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Positivity functions for curves on algebraic varieties
Brian Lehmann and Jian Xiao

This is the second part of our work on Zariski decomposition structures, where we compare two different
volume type functions for curve classes. The first function is the polar transform of the volume for divisor
classes. The second function captures the asymptotic geometry of curves analogously to the volume
function for divisors. We prove that the two functions coincide, generalizing Zariski’s classical result for
surfaces to all varieties. Our result confirms the log concavity conjecture of the first named author for
weighted mobility of curve classes in an unexpected way, via Legendre–Fenchel type transforms. During
the course of the proof, we obtain a refined structure theorem for the movable cone of curves.
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1. Introduction

Let X be a smooth complex projective variety of dimension n. The Riemann–Roch problem asks whether
one can determine the dimension of the space of sections of a holomorphic line bundle L on X . An
important subtlety of this problem is that the answer is not determined by purely topological data — line
bundles which share the same Chern class need not have isomorphic spaces of sections. In general,
the problem only has a satisfactory answer for sufficiently ample line bundles, which exhibit a close
relationship between geometry, cohomology, and intersection theory.

Over the past forty years, mathematicians have realized that one obtains a much richer theory by
studying the asymptotic behavior of the space of sections of mL as m increases. Indeed, by working
asymptotically, we can recover for general effective line bundles some of the same interplay between
sheaf cohomology and intersection theory which undergirds the theory of ample line bundles. This point

MSC2010: primary 14C25; secondary 14C20, 32J25.
Keywords: algebraic varieties, positivity of curves, mobility of cycles, volume-type function, Zariski decomposition.
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of view leads to many important positivity invariants for line bundles and linear systems. Perhaps the
most important asymptotic invariant of a line bundle L is its volume,1 defined as

vol(L) := lim sup
m→∞

dim H 0(X,mL)
mn/n!

.

When X is a surface, the volume of L can be calculated using intersection theory. The key construction
is the Zariski decomposition [1962], which splits L into a “positive” part and a “rigid” part. In higher
dimensions as well, there is a close relationship between the asymptotic geometry of divisors and
intersection-theoretic positivity via volume-type functions.

Recently there has been interest in extending the theory of positivity to subvarieties of arbitrary
codimension (see e.g., [Debarre et al. 2011; Lehmann 2016; Fulger and Lehmann 2017a; 2017b]). By
analogy, one would like to study the asymptotic geometry of cycles and its relationship with numerical
measures of positivity. In this paper we develop such a theory for curves: we show that the asymptotic
enumerative geometry of curve classes is controlled by intersection-theoretic invariants.

Our comparison relies upon several natural volume-type functions for curve classes. The first function
involves the numerical positivity of a curve class.

Definition 1.1 [Xiao 2017, Definition 1.1]. Let X be a projective variety of dimension n and let α∈Eff1(X)
be a pseudoeffective curve class. Then the volume of α is defined to be

v̂ol(α)= inf
A big and nef divisor class

(
A ·α

vol(A)1/n

)n/n−1

.

When α is a curve class that is not pseudoeffective, we set v̂ol(α)= 0.

This is a polar transformation of the volume function on the ample cone of divisors. The definition is
inspired by the realization that the volume of a divisor has a similar intersection-theoretic description
against curves as in [Xiao 2017, Theorem 2.1]. It fits into a much broader picture relating positivity of
divisors and curves via cone duality; see [Lehmann and Xiao 2016].

The second function captures the asymptotic geometry of curves. Recall that general points impose
independent codimension 1 conditions on divisors in a linear series. Thus for a divisor L , one can interpret
dim P(H 0(X, L)) as a measurement of how many general points are contained in sections of L . Using
this interpretation, we define the mobility function for curves in an analogous way.

Definition 1.2 [Lehmann 2016, Definition 1.1]. Let X be a projective variety of dimension n and let
α ∈ N1(X) be a curve class with integer coefficients. The mobility of α is defined to be

mob(α) := lim sup
m→∞

max{b ∈ Z≥0 | any b general points are contained in an effective curve of class mα}
mn/(n−1)/n!

.

There is a closely related function known as the weighted mobility which counts singular points of the
curve with a “higher weight”. We first recall the definition of the weighted mobility count for a class

1For a nonbig line bundle, the higher asymptotic cohomological functions carry more significant information [Küronya 2006].
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α ∈ N1(X) with integer coefficients (see [Lehmann 2016, Definition 8.6]):

wmc(α)= sup
µ

max
{

b ∈ Z≥0

∣∣∣ there is an effective cycle of class µα through any b
points of X with multiplicity at least µ at each point

}
.

The supremum is shown to exist in [Lehmann 2016] — it is then clear that the supremum is achieved by
some positive integer µ. We define the weighted mobility to be

wmob(α)= lim sup
m→∞

wmc(mα)
mn/n−1 .

While the definition is slightly more complicated, the weighted mobility is easier to compute due to its
close relationship with Seshadri constants. Lehmann [2016] showed that both the mobility and weighted
mobility extend to continuous homogeneous functions on all of N1(X).

Main result. Our main theorem compares these functions. It continues a project begun in [Xiao 2017]
(see especially Conjecture 3.1 and Theorem 3.2 there).

Theorem 1.3 (see Theorem 6.1). Let X be a smooth projective variety of dimension n and let α ∈Eff1(X)
be a pseudoeffective curve class. Then:

(1) v̂ol(α)= wmob(α).

(2) v̂ol(α)≤mob(α)≤ n! v̂ol(α).

(3) Assume Conjecture 1.4 below. Then mob(α)= v̂ol(α).

This result is surprising: it suggests that the mobility count of any curve class is optimized by complete
intersection curves; see the end of Section 2 (page 1256). Just as for curves on algebraic surfaces, the key
to this result is the Zariski decomposition for curves on varieties of arbitrary dimension as constructed in
[Lehmann and Xiao 2016; Fulger and Lehmann 2017b]. Part (3) of the theorem relies on the following
conjectural description of the mobility of a complete intersection class:

Conjecture 1.4 [Lehmann 2016, Question 6.1]. Let X be a smooth projective variety of dimension n and
let A be an ample divisor on X. Then

mob(An−1)= An.

Example 1.5. Let α denote the class of a line on P3. The mobility count of α is determined by the
following enumerative question: what is the minimal degree of a curve through b general points of P3?
The answer is unknown, even in an asymptotic sense.

Perrin [1987] conjectured that the “optimal” curves
(
which maximize the number of points relative to

their degree to the 3
2

)
are complete intersections of two divisors of the same degree. Theorem 1.3 supports

a vast generalization of Perrin’s conjecture to all big curve classes on all smooth projective varieties.
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Strict log concavity of the volume function for divisors. An important ingredient in the proof of Theorem
1.3 is the study of the volume function for divisors from the perspective of convexity theory. Since such
results are of interest in their own right, we summarize the highlights below.

The first step is to analyze the strict log concavity of the volume function. It is well-known that the
volume function for divisor classes is log concave (see e.g., [Lazarsfeld 2004, Theorem 11.4.9; Boucksom
2002b]). We show that it is strictly log concave on the big and movable cone of divisors (but on no larger
cone), extending [Boucksom et al. 2009, Theorem D].

Theorem 1.6. Let X be a smooth projective variety of dimension n. For any two big divisor classes L1,
L2, the inequality

vol(L1+ L2)
1/n
≥ vol(L1)

1/n
+ vol(L2)

1/n

is an equality if and only if the (numerical) positive parts Pσ (L1), Pσ (L2) are proportional. Thus the
function L 7→ vol(L) is strictly log concave on the cone of big and movable divisors.

This result is proved in Section 3 (see Theorem 3.9). It shows that the volume function for divisors
fits into the abstract convexity framework developed in [Lehmann and Xiao 2016]. A posteriori, this
viewpoint motivates many of the well-known structure results for the volume function (such as the formula
for the derivative, the Khovanskii–Teissier inequalities, the σ -decomposition, etc.).

Refined structure of the movable cone. The most important consequence is a refined version of a theorem
of [Boucksom et al. 2013] describing the movable cone of curves. In [loc. cit.], it is proved that the
movable cone Mov1(X) is the closure of the cone generated by (n−1)-self positive products of big
divisors. We show that Mov1(X) is the closure of the set of (n−1)-self positive products of big divisors
on the interior of Mov1(X). (The definition of the positive product 〈−〉 is recalled in Section 2.)

Theorem 1.7. Let X be a smooth projective variety of dimension n. The (n−1)-st positive product 〈−n−1
〉

defines a continuous bijection from the interior of the big and movable cone of divisors to the interior of
Mov1(X).

In practice, Theorem 1.7 seems quite useful for working with the movable cone of curves. For example,
it has an immediate corollary:

Corollary 1.8. Let X be a projective variety of dimension n. Then the rays over classes of irreducible
curves which deform to dominate X are dense in Mov1(X).

Polar transform of the volume function for divisors. Equipped with these results, we return to our
discussion of positivity functions for curves.

First we review some facts about polar transforms. Let V be a real vector space of dimension n, and
let V ∗ be its dual space. Let Cvx(V ) be the space of lower semicontinuous convex functions on V . We
denote the paring of w∗ ∈ V ∗ and v ∈ V by w∗ · v. Recall that the classical Legendre–Fenchel transform

L : Cvx(V )→ Cvx(V ∗), L f (w∗)= supv∈V {w
∗
· v− f (v)}
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is an order-reversing involution which relates the differentiability of a convex function with the strict
convexity of its dual (see e.g., [Rockafellar 1970]).

When working with homogeneous functions on a cone, there is an analogue of the Legendre–Fenchel
transform which plays a similar theoretical role. It is the concave homogeneous version of the well-known
polar transform. Let C⊂ V be a proper closed convex cone of full dimension and let C∗ ⊂ V ∗ be its dual
cone. We let HConcs(C) denote the collection of functions f : C→ R, which are upper-semicontinuous,
homogeneous of weight s > 1, strictly positive in the interior of C and s-concave. The polar transform H
associates to a function f ∈ HConcs(C) the function H f ∈ HConcs/(s−1)(C

∗) defined as

H f (w∗) := inf
v∈C◦

(
w∗ · v

f (v)1/s

)s/(s−1)

.

By taking the logarithmic function of H f , we get

logH f (w∗)=
s

s− 1
inf
v∈C◦

(
log(w∗ · v)− 1

s log f (v)
)
.

Thus the polar transform H can be considered as a variant of Legendre–Fenchel transform with a “coupling
function” given by the logarithmic function. The papers [Xiao 2017; Lehmann and Xiao 2016] develop
the theory of H in parallel with the classical Legendre–Fenchel transform L and demonstrate how it has
fruitful applications in the positivity theory of curves.

In our geometric setting, polar duality yields two natural numerical positivity functions for curves.
One is the function v̂ol discussed above. If we instead take the polar transform of the volume on the
pseudoeffective cone, then we obtain a polar function on the dual cone Mov1(X).

Definition 1.9 [Xiao 2017, Definition 2.2]. Let X be a projective variety of dimension n. For any curve
class α ∈Mov1(X) define

M(α)= inf
L big divisor class

(
L ·α

vol(L)1/n

)n/(n−1)

.

When α is a curve class that is not movable, we set M(α)= 0.

While the positivity functions v̂ol, mob, wmob are conjecturally the same, M exhibits quite different
behavior. It is best understood as a way of making Theorem 1.7 explicit (see Lemma 3.11, Theorem 3.14
and Corollary 3.23).

Theorem 1.10. Let X be a smooth projective variety and let α be a curve class in Mov1(X). Then exactly
one of the following alternatives holds:

• α = 〈Ln−1
〉 for a big movable divisor class L.

• α ·M = 0 for a nonzero movable divisor class M.

In the first case, we have M(α)= vol(L) and L achieves the infimum of Definition 1.9. In the second case
we have M(α)= 0.

A curve class α of the first type lies on the boundary of Mov1(X) if and only if the corresponding big
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divisor L lies on the boundary of Mov1(X). Thus the homeomorphism between the interiors of Mov1(X)
and Mov1(X) given by Theorem 1.7 extends to a homeomorphism from all big movable divisor classes to
curve classes with M> 0.

Conceptually, the function M allows us to assign a movable divisor to a movable curve class by “taking
an (n−1)-th root”. For toric varieties, this coheres with a classical construction of Minkowski which
assigns a polytope to a positive Minkowski weight.

Theorem 1.3 relies upon the following comparison between the two polar transforms v̂ol and M (see
Section 5). Recall that the complete intersection cone CI1(X) is the closure of the set of curve classes of
the form An−1 for an ample divisor class A. The set CI1(X) is a closed cone but may fail to be convex
(see [Lehmann and Xiao 2016]).

Theorem 1.11. Let X be a smooth projective variety and let α be a big curve class in Mov1(X). Then
the following conditions are equivalent:

• α ∈ CI1(X).

• v̂ol(α)=M(α).

• v̂ol(α)= v̂ol(φ∗α) for every birational morphism φ : Y → X.

While not strictly necessary for our main result, we also show that M admits an enumerative interpre-
tation. We define mobmov and wmobmov for curve classes analogously to mob and wmob, except that we
only count contributions of families whose general member is a sum of irreducible movable curves (see
paragraph after Definition 6.7 for more details).

Theorem 1.12. Let X be a smooth projective variety of dimension n and let α ∈Mov1(X)◦. Then:

(1) M(α)= wmobmov(α).

(2) Assume Conjecture 1.4. Then M(α)=mobmov(α).

Outline of the proof. We briefly outline the proof of Theorem 1.3(3), the most difficult part. As mentioned
above, Zariski decompositions for positivity functions play an important role. Fix a function f ∈{v̂ol,mob}.
A Zariski decomposition for a big curve class α with respect to f is an expression

α = P + N

where N is pseudoeffective and P is a “positive part” satisfying f (P)= f (α).
The main distinction between the Zariski decompositions for mob and v̂ol is where the positive part

is required to lie. For v̂ol, the positive part Pv̂ol constructed in [Lehmann and Xiao 2016] lies in the
complete intersection cone CI1(X). For mob, the positive part Pmob constructed in [Fulger and Lehmann
2017b] lies in Mov1(X). In fact a stronger property is proved there: mob(Pmob)=mob(φ∗Pmob) for any
birational map φ. Using Conjecture 1.4 and a delicate comparison between mob and M, Theorem 1.11
allows us to conclude the stronger statement that Pmob ∈ CI1(X). Then the two positive parts should
coincide, and one can again apply Conjecture 1.4 to deduce the equality of the two functions.
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Examples.

Hyperkähler varieties. For hyperkähler varieties, positivity functions for curves admit interesting inter-
pretations in terms of the Beauville–Bogomolov form. Let q denote the Beauville–Bogomolov quadratic
form on N 1(X) normalized so that q(D)n/2 = Dn for ample D. The form induces an isomorphism
ψ : N 1(X)→ N1(X). Then [Lehmann and Xiao 2016, Section 7] shows that the bijection of Theorem 1.7
can be understood using ψ :

• If D is a big movable divisor, then vol(D)(n−2)/nψ(D)= 〈Dn−1
〉. In other words, the bijection of

Theorem 1.7 coincides with ψ up to a continuous rescaling factor. For a big movable divisor class D,

M(ψ(D))= vol(D)1/n−1.

• In particular, ψ also induces a bijection between the big and nef cone of divisors and the complete
intersection curve classes with positive v̂ol. For A big and nef we have

v̂ol(ψ(A))= vol(A)1/n−1.

In general, the volume of a curve class is given by a Zariski decomposition projecting into the complete
intersection cone. [Lehmann and Xiao 2016] furthermore shows how this decomposition is related via
q-duality to the σ -decomposition of divisors.

Mori dream spaces. If X is a Mori dream space, then the movable cone of divisors admits a chamber
structure defined via the ample cones on small Q-factorial modifications. This chamber structure behaves
compatibly with the σ -decomposition and the volume function for divisors.

For curves we obtain a complementary picture using the movable cone of curves. Note that Mov1(X)
is naturally preserved by small Q-factorial modifications. We then have a chamber decomposition of
Mov1(X) induced by the decomposition for divisors via the bijection of Theorem 1.7. A good way to
analyze the chambers is to compare the behavior of the two functions M and v̂ol restricted to Mov1(X).

• By Theorem 1.7, a curve class in the interior of Mov1(X) is the (n−1)-positive product of a big
divisor class L and M(α)= vol(L). Using the birational invariance of the volume for divisors, we
see that M is also invariant under small Q-factorial modifications.

• Using the Zariski decomposition of [Lehmann and Xiao 2016], the movable cone of curves admits a
“chamber structure” as a union of the complete intersection cones from small Q-factorial modifications.
However, v̂ol is not invariant under small Q-factorial modifications but changes to reflect the differing
structure of the pseudoeffective cone of curves.

Theorem 1.11 shows that v̂ol reaches its minimum value v̂ol(α)=M(α) precisely on the complete inter-
section cone of X , and then increases on the chambers corresponding to birational models of X . In this way
v̂ol and M are the right tools for understanding the birational geometry of curves on Mori dream spaces.
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Toric varieties. Suppose that X is a simplicial projective toric variety of dimension n defined by a fan 6.
A class α in the interior of the movable cone of curves corresponds to a positive Minkowski weight on the
rays of 6. A fundamental theorem of Minkowski attaches to such a weight a polytope Pα whose facet
normals are the rays of 6 and whose facet volumes are determined by the weights. In fact, Minkowski’s
construction exactly corresponds to the bijection of Theorem 1.7.

Lemma 1.13. If L denotes the big and movable divisor class corresponding to the polytope Pα then
〈Ln−1

〉 = α. Thus M(α)= n! vol(Pα).

When α happens to be in the complete intersection cone, this quantity also agrees with v̂ol(α). In
the toric setting, properties of M can be interpreted via the classical theory of convex bodies, using
constructions such as Blaschke addition and the Kneser–Süss inequality (see [Lehmann and Xiao 2017]
for more details).

Further applications. The refined structure of the movable cone is not only important to study positivity
functions for curves, but it should also have other applications. We briefly mention two areas for further
study (which will not be addressed in the body of the paper).

The first is the study of moduli of vector bundles. Recently, the papers [Greb et al. 2016b; 2016c;
2016d; 2019] discussed some obstructions to generalizing the theory of slope-stability from surfaces to
varieties of arbitrary dimension. Traditionally one uses stability conditions defined by H n−1 for an ample
divisor H , but the walls are no longer linear in H . As discussed in [Greb et al. 2016d] the situation is
improved by working in CI1(X). Since this cone is not convex, it seems that a thorough understanding of
Theorem 1.7 and of stability conditions constructed via movable curve classes (as in [Greb et al. 2016a])
will be helpful for filling out this picture. There are also some situations where one obtains a nice chamber
structure of Mov1(X) using stability conditions (see for example [Neumann 2010]), and it would be
interesting to see the geometric input provided by the corresponding decomposition of Mov1(X).

Another area is the geometry of curves on rationally connected varieties. The original proof of
boundedness of smooth Fano varieties by [Campana 1992; Kollár et al. 1992] relied on constructing
chains of rational curves and controlling the degree against an ample divisor. Such constructions also
have interesting interaction with the volume function of curves (see for example Proposition 6.2). By
considering the volume of connecting rational chains, one obtains a “birational” variant of boundedness
problems which is interesting for arbitrary rationally connected varieties. See [Lehmann and Xiao 2016]
for a more in-depth discussion.

Outline of the paper. In this paper we will work with projective varieties over C, but related results can
be also adjusted to arbitrary algebraically closed fields and compact Kähler manifolds. We give a general
framework for this extension in Section 2.

In Section 2 we briefly recall the general convexity and duality framework in [Lehmann and Xiao
2016], and explain how the proofs can be adjusted to arbitrary algebraically closed fields and compact
Kähler manifolds. In Section 3, we give a refined structure of the movable cone of curves and generalize
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several results on big and nef divisors to big and movable divisors. Section 4 discusses toric varieties,
showing some relationships with convex geometry. Section 5 compares the complete intersection and
movable cone of curves. In Section 6 we compare the (weighted) mobility functions and v̂ol,M, finishing
the proof of the main results.

2. Preliminaries

Positivity. In this section, we first fix some notations over a projective variety X :

• N 1(X): the real vector space of numerical classes of divisors.

• N1(X): the real vector space of numerical classes of curves.

• Eff1(X): the cone of pseudoeffective divisor classes.

• Nef1(X): the cone of nef divisor classes.

• Mov1(X): the cone of movable divisor classes.

• Eff1(X): the cone of pseudoeffective curve classes.

• Mov1(X): the cone of movable curve classes, equivalently by [Boucksom et al. 2013] the dual of
Eff1(X).

• CI1(X): the closure of the set of all curve classes of the form An−1 for an ample divisor A.

With only a few exceptions, capital letters A, B, D, L will denote R-Cartier divisor classes and Greek
letters α, β, γ will denote curve classes. For two curve classes α, β, we write α � β and α � β to denote
that α− β and β −α, respectively, belong to Eff1(X). We will do similarly for divisor classes, or two
elements of a cone C if the cone is understood.

We will use the notation 〈−〉 for the positive product as in [Boucksom 2002a; Boucksom et al. 2009;
2013]. Let us recall briefly recall its definition. Let X be a projective manifold (or compact Kähler
manifold) of dimension n, and let L1, . . . , Lr be big (1, 1) classes. Then

〈L1 · · · Lr 〉 := lim
m→∞

µm∗( Â1 · · · Âr ),

where µm : Xm→ X is a suitable sequence of Fujita approximations such that the limit class has the most
positivity (see [Boucksom et al. 2009; 2013] for more details). Note that µm satisfies µ∗m L i = Âi,m+ Ei,m

for some effective divisor class Ei,m and big nef class Âi,m such that Ân
i,m→ vol(L i ). We make a few

remarks on this construction for singular projective varieties. Suppose that X has dimension n. Then
Nn−1(X) denotes the vector space of R-classes of Weil divisors up to numerical equivalence as in [Fulton
1984, Chapter 19]. In this setting, the first and (n−1)-st positive product should be interpreted respectively
as maps Eff1(X)→ Nn−1(X) and Eff1(X)×n−1

→Mov1(X). We will also let Pσ (L) denote the positive
part in this sense — that is, pull back L to better and better Fujita approximations, take its positive part,
and push the numerical class forward to X as a numerical Weil divisor class. With these conventions, we
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still have the crucial result of [Boucksom et al. 2009; Lazarsfeld and Mustaţă 2009] that the derivative of
the volume is controlled by intersecting against the positive part.

We define the movable cone of divisors Mov1(X) to be the subset of Eff1(X) consisting of divisor
classes L such that Nσ (L)= 0 and Pσ (L)= L ∩ [X ] ∈ Nn−1(X). On any projective variety, by [Fulton
1984, Example 19.3.3] capping with X defines an injective linear map N 1(X)→ Nn−1(X). Thus if
D, L ∈Mov1(X) have the same positive part in Nn−1(X), then by the injectivity of the capping map we
must have D = L .

To extend our results (especially the results in Section 3) to arbitrary compact Kähler manifolds, we
need to deal with transcendental objects which are not given by divisors or curves. Let X be a compact
Kähler manifold of dimension n. By analogue with the projective situation, we need to deal with the
following spaces and positive cones:

• H 1,1
BC (X,R): the real Bott–Chern cohomology group of bidegree (1, 1).

• H n−1,n−1
BC (X,R): the real Bott–Chern cohomology group of bidegree (n− 1, n− 1).

• N (X): the cone of pseudoeffective (n− 1, n− 1)-classes.

• M(X): the cone of movable (n− 1, n− 1)-classes.

• K(X): the cone of nef (1, 1)-classes, equivalently the closure of the Kähler cone.

• E(X): the cone of pseudoeffective (1, 1)-classes.

Recall that we call a Bott–Chern class pseudoeffective if it contains a d-closed positive current, and call
an (n− 1, n− 1)-class movable if it is contained in the closure of the cone generated by the classes of
the form µ∗(ω̃1 ∧ · · · ∧ ω̃n−1) where µ : X̃→ X is a modification and ω̃1, . . . , ω̃n−1 are Kähler metrics
on X̃ . For the basic theory of positive currents, we refer the reader to [Demailly 2012].

Fields of characteristic p. Almost all the results in the paper will hold for smooth varieties over an
arbitrary algebraically closed field. The necessary technical generalizations are verified in the following
references:

• The existence of Fujita approximations over an arbitrary algebraically closed field is proved in
[Takagi 2007].

• The basic properties of the σ -decomposition in positive characteristic are considered in [Mustaţă
2013].

• The results of [Cutkosky 2015] lay the foundations of the theory of positive products and volumes
over an arbitrary field.

• [Fulger and Lehmann 2017b] describes how to extend [Boucksom et al. 2013] and most of the results
of [Boucksom et al. 2009] over an arbitrary algebraically closed field. In particular the description
of the derivative of the volume function in [Boucksom et al. 2009, Theorem A] holds for smooth
varieties in any characteristic.
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Compact Kähler manifolds. The following results enable us to extend our results in Section 3 and
Section 5 to arbitrary compact hyperkähler manifolds and projective manifolds.

• The theory of positive intersection products for pseudoeffective (1, 1)-classes has been developed by
[Boucksom 2002a; Boucksom et al. 2010; 2013].

• Divisorial Zariski decomposition for pseudoeffective (1, 1)-classes has been studied in [Boucksom
2004; Boucksom et al. 2013].

• By [Boucksom et al. 2013, Theorem 10.12] and [Nyström and Boucksom 2016], the transcendental
analogues of the results in [Boucksom et al. 2009; 2013] are true for compact hyperkähler manifolds
and projective manifolds. In particular, we have the cone duality E∗ =M and the description of the
derivative of the volume for pseudoeffective (1, 1)-classes.

Polar transforms. As explained in the introduction, our results use convex analysis, and in particular a
Legendre–Fenchel type transform for functions defined on a cone. We briefly recall some definitions and
results from [Lehmann and Xiao 2016] which will be used to study the function M.

Duality transforms. Let V be a finite-dimensional R-vector space of dimension n, and let V ∗ be its dual.
We denote the pairing of w∗ ∈ V ∗ and v ∈ V by w∗ · v. Let C ⊂ V be a proper closed convex cone of
full dimension and let C∗ ⊂ V ∗ denote the dual cone of C. We let HConcs(C) denote the collection of
functions f : C→ R satisfying:

• f is upper-semicontinuous and homogeneous of weight s > 1.

• f is strictly positive in the interior of C (and hence nonnegative on C).

• f is s-concave: for any v, x ∈ C we have f (v)1/s + f (x)1/s ≤ f (v+ x)1/s .

The polar transform H associates to a function f ∈ HConcs(C) the function H f : C∗→ R defined as

H f (w∗) := inf
v∈C◦

(
w∗ · v

f (v)1/s

)s/(s−1)

.

The definition is unchanged if we instead vary v over all elements of C where f is positive. It is not hard
to see that H2 f = f for any f ∈ HConcs(C).

It will be crucial to understand which points obtain the infimum in the definition of H f .

Definition 2.1. Let f ∈ HConcs(C). For any w∗ ∈ C∗, we define Gw∗ to be the set of all v ∈ C which
satisfy f (v) > 0 and which achieve the infimum in the definition of H f (w∗), so that

H f (w∗)=
(
w∗ · v

f (v)1/s

)s/(s−1)

.

Remark 2.2. The set Gw∗ is the analogue of super-gradients of concave functions. In particular, we know
the differential of H f at w∗ lies in Gw∗ if H f is differentiable.

We next identify the collection of points where f is controlled by H.
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Definition 2.3. Let f ∈ HConcs(C). We define C f to be the set of all v ∈ C such that v ∈ Gw∗ for some
w∗ ∈ C satisfying H f (w∗) > 0.

We say that f ∈ HConcs(C) is differentiable if it is C1 on C◦. In this case we define the function

D : C◦→ V ∗ by v 7→
d f (v)

s
.

We will need to understand the behavior of the derivative along the boundary.

Definition 2.4. We say that f ∈ HConcs(C) is +-differentiable if f is C1 on C◦ and the derivative on C◦

extends to a continuous function on all of C f .

Remark 2.5. For +-differentiable functions f , we define the function D : C f → V ∗ by extending
continuously from C◦.

Teissier proportionality and strict log concavity. In [Lehmann and Xiao 2016], we gave some conditions
which are equivalent to the strict log concavity.

