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Let S be a set of n× n matrices over a field F. We show that the F-linear span of the words in S of length
at most

2n log2 n+ 4n

is the full F-algebra generated by S. This improves on the n2

3 +
2
3 bound by Paz (1984) and an O(n3/2)

bound of Pappacena (1997).

Let S be a subset of a finite-dimensional associative algebra A over a field F. An element a ∈ A is
said to be a word of length k in S if there are a1, . . . , ak ∈ S such that a = a1 · · · ak . We denote the set of
all such words by Sk , and we write FSk for the F-linear span of Sk . Similarly, FS6k will stand for the
F-linear span of all the words in S that have length at most k.

Definition 1. The length `(S) is the smallest integer k for which FS6k is the full subalgebra generated
by S. We also define `(A) as the maximum value of `(S), where S runs over all subsets of A that generate
A as an F-algebra.

In our paper, we study the length of Matn(F), the set of n× n matrices viewed as an algebra over F.
A. Paz [1984] proved that `(S) 6 n2

3 +
2
3 for all S ⊂ Matn(F) and proposed the following appealing

conjecture.

Conjecture 2. For all S ⊂Matn(F), one has `(S)6 2n− 2.

As shown by T. Laffey [1986, page 131], the upper bound in Conjecture 2 should be sharp. This
conjecture is known to hold if the size of matrices is at most four [Paz 1984] or if FS contains a
nonderogatory matrix [Guterman et al. 2018]. However, the best known general upper bounds on the
lengths of matrix subsets are quite far from the one prescribed by Conjecture 2. It was only in 1997 when
a subquadratic estimate was obtained: C. Pappacena proved an O(n3/2) upper bound on the length of
Matn(F), but no further improvements have been made since then [Guterman et al. 2018; Lambrou and
Longstaff 2009; Longstaff et al. 2006]. The main result of this paper is a much stronger O(n log n) upper
bound on the length of Matn(F).

Theorem 3. For all S ⊂Matn(F), we have `(S)6 2n log2 n+ 4n− 4.
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As an additional motivation of our study, we note that the best known upper bounds on a complete set
of unitary invariants for n× n matrices [Laffey 1986] and on the PI degree of semiprime affine algebras
of Gelfand–Kirillov dimension one [Pappacena et al. 2003] come from the estimates of `(Matn(F)), so
the current work also improves our understanding of those invariants.

1. Warm-up

In this section, we explain the idea behind our main construction and illustrate how it works in a simpler
setting. We get a small improvement on one of the results of Pappacena [1997], which allows us to prove
the n = 5 case of Conjecture 2.

We say that a set S ⊂Matn(F) is irreducible if it generates Matn(F) as the F-algebra. If a set S is not
irreducible, and if F is algebraically closed, then there exist p ∈ {1, . . . , n−1} and Q ∈GLn(F) such that,
for any A ∈ S, we have

Q−1 AQ =
(

A11 A12

O A22

)
(1-1)

where A11 is a p× p matrix (and O is the zero matrix of appropriate dimensions). This is Burnside’s
theorem; see [Radjavi and Rosenthal 2000, Theorem 1.5.1].

Lemma 4 [Markova 2005, Corollary 3]. Let A be a matrix algebra whose elements are of the form (1-1),
and let A1,A2 be the sets of all A11, A22 blocks of matrices in A, respectively. Then `(A) 6 `(A1)+

`(A2)+ 1.

We will say that a matrix Z ∈ Matn(F) is square-zero if Z2
= 0. The main idea of the proof of

Theorem 3 is to control the product λρ(λ), where ρ(λ) is the minimal rank of nonzero square-zero
matrices that arise as linear combinations of words of length at most λ. We show in Section 2 below
that we can reduce ρ to 1 whilst saving the property λρ(λ) ∈ O(n log n), and then we apply Pappacena’s
technique to deal with low rank matrices; see [Pappacena 1997, Theorem 4.1] and Corollary 7 below.
More precisely, let H ∈ FS6λ be a square-zero matrix; it can be written as

H =

O O Iρ
O O O
O O O


with respect to some basis. If some matrix A with bottom-left block of small rank r > 0 comes as a linear
combination of words of length l, then the matrix H AH is square-zero, has rank r , and comes as a linear
combination of words of length at most l+2λ. As we will see in Claims 13 and 14 below, we can always
find an appropriate matrix A to reduce the rank of a square-zero matrix. The following lemma illustrates
our approach to the proof of Claim 13.

