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1. Introduction

1.1. Paramodularity. The Langlands program predicts deep connections between geometry and auto-
morphic forms, encoded in associated L-functions and Galois representations. The celebrated modularity
of elliptic curves E over Q [Wiles 1995; Taylor and Wiles 1995; Breuil et al. 2001] provides an
important instance of this program: to the isogeny class of E of conductor N , we associate a classical
cuspidal newform f ∈ S2(00(N )) of weight 2 and level N with rational Hecke eigenvalues such that
L(E, s)= L( f, s), and conversely. In particular, L(E, s) shares the good analytic properties of L( f, s)
including analytic continuation and functional equation, and the `-adic Galois representations of E and of
f are equivalent. More generally, by work of Ribet [1992] and the proof of Serre’s conjecture by Khare
and Wintenberger [2009a; 2009b], isogeny classes of abelian varieties A of dimension d , of GL2-type over
Q, and of conductor N d are in bijection with Galois orbits of classical cuspidal newforms f ∈ S2(01(N )),
with matching (imprimitive) L-functions and `-adic Galois representations.

Continuing this program, let A be an abelian surface over Q; for instance, we may take A= Jac(X) the
Jacobian of a curve of genus 2 over Q. We suppose that End(A)= Z, i.e., A has minimal endomorphisms
defined over Q, and in particular A is not of GL2-type over Q. For example, if A has prime conductor,
then End(A)= Z by a theorem of Ribet (see Lemma 4.1.2). A conjecture of H. Yoshida [1980; 2007]
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compatible with the Langlands program is made precise by a conjecture of Brumer and Kramer [2014,
Conjecture 1.1], restricted here for simplicity.

Conjecture 1.1.1 (Brumer and Kramer). To every abelian surface A over Q of conductor N with
End(A)= Z, there exists a cuspidal Siegel paramodular newform f of degree 2, weight 2, and level N
with rational Hecke eigenvalues that is not a Gritsenko lift, such that

L(A, s)= L( f, s, spin). (1.1.2)

Moreover, f is unique up to (nonzero) scaling and depends only on the isogeny class of A; and if N is
squarefree, then this association is bijective.

Conjecture 1.1.1 is often referred to as the paramodular conjecture; in what follows, we say nonlift
for not a Gritsenko lift. As pointed out by Frank Calegari, in general it is necessary to include abelian
fourfolds with quaternionic multiplication for the converse assertion: for a precise statement for arbitrary
N and further discussion, see [Brumer and Kramer 2019, Section 8].

Extensive experimental evidence supports Conjecture 1.1.1 [Brumer and Kramer 2014; Poor and Yuen
2015]. There is also theoretical evidence for this conjecture when the abelian surface A is potentially of
GL2-type, acquiring extra endomorphisms over a quadratic field: see Johnson-Leung and Roberts [2012]
for real quadratic fields, Berger, Dembélé, Pacetti, and Şengün [2015] for imaginary quadratic fields, and
Dembélé and Kumar [2016] for explicit examples. For a complete treatment of the many possibilities for
the association of modular forms to abelian surfaces with potentially extra endomorphisms, see work of
Booker, Sijsling, Sutherland, Voight, and Yasaki [2016]. What remains is the case where End(AQal)= Z,
which is to say that A has minimal endomorphisms defined over the algebraic closure Qal; we say then
that A is typical. (We do not say generic, since it is not a Zariski open condition on the moduli space.)

Recently, there has been dramatic progress in modularity lifting theorems for nonlift Siegel modular
forms (i.e., forms not of endoscopic type): see Pilloni [2012] for p-adic overconvergent modularity lifting,
as well as recent work by Calegari and Geraghty [2016, §1.2], Berger and Klosin with Poor, Shurman and
Yuen [Berger and Klosin 2017] establishing modularity in the reducible case when certain congruences
are provided, and a recent manuscript by Boxer, Calegari, Gee, and Pilloni [2018] establishing potential
modularity over totally real fields.

1.2. Main result. For all prime levels N < 277, the paramodular conjecture is known: there are no
paramodular forms of the specified type by work of Poor and Yuen [2015, Theorem 1.2], and correspond-
ingly there are no abelian surfaces by work of Brumer and Kramer [2014, Proposition 1.5]. At level
N = 277, there exists a cuspidal, nonlift Siegel paramodular cusp form, unique up to scalar multiple,
by work of Poor and Yuen [2015, Theorem 1.3]: this form is given explicitly as a rational function in
Gritsenko lifts of ten weight 2 theta blocks — see (6.2.2).

Our main result is as follows.

Theorem 1.2.1. Let X be the curve over Q defined by

y2
+ (x3

+ x2
+ x + 1)y =−x2

− x;
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let A = Jac(X) be its Jacobian, a typical abelian surface over Q of conductor 277. Let f be the cuspidal,
nonlift Siegel paramodular form of genus 2, weight 2, and conductor 277, unique up to scalar multiple.
Then

L(A, s)= L( f, s, spin).

Theorem 1.2.1 is not implied by any of the published or announced results on paramodularity, and its
announcement in October 2015 makes it the first established typical case of the paramodular conjecture.
More recently, Berger and Klosin with Poor, Shurman, and Yuen [Berger and Klosin 2017] recently
established the paramodularity of an abelian surface of conductor 731 using a congruence with a Siegel
Saito–Kurokawa lift.

Returning to the paramodular conjecture, by work of Brumer and Kramer [2018, Theorem 1.2] there is
a unique isogeny class of abelian surfaces (LMFDB label 277.a) of conductor 277. Therefore, the proof
of Conjecture 1.1.1 for N = 277 is completed by Theorem 1.2.1. (More generally, Brumer and Kramer
[2014] also consider odd semistable conductors at most 1000.)

The theorem implies, and we prove directly, the equality of polynomials L p(A, T ) = Q p( f, T ) for
all primes p arising in the Euler product for the corresponding L-series. These equalities are useful in
two ways. On the one hand, the Euler factors L p(A, T ) can be computed much more efficiently than
for Q p( f, T ): without modularity, to compute the eigenvalues of a Siegel modular form f is difficult
and sensitive to the manner in which f was constructed, whereas computing L p(A, T ) can be done in
average polynomial time [Harvey 2014] and also efficiently in practice [Harvey and Sutherland 2016].
On the other hand, the L-series L(A, s) is endowed with the good analytic properties of L( f, s, spin):
without (potential) modularity, one knows little about L(A, s) beyond convergence in a right half-plane.

By work of Johnson-Leung and Roberts [2014, Main Theorem] there are infinitely many quadratic
characters χ such that the twist fχ of the paramodular cusp form by χ is nonzero. By a local calculation
[Johnson-Leung and Roberts 2017, Theorem 3.1], we have Q p( fχ , T )= Q p( f, χ(p)T ) and similarly
L p(Aχ , T )= L p(A, χ(p)T ) for good primes p. Consequently, we have L(Aχ , s)= L( fχ , s, spin) for
infinitely many characters χ , and in this way we also establish the paramodularity of infinitely many twists.

We also establish paramodularity for two other isogeny classes in this article of conductors N = 353
and N = 587, and our method is general enough to establish paramodularity in a wide variety of cases.

1.3. The method of Faltings–Serre. We now briefly discuss the method of proof and a few relevant
details. Let GalQ := Gal(Qal

|Q) be the absolute Galois group of Q. To establish paramodularity, we
associate 2-adic Galois representations ρA, ρ f : GalQ→ GSp4(Q

al
2 ) to A and f , and then we prove by

an extension of the Faltings–Serre method that these Galois representations are equivalent. The Galois
representation for A arises via its Tate module. By contrast, the construction of the Galois representation
for the Siegel paramodular form — for which the archimedean component of the associated automorphic
representation is a holomorphic limit of discrete series — is much deeper: see Theorem 4.3.4 for a precise
statement, attribution, and further discussion.
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The first step in carrying out the Faltings–Serre method is to prove equivalence modulo 2, which can
be done using information on ρ f obtained by computing Q p( f, T ) modulo 2 for a few small primes p.
For example, p = 3, 5 are enough for N = 277 (see Lemma 7.1.4) and in this case the mod 2 residual
Galois representations

ρA, ρ f : GalQ→ GSp4(F2)' S6

have common image S5(b) up to conjugation. (There are two nonconjugate subgroups of S6 isomorphic
to S5, interchanged by an outer automorphism of S6: see (5.1.8).)

The second step is to show that the traces of the two representations agree for an effectively computable
set of primes p. For example, to finish the proof of Theorem 1.2.1 in level N = 277, it suffices to show
equality of traces for primes p ≤ 43.

We also carry out this strategy to prove paramodularity for two other isogeny classes of abelian surfaces.
For N = 353, we have the isogeny class with LMFDB label 353.a; we again represent the paramodular
form as a rational function in Gritsenko lifts; and the common mod 2 image is instead the wreath product
S3 o S2 of order 72. For N = 587, we have the class with label 587.a; instead, we represent the form as a
Borcherds product; and in this case the mod 2 image is the full group S6.

1.4. Contributions and organization. Our contributions in this article are threefold. First, we show how
to extend the Faltings–Serre method from GL2 to a general algebraic group when the residual mod `
representations are absolutely irreducible. We then discuss making this practical by consideration of core-
free subgroups in a general context, and we hope this will be useful in future investigations. We then make
these extensions explicit for GSp4 and `=2. Whereas for GL2, Serre’s original “quartic method” considers
extensions whose Galois groups are no larger than S4, for GSp4 we must contemplate large polycyclic
extensions of S6-extensions — accordingly, the Galois theory and class field theory required to make the
method explicit and to work in practice are much more involved. It would be much more difficult (perhaps
hopeless) to work with GL4 instead of GSp4, so our formulation is crucial for practical implementation.

By other known means, the task of calculating the required traces for ρ f would be extremely difficult.
Our second contribution in this article is to devise and implement a method of specialization of the Siegel
modular form to a classical modular form, making this calculation a manageable task.

Our third contribution is to carry out the required computations. There are nine absolutely irreducible
subgroups of GSp4(F2). The three examples we present cover each of the three possibilities for the residual
image when it is absolutely irreducible and the level is squarefree (see Lemma 5.2.1). Our methods work
for any abelian surface whose mod 2 image is absolutely irreducible, as well as situations for paramodular
forms of higher weight. Our implementations are suitable for further investigations along these lines.

The paper is organized as follows. In Section 2, we explain the extension of the method of Faltings–Serre
in a general (theoretical) algorithmic context; we continue in Section 3 by noting a practical extension of
this method using some explicit Galois theory. We then consider abelian surfaces, paramodular forms,
and their associated Galois representations tailored to our setting in Section 4. Coming to our intended
application, we provide in Section 5 the group theory and Galois theory needed for the Faltings–Serre
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method for GSp4(Z2). In Section 6, we explain a method to compute Hecke eigenvalues of Siegel
paramodular forms using restriction to a modular curve. Finally, in Section 7, we combine these to
complete our task and verify paramodularity.

2. A general Faltings–Serre method

In this section, from the point of view of general algorithmic theory, we formulate the Faltings–Serre
method to show that two `-adic Galois representations are equivalent, under the hypothesis that the
residual representations are absolutely irreducible. A practical method for the group GSp4(Z2) is given in
Section 5. For further reading on the Faltings–Serre method, see the original criterion given by Serre
[1985] for elliptic curves over Q, an extension for residually reducible representations by Livné [1987,
§4], the general overview for GL2 over number fields by Dieulefait, Guerberoff, and Pacetti [2010, §4],
and the description for GLn by Schütt [2006, §5]. For an algorithmic approach in the pro-p setting, see
[Grenié 2007].

2.1. Trace computable representations. Let F be a number field with ring of integers ZF . Let Fal be
an algebraic closure of F ; we take all algebraic extensions of F inside Fal. Let GalF := Gal(Fal

| F) be
the absolute Galois group of F . Let S be a finite set of places of F , let GalF,S be the Galois group of the
maximal subextension of Fal

⊇ F unramified away from S. By a prime of F we mean a nonzero prime
ideal p⊂ ZF , or equivalently, a finite place of F .

Let G ⊆ GLn be an embedded algebraic group over Q. Let ` be a prime of good reduction for the
inclusion G⊆ GLn . A representation GalF,S→ G(Z`) is a continuous homomorphism.

Definition 2.1.1. Let ρ1, ρ2 : GalF,S → G(Z`) be two representations. We say ρ1 and ρ2 are (GLn-)
equivalent, and we write ρ1 ' ρ2, if there exists g ∈ GLn(Z`) such that

ρ1(σ )= gρ2(σ )g−1, for all σ ∈ GalF,S .

Definition 2.1.2. A representation ρ : GalF,S → G(Z`) is trace computable if tr ρ takes values in a
computable subring of Z` and there exists a deterministic algorithm to compute tr(Frobp) for p 6∈ S, where
Frobp denotes the conjugacy class of the Frobenius automorphism at p.

For precise definitions and a thorough survey of the subject of computable rings, see [Stoltenberg-
Hansen and Tucker 1999]. See [Cohen 1993] for background on algorithmic number theory.

Remark 2.1.3. Galois representations arising in arithmetic geometry are often trace computable. For
example, by counting points over finite fields, we may access the trace of Frobenius acting on Galois
representations arising from the étale cohomology of a nice variety: then the trace takes values in Z⊆ Z`

(independent of `). Similarly, algorithms to compute modular forms give as output Hecke eigenvalues,
which can then be interpreted in terms of the trace of Frobenius on the associated Galois representation.
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Looking only at the trace of a representation is justified in certain cases by the following theorem, a
cousin to the Brauer–Nesbitt theorem. For r ≥ 1, write

ρ mod `r
: GalF,S→ G(Z/`r Z)

for the reduction of ρ modulo `r , and as a shorthand write

ρ : GalF,S→ G(F`)

for the residual representation ρ = ρ mod `. Given two representations ρ1, ρ2 : GalF,S → G(Z`), we
write ρ1 ' ρ2 (mod `r ) to mean that (ρ1 mod `r ) ' (ρ2 mod `r ) are equivalent as in Definition 2.1.1
but over Z/`r Z; we write ρ1 ≡ ρ2 (mod `r ) to mean that (ρ1 mod `r ) = (ρ2 mod `r ); and we write
tr ρ1 ≡ tr ρ2 (mod `r ) if tr ρ1(σ ) ≡ tr ρ2(σ ) (mod `r ) for all σ ∈ GalF,S . Finally, we say that ρ is
absolutely irreducible if the representation GalF,S→ G(F`) ↪→ GLn(F`) is absolutely irreducible.

Theorem 2.1.4 (Carayol). Let ρ1, ρ2 : GalF,S→ G(Z`) be two representations such that ρ1 is absolutely
irreducible and let r ≥ 1. Then ρ1 ' ρ2 mod `r if and only if tr ρ1 ≡ tr ρ2 modulo `r .

Proof. See [Carayol 1994, Théorème 1]. �

We now state the main result of this section. We say that a prime p of F is a witness to the fact that
ρ1 6' ρ2 if tr ρ1(Frobp) 6= tr ρ2(Frobp).

Theorem 2.1.5. There is a deterministic algorithm that takes as input

an algebraic group G over Q, a number field F,

a finite set S of primes of F, a prime `, and

ρ1, ρ2 : GalF,S→ G(Z`) trace computable representations

with ρ1, ρ2 absolutely irreducible,

(2.1.6)

and gives as output {
true if ρ1 ' ρ2;

false and a witness prime p 6∈ S if ρ1 6' ρ2.

The algorithm does not operate on the representations ρ1, ρ2 themselves, only their traces. The proof
of Theorem 2.1.5 will occupy us throughout this section.

2.2. Testing equivalence of residual representations. We first prove a variant of our theorem for the
residual representations. For a finite extension K0⊇ F of fields with [K0 : F] = n and with Galois closure
K , we write Gal(K0 | F)≤ Sn for the Galois group Gal(K | F) as a permutation group on the roots of a
minimal polynomial of a primitive element for K0.

Lemma 2.2.1. There exists a deterministic algorithm that takes as input

a number field F,

a finite set S of places of F, and

a transitive group G ≤ Sn,
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and gives as output

all extensions K0 ⊇ F(up to isomorphism) of degree n unramified at all places v 6∈ S

such that Gal(K0 | F)' G as permutation groups.

Moreover, every Galois extension K ⊇ F unramified outside S such that Gal(K | F) ' G as groups
appears as the Galois closure of at least one such K0 ⊇ F.

Proof. The extensions K0 have degree n and are unramified away from S, so they have effectively bounded
discriminant by Krasner’s lemma. Therefore, there are finitely many such fields up to isomorphism, by a
classical theorem of Hermite. The enumeration can be accomplished algorithmically by a Hunter search:
see [Cohen 2000, §9.3]. The computation and verification of Galois groups can also be accomplished
effectively.

The second statement follows from basic Galois theory. �

Remark 2.2.2. For theoretical purposes, it is enough to consider G ↪→ Sn in its regular representation
(n = #G), for which the algorithm yields Galois extensions K = K0 ⊇ F . For practical purposes, it is
crucial to work with small permutation representations.

Algorithm 2.2.3. The following algorithm takes as input the data (2.1.6) and gives as output{
true if ρ1 ' ρ2;

false and a witness prime p 6∈ S if ρ1 6' ρ2.

1. Using the algorithm of Lemma 2.2.1, enumerate all Galois extensions K ⊇ F up to isomorphism
that are unramified away from S and such that Gal(K | F) is isomorphic to a subgroup of G(F`).

2. For each of these finitely many fields, enumerate all injective group homomorphisms θ :Gal(K | F) ↪→
G(F`) up to conjugation by GLn(F`).

3. Looping over primes p 6∈ S of F , rule out pairs (K , θ) such that

tr ρ1(Frobp) 6≡ tr θ(Frobp) (mod `)

for some p until only one possibility (K1, θ1) remains.

