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It was conjectured bsy Adams, Vogan and Prasad that under the local Langlands correspondence, the
L-parameter of the contragredient representation equals that of the original representation composed
with the Chevalley involution of the L-group. We verify a variant of their prediction for all connected
reductive groups over local fields of positive characteristic, in terms of the local Langlands parametrization
of A. Genestier and V. Lafforgue. We deduce this from a global result for cuspidal automorphic repre-
sentations over function fields, which is in turn based on a description of the transposes of Lafforgue’s
excursion operators.
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1. Introduction

Let F be a local field. Choose a separable closure F |F and let WF be the Weil group of F . For a
connected reductive F-group G, the local Langlands conjecture asserts the existence of a map

LLC :5(G)→8(G)

where5(G) is the set of isomorphism classes of irreducible smooth representations π of G(F) (or Harish-
Chandra modules when F is archimedean), and 8(G) is the set of Ĝ-conjugacy classes of L-parameters
WF

φ
−→

LG. Here the representations and the L-groups are taken over C, but we will soon switch to the
setting of nonarchimedean F and `-adic coefficients.

It is expected that the L-packets5φ :=LLC−1(φ) are finite sets; if π ∈5φ , we say φ is the L-parameter
of π . The local Langlands correspondence also predicates on the internal structure of 5φ when φ is a
tempered parameter; this requires additional structures as follows:
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• When G is quasisplit, choose a Whittaker datum w = (U, χ) of G, taken up to G(F)-conjugacy,
where U ⊂ G is a maximal unipotent subgroup and χ is a generic smooth character of U (F). The
individual members of 5φ are described in terms of

Sφ := ZĜ(im(φ)), Sφ := π0(Sφ).

Specifically, to each π ∈5φ one should be able to attach an irreducible representation ρ of the finite
group Sφ (up to isomorphism), such that a w-generic π ∈5φ maps to ρ = 1.

• For nonsplit G, one needs to connect G to a quasisplit group by means of a pure inner twist, or more
generally a rigid inner twist [Kaletha 2016b]; in parallel, the L-packets will extend across various
inner forms of G. We refer to [loc. cit., §5.4] for a discussion in this generality.

One natural question is to describe various operations on 5(G) in terms of L-parameters. Among
them, we consider the contragredient π̌ of π . The question is thus:

How is π 7→ π̌ in 5(G) reflected on 8(G)?

Despite its immediate appearance, this question has not been considered in this generality until the
independent work of Adams and Vogan [2016, Conjecture 1.1] and D. Prasad [2018, §4]. The answer
hinges on the Chevalley involution Lθ on LG to be reviewed in Section 3.1.

Conjecture 1.1 (Adams and Vogan; Prasad). Let π be an irreducible smooth representation of G(F).

(1) If π has L-parameter φ, then π̌ has L-parameter Lθ ◦φ.

(2) Assume for simplicity that G is quasisplit and fix a Whittaker datum w. If a tempered representation
π ∈ 5φ corresponds to an irreducible representation ρ of Sφ , then π̌ corresponds to (ρ ◦ Lθ)∨

tensored with a character ξ of Sφ .

To define ξ , we use the general recipe [Kaletha 2013, Lemma 4.1]:

π0(Sφ/ZGal(F |F)
Ĝ

) ker[H1(WF , ZĜsc)→ H1(WF , ZĜ)]

Sφ
(

Gad(F)
im[G(F)→ Gad(F)]

)Pontryagin dual

Let B be the Borel subgroup of G included in the Whittaker datum, and choose a maximal torus T ⊂ B.
Take the κ ∈ T ad(F) acting as −1 on each gα where α is any B-simple root. This furnishes the character
ξ of Sφ . When G is not quasisplit, we have to endow it with a pure or rigid inner twist alluded to above.

Conjecture 1.1 comprises two layers: the second one is due to Prasad [2018]. In this article, we will
focus exclusively on the first layer.

A precondition of the Adams–Vogan–Prasad conjecture is the existence of a map 5(G)→ 8(G),
baptized the Langlands parametrization, which has been constructed for many groups in various ways:
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• When F is archimedean, the local Langlands correspondence is Langlands’ paraphrase of Harish-
Chandra’s works. The “first layer” of the Adams–Vogan–Prasad conjecture is established by Adams
and Vogan [2016], and Kaletha [2013, Theorem 5.9] obtained the necessary refinement for the
“second layer”.

• When F is nonarchimedean of characteristic zero and G is a symplectic or quasisplit orthogonal
group, Kaletha [2013, Theorem 5.9, Corollary 5.10] verified the Adams–Vogan–Prasad conjecture
in terms of Arthur’s endoscopic classification of representations, which offers the local Langlands
correspondence for these groups.

• For nonarchimedean F and general G, Kaletha [2013, §6] also verified the conjecture for the depth-
zero and epipelagic supercuspidal L-packets, constructed by DeBacker, Reeder and Kaletha using
induction from open compact subgroups.

The aim of this article is to address the first layer of Conjecture 1.1 when F is a nonarchimedean local
field of characteristic p > 0 and G is arbitrary, in terms of the Langlands parametrization 5(G)→8(G)
of A. Genestier and V. Lafforgue [2017]. Their method is based on the geometry of the moduli stack of
restricted chtoucas, intimately related to the global Langlands parametrization of cuspidal automorphic
representations by Lafforgue [2018]. Accordingly, our representations π will be realized on Q`-vector
spaces, where ` is a prime number not equal to p, and the L-group LG is viewed as a Q`-group. As
C'Q` as abstract fields, passing to Q` does not alter the smooth representation theory of G(F). On the
other hand, there are subtle issues such as the independence of ` in the Langlands parametrization, which
we refer to [Lafforgue 2018, §12.2.4] for further discussions.

Our main local result is.

Theorem 1.2 (Theorem 3.2.2). Let F be a nonarchimedean local field of characteristic p > 0 and G be a
connected reductive F-group. Fix ` 6= p as above. If an irreducible smooth representation π of G(F)
has parameter φ ∈8(G) under the Langlands parametrization of Genestier and Lafforgue, then π̌ has
parameter Lθ ◦φ.

Remark 1.3. The prefix L for local parameters and local packets is dropped for the following reason. The
parameters of Genestier and Lafforgue are always semisimple or completely reducible in the sense of Serre
[2005]; in other words, the monodromy part of the Weil–Deligne parameter is trivial; see Lemma 2.4.4.
As mentioned in [Genestier and Lafforgue 2017], one expects that their parameter is the semisimplification
of the “true” L-parameter of π . Hence the packets 5φ in question are larger than expected, and the
Langlands parametrization we adopt is coarser, unless when φ does not factorize through any Levi
L M ↪→ LG, i.e., φ is semisimple and elliptic.

Our strategy is to reduce it into a global statement. Let F̊ be a global field of characteristic p > 0,
say F̊ = Fq(X) for a geometrically irreducible smooth proper Fq-curve X , and set A = AF̊ . Let G be a
connected reductive F̊-group. Fix a level N ⊂ X , whence the corresponding congruence subgroup KN ⊂

G(A) and the Hecke algebra Cc(KN\G(A)/KN ;Q`). Also fix a cocompact lattice 4 in AG(F̊)\AG(A)
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where AG ⊂ G is the maximal central split torus. Grosso modo, the global Langlands parametrization
in [Lafforgue 2018] is deduced from a commutative Q`-algebra B acting on the Hecke module

H{0},1 := Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
α∈ker1(F̊,G)

Ccusp
c (Gα(F̊)\Gα(A)/KN4;Q`)

of Q`-valued cusp forms, extended across pure inner forms indexed by ker1(F̊,G) (finite in number). The
algebra B is generated by the excursion operators SI, f, Eγ . For any character ν :B→Q` of algebras, denote
by Hν the generalized ν-eigenspace of H{0},1. Then H{0},1 =

⊕
ν Hν as Hecke modules. Moreover, Laf-

forgue’s machinery of LG-pseudocharacters associates a semisimple L-parameter σ :Gal(F̊ |F̊)→LG(Q`)

to ν. In fact ν is determined by σ , so that we may write Hσ = Hν .
There is an evident Hecke-invariant bilinear form on H{0},1, namely the integration pairing

〈h, h′〉 :=
∑

α∈ker1(F̊,G)

∫
Gα(F̊)\Gα(A)/4

hh′, h, h′ ∈ H{0},1,

with respect to some Haar measure on G(A)= Gα(A) which is Q-valued on compact open subgroups. It
is nondegenerate as easily seen by passing to Q` ' C. Now comes our global theorem.

Theorem 1.4 (Theorem 3.3.2). If σ, σ ′ are two semisimple L-parameters for G such that 〈 · , · 〉 is
nontrivial on Hσ ⊗Hσ ′ , then σ ′ = Lθ ◦ σ up to Ĝ(Q`)-conjugacy.

Our local-global argument runs by first reducing Theorem 1.2 to the case that π is integral supercuspidal
such that ωπ has finite order when restricted to AG ; this step makes use of the compatibility of Langlands
parametrization with parabolic induction, as established in [Genestier and Lafforgue 2017]. The second
step is to globalize π into a cuspidal automorphic representation π̊ with a suitable global model of G
and 4, satisfying π̊KN 6= {0}. The subspaces Hσ of H{0},1 might have isomorphic irreducible constituents
in common, but upon modifying the automorphic realization, one can always assume that π̊KN lands in
some Hσ . An application of Theorem 1.4 and the local-global compatibility of Langlands parametrization
[Genestier and Lafforgue 2017] will conclude the proof.

The proof of Theorem 1.4 relies upon the determination of the transpose S 7→ S∗ of excursion operators
with respect to 〈 · , · 〉, namely the Lemma 5.3.3:

S∗I, f, Eγ = SI, f †, Eγ−1

where f ∈O(Ĝ\\(LG)I //Ĝ), the finite set I and Eγ ∈Gal(F̊ |F̊)I are the data defining excursion operators,
and f †(Eg)= f (Lθ(Eg)−1) for Eg ∈ (LG)I . This property entails that if ν : B→Q` corresponds to σ , then
ν∗ : S 7→ ν(S∗) corresponds to Lθ ◦ σ (Proposition 5.3.4).

The starting point of the computation of the transpose is the fact that 〈 · , · 〉 is of geometric origin: it
stems from the Verdier duality on the moduli stack Cht(I1,...,Ik)

N ,I /4 of chtoucas. The Chevalley involution
intervenes ultimately in describing the effect of Verdier duality in geometric Satake equivalence, which is
in turn connected to Cht(I1,...,Ik)

N ,I /4 via certain canonical smooth morphisms.
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These geometric ingredients are already implicit in [Lafforgue 2018]. We just recast the relevant parts
into our needs and supply some more details. In fact, the pairing 〈 · , · 〉 and its geometrization were used
in a crucial way in older versions of [Lafforgue 2018]; that usage is now deprecated, and this article finds
another application thereof.

Our third main result concerns the duality involution proposed by Prasad [2018, §3]. Assume that G
is quasisplit. Fix an additive character ψ of G, an F-pinning P of G and the corresponding Whittaker
datum w; replacing ψ by ψ−1 yields another Whittaker datum w′. Prasad defined an involution ιG,P as
the commuting product of the Chevalley involution θ = θP of G and some inner automorphism ι− which
calibrates the Whittaker datum. Up to G(F)-conjugation, this recovers the MVW involutions on classical
groups [Mœglin et al. 1987, Chapitre 4] as well as the transpose-inverse on GL(n), whose relation with
contragredient is well known.

Theorem 1.5 (Theorem 3.5.4). Let φ ∈8(G) be a semisimple parameter such that 5φ contains a unique
w-generic member π . Then5Lθ◦φ satisfies the same property with respect to w′, and π̌ 'π ◦ιG,P ∈5Lθ◦φ .

Besides the crucial assumption which is expected to hold for tempered parameters if one works over
C with true L-packets (called Shahidi’s tempered L-packet conjecture [1990]), the main inputs are
Theorem 1.2 and the local “trivial functoriality” applied to ιG,P (see [Genestier and Lafforgue 2017,
Théorèmes 0.1 and 8.1]). Due to these assumptions and the coarseness of our LLC, one should regard
this result merely as some heuristic for Prasad’s conjectures [2018].

To conclude this introduction, let us mention two important issues that are left unanswered in this article:

• As in [Lafforgue 2018; Genestier and Lafforgue 2017], these techniques can be generalized to some
metaplectic coverings, i.e., central extensions of locally compact groups

1→ µm(F)→ G̃→ G(F)→ 1

where µm(R) = {z ∈ R× : zm
= 1} as usual; it is customary to assume µm(F) = µm(F) here. Fix a

character ζ : µm ↪→Q`
×. One studies the irreducible smooth representations π of G̃ that are ζ -genuine,

i.e., π(ε)= ζ(ε) · id for all ε ∈ µm(F). The most satisfactory setting for metaplectic coverings is due to
Brylinski and Deligne [2001] that classifies the central extensions of G by K2 as sheaves over (Spec F)Zar.
Taking F-points and pushing-out from K2(F) by norm-residue symbols yields a central extension above.

The L-group LG̃ζ associated to a Brylinski–Deligne K2-central extension, m and ζ has been constructed
in many situations; see the references in [Lafforgue 2018, §14]. Now consider the metaplectic variant
of Conjecture 1.1. If π is ζ -genuine, π̌ will be ζ−1-genuine so one needs a canonical L-isomorphism
Lθ : LG̃ζ →

LG̃ζ−1 ; this is further complicated by the fact that LGζ is not necessarily a split extension of
groups. Although some results seem within reach when G is split, it seems more reasonable to work in
the broader K2-setting and incorporate the framework of Gaitsgory and Lysenko [2018] for the geometric
part. Nonetheless, this goes beyond the scope of the present article.

• With powerful tools from p-adic Hodge theory, Fargues and Scholze proposed a program to obtain
a local Langlands parametrization in characteristic zero, akin to that of Genestier and Lafforgue; see
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[Fargues 2016] for an overview. It would certainly be interesting to try to adopt our techniques to
characteristic zero. However, our key tools are global adélic in nature, whilst the setting of Fargues and
Scholze is global in a different sense (over the Fargues–Fontaine curve). This hinders a direct translation
into the characteristic zero setting.

Organization of this article. In Section 2, we collect the basic backgrounds on cusp forms, the integration
pairing 〈 · , · 〉, contragredient representations and L-parameters, all in the `-adic setting.

In Section 3, we begin by defining the Chevalley involution with respect to a chosen pinning and its
extension to the L-group. Then we state the main Theorems 3.2.2 and 3.3.2 in the local and global cases,
respectively. The local-global argument and the heuristic on duality involutions (Theorem 3.5.4) are also
given there.

We give a brief overview of some basic vocabulary of [Lafforgue 2018] in Section 4. The only purpose
of this section is to fix notation and serve as a preparation of the next section. As in [Lafforgue 2018;
Genestier and Lafforgue 2017], we allow nonsplit groups as well.

The transposes of excursion operators are described in Section 5. It boils down to explicating the
interplay between Verdier duality and partial Frobenius morphisms on the moduli stack of chtoucas. As
mentioned before, a substantial part of this section can be viewed as annotations to [Lafforgue 2018],
together with a few new computations. The original approach in Section 5 in an earlier manuscript has
been substantially simplified following suggestions of Lafforgue.

In Sections 4 and 5, we will work exclusively in the global setting.

Conventions. Throughout this article, we fix a prime number ` distinct from the characteristic p > 0 of
the fields under consideration. We also fix an algebraic closure Q` of the field Q` of `-adic numbers.

The six operations on `-adic complexes are those defined in [Laszlo and Olsson 2008a; 2008b], for
algebraic stacks locally of finite type over a reasonable base scheme, for example over Spec Fq where q
is some power of p. Given a morphism f of finite type between such stacks, the symbols f!, f∗, etc. will
always stand for the functors between derived categories Db

c(. . . , E) unless otherwise specified, where
the field of coefficients E is some algebraic extension of Q`. The perverse t-structure on such stacks is
defined in [Laszlo and Olsson 2009]; further normalizations will be recalled in Section 4.1. The constant
sheaf associated to E on such a stack X is denoted by EX .

