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On the Brauer–Siegel ratio
for abelian varieties over function fields

Douglas Ulmer

Hindry has proposed an analog of the classical Brauer–Siegel theorem for abelian varieties over global
fields. Roughly speaking, it says that the product of the regulator of the Mordell–Weil group and the
order of the Tate–Shafarevich group should have size comparable to the exponential differential height.
Hindry–Pacheco and Griffon have proved this for certain families of elliptic curves over function fields
using analytic techniques. Our goal in this work is to prove similar results by more algebraic arguments,
namely by a direct approach to the Tate–Shafarevich group and the regulator. We recover the results of
Hindry–Pacheco and Griffon and extend them to new families, including families of higher-dimensional
abelian varieties.

1. Introduction

The classical Brauer–Siegel theorem [Brauer 1950] says that if K runs through a sequence of Galois
extensions of Q with discriminants d = dK satisfying [K :Q]/ log d→ 0, then

log(Rh)

log
√

d
→ 1

where R = RK and h = hK are the regulator and class number of K . The proof uses the class number
formula

Ress=1 ζK (s)=
2r1(2π)r2 Rh

w
√

d

and analytic methods.
Hindry [2007] conjectured an analog of the Brauer–Siegel theorem for abelian varieties. If A is an

abelian variety over a global field K with regulator R, Tate–Shafarevich group X (assumed to be finite),
and exponential differential height H (definitions below), Hindry proposed that the Brauer–Siegel ratio

BS(A) :=
log(R|X|)

log(H)

should tend to 1 for any sequence of abelian varieties over a fixed K with H →∞.
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Hindry and Pacheco [2016] considered the case where K is a global function field of characteristic
p > 0. Assuming the finiteness of X, they proved (Corollary 1.13) that

0≤ lim inf
A

BS(A)≤ lim sup
A

BS(A)= 1, (1.1)

where the limits are over the family of all nonconstant abelian varieties of a fixed dimension over K ordered
by height. Note that this leaves open the possibility of a sequence of abelian varieties with Brauer–Siegel
ratio tending to a limit < 1, a possibility not envisioned in Hindry’s earlier paper. Hindry and Pacheco also
conjectured and gave evidence for the claim that the lower bound 0≤ lim infA BS(A) should be an equality
when A runs through the family of quadratic twists of a fixed elliptic curve. Moreover, they gave an example
(Theorem 1.4) of a family of elliptic curves E with H→∞ and proved limE BS(E)= 1 without having
to assume any unproven conjectures. In his Paris VII thesis, Griffon [2016] gave several other examples
of families of elliptic curves where limE BS(E)= 1 again without assuming unproven conjectures.

As with the original Brauer–Siegel theorem, the analyses of Hindry–Pacheco and Griffon use analytic
techniques. More precisely, finiteness of the Tate–Shafarevich group implies the conjecture of Birch and
Swinnerton-Dyer (in its strong form), and so a class number formula of the shape

L∗(A)= α
|X|R

H

where L∗(A) is the leading Taylor coefficient of the L-function at s = 1 and α is a relatively innocuous,
nonzero factor. (We will give the precise statement below.) Hindry–Pacheco and Griffon then prove their
results by estimating (and in some cases calculating quite explicitly) L∗(A).

Our goal in this work is to prove several results about Brauer–Siegel ratios by more algebraic arguments,
in other words through a direct approach to the Tate–Shafarevich group and the regulator. More precisely,
we prove the following results without recourse to L-functions:

(1) a transparent and conceptual proof that lim infA BS(A)≥ 0 via a lower bound on the regulator;

(2) a new connection between the growth of |X| as the finite ground field is extended and the number
R|X| over the given field;

(3) a general calculation of the limiting Brauer–Siegel ratio for the sequence E (p
n) of Frobenius pull-

backs of an elliptic curve E ;

(4) a new proof that limd BS(Ed)= 1 in the families of elliptic curves studied by Hindry–Pacheco and
Griffon;

(5) proofs that limd BS(Jd)= 1 for families of Jacobians of all dimensions;

(6) and results on quadratic twists that illustrate the limitations of our p-adic techniques.

“Without recourse to L-functions” means by algebraic methods. We do use the BSD formula, but this
is just a bookkeeping device for the connections between cohomology and other invariants. We do not
use the Euler product or any properties of L(A, s) as a function of s. That said, we have not eliminated
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analysis entirely: points (4–6) above all require an equidistribution result for the action of multiplication
by p on Z/dZ.

The plan of the paper is as follows: In Section 2, we set up notation, review and extend certain auxiliary
results of Hindry–Pacheco on component groups, and prove a lemma useful for estimating heights. In
Section 3, we prove a general integrality result on regulators of abelian varieties which leads immediately
to a lower bound on the Brauer–Siegel ratio. In Section 4, we introduce “dimX(A)”, a new and extremely
useful technical device which is closely related to slopes of L-functions and which is computable in many
interesting situations. As a first application, in Section 5 we compute the limiting Brauer–Siegel ratio for
the sequence of Frobenius pull-backs of an elliptic curve. Sections 6–9 develop p-adic cohomological
machinery that allows one to compute dimX(A) and estimate BS(A) for Jacobians of curves with Néron
models related to products of Fermat curves. In the rest of the paper, we use this machinery to recover
the results of Hindry–Pacheco and Griffon and to extend them to higher genus Jacobians. Section 10
discusses curves defined by equations involving 4 monomials. Section 11 discusses curves coming from
Berger’s construction [2008]. Finally, in Section 12 we consider twists of constant elliptic curves.

It is a pleasure to thank Richard Griffon for several helpful comments and an anonymous referee for
his or her careful reading of the paper and valuable suggestions.

2. Preliminaries

2.1. Notation and definitions. We set notation and recall definitions which will be used throughout the
paper.

Fix a prime number p, a power q of p, and a smooth, projective, absolutely irreducible curve C of
genus gC over k = Fq , the field of q elements. Let K be the function field Fq(C). We write v for a place
of K , dv for the degree of v, Kv for the completion of K at v, Ov for the ring if integers in Kv, and kv
for the residue field, a finite extension of k of degree dv

Let A be an abelian variety over K with dual Â. A theorem of Lang and Néron guarantees that the
Mordell–Weil groups A(K ) and Â(K ) are finitely generated abelian groups. (See [Lang and Néron 1959],
or [Conrad 2006] for a more modern account.)

There is a bilinear pairing

〈 · , · 〉 : A(K )× Â(K )→Q

which is nondegenerate modulo torsion. (This is the canonical Néron–Tate height divided by log q.
See [Néron 1965] for the definition and [Hindry and Silverman 2000, B.5] for a friendly introduction.)
Choosing a basis P1, . . . , Pr for A(K ) modulo torsion and a basis P̂1, . . . , P̂r for Â(K ) modulo torsion,
we define the regulator of A as

Reg(A) := |det〈Pi , P̂j 〉1≤i, j≤r |.

The regulator is a positive rational number, well-defined independently of the choice of bases.



1072 Douglas Ulmer

We write H 1(K , A) for the étale cohomology of K with coefficients in A and similarly for H 1(Kv, A).
The Tate–Shafarevich group of A is defined as

X(A) := ker
(

H 1(K , A)→
∏
v

H 1(Kv, A)
)
,

where the product of over the places of K and the map is the product of the restriction maps. This group
is conjectured to be finite, and we assume this conjecture throughout the paper. However, in all of the
explicit calculations below, we can in fact prove that X(A) is finite without additional assumptions.

Let A→ C be the Néron model of A/K . This is a smooth group scheme over C with a certain universal
property whose generic fiber is A/K . See [Bosch et al. 1990] for a modern account. Let s : C→A be
the zero-section. We define an invertible sheaf ω on C by

ω := s∗(�dim(A)
A/C )=

∧dim(A)s∗(�1
A/C).

The exponential differential height of A (which we often refer to simply as the height) is

H(A) := qdegω.

If A is an elliptic curve and C = P1, then degω has simple interpretation in terms of the degrees of the
coefficients in a Weierstrass equation defining A. See [Ulmer 2011, Lecture 3] for details.

For each place v of K , we write cv for the number of connected components of the special fiber of A
at v which are defined over the residue field. We define the Tamagawa number of A as

τ(A) :=
∏
v

cv.

(This usage is in conflict with our earlier papers, in particular [Ulmer 2014a], where the Tamagawa
number is defined to be

τ(A)
H(A)qdim(A)(gC−1) .

The earlier usage is historically more appropriate, as the definition there is a volume defined in close
analogy with Tamagawa’s work on linear algebraic groups, see [Weil 1982], but the terminology we adopt
here is more convenient for our current purposes.)

Next we consider the Hasse–Weil L-function of A over K , denoted L(A, s). It is a function of a
complex variable s defined as an Euler product over the places of K which is convergent in the half-plane
<s > 3

2 and which is known to have a meromorphic continuation to the whole s-plane. More precisely,
L(A, s) is a rational function in q−s , and if the K/k-trace of A is trivial, then L(A, s) is in fact a
polynomial in q−s of the form ∏

i

(1−αi q−s),

where the inverse root αi are Weil integers of size q .
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We define the leading coefficient of the L-function as

L∗(A) :=
1

(log q)r
1
r !

(
d
ds

)r

L(A, s)
∣∣∣∣
s=1

where r is the order of vanishing r := ords=1 L(A, s). (With the factor 1/(log q)r , this is the leading
coefficient of L as a rational function in T = q−s , and with this normalization, it has the virtue of being a
rational number.)

All of the invariants mentioned above are connected by the conjecture of Birch and Swinnerton-Dyer
(“BSD conjecture”), which we take to be the conjunction of the following three statements:

(1) ords=1 L(A, s)= Rank A(K ).

(2) X(A) is finite (with order denoted |X(A)|).

(3) We have an equality

L∗(A)=
Reg(A)|X(A)|

H(A)
τ (A)

qdim(A)(gC−1)|A(K )tor | · | Â(K )tor |
.

It is known that parts (1) and (2) are equivalent, and when they hold, part (3) holds as well. (See [Kato
and Trihan 2003] for the end of a long line of reasoning leading to these results.)

From the point of view of the Brauer–Siegel ratio, the main terms of interest in the third part of the BSD
conjecture are Reg(A), |X(A)|, and H(A), whereas the other factors are either constant (qdim(A)(gC−1))
or turn out to be negligible (τ(A) and |A(K )tor × Â(K )tor |). We will discuss the Tamagawa number and
the results of Hindry and Pacheco on it in the next section, whereas the torsion subgroups A(K )tor and
Â(K )tor will play almost no role in our analysis.

2.2. Bounds on Tamagawa numbers (1). Hindry and Pacheco [2016, Proposition 6.8] bound the Tama-
gawa number in terms of the height under certain tameness assumptions. More precisely, they showed
that for a fixed global field K , as A varies over all abelian varieties of fixed dimension d over K , we have

τ(A)= O(H ε)

for all ε > 0, provided that p > 2 dim(A)+ 1 or A has everywhere semistable reduction.
In this section and Sections 2.5 and 2.6, we outline three improvements of this result, all motivated by

applications later in the paper.

Lemma 2.2.1. Let E run through the set of all elliptic curves over a global function field K . Then

τ(E)= O(H(E)ε)

for every ε > 0.

The point is that we allow arbitrary characteristic and make no semistability hypothesis. This result
was also proven by Griffon [2016, Theorem 1.5.4], but we include a proof here for the convenience of the
reader.
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Proof. This follows easily from Ogg’s formula [1967] (see also [Saito 1988] for a more general result
proven with modern methods). Indeed, if1v is a minimal discriminant for E at the place v, Ogg’s formula
says that

ordv(1v)= cv + fv − 1

where fv is the exponent of the conductor of E at v. Summing over places where E has bad reduction
(i.e., where ordv(1v)≥ 1) and using that fv − 1≥ 0 at these places, we have∑

v

cvdv ≤
∑
v

ordv(1v)dv ≤ 12 deg(ω)

where dv is the degree of v and where the last inequality holds because 1 can be interpreted as a section
of ω⊗12. This recovers the main bound (Theorem 6.5 of [Hindry and Pacheco 2016]), and the rest of the
argument — converting this additive bound to a multiplicative bound — proceeds exactly as in [Hindry
and Pacheco 2016, Proposition 6.8]. �

2.3. Families from towers of fields. Let A be an abelian variety over a function field K . For each positive
integer d (or positive integer d prime to p), let Kd be a geometric extension of K , and let Ad = A×K Kd .
This gives a sequence of abelian varieties and one may ask about the behavior of BS(Ad) as d→∞.

For most of the paper, we will be concerned with the special case where there are isomorphisms
Kd ∼= K for all d. In this case, we may view the sequence Ad as a sequence of abelian varieties over a
fixed function field. This is the context of the results and conjectures of Hinry and Pacheco, and we will
give four examples in the rest of this section. Nevertheless, the general case is also interesting, and we
will give develop foundational results in a more general context in Section 2.4.

2.3.1. Kummer families. Let K = Fq(t), and for each positive integer d prime to p, let Kd = Fq(u) where
ud
= t . Note that the extension Kd/K is unramified away from the places t = 0 and t =∞ of K . Let A

be an abelian variety over K , and let Ad be the abelian variety over K obtained by base change to Kd ,
followed by the isomorphism of fields Fq(u)∼= Fq(t), u 7→ t . (In more vivid terms, Ad is the result of
substituting td for each appearance of t in the equations defining A.) We say that the sequence of abelian
varieties Ad is the family associated to A and the Kummer tower. Such families have been a prime source
of examples for the Brauer–Siegel ratio.

2.3.2. Artin–Schreier families. We may proceed analogously with the tower of Artin–Schreier extensions.
Again, let K = Fq(t), and for each positive integer d, let Kd = Fq(u) where u pd

− u = t . Note that the
extension Kd/K is unramified away from the place t =∞ of K . Let A be an abelian variety over K ,
and let Ad be the abelian variety over K obtained by base change to Kd followed by the isomorphism
of fields Fq(u) ∼= Fq(t), u 7→ t . (In more vivid terms, Ad is the result of substituting t pd

− t for each
appearance of t in the equations defining A.) We say that the sequence of abelian varieties Ad is the
family associated to A and the Artin–Schreier tower.
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2.3.3. Division tower families. One may also consider an elliptic curve variant: Let K be the function
field Fq(E) where E is an elliptic curve over Fq . For each positive integer d prime to p, consider the
field extension Kd/K associated to the multiplication map d : E→ E . Thus [Kd : K ] = d2, but Kd is
canonically isomorphic as a field (even as an Fq-algebra) to K . Given an abelian variety A over K , let
Ad be the abelian variety over K obtained by base-changing A to Kd and then using the isomorphism
of fields Kd ∼= K . We say that the sequence Ad of abelian varieties over K is the family associated to a
division tower. Everything we say about Kummer and Artin–Schreier towers has an obvious analog for
division towers. In most cases the latter is simpler because in the division case, Kd/K is unramified.

2.3.4. PGL2 families. Let K = Fq(t) and for each positive integer d let Kd = Fq(u) where Fq(u)/Fq(t)
is the field extension associated to the quotient morphism

P1
→ P1/PGL2(Fpd )∼= P1.

We normalize the isomorphism so that the Fpd -rational points on the upper P1 map to 0 and P1(Fp2d ) \

P1(Fpd ) maps to 1. Then the extension Kd/K is unramified away from the places t = 0 and t = 1 of K ,
and it is tamely ramified over t = 1. Given an abelian variety A over K , let Ad be the abelian variety over
K obtained by base-changing A to Kd and then using the isomorphism of fields Fq(u)∼= Fq(t), u 7→ t .
We say that the sequence Ad of abelian varieties over K is the family associated to the PGL2 tower.