4. Let P be the set of primes used in Step 3. If

tr ρ2(Frobp)≡ tr θ1(Frobp) (mod `)

for all p ∈ P , return true; otherwise, return false and a prime p ∈ P such that tr ρ2(Frobp) 6≡
tr θ1(Frobp).

Proof of correctness. Let K1 be the fixed field under ker ρ1; then K1 is unramified away from S, and we
have an injective homomorphism ρ1 : Gal(K1 | F) ↪→ G(F`). Thus (K1, ρ1) is among the finite list of
pairs (K , θ) computed in Step 2.

Combining Theorem 2.1.4 (for r = 1) and the Chebotarev density theorem, we can effectively determine
if ρ1 6' θ by finding a prime p such that tr ρ1(Frobp) 6≡ tr θ(Frobp) (mod `). So by looping over the
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primes p 6∈ S of F in Step 3, we will eventually rule out all of the finitely many candidates except one
(K ′1, θ

′

1) and, in the style of Sherlock Holmes, we must have K1 = K ′1 and ρ1 ' θ1.
For the same reason, if tr ρ2(Frobp)≡ tr θ1(Frobp) (mod `) for all p ∈ P we must have ρ2 ' θ1 ' ρ1.

Otherwise, we find a witness prime p ∈ P . �

Remark 2.2.4. In practice, we may also use the characteristic polynomial of ρi (Frobp) when it is
computable, since it gives more information about the residual image and thereby limits the possible
subgroups of G(F`) we need to consider in Step 1. This allows for a smaller list of pairs (K , θ) and a
smaller list of primes: see Lemma 7.1.4 for an example.

2.3. Faltings–Serre and deformation. With the residual representations identified, we now explain the
key idea of the Faltings–Serre method: we exhibit another representation that measures the failure of
two representations to be equivalent. This construction is quite natural when viewed in the language of
deformation theory: see [Gouvêa 2001, Lecture 4] for background.

For the remainder of this section, let ρ1, ρ2 : GalF,S → G(Z`) be representations such that ρ1 '

ρ2 (mod `r ) for some r ≥1. Conjugating ρ2, we may assume ρ1≡ρ2 (mod `r ), and we write ρ :=ρ1=ρ2

for the common residual representation modulo `. We suppose throughout that ρ is absolutely irreducible.
Let Lie(G)≤Mn be the Lie algebra of G over Q as a commutative algebraic group. Attached to ρ is

the adjoint residual representation

ad ρ : GalF,S→ AutF`(Mn(F`))

σ 7→ σad
(2.3.1)

defined by σad(a) := ρ(σ)aρ(σ)−1 for a ∈Mn(F`). The adjoint residual representation ad ρ also restricts
to take values in AutF`(Lie(G)(F`)), but we will not need to introduce new notation for this restriction.

Because we consider representations with values in G up to equivalence in GLn , it is natural that our
deformations will take values in Lie(G) up to equivalence in Mn . With this in mind, we define the group
of cocycles

Z1(F, ad ρ;Lie(G)(F`))

:=
{
(µ : GalF,S→ Lie(G)(F`)) : µ(στ)= µ(σ)+ σad(µ(τ)), ∀σ, τ ∈ GalF,S

}
(2.3.2)

and the subgroup of coboundaries

B1(F, ad ρ;Mn(F`))

:=
{
µ ∈ Z1(F, ad ρ;Lie(G)(F`)) : ∃a ∈Mn(F`) such that µ(σ)= a− σad(a), ∀σ ∈ GalF,S

}
. (2.3.3)

From the exact sequence

1→ 1+ `r Lie(G)(F`)→ G(Z/`r+1Z)→ G(Z/`r Z)→ 1, (2.3.4)

we conclude that for all σ ∈ GalF,S there exists µ(σ) ∈ Lie(G)(F`) such that

ρ1(σ )≡ (1+ `rµ(σ))ρ2(σ ) (mod `r+1). (2.3.5)
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Lemma 2.3.6. The following statements hold:

(a) The map σ 7→ µ(σ) defined by (2.3.5) is a cocycle µ ∈ Z1(F, ad ρ;Lie(G)(F`)).

(b) We have ρ1 ' ρ2 (mod `r+1) if and only if µ ∈ B1(F, ad ρ;Mn(F`)).

Proof. We verify the cocycle condition as follows:

ρ1(στ)= ρ1(σ )ρ1(τ )≡ (1+ `rµ(σ))ρ2(σ )(1+ `rµ(τ))ρ2(τ )

≡ (1+ `r (µ(σ )+ ρ2(σ )µ(τ)ρ2(σ )
−1))ρ2(σ )ρ2(τ )

≡ (1+ `rµ(στ))ρ2(στ) (mod `r+1),

so µ(στ)= µ(σ)+σad(µ(τ)) as claimed. For the second statement, by definition ρ1 ' ρ2 (mod `r+1) if
and only if there exists ar ∈ GLn(Z/`

r+1Z) such that for all σ ∈ GalF,S we have

ρ1(σ )≡ arρ2(σ )a−1
r (mod `r+1). (2.3.7)

Since ρ1(σ ) ≡ ρ2(σ ) (mod `r ), the image of ar in GLn(Z/`
r Z) centralizes the image of ρ (mod `r ).

Since the image is irreducible, by Schur’s lemma we have ar mod `r is scalar, so without loss of generality
we may suppose ar ≡ 1 (mod `r ), so that ar = 1+ `r a for some a ∈Mn(F`). Expanding (2.3.7) then
yields

ρ1(σ )≡ (1+ `r a)ρ2(σ )(1+ `r a)−1
≡ (1+ `r a)ρ2(σ )(1− `r a)

≡ (1+ `r a− `rρ2(σ )aρ2(σ )
−1)ρ2(σ )

≡ (1+ `r (a− σad(a)))ρ2(σ ) (mod `r+1)

so µ(σ)= a− σad(a) by definition (2.3.5). �

Our task now turns to finding an effective way to detect when µ is a coboundary. For this purpose, we
work with extensions of our representations using explicit parabolic groups. The adjoint action of GLn

on Mn gives an exact sequence

0→Mn→Mn oGLn→ GLn→ 1 (2.3.8)

which extends to a linear representation via the parabolic subgroup, as follows. We embed

Mn oGLn ↪→ GL2n

(a, g) 7→
(1

0
a
1

)( g
0

0
g

)
=
( g

0
ag
g

) (2.3.9)

(on points, realizing Mn oGLn as an algebraic matrix group). The embedding (2.3.9) is compatible with
the exact sequence (2.3.8): the natural projection map

π :Mn oGLn→ GLn (2.3.10)

corresponds to the projection onto the top left entry, it is split by the diagonal embedding GLn ↪→ GL2n ,
and it has kernel isomorphic to Mn in the upper-right entry. We will identify Mn oGLn and its subgroups
with their image in GL2n .
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Let utr : (Mn oGLn)(F`)→ F` denote the trace of the upper right n× n-block.

Lemma 2.3.11. The map utr is well-defined on conjugacy classes in (Mn oGLn)(F`).

Proof. For all g, h ∈ GLn(F`) and a, b ∈Mn(F`) we have(
h bh
0 h

)(
g ag
0 g

)(
h−1
−h−1b

0 h−1

)
=

(
hgh−1 hagh−1

+ bhgh−1
− hgh−1b

0 hgh−1

)
(2.3.12)

so the upper trace is tr(hagh−1
+ bhgh−1

− hgh−1b)= tr(ag). �

For µ ∈ Z1(F, ad ρ;Lie(G)(F`)) we define

ϕµ : GalF,S→ (Lie(G)oG)(F`)≤ GL2n(F`)

σ 7→ (µ(σ ), ρ(σ ))=

(
ρ(σ) µ(σ)ρ(σ )

0 ρ(σ)

)
.

(2.3.13)

Proposition 2.3.14. Let µ ∈ Z1(F, ad ρ;Lie(G)(F`)). Then the following statements hold:

(a) The map ϕµ defined by (2.3.13) is a group homomorphism, and π ◦ϕµ = ρ.

(b) We have µ ∈ B1(F, ad ρ;Mn(F`)) if and only if ϕµ is conjugate to ϕ0 =
(
ρ
0

0
ρ

)
by an element of

Mn(F`)≤ (Mn oGLn)(F`).

(c) Suppose µ is defined by (2.3.5). Then for all σ ∈ GalF,S ,

utrϕµ(σ )= tr
(
µ(σ)ρ(σ )

)
≡

tr ρ1(σ )− tr ρ2(σ )

`r (mod `). (2.3.15)

Proof. For (a), the cocycle condition implies that ϕµ is a group homomorphism: the upper right entry of
ϕµ(στ) is

µ(στ)ρ(στ)= (µ(σ )+ ρ(σ)µ(τ)ρ(σ )−1)ρ(σ )ρ(τ)= µ(σ)ρ(σ )ρ(τ)+ ρ(σ)µ(τ)ρ(τ)

which is equal to the upper right entry of ϕµ(σ )ϕµ(τ ) obtained by matrix multiplication.
For (b), the calculation(

1 a
0 1

)(
ρ(σ) 0

0 ρ(σ)

)(
1 −a
0 1

)
=

(
ρ(σ) aρ(σ)− ρ(σ)a

0 ρ(σ)

)
(2.3.16)

shows that ϕµ = aϕ0a−1 for a ∈Mn(F`) if and only if µ(σ)ρ(σ ) = aρ(σ)− ρ(σ)a for all σ ∈ GalF,S .
Multiplying on the right by ρ(σ)−1, we see this is equivalent to µ(σ)= a− σad(a) for all σ ∈ GalF,S .

Finally, (c) follows directly from (2.3.5). �

Definition 2.3.17. Let K be the fixed field under ρ. We say a pair (L , ϕ) extends (K , ρ) if

ϕ : GalF,S→ (Lie(G)oG)(F`)≤ GL2n(F`)

is a representation with fixed field L such that π ◦ϕ = ρ.

If (L , ϕ) extends (K , ρ), then L ⊇ K is an `-elementary abelian extension unramified outside S, since
ϕ induces an injective group homomorphism Gal(L | K ) ↪→ Lie(G)(F`).
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Definition 2.3.18. A pair (L , ϕ) extending (K , ρ) is obstructing if utrϕ 6≡ 0 (mod `), and we call
the group homomorphism ϕ an obstructing extension of ρ. An element σ ∈ Gal(L | F) such that
utrϕ(σ) 6≡ 0 (mod `) is called obstructing for ϕ.

We note the following corollary of Proposition 2.3.14.

Corollary 2.3.19. Letµ be defined by (2.3.5) and ϕµ by (2.3.13). Then ϕµ extends ρ, and ϕµ is obstructing
if and only if µ 6∈ B1(F, ad ρ;Mn(F`)).

Proof. The map ϕµ extends ρ by Proposition 2.3.14(a). We prove the contrapositive of the second
statement: µ ∈B1(F, ad ρ;Mn(F`)) if and only if utrϕµ ≡ 0 (mod `). The implication (⇒) is immediate
from Proposition 2.3.14(b) and the invariance of utr by conjugation (Lemma 2.3.11). For (⇐), if
utrϕµ ≡ 0 (mod `) then tr ρ1 ≡ tr ρ2 (mod `r+1) by Proposition 2.3.14(c). Now Theorem 2.1.4 implies
ρ1 ' ρ2 (mod `r+1), hence µ ∈ B1(F, ad ρ;Mn(F`)) by Lemma 2.3.6(b). �

Before we conclude this section, we note the following important improvement. Let Lie0(G)≤ Lie(G)
be the subgroup of trace zero matrices, and note that Lie0(G)(F`) is invariant by the adjoint residual
representation.

Lemma 2.3.20. If det ρ1 = det ρ2, then µ takes values in Lie0(G)(F`).

Proof. By (2.3.5), we have 1 = det(ρ1ρ
−1
2 ) = det(1 + `rµ) ≡ 1 + `r trµ (mod `2r ) so accordingly

trµ(σ)≡ 0 (mod `) and µ(σ) ∈ Lie0(G)(F`) for all σ ∈ GalF,S . �

In view of Lemma 2.3.20, we note that Proposition 2.3.14 and Corollary 2.3.19 hold when replacing
Lie(G) by Lie0(G).

2.4. Testing equivalence of representations. We now use Corollary 2.3.19 to prove Theorem 2.1.5.

Algorithm 2.4.1. The following algorithm takes as input the data (2.1.6) and gives as output{
true if ρ1 ' ρ2;

false and a witness prime p if ρ1 6' ρ2.

1. Apply Algorithm 2.2.3; if ρ1 6' ρ2, return false and the witness prime p. Otherwise, let K be the
fixed field under the common residual representation ρ.

2. Using the algorithm of Lemma 2.2.1, enumerate all `-elementary abelian extensions L⊇K unramified
away from S and such that Gal(L | F) is isomorphic to a subgroup of (Lie(G)oG)(F`).

3. For each of these finitely many fields L , by enumeration of injective group homomorphisms
Gal(L | F) ↪→ (Lie(G)oG)(F`), find all obstructing pairs (L , ϕ) extending (K , ρ) up to conjugation
by (Mn oGLn)(F`).

4. For each such pair (L , ϕ), find a prime p 6∈ S such that utrϕ(Frobp) 6≡ 0 (mod `).

5. Check if tr ρ1(Frobp)= tr ρ2(Frobp) for the primes in Step 4. If equality holds for all primes, return
true; if equality fails for p, return false and the prime p.
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Remark 2.4.2. In Step 2, we may instead use algorithmic class field theory (and we will do so in practice).
Moreover, if we know that det ρ1 = det ρ2, then we can replace Lie(G) by Lie0(G) by Lemma 2.3.20.

Proof of correctness. By the Chebotarev density theorem, in Step 4 we will eventually find a prime p 6∈ S,
since utr is well-defined on conjugacy classes by Lemma 2.3.11. In the final step, if equality does not
hold for some prime p, we have found a witness, and we correctly return false.

Otherwise, we return true and we claim that ρ1 ' ρ2 so the output is correct. Indeed, assume
for purposes of contradiction that ρ1 6' ρ2. Then there exists r ≥ 1 such that ρ1 ' ρ2 (mod `r ) but
ρ1 6' ρ2 (mod `r+1). We can assume as before that ρ1 ≡ ρ2 (mod `r ). We define µ by (2.3.5) and ϕµ by
(2.3.13). Let Lµ be the fixed field of ϕµ. By Lemma 2.3.6 we have µ 6∈B1(F,Lie(G)(F`);Mn(F`)), hence
by Corollary 2.3.19 ϕµ extends ρ and is obstructing. It follows that the pair (Lµ, ϕµ) is, up to conjugation
by (Mn o GLn)(F`), among the pairs computed in Step 3. In particular there is a prime p in Step 4
such that utrϕµ(Frobp) 6≡ 0 (mod `). But then by (2.3.15) we would have tr ρ1(Frobp) 6= tr ρ2(Frobp),
contradicting the verification carried out in Step 5. �

The correctness of Algorithm 2.4.1 then proves Theorem 2.1.5.

Remark 2.4.3. In the case G = GSp2g, using an effective version of the Chebotarev density theorem,
Achter [2005, Lemma 1.2] has given an effective upper bound in terms of the conductor and genus to
detect when two abelian surfaces are isogenous. This upper bound is of theoretical interest, but much too
large to be useful in practice. In a similar way, following the above strategy one could give theoretical
(but practically useless) upper bounds to detect when two Galois representations are equivalent.

3. Core-free subextensions

The matrix groups arising in the previous section are much too large to work with in practice. In this section,
we find comparatively small extensions whose Galois closure give rise to the desired representations.

3.1. Core-free subgroups. We begin with a condition that arises naturally in group theory and Galois
theory.

Definition 3.1.1. Let G be a finite group. A subgroup H ≤ G is core-free if G acts faithfully on the
cosets G/H .

Equivalently, H ≤ G is core-free if and only if
⋂

g∈G gHg−1
= {1}. For example, the subgroup {1} is

core-free.

Definition 3.1.2. Let K ⊇ F be a finite Galois extension of fields with G = Gal(K | F). A subextension
K ⊇ K0 ⊇ F is core-free if Gal(K | K0)≤ G is a core-free subgroup.

Lemma 3.1.3. The subextension K ⊇ K0 ⊇ F is core-free if and only if K is the Galois closure of K0

over F.

Proof. Immediate. �



On the paramodularity of typical abelian surfaces 1157

If K ⊇ K0 ⊇ F is a core-free subextension of K ⊇ F with K0 = F(α), then by definition the action of
Gal(K | F) on the conjugates of α defines a faithful permutation representation, equivalent to its action
on the left cosets of Gal(K | K0).

We slightly augment the notion of core-free subextension for two-step extensions of fields, as follows.

Definition 3.1.4. Let

1→ V → E π
−→G→ 1 (3.1.5)

be an exact sequence of finite groups. A core-free subgroup D ≤ E is exact (relative to (3.1.5)) if π(D)
is a core-free subgroup of G.

If D ≤ E is an exact core-free subgroup we let H := π(D) and W := V ∩ D = kerπ |D , so there is an
exact subsequence

1→W → D π
−→ H → 1 (3.1.6)

with both D ≤ E and H ≤ G core-free. (We do not assume that W ≤ V is core-free.)
Now let L ⊇ K ⊇ F be a two-step Galois extension with V := Gal(L | K ), E := Gal(L | F),

G := Gal(K | F) and π : E→ G the restriction, so we have an exact sequence as in (3.1.5).

Definition 3.1.7. We say L0 ⊇ K0 ⊇ F is an exact core-free subextension of L ⊇ K ⊇ F if L0 = L D

and K0 = K π(D) where D ≤ E is an exact core-free subgroup.