We use the notation Cc(X; E) to indicate the space of compactly supported smooth E-valued functions
on a topological space X , where E is any ring. Since we work exclusively over totally disconnected
locally compact spaces, smoothness here means locally constant.

For a local or global field F , we denote by WF the Weil group F with respect to a choice of separable
closure F |F , and by IF ⊂ Gal(F |F) the inertia subgroup. The arithmetic Frobenius automorphism is
denoted by Frob. If F is local nonarchimedean, oF will stand for its ring of integers.

If F̊ is a global field, we write A=AF̊ :=
∏
′

v F̊v for its ring of adÃ¨les, where v ranges over the places
of F̊ . We also write ov = oF̊v in this setting.

For a scheme T , we write:
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• 1 : T ↪→ T I for the diagonal morphism, where I is any set.

• π1(T, t) for the étale fundamental group with respect to a geometric point t → T , when T is
connected, normal and locally Noetherian.

• O(T ) for the ring of regular functions on T .

• TB := T ×
Spec A

Spec B if T is a scheme over Spec A, and B is a commutative A-algebra.

• E(T ) := Frac O(T ) for the function field, when T is an irreducible variety over a field E .

Suppose that T is a variety over a field. The geometric invariant-theoretic quotient of T under the right
action of some group variety Q, if it exists, is written as T//Q. Similar notation pertains to left or bilateral
actions.

Let G be a connected reductive group over a field F . For any F-algebra A, denote the group of
A-points of G by G(A), endowed with a topology whenever A is. Denote by ZG , Gder, Gad for the center,
derived subgroup and the adjoint group of G, respectively. Normalizers and centralizers in G are written
as NG(·) and ZG(·). If T ⊂ G is a maximal torus, we write T ad, etc. for the corresponding subgroups
in Gad, etc. The character and cocharacter groups of a torus T are denoted by X∗(T ) and X∗(T ) as
Z-modules, respectively.

The L-group and Langlands dual group of G are denoted by LG and Ĝ, respectively. We use the
Galois form of L-groups: details will be given in Section 2.4.

For an affine algebraic group H over some field E , the additive category of finite-dimensional algebraic
representations of H will be denoted as RepE(H). The trivial representation is denoted by 1. For any
object W ∈ RepE(H), we write W̌ or W∨ for its contragredient representation on HomE(W, E). For any
automorphism θ of H , write W θ for the representation on W such that every h ∈ H acts by w 7→ θ(h) ·w.

The same notation π̌ applies to the contragredient of a smooth representation π of a locally compact
totally disconnected group. This will be the topic of Section 2.3. We denote the central character of an
irreducible smooth representation π as ωπ .

2. Review of representation theory

2.1. Cusp forms. Let F̊ be a global field of characteristic p > 0. We may write F̊ = Fq(X) where q is
some power of p, and X is a smooth, geometrically irreducible proper curve over Fq . Denote A = AF̊ .
Fix a closed subscheme N ⊂ X which is finite over Fq , known as the level.

Let G be a connected reductive group over F̊ . We associate to N a compact open subgroup

KN := ker
[

G
( ∏
v∈|X |

ov

)
→ G(O(N ))

]
⊂ G(A).

Denote the maximal split central torus in G by AG . It is also known that there is a cocompact lattice

4⊂ AG(F̊)\AG(A),
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which we fix once and for all. The space G(F̊)\G(A)/4 is known to have finite volume with respect to
any Haar measure on G(A).

In what follows, we use a Haar measure on G(A) such that mes(K )∈Q for any compact open subgroup
K . The existence of such measures is established in [Vignéras 1996, Théorème 2.4]. The same convention
pertains to the subgroups of G.

For all subextension E |Q` of Q`|Q`, we have the space

Cc(G(F̊)\G(A)/4; E)=
⋃

N :levels

Cc(G(F̊)\G(A)/KN4; E)

of smooth E-valued functions of compact support on G(F̊)\G(A)/4. Then G(A) acts on the left of
Cc(G(F̊)\G(A)/4; E) by (g f )(x) = f (xg). Accordingly, Cc(G(F̊)\G(A)/KN4; E), the space of
KN -invariants, is a left module under the unital E-algebra Cc(KN\G(A)/KN ; E), the Hecke algebra
under convolution ?.

Our convention on Haar measures means that we can integrate E-valued smooth functions on
G(F̊)\G(A)/4, etc.

The subspace of Cc(G(F̊)\G(A)/4; E) of cuspidal functions

Ccusp
c (G(F̊)\G(A)/4; E)=

⋃
N :levels

Ccusp
c (G(F̊)\G(A)/KN4; E)

is defined by either

• requiring that the constant terms fP(x)=
∫

U (F̊)\U (A) f (ux) du are zero whenever P = MU ( G is
a parabolic subgroup, or

• using the criterion in terms of Hecke-finiteness in [Lafforgue 2018, Proposition 8.23].

We record two more basic facts:

• The E-vector space Ccusp
c (G(F̊)\G(A)/KN4; E) is finite-dimensional. This result is originally due

to Harder, and can be deduced from the uniform bound on supports of such functions in [Mœglin
and Waldspurger 1994, I.2.9].

• As a smooth G(A)-representation, Ccusp
c (G(F̊)\G(A)/4; E) is absolutely semisimple, i.e., it is

semisimple after −⊗E Q`; see [Bourbaki 2012, VIII.226]. Indeed, the semisimplicity in the case
E =Q` ' C is well known.

In parallel, Ccusp
c (G(F̊)\G(A)/KN4; E) is also absolutely semisimple as a Cc(KN\G(A)/KN ; E)-

module. Recall the module structure: f ∈ Cc(KN\G(A)/KN ; E) acts on h as

( f · h)(x) :=
∫

KN \G(A)/KN

h(xg) f (g) dg = (h ? f̌ )(x), x ∈ G(A) (2-1)

where f̌ (g)= f (g−1) and the convolution ? is defined in the usual manner.
We record the following standard result for later use.



Contragredient representations over local fields of positive characteristic 1205

Proposition 2.1.1. For every G(A)-representation π̊ , assumed to be smooth, let π̊KN be the space of
KN -invariant vectors. It is a left module under Cc(KN\G(A)/KN ;Q`).

(i) For all irreducible G(A)-representations π̊1, π̊2 generated by KN -invariants, we have π̊1 ' π̊2⇐⇒

π̊
KN
1 ' π̊

KN
2 as simple Cc(KN\G(A)/KN ;Q`)-modules.

(ii) Given any decomposition Ccusp
c (G(F̊)\G(A)/4;Q`)=

⊕
π̊∈5 π̊ into irreducibles, where 5 is a set

(with multiplicities) of irreducible subrepresentations, we have

Ccusp
c (G(F̊)\G(A)/KN4;Q`)=

⊕
π̊∈5, π̊KN 6=0

π̊KN

in which each π̊KN is simple.

(iii) For every irreducible G(A)-representation π̊ generated by KN -invariants, we have a natural isomor-
phism of multiplicity spaces

HomG(A)-Rep(π̊,Ccusp
c (G(F̊)\G(A)/4;Q`))

−→∼ HomCc(KN \G(A)/KN ;Q`)-Mod(π̊
KN ,Ccusp

c (G(F̊)\G(A)/KN4;Q`)).

Property (i) actually holds for representations of G(F̊v) and of its Hecke algebras, for any place v of F̊ .
The Ccusp

c in (ii) and (iii) can be replaced by
⊕

α∈ker1(F̊,G) Ccusp
c (Gα(F̊)\G(A)/4;Q`); see (2-2).

Proof. By semisimplicity, Ccusp
c (G(F̊)\G(A)/4;Q`) (or the

⊕
α version) decomposes uniquely into

W ⊕W ′ such that

• W is a subrepresentation isomorphic to a direct sum of irreducibles, each summand is generated by
KN -invariants;

• W ′ is a subrepresentation satisfying (W ′)KN = {0}.

For (ii)–(iii), it suffices to look at the G(A)-representation W and the Cc(KN\G(A)/KN ;Q`)-module
W KN ; both are semisimple. The required assertions follow from the standard equivalences between
categories in [Renard 2010, I.3 and III.1.5] and Schur’s lemma [Renard 2010, III.1.8 and B.II]. �

Next, we introduce the moduli stack BunG,N over Fq of G-torsors on X with level N structures: it
maps any Fq -scheme S to the groupoid

BunG,N (S)=
{
(G, ψ)

∣∣∣∣ G a G-torsor over X× S and
ψ : G|N×S −→

∼ G|N×S a trivialization over N

}
, BunG := BunG,∅ .

For this purpose, we need suitable models of G over X . Let U ⊂ X be the maximal open subscheme such
that G extends to a connected reductive U -group scheme. We follow [Lafforgue 2018, §12.1] to take
parahoric models at the formal neighborhoods of all points of X \U . Glue these parahoric models with the
smooth model over U , à la Beauville–Laszlo, to yield a smooth affine X -group scheme with geometrically
connected fibers, known as a Bruhat–Tits group scheme over X ; see also [Heinloth 2010, §1].
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Regard BunG,N (Fq) as a set, on which 4 acts naturally. As explained in [Lafforgue 2018], we have

BunG,N (Fq)=
⊔

α∈ker1(F̊,G)

Gα(F̊)\Gα(A)/KN (2-2)

where

• ker1(F̊,G) is the kernel of H1(F̊,G)→
∏
v∈|X |H

1(F̊v,G);

• to each α ∈ ker1(F̊,G) is attached a locally trivial pure inner twist Gα of G, and we fix an
identification Gα(A)' G(A).

The decomposition is compatible with 4-actions. The pointed set ker1(F̊,G) is finite; it is actually trivial
when G is split. As before, we have the spaces

Ccusp
c (BunG,N (Fq)/4; E)=

⊕
α∈ker1(F̊,G)

Ccusp
c (Gα(F̊)\Gα(A)/KN4; E).

The cuspidality on the left-hand side can be defined in terms of Hecke-finiteness as before. We shall also
use compatible Haar measures on various Gα(A).

From the viewpoint of harmonic analysis, the mere effect of working with BunG,N (Fq) is to consider
all the inner twists from ker1(F̊,G) at once. See also [Lafforgue 2018, §12.2.5].

2.2. Integration pairing. Let E be a subextension of Q`|Q`.

Definition 2.2.1. With the Haar measures as in Section 2.1, we define the integration pairing

〈 · , · 〉 : Ccusp
c (G(F̊)\G(A)/4; E)⊗

E
Ccusp

c (G(F̊)\G(A)/4; E)→ E
h⊗ h′ 7→ 〈h, h′〉 :=

∫
G(F̊)\G(A)/4

hh′.

The pairing is clearly E-bilinear, symmetric and G(A)-invariant. There is an obvious variant for not
necessarily cuspidal functions.

Lemma 2.2.2. The pairing 〈 · , · 〉 above is absolutely nondegenerate, i.e., its radical equals {0} after
−⊗E Q`.

Proof. It is legitimate to assume E = Q`, and there exists an isomorphism of fields Q` ' C. The
nondegeneracy over C is well known: we have

∫
hh ≥ 0, and equality holds if and only if h = 0. �

Remark 2.2.3. For a chosen level N ⊂ X , we have an analogous pairing

〈 · , · 〉 : Ccusp
c (G(F̊)\G(A)/KN4; E)⊗

E
Ccusp

c (G(F̊)\G(A)/KN4; E)→ E
h⊗ h′ 7→ 〈h, h′〉 :=

∫
G(F̊)\G(A)/KN4

hh′.

The integration here is actually a “stacky” sum over G(F̊)\G(A)/KN4, i.e., 〈h, h′〉 equals that of
Definition 2.2.1 if one starts with a Haar measure on G(A) with mes(KN ) = 1. It is also E-bilinear,
symmetric, absolutely nondegenerate and invariant in the sense that

〈 f · h, h′〉 = 〈h, f̌ · h′〉, f ∈ Cc(KN\G(A)/KN ; E);

see (2-1). There is an obvious variant for not necessarily cuspidal functions.
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The spaces in question being finite-dimensional, it makes sense to talk about the transpose of a linear
operator. For example, the transpose of the left multiplication by f is given by that of f̌ .

As in Section 2.1, the integration pairing extends to

〈 · , · 〉 : Ccusp
c (BunG,N (Fq)/4; E)⊗

E
Ccusp

c (BunG,N (Fq)/4; E)→ E

h⊗ h′ 7→
∫

BunG,N (Fq )/4

hh′.

This is the orthogonal sum of the integrations pairings on various Gα(A).

2.3. Representations. In this subsection, we let F be a local field of characteristic p > 0. Denote
the cardinality of the residue field of F as q. Let G be a connected reductive F-group. The smooth
representations of G(F) will always be realized on Q`-vector spaces. Irreducible smooth representation
of G(F) are admissible; see [Renard 2010, VI.2.2].

The smooth characters of G(F) are homomorphisms G(F)→Q`
× with open kernel. We will need to

look into a class of particularly simple characters, namely those trivial on the open subgroup

G(F)1 :=
⋂

χ∈X∗(G)

ker|χ |F (2-3)

of G(F), where X∗(G) := Homalg. grp(G,Gm) and

|·|F : F×� qZ
⊂Q×

is the normalized absolute value on F . Note that G(F)/G(F)1 ' Zr with r := rkZ X∗(G). Moreover,
G(F)1 ⊃ Gder(F)= Gder(F)1.

For any smooth character ω of ZG(F), denote by Cc(G(F), ω) the space of functions f : G(F)→Q`

such that f (zg)= ω(z) f (g) for all z ∈ ZG(F) and Supp( f ) is compact modulo ZG(F).
Let IndG

P (·) denote the unnormalized parabolic induction from the Levi quotient of P ⊂ G. Let δP

denote the modulus character of P(F) taking values in qZ. Upon choosing q1/2
∈Q`, we can also form

the normalized parabolic induction I G
P (·) := IndG

P (· ⊗ δ
1/2
P ).

We need the notion [Renard 2010, VI.7.1] of the cuspidal support (M, τ ) of an irreducible smooth
representation π . Here M ⊂ G is a Levi subgroup and τ is a supercuspidal irreducible representation of
M(F), such that π is a subquotient of I G

P (τ ) for any parabolic subgroup P ⊂ G with Levi component M .
The cuspidal support is unique up to G(F)-conjugacy. It is known that one can choose P with Levi
component M such that π ↪→ I G

P (τ ). See [Renard 2010, VI.5.4].
We collect below a few properties of an irreducible smooth representation π of G(F):

(1) Suppose that π is supercuspidal. There exists a finite extension E of Q` such that π is defined
over E . Indeed, since the central character ωπ can be defined over some finite extension of Q`, so is
π ↪→ Cc(G(F), ωπ ).

From this and the discussion on cuspidal supports, it follows that every π can be defined over some
finite extension E of Q`.
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(2) We say π is integral if it admits an oE -model of finite type, where E is a finite extension of Q`. See
[Vignéras 2001, §1.4] for details. Then an irreducible supercuspidal π is integral if and only if ωπ has
`-adically bounded image in Q`

×.
Again, this is a consequence of π ↪→ Cc(G(F), ωπ ). It also implies the notion of integrality stated in

the beginning of [Genestier and Lafforgue 2017].

(3) Let V be the underlying vector space of π . The contragredient representation π̌ of a smooth
representation π is realized on the space V∨ of the smooth vectors in HomQ`

(V,Q`). It satisfies
〈ρ̌(g)v̌, v〉 = 〈v̌, ρ(g−1)v〉. If π is defined over E , so is π̌ . Taking contragredient preserves irreducibility
and supercuspidality. It is clear that (π ⊗χ)∨ = π̌ ⊗χ−1 for any smooth character χ : G(F)→Q`

×.

(4) Moreover, (π)∨∨ ' π for all smooth irreducible π ; see [Renard 2010, III.1.7]. Also, ωπ̌ = ω−1
π .