The discussion above gives four different meanings to the notations Kd and Ad! Which meaning is
intended in each use below should be clear from the context.

We end this section with a simple lemma that plays a key role in our analysis of Tamagawa numbers in
families associated to towers.

Lemma 2.3.5. Let K = Fq(C) be a function field, and let Kd be a sequence of geometric extensions of K
such that the genus of (the curve associated to) Kd is ≤ 1 for all d. Then for every place v of K , there is a
constant Cv depending only on q and deg v such that for all d , the number of places of Kd dividing v is at
most Cv[Kd : K ]/ log[Kd : K ].

Proof. Write D = [Kd : K ] and set x = log D/ log q. Fix a place v of K . Then the number of places w
of Kd dividing v and of absolute degree ≥ x is at most

D
x/ deg v

= deg v log q
D

log D
.

On the other hand, by the Weil bound, the total number of places of Kd of degree ≤ x is bounded by
Cqx/x = C ′D/ log D where C and C ′ depend only on q, deg v and the genus of Kd . Since the latter is
either 0 or 1, the constant can be taken to depend only on q and deg v. This shows that the total number
of places of Kd dividing v is ≤ CvD/ log D where Cv depends only on q and deg v. �

2.4. Towers of geometrically Galois extensions. In this section, we discuss a more general class of
towers of fields Kd where we are able to bound Tamagawa numbers of the associated sequences of abelian
varieties. This additional generality was suggested by the anonymous referee, to whom we are grateful.
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Readers who are mainly interested in the applications to the Kummer tower later in the paper are invited
to skip ahead to Section 2.5

2.4.1. Geometrically Galois extensions. Let k be a field and let K = k(C) be the function field of a
smooth, projective, geometrically irreducible curve over k. We say that a finite, geometric extension
Kd/K is geometrically Galois if the Galois closure Ld of Kd over K has the form Ld = kd Kd where
kd is a finite Galois extension of k. Equivalently, there is a finite Galois extension kd of k such that
kd Kd is Galois over kd K . (We take kd to be minimal such extension.) Let Gd = Gal(Ld/kd K ) and
0d =Gal(kd/k)∼=Gal(kd K/K )∼=Gal(Ld/Kd), so that 0d acts on Gd by conjugation and Gal(Ld/K ) is
the semidirect product Gdo0d . We call Gd , with its action of 0d , the geometric Galois group of Kd/K
and we call kd the splitting field of Gd . (We remark that there is a finite étale group scheme Gd over k
attached to Gd with its 0d action, and Gd becomes a constant group over kd , see [Milne 1980, §II.1].)

2.4.2. Towers of geometrically Galois extensions. We now consider a tower of geometrically Galois
extensions Kd/K indexed by positive integers d (or positive integers relatively prime to p) with contain-
ments Kd ⊂ Kd ′ whenever d divides d ′. These containments induce surjections Gd ′→ Gd and 0d ′→ 0d

which are compatible in the obvious sense with the actions of 0d and 0d ′ on Gd and Gd ′ respectively.
Each of the families of towers in Section 2.3 gives an example of a tower of geometrically Galois

extensions.
In the case of the Kummer tower, the geometric Galois group is Gd = µd(Fq), the splitting field kd is

Fq(µd), and 0d = Gal(Fq(µd)/Fq) is the subgroup of (Z/dZ)× generated by q.
In the Artin–Schreier tower, the geometric Galois group is Gd = Fpd , the splitting field kd is the

compositum FqFpd , and 0d = Gal(FqFpd/Fq) is the cyclic group generated by the q-power Frobenius.
In the division tower corresponding to an elliptic curve E over Fq , the geometric Galois group is E[d],

the splitting field kd is Fq(E[d]), and 0d = Gal(kd/Fq) is the cyclic group generated by the action of the
q-power Frobenius on the d torsion points.

In the PGL2 tower, the geometric Galois group is Gd = PGL2(Fpd ), the splitting field kd is FqFpd , and
0d = Gal(FqFpd/Fq) is the cyclic group generated by the q-power Frobenius.

For a more general class of examples, let Kd/K be any of the towers above, and fix an extension F/K
which is linearly disjoint from each Kd over K . Then the fields Fd := F Kd form a tower of geometrically
Galois extensions with the geometric Galois group of Fd/F isomorphic to that of Kd/K . Note however,
that in general the genus of Fd tends to infinity with d .

We next consider two group-theoretic results related to these towers, both concerning the number of
orbits of 0d acting on Gd . (As motivation, we note that the orbits of 0d on Gd are in bijection with the
closed points of the scheme Gd .)

To state the first result, we make a somewhat elaborate hypothesis on the system of groups Gd with
their 0d actions.

Hypothesis 2.4.3. (1) There exists a function φ of positive integers such that |Gd | =
∑

e | d φ(e) for all d .

(2) There a decomposition Gd = ∪e | d G ′d,e such that |G ′d,e| = φ(e).
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(3) The action of 0d on Gd respects the decomposition above, and the orbits of 0d on G ′d,e have
cardinality ≥ C log|Ge| for some constant C independent of d and e.

This hypothesis clearly implies that the splitting field kd has degree [kd : k] = |0d | ≥ C log|Gd |. It
would be interesting to know whether the converse holds.

Lemma 2.4.4. Hypothesis 2.4.3 is satisfied by the Kummer, Artin–Schreier, division, and PGL2 towers.

Proof. In the Kummer case, Gd consists of the d-th roots of unity in Fq , and we let G ′d,e be those of order
exactly e. Then |G ′d,e| is independent of d, and we set φ(e)= |G ′d,e|. The orbit of 0 through ζ ∈ G ′d,e
has size f where f is the smallest positive integer such that ζ q f

= ζ . Since ζ has order exactly e, this is
the smallest f such that q f

≡ 1 (mod e). Clearly this f satisfies f ≥ log e/ log q and this establishes
Hypothesis 2.4.3.

In the Artin–Schreier case, Gd is the additive group of Fpd , and we let G ′d,e consists of those elements
of Fpe ⊂ Fpd which do not lie in any smaller extension of Fp, i.e., α ∈G ′d,e if and only if Fp(α)= Fpe . We
set φ(e)= |G ′d,e| (which is independent of d). Since α p f

6= α for 0< f < e, it follows immediately that
the orbit of the q-power Frobenius through α ∈G ′d,e has size at least e/(log q/ log p), and this establishes
Hypothesis 2.4.3.

In the division case, Gd consists of the Fq -points of E of order dividing d . We let G ′d,e be the subset of
points of order exactly e, and φ(e)=|G ′d,e| (which is independent of d). If P ∈G ′d,e and Fr f

q (P)= P , then
P ∈ E(Fq f ), and this implies that |E(Fq f )| ≥ e. But the Weil bound implies that |E(Fq f )| ≤ (q f/2

+ 1)2

which in turn implies that f ≥ C log e for some constant C independent of e.
In the PGL2 case, Gd is PGL2(Fpd ). For g∈Gd , let Fp(g) be defined as follows: choose a representative

of g in GL2(Fpd ) one of whose entries is 1, and let Fp(g) be the extension of Fp generated by the other
entries. It is easy to see that Fp(g) is well defined independent of the choice of representative and that
Fr f

p (g)= g if and only if Fr f
p fixes Fp(g). We let G ′d,e consists of those elements g ∈Gd with Fp(g)= Fpe .

We set φ(e)= |G ′d,e| (which is independent of d). Since Fr f
p (g) 6= g for 0< f < e, it follows immediately

that the orbit of the q-power Frobenius through g ∈ G ′d,e has size at least e/(log q/ log p), and this
establishes Hypothesis 2.4.3. �

Remark 2.4.5. A “dual” perspective makes Hypothesis 2.4.3 more transparent in the cases considered in
Lemma 2.4.4. Namely, let F = Fq(C) be the function field of a curve of genus 0 or 1 over Fq . (These are
the cases where AutFq

(C) is infinite.) For each d , let Gd be a subgroup of AutFq
(C) which is stable under

the q-power Frobenius, and let 0d be the group of automorphisms of Gd generated by Frobenius. The
quotient (C× Fq)/Gd has a canonical model over Fq ; let Fd be its function field. With this notation, the
extension F/Fd is geometrically Galois with group (Gd , 0d). Suppose further that if e | d then Ge ⊂ Gd ,
so that Fd ⊂ Fe. Then it is natural to define G ′d as the set of elements in Gd which are not in Ge for any
divisor of d with e < d. Clearly G ′e depends only on e, and the decomposition Gd = ∪e | d G ′e is evident.
All of the examples of Lemma 2.4.4 can be recast in this form.

The following lemma is modeled on [Griffon 2016, Lemme 3.1.1].
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Lemma 2.4.6. Let Kd/K be a tower of geometrically Galois extensions such that for all d , |Gd | ≥ d and
such that Hypothesis 2.4.3 holds. Then there is a constant C1 such that the number of orbits of 0d on Gd

satisfies

|Gd/0d | ≤ C1
|Gd |

log|Gd |

for all d > 1.

Proof. Let ψ(d) = |Gd |, so that ψ(d) =
∑

e | d φ(e). Extend ψ to a function of real numbers which is
continuous, increasing, and satisfies ψ(x)≥ x for all x . By Hypothesis 2.4.3, for all d > 1 the number of
orbits of 0d on G ′d,e satisfies

|G ′d,e/0d | ≤ C−1 φ(e)
logψ(e)

.

Let x > 1 be a parameter to be chosen later. We have

|0d | ≤ C2
∑

1<e | d

φ(e)
logψ(e)

(C2 to compensate for omitting e = 1)

= C2
∑

1<e | d
e≤x

φ(e)
logψ(e)

+C2
∑

1<e | d
e>x

φ(e)
logψ(e)

≤ C2
∑

1<e | d
e≤x

φ(e)
logψ(e)

+C2
ψ(d)

logψ(x)

(∑
φ(e)= ψ(d) and ψ increasing

)

≤ C2
∑

1<e | d
e≤x

ψ(e)
logψ(e)

+C2
ψ(d)

logψ(x)
(φ(e)≤ ψ(e))

≤ C3
ψ(x)

logψ(x)

∑
1<e | d

e≤x

1+C2
ψ(d)

logψ(x)
(x 7→ ψ(x) 7→ ψ(x)/ logψ(x), increasing for x > 2.72)

≤ C3
xψ(x)

logψ(x)
+C2

ψ(d)
logψ(x)

≤ C3
ψ(x)2

logψ(x)
+C2

ψ(d)
logψ(x)

(ψ(x)≥ x)

Now since ψ is increasing and continuous, we may choose x so that ψ(x)2 = ψ(d), and for this choice
we have

|Gd/0d | ≤ (2C3+ 2C2)
ψ(d)

logψ(d)
.

Thus setting C1 = 2C3+ 2C2 completes the proof. �

We now consider the set of orbits of 0 on a homogeneous space for G.

Lemma 2.4.7. Let G be a finite group and let T be a principal homogeneous space for G. Let 0 be a
group acting on G (by group automorphisms) and on T (by permutations), and suppose that the actions
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of 0 on G and T are compatible with the action of G on T (i.e., for all γ ∈ 0, g ∈ G, and t ∈ T ,
γ (gt)= γ (g)γ (t). Then

|T/0| ≤ |G/0|.

Proof. We use the orbit counting lemma:

|G/0| =
1
|0|

∑
γ∈0

|Gγ
|

where Gγ denotes the set of fixed points of γ acting on G. Similarly,

|T/0| =
1
|0|

∑
γ∈0

|T γ
|

where T γ denotes the set of fixed points of γ acting on G. We claim that if T γ is not empty, then it
is a principal homogeneous space for Gγ . Indeed, it is clear that if g ∈ Gγ and t ∈ T γ , then gt ∈ T γ .
Conversely, if t, t ′ ∈ T γ and g ∈ G is the unique element such that gt = t ′, then

γ (g)t = γ (g)γ (t)= γ (gt)= γ (t ′)= t ′ = gt,

and so γ (g)= g. Therefore, for each γ ∈ 0, |T γ
| ≤ |Gγ

|. We conclude that

|T/0| =
1
|0|

∑
γ∈0

|T γ
| ≤

1
|0|

∑
γ∈0

|Gγ
| = |G/0|,

and this completes the proof of the lemma. �

Remark 2.4.8. In fact, the conclusion of the lemma holds when we assume only that G acts transitively
on T . To see this, it suffices to check that for all γ ∈ 0, |T γ

| ≤ |Gγ
|. If T γ is empty, there is nothing to

prove. If not, choose t0 ∈ T γ , let G0 be the stabilizer of t0 in G, and set

F(γ )= {g ∈ G | γ (gt0)= gt0} = {g ∈ G | g−1γ (g) ∈ G0}.

Then G0 acts freely on F(γ ) by right multiplication, and the quotient is T γ . Thus |F(γ )| = |G0| · |T γ
|.

On the other hand, Gγ acts freely on F(γ ) by left multiplication, and the quotient maps injectively to G0

by g 7→ g−1γ (g). Thus we find

|G0| · |T γ
| = |F(γ )| ≤ |Gγ

| · |G0|

and so |T γ
| ≤ |Gγ

|. It is also clear that GγG0 ⊂ F(γ ) so in all we have

|Gγ
|

|Gγ

0 |
≤ |T γ

| ≤ |Gγ
|.

Simple examples show that both bounds are sharp. Thanks to Alex Ryba for the proofs in this remark
and the preceding lemma.
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Corollary 2.4.9. Suppose that Kd is a tower of geometrically Galois extensions of K such that [Kd : K ] ≥
d and such that Hypothesis 2.4.3 holds. Let v be a place of K . Then there is a constant Cv depending
only on K and v such that for all d the number of place of Kd over v is at most Cv[Kd : K ]/ log[Kd : K ].

Proof. First assume that v is unramified in Kd . Let Td be the set of geometric points in the fiber over v (i.e.,
in the fiber of the map of curves corresponding to the extension Kd/K ) and let G = Gd be the geometric
Galois group of Kd over K . Let kv be the residue field at v and let 0d = Gal(kd/kv), a subgroup of the
Galois group of the splitting field of Gd . Then Td is a principal homogeneous space for Gd , and 0d

acts on Gd and Td compatibly with the action of Gd on Td . By Lemma 2.4.7, |Td/0d | ≤ |Gd/0d |. But
Td/0d is in bijection with the set of places of Kd over v, and by Lemma 2.4.6 (applied to the extensions
kvKd/kvK ), there is a constant Cv (depending on v because the tower in question depends on v) such that

|Gd/0d | ≤ Cv
[Kd : K ]

log[Kd : K ]
.

This completes the proof of the corollary when v is unramified in Kd . The general case follows from the
same argument using Remark 2.4.8 in place of Lemma 2.4.7. �

2.5. Bounds on Tamagawa numbers (2). We now turn to a second improvement on the Hindry–Pacheco
bound on Tamagawa numbers. We consider towers of fields satisfying the conclusions of Lemma 2.3.5
and Corollary 2.4.9, and we bound Tamagawa numbers using only a mild (local) semistability hypothesis
and no restriction on the characteristic of the ground field.

Recall the line bundle ωA associated to an abelian variety A defined in Section 2.1.

Proposition 2.5.1. Let K be a global function field of characteristic p, let Z be a finite set of places
of K , and let Kd be a tower of geometrically Galois extensions of K . Assume that [Kd : K ] ≥ d and
that for each place v of K there is a constant Cv such that the number of places of Kd dividing v is
≤ Cv[Kd : K ]/ log[Kd : K ] for all d. Suppose that each Kd/K is unramified outside Z. Let A be an
abelian variety over K which has semistable reduction at each place v ∈ Z and such that degωA > 0. Let
Ad = A×K Kd . Then

τ(Ad)= O(H(Ad)
ε)

for every ε > 0.