Definition 2.6. Let f ∈ HConcs(C) be +-differentiable and let CT be a nonempty subcone of C f . We
say that f satisfies Teissier proportionality with respect to CT if for any v, x ∈ CT satisfying

D(v) · x = f (v)s−1/s f (x)1/s

we have that v and x are proportional.

Note that we do not assume that CT is convex — indeed, in examples it is important to avoid this
condition. However, since f is defined on the convex hull of CT , we can (somewhat abusively) discuss
the strict log concavity of f |CT :

Definition 2.7. Let C′⊂C be a (possibly nonconvex) subcone. We say that f is strictly log concave on C′ if

f (v)1/s + f (x)1/s < f (v+ x)1/s

holds whenever v, x ∈ C′ are not proportional. Note that this definition makes sense even when C′ is not
itself convex.

Theorem 2.8 [Lehmann and Xiao 2016, Theorem 4.12]. Let f ∈ HConcs(C) be +-differentiable. For
any nonempty subcone CT of C f , consider the following conditions:

(1) The restriction f |CT is strictly log concave (in the sense defined above).

(2) f satisfies Teissier proportionality with respect to CT .

(3) The restriction of D to CT is injective.

Then we have (1) =⇒ (2) =⇒ (3). If CT is convex, then we have (2) =⇒ (1). If CT is an open subcone, then
we have (3) =⇒ (1).
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Sublinear boundary conditions. Under certain conditions we can control the behavior of H f near the
boundary, and thus obtain the continuity.

Definition 2.9. Let f ∈ HConcs(C) and let α ∈ (0, 1). We say that f satisfies the sublinear boundary
condition of order α if for any nonzero v on the boundary of C and for any x in the interior of C, there
exists a constant C := C(v, x) > 0 such that f (v+ εx)1/s ≥ Cεα.

Note that the condition is always satisfied at v if f (v) > 0. Furthermore, the condition is satisfied
for any v, x with α = 1 by homogeneity and log-concavity, so the crucial question is whether we can
decrease α slightly.

Using this sublinear condition, we get the vanishing of H f along the boundary.

Proposition 2.10 [Lehmann and Xiao 2016, Proposition 4.21]. Let f ∈ HConcs(C) satisfy the sublinear
boundary condition of order α. Then H f vanishes along the boundary. As a consequence, H f extends to
a continuous function over V ∗ by setting H f = 0 outside C∗.

Remark 2.11. If f satisfies the sublinear condition, then C∗H f = C∗◦.

Formal Zariski decompositions. The Legendre–Fenchel transform relates the strict concavity of a func-
tion to the differentiability of its transform. The transform H will play the same role in our situation;
however, one needs to interpret the strict concavity slightly differently. We will encapsulate this property
using the notion of a Zariski decomposition.

Definition 2.12. Let f ∈ HConcs(C) and let U ⊂ C be a nonempty subcone. We say that f admits a
strong Zariski decomposition with respect to U if:

(1) For every v ∈ C f there are unique elements pv ∈U and nv ∈ C satisfying

v = pv + nv and f (v)= f (pv).

We call the expression v = pv + nv the Zariski decomposition of v, and call pv the positive part and
nv the negative part of v.

(2) For any v,w ∈ C f satisfying v+w ∈ C f we have

f (v)1/s + f (w)1/s ≤ f (v+w)1/s

with equality only if pv and pw are proportional.

In [Lehmann and Xiao 2016, Theorem 4.3], we proved the following theorem linking the existence of
Zariski decomposition structure with differentiability.

Theorem 2.13. Let f ∈ HConcs(C). Then we have the following results:

• If f is +-differentiable, then H f admits a strong Zariski decomposition with respect to the cone
D(C f )∪ {0}.

• If H f admits a strong Zariski decomposition with respect to a cone U , then f is differentiable.
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In the first situation, one can construct the positive part of w∗ by choosing any v ∈ Gw∗ with f (v) > 0
and choosing pw∗ to be the unique element of the ray spanned by D(v) with H f (pw∗)=H f (w∗).

Under some additional conditions, we can get the continuity of formal Zariski decompositions (see
[Lehmann and Xiao 2016, Theorem 4.6]). Note that for the divisorial Zariski decomposition the continuity
is already well known due to the concavity of taking positive parts (see e.g., [Boucksom et al. 2009;
Küronya and Maclean 2013; Nakayama 2004]).

Theorem 2.14. Let f ∈HConcs(C) be +-differentiable. Then the function taking an element w∗ ∈ C∗◦ to
its positive part pw∗ is continuous.

If furthermore Gv ∪ {0} is a unique ray for every v ∈ C f and H f is continuous on all of C∗H f , then the
Zariski decomposition is continuous on all of C∗H f .

Zariski decomposition for curves. In [Lehmann and Xiao 2016], as an application of the above formal
Zariski decomposition to the situation

C= Nef1(X), f = vol, C∗ = Eff1(X), H f = v̂ol,

we obtain the Zariski decomposition for curves. The following result is important in the proof of
Theorem 1.3.

Definition 2.15. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦ be a big curve class.
Then a Zariski decomposition for α is a decomposition

α = Bn−1
+ γ

where B is a big and nef R-Cartier divisor class, γ is pseudoeffective, and B · γ = 0. We call Bn−1 the
“positive part” and γ the “negative part” of the decomposition.

Theorem 2.16. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦ be a big curve class.
Then α admits a unique Zariski decomposition α = Bn−1

α + γ . Furthermore,

v̂ol(α)= v̂ol(Bn−1
α )= vol(Bα)

and Bα is the unique big and nef divisor class with this property satisfying Bn−1
α � α. The class Bα

depends continuously on α.

Remark 2.17. As explained in [Lehmann and Xiao 2016, Remark 5.1], the above result holds in the Kähler
setting — we have a similar decomposition for any interior point of the pseudoeffective (n−1, n−1)-
cone N .

3. Refined structure of the movable cone

In this section, we study the movable cone of curves and its relationship to the positive product of divisors.
A key tool in this study is the following function of [Xiao 2017, Definition 2.2]:
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Definition 3.1. Let X be a projective variety of dimension n. For any curve class α ∈Mov1(X) define

M(α)= inf
L big divisor class

(
L ·α

vol(L)1/n

)n/(n−1)

.

We say that a big class L computes M(α) if this infimum is achieved by L . When α is a curve class that
is not movable, we set M(α)= 0.

In other words, M is the function on Mov1(X) defined as the polar transform of the volume function
on Eff1(X). Dually, we can think of the volume function on divisors as the polar transform of M; this
viewpoint allows us to apply the general theory of convexity developed in [Lehmann and Xiao 2016] to vol.

In this section we first prove some new results concerning the volume function for divisors. We will
then return to the study of M below, where we show that it measures the volume of the “(n−1)−st root”
of α.

The volume function on big and movable divisors. We first extend several well-known results on big
and nef divisors to big and movable divisors. The key will be an extension of Teissier proportionality
theorem for big and nef divisors (see [Lehmann and Xiao 2016; Boucksom et al. 2009]) to big and
movable divisors.

Lemma 3.2. Let X be a projective variety of dimension n. Let L1 and L2 be big movable divisor classes.
Set s to be the largest real number such that L1− sL2 is pseudoeffective. Then

sn
≤

vol(L1)

vol(L2)

with equality if and only if L1 and L2 are proportional.

Proof. We first prove the case when X is smooth. Certainly we have vol(L1)≥ vol(sL2)= sn vol(L2). If
they are equal, then since sL2 is movable and L1−sL2 is pseudoeffective we get a Zariski decomposition of

L1 = sL2+ (L1− sL2)

in the sense of [Fulger and Lehmann 2017b]. By [Fulger and Lehmann 2017b, Proposition 5.3], this
decomposition coincides with the numerical version of the σ -decomposition of [Nakayama 2004] so that
Pσ (L1)= sL2. Since L1 is movable, we obtain equality L1 = sL2.

For arbitrary X , let φ : X ′→ X be a resolution. The inequality follows by pulling back L1 and L2 and
replacing them by their positive parts. Indeed using the numerical analogue of [Nakayama 2004, III.1.14
Proposition] we see that φ∗L1− s Pσ (φ∗L2) is pseudoeffective if and only if Pσ (φ∗L1)− s Pσ (φ∗L2) is
pseudoeffective, so that s can only go up under this operation. To characterize the equality, recall that if
L1 and L2 are movable and Pσ (φ∗L1)= s Pσ (φ∗L2) as elements of Nn−1(X), then L1 = sL2 as elements
of N 1(X) by the injectivity of the capping map. �

Next we prove the Diskant inequality for big and movable divisor classes, generalizing the version for
big and nef divisors in [Boucksom et al. 2009].
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Proposition 3.3. Let X be a smooth projective variety of dimension n. Let L1, L2 be big and movable
divisor classes. Set sL to be the largest real number such that L1− sL L2 is pseudoeffective. Then

(〈Ln−1
1 〉 · L2)

n/(n−1)
− vol(L1) vol(L2)

1/n−1
≥ ((〈Ln−1

1 〉 · L2)
1/n−1

− sL vol(L2)
1/n−1)n. (†)

Proof. Fix an ample divisor H on X .
For any ε > 0, by taking sufficiently good Fujita approximations we may find a birational map

φε : Yε→ X and ample divisor classes A1,ε and A2,ε such that

• φ∗ε L i − Ai,ε is pseudoeffective for i = 1, 2;

• vol(Ai,ε) > vol(L i )− ε for i = 1, 2;

• φε∗Ai,ε is in an ε-ball around L i for i = 1, 2.

Furthermore:

• By applying the argument of [Fulger and Lehmann 2017b, Theorem 6.22], we may ensure

φ∗ε (〈L
n−1
1 〉− εH n−1)� An−1

1,ε � φ
∗

ε (〈L
n−1
1 〉+ εH n−1).

• Set sε to be the largest real number such that A1,ε − sε A2,ε is pseudoeffective. Then we may ensure
that sε < sL + ε.

By the Khovanskii–Teissier inequality for nef divisor classes, we have

(An−1
1,ε · A2,ε)

n/(n−1)
≥ vol(A1,ε) vol(A2,ε)

1/n−1.

Note that 〈Ln−1
〉 · L2 is approximated by An−1

1,ε · A2,ε by the projection formula. Taking a limit as ε goes
to 0, we see that

〈Ln−1
1 〉 · L2 ≥ vol(L1)

n−1/n vol(L2)
1/n. (?)

On the other hand, the Diskant inequality for big and nef divisors in [Boucksom et al. 2009, Theorem F]
implies that

(An−1
1,ε · A2,ε)

n/(n−1)
− vol(A1,ε) vol(A2,ε)

1/n−1
≥ ((An−1

1,ε · A2,ε)
1/n−1

− sε vol(A2,ε)
1/n−1)n

≥ ((An−1
1,ε · A2,ε)

1/n−1
− (sL + ε) vol(A2,ε)

1/n−1)n.

Taking a limit as ε goes to 0 again, we see that

(〈Ln−1
1 〉 · L2)

n/(n−1)
− vol(L1) vol(L2)

1/n−1
≥ ((〈Ln−1

1 〉 · L2)
1/n−1

− sL vol(L2)
1/n−1)n.

This finishes the proof of the Diskant inequality for big and movable divisor classes. �

Remark 3.4. As shown in [Lehmann and Xiao 2017, Section 3] and implicitly proved in [Fulger and
Lehmann 2017b] (which in turn follows from a result of [Boucksom et al. 2009]), for two big movable
divisor classes L1, L2, we indeed have 〈Ln−1

1 〉 · L2 = 〈Ln−1
1 · L2〉.

As a corollary of Proposition 3.3, we get:
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Proposition 3.5. Let X be a projective variety of dimension n. Let L1, L2 be big and movable divisor
classes. Then

〈Ln−1
1 〉 · L2 ≥ vol(L1)

n−1/n vol(L2)
1/n

with equality if and only if L1 and L2 are proportional.

Proof. If X is smooth, then the result follows directly from Lemma 3.2, ? and †.
Now suppose X is singular. The inequality can be computed by passing to a resolution φ : X ′→ X

and replacing L1 and L2 by their positive parts, since the left-hand side can only decrease under this
operation. To characterize the equality, recall that if L1 and L2 are movable and Pσ (φ∗L1)= s Pσ (φ∗L2)

as elements of Nn−1(X), then L1 = sL2 as elements of N 1(X) by the injectivity of the capping map. �

Remark 3.6. In the analytic setting, applying Proposition 3.5 and the same method as [Lehmann and
Xiao 2016], it is not hard to generalize Proposition 3.5 to any number of big and movable divisor classes
provided we have sufficient regularity for degenerate Monge–Ampère equations in big classes:

• Let L1, . . . , Ln be n big divisor classes over a smooth complex projective variety X , then we have

〈L1 · · · Ln〉 ≥ vol(L1)
1/n
· · · vol(Ln)

1/n

where the equality is obtained if and only if Pσ (L1), . . . , Pσ (Ln) are proportional.

We only need to characterize the equality situation. To see this, we need the fact that the above positive
intersection 〈L1 · · · Ln〉 depends only on the positive parts Pσ (L i ), which follows from the analytic
construction of positive product [Boucksom 2002a, Proposition 3.2.10]. Then by the method in [Lehmann
and Xiao 2016] where we apply [Boucksom et al. 2010] or [Demailly et al. 2014, Theorem D], we reduce
it to the case of a pair of divisor classes, e.g., we get

〈Pσ (L1)
n−1
· Pσ (L2)〉 = vol(L1)

n−1/n vol(L2)
1/n.

By the definition of positive product we always have

〈Pσ (L1)
n−1
· Pσ (L2)〉 ≥ 〈Pσ (L1)

n−1
〉 · Pσ (L2)≥ vol(L1)

n−1/n vol(L2)
1/n,

this then implies the equality

〈Pσ (L1)
n−1
〉 · Pσ (L2)= vol(L1)

n−1/n vol(L2)
1/n.

By Proposition 3.5, we immediately obtain the desired result. See also [Lehmann and Xiao 2017,
Section 7] for an alternative approach.

Corollary 3.7. Let X be a smooth projective variety of dimension n. Let α ∈Mov1(X) be a big movable
curve class. All big divisor classes L satisfying α = 〈Ln−1

〉 have the same positive part Pσ (L).

Proof. Suppose L1 and L2 have the same positive product. We have vol(L1) = 〈Ln−1
2 〉 · L1 so that

vol(L1)≥ vol(L2). By symmetry we obtain the reverse inequality, hence equality everywhere, and we
conclude by Proposition 3.5 and the σ -decomposition for smooth varieties. �
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As a consequence of Proposition 3.5, we show the strict log concavity of the volume function vol on
the cone of big and movable divisors.

Proposition 3.8. Let X be a projective variety of dimension n. Then the volume function vol is strictly
log concave on the cone of big and movable divisor classes.

Proof. Since the big and movable cone is convex and since the derivative of vol is continuous, this follows
immediately from Proposition 3.5 and Theorem 2.8. �

As a consequence, we get:

Theorem 3.9. Let X be a projective variety of dimension n. Then for any two big divisor classes L1, L2,
the equality

vol(L1+ L2)
1/n
= vol(L1)

1/n
+ vol(L2)

1/n

holds if and only if the positive parts P(L1), P(L2) are proportional.

It is well known that vol(L1+ L2)
1/n
≥ vol(L1)

1/n
+ vol(L2)

1/n , thus the above result give a charac-
terization on the equality case.

Proof. First, we assume the equality holds. Note that vol(L i )= vol(P(L i )) for i = 1, 2, then we get

vol(L1+L2)
1/n
≥ vol(P(L1)+ P(L2))

1/n
≥ vol(P(L1))

1/n
+vol(P(L2))

1/n
= vol(L1)

1/n
+vol(L2)

1/n.

The equality assumption implies that vol(P(L1)+ P(L2))
1/n
= vol(P(L1))

1/n
+vol(P(L2))

1/n , then by
Proposition 3.8 the positive parts P(L1), P(L2) are proportional.

Next we assume that the positive parts P(L1), P(L2) are proportional. We claim that P(L1+ L2)=

P(L1)+ P(L2). With this claim, it is easy to see the equality for volumes holds. Next we prove the
claim. By the divisorial Zariski decomposition, we have two decompositions for L1+ L2:

L1+ L2 = P(L1+ L2)+ N (L1+ L2)= P(L1)+ P(L2)+ N (L1)+ N (L2).

Since P(L1), P(L2) are proportional, the orthogonality estimate in the divisorial Zariski decomposition
implies

〈(P(L1)+ P(L2))
n−1
〉 · (N (L1)+ N (L2))= 0.

Multiplying by 〈(P(L1)+ P(L2))
n−1
〉 in the two decompositions of L1+ L2, we get

〈(P(L1)+ P(L2))
n
〉 ≥ P(L1+ L2) · 〈(P(L1)+ P(L2))

n−1
〉.

By the Khovanski–Teissier inequality, this yields that vol(P(L1)+ P(L2))≥ vol(P(L1+ L2)). However,
we always have vol(P(L1+L2))≥ vol(P(L1)+P(L2)), thus the equality holds everywhere. In particular,
Proposition 3.5 implies that P(L1+ L2)= P(L1)+ P(L2), finishing the proof of our claim. �
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The function M. We now return to the study of the function M. We are in the situation:

C= Eff1(X), f = vol, C∗ =Mov1(X), H f =M.

Note that C∗ =Mov1(X) follows from the main result of [Boucksom et al. 2013].
As preparation for using the polar transform theory, we recall the analytic properties of the volume

function for divisors on smooth varieties. By [Boucksom et al. 2009] the volume function on the
pseudoeffective cone of divisors is differentiable on the big cone (with D(L)= 〈Ln−1

〉). In the notation
of Definition 2.3 the cone Eff1(X)vol coincides with the big cone, so that vol is +-differentiable. The
volume function is n-concave, and is strictly n-concave on the big and movable cone by Proposition 3.8.
Furthermore, it admits a strong Zariski decomposition with respect to the movable cone of divisors using
the σ -decomposition of [Nakayama 2004] and Proposition 3.8.

Remark 3.10. Note that if X is not smooth (or at least Q-factorial), then it is unclear whether vol admits
a Zariski decomposition structure with respect to the cone of movable divisors. For this reason, we will
focus on smooth varieties in this section. See Remark 3.24 for more details.

Our first task is to understand the behavior of M on the boundary of the movable cone of curves. Note
that vol does not satisfy a sublinear condition, so that M may not vanish on the boundary of Mov1(X).

Lemma 3.11. Let X be a smooth projective variety of dimension n and let α be a movable curve class.
Then M(α)= 0 if and only if α has vanishing intersection against a nonzero movable divisor class L.

Proof. We first show that if there exists some nonzero movable divisor class M such that α ·M = 0 then
M(α)= 0. Fix an ample divisor class A. Note that M+ εA is big and movable for any ε > 0. Thus there
exists some modification µε : Yε→ X and an ample divisor class Aε on Yε such that M + ε

2 A = µε∗Aε .
So we can write

M + εA = µε∗
(

Aε + ε
2µ
∗

ε A
)
,

which implies
vol(M + εA)= vol

(
µε∗

(
Aε + ε

2µ
∗

ε A
))

≥ vol
(

Aε + ε
2µ
∗

ε A
)

≥ n
(
ε
2µ
∗

ε A
)n−1
· Aε

≥ cεn−1 An−1
·M.

This estimate shows that the intersection number

ρε = α ·
M + εA

vol(M + εA)1/n .

tends to zero as ε tends to zero, and so M(α)= 0.
Conversely, suppose that M(α) = 0. From the definition of M(α), we can take a sequence of big

divisor classes Lk with vol(Lk)= 1 such that

lim
k→∞

(α · Lk)
n/(n−1)

=M(α).
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Moreover, let Pσ (Lk) be the positive part of Lk . Then we have vol(Pσ (Lk))= 1 and

α · Pσ (Lk)≤ α · Lk

since α is movable. Thus we can assume the sequence of big divisor classes Lk is movable in the
beginning.

Fix an ample divisor A of volume 1, and consider the classes Lk/(An−1
· Lk). These lie in a compact

slice of the movable cone, so they must have a nonzero movable accumulation point L , which without
loss of generality we may assume is a limit.

Choose a modification µε : Yε→ X and an ample divisor class Aε,k on Y such that

Aε,k ≤ µ∗εLk, vol(Aε,k) > vol(Lk)− ε

Then

Lk · An−1
≥ Aε,k ·µ∗ε An−1

≥ vol(Aε,k)1/n

by the Khovanskii–Teissier inequality. Taking a limit over all ε, we find Lk · An−1
≥ vol(Lk)

1/n . Thus

L ·α = lim
k→∞

Lk ·α

Lk · An−1 ≤M(α)n−1/n
= 0. �

Example 3.12. Note that a movable curve class α with positive M need not lie in the interior of the
movable cone of curves. A simple example is when X is the blow-up of P2 at one point, H denotes the
pullback of the hyperplane class. For surfaces the functions M and vol coincide, so M(H) = 1 even
though H is on the boundary of Mov1(X)= Nef1(X).

It is also possible for a big movable curve class α to have M(α)= 0. This occurs for the projective
bundle X = PP1(O ⊕ O ⊕ O(−1)). There are two natural divisor classes on X : the class f of the
fibers of the projective bundle and the class ξ of the sheaf OX/P1(1). Using for example [Fulger 2011,
Theorem 1.1] and [Fulger and Lehmann 2017b, Proposition 7.1], one sees that f and ξ generate the
algebraic cohomology classes with the relations f 2

= 0, ξ 2 f =−ξ 3
= 1 and that Mov1(X)= 〈 f, ξ〉 and

Mov1(X)= 〈ξ f, ξ 2
+ξ f 〉. We see that the big and movable curve class ξ 2

+ξ f has vanishing intersection
against the movable divisor ξ so that M(ξ 2

+ ξ f )= 0 by Lemma 3.11.

Remark 3.13. Another perspective on Lemma 3.11 is provided by the numerical dimension of [Nakayama
2004; Boucksom 2004]. On a smooth variety the following conditions are equivalent for a class L ∈
Mov1(X). (They both correspond to the nonvanishing of the numerical dimension.)

• Fix an ample divisor class A. For any big class D, there is a positive constant C such that Ctn−1 <

vol(L + t A) for all t > 0.

• L 6= 0.

In particular, this implies that vol satisfies the sublinear boundary condition of order n − 1/n when
restricted to the movable cone, and this fact can be used in the previous proof. A variant of this statement
in characteristic p is proved by [Cascini et al. 2014].
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In many ways it is most natural to define M using the movable cone of divisors instead of the
pseudoeffective cone of divisors. Conceptually, this coheres with the fact that the polar transform can
be calculated using the positive part of a Zariski decomposition. Recall that the positive part Pσ (L) of
a pseudoeffective divisor L has Pσ (L) � L and vol(Pσ (L)) = vol(L). Arguing as in Lemma 3.11 by
taking positive parts, we see that for any α ∈Mov1(X) we have

M(α)= inf
D big and movable

(
D ·α

vol(D)1/n

)n/(n−1)

.

Thus for X smooth it is perhaps better to consider the following polar transform:

C=Mov1(X), f = vol, C∗ =Mov1(X)∗, H f =M′.

Since vol satisfies a sublinear condition on Mov1(X), the function M′ is strictly positive exactly in
Mov1(X)∗◦ and extends to a continuous function over N1(X). The relationship between the two functions
is given by

M′|Mov1(X) =M;

this follows immediately from the description for M earlier in this paragraph. In fact by Theorem 2.13
M′ admits a strong Zariski decomposition. Using the interpretation of positive parts via derivatives as in
Theorem 2.13, the results of [Boucksom et al. 2009; Lazarsfeld and Mustaţă 2009] show that the positive
parts for the Zariski decomposition of M′ lie in Mov1(X). In this way one can think of M as the “Zariski
projection” of M′.

Note one important consequence of this perspective: Lemma 3.11 shows that the subcone of Mov1(X)
where M is positive lies in the interior of Mov1(X)∗. Thus this region agrees with Mov1(X)M and M

extends to a differentiable function on an open set containing this cone by applying Theorem 2.13. In
particular M is +-differentiable and continuous on Mov1(X).

We next prove a refined structure of the movable cone of curves. Recall that by [Boucksom et al. 2013]
the movable cone of curves Mov1(X) is generated by the (n−1)-self positive products of big divisors. In
other words, any curve class in the interior of Mov1(X) is a convex combination of such positive products.
We show that Mov1(X) actually coincides with the closure of such products (which naturally form a cone).

Theorem 3.14. Let X be a smooth projective variety of dimension n. Then any movable curve class α
with M(α) > 0 has the form

α = 〈Ln−1
α 〉

for a unique big and movable divisor class Lα . We then have M(α)= vol(Lα) and any big and movable
divisor computing M(α) is proportional to Lα.

Proof. Applying Theorem 2.13 to M′, we get

α = D(Lα)+ nα

where Lα is a big movable class computing M(α) and nα ∈Mov1(X)∗. As D is the differential of vol1/n

on big and movable divisor classes, we have D(Lα)= 〈Ln−1
α 〉. Note that M(α)= 〈Ln−1

α 〉 · Lα = vol(Lα).
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To finish the proof, we observe that nα ∈Mov1(X). This follows since α is movable: by the definition
of Lα, for any pseudoeffective divisor class E and t ≥ 0 we have

α · Lα
vol(Lα)1/n ≤

α · Pσ (Lα + t E)
vol(Lα + t E)1/n ≤

α · (Lα + t E)
vol(Lα + t E)1/n

with equality at t = 0. This then implies

nα · E ≥ 0.

Thus nα ∈Mov1(X). Intersecting against Lα , we have nα · Lα = 0. This shows nα = 0 because Lα is an
interior point of Eff1(X) and Eff1(X)∗ =Mov1(X). So we have α = D(Lα)= 〈Ln−1

α 〉.
Finally, uniqueness follows from Corollary 3.7. �

We note in passing an immediate consequence:

Corollary 3.15. Let X be a projective variety of dimension n. Then the rays spanned by classes of
irreducible curves which deform to cover X are dense in Mov1(X).

Proof. It suffices to prove this on a resolution of X . By Theorem 3.14 it suffices to show that any class of
the form 〈Ln−1

〉 for a big divisor L is a limit of rescalings of classes of irreducible curves which deform
to cover X . Indeed, we may even assume that L is a Q-Cartier divisor. Then the positive product is a limit
of the pushforward of complete intersections of ample divisors on birational models, whence the result. �

We can also describe the boundary of Mov1(X), in combination with Lemma 3.11.

Corollary 3.16. Let X be a smooth projective variety of dimension n. Let α be a movable class with
M(α) > 0 and let Lα be the unique big movable divisor whose positive product is α. Then α is on the
boundary of Mov1(X) if and only if Lα is on the boundary of Mov1(X).

Proof. Note that α is on the boundary of Mov1(X) if and only if it has vanishing intersection against
a class D lying on an extremal ray of Eff1(X). Lemma 3.11 shows that in this case D is not movable,
so by [Nakayama 2004, Chapter III.1] D is (after rescaling) the class of an integral divisor on X which
we continue to call D. By [Boucksom et al. 2009, Proposition 4.8 and Theorem 4.9], the equation
〈Ln−1

α 〉·D= 0 holds if and only if D ∈B+(Lα). Altogether, we see that α is on the boundary of Mov1(X)
if and only if Lα is on the boundary of Mov1(X). �

Arguing using abstract properties of polar transforms just as in [Lehmann and Xiao 2016], the good
analytic properties of the volume function for divisors imply most of the other analytic properties of M.

Theorem 3.17 (see Theorem 2.14, and compare with [Lehmann and Xiao 2016, Theorem 5.6]). Let X be
a smooth projective variety of dimension n. For any movable curve class α with M(α) > 0, let Lα denote
the unique big and movable divisor class satisfying 〈Ln−1

α 〉 = α. As we vary α in Mov1(X)M, Lα depends
continuously on α.
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Theorem 3.18 (compare with [Lehmann and Xiao 2016, Theorem 5.11]). Let X be a smooth projective
variety of dimension n. For a curve class α = 〈Ln−1

α 〉 in Mov1(X)M and for an arbitrary curve class
β ∈ N1(X) we have

d
dt

∣∣∣∣
t=0

M(α+ tβ)=
n

n− 1
Pσ (Lα) ·β.

Theorem 3.19 (see Theorem 2.13, and compare with [Lehmann and Xiao 2016, Theorem 5.10]). Let
X be a smooth projective variety of dimension n. Let α1, α2 be two big and movable curve classes in
Mov1(X)M. Then

M(α1+α2)
n−1/n

≥M(α1)
n−1/n

+M(α2)
n−1/n

with equality if and only if α1 and α2 are proportional.