Proposition 2.3.1. If π is an irreducible smooth representation of G(F) with cuspidal support (M, τ ),
then π̌ has cuspidal support (M, τ̌ ).

Proof. Choose a parabolic subgroup P ⊂ G with M as Levi component such that π ↪→ I G
P (τ ). Once the

Haar measures are chosen, we have I G
P (τ )

∨
' I G

P (τ̌ ) canonically; see [Bushnell and Henniart 2006, §3.5].
Dualizing, we deduce I G

P (τ̌ )� π̌ . Thus π̌ is a subquotient of I G
P (τ̌ ). �

2.4. L-parameters. Let F be a local or global field of characteristic p > 0. For a connected reductive
F-group G, we denote by F̃ |F the splitting field of G, which is a finite Galois extension inside a chosen
separable closure F .

Denote by WF the absolute Weil group of F . It comes with canonical continuous homomorphisms
(i) WF → Gal(F |F), and (ii) WFv →WF if F is global and v is a place of F . For (ii) we choose an
embedding F ↪→ Fv of separable closures.

Definition 2.4.1. The Langlands dual group Ĝ of G is a pinned connected reductive Q`-group (in fact,
definable over Z), on which Gal(F̃ |F) operates by pinned automorphisms. Throughout this article, we
use the finite Galois forms of the L-group of G, namely

LG := Ĝ oGal(F̃ |F)

viewed as an affine algebraic group.

If M ↪→ G is a Levi subgroup, we obtain a the corresponding embedding L M→ LG of standard Levi
subgroup.

Definition 2.4.2. An L-parameter for G is a homomorphism σ :WF →
LG(Q`) such that:

• The following diagram commutes:

WF
LG

Gal(F̃ |F)

σ
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• σ is continuous with respect to the `-adic topology on LG(Q`).

• σ is relevant in the sense of [Borel 1979, §8.2], which matters only when G is not quasisplit.

• (The local case) σ is Frobenius semisimple: ρ(σ(Frob)) is semisimple for every algebraic represen-
tation ρ : LG(Q`)→GL(N ,Q`), where Frob stands for any Frobenius element in WF (see [Bushnell
and Henniart 2006, 32.7 Proposition] for more discussions on Frobenius-semisimplicity).

• (The global case) σ is semisimple in the sense of [Serre 2005], to be described below. We do not
require Frobenius-semisimplicity here because for `-adic representations of geometric origin, that
property is a long-standing conjecture in étale cohomology.

The set of Ĝ(Q`)-conjugacy classes of L-parameters is denoted as 8(G). By [Borel 1979, §3.4], there is
a natural map 8(M)→8(G) for any Levi subgroup M .

Remark 2.4.3. Since LG(Q`) carries the `-adic topology and σ is required to be continuous, when F is
local we get rid of the Weil–Deligne group in the usual formulation in terms of LG(C). Besides, we do
not consider Arthur parameters in this article.

As recalled earlier, the structure of Weil groups allows us to

• localize a global L-parameter at a place v;

• talk about L-parameters of the form Gal(F |F)→ LG(Q`) and their localizations when F is global.

Next, we recall the semisimplicity of L-parameters following [Lafforgue 2018; Serre 2005]: a continuous
homomorphism σ :WF →

LG(Q`) is called semisimple if the Zariski closure of im(σ ) is reductive in
LG(Q`), in the sense that its identity connected component is reductive. When G is split, this is exactly
the definition of complete reducibility in [Serre 2005, 3.2.1], say by applying [loc. cit., Proposition 4.2].

Lemma 2.4.4. Assume F is local. The following are equivalent for any L-parameter σ for G:

(i) σ is semisimple.

(ii) The Weil–Deligne parameter associated to σ has trivial nilpotent part.

Proof. By composing σ with any faithful algebraic representation ρ : LG(Q`) ↪→ GL(N ,Q`), we may
assume that σ is an `-adic representation WF → GL(N ,Q`). To σ is associated the Weil–Deligne
representation WD(σ ): it comes with a nilpotent operator n. For details, see [Bushnell and Henniart
2006, 32.5].

(i) =⇒ (ii): The line Q`n is preserved by im(σ )-conjugation. Since exp(tn) ∈ im(σ ) for t ∈ Z` with
|t | � 1, the semisimplicity of σ forces n= 0.

(ii) =⇒ (i): As n = 0, the smooth representation underlying WD(σ ) is just σ , hence σ is semisimple
as a smooth representation of WF by [Bushnell and Henniart 2006, 32.7 Theorem]. The reductivity (or
complete reducibility) of the Zariski closure of im(σ ) then follows from the theory in [Serre 2005]. �
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Finally, we define parabolic subgroups of LG as in [Borel 1979, 3.2]. They are subgroups of the
form NLG(P̂) where P̂ ⊂ Ĝ is a parabolic subgroups, and whose projection to Gal(F̃ |F) has full image.
Define the unipotent radical of such a parabolic subgroup to be that of P̂ . We still have the notion of Levi
decomposition in this setting; see [Borel 1979, 3.4].

Following [Lafforgue 2018, §13], the semisimplification σ ss of an L-parameter σ is defined as follows:

• First, take the smallest parabolic subgroup L P ⊂ LG containing im(σ ).

• Project to the Levi quotient.

• Then embed back into LG using some Levi decomposition.

The resulting parameter is well-defined up to Ĝ(Q`)-conjugacy.
By definition, an L-homomorphism L H → LG between L-groups is an algebraic homomorphism

respecting the projections to Gal(F̃ |F).

Lemma 2.4.5. Up to Ĝ(Q`)-conjugacy, semisimplification commutes with L-automorphisms of LG.

Proof. Indeed, an L-automorphism permutes the parabolic subgroups of LG together with their Levi
decompositions. �

3. Statement of a variant of the conjecture

3.1. Chevalley involutions. To begin with, we consider a split connected reductive group H over a field,
equipped with a pinning P = (B, T, (Xα)α∈10), where

• (B, T ) is a Borel pair of H , and

• Xα is a nonzero vector in the root subspace hα, where α ranges over the set 10 of B-simple roots.

Definition 3.1.1. The Chevalley involution θ = θP is the unique pinned automorphism of H acting as
t 7→ w0(t−1) on T , where w0 stands for the longest element in the Weyl group associated to T .

This is the definition in [Prasad 2018, §4], and it is clear that θ2
= idH .

The Chevalley involution will be considered in the following settings. Let F be a field with separable
closure F .

(1) Let H = Ĝ be the dual group of G, which is connected reductive over F . The dual group is endowed
with a pinning and we obtain θ : Ĝ→ Ĝ. Since Gal(F̃ |F) operates by pinned automorphisms on Ĝ,
the Chevalley involution extends to

Lθ : LG→ LG, g o σ 7→ θ(g)o σ,

which is still an involution.

(2) Let G be a quasisplit connected reductive group over F . Then G admits an F-pinning P , i.e., a
Galois-invariant pinning of H := G F . Therefore the Chevalley involution θ = θP for G F descends
to G.
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Furthermore, observe that if H =
∏r

i=1 Hi and P decomposes into (P1, . . . ,Pr ) accordingly, the
corresponding Chevalley involution θP equals

∏r
i=1 θPi .

3.2. The local statement. Let F be a local field of characteristic p > 0. Let G be a connected reductive
F-group. The set of isomorphism classes of irreducible smooth representations over Q` of G(F) will
be denoted by 5(G). The local statement to follow presumes a given Langlands parametrization of
representations, namely an arrow

5(G)→8(G)

π 7→ φ.

This is the “automorphic to Galois” direction of the local Langlands correspondence for G. We say that
φ is the parameter of π , and denote by 5φ ⊂5(G) the fiber over φ, called the packet associated to φ.

For the local statement, we employ the Langlands parametrization furnished by Genestier and Lafforgue
[2017]. It is actually an arrow

5(G)→ {semisimple L-parameters}
/

Ĝ(Q`)-conj.⊂8(G).

Remark 3.2.1. The Genestier–Lafforgue parameters are expected to be the semisimplifications of au-
thentic (yet hypothetical) Langlands parameters. As a consequence, the packets 5φ for general Genestier–
Lafforgue parameters are expected to be a disjoint union of authentic L-packets, unless when φ is an
elliptic parameter (see Lemma 2.4.4), i.e., im(φ) is LG-ir in the sense of [Serre 2005, 3.2.1].

Further descriptions and properties of the Genestier–Lafforgue parametrization will be reviewed in due
course. Let us move directly to the main local statement.

Theorem 3.2.2. Let φ ∈8(G) be a semisimple L-parameter. In terms of the Langlands parametrization
of Genestier–Lafforgue, we have

{π̌ : π ∈5φ} =5Lθ◦φ,

where Lθ : LG→ LG is the Chevalley involution in Section 3.1.

If the Genestier–Lafforgue parametrization is replaced by an authentic Langlands parametrization, the
statement above becomes [Adams and Vogan 2016, Conjecture 1.1]; it is also a part of [Prasad 2018, §4,
Conjecture 2], but Prasad’s conjecture also predicates on the internal structure of L-packets. The conjecture
of Adams, Vogan, and Prasad applies to any local field F ; known cases in this generality include:

• The case F = R in [Adams and Vogan 2016, Theorem 7.1(a)], with admissible representations of
G(R) over C.

• The tempered L-packets for symplectic groups Sp(2n) and quasisplit SO groups over nonarchimedean
local fields F of characteristic zero in terms of Arthur’s endoscopic classification, see [Kaletha 2013,
Corollary 5.10].

• The depth-zero and epipelagic L-packets for many p-adic groups [Kaletha 2013, §6].
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Each case above requires a different construction of L-packets, applicable to different groups or parameters,
whereas the Theorem 3.2.2 furnishes a uniform statement. On the other hand, Theorem 3.2.2 is weaker
since the Langlands parametrization here is coarser, in view of the Remark 3.2.1.

The proof of Theorem 3.2.2 will occupy Section 3.4.

3.3. The global statement. Theorem 3.2.2 will be connected to the global result below.
Let F̊ = Fq(X) and fix the level N ⊂ X as in Section 2.1. Let G, KN and 4 be as in Section 2.1, so

that BunG,N is defined. Note that we need to choose a model of G over X which is a Bruhat–Tits group
scheme, still denoted as G. Let U ⊂ X denote the (open) locus of good reduction of G, and set

N̂ := N ∪ (X \U ). (3-1)

This is a finite closed Fq -subscheme of X , the “unramified locus”. Let η→ X be the generic point of X ;
fix a geometric generic point η→ η of X .

The main global result of Lafforgue [2018, Théorème 12.3] gives a canonical decomposition of
Cc(KN\G(A)/KN ;Q`)-modules

Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
σ

Hσ (3-2)

indexed by L-parameters σ : Gal(F̊ |F̊)→ LG(Q`) up to Ĝ(Q`)-conjugacy that

• are semisimple, and

• factor continuously through Gal(F̊ |F̊)→ π1(X \ N̂ , η).

Remark 3.3.1. Since the left-hand side of (3-2) is a semisimple module, of finite dimension over Q`, so
are its submodules Hσ . To each σ we may associate a set (with multiplicities) of simple submodules Cσ ,
such that

Hσ =
⊕
L∈Cσ

L, hence Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
σ

⊕
L∈Cσ

L

as Cc(KN\G(A)/KN ;Q`)-modules.

The decomposition (3-2) is built on two pillars: the theories of excursion operators and pseudocharacters
for LG. As in the local case, we defer the necessary details of [Lafforgue 2018] to Section 4.

Theorem 3.3.2. Suppose that Hσ , Hσ ′ are two nonzero summands in (3-2) such that the restriction

〈 · , · 〉σ,σ ′ : Hσ ⊗
Q`

Hσ ′→Q`

of the integration pairing 〈 · , · 〉 of Remark 2.2.3 (extended to BunG,N (Fq)/4) is not identically zero. Then
we have

σ ′ = Lθ ◦ σ in 8(G);

here Lθ is the Chevalley involution of LG.
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The proof of Theorem 3.3.2 will be accomplished at the end of Section 5.3.

3.4. Local-global argument. Consider a connected reductive group G over a local field F of character-
istic p as in the local setting Section 3.2. As usual, AG stands for the maximal central split torus in G,
and F̃ |F stands for the splitting field of G. Take a maximal torus T ⊂ G with splitting field equal to F̃ .
Let H1(WF , ZĜ) denote the continuous cohomology with values in ZĜ(Q`) with discrete topology.

The first lemma concerns the Langlands parametrization of smooth characters of G(F). The general
case turns out to be delicate: by the discussion in [Lapid and Mao 2015, Appendix A], the usual
cohomological construction actually yields an arrow in the opposite direction:

H1(WF , ZĜ) {η : G(F)→Q`
×, smooth character}

8(G)

It is injective but not necessarily surjective. However, we only need the invert it when η|G(F)1 is trivial.
This is well known to experts, and below is a sketch.

Lemma 3.4.1. For G as above, there is a canonical homomorphism of groups

{η : G(F)/G(F)1→Q`
×, a smooth character} → H1(WF , ZĜ).

Here we do not assume char(F) > 0.

Proof. Fix η. First, one can take a z-extension of G as in [Lapid and Mao 2015, Proof of Lemma A.1],
i.e., a central extension

1→ C→ G1
p
−→G→ 1, C is an induced torus, Gder

1 simply connected.

Then η1 := η ◦ p is trivial on G1(F)1. We know that H1(F,Gder
1 ) is trivial. Put S := G1/Gder

1 so
that G1(F)/Gder

1 (F) −→∼ S(F) and Ŝ ' ZĜ1
= Z◦

Ĝ1
. Then Gder

1 (F) ⊂ G1(F)1 implies that η1 factors

through S(F). The local classfield theory affords an element a ∈ H1(WF , ZĜ1
). Since η1|C = 1, we infer

that a has trivial image in H1(WF , Ĉ).
Furthermore, using the fact that C is induced, in [loc. cit.] the following natural isomorphism is

constructed:
H1(WF , ZĜ)' ker[H1(WF , ZĜ1

)→ H1(WF , Ĉ)].

All in all, we obtain a ∈ H1(WF , ZĜ). It is routine to check that η 7→ a is independent of the choice of
z-extensions, see [loc. cit.]. �

In fact, η corresponds to some class in H1(WF/IF , Z IF

Ĝ
). To see this, one readily reduces to the case

of a torus S as above. Since S(F)1 contains the parahoric subgroup, one can infer, for example by the
Satake isomorphism [Haines and Rostami 2010, Proposition 1.0.2] for S, that we obtain a parameter in
H1(WF/IF , Ŝ IF ).

The second lemma concerns the globalization of groups.
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Lemma 3.4.2. Given G and F as above, one can choose

• F̊ : a global field of characteristic p;

• G̊: a connected reductive F̊-group with maximal F̊-torus T̊ , sharing the same splitting field ˜̊F |F̊ ;

• v: a place of F̊ , and w is the unique place of ˜̊F lying over v, in particular Gal( ˜̊F |F̊) equals the
decomposition group 0w := Gal( ˜̊Fw|F̊v);

such that

• there exist isomorphisms F̊v ' F , ˜̊Fw ' F̃ , which identify 0 := Gal(F̃ |F) with 0w;

• under the identifications above, there is an isomorphism

G̊ F̊v G

T̊F̊v T

∼

∼

⊂ ⊂ ,

i.e., G̊ ⊃ T̊ is an F̊-model of G ⊃ T ;

• G̊ and G share the same root datum endowed with actions of 0'0w, relative to T̊ and T respectively.

Proof. Standard. See for instance [Arthur 1988, p.526] or [Vignéras 2001, 3.12]. �

Remark 3.4.3. The matching of root data in Lemma 3.4.2 also implies that AG̊ is “the same” as AG .
Hereafter, we shall drop the clumsy notation G̊, T̊ or AG̊ , and denote them abusively as G, T or AG instead.