Proof. To lighten notation, let D = [Kd : K ]. Since A has semistable reduction at the possibly ramified
places Z , we have degωAd = D degωA ≥ D, so it will suffice to show that

τ(Ad)= O(q Dε)

for all ε > 0.
For each place v of K , let cv be the order of the group of connected components of the special fiber of

the Néron model of A at v. Let cv be the order of the group of connected components of the special fiber
of the Néron model of A at a place of Fq K over v. (The order is independent of the choice.) Since the
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former group is a subgroup of the latter, cv divides cv . If w is a place of Kd over v, let cw be the order of
the component group of the Néron model of A over Kd .

Consider a place v 6∈ Z . Since Kd/K is unramified at v, cw divides cv . By assumption, the number of
places w over v is bounded by CvD/ log D. Since there are only finitely many places of K where A has
bad reduction, we may set C1 =max{cCv

v | v of bad reduction} and conclude that∏
w | v 6∈Z

cw ≤
∏
v 6∈Z

cCvD/ log D
v ≤ C D/ log D

1 .

Now consider a place v ∈ Z , let w be a place of Kd over v, and let r be the ramification index of w
over v. Since Kd/K is geometrically Galois, r depends only on v. Since A is assumed to have semistable
reduction, [Halle and Nicaise 2010, Theorem 5.7] implies that

cw ≤ crdim(A).

Moreover, by assumption, the number of places of Kd over v is at most min{D/r,CvD/ log D} for some
constant Cv which is independent of D. If r ≤ (log D)/Cv, we have∏

w | v

cw ≤ (cvrdim(A))CvD/ log D
≤ C D/(log D/ log log D)

2

where C2 depends only on v and A. If r ≥ (log D)/Cv, we have∏
w | v

cw ≤ (cvrdim(A))D/r
≤ C D log r/r

3 ≤ C D/(log D/ log log D)
4

where again C3 and C4 depend only on v and A.
Taking the product over all place w of Kd and setting C5 =max{C2,C4}, we have∏

w

cw =
( ∏
w | v 6∈Z

cw

)( ∏
w | v∈Z

cw

)
≤ (C D/ log D

1 )(C D/(log D/ log log D)
5 )|Z |

and this is clearly O(q Dε) as d (and therefore D) tends to infinity. �

We now give the main application of the results in this section. Assume K = Fq(t) or K = Fq(E)
for an elliptic curve E , and consider a family of abelian varieties Ad over K associated to the Kummer,
Artin–Schreier, division, or PGL2 towers. Recall the line bundle ω = ωA defined in the Section 2.1.

Corollary 2.5.2. As d runs through positive integers prime to p (or all positive integers in the Artin–
Schreier case), we have

τ(Ad)= O(H(Ad)
ε)

for every ε > 0 in any of the following situations:

(1) A is an abelian variety over K = Fq(t), Ad is the family associated to the Kummer tower, deg(ω)> 0,
and A has semistable reduction at t = 0 and t =∞.
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(2) A is an abelian variety over K = Fq(t), Ad is the family associated to the Artin–Schreier tower,
deg(ω) > 0, and A has semistable reduction at t =∞.

(3) A is an abelian variety over K = Fq(E), Ad is the family associated to the division tower, and
deg(ω) > 0.

(4) A is an abelian variety over K = Fq(t), Ad is the family associated to the PGL2 tower, deg(ω) > 0,
and A has semistable reduction at t = 0 and t = 1.

Proof. This is an immediate consequence of Proposition 2.5.1 together with Lemma 2.3.5. �

2.6. Bounds on Tamagawa numbers (3). Our third improvement on the Hindry–Pacheco bound on
Tamagawa numbers is to note that we can get by with a weaker hypotheses in case (1) of Corollary 2.5.2.
Namely, we claim that the conclusion of the corollary holds if there exists an integer e relatively prime
to p such that A has semistable reduction at the places u = 0 and u =∞ of Fq(u) where ue

= t . (The
corollary is the case where e = 1.)

To check the claim, we first recall a result of Halle and Nicaise: Let A be an abelian variety over
Fp((t)). For d prime to p, let cd denote the order of the component group of the special fiber of the Néron
model of A over Fp((t1/d)). Then [Halle and Nicaise 2010, Theorem 6.5] states that if we assume that A
acquires semistable reduction over Fp((t1/e)) for some e prime to p, then the series∑

(p,d)=1

cd T d

is a rational function in T and 1/(T j
− 1) for j ≥ 1. This implies in particular that the cd have at worst

polynomial growth: cd = O(d N ) for some N .
Applying this result in the context of part (1) of the lemma for the places t = 0 and t =∞ of Fq(t),

we see that

τ(Ad)≤ Cd/ log d
1 dC6 = O(H(Ad)

ε)

for all ε > 0.

2.7. Estimating deg(ωJ ). When A = J is the Jacobian of a curve X over a function field, computing
deg(ωJ ) typically involves knowledge of a regular model of X (or a mildly singular model), information
which is sometimes difficult to obtain. The following lemma allows us to reduce to easy cases in two
examples later in the paper.

Lemma 2.7.1. Let K = k(C) be the function field of a curve over a perfect field k. Let X be a smooth,
projective curve of genus g over K . Let J be the Jacobian of X , let π : X → C be a regular minimal
model of X over K , and let J → C be the Néron model of J with zero-section z : C→ J . Let

ωJ :=
∧g
(z∗�1

J /C)

be the Hodge bundle of J .
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Let K ′ be a finite, separable, geometric extension of K , and let ρ : C′ → C be the corresponding
morphism of curves over k. Let R = (2gC′ − 2)− [K ′ : K ](2gC − 2).

Let X ′ = X ×K K ′ with Jacobian J ′, models X ′ and J ′, and Hodge bundle ωJ ′ . Then

[K ′ : K ] deg(ωJ )≤ deg(ωJ ′)+ gR.

The point of the lemma is that we do not lose much information in passing to a finite extension.

Proof of Lemma 2.7.1. Since X is regular and π has a section, we have that

ωJ ∼=
∧g
(π∗�

2
X/k ⊗ (�

1
C/k)

−1)∼=
(∧g

π∗�
2
X/k

)
⊗ (�1

C/k)
⊗
−g

and similarly for ωJ ′ . This argument, which uses results on Néron models and relative duality, is given in
the proof of [Berger et al. 2015, Prop. 7.4].

There is a dominant rational map X ′99KX covering ρ, so pull back of 2-forms induces a nonzero
morphism of sheaves

ρ∗
∧g
(π∗�

2
X/k)→

∧g
(π ′
∗
�2

X ′/k).

By Riemann–Hurwitz, we have

ρ∗(�1
C/K )
∼=�

1
C′/k ⊗OC′(D)

where D is a divisor on C′ of degree R.
Thus we get a nonzero morphism of sheaves

ρ∗(ωJ )→ ωJ ′ ⊗OC′(gD).

Taking degrees, we conclude that

[K ′ : K ] deg(ωJ )≤ deg(ωJ ′)+ gR

as desired. �

3. Integrality of the regulator and general lower bounds

In this section, we give a lower bound on the regulator Reg(A) in terms of Tamagawa numbers. Combined
with the bounds on τ(A) given in the preceding section, this yields a lower bound on the Brauer–Siegel
ratio. A more general version of the same lower bound was proven in [Hindry and Pacheco 2016,
Proposition 7.6], but our proof is arguably simpler and more uniform, and avoids a forward reference in
[Hindry and Pacheco 2016].

3.1. Integrality of regulators. We continue with the standard notations introduced in Section 2. In
particular, A is an abelian variety over the function field K = k(C) with Néron model A and dual abelian
variety Â. We consider the height pairing A(K )× Â(K )→Q (which we recall is the canonical Néron–Tate
height divided by log q and which takes values in Q) and its determinant Reg(A).
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Our main goal in this section is to bound the denominator of the regulator in terms of the orders cv of
the component groups of A at places v of K . Recall that τ(A)=

∏
v cv.

Proposition 3.1.1. The rational number
τ(A)Reg(A)

is an integer.

Proof. We refer to [Hindry and Silverman 2000] for general background on heights. Given an invertible
sheaf L on A and a point x ∈ A(K ), the general theory of heights on abelian varieties defines a rational
number hL(x). The canonical height pairing we are discussing is defined using this machine and the
identification of Â with Pic0(A), the group of invertible sheaves algebraically equivalent to zero. In other
words, given x ∈ A(K ) and y ∈ Â(K ), we take L to be the invertible sheaf associated to y and define

〈x, y〉 = hL(x).

Néron’s theory [1965] decomposes the height hL(x) into a sum of local terms indexed by the places of
K . In [Moret-Bailly 1985, III.1], Moret-Bailly proves that the contribution at a place v has denominator
at most 2cv, and at most cv if cv is odd. Moreover, he gives an example which shows that this is in
general best possible. The upper bound on the denominator comes from a property of “pointed maps of
degree 2,” [Moret-Bailly 1985, I.5.6], namely that a pointed map of degree 2 from a group of exponent n
has exponent at worst 2n, or n if n is odd. (These terms will be defined just below.)

In our situation there is slightly more structure: Since L is algebraically equivalent to zero, it is
antisymmetric, i.e., if [−1] is the inverse map on A, the [−1]∗L∼=L−1. The functoriality in [Moret-Bailly
1985, III.1.1] then shows that the corresponding pointed map of degree 2 is also antisymmetric. In the
next lemma, we define antisymmetric pointed maps of degree 2, and we prove that such a map from a
group of exponent c has exponent dividing c.

Thus we see that 〈x, y〉 is a sum of local terms, and the term at a place v has denominator at worst cv .
It follows from the bilinearity of the local terms 〈, 〉v that if x passes through the identity component at v,
then 〈x, y〉v is an integer. We define a “reduced Mordell–Weil group”

A(K )red
:= {x ∈ A(K ) | x meets the identity component of A at every v},

and note that if x ∈ A(K )red, then 〈x, y〉 is an integer for every y ∈ Â(K ). Since the index of A(K )red in
A(K ) divides τ(A)=

∏
v cv, we see that

Reg(A) ∈ τ−1Z

as desired. The proposition thus follows from the next lemma. �

Lemma 3.1.2. Let A and G be abelian groups and let f : A→ G be a function such that:

(1) f is a “pointed map of degree 2,” namely,

f (x1+ x2+ x3)− f (x1+ x2)− f (x1+ x3)− f (x2+ x3)+ f (x1)+ f (x2)+ f (x3)= 0
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for all x1, x2, x3 ∈ A.

(2) f is “antisymmetric,” i.e., f (−x)=− f (x) for all x ∈ A.

Then for all integers n and all x ∈ A, f (nx)= n f (x). In particular, if A has exponent c, then c f = 0, i.e.,
c f (x)= 0 for all x ∈ A.

Proof. This follows from a simple inductive argument. Clearly it suffices to treat the case n ≥ 0. Taking
x1 = x2 = x3 = 0 in the pointed map property shows that f (0) = 0. Taking x1 = x2 = x and x3 = −x
then shows that f (2x)= 2 f (x). Finally, for n ≥ 2, taking x1 = (n− 1)x , x2 = x3 = x , we have

f ((n+ 1)x)= f ((n− 1)x + x + x)

= f (nx)+ f (nx)+ f (2x)− f ((n− 1)x)− f (x)− f (x)

= (n+ n+ 2− (n− 1)− 1− 1) f (x)

= (n+ 1)x,

where we use induction to pass from the second displayed line to the third. This yields the lemma. �

Without the antisymmetry hypothesis, we would have

f (nx)=
n(n+ 1)

2
f (x)+

n(n− 1)
2

f (−x),

by the same argument leading from the theorem of the cube [Hindry and Silverman 2000, A.7.2.1] to
Mumford’s formula [Hindry and Silverman 2000, A.7.2.5].

3.2. Further comments on integrality. Let X → C be a fibered surface with generic fiber X/K and
assume X has a K -rational point. Let A be the Jacobian JX . In [Berger et al. 2015, Proposition 7.2], we
proved that the rational number

|NS(X )tor |
2

|A(K )tor |
2 τ(A)Reg(A) (3.2.1)

is an integer. (By the factorization of birational maps into blow-ups and the blow-up formula, NS(X )tor

is a birational invariant, so the displayed quantity depends only on X and K .)
Note that this bound on the denominator of Reg(A) is in general stronger than that of Proposition 3.1.1.

For example, for the Jacobians studied in [Ulmer 2014b; Berger et al. 2015], (3.2.1) is stronger than
Proposition 3.1.1.

When X has genus 1, it is known that NS(X )tor is trivial, so (3.2.1) says that

τ(A)
|A(K )tor |

2 Reg(A) ∈ Z (3.2.2)

This bound (unlike (3.2.1)) makes sense for general abelian varieties, and it is reasonable to ask whether
it holds in general. In the rest of this subsection, we sketch a proof that (3.2.2) does not hold in general,
not even for Jacobians over Fq(t).
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Let Y be a classical Enriques surface over Fp. It is known that

NS(Y)tor ∼= Z/2Z, NS(Y)/tor ∼= Z10, and det(NS(Y))= 1;

see [Cossec and Dolgachev 1989].
Next, embed Y in some projective space and take a Lefschetz pencil, extending Fp to Fq if necessary.

Let X be the result of blowing up Y at the base points of the pencil. Thus we have π : X → P1 over Fq

whose fibers are irreducible and either smooth or with single a node. Moreover π has a section. Choose
such a section O and a fiber F . We have intersection pairings O2

=−1, F2
= 0, and F.O = 1. Also, the

Néron–Severi groups satisfy
NS(X )= NS(Y)⊕〈−1〉d

where the direct sum is orthogonal, 〈−1〉 stands for a copy of Z whose generator has self-intersection −1,
and d is the number of blow-ups. Thus det(NS(X ))= 1.

Let X/K = Fq(t) be the generic fiber of π . This is a smooth curve with a K -rational point. Let A= JX

be its Jacobian. We will see shortly that A is a counterexample to (3.2.2).
Since Pic0(X ) = Pic0(Y) = 0, we have TrK/Fq (A) = 0. The Shioda–Tate theorem gives an exact

sequence
0→ (ZO +ZF)→ NS(X )→ A(K )→ 0.

Moreover, the fact that π has irreducible fibers implies that there is a splitting A(K )→ NS(X ) which
sends the canonical height (divided by log q) to the intersection pairing on NS(X ). It follows from the
intersection formulas for O and F noted above that

Reg(A) := det(A(K )/tor)= det(N S(X )/tor)= 1.

Since π has irreducible fibers, τ(A)= 1. The Shioda–Tate exact sequence above shows that A(K )tor

has order at least 2 (in fact, exactly 2), so

τ(A)
|A(K )tor |

2 Reg(A)=
1
4
.

Thus (3.2.2). fails for A.

3.3. Lower bounds on Brauer–Siegel ratio from integrality. We now state the main consequence for
the Brauer–Siegel ratio of our Proposition 3.1.1.

Proposition 3.3.1. Let Ad be a family of abelian varieties over K with H(Ad) → ∞. Assume that
τ(Ad)= O(H(Ad)

ε) for all ε > 0. Then lim inf BS(Ad)≥ 0.

Proof. Noting that |X(Ad)| is a positive integer and is therefore ≥ 1, we have that

log(|X(Ad)|Reg(Ad))≥ log(Reg(Ad)).