Remark 3.20. Theorem 3.19 can be interpreted as an analogue of the Knesser–Süss inequality for
polytopes. We clarify this relationship when discussing toric varieties in Section 4.

Another application of the results in this section is the Morse-type bigness criterion for movable curve
classes, which is slightly different from [Lehmann and Xiao 2016, Theorem 5.18].

Theorem 3.21. Let X be a smooth projective variety of dimension n. Let α, β be two curve classes lying
in Mov1(X)M. Write α = 〈Ln−1

α 〉 and β = 〈Ln−1
β 〉 for the unique big and movable divisor classes Lα, Lβ

given by Theorem 3.14. Then we have

M(α−β)n−1/n
≥ (M(α)− nLα ·β) ·M(α)−1/n

= (vol(Lα)− nLα ·β) · vol(Lα)−1/n.

In particular, we have

M(α−β)≥ vol(Lα)−
n2

n− 1
Lα ·β

and the curve class α−β is big whenever M(α)− nLα ·β > 0.

Proof. By [Lehmann and Xiao 2016, Section 4.2] it suffices to prove a Morse-type bigness criterion for
the difference of two movable divisor classes. So we need to prove L −M is big whenever

〈Ln
〉− n〈Ln−1

〉 ·M > 0.

This is proved (in the Kähler setting) in [Xiao 2018, Theorem 1.1]. �

Remark 3.22. We remark that we cannot extend this Morse-type criterion from big and movable divisors
to arbitrary pseudoeffective divisor classes. A very simple construction provides the counter-examples,
e.g., the blow up of P2 (see [Trapani 1995, Example 3.8]).

Combining Theorem 3.14 and Theorem 3.17, we obtain:

Corollary 3.23. Let X be a smooth projective variety of dimension n. Then

8 :Mov1(X)vol→Mov1(X)M, L 7→ 〈Ln−1
〉

is a homeomorphism.
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Remark 3.24. Modified versions of many of the results in this section hold for singular varieties as
well (see Remark 3.10). For example, by similar arguments we can see that any element in the interior
of Mov1(X) is the positive product of some big divisor class regardless of singularities. Conversely,
whenever M is +-differentiable we obtain a Zariski decomposition structure for vol by Theorem 2.13.

Remark 3.25. All the results above extend to smooth varieties over algebraically closed fields. How-
ever, for compact Kähler manifolds some results rely on Demailly’s conjecture on the transcendental
holomorphic Morse-type inequality, or equivalently, on the extension of the results of [Boucksom et al.
2009] to the Kähler setting. Since the results of [Boucksom et al. 2009] are used in an essential way in
the proof of Theorems 3.14 and 3.2 (via the proof of [Fulger and Lehmann 2017b, Proposition 5.3]),
the only statement in this section which extends unconditionally to the Kähler setting is Lemma 3.11.
However, these conjectures are known if X is a compact hyperkähler manifold or projective manifold
(see [Boucksom et al. 2013, Theorem 10.12; Nyström and Boucksom 2016]), so all of our results extend
to compact hyperkähler manifolds.

4. Positivity functions on toric varieties

We study the function M on toric varieties, showing that it can be interpreted by the underlying special
structures. In this section, X will denote a simplicial projective toric variety of dimension n. In terms of
notation, X will be defined by a fan 6 in a lattice N with dual lattice M . We let {vi } denote the primitive
generators of the rays of 6 and {Di } denote the corresponding classes of T -divisors. Our goal is to
interpret the properties of the function M in terms of toric geometry.

Positive product on toric varieties. Suppose that L is a big movable divisor class on the toric variety X .
Then L naturally defines a (nonlattice) polytope QL ; if we choose an expression L =

∑
ai Di , then

QL = {u ∈ MR | 〈u, vi 〉+ ai ≥ 0}

and changing the choice of representative corresponds to a translation of QL . Conversely, suppose that Q
is a full-dimensional polytope such that the unit normals to the facets of Q form a subset of the rays of 6.
Then Q uniquely determines a big movable divisor class L Q on X . The divisors in the interior of the
movable cone correspond to those polytopes whose facet normals coincide with the rays of 6.

Given polytopes Q1, . . . , Qn , let V (Q1, . . . , Qn) denote the mixed volume of the polytopes. [Bouck-
som et al. 2009] explains that the positive product of big movable divisors L1, . . . , Ln can be interpreted
via the mixed volume of the corresponding polytopes:

〈L1 · · · Ln〉 = n!V (Q1, . . . , Qn).

The function M. In this section we use a theorem of Minkowski to describe the function M. We thank
J. Huh for a conversation working out this picture.

Recall that a class α ∈Mov1(X) defines a nonnegative Minkowski weight on the rays of the fan 6—
that is, an assignment of a positive real number ti to each vector vi such that

∑
tivi = 0. From now on
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we will identify α with its Minkowski weight. We will need to identify which movable curve classes are
positive along a set of rays which span Rn .

Lemma 4.1. Suppose α ∈Mov1(X) satisfies M(α) > 0. Then α is positive along a spanning set of rays
of 6.

We will soon see that the converse is also true in Theorem 4.2.

Proof. Suppose that there is a hyperplane V which contains every ray of 6 along which α is positive.
Since X is projective, 6 has rays on both sides of V . Let D be the effective divisor consisting of the sum
over all the primitive generators of rays of 6 not contained in V . It is clear that the polytope defined by
D has nonzero projection onto the subspace spanned by V⊥, and in particular, that the polytope defined
by D is nonzero. Thus the asymptotic growth of sections of m D is at least linear in m, so Pσ (D) 6= 0 and
α has vanishing intersection against a nonzero movable divisor. Lemma 3.11 shows that M(α)= 0. �

Minkowski’s theorem asserts the following. Suppose that u1, . . . , us are unit vectors which span Rn

and that r1, . . . , rs are positive real numbers. Then there exists a polytope P with unit normals u1, . . . , us

and with corresponding facet volumes r1, . . . , rs if and only if the ui satisfy

r1u1+ · · ·+ rsus = 0.

Moreover, the resulting polytope is unique up to translation. (See [Klain 2004] for a proof which is
compatible with the results below.) If a vector u is a unit normal to a facet of P , we will use the notation
vol(Pu) to denote the volume of the facet corresponding to u.

If α is positive on a spanning set of rays, then it canonically defines a polytope (up to translation) via
Minkowski’s theorem by choosing the vectors ui to be the unit vectors in the directions vi and assigning
to each the constant

ri =
ti |vi |

(n− 1)!
.

Note that this is the natural choice of volume for the corresponding facet, as it accounts for

• the discrepancy in length between ui and vi , and

• the factor 1/(n− 1)! relating the volume of an (n−1)-simplex to the determinant of its edge vectors.

We denote the corresponding polytope in MR defined by the theorem of Minkowski by Pα.

Theorem 4.2. Suppose α is a movable curve class which is positive on a spanning set of rays and let Pα
be the corresponding polytope. Then

M(α)= n! vol(Pα).

Furthermore, the big movable divisor Lα corresponding to the polytope Pα satisfies 〈Ln−1
α 〉 = α.

Proof. Let L ∈Mov1(X) be a big movable divisor class and denote the corresponding polytope by QL .
We claim that the intersection number can be interpreted as a mixed volume:

L ·α = n!V (Pn−1
α , QL).
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To see this, define for a compact convex set K the function hK (u)= supv∈K {v · u}. Using [Klain 2004,
Equation (5)]

V (Pn−1
α , QL)=

1
n

∑
u a facet of Pα+QL

hQL (u) vol(Pu
α )=

1
n

∑
rays vi

(
ai

|vi |

)(
ti |vi |

(n− 1)!

)
=

1
n!

∑
rays vi

ai ti =
1
n!

L ·α.

Note that we actually have equality in the second line because L is big and movable. Recall that by the
Brunn–Minkowski inequality

V (Pn−1
α , QL)≥ vol(Pα)n−1/n vol(QL)

1/n

with equality only when Pα and QL are homothetic. Thus

M(α)= inf
L big movable class

(
L ·α

vol(L)1/n

)n/(n−1)

= inf
L big movable class

(
n!V (Pn−1

α , QL)

n!1/n vol(QL)1/n

)n/(n−1)

≥ n! vol(Pα).

Furthermore, the equality is achieved for divisors L whose polytope is homothetic to Pα, showing the
computation of M(α). Furthermore, since the divisor Lα defined by the polytope computes M(α) we see
that 〈Ln−1

α 〉 is proportional to α. By computing M we deduce the equality:

M(〈Ln−1
α 〉)= vol(L)= n! vol(Pα)=M(α). �

The previous result shows:

Corollary 4.3. Let α be a curve class in Mov1(X)M. Then α ∈ CI1(X) if and only if the normal fan to
the corresponding polytope Pα is refined by 6. In this case we have

v̂ol(α)= n! vol(Pα).

Proof. By the uniqueness in Theorem 3.14, α ∈ CI1(X) if and only if the corresponding divisor Lα as in
Theorem 4.2 is big and nef. �

For toric varieties, much of the theory developed in this paper reduces to results from the theory of
convex bodies. For example, suppose that we have movable curve classes α1, α2. Then the polytope
corresponding to α1+ α2 is (essentially by definition) the Blaschke sum of the polytopes Pα1 and Pα2 .
Thus the inequality

M(α1+α2)
n−1/n

≥M(α1)
n−1/n

+M(α2)
n−1/n

of Theorem 3.19 is exactly the Kneser–Süss inequality when interpreted via toric geometry. Similarly,
the derivative formula of Theorem 3.18 follows from the theory of mixed volumes. See [Lehmann and
Xiao 2017] for more details.

5. Comparing the complete intersection cone and the movable cone

Consider the functions v̂ol and M on the movable cone of curves Mov1(X). By their definitions we always
have v̂ol ≥M on the movable cone, and [Xiao 2017, Remark 3.1] asks whether one can characterize
when equality holds. In this section we show:
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Theorem 5.1. Let X be a smooth projective variety of dimension n and let α be a big and movable class.
Then v̂ol(α)=M(α) if and only if α ∈ CI1(X).

Thus v̂ol and M can be used to distinguish whether a big movable curve class lies in CI1(X) or not.
This result is important in Section 6.

Proof. If α = Bn−1 is a complete intersection class, then v̂ol(α) = vol(B) =M(α). By continuity the
equality holds true for any big curve class in CI1(X).

Conversely, suppose that α is not in the complete intersection cone. The claim is clearly true if
M(α)= 0, so by Theorem 3.14 it suffices to consider the case when there is a big and movable divisor
class L such that α = 〈Ln−1

〉. Note that L can not be big and nef since α /∈ CI1(X).
We prove v̂ol(α) >M(α) by contradiction. First, by the definition of v̂ol we always have

v̂ol(〈Ln−1
〉)≥M(〈Ln−1

〉)= vol(L).

Suppose v̂ol(〈Ln−1
〉) = vol(L). For convenience, we assume vol(L) = 1. By rescaling the positive

part of a Zariski decomposition, we find a big and nef divisor class B with vol(B) = 1 such that
v̂ol(〈Ln−1

〉)= (〈Ln−1
〉 · B)n/(n−1). For the divisor class B we get

〈Ln−1
〉 · B = 1= vol(L)n−1/n vol(B)1/n.

By Proposition 3.5, this implies L and B are proportional which contradicts the nonnefness of L . Thus
we must have v̂ol(〈Ln−1

〉) > vol(L)=M(〈Ln−1
〉). �

We also obtain:

Proposition 5.2. Let X be a smooth projective variety of dimension n and let α be a big and movable curve
class. Then α ∈ CI1(X) if and only if for any birational morphism φ : Y → X we have v̂ol(φ∗α)= v̂ol(α).

Proof. The forward implication is clear. For the reverse implication, we first consider the case when
M(α) > 0. Let L be a big movable divisor class satisfying 〈Ln−1

〉 = α. Choose a sequence of birational
maps φε : Yε→ X and ample divisor classes Aε on Yε defining an ε-Fujita approximation for L . Then
vol(L) ≥ vol(Aε) > vol(L)− ε and the classes φε∗Aε limit to L . Note that Aε · φ∗εα = φε∗Aε · α. This
implies that for any ε > 0 we have

v̂ol(α)= v̂ol(φ∗εα)≤
(α ·φε∗Aε)n/(n−1)

vol(L)1/n−1 .

As ε shrinks the right-hand side approaches vol(L)=M(α), and we conclude by Theorem 5.1.
Next we consider the case when M(α)= 0. Choose a class ξ in the interior of Mov1(X) and consider

the classes α+ δξ for δ > 0. The argument above shows that for any ε > 0, there is a birational model
φε : Yε→ X such that

v̂ol(φ∗ε (α+ δξ)) <M(α+ δξ)+ ε.
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But we also have v̂ol(φ∗εα)≤ v̂ol(φ∗ε (α+δξ)) since the pullback of the nef curve class δξ is pseudoeffective.
Taking limits as ε→ 0, δ→ 0, we see that we can make the volume of the pullback of α arbitrarily small,
a contradiction to the assumption and the bigness of α. �

As an illustration of the comparison between v̂ol and M, we discuss Mori dream spaces.

Example 5.3. Let X be a Mori dream space. Recall that a small Q-factorial modification (henceforth
SQM) φ : X 99K X ′ is a birational contraction (i.e., does not extract any divisors) defined in codimension 1
such that X ′ is projective Q-factorial. Hu and Keel [2000] showed that for any SQM the strict transform
defines an isomorphism φ∗ : N 1(X)→ N 1(X ′) which preserves the pseudoeffective and movable cones of
divisors. (More generally, any birational contraction induces an injective pullback φ∗ : N 1(X ′)→ N 1(X)
and dually a surjection φ∗ : N1(X)→ N1(X ′).) The SQM structure induces a chamber decomposition of
the pseudoeffective and movable cones of divisors.

One would like to see a “dual picture” in N1(X) of this chamber decomposition. However, it does not
seem interesting to simply dualize the divisor decomposition: the resulting cones are no longer pseudo-
effective and are described as intersections instead of unions. Motivated by the Zariski decomposition
for curves, we define a chamber structure on the movable cone of curves as a union of the complete
intersection cones on SQMs.

Note that for each SQM we obtain by duality an isomorphism φ∗ : N1(X)→ N1(X ′) which preserves
the movable cone of curves. We claim that the strict transforms of the various complete intersection cones
define a chamber structure on Mov1(X). More precisely, given any birational contraction φ : X 99K X ′

with X ′ normal projective, define

CI◦φ :=
⋃

A ample on X ′
〈φ∗An−1

〉.

Then:

• Mov1(X) is the union over all SQMs φ : X 99K X ′ of CI◦φ = φ
−1
∗

CI1(X ′), and the interiors of the
CI◦φ are disjoint.

• The set of classes in Mov1(X)M is the disjoint union over all birational contractions φ : X 99K X ′ of
the CI◦φ .

To see this, first recall that for a pseudoeffective divisor L the σ -decomposition of L and the volume are
preserved by φ∗. We know that each α ∈Mov1(X)M has the form 〈Ln−1

〉 for a unique big and movable
divisor L . If φ : X 99K X ′ denotes the birational canonical model obtained by running the L-MMP, and A
denotes the corresponding ample divisor on X ′, then φ∗α = An−1 and α = 〈φ∗An−1

〉. The various claims
now can be deduced from the properties of divisors and the MMP for Mori dream spaces as in [Hu and
Keel 2000, 1.11 Proposition].

Since the volume of divisors behaves compatibly with strict transforms of pseudoeffective divisors, the
description of φ∗ above shows that M also behaves compatibly with strict transforms of movable curves
under an SQM. However, the volume function can change: we may well have v̂ol(φ∗α) 6= v̂ol(α). The
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reason is that the pseudoeffective cone of curves is also changing as we vary φ. In particular, the set

Cα,φ := {φ∗α− γ | γ ∈ Eff1(X ′)}

will look different as we vary φ. Since v̂ol is the same as the maximum value of M(β) for β ∈ Cα,φ , the
volume and Zariski decomposition for a given model will depend on the exact shape of Cα,φ .

Remark 5.4. Theorem 5.1 also holds for smooth varieties over any algebraically closed field and for
compact hyperkähler manifolds or projective manifolds as explained in Section 2.

6. Comparison between the positivity functions for curves

Asymptotic point counts and v̂ol. In this section we give the proof of the main result, comparing the
volume function for pseudoeffective curves with its mobility function. Recall from the introduction what
we are trying to show (slightly reordered):

Theorem 6.1. Let X be a smooth projective variety of dimension n and let α∈Eff1(X) be a pseudoeffective
curve class. Then the following results hold:

(1) v̂ol(α)≤mob(α)≤ n! v̂ol(α).

(2) Assume Conjecture 1.4. Then mob(α)= v̂ol(α).

(3) v̂ol(α)= wmob(α).

The upper bound in the first part improves the related result [Xiao 2017, Theorem 3.2]. Before giving
the proof, we repeat the following estimate of v̂ol in [Lehmann and Xiao 2016].

Proposition 6.2. Let X be a smooth projective variety of dimension n. Choose positive integers {ki }
r
i=1.

Suppose that α ∈Mov1(X) is represented by a family of irreducible curves such that for any collection of
general points x1, x2, . . . , xr , y of X , there is a curve in our family which contains y and contains each xi

with multiplicity ≥ ki . Then

v̂ol(α)n−1/n
≥M(α)n−1/n

≥

∑
i ki

r1/n .

This is just a rephrasing of well-known results in birational geometry; see for example [Kollár 1996,
V.2.9 Proposition].

Proof. By continuity and rescaling invariance, it suffices to show that if L is a big and movable Cartier
divisor class then ( r∑

i=1

ki

)
vol(L)1/n

r1/n ≤ L ·C.

A standard argument (see for example [Lehmann 2016, Example 8.19]) shows that for any ε > 0 and
any very general points {xi }

r
i=1 of X there is a positive integer m and a Cartier divisor M numerically

equivalent to mL and such that multxi M ≥ mr−1/n vol(L)1/n
− ε for every i . By the assumption on
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the family of curves we may find an irreducible curve C with multiplicity ≥ ki at each xi that is not
contained M . Then

m(L ·C)≥
r∑

i=1

ki multxi M ≥
( r∑

i=1

ki

)(
m vol(L)1/n

r1/n − ε

)
.

Divide by m and let ε go to 0 to conclude. �

Example 6.3. The most important special case is when α is the class of a family of irreducible curves
such that for any two general points of X there is a curve in our family containing them. Proposition 6.2
then shows that v̂ol(α)≥ 1 and M(α)≥ 1.

We also need to give a formal definition of the mobility count. Its properties are studied in more depth
in [Lehmann 2016].

Definition 6.4. Let X be an integral projective variety and let W be a reduced variety. Suppose that
U ⊂W × X is a subscheme and let p :U→W and s :U→ X denote the projection maps. The mobility
count mc(p) of the morphism p is the maximum nonnegative integer b such that the map

U ×W U ×W · · · ×W U s×s×···×s
−−−−−→ X × X × · · ·× X

is dominant, where we have b terms in the product on each side. (If the map is dominant for every positive
integer b, we set mc(p)=∞.)

For α ∈ N1(X)Z, the mobility count of α, denoted mc(α), is defined to be the largest mobility count of
any family of effective curves representing α.

The mobility is then defined as

mob(α)= lim sup
m→∞

mc(mα)
mn/(n−1)/n!

.

Proof of Theorem 6.1. (1) We compare mob and v̂ol. We first prove the upper bound. By continuity and
homogeneity it suffices to prove the upper bound for a class α in the natural sublattice of integral classes
N1(X)Z. Suppose that p :U→W is a family of curves representing mα of maximal mobility count for a
positive integer m. Suppose that a general member of p decomposes into irreducible components {Ci };
arguing as in [Lehmann 2016, Corollary 4.10], we must have mc(p)=

∑
i mc(Ui ), where Ui represents

the closure of the family of deformations of Ci . We also let βi denote the numerical class of Ci .
Suppose that mc(Ui ) > 1. Then we may apply Proposition 6.2 with all ki = 1 and r =mc(Ui )− 1 to

deduce that
v̂ol(βi )≥mc(Ui )− 1.

If mc(Ui )≤ 1 then Proposition 6.2 does not apply but at least we still know that v̂ol(βi )≥ 0≥mc(Ui )−1.
Fix an ample Cartier divisor A, and note that the number of components Ci is at most m A ·α. All told,
we have

v̂ol(mα)≥
∑

i

v̂ol(βi )≥
∑

i

(mc(Ui )− 1)≥mc(mα)−m A ·α.
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Thus,

v̂ol(α)= lim sup
m→∞

v̂ol(mα)
mn/(n−1) ≥ lim sup

m→∞

mc(mα)−m A ·α
mn/(n−1) =

mob(α)
n!

.

The lower bound relies on the Zariski decomposition of curves in Theorem 2.16. By [Lehmann 2016,
Example 6.2] we have

Bn
≤mob(Bn−1)

for any nef divisor B. With Theorem 2.16, this implies

v̂ol(Bn−1)≤mob(Bn−1).

In general, for a big curve class α we have

mob(α)≥ sup
B nef,
α�Bn−1

mob(Bn−1)≥ sup
B nef,
α�Bn−1

Bn
= v̂ol(α).

where the last equality again follows from Theorem 2.16. This finishes the proof.

(2) To prove the second part of Theorem 6.1, we need the following result:

Lemma 6.5 [Fulger and Lehmann 2017b, Corollary 6.16]. Let X be a smooth projective variety of
dimension n and let α be a big curve class. Then there is a big movable curve class β satisfying β � α
such that

mob(α)=mob(β)=mob(φ∗β)

for any birational map φ : Y → X from a smooth variety Y .

We now prove the statement via a sequence of claims.

Claim. Assume Conjecture 1.4. If β is a movable curve class with M(β) > 0, then for any ε > 0 there is
a birational map φε : Yε→ X such that

M(β)− ε ≤mob(φ∗εβ)≤M(β)+ ε.

By Theorem 3.14, we may suppose that there is a big divisor L such that β = 〈Ln−1
〉. Without loss of

generality we may assume that L is effective. Fix an ample effective divisor G as in [Fulger and Lehmann
2017b, Proposition 6.24]; the proposition shows that for any sufficiently small ε there is a birational
morphism φε : Yε→ X and a big and nef divisor Aε on Yε satisfying

Aε ≤ Pσ (φ∗ε L)≤ Aε + εφ∗εG.

Note that vol(Aε)≤ vol(L)≤ vol(Aε + εφ∗εG). Furthermore, we have

vol(Aε + εφ∗εG)≤ vol(φε∗Aε + εG)≤ vol(L + εG).
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Applying [Fulger and Lehmann 2017b, Lemma 6.21] and the invariance of the positive product under
passing to positive parts, we have

An−1
ε � φ∗εβ � (Aε + εφ

∗

εG)n−1.

Applying Conjecture 1.4 (which is only stated for ample divisors but applies to big and nef divisors by
continuity of mob), we find

vol(Aε)=mob(An−1
ε )≤mob(φ∗εβ)≤mob((Aε + εφ∗ε (G))

n−1)= vol(Aε + εφ∗εG).

As ε shrinks the two outer terms approach vol(L)=M(β).

Claim. Assume Conjecture 1.4. If a big movable curve class β satisfies mob(β)=mob(φ∗β) for every
birational φ then we must have β ∈ CI1(X).

When M(β) > 0, by the previous claim we see from taking a limit that mob(β) = M(β). By
Theorem 6.1(1) and Theorem 5.1 we get

v̂ol(β)≤M(β)≤ v̂ol(β)

and Theorem 5.1 implies the result. When M(β)= 0, fix a class ξ in the interior of the movable cone and
consider β + δξ for δ > 0. By the previous claim, for any ε > 0 we can find a sufficiently small δ and a
birational map φε : Yε→ X such that mob(φ∗ε (β+δξ)) < ε. We also have mob(φ∗εβ)≤mob(φ∗ε (β+δξ))
since the pullback of the nef curve class δξ is pseudoeffective. By the assumption on the birational
invariance of mob(β), we can take a limit to obtain mob(β)= 0, a contradiction to the bigness of β.

To finish the proof, recall that Lemma 6.5 implies that the mobility of α must coincide with the mobility
of a movable class β lying below α and satisfying mob(π∗β)=mob(β) for any birational map π . Thus
we have shown

mob(α)= sup
B nef,
α�Bn−1

mob(Bn−1).

By Conjecture 1.4 again, we obtain
mob(α)= sup

B nef,
α�Bn−1

Bn.

But the right-hand side agrees with v̂ol(α) by Theorem 2.16. This proves the equality mob(α)= v̂ol(α)
under the Conjecture 1.4.

(3) We now prove the equality v̂ol= wmob. The key advantage is that the analogue of Conjecture 1.4
is known for the weighted mobility: Example 8.19 of [Lehmann 2016] shows that for any big and nef
divisor B we have wmob(Bn−1)= Bn .

We first prove the inequality v̂ol ≥ wmob. The argument is essentially identical to the upper bound
in Theorem 6.1(1); by continuity and homogeneity it suffices to prove it for classes in N1(X)Z. Choose
a positive integer µ and a family of curves of class µmα achieving wmc(mα). By splitting up into
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components and applying Proposition 6.2 with equal weight µ at every point we see that for any
component Ui with class βi we have

v̂ol(βi )≥ µ
n/(n−1)(wmc(Ui )− 1)

Arguing as in Theorem 6.1(1), we see that for any fixed ample Cartier divisor A we have

v̂ol(mµα)≥ µn/(n−1)(wmc(mα)−m A ·α).

Rescaling by µ and taking a limit proves the statement.
We next prove the inequality v̂ol ≤ wmob. Again, the argument is identical to the lower bound in

Theorem 6.1(1). It is clear that the weighted mobility can only increase upon adding an effective class.
Using continuity and homogeneity, the same is true for any pseudoeffective class. Thus we have

wmob(α)≥ sup
B nef,
α�Bn−1

wmob(Bn−1)= sup
B nef,
α�Bn−1

Bn
= v̂ol(α).

where the second equality follows from [Lehmann 2016, Example 8.19]. This finishes the proof of the
equality v̂ol= wmob. �

Remark 6.6. We expect Theorem 6.1 to also hold over any algebraically closed field, but we have not
thoroughly checked the results on asymptotic multiplier ideals used in the proof of [Fulger and Lehmann
2017b, Proposition 6.24].

Theorem 6.1 yields two interesting consequences:

• The theorem indicates (loosely speaking) that if the mobility count of complete intersection classes is
optimized by complete intersection curves, then the mobility count of any curve class is optimized by
complete intersection curves lying below the class.

This result is very surprising: it indicates that the “positivity” of a curve class is coming from ample
divisors in a strong sense. For example, suppose that X and X ′ are isomorphic in codimension 1. If
we take a complete intersection class α on X , we expect that complete intersections of ample divisors
maximize the mobility count. However, the strict transform of these curves on X ′ should not maximize
the mobility count. Instead, if we deform these curves so that they break off a piece contained in the
exceptional locus, the part left over will lie in a family which deforms more than the original.
• The theorem suggests that the Zariski decomposition constructed in [Fulger and Lehmann 2017b] for
curves is not optimal: instead of defining a positive part in the movable cone, if Conjecture 1.4 is true we
should instead define a positive part in the complete intersection cone. It would be interesting to see an
analogous improvement for higher dimension cycles.

Asymptotic point counts and M. Finally, we show that M can be given an enumerative interpretation.
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Definition 6.7. Let p :U →W be a family of curves on X with morphism s :U → X . We say that U is
strictly movable if:

(1) For each component Ui of U , the morphism s|Ui is dominant.

(2) For each component Ui of U , the morphism p|Ui has generically irreducible fibers.

We then define mobmov and wmobmov exactly analogously to mob and wmob, except that we only
allow contributions of strictly movable families of curves. Note that mobmov and wmobmov vanish outside
of Mov1(X) since these classes are not represented by a sum of irreducible curves which deform to
dominate X . Arguing just as in [Lehmann 2016, Section 5], one sees that mobmov and wmobmov are
homogeneous of weight n/(n− 1), and are continuous in the interior of Mov1(X).

Lemma 6.8. Let φ : Y → X be a birational morphism of smooth projective varieties. Let p : U → W
be a family of irreducible curves admitting a dominant map s :U → X. Let UY be the family of curves
defined by strict transforms. Letting α, αY denote respectively the classes of the families on X, Y , we have
that φ∗α−αY is the class of an effective R-curve.