For any closed discrete subgroup 4 ⊂ AG(F) isomorphic to Zdim AG , its isomorphic image in
AG(F̊)\AG(A) will also be denoted by 4. Another consequence of Lemma 3.4.2 is that 4 is a cocompact
lattice in AG(F̊)\AG(A) satisfying the requirements in Section 2.1.

Proof of Theorem 3.2.2 from Theorem 3.3.2. In what follows, we write π  φ if π ∈ 5(G) has
Genestier–Lafforgue parameter φ ∈8(G). It suffices to show that for every π ∈5(G),

(π  φ)=⇒ (π̌  Lθ ◦φ). (3-3)

Indeed, this assertion amounts to {π̌ : π ∈5φ} ⊂5Lθ◦φ . The reverse inclusion will follow by applying
(3-3) to any π1 ∈5(G) with π1 Lθ ◦φ, which in turn yields π := π̌1 Lθ ◦ Lθ ◦φ = φ whilst π1 = π̌ .

The assertion (3-3) will be established in steps:

Step 1. We reduce (3-3) to the case π supercuspidal. Indeed, let (M, τ ) be the cuspidal support of π
reviewed in Section 2.3. By Proposition 2.3.1, π̌ has cuspidal support (M, τ̌ ).

On the dual side, choose an L-embedding ι : L M ↪→ LG as reviewed in Section 2.4. Suppose that τ φτ

in M . By [Genestier and Lafforgue 2017, Théorème 0.1], φ equals to the composite of WF
φτ−→

L M ↪→ LG
up to Ĝ(Q`)-conjugacy. The same relation holds for the parameters for π̌ and τ̌ . Denoting LθM the
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Chevalley involution on L M , the diagram

L M LG

L M LG

LθM

ι

Lθ

ι

is commutative up to an explicit Ĝ(Q`)-conjugacy, by [Prasad 2018, §5, Lemma 4]. Upon replacing
(G, π) by (M, τ ), we have reduced (3-3) to the supercuspidal case.

Step 2. Consider the smooth character ω := ωπ |AG(F). We reduce (3-3) to the case that ω is of finite
order as follows (see also Remark 3.4.4). First, recalling (2-3), there exists a character

η0 : AG(F)/AG(F)1→Q`
×

such that η0⊗ω is of finite order. Indeed, this is easily reduced to the case AG ' Gm, and it suffices to
take η0($)= ω($)

−1 where $ ∈ F× is some uniformizer.
Secondly, the inclusion of discrete free commutative groups of finite type

AG(F)/AG(F)1 = AG(F)/AG(F)∩G(F)1 ↪→ G(F)/G(F)1

has finite cokernel, whereas Q`
× is divisible. Therefore η0 extends to a smooth character

η : G(F)/G(F)1→Q`
×.

The central character of π ⊗ η has finite order when restricted to AG(F).
Attach a ∈ H1(WF , ZĜ) to η by Lemma 3.4.1; it can be used to twist elements of 8(G) by the

homomorphism
WF n (ZĜ × Ĝ)→WF n Ĝ, wn (z, g) 7→ wn (zg)

by choosing any cocycle representative of a; see [Genestier and Lafforgue 2017, Remarque 0.2].
In the construction above, −⊗ η−1 corresponds to twisting a parameter by a−1. We have (π ⊗ η)∨ '

π̌ ⊗ η−1. Concurrently, Lθ ◦ (φ · a)= (Lθ ◦ φ) · a−1 since Chevalley involution acts as z 7→ z−1 on the
center. Therefore, by replacing π by π ⊗ η, it suffices to prove (3-3) when ω has finite order.

Step 3. Now we can assume π to be integral supercuspidal (see Section 2.3) with ω := ωπ |AG(F) of finite
order. By [Genestier and Lafforgue 2017], we know that the parameter φ of π factors through Gal(F |F).
Take a global F̊-model of G ⊃ AG as in Lemma 3.4.2 with F̊v ' F . As AG is split over F̊ , by reducing to
Gm and applying [Artin and Tate 1968, Chapter X, §2, Theorem 5], there exists an automorphic character

ω̊ =
⊗

u

ω̊u : AG(F̊)\AG(A)→Q`
×

of finite order, such that ω̊v = ω.
Sinceω is smooth, there exists a closed discrete subgroup4⊂ AG(F) such thatω|4=1 and4'Zdim AG .

In view of Remark 3.4.3, 4 also affords the cocompact lattice in AG(F̊)\AG(A) required in Section 2.1.
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Claim: there exists a cuspidal automorphic representation π̊ =
⊗

u π̊u of G(A) (in the extended sense
that we consider all Gα simultaneously, α ∈ ker1(F̊,G)) such that:

• The central character of π̊ equals ω̊ on AG(A).

• We have π̊v ' π .

• Relative to the chosen lattice 4 and a sufficiently deep level N , the Cc(KN\G(A)/KN ;Q`)-module
π̊KN can be embedded in some summand Hσ in (3-2).

This can be achieved by the following variant of the argument in [Henniart 1983, Appendice 1] (which
works over C) via Poincaré series; see also the proof of [Genestier and Lafforgue 2017, Lemme 1.4]. For
each place u of F̊ , choose a smooth function fu ∈ Cc(G(F̊u), ω̊u) such that:

• There exists a finite set S of places of F̊ containing v and the ramification locus of G, such that
when u /∈ S, the function fu is right G(ou)-invariant, supported on AG(F̊u)G(ou) and fu(1) = 1,
where G(ou) is the hyperspecial subgroup arsing from some reductive model of G over the ring of
S-integers in F̊ .

• We require fv to a matrix coefficient of π and assume fv(1) 6= 0.

• For every u ∈ S \ {v}, we require that Cu := Supp| fu| is a sufficiently small neighborhood of 1
modulo AG(Fu), so that the image of

Supp( fv)×
∏

u∈S\{v}

Cu ×
∏
u /∈S

G(ou)AG(F̊u)

in AG(A)\G(A)= (AG\G)(A) intersects AG(F̊)\G(F̊)= (AG\G)(F̊) only at 1. To see why this
can be achieved, embed AG\G into some affine space over F .

Take f :=
∏

u fu : G(A)→Q` and form

P f (g)=
∑

γ∈(AG\G)(F̊)

f (γ g), g ∈ G(A).

The sum is finite when g is constrained in any compact subset modulo AG(A). By choosing N sufficiently
deep, it furnishes an element of Cc(G(F̊)\G(A)/KN4;Q`). Moreover, P f (1) = f (1) 6= 0 by the
condition on supports. By looking at fv, we see that P f is a cusp form.

Decompose Ccusp
c (BunG,N (Fq)/4;Q`) into simple submodules as in Remark 3.3.1. There exists a

summand L contained in some Hσ such that P f has nonzero component in L. Let π̊ be the cuspidal auto-
morphic representation corresponding to L via Proposition 2.1.1 (realized in

⊕
α Ccusp

c (Gα(F̊)\G(A) · · · ))
where α ∈ ker1(F̊,G)) so that π̊KN = L ↪→ Hσ . Then π̊ has central character ω̊ on AG(A) and π̊v ' π ,
since P f and L have similar properties under Cc(KN\G(A)/KN ;Q`).

Step 4. Since the integration pairings 〈 · , · 〉 of Remark 2.2.3 are nondegenerate, π̊KN ⊂ Hσ must pair
nontrivially with some simple Cc(KN\G(A)/KN ;Q`)-submodule of some Hσ ′ . Proposition 2.1.1 implies
that the simple submodule takes the form (π̊ ′)KN ⊂Hσ ′ for some cuspidal automorphic representation π̊ ′.
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Theorem 3.3.2 then asserts σ ′= Lθ◦σ in8(G) (global version). On the other hand, π̊ ′ pairs nontrivially
with π̊ under the integration pairing 〈 · , · 〉 of Definition 2.2.1. The invariance of 〈 · , · 〉 therefore implies
that, as G(A)-representations, ⊗

u

(π̊u)
∨
= π̊∨ ' π̊ ′.

The local-global compatibility in [Genestier and Lafforgue 2017, Théorème 0.1(b)] says that

π ' π̊v (σ |Gal(F |F))
ss,

π̌ ' (π̊v)
∨
' π̊ ′v (σ ′|Gal(F |F))

ss
= (Lθ ◦ σ |Gal(F |F))

ss.

Here we choose an embedding of the separable closure of F̊ into F , and the semisimplification is defined
as in Section 2.4. In particular, φ = (σ |Gal(F |F))

ss in 8(G) (local version).
By Lemma 2.4.5 we have (Lθ ◦ σ |Gal(F |F))

ss
=

Lθ ◦ (σ |Gal(F |F))
ss. Summarizing,

π̌  Lθ ◦ (σ |Gal(F |F))
ss
=

Lθ ◦φ

holds in 8(G) (local version). This establishes (3-3) and the Theorem 3.2.2 follows. �

Remark 3.4.4. As pointed out by a referee, Lemma 3.4.1 can be avoided in Step 2 by the following
arguments. Restrict quot : G→ T := G/Gder to an isogeny AG → T . The same arguments show that
some smooth character η : T (F)→ Q`

× pulls back to our given η0 : AG(F)→ Q`
×. To complete

Step 2, it remains to compare (a) the parameters of η and η−1 and (b) the parameters of π and π ⊗η. For
(a), apply local trivial functoriality [Genestier and Lafforgue 2017, Théorème 8.1] to the automorphism
t 7→ t−1 of T . For (b), apply it to the homomorphism G (id,quot)

−−−−→G×T with normal image, as performed
in [Genestier and Lafforgue 2017, Remarque 0.3].

From Section 4 onwards, we will focus exclusively on Theorem 3.3.2 and the underlying geometric
considerations.

3.5. Remarks on the duality involution. Conserve the assumptions for the local statement in Section 3.2
and assume G is quasisplit. Fix an F-pinning P = (B, T, (Xα)α) of G. Choose the unique κ ∈ T ad(F)
such that κXακ−1

=−Xα, for all simple root α with respect to (B, T ). Observe that κ2
= 1 in Gad.

Let θ = θP be the Chevalley involution of G, and ι− be the inner involution g 7→ κgκ−1. Observe
that ι−θ = θι−. Indeed, ι−θι− is seen to preserve P and coincides with θ on T , hence ι−θι− = θ by the
characterization of the Chevalley involution.

Definition 3.5.1 [Prasad 2018, §3]. Relative to the F-pinning P , set ιG,P := ι−θ = θι−. It is called the
duality involution of G.

Recall that ιG,P induces a pinned automorphism of Ĝ, called the dual automorphism of ιG,P , which
depends only on ιG,P modulo Gad(F); see [Borel 1979, §2.5] for the general set-up. This recipe applies
to any base field F .
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Lemma 3.5.2. The Chevalley involution on Ĝ is the dual of ιG,P in the sense above. This result holds
over any field F.

Proof. Since ι− comes from Gad(F)-action, ιG,P and θ have the same dual. It suffices to show that the
Chevalley involution of Ĝ is dual to that of G. Since both automorphisms are pinned, it suffices to show
that the induced automorphisms on X∗(TF ) and X∗(TF ) are mutually dual. Recall that the Chevalley
involution of G and Ĝ) act on X∗(TF ) and X∗(TF ), respectively, as x 7→−w0(x), where w0 is the longest
element in the Weyl group. Since w2

0 = 1, these two automorphisms are indeed mutually dual. �

Fix a nontrivial smooth character ψ : F→Q`
×. From the F-pinning P = (B, T, (Xα)α) we produce

a Whittaker datum w := (U, χ) for G taken up to G(F)-conjugacy, that is,

• U is the unipotent radical of B,

• χ :U (F)→Q`
× is the composition of ψ with the algebraic character U → Ga mapping each Xα

to 1.

The automorphisms of G act on F-pinnings, thereby act on Whittaker data. Put

w′ := (U, χ−1)= ι−w.

Fix ψ , P and the associated Whittaker datum w for G. Let φ ∈ 8(G) be a semisimple parameter.
Define the Genestier–Lafforgue packet 5φ as in Section 3.2. We say that Shahidi’s property holds for 5φ

and w, if
∃!π ∈5φ such that π is w-generic. (3-4)

Further discussions about this property will be given in Remark 3.5.5.

Lemma 3.5.3. The following are equivalent for an irreducible smooth representation π of G(F):

(i) π is w-generic.

(ii) π ◦ θ is w-generic.

(iii) π̌ is w′-generic.

(iv) π ◦ ι− is w′-generic.

Proof. (i)⇐⇒ (ii) since θ preserves P . (i)⇐⇒ (iii) is [Prasad 2018, §4, Lemma 2]. (i)⇐⇒ (iv) follows
from transport of structure by the involution ι−. �

The following result serves as a partial heuristic for [Prasad 2018, §3, Conjecture 1].

Theorem 3.5.4. Define the Whittaker data w and w′ as above. Let φ ∈8(G) be a semisimple parameter
such that 5φ satisfies Shahidi’s property (3-4) with respect to w. Then the following hold:

(i) The packet 5Lθ◦φ satisfies Shahidi’s property (3-4) with respect to w′.

(ii) Let π be the unique w-generic member of 5φ , then π̌ is the unique w′-generic member of 5Lθ◦φ .

(iii) If π ∈5φ is w-generic, then π̌ ' π ◦ ιG,P .
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Proof. Parts (i), (ii) follow immediately from Lemma 3.5.3 and Theorem 3.2.2, which says that 5Lθ◦φ =

{π̌ : π ∈5φ}.
Now consider (iii). We claim that π ◦ ιG,P ∈ 5Lθ◦φ . In view of Lemma 3.5.2, the corresponding

statement for global Langlands parametrization of cuspidal automorphic representations follows from the
“trivial functoriality” (under the dual of ιG,P ) in [Genestier and Lafforgue 2017, Théorème 0.1 and 8.1].

Using Lemma 3.5.3, we see that π ◦ ιG,P = (π ◦ θ) ◦ ι− is also a w′-generic member of 5Lθ◦φ . It
follows from (ii) that π̌ ' π ◦ ιG,P . �

Remark 3.5.5. Choose an isomorphism Q` −→
∼ C and let φ ∈8(G) be semisimple. By a conjecture of

Shahidi [1990, Conjecture 9.4], one expects that when φ is a tempered L-parameter, (3-4) will hold for
the authentic L-packet associated to 5φ and for any w.

On the other hand, [Gross and Prasad 1992, Conjecture 2.6] proposes a characterization of L-parameters
satisfying (3-4). It is stated in terms of adjoint L-factors, thus applies directly to the `-adic case. The
author is grateful to Yeansu Kim for this comment.

Because of the semisimplified nature of our packet 5φ , see Remark 3.2.1, we expect (3-4) to hold
only when φ is not the semisimplification of any other L-parameter. This occurs when φ is elliptic, in
which case every π ∈5φ is supercuspidal: otherwise the compatibility of the parametrization π  φ

with cuspidal supports will force φ to factor through some proper Levi. It is believed that the authentic
L-packets for elliptic φ have the same property. Many constructions of such L-packets have been
proposed, such as in [Kaletha 2016a]. Nonetheless, the precise relation of these packets to the Langlands
parametrization of Genestier and Lafforgue [2017] remains to be settled.

Remark 3.5.6. As shown in [Prasad 2018], up to G(F)-conjugacy, ιG,P reduces to the well-known MVW
involution when G is classical; it reduces to g 7→ t g−1 when G =GL(n). According to [Prasad 2018, §3,
Corollary 1], when ZG is an elementary 2-group, ιG,P is independent of P up to G(F)-conjugacy.

4. Overview of the global Langlands parametrization

4.1. Geometric setup. Fix some power q of a prime number p. Take E ⊂Q` to be a finite extension of
Q` containing a square root q1/2 of q , which we fix once and for all. The sheaves and complexes under
consideration will be E-linear.

Suppose that S is a smooth Fq-scheme of finite type and of pure dimension d. For any reasonable
algebraic stack X equipped with a morphism p : X → S, define the normalized perverse sheaves on X
with respect to S to be of the form

F[−d]
(
−

d
2

)
, F a nonnormalized perverse sheaf.