Proposition 3.1.1 implies that
log(Reg(Ad))≥− log(τ (Ad)).
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It follows from the hypothesis τ(Ad)= O(H(Ad)
ε) that

BS(Ad)=
log(|X(Ad)|Reg(Ad))

log(H(Ad))
≥
− log(τ (Ad))

log(H(Ad))

has lim inf≥ 0 as d→∞. �

Corollary 3.3.2. If Ad is a family of abelian varieties over K such that H(Ad)→∞, then in any of the
following situations lim inf BS(Ad)≥ 0:

(1) dim(Ad)= 1 for all d.

(2) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the Kummer tower, and
A has semistable reduction at t = 0 and t =∞.

(3) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the Artin–Schreier
tower, and A has semistable reduction at t =∞.

(4) A is an abelian variety over K = Fq(E), and Ad is the family associated to A and the division tower.

(5) A is an abelian variety over K = Fq(t), Ad is the family associated to A and the PGL2 tower, and A
has semistable reduction at t = 0 and t = 1.

Proof. This is immediate from Lemma 2.2.1, Corollary 2.5.2, and Proposition 3.3.1. �

4. Lower bounds via the dimension of the Tate–Shafarevich functor

In this section, we assume that the conjecture of Birch and Swinnerton-Dyer (more precisely, the finiteness
of X(A)) holds for all abelian varieties considered. Given an abelian variety A over K = Fq(C), we will
consider the functor from finite extensions of Fq to groups given by

Fqn 7→X(A×Fq (C) Fqn (C))

and we will show that the dimension of this functor (to be defined below) gives information on the
Brauer–Siegel ratio of A over K . This technical device will be extremely convenient as it allows us to
bound the Brauer–Siegel ratio without considering the regulator.

Proposition/Definition 4.1. For each positive integer n, let Kn := Fqn (C). Given an abelian variety A
over K = K1, write A/Kn for A×K Kn . Then the limit

lim
n→∞

log|X(A/Kn)[p∞]|
log(qn)

exists and is an integer. We call it the dimension of X(A), and denote it dimX(A).

The proof of the proposition will be given later in this section, after giving a formula for dimX(A) in
terms of the L-function of A. We give a justification of the terminology “dimension” in Remarks 4.3
below.
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In order to state a formula for dimX(A), we recall some well-known results on the L-function L(A, s).
Let A0 = TrK/k(A) be the K/k-trace of A, an abelian variety over k (where as usual k = Fq). (See
[Conrad 2006] for a modern account of the K/k-trace.) Then L(A, s) has the form

L(A, s)=
P(q−s)

Q(q−s)Q(q1−s)

where P and Q are polynomials with the following properties:

(1) P(T )=
∏

i (1−αi T ) where the αi are Weil numbers of size q .

(2) Q has degree 2 dim(A0) and Q(T )=
∏

j (1−β j T ) where the β j are the Weil numbers of size q1/2

associated to A0. (In other words, they are the eigenvalues of Frobenius on H 1(A0× Fq ,Q`) for
any ` 6= p.)

(3) Q(1)= |A0(Fq)| and Q(q−1)= q−d0 |A0(Fq)|.

(4) Replacing A with A/Kn has the effect of replacing the αi and β j with αn
i and βn

j .

Let F be the number field generated by the αi , and choose a prime of F over p with associated
valuation v normalized so that v(q)= 1. We define the slopes associated to A to be the rational numbers
λi = v(αi ). It is known that the set of slopes (with multiplicities) is independent of the choice of v, that
0≤ λi ≤ 2 for all i , and that the set of slopes is invariant under λi 7→ 2− λi .

We can now state a formula for the dimension of X(A).

Proposition 4.2. dimX(A)= deg(ω)+ dim(A)(gC − 1)+ dim(A0)−
∑
λi<1

(1− λi ).

The last sum is over indices i such that λi < 1.

Before giving the proof of Propositions 4.1 and 4.2, we record an elementary lemma on p-adic numbers.

Lemma 4.2.1. Let E be a finite extension of Qp, let m be the maximal ideal of E , and let ord : E×→ Z

be the valuation of E. If γ ∈ E× has ord(γ )= 0 and is not a root of unity, then

ord(1− γ n)= O(log n).

Proof. First we note that replacing γ with γ a , we may assume without loss of generality that γ is a 1-unit,
i.e., that ord(1− γ ) > 0. Next, if n = pem with p -m, then

1− γ n

1− γ pe = 1+ γ pe
+ · · ·+ γ pe(m−1)

≡ m 6≡ 0 (mod m),

so ord(1− γ n)= ord(1− γ pe
). Thus it suffices to treat the case where n = pe.

We write expp and logp for the p-adic exponential and logarithm respectively. (See, e.g., [Koblitz 1984,
IV.1] for basic facts on these functions.) For y sufficiently close to 1 (namely for |y− 1|< |p1/(p−1)

|),
we have y = expp(logp(y)). Also, it follows from the power series definition of expp, the ultrametric
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property of E , and the estimate vp(n!) ≤ n/(p− 1) that if x 6= 0 and ord(x) is sufficiently large (e.g.,
ord(x) > 2/(p− 1) suffices), then

ord(1− expp(x))= ord(x).

Now if e is sufficiently large, then γ pe
is close to 1, and x = logp(γ

pe
)= pe logp(γ ) has large valuation

and is not zero, so we may apply the estimate above to deduce that

ord(1− γ pe
)= ord(1− expp(logp(γ

pe
)))= ord(logp(γ

pe
))= ord(pe)+ ord(logp(γ )).

This last quantity is a linear function of e and thus a linear function of log(pe), and this proves our
claim. �

Proof of Propositions 4.1 and 4.2. We use the leading coefficient part of the BSD conjecture and consider
the p-adic valuations of the elements of the formula. For simplicity, we first consider the case where
A0 := TrK/k(A)= 0 and then discuss the modifications needed to handle the general case at the end.

As a first step, we establish that several factors in the BSD formula do not contribute to the limit in
Proposition/Definition 4.1. More precisely, as n varies, Reg(A/Kn), τ(A/Kn), and |A(Kn)tor |·| Â(Kn)tor |

are bounded. To see that Reg(A/Kn) is bounded, we note that it is sensitive to the ground field Fqn only
via the Mordell–Weil group A(Kn)/tor . In other words, if A(Kn)/tor = A(Km)/tor , then Reg(A/Kn)=

Reg(A/Km). This follows from the geometric nature of the definition of Reg (i.e, its definition in terms
of intersection numbers). From the Lang–Néron theorem on the finite generation of A(K Fq), it follows
that there are only finitely many possibilities for A(Kn)/tor , so only finitely many possibilities for
Reg(A/Kn). It also follows that |A(Kn)tor | and | Â(Kn)tor | are bounded. (Our use of the Lang–Néron
theorem here depends on the assumption that A0 = 0.) Similarly, since the orders of the component
groups of the fibers of the Néron model of A over Fq(C) are bounded, there are only finitely possibilities
for τ(A/Kn). Finally, we note that the geometric quantities deg(ω), dim(A), and gC do not vary with n.

Write L∗(A/Kn)p for the p-part of the rational number L∗(A/Kn). Then the BSD formula and the
remarks above imply that

lim
n→∞

log|X(A/Kn)[p∞]|
log(qn)

= lim
n→∞

log(L∗(A/Kn)pqn(deg(ω)+dim(A)(gC−1)))

log(qn)

= lim
n→∞

log(L∗(A/Kn)p)

log(qn)
+ deg(ω)+ dim(A)(gC − 1).

Thus to complete the proof of the existence of the limit in Proposition/Definition 4.1 and the formula
of Proposition 4.2 in the case A0 = 0, we need only check that

lim
n→∞

log(L∗(A/Kn)p)

log qn =

∑
λi<1

(λi − 1).
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Again under the assumption that A0 = 0, we have

L∗(A/Kn)=
∏′

i

(1− (αi/q)n)

where
∏
′

i is the product over indices i such that (αi/q)n 6= 1. We view the right hand side as an element
of the number field F introduced above to define the slopes, and we let E (as in Lemma 4.2.1) be the
completion of F at the chosen prime of F over p. If λ= v(αi ) < 1, then

v(1− (αi/q)n)= v((αi/q)n)= n(λi − 1),

whereas is λi > 1, then

v(1− (αi/q)n)= v(1)= 0.

In the intermediate case where λi = 1, there are two cases: if αi/q is not a root of unity, then Lemma 4.2.1
implies that

v(1− (αi/q)n)= O(log n).

If αi/q is a root of unity, then there are only finitely many possibilities for v(1−(αi/q)n) with (αi/q)n 6= 1,
and if (αi/q)n = 1, then it does not contribute to L∗(A/Kn). Taking the product over i , we find that

lim
n→∞

log(L∗(A/Kn)p)

log qn =

∑
λi<1

(λi − 1).

This establishes the formula in Proposition 4.2.
Since the break points of a Newton polygon have integer coordinates,

∑
λi<1(λi − 1) is an integer. In

the case A0 = 0, we have thus established that the limit in Proposition/Definition 4.1 exists and is an
integer, and we have established the formula in Proposition 4.2 for the limit, i.e., for dimX(A).

In case A0 = TrK/k(A) is nonzero, the L-function is more complicated, the torsion is not uniformly
bounded, and we have to be slightly more careful with the regulator. Here are the details: The Lang–Néron
theorem says that A(K Fq)/A0(Fq) is finitely generated. This implies that there are only finitely many
possibilities for A(Kn)/A0(Fqn ) and for the regulator (since A(Kn)/tor is a quotient of A(Kn)/A0(Fqn )).
Moreover,

|A(Kn)tor | = |(A(Kn)/A0(Fqn ))tor | · |A0(Fqn )tor |

and similarly for Â. On the other hand, writing

L(A, s)=
P(q−s)

Q(q−s)Q(q1−s)
=

∏
i (1−αi q−s)∏

j (1−β j q−s)(1−β j q1−s)
,

we have that

L∗(A/Kn)=

∏
(αi/q)n 6=1(1− (αi/q)n)∏

j (1− (β j/q)n)(1−βn
j )
.
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The denominator is

q−n dim(A0)|A0(Fqn )|2 = q−n dim(A0)|A0(Fqn )| · | Â0(Fqn )|

so the ratio

|A(Kn)tor | · | Â(Kn)tor |∏
j (1− (β j/q)n)(1−βn

j )
= qn dim(A0)|(A(Kn)/A0(Fqn ))tor | · |( Â(Kn)/ Â0(Fqn ))tor |

is qn dim(A0) times a quantity which is bounded as n varies. It then follows that

lim
n→∞

log(|A(Kn)tor | · | Â(Kn)tor | · L∗(A/Kn)p)

log qn = dim(A0)+
∑
λi<1

(λi − 1).

Therefore,

lim
n→∞

log|X(A/Kn)|

log(qn)
= lim

n→∞

log(|A(Kn)tor | · | Â(Kn)tor | · L∗(A/Kn)qn(deg(ω)+dim(A)(gC−1)))

log(qn)

= dim(A0)+
∑
λi<1

(λi − 1)+ deg(ω)+ dim(A)(gC − 1).

This completes the proof of Propositions 4.1 and 4.2. �

Remarks 4.3. (1) In our applications, we will compute dimX(A) directly from its definition using
crystalline methods. Proposition 4.2 suggests that these methods will succeed exactly in those
situations where one can compute the slopes λi , i.e., exactly in the cases where the methods of
Hindry–Pacheco and Griffon succeed.

(2) We explain why the terminology “dimension of X(A)” is reasonable. Assume that A is a Jacobian. If
Sel(A, pm) denotes the Selmer group for multiplication by pm on A, then it is known that the functor
Fqn 7→ Sel(A×K K Fqn , pm) from finite extensions of Fq to groups is represented by a group scheme
which is an extension of an étale group scheme by a unipotent connected quasialgebraic group
U [pm

], and the dimension of U [pm
] is constant for large m [Artin 1974]. (One may even replace

“finite extensions of Fq” with “affine perfect Fq -schemes,” but unfortunately, not with “general affine
schemes.”) Since the order of A(K Fqn )/pm A(K Fqn ) is bounded for varying n, we may detect the
dimension of U [pm

] by computing the order of X(A× K Fqn )[pm
] asymptotically as n→∞. Thus

dimX(A) as we have defined it in this paper is equal to the dimension of the unipotent quasialgebraic
group U [pm

]. (Note however that Fqn 7→X(A×k K Fqn )[p∞] is not in general represented by a
group scheme.)

(3) The formula in Proposition 4.2 for dimX(A) is proven using the BSD formula. Conversely, in
case A is a Jacobian, Milne [1975, §7] computes the dimension of the group scheme mentioned
in the previous remark, and this calculation is a key input into his proof of the leading coefficient
formula of the BSD and Artin–Tate conjectures. Our approach is thus somewhat ahistorical, but it is
elementary (modulo the BSD conjecture) and completely general.
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(4) In the case where A is a Jacobian, the formula of Proposition 4.2 is equivalent to the formula of
Milne for the unipotent group scheme mentioned above, i.e., to the last displayed equation in [Milne
1975, §7].

(5) The proof of Proposition 4.2 suggests that dimX(A) can be viewed as an analog of the Iwasawa
µ-invariant.

(6) If Kn=Fqn (C), A is an abelian variety over K1 with deg(ωA)>0, and we define the “p-Brauer–Siegel
ratio of A” by

BSp(A) :=
log(R|X(A)|)p

log H(A)

where (x)p denotes the p-part of the rational number x , then we have

lim
n→∞

BSp(A/Kn)=
dimX(A)
deg(ωA)

.

This gives an interpretation of dimX in terms of a modified Brauer–Siegel ratio.

In situations where we can control τ(A), the following proposition gives a tool to bound the Brauer–
Siegel ratio of A from below.

Proposition 4.4. We have
log(|X(A)|Reg(A)τ (A))

log(q)
≥ dimX(A).

Proof. We keep the notation of the proof of Proposition 4.2. In particular, A0 denotes the K/k trace of A.
Using the BSD formula and estimating the denominator of L∗(A), we have

|X(A)|Reg(A)τ (A)≥
|X(A)|Reg(A)τ (A)

|(A(Kn)/A0(Fqn ))tor | · |( Â(Kn)/ Â0(Fqn ))tor |

= |A0(Fqn )| · | Â0(Fqn )|L∗(A)qdeg(ω)+dim(A)(gC−1)

≥ qdeg(ω)+dim(A)(gC−1)+dim(A0)−
∑
(1−λi )

= qdimX(A)

and this yields the proposition. �

Remark 4.5. The bound of the proposition is more subtle than it may seem at first: dimX(A) is defined
in terms of the asymptotic growth of X(A) as the ground field grows (i.e., replacing Fq with Fqn ), whereas
the left-hand side of the inequality concerns invariants over the given ground field Fq . In fact, a lower
bound on the dimension of X(A) is not sufficient to give nontrivial lower bounds on X(A) itself. (This
is related to the nonrepresentability of X mentioned above.) For example, if E denotes the Legendre
curve studied in [Ulmer 2014b] over K = Fp2 f (t1/(p f

+1)), then [Ulmer 2014b, Corollary 10.2] shows
that dimX(E)= (p f

− 1)/2, whereas [Ulmer 2014c, Theorem 1.1] shows that when f ≤ 2, X(E) is
trivial. This example also shows that the second inequality displayed above is sharp.

Next, we state the result which is our main motivation for considering dimX(A).
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Proposition 4.6. Let Ad be a family of abelian varieties over K with H(Ad) → ∞. Assume that
τ(Ad)= O(H(Ad)

ε) for all ε > 0. Then

lim inf
d→∞

BS(Ad)≥ lim inf
d→∞

dimX(Ad)

deg(ωAd )
.