Proof. Since αY is the class of a family of irreducible curves which dominates Y , it has nonnegative
intersection against every effective divisor. Arguing as in the negativity of contraction lemma, we
can find a basis {ei } of ker(φ∗ : N1(Y )→ N1(X)) consisting of effective curves and a basis { f j } of
ker(φ∗ : N 1(Y )→ N 1(X)) consisting of effective divisors such that the intersection matrix is negative
definite and the only negative entries are on the diagonal. Just as in [Bauer et al. 2012, Lemma 4.1], this
shows that

αY = φ
∗φ∗αY −β = φ

∗α−β

for some effective curve class β supported on the exceptional divisors. �

Theorem 6.9. Let X be a smooth projective variety of dimension n and let α ∈Mov1(X)◦. Then:

(1) M(α)= wmobmov(α).

(2) Assume Conjecture 1.4. Then M(α)=mobmov(α).

Proof. (1) Suppose that φ : Y → X is a birational model of X and that A is an ample Cartier divisor on X .
By pushing-forward complete intersection families, we see that wmobmov(φ∗An−1)≥ An . By continuity
we obtain the inequality M(α)≤ wmobmov(α) for any α ∈Mov1(X)◦.

To see the reverse inequality, by continuity and homogeneity it suffices to consider the case when
α ∈Mov1(X)◦Z. Choose a positive integer µ and a strictly movable family of curves U of class µmα
achieving wmcmov(mα). Let φ : Y → X be a birational model and let UY denote the strict transform class
on Y with numerical class α′. By arguing as in the proof of Theorem 6.1, we find that

M(α′)≥ µn/(n−1)(wmcmov(mα)−m A ·α).

Furthermore by Lemma 6.8 we have v̂ol(mµφ∗α)≥ v̂ol(α′). Dividing by mn/(n−1) and taking a limit as
m increases, we see that M(α)≥ wmobmov(α).
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(2) The proof of M(α)≤mobmov(α) is the same as in (1). Conversely, suppose that U is a strictly movable
family of curves achieving mcmov(mα). Let φ : Y → X be a birational morphism of smooth varieties;
by combining Lemma 6.8 with [Fulger and Lehmann 2017b, Section 4], we see that mcmov(mα) ≤
mcK(mφ∗α), where K is a cone chosen as in [Fulger and Lehmann 2017b, Definition 4.8] and includes a
fixed effective basis of the kernel of φ∗ : N1(Y )→ N1(X) chosen as in Lemma 6.8. Taking limits, we see
that mobmov(α)≤mob(φ∗α) for any birational map φ.

Choose a sequence of birational maps φi : Yi → X as in the proof of Proposition 5.2 so that v̂ol(φ∗i α)
limits to M(α). By taking a limit over i and applying Theorem 6.1(2) we finish the proof. �
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[Lazarsfeld and Mustaţă 2009] R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm.
Supér. (4) 42:5 (2009), 783–835. MR Zbl

[Lehmann 2016] B. Lehmann, “Volume-type functions for numerical cycle classes”, Duke Math. J. 165:16 (2016), 3147–3187.
MR Zbl

[Lehmann and Xiao 2016] B. Lehmann and J. Xiao, “Convexity and Zariski decomposition structure”, Geom. Funct. Anal. 26:4
(2016), 1135–1189. MR Zbl

[Lehmann and Xiao 2017] B. Lehmann and J. Xiao, “Correspondences between convex geometry and complex geometry”,
Épijournal Geom. Algébrique 1 (2017), Art. id. 6, 29 pp. MR Zbl
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The congruence topology,
Grothendieck duality and thin groups

Alexander Lubotzky and Tyakal Nanjundiah Venkataramana

This paper answers a question raised by Grothendieck in 1970 on the “Grothendieck closure” of an
integral linear group and proves a conjecture of the first author made in 1980. This is done by a detailed
study of the congruence topology of arithmetic groups, obtaining along the way, an arithmetic analogue
of a classical result of Chevalley for complex algebraic groups. As an application we also deduce a group
theoretic characterization of thin subgroups of arithmetic groups.

Introduction

If ϕ : G1 → G2 is a polynomial map between two complex varieties, then in general the image of a
Zariski closed subset of G1 is not necessarily closed in G2. But here is a classical result:

Theorem (Chevalley). If ϕ is a polynomial homomorphism between two complex algebraic groups then
ϕ(H) is closed in G2 for every closed subgroup H of G1.

There is an arithmetic analogue of this issue: Let G be a Q-algebraic group, let A f =5
∗

p primeQp be
the ring of finite adeles over Q. The topology of G(A f ) induces the congruence topology on G(Q). If K
is a compact open subgroup of G(A f ) then 0 = K ∩G(Q) is called a congruence subgroup of G(Q).
This defines the congruence topology on G(Q) and on all its subgroups. A subgroup of G(Q) which is
closed in this topology is called congruence closed. A subgroup 1 of G commensurable to 0 is called an
arithmetic group.

Now, if ϕ : G1→ G2 is a Q-morphism between two Q-groups, which is a surjective homomorphism
(as C-algebraic groups) then the image of an arithmetic subgroup 1 of G1 is an arithmetic subgroup of
G2 [Platonov and Rapinchuk 1994, Theorem 4.1, page 74], but the image of a congruence subgroup is
not necessarily a congruence subgroup. It is well known that SLn(Z) has congruence subgroups whose
images under the adjoint map SLn(Z)→ PSLn(Z) ↪→ Aut(Mn(Z)) are not congruence subgroups (see
[Serre 1968] and Proposition 2.1 below for an exposition and explanation). So, the direct analogue of
Chevalley’s theorem does not hold. Still, in this case, if 0 is a congruence subgroup of SLn(Z), then ϕ(0)
is a normal subgroup of ϕ(0), the (congruence) closure of ϕ(0) in PSLn(Z), and the quotient is a finite
abelian group. Our first technical result says that the general case is similar. It is especially important

MSC2010: primary 11E57; secondary 20G30.
Keywords: congruence subgroup, thin groups.
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for us that when G2 is simply connected, the image of a congruence subgroup of G1 is a congruence
subgroup in G2 (see Proposition 0.1(ii) below).

Before stating the result, we give the following definition and set some notations for the rest of the
paper.

Let G be a linear algebraic group over C, G0 its connected component, and R = R(G) its solvable
radical, i.e., the largest connected normal solvable subgroup of G. We say that G is essentially simply
connected if Gss := G0/R is simply connected.

Given a subgroup 0 of GLn , we will throughout the paper denote by 00 the intersection of 0 with G0,
where G0 is the connected component of G, the Zariski closure of 0. Therefore, 00 is always a finite
index normal subgroup of 0.

The notion “essentially simply connected” will play an important role in this paper due to the following
proposition, which can be considered as the arithmetic analogue of Chevalley’s result above.

Proposition 0.1. (i) If ϕ : G1→ G2 is a surjective Q-morphism of algebraic Q-groups, then for every
congruence closed subgroup 0 of G1(Q), the image ϕ(00) is normal in its congruence closure ϕ(00)

and ϕ(00)/ϕ(00) is a finite abelian group.

(ii) If G2 is essentially simply connected and 0 a congruence subgroup of G1 then ϕ(0)= ϕ(0), i.e., the
image of a congruence subgroup is congruence closed.

This analogue of Chevalley’s theorem and a result of [Nori 1987; Weisfeiler 1984] enable us to prove:

Proposition 0.2. If 01≤GLn(Z) is a congruence closed subgroup (i.e., closed in the congruence topology)
with Zariski closure G, then there exists a congruence subgroup 0 of G, such that [0,0] ≤ 00

1 ≤ 0. If G
is essentially simply connected then the image of 01 in G/R(G) is actually a congruence subgroup.

We apply Proposition 0.1(ii) in two directions:

(A) Grothendieck–Tannaka duality for discrete groups, and

(B) a group theoretic characterization of thin subgroups of arithmetic groups.

Grothendieck closure. Grothendieck [1970] was interested in the following question:

Question 0.3. Assume ϕ : 01→ 02 is a homomorphism between two finitely generated residually finite
groups inducing an isomorphism ϕ̂ : 0̂1 → 0̂2 between their profinite completions. Is ϕ already an
isomorphism?

To tackle Question 0.3, he introduced the following notion. Given a finitely generated group 0 and a
commutative ring A with identity, let ClA(0) be the group of all automorphisms of the forgetful functor
from the category ModA(0) of all finitely generated A-modules with 0 action to ModA({1}), preserving
tensor product. Recall that α is such an automorphism means that for every finitely generated A-module
L with 0 action ρL : 0→ AutA(L), we are given αL ∈ AutA(L) such that if ϕ : L1→ L2 is an A[0]-
morphism between such modules then αL2 ◦ϕ = ϕ ◦αL1 . In particular, every τ ∈ 0 defines such α, by
αL = ρL(τ ). This gives a natural map from 0 to ClA(0).
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Grothendieck’s strategy was the following: he showed that, under the conditions of Question 0.3, ϕ
induces an isomorphism from ModA(02) to ModA(01), and hence also between ClA(01) and ClA(02).
He then asked:

Question 0.4. Is the natural map 0 ↪→ ClZ(0) an isomorphism for a finitely generated residually finite
group?

An affirmative answer to Question 0.4 would imply an affirmative answer to Question 0.3. Grothendieck
then showed that arithmetic groups with the (strict) congruence subgroup property do indeed satisfy
ClZ(0)' 0. For a general survey on the congruence subgroup problem see [Raghunathan 1991].

Question 0.4 basically asks whether 0 can be recovered from its category of representations. The first
author [Lubotzky 1980] phrased this question in the framework of Tannaka duality, which asks a similar
question for compact Lie groups. He also gave a more concrete description of ClZ(0):

ClZ(0)= {g ∈ 0̂ | ρ̂(g)(V )= V, ∀(ρ, V ) ∈ModZ(0)}. (0-1)

Here ρ̂ is the continuous extension ρ̂ : 0̂→ Aut(V̂ ) of the original representation ρ : 0→ Aut(V ).
However, it is also shown in [Lubotzky 1980], that the answer to Question 0.4 is negative. The

counterexamples provided there are the arithmetic groups for which the weak congruence subgroup
property holds but not the strict one, i.e., the congruence kernel is finite but nontrivial. It was conjectured
in [Lubotzky 1980, Conjecture A, page 184], that for an arithmetic group 0, ClZ(0)= 0 if and only if 0
has the (strict) congruence subgroup property. The conjecture was left open even for 0 = SL2(Z).

In the almost 40 years since [Lubotzky 1980] was written various counterexamples were given to
Question 0.3 [Platonov and Tavgen 1986; Bass and Lubotzky 2000; Bridson and Grunewald 2004; Pyber
2004] which also give counterexamples to Question 0.4, but it was not even settled whether ClZ(F)= F
for finitely generated nonabelian free groups F .

We can now answer this and, in fact, prove the following surprising result, which gives an essentially
complete answer to Question 0.4.

Theorem 0.5. Let 0 be a finitely generated subgroup of GLn(Z). Then 0 satisfies Grothendieck–Tannaka
duality, i.e., ClZ(0) = 0 if and only if 0 has the congruence subgroup property i.e., for some (and
consequently for every) faithful representation 0 → GLm(Z) such that the Zariski closure G of 0 is
essentially simply connected, every finite index subgroup of 0 is closed in the congruence topology of
GLn(Z). In such a case, the image of the group 0 in the semisimple (simply connected) quotient G/R is a
congruence arithmetic group.

The theorem is surprising as it shows that the cases proved by Grothendieck himself (which motivated
him to suggest that the duality holds in general) are essentially the only cases where this duality holds.

Let us note that the assumption on G is not really restrictive. In Lemma 3.5, we show that for every
0 ≤ GLn(Z) we can find an “over” representation of 0 into GLm(Z) (for some m) whose Zariski closure
is essentially simply connected.

Theorem 0.5 implies Conjecture A of [Lubotzky 1980].
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Corollary 0.6. If G is a simply connected semisimple Q-algebraic group, and 0 a congruence subgroup
of G(Q), then ClZ(0)= 0 if and only if 0 satisfies the (strict) congruence subgroup property.

In particular:

Corollary 0.7. ClZ(F) 6= F for every finitely generated free group on at least two generators; furthermore,
ClZ(SL2(Z)) 6= SL2(Z).

In fact, it will follow from our results that ClZ(F) is uncountable.
Before moving on to the last application, let us say a few words about how Proposition 0.1 helps to

prove a result like Theorem 0.5. The description of ClZ(0) as in (0-1) implies that

ClZ(0)= lim
←−−
ρ

ρ(0) (0-2)

where the limit is over all (ρ, V ), where V is a finitely generated abelian group, ρ a representation
ρ : 0→ Aut(V ) and ρ(0) = ρ̂(0̂)∩Aut(V ) ⊆ Aut(V̂ ). This is an inverse limit of countable discrete
groups, so one can not say much about it unless the connecting homomorphisms are surjective, which is,
in general, not the case. Now, ρ(0) is the congruence closure of ρ(0) in Aut(V ) and Proposition 0.1
shows that the corresponding maps are “almost” onto, and are even surjective if the modules V are what
we call here “simply connected representations”, namely those cases where V is torsion free (and hence
isomorphic to Zn for some n) and the Zariski closure of ρ(0) in Aut(C⊗Z V )= GLn(C) is essentially
simply connected. We show further that the category ModZ(0) is “saturated” with such modules (see
Lemma 3.5) and we deduce that one can compute ClZ(0) as in (0-1) by considering only simply connected
representations. We can then use Proposition 0.1(b), and get a fairly good understanding of ClZ(0). This
enables us to prove Theorem 0.5. In addition, we also deduce:

Corollary 0.8. If (ρ, V ) is a simply connected representation, then the induced map ClZ(0)→ Aut(V )
is onto Clρ(0) : = ρ(0)— the congruence closure of 0.

From Corollary 0.8 we can deduce our last application.

Thin groups. In recent years, following [Sarnak 2014] (see also [Kontorovich et al. 2019]), there has
been a lot of interest in the distinction between thin subgroups and arithmetic subgroups of algebraic
groups. Let us recall:

Definition 0.9. A subgroup 0 ≤ GLn(Z) is called thin if it is of infinite index in G ∩GLn(Z), when G
is its Zariski closure in GLn . For a general group 0, we will say that it is a thin group (or it has a thin
representation) if for some n there exists a representation ρ : 0→ GLn(Z) for which ρ(0) is thin.

During the last five decades a lot of attention was given to the study of arithmetic groups, with many
remarkable results, especially for those of higher rank (see [Margulis 1991; Platonov and Rapinchuk
1994]). Much less is known about thin groups. For example, it is not known if there exists a thin group with
property (T ). Also, given a subgroup of an arithmetic group (say, given by a set of generators) it is difficult
to decide whether it is thin or arithmetic (i.e., of finite or infinite index in its integral Zariski closure).
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It is therefore of interest and perhaps even surprising that our results enable us to give a purely group
theoretical characterization of thin groups 0 ⊂ GLn(Z). Before stating the precise result, we make
the topology on ClZ(0) explicit. If we take the class of simply connected representations (ρ, V ) for
computing the group ClZ(0), one can then show that ClZ(0)/0 is a closed subspace of the product∏
ρ(Clρ(0)/0), where each Clρ(0)/0 is given the discrete topology. This is the topology on the quotient

space ClZ(0)/0 in the following theorem. We can now state:

Theorem 0.10. Let 0 be finitely generated Z-linear group. Then 0 is a thin group if and only if it satisfies
(at least) one of the following conditions:

(1) 0 is not FAb (namely, it does have a finite index subgroup with an infinite abelianization).

(2) ClZ(0)/0 is not compact.

Warning. There are groups 0 which can be realized both as arithmetic groups as well as thin groups.
For example, the free group is an arithmetic subgroup of SL2(Z), but at the same time a thin subgroup of
every semisimple group, by a well-known result of Tits [1972]. In our terminology this is a thin group.

Remark 0.11. In the present paper, we have concentrated only on Z modules which are 0 modules, and
we have assumed that 0 ⊂ SLn(Z) for some n, so 0 is either a Q-arithmetic group or a thin subgroup of
such. Note that if Z is replaced by O — the ring of integers in a number field K — then by restriction of
scalars every arithmetic subgroup of a K -algebraic group is commensurable to such one over Q, so there
is no loss of generality here. Moreover, the ring Z can be replaced by the ring of S-integers OS , S is a
finite set of places including all the archimedean ones and OS is the subring of K consisting of elements
x in K such that for every (finite) place v /∈ S of K , x lies in the maximal compact subring Ov of Kv (Kv

is the completion of K at the place v). To be precise, one can consider finitely generated OS modules (in
place of Z modules) which are 0 modules, and one assumes that 0 ⊂ SLn(OS) i.e., 0 is a subgroup of an
S-arithmetic group. One can then talk of the OS-closure ClOS (0). The statements and proofs are almost
identical, if notationally more tedious and hence we do not wish to pursue this further.

Note however, that one should not “mix between rings”, for example, if 0 = SLn
(
Z
[ 1

p

])
, n ≥ 2, p a

prime, then ClZ[1/p](0)= 0 as 0 satisfies the congruence subgroup property (CSP). But

ClZ(0)= 0̂ = SLn
(
Ẑ
[ 1

p

])
=

∏
q 6=p

SLn(Zq),

since every representation of 0 on a finitely generated Z-module factors through a finite quotient.

Notation 0.12. Throughout the paper, if W is a finitely generate Z module, we denote by WQ and WC

the Q vector space W ⊗Z Q and the C vector space W ⊗Z C, respectively. If 0 ⊂GL(W ), and G denotes
the Zariski closure of 0 in GL(WC), then G acts on WC. The Zariski closure G is an algebraic group
defined over Q with respect to the Q structure on WC =WQ⊗Q C. It is well-known that G(Q) is Zariski
dense in G and G(Q) acts on WQ. The action of G on WC is completely determined by the action of
G(Q) on WQ. For these reasons, we do not distinguish between G acting on WC and G(Q) (by a mild
abuse of notation, denoted G) acting on WQ.
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1. Preliminaries on algebraic groups over Q

We recall the definition of an essentially simply connected group.

Definition 1.1. Let G be a linear algebraic group over C with maximal connected normal solvable
subgroup R (i.e., the radical of G) and identity component G0. We say that G is essentially simply
connected if the semisimple part G0/R = H is a simply connected.

Note that G is essentially simply connected if and only if, the quotient G0/U of the group G0 by its
unipotent radical U is a product Hss× S with Hss simply connected and semisimple, and S is a torus.

For example, a semisimple connected group is essentially simply connected if and only if it is simply
connected. The group Gm ×SLn is essentially simply connected; however, the radical of the group GLn

is the group R of scalars and GLn /R = SLn /center, so GLn is not essentially simply connected. We will
show later (Lemma 1.3(iii)) that every group has a finite cover which is essentially simply connected.

Lemma 1.2. Suppose G ⊂ G1×G2 is a subgroup of a product of two essentially simply connected linear
algebraic groups G1,G2 over C; suppose that the projection πi of G to Gi is surjective for i = 1, 2. Then
G is also essentially simply connected.

Proof. Assume, as we may, that G is connected. Let R be the radical of G. The projection of R to Gi is
normal in Gi since πi : G→ Gi is surjective. Moreover, Gi/πi (R) is the image of the semisimple group
G/R; the latter has a Zariski dense compact subgroup, hence so does Gi/πi (R); therefore, Gi/πi (R)
is reductive and is its own commutator. Hence Gi/πi (R) is semisimple and hence πi (R) = Ri where
Ri is the radical of Gi . Let R∗ = G ∩ (R1× R2). Since R1× R2 is the radical of G1×G2, it follows
that R∗ is a solvable normal subgroup of G and hence its connected component is contained in R. Since
R ⊆ R1× R2, it follows that R is precisely the connected component of the identity of R∗. We then have
the inclusion G/R∗ ⊂ G1/R1×G2/R2 with projections again being surjective.

By assumption, each Gi/Ri = Hi is semisimple, simply connected. Moreover G/R∗ = H where H is
connected, semisimple. Thus we have the inclusion H ⊂ H1× H2. Now, H ⊂ H1× H2 is such that the
projections of H to Hi are surjective, and each Hi is simply connected. Let K be the kernel of the map
H → H1 and K 0 its identity component. Then H/K 0

→ H1 is a surjective map of connected algebraic
groups with finite kernel. The simple connectedness of H1 then implies that H/K 0

= H1 and hence that
K = K 0

⊂ {1}× H2 is normal in H2.
Write H2= F1×· · ·×Ft where each Fi is simple and simply connected. Now, K being a closed normal

subgroup of H2 must be equal to
∏

i∈X Fi for some subset X of {1, . . . , t}, and is simply connected.
Therefore, K = K 0 is simply connected.

From the preceding two paragraphs, we have that both H/K and K are simply connected, and hence
so is H = G/R∗. Since R is the connected component of R∗ and G/R∗ is simply connected, it follows
that G/R = G/R∗ and hence G/R is simply connected. This completes the proof of the lemma. �

Arithmetic groups and congruence subgroups. In the introduction, we defined the notion of arithmetic
and congruence subgroup of G(Q) using the adelic language. One can define the notion of arithmetic
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and congruence groups in more concrete terms as follows. Given a linear algebraic group G ⊂ SLn

defined over Q, we will say that a subgroup 0 ⊂ G(Q) is an arithmetic group if is commensurable to
G ∩SLn(Z)= G(Z); that is, the intersection 0 ∩G(Z) has finite index both in 0 and in G(Z). It is well
known that the notion of an arithmetic group does not depend on the specific linear embedding G ⊂ SLn .
As in [Serre 1968], we may define the arithmetic completion Ĝ of G(Q) as the completion of the group
G(Q) with respect to the topology on G(Q) as a topological group, obtained by designating arithmetic
groups as a fundamental systems of neighborhoods of identity in G(Q).

Given G ⊂ SLn as in the preceding paragraph, we will say that an arithmetic group 0 ⊂ G(Q) is a
congruence subgroup if there exists an integer m ≥ 2 such that 0 contains the “principal congruence
subgroup” G(mZ) = SLn(mZ)∩G where SLn(mZ) is the kernel to the residue class map SLn(Z)→

SLn(Z/mZ). We then get the structure of a topological group on the group G(Q) by designating
congruence subgroups of G(Q) as a fundamental system of neighborhoods of identity. The completion
of G(Q) with respect to this topology, is denoted G. Again, the notion of a congruence subgroup does
not depend on the specific linear Q-embedding G→ SLn .

Since every congruence subgroup is an arithmetic group, there exists a map from π : Ĝ→ G which
is easily seen to be surjective, and the kernel C(G) of π is a compact profinite subgroup of Ĝ. This is
called the congruence subgroup kernel. One says that G(Q) has the congruence subgroup property if
C(G) is trivial. This is easily seen to be equivalent to the statement that every arithmetic subgroup of
G(Q) is a congruence subgroup.

It is known (see page 108, last but one paragraph of [Raghunathan 1976] or [Chahal 1980]) that
solvable groups G have the congruence subgroup property.

Moreover, every solvable subgroup of GLn(Z) is polycyclic. In such a group, every subgroup is
intersection of finite index subgroups. So every solvable subgroup of an arithmetic group is congruence
closed. We will use these facts frequently in the sequel.

Another (equivalent) way of viewing the congruence completion is (see [Serre 1968, page 276,
Remarque]) as follows: let A f be the ring of finite adeles over Q, equipped with the standard adelic
topology and let Z f ⊂ A f be the closure of Z. Then the group G(A f ) is also a locally compact group
and contains the group G(Q). The congruence completion G of G(Q) may be viewed as the closure of
G(Q) in G(A f ).

Lemma 1.3. Let H and H∗ be linear algebraic groups defined over Q.

(i) Suppose π : H∗→ H is a surjective Q-morphism. Let (ρ,WQ) be a representation of H defined
over Q. Then there exists a faithful Q-representation (τ, VQ) of H∗ such that (ρ ◦ π,WQ) is a
subrepresentation of (τ, VQ).

(ii) If H∗→ H is a surjective map defined over Q, then the image of an arithmetic subgroup of H∗

under the map H∗→ H is an arithmetic subgroup of H.

(iii) If H is connected, then there exists a connected essentially simply connected algebraic group H∗

with a surjective Q-defined homomorphism H∗→ H with finite kernel.
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(iv) If H∗ → H is a surjective homomorphism of algebraic Q-groups which are essentially simply
connected, then the image of a congruence subgroup of H∗(Q) is a congruence subgroup of H(Q).

Proof. Let θ : H∗→ GL(E) be a faithful representation of the linear algebraic group H∗ defined over Q

and τ = ρ⊕ θ as H∗-representation. Clearly τ is faithful for H∗ and contains ρ. This proves (i).
Part (ii) is the statement of Theorem (4.1) of [Platonov and Rapinchuk 1994].
We now prove (iii). Write H = RG as a product of its radical R and a semisimple group G. Let

H∗ss→ G be the simply connected cover of G. Hence H∗ss acts on R through G, via this covering map.
Define H∗ = R o H∗ss as a semidirect product. Clearly, the map H∗→ H has finite kernel and satisfies
the properties of (iii).

To prove (iv), we may assume that H and H∗ are connected. If U∗ and U are the unipotent radicals of
H∗ and H , the assumptions of (iv) do not change for the quotient groups H∗/U∗ and H/U . Moreover,
since H∗ is the semidirect product of U∗ and H∗/U∗ (and similarly for H and U ) and the unipotent
Q-algebraic group U has the congruence subgroup property, it suffices to prove (iv) when both H∗ and
H are reductive. By assumption, H∗ and H are essentially simply connected; i.e., H∗ = H∗ss× S∗ and
H = Hss× S where S, S∗ are tori and H∗ss, Hss are simply connected semisimple groups. Thus we have
connected reductive Q-groups H∗, H with a surjective map such that their derived groups are simply
connected (and semisimple), and the abelianization (H∗)ab is a torus (similarly for H ).

Now, [H∗, H∗]= H∗ss is a simply connected semisimple group and hence it is a product F1×· · ·×Fs of
simply connected Q-simple algebraic groups Fi . Being a factor of [H∗, H∗]=H∗ss, the group [H, H ]=Hss

is a product of a (smaller) number of these Fi ’s. After a renumbering of the indices, we may assume that
Hss is a product F1×· · ·× Fr for some r ≤ s and the map π on H∗ss is the projection to the first r factors.
Hence the image of a congruence subgroup of H∗ss is a congruence subgroup of Hss.

The tori S∗ and S have the congruence subgroup property by a result of Chevalley (as already stated
at the beginning of this section, this is true for all solvable algebraic groups). Hence the image of a
congruence subgroup of S∗ is a congruence subgroup of S. We thus need only prove that every subgroup
of the reductive group H of the form 0102, where 01 ⊂ Hss and 02 ⊂ S are congruence subgroups,
is itself a congruence subgroup of H . We use the adelic form of the congruence topology. Suppose
K is a compact open subgroup of the H(A f ) where A f is the ring of finite adeles. The image of
H(Q)∩ K under the quotient map H → H ab

= S is a congruence subgroup in the torus S and hence
H(Q)∩ K ′ ⊂ (Hss(Q)∩ K )(S(Q)∩ K ) for some possibly smaller open subgroup K ′ ⊂ H(A f ). This
proves (iv). �

Note that part (iii) and (iv) prove Proposition 0.1(ii).

2. The arithmetic Chevalley theorem

In this section, we prove Proposition 0.1(i). Assume that ϕ : G1 → G2 is a surjective morphism of
Q-algebraic groups. We are to prove that ϕ(00) contains the commutator subgroup of a congruence
subgroup of G2(Q) containing it.
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Before starting on the proof, let us note that in general, the image of a congruence subgroup of G1(Z)

under ϕ need not be a congruence subgroup of G2(Z). The following proposition gives a fairly general
situation when this happens.

Proposition 2.1. Let π : G1→ G2 be a finite covering of semisimple algebraic groups defined over Q

with G1 simply connected and G2 not. Assume G1(Q) is dense in G1(A f ). Write K for the kernel of π
and K f for the kernel of the map G1(A f )→ G2(A f ). Let 0 be a congruence subgroup of G1(Q) and H
its closure in G1(A f ). Then the image π(0)⊂ G2(Q) is a congruence subgroup if and only if KH ⊃ K f .