The usual operations on constructible complexes continue to hold in the normalized setting, with the
proviso that the dualizing complex in [Laszlo and Olsson 2008b, §7.3] becomes

�X := (the nonnormalized one)[−2d](−d)' p!(ES)
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and the duality operator becomes D= RHom(−, �X ) accordingly. This formalism extends to ind-stacks,
etc. with a morphism to S. When S = Spec Fq , we revert to the usual definitions.

Next, assume F̊ = Fq(X) is a global field and G is a connected reductive F̊-group with a chosen
Bruhat–Tits model over X , as in Section 2.1. Fix a maximal F̊-torus T ⊂ G. Also recall that Ĝ carries a
Galois-stable pinning (B̂, T̂ , (Xα)α). Enlarging E if necessary, we can assume that:

All irreducible Q`-representations of LG are realized over E .

Fix a partition of a finite set

I = I1 t · · · t Ik

used to label points on X and a level N ⊂ X . Set N̂ = |N | ∪ (X \U ) as in (3-1). Define the Hecke stack
Hecke(I1,...,Ik)

N ,I that maps each Fq -scheme S to the groupoid

Hecke(I1,...,Ik)
N ,I (S)=


(xi )i ∈ (X \ N̂ )(S)I ,

((G j , ψ j ) ∈ BunG,N (S))kj=0,

φ j : G j−1 99K G j

∣∣∣∣∣
φ j defined off

⋃
i∈I j

0xi ,

ψ jφ j |N×S = ψ j−1

∀ j = 1, . . . , k

 (4-1)

where 0xi stands for the graph of xi : S→ X . The points (xi )i∈I are known as the “paws”.
The reason for partitioning I into I1, . . . , Ik is to define partial Frobenius morphisms, see Section 4.3.
The ind-scheme Gr(I1,...,Ik)

I , the factorization version of affine Grassmannian of Beilinson–Drinfeld, is
the space classifying the same data (4-1) as Hecke(I1,...,Ik)

I,∅ together with a trivialization θ of Gk . It also
admits a morphism of “paws” to X I . In fact Gr(I1,...,Ik)

I is ind-projective; we refer to [Lafforgue 2018, §1]
for further details. When I is a singleton and k = 1, the usual Beilinson–Drinfeld Grassmannian over X
is recovered.

The factorization structure here means that given a surjection ζ : I → J , we have, for Uζ := {(xi )i∈I :

ζ(a) 6= ζ(b)=⇒ xa 6= xb} ⊂ X I and I ′a := Ia ∩ ζ
−1( j),∀ j , the canonical isomorphism

Gr(I1,...,Ik)
I ×

X I
Uζ −→

∼
∏
j∈J

Gr
(I ′1,...,I

′

k)

ζ−1( j)

over Uζ see [Lafforgue 2018, Remarque 1.9]. The factorization structure is mainly to be employed
together with the complexes that are universally locally acyclic, hereafter abbreviated as ULA, with
respect to the base (say X I ). This property (see [Richarz 2014, §3.2] or [Braverman and Gaitsgory 2002,
§5.1]) is immensely useful for “spreading out” certain properties of complexes from some open subset in
the base, see e.g., [Richarz 2014, Theorem 3.16].

Given (ni )i ∈ ZI
≥0. Define 0∑

i ni xi ⊂ X × X I as the closed subscheme Zariski-locally defined by∏
i∈I tni

i , with ti being a local equation for xi in X , where (xi )i∈I are the aforementioned “paws”. Then
define

G∑
i∈I ni xi := the Weil restriction of G with respect to 0∑

i ni xi → X I .
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One interprets G∑
i∞xi in the same manner by considering formal neighborhoods, but we won’t go into

the details.
As in the discussion preceding [Lafforgue 2018, Proposition 1.10], there is a notion of G∑

i∞xi -action
on Gr(I1,...,Ik)

I , namely by altering the trivialization θ of Gk at 0∑
i∞xi .

Let PervG∑
i ∞xi

(Gr(I1,...,Ik)
I ) denote the category of G∑

i∞xi -equivariant normalized perverse sheaves
on the ind-scheme Gr(I1,...,Ik)

I relative to X I ; for nonsplit G, we confine ourselves to (X \ N̂ )I as in
[Lafforgue 2018, §12.3.1]. The factorization version of geometric Satake equivalence [Lafforgue 2018,
Théorèmes 1.17 and 12.16] gives an additive functor

RepE((
LG)I )→ PervG∑

i ∞xi
(Gr(I1,...,Ik)

I )

W 7→ S(I1,...,Ik)
I,W,E .

For later reference, we record some of the basic properties of this functor, all of which can be found in
[loc. cit.]:

(1) The normalized perverse sheaves S(I1,...,Ik)
I,W,E are ULA relative to the morphism to X I (or (X \ N̂ )I ).

(2) When |I | = 1, the geometric Satake equivalence [Richarz 2014; Zhu 2015] yields W 7→ S(I )I,W,E . This
extends to general I and “factorizable” W using the factorization structure on affine Grassmannians, see
[Lafforgue 2018]. Namely, for any family (Wi )i∈I of objects in RepE(

LG), one can associate S(I1,...,Ik)
I,�i Wi ,E

in PervG∑
i ∞xi

(Gr(I1,...,Ik)
I ).

(3) Write LG I for (LG)I . In order to obtain a functorial construction in all W ∈ RepE(
LG I ), we take the

LG I
×

LG I -representation R :=�i∈I O(
LG) over E . This becomes an ind-object of RepE(

LG I ) using
the LG I -action on the first slot, and this ind-object carries a LG I -action from the second slot. Take a
system of representatives of irreducible objects V ∈ RepE(

LG). As LG I
×

LG I -representations, we have⊕
V :irred

V ⊗
E

V∨ −→∼ R by taking matrix coefficients.

The decomposition above and the available S(I1,...,Ik)
I,V,E define a normalized ind-perverse sheaf S(I1,...,Ik)

I,R,E ,
with the Ĝ I -action inherited from the second slot of R. Now we can define, for each W ∈ RepE(

LG I ),

S(I1,...,Ik)
I,W,E := (S(I1,...,Ik)

I,R,E ⊗
E

W )
LG I
'

⊕
V :irred

S(I1,...,Ik)
I,V,E ⊗

E
(V∨⊗

E
W )

LG I
'

⊕
V :irred

S(I1,...,Ik)
I,V,E ⊗

E
WV , (4-2)

where: (a) W is viewed as a constant sheaf on Gr(I1,...,Ik)
I . (b) LG I acts diagonally. (c) WV stands for

the multiplicity space of V in W . Functoriality in W is clear, and it is readily seen to agree with the
previous step if W = V , up to isomorphism.

Given W ∈ RepE(
LG I ), we define the reduced closed subscheme

Gr(I1,...,Ik)
I,W := SuppS(I1,...,Ik)

I,W,E ⊂ Gr(I1,...,Ik)
I .

In this manner, the objects of RepE(
LG I ) will serve as truncation parameters for Gr(I1,...,Ik)

I,W . For the
traditional definition in terms of weights and relative positions, see [Lafforgue 2018, Définition 1.12].
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When |I |=1 and W is irreducible, S(I )I,W,E is well known to be isomorphic to the normalized IC-complex
of the stratum Gr(I )I,W .

We move to the moduli stack of chtoucas with level structures, whose the details can be found in
[Lafforgue 2018, §2, §12.3.2]. For I = I1 t · · ·t Ik and N as before, Cht(I1,...,Ik)

N ,I is defined by a pull-back
diagram

Cht(I1,...,Ik)
N ,I Hecke(I1,...,Ik)

N ,I

BunG,N BunG,N ×BunG,N

� (G0,Gk)

id×Frob

of ind-stacks over Fq . It classifies the chains

(G0, ψ0)
φ1
99K · · ·

φk−1
99K (Gk, ψk)

φk
99K (τG0,

τψ0)

of G-torsors with N -level structures (see (4-1)). Here, for every Fq-scheme S and (G, ψ) ∈ BunG,N (S)
we set

(τG, τψ) := (idX ×FrobS)
∗(G, ψ)

and similarly for the morphisms in BunG,N (S). Note that Cht(I1,...,Ik)
N ,I is an ind-stack of ind-finite type

over Fq endowed with a morphism of “paws”

p(I1,...,Ik)
N ,I : Cht(I1,...,Ik)

N ,I → (X \ N̂ )I

coming from that of Hecke(I1,...,Ik)
N ,I . Stability conditions of Harder–Narasimhan type attached to dominant

coweights µ ∈ X∗(T ad) of Gad on the datum G0 gives rise to the truncated piece Cht(I1,...,Ik),≤µ
N ,I . Choose

any Borel subgroup (over the separable closure) of G containing T . For coweights µ,µ′, write

µ′ ≥ µ⇐⇒ µ′−µ ∈
∑

α̌:simple coroot

Q≥0 · α̌.

As µ grows with respect to ≥, we have the filtered limit

Cht(I1,...,Ik)
N ,I = lim

−−→
µ

Cht(I1,...,Ik),≤µ
N ,I .

Exactly as in the case of affine Grassmannians, there is another truncation indexed by W ∈ RepE((
LG)I );

see [Lafforgue 2018, §2] for details. They give rise to

Cht(I1,...,Ik)
N ,I,W

open
⊃ Cht(I1,...,Ik),≤µ

N ,I,W .

By [Lafforgue 2018, Proposition 2.6], Cht(I1,...,Ik)
N ,I,W is a reduced Deligne–Mumford stack locally of finite

type over (X \ N̂ )I , for any W . The connected components of an open substack of the form Cht(I1,...,Ik),≤µ
N ,I,W

are quotients of quasiprojective (X \ N̂ )I -schemes by finite groups; when N is large relative to µ and to
the highest weights of W , those connected components are even quasiprojective (X \ N̂ )I -schemes. The
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last property can serve to justify some geometric reasoning over such stacks, by reducing them to the
usual scheme-theoretic setting.

We have ZG(F̊)\ZG(A) ↪→ BunZG ,N (Fq), and the latter acts on Cht(I1,...,Ik)
N ,I by twisting G-torsors by

ZG-torsors. This action leaves each truncated piece invariant. In particular, for a lattice4⊂ ZG(F̊)\ZG(A)

chosen as in Section 2.1, we have 4-action on Cht(I1,...,Ik),≤µ
N ,I,W , etc. One can shrink 4 to make it act freely,

and consider the quotients Cht(I1,...,Ik),≤µ
N ,I,W /4, etc.

By the discussions before [Lafforgue 2018, Définition 2.14], Cht(I1,...,Ik),≤µ
N ,I,W /4 is a Deligne–Mumford

stack of finite type.

4.2. Cohomologies. We keep the notation from Section 4.1. In what follows, normalization of perverse
sheaves will always be with respect to the base (X \ N̂ )I .

The first ingredient [Lafforgue 2018, Proposition 2.8] is a canonical smooth morphism

ε
(I1,...,Ik)
(I ),W,n : Cht(I1,...,Ik)

N ,I,W → Gr(I1,...,Ik)
I,W /G∑

i∈I ni xi

where n = (ni )i∈I ∈ ZI
≥0 is sufficiently positive with respect to W ∈ RepE((

LG)I ), so that the G∑
i∞xi -

action factors through G∑
i ni xi . Assume furthermore that W =�k

j=1W j where each W j ∈ RepE((
LG)I j )

is irreducible. In [Lafforgue 2018, (2.5)] the canonical smooth morphism

ε
(I1,...,Ik)
(I1,...,Ik),W,n : Cht(I1,...,Ik)

N ,I,W →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi

is constructed. These two are related by the canonical smooth morphism [Lafforgue 2018, (1.12)]

κ
(I1,...,Ik)
I,W : Gr(I1,...,Ik)

I,W →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi

that chops a chain G0 99K G1 99K · · · 99K Gk (the trivialization forgotten) classified by Gr(I1,...,Ik)
I into

segments indexed by I j . By [Lafforgue 2018, (1.13)], when mi � ni it factorizes through a smooth

κ̃
(I1,...,Ik)
I,W : Gr(I1,...,Ik)

I,W /G∑
i∈I mi xi →

k∏
j=1

Gr(I j )

I j ,W j
/G∑

i∈I j
ni xi .

For an interesting result on local models of Cht(I1,...,Ik)
N ,I,W based on these morphisms, see [Lafforgue 2018,

Proposition 2.11]. However, we do not need that result in this article.
As an application, for each W ∈ RepE((

LG)I ) we take the normalized perverse sheaf S(I1,...,Ik)
I,W,E on

Gr(I1,...,Ik)
I,W . Descend this complex to Gr(I1,...,Ik)

I,W /G∑
i∈I ni xi by its equivariance given by geometric Satake.

Hence on can form the complex (ε(I1,...,Ik)
I,W,n )∗S(I1,...,Ik)

I,W,E .
Since S(I1,...,Ik)

I,W,E is ULA with respect to (X \ N̂ )I , so is its inverse image via the smooth mor-
phism ε

(I1,...,Ik)
I,W,n ; see [Braverman and Gaitsgory 2002, 5.1.2, item 2]. We claim that the complex

(ε
(I1,...,Ik)
I,W,n )∗S(I1,...,Ik)

I,W,E is moreover normalized perverse on Cht(I1,...,Ik)
N ,I,W for irreducible W =�k

j=1W j .
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Indeed, the claim is a routine consequence of the factorization structure on Gr(I1,...,Ik)
I,W and the ULA

property, smoothness, etc.
This completes our construction when G is semisimple. In general, one has to consider a lattice 4 as in

Section 2.1. According to [Lafforgue 2018, Remarque 1.20], S(I1,...,Ik)
I,W,E descends to Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

.
By the discussions after [loc. cit., Définition 2.14], ε(I1,...,Ik)

I,W,n induces

ε
(I1,...,Ik),4
N ,I,W,n : Cht(I1,...,Ik)

N ,I,W /4→ Gr(I1,...,Ik)
I,W /Gad∑

i ni xi

which is smooth of relative dimension equal to dim Gad∑
i ni xi

. We define accordingly

F (I1,...,Ik)
N ,I,W,4,E := (ε

(I1,...,Ik),4
N ,I,W,n )∗S(I1,...,Ik)

I,W,E . (4-3)

This is still a normalized perverse sheaf on Cht(I1,...,Ik)
N ,I,W /4. In [loc. cit.], one actually deduces that

F (I1,...,Ik)
N ,I,W,4,E is isomorphic to the normalized IC-sheaf on Cht(I1,...,Ik)

N ,I,W /4.
Thus far we have assumed W =�k

j=1W j . A general definition, functorial in arbitrary W ∈RepE((
LG)I ),

can be crafted by repeating the construction for W 7→ S(I1,...,Ik)
I,W,E reviewed in Section 4.1. The result still

takes the form (4-3), except that the right-hand side is now constructed functorially in W ∈ RepE((
LG)I );

see [loc. cit., §4.5].
Next, introduce the other truncation parameter µ from Section 4.1. The morphism of paws induces

p
(I1,...,Ik),≤µ
N ,I : Cht(I1,...,Ik),≤µ

N ,I,W /4→ (X \ N̂ )I .

Recall that Cht(I1,...,Ik),≤µ
N ,I,W is open and 4-invariant in Cht(I1,...,Ik)

N ,I,W . Define

H≤µ,EN ,I,W := (p
(I1,...,Ik),≤µ
N ,I )!F (I1,...,Ik)

N ,I,W,4,E

∣∣
Cht

(I1,...,Ik ),≤µ
N ,I,W /4

,

Hi,≤µ,E
N ,I,W := HiH≤µ,EN ,I,W ,

(4-4)

i ∈ Z, here Hi is taken with respect to the ordinary t-structure on Dc((X \ N̂ )I , E).

• By using the forgetful morphisms as in [Lafforgue 2018, Construction 2.7 and Corollaire 2.18], these
complexes are seen to be independent of the partition (I1, . . . , Ik). The notation in (4-4) is thus
justified.

