Z1(F, ad ρ;Lie(G)(F`)) : ∃a ∈Mn(F`) such that µ(σ)= a− σad(a), ∀σ ∈ GalF,S

}
. (2.3.3)

From the exact sequence

1→ 1+ `r Lie(G)(F`)→ G(Z/`r+1Z)→ G(Z/`r Z)→ 1, (2.3.4)

we conclude that for all σ ∈ GalF,S there exists µ(σ) ∈ Lie(G)(F`) such that

ρ1(σ )≡ (1+ `rµ(σ))ρ2(σ ) (mod `r+1). (2.3.5)
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Lemma 2.3.6. The following statements hold:

(a) The map σ 7→ µ(σ) defined by (2.3.5) is a cocycle µ ∈ Z1(F, ad ρ;Lie(G)(F`)).

(b) We have ρ1 ' ρ2 (mod `r+1) if and only if µ ∈ B1(F, ad ρ;Mn(F`)).

Proof. We verify the cocycle condition as follows:

ρ1(στ)= ρ1(σ )ρ1(τ )≡ (1+ `rµ(σ))ρ2(σ )(1+ `rµ(τ))ρ2(τ )

≡ (1+ `r (µ(σ )+ ρ2(σ )µ(τ)ρ2(σ )
−1))ρ2(σ )ρ2(τ )

≡ (1+ `rµ(στ))ρ2(στ) (mod `r+1),

so µ(στ)= µ(σ)+σad(µ(τ)) as claimed. For the second statement, by definition ρ1 ' ρ2 (mod `r+1) if
and only if there exists ar ∈ GLn(Z/`

r+1Z) such that for all σ ∈ GalF,S we have

ρ1(σ )≡ arρ2(σ )a−1
r (mod `r+1). (2.3.7)

Since ρ1(σ ) ≡ ρ2(σ ) (mod `r ), the image of ar in GLn(Z/`
r Z) centralizes the image of ρ (mod `r ).

Since the image is irreducible, by Schur’s lemma we have ar mod `r is scalar, so without loss of generality
we may suppose ar ≡ 1 (mod `r ), so that ar = 1+ `r a for some a ∈Mn(F`). Expanding (2.3.7) then
yields

ρ1(σ )≡ (1+ `r a)ρ2(σ )(1+ `r a)−1
≡ (1+ `r a)ρ2(σ )(1− `r a)

≡ (1+ `r a− `rρ2(σ )aρ2(σ )
−1)ρ2(σ )

≡ (1+ `r (a− σad(a)))ρ2(σ ) (mod `r+1)

so µ(σ)= a− σad(a) by definition (2.3.5). �

Our task now turns to finding an effective way to detect when µ is a coboundary. For this purpose, we
work with extensions of our representations using explicit parabolic groups. The adjoint action of GLn

on Mn gives an exact sequence

0→Mn→Mn oGLn→ GLn→ 1 (2.3.8)

which extends to a linear representation via the parabolic subgroup, as follows. We embed

Mn oGLn ↪→ GL2n

(a, g) 7→
(1

0
a
1

)( g
0

0
g

)
=
( g

0
ag
g

) (2.3.9)

(on points, realizing Mn oGLn as an algebraic matrix group). The embedding (2.3.9) is compatible with
the exact sequence (2.3.8): the natural projection map

π :Mn oGLn→ GLn (2.3.10)

corresponds to the projection onto the top left entry, it is split by the diagonal embedding GLn ↪→ GL2n ,
and it has kernel isomorphic to Mn in the upper-right entry. We will identify Mn oGLn and its subgroups
with their image in GL2n .
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Let utr : (Mn oGLn)(F`)→ F` denote the trace of the upper right n× n-block.

Lemma 2.3.11. The map utr is well-defined on conjugacy classes in (Mn oGLn)(F`).

Proof. For all g, h ∈ GLn(F`) and a, b ∈Mn(F`) we have(
h bh
0 h

)(
g ag
0 g

)(
h−1
−h−1b

0 h−1

)
=

(
hgh−1 hagh−1

+ bhgh−1
− hgh−1b

0 hgh−1

)
(2.3.12)

so the upper trace is tr(hagh−1
+ bhgh−1

− hgh−1b)= tr(ag). �

For µ ∈ Z1(F, ad ρ;Lie(G)(F`)) we define

ϕµ : GalF,S→ (Lie(G)oG)(F`)≤ GL2n(F`)

σ 7→ (µ(σ ), ρ(σ ))=

(
ρ(σ) µ(σ)ρ(σ )

0 ρ(σ)

)
.

(2.3.13)

Proposition 2.3.14. Let µ ∈ Z1(F, ad ρ;Lie(G)(F`)). Then the following statements hold:

(a) The map ϕµ defined by (2.3.13) is a group homomorphism, and π ◦ϕµ = ρ.

(b) We have µ ∈ B1(F, ad ρ;Mn(F`)) if and only if ϕµ is conjugate to ϕ0 =
(
ρ
0

0
ρ

)
by an element of

Mn(F`)≤ (Mn oGLn)(F`).

(c) Suppose µ is defined by (2.3.5). Then for all σ ∈ GalF,S ,

utrϕµ(σ )= tr
(
µ(σ)ρ(σ )

)
≡

tr ρ1(σ )− tr ρ2(σ )

`r (mod `). (2.3.15)

Proof. For (a), the cocycle condition implies that ϕµ is a group homomorphism: the upper right entry of
ϕµ(στ) is

µ(στ)ρ(στ)= (µ(σ )+ ρ(σ)µ(τ)ρ(σ )−1)ρ(σ )ρ(τ)= µ(σ)ρ(σ )ρ(τ)+ ρ(σ)µ(τ)ρ(τ)

which is equal to the upper right entry of ϕµ(σ )ϕµ(τ ) obtained by matrix multiplication.
For (b), the calculation(

1 a
0 1

)(
ρ(σ) 0

0 ρ(σ)

)(
1 −a
0 1

)
=

(
ρ(σ) aρ(σ)− ρ(σ)a

0 ρ(σ)

)
(2.3.16)

shows that ϕµ = aϕ0a−1 for a ∈Mn(F`) if and only if µ(σ)ρ(σ ) = aρ(σ)− ρ(σ)a for all σ ∈ GalF,S .
Multiplying on the right by ρ(σ)−1, we see this is equivalent to µ(σ)= a− σad(a) for all σ ∈ GalF,S .

Finally, (c) follows directly from (2.3.5). �

Definition 2.3.17. Let K be the fixed field under ρ. We say a pair (L , ϕ) extends (K , ρ) if

ϕ : GalF,S→ (Lie(G)oG)(F`)≤ GL2n(F`)

is a representation with fixed field L such that π ◦ϕ = ρ.

If (L , ϕ) extends (K , ρ), then L ⊇ K is an `-elementary abelian extension unramified outside S, since
ϕ induces an injective group homomorphism Gal(L | K ) ↪→ Lie(G)(F`).
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Definition 2.3.18. A pair (L , ϕ) extending (K , ρ) is obstructing if utrϕ 6≡ 0 (mod `), and we call
the group homomorphism ϕ an obstructing extension of ρ. An element σ ∈ Gal(L | F) such that
utrϕ(σ) 6≡ 0 (mod `) is called obstructing for ϕ.

We note the following corollary of Proposition 2.3.14.

Corollary 2.3.19. Letµ be defined by (2.3.5) and ϕµ by (2.3.13). Then ϕµ extends ρ, and ϕµ is obstructing
if and only if µ 6∈ B1(F, ad ρ;Mn(F`)).

Proof. The map ϕµ extends ρ by Proposition 2.3.14(a). We prove the contrapositive of the second
statement: µ ∈B1(F, ad ρ;Mn(F`)) if and only if utrϕµ ≡ 0 (mod `). The implication (⇒) is immediate
from Proposition 2.3.14(b) and the invariance of utr by conjugation (Lemma 2.3.11). For (⇐), if
utrϕµ ≡ 0 (mod `) then tr ρ1 ≡ tr ρ2 (mod `r+1) by Proposition 2.3.14(c). Now Theorem 2.1.4 implies
ρ1 ' ρ2 (mod `r+1), hence µ ∈ B1(F, ad ρ;Mn(F`)) by Lemma 2.3.6(b). �

Before we conclude this section, we note the following important improvement. Let Lie0(G)≤ Lie(G)
be the subgroup of trace zero matrices, and note that Lie0(G)(F`) is invariant by the adjoint residual
representation.

Lemma 2.3.20. If det ρ1 = det ρ2, then µ takes values in Lie0(G)(F`).

Proof. By (2.3.5), we have 1 = det(ρ1ρ
−1
2 ) = det(1 + `rµ) ≡ 1 + `r trµ (mod `2r ) so accordingly

trµ(σ)≡ 0 (mod `) and µ(σ) ∈ Lie0(G)(F`) for all σ ∈ GalF,S . �

In view of Lemma 2.3.20, we note that Proposition 2.3.14 and Corollary 2.3.19 hold when replacing
Lie(G) by Lie0(G).

2.4. Testing equivalence of representations. We now use Corollary 2.3.19 to prove Theorem 2.1.5.

Algorithm 2.4.1. The following algorithm takes as input the data (2.1.6) and gives as output{
true if ρ1 ' ρ2;

false and a witness prime p if ρ1 6' ρ2.

1. Apply Algorithm 2.2.3; if ρ1 6' ρ2, return false and the witness prime p. Otherwise, let K be the
fixed field under the common residual representation ρ.

2. Using the algorithm of Lemma 2.2.1, enumerate all `-elementary abelian extensions L⊇K unramified
away from S and such that Gal(L | F) is isomorphic to a subgroup of (Lie(G)oG)(F`).

3. For each of these finitely many fields L , by enumeration of injective group homomorphisms
Gal(L | F) ↪→ (Lie(G)oG)(F`), find all obstructing pairs (L , ϕ) extending (K , ρ) up to conjugation
by (Mn oGLn)(F`).

4. For each such pair (L , ϕ), find a prime p 6∈ S such that utrϕ(Frobp) 6≡ 0 (mod `).

5. Check if tr ρ1(Frobp)= tr ρ2(Frobp) for the primes in Step 4. If equality holds for all primes, return
true; if equality fails for p, return false and the prime p.
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Remark 2.4.2. In Step 2, we may instead use algorithmic class field theory (and we will do so in practice).
Moreover, if we know that det ρ1 = det ρ2, then we can replace Lie(G) by Lie0(G) by Lemma 2.3.20.

Proof of correctness. By the Chebotarev density theorem, in Step 4 we will eventually find a prime p 6∈ S,
since utr is well-defined on conjugacy classes by Lemma 2.3.11. In the final step, if equality does not
hold for some prime p, we have found a witness, and we correctly return false.

Otherwise, we return true and we claim that ρ1 ' ρ2 so the output is correct. Indeed, assume
for purposes of contradiction that ρ1 6' ρ2. Then there exists r ≥ 1 such that ρ1 ' ρ2 (mod `r ) but
ρ1 6' ρ2 (mod `r+1). We can assume as before that ρ1 ≡ ρ2 (mod `r ). We define µ by (2.3.5) and ϕµ by
(2.3.13). Let Lµ be the fixed field of ϕµ. By Lemma 2.3.6 we have µ 6∈B1(F,Lie(G)(F`);Mn(F`)), hence
by Corollary 2.3.19 ϕµ extends ρ and is obstructing. It follows that the pair (Lµ, ϕµ) is, up to conjugation
by (Mn o GLn)(F`), among the pairs computed in Step 3. In particular there is a prime p in Step 4
such that utrϕµ(Frobp) 6≡ 0 (mod `). But then by (2.3.15) we would have tr ρ1(Frobp) 6= tr ρ2(Frobp),
contradicting the verification carried out in Step 5. �

The correctness of Algorithm 2.4.1 then proves Theorem 2.1.5.

Remark 2.4.3. In the case G = GSp2g, using an effective version of the Chebotarev density theorem,
Achter [2005, Lemma 1.2] has given an effective upper bound in terms of the conductor and genus to
detect when two abelian surfaces are isogenous. This upper bound is of theoretical interest, but much too
large to be useful in practice. In a similar way, following the above strategy one could give theoretical
(but practically useless) upper bounds to detect when two Galois representations are equivalent.

3. Core-free subextensions

The matrix groups arising in the previous section are much too large to work with in practice. In this section,
we find comparatively small extensions whose Galois closure give rise to the desired representations.

3.1. Core-free subgroups. We begin with a condition that arises naturally in group theory and Galois
theory.

Definition 3.1.1. Let G be a finite group. A subgroup H ≤ G is core-free if G acts faithfully on the
cosets G/H .

Equivalently, H ≤ G is core-free if and only if
⋂

g∈G gHg−1
= {1}. For example, the subgroup {1} is

core-free.

Definition 3.1.2. Let K ⊇ F be a finite Galois extension of fields with G = Gal(K | F). A subextension
K ⊇ K0 ⊇ F is core-free if Gal(K | K0)≤ G is a core-free subgroup.

Lemma 3.1.3. The subextension K ⊇ K0 ⊇ F is core-free if and only if K is the Galois closure of K0

over F.

Proof. Immediate. �
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If K ⊇ K0 ⊇ F is a core-free subextension of K ⊇ F with K0 = F(α), then by definition the action of
Gal(K | F) on the conjugates of α defines a faithful permutation representation, equivalent to its action
on the left cosets of Gal(K | K0).

We slightly augment the notion of core-free subextension for two-step extensions of fields, as follows.

Definition 3.1.4. Let

1→ V → E π
−→G→ 1 (3.1.5)

be an exact sequence of finite groups. A core-free subgroup D ≤ E is exact (relative to (3.1.5)) if π(D)
is a core-free subgroup of G.

If D ≤ E is an exact core-free subgroup we let H := π(D) and W := V ∩ D = kerπ |D , so there is an
exact subsequence

1→W → D π
−→ H → 1 (3.1.6)

with both D ≤ E and H ≤ G core-free. (We do not assume that W ≤ V is core-free.)
Now let L ⊇ K ⊇ F be a two-step Galois extension with V := Gal(L | K ), E := Gal(L | F),

G := Gal(K | F) and π : E→ G the restriction, so we have an exact sequence as in (3.1.5).

Definition 3.1.7. We say L0 ⊇ K0 ⊇ F is an exact core-free subextension of L ⊇ K ⊇ F if L0 = L D

and K0 = K π(D) where D ≤ E is an exact core-free subgroup.

Let L0 ⊇ K0 ⊇ F be an exact core-free subextension of L ⊇ K ⊇ F , so that Gal(L | L0) = D.
As above we let H := π(D) = Gal(K | K0) and W := V ∩ D = Gal(L | K L0). By (3.1.6) we have
H ' D/W = Gal(K L0 | L0), and we have the following field diagram:

L

D
W

V

K L0

L0

H

K

GK0

H

F

(3.1.8)

By Lemma 3.1.3, L is the Galois closure of L0 over F , and K is the Galois closure of K0 over F . We
read the diagram (3.1.8) as giving us a way to reduce the Galois theory of the extension L ⊇ K ⊇ F to
L0 ⊇ K0 ⊇ F : the larger we can make D, the smaller the extension L0 ⊇ K0 ⊇ F , and the better for
working explicitly with the corresponding Galois groups.
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3.2. Application to Faltings–Serre. We now specialize the preceding discussion to our case of interest;
although working with core-free extensions does not improve the theoretical understanding, it is a crucial
simplification in practice.

In Steps 2–3 of Algorithm 2.4.1, we are asked to enumerate obstructing pairs (L , ϕ) extending (K , ρ),
with ϕ : Gal(L | F) ↪→ (Lie(G)oG)(F`).

Let G := img ρ ≤ G(F`). Given (L , ϕ), the image of ϕ is a subgroup E ≤ Lie(G)(F`)o G with
π(E)= G; letting V := Lie(G)(F`)∩ E we have an exact sequence

1→ V → E π
−→G→ 1 (3.2.1)

arising from (2.3.8).
So we enumerate the subgroups E ≤Lie(G)(F`)oG with π(E)=G, up to conjugation by Mn(F`)oG.

The enumeration of these subgroups depends only on G, so it may be done as a precomputation step,
independent of the representations.

For each such E , let D be an exact core-free subgroup relative to (3.2.1). We let L0 = L D and
K0 = K π(D), hence L0 ⊇ K0 ⊇ F is an exact core-free subextension of L ⊇ K ⊇ F and we have the field
diagram (3.1.8) where H = π(D) and W = V ∩ D as before. Since V is abelian, K L0 ⊇ K is Galois and
hence L0 ⊇ K0 is also Galois, with common abelian Galois group Gal(L0 | K0)'Gal(K L0 | K )' V/W .
So better than a Hunter search as in Lemma 2.2.1, we can use algorithmic class field theory (see [Cohen
2000, Chapter 4]) to enumerate the possible fields L0 ⊇ K0.

Accordingly, we modify Steps 2–3 of Algorithm 2.4.1 then as follows.

2′. Enumerate the subgroups E ≤ Lie(G)(F`)oG with π(E)= G, up to conjugation by Mn(F`)oG,
such that utr(E) 6≡ 0 (mod `). For each such subgroup E , perform the following steps:

a. Compute a set of representatives ξ of (outer) automorphisms of E such that ξ acts by an inner
automorphism on G, modulo inner automorphisms by elements of Mn(F`)oG.

b. Find an exact core-free subgroup D ≤ E and let W, H be as in (3.1.6).
c. Let K0= K H and use algorithmic class field theory to enumerate all possible extensions L0⊇ K0

unramified away from S such that Gal(L0 | K0)' V/W .

3′. For each extension L0 from Step 2′c and for each E , perform the following steps:

a. Compute an isomorphism of groups ϕ0 :Gal(L | F)−→∼ E extending ρ; if no such isomorphism
exists, proceed to the next group E .

b. Looping over ξ computed in Step 2′a, let ϕ := ξ ◦ϕ0, and record the pair (L , ϕ).

Proof of equivalence with Steps 2–3. We show that these steps enumerate all obstructing pairs (L , ϕ) up
to equivalence.

Let L be an obstructing extension. For an obstructing extension ϕ of ρ, the image E = imgϕ arises up
to conjugation in the list computed in Step 2′; such conjugation gives an equivalent representation. So we
may restrict our attention to the set 8 of obstructing extensions ϕ whose image is equal to E .
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With respect to the core-free subgroup D, the field L arises as the Galois closure of the field L0 = L D ,
and so L0 will appear in the list computed in Step 2′c. An exact core-free subgroup always exists as we
can always take D the trivial group.

In Step 3′a, we compute one obstructing extension ϕ0 ∈8. Any other obstructing extension ϕ ∈8
is of the form ϕ = ξ ◦ϕ0 where ξ is an automorphism of E that induces an inner automorphism on G;
when ξ arises from conjugation by an element of Lie(G)(F`)oG, we obtain a representation equivalent
to ϕ0, so the representatives ξ computed in Step 2′a cover all possible extensions ϕ up to equivalence. �

We now explain in a bit more detail Steps 2′a and 3′a — in these steps, we need to understand how
Gal(L | F) restricts to Gal(K | F) via its permutation representation. The simplest thing to do is just
to ignore the conditions on ξ , i.e., in Step 2′a allow all outer automorphisms and in Step 3′a take any
isomorphism of groups; a fortiori, we will still encounter every one satisfying the extra constraint. To
nail it down precisely, we compute the group Aut(L0 | F) of F-automorphisms of the field L0, for
each automorphism τ of order 2 compute the fixed field, until we find a field isomorphic to K0; then
Gal(K | F) is the stabilizer of {β, τ(β)}, and so we can look up the indices of these roots in the permutation
representation of Gal(L | F).

In the above, we may also use Lie0(G) in place of Lie(G) if we are also given det ρ1 = det ρ2, by the
discussion at the end of Section 2.3.

3.3. Computing conjugacy classes, in stages. We now discuss Step 4 of Algorithm 2.4.1, where we are
given (L , ϕ) and we are asked to find a witness prime. In theory, to accomplish this task we compute the
conjugacy class of Frobp in Gal(L | K ) using an algorithm of Dokchitser and Dokchitser [2013] and then
calculate utrϕ(σ) for any σ in this conjugacy class.

In practice, because of the enormity of the computation, we may not want to spend time computing
the conjugacy class if we can get away with less. In particular, we would like to minimize the amount
of work done per field. So we now describe in stages ways to find obstructing primes; each stage gives
correct output, but in refining the previous stage we may be able to find smaller primes. Each of these
stages involves a precomputation step that only depends of the group-theoretic data.

In Step 2′ above, we enumerate subgroups E and identify an exact core-free subgroup D. We identify
E with the permutation representation on the cosets E/D.

In Step 3′ above, we see the extension L ⊇ K ⊇ F via a core-free extension L0 ⊇ K0 ⊇ F , and these
fields are encoded by minimal polynomials of primitive elements. We may compute Gal(L | F) as a
permutation group with respect to some numbering of the roots, and then insist that the isomorphism
ϕ0 : Gal(L | F)−→∼ E computed in Step 3′a is an isomorphism of permutation representations.

For p 6∈ S, for the conjugacy class Frobp, the cycle type c(Frobp, L0) can be computed very quickly by
factoring the minimal polynomial of L0 modulo a power pk where it is separable (often but not always
k = 1 suffices). This cycle type may not uniquely identify the conjugacy class, but we can try to find a
cycle type which is guaranteed to be obstructing as follows.

4′. Perform the following steps:
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a. For each group E computed in Step 2′ with core-free subgroup D, identify E with the permutation
representation on the cosets E/D. For each ξ computed in Step 2′a for E , compute the set of
cycle types

Obc(E, ξ) := {c(ξ(γ )) : γ ∈ E and utr γ 6≡ 0 (mod `)} \ {c(ξ(γ )) : γ ∈ E and utr γ ≡ 0 (mod `)}.

b. For each field (L , ϕ), with L encoded by the core-free subfield L0 and ϕ↔ ξ as computed in
Step 3′b find a prime p such that c(Frobp, L0) ∈ Obc(E, ξ).

In computing Obc(E, ξ), of course it suffices to restrict to γ in a set of conjugacy classes for E .
Step 4′ gives correct output because the set of cycle types in Obc(E, ξ) are precisely those for which

every conjugacy class in E with the given cycle type is obstructing. It is the simplest version, and it is the
quickest to compute provided that Obc(E, ξ) is nonempty.

Remark 3.3.1. In Step 4′a, there may be a cycle type which arises in two ways, from γ, γ ′ ∈ E , with
utr γ 6≡ 0 (mod `) and utr γ ′ ≡ 0 (mod `); such a cycle type is not guaranteed to be obstructing.

Remark 3.3.2. In a situation where there are many outer automorphisms ξ to consider, it may be more
efficient (but give potentially larger primes and possibly fail more often) to work with the set

Obc(E) :=
⋂
ξ

Obc(E, ξ) (3.3.3)

consisting of cycle types with the property that every conjugacy class in E under every outer automorphism
ξ is obstructing. In this setting, in Step 4′b, we can loop over just the fields L and look for p with
c(Frobp) ∈ Obc(E).

In the next stage, we seek to combine also cycle type information from Gal(K | F), arising as a
permutation group from the field K0. Via the isomorphism ϕ : Gal(L | F)−→∼ E and the construction of
the core-free extension, as a permutation group Gal(L | F) is isomorphic to the permutation representation
of E on the cosets of D. (The numbering might be different, but there is a renumbering for which the
representations are equal.) In the same way, the group Gal(K | F) is isomorphic as a permutation group to
the permutation representation of π(E)= G on the cosets of the subgroup π(D)= H , where π : E→ G
is the projection. So we have the following second stage.

4′′. Perform the following steps:

a. For each group E computed in Step 2′ and each ξ computed in Step 2′a for E , compute the set
of pairs of cycle types

Obc(E,G,ξ)

:={(c(ξ(γ )),c(π(γ ))) :γ ∈E and utrγ 6≡0 (mod `)}\{(c(ξ(γ )),c(π(γ ))) :γ ∈E and utrγ ≡0 (mod `)}.

b. For each field (L , ϕ), with L encoded by L0 and ϕ↔ ξ , find a prime p such that

(c(Frobp, L0), c(Frobp, K0)) ∈ Obc(E,G, ξ).
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Step 4′′ works for the same reason as in Step 4′: the cycle type pairs in Obc(E,G, ξ) are precisely those
for which every conjugacy class in E with the given pair of cycle types is obstructing. The precomputation
is a bit more involved in this case, but the check for each field is still extremely fast.

Remark 3.3.4. Instead of the cycle type, a weaker alternative to Step 4′′ would be to record the order of
Frobp ∈ Gal(K | F).

Remark 3.3.5. Assuming that tr ρ(Frobp) can be computed efficiently, one additional piece of data that
may be appended to the pair of cycle types is tr ρ(γ ).

Remark 3.3.6. If L arises from several different choices of core-free subgroup, then these subgroups
give different (but conjugate) fields L0. Because we are not directly accessing the conjugacy class above,
but only cycle type information, it is possible that replacing L0 by a conjugate field will give smaller
witnesses. In other words, in Step 4′b or 4′′b above, we could loop over the core-free subgroups D and
take the smallest witness among them.

Finally, we may go all the way and compute conjugacy classes. Write [γ ]E for the conjugacy class of
a group element γ ∈ E .

4′′′. Perform the following steps:

a. For each group E computed in Step 2′ and each ξ computed in Step 2′a for E , compute the set
of obstructing conjugacy classes

Ob(E, ξ) := {[γ ]E : γ ∈ E and utr γ 6≡ 0 (mod `)}

b. For each field (L , ϕ), with L encoded by L0 and ϕ ↔ ξ , find a prime p such that Frobp ∈
Ob(E,G, ξ).

We now explain some examples in detail which show the difference between these stages.

Example 3.3.7. Anticipating one of our three core cases, we consider G= GSp4 and `= 2 over F =Q.
(The reader may wish to skip ahead and read Sections 4–5 to read the details of the setup, but this
example is still reasonably self-contained.) We consider the case of a residual representation with image
G = S5(b) ≤ GSp4(F2) (see (5.1.8)), and then a subgroup E ≤ sp4 o G with dimF2 V = 10. We find a
core-free subgroup D where #H = 10 and [V :W ] = 2.

We compute in Step 2′a that we need to consider 8 automorphisms ξ , giving rise to 8 homomorphisms ϕ.
With respect to one such ξ , we find that there are 48 conjugacy classes that are obstructing. Among these,
computing as in Step 4′a, we find that 17 are recognized by their L0-cycle type:

Obc(E; ξ)={3621,412418,412516,4318,432116,613421,814222,8143,102,1213221,1216121
}. (3.3.8)

If instead we call Step 4′′a, we find that 35= # Obc(E,G, ξ) are recognized by the pair of L0, K0-cycle
types (and 22 recognized by L0-cycle type and K0-order). This leaves 13 conjugacy classes that cannot
be recognized purely by cycle type considerations, for which Step 4′′′ would be required.
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For the other choices of ξ , we obtain similar numbers but different cycle types. If we restrict to just
L0-cycle types that work for all such as in Remark 3.3.2, we are reduced to a set of 8:

Obc(E)= {412418, 412516, 4318, 432116, 613421, 814222, 8143, 102
}. (3.3.9)

To see how this plays out with respect to the sizes of primes, we work with the field K arising as the
Galois closure of K0 = K H defined by a root of the polynomial

x10
+ 3x9

+ x8
− 10x7

− 17x6
− 7x5

+ 11x4
+ 18x3

+ 13x2
+ 5x + 1

and similarly L0 = L D by a root of

x20
+ 3x18

+ 5x16
+ 2x14

− 5x12
− 13x10

− 13x8
− 6x6

+ x4
+ x2
− 1.

If we restrict to the cycle types in (3.3.8) (or (3.3.9)), we obtain the multiset of witnesses {5, 5, 5, 5, 23, 23,
29, 29}. If we work with Obc(E,G, ξ), we find {5, 5, 5, 5, 19, 19, 23, 23} instead; the difference is two
cases where the witness p = 29 is replaced by p = 19, so we dig a bit deeper into one of these two cases.

In L0, the factorization pattern of 19 is 623221. But apparently we cannot be guaranteed to have
utr(Frobp) ≡ 1 (mod 2) just looking at cycle type. Indeed, there are three conjugacy classes with this
cycle type: one of order 1280 and two of order 2560, represented by the permutations

(1 9 18)(2 15 6 12 5 16)(3 20 7 13 10 17)(4 14)(8 11 19),

(1 19 8 11 9 18)(2 15 6 12 5 16)(3 20 17)(4 14)(7 13 10),

(1 10 2 3 8 4)(5 9 6)(7 17)(11 20 12 13 18 14)(15 19 16)

in S20 mapping respectively to the matrices

1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 1 1 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


,



1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 1 1 0 1 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


,



1 0 1 0 1 0 1 1
1 0 0 0 1 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0


.

So precisely the first two conjugacy classes have upper trace 1 and are obstructing, whereas the third has
upper trace 0 and is not obstructing. So by cycle types in L0 alone, indeed, we cannot proceed.

But we recover using the K0-cycle type. For the obstructing classes, the cycle type in the permutation
representation of G is 3311, whereas for the nonobstructing class the cycle type is 613111. We compute
that the factorization pattern for 19 in K0 is type 3311, which means 19 belongs to an obstructing class. If
we go all the way to the end, we can compute that the conjugacy class of Frob19 in fact belongs to the
second case.
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4. Abelian surfaces, paramodular forms, and Galois representations

We pause now to set up notation and input from the theory of abelian surfaces, paramodular forms, and
Galois representations in our case of interest.