Before proving the proposition, let us note that while K is finite, the group K f is a product of infinitely
many finite abelian groups and that K f is central in G1. This implies:

Corollary 2.2. (i) There are infinitely many congruence subgroups 0i with π(0i ) noncongruence
subgroups of unbounded finite index in their congruence closures 0i .

(ii) For each of these 0 = 0i , the image π(0) contains the commutator subgroup [0,0] and is normal
in 0 (with abelian quotient).

We now prove Proposition 2.1.

Proof. Let G3 be the image of the rational points of G1(Q):

G3 = π(G1(Q))⊂ G2(Q).

Define a subgroup1 of G3 to be a quasicongruence subgroup if the inverse image π−1(1) is a congruence
subgroup of G1(Q). Note that the quasicongruence subgroups of G3 are exactly the images of congruence
subgroups of G1(Q) by π . It is routine to check that by declaring quasicongruence subgroups to be open,
we get the structure of a topological group on G3. This topology is weaker or equal to the arithmetic
topology on G3. However, it is strictly stronger than the congruence topology on G3. The last assertion
follows from the fact that the completion of G3 = G1(Q)/K (Q) is the quotient G1/K where G1 is the
congruence completion of G1(Q), whereas the completion of G3 with respect to the congruence topology
is G1/K f .

Now let 0⊂G1(Q) be a congruence subgroup and 11 = π(0); let 12 be its congruence closure in G3.
Then both 11 and 12 are open in the quasicongruence topology on G3. Denote by G∗3 the completion of
G3 with respect to the quasicongruence topology, so G∗3 = G1/K and denote by 1∗1,1

∗

2 the closures of
11,12 in G∗3. We then have the equalities

12/11 =1
∗

2/1
∗

1, 1∗2 =1
∗

1 K f /K .

Hence 1∗1 =1
∗

2 if and only if K1∗1 ⊃ K f . This proves Proposition 2.1.
The proof shows that 1∗1 is normal in 1∗2 (since K f is central) with abelian quotient. The same is true

for 11 in 12 and the corollary is also proved. �

To continue with the proof of Proposition 0.1, assume, as we may (by replacing G1 with the Zariski
closure of 0), that G1 has no characters defined over Q. For, suppose that G1 is the Zariski closure of
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0 ⊂ G1(Z). Let χ : G1→ Gm be a nontrivial (and therefore surjective) homomorphism defined over Q;
then the image of the arithmetic group G1(Z) in Gm(Q) is a Zariski dense arithmetic group. However,
the only arithmetic groups in Gm(Q) are finite and cannot be Zariski dense in Gm . Therefore, χ cannot
be nontrivial. We can also assume that G1 is connected.

We start by proving Proposition 0.1 for the case that 0 is a congruence subgroup.
If we write G1 = R1 H1 where H1 is semisimple and R1 is the radical, we may assume that G1 is

essentially simply connected (Lemma 1.3(iii)), without affecting the hypotheses or the conclusion of
Proposition 0.1.

Hence G1= R1oH1 is a semidirect product. Then clearly, every congruence subgroup of G1 contains a
congruence subgroup of the form 1o8 where 1⊂ R1 and 8⊂ H1 are congruence subgroups. Similarly,
write G2 = R2 H2. Since ϕ is easily seen to map R1 onto R2 and H1 onto H2, it is enough to prove the
proposition for R1 and H1 separately.

We first recall that if G is a solvable linear algebraic group defined over Q then the congruence
subgroup property holds for G, i.e., every arithmetic subgroup of G is a congruence subgroup (for a
reference see page 108, last but one paragraph of [Raghunathan 1976] or [Chahal 1980]). Consequently,
by Lemma 1.3(ii), the image of a congruence subgroup in R1 is an arithmetic group in R2 and hence a
congruence subgroup. Thus we dispose of the solvable case.

In the case of semisimple groups, denote by H∗2 by the simply connected cover of H2. The map
ϕ : H1→ H2 lifts to a map from H1 to H∗2 . For simply connected semisimple groups, a surjective map
from H1 to H∗2 sends a congruence subgroup to a congruence subgroup by Lemma 1.3(iv).

We are thus reduced to the situation H1 = H∗2 and ϕ : H1→ H2 is the simply connected cover of H2.
By our assumptions, H1 is now connected, simply connected and semisimple. We claim that for any

nontrivial Q-simple factor L of H1, L(R) is not compact. Otherwise, the image of 0, the arithmetic
group, there is finite and as 0 is Zariski dense, so H1 is not connected. The strong approximation
theorem [Platonov and Rapinchuk 1994, Theorem 7.12] gives now that H1(Q) is dense in H1(A f ). So
Proposition 2.1 can be applied to finish the proof of Proposition 0.1 in the case 0 is a congruence subgroup.

We need to show that it is true also for the more general case when 0 is only congruence closed. To
this end let us formulate the following proposition which is of independent interest.

Proposition 2.3. Let 0 ⊆ GLn(Z),G its Zariski closure and Der = [G0,G0
]. Then 0 is congruence

closed if and only if 0 ∩Der is a congruence subgroup of Der.

Proof. If G0 has no toral factors, this is proved in [Venkataramana 1999], in fact, in this case a congruence
closed Zariski dense subgroup is a congruence subgroup. (Note that this is stated there for general G, but
the assumption that there is no toral factor was mistakenly omitted as the proof there shows.)

Now, if there is a toral factor, we can assume G is connected, so Gab
= V × S where V is unipotent

and S a torus. Now 0 ∩ [G,G] is Zariski dense and congruence closed, so it is a congruence subgroup
by [Venkataramana 1999] as before. For the other direction, note that the image of 0 is U × S, being
solvable, is always congruence closed, so the proposition follows. �
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Now, we can end the proof of Proposition 0.1 for congruence closed subgroups by looking at ϕ on
G3 = 0 the Zariski closure of 0 and apply the proof above to Der(G0

3). It also proves Proposition 0.2.
Of course, Proposition 2.3 is the general form of the following result from [Venkataramana 1999]

(based on [Nori 1987; Weisfeiler 1984]), which is, in fact, the core of Proposition 2.3.

Proposition 2.4. Suppose 0 ⊂ G(Z) is Zariski dense, G simply connected and 0 a subgroup of G(Z)
which is closed in the congruence topology. Then 0 is itself a congruence subgroup.

3. The Grothendieck closure

The Grothendieck closure of a group 0.

Definition 3.1. Let ρ : 0→ GL(V ) be a representation of 0 on a lattice V in a Q-vector space V ⊗Q.
Then we get a continuous homomorphism ρ̂ : 0̂→ GL(V̂ ) (where, for a group 1, 1̂ denotes its profinite
completion) which extends ρ.

Denote by Clρ(0) the subgroup of the profinite completion of 0, which preserves the lattice V :
Clρ(0)= {g ∈ 0̂ : ρ̂(g)(V )⊂ V }. In fact, since det(ρ̂(g))=±1 for every g ∈ 0 and hence also for every
g ∈ 0̂, for g ∈ Clg(0), ρ̂(g)(V ) = V , and hence Clρ(0) is a subgroup of 0̂. We denote by Cl(0) the
subgroup

Cl(0)= {g ∈ 0̂ : ρ̂(g)(V )⊂ V ∀ lattices V }. (3-1)

Therefore, Cl(0)= ∩ρ Clρ(0) where ρ runs through all integral representations of the group 0.
Suppose now that V is any finitely generated abelian group (not necessarily a lattice i.e., not necessarily

torsion-free) which is also a 0-module. Then the torsion in V is a (finite) subgroup with finite exponent
n say. Then nV is torsion free. Since 0 acts on the finite group V/nV by a finite group via, say, ρ, it
follows that 0̂ also acts on the finite group V/nV via ρ̂. Thus, for g ∈ 0̂ we have ρ̂(g)(V/nV )= V/nV .
Suppose now that g ∈ Cl(0). Then g(nV )= nV by the definition of Cl(0). Hence g(V )/nV = V/nV
for g ∈ Cl(0). This is an equality in the quotient group V̂ /nV . This shows that g(V ) ⊂ V + nV = V
which shows that Cl(0) preserves all finitely generated abelian groups V which are 0 -modules.

By ClZ(0) we mean the Grothendieck closure of the (finitely generated) group 0. It is essentially a
result of [Lubotzky 1980] that the Grothendieck closure ClZ(0) is the same as the group Cl(0) defined
above (in [loc. cit.], the group considered was the closure with respect to all finitely generated Z modules
which are also 0 modules, whereas we consider only those finitely generated Z modules which are 0
modules and which are torsion-free; the argument of the preceding paragraph shows that these closures
are the same). From now on, we identify the Grothendieck closure ClZ(0) with the foregoing group
Cl(0).

Notation. Let 0 be a group, V a finitely generated torsion-free abelian group which is a 0-module and
ρ : 0→ GL(V ) the corresponding 0-action. Denote by Gρ the Zariski closure of the image ρ(0) in
GL(V ⊗Q), and G0

ρ its connected component of identity. Then both Gρ,G0
ρ are linear algebraic groups

defined over Q, and so is Derρ = [G0
ρ,G0

ρ].
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Let B = Bρ(0) denote the subgroup ρ̂(0̂)∩GL(V ). Since the profinite topology of GL(V̂ ) induces
the congruence topology on GL(V ), Bρ(0) is the congruence closure of ρ(0) in GL(V ).

We denote by D = Dρ(0) the intersection of B with the derived subgroup Derρ = [G0,G0
]. We thus

have an exact sequence

1→ D→ B→ A→ 1,

where A = Aρ(0) is an extension of a finite group G/G0 by an abelian group (the image of B ∩G0 in
the abelianization (G0)ab of the connected component G0).

Simply connected representations.

Definition 3.2. We will say that ρ is simply connected if the group G=Gρ is essentially simply connected.
That is, if U is the unipotent radical of G, the quotient G0/U is a product H × S where H is semisimple
and simply connected and S is a torus.

An easy consequence of Lemma 1.2 is that simply connected representations are closed under direct
sums.

Lemma 3.3. Let ρ1, ρ2 be two simply connected representations of an abstract group 0. Then the direct
sum ρ1⊕ ρ2 is also simply connected.

We also have:

Lemma 3.4. Let ρ : 0→ GL(W ) be a subrepresentation of a representation τ : 0→ GL(V ) such that
both ρ, τ are simply connected. Then the map r : Bτ (0)→ Bρ(0) is surjective.

Proof. The image of Bτ (0) in Bρ(0) contains the image of Dτ . By Proposition 2.3, Dτ is a congruence
subgroup of the algebraic group Derτ . The map Derτ → Derρ is a surjective map between simply
connected groups. Therefore, by part (iv) of Lemma 1.3, the image of Dτ is a congruence subgroup F
of Dρ . Now, by Proposition 2.3, Dρ · ρ(0) is congruence closed, hence equal to Bρ which is the
congruence closure of ρ(0) and Bτ → Bρ is surjective. �

Simply connected to general.

Lemma 3.5. Every (integral) representation ρ : 0→ GL(W ) is a subrepresentation of a representation
τ : 0→ GL(V ) where τ is simply connected.

Proof. Let ρ : 0→GL(W ) be a representation. Let Der be the derived subgroup of the identity component
of the Zariski closure H = Gρ of ρ(0). Then, by Lemma 1.3(iii), there exists a map H∗→ H 0 with
finite kernel such that H∗ is connected and H∗/U∗ = (H∗)ss × S∗ where H∗ss is a simply connected
semisimple group. Denote by WQ the Q-vector space W ⊗Q. By Lemma 1.3(i), ρ : H 0

→GL(WQ) may
be considered as a subrepresentation of a faithful representation (θ, EQ) of the covering group H∗.

By (ii) of Lemma 1.3, the image of an arithmetic subgroup of H∗ is an arithmetic group of H . Moreover,
as H(Z) is virtually torsion free, one may choose a normal, torsion-free arithmetic subgroup 1⊂ H(Z)
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such that the map H∗→ H 0 splits over 1. In particular, the map H∗→ H 0 splits over a normal subgroup
N of 0 of finite index. Thus, θ may be considered as a representation of the group N .

Consider the induced representation Ind0N (WQ). Since WQ is a representation of 0, it follows that
Ind0N (WQ) = WQ ⊗ Ind0N (trivN ) ⊃ WQ. Since, by the first paragraph of this proof, WQ ⊂ EQ as H∗

modules, it follows that WQ |N⊂ EQ and hence WQ ⊂ Ind0N (EQ) =: VQ. Write τ = Ind0N (EQ) for the
representation of 0 on VQ. The normality of N in 0 implies that the restriction representation τ |N is
contained in a direct sum of the N -representations n→ θ(γ nγ−1) as γ varies over the finite set 0/N .

Write Gθ |N for the Zariski closure of the image θ(N ). Since Gθ |N has H∗ as its Zariski closure
and the group H∗ss is simply connected, each θ composed with conjugation by γ is a simply connected
representation of N . It follows from Lemma 3.3 that τ |N is simply connected. Since simple connectedness
of a representation is the same for subgroups of finite index, it follows that τ , as a representation of 0, is
simply connected.

We have now proved that there exists 0-equivariant embedding of the module (ρ,WQ) into (τ, VQ)

where W, V are lattices in the Q-vector spaces WQ, VQ. A basis of the lattice W is then a Q-linear
combination of a basis of V ; the finite generation of W then implies that there exists an integer m such that
mW ⊂ V , and this inclusion is an embedding of 0-modules. Clearly, the module (ρ,W ) is isomorphic to
(ρ,mW ) the isomorphism given by multiplication by m. Hence the lemma follows. �

The following is the main technical result of this section, from which the main results of this paper are
derived:

Proposition 3.6. The group Cl(0) is the inverse limit of the groups Bρ(0) where ρ runs through simply
connected representations and Bρ(0) is the congruence closure of ρ(0). Moreover, if ρ : 0→ GL(W ) is
simply connected, then the map Cl(0)→ Bρ(0) is surjective.

Proof. Denote temporarily by Cl(0)sc the subgroup of elements of 0̂ which stabilize the lattice V for
all simply connected representations (τ, V ). Let W be an arbitrary finitely generated torsion-free lattice
which is also a 0-module; denote by ρ the action of 0 on W .

By Lemma 3.5, there exists a simply connected representation (τ, V ) which contains (ρ,W ). If
g ∈ Cl(0)sc, then τ̂ (g)(V ) ⊂ V ; since 0 is dense in Ĝ and stabilizes W , it follows that for all x ∈ 0̂,
τ̂ (x)(Ŵ )⊂ Ŵ ; in particular, for g ∈Cl(0)sc, ρ̂(g)(W )= τ̂ (g)(W )⊂ Ŵ ∩V =W . Thus, Cl(0)sc⊂Cl(0).

The group Cl(0) is, by definition, the set of all elements g of the profinite completion 0̂ which stabilize
all 0 stable torsion free lattices. It follows in particular, that these elements g stabilize all 0-stable
lattices V associated to simply connected representations (τ, V ); hence Cl(0)⊂ Cl(0)sc. The preceding
paragraph now implies that Cl(0)= Cl(0)sc. This proves the first part of the proposition (see (0-2)).

We can enumerate all the simply connected integral representations ρ, since 0 is finitely generated.
Write ρ1, ρ2, . . . , ρn . . . , for the sequence of simply connected representations of 0. Write τn for the
direct sum ρ1⊕ρ2⊕· · ·⊕ρn . Then τn ⊂ τn+1 and by Lemma 3.3 each τ is simply connected; moreover,
the simply connected representation ρn is contained in τn .
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By Lemma 3.4, it follows that Cl(0) is the inverse limit of the totally ordered family Bτn (0); moreover,
Bτn+1(0) maps onto Bτn (0). By taking inverse limits, it follows that Cl(0) maps onto the group Bτn (0)

for every n. It follows, again from Lemma 3.4, that every Bρn (0) is a homomorphic image of Bτn (0)

and hence of Cl(0). This proves the second part of the proposition. �

Definition 3.7. Let 0 be a finitely generated group. We say that 0 is FAb if the abelianization 1ab is
finite for every finite index subgroup 1⊂ 0.

Corollary 3.8. If 0 is FAb then for every simply connected representation ρ, the congruence closure
Bρ(0) of ρ(0) is a congruence subgroup and Cl(0) is an inverse limit over a totally ordered set τn of
simply connected representations of 0, of congruence groups Bn in groups Gn = Gτn with G0

n simply
connected. Moreover, the maps Bn+1→ Bn are surjective. Hence the maps Cl(0)→ Bn are all surjective.

Proof. If ρ : 0→ GL(V ) is a simply connected representation, then for a finite index subgroup 00 the
image ρ(00) has connected Zariski closure, and by assumption, G0/U = H× S where S is a torus and H
is simply connected semisimple. Since the group 0 is FAb it follows that S = 1 and hence G0

=Der(G0).
Now Proposition 2.4 implies that Bρ(0) is a congruence subgroup of Gρ(V ). The Corollary is now
immediate from the Proposition 3.6. We take Bn = Bτn in the proof of the proposition. �

We can now prove Theorem 0.5. Let us first prove the direction claiming that the congruence subgroup
property implies Cl(0)= 0. This was proved for arithmetic groups 0 by Grothendieck, and we follow
here the proof in [Lubotzky 1980] which works for general 0. Indeed, if ρ : 0→ GLn(Z) is a faithful
simply connected representation such that ρ(0) satisfies the congruence subgroup property, then it means
that the map ρ̂ : 0̂→ GLn(Ẑ) is injective. Now ρ(Cl(0))⊆ GLn(Z)∩ ρ̂(0̂), but the last is exactly the
congruence closure of ρ(0). By our assumption, ρ(0) is congruence closed, so it is equal to ρ(0). So in
summary ρ̂(0)⊂ ρ̂(Cl(0))⊆ ρ(0)= ρ̂(0). As ρ̂ is injective, 0 = Cl(0).

In the opposite direction, assume Cl(0)= 0. By the description of Cl(0) in (0.1) or in (3.1), it follows
that for every finite index subgroup 0′ of 0, Cl(0′)= 0′ (see [Lubotzky 1980, Proposition 4.4]). Now,
if ρ is a faithful simply connected representation of 0, it is also such for 0′ and by Proposition 3.6,
ρ(Cl(0′)) is congruence closed. In our case it means that for every finite index subgroup 0′, ρ(0′) is
congruence closed, i.e., ρ(0) has the congruence subgroup property.

4. Thin groups

Let 0 be a finitely generated Z-linear group, i.e., 0 ⊂GLn(Z), for some n. Let G be its Zariski closure in
GLn(C) and 1= G ∩GLn(Z). We say that 0 is a thin subgroup of G if [1 : 0] =∞, otherwise 0 is an
arithmetic subgroup of G. In general, given 0, (say, given by a set of generators) it is a difficult question
to determine if 0 is thin or arithmetic. Our next result gives, still, a group theoretic characterization
for the abstract group 0 to be thin. But first a warning: an abstract group can sometimes appear as an
arithmetic subgroup and sometimes as a thin subgroup. For example, the free group on two generators
F = F2 is a finite index subgroup of SL2(Z), and so, arithmetic. But at the same time, by a well-known
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result of Tits [1972] asserting that SLn(Z) contains a copy of F which is Zariski dense in SLn; it is also
thin. To be precise, let us define:

Definition 4.1. A finitely generated Z-linear group 0 is called a thin group if it has a faithful representation
ρ : 0→ GLn(Z) for some n ∈ Z, such that ρ(0) is of infinite index in ρ(0)Z

∩GLn(Z) where ρ(0)Z is
the Zariski closure of 0 in GLn . Such a ρ will be called a thin representation of 0.

We have assumed that i : 0⊂GLn(Z). Assume also, as we may (see Lemma 3.5) that the representation
i is simply connected. By Proposition 3.6, the group Cl(0) is the subgroup of 0̂ which preserves the
lattices Vn for a totally ordered set (with respect to the relation of being a subrepresentation) of faithful
simply connected integral representations (ρn, Vn) of 0 with the maps Cl(0)→ Bn being surjective, where
Bn is the congruence closure of ρn(0) in GL(Vn). Hence, Cl(0) is the inverse limit (as n varies) of the
congruence closed subgroups Bn and 0 is the inverse limit of the images ρn(0). Equip Bn/ρn(0) with the
discrete topology. Consequently, Cl(0)/0 is a closed subspace of the Tychonov product

∏
n(Bn/ρn(0)).

This is the topology on Cl(0)/0 considered in the following theorem.

Theorem 4.2. Let 0 be a finitely generated Z-linear group, i.e., 0 ⊂GLm(Z) for some n. Then 0 is not a
thin group if and only if 0 satisfies both of the following two properties:

(a) 0 is a FAb group (i.e., for every finite index subgroup 3 of 0, 3/[3,3] is finite).

(b) The group Cl(0)/0 is compact.

Proof. Assume first that 0 is a thin group. If 0 is not FAb we are done. So, assume 0 is FAb. We must now
prove that Cl(0)/0 is not compact. We know that 0 has a faithful thin representation ρ : 0→ GLn(Z)

which in addition, is simply connected. This induces a surjective map (see Proposition 3.6) Cl(0)→ Bρ(0)
where Bρ(0) is the congruence closure of ρ(0) in GLn(Z). As 0 is FAb, Bρ(0) is a congruence subgroup,
by Corollary 3.8. But as ρ is thin, ρ(0) has infinite index in Bρ(0). Thus, Cl(0)/0 is mapped onto the
discrete infinite quotient space Bρ(0)/ρ(0). Hence Cl(0)/0 is not compact.

Assume now 0 is not a thin group. This implies that for every faithful integral representation ρ(0) is
of finite index in its integral Zariski closure. We claim that 0/[0,0] is finite. Otherwise, as 0 is finitely
generated, 0 is mapped on Z. The group Z has a Zariski dense integral representation τ into Ga × S
where S is a torus; take any integral matrix g ∈ SLn(Z) which is neither semisimple nor unipotent, whose
semisimple part has infinite order. Then both the unipotent and semisimple part of the Zariski closure
H of τ(Z) are nontrivial and H(Z) cannot contain τ(Z) as a subgroup of finite index since H(Z) is
commensurable to Ga(Z)× S(Z) and both factors are nontrivial and infinite. The representation ρ× τ
(where ρ is any faithful integral representation of 0) will give a thin representation of 0. This proves
that 0/[0,0] is finite. A similar argument (using an induced representation) works for every finite index
subgroup, hence 0 satisfies FAb.

We now prove that Cl(0)/0 is compact. We already know that 0 is FAb, so by Corollary 3.8,
Cl(0)= lim

←−−
Bρn (0)when Bn= Bρn (0) are congruence groups with surjective homomorphisms Bn+1→ Bn .

Note that as 0 has a faithful integral representation, we can assume that all the representations ρn in the
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sequence are faithful and
0 = lim

←−−
n
ρn(0). (4-1)

This implies that Cl(0)/0 = lim
←−−n Bn/ρn(0). Now, by our assumption, each ρn(0) is of finite index in

Bn = Bρn (0). So Cl(0)/0 is an inverse limit of finite sets and hence compact. �

5. Grothendieck closure and super-rigidity

Let 0 be a finitely generated group. We say that 0 is integral super-rigid if there exists an algebraic
group G ⊆GLm(C) and an embedding i : 00 7→ G of a finite index subgroup 00 of 0, such that for every
integral representation ρ : 0→ GLn(Z), there exists an algebraic representation ρ̃ : G→ GLn(C) such
that ρ and ρ̃ agree on some finite index subgroup of 00. Note: 0 is integral super-rigid if and only if a
finite index subgroup of 0 is integral super-rigid.

Examples of such super-rigid groups are, first of all, the irreducible (arithmetic) lattices in high rank
semisimple Lie groups, but also the (arithmetic) lattices in the rank one simple Lie groups Sp(n, 1) and
F−20

4 (see [Margulis 1991; Corlette 1992; Gromov and Schoen 1992]). But [Bass and Lubotzky 2000]
shows that there are such groups which are thin groups.

Now, let 0 be a subgroup of GLm(Z), whose Zariski closure is essentially simply connected. We say
that 0 satisfies the congruence subgroup property (CSP) if the natural extension of i : 0→GLm(Z) to 0̂,
i.e., ĩ : 0̂→ GLm(Ẑ) has finite kernel.

Theorem 5.1. Let 0 ⊆ GLm(Z) be a finitely generated subgroup satisfying (FAb). Then:

(a) Cl(0)/0 is compact if and only if 0 is an arithmetic group which is integral super-rigid.

(b) Cl(0)/0 is finite if and only if 0 is an arithmetic group satisfying the congruence subgroup property.

Remarks. (a) The finiteness of Cl(0)/0 implies, in particular, its compactness, so Theorem 5.1 recovers
the well-known fact (see [Bass et al. 1967; Raghunathan 1976]) that the congruence subgroup property
implies super-rigidity.

(b) As explained in Section 2 (based on [Serre 1968]) the simple connectedness is a necessary condition
for the CSP to hold. But by Lemma 3.5, if 0 has any embedding into GLn(Z) for some n, it also has
a simply connected one.

We now prove Theorem 5.1.

Proof. Assume first Cl(0)/0 is compact in which case, by Theorem 4.2, 0 must be an arithmetic subgroup
of some algebraic group G. Without loss of generality (using Lemma 3.5) we can assume that G is
connected and simply connected, call this representation ρ : 0→G. Let θ be any other representation of 0.

Let τ = ρ⊕ θ be the direct sum. The group Gτ is a subgroup of Gρ ×Gθ with surjective projections.
Since both τ and ρ are embeddings of the group 0, and 0 does not have thin representations, it follows
(from Corollary 3.8) that the projection π : Gτ → Gρ yields an isomorphism of the arithmetic groups
τ(0)⊂ Gτ (Z) and ρ(0)⊂ Gρ(Z).



The congruence topology, Grothendieck duality and thin groups 1297

Assume, as we may, that 0 is torsion-free and 0 is an arithmetic group. Every arithmetic group
in Gτ (Z) is virtually a product of the form Uτ (Z)o Hτ (Z) where Uτ and Hτ are the unipotent and
semisimple parts of Gτ respectively (note that G0

τ cannot have torus as quotient since 0 is FAb). Hence
0 ∩Uτ (Z) may also be described as the virtually maximal normal nilpotent subgroup of 0. Similarly
for 0 ∩Uρ(Z). This proves that the groups Uτ and Uρ have isomorphic arithmetic groups which proves
that π : Uτ →Uρ is an isomorphism. Otherwise Ker(π), which is a Q-defined normal subgroup of Uτ ,
would have an infinite intersection with the arithmetic group 0 ∩Uτ .

Therefore, the arithmetic groups in Hτ and Hρ are isomorphic and the isomorphism is induced by the
projection Hτ→ Hρ . Since Hρ is simply connected by assumption, and is a factor of Hτ , it follows that Hτ
is a product HρH where H is a semisimple group defined over Q with H(Z) Zariski dense in H . But the iso-
morphism of the arithmetic groups in Hτ and Hρ then shows that the group H(Z) is finite which means that
H is finite. Therefore, π : H 0

τ → Hρ is an isomorphism and so the map G0
τ→Gρ is also an isomorphism

since it is a surjective morphism between groups of the same dimension, and since Gρ is simply connected.
This proves that 0 is a super-rigid group.
In [Lubotzky 1980], it was proved that if 0 satisfies super-rigidity in some simply connected group

G, then (up to finite index) Cl(0)/0 is in one-to-one correspondence with

C(0)= Ker(0̂→ G(Ẑ)).

This finishes the proof of both parts (a) and (b). �

Remark. In the situation of Theorem 5.1, 0 is an arithmetic group satisfying super-rigidity. The difference
between parts (a) and (b), is whether 0 also satisfies CSP. As of now, there is no known arithmetic group
(in a simply connected group) which satisfies super-rigidity without satisfying CSP. The conjecture of
Serre about the congruence subgroup problem predicts that arithmetic lattices in rank one Lie groups fail
to have CSP. These include Lie groups like Sp(n, 1) and F

(−20)
4 for which super-rigidity was shown (after

Serre had made his conjecture). Potentially, the arithmetic subgroups of these groups can have Cl(0)/0
compact and not finite. But (some) experts seem to believe now that these groups do satisfy CSP. Anyway
as of now, we do not know any subgroup 0 of GLn(Z) with Cl(0)/0 compact and not finite.
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On the ramified class field theory of relative curves
Quentin Guignard

We generalize Deligne’s approach to tame geometric class field theory to the case of a relative curve, with
arbitrary ramification.
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1. Introduction

Let X→ S be a relative curve, i.e., a smooth morphism of schemes of relative dimension 1, with connected
geometric fibers, which is Zariski-locally projective over S. Let Y ↪→ X be a relative effective Cartier
divisor over S (see Section 4.10), and let U be the complement of Y in X .