• Forµ≤µ′, the open immersion j :Cht(I1,...,Ik),≤µ
N ,I,W /4→Cht(I1,...,Ik),≤µ

′

N ,I,W /4 induces a canonical arrow
H≤µ,EN ,I,W →H≤µ

′,E
N ,I,W . This is a standard consequence of the formalism of six operations as j∗ = j !.

• They also respect the coalescence of paws with respect to any map ζ : I→ J . We refer to [Lafforgue
2018, Proposition 4.12] for further explanations.

Let I be a finite set and W ∈ RepE((
LG)I ) arbitrary. Denote the generic point of X and X I by η

and ηI , respectively, and choose geometric points over them

η→ η, ηI → ηI .
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Let 1 : X→ X I be the diagonal embedding. Following [Lafforgue 2018, §8] or [Varshavsky 2007, §1.3],
we choose an arrow of specialization

sp : ηI →1(η),

i.e., a morphism (X I )
(ηI )
→ (X I )(1(η)) or equivalently ηI → (X I )(1(η)), where the subscripts indicate

strict Henselizations at the corresponding geometric points. By [Lafforgue 2018, Proposition 8.24], the
induced pull-back morphism

sp∗ : lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
1(η)
→ lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ηI

between E-vector spaces is injective.
Now comes the Hecke action. Let f ∈ Cc(KN\G(A)/KN ; E). According to [Lafforgue 2018, Corol-

laire 6.5], taking a coweight κ � 0 with respect to f , there is an induced morphism

T ( f ) :H≤µ,EN ,I,W →H≤µ+κ,EN ,I,W (4-5)

in Db
c((X \ N̂ )I , E), with various compatibilities. It is E-linear in f and satisfies T ( f f ′)= T ( f )T ( f ′).

After passing to lim
−−→µ

, we are led to the left Cc(KN\G(A)/KN ; E)-module

HI,W :=
(
lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
1(η)

)Hf (4-6)

where “Hf” means Hecke-finite with respect to the action (4-5). This definition is clearly functorial in W .
The following properties are established in [Lafforgue 2018, §§8–9]:

• Compatibility with coalescence of paws. Namely, every map ζ : J→ I induces a canonical isomorphism
χζ : HI,W −→

∼ HJ,W ζ , where W ζ
∈ RepE(

LG J ) denotes the pull-back of W via ζ .

• The arrow sp∗ commutes with Hecke action since the latter is defined on the level of Db
c((X \ N̂ )I , E).

Moreover, it induces an isomorphism

sp∗ : HI,W −→
∼

(
lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf
.

• We have LG∅
= {1}, η∅ = Spec Fq when I =∅. There are natural isomorphisms

H{0},1
χ

←−∼ H∅,1 −→∼ Ccusp
c (BunG,N (Fq)/4; E). (4-7)

The arrow χ is induced by coalescence via the unique map ∅→ {0}. The rightward arrow stems from
the fact [Varshavsky 2004, Proposition 2.16(c)] that ChtN ,∅,1 /4 is the constant stack BunG,N (Fq)/4

over Spec Fq , which implies a canonical isomorphism

lim
−−→
µ

H0,≤µ,E
N ,∅,1

∣∣
1(η)
−→∼ Cc(BunG,N (Fq)/4; E) (4-8)

of Cc(KN\G(A)/KN ; E)-modules.
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• For I = {1}, W = 1, coalescence induces Cht({0})N ,{1},1 /4 −→
∼ (ChtN ,∅,1 /4)×Spec Fq (X \ N̂ ) by [Laf-

forgue 2018, (8.4)]. In this case, H0,≤µ,E
N ,{0},1 is a constant sheaf and the lim

−−→µ
of its stalk at η is still

Cc(BunG,N (Fq)/4; E).

• Via these isomorphisms, the Cc(KN\G(A)/KN ; E)-module structures on H∅,1 and H{0},1 match the
one on Ccusp

c (BunG,N (Fq)/4; E) recorded in Section 2.1. See [Lafforgue 2018, §8].

The last item above is how harmonic analysis enters the geometric picture.

4.3. Partial Frobenius morphisms and Galois actions. We conserve the previous conventions and review
the partial Frobenius morphisms. Let J ⊂ I be finite sets. Choose a partition I = I1 t · · · t Ik with
I1 = J , together with a specialization arrow sp : ηI →1(η). The choice of partition intervenes in the
constructions, but will disappear in the final results.

Let FrobJ = FrobI1 : (X \ N̂ )I
→ (X \ N̂ )I be the morphism that equals Frob on the coordinates

indexed by I1, and id elsewhere.
Take W ∈ RepE((

LG)I ) as well the lattice 4 as in Section 4.2. In [Lafforgue 2018, §3] is defined the
partial Frobenius morphism

Frob(I1,...,Ik)
I1,N : Cht(I1,...,Ik)

N ,I,W → Cht(I2,...,Ik ,I1)
N ,I,W (4-9)

covering FrobI1 , that respects 4-actions. In terms of the notations in Section 4.1, it sends the chain

(G0, ψ0)
φ1
99K · · · 99K (Gk, ψk) 99K (

τG0,
τψ0)

into

(G1, ψ1)
φ2
99K · · · 99K (Gk, ψk) 99K (

τG0,
τψ0)

τφ1
99K (τG1,

τψ1)

whereas the paws are transformed accordingly by FrobI1 . The cyclic composition of k partial Frobenius
morphism equals the total Frobenius endomorphism of Cht(I1,...,Ik)

N ,I,W . An easy consequence is that FrobI1 is
a universal homeomorphism; see [Stacks 2005–, Tag 04DC].

The induced morphism between the quotients by 4 is also named Frob(I1,...,Ik)
I1,N . Now introduce the

dominant coweight µ of Gad in Section 4.2 as truncation parameter. A basic fact is that whenever µ′�µ

with respect to W ,

(Frob(I1,...,Ik)
I1,N )−1 Cht(I2,...,Ik ,I1),≤µ

N ,I,W ⊂ Cht(I1,...,Ik),≤µ
′

N ,I,W . (4-10)

When k = 1, we have the usual Frobenius correspondence 8 : Frob∗ S(I )I,W,E −→
∼ S(I )I,W,E between

normalized perverse sheaves on Gr(I )I,W /Gad∑
i ni xi

. In general, by writing

FrobI1(xi )i∈I = (x ′i )i∈I , (xi )i∈I ∈ (X \ N̂ )I (S) ∀S : Fq -scheme
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and supposing W =�k
j=1W j is irreducible, there is a commutative diagram:

Cht(I1,...,Ik)
N ,I,W /4 Cht(I2,...,Ik ,I1)

N ,I,W /4

∏k
j=1 Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi

∏k
j=1 Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni x ′i

Frob
(I1,...,Ik )
I1,N

ε
(I1,...,Ik )
N ,(I1,...,Ik ),n

ε
(I2,...,Ik ,I1)
N ,(I2,...,Ik ,I1),n

Frob× id×···×id

In view of the constructions in Section 4.2 using the smooth morphisms ε···
···

, the ULA property, etc., we
obtain a canonical isomorphism in Db

c(Cht(I1,...,Ik)
N ,I,W /4, E)

F (I1,...,Ik)
I1,N ,W : (Frob(I1,...,Ik)

I1,N )∗F (I2,...,I1)
N ,I,W,4,E −→

∼ F (I1,...,Ik)
N ,I,W,4,E (4-11)

extending the previous case k = 1. See [Lafforgue 2018, Proposition 3.4]. This isomorphism can be
extended functorially to arbitrary W ∈ RepE((

LG)I ) by repeating the construction for W 7→ S(I1,...,Ik)
I,W,E .

Abbreviate the Frob(I1,...,Ik)
I1,N on Cht(I1,...,Ik)

N ,I,W /4 as a1. It fits into the commutative diagram

Cht(I2,...,I1),≤µ
N ,I,W /4 a−1

1 (Cht(I2,...,I1),≤µ
N ,I,W /4) Cht(I1,...,Ik),≤µ

′

N ,I,W /4

(X \ N̂ )I (X \ N̂ )I (X \ N̂ )I

p

a1 a2

p p

FrobI1

(4-12)

where p denotes the self-evident morphisms of paws, a1 is a universal homeomorphism and a2 is an
open immersion. Hence (4-11) affords a cohomological correspondence between bounded constructible
complexes in the sense of [Varshavsky 2007, §1]: for a1, a2 in (4-12),

Frob(I1,...,Ik)
I1,N ,W : a

∗

1 F (I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on the ≤ µ part

→ a!2 F (I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸

on the ≤ µ′ part

, a∗2 = a!2. (4-13)

The left square of (4-12) is not Cartesian; however, in the commutative diagram defined with Cartesian
square

a−1
1 (Cht(I2,...,I1),≤µ

N ,I,W /4)

Cht(I2,...,I1),≤µ
N ,I,W /4 Frob∗I1

(Cht(I2,...,I1),≤µ
N ,I,W /4)

(X \ N̂ )I (X \ N̂ )I

∃!ϕ

a1

p
p

ã1

p̃�

FrobI1
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the arrow ϕ is a universal homeomorphism since both FrobI1 and a1 are. Therefore we obtain

BC : Frob∗I1
p! bc
−→∼ p̃!ã∗1 ←−∼ p̃!ϕ!ϕ

∗ã∗1 ' p!a∗1 . (4-14)

Indeed, bc is the isomorphism of base change by the universal homeomorphism FrobI1 [Laszlo and Olsson
2008b, 12.2]; the second isomorphism is induced by ϕ!ϕ∗ −→∼ id, which is in turn due to the topological
invariance of the ètale topos (see [SGA 41 1972; SGA 42 1972; SGA 43 1973, Exp VIII, Théorème 1.1] or
[Stacks 2005–, Tag 04DY]) under the universal homeomorphism ϕ.

In view of (4-4), we can now define

FJ = FI1 : Frob∗I1
H≤µ,EN ,I,W →H≤µ

′,E
N ,I,W (4-15)

as the composite in Db
c((X \ N̂ )I , E)

Frob∗I1
p! F (I2,...,I1)

N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ

BC
−→∼ p!a∗1 F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

p! Frob
(I1,...,Ik )
I1,N ,W−−−−−−→p!a!2 F

(I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

→ F (I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

the last arrow arising from p!a!2 = p!(a2)!a!2
(a2)!a!2→id
−−−−−−→ p!. It is functorial in W ∈ RepE((

LG)I ) and is
shown to be compatible with the coalescence of paws in [Lafforgue 2018, §§3–4]. Hence the dependence
is only on J ⊂ I .

Consequently, the morphism FJ also acts E-linearly on lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI . Given any partition I =

I1 t · · · t Ik , the actions of FI1, . . . , FIk form a commuting family whose cyclic composition equals the
total Frobenius action on lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
ηI .

On the other hand, the standard theory [Stacks 2005–, Tag 03QW] yields a continuous representation
of π1(η

I , ηI ) on H0,≤µ,E
N ,I,W

∣∣
ηI which passes to lim

−−→µ
.

To conclude this subsection, we recall briefly the following extension of groups

1→ ker[π1(η
I , ηI )→ Ẑ] → FWeil(ηI , ηI )→ ZI

→ 0.

We refer to [Lafforgue 2018, Remarque 8.18] and the subsequent discussions for all further details. When
|I | = 1, it becomes the Weil group WF̊ of F̊ = Fq(X); in general there is a surjection FWeil(ηI , ηI )�WI

F̊
depending on the choice of sp. The surjection induces an isomorphism from the profinite completion
FWeil(ηI , ηI ) to that of WI

F̊
, i.e., π1(η, η)

I . As mentioned in [loc. cit.], the action on lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI of

• the partial Frobenius morphisms FJ for various J ⊂ I , and

• that of π1(η
I , ηI )

meld into an action of FWeil(ηI , ηI ). The upshot of [loc. cit., §8] is to produce a continuous E-
linear π1(η, η)

I -action on
(
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf therefrom. In other words, one wants to factorize the
FWeil(ηI , ηI )-action through its profinite completion continuously.

The key for the passage to π1(η, η)
I -action is Drinfeld’s Lemma. This method requires some finiteness

conditions which in turn involve the Eichler–Shimura relations. These important issues are addressed at
length in [loc. cit., §8], but they are not needed in this article.
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The aforementioned continuous representation transports to HI,W , namely

Eγ · f := (sp∗)−1( Eγ · (sp∗ f )), Eγ ∈ π1(η, η)
I , f ∈ HI,W .

This action turns out to be independent of the choice of ηI and sp, by [loc. cit., Lemme 9.4].

4.4. Excursion operators and pseudocharacters. Consider finite sets I, J and W ∈ RepE((
LG)I ) and

U ∈RepE((
LG)J ). Let ζI , ζJ be the unique maps from I, J into the singleton {0}. The diagonal action on

W gives W ζI ∈ RepE(
LG); the space of Ĝ-invariants (W ζI )Ĝ is therefore a representation of Gal(F̃ |F).

Denote by (W ζI )Ĝ
∣∣

X\N̂ the E-lisse sheaf on X \ N̂ obtained by descent. Likewise, we have (W ζI )Ĝ

∣∣
X\N̂

by taking the maximal quotient of W ζI on which Ĝ acts trivially. A pair of morphisms

H≤µ,EN ,J,U � (W
ζI )Ĝ

∣∣
X\N̂ →H≤µ,EN ,JtI,U�W

∣∣
(X\N̂ )J×1(X\N̂ )

H≤µ,EN ,J,U � (W
ζI )Ĝ

∣∣
X\N̂ ←H≤µ,EN ,JtI,U�W

∣∣
(X\N̂ )J×1(X\N̂ )

in Db
c((X \ N̂ )Jt{0}, E) are constructed in [loc. cit., (12.18), (12.19)]. Roughly speaking, they are defined

via coalescence and the functoriality of H with respect to (W ζI )Ĝ ↪→W ζI � (W ζI )Ĝ .
Now take J =∅ and U = 1. Let x ∈W and ξ ∈W∨ be Ĝ-invariant under the diagonal action, viewed

as maps E → (W ζI )Ĝ and (W ζI )Ĝ → E , respectively. Taking lim
−−→µ

H0(· · ·
∣∣
η
) yields the creation and

annihilation operators (see [loc. cit., Dèfinitions 5.1, 5.2 and 12.3.4])

lim
−−→µ

H0,≤µ,E
N ,∅,1 lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
1(η)

C]x

C[ξ

between E-vector spaces. Restriction to Hecke-finite parts yields arrows

H∅,1 ' H{0},1 HI,W

C]x

C[ξ

, see (4-6).

Given I,W, x, ξ as above and Eγ = (γi )i∈I ∈π1(η, η)
I , the excursion operator SI,W,x,ξ, Eγ is the composite

H{0},1 H{0},1

HI,W
(
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf (
lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI

)Hf HI,W

C]x
sp∗

∼

Eγ

∼

(sp∗)−1

∼

C[ξ

Here Eγ acts in the manner reviewed in Section 4.3. Upon recalling (4-7), we obtain

SI,W,x,ξ, Eγ ∈ EndE(H{0},1)' EndE(Ccusp
c (BunG,N (Fq)/4; E)).

Moreover, by [loc. cit., Définition-Proposition 9.1]
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• we have SI,W,x,ξ, Eγ ∈ EndCc(KN \G(A)/KN ;E)(H{0},1);

• the formation of SI,W,x,ξ, Eγ is E-bilinear in x, ξ and continuous in Eγ for the topology on the finite-
dimensional space EndE(H{0},1) induced by E ;

• let BE be the E-subalgebra of EndCc(KN \G(A)/KN ;E)(H{0},1) generated by SI,W,x,ξ, Eγ for all quintuples
(I,W, x, ξ, Eγ ). Then BE is a finite-dimensional commutative E-algebra by [loc. cit., (10.2)].

The foregoing constructions behave well under finite extensions of the field E of coefficients. Define
the Q`-algebra

B := BE ⊗E Q` ⊂ EndQ`
(H{0},1⊗E Q`).