4.1. Galois representations from abelian surfaces. Let A be a polarized abelian variety over Q. For
example, if X is a nice (smooth, projective, geometrically integral) genus g curve over Q, then its
Jacobian Jac X with its canonical principal polarization is a principally polarized abelian variety over Q

of dimension g. Let N := cond(A) be the conductor of A. We say A is typical if End(Aal)= Z, where
Aal
:= AQal is the base change of A to Qal.

Lemma 4.1.1. Let A be a simple, semistable abelian surface over Q with nonsquare conductor. Then A
is typical.

Proof. By Albert’s classification, either End(A) = Z or End(A) is an order in a quadratic field. In the
latter case, cond(A) is a square by the conductor formula (see [Brumer and Kramer 2014, Lemma 3.2.9]),
a contradiction. Therefore End(A)= Z. Since A is semistable, all endomorphisms of Aal are defined over
Q by a result of Ribet [1975, Corollary 1.4]. Thus End(Aal)= End(A)= Z, and A is typical. �

Lemma 4.1.2. An abelian surface over Q of prime conductor is typical.

Proof. If A is not simple over Q, then we have any isogeny A ∼ A1 × A2 over Q to the product of
abelian varieties A1, A2 over Q, and cond(A)= cond(A1) cond(A2). But since A is prime, without loss
of generality cond(A1)= 1, contradicting the result of Fontaine [1985] that there is no abelian variety
over Q with everywhere good reduction. Therefore A is simple over Q. Since N = cond(A) is prime, A
is semistable at N , and the result then follows from Lemma 4.1.1. �

From now on, suppose that g = 2 and A is a polarized abelian surface over Q. Let ` be a prime with
` - N and ` coprime to the degree of the polarization on A. Let S be a finite set of places of Q containing
`,∞ and the primes of bad reduction of A. Let

χ` : GalQ,S→ Z×`

denote the `-adic cyclotomic character, so that χ`(Frobp) = p. Then the action of GalQ on the `-adic
Tate module

T`(A) := lim
←−−

n
A[`n
] ' H1

ét(A,Z`)' Z4
`

(where A[`n
] denotes the `n-torsion of A) provides a continuous Galois representation

ρA,` : GalQ,S→ GSp4(Z`) (4.1.3)

with determinant χ2
` and similitude character χ` that is unramified outside `N . We may reduce the

representation (4.1.3) modulo ` to obtain a residual representation

ρA,` : GalQ,S→ GSp4(F`),
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which can be concretely understood via the Galois action on the field Q(A[`]).
For a prime p 6= `, slightly more generally we define

L p(A, T ) := det(1− T Frob∗p | H
1
ét(A

al,Q`)
Ip) (4.1.4)

where Frob∗p is the geometric Frobenius automorphism, Ip ≤ GalQ,S is an inertia group at p, and the
definition is independent of the auxiliary prime ` 6= p (by the semistable reduction theorem of Grothendieck
[SGA 7I 1972, Expose IX, Théorème 4.3(b)]). In particular, when p - `N , we have

det(1− ρA,`(Frobp)T )= L p(A, T )= 1− apT + bp2 T 2
− papT 3

+ p2T 4
∈ 1+ T Z[T ]. (4.1.5)

Moreover, if A = Jac X and p does not divide the minimal discriminant 1 of X , then

Z(X mod p, T ) := exp
( ∞∑

r=1

#X (Fpr )
T r

r

)
=

L p(A, T )
(1− T )(1− pT )

so the polynomials L p(A, T ) may be efficiently computed by counting points on X over finite fields. We
define

L(A, s) :=
∏

p

L p(A, p−s)−1
; (4.1.6)

this series converges for s ∈ C in a right half-plane.

4.2. Paramodular forms. We follow Freitag [1983] for the theory of Siegel modular forms. Let H2 ⊂

M2(C) be the Siegel upper half-space. For M =
( A

C
B
D

)
∈ GSp+4 (R), J =

( 0
−1

1
0

)
as usual, and T the

transpose, we have MT J M = µJ with µ= det(M)1/2 > 0 the similitude factor.
For a holomorphic function f :H2→C and M ∈GSp+4 (R) and k ∈ Z≥0, we define the classical slash

( f |k M)(Z) := µ2k−3 det(C Z + D)−k f ((AZ + B)(C Z + D)−1). (4.2.1)

Let 0 ≤ Sp4(R) be a subgroup commensurable with Sp4(Z). We denote by

Mk(0) := { f :H2→ C : ( f |kγ )(Z)= f (Z) for all γ ∈ 0}

the C-vector space of Siegel modular forms with respect to 0, and Sk(0)⊆ Mk(0) the subspace of forms
vanishing at the cusps of 0, called the space of cuspforms.

To each double coset 0M0 with M ∈ GSp+4 (Q), we define the Hecke operator

T(0M0) : Mk(0)→ Mk(0) (4.2.2)

as follows: from a decomposition 0M0 =
⊔

j 0M j of the double coset into disjoint single cosets, we
define f |kT(0M0)=

∑
j f |k M j . The action is well-defined, depending only on the double coset, and

T(0M0) maps Sk(0) to Sk(0).
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Let N ∈ Z≥1. The paramodular group K (N ) of level N in degree two is defined by

K (N ) :=


Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z

∩Sp4(Q). (4.2.3)

The paramodular group K (N ) has a normalizing paramodular Fricke involution, µN ∈ Sp4(R), given by

µN =

(
(F−1

N )T 0
0 FN

)

where FN =
1
√

N

( 0
1
−N

0

)
is the Fricke involution for 00(N ). Consequently, for all k we may decompose

Mk(K (N ))= Mk(K (N ))+⊕Mk(K (N ))− (4.2.4)

into plus and minus µN -eigenspaces.
Write e(z)= exp(2π

√
−1z) for z ∈ C. The Fourier expansion of f ∈ Mk(K (N )) is

f (Z)=
∑
T≥0

a(T ; f )e(tr(T Z)) (4.2.5)

for Z ∈H2 and the sum over semidefinite matrices

T =
( n

r/2
r/2
Nm

)
∈Msym

2 (Q)≥0 with n, r,m ∈ Z.

For a subring R ⊆ C, we denote by

Mk(K (N ), R) := { f ∈ Mk(K (N )) : a(T ; f ) ∈ R for all T ≥ 0} (4.2.6)

the R-module of paramodular forms whose Fourier coefficients all lie in R, and similarly we write
Sk(K (N ), R) for cusp forms and Sk(K (N ), R)± for the eigenspaces under the Fricke involution. The
ring of paramodular forms with coefficients in R

M(K (N ), R) :=
∞⊕

k=0

Mk(K (N ), R)

is a graded R-algebra.
For a prime p - N , the first (more familiar) Hecke operator we will use is

T (p) := T(K (N ) diag(1, 1, p, p)K (N )) (4.2.7)



1166 Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight and David S. Yuen

whose decomposition into left cosets is given by

K (N ) diag(1, 1, p, p)K (N )

= K (N )


p 0 0 0
0 p 0 0

1 0
0 1

+ ∑
i mod p

K (N )


1 0 i 0
0 p 0 0

p 0
0 1



+

∑
i, j mod p

K (N )


p 0 0 0
i 1 0 j

1 −i
0 p

+ ∑
i, j,k mod p

K (N )


1 0 i j
0 1 j k

p 0
0 p

 (4.2.8)

with indices taken over residue classes modulo p. Writing T [u] = uTT u for T, u ∈M2(Q), the action of
T (p) on Fourier coefficients a(T ; f ) is given by

a(T ; f |k T (p))= a(pT ; f )+ pk−2
∑

j mod p

a
( 1

p T
[ 1

j
0
p

]
; f
)
+ pk−2a

( 1
p T
[ p

0
0
1

]
; f
)
+ p2k−3a

( 1
p T ; f

)
.

(4.2.9)
Hence for k ≥ 2, the Hecke operator T (p) stabilizes Sk(K (N ), R). In particular, taking R = Z we see
that if f has integral Fourier coefficients, then f |k T (p) has integral Fourier coefficients for k ≥ 2.

We will also make use of another, perhaps less familiar, Hecke operator. For K (N ) and a prime p - N ,
we define

T1(p2)= T(K (N ) diag(1, p, p2, p)K (N )). (4.2.10)

Lemma 4.2.11. The coset decomposition for T1(p2) is given by

K (N ) diag(1, p, p2, p)K (N )

= K (N )


p 0 0 0
0 p2 0 0

p 0
0 1

+ ∑
i mod p

K (N )


p2 0 0 0
pi p 0 0

1 −i
0 p



+

∑
i 6≡0 mod p

K (N )


p 0 i 0
0 p 0 0

p 0
0 p

+ ∑
i mod p,

j 6≡0 mod p

K (N )


p 0 i2 j i j
0 p i j j

p 0
0 p



+

∑
i mod p,
j mod p2

K (N )


1 0 j i
0 p pi 0

p2 0
0 p

+ ∑
i, j mod p,
k mod p2

K (N )


p 0 0 pj
i 1 j k

p −pi
0 p2

 (4.2.12)

Proof. The cosets are from [Roberts and Schmidt 2007, (6.6)] after swapping rows one and two and
columns one and two, applying an inverse, and multiplying by the similitude p2. �
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Define the indicator function 1(p | y) by 1 if p | y and by 0 if p - y. Then the action of T1(p2) on the
Fourier coefficients is:

a(T ; f |k T1(p2))= pk−3
∑

x mod p

a
(
T
[ 1

x
0
p

]
; f
)
+ pk−3a

(
T
[ p

0
0
1

]
; f
)

+ p3k−6
∑

j mod p

a
( 1

p2 T
[ 1

j
0
p

]
; f
)
+ p3k−6a

( 1
p2 T

[ p
0

0
1

]
; f
)

+ p2k−6(p1
(

p | T
[ 1

0

])
− 1

)
a(T ; f )

+ p2k−6
∑

λ mod p

(
p1
(

p | T
[
λ
1

])
− 1

)
a(T ; f ).

(4.2.13)

Hence for k ≥ 3, the Hecke operator T1(p2) stabilizes Sk(K (N ), R). In particular, if f has integral
Fourier coefficients, then f |k T1(p2) has integral Fourier coefficients for k ≥ 3. However, for k = 2, we
only know that p2 f |k T1(p2) is integral when f is (and there are examples where f |2T1(p2) has p2 in
the denominator of some Fourier coefficients).

Summarizing the above, we have:

T (p)= T(K (N ) diag(1, 1, p, p)K (N )); deg T (p)= (1+ p)(1+ p2);

T1(p2)= T(K (N ) diag(1, p, p2, p)K (N )); deg T1(p2)= (1+ p)(1+ p2)p.
(4.2.14)

We define two new operators:

T2(p2) := T(K (N ) diag(p, p, p, p)K (N ))= p2k−6 id

B(p2) := p(T1(p2)+ (1+ p2)T2(p2))
(4.2.15)

If f is an eigenform of weight k for the operators T (p) and T1(p2), with corresponding eigenvalues
ap( f ), a1,p2( f ) ∈ C, then f is an eigenform for the operator B(p2) with eigenvalue

bp2( f ) := pa1,p2( f )+ p2k−5(1+ p2). (4.2.16)

Lemma 4.2.17. If k = 2 and f has integral Fourier coefficients, then bp2( f ) ∈ Z.

Proof. We have observed that p2a1,p2( f ) ∈ Z. From (4.2.13), we observe the congruence

p2( f |2T1(p2))= p2a1,p2( f ) f ≡− f (mod p).

so p | (p2a1,p2( f )+ 1). Therefore

bp2( f )= pa1,p2( f )+ (1+ p2)/p = (p2a1,p2( f )+ 1)/p+ p ∈ Z. �

Following Roberts and Schmidt [2006; 2007], to f we then assign the spinor Euler factor at p -N in
the arithmetic normalization by

Q p( f, T ) := 1− ap( f )T + bp2( f )T 2
− p2k−3ap( f )T 3

+ p4k−6T 4
∈ 1+ T C[T ]. (4.2.18)
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We will also call Q p( f, T ) the spinor Hecke polynomial at p. If f has integral Fourier coefficients, then
by Lemma 4.2.17 we have Q p( f, T ) ∈ 1+ T Z[T ].

4.3. Galois representations from Siegel modular forms. We now seek to match the Galois representation
coming from an abelian surface with one coming from an automorphic form. In this section, we explain
the provenance of the latter.

We follow the presentation of Schmidt [2018] for the association of an automorphic representation
to a paramodular eigenform. Let 0 ≤ GSp4(Q)

+ be a subgroup commensurable with Sp4(Z) and let
f ∈ Sk(0) be a cuspidal eigenform at all but finitely many places. In general, the representation π f

generated by the adelization of f may be reducible and hence not an automorphic representation at all. It
is still possible however, to associate a global Arthur parameter for GSp4(A) to f as follows. Because
f is cuspidal, the representation π f decomposes as the direct sum of a finite number of automorphic
representations, and each summand has the same global Arthur parameter among one of six types: the
general type (G), the Yoshida type (Y), the finite type (F), or types (P), (Q) or (B) named after parabolic
subgroups. Thus we may associate a global Arthur parameter directly to a paramodular eigenform f .
The only type of global Arthur parameter that concerns us here is type (G) given by the formal tensor
µ� 1, where µ is a cuspidal, self-dual, symplectic, unitary, automorphic representation of GL4(A) and 1
is the trivial representation of SU2(A).

Remark 4.3.1. One can consider the eigenforms of type (G) to be those that genuinely belong on GSp4.

Second, when f is of type (G) or (Y), the associated representation π f is irreducible and f is necessarily
an eigenform at all good primes. Third, the type of f may be determined by checking one Euler factor at
a good prime. We state the paramodular case 0 = K (N ).

Proposition 4.3.2 (Schmidt). Let f ∈ Sk(K (N )) be a cuspidal eigenform for all primes p -N. Let p -N
be prime and let Q p( f, T ) be the Hecke polynomial of f at p defined in (4.2.18) in the arithmetic
normalization. Then f is of type (G) if and only if all reciprocal roots of Q p( f, T ) have complex absolute
value pk−3/2.

Proof. Converting from analytic to arithmetic normalization, by [Schmidt 2018, Proposition 2.1] the
stated local factor condition implies that f is of type (G) or (Y), but paramodular cusp forms cannot be
type (Y) also by [Schmidt 2018, Lemma 2.5]. �

Fourth, continuing in the paramodular case 0 = K (N ), the global conductor of π f divides N , and is
equal to N if and only if f is a newform. Finally, if f is a newform — see [Roberts and Schmidt 2006]
for the global newform theory of paramodular forms — then f is a Hecke eigenform at all primes and for
all paramodular Atkin–Lehner involutions.

We need one final bit of notation, concerning archimedian L-parameters. The real Weil group is
W (R)= C× ∪C× j , with j2

=−1 and j z j−1
= z for z ∈ C×. For w,m1,m2 ∈ Z with m1 > m2 ≥ 0 and

w+ 1≡ m1+m2 (mod 2), we define the archimedean L-parameter φ(w,m1,m2) :W (R)→ GSp4(R)
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by sending z ∈ C× to the diagonal matrix

|z|−w diag
((

z
z

)(m1+m2)/2

,

(
z
z

)(m1−m2)/2

,

(
z
z

)(m2−m1)/2

,

(
z
z

)−(m1+m2)/2)
(4.3.3)

and j to the antidiagonal matrix antidiag((−1)w+1, (−1)w+1, 1, 1). The archimedean L-packet of
GSp4(R) corresponding to φ(w,m1,m2) has two elements, one holomorphic and one generic: for
m2 > 0 these are both discrete series representations, whereas for m2 = 0 they are limits of discrete series.

We are now ready to associate a Galois representation to a paramodular eigenform of type (G).

Theorem 4.3.4 (Taylor, Laumon, Weissauer, Schmidt, and Mok). Let f ∈ Sk(K (N )) be a Siegel paramod-
ular newform of weight k ≥ 2 and level N . Suppose that f is of type (G). Then for any prime ` -N , there
exists a continuous, semisimple Galois representation

ρ f,` : GalQ→ GSp4(Q
al
` )

with the following properties:

(i) det(ρ f,`)= χ
4k−6
` .

(ii) The similitude character of ρ f,` is χ2k−3
` .

(iii) ρ f,` is unramified outside `N.

(iv) det(1− ρ f,`(Frobp)T )= Q p( f, T ) for all p -`N.

(v) The local Langlands correspondence holds for all primes p 6= `, up to semisimplification.

By (v), we mean that the Weil–Deligne representations associated to the restriction of the Galois
representation ρ f,` to Gal(Qal

p |Qp) agrees with that associated to the GLn(Qp)-representation πp attached
by the local Langlands correspondence up to semisimplification without information about the nilpotent
operator N : in the notation of Taylor and Yoshida [2007, p. 468] we mean (V, r, N )ss

= (V, r ss, 0).

Proof. The existence and properties (i)–(ii) follow from the construction and an argument of Taylor [1991,
Example 1, §1.3]. Properties (iii) and (iv) are provided by Berger and Klosin [2017, Theorem 8.2] (they
claim in the subsequent Remark 8.3 that the result is “well-known”).

We now sketch the construction, and we use the argument of Mok to conclude also property (v). By the
discussion above, following Schmidt [2018], we may attach to f a cuspidal automorphic representation5 f

of GSp4(A) of type (G). The hypothesis that f is of type (G) assures that the automorphic representation
5 f is irreducible. If k ≥ 3, then the automorphic representation is of cohomological type, and from a
geometric construction we obtain a Galois representation ρ f,` : GalQ→ GSp4(E) by work of Laumon
[2005] and Weissauer [2005, Theorems I and IV], where E is the finite extension of Q` containing the
Hecke eigenvalues of f (choosing an isomorphism between the algebraic closure of Q in C and in Qal

` ):
one shows that the representation takes values in GL4(E) and that it preserves a nondegenerate symplectic
bilinear form invariant under ρ f,`(GalQ) so lands in GSp4(E). Thereby, properties (i)–(iv) are verified.
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For all k ≥ 2, with the above conventions (including archimedean L-parameters) we verify that 5 f

satisfies the hypotheses of a theorem of Mok [2014, Theorem 4.14]: from this theorem we obtain a
unique, continuous semisimple representation ρ f,` : GalQ→ GL4(Q

al
` ) where Qal

` is an algebraic closure
of Q`. For k = 2, Mok constructs the representation by `-adic deformation using Hida theory from those
of Laumon and Weissauer, and so properties (i)–(iv) and the fact that the representation is symplectic
continue to hold in the limit; and property (v) is a conclusion of his theorem.

To illustrate this convergence argument, we show that the representation is symplectic. Let { fn}n be
a sequence of Siegel paramodular forms of weights kn > 2 such that fn converge p-adically to f (for
example, multiplying by powers of the Hasse invariant). By the previous paragraph, each fn is symplectic
with representation ρn so

2∧
ρn(3− 2kn)' ρtriv⊕ψn (4.3.5)

is equivalent to the direct sum of the trivial representation ρtriv of degree 1 and the representation ψ
of degree 5 with values in SO5(Q

al
` ). The sequence Trψn of pseudorepresentations converges to a

pseudorepresentation by (4.3.5) and continuity of the trace, and this limit is the trace of a representation ψ .
From this identity of traces, we conclude

2∧
ρ(−1)' ρtriv⊕ψ

and thus ρ is symplectic with cyclotomic similitude character.
Mok’s theorem relies on work of Arthur in a crucial way. For further attribution and discussion, see

[Mok 2014, About the proof, pp. 524ff] and the overview of the method by Jorza [2012, §§1–3]. �

Let f be as in Theorem 4.3.4, with Galois representation ρ f,` : GalQ,S → GSp4(Q
al
` ) where S :=

{p : p | N }∪{`,∞}. By the Baire category theorem, we may descend the representation to a finite extension
E ′ ⊆Qal

` of Q`. Let l′ be the prime above ` in the valuation ring R′ of E ′ and let k ′ be the residue field of
R′. Choose a stable R′-lattice in the representation space V ′ := (E ′)4 and reduce modulo l′; the semisim-
plification yields a semisimple residual representation ρss

f,` :GalQ,S→GL4(k ′), unique up to equivalence.
Applying a recent result of Serre, we now show that the residual representation is symplectic.

Lemma 4.3.6. The semisimplification ρss
f,` : GalQ,S → GL4(k ′) is compatible with a nondegenerate

alternating form with similitude character χ2k−3
` ; in particular, up to equivalence its image lies in

GSp4(k
′).

Proof. We refer to Serre [2018]. Let 〈 · , · 〉 be the alternating form on V ′ with similitude character
ε := χ2k−3

` provided by Theorem 4.3.4. Then V ′ is a module over A′ := R′[GalQ,S] via ρ f,` (we suppress
this from the notation for convenience); moreover, the map σ ∗ := ε(σ )σ−1 for σ ∈ GalQ,S extends by
R′-linearity to an involution of A′. Therefore, for all σ ∈ GalQ,S and all x, y ∈ V ′ we have

〈σ x, y〉 = 〈σ x, σσ−1 y〉 = ε(σ )〈x, σ−1 y〉 = 〈x, ε(σ )σ−1 y〉 = 〈x, σ ∗y〉. (4.3.7)
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Extending by R′-linearity, we conclude that 〈 · , · 〉 is compatible with the action of A′ [Serre 2018, (5.1.1)].
Let V ′k′ be the k ′-vector space underlying the semisimplification ρss

f,`. Then Serre proves [2018,
Theorem 5.1.4] that there exists a nondegenerate k ′-bilinear alternating form on V ′k′ that is compatible with
A′k := k ′[GalQ,S]. Running the equality of (4.3.7) again, we conclude that V ′k′ has similitude character ε,
as claimed.

The final statement holds because up to equivalence by GL4(k ′) we may assume the alternating form
is the standard form, so now the image lands in GSp4(k

′), as claimed. �

Next, we seek descent preserving the symplectic form. Let E be the extension of Q` generated by
the Hecke eigenvalues of f (with respect to a choice of isomorphism between the algebraic closure of
Q in C and in Qal

` ); then E also contains all coefficients of the Hecke polynomials Q p( f, T ). Let R be
the valuation ring of E and let k be its residue field. We have E ⊆ E ′, and we would like to be able to
descend the representation to take values in GSp4(E). However, there is a possible obstruction coming
from the Brauer group of Q`; such an obstruction arises for example in the Galois representation afforded
by a QM abelian fourfold at a prime ` dividing the discriminant of the quaternion algebra B, which
has image in GL2(B⊗Q`) and not GSp4(Q`). Under an additional hypothesis, we may ensure descent
following Carayol and Serre as follows.

Lemma 4.3.8. With hypotheses as in Theorem 4.3.4, the following statements hold:

(a) The semisimplified residual representation ρss
f,` descends to

ρss
f,` : GalQ,S→ GSp4(k)

up to equivalence.

(b) If ρss
f,` = ρ f,` is absolutely irreducible, then ρ f,` descends to

ρ f,` : GalQ,S→ GSp4(E)

up to equivalence, where E is the extension of Q` generated by the Hecke eigenvalues of f as above.

Proof. We begin with (a). First, a semisimple representation into GL4(k ′) is determined by its traces, and
so up to equivalence we may descend ρss

f,` to take values in GL4(k) ⊆ GL4(k ′) (for a complete proof,
see e.g., [Taylor 1991, Lemma 2, part 2]). The semisimplification ρss

f,` was only well-defined up to
equivalence (in GL4(k ′)) anyway, so Lemma 4.3.6 still applies and the underlying space Vk = k4 of ρss

f,`

has the property that its extension Vk′ = (k ′)4 to k ′ carries an alternating form with k-valued similitude
character χ2k−3

` . The set of such alternating forms with fixed similitude character is defined by linear
conditions over k since the image of ρ f,` belongs to GL4(k); therefore, the existence of a form defined on
Vk′ implies the existence of such a form on Vk with the same similitude character. Again up to equivalence,
the image of ρss

f,` may be taken to lie in GSp4(k).
For statement (b), by a theorem of Carayol [1994, Théorème 2] under the hypothesis that the residual

representation is absolutely irreducible, the representation ρ f,` takes values in GL4(E). Again we have a
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nondegenerate alternating form compatible with GalQ,S , and repeating the first part of the argument in
the previous paragraph we may assume it takes values in E ; conjugating, we conclude that the image is
in GSp4(E). �

Remark 4.3.9. The statement of Theorem 4.3.4 is not the most general statement that could be proven
(in several respects), but it is sufficient for our purposes.

Berger and Klosin [2017, Theorem 8.2] attach to any paramodular newform f a Galois representation
into GL4(Q

al
` ), not just those of type (G). The remaining types are related to constructions of automorphic

representations from those in GL2(A), where the local Langlands correspondence is known. We do not
know a reference for a complete argument for these remaining cases. In this article, we are only concerned
with forms of type (G).

A consequence of Mok’s proof of Theorem 4.3.4(v) is encoded in the following result.

Lemma 4.3.10. Let K be the fixed field of ker ρ f,` and let cond(ρ f,`) be the Artin conductor of the
representation ρ f,` of Gal(K |Q). If p ‖ N is odd, then ordp(cond(ρ f,`))≤ 1.

Proof. The proof of Theorem 4.3.4(v) is only up to semisimplification, so we do not know the complete
statement of local Langlands under the patching argument that is employed. However, in specializing the
family to the accumulation point f in the family, there is nevertheless an upper bound on the level: the
representation is necessarily either unramified or is Steinberg with level p, and accordingly the conductor
has p-valuation 0 or 1. �

5. Group theory and Galois theory for GSp4(F2)

In this section, we carry out the needed Galois theory for the group GSp4(F2). Specifically, we carry
out the task outlined in Section 3.2: given G = img ρ ≤ GSp4(F2), and for each obstructing extension
ϕ extending ρ, we compute an exact core-free subgroup D ≤ E (as large as possible) and the list of
E-conjugacy classes of elements whose upper trace is nonzero. The arguments provided in this section
are done once and for all for the group GSp4(F2); we apply these to our examples in Section 7.

5.1. Symplectic group as permutation group. We pause for some basic group theory. We have an
isomorphism ι : S6 −→

∼ Sp4(F2), where S6 is the symmetric group on 6 letters, which we make explicit
in the following manner. Let U := F6

2, and equip U with the coordinate action of S6 and the standard
nondegenerate alternating (equivalently, symmetric) bilinear form 〈x, y〉 =

∑6
i=1 xi yi visibly compatible

with the S6-action. Let U 0
⊂ U be the trace 0 hyperplane, let L be the F2-span of (1, . . . , 1), and let

Z :=U 0/L be the quotient, so dimF2 Z = 4. Then Z inherits both an action of S6 and a symplectic pairing,
which remains nondegenerate: specifically, the images

e1 := (1, 1, 0, 0, 0, 0), e2 := (0, 0, 1, 1, 0, 0), e3 := (0, 0, 0, 1, 1, 0), e4 := (0, 1, 0, 0, 0, 1) ∈ Z



On the paramodularity of typical abelian surfaces 1173

are a basis for Z in which the Gram matrix of the induced pairing is the antiidentity matrix, so e.g.,
〈e1, e4〉 = 〈e2, e3〉 = 1. (An alternating pairing over F2 is symmetric, and we have chosen the standard
such form.) We compute that

ι : S6→ Sp4(F2)

(1 2 3 4 5), (1 6) 7→


1 0 0 1
0 0 1 0
1 1 0 1
1 0 1 0

 ,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

. (5.1.1)

We have

Lie0(GSp4)(F2)= sp4(F2)= {A ∈M4(F2) : A
T

J + J A = 0} ' F10
2 , (5.1.2)

where J ∈M4(F2) is the antiidentity matrix (with 1 along the antidiagonal), and we have an exact sequence

1→ sp4(F2)→ sp4(F2)oG π
−→G→ 1 (5.1.3)

with π : sp4(F2)oG→ G the natural projection map. As in (2.3.9) we identify

sp4(F2)oG ≤M4(F2)oG ↪→ GL8(F2)

(a, g) 7→
(

1 a
0 1

)(
g 0
0 g

)
=

(
g ag
0 g

) (5.1.4)

The following lemmas follow from straightforward computation.

Lemma 5.1.5. The group Sp4(F2) has elements of orders 1, . . . , 6 with the following possibilities for
their characteristic polynomials:

order characteristic polynomial

1, 2, 4 x4
+ 1

3, 6 x4
+ x2
+ 1 or x4

+ x3
+ x + 1

5 x4
+ x3
+ x2
+ x + 1

(5.1.6)

There is a unique outer automorphism of S6 up to inner automorphisms [Howard et al. 2008]; it sends
transpositions to products of three transpositions, and interchanges the trace of some order 3 and order 6
elements.