The pairs (L, α), where L is an invertible OX -module and α is a rigidification of L along Y , are
parametrized by an S-group scheme PicS(X, Y ), the relative rigidified Picard scheme (see Proposition 4.8).
The Abel–Jacobi morphism

8 :U → PicS(X, Y )

is the morphism which sends a section x of U to the pair (O(x), 1), see Proposition 4.14. We prove the
following relative version of the main theorem of geometric global class field theory:

Theorem 1.1 (Theorem 5.3). Let 3 be a finite ring of cardinality invertible on S, and let F be an étale
sheaf of 3-modules, locally free of rank 1 on U , with ramification bounded by Y (see Definition 5.2).
There exists a unique (up to isomorphism) multiplicative étale sheaf of 3-modules G on PicS(X, Y ),
locally free of rank 1, such that the pullback of G by 8 is isomorphic to F .

MSC2010: 11G45.
Keywords: geometric class field theory, global class field theory, ramification.

1299

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2019.13-6
http://dx.doi.org/10.2140/ant.2019.13.1299


1300 Quentin Guignard

The notion of multiplicative locally free 3-module of rank 1 is defined in Definition 2.5, and it corre-
sponds to isogenies G→ PicS(X, Y ) with constant kernel 3×. We restrict ourselves in this article to 3×-
torsors, with3 as in Theorem 1.1, in order to simplify the exposition, since we are able to apply directly our
main descent tool in this context, namely Lemma 5.9. However, the latter lemma, and hence Theorem 1.1
can be extended to G-torsors, where G is an arbitrary locally constant finite abelian group on Sét.

The case where S is the spectrum of a perfect field is originally due to Serre [1959] and Lang [1956,
§6]. Their proof relies on the Albanese property of Rosenlicht’s generalized Jacobians [Rosenlicht 1954].
A similar proof was sketched in a letter of 1974 from Deligne to Serre [Deligne 2001]. However, a
more geometric proof was given by Deligne in the tamely ramified case; an account of his proof in the
unramified case over a finite field can be found in [Laumon 1990, Section 2]. We generalize the latter
approach by Deligne to allow arbitrary ramification and an arbitrary base S. This generalization is inspired
by notes by Alain Genestier (unpublished) on arithmetic global class field theory.

Deligne’s approach has the advantage over Serre and Lang’s to yield an explicit geometric construction
of the isogeny over PicS(X, Y ) corresponding to a local system of rank 1 over U . This feature of Deligne’s
approach carries over to ours, and is in fact crucial in order to handle the case of an arbitrary base S.

The author learned during the preparation of this manuscript that Daichi Takeuchi had independently
obtained a different proof of Theorem 1.1 in the case where S is the spectrum of a perfect field, also by
generalizing Deligne’s approach to handle arbitrary ramification. See [Takeuchi 2019].

Notation and conventions. We fix a universe U [SGA 43 1973, I.0]. Throughout this paper, all sets are
assumed to belong to U and we will use the term “topos” as a shorthand for “U-topos” [SGA 43 1973,
IV.1.1]. The category of sets belonging to U is simply denoted by Sets.

For any integers e, d we denote by [[e, d]] the set of integers n such that e ≤ n ≤ d and by Sd the
group of bijections of [[1, d]] onto itself.

In this paper, all rings are unital and commutative. For any ring A, we denote by AlgA the category of
A-algebras. For any scheme S, we denote by Sch/S the category of S-schemes. We denote by Sét (resp.
SÉt) the small étale topos (resp. big étale topos) of a scheme S, i.e., the topos of sheaves of sets for the
étale topology [SGA 43 1973, VII.1.2] on the category of étale S-schemes (resp. on Sch/S), and by SFppf

the big fppf topos of S, i.e., the topos of sheaves of sets for the fppf topology on Sch/S [SGA 43 1973,
VII.4.2]. If f : X→ S is a morphism of schemes, then we denote by ( f −1, f∗) the induced morphism of
topos from XÉt to SÉt. The symbol f ∗ will exclusively denote the pullback functor from OS-modules to
OX -modules.

2. Preliminaries

2.1. Let E be a topos and let G be an abelian group in E . We denote by GE the category of objects of
E endowed with a left action of G. If X is an object of E , we denote by E/X the topos of X -objects
in E . If X is considered as an object of GE by endowing it with the trivial left G-action, then we have
(GE)/X = G(E/X ) and this category will be simply denoted by GE/X .
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Definition 2.2. A G-torsor over an object X of E is an object P of GE/X such that P → X is an
epimorphism and the morphism

G× P→ P ×X P, (g, p) 7→ (g · p, p)

is an isomorphism. We denote by Tors(X,G) the full subcategory of GE/X whose objects are the G-
torsors over X . If f : Y → X is a morphism in E , we denote by f −1

: Tors(X,G)→ Tors(Y,G) the
functor which associates f −1 P = P ×X, f Y to a G-torsor P over X .

The category Tors(X,G) is monoidal, with product

P1⊗ P2 = G2 \ P1×X P2,

where G2 is the kernel of the multiplication morphism G × G → G, and where G2 ↪→ G × G acts
diagonally on P1 ×X P2. The neutral element for this product is the trivial G-torsor over X , namely
G× X , and each G-torsor P over X is invertible with respect to ⊗, with inverse given by

P−1
= HomGE/X (P,G× X),

where HomGE/X denotes the internal Hom functor in GE/X .

Example 2.3. If G =3× for some ring 3 in E , then the monoidal category Tors(X,G) is equivalent to
the groupoid of locally free 3-modules of rank 1 in E/X . The equivalence is given by the functor which
sends an object P of Tors(X,G) to the 3-module G \ (3× P), where the action of G =3× on 3× P
is given by the formula g · (λ, p)= (gλ, g · p). The functor which sends a locally free 3-module M of
rank 1 of E/X to the G-torsor of isomorphisms of 3-modules from M to 3 defines a quasiinverse to the
latter functor.

2.4. Let E be a topos, and let us denote by 1 its terminal object. Let us consider an exact sequence

1→ G i
−→ P r

−→ Q→ 1

of abelian groups in E . The morphism

G× P→ P ×Q P, (g, p) 7→ (i(g)+ p, p)

is an isomorphism, so that P is a G-torsor over Q. Moreover, the multiplication morphism

P × P→ P

factors though G2 \ P× P , where G2 ↪→G×G is the kernel of the multiplication morphism of G, acting
diagonally on P × P . We thus obtain a morphism

p−1
1 P ⊗ p−1

2 P→ m−1 P

of G-torsors over Q × Q, where p1 and p2 are the canonical projections and m is the multiplication
morphism of Q.
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The following definition is inspired by [Moret-Bailly 1985, I.2.3]:

Definition 2.5. Let G be an abelian group of E and let Q be a commutative semigroup of E (with or
without identity). Let m : Q× Q→ Q be the multiplication morphism of Q. A multiplicative G-torsor
over Q is a G-torsor P→ Q, together with an isomorphism

θ : p−1
1 P ⊗ p−1

2 P→ m−1 P

of G-torsors over Q× Q, where p1 and p2 are the canonical projections, which satisfy the following two
properties.

F Symmetry: If σ is the involution of Q× Q which switches the two factors, then the isomorphism

p−1
2 P ⊗ p−1

1 P→ σ−1(p−1
1 P ⊗ p−1

2 P) σ−1θ
−−−→ σ−1m−1 P→ m−1 P

is the composition of θ with the canonical isomorphism p−1
2 P ⊗ p−1

1 P→ p−1
1 P ⊗ p−1

2 P .

F Associativity: Let qi : Q × Q × Q→ Q be the projection on the i-th factor, where i ∈ [[1, 3]], and
define qi j : Q× Q× Q→ Q× Q similarly, where (i, j) ∈ [[1, 3]]2 with i < j . If m3 : Q× Q× Q→ Q
is the multiplication morphism, then the diagram of G-torsors over Q× Q× Q

q−1
1 P ⊗ q−1

2 P ⊗ q−1
3 P

q−1
1 P ⊗ (mq23)

−1 P

(mq12)
−1 P ⊗ q−1

3 P .

m−1
3 P

id ⊗ q−1
23 θ

q−1
12 θ ⊗ id

(q1×mq23)
−1θ

(mq12× q3)
−1θ

is commutative.

The category of multiplicative G-torsors is fibered in groupoids over the category of commutative
semigroups of E . We denote by Tors⊗(Q,G) the groupoid of multiplicative G-torsors over a commutative
semigroup Q of E .

Remark 2.6. If G =3× for some ring 3 in E , we use the term “multiplicative locally free 3-module
of rank 1” as a synonym for “multiplicative G-torsor”, when we want to emphasize the locally free
3-module of rank 1 corresponding to a given G-torsor, rather than the G-torsor itself (see Example 2.3).

Proposition 2.7. Let G be an abelian group in E , let Q be a commutative semigroup in E and let I be an
ideal of Q. If the projection morphisms Q× I → Q and I × I → I onto the first factors are morphisms
of descent for the fibered category of multiplicative G-torsors (see Definition 2.5), then the restriction
functor

Tors⊗(Q,G)→ Tors⊗(I,G)

is fully faithful.
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Let i : I → Q be the canonical injection morphism. Let p1 and p2 be the projection morphisms of
Q× I onto its first and second factors respectively, and let m : Q× I→ I be the multiplication morphism.
Let (P, θ) and (P ′, θ ′) be multiplicative G-torsors over Q. We have an isomorphism

βP : p−1
1 P (id×i)−1θ
−−−−−→m−1i−1 P ⊗ p−1

2 i−1 P−1,

and similarly for P ′. If α : i−1 P → i−1 P ′ is a morphism of multiplicative G-torsors over I , then
β−1

P ′ (m
−1α⊗ p−1

2 α)βP is an isomorphism from p−1
1 P to p−1

1 P ′, which is compatible with the canonical
descent datum for p1 associated to p−1

1 P and p−1
1 P ′. Since p1 is a morphism of descent for the fibered

category of multiplicative G-torsors, there is a unique morphism γ : P→ P ′ of multiplicative G-torsors
over Q such that p−1

1 γ = β−1
P ′ (m

−1α⊗ p−1
2 α)βP . The restriction of p−1

1 γ to I × I is the pullback of α
by the first projection, which is a morphism of descent for the fibered category of multiplicative G-torsors,
so that the restriction of γ to I is α.

Proposition 2.8. Let G be an abelian group in E , and let ρ : M → Q be a morphism of commutative
semigroups in E. If ρ (resp. ρ×ρ and ρ×ρ×ρ) is a morphism of effective descent (resp. of descent) for
the fibered category of G-torsors, then ρ is a morphism of effective descent for the fibered category of
multiplicative G-torsors.

A descent datum of multiplicative G-torsors for ρ yields a descent datum of G-torsors for ρ, hence
a G-torsor over Q by hypothesis. Since ρ× ρ and ρ× ρ× ρ are morphisms of descent for the fibered
category of G-torsors, the structure of multiplicative G-torsor descends as well. Details are omitted.

Proposition 2.9. Let G and Q be abelian groups in E. The groupoid Tors⊗(Q,G) of multiplicative
G-torsors over Q is equivalent as a monoidal category to the groupoid of extensions of Q by G in E , with
the Baer sum as a monoidal structure.

We have already seen how to associate a multiplicative G-torsor to an extension of Q by G. This
construction is functorial, and the corresponding functor is an equivalence by [Moret-Bailly 1985, I.2.3.10].

Corollary 2.10. Let G and Q be abelian groups in E. The group of isomorphism classes of multiplicative
G-torsors over Q is isomorphic to the group Ext1(Q,G) of isomorphism classes of extensions of Q by G
in E.

2.11. Let S be a scheme, let X be an S-scheme, and let G be a finite abelian group. Let P be a G-torsor
over X in SÉt. Since P → X is an epimorphism in SÉt, there is an étale cover (X i → X)i∈I such that
for each i ∈ I , the morphism X i → X factors through P→ X . In particular, for each i ∈ I the G-torsor
P×X X i → X i is isomorphic to the trivial G-torsor G× X i → X i , so that P×X X i is representable by a
finite étale X i -scheme. By étale descent of affine morphisms, we obtain:

Proposition 2.12. Let G be a finite abelian group, let S be a scheme, and let P be a G-torsor over an
S-scheme X in SÉt. Then the étale sheaf P : Sch/S→ Sets is representable by a finite étale X-scheme.

The topos (SÉt)/X coincides with XÉt. The category of G-torsors over X in SÉt is therefore equivalent
to the category of G-torsors over the terminal object in XÉt, and Proposition 2.12 yields:
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Corollary 2.13. Let G be a finite abelian group, let S be a scheme, and let X be an S-scheme. Then the
category of G-torsors over X in SÉt is equivalent to the category of G-torsors over the terminal object
in Xét.

2.14. Let S be a scheme, and let G be a finite abelian group. Let Q be a commutative S-group scheme,
and let M be a sub-S-semigroup scheme of Q.

Proposition 2.15. Assume that the morphism

ρ : M ×S M→ Q, (x, y) 7→ xy−1

is faithfully flat and quasicompact, and that M is flat over S. Then the restriction functor

Tors⊗(Q,G)→ Tors⊗(M,G)

is an equivalence of categories.

Let (P, θ) be a multiplicative G-torsor over M . For i ∈ [[1, 4]], let ri be the projection of R =
(M×S M)×ρ,Q,ρ (M×S M) onto its i-th factor. Similarly, for i, j ∈ [[1, 4]] such that i < j , we denote by
ri j : R→ M ×S M the projection on the i-th and j-th factors. We then have a sequence of isomorphisms

(r−1
1 P ⊗ r−1

2 P−1)⊗ (r−1
3 P ⊗ r−1

4 P−1)−1
−→ r−1

14 (p
−1
1 P ⊗ p−1

2 P)⊗ r−1
23 (p

−1
1 P ⊗ p−1

2 P)−1

r−1
14 θ⊗(r

−1
23 θ)

−1

−−−−−−−→(mr14)
−1 P ⊗ ((mr23)

−1 P)−1,

of G-torsors over R, where m : M ×S M→ M is the multiplication of M . Since mr14 = mr23, the latter
G-torsor is canonically trivial. We thus obtain an isomorphism

ψ : r−1
1 P ⊗ r−1

2 P−1
→ r−1

3 P ⊗ r−1
4 P−1,

of G-torsors over R. The associativity of θ (see Definition 2.5) implies that ψ is a cocycle, i.e.,
(p−1

1 P ⊗ p−1
2 P−1, ψ) is a descent datum for ρ. By Proposition 2.12 and since faithfully flat and

quasicompact morphisms of schemes are of effective descent for the fibered category of affine morphisms,
the conditions of Proposition 2.8 are satisfied, and thus there exists a multiplicative G-torsor P ′ over Q
and an isomorphism α : ρ−1 P ′→ p−1

1 P ⊗ p−1
2 P−1 such that ψ is given by the composition

r−1
1 P ⊗ r−1

2 P−1 r−1
12 α

−1

−−−→ (ρr12)
−1 P ′ = (ρr34)

−1 P ′ r−1
34 α−−−→ r−1

3 P ⊗ r−1
4 P−1.

The association P 7→ P ′ then defines a functor from Tors⊗(M,G) to Tors⊗(Q,G). For any multiplicative
G-torsor U over Q, we have an isomorphism U→ (U×Q M)′ by multiplicativity, which is functorial in U .

We now construct, for any multiplicative G-torsor (P, θ) over M , an isomorphism P→ P ′×Q M of
multiplicative G-torsors which is functorial in P . Let ν : M ×S M→ M ×S M be the morphism which
sends a section (x, y) to (xy, y). We have an isomorphism

(ρν)−1 P ′ ν−1α
−−−→ ν−1(p−1

1 P ⊗ p−1
2 P−1)→ m−1 P ⊗ p−1

2 P−1 θ−1
−→ p−1

1 P.
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The diagram

M ×S M

M ×S M

M

Q

ν

p1

ρ

is commutative; hence (ρν)−1 P ′ is isomorphic to p−1
1 (P ′×Q M). We thus obtain an isomorphism

β : p−1
1 P→ p−1

1 (P ′×Q M),

of multiplicative G-torsors. The morphism β is compatible with the canonical descent data for p1

associated to p−1
1 P and p−1

1 (P ′×Q M). Since p1 is a covering for the fpqc topology, Proposition 2.8
applies, hence there is a unique isomorphism γ : P→ P ′×Q M of multiplicative G-torsors such that β =
p−1

1 γ . The construction of this isomorphism of multiplicative G-torsors is functorial in P , hence the result.

2.16. Let A be a ring. If M is an A-module, we denote by M the functor B 7→M⊗A B from AlgA to Sets.

Definition 2.17 [SGA 43 1973, XVII 5.5.2.2]. Let M and N be A-modules. A polynomial map from M
to N is a morphism of functors M→ N . A polynomial map f : M→ N is homogeneous of degree d if
for any A-algebra B, any element λ of B and any element m of M(B), we have f (λm)= λd f (m).

For each integer d and any A-module M , let TSd
A(M) = (M

⊗Ad)Sd be the A-module of symmetric
tensors of degree d with coefficients in M . If M is a free A-module with basis (ei )i∈I , then we have a
decomposition

T Sd
A(M)=

( ⊕
β:[[1,d]]→I

Aeβ(1)⊗ · · ·⊗ eβ(d)

)Sd

=

⊕
α:I→N∑
i∈I α(i)=d

Aeα, (2.17.1)

where we have set

eα =
∑

β:[[1,d]]→I
∀i,|β−1({i})|=α(i)

eβ(1)⊗ · · ·⊗ eβ(d).

In particular T Sd
A(M) is a free A-module, and its formation commutes with base change by any ring

morphism A→ B.

Proposition 2.18. Let M be a flat A-module and let d ≥ 0 be an integer. Then TSd
A(M) is a flat module,

and for any A-algebra B the canonical homomorphism

TSd
A(M)⊗A B→ TSd

B(M ⊗A B)

is bijective.
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Any flat A-module is a filtered colimit of finite free modules. We have already seen that the conclusion
of Proposition 2.18 holds whenever M is free, hence the conclusion in general since the functor TSd

A

commutes with filtered colimits.

Proposition 2.19. Let M be a flat A-module and let d ≥ 0 be an integer. Let γd : M→ TSd
A(C) be the

functor which sends, for any A-algebra B, an element m of M(B) to the element m⊗d of TSd
B(M⊗A B)=

TSd
A(M)⊗A B (see Proposition 2.18). Then, for any homogeneous polynomial map f : M→ N of degree

d , there is a unique A-linear homomorphism f̃ : TSd
A(M)→ N such that f = f̃ γd .

As in Proposition 2.18, we can assume that M is free of finite rank over A. Let (ei )i∈I be a basis of M .
Let us write

f
(∑

i∈I

X i ei

)
=

∑
α:I→N

Xα fα

in N (A[(X i )i∈I ]) for some elements ( fα)α of N , where Xα
=
∏

i∈I Xαi
i . Accordingly, we have for any

A-algebra B and any element m =
∑

i∈I bi ei of M(B), the formula

f (m)=
∑
α:I→N

bα fα,

where bα=
∏

i∈I bαi
i , by using the naturality of f with the unique morphism of A-algebras A[(X i )i∈I ]→ B

which sends X i to bi for each i . By applying this to the element m =
∑

i∈I T X i ei of M(A[T, (X i )i∈I ]),
we obtain

f
(∑

i∈I

T X i ei

)
=

∑
α:I→N

T |α|Xα fα,

where we have set |α| =
∑

i∈I α(i). Since f is homogeneous of degree d , the left side of this equation is
also equal to

T d f
(∑

i∈I

X i ei

)
=

∑
α:I→N

T d Xα fα.

We conclude that T d fα = T |α| fα in N ⊗A A[T ] for any α : I → N, and thus that fα = 0 whenever |α|
differs from d . We therefore have

f (m)=
∑
α:I→N
|α|=d

bα fα,

for any A-algebra B and any element m =
∑

i∈I bi ei of M(B). Using the decomposition (2.17.1), we
also have

γd(m)=
∑

β:[[1,d]]→I

⊗
d
j=1bβ( j)eβ( j) =

∑
α:I→N
|α|=d

bαeα.

The conclusion of Proposition 2.19 is achieved by taking f̃ to be the unique morphism of A-modules
from TSd

A(M) to N which sends eα to fα.
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2.20. Let A→ C be a ring morphism such that C is a finitely generated projective A-module of rank d .
For any A-algebra B and any element m of C(B), we set

NC/A(c)= det
A(B)

(mc),

where mc is the A(B)-linear endomorphism of C(B) induced by the multiplication by c. This defines a
homogeneous polynomial map NC/A : C→ A of degree d (see Definition 2.17). By Proposition 2.19,
there is a unique morphism of A-modules ϕ : TSd

A(C)→ A such that NC/A = ϕγd .

Proposition 2.21 [SGA 43 1973, XVII 6.3.1.6]. The morphism of A-modules ϕ : TSd
A(C)→ A is a

morphism of A-algebras.

Let x be an element of C , and let us consider the morphism of A-modules f : y→ ϕ(γd(x)y) from
TSd

A(C) to A. For any A-algebra B and any element c of C(B), we have

f (γd(c))= ϕ(γd(x)γd(c))= ϕ(γd(xc))= NC/A(xc)= NC/A(x)NC/A(c)

by the multiplicativity of determinants, so that f (γd(c))= NC/A(x)ϕ(γd(c)). By the uniqueness statement
in Proposition 2.19, we obtain f = NC/A(x)ϕ, i.e., for all y in TSd

A(C) we have

ϕ(γd(x)y)= NC/A(x)ϕ(y). (2.21.1)

For any A-algebra B, one can apply this argument to the morphism B → C(B) instead of A → C .
Thus (2.21.1) also holds for any element x of C(B) and any element y of TSd

A(C)(B)= TSd
A(B)(C(B))

(see Proposition 2.18). Now, let y be an element of TSd
A(C) and let us consider the morphism of A-

modules g : z→ ϕ(zy) from TSd
A(C) to A. We have proved that gγd = ϕ(y)NC/A, hence g = ϕ(y)ϕ by

Proposition 2.19. Thus ϕ is a morphism of rings. Since ϕ is also A-linear, it is a morphism of A-algebras.

2.22. Let S be a scheme.

Definition 2.23 [SGA 1 1971, V.1.7].

F Let T be an object of a category C endowed with a right action of a group 0. We say that the
quotient T/0 exists in C if the covariant functor

C→ Sets, U 7→ HomC(T,U )0

is representable by an object of C .

F Let T be an S-scheme. An action of a finite group 0 on T is admissible if there exists an affine
0-invariant morphism f : T → T ′ such that the canonical morphism OT ′ → f∗OT induces an
isomorphism from OT ′ to ( f∗OT )

0.

Proposition 2.24 [SGA 1 1971, V.1.3]. Let T be an S-scheme endowed with an admissible right action of
a finite group 0. If f : T→ T ′ is an affine 0-invariant morphism such that the canonical morphism OT ′→

f∗OT induces an isomorphism from OT ′ to ( f∗OT )
0, then the quotient T/0 exists and is isomorphic

to T ′.
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Proposition 2.25 [SGA 1 1971, V.1.8]. Let T be an S-scheme endowed with a right action of a finite
group 0. The action of 0 on T is admissible if and only if T is covered by 0-invariant affine open subsets.

Proposition 2.26 [SGA 1 1971, V.1.9]. Let T be an S-scheme endowed with an admissible right action
of a finite group 0, and let S′ be a flat S-scheme. Then, the action of 0 on the S′-scheme T ×S S′ is
admissible, and the canonical morphism

(T ×S S′)/0→ (T/0)×S S′

is an isomorphism.

Let X be an S-scheme and let d ≥ 0 be an integer. The group Sd of permutations of [[1, d]] acts on the
right on the S-scheme X×Sd

= X ×S · · · ×S X by the formula

(xi )i∈[[1,d]] · σ = (xσ(i))i∈[[1,d]].

Proposition 2.27. If X is Zariski-locally quasiprojective over S, then the right action of Sd on X×Sd is
admissible. In particular, the quotient Symd

S(X)= X×Sd/Sd exists in the category of S-schemes.

Since X is Zariski-locally quasiprojective over S, any finite set of points in X with the same image in
S is contained in an affine open subset of X . Thus X×Sd is covered by open subsets of the form U×Sd

where U is an affine open subset of X whose image in S is contained in an affine open subset of S. These
particular open subsets are affine and Sd-invariant, so that the action of Sd on X×Sd is admissible by
Proposition 2.25.

Remark 2.28. If X = Spec(B) and S = Spec(A) are affine, then for any S-scheme T we have

HomSch/S (X
×Sd , T )Sd = HomAlgA

(0(T,OT ), B⊗Ad)Sd = HomAlgA
(0(T,OT ),TSd

A(B)),

see Section 2.16. Thus Symd
S(X) is representable by the S-scheme Spec(TSd

A(B)).

Proposition 2.29. If X is flat and Zariski-locally quasiprojective over S, then Symd
S(X) is flat over S.

Moreover, for any S-scheme S′, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism.

This follows from Remark 2.28 and from Proposition 2.18.

Proposition 2.30 [SGA 1 1971, IX.5.8]. Let G be a finite abelian group, let P be a G-torsor over an
S-scheme X in SÉt. Assume that P and X are endowed with right actions from a finite group 0 such that
the morphism P→ X is 0-equivariant, and that the following properties hold:

(a) The right 0-action on P commutes with the left G-action.

(b) The right 0-action on X is admissible (see Definition 2.23), and the quotient morphism X→ X/0
is finite.
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(c) For any geometric point x of X , the action of the stabilizer 0x of x in 0 on the fiber Px of P at x is
trivial.

Then the action of 0 on P is admissible, and P/0 is a G-torsor over X/0 in SÉt.

2.31. Let S be a scheme, let X be an S-scheme and let d ≥ 1 be an integer. Let G be a finite abelian
group, and let P→ X be a G-torsor over X in SÉt. By Proposition 2.12, the sheaf P is representable by
a finite étale X -scheme.

For each i ∈ [[1, d]] let pi : X×Sd
→ X be the projection on i-th factor, and let us consider the G-torsor

p−1
1 P ⊗ · · ·⊗ p−1

d P = Gd \ P×Sd

over X×Sd , where Gd ⊆ Gd is the kernel of the multiplication morphism Gd
→ G. By Proposition 2.12,

the object Gd \ P×Sd of SÉt is representable by an S-scheme which is finite étale over X×Sd . The group
Sd acts on the right on Gd \ P×Sd by the formula

(pi )i∈[[1,d]] · σ = (pσ(i))i∈[[1,d]].

This action of Sd commutes with the left action of G on Gd \ P×Sd .

Proposition 2.32. If X is Zariski-locally quasiprojective on S, then the right action of Sd on Gd \ P×Sd is
admissible (see Definition 2.23), so that the quotient P [d] of Gd \ P×Sd by Sd exists in Sch/S . Moreover,
the canonical morphism P [d]→ Symd

S(X) is a G-torsor, and the morphism

p−1
1 P ⊗ · · ·⊗ p−1

d P→ r−1 P [d]

where r : X×Sd
→ Symd

S(X) is the canonical projection, is an isomorphism of G-torsors over X×Sd .

By Propositions 2.27 and 2.30, it is sufficient to show that if x = (x i )
d
i=1 is a geometric point of X×Sd ,

then the stabilizer of x in Sd acts trivially on (Gd \ P×Sd)x . Assume that the finite set {x i | i ∈ [[1, d]}
has exactly r distinct elements y1, . . . , yr , where y j appears with multiplicity d j . Then the stabilizer of x
in Sd is isomorphic to the subgroup

∏r
j=1 Sd j of Sd . For each j ∈ [[1, r ]], the G-torsor Py j is trivial,

and if e is a section of this torsor then (e)d j
i=1 is a section of Gd j \ Pd j

y j
which is Sd j -invariant. The action

of Sd j on Gd j \ Pd j
y j

is therefore trivial, so that the action of
∏r

j=1 Sd j on the G-torsor

(Gd \ P×Sd)x = Gr \

( r∏
j=1

Gd j \ Pd j
y j

)
is trivial as well.