Let L0 ⊇ K0 ⊇ F be an exact core-free subextension of L ⊇ K ⊇ F , so that Gal(L | L0) = D.
As above we let H := π(D) = Gal(K | K0) and W := V ∩ D = Gal(L | K L0). By (3.1.6) we have
H ' D/W = Gal(K L0 | L0), and we have the following field diagram:

L

D
W

V

K L0

L0

H

K

GK0

H

F

(3.1.8)

By Lemma 3.1.3, L is the Galois closure of L0 over F , and K is the Galois closure of K0 over F . We
read the diagram (3.1.8) as giving us a way to reduce the Galois theory of the extension L ⊇ K ⊇ F to
L0 ⊇ K0 ⊇ F : the larger we can make D, the smaller the extension L0 ⊇ K0 ⊇ F , and the better for
working explicitly with the corresponding Galois groups.
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3.2. Application to Faltings–Serre. We now specialize the preceding discussion to our case of interest;
although working with core-free extensions does not improve the theoretical understanding, it is a crucial
simplification in practice.

In Steps 2–3 of Algorithm 2.4.1, we are asked to enumerate obstructing pairs (L , ϕ) extending (K , ρ),
with ϕ : Gal(L | F) ↪→ (Lie(G)oG)(F`).

Let G := img ρ ≤ G(F`). Given (L , ϕ), the image of ϕ is a subgroup E ≤ Lie(G)(F`)o G with
π(E)= G; letting V := Lie(G)(F`)∩ E we have an exact sequence

1→ V → E π
−→G→ 1 (3.2.1)

arising from (2.3.8).
So we enumerate the subgroups E ≤Lie(G)(F`)oG with π(E)=G, up to conjugation by Mn(F`)oG.

The enumeration of these subgroups depends only on G, so it may be done as a precomputation step,
independent of the representations.

For each such E , let D be an exact core-free subgroup relative to (3.2.1). We let L0 = L D and
K0 = K π(D), hence L0 ⊇ K0 ⊇ F is an exact core-free subextension of L ⊇ K ⊇ F and we have the field
diagram (3.1.8) where H = π(D) and W = V ∩ D as before. Since V is abelian, K L0 ⊇ K is Galois and
hence L0 ⊇ K0 is also Galois, with common abelian Galois group Gal(L0 | K0)'Gal(K L0 | K )' V/W .
So better than a Hunter search as in Lemma 2.2.1, we can use algorithmic class field theory (see [Cohen
2000, Chapter 4]) to enumerate the possible fields L0 ⊇ K0.

Accordingly, we modify Steps 2–3 of Algorithm 2.4.1 then as follows.

2′. Enumerate the subgroups E ≤ Lie(G)(F`)oG with π(E)= G, up to conjugation by Mn(F`)oG,
such that utr(E) 6≡ 0 (mod `). For each such subgroup E , perform the following steps:

a. Compute a set of representatives ξ of (outer) automorphisms of E such that ξ acts by an inner
automorphism on G, modulo inner automorphisms by elements of Mn(F`)oG.

b. Find an exact core-free subgroup D ≤ E and let W, H be as in (3.1.6).
c. Let K0= K H and use algorithmic class field theory to enumerate all possible extensions L0⊇ K0

unramified away from S such that Gal(L0 | K0)' V/W .

3′. For each extension L0 from Step 2′c and for each E , perform the following steps:

a. Compute an isomorphism of groups ϕ0 :Gal(L | F)−→∼ E extending ρ; if no such isomorphism
exists, proceed to the next group E .

b. Looping over ξ computed in Step 2′a, let ϕ := ξ ◦ϕ0, and record the pair (L , ϕ).

Proof of equivalence with Steps 2–3. We show that these steps enumerate all obstructing pairs (L , ϕ) up
to equivalence.

Let L be an obstructing extension. For an obstructing extension ϕ of ρ, the image E = imgϕ arises up
to conjugation in the list computed in Step 2′; such conjugation gives an equivalent representation. So we
may restrict our attention to the set 8 of obstructing extensions ϕ whose image is equal to E .
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With respect to the core-free subgroup D, the field L arises as the Galois closure of the field L0 = L D ,
and so L0 will appear in the list computed in Step 2′c. An exact core-free subgroup always exists as we
can always take D the trivial group.

In Step 3′a, we compute one obstructing extension ϕ0 ∈8. Any other obstructing extension ϕ ∈8
is of the form ϕ = ξ ◦ϕ0 where ξ is an automorphism of E that induces an inner automorphism on G;
when ξ arises from conjugation by an element of Lie(G)(F`)oG, we obtain a representation equivalent
to ϕ0, so the representatives ξ computed in Step 2′a cover all possible extensions ϕ up to equivalence. �

We now explain in a bit more detail Steps 2′a and 3′a — in these steps, we need to understand how
Gal(L | F) restricts to Gal(K | F) via its permutation representation. The simplest thing to do is just
to ignore the conditions on ξ , i.e., in Step 2′a allow all outer automorphisms and in Step 3′a take any
isomorphism of groups; a fortiori, we will still encounter every one satisfying the extra constraint. To
nail it down precisely, we compute the group Aut(L0 | F) of F-automorphisms of the field L0, for
each automorphism τ of order 2 compute the fixed field, until we find a field isomorphic to K0; then
Gal(K | F) is the stabilizer of {β, τ(β)}, and so we can look up the indices of these roots in the permutation
representation of Gal(L | F).

In the above, we may also use Lie0(G) in place of Lie(G) if we are also given det ρ1 = det ρ2, by the
discussion at the end of Section 2.3.

3.3. Computing conjugacy classes, in stages. We now discuss Step 4 of Algorithm 2.4.1, where we are
given (L , ϕ) and we are asked to find a witness prime. In theory, to accomplish this task we compute the
conjugacy class of Frobp in Gal(L | K ) using an algorithm of Dokchitser and Dokchitser [2013] and then
calculate utrϕ(σ) for any σ in this conjugacy class.

In practice, because of the enormity of the computation, we may not want to spend time computing
the conjugacy class if we can get away with less. In particular, we would like to minimize the amount
of work done per field. So we now describe in stages ways to find obstructing primes; each stage gives
correct output, but in refining the previous stage we may be able to find smaller primes. Each of these
stages involves a precomputation step that only depends of the group-theoretic data.

In Step 2′ above, we enumerate subgroups E and identify an exact core-free subgroup D. We identify
E with the permutation representation on the cosets E/D.

In Step 3′ above, we see the extension L ⊇ K ⊇ F via a core-free extension L0 ⊇ K0 ⊇ F , and these
fields are encoded by minimal polynomials of primitive elements. We may compute Gal(L | F) as a
permutation group with respect to some numbering of the roots, and then insist that the isomorphism
ϕ0 : Gal(L | F)−→∼ E computed in Step 3′a is an isomorphism of permutation representations.

For p 6∈ S, for the conjugacy class Frobp, the cycle type c(Frobp, L0) can be computed very quickly by
factoring the minimal polynomial of L0 modulo a power pk where it is separable (often but not always
k = 1 suffices). This cycle type may not uniquely identify the conjugacy class, but we can try to find a
cycle type which is guaranteed to be obstructing as follows.

4′. Perform the following steps:
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a. For each group E computed in Step 2′ with core-free subgroup D, identify E with the permutation
representation on the cosets E/D. For each ξ computed in Step 2′a for E , compute the set of
cycle types

Obc(E, ξ) := {c(ξ(γ )) : γ ∈ E and utr γ 6≡ 0 (mod `)} \ {c(ξ(γ )) : γ ∈ E and utr γ ≡ 0 (mod `)}.

b. For each field (L , ϕ), with L encoded by the core-free subfield L0 and ϕ↔ ξ as computed in
Step 3′b find a prime p such that c(Frobp, L0) ∈ Obc(E, ξ).

In computing Obc(E, ξ), of course it suffices to restrict to γ in a set of conjugacy classes for E .
Step 4′ gives correct output because the set of cycle types in Obc(E, ξ) are precisely those for which

every conjugacy class in E with the given cycle type is obstructing. It is the simplest version, and it is the
quickest to compute provided that Obc(E, ξ) is nonempty.

Remark 3.3.1. In Step 4′a, there may be a cycle type which arises in two ways, from γ, γ ′ ∈ E , with
utr γ 6≡ 0 (mod `) and utr γ ′ ≡ 0 (mod `); such a cycle type is not guaranteed to be obstructing.

Remark 3.3.2. In a situation where there are many outer automorphisms ξ to consider, it may be more
efficient (but give potentially larger primes and possibly fail more often) to work with the set

Obc(E) :=
⋂
ξ

Obc(E, ξ) (3.3.3)

consisting of cycle types with the property that every conjugacy class in E under every outer automorphism
ξ is obstructing. In this setting, in Step 4′b, we can loop over just the fields L and look for p with
c(Frobp) ∈ Obc(E).

In the next stage, we seek to combine also cycle type information from Gal(K | F), arising as a
permutation group from the field K0. Via the isomorphism ϕ : Gal(L | F)−→∼ E and the construction of
the core-free extension, as a permutation group Gal(L | F) is isomorphic to the permutation representation
of E on the cosets of D. (The numbering might be different, but there is a renumbering for which the
representations are equal.) In the same way, the group Gal(K | F) is isomorphic as a permutation group to
the permutation representation of π(E)= G on the cosets of the subgroup π(D)= H , where π : E→ G
is the projection. So we have the following second stage.

4′′. Perform the following steps:

a. For each group E computed in Step 2′ and each ξ computed in Step 2′a for E , compute the set
of pairs of cycle types

Obc(E,G,ξ)

:={(c(ξ(γ )),c(π(γ ))) :γ ∈E and utrγ 6≡0 (mod `)}\{(c(ξ(γ )),c(π(γ ))) :γ ∈E and utrγ ≡0 (mod `)}.

b. For each field (L , ϕ), with L encoded by L0 and ϕ↔ ξ , find a prime p such that

(c(Frobp, L0), c(Frobp, K0)) ∈ Obc(E,G, ξ).
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Step 4′′ works for the same reason as in Step 4′: the cycle type pairs in Obc(E,G, ξ) are precisely those
for which every conjugacy class in E with the given pair of cycle types is obstructing. The precomputation
is a bit more involved in this case, but the check for each field is still extremely fast.

Remark 3.3.4. Instead of the cycle type, a weaker alternative to Step 4′′ would be to record the order of
Frobp ∈ Gal(K | F).

Remark 3.3.5. Assuming that tr ρ(Frobp) can be computed efficiently, one additional piece of data that
may be appended to the pair of cycle types is tr ρ(γ ).

Remark 3.3.6. If L arises from several different choices of core-free subgroup, then these subgroups
give different (but conjugate) fields L0. Because we are not directly accessing the conjugacy class above,
but only cycle type information, it is possible that replacing L0 by a conjugate field will give smaller
witnesses. In other words, in Step 4′b or 4′′b above, we could loop over the core-free subgroups D and
take the smallest witness among them.

Finally, we may go all the way and compute conjugacy classes. Write [γ ]E for the conjugacy class of
a group element γ ∈ E .

4′′′. Perform the following steps:

a. For each group E computed in Step 2′ and each ξ computed in Step 2′a for E , compute the set
of obstructing conjugacy classes

Ob(E, ξ) := {[γ ]E : γ ∈ E and utr γ 6≡ 0 (mod `)}

b. For each field (L , ϕ), with L encoded by L0 and ϕ ↔ ξ , find a prime p such that Frobp ∈
Ob(E,G, ξ).

We now explain some examples in detail which show the difference between these stages.

Example 3.3.7. Anticipating one of our three core cases, we consider G= GSp4 and `= 2 over F =Q.
(The reader may wish to skip ahead and read Sections 4–5 to read the details of the setup, but this
example is still reasonably self-contained.) We consider the case of a residual representation with image
G = S5(b) ≤ GSp4(F2) (see (5.1.8)), and then a subgroup E ≤ sp4 o G with dimF2 V = 10. We find a
core-free subgroup D where #H = 10 and [V :W ] = 2.

We compute in Step 2′a that we need to consider 8 automorphisms ξ , giving rise to 8 homomorphisms ϕ.
With respect to one such ξ , we find that there are 48 conjugacy classes that are obstructing. Among these,
computing as in Step 4′a, we find that 17 are recognized by their L0-cycle type:

Obc(E; ξ)={3621,412418,412516,4318,432116,613421,814222,8143,102,1213221,1216121
}. (3.3.8)

If instead we call Step 4′′a, we find that 35= # Obc(E,G, ξ) are recognized by the pair of L0, K0-cycle
types (and 22 recognized by L0-cycle type and K0-order). This leaves 13 conjugacy classes that cannot
be recognized purely by cycle type considerations, for which Step 4′′′ would be required.
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For the other choices of ξ , we obtain similar numbers but different cycle types. If we restrict to just
L0-cycle types that work for all such as in Remark 3.3.2, we are reduced to a set of 8:

Obc(E)= {412418, 412516, 4318, 432116, 613421, 814222, 8143, 102
}. (3.3.9)

To see how this plays out with respect to the sizes of primes, we work with the field K arising as the
Galois closure of K0 = K H defined by a root of the polynomial

x10
+ 3x9

+ x8
− 10x7

− 17x6
− 7x5

+ 11x4
+ 18x3

+ 13x2
+ 5x + 1

and similarly L0 = L D by a root of

x20
+ 3x18

+ 5x16
+ 2x14

− 5x12
− 13x10

− 13x8
− 6x6

+ x4
+ x2
− 1.

If we restrict to the cycle types in (3.3.8) (or (3.3.9)), we obtain the multiset of witnesses {5, 5, 5, 5, 23, 23,
29, 29}. If we work with Obc(E,G, ξ), we find {5, 5, 5, 5, 19, 19, 23, 23} instead; the difference is two
cases where the witness p = 29 is replaced by p = 19, so we dig a bit deeper into one of these two cases.

In L0, the factorization pattern of 19 is 623221. But apparently we cannot be guaranteed to have
utr(Frobp) ≡ 1 (mod 2) just looking at cycle type. Indeed, there are three conjugacy classes with this
cycle type: one of order 1280 and two of order 2560, represented by the permutations

(1 9 18)(2 15 6 12 5 16)(3 20 7 13 10 17)(4 14)(8 11 19),

(1 19 8 11 9 18)(2 15 6 12 5 16)(3 20 17)(4 14)(7 13 10),

(1 10 2 3 8 4)(5 9 6)(7 17)(11 20 12 13 18 14)(15 19 16)

in S20 mapping respectively to the matrices

1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 1 1 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


,



1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 1 1 0 1 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


,



1 0 1 0 1 0 1 1
1 0 0 0 1 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0


.

So precisely the first two conjugacy classes have upper trace 1 and are obstructing, whereas the third has
upper trace 0 and is not obstructing. So by cycle types in L0 alone, indeed, we cannot proceed.

But we recover using the K0-cycle type. For the obstructing classes, the cycle type in the permutation
representation of G is 3311, whereas for the nonobstructing class the cycle type is 613111. We compute
that the factorization pattern for 19 in K0 is type 3311, which means 19 belongs to an obstructing class. If
we go all the way to the end, we can compute that the conjugacy class of Frob19 in fact belongs to the
second case.
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4. Abelian surfaces, paramodular forms, and Galois representations

We pause now to set up notation and input from the theory of abelian surfaces, paramodular forms, and
Galois representations in our case of interest.

4.1. Galois representations from abelian surfaces. Let A be a polarized abelian variety over Q. For
example, if X is a nice (smooth, projective, geometrically integral) genus g curve over Q, then its
Jacobian Jac X with its canonical principal polarization is a principally polarized abelian variety over Q

of dimension g. Let N := cond(A) be the conductor of A. We say A is typical if End(Aal)= Z, where
Aal
:= AQal is the base change of A to Qal.

Lemma 4.1.1. Let A be a simple, semistable abelian surface over Q with nonsquare conductor. Then A
is typical.

Proof. By Albert’s classification, either End(A) = Z or End(A) is an order in a quadratic field. In the
latter case, cond(A) is a square by the conductor formula (see [Brumer and Kramer 2014, Lemma 3.2.9]),
a contradiction. Therefore End(A)= Z. Since A is semistable, all endomorphisms of Aal are defined over
Q by a result of Ribet [1975, Corollary 1.4]. Thus End(Aal)= End(A)= Z, and A is typical. �

Lemma 4.1.2. An abelian surface over Q of prime conductor is typical.

Proof. If A is not simple over Q, then we have any isogeny A ∼ A1 × A2 over Q to the product of
abelian varieties A1, A2 over Q, and cond(A)= cond(A1) cond(A2). But since A is prime, without loss
of generality cond(A1)= 1, contradicting the result of Fontaine [1985] that there is no abelian variety
over Q with everywhere good reduction. Therefore A is simple over Q. Since N = cond(A) is prime, A
is semistable at N , and the result then follows from Lemma 4.1.1. �

From now on, suppose that g = 2 and A is a polarized abelian surface over Q. Let ` be a prime with
` - N and ` coprime to the degree of the polarization on A. Let S be a finite set of places of Q containing
`,∞ and the primes of bad reduction of A. Let

χ` : GalQ,S→ Z×`

denote the `-adic cyclotomic character, so that χ`(Frobp) = p. Then the action of GalQ on the `-adic
Tate module

T`(A) := lim
←−−

n
A[`n
] ' H1

ét(A,Z`)' Z4
`

(where A[`n
] denotes the `n-torsion of A) provides a continuous Galois representation

ρA,` : GalQ,S→ GSp4(Z`) (4.1.3)

with determinant χ2
` and similitude character χ` that is unramified outside `N . We may reduce the

representation (4.1.3) modulo ` to obtain a residual representation

ρA,` : GalQ,S→ GSp4(F`),
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which can be concretely understood via the Galois action on the field Q(A[`]).
For a prime p 6= `, slightly more generally we define

L p(A, T ) := det(1− T Frob∗p | H
1
ét(A

al,Q`)
Ip) (4.1.4)

where Frob∗p is the geometric Frobenius automorphism, Ip ≤ GalQ,S is an inertia group at p, and the
definition is independent of the auxiliary prime ` 6= p (by the semistable reduction theorem of Grothendieck
[SGA 7I 1972, Expose IX, Théorème 4.3(b)]). In particular, when p - `N , we have

det(1− ρA,`(Frobp)T )= L p(A, T )= 1− apT + bp2 T 2
− papT 3

+ p2T 4
∈ 1+ T Z[T ]. (4.1.5)

Moreover, if A = Jac X and p does not divide the minimal discriminant 1 of X , then

Z(X mod p, T ) := exp
( ∞∑

r=1

#X (Fpr )
T r

r

)
=

L p(A, T )
(1− T )(1− pT )

so the polynomials L p(A, T ) may be efficiently computed by counting points on X over finite fields. We
define

L(A, s) :=
∏

p

L p(A, p−s)−1
; (4.1.6)

this series converges for s ∈ C in a right half-plane.