Lemma 5.1.7. There are, up to inner automorphism, exactly 9 subgroups of Sp4(F2)' S6 with absolutely
irreducible image. They are listed in the following table with a property that determines them uniquely
(where “−” indicates there is a unique conjugacy class of subgroup with that order):
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subgroup order element orders distinguishing property

S6 720 1, . . . , 6 −

A6 360 1, . . . , 5 −

S5(a) 120 1, . . . , 6 elements of order 3, 6 have trace 0
S5(b) 120 1, . . . , 6 elements of order 3, 6 have trace 1
S3 o S2 72 1, 2, 3, 4, 6 −

A5(b) 60 1, 2, 3, 5 elements of order 3 have trace 1
C2

3 oC4 36 1, 2, 3, 4 no elements of order 6
S3(a)2 36 1, 2, 3, 6 elements of order 6 have trace 0

C5 oC4 20 1, 2, 4, 5 −

(5.1.8)

Example 5.1.9. The conjugacy classes of subgroups S5(a), S5(b) ≤ S6 are exchanged by the outer
automorphism of S6. For example, under the restriction of (5.1.1), we have

ι : S5(b)→ Sp4(F2)

(1 2 3 4 5), (1 2), (1 2 3) 7→


1 0 0 1
0 0 1 0
1 1 0 1
1 0 1 0

 ,


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 1
0 1 0 0
1 1 1 1
1 1 0 0

 . (5.1.10)

Another way to distinguish S5(a) from S5(b) is that ι(S5(b)) has transvections while ι(S5(a)) does not.

Example 5.1.11. There is a subgroup A5(a)≤ S6 that is similarly exchanged with A5(b) but that is not
absolutely irreducible.

5.2. Images and discriminants. For the purposes of establishing the first typical cases of the paramodular
conjecture, we observe the following.

Lemma 5.2.1. Suppose N is odd and squarefree and let A be an abelian surface over Q of conductor N
equipped with a polarization of odd degree. Then the residual representation

ρA,2 : GalQ,S→ GSp4(F2)

(where S = {p : p | N } ∪ {`,∞}) is absolutely irreducible if and only if its image is isomorphic to S5(b),
S6, or S3 o S2.

Proof. By work of Brumer and Kramer [2014, §7.3], whenever N is not a square, the image is either S5,
S6, or S3 o S2. To force S5(b), it suffices that there is a prime p | N such that Ap has toroidal dimension
one (i.e., p ‖ N ) and that p be ramified in Q(A[2]). If A is semistable and the Galois group is S5(a), then
the toroidal dimension at the bad primes is 2 since there are no transvections. �

Remark 5.2.2. In general, if A[2] is absolutely irreducible, then the degree of any minimal polarization
on A is odd.
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Next, we convert the upper bound from Lemma 4.3.10 on the conductor into an upper bound on the
discriminant. We first recall the following standard result.

Lemma 5.2.3. Let a(x) ∈Q[x] be irreducible and let � be the set of roots of a(x) in Qal. Let α ∈�, let
K0 =Q(α), and let K be the normal closure of K0. Let p be a prime of K that is tamely ramified in the
extension K ⊇Q, and let p ∈Z be the prime lying below p. Finally, let Ip ≤Gal(K |Q) denote the inertia
group at p. Then

ordp(dK0)= deg a(x)− #�/Ip

where #�/Ip denotes the number of orbits of Ip acting on �.

We now specialize to our case of interest.

Proposition 5.2.4. Let p ‖ N be odd. Let K be the fixed field of ker ρ f,2.

(a) If Gal(K |Q)' S3 o S2, or Sm with m = 5, 6, then K is the normal closure of a field K0 of degree 6,
or respectively m, with ordp dK0 ≤ 1.

(b) If Gal(K |Q)' Am , with m = 5, 6, then K is the normal closure of a field K0 of degree m with p
unramified in K0 (i.e., ordp dK0 = 0).

Proof. Decomposing the Weil–Deligne representation at p, we see by Lemma 4.3.10 that the image of
inertia is either trivial or a 2× 2-Jordan block. If trivial, the extension is unramified and the result holds,
so suppose we are in the latter case. Under the isomorphism GSp4(F2) ' S6 above (5.1.1), nontrivial
elements of this Jordan block correspond to cycle decomposition 2+2+2 or 2+1+1+1+1, and these
are exchanged by an outer automorphism.

For (a), by a faithful permutation representation on the cosets of a core-free subgroup, a field K0 of the
given degree exists. If the residual image inside S6 is invariant under such an automorphism (which holds
for S6 and S3 o S2), then we can choose our subfield K0 corresponding to the latter case, and conclude
ordp dK0 ≤ 1 by Lemma 5.2.3. If Gal(K | Q) ' S5, we have only the possibility 2+ 1+ 1+ 1 again
giving ordp dK0 ≤ 1.

Finally, for (b) and the groups A5, A6, we find no possibilities and reach a contradiction, so we conclude
that K0 is unramified at p. �

5.3. Core-free extensions and obstructing elements. We will compute all obstructing extensions ϕ :
Gal(L|F) ↪→ E extending ρ (Definition 2.3.17); we represent L ⊇ K ⊇ F by an exact core-free
subextension L0 ⊇ K0 ⊇ F (Definition 3.1.7) arising from an exact core-free subgroup D ≤ E which is
as large as possible, to make the degree of the subextension as small as possible.

For each G in (5.1.8), we therefore first seek subgroups ϕ : E ↪→ sp4(F2)oG such that π(E)=G; such
extensions are obstructing (Definition 2.3.18) if they have nonzero upper trace in the matrix realization
(5.1.4). Consider first the case G = S5(b).

Theorem 5.3.1. For G = S5(b), there are exactly 10 extension groups E up to conjugacy in M4(F2)oG,
with #V = [E : G] = 2k where k = 0, 0, 1, 4, 4, 5, 5, 6, 9, 10, respectively.
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Furthermore, let
H = D6(b) := 〈(1 2), (1 3), (4 5)〉 ≤ G;

then for all E 6' G, there is an exact core-free subgroup D ≤ E of index 2 such that π(D) = H as in
(3.1.6).

Proof. This theorem is proven by explicit computation in Magma [Bosma et al. 1997]; the code is
available online [Tornaria 2018] together with the verbose output. There are exactly 18 conjugacy classes
of subgroups ϕ : E ↪→ sp4(F2)o G with π(E) = G; these subgroups fall into 10 conjugacy classes in
M4(F2)oG. Let H = D6(b) := 〈(1 2), (1 3), (4 5)〉 ≤ G be as in the statement. Then H is dihedral of
order #H = 12 and index [G : H ] = 10 and it can be verified that for each such E 6' G, there is at least
one subgroup W ≤ V of index 2 such that D ≤ E is an exact core-free subgroup. �

The somewhat complicated field diagram (3.1.8) in our case simplifies to:

L

2e V

L0

2

K

G
120K0

10

F

(5.3.2)

We understand the large extension L ⊇ K ⊇ F as the Galois closure of the exact core-free subextension
L0 ⊇ K0 ⊇ F , with L0 ⊇ K0 quadratic. The extension K0 is realized explicitly as follows: if K ⊇ F is
the splitting field of a quintic polynomial f (x) with roots α1, . . . , α5 permuted by S5, then K0 = K H

=

F(α4+α5).
In a similar way, we have the result for the remaining two groups.

Theorem 5.3.3. (a) For G= S3 oS2≤GSp4(F2), there are exactly 20 extension groups E up to conjugacy
in M4(F2)oG, with #V = [E : G] = 2k and

k = 0, 0, 1, 1, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 8, 8, 9, 9, 10.

Let H = C2
2 ≤ G with [G : H ] = 18. Then for each such E , there is an exact core-free subgroup

D ≤ E such that π(D)= H.

(b) For G = S6 ' GSp4(F2), the analogous statement to (a) holds, with 7 groups having k = 0, 0, 1, 5,
5, 6, 10 and H = S3(b)2.

Remark 5.3.4. With reference to computing conjugacy classes in stages as in Section 3.3, we note that
the index 2 subgroups of the 18 subgroups C2

2 of S3 o S2 are not sufficient to find obstructing classes for
all 20 extension groups if one applies the more limited strategy exhibited in Remark 3.3.2.
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Remark 5.3.5. The remaining cases of subgroups G≤GSp4(F2)may be computed with the same method
and the same code.

6. Computing Hecke eigenvalues by specialization

Having set up the required Galois theory, we now compute Hecke eigenvalues of particular Siegel
paramodular newforms. In this section, we use the technique of restriction to a modular curve to
accomplish these eigenvalue computations. We continue the notation from Section 4.2.

6.1. Jacobi forms and Borcherds products. We construct our paramodular forms using Gritsenko lifts of
Jacobi forms and Borcherds products. In this section, we quickly review what we need from these theories.

We begin with Jacobi forms; we refer to [Eichler and Zagier 1985] for further reference. Each Jacobi
form φ ∈ Jk,N of weight k and index N has a Fourier expansion

φ(τ, z)=
∑

n,r∈Z

c(n, r;φ)qnζ r , (6.1.1)

where q = e(τ ) and ζ = e(z). We write φ ∈ Jk,N (R) if all the Fourier coefficients of φ lie in a ring R ⊆C.
We will need the level-raising operators Vm : Jk,N → Jk,m N (see [Eichler and Zagier 1985, p. 41]) that
act on φ ∈ Jk,N via

c(n, r;φ | Vm)=
∑

δ | gcd(n,r,m)

δk−1c
(

mn
δ2 ,

r
δ
;φ

)
. (6.1.2)

The Gritsenko lift [1995]

Grit : Jk,N cusp→ Sk(K (N ))

lifts a Jacobi cusp form φ to a paramodular form f by the rule

a
(( n

r/2
r/2
Nm

)
;Grit(φ)

)
= c(n, r;φ | Vm).

We also have Grit(φ)|kµN = (−1)k Grit(φ), so that a Gritsenko lift has paramodular Fricke sign (−1)k .
One convenient way to construct Jacobi forms is to use the theta blocks created by Gritsenko, Skoruppa

and Zagier [2018]. Recall the Dedekind η-function and the Jacobi ϑ-function

η(τ)= q1/24
∞∏

n=1

(1− qn)=

∞∑
n=1

( 12
n

)
qn2/24,

ϑ(τ, z)=
∞∑

n=−∞

(−1)nq(2n+1)2/8ζ (2n+1)/2
= q1/8(ζ 1/2

− ζ−1/2)

∞∑
n=1

(−1)n+1q(
n
2)

n−1∑
j=−(n−1)

ζ j .

For d ∈ Z>0 let ϑd(τ, z)= ϑ(τ, dz). For d1, . . . , d` ∈ Z>0 and k ∈ Z, define the theta block

TBk[d] = TBk[d1, d2, . . . , d`] = η2k
∏̀
j=1

ϑd j

η
. (6.1.3)
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The theta block TBk[d] defines a meromorphic Jacobi form (with multiplier) of weight k and index m =
1
2(d

2
1 +· · ·+d2

` ). Moreover, by [Eichler and Zagier 1985] (compare [Poor and Yuen 2015, Theorem 4.3]),
the theta block TBk[d] is a Jacobi cusp form if

12 | (k+ `) and k
12 +

1
2

∑̀
j=1

B2(d j x) > 0, (6.1.4)

where B2(x) := x2
− x + 1

6 and B2(x) := B2(x −bxc).
Second, we use Borcherds products in the construction of paramodular forms. Let ψ be a weakly

holomorphic Jacobi form of weight 0 and index N with integral Fourier coefficients on singular indices
with Fourier expansion (6.1.1). Define

A(ψ) := 1
24

∑
r∈Z

c(0, r;ψ), B(ψ) := 1
2

∑
r≥1

rc(0, r;ψ), C(ψ) := 1
4

∑
r∈Z

r2c(0, r;ψ).

Then A(ψ), B(ψ),C(ψ)∈Q. The Borcherds product ofψ is a meromorphic paramodular form Borch(ψ),
perhaps with nontrivial character on K (N ), with

Borch(ψ)= q A(ψ)ζ B(ψ)ξC(ψ)
∏

n,r,m

(1− qnζ rξm N )c(mn,r;ψ), (6.1.5)

where the product is over n, r,m ∈ Z such that: (i) m ≥ 0; (ii) if m = 0, then n ≥ 0; and (iii) if m = n = 0,
then r < 0. Borcherds products are not always holomorphic and, when holomorphic, not always cuspidal.

6.2. Construction of newforms. In this section, we define the nonlift paramodular newforms of interest
to this article, with levels 277, 353, 587. We will see later that this way of writing paramodular forms
makes the computation of Hecke eigenvalues feasible.

We refer to Section 4.2 for notation. We now define the nonlift paramodular form f277∈ S2(K (277),Z)+

following Poor and Yuen [2015, Theorem 7.1]. Define the following ten theta blocks:

41 := TB2(2, 4, 4, 4, 5, 6, 8, 9, 10, 14) 46 := TB2(2, 3, 3, 5, 5, 7, 8, 10, 10, 13)

42 := TB2(2, 3, 4, 5, 5, 7, 7, 9, 10, 14) 47 := TB2(2, 3, 3, 4, 5, 6, 7, 9, 10, 15)

43 := TB2(2, 3, 4, 4, 5, 7, 8, 9, 11, 13) 48 := TB2(2, 2, 4, 5, 6, 7, 7, 9, 11, 13)

44 := TB2(2, 3, 3, 5, 6, 6, 8, 9, 11, 13) 49 := TB2(2, 2, 4, 4, 6, 7, 8, 10, 11, 12)

45 := TB2(2, 3, 3, 5, 5, 8, 8, 8, 11, 13) 410 := TB2(2, 2, 3, 5, 6, 7, 9, 9, 11, 12).

(6.2.1)

We have, for i = 1, . . . , 10,

4i ∈ J cusp
2,277(Z) and Gi := Grit(4i ) ∈ S2(K (277),Z).

Let f277 be the (a priori) meromorphic function on H2 defined by
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f277 :=
(
−14G2

1−20G8G2+11G9G2+6G2
2−30G7G10+15G9G10+15G10G1−30G10G2

−30G10G3+5G4G5+6G4G6+17G4G7−3G4G8−5G4G9−5G5G6+20G5G7

−5G5G8−10G5G9−3G2
6+13G6G7+3G6G8−10G6G9−22G2

7

+G7G8+15G7G9+6G2
8−4G8G9−2G2

9+20G1G2−28G3G2+23G4G2

+7G6G2−31G7G2+15G5G2+45G1G3−10G1G5−2G1G4−13G1G6

−7G1G8+39G1G7−16G1G9−34G2
3+8G3G4+20G3G5+22G3G6+10G3G8

+21G3G9−56G3G7−3G2
4
)/(
−G4+G6+2G7+G8−G9+2G3−3G2−G1

)
.

(6.2.2)

A main result of Poor and Yuen [2015, Theorem 7.1] is that f277 is actually holomorphic: in fact,
f277 ∈ S2(K (277),Z)+ is a cuspidal, nonlift, paramodular form of weight 2 that is an eigenform for all
Hecke operators and has integral Fourier coefficients whose greatest common divisor is 1. There are
no nontrivial weight 2 paramodular cusp forms of level 1, so since 277 is prime, f277 is a newform.
Equation (4.2.9) and Lemma 4.2.17 imply that the Euler factors Q p( f277, t) are integral.

The first few eigenvalues for f277 were computed [Poor and Yuen 2015] as

ap( f277)=−2,−1,−1, 1,−2 for p = 2, 3, 5, 7, 11 (6.2.3)

and the first three Hecke polynomials, identifying f277 as type (G), are:

Q2( f277, t)= 1+ 2t + 4t2
+ 4t3

+ 4t4,

Q3( f277, t)= 1+ t + t2
+ 3t3

+ 9t4,

Q5( f277, t)= 1+ t − 2t2
+ 5t3

+ 25t4.

(6.2.4)

Remark 6.2.5. The form f277 can also be realized as the sum of a Borcherds product and a Gritsenko
lift, giving a second, independent construction by Poor, Shurman, and Yuen [2018].

In a similar way, we construct a second form

f353 := Q(G1, . . . ,G11) ∈ S2(K (353),Z)+ (6.2.6)

(plus eigenspace for the Fricke involution, as in (4.2.4)) a quotient of a quadratic polynomial by a linear
polynomial of 11 Gritsenko lifts of theta blocks: see [Poor and Yuen 2015, Theorem 7.4] for the specific
formula for Q and the forms Gi . This construction was contingent upon assuming the existence of some
nonlift in S2(K (353)); however, the dimension dim S2(K (353))= 12 is now known [Poor et al. 2018]
via the construction of a nonlift Borcherds product in S2(K (353)).

The first two Euler factors, each showing that f353 is of type (G), are

Q2( f353, t)= 1+ t + 3t2
+ 2t3

+ 4t4, Q3( f353, t)= 1+ 2t + 4t2
+ 6t3

+ 9t4. (6.2.7)

Finally, we construct a form of level 587 as a Borcherds product. An antisymmetric nonlift Borcherds
product f −587 ∈ S2(K (587),Z)− was recently constructed by Gritsenko, Poor, and Yuen [2019]. The
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form f −587 is necessarily an eigenform because dim S2(K (587))− = 1. The Fourier expansion is given by
formally expanding

f −587 = Borch(ψ)= ξ 587φ exp(−Grit(ψ)) for ψ = (φ | V2−4)/φ, (6.2.8)

where

φ =TB2(1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14) ∈ J cusp
2,587,

4=TB2(1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14) ∈ J cusp
2,1174.

(6.2.9)

For the Borcherds product that appears in the formula for f −587, we have Borch(ψ) ∈ Sk(K (587)) with
k = 1

2 c(0, 0;ψ)= 2 [Gritsenko et al. 2019]. The first two Euler factors, verifying type (G), are computed
to be

Q2( f −587, t)= 1+ 3t + 5t2
+ 6t3

+ 4t4, Q3( f −587, t)= 1+ 4t + 9t2
+ 12t3

+ 9t4. (6.2.10)

6.3. Specialization. To compute the action of the Hecke operators directly on a Fourier expansion of a
Siegel paramodular form would require manipulations with series in three variables. To avoid this, we
specialize our form. Possibilities for this specialization include restriction to Humbert surfaces (typically
producing Hilbert modular forms), restriction to modular curves (producing classical modular forms), or
evaluation at CM points (producing a numerical result, see Colman, Ghitza, and Ryan [2019]). Each of
these methods has certain advantages and disadvantages — we choose to restrict to modular curves and
work with one-variable q-series to avoid rigorous analysis of the upper bounds on the tails of convergent
numerical series. The biggest advantage of our choice, however, is that Proposition 6.3.8 allows us to
sum over only O(p2) cosets instead of O(p3) cosets, a significant savings; it is not clear whether such a
speedup is available to a method that numerically evaluates at CM points.

Remark 6.3.1. Specialization of Siegel modular forms is not a new idea, but here we take a different
approach. In previous work of Poor and Yuen [2015], only three Euler factors were computed for f277

because the computation relied on multiplying initial expansions of multivariable Fourier series. Instead,
below we will write the action of the Hecke operator T (p) on a paramodular form f as a sum of slashes
f |k T (p) =

∑
j f |k M j , and the main innovation is to specialize each part of f |M j to a one variable

q-series prior to any addition, multiplication, or division. Specialization was also used by Poor and Yuen
[2007] to compute upper bounds on dimensions and some Fourier coefficients by taking advantage of the
known structure of the target space of elliptic modular forms, whereas here we only use the one variable
nature of the target space.

Let s ∈Msym
2 (Q)>0 be a symmetric, positive definite matrix with rational coefficients. Let Hg be the

Siegel upper half space of dimension g, so H1 is the upper half-plane. Define the holomorphic map

φs :H1→H2

τ 7→ sτ.
(6.3.2)
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Lemma 6.3.3. Let R ⊆C be a subring. Let s =
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c ∈ Z. Then the pullback
under φs defines a ring homomorphism

φ∗s : M(K (N ), R)→ M(00(det(s)N ), R) (6.3.4)

from the graded ring of Siegel paramodular forms of level N with coefficients in R to the graded ring of
classical modular forms of level det(s)N with coefficients in R. The map φ∗s multiplies weights by 2 and
maps cusp forms to cusp forms.

Proof. The proof follows from a straightforward modification of a result of Poor and Yuen [2007,
Proposition 5.4]. �

Let f ∈ Mk(K (N ), R) be a paramodular form with Fourier expansion (4.2.5), the Fourier expansion
of the specialization φ∗s f ∈ M2k(00(det(s)N ), R) is

(φ∗s f )(τ )= f (sτ)=
∞∑

n=0

( ∑
T :Tr(sT )=n

a(T ; f )
)

qn. (6.3.5)

Furthermore, the specialization of f after slashing with a block upper-triangular matrix
( A

0
B
D

)
∈GSp+4 (Q)

with similitude µ= det(AD)1/2 is given by

φ∗s
(

f |k
( A

0
B
D

))
(τ )= ( f |k

( A
0

B
D

)
)(sτ)= det(AD)k−3/2 det(D)−k f (As D−1τ + B D−1)

= det(A)k det(AD)−3/2
∑

n∈Q≥0

( ∑
T :Tr(As D−1T )=n

e(Tr(B D−1T ))a(T ; f )
)

qn. (6.3.6)

Let s =
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c ∈ Z. Using (4.2.8), the specialization of f |k T (p) may be
written

φ∗s ( f |k T (p))(τ )= p2k−3 f (psτ)+ pk−3
∑

i mod p

f
((a/p

b
b

pc/N

)
τ +

( i/p
0

0
0

))
+ pk−3

∑
i mod p

( ∑
j mod p

f
(( pa

b+ia
b+ia

(c/N+2ib+i2a)/p

)
τ +

( 0
0

0
j/p

)))
+ p−3

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
.

(6.3.7)

Upon expanding in Puiseux q-series, there is cancellation among these sums of specializations. The
following proposition shows that partial summation gives new specializations whose sum over smaller
index sets equals the original sum for integral powers of q. For a Puiseux series f ∈ C[[q1/∞

]] and
e ∈Q≥0, we denote by coeffe f ∈ C the coefficient of qe in f .

Proposition 6.3.8. Let s=
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c∈Z. Let p be prime, and let f ∈Mk(K (N )).
Then the following statements hold for all e ∈ Z≥0:
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(a) If p -a, then

coeffe

∑
i mod p

f
((a/p

b
b

pc/N

)
τ +

( i/p
0

0
0

))
= p coeffe f

((a/p
b

b
pc/N

)
τ
)

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
j,k mod p

f
(
sτ/p+

( 0
j/p

j/p
k/p

))
.

(b) If p -b, then

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
i,k mod p f

(
sτ/p+

( i/p
0

0
k/p

))
.

(c) If p -c, then

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
i, j mod p f

(
sτ/p+

( i/p
j/p

j/p
0

))
.

(d) For i ∈ Z, if p - (c+ 2ibN + i2aN ), then

coeffe

∑
j mod p

f
(( pa

b+ia
b+ia

(c/N+2ib+i2a)/p

)
τ +

( 0
0

0
j/p

))
= p coeffe f

(( pa
b+ia

b+ia
(c/N+2ib+i2a)/p

)
τ
)
.

Proof. We prove (c); the other proofs are similar. Suppose p -c. Let e ∈ Z≥0. Then the coefficient of qe in
the left-hand side is equal to ∑

i, j,k mod p
n,r,m:an+br+cm=pe

e((in+ jr + km)/p)a(T ; f ) (6.3.9)

where T =
( n

r/2
r/2
m N

)
. If any of n, r,m is not a multiple of p, then summing over i, j, k modulo p in

(6.3.9) would yield a contribution of zero. Hence we may restrict the sum to the terms where p | n, p | r ,
and p |m. But since p -c and given an+ br + cm = pe, the conditions p | n and p | r imply p |m. Thus
(6.3.9) becomes simply∑

i, j,k mod p
n,r,m:an+br+cm=pe

p | n,p | r

e((in+ jr + 0)/p)a(T ; f )= p
∑

i, j mod p
n,r,m:an+br+cm=pe

p | n,p | r

e((in+ jr)/p)a(T ; f )

= p
∑

i, j mod p
n,r,m:an+br+cm=pe

e((in+ jr)/p)a(T ; f )

= p coeffe

∑
i, j mod p

f
(
sτ/p+

( i/p
j/p

j/p
0

))
. �

Remark 6.3.10. Proposition 6.3.8 provides a certain subtle speedup because the coefficients at integral
powers are equal, even though the series themselves are not necessarily equal. Further simplifying the
above sums to
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p3
∑

n,r,m:an+br+cm=pe
p | n,p | r,p |m

a(T ; f ).

does not help: we want to leave the sums in terms of coefficients of specializations.

In a similar way, we can compute the specialization φ∗s ( f |k T1(p2)) and there are similar cancellations
in the character sums as in Proposition 6.3.8.

6.4. Algorithmic detail. In this section, we provide three further bits of algorithmic detail.
First, we describe the choice of s. Suppose f has a nonzero coefficient a(t0; f ) where t0 has small

determinant and small entries. If we choose s to be the adjoint of 2t0, then the restriction φ∗s ( f ) likely
begins with a(t0; f )qdet(s). In particular if t0 has minimal determinant, then this is forced. In practice, we
can just check the initial expansion to see that

φ∗s ( f )(τ )= a(t0; f )qdet(s)
+ higher powers of q.

For each T (p), we want to expand φ∗s ( f |T (p)) to at least qe where e= det(s) is the target exponent of q .
For a polynomial combination of Gritsenko lifts and Borcherds products, the target exponent of each part
g(Gτ + H) would also be e. But for a rational function of Gritsenko lifts and Borcherds products, we
have to be slightly more careful. If the denominator of this rational functional restricted to (Gτ + H) has
leading term qµ, then we must expand both the numerator and denominator to a higher target term qe+µ.
Therefore, we may end up evaluating the restriction of the denominator twice, with the initial execution
used to get the leading exponent µ.

Second, we provide our algorithm for finding all T such that 〈G, T 〉 ≤ u. Let G and H be two rational,
symmetric 2×2 matrices with G positive definite. We explain how to effectively compute specializations
of the form f (Gτ + H), as in (6.3.7) or Proposition 6.3.8. We adapt our index sets S to the type used
in (6.1.5) for Borcherds products but they can be used in all the cases we need to program. For any
u, δ ∈ R, let

S(N ,G, u, δ)=
{
(n, r,m) ∈ Z3

: tr
(( n

r/2
r/2
m N

)
G
)
≤ u,m ≥ 0, 4mnN − r2

≥ δ,

if m = 0 then n ≥ 0 and if m = n = 0 then r < 0
}
.

Proposition 6.4.1. Let G=
(
α
β
β
γ

)
∈M2(R) be positive definite. Let u, δ∈R. Let1=det G=αγ−β2> 0.

Let X = 4αum N − α2δ− 41(m N )2. Then the elements (n, r,m) ∈ S(N ,G, u, δ) satisfy the following
bounds:

(a) If m ≥ 1, then

1≤m≤
α(u+

√
u2−δ1)

21N
,
−2βm N−

√
X

α
≤r≤

−2βm N+
√

X
α

, and
r2
+δ

4m N
≤n≤

u−βr−γm N
α

.
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(b) If m = 0 and n > 0, then

r2
≤−δ and 1≤ n ≤

u−βr
α

.

(c) If m = n = 0, then

r2
≤−δ and r < 0.

Proof. The main two conditions that need to be satisfied are αn+βr + γm N ≤ u and 4mnN − r2
≥ δ.

The case m = 0 is straightforward, so we only deal with the case m ≥ 1 here. These two inequalities lead
immediately to the third inequality as stated in the proposition. From this third inequality, we work with
terms on the left and right of n; multiply through by 4m Nα and put the terms on one side:

αr2
+αδ− 4m Nu+ 4m Nβr + 4γ (m N )2 ≤ 0.

Solving this quadratic inequality for r yields the second inequality stated in the proposition. A condition
for there to be a solution in r is that the inside X of the square root must be nonnegative. Solving the
resulting quadratic inequality yields the first inequality in the proposition. �

We conclude with a final speedup. Suppose we wish to calculate the coefficient of qe in f (Gτ +H). If
there are no (n, r,m)∈S(N ,G, u, δ) such that tr

(( n
r/2

r/2
m N

)
G
)
= e, then we may skip the term involving G.

This simple observation is especially useful for terms in the second summand in (6.3.7): for well chosen s,
there are typically at most 2 choices of i for which such (n, r,m) exist. It often happens that, for these
surviving i , Proposition 6.3.8(d) applies.

6.5. Example of restricting f277. Now suppose that f is represented as a rational function in Gritsenko
lifts Gi with coefficients in a commutative ring R by f = Q(G1, . . . ,Gr ). Both the slash by M and the
specialization by φ∗s may be applied directly to each Gritsenko lift, so that we obtain

φ∗s ( f | M)= Q(φ∗s (G1 | M), . . . , φ∗s (Gr | M)). (6.5.1)

If the Fourier coefficients of f satisfy a(T ; f )∈ R⊆C, then for the representative matrices M j appearing
in the coset decomposition (4.2.8) for the Hecke operator T (p), the sum in (6.3.6) can be taken over
n ∈ 1

p Z≥0 and the coefficients of φ∗s ( f | M j ) belong to the ring R
[ 1

p , ζp
]

where ζp = e
( 1

p

)
is a primitive

p-th root of unity. From specializing f | T (p)=
∑

j f | M j = ap( f ) f , the eigenvalue ap( f ) for T (p)
can be computed by performing field operations on Laurent–Puiseux series in q via

ap( f )=
1

φ∗s ( f )

∑
j

φ∗s ( f | M j ) ∈ R
[ 1

p , ζp
]
[[q1/p

]] (6.5.2)

whenever the specializing curve φs is chosen so that φ∗s ( f ) is not identically zero. In practice, we choose
a target exponent e such that coeffe φ

∗
s f 6= 0 and then

ap( f )=
coeffe

(∑
j φ
∗
s ( f | M j )

)
coeffe(φ∗s ( f ))

. (6.5.3)
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Remark 6.5.4. One practical advantage of this technique of restricting to modular curves is that when
more than one coefficient in the q-expansion of (6.5.2) is computed, it constitutes a double check on the
value of ap( f ).