Upon enlarging E , we may assume that all homomorphisms ν :B→Q` (finitely many) of Q`-algebras are
defined over E . There is a decomposition of Cc(KN\G(A)/KN ; E)-modules into generalized eigenspaces

H{0},1 =
⊕
ν

Hν, Hν := { f ∈ H{0},1 : ∀T ∈ BE , ∃d ≥ 1 | (T − ν(T ))d f = 0}. (4-16)

Here ν ranges over the characters of B, and one may take d = dimE H{0},1. The same holds after passing
to Q`. All in all,

Ccusp
c (BunG,N (Fq)/4;Q`)=

⊕
ν:B→Q`

Hν in Cc(KN\G(A)/KN ;Q`)-Mod.

It is conjectured that B is reduced, which will imply that d = 1 suffices.
The next step is to reencode the excursion operators SI,W,x,ξ, Eγ . Let f (Eg) = 〈ξ, Eg · x〉W∨⊗W where
Eg ∈ (LG)I and 〈 · , · 〉W∨⊗W is the duality pairing W∨⊗E W → E . Then f ∈ O(Ĝ\\(LG)I //Ĝ), where Ĝ
acts by bilateral translations through diagonal embedding. By [loc. cit., Lemme 10.6], SI,W,x,ξ, Eγ depends
only on (I, f, Eγ ). Using some algebraic version of the Peter–Weyl theorem, one can uniquely define the
operators

SI, f, Eγ ∈ BE , f ∈ O(Ĝ\\(LG)I //Ĝ),

in a manner compatible with the original SI,W,x,ξ, Eγ , such that if f comes from a function Gal( ˜̊F |F̊)I
→ E ,

then SI, f, Eγ = f ( Eγ ) · id. See [loc. cit., Remarque 12.20] for further explanations.
Take n ∈ Z≥1 and I := {0, . . . , n}. Then Ĝ acts on (LG)n by simultaneous conjugation. There is a

natural map

O((LG)n//Ĝ)→ O(LG\\(LG){0,...,n}//Ĝ)⊂ O(Ĝ\\(LG){0,...,n}//Ĝ)

f 7→ [ f̃ : (g0, . . . , gn) 7→ f (g−1
0 g1, . . . , g−1

0 gn)].
(4-17)

When n is fixed, the operators

2n( f )( Eγ ) := S
{0,...,n}, f̃ ,(1, Eγ ), n ∈ Z≥1, Eγ ∈ π1(η, η)

n, f ∈ O((LG)n//Ĝ) (4-18)
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in BE afford a homomorphism O((LG)n//Ĝ)→C(π1(X \ N̂ , η)n,BE) between E-algebras, where C(· · · )
denotes the algebra of continuous functions under pointwise operations. See [loc. cit., Proposition 10.10]
for the passage to π1(X \ N̂ , η).

Since O(LG\\(LG){0,...,n}//Ĝ) ( O(Ĝ\\(LG){0,...,n}//Ĝ) in general, the map (4-17) is not always sur-
jective. Nonetheless, the operators S

{0,...,n}, f̃ ,(1, Eγ ) still generate BE as n, f, Eγ vary; see [loc. cit., Remar-
que 12.20].

Finally, the machinery of LG-pseudocharacters associates a semisimple L-parameter σ ∈8(G) to any
character ν : B→Q`, characterized as follows:

• Version 1: for all n ∈ Z≥1, Eγ = (γ1, . . . , γn) and f ∈ O((LG)n//Ĝ), we have (see [loc. cit., Proposi-
tion 11.7])

f (σ (γ1), . . . , σ (γn))= ν ◦2n( f )( Eγ ).

• Version 2: for all n ∈ Z≥1, Eγ = (γ1, . . . , γn) and f̃ ∈ O(Ĝ\\(LG){0,...,n}//Ĝ), we have

f̃ (σ (1), σ (γ1), . . . , σ (γn))= ν(S{0,...,n}, f̃ ,(1, Eγ )). (4-19)

The version 2 above is a priori stronger, but they are actually equivalent by the preceding remarks
on generators.

By the discussions preceding [loc. cit., Remarque 12.21], the map HomQ`-Alg(B,Q`)→8(G) above
is injective. Hence we may write Hσ =Hν if ν 7→ σ ∈8(G), and set Hσ = {0} if σ does not match any ν.
This leads to the desired decomposition (3-2).

5. The transposes of excursion operators

5.1. On Verdier duality. Retain the notation of Section 4.2. Among them, we recall only two points:

(i) The duality operator D is normalized with respect to (X \ N̂ )I .

(ii) W∨,θ denotes the contragredient of W ∈ RepE((
LG)I ) twisted by the Chevalley involution of (LG)I .

The following results are recorded in [loc. cit., Remarque 5.4]. For the benefit of the readers, we will
give some more details below.

Proposition 5.1.1. There is a canonical isomorphism

DS(I1,...,Ik)
I,W,E −→∼ S(I1,...,Ik)

I,W∨,θ ,E

between functors from W ∈ RepE((
LG)I )op to PervG∑

i ∞xi
(Gr(I1,...,Ik)

I ).

Proof. As noted in [Braverman and Gaitsgory 2002, §B.6], D preserves the ULA property with respect
to Gr(I1,...,Ik)

I → (X \ N̂ )I . Since S(I1,...,Ik)
I,W,E is ULA, the factorization structure on Gr(I1,...,Ik)

I reduces the
affairs to the case |I | = 1, i.e., the Beilinson–Drinfeld affine Grassmannian used in [Mirković and Vilonen
2007; Richarz 2014; Zhu 2015]. Consider its fiber Grx over some point x ∈ |X \ N̂ |. In the notation from
Section 4.1, there is a left G∞x -action on Grx .
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In the local setting above, denote the usual duality operator PervG∞(Grx) by D; normalization is not
an issue here. The main ingredients are

• the Satake functor RepE((
LG)I )→ PervG∞x (Grx), written as W 7→ SW,E ;

• a canonical isomorphism between functors in W :

DSW,E −→
∼ SW∨,θ ,E .

Granting these ingredients, for general |I | we obtain canonical isomorphisms DS(I1,...,Ik)
I,W,E −→∼ S(I1,...,Ik)

I,W∨,θ ,E
Let us explain the two ingredients in the local setting. The functor W 7→ SW,E is obtained in [Richarz

2014; Zhu 2015, Theorem A.12], which are based on the case over separably closed fields in [Mirković
and Vilonen 2007]. In order to explain the effect of Lθ , we shall review the case over the separable closure
k of F̊x first. The canonical isomorphism DSW,E −→

∼ SW∨,θ ,E over k can be found in [Bezrukavnikov and
Finkelberg 2008, Lemma 14], for example, where a stronger equivariant version is established; they work
over C, but the argument is largely formal.

Next, apply Galois descent as explicated in [Richarz 2014, §6; Zhu 2015, Appendix]. Let C :=
PervG∞x (Grx) and set C′ to be its avatar over k. The absolute Galois group ϒ of F̊x operates on C′ via
⊗-equivalences, in a manner compatible with the fiber functor (total cohomology), thus ϒ acts on the
Tannakian group Ĝ as well. By [Richarz 2014, p.237], C is equivalent as an abelian category to (C′ +
continuous descent data under ϒ). The Satake equivalence over k and the machinery from [loc. cit.]
furnish an equivalence of ⊗-categories

PervG∞x (Grx)→ RepE(Ĝ ogeomϒ),

where c means continuity, and “geom” means the Tannakian or “geometric”ϒ-action on Ĝ. See [Lafforgue
2018, Remarque 1.19] for the choice of commutativity constraints.

By [Zhu 2015, Proposition A.6; Richarz 2014, Corollary 6.8], the geometric ϒ-action on Ĝ differs
from the familiar “algebraic” one by the adjoint action via ρB̂ ◦ χcycl : ϒ → Z×` → Ĝad(Q`), where
χcycl is the `-adic cyclotomic character and ρB̂ is the half-sum of positive roots in B̂; in particular,
Ĝogeomϒ ' Ĝoalgϒ (= absolute Galois form of the L-group) continuously. Since θ ∈Aut(Ĝ) stabilizes
ρB̂ , the isomorphism matches θ ogeom id with the Chevalley involution θ oalg id=: Lθ .

All in all, we obtain the Satake functor W 7→ SW,E as well as the canonical isomorphisms DSW,E −→
∼

SW∨,θ ,E . This completes the proof. �

Note that the equivariance can be upgraded to Gad∑
i∞xi

or Gad∑
i ni xi

where ni � 0 relative to W , see
[Lafforgue 2018, Remaruqe 1.20].

Proposition 5.1.2. There is a canonical isomorphism

DF (I1,...,Ik)
N ,I,W,4,E −→

∼ F (I1,...,Ik)

N ,I,W∨,θ ,4,E

between functors from W ∈ RepE((
LG)I )op to Perv(Cht(I1,...,Ik)

N ,I,W /4) that is compatible with coalescence
of paws.
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Proof. First, by combining [Lafforgue 2018, Proposition 2.8] and the explanations before Corollaire 2.15
of [loc. cit.], the smooth morphisms

Cht(I1,...,Ik)
N ,I,W /4

ε
(I1,...,Ik ),4
N ,I,W,n−−−−→Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

, Gr(I1,...,Ik)
I,W → Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

have the same relative dimension; denote it by d.
Proposition 5.1.1 gives a functorial isomorphism between descent data of shifted perverse sheaves from

Gr(I1,...,Ik)
I,W to Gr(I1,...,Ik)

I,W /Gad∑
i ni xi

, abbreviated as DS1 −→
∼ S2. Denote the corresponding shifted perverse

sheaves on Gr(I1,...,Ik)
I,W /Gad∑

i ni xi
as S[1 and S[2. By standard results, see [Laszlo and Olsson 2008b, 9.1.2],

the isomorphism above descends to

(DS[1)[2d](d)−→∼ S[2.

Since F (I1,...,Ik)
N ,I,W,4,E and F (I1,...,Ik)

N ,I,W∨,θ ,4,E are defined in (4-3) as (ε(I1,...,Ik),4
N ,I,W,n )∗S[1 and (ε(I1,...,Ik),4

N ,I,W∨,θ ,n)
∗S[2, respec-

tively, the assertion follows immediately by the same standard result. �

Take any partition I = I1t· · ·t Ik , truncation parameter µ and W ∈RepE((
LG)I ). As a consequence of

Propositions 5.1.1 and 5.1.2, we deduce that Gr(I1,...,Ik)
I,W = Gr(I1,...,Ik)

I,W∨,θ and Cht(I1,...,Ik),≤µ
N ,I,W = Cht(I1,...,Ik),≤µ

N ,I,W∨,θ .

Remark 5.1.3. Below is a review of the cup product of !-pushforward. Let S be a regular scheme and let
p : X → S be an algebraic stack of finite type over S. Let L, L′ be in D−c (X , E). Our goal is to define a
canonical arrow

p!L
L
⊗ p!L′→ p!(L

L
⊗L′).

Denote by 1 and p×p the diagonal morphisms X →X ×
S
X and X ×

S
X → S, respectively. The Künneth

formula [Laszlo and Olsson 2008b, 11.0.14 Theorem] yields a canonical isomorphism in D−c (S)

p!L
L
⊗ p!L′ ' (p× p)!(L�L′),

where � denotes the external tensor product. Since L
L
⊗L′ =1∗(L�L′), to obtain the desired arrow, it

remains to use the

(p× p)!→ (p× p)!1!1
∗
= p!1

∗

arising from id→1∗1
∗
=1!1

∗, as 1 is a closed immersion.

Consider the normalized dualizing complex � on Cht(I1,...,Ik),≤µ
N ,I,W /4. The trace map

Tr : (p(I1,...,Ik),≤µ
N ,I )!�

Tr
−→ E

(X\N̂ )I

in Verdier duality is obtained by adjunction from �−→∼ (p
(I1,...,Ik),≤µ
N ,I )!E

(X\N̂ )I .
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On the other hand, Proposition 5.1.2 affords a canonical arrow F (I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗F (I1,...,Ik)

N ,I,W,4,E→�. Apply
the cup-product construction to the stack Cht(I1,...,Ik),≤µ

N ,I,W /4 over (X \ N̂ )I to obtain canonical arrows in
Db

c((X \ N̂ )I , E):

H≤µ,EN ,I,W∨,θ
L
⊗H≤µ,EN ,I,W E

(X\N̂ )I

(p
(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W∨,θ ,4,E)
L
⊗ (p

(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W,4,E)

(p
(I1,...,Ik),≤µ
N ,I )!(F (I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗F (I1,...,Ik)

N ,I,W,4,E) (p
(I1,...,Ik),≤µ
N ,I )!�

Tr (5-1)

By homological common sense (see [Kashiwara and Schapira 1990, Example I.24(ii)] for example),
taking H• in (5-1) with respect to the ordinary t-structure on (X \ N̂ )I yield natural arrows between
E-sheaves over (X \ N̂ )I

B4,E
N ,I,W :H

i,≤µ,E
N ,I,W∨,θ ⊗E

H−i,≤µ,E
N ,I,W → E

(X\N̂ )I , i ∈ Z;

we will only use the case i = 0 in this article.
Following [Lafforgue 2018, Remarque 9.2], we may even pass to lim

−−→µ
and look at the stalk at

ξ ∈ {ηI ,1(η)}, thereby obtain from B4,E
N ,I,W the E-bilinear pairings

〈 · , · 〉ξ : lim−−→
µ

H0,≤µ,E
N ,I,W∨,θ

∣∣
ξ
⊗
E

lim
−−→
µ

H0,≤µ,E
N ,I,W

∣∣
ξ
−→ E .

Their relation with the arrow sp of specialization is given by [loc. cit., (9.6)]

〈sp∗h, sp∗h′〉
ηI = 〈h, h′〉1(η). (5-2)

In the discussions surrounding (4-8), we have seen that ChtN ,∅,1 /4 is the constant stack BunG,N (Fq)/4

over Spec Fq . The upshot is that, as in [loc. cit., Remarque 9.2], the pairing 〈 · , · 〉1(η) for I =∅ reduces
to the integration pairing on Cc(G(F̊)\G(A)/KN4; E), assuming mes(KN ) = 1. Upon restriction to
Hecke-finite part, we get the pairing 〈 · , · 〉 for H∅,1 in Remark 2.2.3. The same holds for H{0},1 by
coalescence (4-7).

5.2. Frobenius invariance. For every morphism f between reasonable schemes or stacks, we will denote
by “can” the canonical isomorphisms exchanging f ∗↔ f ! and f∗↔ f! under D. When f is a universal
homeomorphism or open immersion, we have f∗ = f! and f ∗ = f ! or only f ∗ = f !, respectively.

Merge the conventions from Sections 5.1 and 4.3. Let J ⊂ I be finite sets, I = I1t· · ·t Ik with J = I1.
We are going to explicate the compatibility between B4,E

N ,I,W and Frob∗J H
≤µ,E
N ,I,W

FJ−→H≤µ
′,E

N ,I,W , i.e., (4-15).



Contragredient representations over local fields of positive characteristic 1235

Lemma 5.2.1. In Db
c(Cht(I1,...,Ik)

N ,I,W /4, E), there is a commutative diagram whose arrows are all invertible:

(Frob(I1,...,Ik)

I1,N ,W∨,θ
)∗F (I2,...,I1)

N ,I,W∨,θ ,E (Frob(I1,...,Ik)
I1,N ,W )∗DF (I2,...,I1)

N ,I,W,4,E D(Frob(I1,...,Ik)
I1,N ,I )∗F (I2,...,I1)

N ,I,W,4,E

F (I1,...,Ik)

N ,I,W∨,θ ,4,E DF (I1,...,Ik)
N ,I,W,4,E

F
(I1,...,Ik )

I,N ,Wθ,∨

can
∼

DF
(I1,...,Ik )
I,N ,W

where F (I1,...,Ik)
I1,N ,... is from (4-11), and the horizontal arrows except can are induced by Proposition 5.1.2.