4.2. Paramodular forms. We follow Freitag [1983] for the theory of Siegel modular forms. Let H2 ⊂

M2(C) be the Siegel upper half-space. For M =
( A

C
B
D

)
∈ GSp+4 (R), J =

( 0
−1

1
0

)
as usual, and T the

transpose, we have MT J M = µJ with µ= det(M)1/2 > 0 the similitude factor.
For a holomorphic function f :H2→C and M ∈GSp+4 (R) and k ∈ Z≥0, we define the classical slash

( f |k M)(Z) := µ2k−3 det(C Z + D)−k f ((AZ + B)(C Z + D)−1). (4.2.1)

Let 0 ≤ Sp4(R) be a subgroup commensurable with Sp4(Z). We denote by

Mk(0) := { f :H2→ C : ( f |kγ )(Z)= f (Z) for all γ ∈ 0}

the C-vector space of Siegel modular forms with respect to 0, and Sk(0)⊆ Mk(0) the subspace of forms
vanishing at the cusps of 0, called the space of cuspforms.

To each double coset 0M0 with M ∈ GSp+4 (Q), we define the Hecke operator

T(0M0) : Mk(0)→ Mk(0) (4.2.2)

as follows: from a decomposition 0M0 =
⊔

j 0M j of the double coset into disjoint single cosets, we
define f |kT(0M0)=

∑
j f |k M j . The action is well-defined, depending only on the double coset, and

T(0M0) maps Sk(0) to Sk(0).
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Let N ∈ Z≥1. The paramodular group K (N ) of level N in degree two is defined by

K (N ) :=


Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z

∩Sp4(Q). (4.2.3)

The paramodular group K (N ) has a normalizing paramodular Fricke involution, µN ∈ Sp4(R), given by

µN =

(
(F−1

N )T 0
0 FN

)

where FN =
1
√

N

( 0
1
−N

0

)
is the Fricke involution for 00(N ). Consequently, for all k we may decompose

Mk(K (N ))= Mk(K (N ))+⊕Mk(K (N ))− (4.2.4)

into plus and minus µN -eigenspaces.
Write e(z)= exp(2π

√
−1z) for z ∈ C. The Fourier expansion of f ∈ Mk(K (N )) is

f (Z)=
∑
T≥0

a(T ; f )e(tr(T Z)) (4.2.5)

for Z ∈H2 and the sum over semidefinite matrices

T =
( n

r/2
r/2
Nm

)
∈Msym

2 (Q)≥0 with n, r,m ∈ Z.

For a subring R ⊆ C, we denote by

Mk(K (N ), R) := { f ∈ Mk(K (N )) : a(T ; f ) ∈ R for all T ≥ 0} (4.2.6)

the R-module of paramodular forms whose Fourier coefficients all lie in R, and similarly we write
Sk(K (N ), R) for cusp forms and Sk(K (N ), R)± for the eigenspaces under the Fricke involution. The
ring of paramodular forms with coefficients in R

M(K (N ), R) :=
∞⊕

k=0

Mk(K (N ), R)

is a graded R-algebra.
For a prime p - N , the first (more familiar) Hecke operator we will use is

T (p) := T(K (N ) diag(1, 1, p, p)K (N )) (4.2.7)
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whose decomposition into left cosets is given by

K (N ) diag(1, 1, p, p)K (N )

= K (N )


p 0 0 0
0 p 0 0

1 0
0 1

+ ∑
i mod p

K (N )


1 0 i 0
0 p 0 0

p 0
0 1



+

∑
i, j mod p

K (N )


p 0 0 0
i 1 0 j

1 −i
0 p

+ ∑
i, j,k mod p

K (N )


1 0 i j
0 1 j k

p 0
0 p

 (4.2.8)

with indices taken over residue classes modulo p. Writing T [u] = uTT u for T, u ∈M2(Q), the action of
T (p) on Fourier coefficients a(T ; f ) is given by

a(T ; f |k T (p))= a(pT ; f )+ pk−2
∑

j mod p

a
( 1

p T
[ 1

j
0
p

]
; f
)
+ pk−2a

( 1
p T
[ p

0
0
1

]
; f
)
+ p2k−3a

( 1
p T ; f

)
.

(4.2.9)
Hence for k ≥ 2, the Hecke operator T (p) stabilizes Sk(K (N ), R). In particular, taking R = Z we see
that if f has integral Fourier coefficients, then f |k T (p) has integral Fourier coefficients for k ≥ 2.

We will also make use of another, perhaps less familiar, Hecke operator. For K (N ) and a prime p - N ,
we define

T1(p2)= T(K (N ) diag(1, p, p2, p)K (N )). (4.2.10)

Lemma 4.2.11. The coset decomposition for T1(p2) is given by

K (N ) diag(1, p, p2, p)K (N )

= K (N )


p 0 0 0
0 p2 0 0

p 0
0 1

+ ∑
i mod p

K (N )


p2 0 0 0
pi p 0 0

1 −i
0 p



+

∑
i 6≡0 mod p

K (N )


p 0 i 0
0 p 0 0

p 0
0 p

+ ∑
i mod p,

j 6≡0 mod p

K (N )


p 0 i2 j i j
0 p i j j

p 0
0 p



+

∑
i mod p,
j mod p2

K (N )


1 0 j i
0 p pi 0

p2 0
0 p

+ ∑
i, j mod p,
k mod p2

K (N )


p 0 0 pj
i 1 j k

p −pi
0 p2

 (4.2.12)

Proof. The cosets are from [Roberts and Schmidt 2007, (6.6)] after swapping rows one and two and
columns one and two, applying an inverse, and multiplying by the similitude p2. �
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Define the indicator function 1(p | y) by 1 if p | y and by 0 if p - y. Then the action of T1(p2) on the
Fourier coefficients is:

a(T ; f |k T1(p2))= pk−3
∑

x mod p

a
(
T
[ 1

x
0
p

]
; f
)
+ pk−3a

(
T
[ p

0
0
1

]
; f
)

+ p3k−6
∑

j mod p

a
( 1

p2 T
[ 1

j
0
p

]
; f
)
+ p3k−6a

( 1
p2 T

[ p
0

0
1

]
; f
)

+ p2k−6(p1
(

p | T
[ 1

0

])
− 1

)
a(T ; f )

+ p2k−6
∑

λ mod p

(
p1
(

p | T
[
λ
1

])
− 1

)
a(T ; f ).

(4.2.13)

Hence for k ≥ 3, the Hecke operator T1(p2) stabilizes Sk(K (N ), R). In particular, if f has integral
Fourier coefficients, then f |k T1(p2) has integral Fourier coefficients for k ≥ 3. However, for k = 2, we
only know that p2 f |k T1(p2) is integral when f is (and there are examples where f |2T1(p2) has p2 in
the denominator of some Fourier coefficients).

Summarizing the above, we have:

T (p)= T(K (N ) diag(1, 1, p, p)K (N )); deg T (p)= (1+ p)(1+ p2);

T1(p2)= T(K (N ) diag(1, p, p2, p)K (N )); deg T1(p2)= (1+ p)(1+ p2)p.
(4.2.14)

We define two new operators:

T2(p2) := T(K (N ) diag(p, p, p, p)K (N ))= p2k−6 id

B(p2) := p(T1(p2)+ (1+ p2)T2(p2))
(4.2.15)

If f is an eigenform of weight k for the operators T (p) and T1(p2), with corresponding eigenvalues
ap( f ), a1,p2( f ) ∈ C, then f is an eigenform for the operator B(p2) with eigenvalue

bp2( f ) := pa1,p2( f )+ p2k−5(1+ p2). (4.2.16)

Lemma 4.2.17. If k = 2 and f has integral Fourier coefficients, then bp2( f ) ∈ Z.

Proof. We have observed that p2a1,p2( f ) ∈ Z. From (4.2.13), we observe the congruence

p2( f |2T1(p2))= p2a1,p2( f ) f ≡− f (mod p).

so p | (p2a1,p2( f )+ 1). Therefore

bp2( f )= pa1,p2( f )+ (1+ p2)/p = (p2a1,p2( f )+ 1)/p+ p ∈ Z. �

Following Roberts and Schmidt [2006; 2007], to f we then assign the spinor Euler factor at p -N in
the arithmetic normalization by

Q p( f, T ) := 1− ap( f )T + bp2( f )T 2
− p2k−3ap( f )T 3

+ p4k−6T 4
∈ 1+ T C[T ]. (4.2.18)
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We will also call Q p( f, T ) the spinor Hecke polynomial at p. If f has integral Fourier coefficients, then
by Lemma 4.2.17 we have Q p( f, T ) ∈ 1+ T Z[T ].

4.3. Galois representations from Siegel modular forms. We now seek to match the Galois representation
coming from an abelian surface with one coming from an automorphic form. In this section, we explain
the provenance of the latter.

We follow the presentation of Schmidt [2018] for the association of an automorphic representation
to a paramodular eigenform. Let 0 ≤ GSp4(Q)

+ be a subgroup commensurable with Sp4(Z) and let
f ∈ Sk(0) be a cuspidal eigenform at all but finitely many places. In general, the representation π f

generated by the adelization of f may be reducible and hence not an automorphic representation at all. It
is still possible however, to associate a global Arthur parameter for GSp4(A) to f as follows. Because
f is cuspidal, the representation π f decomposes as the direct sum of a finite number of automorphic
representations, and each summand has the same global Arthur parameter among one of six types: the
general type (G), the Yoshida type (Y), the finite type (F), or types (P), (Q) or (B) named after parabolic
subgroups. Thus we may associate a global Arthur parameter directly to a paramodular eigenform f .
The only type of global Arthur parameter that concerns us here is type (G) given by the formal tensor
µ� 1, where µ is a cuspidal, self-dual, symplectic, unitary, automorphic representation of GL4(A) and 1
is the trivial representation of SU2(A).

Remark 4.3.1. One can consider the eigenforms of type (G) to be those that genuinely belong on GSp4.

Second, when f is of type (G) or (Y), the associated representation π f is irreducible and f is necessarily
an eigenform at all good primes. Third, the type of f may be determined by checking one Euler factor at
a good prime. We state the paramodular case 0 = K (N ).

Proposition 4.3.2 (Schmidt). Let f ∈ Sk(K (N )) be a cuspidal eigenform for all primes p -N. Let p -N
be prime and let Q p( f, T ) be the Hecke polynomial of f at p defined in (4.2.18) in the arithmetic
normalization. Then f is of type (G) if and only if all reciprocal roots of Q p( f, T ) have complex absolute
value pk−3/2.

Proof. Converting from analytic to arithmetic normalization, by [Schmidt 2018, Proposition 2.1] the
stated local factor condition implies that f is of type (G) or (Y), but paramodular cusp forms cannot be
type (Y) also by [Schmidt 2018, Lemma 2.5]. �

Fourth, continuing in the paramodular case 0 = K (N ), the global conductor of π f divides N , and is
equal to N if and only if f is a newform. Finally, if f is a newform — see [Roberts and Schmidt 2006]
for the global newform theory of paramodular forms — then f is a Hecke eigenform at all primes and for
all paramodular Atkin–Lehner involutions.

We need one final bit of notation, concerning archimedian L-parameters. The real Weil group is
W (R)= C× ∪C× j , with j2

=−1 and j z j−1
= z for z ∈ C×. For w,m1,m2 ∈ Z with m1 > m2 ≥ 0 and

w+ 1≡ m1+m2 (mod 2), we define the archimedean L-parameter φ(w,m1,m2) :W (R)→ GSp4(R)
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by sending z ∈ C× to the diagonal matrix

|z|−w diag
((

z
z

)(m1+m2)/2

,

(
z
z

)(m1−m2)/2

,

(
z
z

)(m2−m1)/2

,

(
z
z

)−(m1+m2)/2)
(4.3.3)

and j to the antidiagonal matrix antidiag((−1)w+1, (−1)w+1, 1, 1). The archimedean L-packet of
GSp4(R) corresponding to φ(w,m1,m2) has two elements, one holomorphic and one generic: for
m2 > 0 these are both discrete series representations, whereas for m2 = 0 they are limits of discrete series.

We are now ready to associate a Galois representation to a paramodular eigenform of type (G).

Theorem 4.3.4 (Taylor, Laumon, Weissauer, Schmidt, and Mok). Let f ∈ Sk(K (N )) be a Siegel paramod-
ular newform of weight k ≥ 2 and level N . Suppose that f is of type (G). Then for any prime ` -N , there
exists a continuous, semisimple Galois representation

ρ f,` : GalQ→ GSp4(Q
al
` )

with the following properties:

(i) det(ρ f,`)= χ
4k−6
` .

(ii) The similitude character of ρ f,` is χ2k−3
` .

(iii) ρ f,` is unramified outside `N.

(iv) det(1− ρ f,`(Frobp)T )= Q p( f, T ) for all p -`N.

(v) The local Langlands correspondence holds for all primes p 6= `, up to semisimplification.

By (v), we mean that the Weil–Deligne representations associated to the restriction of the Galois
representation ρ f,` to Gal(Qal

p |Qp) agrees with that associated to the GLn(Qp)-representation πp attached
by the local Langlands correspondence up to semisimplification without information about the nilpotent
operator N : in the notation of Taylor and Yoshida [2007, p. 468] we mean (V, r, N )ss

= (V, r ss, 0).

Proof. The existence and properties (i)–(ii) follow from the construction and an argument of Taylor [1991,
Example 1, §1.3]. Properties (iii) and (iv) are provided by Berger and Klosin [2017, Theorem 8.2] (they
claim in the subsequent Remark 8.3 that the result is “well-known”).

We now sketch the construction, and we use the argument of Mok to conclude also property (v). By the
discussion above, following Schmidt [2018], we may attach to f a cuspidal automorphic representation5 f

of GSp4(A) of type (G). The hypothesis that f is of type (G) assures that the automorphic representation
5 f is irreducible. If k ≥ 3, then the automorphic representation is of cohomological type, and from a
geometric construction we obtain a Galois representation ρ f,` : GalQ→ GSp4(E) by work of Laumon
[2005] and Weissauer [2005, Theorems I and IV], where E is the finite extension of Q` containing the
Hecke eigenvalues of f (choosing an isomorphism between the algebraic closure of Q in C and in Qal

` ):
one shows that the representation takes values in GL4(E) and that it preserves a nondegenerate symplectic
bilinear form invariant under ρ f,`(GalQ) so lands in GSp4(E). Thereby, properties (i)–(iv) are verified.
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For all k ≥ 2, with the above conventions (including archimedean L-parameters) we verify that 5 f

satisfies the hypotheses of a theorem of Mok [2014, Theorem 4.14]: from this theorem we obtain a
unique, continuous semisimple representation ρ f,` : GalQ→ GL4(Q

al
` ) where Qal

` is an algebraic closure
of Q`. For k = 2, Mok constructs the representation by `-adic deformation using Hida theory from those
of Laumon and Weissauer, and so properties (i)–(iv) and the fact that the representation is symplectic
continue to hold in the limit; and property (v) is a conclusion of his theorem.

To illustrate this convergence argument, we show that the representation is symplectic. Let { fn}n be
a sequence of Siegel paramodular forms of weights kn > 2 such that fn converge p-adically to f (for
example, multiplying by powers of the Hasse invariant). By the previous paragraph, each fn is symplectic
with representation ρn so

2∧
ρn(3− 2kn)' ρtriv⊕ψn (4.3.5)

is equivalent to the direct sum of the trivial representation ρtriv of degree 1 and the representation ψ
of degree 5 with values in SO5(Q

al
` ). The sequence Trψn of pseudorepresentations converges to a

pseudorepresentation by (4.3.5) and continuity of the trace, and this limit is the trace of a representation ψ .
From this identity of traces, we conclude

2∧
ρ(−1)' ρtriv⊕ψ

and thus ρ is symplectic with cyclotomic similitude character.
Mok’s theorem relies on work of Arthur in a crucial way. For further attribution and discussion, see

[Mok 2014, About the proof, pp. 524ff] and the overview of the method by Jorza [2012, §§1–3]. �

Let f be as in Theorem 4.3.4, with Galois representation ρ f,` : GalQ,S → GSp4(Q
al
` ) where S :=

{p : p | N }∪{`,∞}. By the Baire category theorem, we may descend the representation to a finite extension
E ′ ⊆Qal

` of Q`. Let l′ be the prime above ` in the valuation ring R′ of E ′ and let k ′ be the residue field of
R′. Choose a stable R′-lattice in the representation space V ′ := (E ′)4 and reduce modulo l′; the semisim-
plification yields a semisimple residual representation ρss

f,` :GalQ,S→GL4(k ′), unique up to equivalence.
Applying a recent result of Serre, we now show that the residual representation is symplectic.