Example 6.5.5. We consider the core example of the form f277 of level N = 277 constructed above
(6.2.2). A Fourier coefficient of f277 whose matrix index has the smallest determinant is a(t0; f277)=−3,
where t0 =

( 49
−233/2

−233/2
277

)
and det(2t0) = 3. Accordingly we select s =

( 544
233

233
98

)
, which is the adjoint

of 2t0. Working over R = Z, we find

φ∗s ( f277)=−3q3
+ 6q6

+ 6q9
+ 3q12

+ 3q15
− 12q18

+ 3q21
+ O(q24). (6.5.6)

As a sanity check, we recognized φ∗s ( f277) using modular symbols as a classical modular form of weight
4 and level 3 · 277 to order O(q400). We then compute

φ∗s ( f277 | T2)= 6q3
− 12q6

− 12q9
− 6q12

− 6q15
+ 24q18

− 6q21
+ O(q24) (6.5.7)

so quite convincingly, a2( f277)=−2, in agreement with (6.2.3).

To compute the action of Hecke operators on the specialized expansion (6.5.2), we work (to a finite
degree of q-adic precision) with coefficients over C or over Z/mZ with m suitably large — we consider
these two approaches in turn in the next two sections.

6.6. Over floating point complex numbers. We may also compute ap( f ) via (6.5.2) over the complex
numbers using interval arithmetic.

Example 6.6.1. We perform our Hecke computation with in-house C++ code. Continuing with f = f277

as in Example 6.5.5, for p = 2 we work with 512 bits of precision: the upper size encountered was
3.40282 · 1038 and the lower size was 2.9387 · 10−39, giving

a2( f )=
φ∗s ( f | T2)

φ∗s ( f )
≡

6q3
+ O(q5)

−3q3+ O(q4)
=−2+ O(q)

up to an error 10−75 under a second on a standard desktop CPU. The largest computation required for
this f was a43( f )= 4; with the same bit precision and maximum error smaller than 10−40, it took less
than 90 minutes.

Remark 6.6.2. Given the first few Dirichlet coefficients of an L-function in the Selberg class with specified
conductor and 0-factors, Farmer, Koutsoliotas, and Lemurell [≥ 2019] can (in principle) rigorously
compute complex approximations to the next few Dirichlet coefficients using just the approximate
functional equation. This method is practical for small examples — and it is especially useful when the
L-function is of unknown, speculative, or otherwise complicated origin. Prolonging an initial L-series is
a possible avenue for extending the range of examples of modularity proven in this article.
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6.7. Expansion over a finite field. As an alternative to complex expansion, we may also work in a finite
ring. To do so, we need the following archimedean information about the Hecke eigenvalue.

Proposition 6.7.1. Let f ∈ Sk(K (N )) be an eigenform for the Hecke operators T (p), T1(p2) with
eigenvalues ap( f ), a1,p2( f ) ∈ C where p -N. Then

|ap( f )| ≤ pk−3(1+ p)(1+ p2), |a1,p2( f )| ≤ p2k−6(1+ p)(1+ p2)p. (6.7.2)

Proof. By an elementary estimate, there exists a B > 0 such that |a(T ; f )| ≤ B det(T )k/2 for all T .
Clearly B = supT>0 |a(T ; f )|det(T )−k/2 is optimal. By (4.2.9), we have

|ap( f )||a(T ; f )|

= |a(T ; f | T (p))|

≤ |a(pT ; f )| + pk−2
∑

j mod p

∣∣a( 1
p T
[ 1

j
0
p

]
; f
)∣∣+ pk−2

∣∣a( 1
p T
[ p

0
0
1

]
; f
)∣∣+ p2k−3

∣∣a( 1
p T ; f

)∣∣
≤ Bpk det(T )k/2+ Bpk−1 det(T )k/2+ Bpk−2 det(T )k/2+ Bpk−3 det(T )k/2.

From the equation |ap( f )||a(T ; f )| det(T )−k/2
≤ B(pk

+ pk−1
+ pk−2

+ pk−3), we obtain the desired
result by taking the supremum over T > 0.

A similar argument shows the inequality for a1,p2( f ). �

If a ∈Z and |a|<C , then we can recover a ∈Z from its congruence class modulo m whenever m > 2C .
For our purposes, we might as well work with a prime modulus m, and indeed, because of the needed
p-th roots of unity, we choose a large prime m such that m ≡ 1 (mod p) and work in R = Z[ζp]/m where
m is a fixed choice of split prime above m, and we compute the expansion (6.5.2) in R[[q]] as

ap( f )≡
1

φ∗s ( f )

∑
j

φ∗s ( f | M j ) (mod m)

and then lift the result to Z⊆ Z[ζp]. The computational benefit is that we may replace ζp by an integer
and compute modulo m.

Example 6.7.3. Let f −587 ∈ S2(K (587))− be the Borcherds product defined in (6.2.8). We choose
t0 =

( 4
−137/2

−137/2
1174

)
and have a(t0, f )=−1. We used s =

( 2348
137

137
8

)
and target exponent e= tr(st0)= 15.

We used the finite field method in our computations, which required a choice of a prime modulus m
and an integer γ such that γ 6≡ 1 (mod m) and γ p

≡ 1 (mod m). The modulus m must be chosen large
enough so that m > b2Cc where C = p2

(
1+ 1

p

)(
1+ 1

p2

)
from Proposition 6.7.1. The code was written in

C++ using FLINT for operations of polynomials in one variable modulo an integer, and the computation
of the restriction method to compute a41( f −587) took less than 2 hours on a typical CPU. The computation
of a1,p2( f ) for p ≤ 11 took just a few minutes.
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7. Verifying paramodularity

In this section, we carry out the Faltings–Serre method for our case of interest G = GSp4 and ` = 2,
proving our main Theorem 1.2.1 as well as the other two advertised cases. We employ the conventions
and notation of Section 4, in particular for Galois representations and L-functions.

7.1. The case N = 277. Let X = X277 be the smooth projective curve over Q given by the equation

X : y2
+ (x3

+ x2
+ x + 1)y =−x2

− x (7.1.1)

with LMFDB label 277.a.277.1, or equivalently by

y2
+ y = x5

− 2x3
+ 2x2

− x . (7.1.2)

Both models are minimal with discriminant 1= 277. Let A= A277 = Jac X277 be the Jacobian of X277, a
principally polarized abelian surface over Q of conductor 277. Let f = f277 ∈ S2(K (277)) be the Siegel
modular form of weight 2 constructed in (6.2.2).

Our main result (implying Theorem 1.2.1) is as follows.

Theorem 7.1.3. For all primes p, we have Lp(A277,T )=Q p( f277,T ). In particular, we have L(A277,s)=
L( f277, s, spin) and the abelian surface A277 is paramodular.

To ease notation, we now dispense with subscripts. To prove this theorem, we use the strategy described
in Section 3.2, with the further practical improvements from Section 3.3. Attached to A by (4.1.3) and to
f by Theorem 4.3.4 and by the remarks afterward are 2-adic Galois representations

ρA, ρ f : GalQ,S→ GSp4(Q
al
2 )

where S = {2, 277,∞} such that det ρA = det ρ f = χ
2
2 the square of the 2-adic cyclotomic character. Our

first task is to verify equivalence of residual representations. We start with Lemma 4.3.8(a), which allows
us to conclude that the residual representations ρss

A, ρ
ss
f : GalQ,S→ GSp4(F2) take values in F2.

Lemma 7.1.4. The residual representations ρA, ρ f : GalQ,S → GSp4(F2) are equivalent and have
absolutely irreducible image S5(b).

Proof. We apply Algorithm 2.2.3. The representation ρA is given by the action on A[2]; completing the
square in (7.1.2) to obtain the model y2

= g(x)= 4x5
− 8x3

+ 8x2
− 4x + 1 we obtain ρA via the action

on the roots of g(x), which we verify is isomorphic to G = S5(b) as the elements of order 3 have trace 1
by (5.1.8). As implied by the general theory, the field Q(A[2]) is ramified only at 2, 277.

For ρ f , we only have indirect access to the Galois representation. By (6.2.4), we have

det(1− ρ f (Frob3)T )= 1+ T + T 2
+ T 3

+ T 4
∈ F2[T ],

so img ρ f contains an element of order 5. Similarly Frob5 has order divisible by 3, so img ρ f is isomorphic
to one of A5, S5, A6, S6. Therefore the fixed field under ker ρ f is the splitting field of an irreducible,
separable polynomial g(x) of degree 5 or 6. Let F :=Q[x]/(g(x)); then F is unramified away from 2, 277.
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But we know a bit more: by Lemma 4.3.10, the 277-valuation of the Artin conductor of ρ f is at most 1,
so ord277(dF )≤ 1. A Hunter search, or looking up the possible fields in the database of Jones and Roberts
[2014], shows that there are no such degree 6 polynomials, and exactly two polynomials of degree 5,
namely x5

−x4
+2x2

−x+1 and x5
−x4
+4x3

+5x−1. Both polynomials have the same Galois closure,
with Galois group S5; we need to distinguish the representations afforded by the inclusion S5 ⊆ S6 and
the fixed representation (5.1.1). We refer to (5.1.8): for the second one Frob3 does not have order 5, so
we must have a match with the representation afforded by the first one. �

With Lemma 7.1.4 in hand, we apply Lemma 4.3.8(b) to conclude that our 2-adic representations
descend to ρA, ρ f : GalQ,S→ GSp4(Z2). We now finish the proof of the theorem.

Proof of Theorem 7.1.3. We apply Algorithm 2.4.1. Step 1 was done in Lemma 7.1.4, and the residual
representations have a common image

G := img ρ ≤ GSp4(F2)= Sp4(F2)

with G ' S5(b). Let K be the fixed field under ker ρ, so Gal(K |Q)' G under ρ.
Using Theorem 5.3.3, we now find all obstructing extension groups E , an exact core-free subgroup

D ≤ E , and a list of conjugacy classes of obstructing elements. We refer to the field diagram (5.3.2). The
extension K0 = K H has degree 10, explicitly it is given by adjoining a root of the polynomial

x10
+ 3x9

+ x8
− 10x7

− 17x6
− 7x5

+ 11x4
+ 18x3

+ 13x2
+ 5x + 1.

The possible obstructing extensions ϕ :Gal(L |Q) ↪→ E are obtained as the Galois closure of the quadratic
extension L0 ⊇ K0, still unramified away from S so they may be constructed using class field theory: we
find there are 4095 quadratic extensions L0 ⊇ K0 unramified away from S. To write down polynomials
(not necessarily small) that represent these fields takes about 5 minutes; as we developed the algorithm,
we found it convenient to optimize these polynomials (using polredabs), which took about 6 hours. In the
course of the algorithm we consider 24062 obstructing pairs (L , ϕ).

For each such obstructing pair (L , ϕ), we compute a small prime p 6= 2, 277 such that the conjugacy
class of Frobp is obstructing, according to the stages of Section 3.3. Computing obstructing primes by their
L0-cycle type as in Step 4′, we obtain the list of primes {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53};
going a bit further, considering obstructing primes by the pair of L0, K0-cycle type as in Step 4′′, we
manage only to remove the prime p = 53 from the list (but reduce the sizes of primes in many cases),
so we refine the list of primes to those with p ≤ 43. The total running time for this step was about 90
minutes on a standard CPU.

There are 8 pairs (L , ϕ) that require p = 53. The field L0 generated by a root of

x20
+ 121x18

+ 7459x16
+ 286418x14

+ 7324711x12
+ 126372663x10

+ 1387797423x8

+ 7013797890x6
− 30031807329x4

− 582846604659x2
− 1630793025157
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has Galois closure L with Gal(L | Q) ' E ≤ sp4(F2) o G with #E = 2105!. There are four outer
automorphisms ξ , and with respect to one of these, we find that Frob5 is an obstructing conjugacy class
based on the L0, K0-cycle type pair 6312, 613111 but Frob53 is the first obstructing prime based only on
the L0-cycle type 814222 (and this cycle type works for all four ξ ).

We are now in Step 5 of the algorithm, and to conclude we will show that tr ρA(Frobp)= tr ρ f (Frobp)

for all p ≤ 43. The former traces can be done by counting points, the latter traces were computed using
the method in Example 6.6.1, and we check that they are equal, completing the proof. (In fact, we went
further than necessary and checked the equality of traces for all p ≤ 97.) �

7.2. The case N = 353. We now turn to a case with residual image S3 oC2. Let X = X353 be the genus
2 curve with LMFDB label 353.a.353.1 defined by

X : y2
+ (x3

+ x + 1)y = x2

and A = A353 = Jac X , a typical abelian surface of conductor 353. Let f = f353 ∈ S2(K (353)) be the
paramodular form constructed in (6.2.6).

Theorem 7.2.1. For all primes p, we have L p(A353, T ) = Q p( f353, T ). In particular, L(A, s) =
L( f353, s, spin) and the abelian surface A353 is paramodular.

Proof. The proof is similar to that of Theorem 7.1.3, but with some slightly different arguments. To
supplement the data (6.2.7), we compute ap( f ), a1,p2( f ) for p ≤ 11, and counting points yields equality
of the additional Euler factors

L5(A, T )= Q5( f, T )= 1− T + 2T 2
− 5T 3

+ 25T 4,

L7(A, T )= Q7( f, T )= 1− 6T 2
+ 49T 4,

L11(A, T )= Q11( f, T )= 1− 2T + T 2
− 22T 3

+ 121T 4.

(7.2.2)

Our first task is to verify that the mod 2 representations ρA and ρ f are equivalent and absolutely
irreducible. For A, we find the 2-torsion field generated by the splitting field of the polynomial x6

+

2x4
+ 2x3

+ 5x2
+ 2x + 1 and Galois group S3 oC2.

Let K be the fixed field of ker ρ f and G := Gal(K |Q). Since L3(A, T )≡ 1+ T + T 3
+ T 4 (mod 2)

we see that G has an element of order 3 or 6 with trace 0. Since L11(A, T ) ≡ 1+ T 2
+ T 4, we see G

has an element of order 3 or 6 with trace 1. Squaring such elements preserves their trace, so G contains
elements of order 3 with either trace. Thus G ≤ S6 has an element with cycle decomposition 31 and
one with cycle decomposition 32. Listing all subgroups of S6 with this property, we see that G must be
isomorphic to one of the permutation groups

C2
3 , C3 : S3, C3× S3 (twice), C3 : S3 ·C2, S2

3 (twice), S3 oC2, A6, S6.

The subgroups in this list that are intransitive are C2
3 ,C3 : S3,C3 × S3, S2

3 . The groups C2
3 ,C3 × S3

have C3 as a quotient, and by the Kronecker–Weber theorem there are no C3-extensions unramified
outside 2 and 353 since 353≡ 2 (mod 3). The groups C3 : S3 and S2

3 have as quotient S3, but there is a
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unique S3 extension ramified only at 2 and 353 (verified by a class field calculation and the Jones and
Roberts database [2014]) defined by x3

− x2
− 6x + 14, and we compute that there are no cyclic cubic

extensions of this field unramified away from primes dividing 2, 353. This leaves the transitive groups
C3 : S3 ·C2, S3 oC2, A6, S6 arising as the normal closure of a degree 6 subfield K ′. If G =C3 : S3 ·C2, then
as in the proof of Proposition 5.2.4, we have ord353 dK ′ = 0, 1, 3 but if ord353 dK ′ = 3 then G contains an
element with cycle structure 23, a contradiction. Combined with Proposition 5.2.4 in the remaining cases,
we have ord353 dK ′ ≤ 1. Again by consulting the Jones and Roberts database [2014], we find exactly two
candidates, the extensions defined by x6

− 2x5
+ 2x4

− x2
+ 1 and x6

− 2x5
− 3x4

+ 4x3
+ x2
− 6x + 1.

In the first extension, Frob3 has order 6 contradicting Q3( f, T )≡ 1+ T 4 (mod 2), so we have the latter,
and G is isomorphic to S3 oC2. Finally, since the trace of ρ f (Frob3) equals that of A, we see that the two
residual images are isomorphic and absolutely irreducible (recall that there are two embeddings of S3 oC2

into GSp4(F2) up to inner automorphisms, and they differ in the trace of order 3 and 6 elements).
Next, using Theorem 5.3.3 we compute the extension K0 corresponding to the core-free subgroup C2

2 ,
defined by

x18
− 10x14

+ 3x12
+ 25x10

− 5x8
− 19x6

+ 5x2
+ 1. (7.2.3)

Using computational class field theory, we list all quadratic extensions L0 ⊇ K0 unramified away from
primes above 2, 353. We find that there are 65535 such extensions. For each extension, we find an
obstructing element; after computing for just over 5 hours on a standard CPU (about 0.2 seconds per
field) we find the list of primes

{3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 53, 97, 137}. (7.2.4)

(The prime p = 181 arose from 2 extensions L0 and 4 maps ϕ each looking only at cycle types, but by
identifying the precise conjugacy classes we find obstructing classes for p = 5, 137.)

To conclude, using the floating point algorithm we compute tr ρ f (Frobp) for all primes p ≤ 109 as
well as the primes p = 137, 139, 251 (for robustness) in 29 hours on a standard CPU, and we see they
agree with the traces obtained from point counts on X , completing the proof. �

Example 7.2.5. We pause to consider an extreme example where the refinement in Section 3.3 provides
a significant improvement. Consider the extension defined by adjoining a square root of the element

−430a16
+ 302a14

+ 3956a12
− 3904a10

− 6944a8
+ 5348a6

+ 3628a4
− 1454a2

− 510

where a is a root of (7.2.3), the defining polynomial for K0.
There are 4 outer automorphisms giving rise to possible maps ϕ: but in fact, we will see below that

only 2 of these maps extend ρ, which is to say the other 2 do not preserve the residual representation. If
we only consider cycle types that obstruct all 4 possible maps ϕ as in Step 4′, we have the types 8422,
462218, 4221018. For one of these 4 extensions, the smallest prime p with this cycle type is p = 251. If
we push further in this extension, and look at the L0-cycle type and the order in K0, we compute that
p = 101 works. Going even further and using L0, K0-cycle type, we find that p = 11 works!
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7.3. The case N = 587. We conclude with one final case. Let X = X587 be the genus 2 curve with
LMFDB label 587.a.587.1 defined by

X : y2
+ (x3

+ x + 1)y =−x2
− x

and A= A587= Jac X587, a typical abelian surface of conductor 587 and rank 1. Let f = f −587∈ S2(K (587))
be the paramodular form constructed using (6.2.9).

Theorem 7.3.1. For all primes p we have L p(A587, T )= Q p( f −587, T ), and A587 is paramodular.

Proof. We first verify that the mod 2 representations ρA and ρ f are equivalent and absolutely irreducible.
For A, we find the 2-torsion field generated by the splitting field of the polynomial x6

− 2x5
+ 2x4

−

x2
+ 2x − 1 with Galois group G = S6. For f , we have

Q3( f, T )= 1+ 4T + 9T 2
+ 12T 3

+ 9T 4
≡ 1+ T 2

+ T 4 (mod 2)

and

Q11( f, T )= 1+ T − T 2
+ 11T 3

+ 121T 4
≡ 1+ T + T 2

+ T 3
+ T 4 (mod 2)

by [Poor and Yuen 2007, Table 5] and Example 6.7.3. In particular, the residual image has order divisible
by 3 and 5.

The subgroups of S6 (up to isomorphisms) of order divisible by 15 are

A5, S5, A6, S6.

In all cases, there exists a polynomial of degree 5 or 6 unramified outside {2, 587} and we can choose
them such that the discriminant valuation is at most 1 at 587 by Proposition 5.2.4. By [Jones and Roberts
2014] there are only two degree 5 polynomials with field discriminant having valuation 1 at 587, namely:
x5
− x3
− x − 2 and x5

+ 2x3
− 8x2

− 13x − 8 and two degree 6 polynomials with field discriminant
having valuation 1 at 587: x6

− 2x5
+ 2x4

− x2
+ 2x − 1 and x6

− 2x5
+ 3x4

+ 4x3
− 2x2

− 4x + 2.
For the degree 5 polynomials, the first field has Frob3 of order 4 (then it would have even trace) while
Frob11 has order 2 in the second field. Regarding the degree six ones, in the second extension Frob11 has
order 2, but odd trace in A. We deduce that the residual representation of f −587 corresponds then to the
same extension as A, and since both representations have the same trace at Frob3, we deduce that they
are indeed equivalent and absolutely irreducible.

By Theorem 5.3.3 we are led to compute all quadratic extensions of the degree 20 extension

x20
+ x18

− 4x17
− 3x16

− 2x15
+ 7x14

− 6x13
− 18x12

− 8x11
+ 8x10

+

+ 8x9
− 18x8

+ 6x7
+ 7x6

+ 2x5
− 3x4

+ 4x3
+ x2
+ 1. (7.3.2)

We find that there are 219
− 1 = 524287 such extensions. Writing down minimal polynomials (not

necessarily small) that represent these fields takes about 10 minutes; for convenience, we also computed
optimized representatives, which took many CPU weeks.
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Finding an obstructing element for each of them, we find the list of primes to verify:

{3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41}. (7.3.3)

The total CPU time to compute this list of primes was about 2.5 hours (about 0.2 seconds per field).
Finally, we computed the corresponding traces above and they match, completing the proof. �
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Contragredient representations over local fields
of positive characteristic
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It was conjectured bsy Adams, Vogan and Prasad that under the local Langlands correspondence, the
L-parameter of the contragredient representation equals that of the original representation composed
with the Chevalley involution of the L-group. We verify a variant of their prediction for all connected
reductive groups over local fields of positive characteristic, in terms of the local Langlands parametrization
of A. Genestier and V. Lafforgue. We deduce this from a global result for cuspidal automorphic repre-
sentations over function fields, which is in turn based on a description of the transposes of Lafforgue’s
excursion operators.
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1. Introduction

Let F be a local field. Choose a separable closure F |F and let WF be the Weil group of F . For a
connected reductive F-group G, the local Langlands conjecture asserts the existence of a map

LLC :5(G)→8(G)

where5(G) is the set of isomorphism classes of irreducible smooth representations π of G(F) (or Harish-
Chandra modules when F is archimedean), and 8(G) is the set of Ĝ-conjugacy classes of L-parameters
WF

φ
−→

LG. Here the representations and the L-groups are taken over C, but we will soon switch to the
setting of nonarchimedean F and `-adic coefficients.

It is expected that the L-packets5φ :=LLC−1(φ) are finite sets; if π ∈5φ , we say φ is the L-parameter
of π . The local Langlands correspondence also predicates on the internal structure of 5φ when φ is a
tempered parameter; this requires additional structures as follows:
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• When G is quasisplit, choose a Whittaker datum w = (U, χ) of G, taken up to G(F)-conjugacy,
where U ⊂ G is a maximal unipotent subgroup and χ is a generic smooth character of U (F). The
individual members of 5φ are described in terms of

Sφ := ZĜ(im(φ)), Sφ := π0(Sφ).

Specifically, to each π ∈5φ one should be able to attach an irreducible representation ρ of the finite
group Sφ (up to isomorphism), such that a w-generic π ∈5φ maps to ρ = 1.

• For nonsplit G, one needs to connect G to a quasisplit group by means of a pure inner twist, or more
generally a rigid inner twist [Kaletha 2016b]; in parallel, the L-packets will extend across various
inner forms of G. We refer to [loc. cit., §5.4] for a discussion in this generality.

One natural question is to describe various operations on 5(G) in terms of L-parameters. Among
them, we consider the contragredient π̌ of π . The question is thus:

How is π 7→ π̌ in 5(G) reflected on 8(G)?

Despite its immediate appearance, this question has not been considered in this generality until the
independent work of Adams and Vogan [2016, Conjecture 1.1] and D. Prasad [2018, §4]. The answer
hinges on the Chevalley involution Lθ on LG to be reviewed in Section 3.1.

Conjecture 1.1 (Adams and Vogan; Prasad). Let π be an irreducible smooth representation of G(F).

(1) If π has L-parameter φ, then π̌ has L-parameter Lθ ◦φ.

(2) Assume for simplicity that G is quasisplit and fix a Whittaker datum w. If a tempered representation
π ∈ 5φ corresponds to an irreducible representation ρ of Sφ , then π̌ corresponds to (ρ ◦ Lθ)∨

tensored with a character ξ of Sφ .

To define ξ , we use the general recipe [Kaletha 2013, Lemma 4.1]:

π0(Sφ/ZGal(F |F)
Ĝ

) ker[H1(WF , ZĜsc)→ H1(WF , ZĜ)]

Sφ
(

Gad(F)
im[G(F)→ Gad(F)]

)Pontryagin dual

Let B be the Borel subgroup of G included in the Whittaker datum, and choose a maximal torus T ⊂ B.
Take the κ ∈ T ad(F) acting as −1 on each gα where α is any B-simple root. This furnishes the character
ξ of Sφ . When G is not quasisplit, we have to endow it with a pure or rigid inner twist alluded to above.

Conjecture 1.1 comprises two layers: the second one is due to Prasad [2018]. In this article, we will
focus exclusively on the first layer.

A precondition of the Adams–Vogan–Prasad conjecture is the existence of a map 5(G)→ 8(G),
baptized the Langlands parametrization, which has been constructed for many groups in various ways:
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• When F is archimedean, the local Langlands correspondence is Langlands’ paraphrase of Harish-
Chandra’s works. The “first layer” of the Adams–Vogan–Prasad conjecture is established by Adams
and Vogan [2016], and Kaletha [2013, Theorem 5.9] obtained the necessary refinement for the
“second layer”.

• When F is nonarchimedean of characteristic zero and G is a symplectic or quasisplit orthogonal
group, Kaletha [2013, Theorem 5.9, Corollary 5.10] verified the Adams–Vogan–Prasad conjecture
in terms of Arthur’s endoscopic classification of representations, which offers the local Langlands
correspondence for these groups.

• For nonarchimedean F and general G, Kaletha [2013, §6] also verified the conjecture for the depth-
zero and epipelagic supercuspidal L-packets, constructed by DeBacker, Reeder and Kaletha using
induction from open compact subgroups.

The aim of this article is to address the first layer of Conjecture 1.1 when F is a nonarchimedean local
field of characteristic p > 0 and G is arbitrary, in terms of the Langlands parametrization 5(G)→8(G)
of A. Genestier and V. Lafforgue [2017]. Their method is based on the geometry of the moduli stack of
restricted chtoucas, intimately related to the global Langlands parametrization of cuspidal automorphic
representations by Lafforgue [2018]. Accordingly, our representations π will be realized on Q`-vector
spaces, where ` is a prime number not equal to p, and the L-group LG is viewed as a Q`-group. As
C'Q` as abstract fields, passing to Q` does not alter the smooth representation theory of G(F). On the
other hand, there are subtle issues such as the independence of ` in the Langlands parametrization, which
we refer to [Lafforgue 2018, §12.2.4] for further discussions.

Our main local result is.

Theorem 1.2 (Theorem 3.2.2). Let F be a nonarchimedean local field of characteristic p > 0 and G be a
connected reductive F-group. Fix ` 6= p as above. If an irreducible smooth representation π of G(F)
has parameter φ ∈8(G) under the Langlands parametrization of Genestier and Lafforgue, then π̌ has
parameter Lθ ◦φ.

Remark 1.3. The prefix L for local parameters and local packets is dropped for the following reason. The
parameters of Genestier and Lafforgue are always semisimple or completely reducible in the sense of Serre
[2005]; in other words, the monodromy part of the Weil–Deligne parameter is trivial; see Lemma 2.4.4.
As mentioned in [Genestier and Lafforgue 2017], one expects that their parameter is the semisimplification
of the “true” L-parameter of π . Hence the packets 5φ in question are larger than expected, and the
Langlands parametrization we adopt is coarser, unless when φ does not factorize through any Levi
L M ↪→ LG, i.e., φ is semisimple and elliptic.

Our strategy is to reduce it into a global statement. Let F̊ be a global field of characteristic p > 0,
say F̊ = Fq(X) for a geometrically irreducible smooth proper Fq-curve X , and set A = AF̊ . Let G be a
connected reductive F̊-group. Fix a level N ⊂ X , whence the corresponding congruence subgroup KN ⊂

G(A) and the Hecke algebra Cc(KN\G(A)/KN ;Q`). Also fix a cocompact lattice 4 in AG(F̊)\AG(A)
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where AG ⊂ G is the maximal central split torus. Grosso modo, the global Langlands parametrization
in [Lafforgue 2018] is deduced from a commutative Q`-algebra B acting on the Hecke module

H{0},1 := Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
α∈ker1(F̊,G)

Ccusp
c (Gα(F̊)\Gα(A)/KN4;Q`)

of Q`-valued cusp forms, extended across pure inner forms indexed by ker1(F̊,G) (finite in number). The
algebra B is generated by the excursion operators SI, f, Eγ . For any character ν :B→Q` of algebras, denote
by Hν the generalized ν-eigenspace of H{0},1. Then H{0},1 =

⊕
ν Hν as Hecke modules. Moreover, Laf-

forgue’s machinery of LG-pseudocharacters associates a semisimple L-parameter σ :Gal(F̊ |F̊)→LG(Q`)

to ν. In fact ν is determined by σ , so that we may write Hσ = Hν .
There is an evident Hecke-invariant bilinear form on H{0},1, namely the integration pairing

〈h, h′〉 :=
∑

α∈ker1(F̊,G)

∫
Gα(F̊)\Gα(A)/4

hh′, h, h′ ∈ H{0},1,

with respect to some Haar measure on G(A)= Gα(A) which is Q-valued on compact open subgroups. It
is nondegenerate as easily seen by passing to Q` ' C. Now comes our global theorem.