Lemma 5. Consider an irreducible set S ⊂ Fn×n and a nonzero vector v ∈ Fn . If FS6(n−2)v 6= Fn , then
FS contains a matrix with minimal polynomial of degree n.
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Proof. The sequence
Fv = FS0v ⊂ FS61v ⊂ · · · ⊂ FS6kv = Fn

is strictly increasing [Pappacena 1997, Theorem 4.1], so the assumption of the lemma implies k = n− 1
and dim FS6tv − dim FS6(t−1)v = 1 for all t ∈ {1, . . . , n − 1}. Therefore, we can set B0 = {v} and
inductively complete Bt−1 to a basis Bt of FS6t by adding a single vector vt . With respect to the basis
{v, v1, . . . , vn−1}, every matrix in S has the form

A =


∗ · · · · · · ∗ ∗

a21 ∗ · · · ∗ ∗

0
. . .

. . .
...

...
...

. . .
. . . ∗ ∗

0 · · · 0 an,n−1 ∗


with ∗’s denoting the entries we need not specify. Since S is irreducible, all of the (i + 1, i) entries are
nonzero at some matrix in S, so a generic element of FS has all of them nonzero — which means that its
minimal polynomial has degree n. �

Theorem 6 [Guterman et al. 2018, Theorems 2.4 and 2.5]. If an irreducible set FS ⊂Matn(F) contains a
matrix with minimal polynomial of degree n− 1 or n, then `(S)6 2n− 2.

Lemma 5 and Theorem 6 lead to a tiny improvement of the r = 1 case of Theorem 4.1(a) in [Pappacena
1997], which is nevertheless useful to study the case of small n.

Corollary 7. Let S ⊂Matn(F) be an irreducible set and k > 2. If FS6k contains a rank-one matrix, then
`(S)6 2n+ k− 4.

Proof. If FS contains a matrix with minimal polynomial of degree n, then we are done by Theorem 6.
Otherwise, we use Lemma 5 and get

FS6(n−2)AS6(n−2)
=

∑
Matn(F) · A ·Matn(F)=Matn(F)

for any rank-one matrix A. �

We are almost ready to prove the n = 5 case of Conjecture 2.

Claim 8. Assume that the minimal polynomial of every matrix in FS ⊂Matn(F) has degree at most 2.
Then `(S)6 2 log2 n.

Proof. We denote by w a word in S`(S) that is not spanned by shorter words. For any A, B ∈ S, the
matrices A2 and AB + B A = (A+ B)2− A2

− B2 belong to FS61, which implies that the letters of w
are all different and their permutations do not break the property of w not to be spanned by shorter words.
In particular, the products corresponding to the different 2`(S) subsets of letters of w should be linearly
independent, which implies 2`(S) 6 dim Matn(F). �

Theorem 9. If S ⊂Mat5(F), then `(S)6 8.



1504 Yaroslav Shitov

Proof. Since a set of vectors is linearly dependent over F if it is linearly dependent over the algebraic
closure of F, it is sufficient to prove the statement assuming that F is algebraically closed [Guterman
et al. 2018, page 239]. Moreover, Conjecture 2 is known to hold for n 6 4 (see [Paz 1984]), so we can
use Lemma 4 and assume without loss of generality that S is irreducible. According to Theorem 6 and
Claim 8, we can restrict to the case when FS contains a matrix A with minimal polynomial of degree 3.
A straightforward analysis of possible Jordan forms of A shows that the linear span of I, A, A2 must
contain a rank-one matrix, so it remains to apply Corollary 7. �

As said above, the case of n 6 4 in Conjecture 2 was considered by Paz [1984], but the case of n = 5
remained open until now [Guterman et al. 2018]. Let us mention the works [Lambrou and Longstaff
2009; Longstaff et al. 2006], which cover the case n 6 6 under the additional assumption of dim FS 6 2.

2. The proof of Theorem 3

Let A be an n × n matrix over a field F, which is assumed to be algebraically closed in this section.
We recall that there exists Q ∈ GLn(F) such that Q−1 AQ has rational normal form, that is, we have
Q−1 AQ = diag(C f1, . . . ,C fk ), where

C f =


0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1 · · · 0 −c2
...
...
. . .