Proposition 2.33. If X is flat and Zariski-locally quasiprojective on S, then for any S-scheme S′, the
canonical morphism

(P ×S S′)[d]→ P [d]×S S′

is an isomorphism.
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By Proposition 2.29, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism. Thus the second morphism in the composition

(P ×S S′)[d]→ (P [d]×S S′)×Symd
S(X)×S S′ Symd

S′(X ×S S′)→ P [d]×S S′

is an isomorphism, while the first morphism is a morphism of G-torsors, hence an isomorphism.

3. Geometric local class field theory

Let k be a perfect field, and let L be a complete discretely valued extension of k with residue field k. We
denote by OL its ring of integers, and by mL the maximal ideal of OL .

3.1. Let us consider the functor

OL : Algk→ AlgOL
, A 7→ lim

n
A⊗k OL/m

n
L ,

with values in the category of OL -algebras.

Proposition 3.2. The functor OL is representable by a k-scheme.

Indeed, if π is a uniformizer of L , then we have an isomorphism k((t))→ L which sends t to π , so
that the functor OL is isomorphic to the functor A 7→ A[[t]], which is representable by an affine space
over k of countable dimension.

Corollary 3.3. The functor L=OL ⊗OL L is representable by an ind-k-scheme.

We can assume that L is the field of Laurent series k((t)). In this case, we have

L(A)= A((t))= colimn t−n A[[t]]

for any k-algebra A, and for each integer n the functor A 7→ t−n A[[t]] is representable by a k-scheme, see
Proposition 3.2.

Proposition 3.4. Let G (resp. H ) be the functor from Algk to the category of groups which associates
to a k-algebra A the subgroup G(A) of A((t))× consisting of Laurent series of the form 1+

∑
r>0 ar t−r

where ar is a nilpotent element of A for each r > 0 and vanishes for r large enough (resp. of Laurent
series of the form 1+

∑
r>0 ar tr where ar belongs to A for each r > 0). Let Z be the functor which sends

a k-algebra A to the group of locally constant functions Spec(A)→ Z. For any uniformizer π of L , the
morphism

Gm,k ×Z×G× H → L×, (a, n, g, h) 7→ aπng(π)h(π),

is an isomorphism of group-valued functors.
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Let A be a k-algebra. By [Contou-Carrère 2013, 0.8], every invertible element u of A((t)) uniquely
factors as u = tn f (t)h(t) where f (t) and h(t) are elements of A[[t]]× and G(A) respectively, and
n : Spec(A)→ Z is a locally constant function. Moreover, there is a unique factorization f (t)= ag(t)
where a and g(t) belong to A× and H(A) respectively, hence the result.

Corollary 3.5. The functor L× is representable by an ind-k-scheme. Moreover, its restriction to the
category of reduced k-algebras is representable by a reduced k-scheme.

The groups Z and H from Proposition 3.4 are representable by reduced k-schemes, and so is Gm,k .
The group G from Proposition 3.4 is the filtered colimit of the functor n 7→ Gn , where Gn is the functor
which associates to a k-algebra A the subset Gn(A) of A((t))× consisting of Laurent series of the form
1+

∑n
r=1 ar t−r where an

r = 0 for each r ∈ [[1, n]]. For each n, the functor Gn is representable by an
affine k-scheme. Thus G is representable by an ind-k-scheme, and so is L× by Proposition 3.4. The last
assertion of Corollary 3.5 follows from the fact that G(A) is the trivial group for any reduced k-algebra A.

Corollary 3.6. Let d ≥ 0 be an integer. Let U
(d)
L be the subfunctor of L× given by 1+md

LOL if d ≥ 1 and
by O×L if d = 0. Then the functor

L×/U
(d)
L : Algk→ Sets, A 7→ L×(A)/U(d)L (A),

is representable by an ind-k-scheme. Moreover, its restriction to the category of reduced k-algebras is
representable by a reduced k-scheme.

According to Proposition 3.4, it is sufficient to show that (Gm,k × H)/U(d)k((t)) is representable by a
reduced k-scheme. The case d = 0 is clear, while for d ≥ 1, we have for any k-algebra A a bijection

A×× A[[1,d−1]]
→ (Gm,k × H)(A)/U(d)k((t))(A), (ai )0≤i≤d−1 7→

d−1∑
i=0

ai t i
;

hence the result.

3.7. From now on, we consider Spec(L), L× and L×/U
(d)
L for each integer d ≥ 0 as objects of the topos

Spec(k)Ét. Let π be an uniformizer of L . We denote by 5 the element of L(k) corresponding to π via
the canonical identification L ' L(k). Thus the functor L× is given by

L× : A ∈ Algk 7→ A((5))×.

In particular, the Laurent series (5− π)−15 = −
∑

n≥1 π
−n5n defines an L-point of L×. We denote

by ϕ : Spec(L)→ L× the corresponding morphism. We follow here Contou-Carrère’s convention; in
[Suzuki 2013], the morphism ϕ corresponds to the point (5−π)5−1 instead. This is harmless since the
inversion is an automorphism of the abelian group L×.

Theorem 3.8 [Suzuki 2013, Theorem A(1)]. Let G be a finite abelian group. The functor

Tors⊗(L×,G)→ Tors(Spec(L),G), P→ ϕ−1 P,

is an equivalence of categories (see Definitions 2.2 and 2.5).
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In the case where k is algebraically closed, Serre [1961] constructed an equivalence

Tors(Spec(L),G)→ Tors⊗(L×,G).

Suzuki [2013] shows that the functor from Theorem 3.8 is a quasiinverse to Serre’s functor when k is
algebraically closed, and extends the result to arbitrary perfect residue fields. In particular, the equivalence
from Theorem 3.8 is canonical, even though its definition depends on the choice of π . Suzuki’s proof of
Theorem 3.8 relies on the Albanese property of the morphism ϕ, previously established by Contou-Carrère.

Let Lsep be a separable closure of L , and let GL be the Galois group of Lsep over L , so that the small
étale topos of Spec(L) is isomorphic to the topos of sets with continuous left GL -action. By Corollary 2.13,
the category of G-torsors over Spec(L) in Spec(k)Ét is isomorphic to the category of G-torsors in the
small étale topos Spec(L)ét. Correspondingly, for each finite abelian group G, the group of isomorphism
classes of the category Tors(Spec(L),G) is isomorphic to the group of continuous homomorphisms from
GL to G.

We denote by (G j
L) j≥−1 the ramification filtration of GL [Serre 1962, IV.3], so that G−1

L = GL and
G0

L is the inertia subgroup of GL , while G0+
L = ∪ j>0G j

L is the wild inertia subgroup of GL .

Definition 3.9. Let G be a finite abelian group and let d ≥ 0 be a rational number. A G-torsor over
Spec(L) (in Spec(k)Ét), corresponding to a continuous homomorphism ρ : GL → G, is said to have
ramification bounded by d if ρ(Gd

L)= {1}. A G-torsor over Spec(L) with ramification bounded by 0 or 1
is said to be unramified or tamely ramified, respectively.

Proposition 3.10. Let G be a finite abelian group, let d ≥ 0 be an integer, and let P be a multiplicative G-
torsor P over L× (see Definition 2.5). Assume that k is algebraically closed. Then ϕ−1 P has ramification
bounded by d (see Definition 3.9) if and only if P is the pullback of a multiplicative G-torsor over L×/U

(d)
L

(see Corollary 3.6).

This follows from [Serre 1961, 3.2 Theorem 1] and from the compatibility of ϕ−1 with Serre’s
construction [Suzuki 2013, Theorem A(2)].

3.11. Let π and ϕ be as in Section 3.7. Let K be a closed subextension of k in L , such that K → L is a
finite extension of degree d . Since L is a finite free K -algebra of rank d , we have a canonical morphism
of K -schemes

ψ : Spec(K )→ Symd
K (Spec(L))

by Proposition 2.21.

Proposition 3.12. The composition

Spec(K ) ψ
−→ Symd

K (Spec(L))→ Symd
k (Spec(L)) Symd

k (ϕ)
−−−−−→Symd

k (L
×)→ L×,

where the last morphism is given by the multiplication, corresponds to the K -point Pπ (5)−15d of L×,
where the polynomial Pπ is the characteristic polynomial of the K -linear endomorphism x 7→ πx of L.
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We first describe the morphism ψ . The scheme Symd
K (Spec(L)) is the spectrum of the k-algebra

TSd
K (L) of symmetric tensors of degree d in L , see Proposition 2.27. The elements ei = π

i−1 for
i = 1, . . . , d form a K -basis of L , so that we have a decomposition

TSd
K (L)=

⊕
α:[[1,d]]→N∑

i α(i)=d

K eα,

where we have set (see Section 2.16)

eα =
∑

β:[[1,d]]→[[1,d]]
∀i,|β−1({i})|=α(i)

eβ(1)⊗ · · ·⊗ eβ(d).

Let us write the norm polynomial as

NL/K

( d∑
i=1

xi ei

)
=

∑
α:[[1,d]]→N∑

i α(i)=d

fαxα,

where xα= xα(1)1 · · · xα(d)d , and the fα are uniquely determined elements of K . The morphism TSd
K (L)→K

corresponding to ψ is the unique K -linear homomorphism which sends eα to fα (see Proposition 2.19
and its proof).

Next we describe the composition

Symd
K (Spec(L))→ Symd

k (Spec(L)) Symd
k (ϕ)

−−−−−→Symd
k (L
×)→ L×.

Its precomposition with the projection Spec(L)×K d
→ Symd

K (Spec(L)) corresponds to the element of
L⊗K d((5))× given by the formula

d∏
i=1

((5− 1⊗(i−1)
⊗π ⊗ 1⊗(d−i))−15)= P(5)−15d ,

where the polynomial P(5) can be computed as follows:

P(5)=
d∏

i=1

(
5−1⊗(i−1)

⊗π⊗1⊗(d−i))
=

d∑
r=0

(−1)r5d−r
∑

(i1,...,id )∈{0,1}d
|{s|is=1}|=r

π i1⊗· · ·⊗π id =

d∑
r=0

(−1)r eαr5
d−r ,

where αr : [[1, d]] → N is the map which sends 1 and 2 to d − r and r respectively, and any i > 2 to 0.
The image of P(5) by ψ in K [5] is the polynomial

d∑
r=0

(−1)r fαr5
d−r
= NL[5]/K [5](5e1− e2).

Since e1 = 1 and e2 = π , we obtain Proposition 3.12.
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Proposition 3.13. Let G be a finite abelian group, and let Q be a G-torsor over Spec(L) (in Spec(k)Ét)
of ramification bounded by d (see Definition 3.9). Then ψ−1 Q[d] (see Proposition 2.32) is tamely ramified
on Spec(K ).

Let K ′ be the maximal unramified extension of K in a separable closure of K . The formation of
Symd

K (Spec(L)) is compatible with any base change by Proposition 2.26 or by Proposition 2.29, and so is
the formation of ϕ. Moreover, a G-torsor over Spec(K ) is tamely ramified if and only if its restriction to
Spec(K ′) is tamely ramified. By replacing K and L by K ′ and the components of K ′⊗K L respectively,
we can assume that the residue field k is algebraically closed.

Let P be the multiplicative G-torsor on L× (see Definition 2.5) associated to Q (see Theorem 3.8), so
that Q is isomorphic to ϕ−1 P . Then ψ−1 Q[d] is isomorphic to the pullback of P along the composition

Spec(K ) ψ
−→ Symd

K (Spec(L))→ Symd
k (Spec(L)) Symd

k (ϕ)
−−−−−→Symd

k (L
×)→ L×

considered in Proposition 3.12. By Proposition 3.12, this composition corresponds to the K -point of L×

given by Pπ (5)−15d , where Pπ is the characteristic polynomial of π acting K -linearly by multiplication
on L . Let us consider the morphism of pointed sets

ρ : L×(K )→ H 1(Spec(K )Ét,G)

ν→ ν−1 P

where an element ν of L×(K ) is identified to a morphism Spec(K )→ L×. If ν1 and ν2 are elements
of L×(K ), then using the isomorphism θ : p−1

1 P ⊗ p−1
2 P → m−1 P from Definition 2.5, we obtain

isomorphisms

(ν1ν2)
−1 P← (ν1× ν2)

−1m−1 P
(ν1×ν2)

−1θ
←−−−−−− (ν1× ν2)

−1(p−1
1 P ⊗ p−1

2 P)← ν−1
1 P ⊗ ν−1

2 P.

Thus ρ is an homomorphism of abelian groups.
We have to prove that ρ(ν) is the isomorphism class of a tamely ramified G-torsor over Spec(K ),

where ν = Pπ (5)−15d . Since Pπ is an Eisenstein polynomial, it can be written as Pπ (5)=5d
+cR(5),

where c = Pπ (0) is a uniformizer of K , and R is a polynomial of degree < d with coefficients in OK ,
such that R(0)= 1. Thus we can write

ν = c−1ν1ν2,

where ν1 = R(5)−15d and ν2 = (1+ c−15d R(5)−1)−1, so that ρ(ν)= ρ(c)−1ρ(ν1)ρ(ν2).
Since Q has ramification bounded by d (see Definition 3.9), the restriction of ρ to U

(d)
L (K ) is trivial

(see Proposition 3.10). In particular, ρ(ν2) is trivial since ν2 belongs to U
(d)
L (K ).

The element ν1 belongs to L×(OK ), so that the morphism ν1 :Spec(K )→L× factors through Spec(OK ).
This implies that ρ(ν1) is the isomorphism class of an unramified G-torsor over Spec(K ). It remains to
prove that ρ(c) is the isomorphism class of a tamely ramified G-torsor over Spec(K ). Since c belongs to
K× = Gm,k(K )⊆ L×(K ), this is a consequence of the following lemma:
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Lemma 3.14. Let T be a multiplicative G-torsor over the k-group scheme Gm,k (see Definition 2.5).
Then T is tamely ramified at 0 and∞.

Let Gk be the constant k-group scheme associated to k. By Proposition 2.9, there is a structure of
k-group scheme on T and an exact sequence

1→ Gk→ T → Gm,k→ 1 (3.14.1)

in Spec(k)Ét, such that the structure of G-torsor on T is given by the action of its subgroup G by
translations. Since the fppf topology is finer than the étale topology on Sch/k , the sequence (3.14.1)
remains exact in the topos Spec(k)Fppf. In particular, we obtain a class in the group Ext1Fppf(Gm,k,Gk) of
extensions of Gm,k by Gk in Spec(k)Fppf.

Let n = |G|. In the topos Spec(k)Fppf we have an exact sequence

1→ µn,k→ Gm,k
n
−→Gm,k→ 1, (3.14.2)

where µn,k is the k-group scheme of n-th roots of unity. By applying the functor Hom(·,Gk), we obtain
an exact sequence

Hom(µn,k,Gk)
δ
−→Ext1fppf(Gm,k,Gk)

n
−→Ext1fppf(Gm,k,Gk).

Since n = |G|, the group Ext1Fppf(Gm,k,Gk) is annihilated by n, so that the homomorphism δ above
is surjective. Thus the exact sequence (3.14.1) in Spec(k)Fppf is the pushout of (3.14.2) along an
homomorphism µn,k → Gk . Let n′ be the largest divisor of n which is invertible in k. Then the
largest étale quotient of µn,k is the epimorphism µn,k → µn′,k given by x 7→ xn/n′ . In particular, the
homomorphism µn,k→ Gk factors through µn′,k , so that (3.14.1) is the pushout of the extension

1→ µn′,k→ Gm,k
n′
−→Gm,k→ 1

along an homomorphism µn′,k → Gk . Since the morphism Gm,k
n′
−→Gm,k is tamely ramified above 0

and∞, so is the morphism T → Gm,k .

4. Rigidified Picard schemes of relative curves

4.1. Let f : X→ S be a smooth morphism of schemes of relative dimension 1, with connected geometric
fibers of genus g, which is Zariski-locally projective over S.

Proposition 4.2. The canonical homomorphism OS→ f∗OX is an isomorphism.

If S is locally noetherian, then OX is cohomologically flat over S in dimension 0 by [EGA III2

1963, 7.8.6]. This means that for any quasicoherent OS-module M, the canonical homomorphism
f∗ f ∗OX ⊗OS M→ f∗ f ∗M is an isomorphism. This implies that the formation of f∗OX commutes

with arbitrary base change: if f ′ : X ×S S′→ S′ is the base change of f by a morphism of schemes
S′→ S, then the canonical morphism f∗OX ⊗OS OS′ → f ′

∗
OX×S S′ is an isomorphism, see [EGA III2

1963, 7.7.5.3]. By applying this result to the inclusion Spec(κ(s))→ S of a point s of S, we obtain
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that f∗(OX )s ⊗OS,s κ(s) is isomorphic to H 0(Xs,OXs )= κ(s). Since f∗(OX ) is a coherent OS-module,
Nakayama’s lemma yields that the canonical morphism OS → f∗(OX ) is an epimorphism. It is also
injective since f is faithfully flat, hence the result.

In general one can assume that S is affine and that X is projective over S, in which case there is a
noetherian scheme S0, a morphism S→ S0 and a smooth projective S0-scheme X0 with geometrically
connected fibers such that X is isomorphic to the S-scheme X0 ×S0 S, see [EGA IV3 1966, 8.9.1,
8.10.5(xiii); EGA IV4 1967, 17.7.9]. We have already seen that in this case the canonical homomorphism
OS0 → f∗OX0 is an isomorphism, and that the formation of f∗OX0 commutes with arbitrary base change.
In particular, both morphisms in the sequence

OS→ f∗OX0 ⊗OS0
OS→ f∗OX

are isomorphisms.

Proposition 4.3. Let d≥ 2g−1 be an integer, and let L be an invertible OX -module with degree d on each
fiber of f . Then, the OS-module f∗L is locally free of rank d − g+ 1, the higher direct images R j ( f∗L)
vanish for j >0, and the formation of f∗L commutes with arbitrary base change: if f ′ : X ′→ S′ is the base
change of f by a morphism S′→ S, then the canonical homomorphism f∗L⊗OS OS′→ f ′

∗
(L⊗OX OX ′)

is an isomorphism.

We first assume that S is locally noetherian. For each point of s of S and for each integer i , the
Riemann–Roch theorem for smooth projective curves implies that the k(s)-vector space H i (Xs,Ls) is of
dimension d− g+1 for i = 0, and vanishes otherwise. This implies that R j f∗(L⊗OX f ∗N ) vanishes for
any integer j > 0 and any OS-module N by the proof of [EGA III2 1963, 7.9.8]. Let

0→N →M→ P→ 0

be an exact sequence of OS-modules. Since f is flat and since L is a flat OX -module, the sequence

0→ L⊗OX f ∗N → L⊗OX f ∗M→ L⊗OX f ∗P→ 0

is exact as well. Since R1 f∗(L⊗OX f ∗N ) vanishes, the sequence

0→ f∗(L⊗OX f ∗N )→ f∗(L⊗OX f ∗M)→ f∗(L⊗OX f ∗P)→ 0

is exact. The OX -module L is therefore cohomologically flat over S in dimension 0, see [EGA III2

1963, 7.8.1]. By [EGA III2 1963, 7.8.4(d)] the OS-module f∗L is locally free, and the formation of f∗L
commutes with arbitrary base change. By applying the latter result to the inclusion Spec(κ(s))→ S of a
point s of S and by using that H 0(Xs,Ls) is of dimension d− g+ 1 over κ(s), we obtain that the locally
free OX -module f∗L is of constant rank d − g+ 1.

In general one can assume that S is affine and that X is projective over S, in which case there is
a noetherian scheme S0, a morphism S → S0, a smooth projective S0-scheme X0, and an invertible
OX0-module L0 such that X is isomorphic to the S-scheme X0×S0 S and L is isomorphic to the pullback
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of L0 by the canonical projection X0×S0 S→ X0, see [EGA IV3 1966, 8.9.1, 8.10.5(xiii); EGA IV4 1967,
17.7.9]. We have seen that the OS0-module f0∗L is locally free of rank d − g+ 1, and that its formation
commutes with arbitrary base change. By performing the base change by the morphism S→ S0, we
obtain that f∗L is a locally free OS-module of rank d − g+ 1 and that the formation of f∗L commutes
with arbitrary base change.

4.4. Let f : X→ S be as in Section 4.1. The relative Picard functor of f is the sheaf of abelian groups
PicS(X)= R1 fFppf,∗Gm in SFppf. Alternatively, PicS(X) is the sheaf of abelian groups on S associated to
the presheaf which sends an S-scheme T to Pic(X ×S T ), the abelian group of isomorphism classes of
invertible OX×S T -modules. For any S-scheme S′, we have (SFppf)/S′ = S′Fppf, and we thus have:

Proposition 4.5. For any S-scheme S′, the canonical morphism

PicS′(X ×S S′)→ PicS(X)×S S′

is an isomorphism in S′Fppf.

The elements of Pic(X ×S T ) which are pulled back from an element of Pic(T ) yield trivial classes in
PicS(X)(T ), since invertible OT -modules are locally trivial on T (for the Zariski topology, and thus for
the fppf-topology). This yields a sequence

0→ Pic(T )→ Pic(X ×S T )→ PicS(X)(T )→ 0, (4.5.1)

which is however not necessarily exact. The following is Proposition 4 from [Bosch et al. 1990, 8.1],
whose assumptions are satisfied by Proposition 4.2:

Proposition 4.6. If f has a section, then the sequence (4.5.1) is exact for any S-scheme T .

By a theorem of Grothendieck [Bosch et al. 1990, 8.2.1] the sheaf PicS(X) is representable by a
separated S-scheme. By [Bosch et al. 1990, 9.3.1] the S-scheme PicS(X) is smooth of relative dimension
g, and there is a decomposition

PicS(X)=
∐
d∈Z

Picd
S(X),

into open and closed subschemes, where Picd
S(X) is the fppf-sheaf associated to the presheaf

Schfp
/S→ Sets

T 7→ {L ∈ Pic(X ×S T ) | ∀t→ T, degX t
(Lt)= d}.

Here the condition degX t
(Lt)= d runs over all geometric points t→ T of T .

4.7. Let f : X→ S be as in Section 4.1, and let i : Y ↪→ X be a closed subscheme of X , which is finite
locally free over S of degree N ≥ 1. A Y -rigidified line bundle on X is a pair (L, α) where L is a locally
free OX -module of rank 1 and α :OY → i∗L is an isomorphism of OY -modules. Two Y -rigidified line
bundles (L, α) and (L′, α′) are equivalent if there is an isomorphism β : L→ L′ of OX -modules such
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that (i∗β)α = α′. If such an isomorphism β exists, then it is unique. Indeed, any other such isomorphism
would take the form γβ for some global section γ of O×X such that i∗γ = 1. Since f∗OX = OS (see
Proposition 4.2), we have γ = f ∗δ for some global section δ of O×S . Since the restriction of δ along the
finite flat surjective morphism Y → S is trivial, one must have δ = 1 as well, hence γ = 1.

Proposition 4.8. Let PicS(X, Y ) be the presheaf of abelian groups on Schfp
/S which maps a finitely

presented S-scheme T to the set of isomorphism classes of YT -rigidified line bundles on XT . Then, the
presheaf PicS(X, Y ) is representable by a smooth separated S-scheme of relative dimension N + g− 1.

We first consider the case where N = 1:

Lemma 4.9. The conclusion of Proposition 4.8 holds if N = 1.

Indeed, if N = 1 then Y is the image of a section x : S→ X of f . For any finitely presented S-scheme T ,
we have a morphism

Pic(X ×S T )→ PicS(X, x)(T ), L→ (L⊗ ( f ∗x∗L)−1, id).

The kernel of this homomorphism consists of all invertible OX×S T -modules which are given by the
pullback of an invertible OT -module. Moreover, any isomorphism class (L, α) in PicS(X, x)(T ) is the
image of L by this morphism, hence its surjectivity. We conclude by Proposition 4.6 that the canonical
projection morphism

PicS(X, x)→ PicS(X), (L, α)→ L,

is an isomorphism of presheaves of abelian groups on Schfp
/S . This yields Lemma 4.9 since PicS(X) is a

smooth separated S-scheme of relative dimension g (see Section 4.4).
We now prove Proposition 4.8. Since X×SY→Y has a section x= (i×idY )◦1Y where1Y :Y→Y×SY

is the diagonal morphism of Y , we deduce from Lemma 4.9 and its proof that the canonical projection
morphism

PicY (X ×S Y, x)→ PicY (X ×S Y )= PicS(X)×S Y

sending a pair (L, α) to the class of L is an isomorphism. Let Z be the Y -scheme PicY (X ×S Y, x), and
let (Lu, αu) be the universal x-rigidified line bundle on X ×S Z . The morphism Y ×S Z → Z is finite
locally free of rank N , so the pushforward A of OY×S Z is a locally free OZ -algebra of rank N , and the
pushforward M of i∗ZLu is a locally free OZ -module of rank N . Let λ :M→ OZ be the surjective
OZ -linear homomorphism corresponding to α−1

u : x
∗

ZLu→OZ .
Let T be a Y -scheme, and let (L, β) be a YT -rigidified line bundle on XT . The section xT : T → XT

uniquely factors through YT and we still denote by xT the corresponding section of YT . The pair (L, x∗Tβ)
is then an xT -rigidified line bundle on XT , so that there is a unique morphism z : T → Z such that
(L, x∗Tβ) is equivalent to the pullback by z of (Lu, αu). Let us assume that (L, x∗Tβ) is equal to this
pullback. The section β of i∗TL over Y ×S T provides a section z∗M over T , which we still denote by β,
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such that (z∗λ)(β)= 1 and z∗M= (z∗A)β. Conversely, any such section produces a YT -rigidification of
L on XT . The functor PicS(X, Y )×S Y = PicY (X ×S Y, Y ×S Y ) is therefore isomorphic to the functor

Schfp
/S→ Sets, T 7→ {(z, β) | z ∈ Z(T ), β ∈ 0(T, z∗M), λ(β)= 1 and MT =ATβ}.

This implies that PicS(X, Y )×S Y is representable by a relatively affine Z -scheme, smooth of relative
dimension N−1 over Z . By fppf-descent of affine morphisms of schemes along the fppf-cover PicS(X)×S

Y → PicS(X), this implies the representability of PicS(X, Y ) by an S-scheme, which is relatively affine
and smooth of relative dimension N − 1 over PicS(X). Since PicS(X) is separated and smooth of relative
dimension g over S (see Section 4.1), the S-scheme PicS(X, Y ) is separated and smooth of relative
dimension g+ N − 1.

4.10. Let f : X→ S be as in Section 4.1, and let i : Y ↪→ X be a closed subscheme of X , which is finite
locally free over S of degree N ≥ 1. A Y -trivial effective Cartier divisor of degree d on X is a pair (L, σ )
such that L is a locally free OX -module of rank 1 and σ :OX ↪→ L is an injective homomorphism such
that i∗σ is an isomorphism and such that the closed subscheme V (σ ) of X defined by the vanishing of
the ideal σL−1 of OX is finite locally free of rank d over S. Two Y -trivial effective divisors (L, σ ) and
(L′, σ ′) are equivalent if there is an isomorphism β : L→ L′ of OX -modules such that βσ = σ ′. As in
Section 4.7, if such an isomorphism exists then it is unique.

Proposition 4.11. The map (L, σ ) 7→ (V (σ ) ↪→ X) is a bijection from the set of equivalence classes of
Y -trivial effective Cartiers divisor of degree d on X onto the set of closed subschemes of U which are
finite locally free of degree d over S.

Let (L, σ ) be a Y -trivial effective divisor of degree d on X . The ideal I = σL−1 is an invertible ideal
of OX such that the vanishing locus V (I) is finite locally free of rank d over S and is contained in U . The
pair (L, σ ) is equivalent to (I−1, 1), and I is uniquely determined by V (I). Conversely for any closed
subscheme Z of U which is finite locally free of rank d over S, the scheme Z is proper over S hence
closed in X as well, and its defining ideal I in OXT is invertible by [Bosch et al. 1990, 8.2.6(ii)]. The
pair (I−1, 1) is then a Y -trivial effective Cartier divisor of degree d on X .

Proposition 4.12. Let d be an integer and let Divd,+
S (X, Y ) be the functor which to an S-scheme T

associates the set of equivalence classes of YT -trivial effective Cartier divisors of degree d on XT . Then
Divd,+

S (X, Y ) is representable by the S-scheme Symd
S(U ), the d-th symmetric power of U = X \Y over S

(see Section 2.22). In particular Divd,+
S (X, Y ) is smooth of relative dimension d over S.