Theorem 1.4 (Theorem 3.3.2). If σ, σ ′ are two semisimple L-parameters for G such that 〈 · , · 〉 is
nontrivial on Hσ ⊗Hσ ′ , then σ ′ = Lθ ◦ σ up to Ĝ(Q`)-conjugacy.

Our local-global argument runs by first reducing Theorem 1.2 to the case that π is integral supercuspidal
such that ωπ has finite order when restricted to AG ; this step makes use of the compatibility of Langlands
parametrization with parabolic induction, as established in [Genestier and Lafforgue 2017]. The second
step is to globalize π into a cuspidal automorphic representation π̊ with a suitable global model of G
and 4, satisfying π̊KN 6= {0}. The subspaces Hσ of H{0},1 might have isomorphic irreducible constituents
in common, but upon modifying the automorphic realization, one can always assume that π̊KN lands in
some Hσ . An application of Theorem 1.4 and the local-global compatibility of Langlands parametrization
[Genestier and Lafforgue 2017] will conclude the proof.

The proof of Theorem 1.4 relies upon the determination of the transpose S 7→ S∗ of excursion operators
with respect to 〈 · , · 〉, namely the Lemma 5.3.3:

S∗I, f, Eγ = SI, f †, Eγ−1

where f ∈O(Ĝ\\(LG)I //Ĝ), the finite set I and Eγ ∈Gal(F̊ |F̊)I are the data defining excursion operators,
and f †(Eg)= f (Lθ(Eg)−1) for Eg ∈ (LG)I . This property entails that if ν : B→Q` corresponds to σ , then
ν∗ : S 7→ ν(S∗) corresponds to Lθ ◦ σ (Proposition 5.3.4).

The starting point of the computation of the transpose is the fact that 〈 · , · 〉 is of geometric origin: it
stems from the Verdier duality on the moduli stack Cht(I1,...,Ik)

N ,I /4 of chtoucas. The Chevalley involution
intervenes ultimately in describing the effect of Verdier duality in geometric Satake equivalence, which is
in turn connected to Cht(I1,...,Ik)

N ,I /4 via certain canonical smooth morphisms.
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These geometric ingredients are already implicit in [Lafforgue 2018]. We just recast the relevant parts
into our needs and supply some more details. In fact, the pairing 〈 · , · 〉 and its geometrization were used
in a crucial way in older versions of [Lafforgue 2018]; that usage is now deprecated, and this article finds
another application thereof.

Our third main result concerns the duality involution proposed by Prasad [2018, §3]. Assume that G
is quasisplit. Fix an additive character ψ of G, an F-pinning P of G and the corresponding Whittaker
datum w; replacing ψ by ψ−1 yields another Whittaker datum w′. Prasad defined an involution ιG,P as
the commuting product of the Chevalley involution θ = θP of G and some inner automorphism ι− which
calibrates the Whittaker datum. Up to G(F)-conjugation, this recovers the MVW involutions on classical
groups [Mœglin et al. 1987, Chapitre 4] as well as the transpose-inverse on GL(n), whose relation with
contragredient is well known.

Theorem 1.5 (Theorem 3.5.4). Let φ ∈8(G) be a semisimple parameter such that 5φ contains a unique
w-generic member π . Then5Lθ◦φ satisfies the same property with respect to w′, and π̌ 'π ◦ιG,P ∈5Lθ◦φ .

Besides the crucial assumption which is expected to hold for tempered parameters if one works over
C with true L-packets (called Shahidi’s tempered L-packet conjecture [1990]), the main inputs are
Theorem 1.2 and the local “trivial functoriality” applied to ιG,P (see [Genestier and Lafforgue 2017,
Théorèmes 0.1 and 8.1]). Due to these assumptions and the coarseness of our LLC, one should regard
this result merely as some heuristic for Prasad’s conjectures [2018].

To conclude this introduction, let us mention two important issues that are left unanswered in this article:

• As in [Lafforgue 2018; Genestier and Lafforgue 2017], these techniques can be generalized to some
metaplectic coverings, i.e., central extensions of locally compact groups

1→ µm(F)→ G̃→ G(F)→ 1

where µm(R) = {z ∈ R× : zm
= 1} as usual; it is customary to assume µm(F) = µm(F) here. Fix a

character ζ : µm ↪→Q`
×. One studies the irreducible smooth representations π of G̃ that are ζ -genuine,

i.e., π(ε)= ζ(ε) · id for all ε ∈ µm(F). The most satisfactory setting for metaplectic coverings is due to
Brylinski and Deligne [2001] that classifies the central extensions of G by K2 as sheaves over (Spec F)Zar.
Taking F-points and pushing-out from K2(F) by norm-residue symbols yields a central extension above.

The L-group LG̃ζ associated to a Brylinski–Deligne K2-central extension, m and ζ has been constructed
in many situations; see the references in [Lafforgue 2018, §14]. Now consider the metaplectic variant
of Conjecture 1.1. If π is ζ -genuine, π̌ will be ζ−1-genuine so one needs a canonical L-isomorphism
Lθ : LG̃ζ →

LG̃ζ−1 ; this is further complicated by the fact that LGζ is not necessarily a split extension of
groups. Although some results seem within reach when G is split, it seems more reasonable to work in
the broader K2-setting and incorporate the framework of Gaitsgory and Lysenko [2018] for the geometric
part. Nonetheless, this goes beyond the scope of the present article.

• With powerful tools from p-adic Hodge theory, Fargues and Scholze proposed a program to obtain
a local Langlands parametrization in characteristic zero, akin to that of Genestier and Lafforgue; see
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[Fargues 2016] for an overview. It would certainly be interesting to try to adopt our techniques to
characteristic zero. However, our key tools are global adélic in nature, whilst the setting of Fargues and
Scholze is global in a different sense (over the Fargues–Fontaine curve). This hinders a direct translation
into the characteristic zero setting.

Organization of this article. In Section 2, we collect the basic backgrounds on cusp forms, the integration
pairing 〈 · , · 〉, contragredient representations and L-parameters, all in the `-adic setting.

In Section 3, we begin by defining the Chevalley involution with respect to a chosen pinning and its
extension to the L-group. Then we state the main Theorems 3.2.2 and 3.3.2 in the local and global cases,
respectively. The local-global argument and the heuristic on duality involutions (Theorem 3.5.4) are also
given there.

We give a brief overview of some basic vocabulary of [Lafforgue 2018] in Section 4. The only purpose
of this section is to fix notation and serve as a preparation of the next section. As in [Lafforgue 2018;
Genestier and Lafforgue 2017], we allow nonsplit groups as well.

The transposes of excursion operators are described in Section 5. It boils down to explicating the
interplay between Verdier duality and partial Frobenius morphisms on the moduli stack of chtoucas. As
mentioned before, a substantial part of this section can be viewed as annotations to [Lafforgue 2018],
together with a few new computations. The original approach in Section 5 in an earlier manuscript has
been substantially simplified following suggestions of Lafforgue.

In Sections 4 and 5, we will work exclusively in the global setting.

Conventions. Throughout this article, we fix a prime number ` distinct from the characteristic p > 0 of
the fields under consideration. We also fix an algebraic closure Q` of the field Q` of `-adic numbers.

The six operations on `-adic complexes are those defined in [Laszlo and Olsson 2008a; 2008b], for
algebraic stacks locally of finite type over a reasonable base scheme, for example over Spec Fq where q
is some power of p. Given a morphism f of finite type between such stacks, the symbols f!, f∗, etc. will
always stand for the functors between derived categories Db

c(. . . , E) unless otherwise specified, where
the field of coefficients E is some algebraic extension of Q`. The perverse t-structure on such stacks is
defined in [Laszlo and Olsson 2009]; further normalizations will be recalled in Section 4.1. The constant
sheaf associated to E on such a stack X is denoted by EX .

We use the notation Cc(X; E) to indicate the space of compactly supported smooth E-valued functions
on a topological space X , where E is any ring. Since we work exclusively over totally disconnected
locally compact spaces, smoothness here means locally constant.

For a local or global field F , we denote by WF the Weil group F with respect to a choice of separable
closure F |F , and by IF ⊂ Gal(F |F) the inertia subgroup. The arithmetic Frobenius automorphism is
denoted by Frob. If F is local nonarchimedean, oF will stand for its ring of integers.

If F̊ is a global field, we write A=AF̊ :=
∏
′

v F̊v for its ring of adÃ¨les, where v ranges over the places
of F̊ . We also write ov = oF̊v in this setting.

For a scheme T , we write:
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• 1 : T ↪→ T I for the diagonal morphism, where I is any set.

• π1(T, t) for the étale fundamental group with respect to a geometric point t → T , when T is
connected, normal and locally Noetherian.

• O(T ) for the ring of regular functions on T .

• TB := T ×
Spec A

Spec B if T is a scheme over Spec A, and B is a commutative A-algebra.

• E(T ) := Frac O(T ) for the function field, when T is an irreducible variety over a field E .

Suppose that T is a variety over a field. The geometric invariant-theoretic quotient of T under the right
action of some group variety Q, if it exists, is written as T//Q. Similar notation pertains to left or bilateral
actions.

Let G be a connected reductive group over a field F . For any F-algebra A, denote the group of
A-points of G by G(A), endowed with a topology whenever A is. Denote by ZG , Gder, Gad for the center,
derived subgroup and the adjoint group of G, respectively. Normalizers and centralizers in G are written
as NG(·) and ZG(·). If T ⊂ G is a maximal torus, we write T ad, etc. for the corresponding subgroups
in Gad, etc. The character and cocharacter groups of a torus T are denoted by X∗(T ) and X∗(T ) as
Z-modules, respectively.

The L-group and Langlands dual group of G are denoted by LG and Ĝ, respectively. We use the
Galois form of L-groups: details will be given in Section 2.4.

For an affine algebraic group H over some field E , the additive category of finite-dimensional algebraic
representations of H will be denoted as RepE(H). The trivial representation is denoted by 1. For any
object W ∈ RepE(H), we write W̌ or W∨ for its contragredient representation on HomE(W, E). For any
automorphism θ of H , write W θ for the representation on W such that every h ∈ H acts by w 7→ θ(h) ·w.

The same notation π̌ applies to the contragredient of a smooth representation π of a locally compact
totally disconnected group. This will be the topic of Section 2.3. We denote the central character of an
irreducible smooth representation π as ωπ .

2. Review of representation theory

2.1. Cusp forms. Let F̊ be a global field of characteristic p > 0. We may write F̊ = Fq(X) where q is
some power of p, and X is a smooth, geometrically irreducible proper curve over Fq . Denote A = AF̊ .
Fix a closed subscheme N ⊂ X which is finite over Fq , known as the level.

Let G be a connected reductive group over F̊ . We associate to N a compact open subgroup

KN := ker
[

G
( ∏
v∈|X |

ov

)
→ G(O(N ))

]
⊂ G(A).

Denote the maximal split central torus in G by AG . It is also known that there is a cocompact lattice

4⊂ AG(F̊)\AG(A),
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which we fix once and for all. The space G(F̊)\G(A)/4 is known to have finite volume with respect to
any Haar measure on G(A).

In what follows, we use a Haar measure on G(A) such that mes(K )∈Q for any compact open subgroup
K . The existence of such measures is established in [Vignéras 1996, Théorème 2.4]. The same convention
pertains to the subgroups of G.

For all subextension E |Q` of Q`|Q`, we have the space

Cc(G(F̊)\G(A)/4; E)=
⋃

N :levels

Cc(G(F̊)\G(A)/KN4; E)

of smooth E-valued functions of compact support on G(F̊)\G(A)/4. Then G(A) acts on the left of
Cc(G(F̊)\G(A)/4; E) by (g f )(x) = f (xg). Accordingly, Cc(G(F̊)\G(A)/KN4; E), the space of
KN -invariants, is a left module under the unital E-algebra Cc(KN\G(A)/KN ; E), the Hecke algebra
under convolution ?.

Our convention on Haar measures means that we can integrate E-valued smooth functions on
G(F̊)\G(A)/4, etc.

The subspace of Cc(G(F̊)\G(A)/4; E) of cuspidal functions

Ccusp
c (G(F̊)\G(A)/4; E)=

⋃
N :levels

Ccusp
c (G(F̊)\G(A)/KN4; E)

is defined by either

• requiring that the constant terms fP(x)=
∫

U (F̊)\U (A) f (ux) du are zero whenever P = MU ( G is
a parabolic subgroup, or

• using the criterion in terms of Hecke-finiteness in [Lafforgue 2018, Proposition 8.23].

We record two more basic facts:

• The E-vector space Ccusp
c (G(F̊)\G(A)/KN4; E) is finite-dimensional. This result is originally due

to Harder, and can be deduced from the uniform bound on supports of such functions in [Mœglin
and Waldspurger 1994, I.2.9].

• As a smooth G(A)-representation, Ccusp
c (G(F̊)\G(A)/4; E) is absolutely semisimple, i.e., it is

semisimple after −⊗E Q`; see [Bourbaki 2012, VIII.226]. Indeed, the semisimplicity in the case
E =Q` ' C is well known.

In parallel, Ccusp
c (G(F̊)\G(A)/KN4; E) is also absolutely semisimple as a Cc(KN\G(A)/KN ; E)-

module. Recall the module structure: f ∈ Cc(KN\G(A)/KN ; E) acts on h as

( f · h)(x) :=
∫

KN \G(A)/KN

h(xg) f (g) dg = (h ? f̌ )(x), x ∈ G(A) (2-1)

where f̌ (g)= f (g−1) and the convolution ? is defined in the usual manner.
We record the following standard result for later use.
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Proposition 2.1.1. For every G(A)-representation π̊ , assumed to be smooth, let π̊KN be the space of
KN -invariant vectors. It is a left module under Cc(KN\G(A)/KN ;Q`).

(i) For all irreducible G(A)-representations π̊1, π̊2 generated by KN -invariants, we have π̊1 ' π̊2⇐⇒

π̊
KN
1 ' π̊

KN
2 as simple Cc(KN\G(A)/KN ;Q`)-modules.

(ii) Given any decomposition Ccusp
c (G(F̊)\G(A)/4;Q`)=

⊕
π̊∈5 π̊ into irreducibles, where 5 is a set

(with multiplicities) of irreducible subrepresentations, we have

Ccusp
c (G(F̊)\G(A)/KN4;Q`)=

⊕
π̊∈5, π̊KN 6=0

π̊KN

in which each π̊KN is simple.

(iii) For every irreducible G(A)-representation π̊ generated by KN -invariants, we have a natural isomor-
phism of multiplicity spaces

HomG(A)-Rep(π̊,Ccusp
c (G(F̊)\G(A)/4;Q`))

−→∼ HomCc(KN \G(A)/KN ;Q`)-Mod(π̊
KN ,Ccusp

c (G(F̊)\G(A)/KN4;Q`)).

Property (i) actually holds for representations of G(F̊v) and of its Hecke algebras, for any place v of F̊ .
The Ccusp

c in (ii) and (iii) can be replaced by
⊕

α∈ker1(F̊,G) Ccusp
c (Gα(F̊)\G(A)/4;Q`); see (2-2).

Proof. By semisimplicity, Ccusp
c (G(F̊)\G(A)/4;Q`) (or the

⊕
α version) decomposes uniquely into

W ⊕W ′ such that

• W is a subrepresentation isomorphic to a direct sum of irreducibles, each summand is generated by
KN -invariants;

• W ′ is a subrepresentation satisfying (W ′)KN = {0}.

For (ii)–(iii), it suffices to look at the G(A)-representation W and the Cc(KN\G(A)/KN ;Q`)-module
W KN ; both are semisimple. The required assertions follow from the standard equivalences between
categories in [Renard 2010, I.3 and III.1.5] and Schur’s lemma [Renard 2010, III.1.8 and B.II]. �

Next, we introduce the moduli stack BunG,N over Fq of G-torsors on X with level N structures: it
maps any Fq -scheme S to the groupoid

BunG,N (S)=
{
(G, ψ)

∣∣∣∣ G a G-torsor over X× S and
ψ : G|N×S −→

∼ G|N×S a trivialization over N

}
, BunG := BunG,∅ .

For this purpose, we need suitable models of G over X . Let U ⊂ X be the maximal open subscheme such
that G extends to a connected reductive U -group scheme. We follow [Lafforgue 2018, §12.1] to take
parahoric models at the formal neighborhoods of all points of X \U . Glue these parahoric models with the
smooth model over U , à la Beauville–Laszlo, to yield a smooth affine X -group scheme with geometrically
connected fibers, known as a Bruhat–Tits group scheme over X ; see also [Heinloth 2010, §1].
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Regard BunG,N (Fq) as a set, on which 4 acts naturally. As explained in [Lafforgue 2018], we have

BunG,N (Fq)=
⊔

α∈ker1(F̊,G)

Gα(F̊)\Gα(A)/KN (2-2)

where

• ker1(F̊,G) is the kernel of H1(F̊,G)→
∏
v∈|X |H

1(F̊v,G);

• to each α ∈ ker1(F̊,G) is attached a locally trivial pure inner twist Gα of G, and we fix an
identification Gα(A)' G(A).

The decomposition is compatible with 4-actions. The pointed set ker1(F̊,G) is finite; it is actually trivial
when G is split. As before, we have the spaces

Ccusp
c (BunG,N (Fq)/4; E)=

⊕
α∈ker1(F̊,G)

Ccusp
c (Gα(F̊)\Gα(A)/KN4; E).

The cuspidality on the left-hand side can be defined in terms of Hecke-finiteness as before. We shall also
use compatible Haar measures on various Gα(A).

From the viewpoint of harmonic analysis, the mere effect of working with BunG,N (Fq) is to consider
all the inner twists from ker1(F̊,G) at once. See also [Lafforgue 2018, §12.2.5].

2.2. Integration pairing. Let E be a subextension of Q`|Q`.

Definition 2.2.1. With the Haar measures as in Section 2.1, we define the integration pairing

〈 · , · 〉 : Ccusp
c (G(F̊)\G(A)/4; E)⊗

E
Ccusp

c (G(F̊)\G(A)/4; E)→ E
h⊗ h′ 7→ 〈h, h′〉 :=

∫
G(F̊)\G(A)/4

hh′.

The pairing is clearly E-bilinear, symmetric and G(A)-invariant. There is an obvious variant for not
necessarily cuspidal functions.

Lemma 2.2.2. The pairing 〈 · , · 〉 above is absolutely nondegenerate, i.e., its radical equals {0} after
−⊗E Q`.

Proof. It is legitimate to assume E = Q`, and there exists an isomorphism of fields Q` ' C. The
nondegeneracy over C is well known: we have

∫
hh ≥ 0, and equality holds if and only if h = 0. �

Remark 2.2.3. For a chosen level N ⊂ X , we have an analogous pairing

〈 · , · 〉 : Ccusp
c (G(F̊)\G(A)/KN4; E)⊗

E
Ccusp

c (G(F̊)\G(A)/KN4; E)→ E
h⊗ h′ 7→ 〈h, h′〉 :=

∫
G(F̊)\G(A)/KN4

hh′.

The integration here is actually a “stacky” sum over G(F̊)\G(A)/KN4, i.e., 〈h, h′〉 equals that of
Definition 2.2.1 if one starts with a Haar measure on G(A) with mes(KN ) = 1. It is also E-bilinear,
symmetric, absolutely nondegenerate and invariant in the sense that

〈 f · h, h′〉 = 〈h, f̌ · h′〉, f ∈ Cc(KN\G(A)/KN ; E);

see (2-1). There is an obvious variant for not necessarily cuspidal functions.
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The spaces in question being finite-dimensional, it makes sense to talk about the transpose of a linear
operator. For example, the transpose of the left multiplication by f is given by that of f̌ .

As in Section 2.1, the integration pairing extends to

〈 · , · 〉 : Ccusp
c (BunG,N (Fq)/4; E)⊗

E
Ccusp

c (BunG,N (Fq)/4; E)→ E

h⊗ h′ 7→
∫

BunG,N (Fq )/4

hh′.

This is the orthogonal sum of the integrations pairings on various Gα(A).

2.3. Representations. In this subsection, we let F be a local field of characteristic p > 0. Denote
the cardinality of the residue field of F as q. Let G be a connected reductive F-group. The smooth
representations of G(F) will always be realized on Q`-vector spaces. Irreducible smooth representation
of G(F) are admissible; see [Renard 2010, VI.2.2].

The smooth characters of G(F) are homomorphisms G(F)→Q`
× with open kernel. We will need to

look into a class of particularly simple characters, namely those trivial on the open subgroup

G(F)1 :=
⋂

χ∈X∗(G)

ker|χ |F (2-3)

of G(F), where X∗(G) := Homalg. grp(G,Gm) and

|·|F : F×� qZ
⊂Q×

is the normalized absolute value on F . Note that G(F)/G(F)1 ' Zr with r := rkZ X∗(G). Moreover,
G(F)1 ⊃ Gder(F)= Gder(F)1.

For any smooth character ω of ZG(F), denote by Cc(G(F), ω) the space of functions f : G(F)→Q`

such that f (zg)= ω(z) f (g) for all z ∈ ZG(F) and Supp( f ) is compact modulo ZG(F).
Let IndG

P (·) denote the unnormalized parabolic induction from the Levi quotient of P ⊂ G. Let δP

denote the modulus character of P(F) taking values in qZ. Upon choosing q1/2
∈Q`, we can also form

the normalized parabolic induction I G
P (·) := IndG

P (· ⊗ δ
1/2
P ).

We need the notion [Renard 2010, VI.7.1] of the cuspidal support (M, τ ) of an irreducible smooth
representation π . Here M ⊂ G is a Levi subgroup and τ is a supercuspidal irreducible representation of
M(F), such that π is a subquotient of I G

P (τ ) for any parabolic subgroup P ⊂ G with Levi component M .
The cuspidal support is unique up to G(F)-conjugacy. It is known that one can choose P with Levi
component M such that π ↪→ I G

P (τ ). See [Renard 2010, VI.5.4].
We collect below a few properties of an irreducible smooth representation π of G(F):

(1) Suppose that π is supercuspidal. There exists a finite extension E of Q` such that π is defined
over E . Indeed, since the central character ωπ can be defined over some finite extension of Q`, so is
π ↪→ Cc(G(F), ωπ ).

From this and the discussion on cuspidal supports, it follows that every π can be defined over some
finite extension E of Q`.
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(2) We say π is integral if it admits an oE -model of finite type, where E is a finite extension of Q`. See
[Vignéras 2001, §1.4] for details. Then an irreducible supercuspidal π is integral if and only if ωπ has
`-adically bounded image in Q`

×.
Again, this is a consequence of π ↪→ Cc(G(F), ωπ ). It also implies the notion of integrality stated in

the beginning of [Genestier and Lafforgue 2017].

(3) Let V be the underlying vector space of π . The contragredient representation π̌ of a smooth
representation π is realized on the space V∨ of the smooth vectors in HomQ`

(V,Q`). It satisfies
〈ρ̌(g)v̌, v〉 = 〈v̌, ρ(g−1)v〉. If π is defined over E , so is π̌ . Taking contragredient preserves irreducibility
and supercuspidality. It is clear that (π ⊗χ)∨ = π̌ ⊗χ−1 for any smooth character χ : G(F)→Q`

×.

(4) Moreover, (π)∨∨ ' π for all smooth irreducible π ; see [Renard 2010, III.1.7]. Also, ωπ̌ = ω−1
π .

Proposition 2.3.1. If π is an irreducible smooth representation of G(F) with cuspidal support (M, τ ),
then π̌ has cuspidal support (M, τ̌ ).

Proof. Choose a parabolic subgroup P ⊂ G with M as Levi component such that π ↪→ I G
P (τ ). Once the

Haar measures are chosen, we have I G
P (τ )

∨
' I G

P (τ̌ ) canonically; see [Bushnell and Henniart 2006, §3.5].
Dualizing, we deduce I G

P (τ̌ )� π̌ . Thus π̌ is a subquotient of I G
P (τ̌ ). �

2.4. L-parameters. Let F be a local or global field of characteristic p > 0. For a connected reductive
F-group G, we denote by F̃ |F the splitting field of G, which is a finite Galois extension inside a chosen
separable closure F .

Denote by WF the absolute Weil group of F . It comes with canonical continuous homomorphisms
(i) WF → Gal(F |F), and (ii) WFv →WF if F is global and v is a place of F . For (ii) we choose an
embedding F ↪→ Fv of separable closures.

Definition 2.4.1. The Langlands dual group Ĝ of G is a pinned connected reductive Q`-group (in fact,
definable over Z), on which Gal(F̃ |F) operates by pinned automorphisms. Throughout this article, we
use the finite Galois forms of the L-group of G, namely

LG := Ĝ oGal(F̃ |F)

viewed as an affine algebraic group.

If M ↪→ G is a Levi subgroup, we obtain a the corresponding embedding L M→ LG of standard Levi
subgroup.

Definition 2.4.2. An L-parameter for G is a homomorphism σ :WF →
LG(Q`) such that:

• The following diagram commutes:

WF
LG

Gal(F̃ |F)

σ
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• σ is continuous with respect to the `-adic topology on LG(Q`).

• σ is relevant in the sense of [Borel 1979, §8.2], which matters only when G is not quasisplit.

• (The local case) σ is Frobenius semisimple: ρ(σ(Frob)) is semisimple for every algebraic represen-
tation ρ : LG(Q`)→GL(N ,Q`), where Frob stands for any Frobenius element in WF (see [Bushnell
and Henniart 2006, 32.7 Proposition] for more discussions on Frobenius-semisimplicity).

• (The global case) σ is semisimple in the sense of [Serre 2005], to be described below. We do not
require Frobenius-semisimplicity here because for `-adic representations of geometric origin, that
property is a long-standing conjecture in étale cohomology.

The set of Ĝ(Q`)-conjugacy classes of L-parameters is denoted as 8(G). By [Borel 1979, §3.4], there is
a natural map 8(M)→8(G) for any Levi subgroup M .

Remark 2.4.3. Since LG(Q`) carries the `-adic topology and σ is required to be continuous, when F is
local we get rid of the Weil–Deligne group in the usual formulation in terms of LG(C). Besides, we do
not consider Arthur parameters in this article.

As recalled earlier, the structure of Weil groups allows us to

• localize a global L-parameter at a place v;

• talk about L-parameters of the form Gal(F |F)→ LG(Q`) and their localizations when F is global.

Next, we recall the semisimplicity of L-parameters following [Lafforgue 2018; Serre 2005]: a continuous
homomorphism σ :WF →

LG(Q`) is called semisimple if the Zariski closure of im(σ ) is reductive in
LG(Q`), in the sense that its identity connected component is reductive. When G is split, this is exactly
the definition of complete reducibility in [Serre 2005, 3.2.1], say by applying [loc. cit., Proposition 4.2].

Lemma 2.4.4. Assume F is local. The following are equivalent for any L-parameter σ for G:

(i) σ is semisimple.

(ii) The Weil–Deligne parameter associated to σ has trivial nilpotent part.

Proof. By composing σ with any faithful algebraic representation ρ : LG(Q`) ↪→ GL(N ,Q`), we may
assume that σ is an `-adic representation WF → GL(N ,Q`). To σ is associated the Weil–Deligne
representation WD(σ ): it comes with a nilpotent operator n. For details, see [Bushnell and Henniart
2006, 32.5].

(i) =⇒ (ii): The line Q`n is preserved by im(σ )-conjugation. Since exp(tn) ∈ im(σ ) for t ∈ Z` with
|t | � 1, the semisimplicity of σ forces n= 0.

(ii) =⇒ (i): As n = 0, the smooth representation underlying WD(σ ) is just σ , hence σ is semisimple
as a smooth representation of WF by [Bushnell and Henniart 2006, 32.7 Theorem]. The reductivity (or
complete reducibility) of the Zariski closure of im(σ ) then follows from the theory in [Serre 2005]. �
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Finally, we define parabolic subgroups of LG as in [Borel 1979, 3.2]. They are subgroups of the
form NLG(P̂) where P̂ ⊂ Ĝ is a parabolic subgroups, and whose projection to Gal(F̃ |F) has full image.
Define the unipotent radical of such a parabolic subgroup to be that of P̂ . We still have the notion of Levi
decomposition in this setting; see [Borel 1979, 3.4].

Following [Lafforgue 2018, §13], the semisimplification σ ss of an L-parameter σ is defined as follows:

• First, take the smallest parabolic subgroup L P ⊂ LG containing im(σ ).

• Project to the Levi quotient.

• Then embed back into LG using some Levi decomposition.

The resulting parameter is well-defined up to Ĝ(Q`)-conjugacy.
By definition, an L-homomorphism L H → LG between L-groups is an algebraic homomorphism

respecting the projections to Gal(F̃ |F).

Lemma 2.4.5. Up to Ĝ(Q`)-conjugacy, semisimplification commutes with L-automorphisms of LG.

Proof. Indeed, an L-automorphism permutes the parabolic subgroups of LG together with their Levi
decompositions. �

3. Statement of a variant of the conjecture

3.1. Chevalley involutions. To begin with, we consider a split connected reductive group H over a field,
equipped with a pinning P = (B, T, (Xα)α∈10), where

• (B, T ) is a Borel pair of H , and

• Xα is a nonzero vector in the root subspace hα, where α ranges over the set 10 of B-simple roots.