...
...

0 0 · · · 1 −cm−1


is the companion matrix of a polynomial f = tm

+ cm−1tm−1
+ · · · + c0, and the invariant factors

f1, · · · , fk satisfy f1| · · · | fk .

Claim 10. Let δ be the degree of the minimal polynomial of an n× n matrix A over F. Then the F-linear
span of I, A, . . . , Aδ−1 contains either a nonzero projector of rank at most n/δ or a nonzero square-zero
matrix of rank at most n/δ.

Proof. We recall that the minimal polynomial ϕ of A occurs (one or more times) as an invariant factor
of A. Let ψ be a polynomial that has degree δ− 1, divides ϕ and is a multiple of any invariant factor
different from ϕ. Then ψ(A) has equal rank-one matrices in the places of the largest blocks of the rational
normal form of A and zeros everywhere else. �

Claim 11. For any irreducible set S ⊂Matn(F), there exist nonzero λ, ρ such that λρ 6 2n and FS6λ

contains a square-zero matrix of rank ρ.

Proof. We apply Claim 10 to any nonscalar matrix in S and find a nonzero matrix P ∈ FS6(δ−1) that has
rank at most n/δ and satisfies either P2

= P or P2
=0. We are done if P2

=0; otherwise HB = (I−P)B P
is a square-zero matrix for all B. We can have HB = 0 only when the columns of B P are in the kernel
of I − P , but this kernel being equal to Im P should then be invariant with respect to B, but since S is
irreducible, this obstruction cannot happen for all B ∈ S. �
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Claim 12. Let A ∈ Fn×n and r ∈ N. Assume that the inequality rank(P AQ)6 r holds, with any positive
integers p, q , for all matrices P ∈ Fp×n , Q ∈ Fn×q satisfying P Q = 0. Then rank(A−µI )6 2r for some
µ ∈ F.

Proof. Both the assumption and conclusion are independent of the substitution A→ C−1 AC , so we
can assume that A has rational normal form. We denote the number of diagonal blocks by k and their
sizes by m1, . . . ,mk . Since the ranks of the diagonal blocks cannot decrease by more than one upon
adding a scalar matrix, and since the characteristic polynomials of these blocks have a common factor, we
have minµ rank(A−µI )= n− k. We conclude the proof by constructing an identity square submatrix
A′ = A[I |J ] with I ∩ J = ∅ and |I | = |J | > 0.5(n− k), which would allow us to define P and Q as
having the identity matrices at the I × I and J × J blocks and completed by an appropriate number of
zero columns and rows, respectively. Namely, we pick a family of bmt/2c nonconsecutive subdiagonal
ones from a t-th diagonal block of A, and the union of all such families will be the diagonal of A′. �

Claim 13. Let S ⊂ Fn×n , P ∈ Fp×n , Q ∈ Fn×q . Let k be the smallest integer such that P Sk Q 6= 0. Then,
for any A1, . . . , Ak ∈ S, we have rank(P A1 · · · Ak Q)6 n/k.

Proof. Let V0 = Im Q and Vt =
∑

M∈S6t Im M Q. Let B0, . . . ,Bk ⊂ Fn be vector families such that
B0 ∪ · · · ∪Bt is a basis of Vt for t = 0, . . . , k. Let C ⊂ Fn be such that B0 ∪ · · · ∪Bk ∪ C is a basis of Fn .
Every matrix A ∈ S has the form

B0 B1 · · · Bk−1 Bk C
B0 ∗ · · · · · · · · · ∗ ∗

B1 A(1, 0) ∗ · · · · · · ∗ ∗

B2 O A(2, 1) ∗ · · · ∗ ∗

...
... O

. . . ∗
...
...

Bk
...