Proof. The hypothesis τ(Ad)= O(H(Ad)
ε) for all ε > 0 implies that

lim
d→∞

log(τ (Ad))/ log(H(Ad))= 0,

so the proposition follows immediately from the estimate of Proposition 4.4. �

Corollary 4.7. If Ad is a family of abelian varieties over K such that H(Ad)→∞, then

lim inf
d→∞

BS(Ad)≥ lim inf
d→∞

dimX(Ad)

deg(ωAd )

in any of the following situations:

(1) dim(Ad)= 1 for all n

(2) A is an abelian variety over K = Fq(t), Ad is the family associated to the Kummer tower, and A has
semistable reduction at t = 0 and t =∞.

(3) A is an abelian variety over K = Fq(t), Ad is the family associated to the Artin–Schreier tower, and
A has semistable reduction at t =∞.

(4) A is an abelian variety over K = Fq(E), and Ad is the family associated to the division tower.

(5) A is an abelian variety over K = Fq(t), Ad is the family associated to the PGL2 tower, and A has
semistable reduction at t = 0 and t = 1.

Proof. This is immediate from Lemma 2.2.1, Corollary 2.5.2, and Proposition 4.6. �

5. Brauer–Siegel ratio and Frobenius

As a first application of our results on the dimension of X, we compute the Brauer–Siegel ratio for
sequences of abelian varieties associated to the Frobenius isogeny.

More precisely, let E be an elliptic curve over the function field K = Fq(C), and for n ≥ 1, let En be
the Frobenius base change:

En := E (p
n)
= E ×K K

where the right hand morphism K → K is the pn-power Frobenius.
Our goal is the following result.

Theorem 5.1. Assume that E is nonisotrivial. Then

lim
n→∞

BS(En)= 1.
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Proof. First we note that since E is nonisotrivial, H(En)→∞ as n→∞. Indeed, the j-invariant of E
has a pole, say of order e, at some place of K , so the j invariant of En has a pole of order epn at the
same place. This implies that the degrees of the divisors of one or both of c4(En) and c6(En) also tend to
infinity, and this is possible only if deg(ωEn ) also tends to infinity. Since H(En) = qdeg(ωEn ), we have
that H(En)→∞.

Next we note that Proposition 4.2 shows that dimX(En)− deg(ωEn ) depends only on the L-function
of En , indeed only on the slopes of the L-function. Since E and En are isogenous, they have the same
L-function, so we have

dimX(En)− degωEn = dimX(E)− degωE

for all n.
Dividing the last displayed equation by degωEn and taking the limit as n→∞, we get

dimX(En)

degωEn

→ 1

since deg(ωEn )→∞.
Applying part (1) of Corollary 4.7, we see that lim infn→∞ BS(En)≥ 1. On the other hand, by [Hindry

and Pacheco 2016, Corollary 1.13], lim supn→∞ BS(En) ≤ 1, so we find that limn→∞ BS(En) = 1, as
desired. �

Remark 5.2. The same argument works for an abelian variety A as long as deg(ωA(pn ))→∞ with n and
τ(A(p

n))= o(H(A(p
n)).

Remark 5.3. The theorem says that the product |X(En)|Reg(En) grows with n. Our earlier results on
p-descent [Ulmer 1991] can be used to show directly that X(En) grows with n. Full details require an
unilluminating consideration of many cases, so we limit ourselves to a sketch in the simplest situation.
First, let V : E (p)→ E be the Verschiebung isogeny, and note that the Selmer group Sel(E (p), p) contains
Sel(E, V ). Also, let L be the (Galois) extension of K obtained by adjoining the (p−1)-st root of a Hasse
invariant of E , and let G =Gal(L/K ). In [Ulmer 1991, Theorem 3.2 and Lemma 1.4], we computed that

Sel(E, V )∼= Hom(Jm/< cusps>,Z/pZ)G

where Jm is the generalized Jacobian of the curve whose function field is L for a “modulus” m related to
the places of bad and/or supersingular reduction of E . Rosenlicht showed that Jm is an extension of J
by a linear group (see [Serre 1988]), and the unipotent part of this group contributes to the “dimension”
of Sel(E, V ) and therefore to dimX(E (p)). The contribution is roughly the number of zeroes (with
multiplicity) of the Hasse invariant, namely (p−1) deg(ωE) which is approximately deg(ωE (p))−deg(ω).
Thus we find

dimX(E (p))≥ deg(ωE (p))− deg(ω),

in agreement with what we deduced from Proposition 4.2.
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6. Bounding X for a class of Jacobians

In this section, we review a general method for computing the p-part of the Tate–Shafarevich group of
certain Jacobians, generalizing our previous work [Ulmer 2014c] on the Legendre elliptic curve. Although
these methods suffice to compute the p-part of X on the nose, for simplicity we focus just on dimX as
this is what is needed to bound the Brauer–Siegel ratio from below.

6.1. Jacobians related to products of curves. Let k be the finite field Fq of characteristic p with q
elements. Let C and D be curves over k, and let S= C×kD. Suppose that1 is a group of k-automorphisms
of S with order prime to p and such that

1⊂ Autk(C)×Autk(D)⊂ Autk(S).

Suppose that the quotient S/1 is birational to a smooth, projective surface X over k and that X is
equipped with a surjective and generically smooth morphism π : X → C where C is a smooth projective
curve over k. Let K = k(C) and let X be the generic fiber of π , a smooth projective curve over K . We
assume that X has a K -rational point. (A vast supply of such data is given in [Berger 2008; Ulmer 2013].)

Let J be the Jacobian of X . We write Br(X ) for the cohomological Brauer group of X : Br(X ) =
H 2(X ,Gm).

Proposition 6.2. (1) X(JX ) and Br(X ) are finite groups.

(2) There is a canonical isomorphism X(JX )∼= Br(X ).

(3) There is a canonical isomorphism

Br(X )[p∞] ∼= (Br(S)[p∞])1.

Proof. In substance, parts (2) and (3) are due to Grothendieck [1968] and part (1) is due to Tate [1966].
The details to deduce the statements here are given in [Ulmer 2014c, §4]. �

6.3. Brauer group of a product of curves. We keep the notation of the preceding subsection. In addition,
let W =W (k) be the ring of Witt vectors over k with Frobenius endomorphism σ . We write H 1(C) for
the crystalline cohomology H 1

crys(C/W ) and similarly for H 1(D). These are modules over the Dieudonné
ring A =W {F, V }, which is the noncommutative polynomial ring generated over W by symbols F and
V with relations FV = V F = p, Fα = σ(α)F , and αV = Vσ(α) for all α ∈W .

The following crystalline calculation of the p part of the Brauer group of S is originally due to
Dummigan (with additional hypotheses) using results of Milne, and is proven in general in [Ulmer 2014c,
§10].

Proposition 6.4. There is a canonical isomorphism

Br(S)[pn
] ∼=

HomA(H 1(C)/pn, H 1(D)/pn)

HomA(H 1(C), H 1(D))/pn

which is compatible with the actions of 1 on both sides.
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Here HomA denotes W -linear homomorphisms which commute with F and V .
Propositions 6.2 and 6.4 give us a powerful tool for bounding dimX(J ) from below. Recall that this

means bounding the growth of the order of X(J ) as we extend the ground field from Fq to Fqν . The
denominator on the right hand side of the displayed equation in Proposition 6.4 is known to be bounded
as ν varies (a fact we will see explicitly in Section 8 for the examples we consider), so we have:

Corollary 6.5. For all sufficiently large n,

dimX(J )= dim HomA(H 1(C)/pn, H 1(D)/pn)1.

Here the dim on the right-hand side is defined analogously to that on the left:

dim HomA(H 1(C)/pn, H 1(D)/pn)1 := lim
ν→∞

log|HomA(H 1(C×k Fqν )/pn, H 1(D×k Fqν )/pn)1|

log(qν)
.

Computing the cardinality of the numerator on the right amounts to an interesting exercise in p-linear
algebra, at least for certain curves C and D. We carry out these exercises in Section 8.

7. Cohomology of Fermat curves

We review some well-known result on the cohomology of Fermat curves.
As usual, let k = Fq be the finite field of cardinality q and characteristic p. We write k for the algebraic

closure of k. For a positive integer d relatively prime to p, let Fd be the smooth projective curve over k
given by

xd
0 + xd

1 + xd
2 = 0.

We write µd for the group of d-th roots of unity in k. There is an evident action of µ3
d on Fd ×k k

under which (ζi ) ∈ µ
3
d acts via xi 7→ ζi xi , and the diagonal (ζ0 = ζ1 = ζ2) acts trivially, so we have

G := µ3
d/µd ⊂ Aut k(Fd).

Let

A =
{
(a0, a1, a2)

∣∣∣ ∑ ai = 0
}
⊂ (Z/dZ)3.

Abusively writing ζ both for a root of unity in k and for its Teichmüller lift to the Witt vectors W (k), we
may identify A with the character group Hom(G,W (k)×). Let

A′ = {(ai ) ∈ A | ai 6= 0, i = 0, 1, 2}.

Given (a0, a1, a2) ∈ A, let 〈ai/d〉 be the fractional part of ãi/d , where ãi is any representative in Z of the
class ai . Define subsets A0 and A1 as follows:

A0 =

{
(ai ) ∈ A′

∣∣∣ 〈a0

d

〉
+

〈
a1

d

〉
+

〈
a2

d

〉
= 2

}
and

A1 =

{
(ai ) ∈ A′

∣∣∣ 〈a0

d

〉
+

〈
a1

d

〉
+

〈
a2

d

〉
= 1

}
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It is a simple exercise to see that A′ is the disjoint union of A0 and A1. Let 〈p〉 be the subgroup of Q×

generated by p. Then 〈p〉 acts on A′ coordinatewise: p(a0, a1, a2)= (pa0, pa1, pa2).
Let H = H 1

crys(Fd/W (k)) be the crystalline cohomology of Fd equipped with its action of the p-power
Frobenius F and Verschiebung V . Then H := H ⊗W (k) W (k) inherits an action of G.

The following summarizes the main results on H . The argument in [Dummigan 1995, §6], stated in
the special case where d = q + 1, works for general d prime to p.

Proposition 7.1. There is W -basis {ea} of H indexed by a ∈ A′ with the following properties:

(1) F(ea)= caepa where ca ∈W (k) and

ordp(ca)=

{
0 if a ∈ A0,

1 if a ∈ A1.

(2) For (ζi ) ∈ G and a ∈ A′,

(ζi )ea = a(ζi )ea = ζ
a0
0 ζ

a1
1 ζ

a2
2 ea

(an equality in H ).

7.2. A remark on twists. It is sometimes convenient to work with a different model of the Fermat curve,
namely

F ′d : y
d
0 + yd

1 = yd
2 .

This is a twist of Fd in the sense that they Fd and F ′d become isomorphic over k via

(x0, x1, x2) 7→ (y0, y1, εy2)

where ε is a d-th root of −1. It follows that Proposition 7.1 holds for F ′d as well, with possibly different
constants ca which nevertheless continue to satisfy the valuation formula in part (1).

7.3. A remark on quotients. If C is the quotient of Fd by a subgroup of G ′ ⊂ G, then the crystalline
cohomology of C can be identified with the W -submodule of H generated by the ea whose indices a are
trivial on G ′.

For example, the hyperelliptic curve

C2,d : y2
= xd
+ 1

is the quotient of F ′2d by a subgroup of G isomorphic to µd ×µ2. (If d is even, it is also a quotient of F ′d ,
but it is more convenient to have a uniform statement.)

More generally, the superelliptic curve

Cr,d : yr
= xd
+ 1

is the quotient of F ′rd by a subgroup of G isomorphic to µd ×µr .
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The crystalline cohomology H 1
crys(Cr,d/W (k)) can then be identified with the W -submodule of

H 1
crys(F

′

rd/W (k)) generated by the ea where a has the form

a = (a0, a1, a2)= (ir,−ir − jd, jd) 0< i < d, 0< j < r, ir + jd 6≡ 0 (mod rd).

The set I of such indices has cardinality (r − 1)(d − 1)− gcd(r, d)+ 1, and it is the disjoint union
I = I0 ∪ I1 where

I0 = I ∩ A0 ∼= {(i, j) | 0< i < d, 0< j < r, ir + jd > rd}

and

I1 = I ∩ A1 ∼= {(i, j) | 0< i < d, 0< j < r, ir + jd < rd}.

In the case where r = 2 we may further simplify this to

I0 ∼=
{
i | d

2 < i < d
}

and I1 ∼=
{
i | 0< i < d

2

}
.

These sets, with their action of 〈p〉, will play a key role in the p-adic exercises that compute dimX

for the Jacobians introduced in Section 6.

8. p-adic exercises

In this section, we carry out the exercises in semilinear algebra needed to compute the dimension of X
for several families of abelian varieties.

Let p be a prime and let Fq be the field of cardinality q and characteristic p. Let W =W (Fq) be the
Witt vectors over Fq , and let Wn =W/pn . Write σ for the p-power Witt-vector Frobenius. For a positive
integer ν, we write Fqν for the field of qν elements, Wν =W (Fqν ) for the corresponding Witt ring, and
Wn,ν for Wν/pn .

Let A =W {F, V } be the Dieudonné ring of noncommutative polynomials in F and V with relations
FV = V F = p, Fα = σ(α)F , and αV = Vσ(α) for α ∈ W . Also, let Aν be the ring Wν{F, V } with
analogous relations.

Let 〈p〉 be the cyclic subgroup of Q× generated by p.

8.1. Data. Fix a finite set I equipped with an action of 〈p〉, which we write multiplicatively: i 7→ pi .
(In the applications below, I will typically be a subset of Z/dZ for some d not divisible by p.) Let M be
the free W -module with basis indexed by I :

M :=
⊕
i∈I

W ei .

Write I as a disjoint union I = I0 ∪ I1 and choose elements ci ∈W such that

ord(ci )=

{
0 if i ∈ I0,
1 if i ∈ I1.
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Define a σ -semilinear map F : M→ M by setting

F(ei )= ci epi

and a σ−1-semilinear map V : M→ M by setting

V (ei )=
p

σ−1(ci/p)
ei/p.

These definitions give M the structure of an A-module, and there is an induced A-module structure on
Mn := M⊗W Wn . Parallel definitions make Mν := M⊗W Wν and Mn,ν := M⊗W Wn,ν into Aν-modules.

Fix another finite set J equipped with an action of 〈p〉, write J as a disjoint union J = J0 ∪ J1, and
choose elements d j ∈W with

ord(d j )=

{
0 if j ∈ J0,
1 if j ∈ J1.

Define

N :=
⊕
j∈J

W f j ,

with semilinear maps F : N → N and V : N → N defined by

F( f j )= d j f pj

and

V ( f j )=
p

σ−1(d j/p)
f j/p.

Then N and Nn := N ⊗W Wn are A-modules, and parallel definitions make Nν := N ⊗W Wν and
Nn,ν := N ⊗W Wn,ν into Aν-modules.

Let 〈p〉 act on I × J diagonally, and let O be the set of orbits of this action. For an orbit o ∈ O , define

d(o) :=min(|((I0× J1)∩ o)|, |((I1× J0)∩ o)|).

Consider HomWν
(Nν,Mν), a free Wν-module with basis ϕi j defined by

ϕi j ( f j ′)=

{
ei if j ′ = j ,
0 if j ′ 6= j .