Definition 3.1.1. The Chevalley involution θ = θP is the unique pinned automorphism of H acting as
t 7→ w0(t−1) on T , where w0 stands for the longest element in the Weyl group associated to T .

This is the definition in [Prasad 2018, §4], and it is clear that θ2
= idH .

The Chevalley involution will be considered in the following settings. Let F be a field with separable
closure F .

(1) Let H = Ĝ be the dual group of G, which is connected reductive over F . The dual group is endowed
with a pinning and we obtain θ : Ĝ→ Ĝ. Since Gal(F̃ |F) operates by pinned automorphisms on Ĝ,
the Chevalley involution extends to

Lθ : LG→ LG, g o σ 7→ θ(g)o σ,

which is still an involution.

(2) Let G be a quasisplit connected reductive group over F . Then G admits an F-pinning P , i.e., a
Galois-invariant pinning of H := G F . Therefore the Chevalley involution θ = θP for G F descends
to G.
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Furthermore, observe that if H =
∏r

i=1 Hi and P decomposes into (P1, . . . ,Pr ) accordingly, the
corresponding Chevalley involution θP equals

∏r
i=1 θPi .

3.2. The local statement. Let F be a local field of characteristic p > 0. Let G be a connected reductive
F-group. The set of isomorphism classes of irreducible smooth representations over Q` of G(F) will
be denoted by 5(G). The local statement to follow presumes a given Langlands parametrization of
representations, namely an arrow

5(G)→8(G)

π 7→ φ.

This is the “automorphic to Galois” direction of the local Langlands correspondence for G. We say that
φ is the parameter of π , and denote by 5φ ⊂5(G) the fiber over φ, called the packet associated to φ.

For the local statement, we employ the Langlands parametrization furnished by Genestier and Lafforgue
[2017]. It is actually an arrow

5(G)→ {semisimple L-parameters}
/

Ĝ(Q`)-conj.⊂8(G).

Remark 3.2.1. The Genestier–Lafforgue parameters are expected to be the semisimplifications of au-
thentic (yet hypothetical) Langlands parameters. As a consequence, the packets 5φ for general Genestier–
Lafforgue parameters are expected to be a disjoint union of authentic L-packets, unless when φ is an
elliptic parameter (see Lemma 2.4.4), i.e., im(φ) is LG-ir in the sense of [Serre 2005, 3.2.1].

Further descriptions and properties of the Genestier–Lafforgue parametrization will be reviewed in due
course. Let us move directly to the main local statement.

Theorem 3.2.2. Let φ ∈8(G) be a semisimple L-parameter. In terms of the Langlands parametrization
of Genestier–Lafforgue, we have

{π̌ : π ∈5φ} =5Lθ◦φ,

where Lθ : LG→ LG is the Chevalley involution in Section 3.1.

If the Genestier–Lafforgue parametrization is replaced by an authentic Langlands parametrization, the
statement above becomes [Adams and Vogan 2016, Conjecture 1.1]; it is also a part of [Prasad 2018, §4,
Conjecture 2], but Prasad’s conjecture also predicates on the internal structure of L-packets. The conjecture
of Adams, Vogan, and Prasad applies to any local field F ; known cases in this generality include:

• The case F = R in [Adams and Vogan 2016, Theorem 7.1(a)], with admissible representations of
G(R) over C.

• The tempered L-packets for symplectic groups Sp(2n) and quasisplit SO groups over nonarchimedean
local fields F of characteristic zero in terms of Arthur’s endoscopic classification, see [Kaletha 2013,
Corollary 5.10].

• The depth-zero and epipelagic L-packets for many p-adic groups [Kaletha 2013, §6].
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Each case above requires a different construction of L-packets, applicable to different groups or parameters,
whereas the Theorem 3.2.2 furnishes a uniform statement. On the other hand, Theorem 3.2.2 is weaker
since the Langlands parametrization here is coarser, in view of the Remark 3.2.1.

The proof of Theorem 3.2.2 will occupy Section 3.4.

3.3. The global statement. Theorem 3.2.2 will be connected to the global result below.
Let F̊ = Fq(X) and fix the level N ⊂ X as in Section 2.1. Let G, KN and 4 be as in Section 2.1, so

that BunG,N is defined. Note that we need to choose a model of G over X which is a Bruhat–Tits group
scheme, still denoted as G. Let U ⊂ X denote the (open) locus of good reduction of G, and set

N̂ := N ∪ (X \U ). (3-1)

This is a finite closed Fq -subscheme of X , the “unramified locus”. Let η→ X be the generic point of X ;
fix a geometric generic point η→ η of X .

The main global result of Lafforgue [2018, Théorème 12.3] gives a canonical decomposition of
Cc(KN\G(A)/KN ;Q`)-modules

Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
σ

Hσ (3-2)

indexed by L-parameters σ : Gal(F̊ |F̊)→ LG(Q`) up to Ĝ(Q`)-conjugacy that

• are semisimple, and

• factor continuously through Gal(F̊ |F̊)→ π1(X \ N̂ , η).

Remark 3.3.1. Since the left-hand side of (3-2) is a semisimple module, of finite dimension over Q`, so
are its submodules Hσ . To each σ we may associate a set (with multiplicities) of simple submodules Cσ ,
such that

Hσ =
⊕
L∈Cσ

L, hence Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
σ

⊕
L∈Cσ

L

as Cc(KN\G(A)/KN ;Q`)-modules.

The decomposition (3-2) is built on two pillars: the theories of excursion operators and pseudocharacters
for LG. As in the local case, we defer the necessary details of [Lafforgue 2018] to Section 4.

Theorem 3.3.2. Suppose that Hσ , Hσ ′ are two nonzero summands in (3-2) such that the restriction

〈 · , · 〉σ,σ ′ : Hσ ⊗
Q`

Hσ ′→Q`

of the integration pairing 〈 · , · 〉 of Remark 2.2.3 (extended to BunG,N (Fq)/4) is not identically zero. Then
we have

σ ′ = Lθ ◦ σ in 8(G);

here Lθ is the Chevalley involution of LG.
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The proof of Theorem 3.3.2 will be accomplished at the end of Section 5.3.

3.4. Local-global argument. Consider a connected reductive group G over a local field F of character-
istic p as in the local setting Section 3.2. As usual, AG stands for the maximal central split torus in G,
and F̃ |F stands for the splitting field of G. Take a maximal torus T ⊂ G with splitting field equal to F̃ .
Let H1(WF , ZĜ) denote the continuous cohomology with values in ZĜ(Q`) with discrete topology.

The first lemma concerns the Langlands parametrization of smooth characters of G(F). The general
case turns out to be delicate: by the discussion in [Lapid and Mao 2015, Appendix A], the usual
cohomological construction actually yields an arrow in the opposite direction:

H1(WF , ZĜ) {η : G(F)→Q`
×, smooth character}

8(G)

It is injective but not necessarily surjective. However, we only need the invert it when η|G(F)1 is trivial.
This is well known to experts, and below is a sketch.

Lemma 3.4.1. For G as above, there is a canonical homomorphism of groups

{η : G(F)/G(F)1→Q`
×, a smooth character} → H1(WF , ZĜ).

Here we do not assume char(F) > 0.

Proof. Fix η. First, one can take a z-extension of G as in [Lapid and Mao 2015, Proof of Lemma A.1],
i.e., a central extension

1→ C→ G1
p
−→G→ 1, C is an induced torus, Gder

1 simply connected.

Then η1 := η ◦ p is trivial on G1(F)1. We know that H1(F,Gder
1 ) is trivial. Put S := G1/Gder

1 so
that G1(F)/Gder

1 (F) −→∼ S(F) and Ŝ ' ZĜ1
= Z◦

Ĝ1
. Then Gder

1 (F) ⊂ G1(F)1 implies that η1 factors

through S(F). The local classfield theory affords an element a ∈ H1(WF , ZĜ1
). Since η1|C = 1, we infer

that a has trivial image in H1(WF , Ĉ).
Furthermore, using the fact that C is induced, in [loc. cit.] the following natural isomorphism is

constructed:
H1(WF , ZĜ)' ker[H1(WF , ZĜ1

)→ H1(WF , Ĉ)].

All in all, we obtain a ∈ H1(WF , ZĜ). It is routine to check that η 7→ a is independent of the choice of
z-extensions, see [loc. cit.]. �

In fact, η corresponds to some class in H1(WF/IF , Z IF

Ĝ
). To see this, one readily reduces to the case

of a torus S as above. Since S(F)1 contains the parahoric subgroup, one can infer, for example by the
Satake isomorphism [Haines and Rostami 2010, Proposition 1.0.2] for S, that we obtain a parameter in
H1(WF/IF , Ŝ IF ).

The second lemma concerns the globalization of groups.
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Lemma 3.4.2. Given G and F as above, one can choose

• F̊ : a global field of characteristic p;

• G̊: a connected reductive F̊-group with maximal F̊-torus T̊ , sharing the same splitting field ˜̊F |F̊ ;

• v: a place of F̊ , and w is the unique place of ˜̊F lying over v, in particular Gal( ˜̊F |F̊) equals the
decomposition group 0w := Gal( ˜̊Fw|F̊v);

such that

• there exist isomorphisms F̊v ' F , ˜̊Fw ' F̃ , which identify 0 := Gal(F̃ |F) with 0w;

• under the identifications above, there is an isomorphism

G̊ F̊v G

T̊F̊v T

∼

∼

⊂ ⊂ ,

i.e., G̊ ⊃ T̊ is an F̊-model of G ⊃ T ;

• G̊ and G share the same root datum endowed with actions of 0'0w, relative to T̊ and T respectively.

Proof. Standard. See for instance [Arthur 1988, p.526] or [Vignéras 2001, 3.12]. �

Remark 3.4.3. The matching of root data in Lemma 3.4.2 also implies that AG̊ is “the same” as AG .
Hereafter, we shall drop the clumsy notation G̊, T̊ or AG̊ , and denote them abusively as G, T or AG instead.

For any closed discrete subgroup 4 ⊂ AG(F) isomorphic to Zdim AG , its isomorphic image in
AG(F̊)\AG(A) will also be denoted by 4. Another consequence of Lemma 3.4.2 is that 4 is a cocompact
lattice in AG(F̊)\AG(A) satisfying the requirements in Section 2.1.

Proof of Theorem 3.2.2 from Theorem 3.3.2. In what follows, we write π  φ if π ∈ 5(G) has
Genestier–Lafforgue parameter φ ∈8(G). It suffices to show that for every π ∈5(G),

(π  φ)=⇒ (π̌  Lθ ◦φ). (3-3)

Indeed, this assertion amounts to {π̌ : π ∈5φ} ⊂5Lθ◦φ . The reverse inclusion will follow by applying
(3-3) to any π1 ∈5(G) with π1 Lθ ◦φ, which in turn yields π := π̌1 Lθ ◦ Lθ ◦φ = φ whilst π1 = π̌ .

The assertion (3-3) will be established in steps:

Step 1. We reduce (3-3) to the case π supercuspidal. Indeed, let (M, τ ) be the cuspidal support of π
reviewed in Section 2.3. By Proposition 2.3.1, π̌ has cuspidal support (M, τ̌ ).

On the dual side, choose an L-embedding ι : L M ↪→ LG as reviewed in Section 2.4. Suppose that τ φτ

in M . By [Genestier and Lafforgue 2017, Théorème 0.1], φ equals to the composite of WF
φτ−→

L M ↪→ LG
up to Ĝ(Q`)-conjugacy. The same relation holds for the parameters for π̌ and τ̌ . Denoting LθM the
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Chevalley involution on L M , the diagram

L M LG

L M LG

LθM

ι

Lθ

ι

is commutative up to an explicit Ĝ(Q`)-conjugacy, by [Prasad 2018, §5, Lemma 4]. Upon replacing
(G, π) by (M, τ ), we have reduced (3-3) to the supercuspidal case.

Step 2. Consider the smooth character ω := ωπ |AG(F). We reduce (3-3) to the case that ω is of finite
order as follows (see also Remark 3.4.4). First, recalling (2-3), there exists a character

η0 : AG(F)/AG(F)1→Q`
×

such that η0⊗ω is of finite order. Indeed, this is easily reduced to the case AG ' Gm, and it suffices to
take η0($)= ω($)

−1 where $ ∈ F× is some uniformizer.
Secondly, the inclusion of discrete free commutative groups of finite type

AG(F)/AG(F)1 = AG(F)/AG(F)∩G(F)1 ↪→ G(F)/G(F)1

has finite cokernel, whereas Q`
× is divisible. Therefore η0 extends to a smooth character

η : G(F)/G(F)1→Q`
×.

The central character of π ⊗ η has finite order when restricted to AG(F).
Attach a ∈ H1(WF , ZĜ) to η by Lemma 3.4.1; it can be used to twist elements of 8(G) by the

homomorphism
WF n (ZĜ × Ĝ)→WF n Ĝ, wn (z, g) 7→ wn (zg)

by choosing any cocycle representative of a; see [Genestier and Lafforgue 2017, Remarque 0.2].
In the construction above, −⊗ η−1 corresponds to twisting a parameter by a−1. We have (π ⊗ η)∨ '

π̌ ⊗ η−1. Concurrently, Lθ ◦ (φ · a)= (Lθ ◦ φ) · a−1 since Chevalley involution acts as z 7→ z−1 on the
center. Therefore, by replacing π by π ⊗ η, it suffices to prove (3-3) when ω has finite order.

Step 3. Now we can assume π to be integral supercuspidal (see Section 2.3) with ω := ωπ |AG(F) of finite
order. By [Genestier and Lafforgue 2017], we know that the parameter φ of π factors through Gal(F |F).
Take a global F̊-model of G ⊃ AG as in Lemma 3.4.2 with F̊v ' F . As AG is split over F̊ , by reducing to
Gm and applying [Artin and Tate 1968, Chapter X, §2, Theorem 5], there exists an automorphic character

ω̊ =
⊗

u

ω̊u : AG(F̊)\AG(A)→Q`
×

of finite order, such that ω̊v = ω.
Sinceω is smooth, there exists a closed discrete subgroup4⊂ AG(F) such thatω|4=1 and4'Zdim AG .

In view of Remark 3.4.3, 4 also affords the cocompact lattice in AG(F̊)\AG(A) required in Section 2.1.
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Claim: there exists a cuspidal automorphic representation π̊ =
⊗

u π̊u of G(A) (in the extended sense
that we consider all Gα simultaneously, α ∈ ker1(F̊,G)) such that:

• The central character of π̊ equals ω̊ on AG(A).

• We have π̊v ' π .

• Relative to the chosen lattice 4 and a sufficiently deep level N , the Cc(KN\G(A)/KN ;Q`)-module
π̊KN can be embedded in some summand Hσ in (3-2).

This can be achieved by the following variant of the argument in [Henniart 1983, Appendice 1] (which
works over C) via Poincaré series; see also the proof of [Genestier and Lafforgue 2017, Lemme 1.4]. For
each place u of F̊ , choose a smooth function fu ∈ Cc(G(F̊u), ω̊u) such that:

• There exists a finite set S of places of F̊ containing v and the ramification locus of G, such that
when u /∈ S, the function fu is right G(ou)-invariant, supported on AG(F̊u)G(ou) and fu(1) = 1,
where G(ou) is the hyperspecial subgroup arsing from some reductive model of G over the ring of
S-integers in F̊ .

• We require fv to a matrix coefficient of π and assume fv(1) 6= 0.

• For every u ∈ S \ {v}, we require that Cu := Supp| fu| is a sufficiently small neighborhood of 1
modulo AG(Fu), so that the image of

Supp( fv)×
∏

u∈S\{v}

Cu ×
∏
u /∈S

G(ou)AG(F̊u)

in AG(A)\G(A)= (AG\G)(A) intersects AG(F̊)\G(F̊)= (AG\G)(F̊) only at 1. To see why this
can be achieved, embed AG\G into some affine space over F .

Take f :=
∏

u fu : G(A)→Q` and form

P f (g)=
∑

γ∈(AG\G)(F̊)

f (γ g), g ∈ G(A).

The sum is finite when g is constrained in any compact subset modulo AG(A). By choosing N sufficiently
deep, it furnishes an element of Cc(G(F̊)\G(A)/KN4;Q`). Moreover, P f (1) = f (1) 6= 0 by the
condition on supports. By looking at fv, we see that P f is a cusp form.

Decompose Ccusp
c (BunG,N (Fq)/4;Q`) into simple submodules as in Remark 3.3.1. There exists a

summand L contained in some Hσ such that P f has nonzero component in L. Let π̊ be the cuspidal auto-
morphic representation corresponding to L via Proposition 2.1.1 (realized in

⊕
α Ccusp

c (Gα(F̊)\G(A) · · · ))
where α ∈ ker1(F̊,G)) so that π̊KN = L ↪→ Hσ . Then π̊ has central character ω̊ on AG(A) and π̊v ' π ,
since P f and L have similar properties under Cc(KN\G(A)/KN ;Q`).

Step 4. Since the integration pairings 〈 · , · 〉 of Remark 2.2.3 are nondegenerate, π̊KN ⊂ Hσ must pair
nontrivially with some simple Cc(KN\G(A)/KN ;Q`)-submodule of some Hσ ′ . Proposition 2.1.1 implies
that the simple submodule takes the form (π̊ ′)KN ⊂Hσ ′ for some cuspidal automorphic representation π̊ ′.
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Theorem 3.3.2 then asserts σ ′= Lθ◦σ in8(G) (global version). On the other hand, π̊ ′ pairs nontrivially
with π̊ under the integration pairing 〈 · , · 〉 of Definition 2.2.1. The invariance of 〈 · , · 〉 therefore implies
that, as G(A)-representations, ⊗

u

(π̊u)
∨
= π̊∨ ' π̊ ′.

The local-global compatibility in [Genestier and Lafforgue 2017, Théorème 0.1(b)] says that

π ' π̊v (σ |Gal(F |F))
ss,

π̌ ' (π̊v)
∨
' π̊ ′v (σ ′|Gal(F |F))

ss
= (Lθ ◦ σ |Gal(F |F))

ss.

Here we choose an embedding of the separable closure of F̊ into F , and the semisimplification is defined
as in Section 2.4. In particular, φ = (σ |Gal(F |F))

ss in 8(G) (local version).
By Lemma 2.4.5 we have (Lθ ◦ σ |Gal(F |F))

ss
=

Lθ ◦ (σ |Gal(F |F))
ss. Summarizing,

π̌  Lθ ◦ (σ |Gal(F |F))
ss
=

Lθ ◦φ

holds in 8(G) (local version). This establishes (3-3) and the Theorem 3.2.2 follows. �

Remark 3.4.4. As pointed out by a referee, Lemma 3.4.1 can be avoided in Step 2 by the following
arguments. Restrict quot : G→ T := G/Gder to an isogeny AG → T . The same arguments show that
some smooth character η : T (F)→ Q`

× pulls back to our given η0 : AG(F)→ Q`
×. To complete

Step 2, it remains to compare (a) the parameters of η and η−1 and (b) the parameters of π and π ⊗η. For
(a), apply local trivial functoriality [Genestier and Lafforgue 2017, Théorème 8.1] to the automorphism
t 7→ t−1 of T . For (b), apply it to the homomorphism G (id,quot)

−−−−→G×T with normal image, as performed
in [Genestier and Lafforgue 2017, Remarque 0.3].

From Section 4 onwards, we will focus exclusively on Theorem 3.3.2 and the underlying geometric
considerations.

3.5. Remarks on the duality involution. Conserve the assumptions for the local statement in Section 3.2
and assume G is quasisplit. Fix an F-pinning P = (B, T, (Xα)α) of G. Choose the unique κ ∈ T ad(F)
such that κXακ−1

=−Xα, for all simple root α with respect to (B, T ). Observe that κ2
= 1 in Gad.

Let θ = θP be the Chevalley involution of G, and ι− be the inner involution g 7→ κgκ−1. Observe
that ι−θ = θι−. Indeed, ι−θι− is seen to preserve P and coincides with θ on T , hence ι−θι− = θ by the
characterization of the Chevalley involution.

Definition 3.5.1 [Prasad 2018, §3]. Relative to the F-pinning P , set ιG,P := ι−θ = θι−. It is called the
duality involution of G.

Recall that ιG,P induces a pinned automorphism of Ĝ, called the dual automorphism of ιG,P , which
depends only on ιG,P modulo Gad(F); see [Borel 1979, §2.5] for the general set-up. This recipe applies
to any base field F .
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Lemma 3.5.2. The Chevalley involution on Ĝ is the dual of ιG,P in the sense above. This result holds
over any field F.

Proof. Since ι− comes from Gad(F)-action, ιG,P and θ have the same dual. It suffices to show that the
Chevalley involution of Ĝ is dual to that of G. Since both automorphisms are pinned, it suffices to show
that the induced automorphisms on X∗(TF ) and X∗(TF ) are mutually dual. Recall that the Chevalley
involution of G and Ĝ) act on X∗(TF ) and X∗(TF ), respectively, as x 7→−w0(x), where w0 is the longest
element in the Weyl group. Since w2

0 = 1, these two automorphisms are indeed mutually dual. �

Fix a nontrivial smooth character ψ : F→Q`
×. From the F-pinning P = (B, T, (Xα)α) we produce

a Whittaker datum w := (U, χ) for G taken up to G(F)-conjugacy, that is,

• U is the unipotent radical of B,

• χ :U (F)→Q`
× is the composition of ψ with the algebraic character U → Ga mapping each Xα

to 1.

The automorphisms of G act on F-pinnings, thereby act on Whittaker data. Put

w′ := (U, χ−1)= ι−w.

Fix ψ , P and the associated Whittaker datum w for G. Let φ ∈ 8(G) be a semisimple parameter.
Define the Genestier–Lafforgue packet 5φ as in Section 3.2. We say that Shahidi’s property holds for 5φ

and w, if
∃!π ∈5φ such that π is w-generic. (3-4)

Further discussions about this property will be given in Remark 3.5.5.

Lemma 3.5.3. The following are equivalent for an irreducible smooth representation π of G(F):

(i) π is w-generic.

(ii) π ◦ θ is w-generic.

(iii) π̌ is w′-generic.

(iv) π ◦ ι− is w′-generic.

Proof. (i)⇐⇒ (ii) since θ preserves P . (i)⇐⇒ (iii) is [Prasad 2018, §4, Lemma 2]. (i)⇐⇒ (iv) follows
from transport of structure by the involution ι−. �

The following result serves as a partial heuristic for [Prasad 2018, §3, Conjecture 1].

Theorem 3.5.4. Define the Whittaker data w and w′ as above. Let φ ∈8(G) be a semisimple parameter
such that 5φ satisfies Shahidi’s property (3-4) with respect to w. Then the following hold:

(i) The packet 5Lθ◦φ satisfies Shahidi’s property (3-4) with respect to w′.

(ii) Let π be the unique w-generic member of 5φ , then π̌ is the unique w′-generic member of 5Lθ◦φ .

(iii) If π ∈5φ is w-generic, then π̌ ' π ◦ ιG,P .
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Proof. Parts (i), (ii) follow immediately from Lemma 3.5.3 and Theorem 3.2.2, which says that 5Lθ◦φ =

{π̌ : π ∈5φ}.
Now consider (iii). We claim that π ◦ ιG,P ∈ 5Lθ◦φ . In view of Lemma 3.5.2, the corresponding

statement for global Langlands parametrization of cuspidal automorphic representations follows from the
“trivial functoriality” (under the dual of ιG,P ) in [Genestier and Lafforgue 2017, Théorème 0.1 and 8.1].

Using Lemma 3.5.3, we see that π ◦ ιG,P = (π ◦ θ) ◦ ι− is also a w′-generic member of 5Lθ◦φ . It
follows from (ii) that π̌ ' π ◦ ιG,P . �

Remark 3.5.5. Choose an isomorphism Q` −→
∼ C and let φ ∈8(G) be semisimple. By a conjecture of

Shahidi [1990, Conjecture 9.4], one expects that when φ is a tempered L-parameter, (3-4) will hold for
the authentic L-packet associated to 5φ and for any w.

On the other hand, [Gross and Prasad 1992, Conjecture 2.6] proposes a characterization of L-parameters
satisfying (3-4). It is stated in terms of adjoint L-factors, thus applies directly to the `-adic case. The
author is grateful to Yeansu Kim for this comment.

Because of the semisimplified nature of our packet 5φ , see Remark 3.2.1, we expect (3-4) to hold
only when φ is not the semisimplification of any other L-parameter. This occurs when φ is elliptic, in
which case every π ∈5φ is supercuspidal: otherwise the compatibility of the parametrization π  φ

with cuspidal supports will force φ to factor through some proper Levi. It is believed that the authentic
L-packets for elliptic φ have the same property. Many constructions of such L-packets have been
proposed, such as in [Kaletha 2016a]. Nonetheless, the precise relation of these packets to the Langlands
parametrization of Genestier and Lafforgue [2017] remains to be settled.

Remark 3.5.6. As shown in [Prasad 2018], up to G(F)-conjugacy, ιG,P reduces to the well-known MVW
involution when G is classical; it reduces to g 7→ t g−1 when G =GL(n). According to [Prasad 2018, §3,
Corollary 1], when ZG is an elementary 2-group, ιG,P is independent of P up to G(F)-conjugacy.

4. Overview of the global Langlands parametrization

4.1. Geometric setup. Fix some power q of a prime number p. Take E ⊂Q` to be a finite extension of
Q` containing a square root q1/2 of q , which we fix once and for all. The sheaves and complexes under
consideration will be E-linear.

Suppose that S is a smooth Fq-scheme of finite type and of pure dimension d. For any reasonable
algebraic stack X equipped with a morphism p : X → S, define the normalized perverse sheaves on X
with respect to S to be of the form

F[−d]
(
−

d
2

)
, F a nonnormalized perverse sheaf.

The usual operations on constructible complexes continue to hold in the normalized setting, with the
proviso that the dualizing complex in [Laszlo and Olsson 2008b, §7.3] becomes

�X := (the nonnormalized one)[−2d](−d)' p!(ES)
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and the duality operator becomes D= RHom(−, �X ) accordingly. This formalism extends to ind-stacks,
etc. with a morphism to S. When S = Spec Fq , we revert to the usual definitions.

Next, assume F̊ = Fq(X) is a global field and G is a connected reductive F̊-group with a chosen
Bruhat–Tits model over X , as in Section 2.1. Fix a maximal F̊-torus T ⊂ G. Also recall that Ĝ carries a
Galois-stable pinning (B̂, T̂ , (Xα)α). Enlarging E if necessary, we can assume that:

All irreducible Q`-representations of LG are realized over E .

Fix a partition of a finite set

I = I1 t · · · t Ik

used to label points on X and a level N ⊂ X . Set N̂ = |N | ∪ (X \U ) as in (3-1). Define the Hecke stack
Hecke(I1,...,Ik)

N ,I that maps each Fq -scheme S to the groupoid

Hecke(I1,...,Ik)
N ,I (S)=


(xi )i ∈ (X \ N̂ )(S)I ,

((G j , ψ j ) ∈ BunG,N (S))kj=0,

φ j : G j−1 99K G j

∣∣∣∣∣
φ j defined off

⋃
i∈I j

0xi ,

ψ jφ j |N×S = ψ j−1

∀ j = 1, . . . , k

 (4-1)

where 0xi stands for the graph of xi : S→ X . The points (xi )i∈I are known as the “paws”.
The reason for partitioning I into I1, . . . , Ik is to define partial Frobenius morphisms, see Section 4.3.
The ind-scheme Gr(I1,...,Ik)

I , the factorization version of affine Grassmannian of Beilinson–Drinfeld, is
the space classifying the same data (4-1) as Hecke(I1,...,Ik)

I,∅ together with a trivialization θ of Gk . It also
admits a morphism of “paws” to X I . In fact Gr(I1,...,Ik)

I is ind-projective; we refer to [Lafforgue 2018, §1]
for further details. When I is a singleton and k = 1, the usual Beilinson–Drinfeld Grassmannian over X
is recovered.

The factorization structure here means that given a surjection ζ : I → J , we have, for Uζ := {(xi )i∈I :

ζ(a) 6= ζ(b)=⇒ xa 6= xb} ⊂ X I and I ′a := Ia ∩ ζ
−1( j),∀ j , the canonical isomorphism

Gr(I1,...,Ik)
I ×

X I
Uζ −→

∼
∏
j∈J

Gr
(I ′1,...,I

′

k)

ζ−1( j)

over Uζ see [Lafforgue 2018, Remarque 1.9]. The factorization structure is mainly to be employed
together with the complexes that are universally locally acyclic, hereafter abbreviated as ULA, with
respect to the base (say X I ). This property (see [Richarz 2014, §3.2] or [Braverman and Gaitsgory 2002,
§5.1]) is immensely useful for “spreading out” certain properties of complexes from some open subset in
the base, see e.g., [Richarz 2014, Theorem 3.16].

Given (ni )i ∈ ZI
≥0. Define 0∑

i ni xi ⊂ X × X I as the closed subscheme Zariski-locally defined by∏
i∈I tni

i , with ti being a local equation for xi in X , where (xi )i∈I are the aforementioned “paws”. Then
define

G∑
i∈I ni xi := the Weil restriction of G with respect to 0∑

i ni xi → X I .
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One interprets G∑
i∞xi in the same manner by considering formal neighborhoods, but we won’t go into

the details.
As in the discussion preceding [Lafforgue 2018, Proposition 1.10], there is a notion of G∑

i∞xi -action
on Gr(I1,...,Ik)

I , namely by altering the trivialization θ of Gk at 0∑
i∞xi .