Lemma 4.3.6. The semisimplification ρss
f,` : GalQ,S → GL4(k ′) is compatible with a nondegenerate

alternating form with similitude character χ2k−3
` ; in particular, up to equivalence its image lies in

GSp4(k
′).

Proof. We refer to Serre [2018]. Let 〈 · , · 〉 be the alternating form on V ′ with similitude character
ε := χ2k−3

` provided by Theorem 4.3.4. Then V ′ is a module over A′ := R′[GalQ,S] via ρ f,` (we suppress
this from the notation for convenience); moreover, the map σ ∗ := ε(σ )σ−1 for σ ∈ GalQ,S extends by
R′-linearity to an involution of A′. Therefore, for all σ ∈ GalQ,S and all x, y ∈ V ′ we have

〈σ x, y〉 = 〈σ x, σσ−1 y〉 = ε(σ )〈x, σ−1 y〉 = 〈x, ε(σ )σ−1 y〉 = 〈x, σ ∗y〉. (4.3.7)
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Extending by R′-linearity, we conclude that 〈 · , · 〉 is compatible with the action of A′ [Serre 2018, (5.1.1)].
Let V ′k′ be the k ′-vector space underlying the semisimplification ρss

f,`. Then Serre proves [2018,
Theorem 5.1.4] that there exists a nondegenerate k ′-bilinear alternating form on V ′k′ that is compatible with
A′k := k ′[GalQ,S]. Running the equality of (4.3.7) again, we conclude that V ′k′ has similitude character ε,
as claimed.

The final statement holds because up to equivalence by GL4(k ′) we may assume the alternating form
is the standard form, so now the image lands in GSp4(k

′), as claimed. �

Next, we seek descent preserving the symplectic form. Let E be the extension of Q` generated by
the Hecke eigenvalues of f (with respect to a choice of isomorphism between the algebraic closure of
Q in C and in Qal

` ); then E also contains all coefficients of the Hecke polynomials Q p( f, T ). Let R be
the valuation ring of E and let k be its residue field. We have E ⊆ E ′, and we would like to be able to
descend the representation to take values in GSp4(E). However, there is a possible obstruction coming
from the Brauer group of Q`; such an obstruction arises for example in the Galois representation afforded
by a QM abelian fourfold at a prime ` dividing the discriminant of the quaternion algebra B, which
has image in GL2(B⊗Q`) and not GSp4(Q`). Under an additional hypothesis, we may ensure descent
following Carayol and Serre as follows.

Lemma 4.3.8. With hypotheses as in Theorem 4.3.4, the following statements hold:

(a) The semisimplified residual representation ρss
f,` descends to

ρss
f,` : GalQ,S→ GSp4(k)

up to equivalence.

(b) If ρss
f,` = ρ f,` is absolutely irreducible, then ρ f,` descends to

ρ f,` : GalQ,S→ GSp4(E)

up to equivalence, where E is the extension of Q` generated by the Hecke eigenvalues of f as above.

Proof. We begin with (a). First, a semisimple representation into GL4(k ′) is determined by its traces, and
so up to equivalence we may descend ρss

f,` to take values in GL4(k) ⊆ GL4(k ′) (for a complete proof,
see e.g., [Taylor 1991, Lemma 2, part 2]). The semisimplification ρss

f,` was only well-defined up to
equivalence (in GL4(k ′)) anyway, so Lemma 4.3.6 still applies and the underlying space Vk = k4 of ρss

f,`

has the property that its extension Vk′ = (k ′)4 to k ′ carries an alternating form with k-valued similitude
character χ2k−3

` . The set of such alternating forms with fixed similitude character is defined by linear
conditions over k since the image of ρ f,` belongs to GL4(k); therefore, the existence of a form defined on
Vk′ implies the existence of such a form on Vk with the same similitude character. Again up to equivalence,
the image of ρss

f,` may be taken to lie in GSp4(k).
For statement (b), by a theorem of Carayol [1994, Théorème 2] under the hypothesis that the residual

representation is absolutely irreducible, the representation ρ f,` takes values in GL4(E). Again we have a
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nondegenerate alternating form compatible with GalQ,S , and repeating the first part of the argument in
the previous paragraph we may assume it takes values in E ; conjugating, we conclude that the image is
in GSp4(E). �

Remark 4.3.9. The statement of Theorem 4.3.4 is not the most general statement that could be proven
(in several respects), but it is sufficient for our purposes.

Berger and Klosin [2017, Theorem 8.2] attach to any paramodular newform f a Galois representation
into GL4(Q

al
` ), not just those of type (G). The remaining types are related to constructions of automorphic

representations from those in GL2(A), where the local Langlands correspondence is known. We do not
know a reference for a complete argument for these remaining cases. In this article, we are only concerned
with forms of type (G).

A consequence of Mok’s proof of Theorem 4.3.4(v) is encoded in the following result.

Lemma 4.3.10. Let K be the fixed field of ker ρ f,` and let cond(ρ f,`) be the Artin conductor of the
representation ρ f,` of Gal(K |Q). If p ‖ N is odd, then ordp(cond(ρ f,`))≤ 1.

Proof. The proof of Theorem 4.3.4(v) is only up to semisimplification, so we do not know the complete
statement of local Langlands under the patching argument that is employed. However, in specializing the
family to the accumulation point f in the family, there is nevertheless an upper bound on the level: the
representation is necessarily either unramified or is Steinberg with level p, and accordingly the conductor
has p-valuation 0 or 1. �

5. Group theory and Galois theory for GSp4(F2)

In this section, we carry out the needed Galois theory for the group GSp4(F2). Specifically, we carry
out the task outlined in Section 3.2: given G = img ρ ≤ GSp4(F2), and for each obstructing extension
ϕ extending ρ, we compute an exact core-free subgroup D ≤ E (as large as possible) and the list of
E-conjugacy classes of elements whose upper trace is nonzero. The arguments provided in this section
are done once and for all for the group GSp4(F2); we apply these to our examples in Section 7.

5.1. Symplectic group as permutation group. We pause for some basic group theory. We have an
isomorphism ι : S6 −→

∼ Sp4(F2), where S6 is the symmetric group on 6 letters, which we make explicit
in the following manner. Let U := F6

2, and equip U with the coordinate action of S6 and the standard
nondegenerate alternating (equivalently, symmetric) bilinear form 〈x, y〉 =

∑6
i=1 xi yi visibly compatible

with the S6-action. Let U 0
⊂ U be the trace 0 hyperplane, let L be the F2-span of (1, . . . , 1), and let

Z :=U 0/L be the quotient, so dimF2 Z = 4. Then Z inherits both an action of S6 and a symplectic pairing,
which remains nondegenerate: specifically, the images

e1 := (1, 1, 0, 0, 0, 0), e2 := (0, 0, 1, 1, 0, 0), e3 := (0, 0, 0, 1, 1, 0), e4 := (0, 1, 0, 0, 0, 1) ∈ Z
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are a basis for Z in which the Gram matrix of the induced pairing is the antiidentity matrix, so e.g.,
〈e1, e4〉 = 〈e2, e3〉 = 1. (An alternating pairing over F2 is symmetric, and we have chosen the standard
such form.) We compute that

ι : S6→ Sp4(F2)

(1 2 3 4 5), (1 6) 7→


1 0 0 1
0 0 1 0
1 1 0 1
1 0 1 0

 ,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

. (5.1.1)

We have

Lie0(GSp4)(F2)= sp4(F2)= {A ∈M4(F2) : A
T

J + J A = 0} ' F10
2 , (5.1.2)

where J ∈M4(F2) is the antiidentity matrix (with 1 along the antidiagonal), and we have an exact sequence

1→ sp4(F2)→ sp4(F2)oG π
−→G→ 1 (5.1.3)

with π : sp4(F2)oG→ G the natural projection map. As in (2.3.9) we identify

sp4(F2)oG ≤M4(F2)oG ↪→ GL8(F2)

(a, g) 7→
(

1 a
0 1

)(
g 0
0 g

)
=

(
g ag
0 g

) (5.1.4)

The following lemmas follow from straightforward computation.

Lemma 5.1.5. The group Sp4(F2) has elements of orders 1, . . . , 6 with the following possibilities for
their characteristic polynomials:

order characteristic polynomial

1, 2, 4 x4
+ 1

3, 6 x4
+ x2
+ 1 or x4

+ x3
+ x + 1

5 x4
+ x3
+ x2
+ x + 1

(5.1.6)

There is a unique outer automorphism of S6 up to inner automorphisms [Howard et al. 2008]; it sends
transpositions to products of three transpositions, and interchanges the trace of some order 3 and order 6
elements.

Lemma 5.1.7. There are, up to inner automorphism, exactly 9 subgroups of Sp4(F2)' S6 with absolutely
irreducible image. They are listed in the following table with a property that determines them uniquely
(where “−” indicates there is a unique conjugacy class of subgroup with that order):
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subgroup order element orders distinguishing property

S6 720 1, . . . , 6 −

A6 360 1, . . . , 5 −

S5(a) 120 1, . . . , 6 elements of order 3, 6 have trace 0
S5(b) 120 1, . . . , 6 elements of order 3, 6 have trace 1
S3 o S2 72 1, 2, 3, 4, 6 −

A5(b) 60 1, 2, 3, 5 elements of order 3 have trace 1
C2

3 oC4 36 1, 2, 3, 4 no elements of order 6
S3(a)2 36 1, 2, 3, 6 elements of order 6 have trace 0

C5 oC4 20 1, 2, 4, 5 −

(5.1.8)

Example 5.1.9. The conjugacy classes of subgroups S5(a), S5(b) ≤ S6 are exchanged by the outer
automorphism of S6. For example, under the restriction of (5.1.1), we have

ι : S5(b)→ Sp4(F2)

(1 2 3 4 5), (1 2), (1 2 3) 7→


1 0 0 1
0 0 1 0
1 1 0 1
1 0 1 0

 ,


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 1
0 1 0 0
1 1 1 1
1 1 0 0

 . (5.1.10)

Another way to distinguish S5(a) from S5(b) is that ι(S5(b)) has transvections while ι(S5(a)) does not.

Example 5.1.11. There is a subgroup A5(a)≤ S6 that is similarly exchanged with A5(b) but that is not
absolutely irreducible.

5.2. Images and discriminants. For the purposes of establishing the first typical cases of the paramodular
conjecture, we observe the following.

Lemma 5.2.1. Suppose N is odd and squarefree and let A be an abelian surface over Q of conductor N
equipped with a polarization of odd degree. Then the residual representation

ρA,2 : GalQ,S→ GSp4(F2)

(where S = {p : p | N } ∪ {`,∞}) is absolutely irreducible if and only if its image is isomorphic to S5(b),
S6, or S3 o S2.

Proof. By work of Brumer and Kramer [2014, §7.3], whenever N is not a square, the image is either S5,
S6, or S3 o S2. To force S5(b), it suffices that there is a prime p | N such that Ap has toroidal dimension
one (i.e., p ‖ N ) and that p be ramified in Q(A[2]). If A is semistable and the Galois group is S5(a), then
the toroidal dimension at the bad primes is 2 since there are no transvections. �

Remark 5.2.2. In general, if A[2] is absolutely irreducible, then the degree of any minimal polarization
on A is odd.
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Next, we convert the upper bound from Lemma 4.3.10 on the conductor into an upper bound on the
discriminant. We first recall the following standard result.

Lemma 5.2.3. Let a(x) ∈Q[x] be irreducible and let � be the set of roots of a(x) in Qal. Let α ∈�, let
K0 =Q(α), and let K be the normal closure of K0. Let p be a prime of K that is tamely ramified in the
extension K ⊇Q, and let p ∈Z be the prime lying below p. Finally, let Ip ≤Gal(K |Q) denote the inertia
group at p. Then

ordp(dK0)= deg a(x)− #�/Ip

where #�/Ip denotes the number of orbits of Ip acting on �.

We now specialize to our case of interest.

Proposition 5.2.4. Let p ‖ N be odd. Let K be the fixed field of ker ρ f,2.

(a) If Gal(K |Q)' S3 o S2, or Sm with m = 5, 6, then K is the normal closure of a field K0 of degree 6,
or respectively m, with ordp dK0 ≤ 1.

(b) If Gal(K |Q)' Am , with m = 5, 6, then K is the normal closure of a field K0 of degree m with p
unramified in K0 (i.e., ordp dK0 = 0).

Proof. Decomposing the Weil–Deligne representation at p, we see by Lemma 4.3.10 that the image of
inertia is either trivial or a 2× 2-Jordan block. If trivial, the extension is unramified and the result holds,
so suppose we are in the latter case. Under the isomorphism GSp4(F2) ' S6 above (5.1.1), nontrivial
elements of this Jordan block correspond to cycle decomposition 2+2+2 or 2+1+1+1+1, and these
are exchanged by an outer automorphism.

For (a), by a faithful permutation representation on the cosets of a core-free subgroup, a field K0 of the
given degree exists. If the residual image inside S6 is invariant under such an automorphism (which holds
for S6 and S3 o S2), then we can choose our subfield K0 corresponding to the latter case, and conclude
ordp dK0 ≤ 1 by Lemma 5.2.3. If Gal(K | Q) ' S5, we have only the possibility 2+ 1+ 1+ 1 again
giving ordp dK0 ≤ 1.

Finally, for (b) and the groups A5, A6, we find no possibilities and reach a contradiction, so we conclude
that K0 is unramified at p. �

5.3. Core-free extensions and obstructing elements. We will compute all obstructing extensions ϕ :
Gal(L|F) ↪→ E extending ρ (Definition 2.3.17); we represent L ⊇ K ⊇ F by an exact core-free
subextension L0 ⊇ K0 ⊇ F (Definition 3.1.7) arising from an exact core-free subgroup D ≤ E which is
as large as possible, to make the degree of the subextension as small as possible.

For each G in (5.1.8), we therefore first seek subgroups ϕ : E ↪→ sp4(F2)oG such that π(E)=G; such
extensions are obstructing (Definition 2.3.18) if they have nonzero upper trace in the matrix realization
(5.1.4). Consider first the case G = S5(b).

Theorem 5.3.1. For G = S5(b), there are exactly 10 extension groups E up to conjugacy in M4(F2)oG,
with #V = [E : G] = 2k where k = 0, 0, 1, 4, 4, 5, 5, 6, 9, 10, respectively.
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Furthermore, let
H = D6(b) := 〈(1 2), (1 3), (4 5)〉 ≤ G;

then for all E 6' G, there is an exact core-free subgroup D ≤ E of index 2 such that π(D) = H as in
(3.1.6).

Proof. This theorem is proven by explicit computation in Magma [Bosma et al. 1997]; the code is
available online [Tornaria 2018] together with the verbose output. There are exactly 18 conjugacy classes
of subgroups ϕ : E ↪→ sp4(F2)o G with π(E) = G; these subgroups fall into 10 conjugacy classes in
M4(F2)oG. Let H = D6(b) := 〈(1 2), (1 3), (4 5)〉 ≤ G be as in the statement. Then H is dihedral of
order #H = 12 and index [G : H ] = 10 and it can be verified that for each such E 6' G, there is at least
one subgroup W ≤ V of index 2 such that D ≤ E is an exact core-free subgroup. �

The somewhat complicated field diagram (3.1.8) in our case simplifies to:

L

2e V

L0

2

K

G
120K0

10

F

(5.3.2)

We understand the large extension L ⊇ K ⊇ F as the Galois closure of the exact core-free subextension
L0 ⊇ K0 ⊇ F , with L0 ⊇ K0 quadratic. The extension K0 is realized explicitly as follows: if K ⊇ F is
the splitting field of a quintic polynomial f (x) with roots α1, . . . , α5 permuted by S5, then K0 = K H

=

F(α4+α5).
In a similar way, we have the result for the remaining two groups.

Theorem 5.3.3. (a) For G= S3 oS2≤GSp4(F2), there are exactly 20 extension groups E up to conjugacy
in M4(F2)oG, with #V = [E : G] = 2k and

k = 0, 0, 1, 1, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 8, 8, 9, 9, 10.

Let H = C2
2 ≤ G with [G : H ] = 18. Then for each such E , there is an exact core-free subgroup

D ≤ E such that π(D)= H.

(b) For G = S6 ' GSp4(F2), the analogous statement to (a) holds, with 7 groups having k = 0, 0, 1, 5,
5, 6, 10 and H = S3(b)2.

Remark 5.3.4. With reference to computing conjugacy classes in stages as in Section 3.3, we note that
the index 2 subgroups of the 18 subgroups C2

2 of S3 o S2 are not sufficient to find obstructing classes for
all 20 extension groups if one applies the more limited strategy exhibited in Remark 3.3.2.
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Remark 5.3.5. The remaining cases of subgroups G≤GSp4(F2)may be computed with the same method
and the same code.

6. Computing Hecke eigenvalues by specialization

Having set up the required Galois theory, we now compute Hecke eigenvalues of particular Siegel
paramodular newforms. In this section, we use the technique of restriction to a modular curve to
accomplish these eigenvalue computations. We continue the notation from Section 4.2.

6.1. Jacobi forms and Borcherds products. We construct our paramodular forms using Gritsenko lifts of
Jacobi forms and Borcherds products. In this section, we quickly review what we need from these theories.