Proof. We may assume W = �k
j=1W j is irreducible. Using the definition (4-3), the smoothness of

ε
(I1,...,Ik),4
N ,I,W,n as well as the ULA properties of F and S, the desired commutativity eventually reduces to

that of

Frob∗ S(I j )

I j ,W
∨,θ
j ,E

Frob∗DS(I j )

I j ,W j ,E D Frob∗ S(I j )

I j ,W j ,E

S(I j )

I j ,W
∨,θ
j ,E

DS(I j )

I j ,W j ,E

8

can
∼

8
D8

in Db
c(Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi
, E), for each 1≤ j ≤ k. Here8 stands for the usual Frobenius correspondences,

and the horizontal arrows except can are from Proposition 5.1.1. The square commutes by the functoriality
of 8.

for the triangular part, [Laszlo and Olsson 2008a, 4.8.2 Corollary] says that can : Frob∗D−→∼ D Frob∗

equals

Frob∗ RHom(−, �) natural
−−−−→RHom(Frob∗(−),Frob∗�) f∗−→RHom(Frob∗(−),�),

where � is the dualizing complex and f : Frob∗� −→∼ � is the canonical isomorphism furnished by
[loc. cit.]. Both f and “can” reflect the fact that universal homeomorphisms conserve duality. In our case,
that fact is also realized by transport of structure via Frobenius, i.e., we have f = 8�, the Frobenius
correspondence for �. The desired commutativity thus reduces to that of

Frob∗ RHom(S, �) RHom(Frob∗ S,Frob∗�)

RHom(S, �)

8RHom(S,�)

natural

(8−1
S )∗◦(8�)∗

for all S ∈ Db
c(Gr(I j )

I j ,W j
/Gad∑

i∈I j
ni xi
, E). This is by now standard. �

Reintroduce the truncation parameters µ′� µ so that (4-10) holds with respect to both W and W∨,θ .
Let a1 (universal homeomorphism) and a2 (open immersion) be as in (4-12). As µ increases, Cht··· ,≤µN ,I,W

and Cht··· ,≤µ
′

···
form open coverings of Cht···N ,I,W .
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To state the next result, we write�≤µ and� for the normalized dualizing complex on Cht··· ,≤µN ,I,W /4 and
a−1

1 Cht(I2,...,I1),≤µ
N ,I,W /4, respectively. Recall that dualizing complexes are unique up to unique isomorphisms

[Laszlo and Olsson 2008a, 3.4.5]. There are canonical isomorphisms a∗1�
≤µ
−→∼ �←−∼ a!2�

≤µ′ , since
a∗1 = a!1.

Lemma 5.2.2. In Db
c(a
−1
1 Cht(I2,...,I1),≤µ

N ,I,W /4, E), there is a commutative diagram

a∗1 F
(I2,...,I1)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ

L
⊗ a∗1 F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

a∗1�
≤µ

�

a!2 F
(I1,...,Ik)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ′

L
⊗ a!2 F

(I1,...,Ik)
N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

a!2�
≤µ′

Frob
(I1,...,Ik )

I1,N ,W
∨,θ

L
⊗Frob

(I1,...,Ik )
I1,N ,W

'

'

'

where the arrows from · · ·
L
⊗ · · · to � are induced from Lemma 5.2.1.

Proof. It suffices to show the commutativity of the outer pentagon, since the triangle is defined to be
commutative. Recall the passage from (4-11) to (4-13): Frob(I1,...,Ik)

I1,N ,... is obtained by restricting F (I1,...,Ik)
I1,N ,...

to the open substacks cut out by the conditions ≤ µ and ≤ µ′. It remains to apply Lemma 5.2.1; note that
the effect of arrows a∗1�

≤µ
−→∼ �←−∼ a!2�

≤µ′ match the morphism “can” in Lemma 5.2.1. �

Proposition 5.2.3. Write J := I1. There is a commutative diagram in Db
c((X \ N̂ ), E)

Frob∗J H
≤µ,E
N ,I,W∨,θ

L
⊗Frob∗J H

≤µ,E
N ,I,W Frob∗J E

(X\N̂ )I

H≤µ
′,E

N ,I,W∨,θ
L
⊗H≤µ

′,E
N ,I,W E

(X\N̂ )I

Frob∗J (5-1)

FJ
L
⊗FJ FJ

(5-1)

where

• FJ
L
⊗ FJ is induced from the FJ in (4-15),

• the FJ on the right is the evident partial Frobenius morphism for E
(X\N̂ )I .

Proof. Retain the notation for Lemma 5.2.2 and let p := p(I1,...,Ik)
N ,I . Upon recalling the formalism of

KÃ 1
4 nneth formula, cup products (Remark 5.1.3) and the trace maps Tr (see (5-1)), Lemma 5.2.2 produce

a diagram in Db
c((X \ N̂ )I , E):
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Frob∗J p! F
(I2,...,I1)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ

L
⊗Frob∗J p! F

(I2,...,I1)
N ,I,W,4,E︸ ︷︷ ︸

on ≤ µ

Frob∗J p!�
≤µ Frob∗J E

(X\N̂ )I

p!a∗1F
(I2,...,I1)

N ,I,W∨,θ ,4,E

L
⊗ p!a∗1F

(I2,...,I1)
N ,I,W,4,E p!a∗1�

≤µ
' p!� E

(X\N̂ )I

p!a!2F
(I1,...,Ik)

N ,I,W∨,θ ,4,E

L
⊗ p!a!2F

(I1,...,Ik)
N ,I,W,4,E p!a!2�

≤µ′
' p!�

p! F (I1,...,Ik)

N ,I,W∨,θ ,4,E︸ ︷︷ ︸
on ≤ µ′

L
⊗p! F (I1,...,Ik)

N ,I,W,4,E︸ ︷︷ ︸
on ≤ µ′

p!�
≤µ′

BC
L
⊗BC '

Frob∗J Tr

BC' ' FJ

p! Frob
(I1,...,Ik )

I1,N ,W
∨,θ

L
⊗ p! Frob

(I1,...,Ik )
I1,N ,W

Tr

Tr

where BC and p!a!2→ p! are the arrows in (4-14) and explained after (4-15), respectively. The diagram
commutes, indeed:

• The first two rows form a commutative diagram by the naturality of BC, which is ultimately based
on the topological invariance of the étale topos together with the fact that universal homeomorphisms
respect duality [Laszlo and Olsson 2008b, 9.1.5 Proposition and 12.2].

• The commutativity of the middle square comes from Lemma 5.2.2, by applying p!.

• The remaining pieces commute by the naturality of p!a!2→ p! and of Tr.

The composite of the last row is (5-1), and that of the first row is its Frob∗J -image (now for the

≤ µ part). The composite of the leftmost column yields FJ
L
⊗ FJ : Frob∗J H

≤µ,E
N ,I,W∨,θ

L
⊗ Frob∗J H

≤µ,E
N ,I,W →

H≤µ
′,E

N ,I,W∨,θ
L
⊗H≤µ

′,E
N ,I,W by the very definition of FJ . This completes the proof. �

The case k = 1, i.e., when FJ is the total Frobenius morphism, is relatively straightforward; see the
proof of Lemma 5.2.1.

Recall from Section 4.3 that FJ furnishes an E-linear endomorphism of lim
−−→µ

H0,≤µ,E
N ,I,W

∣∣
ηI , still denoted

as FJ .

Corollary 5.2.4. The pairing 〈 · , · 〉
ηI in (5-2) is invariant under FJ for all J ⊂ I .

Proof. After taking H0 and lim
−−→µ

, Proposition 5.2.3 implies that

〈h1, h2〉ηI = 〈FJ (h1), FJ (h2)〉ηI

for all h1, h2 in lim
−−→µ

H0,≤µ,E
N ,I,W∨,θ

∣∣
ηI and lim

−−→µ
H0,≤µ,E

N ,I,W

∣∣
ηI , respectively. �

The cautious reader might worry about a missing power of p in Corollary 5.2.4 due to Tate twists. It
does not occur here by our normalizations of S, F and D.
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5.3. Computation of the transpose. We adopt the notation of Section 4.4. The integration pairing 〈 · , · 〉
of Remark 2.2.3 is nondegenerate symmetric on the finite-dimensional E-vector space H{0},1 ' H∅,1.
The transpose S∗ of any S ∈ EndE(H{0},1), characterized by 〈h′, Sh〉 = 〈S∗h′, h〉 for all h, h′ ∈ H{0},1.
Identify 〈 · , · 〉 with the pairing 〈 · , · 〉1(η) in (5-2).

Lemma 5.3.1. For all data I,W, ξ, x and Eγ = (γi )i ∈ π1(η, η)
I for excursion operators, we have

S∗I,W,ξ,x, Eγ = SI,W∨,θ ,x,ξ, Eγ−1 .

In particular, the E-algebra BE is closed under transpose S 7→ S∗.

Note that the roles of x, ξ are switched when one passes from W to W∨,θ . The transpose-invariance of
BE has already been sketched in [Lafforgue 2018, Remarque 12.15].

Proof. Recall from Section 4.3 that by choosing ηI and sp, there is a homomorphism FWeil(ηI , ηI )→WI
F̊

inducing an isomorphism between profinite completions. As SI,W,ξ,x, Eγ and SI,W∨,θ ,x,ξ, Eγ−1 are both
continuous in Eγ , it suffices to consider that case when Eγ comes from FWeil(ηI , ηI ).

By [Lafforgue 2018, Remarque 5.4, (9.8)], C[ξ and C]ξ are already transposes of each other on the sheaf
level with respect to B4,E

N ,I,W ; in particular they commute with sp∗. Ditto for C]x and C[x . Therefore, for all
h, h′ ∈ H{0},1, we infer by using (5-2) that

〈h′, SI,W,x,ξ, Eγ (h)〉1(η) = 〈h′, C
[
ξ (sp

∗)−1( Eγ · sp∗C]x h)〉1(η)

= 〈sp∗(h′), sp∗(C[ξ (sp
∗)−1( Eγ · sp∗C]x h))〉

ηI

= 〈sp∗C]ξ (h
′), Eγ · sp∗C]x(h)〉η,

〈SI,W∨,θ ,ξ,x, Eγ−1(h′), h〉1(η) = 〈C[x(sp
∗)−1( Eγ−1

· sp∗C]ξh′), h〉1(η)

= 〈sp∗(C[x(sp
∗)−1( Eγ−1

· sp∗C]ξh′)), sp∗(h)〉
ηI

= 〈Eγ−1
· sp∗C]ξ (h

′), sp∗C]x(h)〉ηI .

It remains to show that 〈 · , · 〉
ηI is FWeil(ηI , ηI )-invariant. Recall that the FWeil(ηI , ηI )-action unites

those from π1(η
I , ηI ) and partial Frobenius morphisms FJ . The π1(η

I , ηI )-action leaves 〈 · , · 〉
ηI invariant

since the latter comes from the sheaf-level pairing B4,E
N ,I,W over (X \ N̂ )I . The FJ -invariance of 〈 · , · 〉 for

all J ⊂ I is assured by Corollary 5.2.4. �

We are now able to describe the transpose of excursion operators.

Definition 5.3.2. For every f ∈ O(Ĝ\\(LG)I //Ĝ), set f †(Eg) := f (Lθ(Eg−1)) where Eg ∈ (LG)I and Lθ

stands for the Chevalley involution of (LG)I . Then f 7→ f † defines an involution of O(Ĝ\\(LG)I //Ĝ).

Lemma 5.3.3. For all I , f ∈ O(Ĝ\\(LG)I //Ĝ) and Eγ = (γi )i ∈ π1(η, η)
I , we have S∗I, f, Eγ = SI, f †, Eγ−1 .

Proof. It suffices to consider the case f (Eg)=〈ξ, Eg ·x〉W∨⊗W , where ξ ∈W∨, x ∈W are as in Lemma 5.3.1,
and 〈 · , · 〉W∨⊗W is the evident duality pairing. As before, denote by W θ , W∨,θ be the Lθ-twists of the
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representations W,W∨ etc., and the preceding convention on pairing still applies. Note that (W∨,θ )∨'W θ

canonically in RepE((
LG)I ).

For every Eg ∈ (LG)I , we have

f †(Eg)= 〈ξ, Lθ(g)−1
· x︸ ︷︷ ︸

original action

〉W∨⊗W

= 〈ξ, Eg−1
· x︸ ︷︷ ︸

Lθ -twisted

〉W θ,∨⊗W θ

= 〈Eg · ξ〉︸ ︷︷ ︸
Lθ -twisted

, xW θ,∨⊗W θ

= 〈x, Eg · ξ〉(W∨,θ )∨⊗W∨,θ .

In view of Lemma 5.3.1, we deduce that S∗I, f, Eγ = S∗I,W,ξ,x, Eγ equals SI,W∨,θ ,x,ξ, Eγ−1 = SI, f †, Eγ−1 , as
asserted. �

Consider any homomorphism ν : B := BE ⊗E Q`→ Q` of Q`-algebras. As B is commutative and
closed under transpose, ν∗ : S 7→ ν(S∗) is also a homomorphism of Q`-algebras.

Proposition 5.3.4. If σ ∈8(G) is attached to ν : B→Q`, then Lθ ◦ σ is attached to ν∗.

Proof. Fix n ∈Z≥0 and let I := {0, . . . , n}. Given the characterization (4-19) of the L-parameters attached
to ν, ν∗, it boils down to the observation that for all Eγ = (γ0, . . . , γn)∈ π1(η, η)

I and f ∈O(Ĝ\\LG I //Ĝ),

ν∗(SI, f, Eγ )= ν(S∗I, f, Eγ )= ν(SI, f †, Eγ−1)= f †(σ (γ0)
−1, . . . , σ (γn)

−1)= f (Lθσ (γ0), . . . ,
Lθσ (γn)),

in which the second equality stems from Lemma 5.3.3. �

Write Hσ :=Hν if σ ∈8(G) is attached to ν, and write 〈 · , · 〉σ,σ ′ := 〈 · , · 〉
∣∣
Hσ⊗Hσ ′

, for all σ, σ ′ ∈8(G).

Proof of Theorem 3.3.2. Enlarge E so that all homomorphisms ν : B→ Q` are defined over E . Fix a
ν such that Hν 6= {0}. Since BE is closed under transpose, the subspace H⊥ν ⊂ H{0},1 defined relative
to 〈 · , · 〉 is BE -stable as well. Since 〈 · , · 〉 is nondegenerate, H⊥ν 6= H{0},1. Use the BE -invariance to
decompose BE -modules as follows

H⊥ν =
⊕
µ

H⊥ν ∩Hµ,
H{0},1
H⊥ν
=

⊕
µ

Hµ

H⊥ν ∩Hµ
6= {0}.

We contend that Hµ 6⊂ H⊥ν only if µ= ν∗, or equivalently µ∗ = ν.
Indeed, 〈 · , · 〉 induces a nondegenerate pairing

〈 · , · 〉ν : Hν ⊗
E

⊕
µ

Hµ

Hµ ∩H⊥ν
→ E .
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Let d := dim H{0},1. For every S ∈ BE , write Sν := S|Hν . Then (Sν − ν(S))d = 0. Taking transpose with
respect to 〈 · , · 〉ν yields (S∗ν − ν(S))

d
= 0 in EndE(Hµ/(Hµ ∩H

⊥
ν )), for each µ.

On the other hand, the transpose S∗ ∈ BE with respect to 〈 · , · 〉 satisfies (S∗−µ(S∗))d = 0 on Hµ,
and S∗|Hµ induces S∗,µ ∈ EndE(Hµ/(Hµ ∩H

⊥
ν )) satisfying (S∗,µ−µ(S∗))d = 0. Clearly S∗,µ = S∗ν . All

in all, we deduce that µ∗(S) := µ(S∗)= ν(S) whenever Hµ 6= H⊥ν ∩Hµ.
It follows from the claim that if 〈 · , · 〉σ,σ ′ is not identically zero, then the corresponding ν, ν ′ : B→Q`

satisfy ν∗ = ν ′. Now Proposition 5.3.4 implies Lθ ◦ σ = σ ′. �
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