...
. . . A(k, k− 1) ∗ ∗

C O O · · · O ∗ ∗


,

where the ∗’s stand for entries that we need not specify, and the left column and top row of the ma-
trix above indicate the basis vectors the respective blocks of rows and columns correspond to. We
also have P = (O| · · · |O|P ′|∗), Q = (Q>|O| · · · |O)> with some matrices P ′,Q at the Bk position
of P and the B0 position of Q, respectively. For A1, . . . , Ak ∈ S, the matrix P Ak · · · A1 Q equals
P ′Ak(k, k − 1) · · · A1(1, 0)Q, so its rank is at most the smallest dimension of any of the matrices
Ak(k, k− 1), . . . , A1(1, 0), which is mint |Bt |6 n/k. �

Claim 14. Let S ⊂Matn(F) be an irreducible set and assume that FS6λ contains a square-zero matrix H
of rank ρ > 2. Then there exist ρ1 ∈ [1, 0.5ρ] and

λ1 6
λρ

ρ1
+

4n(ρ− ρ1)

ρρ1

such that FS6λ1 contains a square-zero matrix of rank equal to ρ1.
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Proof. Let P ∈ Fp×ρ , Q ∈ Fρ×q be nonzero matrices satisfying P Q = 0. We choose a basis such that

H =

O O Iρ
O O O
O O O


and define P ′ = (O|O|P) and Q′ = (Q>|O|O)>. Let k be the smallest integer for which there exist p,
q and matrices P ′, Q′ defined as above, and also A1, . . . , Ak ∈ S satisfying P ′A1 . . . Ak Q′ 6= 0 (such an
integer k exists because S is irreducible). We write A = A1 · · · Ak , and we denote by A′ the bottom left
block of A. Since P A′Q 6= 0, the matrix A′ is nonscalar, that is, its minimal polynomial has degree δ > 1.

Case 1. Assume k 6 4n/ρ. By Claim 10, there is a polynomial ψ of degree at most (δ− 1) such that
ρ1 := rankψ(A′) ∈ [1, ρ/δ]; we see that H1 = ψ(H A)H is a square-zero matrix of rank ρ1. It remains
to note that H1 is spanned by words of length at most

(δ− 1)(λ+ k)+ λ6 λδ+ (δ− 1)k 6 λρ/ρ1+ 4n(ρ/ρ1− 1)/ρ.

Case 2. Now let k > 4n/ρ. The matrix H AH has A′ at the upper right block and zeros everywhere else.
According to Claim 13, we have rank(P A′Q)6 n/k for any choice of p, q and P , Q as above. Using
Claim 12, we find a µ ∈ F for which the matrix H1 := H AH −µH satisfies ρ1 := rank(H1)6 2n/k. So
we have ρ1 6 0.5ρ, and H1 is spanned by words of length at most

2λ+ k 6 λρ/ρ1+ 2n/ρ1 6 λρ/ρ1+ 4n(1− ρ1/ρ)/ρ1. �

Proof of Theorem 3. As in the proof of Theorem 9, we can assume without loss of generality that F is
algebraically closed and S is irreducible. Using Claim 11, we find a square-zero matrix of rank ρ0 > 0
in FS6λ0 with λ0ρ0 6 2n; if ρ0 = 1, then we apply Corollary 7 and complete the proof. Otherwise, we
repeatedly apply Claim 14 and obtain a sequence (λ0, ρ0), . . . , (λτ , ρτ ) such that ρτ = 1 and for all
t ∈ {0, . . . , τ − 1} it holds that ρt+1 ∈ [1, 0.5ρt ],

λt+1 6
λtρt

ρt+1
+

4n(ρt − ρt+1)

ρtρt+1
,

and every FS6λt contains a square-zero matrix of rank ρt . By induction we get

λt 6
λ0ρ0

ρt
+

4n
ρt

(
t −

ρ1

ρ0
− · · ·−

ρt

ρt−1

)
,

which implies (after the substitution αt := ρt/ρt−1) that

λτ 6 2n+ 4n
(
τ −

τ∑
t=1

αt

)
,

and since the minimum value of α1+ · · · + ατ subject to αt > 0 and α1 · · ·ατ = ρ
−1
0 is attained when

α1 = · · · = ατ = ρ
−1/τ
0 , we get

λτ 6 2n+ 4nτ(1− ρ−1/τ
0 ).
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The right-hand side of this inequality is an increasing function of τ , so it attains its maximum at the
largest possible value τ = log2 ρ0. We get λτ 6 2n+ 2n log2 ρ0, and it remains to apply Corollary 7. �

The author does not expect his result to be tight even asymptotically, so this paper does not show any
effort on improving the o(n log n) part of the upper bound.
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