These elements induce elements of

HomWν
(Nn,ν,Mn,ν)= HomWν

(Nν,Mν)/pn

which form a basis over Wn,ν and which we abusively also denote ϕi j .
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8.2. Statement. Our main objects of study in this section are the subgroups

Hν := HomAν (Nν,Mν)⊂ HomWν
(Nν,Mν)

and

Hn,ν := HomAν (Nn,ν,Mn,ν)⊂ HomWν
(Nn,ν,Mn,ν)

consisting of Aν-module homomorphisms, i.e., homomorphisms ϕ such that F◦ϕ=ϕ◦F and V ◦ϕ=ϕ◦V .
To state the results, we first decompose the groups of interest into components indexed by the set of

orbits O . For o ∈ O , let

HomWν
(Nν,Mν)

o
:=

{
ϕ =

∑
i, j

αi, jϕi, j | αi, j = 0 for all (i, j) 6∈ o
}

and

HomWν
(Nn,ν,Mn,ν)

o
:=

{
ϕ =

∑
i, j

αi, jϕi, j | αi, j = 0 for all (i, j) 6∈ o
}
.

We define

H o
ν := Hν ∩HomWν

(Nν,Mν)
o and H o

n,ν := Hn,ν ∩HomWν
(Nn,ν,Mn,ν)

o.

Here is the main result of this section:

Theorem 8.3. (1) Hν =⊕o∈O H o
ν and Hn,ν =⊕o∈O H o

n,ν .

(2) |H o
ν /pn
| is at most pn|o| and in particular is bounded independently of ν.

(3) For all sufficiently large n,

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o).

Proof. Let

ϕ =
∑

(i, j)∈I×J

αi, jϕi, j

be a typical element of HomWν
(Nν,Mν) (with αi, j ∈Wν) or HomWν

(Nn,ν,Mn,ν) (with αi, j ∈Wn,ν). Then
a straightforward calculation shows that F ◦ϕ = ϕ ◦ F if and only if

ciσ(αi, j )= d jαp(i, j) for all (i, j) ∈ I × J, (8.3.1)

and V ◦ϕ = ϕ ◦ V if and only if(
p

d j

)
σ(αi, j )=

(
p
ci

)
αp(i, j) for all (i, j) ∈ I × J. (8.3.2)

Defining

ϕo
=

∑
(i, j)∈o

αi, jϕi, j ,
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it is clear that ϕo
∈ H o

ν or H o
n,ν and that ϕ =

∑
o∈O ϕ

o. This shows that Hν =
∑

o∈O H o
ν and Hn,ν =∑

o∈O H o
n,ν , and it is immediate that the sums are direct. This proves part (1) of the theorem.

For part (2), take a typical element ϕo
=
∑

(i, j)∈o αi, jϕi, j of H o
ν . Since Wν is torsion-free, the conditions

(8.3.1) and (8.3.2) are equivalent, so we focus on (8.3.1). Fix a base point (i0, j0) ∈ o and note that αi0, j0

determines the other coefficients αi, j with (i, j) ∈ o by repeatedly using (8.3.1). Indeed, we have

ci0σ(αi0, j0)= d j0αp(i0, j0)

cpi0σ(ci0)σ
2(αi0, j0)= dpj0σ(d j0)αp2(i0, j0)

...

cp|o|−1i0σ(cp|o|−2i0) · · · σ
|o|−1(ci0)σ

|o|(αi0, j0)= dp|o|−1 j0σ(dp|o|−2 j0) · · · σ
|o|−1(d j0)αi0, j0

Here |o| is the cardinality of o and in the last line we use that p|o|(i0, j0) = (i0, j0). Moreover, αi0, j0

determines a solution to (8.3.1) only if the last displayed line holds. (There may be other integrality
conditions, but they are not important for our argument.) If the valuations of

cp|o|−1i0σ(cp|o|−2i0) · · · σ
|o|−1(ci0) and dp|o|−1 j0σ(dp|o|−2 j0) · · · σ

|o|−1(d j0)

are distinct, then it is clear that the only solution is αi0, j0 = 0. On the other hand, if the valuations are
the same, the last equation is equivalent to one of the form σ |o|(αi0, j0)= γαi0, j0 where γ ∈Wν is a unit.
Written in terms of Witt vector components, this last equation is a polynomial of degree p|o| in each
component of αi0, j0 (with coefficients given by γ and the lower Witt components of αi0, j0). Therefore,
taking αi0, j0 modulo pn , there are at most pn|o| solutions, and this proves part (2) of the theorem.

We now turn to part (3) of the theorem, which follows from a somewhat more elaborate version of the
calculation of [Ulmer 2014c, §7, §10]. Namely, we fix an orbit o and consider (8.3.1) and (8.3.2) with
(i, j) ∈ o and αi, j ∈Wn,ν . These are the equations defining H o

n,ν as a subset of HomWν
(Nn,ν,Mn,ν)

o, and
analyzing them will allow us to estimate the size of H o

n,ν .
Fix an orbit o ∈ O and a base point (i0, j0) ∈ o. We associate a word w on the alphabet {u, l,m} to o

as follows: w = w1w2 · · ·w|o| where

w` =


u if p`−1(i0, j0) ∈ I1× J0,
l if p`−1(i0, j0) ∈ I0× J1,
m if p`−1(i0, j0) ∈ (I0× J0)∪ (I1× J1).

Changing the base point changes w by a cyclic permutation. Note that d(o) is the smaller of the number
of appearances of l or u in w.

The motivation for these letters is as follows: If w` = u, then in (8.3.1) and (8.3.2) for (i, j) =
p`−1(i0, j0), d j is a unit and p/c j is a unit. It follows that the two equations are equivalent and either of
them determines αp`(io, j0) in terms of αp`−1(io, j0). i.e., the “upper” αp`(io, j0) is determined by the “lower”
αp`−1(io, j0). Similarly, if w` = l, the “lower” αp`−1(io, j0) is determined by the “upper” αp`(io, j0). Finally, if
w` = m, then one of (8.3.1) and (8.3.2) implies other and shows that αp`−1(io, j0) and αp`(io, j0) determine
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each other. We will use these observations to eliminate most of the variables in the systems (8.3.1) and
(8.3.2), and use the simplified system to estimate the size of H o

n,ν and prove part (3) of the theorem.
We first deal with three degenerate cases, namely those where w is a power of m, or has no letters l, or

has no letters u. In all three cases, d(o)= 0, so it will suffice to prove that |H o
n,ν | is bounded independently

of ν. If w = m|o|, then αi0, j0 determines all of the αp`(i0, j0), and the system ((8.3.1)–(8.3.2)) reduces to a
single equation

σ |o|αi0, j0 = γαi0, j0

where γ ∈ W us a unit. This is easily seen to have at most pn|o| solutions for any ν, as desired. If w
contains no letters l, then again αi0, j0 determines all of the αp`(i0, j0), and the system ((8.3.1)–(8.3.2))
reduces to a single equation

peσ |o|αi0, j0 = γαi0, j0

where e ≥ 0 and γ ∈W is a unit. (Here e is the number of appearances of u in w.) If e= 0, we are in the
previous case, and the equation has at most pn|o| solutions for any ν, whereas if e > 0, then this equation
is easily seen to have no solutions. Finally, if w has no letter u, then the system again reduces to a single
equation of the form

σ |o|αi0, j0 = γ peαi0, j0

which has at most pn|o| solutions for any ν if e = 0 and has no solutions if e > 0.
For the rest of the argument, we may assume w contains at least one u and at least one l. Define a

function a : {0, 1, . . . , |o|} → Z by setting a(0)= 0 and

a(`)= a(`− 1)+


1 if w` = u,
−1 if w` = l,
0 if w` = m.

for 1≤ `≤ |o|.
Define the height of o, denoted ht (o), to be the maximum value of a minus the minimum value of a.

Note that this is independent of the choice of a base point for o.
We divide into two cases depending on whether a(|o|)≥ 0 or a(|o|)≤ 0.
If a(|o|)≥ 0, we may change base point so that 0= a(0) is the minimum value of a (i.e., a(`)≥ 0 for

0≤ `≤ |o|) and a(|o|−1) > a(|o|). Indeed, start with any base point (i0, j0) and let `0 be such that a(`0)

is minimum among the a(`). Then replacing (i0, j0) with (i1, j1)= p`0(i0, j0) ensures that a(`)≥ 0 for
all 0 ≤ ` ≤ |o|. If the new word w ends with m or u, we may replace (i1, j1) with p−1(i1, j1) without
affecting the inequality a(`)≥ 0. Iterate until the last letter is l, thus yielding the desired base point. We
fix such as base point and denote it (i0, j0).

Choose

0= `0 < `
0 < `1 < `

1
· · ·< `k−1 < `k = |o|
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such that a is nondecreasing on {`λ, . . . , `λ} and nonincreasing on {`λ, . . . , `λ+1} for 0≤ λ≤ k− 1. In
particular, the `λ are the arguments of local minima of a. Now let

βλ = αp`λ (i0, j0) 0≤ λ≤ k.

(Note that βk = β0.) Then the motivating remarks above about the letters u, l, m show that the βλ
determine all the αi, j with (i, j) ∈ o. The equations (8.3.1) and (8.3.2) hold if and only if the βλ satisfy
the system:

pe1σ `1−`0β0 = γ1 pe2β1

pe3σ `2−`1β1 = γ2 pe4β2

...

pe2k−1σ `k−`k−1βk−1 = γk pe2kβk

(8.3.3)

where
e2λ−1 = # of appearances of u in the subword w`λ−1+1 · · ·w`λ

e2λ = # of appearances of l in the subword w`λ−1+1 · · ·w`λ

and the units γλ are defined by

γλ = pe2λ−1−e2λ

`λ−1∏
`=`λ−1

σ `λ−1−`
(

dp` j0

cp`i0

)
.

To recap, the assignment ϕ 7→ (βλ) gives an injection H o
n,ν ↪→W k

n,ν whose image is the set of solutions
to equations (8.3.3). We will finish the proof of part (3) of the theorem by estimating the number of such
solutions.

Since the theorem is an assertion about H o
n,ν for sufficiently large n, we will assume for the rest of the

proof that n ≥ ht (o). Then we have an exact sequence

0→ pn−ht (o)H o
n,ν→ H o

n,ν→Wn−ht (o),ν

where the right hand map sends a tuple (βλ) to the reduction modulo pn−ht (o) of β0. (Exactness in the
middle follows from the fact that if µ≤ n− ht (o), then we may recover the Witt components β(µ)λ from
β0 modulo pn−ht (o) using the equations (8.3.3) and the fact that a(`)≥ a(0) for all `.) Moreover, we have

β0 ≡ (γ1 · · · γk)
−1 pa(|o|)σ |o|β0 (mod pn−ht (o)).

It follows that the image of H o
n,ν in Wn−ht (o),ν has order at most p|o|(n−ht (o)) independently of ν. (We may

even conclude that it is 0 if a(|o|) > 0.) Thus this image does not contribute to the limit in the theorem,
and it will suffice to bound pn−ht (o)H o

n,ν .
Note also that if n′ > n ≥ ht (o), then

pn−ht (o)H o
n,ν −→
∼ pn′−ht (o)H o

n′,ν



1104 Douglas Ulmer

via (βλ) 7→ (pn′−nβλ). Thus we may assume that n = ht (o) for the rest of the proof.
To finish the estimation, we “break” the circular system (8.3.3) into a triangular system, as in [Ulmer

2014c, §7.6]. To that end, choose λ so that a(`λ) is the maximum of a, and note that ht (0)=a(`λ)−a(0)=
a(`λ). Then we have

ht (o)= a(`λ)= e1− e2+ · · ·+ e2λ+1

and

0= pht (o)β0 = pe1−e2+···+e2λ+1β0 = pe3−e4+···+e2λ+1σ−`1(γ1β1)= · · · = pe2λ+1σ−`1(γ1) · · · σ
−`λ(γλβλ).

It follows that pe2λ+1βλ = 0. Using this in (8.3.3) and reordering, we obtain a lower-triangular system

0= γλ+1 pe2λ+2βλ+1

0=−pe2λ+3σ `λ+2−`λ+1βλ+1+ γλ+2 pe2λ+4βλ+2

...

0=−pe2k−1σ `k−`k−1βk−1+ γk pe2kβk

0=−pe1σ `1−`0β0+ γ1 pe2β1

...

0=−pe2λ−1σ `λ−`λ−1βλ−1+ γλ pe2λβλ.

This system can be rewritten in the form

U1 BU2



βλ+1
...

βk

β1
...

βλ


= 0

where U1 and U2 are diagonal with powers of σ and products of the units γi in the diagonal entries and
where

B =



pe2λ+2

−pe2λ+3 pe2λ+4

. . .

−pe2k−1 pe2k

−pe1 pe2

. . .

−pe2λ−1 pe2λ


.
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It follows that the number of solutions to this system is

qν(e2+e4+···+e2k).

On the other hand, e2+ e4+ · · ·+ e2k is the total number of appearances of l in the word w, and since
a(|o|)≥ 0, w has at least as many appearances of u as of l, so this sum is equal to d(o). It follows that
|H o

ht (o),ν | = qνd(o) and that

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o)

for any n≥ ht (o). This completes the proof of part (3) of the theorem under the hypothesis that a(|o|)≥ 0.
The proof when a(|o|)≤ 0 is very similar. Roughly speaking, one proceeds as above, but with a base

point so that a(|o|) is the minimum of a and with βk playing the role of β0. More precisely, assuming
that w has at least one u and at least one l and that a(|o|) ≤ 0, we may choose a base point for o such
that a(|o|) is the minimum value of a and a(1) > a(0)= 0. Fix such a base point, denoted (i0, j0), for
the rest of the argument.

As before, choose

0= `0 < `
0 < `1 < `

1
· · ·< `k−1 < `k = |o|

such that a is nondecreasing on {`λ, . . . , `λ} and nonincreasing on {`λ, . . . , `λ+1} for 0≤ λ≤ k− 1. Let

βλ = αp`λ (i0, j0) 0≤ λ≤ k.

Then as before, the coefficients αi, j satisfy equations (8.3.1) and (8.3.2) if and only if the βλ satisfy
(8.3.3).

The same dévissage as before shows that it suffices to estimate the order of H o
n,ν in the case where

n = ht (o). We make the circular system (8.3.3) triangular as follows: Choose λ so that a(`λ) is the
maximum of a. Then

ht (o)= a(`λ)− a(|o|)= e2k − e2k−1+ · · ·+ e2λ+2.

Therefore,

0= pht (o)βk = pe2k−e2k−1+···+e2λ+2βk

= pe2k−2−e2k−3+···+e2λ+2γ−1
k σ `k−`k−1(βk−1)

...

= pe2λ+2γ−1
k σ `k−`k−1(γ−1

k−1)σ
`k−`k−2(γ−1

k−2) · · · σ
`k−`λ+1(βλ+1).

It follows that pe2λ+2βλ+1 = 0. Using this in (8.3.3) and reordering, we obtain (up to units and powers of
σ ) an upper-triangular system whose diagonal entries are pe1, pe3, . . . , pe2k−1 .

It follows that the number of solutions to (8.3.3) with coefficients in Wn,ν (with n = ht (o)) is
qν(e1+···+e2k−1). Observing that a(|o|)≤0 implies that d(o)=e1+· · ·+e2k−1, we find that |H o

ht (o),ν |=qνd(o)
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and that

lim
ν→∞

log|H o
n,ν |

log(qν)
= d(o)

for any n ≥ ht (o). This completes the proof of part (3) of the theorem in the remaining case when
a(|o|)≤ 0. �

9. Equidistribution

We record three equidistribution statements to be used to control the average behavior of the invariant d(o)
from the preceding section. The first is a consequence of what is proven in [Griffon 2018, Theorem 4.1].
The second is a straightforward “two-variable” generalization, and the third is a simple corollary of the
first. We omit the proofs since they are orthogonal to our main concerns.