We begin with Jacobi forms; we refer to [Eichler and Zagier 1985] for further reference. Each Jacobi
form φ ∈ Jk,N of weight k and index N has a Fourier expansion

φ(τ, z)=
∑

n,r∈Z

c(n, r;φ)qnζ r , (6.1.1)

where q = e(τ ) and ζ = e(z). We write φ ∈ Jk,N (R) if all the Fourier coefficients of φ lie in a ring R ⊆C.
We will need the level-raising operators Vm : Jk,N → Jk,m N (see [Eichler and Zagier 1985, p. 41]) that
act on φ ∈ Jk,N via

c(n, r;φ | Vm)=
∑

δ | gcd(n,r,m)

δk−1c
(

mn
δ2 ,

r
δ
;φ

)
. (6.1.2)

The Gritsenko lift [1995]

Grit : Jk,N cusp→ Sk(K (N ))

lifts a Jacobi cusp form φ to a paramodular form f by the rule

a
(( n

r/2
r/2
Nm

)
;Grit(φ)

)
= c(n, r;φ | Vm).

We also have Grit(φ)|kµN = (−1)k Grit(φ), so that a Gritsenko lift has paramodular Fricke sign (−1)k .
One convenient way to construct Jacobi forms is to use the theta blocks created by Gritsenko, Skoruppa

and Zagier [2018]. Recall the Dedekind η-function and the Jacobi ϑ-function

η(τ)= q1/24
∞∏

n=1

(1− qn)=

∞∑
n=1

( 12
n

)
qn2/24,

ϑ(τ, z)=
∞∑

n=−∞

(−1)nq(2n+1)2/8ζ (2n+1)/2
= q1/8(ζ 1/2

− ζ−1/2)

∞∑
n=1

(−1)n+1q(
n
2)

n−1∑
j=−(n−1)

ζ j .

For d ∈ Z>0 let ϑd(τ, z)= ϑ(τ, dz). For d1, . . . , d` ∈ Z>0 and k ∈ Z, define the theta block

TBk[d] = TBk[d1, d2, . . . , d`] = η2k
∏̀
j=1

ϑd j

η
. (6.1.3)
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The theta block TBk[d] defines a meromorphic Jacobi form (with multiplier) of weight k and index m =
1
2(d

2
1 +· · ·+d2

` ). Moreover, by [Eichler and Zagier 1985] (compare [Poor and Yuen 2015, Theorem 4.3]),
the theta block TBk[d] is a Jacobi cusp form if

12 | (k+ `) and k
12 +

1
2

∑̀
j=1

B2(d j x) > 0, (6.1.4)

where B2(x) := x2
− x + 1

6 and B2(x) := B2(x −bxc).
Second, we use Borcherds products in the construction of paramodular forms. Let ψ be a weakly

holomorphic Jacobi form of weight 0 and index N with integral Fourier coefficients on singular indices
with Fourier expansion (6.1.1). Define

A(ψ) := 1
24

∑
r∈Z

c(0, r;ψ), B(ψ) := 1
2

∑
r≥1

rc(0, r;ψ), C(ψ) := 1
4

∑
r∈Z

r2c(0, r;ψ).

Then A(ψ), B(ψ),C(ψ)∈Q. The Borcherds product ofψ is a meromorphic paramodular form Borch(ψ),
perhaps with nontrivial character on K (N ), with

Borch(ψ)= q A(ψ)ζ B(ψ)ξC(ψ)
∏

n,r,m

(1− qnζ rξm N )c(mn,r;ψ), (6.1.5)

where the product is over n, r,m ∈ Z such that: (i) m ≥ 0; (ii) if m = 0, then n ≥ 0; and (iii) if m = n = 0,
then r < 0. Borcherds products are not always holomorphic and, when holomorphic, not always cuspidal.

6.2. Construction of newforms. In this section, we define the nonlift paramodular newforms of interest
to this article, with levels 277, 353, 587. We will see later that this way of writing paramodular forms
makes the computation of Hecke eigenvalues feasible.

We refer to Section 4.2 for notation. We now define the nonlift paramodular form f277∈ S2(K (277),Z)+

following Poor and Yuen [2015, Theorem 7.1]. Define the following ten theta blocks:

41 := TB2(2, 4, 4, 4, 5, 6, 8, 9, 10, 14) 46 := TB2(2, 3, 3, 5, 5, 7, 8, 10, 10, 13)

42 := TB2(2, 3, 4, 5, 5, 7, 7, 9, 10, 14) 47 := TB2(2, 3, 3, 4, 5, 6, 7, 9, 10, 15)

43 := TB2(2, 3, 4, 4, 5, 7, 8, 9, 11, 13) 48 := TB2(2, 2, 4, 5, 6, 7, 7, 9, 11, 13)

44 := TB2(2, 3, 3, 5, 6, 6, 8, 9, 11, 13) 49 := TB2(2, 2, 4, 4, 6, 7, 8, 10, 11, 12)

45 := TB2(2, 3, 3, 5, 5, 8, 8, 8, 11, 13) 410 := TB2(2, 2, 3, 5, 6, 7, 9, 9, 11, 12).

(6.2.1)

We have, for i = 1, . . . , 10,

4i ∈ J cusp
2,277(Z) and Gi := Grit(4i ) ∈ S2(K (277),Z).

Let f277 be the (a priori) meromorphic function on H2 defined by
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f277 :=
(
−14G2

1−20G8G2+11G9G2+6G2
2−30G7G10+15G9G10+15G10G1−30G10G2

−30G10G3+5G4G5+6G4G6+17G4G7−3G4G8−5G4G9−5G5G6+20G5G7

−5G5G8−10G5G9−3G2
6+13G6G7+3G6G8−10G6G9−22G2

7

+G7G8+15G7G9+6G2
8−4G8G9−2G2

9+20G1G2−28G3G2+23G4G2

+7G6G2−31G7G2+15G5G2+45G1G3−10G1G5−2G1G4−13G1G6

−7G1G8+39G1G7−16G1G9−34G2
3+8G3G4+20G3G5+22G3G6+10G3G8

+21G3G9−56G3G7−3G2
4
)/(
−G4+G6+2G7+G8−G9+2G3−3G2−G1

)
.

(6.2.2)

A main result of Poor and Yuen [2015, Theorem 7.1] is that f277 is actually holomorphic: in fact,
f277 ∈ S2(K (277),Z)+ is a cuspidal, nonlift, paramodular form of weight 2 that is an eigenform for all
Hecke operators and has integral Fourier coefficients whose greatest common divisor is 1. There are
no nontrivial weight 2 paramodular cusp forms of level 1, so since 277 is prime, f277 is a newform.
Equation (4.2.9) and Lemma 4.2.17 imply that the Euler factors Q p( f277, t) are integral.

The first few eigenvalues for f277 were computed [Poor and Yuen 2015] as

ap( f277)=−2,−1,−1, 1,−2 for p = 2, 3, 5, 7, 11 (6.2.3)

and the first three Hecke polynomials, identifying f277 as type (G), are:

Q2( f277, t)= 1+ 2t + 4t2
+ 4t3

+ 4t4,

Q3( f277, t)= 1+ t + t2
+ 3t3

+ 9t4,

Q5( f277, t)= 1+ t − 2t2
+ 5t3

+ 25t4.

(6.2.4)

Remark 6.2.5. The form f277 can also be realized as the sum of a Borcherds product and a Gritsenko
lift, giving a second, independent construction by Poor, Shurman, and Yuen [2018].

In a similar way, we construct a second form

f353 := Q(G1, . . . ,G11) ∈ S2(K (353),Z)+ (6.2.6)

(plus eigenspace for the Fricke involution, as in (4.2.4)) a quotient of a quadratic polynomial by a linear
polynomial of 11 Gritsenko lifts of theta blocks: see [Poor and Yuen 2015, Theorem 7.4] for the specific
formula for Q and the forms Gi . This construction was contingent upon assuming the existence of some
nonlift in S2(K (353)); however, the dimension dim S2(K (353))= 12 is now known [Poor et al. 2018]
via the construction of a nonlift Borcherds product in S2(K (353)).

The first two Euler factors, each showing that f353 is of type (G), are

Q2( f353, t)= 1+ t + 3t2
+ 2t3

+ 4t4, Q3( f353, t)= 1+ 2t + 4t2
+ 6t3

+ 9t4. (6.2.7)

Finally, we construct a form of level 587 as a Borcherds product. An antisymmetric nonlift Borcherds
product f −587 ∈ S2(K (587),Z)− was recently constructed by Gritsenko, Poor, and Yuen [2019]. The
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form f −587 is necessarily an eigenform because dim S2(K (587))− = 1. The Fourier expansion is given by
formally expanding

f −587 = Borch(ψ)= ξ 587φ exp(−Grit(ψ)) for ψ = (φ | V2−4)/φ, (6.2.8)

where

φ =TB2(1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14) ∈ J cusp
2,587,

4=TB2(1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14) ∈ J cusp
2,1174.

(6.2.9)

For the Borcherds product that appears in the formula for f −587, we have Borch(ψ) ∈ Sk(K (587)) with
k = 1

2 c(0, 0;ψ)= 2 [Gritsenko et al. 2019]. The first two Euler factors, verifying type (G), are computed
to be

Q2( f −587, t)= 1+ 3t + 5t2
+ 6t3

+ 4t4, Q3( f −587, t)= 1+ 4t + 9t2
+ 12t3

+ 9t4. (6.2.10)

6.3. Specialization. To compute the action of the Hecke operators directly on a Fourier expansion of a
Siegel paramodular form would require manipulations with series in three variables. To avoid this, we
specialize our form. Possibilities for this specialization include restriction to Humbert surfaces (typically
producing Hilbert modular forms), restriction to modular curves (producing classical modular forms), or
evaluation at CM points (producing a numerical result, see Colman, Ghitza, and Ryan [2019]). Each of
these methods has certain advantages and disadvantages — we choose to restrict to modular curves and
work with one-variable q-series to avoid rigorous analysis of the upper bounds on the tails of convergent
numerical series. The biggest advantage of our choice, however, is that Proposition 6.3.8 allows us to
sum over only O(p2) cosets instead of O(p3) cosets, a significant savings; it is not clear whether such a
speedup is available to a method that numerically evaluates at CM points.

Remark 6.3.1. Specialization of Siegel modular forms is not a new idea, but here we take a different
approach. In previous work of Poor and Yuen [2015], only three Euler factors were computed for f277

because the computation relied on multiplying initial expansions of multivariable Fourier series. Instead,
below we will write the action of the Hecke operator T (p) on a paramodular form f as a sum of slashes
f |k T (p) =

∑
j f |k M j , and the main innovation is to specialize each part of f |M j to a one variable

q-series prior to any addition, multiplication, or division. Specialization was also used by Poor and Yuen
[2007] to compute upper bounds on dimensions and some Fourier coefficients by taking advantage of the
known structure of the target space of elliptic modular forms, whereas here we only use the one variable
nature of the target space.

Let s ∈Msym
2 (Q)>0 be a symmetric, positive definite matrix with rational coefficients. Let Hg be the

Siegel upper half space of dimension g, so H1 is the upper half-plane. Define the holomorphic map

φs :H1→H2

τ 7→ sτ.
(6.3.2)
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Lemma 6.3.3. Let R ⊆C be a subring. Let s =
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c ∈ Z. Then the pullback
under φs defines a ring homomorphism

φ∗s : M(K (N ), R)→ M(00(det(s)N ), R) (6.3.4)

from the graded ring of Siegel paramodular forms of level N with coefficients in R to the graded ring of
classical modular forms of level det(s)N with coefficients in R. The map φ∗s multiplies weights by 2 and
maps cusp forms to cusp forms.

Proof. The proof follows from a straightforward modification of a result of Poor and Yuen [2007,
Proposition 5.4]. �

Let f ∈ Mk(K (N ), R) be a paramodular form with Fourier expansion (4.2.5), the Fourier expansion
of the specialization φ∗s f ∈ M2k(00(det(s)N ), R) is

(φ∗s f )(τ )= f (sτ)=
∞∑

n=0

( ∑
T :Tr(sT )=n

a(T ; f )
)

qn. (6.3.5)

Furthermore, the specialization of f after slashing with a block upper-triangular matrix
( A

0
B
D

)
∈GSp+4 (Q)

with similitude µ= det(AD)1/2 is given by

φ∗s
(

f |k
( A

0
B
D

))
(τ )= ( f |k

( A
0

B
D

)
)(sτ)= det(AD)k−3/2 det(D)−k f (As D−1τ + B D−1)

= det(A)k det(AD)−3/2
∑

n∈Q≥0

( ∑
T :Tr(As D−1T )=n

e(Tr(B D−1T ))a(T ; f )
)

qn. (6.3.6)

Let s =
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c ∈ Z. Using (4.2.8), the specialization of f |k T (p) may be
written

φ∗s ( f |k T (p))(τ )= p2k−3 f (psτ)+ pk−3
∑

i mod p

f
((a/p

b
b

pc/N

)
τ +

( i/p
0

0
0

))
+ pk−3

∑
i mod p

( ∑
j mod p

f
(( pa

b+ia
b+ia

(c/N+2ib+i2a)/p

)
τ +

( 0
0

0
j/p

)))
+ p−3

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
.

(6.3.7)

Upon expanding in Puiseux q-series, there is cancellation among these sums of specializations. The
following proposition shows that partial summation gives new specializations whose sum over smaller
index sets equals the original sum for integral powers of q. For a Puiseux series f ∈ C[[q1/∞

]] and
e ∈Q≥0, we denote by coeffe f ∈ C the coefficient of qe in f .

Proposition 6.3.8. Let s=
(a

b
b

c/N

)
∈Msym

2 (Q)>0 with a, b, c∈Z. Let p be prime, and let f ∈Mk(K (N )).
Then the following statements hold for all e ∈ Z≥0:
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(a) If p -a, then

coeffe

∑
i mod p

f
((a/p

b
b

pc/N

)
τ +

( i/p
0

0
0

))
= p coeffe f

((a/p
b

b
pc/N

)
τ
)

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
j,k mod p

f
(
sτ/p+

( 0
j/p

j/p
k/p

))
.

(b) If p -b, then

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
i,k mod p f

(
sτ/p+

( i/p
0

0
k/p

))
.

(c) If p -c, then

coeffe

∑
i, j,k mod p

f
(
sτ/p+

( i/p
j/p

j/p
k/p

))
= p coeffe

∑
i, j mod p f

(
sτ/p+

( i/p
j/p

j/p
0

))
.

(d) For i ∈ Z, if p - (c+ 2ibN + i2aN ), then

coeffe

∑
j mod p

f
(( pa

b+ia
b+ia

(c/N+2ib+i2a)/p

)
τ +

( 0
0

0
j/p

))
= p coeffe f

(( pa
b+ia

b+ia
(c/N+2ib+i2a)/p

)
τ
)
.

Proof. We prove (c); the other proofs are similar. Suppose p -c. Let e ∈ Z≥0. Then the coefficient of qe in
the left-hand side is equal to ∑

i, j,k mod p
n,r,m:an+br+cm=pe

e((in+ jr + km)/p)a(T ; f ) (6.3.9)

where T =
( n

r/2
r/2
m N

)
. If any of n, r,m is not a multiple of p, then summing over i, j, k modulo p in

(6.3.9) would yield a contribution of zero. Hence we may restrict the sum to the terms where p | n, p | r ,
and p |m. But since p -c and given an+ br + cm = pe, the conditions p | n and p | r imply p |m. Thus
(6.3.9) becomes simply∑

i, j,k mod p
n,r,m:an+br+cm=pe

p | n,p | r

e((in+ jr + 0)/p)a(T ; f )= p
∑

i, j mod p
n,r,m:an+br+cm=pe

p | n,p | r

e((in+ jr)/p)a(T ; f )

= p
∑

i, j mod p
n,r,m:an+br+cm=pe

e((in+ jr)/p)a(T ; f )

= p coeffe

∑
i, j mod p

f
(
sτ/p+

( i/p
j/p

j/p
0

))
. �

Remark 6.3.10. Proposition 6.3.8 provides a certain subtle speedup because the coefficients at integral
powers are equal, even though the series themselves are not necessarily equal. Further simplifying the
above sums to
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p3
∑

n,r,m:an+br+cm=pe
p | n,p | r,p |m

a(T ; f ).

does not help: we want to leave the sums in terms of coefficients of specializations.

In a similar way, we can compute the specialization φ∗s ( f |k T1(p2)) and there are similar cancellations
in the character sums as in Proposition 6.3.8.

6.4. Algorithmic detail. In this section, we provide three further bits of algorithmic detail.
First, we describe the choice of s. Suppose f has a nonzero coefficient a(t0; f ) where t0 has small

determinant and small entries. If we choose s to be the adjoint of 2t0, then the restriction φ∗s ( f ) likely
begins with a(t0; f )qdet(s). In particular if t0 has minimal determinant, then this is forced. In practice, we
can just check the initial expansion to see that

φ∗s ( f )(τ )= a(t0; f )qdet(s)
+ higher powers of q.

For each T (p), we want to expand φ∗s ( f |T (p)) to at least qe where e= det(s) is the target exponent of q .
For a polynomial combination of Gritsenko lifts and Borcherds products, the target exponent of each part
g(Gτ + H) would also be e. But for a rational function of Gritsenko lifts and Borcherds products, we
have to be slightly more careful. If the denominator of this rational functional restricted to (Gτ + H) has
leading term qµ, then we must expand both the numerator and denominator to a higher target term qe+µ.
Therefore, we may end up evaluating the restriction of the denominator twice, with the initial execution
used to get the leading exponent µ.

Second, we provide our algorithm for finding all T such that 〈G, T 〉 ≤ u. Let G and H be two rational,
symmetric 2×2 matrices with G positive definite. We explain how to effectively compute specializations
of the form f (Gτ + H), as in (6.3.7) or Proposition 6.3.8. We adapt our index sets S to the type used
in (6.1.5) for Borcherds products but they can be used in all the cases we need to program. For any
u, δ ∈ R, let

S(N ,G, u, δ)=
{
(n, r,m) ∈ Z3

: tr
(( n

r/2
r/2
m N

)
G
)
≤ u,m ≥ 0, 4mnN − r2

≥ δ,

if m = 0 then n ≥ 0 and if m = n = 0 then r < 0
}
.