Let PervG∑
i ∞xi

(Gr(I1,...,Ik)
I ) denote the category of G∑

i∞xi -equivariant normalized perverse sheaves
on the ind-scheme Gr(I1,...,Ik)

I relative to X I ; for nonsplit G, we confine ourselves to (X \ N̂ )I as in
[Lafforgue 2018, §12.3.1]. The factorization version of geometric Satake equivalence [Lafforgue 2018,
Théorèmes 1.17 and 12.16] gives an additive functor

RepE((
LG)I )→ PervG∑

i ∞xi
(Gr(I1,...,Ik)

I )

W 7→ S(I1,...,Ik)
I,W,E .

For later reference, we record some of the basic properties of this functor, all of which can be found in
[loc. cit.]:

(1) The normalized perverse sheaves S(I1,...,Ik)
I,W,E are ULA relative to the morphism to X I (or (X \ N̂ )I ).

(2) When |I | = 1, the geometric Satake equivalence [Richarz 2014; Zhu 2015] yields W 7→ S(I )I,W,E . This
extends to general I and “factorizable” W using the factorization structure on affine Grassmannians, see
[Lafforgue 2018]. Namely, for any family (Wi )i∈I of objects in RepE(

LG), one can associate S(I1,...,Ik)
I,�i Wi ,E

in PervG∑
i ∞xi

(Gr(I1,...,Ik)
I ).

(3) Write LG I for (LG)I . In order to obtain a functorial construction in all W ∈ RepE(
LG I ), we take the

LG I
×

LG I -representation R :=�i∈I O(
LG) over E . This becomes an ind-object of RepE(

LG I ) using
the LG I -action on the first slot, and this ind-object carries a LG I -action from the second slot. Take a
system of representatives of irreducible objects V ∈ RepE(

LG). As LG I
×

LG I -representations, we have⊕
V :irred

V ⊗
E

V∨ −→∼ R by taking matrix coefficients.

The decomposition above and the available S(I1,...,Ik)
I,V,E define a normalized ind-perverse sheaf S(I1,...,Ik)

I,R,E ,
with the Ĝ I -action inherited from the second slot of R. Now we can define, for each W ∈ RepE(

LG I ),

S(I1,...,Ik)
I,W,E := (S(I1,...,Ik)

I,R,E ⊗
E

W )
LG I
'

⊕
V :irred

S(I1,...,Ik)
I,V,E ⊗

E
(V∨⊗

E
W )

LG I
'

⊕
V :irred

S(I1,...,Ik)
I,V,E ⊗

E
WV , (4-2)

where: (a) W is viewed as a constant sheaf on Gr(I1,...,Ik)
I . (b) LG I acts diagonally. (c) WV stands for

the multiplicity space of V in W . Functoriality in W is clear, and it is readily seen to agree with the
previous step if W = V , up to isomorphism.

Given W ∈ RepE(
LG I ), we define the reduced closed subscheme

Gr(I1,...,Ik)
I,W := SuppS(I1,...,Ik)

I,W,E ⊂ Gr(I1,...,Ik)
I .

In this manner, the objects of RepE(
LG I ) will serve as truncation parameters for Gr(I1,...,Ik)

I,W . For the
traditional definition in terms of weights and relative positions, see [Lafforgue 2018, Définition 1.12].
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When |I |=1 and W is irreducible, S(I )I,W,E is well known to be isomorphic to the normalized IC-complex
of the stratum Gr(I )I,W .

We move to the moduli stack of chtoucas with level structures, whose the details can be found in
[Lafforgue 2018, §2, §12.3.2]. For I = I1 t · · ·t Ik and N as before, Cht(I1,...,Ik)

N ,I is defined by a pull-back
diagram

Cht(I1,...,Ik)
N ,I Hecke(I1,...,Ik)

N ,I

BunG,N BunG,N ×BunG,N

� (G0,Gk)

id×Frob

of ind-stacks over Fq . It classifies the chains

(G0, ψ0)
φ1
99K · · ·

φk−1
99K (Gk, ψk)

φk
99K (τG0,

τψ0)

of G-torsors with N -level structures (see (4-1)). Here, for every Fq-scheme S and (G, ψ) ∈ BunG,N (S)
we set

(τG, τψ) := (idX ×FrobS)
∗(G, ψ)

and similarly for the morphisms in BunG,N (S). Note that Cht(I1,...,Ik)
N ,I is an ind-stack of ind-finite type

over Fq endowed with a morphism of “paws”

p(I1,...,Ik)
N ,I : Cht(I1,...,Ik)

N ,I → (X \ N̂ )I

coming from that of Hecke(I1,...,Ik)
N ,I . Stability conditions of Harder–Narasimhan type attached to dominant

coweights µ ∈ X∗(T ad) of Gad on the datum G0 gives rise to the truncated piece Cht(I1,...,Ik),≤µ
N ,I . Choose

any Borel subgroup (over the separable closure) of G containing T . For coweights µ,µ′, write

µ′ ≥ µ⇐⇒ µ′−µ ∈
∑

α̌:simple coroot

Q≥0 · α̌.

As µ grows with respect to ≥, we have the filtered limit

Cht(I1,...,Ik)
N ,I = lim

−−→
µ

Cht(I1,...,Ik),≤µ
N ,I .

Exactly as in the case of affine Grassmannians, there is another truncation indexed by W ∈ RepE((
LG)I );

see [Lafforgue 2018, §2] for details. They give rise to

Cht(I1,...,Ik)
N ,I,W

open
⊃ Cht(I1,...,Ik),≤µ

N ,I,W .

By [Lafforgue 2018, Proposition 2.6], Cht(I1,...,Ik)
N ,I,W is a reduced Deligne–Mumford stack locally of finite

type over (X \ N̂ )I , for any W . The connected components of an open substack of the form Cht(I1,...,Ik),≤µ
N ,I,W

are quotients of quasiprojective (X \ N̂ )I -schemes by finite groups; when N is large relative to µ and to
the highest weights of W , those connected components are even quasiprojective (X \ N̂ )I -schemes. The
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last property can serve to justify some geometric reasoning over such stacks, by reducing them to the
usual scheme-theoretic setting.

We have ZG(F̊)\ZG(A) ↪→ BunZG ,N (Fq), and the latter acts on Cht(I1,...,Ik)
N ,I by twisting G-torsors by

ZG-torsors. This action leaves each truncated piece invariant. In particular, for a lattice4⊂ ZG(F̊)\ZG(A)

chosen as in Section 2.1, we have 4-action on Cht(I1,...,Ik),≤µ
N ,I,W , etc. One can shrink 4 to make it act freely,

and consider the quotients Cht(I1,...,Ik),≤µ
N ,I,W /4, etc.

By the discussions before [Lafforgue 2018, Définition 2.14], Cht(I1,...,Ik),≤µ
N ,I,W /4 is a Deligne–Mumford

stack of finite type.

4.2. Cohomologies. We keep the notation from Section 4.1. In what follows, normalization of perverse
sheaves will always be with respect to the base (X \ N̂ )I .

The first ingredient [Lafforgue 2018, Proposition 2.8] is a canonical smooth morphism

ε
(I1,...,Ik)
(I ),W,n : Cht(I1,...,Ik)

N ,I,W → Gr(I1,...,Ik)
I,W /G∑

i∈I ni xi

where n = (ni )i∈I ∈ ZI
≥0 is sufficiently positive with respect to W ∈ RepE((

LG)I ), so that the G∑
i∞xi -

action factors through G∑
i ni xi . Assume furthermore that W =�k

j=1W j where each W j ∈ RepE((
LG)I j )

is irreducible. In [Lafforgue 2018, (2.5)] the canonical smooth morphism

ε
(I1,...,Ik)
(I1,...,Ik),W,n : Cht(I1,...,Ik)

N ,I,W →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi

is constructed. These two are related by the canonical smooth morphism [Lafforgue 2018, (1.12)]

κ
(I1,...,Ik)
I,W : Gr(I1,...,Ik)

I,W →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi

that chops a chain G0 99K G1 99K · · · 99K Gk (the trivialization forgotten) classified by Gr(I1,...,Ik)
I into

segments indexed by I j . By [Lafforgue 2018, (1.13)], when mi � ni it factorizes through a smooth

κ̃
(I1,...,Ik)
I,W : Gr(I1,...,Ik)

I,W /G∑
i∈I mi xi →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi .

For an interesting result on local models of Cht(I1,...,Ik)
N ,I,W based on these morphisms, see [Lafforgue 2018,

Proposition 2.11]. However, we do not need that result in this article.
As an application, for each W ∈ RepE((

LG)I ) we take the normalized perverse sheaf S(I1,...,Ik)
I,W,E on

Gr(I1,...,Ik)
I,W . Descend this complex to Gr(I1,...,Ik)

I,W /G∑
i∈I ni xi by its equivariance given by geometric Satake.

Hence on can form the complex (ε(I1,...,Ik)
I,W,n )∗S(I1,...,Ik)

I,W,E .
Since S(I1,...,Ik)

I,W,E is ULA with respect to (X \ N̂ )I , so is its inverse image via the smooth mor-
phism ε

(I1,...,Ik)
I,W,n ; see [Braverman and Gaitsgory 2002, 5.1.2, item 2]. We claim that the complex

(ε
(I1,...,Ik)
I,W,n )∗S(I1,...,Ik)

I,W,E is moreover normalized perverse on Cht(I1,...,Ik)
N ,I,W for irreducible W =�k

j=1W j .
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Indeed, the claim is a routine consequence of the factorization structure on Gr(I1,...,Ik)
I,W and the ULA

property, smoothness, etc.
This completes our construction when G is semisimple. In general, one has to consider a lattice 4 as in

Section 2.1. According to [Lafforgue 2018, Remarque 1.20], S(I1,...,Ik)
I,W,E descends to Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

.
By the discussions after [loc. cit., Définition 2.14], ε(I1,...,Ik)

I,W,n induces

ε
(I1,...,Ik),4
N ,I,W,n : Cht(I1,...,Ik)

N ,I,W /4→ Gr(I1,...,Ik)
I,W /Gad∑

i ni xi

which is smooth of relative dimension equal to dim Gad∑
i ni xi

. We define accordingly

F (I1,...,Ik)
N ,I,W,4,E := (ε

(I1,...,Ik),4
N ,I,W,n )∗S(I1,...,Ik)

I,W,E . (4-3)

This is still a normalized perverse sheaf on Cht(I1,...,Ik)
N ,I,W /4. In [loc. cit.], one actually deduces that

F (I1,...,Ik)
N ,I,W,4,E is isomorphic to the normalized IC-sheaf on Cht(I1,...,Ik)

N ,I,W /4.
Thus far we have assumed W =�k

j=1W j . A general definition, functorial in arbitrary W ∈RepE((
LG)I ),

can be crafted by repeating the construction for W 7→ S(I1,...,Ik)
I,W,E reviewed in Section 4.1. The result still

takes the form (4-3), except that the right-hand side is now constructed functorially in W ∈ RepE((
LG)I );

see [loc. cit., §4.5].
Next, introduce the other truncation parameter µ from Section 4.1. The morphism of paws induces

p
(I1,...,Ik),≤µ
N ,I : Cht(I1,...,Ik),≤µ

N ,I,W /4→ (X \ N̂ )I .

Recall that Cht(I1,...,Ik),≤µ
N ,I,W is open and 4-invariant in Cht(I1,...,Ik)

N ,I,W . Define

H≤µ,EN ,I,W := (p
(I1,...,Ik),≤µ
N ,I )!F (I1,...,Ik)

N ,I,W,4,E

∣∣
Cht

(I1,...,Ik ),≤µ
N ,I,W /4

,

Hi,≤µ,E
N ,I,W := HiH≤µ,EN ,I,W ,

(4-4)

i ∈ Z, here Hi is taken with respect to the ordinary t-structure on Dc((X \ N̂ )I , E).

• By using the forgetful morphisms as in [Lafforgue 2018, Construction 2.7 and Corollaire 2.18], these
complexes are seen to be independent of the partition (I1, . . . , Ik). The notation in (4-4) is thus
justified.

• Forµ≤µ′, the open immersion j :Cht(I1,...,Ik),≤µ
N ,I,W /4→Cht(I1,...,Ik),≤µ

′

N ,I,W /4 induces a canonical arrow
H≤µ,EN ,I,W →H≤µ

′,E
N ,I,W . This is a standard consequence of the formalism of six operations as j∗ = j !.

• They also respect the coalescence of paws with respect to any map ζ : I→ J . We refer to [Lafforgue
2018, Proposition 4.12] for further explanations.

Let I be a finite set and W ∈ RepE((
LG)I ) arbitrary. Denote the generic point of X and X I by η

and ηI , respectively, and choose geometric points over them

η→ η, ηI → ηI .
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Let 1 : X→ X I be the diagonal embedding. Following [Lafforgue 2018, §8] or [Varshavsky 2007, §1.3],
we choose an arrow of specialization

sp : ηI →1(η),

i.e., a morphism (X I )
(ηI )
→ (X I )(1(η)) or equivalently ηI → (X I )(1(η)), where the subscripts indicate

strict Henselizations at the corresponding geometric points. By [Lafforgue 2018, Proposition 8.24], the
induced pull-back morphism

sp∗ : lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
1(η)
→ lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ηI

between E-vector spaces is injective.
Now comes the Hecke action. Let f ∈ Cc(KN\G(A)/KN ; E). According to [Lafforgue 2018, Corol-

laire 6.5], taking a coweight κ � 0 with respect to f , there is an induced morphism

T ( f ) :H≤µ,EN ,I,W →H≤µ+κ,EN ,I,W (4-5)

in Db
c((X \ N̂ )I , E), with various compatibilities. It is E-linear in f and satisfies T ( f f ′)= T ( f )T ( f ′).

After passing to lim
−−→µ

, we are led to the left Cc(KN\G(A)/KN ; E)-module

HI,W :=
(
lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
1(η)

)Hf (4-6)

where “Hf” means Hecke-finite with respect to the action (4-5). This definition is clearly functorial in W .
The following properties are established in [Lafforgue 2018, §§8–9]:

• Compatibility with coalescence of paws. Namely, every map ζ : J→ I induces a canonical isomorphism
χζ : HI,W −→

∼ HJ,W ζ , where W ζ
∈ RepE(

LG J ) denotes the pull-back of W via ζ .

• The arrow sp∗ commutes with Hecke action since the latter is defined on the level of Db
c((X \ N̂ )I , E).

Moreover, it induces an isomorphism

sp∗ : HI,W −→
∼

(
lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf
.

• We have LG∅
= {1}, η∅ = Spec Fq when I =∅. There are natural isomorphisms

H{0},1
χ

←−∼ H∅,1 −→∼ Ccusp
c (BunG,N (Fq)/4; E). (4-7)

The arrow χ is induced by coalescence via the unique map ∅→ {0}. The rightward arrow stems from
the fact [Varshavsky 2004, Proposition 2.16(c)] that ChtN ,∅,1 /4 is the constant stack BunG,N (Fq)/4

over Spec Fq , which implies a canonical isomorphism

lim
−−→
µ

H0,≤µ,E
N ,∅,1

∣∣
1(η)
−→∼ Cc(BunG,N (Fq)/4; E) (4-8)

of Cc(KN\G(A)/KN ; E)-modules.
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• For I = {1}, W = 1, coalescence induces Cht({0})N ,{1},1 /4 −→
∼ (ChtN ,∅,1 /4)×Spec Fq (X \ N̂ ) by [Laf-

forgue 2018, (8.4)]. In this case, H0,≤µ,E
N ,{0},1 is a constant sheaf and the lim

−−→µ
of its stalk at η is still

Cc(BunG,N (Fq)/4; E).

• Via these isomorphisms, the Cc(KN\G(A)/KN ; E)-module structures on H∅,1 and H{0},1 match the
one on Ccusp

c (BunG,N (Fq)/4; E) recorded in Section 2.1. See [Lafforgue 2018, §8].

The last item above is how harmonic analysis enters the geometric picture.

4.3. Partial Frobenius morphisms and Galois actions. We conserve the previous conventions and review
the partial Frobenius morphisms. Let J ⊂ I be finite sets. Choose a partition I = I1 t · · · t Ik with
I1 = J , together with a specialization arrow sp : ηI →1(η). The choice of partition intervenes in the
constructions, but will disappear in the final results.

Let FrobJ = FrobI1 : (X \ N̂ )I
→ (X \ N̂ )I be the morphism that equals Frob on the coordinates

indexed by I1, and id elsewhere.
Take W ∈ RepE((

LG)I ) as well the lattice 4 as in Section 4.2. In [Lafforgue 2018, §3] is defined the
partial Frobenius morphism

Frob(I1,...,Ik)
I1,N : Cht(I1,...,Ik)

N ,I,W → Cht(I2,...,Ik ,I1)
N ,I,W (4-9)

covering FrobI1 , that respects 4-actions. In terms of the notations in Section 4.1, it sends the chain

(G0, ψ0)
φ1
99K · · · 99K (Gk, ψk) 99K (

τG0,
τψ0)

into

(G1, ψ1)
φ2
99K · · · 99K (Gk, ψk) 99K (

τG0,
τψ0)

τφ1
99K (τG1,

τψ1)

whereas the paws are transformed accordingly by FrobI1 . The cyclic composition of k partial Frobenius
morphism equals the total Frobenius endomorphism of Cht(I1,...,Ik)

N ,I,W . An easy consequence is that FrobI1 is
a universal homeomorphism; see [Stacks 2005–, Tag 04DC].

The induced morphism between the quotients by 4 is also named Frob(I1,...,Ik)
I1,N . Now introduce the

dominant coweight µ of Gad in Section 4.2 as truncation parameter. A basic fact is that whenever µ′�µ

with respect to W ,

(Frob(I1,...,Ik)
I1,N )−1 Cht(I2,...,Ik ,I1),≤µ

N ,I,W ⊂ Cht(I1,...,Ik),≤µ
′

N ,I,W . (4-10)

When k = 1, we have the usual Frobenius correspondence 8 : Frob∗ S(I )I,W,E −→
∼ S(I )I,W,E between

normalized perverse sheaves on Gr(I )I,W /Gad∑
i ni xi

. In general, by writing

FrobI1(xi )i∈I = (x ′i )i∈I , (xi )i∈I ∈ (X \ N̂ )I (S) ∀S : Fq -scheme
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and supposing W =�k
j=1W j is irreducible, there is a commutative diagram:

Cht(I1,...,Ik)
N ,I,W /4 Cht(I2,...,Ik ,I1)

N ,I,W /4

∏k
j=1 Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi

∏k
j=1 Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni x ′i

Frob
(I1,...,Ik )
I1,N

ε
(I1,...,Ik )
N ,(I1,...,Ik ),n

ε
(I2,...,Ik ,I1)
N ,(I2,...,Ik ,I1),n

Frob× id×···×id

In view of the constructions in Section 4.2 using the smooth morphisms ε···
···

, the ULA property, etc., we
obtain a canonical isomorphism in Db

c(Cht(I1,...,Ik)
N ,I,W /4, E)

F (I1,...,Ik)
I1,N ,W : (Frob(I1,...,Ik)

I1,N )∗F (I2,...,I1)
N ,I,W,4,E −→

∼ F (I1,...,Ik)
N ,I,W,4,E (4-11)

extending the previous case k = 1. See [Lafforgue 2018, Proposition 3.4]. This isomorphism can be
extended functorially to arbitrary W ∈ RepE((

LG)I ) by repeating the construction for W 7→ S(I1,...,Ik)
I,W,E .

Abbreviate the Frob(I1,...,Ik)
I1,N on Cht(I1,...,Ik)

N ,I,W /4 as a1. It fits into the commutative diagram

Cht(I2,...,I1),≤µ
N ,I,W /4 a−1

1 (Cht(I2,...,I1),≤µ
N ,I,W /4) Cht(I1,...,Ik),≤µ

′

N ,I,W /4

(X \ N̂ )I (X \ N̂ )I (X \ N̂ )I

p

a1 a2

p p

FrobI1

(4-12)

where p denotes the self-evident morphisms of paws, a1 is a universal homeomorphism and a2 is an
open immersion. Hence (4-11) affords a cohomological correspondence between bounded constructible
complexes in the sense of [Varshavsky 2007, §1]: for a1, a2 in (4-12),

Frob(I1,...,Ik)
I1,N ,W : a

∗

1 F (I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on the ≤ µ part

→ a!2 F (I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸

on the ≤ µ′ part

, a∗2 = a!2. (4-13)

The left square of (4-12) is not Cartesian; however, in the commutative diagram defined with Cartesian
square

a−1
1 (Cht(I2,...,I1),≤µ

N ,I,W /4)

Cht(I2,...,I1),≤µ
N ,I,W /4 Frob∗I1

(Cht(I2,...,I1),≤µ
N ,I,W /4)

(X \ N̂ )I (X \ N̂ )I

∃!ϕ

a1

p
p

ã1

p̃�

FrobI1
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the arrow ϕ is a universal homeomorphism since both FrobI1 and a1 are. Therefore we obtain

BC : Frob∗I1
p! bc
−→∼ p̃!ã∗1 ←−∼ p̃!ϕ!ϕ

∗ã∗1 ' p!a∗1 . (4-14)

Indeed, bc is the isomorphism of base change by the universal homeomorphism FrobI1 [Laszlo and Olsson
2008b, 12.2]; the second isomorphism is induced by ϕ!ϕ∗ −→∼ id, which is in turn due to the topological
invariance of the ètale topos (see [SGA 41 1972; SGA 42 1972; SGA 43 1973, Exp VIII, Théorème 1.1] or
[Stacks 2005–, Tag 04DY]) under the universal homeomorphism ϕ.

In view of (4-4), we can now define

FJ = FI1 : Frob∗I1
H≤µ,EN ,I,W →H≤µ

′,E
N ,I,W (4-15)

as the composite in Db
c((X \ N̂ )I , E)

Frob∗I1
p! F (I2,...,I1)

N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ

BC
−→∼ p!a∗1 F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

p! Frob
(I1,...,Ik )
I1,N ,W−−−−−−→p!a!2 F

(I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

→ F (I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

the last arrow arising from p!a!2 = p!(a2)!a!2
(a2)!a!2→id
−−−−−−→ p!. It is functorial in W ∈ RepE((

LG)I ) and is
shown to be compatible with the coalescence of paws in [Lafforgue 2018, §§3–4]. Hence the dependence
is only on J ⊂ I .

Consequently, the morphism FJ also acts E-linearly on lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI . Given any partition I =

I1 t · · · t Ik , the actions of FI1, . . . , FIk form a commuting family whose cyclic composition equals the
total Frobenius action on lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
ηI .

On the other hand, the standard theory [Stacks 2005–, Tag 03QW] yields a continuous representation
of π1(η

I , ηI ) on H0,≤µ,E
N ,I,W

∣∣
ηI which passes to lim

−−→µ
.

To conclude this subsection, we recall briefly the following extension of groups

1→ ker[π1(η
I , ηI )→ Ẑ] → FWeil(ηI , ηI )→ ZI

→ 0.

We refer to [Lafforgue 2018, Remarque 8.18] and the subsequent discussions for all further details. When
|I | = 1, it becomes the Weil group WF̊ of F̊ = Fq(X); in general there is a surjection FWeil(ηI , ηI )�WI

F̊
depending on the choice of sp. The surjection induces an isomorphism from the profinite completion
FWeil(ηI , ηI ) to that of WI

F̊
, i.e., π1(η, η)

I . As mentioned in [loc. cit.], the action on lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI of

• the partial Frobenius morphisms FJ for various J ⊂ I , and

• that of π1(η
I , ηI )

meld into an action of FWeil(ηI , ηI ). The upshot of [loc. cit., §8] is to produce a continuous E-
linear π1(η, η)

I -action on
(
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf therefrom. In other words, one wants to factorize the
FWeil(ηI , ηI )-action through its profinite completion continuously.

The key for the passage to π1(η, η)
I -action is Drinfeld’s Lemma. This method requires some finiteness

conditions which in turn involve the Eichler–Shimura relations. These important issues are addressed at
length in [loc. cit., §8], but they are not needed in this article.
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The aforementioned continuous representation transports to HI,W , namely

Eγ · f := (sp∗)−1( Eγ · (sp∗ f )), Eγ ∈ π1(η, η)
I , f ∈ HI,W .

This action turns out to be independent of the choice of ηI and sp, by [loc. cit., Lemme 9.4].

4.4. Excursion operators and pseudocharacters. Consider finite sets I, J and W ∈ RepE((
LG)I ) and

U ∈RepE((
LG)J ). Let ζI , ζJ be the unique maps from I, J into the singleton {0}. The diagonal action on

W gives W ζI ∈ RepE(
LG); the space of Ĝ-invariants (W ζI )Ĝ is therefore a representation of Gal(F̃ |F).

Denote by (W ζI )Ĝ
∣∣

X\N̂ the E-lisse sheaf on X \ N̂ obtained by descent. Likewise, we have (W ζI )Ĝ

∣∣
X\N̂

by taking the maximal quotient of W ζI on which Ĝ acts trivially. A pair of morphisms

H≤µ,EN ,J,U � (W
ζI )Ĝ

∣∣
X\N̂ →H≤µ,EN ,JtI,U�W

∣∣
(X\N̂ )J×1(X\N̂ )

H≤µ,EN ,J,U � (W
ζI )Ĝ

∣∣
X\N̂ ←H≤µ,EN ,JtI,U�W

∣∣
(X\N̂ )J×1(X\N̂ )

in Db
c((X \ N̂ )Jt{0}, E) are constructed in [loc. cit., (12.18), (12.19)]. Roughly speaking, they are defined

via coalescence and the functoriality of H with respect to (W ζI )Ĝ ↪→W ζI � (W ζI )Ĝ .
Now take J =∅ and U = 1. Let x ∈W and ξ ∈W∨ be Ĝ-invariant under the diagonal action, viewed

as maps E → (W ζI )Ĝ and (W ζI )Ĝ → E , respectively. Taking lim
−−→µ

H0(· · ·
∣∣
η
) yields the creation and

annihilation operators (see [loc. cit., Dèfinitions 5.1, 5.2 and 12.3.4])

lim
−−→µ

H0,≤µ,E
N ,∅,1 lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
1(η)

C]x

C[ξ

between E-vector spaces. Restriction to Hecke-finite parts yields arrows

H∅,1 ' H{0},1 HI,W

C]x

C[ξ

, see (4-6).

Given I,W, x, ξ as above and Eγ = (γi )i∈I ∈π1(η, η)
I , the excursion operator SI,W,x,ξ, Eγ is the composite

H{0},1 H{0},1

HI,W
(
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf (
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf HI,W

C]x
sp∗

∼

Eγ

∼

(sp∗)−1

∼

C[ξ

Here Eγ acts in the manner reviewed in Section 4.3. Upon recalling (4-7), we obtain

SI,W,x,ξ, Eγ ∈ EndE(H{0},1)' EndE(Ccusp
c (BunG,N (Fq)/4; E)).

Moreover, by [loc. cit., Définition-Proposition 9.1]
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• we have SI,W,x,ξ, Eγ ∈ EndCc(KN \G(A)/KN ;E)(H{0},1);

• the formation of SI,W,x,ξ, Eγ is E-bilinear in x, ξ and continuous in Eγ for the topology on the finite-
dimensional space EndE(H{0},1) induced by E ;

• let BE be the E-subalgebra of EndCc(KN \G(A)/KN ;E)(H{0},1) generated by SI,W,x,ξ, Eγ for all quintuples
(I,W, x, ξ, Eγ ). Then BE is a finite-dimensional commutative E-algebra by [loc. cit., (10.2)].

The foregoing constructions behave well under finite extensions of the field E of coefficients. Define
the Q`-algebra

B := BE ⊗E Q` ⊂ EndQ`
(H{0},1⊗E Q`).

Upon enlarging E , we may assume that all homomorphisms ν :B→Q` (finitely many) of Q`-algebras are
defined over E . There is a decomposition of Cc(KN\G(A)/KN ; E)-modules into generalized eigenspaces

H{0},1 =
⊕
ν

Hν, Hν := { f ∈ H{0},1 : ∀T ∈ BE , ∃d ≥ 1 | (T − ν(T ))d f = 0}. (4-16)

Here ν ranges over the characters of B, and one may take d = dimE H{0},1. The same holds after passing
to Q`. All in all,

Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
ν:B→Q`

Hν in Cc(KN\G(A)/KN ;Q`)-Mod.