Proposition 9.1 (Helfgott, Hindry–Pacheco, Griffon). Let A ⊂ [0, 1] be an interval of length α. Let p be
a prime number and let d run through positive integers prime to p. Let 〈p〉 act on Z/dZ by multiplication,
and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{a ∈ o | 〈a/d〉 ∈ A}|
|o|

−α

∣∣∣∣= 0.

Proposition 9.2. Let p be a prime number, let r be a fixed integer prime to p and let d run through
integers prime to p. Let 〈p〉 act on (Z/rZ)× (Z/dZ) diagonally, and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{(a, b) ∈ o | 〈a/r〉+ 〈b/d〉< 1}|
|o|

−
1
2

∣∣∣∣= 0.

Proposition 9.3. Let p be a prime number, let I = Z/dZ with d prime to p equipped with the multiplica-
tion action of 〈p〉, and let J = {0, 1} be a two-element set equipped with the nontrivial action of 〈p〉. Let
〈p〉 act on I × J diagonally, and let O be the set of orbits. Then

lim
d→∞

1
d

∑
o∈O

∣∣∣∣ |{(a, b) ∈ o | 〈a/d〉< 1/2, b = 0}| + |{(a, b) ∈ o | 〈a/d〉> 1/2, b = 1}|
|o|

−
1
2

∣∣∣∣= 0.

10. Calculations for curves defined by four monomials

In this section we compute the limit of Brauer–Siegel ratios for a family of elliptic curves related to the
constructions in [Shioda 1986; Ulmer 2002]. We then explain how the same can be done for families of
Jacobians of every genus in every positive characteristic.

Throughout, let k = Fq , the finite field of cardinality q and characteristic p, and let K = k(t), the
rational function field over k.

10.1. The curve of [Ulmer 2002]. Let p be a prime number, let d be a positive integer prime to p, and
let Ed be the elliptic curve over K defined by

y2
+ xy = x3

− td (10.1.1)
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This family of curves was introduced in [Ulmer 2002] where it was shown that X(Ed) is finite and the
rank of Ed(K ) is unbounded as d varies. Hindry and Pacheco [2016] computed the Brauer–Siegel ratio
of Ed as d→∞ by analytic means, i.e., by a careful study of the L-function of Ed . Here we compute it
via algebraic means, more precisely, through a consideration of dimX(Ed).

Theorem 10.2. We have
lim

d→∞
BS(Ed)= 1.

Proof. Because E pd = E (p)d , Theorem 5.1 implies that it will suffice to compute the limit as d runs through
positive integers relatively prime to p and tending to infinity.

We are going to bound BS(Ed) from below by estimating dimX(Ed). Since the latter is invariant
under extension of the ground field, we are free to extend k as needed and will do so in the geometric
argument below.

Let Ed be the smooth projective surface equipped with a relatively minimal morphism π : Ed → P1

whose generic fiber is Ed . The procedure for constructing a model Ed is explained in general in [Ulmer
2011, Lecture 3], and this particular example is carried out in detail in [Ulmer 2002, §3]. The important
thing to know about Ed is that it is birational to the hypersurface in A3

(x,y,t) defined by (10.1.1).
Using the method of [Shioda 1986], it is proven in [Ulmer 2002, §4] that Ed is birational to the quotient

of the Fermat surface of degree d by a group of order d2. It is proven in [Shioda and Katsura 1979] that
the Fermat surface of degree d is birational to the quotient of the product of two Fermat curves of degree
d by a group of order d. (Here we may need to extend k so that it contains the 2d-th roots of unity.)
Putting these together, we find that Ed is birational to the quotient of Fd × Fd by the group

1⊂ (µ3
d/µd)

2
⊂ Aut(Fd)×Aut(Fd)

generated by
([ζ 2, ζ, 1], [1, 1, 1]), ([1, ζ, 1], [ζ 3, 1, 1]), and ([1, 1, ζ ], [1, 1, ζ ])

where ζ is a primitive d-th root of unity in k.
It follows from Corollary 6.5 that

dimX(Ed)= dim HomA(H 1(Fd)/pn, H 1(Fd)/pn)1 (10.2.1)

for all sufficiently large n. Section 7 and Proposition 7.1 describe the cohomology group H 1(Fd) with its
action of Frobenius. They show in particular that the dimension in the last display can be computed by
the methods of Section 8.

To spell this out, recall that the cohomology of Fd splits into lines indexed by

A′ =
{
(a0, a1, a2) | ai 6= 0,

∑
ai = 0

}
⊂ (Z/dZ)3

and that A′ is the disjoint union of A0 and A1 as in Section 7. The curves Fd and their cohomology
furnish data M = N = H 1

crys(Fd/W (k)), I = J = A′, and (ci , d j ) as in Section 8.1.
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A short calculation reveals that the basis elements ϕi j which contribute to the right hand side of (10.2.1)
are those indexed by (i, j) of the form

(i, j)= (a0, a1, a2, b0, b1, b2)= b1(−3, 6,−3, 2, 1,−3)

where b1 ∈ dZ is such that 6b1 6= 0. In other words, projection to the b1 coordinate allows us to identify
the orbits of 〈p〉 on I × J which contribute to (10.2.1) with the orbits of 〈p〉 on

B = {b ∈ Z/dZ | 6b 6= 0}.

Under this identification, (i, j) ∈ I0× J1 if and only if

0<
〈

b
d

〉
<

1
6

and (i, j) ∈ I1× J0 if and only if
5
6
<

〈
b
d

〉
< 1

where 〈·〉 denotes the fractional part. Thus, the invariant d(o) of Section 8.1 becomes the following
invariant of orbits of 〈p〉 on B: Setting

B0 =

{
b ∈ Z/dZ | 0<

〈
b
d

〉
<

1
6

}
and B1 =

{
b ∈ Z/dZ |

5
6
<

〈
b
d

〉
< 1

}
,

we have
d(o)=min(|o∩ B0|, |o∩ B1|).

Finally, the equidistribution result Proposition 9.1 yields that∑
o∈O

d(o)= d
6 + ε

where ε/d→ 0 as d→∞, and so
dimX(Ed)=

d
6 + ε.

It follows from [Ulmer 2002, §2] that degωEd =
⌈d

6

⌉
, so by applying Corollary 4.7, we conclude that

lim inf
d→∞

BS(Ed)≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we finally conclude that

lim
d→∞

BS(Ed)= 1. �

10.3. Other elliptic curves. The methods employed in the previous subsection can be used to compute
the limiting Brauer–Siegel ratio for several other families of elliptic curves, namely those defined by
equations involving 4 monomials. This includes the Hessian family studied in [Griffon 2016, Chapter 5]
and a closely related family introduced by Davis and Occhipinti [2016] and studied in [Griffon 2016,
Chapter 7]. We will not give the details here, since no fundamentally new phenomena arise.
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10.4. Higher genus Jacobians. For every prime p and every g>0, there is a sequence of curves of genus
g over Fp(t) whose Jacobians are absolutely simple, satisfy the Birch and Swinnerton-Dyer conjecture,
and have unbounded analytic and algebraic ranks; see [Ulmer 2007, §7]. Since these curves are defined
by four monomials, the methods of this paper suffice to compute the limit of their Brauer–Siegel ratios.
In the rest of this subsection, we explain the details for the main case, namely when g is a positive integer
and p is a prime such that p -(2g + 2)(2g + 1). The other cases are similar and we omit them in the
interest of brevity.

Fix a positive integer g, a prime p such that p -(2g+ 2)(2g+ 1), and a positive integer d. Let Xd be
the smooth, proper curve of genus g over K = Fp(t) defined by

y2
= x2g+2

+ x2g+1
+ td (10.4.1)

and let Jd be its Jacobian.

Theorem 10.5. lim
d→∞

BS(Jd)= 1.

Proof. Once again, it suffices to restrict to d not divisible by p. We will bound BS(Jd) from below by
estimating dimX(Jd) using that Xd has a model which is dominated by a product of Fermat curves. As
usual, we are free to expand the ground field Fp and we do so as needed below.

Let Xd be the smooth projective surface equipped with a relatively minimal morphism π : Xd → P1

with generic fiber Xd . Again, what is most important is that Xd is birational to the hypersurface in A3

defined by (10.4.1).
Using the method of [Shioda 1986] (see also [Ulmer 2007]), one sees that Xd is birational to the

quotient of the Fermat surface of degree 2d by a group of order (2d)2, and therefore birational to the
quotient of F2d × F2d by a group of order (2d)3. (Here we enlarge Fp to a finite extension k that contains
the 2d-th roots of unity.) More precisely, carrying out the procedure of [Ulmer 2007, §6] and using
[Shioda and Katsura 1979], one finds that Xd is birational to the quotient of F2d × F2d by the group

1⊂ (µ3
2d/µ2d)

2
⊂ Aut(F2d)×Aut(F2d)

generated by

([ζ 2, 1, 1], [1, 1, 1]), ([1, 1, 1], [1, ζ d , 1]), ([1, 1, 1], [ζ, ζ 2g+2, 1]), and ([1, 1, ζ ], [1, 1, ζ ])

where ζ is a primitive 2d-th root of unity in k.
It follows from Corollary 6.5 that

dimX(Ed)= dim HomA(H 1(Fd)/pn, H 1(Fd)/pn)1 (10.5.1)

for all sufficiently large n.
As in the previous subsections, the curves F2d and their cohomology furnish data M = N =

H 1
crys(F2d/W (k)), I = J = A′, and (ci , d j ) as in Section 8.1.
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A short calculation reveals that the basis elements ϕi j which contribute to the right hand side of (10.5.1)
are those indexed by (i, j) of the form

(i, j)= (a0, a1, a2, b0, b1, b2)= (−(4g+ 4)b, 2b, (4g+ 2)b, d, d − (4g+ 2)b, (4g+ 2)b)

where b ∈ Z/dZ is such that none of the coordinates a0, . . . , b2 are zero in Z/2dZ. (Note that all of the
coefficients of b above are even, so the display gives a well-defined element of (Z/2dZ)6 even though b
lies in Z/dZ.) Thus the relevant orbits of 〈p〉 on I × J can be identified with the orbits of 〈p〉 on the
subset B of Z/dZ where none of the coordinates of (i, j) is 0.

Next we work out conditions on b for the corresponding (i, j) to lie in I0× J1 or I1× J0. One finds
that

i = (a0, a1, a2)= (−(4g+ 4)b, 2b, (4g+ 2)b)

lies in I0 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
k+ 1

2g+ 2
,

k+ 1
2g+ 1

)
, k = 0, . . . , 2g

and i lies in I1 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
k

2g+ 1
,

k+ 1
2g+ 2

)
, k = 0, . . . , 2g.

On the other hand,

j = (b0, b1, b2)= (d, d − (4g+ 2)b, (4g+ 2)b)

lies in J0 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
2`+ 1
4g+ 2

,
2`+ 2
4g+ 2

)
, `= 0, . . . , 2g

and j lies in J1 if and only if the fractional part 〈b/d〉 lies in one of the intervals(
2`

4g+ 2
,

2`+ 1
4g+ 2

)
, `= 0, . . . , 2g.

It follows that (i, j) lies in I0× J1 if and only if〈
b
d

〉
∈

(
k+ 1

2g+ 2
,

2k+ 1
4g+ 2

)
with k = g+ 1, . . . , 2g and it lies in I1× J0 if and only if〈

b
d

〉
∈

(
2k+ 1
4g+ 2

,
k+ 1

2g+ 2

)
with k = 0, . . . , g− 1.



On the Brauer–Siegel ratio for abelian varieties over function fields 1111

The total length of the intervals corresponding to I0× J1 is

2g∑
k=g+1

(
2k+ 1
4g+ 2

−
k+ 1

2g+ 2

)
=

g
8g+ 4

and the total length of the intervals corresponding to I1× J0 is

g−1∑
k=0

(
k+ 1

2g+ 2
−

2k+ 1
4g+ 2

)
=

g
8g+ 4

.

Transferring the definition of d(o) to B and applying the equidistribution result Proposition 9.1, we
find that

dimX(Jd)=
∑

o

d(o)=
dg

8g+ 4
+ ε

where ε/d→ 0 as d→∞.
We pause briefly to consider the case g = 1. By [Weil 1954], the Jacobian of Xd is the elliptic curve

y2
= x3
− 4td x + td .

It is easy to see that the bundle ωd attached to Jd has degree
⌈ d

12

⌉
. It then follows from our estimation of

dimX(Jd) and Corollary 4.7 that lim infd→∞ BS(Jd)≥ 1 and thus, by the Hindry–Pacheco upper bound
(1.1), that limd→∞ BS(Jd)= 1.

To extend this to higher genus, we will give an upper bound on the degree of ωd of the form
dg/(8g+ 4)+ ε where ε/d→ 0 as d→∞. More precisely, we will show that deg(ωd)= dg/(8g+ 4)
for all d divisible by (2g+ 1)(2g+ 2). For a general d, we let

d ′ = lcm(d, (2g+ 1)(2g+ 2))

and apply Lemma 2.7.1 to conclude that

deg(ωd)≤
dg

(8g+ 4)
+ 2g((2g+ 1)(2g+ 2)− 1)

which gives the desired estimate.
For i = 1, . . . , g, let ωi be the 1-form x i−1dx/y on Xd over K . These 1-forms are regular and give a

basis of H 0(X, �1
X/K ). We will consider their extensions to a suitable model π : X → P1 of X and use

them to compute deg(ωd).
In [Ulmer 2007, §7.7], a model of X over U = P1

\ {0,∞} is constructed which is regular and a
Lefschetz pencil, i.e., its singular fibers are irreducible with one ordinary node each. It is easy to see that
the differentials ωi extend to this model and

σ := ω1 ∧ · · · ∧ωg
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defines a nowhere vanishing section of ωd over U . To compute deg(ωd) it will thus suffice to compute
the order of vanishing of σ at t = 0 and t =∞. This is where we use the hypothesis that d is a multiple
of (2g+ 1)(2g+ 2).

Indeed, if d = 2(2g+ 1)k, then the change of coordinates x→ t2k x ′, y→ t (2g+1)k y′ brings X into the
form

y′2 = t2k x ′2g+2
+ x ′2g+1

+ 1

which has good reduction at t = 0. Moreover, we see that ωi = t (2i−2g−1)kω′i where ω′i = (x
′i−1dx ′)/y′,

and that the ω′i have linearly independent reductions at t = 0. This shows that σ has a pole at t = 0 of
order

g∑
i=1

(2g+ 1− 2i)d
2(2g+ 1)

.

Similarly, when d = (2g+ 2)`, the change of coordinates x→ t2`x , y→ t (2g+2)`y brings X into the
form

y2
= x2g+2

+ t−`x2g+1
+ 1,

which has good reduction at t =∞. Moreover, we see that ωi = t (i−g−1)`ω′i where ω′i = (x
′i−1dx ′)/y′,

and that the ω′i have linearly independent reductions at t =∞. This shows that σ has a zero at t =∞ of
order

g∑
i=1

(g+ 1− i)d
2g+ 2

.

A short computation then shows that deg(ωd) is dg/(8g+ 4).
Note that these calculations also show that Jd has good reduction at t = 0 and t =∞ when d is divisible

by (2g+ 1)(2g+ 2). Using Section 2.6, these reduction results imply that τ(Jd) = O(H(Jd)
ε) for all

ε > 0. Then Proposition 4.6 shows that

lim inf
d→∞

BS(Jd)≥ lim inf
d→∞

dim(X(Jd))

deg(ωJd )
≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we finally conclude that

lim
d→∞

BS(Jd)= 1. �

11. Calculations for Jacobians related to Berger’s construction

In this section we compute the limiting Brauer–Siegel ratio for some families of curves related to the
construction in [Berger 2008; Ulmer 2013].