Proposition 6.4.1. Let G=
(
α
β
β
γ

)
∈M2(R) be positive definite. Let u, δ∈R. Let1=det G=αγ−β2> 0.

Let X = 4αum N − α2δ− 41(m N )2. Then the elements (n, r,m) ∈ S(N ,G, u, δ) satisfy the following
bounds:

(a) If m ≥ 1, then

1≤m≤
α(u+

√
u2−δ1)

21N
,
−2βm N−

√
X

α
≤r≤

−2βm N+
√

X
α

, and
r2
+δ

4m N
≤n≤

u−βr−γm N
α

.
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(b) If m = 0 and n > 0, then

r2
≤−δ and 1≤ n ≤

u−βr
α

.

(c) If m = n = 0, then

r2
≤−δ and r < 0.

Proof. The main two conditions that need to be satisfied are αn+βr + γm N ≤ u and 4mnN − r2
≥ δ.

The case m = 0 is straightforward, so we only deal with the case m ≥ 1 here. These two inequalities lead
immediately to the third inequality as stated in the proposition. From this third inequality, we work with
terms on the left and right of n; multiply through by 4m Nα and put the terms on one side:

αr2
+αδ− 4m Nu+ 4m Nβr + 4γ (m N )2 ≤ 0.

Solving this quadratic inequality for r yields the second inequality stated in the proposition. A condition
for there to be a solution in r is that the inside X of the square root must be nonnegative. Solving the
resulting quadratic inequality yields the first inequality in the proposition. �

We conclude with a final speedup. Suppose we wish to calculate the coefficient of qe in f (Gτ +H). If
there are no (n, r,m)∈S(N ,G, u, δ) such that tr

(( n
r/2

r/2
m N

)
G
)
= e, then we may skip the term involving G.

This simple observation is especially useful for terms in the second summand in (6.3.7): for well chosen s,
there are typically at most 2 choices of i for which such (n, r,m) exist. It often happens that, for these
surviving i , Proposition 6.3.8(d) applies.

6.5. Example of restricting f277. Now suppose that f is represented as a rational function in Gritsenko
lifts Gi with coefficients in a commutative ring R by f = Q(G1, . . . ,Gr ). Both the slash by M and the
specialization by φ∗s may be applied directly to each Gritsenko lift, so that we obtain

φ∗s ( f | M)= Q(φ∗s (G1 | M), . . . , φ∗s (Gr | M)). (6.5.1)

If the Fourier coefficients of f satisfy a(T ; f )∈ R⊆C, then for the representative matrices M j appearing
in the coset decomposition (4.2.8) for the Hecke operator T (p), the sum in (6.3.6) can be taken over
n ∈ 1

p Z≥0 and the coefficients of φ∗s ( f | M j ) belong to the ring R
[ 1

p , ζp
]

where ζp = e
( 1

p

)
is a primitive

p-th root of unity. From specializing f | T (p)=
∑

j f | M j = ap( f ) f , the eigenvalue ap( f ) for T (p)
can be computed by performing field operations on Laurent–Puiseux series in q via

ap( f )=
1

φ∗s ( f )

∑
j

φ∗s ( f | M j ) ∈ R
[ 1

p , ζp
]
[[q1/p

]] (6.5.2)

whenever the specializing curve φs is chosen so that φ∗s ( f ) is not identically zero. In practice, we choose
a target exponent e such that coeffe φ

∗
s f 6= 0 and then

ap( f )=
coeffe

(∑
j φ
∗
s ( f | M j )

)
coeffe(φ∗s ( f ))

. (6.5.3)
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Remark 6.5.4. One practical advantage of this technique of restricting to modular curves is that when
more than one coefficient in the q-expansion of (6.5.2) is computed, it constitutes a double check on the
value of ap( f ).

Example 6.5.5. We consider the core example of the form f277 of level N = 277 constructed above
(6.2.2). A Fourier coefficient of f277 whose matrix index has the smallest determinant is a(t0; f277)=−3,
where t0 =

( 49
−233/2

−233/2
277

)
and det(2t0) = 3. Accordingly we select s =

( 544
233

233
98

)
, which is the adjoint

of 2t0. Working over R = Z, we find

φ∗s ( f277)=−3q3
+ 6q6

+ 6q9
+ 3q12

+ 3q15
− 12q18

+ 3q21
+ O(q24). (6.5.6)

As a sanity check, we recognized φ∗s ( f277) using modular symbols as a classical modular form of weight
4 and level 3 · 277 to order O(q400). We then compute

φ∗s ( f277 | T2)= 6q3
− 12q6

− 12q9
− 6q12

− 6q15
+ 24q18

− 6q21
+ O(q24) (6.5.7)

so quite convincingly, a2( f277)=−2, in agreement with (6.2.3).

To compute the action of Hecke operators on the specialized expansion (6.5.2), we work (to a finite
degree of q-adic precision) with coefficients over C or over Z/mZ with m suitably large — we consider
these two approaches in turn in the next two sections.

6.6. Over floating point complex numbers. We may also compute ap( f ) via (6.5.2) over the complex
numbers using interval arithmetic.

Example 6.6.1. We perform our Hecke computation with in-house C++ code. Continuing with f = f277

as in Example 6.5.5, for p = 2 we work with 512 bits of precision: the upper size encountered was
3.40282 · 1038 and the lower size was 2.9387 · 10−39, giving

a2( f )=
φ∗s ( f | T2)

φ∗s ( f )
≡

6q3
+ O(q5)

−3q3+ O(q4)
=−2+ O(q)

up to an error 10−75 under a second on a standard desktop CPU. The largest computation required for
this f was a43( f )= 4; with the same bit precision and maximum error smaller than 10−40, it took less
than 90 minutes.

Remark 6.6.2. Given the first few Dirichlet coefficients of an L-function in the Selberg class with specified
conductor and 0-factors, Farmer, Koutsoliotas, and Lemurell [≥ 2019] can (in principle) rigorously
compute complex approximations to the next few Dirichlet coefficients using just the approximate
functional equation. This method is practical for small examples — and it is especially useful when the
L-function is of unknown, speculative, or otherwise complicated origin. Prolonging an initial L-series is
a possible avenue for extending the range of examples of modularity proven in this article.
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6.7. Expansion over a finite field. As an alternative to complex expansion, we may also work in a finite
ring. To do so, we need the following archimedean information about the Hecke eigenvalue.

Proposition 6.7.1. Let f ∈ Sk(K (N )) be an eigenform for the Hecke operators T (p), T1(p2) with
eigenvalues ap( f ), a1,p2( f ) ∈ C where p -N. Then

|ap( f )| ≤ pk−3(1+ p)(1+ p2), |a1,p2( f )| ≤ p2k−6(1+ p)(1+ p2)p. (6.7.2)

Proof. By an elementary estimate, there exists a B > 0 such that |a(T ; f )| ≤ B det(T )k/2 for all T .
Clearly B = supT>0 |a(T ; f )|det(T )−k/2 is optimal. By (4.2.9), we have

|ap( f )||a(T ; f )|

= |a(T ; f | T (p))|

≤ |a(pT ; f )| + pk−2
∑

j mod p

∣∣a( 1
p T
[ 1

j
0
p

]
; f
)∣∣+ pk−2

∣∣a( 1
p T
[ p

0
0
1

]
; f
)∣∣+ p2k−3

∣∣a( 1
p T ; f

)∣∣
≤ Bpk det(T )k/2+ Bpk−1 det(T )k/2+ Bpk−2 det(T )k/2+ Bpk−3 det(T )k/2.

From the equation |ap( f )||a(T ; f )| det(T )−k/2
≤ B(pk

+ pk−1
+ pk−2

+ pk−3), we obtain the desired
result by taking the supremum over T > 0.

A similar argument shows the inequality for a1,p2( f ). �

If a ∈Z and |a|<C , then we can recover a ∈Z from its congruence class modulo m whenever m > 2C .
For our purposes, we might as well work with a prime modulus m, and indeed, because of the needed
p-th roots of unity, we choose a large prime m such that m ≡ 1 (mod p) and work in R = Z[ζp]/m where
m is a fixed choice of split prime above m, and we compute the expansion (6.5.2) in R[[q]] as

ap( f )≡
1

φ∗s ( f )

∑
j

φ∗s ( f | M j ) (mod m)

and then lift the result to Z⊆ Z[ζp]. The computational benefit is that we may replace ζp by an integer
and compute modulo m.

Example 6.7.3. Let f −587 ∈ S2(K (587))− be the Borcherds product defined in (6.2.8). We choose
t0 =

( 4
−137/2

−137/2
1174

)
and have a(t0, f )=−1. We used s =

( 2348
137

137
8

)
and target exponent e= tr(st0)= 15.

We used the finite field method in our computations, which required a choice of a prime modulus m
and an integer γ such that γ 6≡ 1 (mod m) and γ p

≡ 1 (mod m). The modulus m must be chosen large
enough so that m > b2Cc where C = p2

(
1+ 1

p

)(
1+ 1

p2

)
from Proposition 6.7.1. The code was written in

C++ using FLINT for operations of polynomials in one variable modulo an integer, and the computation
of the restriction method to compute a41( f −587) took less than 2 hours on a typical CPU. The computation
of a1,p2( f ) for p ≤ 11 took just a few minutes.
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7. Verifying paramodularity

In this section, we carry out the Faltings–Serre method for our case of interest G = GSp4 and ` = 2,
proving our main Theorem 1.2.1 as well as the other two advertised cases. We employ the conventions
and notation of Section 4, in particular for Galois representations and L-functions.

7.1. The case N = 277. Let X = X277 be the smooth projective curve over Q given by the equation

X : y2
+ (x3

+ x2
+ x + 1)y =−x2

− x (7.1.1)

with LMFDB label 277.a.277.1, or equivalently by

y2
+ y = x5

− 2x3
+ 2x2

− x . (7.1.2)

Both models are minimal with discriminant 1= 277. Let A= A277 = Jac X277 be the Jacobian of X277, a
principally polarized abelian surface over Q of conductor 277. Let f = f277 ∈ S2(K (277)) be the Siegel
modular form of weight 2 constructed in (6.2.2).

Our main result (implying Theorem 1.2.1) is as follows.

Theorem 7.1.3. For all primes p, we have Lp(A277,T )=Q p( f277,T ). In particular, we have L(A277,s)=
L( f277, s, spin) and the abelian surface A277 is paramodular.

To ease notation, we now dispense with subscripts. To prove this theorem, we use the strategy described
in Section 3.2, with the further practical improvements from Section 3.3. Attached to A by (4.1.3) and to
f by Theorem 4.3.4 and by the remarks afterward are 2-adic Galois representations

ρA, ρ f : GalQ,S→ GSp4(Q
al
2 )

where S = {2, 277,∞} such that det ρA = det ρ f = χ
2
2 the square of the 2-adic cyclotomic character. Our

first task is to verify equivalence of residual representations. We start with Lemma 4.3.8(a), which allows
us to conclude that the residual representations ρss

A, ρ
ss
f : GalQ,S→ GSp4(F2) take values in F2.

Lemma 7.1.4. The residual representations ρA, ρ f : GalQ,S → GSp4(F2) are equivalent and have
absolutely irreducible image S5(b).

Proof. We apply Algorithm 2.2.3. The representation ρA is given by the action on A[2]; completing the
square in (7.1.2) to obtain the model y2

= g(x)= 4x5
− 8x3

+ 8x2
− 4x + 1 we obtain ρA via the action

on the roots of g(x), which we verify is isomorphic to G = S5(b) as the elements of order 3 have trace 1
by (5.1.8). As implied by the general theory, the field Q(A[2]) is ramified only at 2, 277.

For ρ f , we only have indirect access to the Galois representation. By (6.2.4), we have

det(1− ρ f (Frob3)T )= 1+ T + T 2
+ T 3

+ T 4
∈ F2[T ],

so img ρ f contains an element of order 5. Similarly Frob5 has order divisible by 3, so img ρ f is isomorphic
to one of A5, S5, A6, S6. Therefore the fixed field under ker ρ f is the splitting field of an irreducible,
separable polynomial g(x) of degree 5 or 6. Let F :=Q[x]/(g(x)); then F is unramified away from 2, 277.
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But we know a bit more: by Lemma 4.3.10, the 277-valuation of the Artin conductor of ρ f is at most 1,
so ord277(dF )≤ 1. A Hunter search, or looking up the possible fields in the database of Jones and Roberts
[2014], shows that there are no such degree 6 polynomials, and exactly two polynomials of degree 5,
namely x5

−x4
+2x2

−x+1 and x5
−x4
+4x3

+5x−1. Both polynomials have the same Galois closure,
with Galois group S5; we need to distinguish the representations afforded by the inclusion S5 ⊆ S6 and
the fixed representation (5.1.1). We refer to (5.1.8): for the second one Frob3 does not have order 5, so
we must have a match with the representation afforded by the first one. �

With Lemma 7.1.4 in hand, we apply Lemma 4.3.8(b) to conclude that our 2-adic representations
descend to ρA, ρ f : GalQ,S→ GSp4(Z2). We now finish the proof of the theorem.

Proof of Theorem 7.1.3. We apply Algorithm 2.4.1. Step 1 was done in Lemma 7.1.4, and the residual
representations have a common image

G := img ρ ≤ GSp4(F2)= Sp4(F2)

with G ' S5(b). Let K be the fixed field under ker ρ, so Gal(K |Q)' G under ρ.
Using Theorem 5.3.3, we now find all obstructing extension groups E , an exact core-free subgroup

D ≤ E , and a list of conjugacy classes of obstructing elements. We refer to the field diagram (5.3.2). The
extension K0 = K H has degree 10, explicitly it is given by adjoining a root of the polynomial

x10
+ 3x9

+ x8
− 10x7

− 17x6
− 7x5

+ 11x4
+ 18x3

+ 13x2
+ 5x + 1.

The possible obstructing extensions ϕ :Gal(L |Q) ↪→ E are obtained as the Galois closure of the quadratic
extension L0 ⊇ K0, still unramified away from S so they may be constructed using class field theory: we
find there are 4095 quadratic extensions L0 ⊇ K0 unramified away from S. To write down polynomials
(not necessarily small) that represent these fields takes about 5 minutes; as we developed the algorithm,
we found it convenient to optimize these polynomials (using polredabs), which took about 6 hours. In the
course of the algorithm we consider 24062 obstructing pairs (L , ϕ).

For each such obstructing pair (L , ϕ), we compute a small prime p 6= 2, 277 such that the conjugacy
class of Frobp is obstructing, according to the stages of Section 3.3. Computing obstructing primes by their
L0-cycle type as in Step 4′, we obtain the list of primes {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53};
going a bit further, considering obstructing primes by the pair of L0, K0-cycle type as in Step 4′′, we
manage only to remove the prime p = 53 from the list (but reduce the sizes of primes in many cases),
so we refine the list of primes to those with p ≤ 43. The total running time for this step was about 90
minutes on a standard CPU.

There are 8 pairs (L , ϕ) that require p = 53. The field L0 generated by a root of

x20
+ 121x18

+ 7459x16
+ 286418x14

+ 7324711x12
+ 126372663x10

+ 1387797423x8

+ 7013797890x6
− 30031807329x4

− 582846604659x2
− 1630793025157
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has Galois closure L with Gal(L | Q) ' E ≤ sp4(F2) o G with #E = 2105!. There are four outer
automorphisms ξ , and with respect to one of these, we find that Frob5 is an obstructing conjugacy class
based on the L0, K0-cycle type pair 6312, 613111 but Frob53 is the first obstructing prime based only on
the L0-cycle type 814222 (and this cycle type works for all four ξ ).

We are now in Step 5 of the algorithm, and to conclude we will show that tr ρA(Frobp)= tr ρ f (Frobp)

for all p ≤ 43. The former traces can be done by counting points, the latter traces were computed using
the method in Example 6.6.1, and we check that they are equal, completing the proof. (In fact, we went
further than necessary and checked the equality of traces for all p ≤ 97.) �

7.2. The case N = 353. We now turn to a case with residual image S3 oC2. Let X = X353 be the genus
2 curve with LMFDB label 353.a.353.1 defined by

X : y2
+ (x3

+ x + 1)y = x2

and A = A353 = Jac X , a typical abelian surface of conductor 353. Let f = f353 ∈ S2(K (353)) be the
paramodular form constructed in (6.2.6).

Theorem 7.2.1. For all primes p, we have L p(A353, T ) = Q p( f353, T ). In particular, L(A, s) =
L( f353, s, spin) and the abelian surface A353 is paramodular.

Proof. The proof is similar to that of Theorem 7.1.3, but with some slightly different arguments. To
supplement the data (6.2.7), we compute ap( f ), a1,p2( f ) for p ≤ 11, and counting points yields equality
of the additional Euler factors

L5(A, T )= Q5( f, T )= 1− T + 2T 2
− 5T 3

+ 25T 4,

L7(A, T )= Q7( f, T )= 1− 6T 2
+ 49T 4,

L11(A, T )= Q11( f, T )= 1− 2T + T 2
− 22T 3

+ 121T 4.

(7.2.2)

Our first task is to verify that the mod 2 representations ρA and ρ f are equivalent and absolutely
irreducible. For A, we find the 2-torsion field generated by the splitting field of the polynomial x6

+

2x4
+ 2x3

+ 5x2
+ 2x + 1 and Galois group S3 oC2.