It is conjectured that B is reduced, which will imply that d = 1 suffices.
The next step is to reencode the excursion operators SI,W,x,ξ, Eγ . Let f (Eg) = 〈ξ, Eg · x〉W∨⊗W where
Eg ∈ (LG)I and 〈 · , · 〉W∨⊗W is the duality pairing W∨⊗E W → E . Then f ∈ O(Ĝ\\(LG)I //Ĝ), where Ĝ
acts by bilateral translations through diagonal embedding. By [loc. cit., Lemme 10.6], SI,W,x,ξ, Eγ depends
only on (I, f, Eγ ). Using some algebraic version of the Peter–Weyl theorem, one can uniquely define the
operators

SI, f, Eγ ∈ BE , f ∈ O(Ĝ\\(LG)I //Ĝ),

in a manner compatible with the original SI,W,x,ξ, Eγ , such that if f comes from a function Gal( ˜̊F |F̊)I
→ E ,

then SI, f, Eγ = f ( Eγ ) · id. See [loc. cit., Remarque 12.20] for further explanations.
Take n ∈ Z≥1 and I := {0, . . . , n}. Then Ĝ acts on (LG)n by simultaneous conjugation. There is a

natural map

O((LG)n//Ĝ)→ O(LG\\(LG){0,...,n}//Ĝ)⊂ O(Ĝ\\(LG){0,...,n}//Ĝ)

f 7→ [ f̃ : (g0, . . . , gn) 7→ f (g−1
0 g1, . . . , g−1

0 gn)].
(4-17)

When n is fixed, the operators

2n( f )( Eγ ) := S
{0,...,n}, f̃ ,(1, Eγ ), n ∈ Z≥1, Eγ ∈ π1(η, η)

n, f ∈ O((LG)n//Ĝ) (4-18)
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in BE afford a homomorphism O((LG)n//Ĝ)→C(π1(X \ N̂ , η)n,BE) between E-algebras, where C(· · · )
denotes the algebra of continuous functions under pointwise operations. See [loc. cit., Proposition 10.10]
for the passage to π1(X \ N̂ , η).

Since O(LG\\(LG){0,...,n}//Ĝ) ( O(Ĝ\\(LG){0,...,n}//Ĝ) in general, the map (4-17) is not always sur-
jective. Nonetheless, the operators S

{0,...,n}, f̃ ,(1, Eγ ) still generate BE as n, f, Eγ vary; see [loc. cit., Remar-
que 12.20].

Finally, the machinery of LG-pseudocharacters associates a semisimple L-parameter σ ∈8(G) to any
character ν : B→Q`, characterized as follows:

• Version 1: for all n ∈ Z≥1, Eγ = (γ1, . . . , γn) and f ∈ O((LG)n//Ĝ), we have (see [loc. cit., Proposi-
tion 11.7])

f (σ (γ1), . . . , σ (γn))= ν ◦2n( f )( Eγ ).

• Version 2: for all n ∈ Z≥1, Eγ = (γ1, . . . , γn) and f̃ ∈ O(Ĝ\\(LG){0,...,n}//Ĝ), we have

f̃ (σ (1), σ (γ1), . . . , σ (γn))= ν(S{0,...,n}, f̃ ,(1, Eγ )). (4-19)

The version 2 above is a priori stronger, but they are actually equivalent by the preceding remarks
on generators.

By the discussions preceding [loc. cit., Remarque 12.21], the map HomQ`-Alg(B,Q`)→8(G) above
is injective. Hence we may write Hσ =Hν if ν 7→ σ ∈8(G), and set Hσ = {0} if σ does not match any ν.
This leads to the desired decomposition (3-2).

5. The transposes of excursion operators

5.1. On Verdier duality. Retain the notation of Section 4.2. Among them, we recall only two points:

(i) The duality operator D is normalized with respect to (X \ N̂ )I .

(ii) W∨,θ denotes the contragredient of W ∈ RepE((
LG)I ) twisted by the Chevalley involution of (LG)I .

The following results are recorded in [loc. cit., Remarque 5.4]. For the benefit of the readers, we will
give some more details below.

Proposition 5.1.1. There is a canonical isomorphism

DS(I1,...,Ik)
I,W,E −→∼ S(I1,...,Ik)

I,W∨,θ ,E

between functors from W ∈ RepE((
LG)I )op to PervG∑

i ∞xi
(Gr(I1,...,Ik)

I ).

Proof. As noted in [Braverman and Gaitsgory 2002, §B.6], D preserves the ULA property with respect
to Gr(I1,...,Ik)

I → (X \ N̂ )I . Since S(I1,...,Ik)
I,W,E is ULA, the factorization structure on Gr(I1,...,Ik)

I reduces the
affairs to the case |I | = 1, i.e., the Beilinson–Drinfeld affine Grassmannian used in [Mirković and Vilonen
2007; Richarz 2014; Zhu 2015]. Consider its fiber Grx over some point x ∈ |X \ N̂ |. In the notation from
Section 4.1, there is a left G∞x -action on Grx .
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In the local setting above, denote the usual duality operator PervG∞(Grx) by D; normalization is not
an issue here. The main ingredients are

• the Satake functor RepE((
LG)I )→ PervG∞x (Grx), written as W 7→ SW,E ;

• a canonical isomorphism between functors in W :

DSW,E −→
∼ SW∨,θ ,E .

Granting these ingredients, for general |I | we obtain canonical isomorphisms DS(I1,...,Ik)
I,W,E −→∼ S(I1,...,Ik)

I,W∨,θ ,E
Let us explain the two ingredients in the local setting. The functor W 7→ SW,E is obtained in [Richarz

2014; Zhu 2015, Theorem A.12], which are based on the case over separably closed fields in [Mirković
and Vilonen 2007]. In order to explain the effect of Lθ , we shall review the case over the separable closure
k of F̊x first. The canonical isomorphism DSW,E −→

∼ SW∨,θ ,E over k can be found in [Bezrukavnikov and
Finkelberg 2008, Lemma 14], for example, where a stronger equivariant version is established; they work
over C, but the argument is largely formal.

Next, apply Galois descent as explicated in [Richarz 2014, §6; Zhu 2015, Appendix]. Let C :=
PervG∞x (Grx) and set C′ to be its avatar over k. The absolute Galois group ϒ of F̊x operates on C′ via
⊗-equivalences, in a manner compatible with the fiber functor (total cohomology), thus ϒ acts on the
Tannakian group Ĝ as well. By [Richarz 2014, p.237], C is equivalent as an abelian category to (C′ +
continuous descent data under ϒ). The Satake equivalence over k and the machinery from [loc. cit.]
furnish an equivalence of ⊗-categories

PervG∞x (Grx)→ RepE(Ĝ ogeomϒ),

where c means continuity, and “geom” means the Tannakian or “geometric”ϒ-action on Ĝ. See [Lafforgue
2018, Remarque 1.19] for the choice of commutativity constraints.

By [Zhu 2015, Proposition A.6; Richarz 2014, Corollary 6.8], the geometric ϒ-action on Ĝ differs
from the familiar “algebraic” one by the adjoint action via ρB̂ ◦ χcycl : ϒ → Z×` → Ĝad(Q`), where
χcycl is the `-adic cyclotomic character and ρB̂ is the half-sum of positive roots in B̂; in particular,
Ĝogeomϒ ' Ĝoalgϒ (= absolute Galois form of the L-group) continuously. Since θ ∈Aut(Ĝ) stabilizes
ρB̂ , the isomorphism matches θ ogeom id with the Chevalley involution θ oalg id=: Lθ .

All in all, we obtain the Satake functor W 7→ SW,E as well as the canonical isomorphisms DSW,E −→
∼

SW∨,θ ,E . This completes the proof. �

Note that the equivariance can be upgraded to Gad∑
i∞xi

or Gad∑
i ni xi

where ni � 0 relative to W , see
[Lafforgue 2018, Remaruqe 1.20].

Proposition 5.1.2. There is a canonical isomorphism

DF (I1,...,Ik)
N ,I,W,4,E −→

∼ F (I1,...,Ik)

N ,I,W∨,θ ,4,E

between functors from W ∈ RepE((
LG)I )op to Perv(Cht(I1,...,Ik)

N ,I,W /4) that is compatible with coalescence
of paws.
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Proof. First, by combining [Lafforgue 2018, Proposition 2.8] and the explanations before Corollaire 2.15
of [loc. cit.], the smooth morphisms

Cht(I1,...,Ik)
N ,I,W /4

ε
(I1,...,Ik ),4
N ,I,W,n−−−−→Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

, Gr(I1,...,Ik)
I,W → Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

have the same relative dimension; denote it by d.
Proposition 5.1.1 gives a functorial isomorphism between descent data of shifted perverse sheaves from

Gr(I1,...,Ik)
I,W to Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

, abbreviated as DS1 −→
∼ S2. Denote the corresponding shifted perverse

sheaves on Gr(I1,...,Ik)
I,W /Gad∑

i ni xi
as S[1 and S[2. By standard results, see [Laszlo and Olsson 2008b, 9.1.2],

the isomorphism above descends to

(DS[1)[2d](d)−→∼ S[2.

Since F (I1,...,Ik)
N ,I,W,4,E and F (I1,...,Ik)

N ,I,W∨,θ ,4,E are defined in (4-3) as (ε(I1,...,Ik),4
N ,I,W,n )∗S[1 and (ε(I1,...,Ik),4

N ,I,W∨,θ ,n)
∗S[2, respec-

tively, the assertion follows immediately by the same standard result. �

Take any partition I = I1t· · ·t Ik , truncation parameter µ and W ∈RepE((
LG)I ). As a consequence of

Propositions 5.1.1 and 5.1.2, we deduce that Gr(I1,...,Ik)
I,W = Gr(I1,...,Ik)

I,W∨,θ and Cht(I1,...,Ik),≤µ
N ,I,W = Cht(I1,...,Ik),≤µ

N ,I,W∨,θ .

Remark 5.1.3. Below is a review of the cup product of !-pushforward. Let S be a regular scheme and let
p : X → S be an algebraic stack of finite type over S. Let L, L′ be in D−c (X , E). Our goal is to define a
canonical arrow

p!L
L
⊗ p!L′→ p!(L

L
⊗L′).

Denote by 1 and p×p the diagonal morphisms X →X ×
S
X and X ×

S
X → S, respectively. The Künneth

formula [Laszlo and Olsson 2008b, 11.0.14 Theorem] yields a canonical isomorphism in D−c (S)

p!L
L
⊗ p!L′ ' (p× p)!(L�L′),

where � denotes the external tensor product. Since L
L
⊗L′ =1∗(L�L′), to obtain the desired arrow, it

remains to use the

(p× p)!→ (p× p)!1!1
∗
= p!1

∗

arising from id→1∗1
∗
=1!1

∗, as 1 is a closed immersion.

Consider the normalized dualizing complex � on Cht(I1,...,Ik),≤µ
N ,I,W /4. The trace map

Tr : (p(I1,...,Ik),≤µ
N ,I )!�

Tr
−→ E

(X\N̂ )I

in Verdier duality is obtained by adjunction from �−→∼ (p
(I1,...,Ik),≤µ
N ,I )!E

(X\N̂ )I .
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On the other hand, Proposition 5.1.2 affords a canonical arrow F (I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗F (I1,...,Ik)

N ,I,W,4,E→�. Apply
the cup-product construction to the stack Cht(I1,...,Ik),≤µ

N ,I,W /4 over (X \ N̂ )I to obtain canonical arrows in
Db

c((X \ N̂ )I , E):

H≤µ,EN ,I,W∨,θ
L
⊗H≤µ,EN ,I,W E

(X\N̂ )I

(p
(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W∨,θ ,4,E)
L
⊗ (p

(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W,4,E)

(p
(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗F (I1,...,Ik)

N ,I,W,4,E) (p
(I1,...,Ik),≤µ
N ,I )!�

Tr (5-1)

By homological common sense (see [Kashiwara and Schapira 1990, Example I.24(ii)] for example),
taking H• in (5-1) with respect to the ordinary t-structure on (X \ N̂ )I yield natural arrows between
E-sheaves over (X \ N̂ )I

B4,E
N ,I,W :H

i,≤µ,E
N ,I,W∨,θ ⊗E

H−i,≤µ,E
N ,I,W → E

(X\N̂ )I , i ∈ Z;

we will only use the case i = 0 in this article.
Following [Lafforgue 2018, Remarque 9.2], we may even pass to lim

−−→µ
and look at the stalk at

ξ ∈ {ηI ,1(η)}, thereby obtain from B4,E
N ,I,W the E-bilinear pairings

〈 · , · 〉ξ : lim−−→
µ

H0,≤µ,E
N ,I,W∨,θ

∣∣
ξ
⊗
E

lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ξ
−→ E .

Their relation with the arrow sp of specialization is given by [loc. cit., (9.6)]

〈sp∗h, sp∗h′〉
ηI = 〈h, h′〉1(η). (5-2)

In the discussions surrounding (4-8), we have seen that ChtN ,∅,1 /4 is the constant stack BunG,N (Fq)/4

over Spec Fq . The upshot is that, as in [loc. cit., Remarque 9.2], the pairing 〈 · , · 〉1(η) for I =∅ reduces
to the integration pairing on Cc(G(F̊)\G(A)/KN4; E), assuming mes(KN ) = 1. Upon restriction to
Hecke-finite part, we get the pairing 〈 · , · 〉 for H∅,1 in Remark 2.2.3. The same holds for H{0},1 by
coalescence (4-7).

5.2. Frobenius invariance. For every morphism f between reasonable schemes or stacks, we will denote
by “can” the canonical isomorphisms exchanging f ∗↔ f ! and f∗↔ f! under D. When f is a universal
homeomorphism or open immersion, we have f∗ = f! and f ∗ = f ! or only f ∗ = f !, respectively.

Merge the conventions from Sections 5.1 and 4.3. Let J ⊂ I be finite sets, I = I1t· · ·t Ik with J = I1.
We are going to explicate the compatibility between B4,E

N ,I,W and Frob∗J H
≤µ,E
N ,I,W

FJ−→H≤µ
′,E

N ,I,W , i.e., (4-15).
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Lemma 5.2.1. In Db
c(Cht(I1,...,Ik)

N ,I,W /4, E), there is a commutative diagram whose arrows are all invertible:

(Frob(I1,...,Ik)

I1,N ,W∨,θ
)∗F (I2,...,I1)

N ,I,W∨,θ ,E (Frob(I1,...,Ik)
I1,N ,W )∗DF (I2,...,I1)

N ,I,W,4,E D(Frob(I1,...,Ik)
I1,N ,I )∗F (I2,...,I1)

N ,I,W,4,E

F (I1,...,Ik)

N ,I,W∨,θ ,4,E DF (I1,...,Ik)
N ,I,W,4,E

F
(I1,...,Ik )

I,N ,Wθ,∨

can
∼

DF
(I1,...,Ik )
I,N ,W

where F (I1,...,Ik)
I1,N ,... is from (4-11), and the horizontal arrows except can are induced by Proposition 5.1.2.

Proof. We may assume W = �k
j=1W j is irreducible. Using the definition (4-3), the smoothness of

ε
(I1,...,Ik),4
N ,I,W,n as well as the ULA properties of F and S, the desired commutativity eventually reduces to

that of

Frob∗ S(I j )

I j ,W
∨,θ
j ,E

Frob∗DS(I j )

I j ,W j ,E D Frob∗ S(I j )

I j ,W j ,E

S(I j )

I j ,W
∨,θ
j ,E

DS(I j )

I j ,W j ,E

8

can
∼

8
D8

in Db
c(Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi
, E), for each 1≤ j ≤ k. Here8 stands for the usual Frobenius correspondences,

and the horizontal arrows except can are from Proposition 5.1.1. The square commutes by the functoriality
of 8.

for the triangular part, [Laszlo and Olsson 2008a, 4.8.2 Corollary] says that can : Frob∗D−→∼ D Frob∗

equals

Frob∗ RHom(−, �) natural
−−−−→RHom(Frob∗(−),Frob∗�) f∗−→RHom(Frob∗(−),�),

where � is the dualizing complex and f : Frob∗� −→∼ � is the canonical isomorphism furnished by
[loc. cit.]. Both f and “can” reflect the fact that universal homeomorphisms conserve duality. In our case,
that fact is also realized by transport of structure via Frobenius, i.e., we have f = 8�, the Frobenius
correspondence for �. The desired commutativity thus reduces to that of

Frob∗ RHom(S, �) RHom(Frob∗ S,Frob∗�)

RHom(S, �)

8RHom(S,�)

natural

(8−1
S )∗◦(8�)∗

for all S ∈ Db
c(Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi
, E). This is by now standard. �

Reintroduce the truncation parameters µ′� µ so that (4-10) holds with respect to both W and W∨,θ .
Let a1 (universal homeomorphism) and a2 (open immersion) be as in (4-12). As µ increases, Cht··· ,≤µN ,I,W

and Cht··· ,≤µ
′

···
form open coverings of Cht···N ,I,W .
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To state the next result, we write�≤µ and� for the normalized dualizing complex on Cht··· ,≤µN ,I,W /4 and
a−1

1 Cht(I2,...,I1),≤µ
N ,I,W /4, respectively. Recall that dualizing complexes are unique up to unique isomorphisms

[Laszlo and Olsson 2008a, 3.4.5]. There are canonical isomorphisms a∗1�
≤µ
−→∼ �←−∼ a!2�

≤µ′ , since
a∗1 = a!1.

Lemma 5.2.2. In Db
c(a
−1
1 Cht(I2,...,I1),≤µ

N ,I,W /4, E), there is a commutative diagram

a∗1 F
(I2,...,I1)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ

L
⊗ a∗1 F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

a∗1�
≤µ

�

a!2 F
(I1,...,Ik)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ′

L
⊗ a!2 F

(I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

a!2�
≤µ′

Frob
(I1,...,Ik )

I1,N ,W
∨,θ

L
⊗Frob

(I1,...,Ik )
I1,N ,W

'

'

'

where the arrows from · · ·
L
⊗ · · · to � are induced from Lemma 5.2.1.

Proof. It suffices to show the commutativity of the outer pentagon, since the triangle is defined to be
commutative. Recall the passage from (4-11) to (4-13): Frob(I1,...,Ik)

I1,N ,... is obtained by restricting F (I1,...,Ik)
I1,N ,...

to the open substacks cut out by the conditions ≤ µ and ≤ µ′. It remains to apply Lemma 5.2.1; note that
the effect of arrows a∗1�

≤µ
−→∼ �←−∼ a!2�

≤µ′ match the morphism “can” in Lemma 5.2.1. �

Proposition 5.2.3. Write J := I1. There is a commutative diagram in Db
c((X \ N̂ ), E)

Frob∗J H
≤µ,E
N ,I,W∨,θ

L
⊗Frob∗J H

≤µ,E
N ,I,W Frob∗J E

(X\N̂ )I

H≤µ
′,E

N ,I,W∨,θ
L
⊗H≤µ

′,E
N ,I,W E

(X\N̂ )I

Frob∗J (5-1)

FJ
L
⊗FJ FJ

(5-1)

where

• FJ
L
⊗ FJ is induced from the FJ in (4-15),

• the FJ on the right is the evident partial Frobenius morphism for E
(X\N̂ )I .

Proof. Retain the notation for Lemma 5.2.2 and let p := p(I1,...,Ik)
N ,I . Upon recalling the formalism of

KÃ 1
4 nneth formula, cup products (Remark 5.1.3) and the trace maps Tr (see (5-1)), Lemma 5.2.2 produce

a diagram in Db
c((X \ N̂ )I , E):
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Frob∗J p! F
(I2,...,I1)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ

L
⊗Frob∗J p! F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

Frob∗J p!�
≤µ Frob∗J E

(X\N̂ )I

p!a∗1F
(I2,...,I1)

N ,I,W∨,θ ,4,E

L
⊗ p!a∗1F

(I2,...,I1)
N ,I,W,4,E p!a∗1�

≤µ
' p!� E

(X\N̂ )I

p!a!2F
(I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗ p!a!2F

(I1,...,Ik)
N ,I,W,4,E p!a!2�

≤µ′
' p!�

p! F (I1,...,Ik)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ′

L
⊗p! F (I1,...,Ik)

N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

p!�
≤µ′

BC
L
⊗BC '

Frob∗J Tr

BC' ' FJ

p! Frob
(I1,...,Ik )

I1,N ,W
∨,θ

L
⊗ p! Frob

(I1,...,Ik )
I1,N ,W

Tr

Tr

where BC and p!a!2→ p! are the arrows in (4-14) and explained after (4-15), respectively. The diagram
commutes, indeed:

• The first two rows form a commutative diagram by the naturality of BC, which is ultimately based
on the topological invariance of the étale topos together with the fact that universal homeomorphisms
respect duality [Laszlo and Olsson 2008b, 9.1.5 Proposition and 12.2].

• The commutativity of the middle square comes from Lemma 5.2.2, by applying p!.

• The remaining pieces commute by the naturality of p!a!2→ p! and of Tr.

The composite of the last row is (5-1), and that of the first row is its Frob∗J -image (now for the

≤ µ part). The composite of the leftmost column yields FJ
L
⊗ FJ : Frob∗J H

≤µ,E
N ,I,W∨,θ

L
⊗ Frob∗J H

≤µ,E
N ,I,W →

H≤µ
′,E

N ,I,W∨,θ
L
⊗H≤µ

′,E
N ,I,W by the very definition of FJ . This completes the proof. �

The case k = 1, i.e., when FJ is the total Frobenius morphism, is relatively straightforward; see the
proof of Lemma 5.2.1.

Recall from Section 4.3 that FJ furnishes an E-linear endomorphism of lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI , still denoted

as FJ .

Corollary 5.2.4. The pairing 〈 · , · 〉
ηI in (5-2) is invariant under FJ for all J ⊂ I .

Proof. After taking H0 and lim
−−→µ

, Proposition 5.2.3 implies that

〈h1, h2〉ηI = 〈FJ (h1), FJ (h2)〉ηI

for all h1, h2 in lim
−−→µ

H0,≤µ,E
N ,I,W∨,θ

∣∣
ηI and lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
ηI , respectively. �

The cautious reader might worry about a missing power of p in Corollary 5.2.4 due to Tate twists. It
does not occur here by our normalizations of S, F and D.
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5.3. Computation of the transpose. We adopt the notation of Section 4.4. The integration pairing 〈 · , · 〉
of Remark 2.2.3 is nondegenerate symmetric on the finite-dimensional E-vector space H{0},1 ' H∅,1.
The transpose S∗ of any S ∈ EndE(H{0},1), characterized by 〈h′, Sh〉 = 〈S∗h′, h〉 for all h, h′ ∈ H{0},1.
Identify 〈 · , · 〉 with the pairing 〈 · , · 〉1(η) in (5-2).

Lemma 5.3.1. For all data I,W, ξ, x and Eγ = (γi )i ∈ π1(η, η)
I for excursion operators, we have

S∗I,W,ξ,x, Eγ = SI,W∨,θ ,x,ξ, Eγ−1 .

In particular, the E-algebra BE is closed under transpose S 7→ S∗.

Note that the roles of x, ξ are switched when one passes from W to W∨,θ . The transpose-invariance of
BE has already been sketched in [Lafforgue 2018, Remarque 12.15].

Proof. Recall from Section 4.3 that by choosing ηI and sp, there is a homomorphism FWeil(ηI , ηI )→WI
F̊

inducing an isomorphism between profinite completions. As SI,W,ξ,x, Eγ and SI,W∨,θ ,x,ξ, Eγ−1 are both
continuous in Eγ , it suffices to consider that case when Eγ comes from FWeil(ηI , ηI ).

By [Lafforgue 2018, Remarque 5.4, (9.8)], C[ξ and C]ξ are already transposes of each other on the sheaf
level with respect to B4,E

N ,I,W ; in particular they commute with sp∗. Ditto for C]x and C[x . Therefore, for all
h, h′ ∈ H{0},1, we infer by using (5-2) that

〈h′, SI,W,x,ξ, Eγ (h)〉1(η) = 〈h′, C
[
ξ (sp

∗)−1( Eγ · sp∗C]x h)〉1(η)

= 〈sp∗(h′), sp∗(C[ξ (sp
∗)−1( Eγ · sp∗C]x h))〉

ηI

= 〈sp∗C]ξ (h
′), Eγ · sp∗C]x(h)〉η,

〈SI,W∨,θ ,ξ,x, Eγ−1(h′), h〉1(η) = 〈C[x(sp
∗)−1( Eγ−1

· sp∗C]ξh′), h〉1(η)

= 〈sp∗(C[x(sp
∗)−1( Eγ−1

· sp∗C]ξh′)), sp∗(h)〉
ηI

= 〈Eγ−1
· sp∗C]ξ (h

′), sp∗C]x(h)〉ηI .

It remains to show that 〈 · , · 〉
ηI is FWeil(ηI , ηI )-invariant. Recall that the FWeil(ηI , ηI )-action unites

those from π1(η
I , ηI ) and partial Frobenius morphisms FJ . The π1(η

I , ηI )-action leaves 〈 · , · 〉
ηI invariant

since the latter comes from the sheaf-level pairing B4,E
N ,I,W over (X \ N̂ )I . The FJ -invariance of 〈 · , · 〉 for

all J ⊂ I is assured by Corollary 5.2.4. �

We are now able to describe the transpose of excursion operators.

Definition 5.3.2. For every f ∈ O(Ĝ\\(LG)I //Ĝ), set f †(Eg) := f (Lθ(Eg−1)) where Eg ∈ (LG)I and Lθ

stands for the Chevalley involution of (LG)I . Then f 7→ f † defines an involution of O(Ĝ\\(LG)I //Ĝ).

Lemma 5.3.3. For all I , f ∈ O(Ĝ\\(LG)I //Ĝ) and Eγ = (γi )i ∈ π1(η, η)
I , we have S∗I, f, Eγ = SI, f †, Eγ−1 .

Proof. It suffices to consider the case f (Eg)=〈ξ, Eg ·x〉W∨⊗W , where ξ ∈W∨, x ∈W are as in Lemma 5.3.1,
and 〈 · , · 〉W∨⊗W is the evident duality pairing. As before, denote by W θ , W∨,θ be the Lθ-twists of the
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representations W,W∨ etc., and the preceding convention on pairing still applies. Note that (W∨,θ )∨'W θ

canonically in RepE((
LG)I ).

For every Eg ∈ (LG)I , we have

f †(Eg)= 〈ξ, Lθ(g)−1
· x︸ ︷︷ ︸

original action

〉W∨⊗W

= 〈ξ, Eg−1
· x︸ ︷︷ ︸

Lθ -twisted

〉W θ,∨⊗W θ

= 〈Eg · ξ〉︸ ︷︷ ︸
Lθ -twisted

, xW θ,∨⊗W θ

= 〈x, Eg · ξ〉(W∨,θ )∨⊗W∨,θ .

In view of Lemma 5.3.1, we deduce that S∗I, f, Eγ = S∗I,W,ξ,x, Eγ equals SI,W∨,θ ,x,ξ, Eγ−1 = SI, f †, Eγ−1 , as
asserted. �

Consider any homomorphism ν : B := BE ⊗E Q`→ Q` of Q`-algebras. As B is commutative and
closed under transpose, ν∗ : S 7→ ν(S∗) is also a homomorphism of Q`-algebras.

Proposition 5.3.4. If σ ∈8(G) is attached to ν : B→Q`, then Lθ ◦ σ is attached to ν∗.

Proof. Fix n ∈Z≥0 and let I := {0, . . . , n}. Given the characterization (4-19) of the L-parameters attached
to ν, ν∗, it boils down to the observation that for all Eγ = (γ0, . . . , γn)∈ π1(η, η)

I and f ∈O(Ĝ\\LG I //Ĝ),

ν∗(SI, f, Eγ )= ν(S∗I, f, Eγ )= ν(SI, f †, Eγ−1)= f †(σ (γ0)
−1, . . . , σ (γn)

−1)= f (Lθσ (γ0), . . . ,
Lθσ (γn)),

in which the second equality stems from Lemma 5.3.3. �

Write Hσ :=Hν if σ ∈8(G) is attached to ν, and write 〈 · , · 〉σ,σ ′ := 〈 · , · 〉
∣∣
Hσ⊗Hσ ′

, for all σ, σ ′ ∈8(G).

Proof of Theorem 3.3.2. Enlarge E so that all homomorphisms ν : B→ Q` are defined over E . Fix a
ν such that Hν 6= {0}. Since BE is closed under transpose, the subspace H⊥ν ⊂ H{0},1 defined relative
to 〈 · , · 〉 is BE -stable as well. Since 〈 · , · 〉 is nondegenerate, H⊥ν 6= H{0},1. Use the BE -invariance to
decompose BE -modules as follows

H⊥ν =
⊕
µ

H⊥ν ∩Hµ,
H{0},1
H⊥ν
=

⊕
µ

Hµ

H⊥ν ∩Hµ
6= {0}.

We contend that Hµ 6⊂ H⊥ν only if µ= ν∗, or equivalently µ∗ = ν.
Indeed, 〈 · , · 〉 induces a nondegenerate pairing

〈 · , · 〉ν : Hν ⊗
E

⊕
µ

Hµ

Hµ ∩H⊥ν
→ E .
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Let d := dim H{0},1. For every S ∈ BE , write Sν := S|Hν . Then (Sν − ν(S))d = 0. Taking transpose with
respect to 〈 · , · 〉ν yields (S∗ν − ν(S))

d
= 0 in EndE(Hµ/(Hµ ∩H

⊥
ν )), for each µ.

On the other hand, the transpose S∗ ∈ BE with respect to 〈 · , · 〉 satisfies (S∗−µ(S∗))d = 0 on Hµ,
and S∗|Hµ induces S∗,µ ∈ EndE(Hµ/(Hµ ∩H

⊥
ν )) satisfying (S∗,µ−µ(S∗))d = 0. Clearly S∗,µ = S∗ν . All

in all, we deduce that µ∗(S) := µ(S∗)= ν(S) whenever Hµ 6= H⊥ν ∩Hµ.
It follows from the claim that if 〈 · , · 〉σ,σ ′ is not identically zero, then the corresponding ν, ν ′ : B→Q`

satisfy ν∗ = ν ′. Now Proposition 5.3.4 implies Lθ ◦ σ = σ ′. �
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