Throughout, let k = Fq , the finite field of cardinality q and characteristic p, and let K = k(t), the
rational function field over k.
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11.1. The Legendre curve. Assume that p > 2, let d be a positive integer, and let Ed be the elliptic
curve over K defined by

y2
= x(x + 1)(x + td). (11.1.1)

This family of curves has been studied extensively, in particular in [Ulmer 2014b; Conceição et al. 2014;
Ulmer 2014c; Griffon 2016, Chapter 4]. In the latter, the limit of the Brauer–Siegel ratio of Ed as d→∞
was computed by analytic means, i.e., by a careful study of the L-function of Ed . Here we compute it via
algebraic means, more precisely, through a consideration of dimX(Ed).

Theorem 11.2. We have

lim
d→∞

BS(Ed)= 1.

Proof. As usual, it suffices to consider values of d not divisible by p.
Let Ed be the smooth projective surface equipped with a relatively minimal morphism π : Ed → P1

whose generic fiber is Ed . This is constructed in [Ulmer 2014b] (under the simplifying hypothesis that d
is even, but the odd case is similar). The main thing we need to know about Ed is that it is birational to
the hypersurface in A3

(x,y,t) defined by the (11.1.1).
Let Cd be the curve with affine equation

x2
= zd
+ 1

and let Dd be the curve with affine equation

y2
= wd

+ 1.

Both curves admit an evident action of 1= µ2×µd (over k). Let 1 act “antidiagonally” on Cd ×Dd :

(ζ2, ζd)(x, z, y, w)= (ζ2x, ζd z, ζ−1
2 y, ζ−1

d w).

Our first main claim is that Ed is birational to the quotient Cd ×Dd/1 via the map

(x, z, y, w) 7→ (x = zd , y = zd xy, t = wz).

Indeed, it is evident that this defines a dominant rational map from Cd×Dd to Ed which factors through the
quotient by 1. Degree considerations then show that the induced map has degree 1, i.e., it is a birational
isomorphism.

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Ed)= dim HomA(H 1(Cd)/pn, H 1(Dd)/pn)1 (11.2.1)

for all sufficiently large n. Section 7.3 and Proposition 7.1 describe the cohomology groups H 1(Cd) and
H 1(Dd) with their actions of Frobenius. They show in particular, that the dimension in the last display
can be computed by the methods of Section 8.
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To spell this out, let
I = J = Z/dZ \ {0, d/2 (if d is even)},

decomposed as I0 = J0 = {i | d/2 < i < d} and I1 = J1 = {i | 0 < i < d/2}. Section 7 shows that
the crystalline cohomology groups H 1(Cd) and H 1(Dd) with their action of Frobenius furnish data
(M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉 on I × J .

Since 1 acts antidiagonally, the orbits that contribute to the right hand side of (11.2.1) are those whose
elements (i, j) satisfy j =−i . Write O1 for the set of such orbits. Applying Theorem 8.3, we conclude
that

dimX(Ed)=
∑

o∈O1

d(o). (11.2.2)

We may identify the orbits in O1 with the orbits of 〈p〉 on I via the projection πI : I × J → I . Also,
since (i,−i) ∈ I0× J1 if and only if i ∈ I0, and (i,−i) ∈ I1× J0 if and only if i ∈ I1, we have

d(o)=min(|πI (o)∩ I0|, |πI (o)∩ I1|).

Thus the sum on the right hand side of (11.2.2) becomes a sum over orbits of 〈p〉 on I , and the invariant
d(o) is described “on average” in Section 9. In particular, the equidistribution result Proposition 9.1
implies that

dimX(Ed)=
∑

o∈O1

d(o)= d
2 + εd

where εd/d→ 0 as d→∞.
Since deg(ωEd )=

⌈ d
2

⌉
(e.g., by [Ulmer 2014b, Lemma 7.1]), Corollary 4.7 implies that

lim inf
d→∞

BS(Ed)≥ lim inf
d→∞

dimX(Ed)

deg(ωEd )
= 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Jd)= 1. �

11.3. Other elliptic curves. The methods employed in the previous subsection can be used to compute
the limiting Brauer–Siegel ratio for several other families of elliptic curves, namely those coming from
Berger’s construction where the dominating curves are related to Fermat curves. This is the case in
particular for the universal curve over X1(4) studied in [Griffon 2016, Chapter 6] and the curve “B1/2,d”
introduced in [Berger 2008, §4] and studied in [Griffon 2016, Chapter 8]. We will not give the details
here, since no fundamentally new phenomena arise.

11.4. Higher dimensional Jacobians. Let p be a prime number, let q be a power of p, and let k = Fq .
Let r and d be integers relatively prime to p. Let X = Xr,d be the smooth projective curve over K = k(t)
associated to the equation

yr
= xr−1(x + 1)(x + td). (11.4.1)
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This is a curve of genus r − 1, and the case r = 2 is the Legendre curve of Section 11.1. Let J = Jr,d be
the Jacobian of X . This family of Jacobians was studied in [Berger et al. 2015], where among other things
it was proven that X(Jr,d) is finite for all p, q, r , and d as above. Here we will compute the limiting
Brauer–Siegel ratio for fixed q and r as d→∞.

Theorem 11.5. For all q and r as above,

lim
d→∞
(p,d)=1

BS(Jr,d)= 1.

Here the limit is through integers prime to p. It would be possible to include those d divisible by p
using a straightforward generalization of the ideas in Section 5, but will not do that here.

Proof. Since r will be fixed throughout, we omit it from the notation. Let Xd be the smooth projective
surface equipped with a relatively minimal morphism π : Xd → P1 whose generic fiber is Xd . This is
constructed in [Berger et al. 2015, §3.1]. The important thing to know about Xd is that it is birational to
the hypersurface in A3

(x,y,t) defined by (11.4.1).
Let Cd be the curve with affine equation

xr
= zd
+ 1

and let Dd be the curve with affine equation

yr
= wd

+ 1.

Both curves admit an evident action of 1= µr ×µd (over k). Let 1 act “antidiagonally” on Cd ×Dd :

(ζr , ζd)(x, z, y, w)= (ζr x, ζd z, ζ−1
r y, ζ−1

d w).

It is proven in [Berger et al. 2015, §3.3] that Xd is birational to the quotient Cd ×Dd/1 via the map

(x, z, y, w) 7→ (x = zd , y = zd xy, t = wz).

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Jd)= dim HomA(H 1(Cd)/pn, H 1(Dd)/pn)1 (11.5.1)

for all sufficiently large n. Section 7.3 and Proposition 7.1 describe the cohomology groups H 1(Cd) and
H 1(Dd) with their actions of Frobenius. They show in particular, that the dimension in the last display
can be computed by the methods of Section 8.
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To spell this out, let

I = J =
{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
6= 1

}
,

I0 = J0 =

{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
> 1

}
, and

I1 = J1 =

{
(a, b) ∈ Z/rZ×Z/dZ | a 6= 0, b 6= 0,

〈
a
r

〉
+

〈
b
d

〉
< 1

}
.

Section 7 shows that the crystalline cohomology groups H 1(Cd) and H 1(Dd)with their action of Frobenius
furnish data (M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉
on I × J .

Since 1 acts antidiagonally, the orbits that contribute to the right hand side of (11.5.1) are those whose
elements (i, j)= (a, b, a′, b′) satisfy j =−i , i.e., a′ =−a and b′ =−b. Write O1 for the set of such
orbits. Applying Theorem 8.3, we conclude that

dimX(Jd)=
∑

o∈O1

d(o). (11.5.2)

We may identify the orbits in O1 with the orbits of 〈p〉 on I via the projection πI : I × J → I . Also,
since (i,−i) ∈ I0× J1 if and only if i ∈ I0, and (i,−i) ∈ I1× J0 if and only if i ∈ I1, we have

d(o)=min(|πI (o)∩ I0|, |πI (o)∩ I1|).

We note that

|I0| = |I1| =
1
2((r − 1)(d − 1)− (gcd(r, d)− 1)),

which for fixed r is asymptotic to d(r − 1)/2 as d→∞.
Thus the sum on the right hand side of (11.5.2) becomes a sum over orbits of 〈p〉 on I , and the invariant

d(o) is described “on average” in Section 9. In particular, the equidistribution result Proposition 9.2
implies that

dimX(Jd)=
∑

o∈O1

d(o)= 1
2 d(r − 1)+ εd

where εd/d→ 0 as d→∞.
To finish the proof, we will show that τ(Jd) = O(H(Jd)

ε) for all ε > 0 and that deg(ωJd ) ≤

d(r − 1)/2 + εd where εd/d → 0 as d → ∞. Once these claims are established, Proposition 4.6
implies that

lim inf
d→∞

BS(Jd)≥ lim inf
d→∞

dimX(Jd)

deg(ωJd )
≥ 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Jd)= 1.
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The assertion about τ(Jd) follows from the discussion of Section 2.6 and the fact (proven in [Berger
et al. 2015, §3.1]) that Xd has semistable reduction at t = 0 and t =∞ whenever r divides d .

It is proven in [Berger et al. 2015, Proof of Proposition 7.5] that when r divides d , we have deg(ωJd )=

d(r − 1)/2. In general, if d ′ = lcm(d, r), we have deg(ωJd′
)= d ′(r − 1)/2 and Lemma 2.7.1 shows that

deg(ωJd )≤
d(r − 1)

2
+

2(r − 1)2

d ′/d
=

d(r − 1)
2

+ εd .

Since d ′/d is an integer, εd is bounded independently of d, so εd/d→ 0 as d→∞.
This completes the proof of the theorem. �

12. Quadratic twists of constant curves

We conclude the paper with a study of Brauer–Siegel ratios of quadratic twists of constant elliptic curves.
Throughout we let p be an odd prime number, Fq a finite field of characteristic p, and K = Fq(t).

12.1. Twists of a constant supersingular curve. Fix a supersingular elliptic curve E0 over Fq and let
E = E0×Fq K . For a positive integer d relatively prime to p, let Ed be the twist of E by the quadratic
extension Fq(t,

√
td + 1) of K . By results of Milne, the Tate–Shafarevich group of Ed is finite.

Theorem 12.2. We have
lim

d→∞
(p,d)=1

BS(Ed)= 1.

Proof. Let Ed → P1 be the Néron model of Ed/K , and let Cd be the smooth projective curve over Fq

defined by y2
= xd

+ 1 and equipped with the action of µ2 given by the hyperelliptic involution. It is
easy to see that Ed is birational to the quotient of Cd ×Fq E0 by the (anti) diagonal action of µ2, i.e., by
µ2 acting via the hyperelliptic involution on both factors.

We are thus in position to apply the machinery of Section 6. In particular, it follows from Corollary 6.5
that

dimX(Ed)= dim HomA(H 1(Cd)/pn, H 1(E0)/pn)µ2 (12.2.1)

for all sufficiently large n.
Section 7.3 and Proposition 7.1 describe the cohomology group H 1(Cd). We recall the well-known

description of H 1(E0): It is a free W -module of rank 2 with a basis e0, e1 such that F(e0)= d0e1 and
F(e1)= d1e0 where d0 is a unit of W and d1 is p times a unit. (See [Dummigan 1995, §5] for a detailed
account.) To harmonize with earlier notation, let J0 = {0}, J1 = {1}, and J = J0 ∪ J1, and equip J with
the nontrivial action of 〈p〉.

Also, let
I = Z/dZ \

{
0, d

2 (if d is even)
}
,

decomposed as I0 =
{
i | d

2 < i < d
}

and I1 =
{
i | 0 < i < d

2

}
. Section 7 and the preceding paragraph

show that the crystalline cohomology groups H 1(Cd) and H 1(E0) with their actions of Frobenius furnish
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data (M, N , I, J, ci , d j ) as in Section 8.1, as well as the invariant d(o) for each orbit o of 〈p〉 on I × J .
We may thus compute the dimension in the last display by the methods of Section 8.

Since Cd and E0 are hyperelliptic, the µ2-invariant part of their cohomology is trivial, so

HomA(H 1(Cd)/pn, H 1(E0)/pn)µ2 = HomA(H 1(Cd)/pn, H 1(E0)/pn).

Applying Theorem 8.3, we conclude that

dimX(Ed)=
∑
o∈O

d(o) (12.2.2)

where the sum is over all orbits of 〈p〉 on I × J .
The equidistribution result Proposition 9.3 implies that∑

o∈O

d(o)= d
2 + εd

where εd/d→ 0 as d→∞.
Since td

+ 1 has distinct roots, it is easy to see that deg(ωEd )=
⌈ d

2

⌉
. Thus Corollary 4.7 implies that

lim inf
d→∞

BS(Ed)≥ lim inf
d→∞

dimX(Ed)

deg(ωEd )
= 1.

Taking into account the upper bound (1.1) of Hindry and Pacheco, we conclude that

lim
d→∞

BS(Ed)= 1. �

12.3. Twists of an constant ordinary curve. Now let E0 be an ordinary elliptic curve over Fq and set
E = E0×Fq K . One could use methods similar to those in the last section to compute dimX(Ed) for the
twist of E by Fq(t,

√
td + 1), but much more is easily deduced from results of Katz in p-adic cohomology.

Theorem 12.4. Let E ′ be any quadratic twist of E. Then

dimX(E ′)= 0.

Proof. A variety X over a finite field is said to be Hodge–Witt if all of its deRham–Witt cohomology
groups H i (X,W�

j
X ) are finitely generated. A curve is automatically Hodge–Witt, and a surface which

satisfies the Tate conjecture is Hodge–Witt if and only if the dimension of its Brauer group (in the sense
of Proposition/Definition 4.1) is 0 [Milne 1975, §1]. In other words, a surface X over Fq satisfying the
Tate conjecture is Hodge–Witt if and only if

lim
n→∞

log|H 2(X ×Fq Fqn ,Gm)[p∞]|
log(qn)

= 0.

A theorem of Katz [1983] says that a product of varieties is Hodge–Witt if and only if one of the
factors is ordinary and the other is Hodge–Witt.

Now let C→P1 be a double cover corresponding to a quadratic extension K ′/K . Then the Néron model
E ′→ P1 of E ′/K is birational to the quotient of C×Fq E0 by µ2 acting diagonally by the hyperelliptic



On the Brauer–Siegel ratio for abelian varieties over function fields 1119

involutions. Since p > 2, the Brauer group of the quotient is the µ2-invariant part of the Brauer group of
C×Fq E0, and the latter has dimension 0 since E0 is ordinary. It follows that the Brauer group of E ′ has
dimension 0 and so X(E ′) has dimension zero. �

Thus for a quadratic twist of a constant, ordinary elliptic curve, our p-adic methods do not give a
nontrivial lower bound on the Brauer–Siegel ratio. This is compatible with Conjecture 1.7 of [Hindry and
Pacheco 2016], which predicts that the lim inf of BS(E ′) as E ′ runs over all quadratic twists is 0.

We finish by remarking that Griffon [2015] has shown that if Ed is the twist of a constant ordinary
E/K by the quadratic extension Fq(t,

√
td + 1), then as d runs through “supersingular” integers, i.e.,

those that divide p f
+ 1 for some f , the limit of BS(Ed) is 1. In conjunction with Theorem 12.4, this

shows that the Brauer–Siegel ratio of an elliptic curve E ′ may be large even when the dimension of
X(E ′) is zero.
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