Let K be the fixed field of ker ρ f and G := Gal(K |Q). Since L3(A, T )≡ 1+ T + T 3
+ T 4 (mod 2)

we see that G has an element of order 3 or 6 with trace 0. Since L11(A, T ) ≡ 1+ T 2
+ T 4, we see G

has an element of order 3 or 6 with trace 1. Squaring such elements preserves their trace, so G contains
elements of order 3 with either trace. Thus G ≤ S6 has an element with cycle decomposition 31 and
one with cycle decomposition 32. Listing all subgroups of S6 with this property, we see that G must be
isomorphic to one of the permutation groups

C2
3 , C3 : S3, C3× S3 (twice), C3 : S3 ·C2, S2

3 (twice), S3 oC2, A6, S6.

The subgroups in this list that are intransitive are C2
3 ,C3 : S3,C3 × S3, S2

3 . The groups C2
3 ,C3 × S3

have C3 as a quotient, and by the Kronecker–Weber theorem there are no C3-extensions unramified
outside 2 and 353 since 353≡ 2 (mod 3). The groups C3 : S3 and S2

3 have as quotient S3, but there is a
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unique S3 extension ramified only at 2 and 353 (verified by a class field calculation and the Jones and
Roberts database [2014]) defined by x3

− x2
− 6x + 14, and we compute that there are no cyclic cubic

extensions of this field unramified away from primes dividing 2, 353. This leaves the transitive groups
C3 : S3 ·C2, S3 oC2, A6, S6 arising as the normal closure of a degree 6 subfield K ′. If G =C3 : S3 ·C2, then
as in the proof of Proposition 5.2.4, we have ord353 dK ′ = 0, 1, 3 but if ord353 dK ′ = 3 then G contains an
element with cycle structure 23, a contradiction. Combined with Proposition 5.2.4 in the remaining cases,
we have ord353 dK ′ ≤ 1. Again by consulting the Jones and Roberts database [2014], we find exactly two
candidates, the extensions defined by x6

− 2x5
+ 2x4

− x2
+ 1 and x6

− 2x5
− 3x4

+ 4x3
+ x2
− 6x + 1.

In the first extension, Frob3 has order 6 contradicting Q3( f, T )≡ 1+ T 4 (mod 2), so we have the latter,
and G is isomorphic to S3 oC2. Finally, since the trace of ρ f (Frob3) equals that of A, we see that the two
residual images are isomorphic and absolutely irreducible (recall that there are two embeddings of S3 oC2

into GSp4(F2) up to inner automorphisms, and they differ in the trace of order 3 and 6 elements).
Next, using Theorem 5.3.3 we compute the extension K0 corresponding to the core-free subgroup C2

2 ,
defined by

x18
− 10x14

+ 3x12
+ 25x10

− 5x8
− 19x6

+ 5x2
+ 1. (7.2.3)

Using computational class field theory, we list all quadratic extensions L0 ⊇ K0 unramified away from
primes above 2, 353. We find that there are 65535 such extensions. For each extension, we find an
obstructing element; after computing for just over 5 hours on a standard CPU (about 0.2 seconds per
field) we find the list of primes

{3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 53, 97, 137}. (7.2.4)

(The prime p = 181 arose from 2 extensions L0 and 4 maps ϕ each looking only at cycle types, but by
identifying the precise conjugacy classes we find obstructing classes for p = 5, 137.)

To conclude, using the floating point algorithm we compute tr ρ f (Frobp) for all primes p ≤ 109 as
well as the primes p = 137, 139, 251 (for robustness) in 29 hours on a standard CPU, and we see they
agree with the traces obtained from point counts on X , completing the proof. �

Example 7.2.5. We pause to consider an extreme example where the refinement in Section 3.3 provides
a significant improvement. Consider the extension defined by adjoining a square root of the element

−430a16
+ 302a14

+ 3956a12
− 3904a10

− 6944a8
+ 5348a6

+ 3628a4
− 1454a2

− 510

where a is a root of (7.2.3), the defining polynomial for K0.
There are 4 outer automorphisms giving rise to possible maps ϕ: but in fact, we will see below that

only 2 of these maps extend ρ, which is to say the other 2 do not preserve the residual representation. If
we only consider cycle types that obstruct all 4 possible maps ϕ as in Step 4′, we have the types 8422,
462218, 4221018. For one of these 4 extensions, the smallest prime p with this cycle type is p = 251. If
we push further in this extension, and look at the L0-cycle type and the order in K0, we compute that
p = 101 works. Going even further and using L0, K0-cycle type, we find that p = 11 works!
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7.3. The case N = 587. We conclude with one final case. Let X = X587 be the genus 2 curve with
LMFDB label 587.a.587.1 defined by

X : y2
+ (x3

+ x + 1)y =−x2
− x

and A= A587= Jac X587, a typical abelian surface of conductor 587 and rank 1. Let f = f −587∈ S2(K (587))
be the paramodular form constructed using (6.2.9).

Theorem 7.3.1. For all primes p we have L p(A587, T )= Q p( f −587, T ), and A587 is paramodular.

Proof. We first verify that the mod 2 representations ρA and ρ f are equivalent and absolutely irreducible.
For A, we find the 2-torsion field generated by the splitting field of the polynomial x6

− 2x5
+ 2x4

−

x2
+ 2x − 1 with Galois group G = S6. For f , we have

Q3( f, T )= 1+ 4T + 9T 2
+ 12T 3

+ 9T 4
≡ 1+ T 2

+ T 4 (mod 2)

and

Q11( f, T )= 1+ T − T 2
+ 11T 3

+ 121T 4
≡ 1+ T + T 2

+ T 3
+ T 4 (mod 2)

by [Poor and Yuen 2007, Table 5] and Example 6.7.3. In particular, the residual image has order divisible
by 3 and 5.

The subgroups of S6 (up to isomorphisms) of order divisible by 15 are

A5, S5, A6, S6.

In all cases, there exists a polynomial of degree 5 or 6 unramified outside {2, 587} and we can choose
them such that the discriminant valuation is at most 1 at 587 by Proposition 5.2.4. By [Jones and Roberts
2014] there are only two degree 5 polynomials with field discriminant having valuation 1 at 587, namely:
x5
− x3
− x − 2 and x5

+ 2x3
− 8x2

− 13x − 8 and two degree 6 polynomials with field discriminant
having valuation 1 at 587: x6

− 2x5
+ 2x4

− x2
+ 2x − 1 and x6

− 2x5
+ 3x4

+ 4x3
− 2x2

− 4x + 2.
For the degree 5 polynomials, the first field has Frob3 of order 4 (then it would have even trace) while
Frob11 has order 2 in the second field. Regarding the degree six ones, in the second extension Frob11 has
order 2, but odd trace in A. We deduce that the residual representation of f −587 corresponds then to the
same extension as A, and since both representations have the same trace at Frob3, we deduce that they
are indeed equivalent and absolutely irreducible.

By Theorem 5.3.3 we are led to compute all quadratic extensions of the degree 20 extension

x20
+ x18

− 4x17
− 3x16

− 2x15
+ 7x14

− 6x13
− 18x12

− 8x11
+ 8x10

+

+ 8x9
− 18x8

+ 6x7
+ 7x6

+ 2x5
− 3x4

+ 4x3
+ x2
+ 1. (7.3.2)

We find that there are 219
− 1 = 524287 such extensions. Writing down minimal polynomials (not

necessarily small) that represent these fields takes about 10 minutes; for convenience, we also computed
optimized representatives, which took many CPU weeks.
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Finding an obstructing element for each of them, we find the list of primes to verify:

{3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41}. (7.3.3)

The total CPU time to compute this list of primes was about 2.5 hours (about 0.2 seconds per field).
Finally, we computed the corresponding traces above and they match, completing the proof. �
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[Roberts and Schmidt 2006] B. Roberts and R. Schmidt, “On modular forms for the paramodular groups”, pp. 334–364 in
Automorphic forms and zeta functions (Tokyo, 2004), edited by S. Böcherer et al., World Sci., Hackensack, NJ, 2006. MR Zbl

[Roberts and Schmidt 2007] B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Math. 1918, Springer,
2007. MR Zbl

[Schmidt 2018] R. Schmidt, “Packet structure and paramodular forms”, Trans. Amer. Math. Soc. 370:5 (2018), 3085–3112. MR
Zbl

[Schütt 2006] M. Schütt, “On the modularity of three Calabi–Yau threefolds with bad reduction at 11”, Canad. Math. Bull. 49:2
(2006), 296–312. MR Zbl

[Serre 1985] J.-P. Serre, “Résumé des cours de 1984–1985”, pp. 85–90 in Annuaire du Collège de France 1984-1985, Imprimerie
Nationale, Paris, 1985.

[Serre 2018] J.-P. Serre, “On the mod p reduction of orthogonal representations”, pp. 527–540 in Lie groups, geometry, and
representation theory, edited by V. G. Kac and V. L. Popov, Progr. Math. 326, Birkhäuser, Cham, 2018. MR

[SGA 7I 1972] A. Grothendieck, Groupes de monodromie en géométrie algébrique, I: Exposés I–II, VI–IX (Séminaire de
Géométrie Algébrique du Bois Marie 1967–1969), Lecture Notes in Math. 288, Springer, 1972. MR Zbl

[Stoltenberg-Hansen and Tucker 1999] V. Stoltenberg-Hansen and J. V. Tucker, “Computable rings and fields”, pp. 363–447 in
Handbook of computability theory, edited by E. R. Griffor, Stud. Logic Found. Math. 140, North-Holland, Amsterdam, 1999.
MR Zbl

[Taylor 1991] R. Taylor, “Galois representations associated to Siegel modular forms of low weight”, Duke Math. J. 63:2 (1991),
281–332. MR Zbl

[Taylor and Wiles 1995] R. Taylor and A. Wiles, “Ring-theoretic properties of certain Hecke algebras”, Ann. of Math. (2) 141:3
(1995), 553–572. MR Zbl

http://dx.doi.org/10.1112/S1461157014000424
http://msp.org/idx/mr/3356048
http://msp.org/idx/zbl/1360.11121
http://dx.doi.org/10.4310/MRL.2012.v19.n5.a2
http://msp.org/idx/mr/3039824
http://msp.org/idx/zbl/1288.11055
http://dx.doi.org/10.1007/s00222-009-0205-7
http://msp.org/idx/mr/2551763
http://msp.org/idx/zbl/1304.11041
http://dx.doi.org/10.1007/s00222-009-0206-6
http://msp.org/idx/mr/2551764
http://msp.org/idx/zbl/1304.11042
http://msp.org/idx/mr/2234859
http://msp.org/idx/zbl/1097.11021
http://dx.doi.org/10.1090/conm/067/902596
http://msp.org/idx/mr/902596
http://msp.org/idx/zbl/0621.14019
http://dx.doi.org/10.1112/S0010437X13007665
http://msp.org/idx/mr/3200667
http://msp.org/idx/zbl/1296.11146
http://dx.doi.org/10.1515/CRELLE.2011.123
http://msp.org/idx/mr/2920881
http://msp.org/idx/zbl/1284.11094
http://dx.doi.org/10.2969/jmsj/1180135507
http://msp.org/idx/mr/2302669
http://msp.org/idx/zbl/1114.11045
http://dx.doi.org/10.1090/S0025-5718-2014-02870-6
http://msp.org/idx/mr/3315514
http://msp.org/idx/zbl/1392.11028
http://msp.org/idx/arx/1805.04137
http://dx.doi.org/10.2307/1970941
http://msp.org/idx/mr/0371903
http://msp.org/idx/zbl/0305.14016
http://msp.org/idx/mr/1212980
http://msp.org/idx/zbl/1092.11029
http://dx.doi.org/10.1142/9789812774415_0015
http://msp.org/idx/mr/2208781
http://msp.org/idx/zbl/1161.11340
http://dx.doi.org/10.1007/978-3-540-73324-9
http://msp.org/idx/mr/2344630
http://msp.org/idx/zbl/1126.11027
http://dx.doi.org/10.1090/tran/7028
http://msp.org/idx/mr/3766842
http://msp.org/idx/zbl/06843512
http://dx.doi.org/10.4153/CMB-2006-031-9
http://msp.org/idx/mr/2226253
http://msp.org/idx/zbl/1115.14032
http://dx.doi.org/10.1007/978-3-030-02191-7_18
http://msp.org/idx/mr/3890220
http://www.msri.org/publications/books/sga/sga/pdf/sga7-1.pdf
http://msp.org/idx/mr/0354656
http://msp.org/idx/zbl/0237.00013
http://dx.doi.org/10.1016/S0049-237X(99)80028-7
http://msp.org/idx/mr/1720739
http://msp.org/idx/zbl/0944.03040
http://dx.doi.org/10.1215/S0012-7094-91-06312-X
http://msp.org/idx/mr/1115109
http://msp.org/idx/zbl/0810.11033
http://dx.doi.org/10.2307/2118560
http://msp.org/idx/mr/1333036
http://msp.org/idx/zbl/0823.11030


On the paramodularity of typical abelian surfaces 1195

[Taylor and Yoshida 2007] R. Taylor and T. Yoshida, “Compatibility of local and global Langlands correspondences”, J. Amer.
Math. Soc. 20:2 (2007), 467–493. MR Zbl

[Tornaria 2018] G. Tornaria, Paramodularity code repository, 2018, Available at https://gitlab.fing.edu.uy/tornaria/modularity.

[Weissauer 2005] R. Weissauer, “Four dimensional Galois representations”, pp. 67–150 in Formes automorphes, II: Le cas du
groupe GSp(4), edited by J. Tilouine et al., Astérisque 302, Soc. Math. France, Paris, 2005. MR Zbl

[Wiles 1995] A. Wiles, “Modular elliptic curves and Fermat’s last theorem”, Ann. of Math. (2) 141:3 (1995), 443–551. MR Zbl

[Yoshida 1980] H. Yoshida, “Siegel’s modular forms and the arithmetic of quadratic forms”, Invent. Math. 60:3 (1980), 193–248.
MR Zbl

[Yoshida 2007] H. Yoshida, “On generalization of the Shimura–Taniyama conjecture, I and II”, pp. 1–26 in Siegel modular
forms and abelian varieties (Hamamatsu, Japan, 2007), edited by T. Ibukiyama, Ryushido, Kobe, 2007.

Communicated by Bjorn Poonen
Received 2018-07-06 Revised 2019-01-24 Accepted 2019-04-02

brumer@fordham.edu Department of Mathematics, Fordham University, Bronx, NY, United States

apacetti@famaf.unc.edu.ar FAMAF-CIEM, Universidad Nacional de Córdoba, Argentina

poor@fordham.edu Department of Mathematics, Fordham University, Bronx, NY, United States

tornaria@cmat.edu.uy Centro de Matemática, Universidad de la República, Montevideo, Uruguay

jvoight@gmail.com Department of Mathematics, Dartmouth College, Hanover, NH, United States

yuen888@hawaii.edu Department of Mathematics, University of Hawaii, Honolulu, HI, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0894-0347-06-00542-X
http://msp.org/idx/mr/2276777
http://msp.org/idx/zbl/1210.11118
https://gitlab.fing.edu.uy/tornaria/modularity
http://msp.org/idx/mr/2234860
http://msp.org/idx/zbl/1097.11027
http://dx.doi.org/10.2307/2118559
http://msp.org/idx/mr/1333035
http://msp.org/idx/zbl/0823.11029
http://dx.doi.org/10.1007/BF01390016
http://msp.org/idx/mr/586427
http://msp.org/idx/zbl/0453.10022
mailto:brumer@fordham.edu
mailto:apacetti@famaf.unc.edu.ar
mailto:poor@fordham.edu
mailto:tornaria@cmat.edu.uy
mailto:jvoight@gmail.com
mailto:yuen888@hawaii.edu
http://msp.org




Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Akshay Venkatesh Institute for Advanced Study, USA

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Melanie Matchett Wood University of Wisconsin, Madison, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US $385/year for the electronic version, and $590/year (+$60, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 13 No. 5 2019

995Surjectivity of Galois representations in rational families of abelian varieties
AARON LANDESMAN, ASHVIN A. SWAMINATHAN, JAMES TAO and YUJIE XU

1039A unified and improved Chebotarev density theorem
JESSE THORNER and ASIF ZAMAN

1069On the Brauer–Siegel ratio for abelian varieties over function fields
DOUGLAS ULMER

1121A five-term exact sequence for Kac cohomology
CÉSAR GALINDO and YIBY MORALES

1145On the paramodularity of typical abelian surfaces
ARMAND BRUMER, ARIEL PACETTI, CRIS POOR, GONZALO TORNARÍA, JOHN VOIGHT and DAVID S.

YUEN

1197Contragredient representations over local fields of positive characteristic
WEN-WEI LI

1937-0652(2019)13:5;1-8

A
lgebra

&
N

um
ber

Theory
2019

Vol.13,
N

o.5


	1. Introduction
	1.1. Paramodularity
	1.2. Main result
	1.3. The method of Faltings–Serre
	1.4. Contributions and organization

	2. A general Faltings–Serre method
	2.1. Trace computable representations
	2.2. Testing equivalence of residual representations
	2.3. Faltings–Serre and deformation
	2.4. Testing equivalence of representations

	3. Core-free subextensions
	3.1. Core-free subgroups
	3.2. Application to Faltings–Serre
	3.3. Computing conjugacy classes, in stages

	4. Galois representations
	4.1. Galois representations from abelian surfaces
	4.2. Paramodular forms
	4.3. Galois representations from Siegel modular forms

	5. Group theory and Galois theory for GSp4(F2)
	5.1. Symplectic group as permutation group
	5.2. Images and discriminants
	5.3. Core-free extensions and obstructing elements

	6. Computing Hecke eigenvalues by specialization
	6.1. Jacobi forms and Borcherds products
	6.2. Construction of newforms
	6.3. Specialization
	6.4. Algorithmic detail
	6.5. Example of restricting f277
	6.6. Over floating point complex numbers
	6.7. Expansion over a finite field

	7. Verifying paramodularity
	7.1. The case N=277
	7.2. The case N=353
	7.3. The case N=587

	Acknowledgements
	References
	
	