By Proposition 4.11, the functor Divd,+
S (X, Y ) is isomorphic to the functor which sends an S-scheme

T to the set of closed subschemes of UT which are finite locally free of rank d over T . In other words,
Divd,+

S (X, Y ) is isomorphic to the Hilbert functor of d-points in the S-scheme U .
If x is a T -point of U , we denote O(−x) the kernel of the homomorphism OX×S T → x∗OT , which is

an invertible ideal sheaf, and by O(x) its dual, which is endowed with a section 1x : OX×S T ↪→ O(x).
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The morphism

Symd
S(U )→ Divd,+

S (X, Y ), (x1, . . . , xd)→

( d⊗
i=1

O(xi ),

d∏
i=1

1xi

)
,

is then an isomorphism of fppf-sheaves by [SGA 43 1973, XVII.6.3.9], hence Proposition 4.12.

Remark 4.13. Let T be an S-scheme. Let Z be a closed subscheme of UT which is finite locally free
of rank d over T , therefore defining a T -point of Divd,+

S (X, Y ) = Symd
S(U ) by Proposition 4.11. By

[SGA 43 1973, XVII.6.3.9], this T -point is given by the composition

T → Symd
T (Z)→ Symd

T (UT )→ Symd
S(U ),

where the first morphism is the canonical morphism from Proposition 2.21.

Proposition 4.14. Let d ≥ N + 2g− 1 be an integer, and let Picd
S(X, Y ) be the inverse image of Picd

S(X)
by the natural morphism PicS(X, Y )→ PicS(X). Then the Abel–Jacobi morphism

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ),

is surjective smooth of relative dimension d − N − g+ 1 and it has geometrically connected fibers.

Let Z be the scheme Picd
S(X, Y ), and let (Lu, αu) be the universal Y -rigidified line bundle of degree d

on X Z . By [Bosch et al. 1990, 8.2.6(ii)], the closed subscheme YZ of X Z is defined by an invertible ideal
sheaf I.

Let E be the pushforward of M = Lu ⊗OX Z
I by the morphism fZ : X Z → Z . By Proposition 4.3,

the OZ -module E is locally free of rank d − N − g+ 1, and for any morphism T → Z the canonical
homomorphism

E ⊗OZ OT → fT∗(M⊗OX Z
OXT )

is an isomorphism, where fT : XT → T is the base change of f by the morphism T → S. We thus obtain
an isomorphism

E→ E ′, (4.14.1)

of functors on the category of Z -schemes, where E is the functor T 7→ 0(T, E ⊗OZ OT ) and E ′ is the
functor T 7→ 0(XT ,M⊗OX Z

OXT ). Let F be the pushforward of Lu by the morphism fZ . By the
same argument, we obtain that the OZ -module F is locally free of rank d − g+ 1, and that we have an
isomorphism

F→ F ′, (4.14.2)

of functors on the category of Z -schemes, where F is the functor T 7→ 0(T,F ⊗OZ OT ) and F ′ is the
functor T 7→ 0(XT ,Lu ⊗OX Z

OXT ). Let us consider the exact sequence

0→M→ Lu→ Lu ⊗OX Z
OYZ → 0.
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Since R1 fZ∗M= 0 by Proposition 4.3, we obtain an exact sequence

0→ E→ F −→ G→ 0,

where G is a locally free OZ -module of rank N . Together with (4.14.1) and (4.14.2), this yields an exact
sequence

0→ E ′→ F ′ b
−→G→ 0,

of Z -group schemes in Zfppf, where G is the functor T 7→ 0(T,GT ⊗OZ OT ). The section αu of G over
Z corresponds to a morphism αu : Z→ G, and we have an isomorphism

Divd,+
S (X, Y )→ F ′×b,G,αu Z , (L, σ ) 7→ (σ, (L, i∗σ)).

Since b is an E ′-torsor over G in Zfppf, we obtain that Divd,+
S (X, Y ) is an E ′-torsor in Zfppf. Since E ′ is

isomorphic to E by (4.14.1), it is smooth of relative dimension d − N − g+ 1 over Z with geometrically
connected fibers, hence the conclusion of Proposition 4.14.

5. Geometric global class field theory

5.1. Let f : X→ S be a smooth morphism of schemes of relative dimension 1, with connected geometric
fibers of genus g, which is Zariski-locally projective over S, and let i : Y ↪→ X be a closed subscheme of
X which is finite locally free over S of degree N ≥ 1. Let j :U → X be the open complement of Y . Let
3 be a finite ring whose cardinality is invertible on S.

Definition 5.2. A locally free 3-module F of rank 1 in UÉt has ramification bounded by Y over S if for
any geometric point x of Y with image s in S, the restriction of F to Spec(ÔXs ,x)×Xs Us has ramification
bounded by the multiplicity of Ys at x (see Definition 3.9).

Theorem 5.3. Let F be a locally free 3-module of rank 1 in UÉt with ramification bounded by Y over S
(see Definition 5.2). Then, there is a unique (up to isomorphism) multiplicative locally free 3-module G of
rank 1 on the S-group scheme PicS(X, Y ) (see Remark 2.6) such that the pullback of G by the Abel–Jacobi
morphism

U → PicS(X, Y ),

which sends x to (O(x), 1), is isomorphic to F .

In Section 5.4, we study the restriction of the locally free 3-module F [d] of rank 1 on Divd,+
S (X, Y )

(see Proposition 2.32 and Proposition 4.12) to a geometric fiber of the Abel–Jacobi morphism (see
Proposition 4.14)

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ).

This study will enable us to prove Theorem 5.3 in Section 5.10.
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5.4. Let k be an algebraically closed field, let X be a smooth connected projective curve of genus g over
k and let i : Y → X be an effective Cartier divisor of degree N with complement U in X . Let L be a
line bundle of degree d ≥ N + 2g− 1 on X , and let V be the (d − N − g+ 1)-dimensional affine space
over k associated to the k-vector space V = H 0(X,L(−Y )), i.e., V is the spectrum of the symmetric
algebra of the k-module Homk(V, k). Let τ be a global section of L on X such that i∗τ :OY → i∗L is an
isomorphism.

Proposition 5.5. Let 3 be a finite ring of cardinality invertible in k, and let F be a locally free 3-module
of rank 1 in UÉt, with ramification bounded by Y (see Definition 5.2). Then the pullback of F [d] (see
Proposition 2.32) by the morphism

V → Divd,+
k (X, Y ),

which sends a section s of V to (L, τ − s), is a constant étale sheaf.

The morphism

V → Divd,+
k (X, Y ),

which sends a point σ of V to (L, τ − σ), is an isomorphism from V to the fiber of 8d over the k-point
(L, i∗τ), see Proposition 4.14. Proposition 5.5 thus implies:

Corollary 5.6. Let F be as in Proposition 5.5. Then the locally free 3-module F [d] on Divd,+
k (X, Y )Ét is

constant on the fiber at (L, i∗τ) of the morphism

8d : Divd,+
k (X, Y )→ Picd

k (X, Y )

from Proposition 4.14 .

We now prove Proposition 5.5. To this end, we consider the morphism

ψ : A1
V → Divd,+

k (X, Y ),

which sends a pair (t, σ ), where t and σ are points of A1
k and V respectively, to the point (L, τ − tσ) of

Divd,+
k (X, Y ). Let F be as in Proposition 5.5, and let G be the pullback byψ of F [d] (see Proposition 2.32).

Denoting by ιt : V → A1
V the section corresponding to an element t of k = A1

k(k), we must prove that the
sheaf ι−1

1 G is constant. The sheaf ι−1
0 G is constant, since ψι0 is a constant morphism, hence it is sufficient

to prove that ι−1
1 G and ι−1

0 G are isomorphic. The latter fact follows from the following lemma:

Lemma 5.7. The locally free 3-module G is the pullback of an étale sheaf on V by the projection
π : A1

V → V .

We now prove Lemma 5.7. We start by proving that G is constant on each geometric fiber of the
projection π . Since the formation of ψ and G is compatible with the base change along any field extension
of k, it is sufficient to show that G is constant on each fiber of the projection A1

V → V at a k-point σ of V .
If σ = 0, then the restriction of ψ to the fiber of π above σ is constant, hence G is constant on this fiber.
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We now assume that σ is nonzero. Since σ vanishes on the nonempty divisor Y and τ does not, the
sections σ and τ are k-linearly independent in H 0(X,L). Let D be the greatest divisor on X such that
D≤ div(σ ) and D≤ div(τ ). Since the divisor of τ is contained in U , so is D. We can then write σ = σ̃1D

and τ = τ̃1D , where 1D is the canonical section of O(D) and σ̃ , τ̃ are global sections of L(−D) on X
without common zeroes. Thus f = [τ̃ : σ̃ ] is a well defined nonconstant morphism from X to P1

k . Thus,
if W is the closed subscheme of X ×k A1

k defined by the vanishing of τ − tσ , where t is the coordinate on
A1

k , then we have

W = D×k A1
k ∪ (Graph( f )∩ X ×k A1

k) ↪→U ×k A1
k .

Moreover, the projection W → A1
k is finite flat of degree d, and the restriction of ψ to the fiber at σ

factors as

A1
k
ϕ
−→ Symd

A1
k
(W )→ Symd

A1
k
(U ×k A1

k)→ Symd
k (U )→ Divd,+

k (X, Y ),

where the first morphism ϕ is obtained from Proposition 2.21, and the last morphism is the isomorphism
from Proposition 4.12. Moreover, the pullback of F [d] to Symd

A1
k
(W ) coincides with (p−1

1 F)[d], where

p1 :W →U is the first projection. In particular, the sheaf G is isomorphic to ϕ−1(p−1
1 F)[d].

Set K = k((t−1)) and let η = Spec(K )→ A1
k be the corresponding punctured formal neighborhood

of∞. Consider the commutative diagram

η

A1
k

Symd
η(W ×A1

k
η).

Symd
A1

k
(W )

ϕ

We can then write

W ×A1
k
η = D×k η∪Graph( f )×P1

k
η = D×k η∪ X × f,P1

k
η.

The divisors D×k η and X × f,P1
k
η of X ×k η are disjoint, since the former lies over closed points of X ,

while the latter lies over the generic point of X . We thus have a decomposition

W ×A1
k
η = D×k ηq X × f,P1

k
η =

∐
i

Spec(L i )

where L i is either of the form K [T ]/(T di ) if Spec(L i ) is a connected component of D×k η, or a field
extension of degree di of K if Spec(L i ) is a connected component of X × f,P1

k
η. In the former case, the

restriction of p−1
1 F to Spec(L i ) is constant, while in the latter case, we have the further information

that the restriction of p−1
1 F to Spec(L i ) has ramification bounded by di (see Definition 3.9), since the

ramification index of f at a point x above∞ is greater than or equal to the multiplicity of Y at x , and
F has ramification bounded by Y by assumption. Moreover, we have

∑
i di = d, and the morphism
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η→ Symd
η(W ×A1

k
η) factors through the canonical morphism∏

i

Symdi
η (Spec(L i ))→ Symd

η(W ×A1
k
η).

By Proposition 3.13, we obtain that the restriction of G to η is tamely ramified. Since the tame fundamental
group of A1

k is trivial, we conclude that G is a constant étale 3-module on the fiber of π at σ . The
conclusion of Lemma 5.7 then follows from a descent result, namely Lemma 5.9 below.

Remark 5.8. While the proof of Proposition 3.13, which constitutes the core of the proof of Lemma 5.7
above, uses geometric local class field theory, it should be noticed that its statement does not refer to it.
This explains why no form of local-global compatibility is required in the proof of Lemma 5.7.

Lemma 5.9. Let g : T ′→ T be a quasicompact smooth compactifiable morphism of schemes of relative
dimension δ with geometrically connected fibers, and let G be an étale sheaf of 3-modules on T ′ét which
is constant on each geometric fiber of g. Then G is isomorphic to the pullback by g of an étale sheaf of
3-modules on Tét.

By [SGA 43 1973, XVIII 3.2.5] the functor Rg! on the derived category of 3-modules on T admits the
functor g! : K 7→ g∗K (δ)[2δ] as a right adjoint. Let us apply the functor H0 to the adjunction morphism
G→ g!Rg!G. The morphism

G→H0(g!Rg!G)= g∗R2δg!G(δ)

is an isomorphism, as can be seen by checking the stalks at geometric points with the proper base change
theorem.

5.10. We now prove Theorem 5.3. Let F be a locally free 3-module of rank 1 over UÉt. The family
(F [d])d≥0 of locally free 3-modules of rank 1 yields a multiplicative étale 3-module of rank 1 over the
S-semigroup scheme

Div+S (X, Y )=
∐
d≥0

Divd,+
S (X, Y ).

For each integer d ≥ N + 2g, Corollary 5.6 implies that the locally free 3-module F [d] of rank 1 on
Divd,+

S (X, Y ) (see Propositions Proposition 2.32 and 4.12) is constant on the geometric fibers of the
smooth surjective morphism (see Proposition 4.14)

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ).

This morphism satisfies the conditions of Lemma 5.9 by Proposition 4.14. We can therefore apply
Lemma 5.9, and we obtain a locally free 3-module Gd of rank 1 over Picd

S(X, Y ) such that 8−1
d Gd

is isomorphic to F [d]. By Proposition 2.8, the family (Gd)d≥N+2g yields a multiplicative locally free
3-module of rank 1 on the S-semigroup scheme

M =
∐

d≥N+2g

Picd
S(X, Y ).
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Since the morphism

ρ : M ×S M→ PicS(X, Y ), (x, y) 7→ xy−1,

is faithfully flat and quasicompact, we can apply Proposition 2.15, which yields a multiplicative locally free
3-module G of rank 1 over PicS(X, Y ) whose restriction to Picd

S(X, Y ) coincides with Gd for d ≥ N +2g.
The families (F [d])d≥0 and (8−1

d Gd)d≥0 yield multiplicative locally free 3-modules of rank 1 on the
S-semigroup scheme Div+S (X, Y )=

∐
d≥0 Divd,+

S (X, Y ), whose restrictions to the ideal

I =
∐

d≥N+2g

Divd,+
S (X, Y )

of Div+S (X, Y ) are isomorphic. We obtain by Proposition 2.7 an isomorphism from F [d] to 8−1
d Gd for

each d ≥ 0. In particular, the locally free 3-module 8−1
1 G1 of rank 1 is isomorphic to F .
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Blow-ups and class field theory for curves
Daichi Takeuchi

We propose another proof of geometric class field theory for curves by considering blow-ups of symmetric
products of curves.

1. Introduction

Geometric class field theory gives a geometric description of the abelian coverings of a curve by using
generalized jacobian varieties. Let us recall its precise statement. Let C be a projective smooth curve over
a perfect field k. We assume that C is geometrically connected over k. Fix a modulus m, i.e., an effective
Cartier divisor of C and let U be its complement in C . Denote by Pic0

C,m the corresponding generalized
jacobian variety. Let G0

→ Pic0
C,m be an étale isogeny of smooth commutative algebraic groups and

G1
→ Pic1

C,m be a compatible morphism of torsors. We call such a pair (G0
→ Pic0

C,m,G1
→ Pic1

C,m) a
covering of (Pic0

C,m,Pic1
C,m). A covering (G0

→ Pic0
C,m,G1

→ Pic1
C,m) is called connected abelian if G0

is connected and G0
→ Pic0

C,m is an abelian isogeny. There is a natural map from U to Pic1
C,m sending a

point of U to its associated invertible sheaf with a trivialization. Geometric class field theory states:

Theorem 1.1. Let C be a projective smooth geometrically connected curve over a perfect field k. Fix a
modulus m of C and denote its complement by U. Let Pic0

C,m be the generalized jacobian variety with
modulus m. Then a connected abelian covering (G0

→ Pic0
C,m,G1

→ Pic1
C,m) pulls back by the natural

map U → Pic1
C,m to a geometrically connected abelian covering of U whose ramification is bounded

by m. Conversely, every such covering is obtained in this way.

Originally this theorem was proved by M. Rosenlicht [1954]. S. Lang [1956] generalized his results to
an arbitrary algebraic variety. Their works are explained in detail in Serre’s book [1988].

On the other hand, in 1980s, P. Deligne found another proof for the tamely ramified case by using
symmetric powers of curves [Laumon 1990]. The aim of this paper is to complete his proof by considering
blow-ups of symmetric powers of curves.

We have learned that Q. Guignard has done similar work [2019].
Actually we prove a variant of Theorem 1.1 now stated.

Theorem 1.2. There is an isomorphism of groups between the subgroup of H1(U,Q/Z) consisting of
a character χ such that SwP(χ) ≤ nP − 1 for all points P ∈ m, where nP is the multiplicity of m

MSC2010: primary 11G45; secondary 14H30.
Keywords: geometric class field theory, ramification theory, generalized jacobian.
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at P , and the subgroup of H1(PicC,m,Q/Z) consisting of ρ which is multiplicative, i.e., the self-external
product ρ � 1+ 1� ρ on PicC,m×k PicC,m equals to m∗ρ, the pullback of ρ by the multiplication map
m : PicC,m×k PicC,m→ PicC,m.

The relation between Theorems 1.1 and 1.2 will be explained in Section 4.
When k is algebraically closed, Theorem 1.2 can be stated as follows. Let ρ be a multiplicative

element of H1(PicC,m,Q/Z). Fix a closed point P ∈ Pic1
C,m. The multiplicativity of ρ implies that, for

an integer d , the pullback of ρd by the multiplication by d P Pic0
C,m→ Picd

C,m coincides with ρ0. In this
way, Theorem 1.2 can be restated as follows:

Theorem 1.3. Assume that k is algebraically closed. Then there is an isomorphism of groups between the
subgroup of H1(U,Q/Z) consisting of a character χ such that SwP(χ) ≤ nP − 1 for all points P ∈ m
and the subgroup of H1(Pic0

C,m,Q/Z) consisting of a multiplicative element ρ0, i.e., the self-external
product ρ0 �1+1�ρ0 on Pic0

C,m×k Pic0
C,m equals to m∗ρ0, the pullback of ρ0 by the multiplication map

m : Pic0
C,m×k Pic0

C,m→ Pic0
C,m.

Here we summarize the construction of this paper. In Section 2, we recall the definition and properties
of (refined) Swan conductors, and make a calculation on the Swan conductors of symmetric products
of characters. We construct compactifications of the Abel–Jacobi maps U (d)

→ Picd
C,m and study their

properties in Section 3. The main result of this section is that the compactifications can be identified
with open subschemes of blow-ups of C (d). In Section 4, we finish the proof of Theorems 1.1 and 1.2 by
combining the results in the previous sections.

Throughout this paper, we use the following conventions: We identify an effective Cartier divisor with
the associated closed subscheme. For an object defined on a scheme S (e.g., an S-scheme, a locally free
sheaf, a vector bundle, and so on) and a S-scheme T , we denote its pullback to T by the same letter,
unless there may be ambiguity. We denote the category of S-schemes by Sch/S. For a category C, we
call a functor Cop

→ (Set), from the opposite category of C to the category of sets (Set), a presheaf on C.

2. Preliminaries

In this section, we recall basic properties of Witt vectors and refined Swan conductors, and calculate the
Swan conductors of symmetric products of characters. Fix a prime number p.

Reminder on the refined Swan conductor. Let A be a ring of characteristic p. Let m be an integer ≥ 0.
We denote by Wm+1(A) the ring of Witt vectors of length m + 1 with coefficients in A, and write its
elements as (a0, a1, . . . , am). Let OA be the structure sheaf of rings on the étale topos of Spec(A).

Let F be the absolute Frobenius map OA→OA, i.e., sending x 7→ x p, and denote the ring homomor-
phism Wm+1(OA)→Wm+1(OA) induced from F by the same letter F . The short exact sequence

0→ Z/pm+1Z→Wm+1(OA)
F−1
−−−→Wm+1(OA)→ 0
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of étale sheaves on Spec(A) defines the boundary map

δm+1,A :Wm+1(A)→ H1(Spec(A),Z/pm+1Z).

The boundary map is surjective, hence Wm+1(A)/ Im(F − 1) −→∼ H1(Spec(A),Z/pm+1Z), the map it
induces, is an isomorphism. The boundary map δm+1,A is natural in A. In other words, for a morphism
f : A→ B of rings of characteristic p, the diagram

Wm+1(A)
δm+1,A

//

��

H1(Spec(A),Z/pm+1Z)

��

Wm+1(B)
δm+1,B

// H1(Spec(B),Z/pm+1Z)

(2-1)

is commutative, where the vertical maps are the canonical ones induced from f .
Let (R, π) be a DVR of equal characteristic p and K be its field of fractions. Let vR be its normalized

valuation. Let m be an integer ≥ 0. We extend the valuation vR to Wm+1(K ) by setting

vR((a0, . . . , am)) :=min
i
{pm−ivR(ai )}.

We define an increasing exhaustive filtration on Wm+1(K ) by setting, for n ∈ Z, filn Wm+1(K ) to be the
subgroup of Wm+1(K ) consisting of elements (a0, . . . , am) such that

vR((a0, . . . , am))≥−n.

Define an increasing exhaustive filtration filn H1(K ,Z/pm+1Z) of H1(K ,Z/pm+1Z) by the image of
filn Wm+1(K ) through the boundary map δm+1,K .

For any χ ∈ H1(K ,Z/pm+1Z), the Swan conductor of χ , SwR(χ), is the smallest integer n ≥ 0 such
that χ ∈ filn H1(K ,Z/pm+1Z)[Brylinski 1983; Kato 1989]. When R is henselian and the residue field is
perfect, this is the same as the classical Swan conductor [Kato 1989, Proposition (6.8)].

Lemma 2.1. Let R and K be as above. Take χ ∈ H1(K ,Z/pm+1Z).

(1) The subgroup fil0 H1(K ,Z/pm+1Z) of H1(K ,Z/pm+1Z) coincides with the image of the map
H1(Spec(R),Z/pm+1Z)→ H1(K ,Z/pm+1Z), i.e., the group of unramified characters.

(2) Let R̂ be the completion of R and K̂ be its field of fractions. Denote the restriction of χ to K̂ by χ̂ .
Then, the equality SwR(χ)= SwR̂(χ̂) holds.

Proof. (1) This follows from the commutative diagram

Wm+1(R)
δm+1,R
//

��

H1(Spec(R),Z/pm+1Z)

��

Wm+1(K )
δm+1,K

// H1(K ,Z/pm+1Z)

(2-2)
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and the fact that the upper horizontal arrow in (2-2) is surjective.

(2) The commutative diagram

Wm+1(K )
δm+1,K
//

��

H1(K ,Z/pm+1Z)

��

Wm+1(K̂ )
δm+1,K̂
// H1(K̂ ,Z/pm+1Z)

implies SwR(χ)≥ SwR̂(χ̂). Let n = SwR̂(χ̂). Then there exists a Witt vector α̂ ∈ filn Wm+1(K̂ ) mapping
to χ̂ . Take α ∈ filn Wm+1(K ) whose components are close enough to those of α̂ with respect to the
valuation of K̂ , so that every component of α̂−α (here α is regarded as an element of Wm+1(K̂ )) is in R̂.
Then, δm+1,K̂ (α̂−α) is an unramified character by (1). Therefore, χ − δm+1,K (α) is unramified. Again
by (1), there exists β ∈Wm+1(R) such that χ − δm+1,K (α)= δm+1,K (β), hence the assertion. �

Next we recall refined Swan conductors.
Define �̂1

R to be the π -adic completion of the absolute differential module �1
R . Let �̂1

K := �̂
1
R ⊗R K .

The canonical map �̂1
R→ �̂1

K is injective and we usually regard �̂1
R as an R-submodule of �̂1

K via this
map. The R-module �̂1

R(log) is the R-submodule of �̂1
K generated by �̂1

R and dlogπ := dπ/π . From
the definition, the following holds:

Lemma 2.2. Assume that R is obtained from a smooth scheme over a perfect field by localizing at a point
of codimension one. Let b1, . . . , bn be a lift of a p-basis of the residue field of R to R. Then, �̂1

R(log) is a
R̂-free module with a basis db1, . . . , dbn, dlogπ . �

For ω ∈ �̂1
K , define vlog

R (ω) as the largest integer n such that ω ∈ πn�̂1
R(log) (we formally put

v
log
R (0) :=∞). There is a homomorphism Fmd :Wm+1(K )→ �̂1

K of groups given by

Fmd((a0, . . . , am)) :=
∑

i

a pm−i
−1

i dai .

Define an increasing exhaustive filtration on �̂1
K by setting

filn �̂1
K := {ω ∈ �̂

1
K | v

log
R (ω)≥−n}

for n ∈ Z. From the definitions, the homomorphism Fmd :Wm+1(K )→ �̂1
K respects their filtrations. In

other words, vR(α)≤ v
log
R (Fmdα) hold for all α ∈Wm+1(K ).

Proposition 2.3 [Leal 2018, Proposition 2.8]. Let n be an integer ≥ 0.

(1) There is a unique homomorphism

rsw : filn H1(K ,Z/pm+1Z)→ filn �̂1
K /filbn/pc �̂

1
K ,
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called the refined Swan conductor, such that the composition

filn Wm+1(K )→ filn H1(K ,Z/pm+1Z)→ filn �̂1
K /filbn/pc �̂

1
K

coincides with Fmd.

(2) For
⌊ n

p

⌋
≤ i ≤ n, the induced map

filn H1(K ,Z/pm+1Z)/fili H1(K ,Z/pm+1Z)→ filn �̂1
K /fili �̂1

K

is injective.

At the end of this subsection, we extend the definition of the Swan conductors for characters in
H1(K ,Q/Z) as follows.

Let m be an integer ≥ 0. We identify the groups Z/pmZ and 1
pm Z/Z via the multiplication by 1

pm . In
this way, we define a filtration on H1

(
K , 1

pm Z/Z
)

from that of H1(K ,Z/pmZ). The natural inclusion
1

pm Z/Z→ 1
pm+1 Z/Z induces an inclusion

H1(K , 1
pm Z/Z

)
→ H1(K , 1

pm+1 Z/Z
)

of groups.

Lemma 2.4. Let m, n be integers ≥ 0. The equality

filn H1(K , 1
pm Z/Z

)
= H1(K , 1

pm Z/Z
)
∩filn H1(K , 1

pm+1 Z/Z
)

of subgroups of H1
(
K , 1

pm+1 Z/Z
)

holds.

Proof. Fix a separable closure K s of K . Let V :Wm(K s)→Wm+1(K s) be the Verschiebung, i.e., the
map sending (a0, . . . , am−1) to (0, a0, . . . , am−1). We have the following commutative diagram

0 // 1
pm Z/Z //

��

Wm(K s)
F−1

//

V

��

Wm(K s) //

V

��

0

0 // 1
pm+1 Z/Z // Wm+1(K s)

F−1
// Wm+1(K s) // 0,

(2-3)

here we identify 1
pm Z/Z and Z/pmZ as mentioned above. Taking cohomology groups, we get a

commutative diagram

Wm(K )
δm,K

//

V

��

H1
(
K , 1

pm Z/Z
)

��

Wm+1(K )
δm+1,K

// H1
(
K , 1

pm+1 Z/Z
)
.

(2-4)

Since the map V :Wm(K )→Wm+1(K ) respects the filtrations, the inclusion

filn H1(K , 1
pm Z/Z

)
⊂ H1(K , 1

pm Z/Z
)
∩filn H1(K , 1

pm+1 Z/Z
)
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holds. To prove the equality, it suffices to show that the morphism

Grn H1(K , 1
pm Z/Z

)
→ Grn H1(K , 1

pm+1 Z/Z
)

is injective for n ≥ 1, where Grn := filn /filn−1. We have the following commutative diagram

Grn H1
(
K , 1

pm Z/Z
)

��

rsw
// Grn �̂

1
K

Grn H1
(
K , 1

pm+1 Z/Z
)
.

rsw

99

(2-5)

By Proposition 2.3(2), the refined Swan conductors rsw in (2-5) are injective, hence the assertion. �

We define a filtration on H1(K ,Qp/Zp)=
⋃

m H1
(
K , 1

pm Z/Z
)

by

filn H1(K ,Qp/Zp)=
⋃
m

filn H1(K , 1
pm Z/Z

)
.

Let χ ∈ H1(K ,Q/Z) be a character. Let χp be the p-primary part of χ and be considered as an element
of H1(K ,Qp/Zp) via the natural decomposition

H1(K ,Q/Z)∼=
⊕

q

H1(K ,Qq/Zq),

where q runs through all prime numbers. We define the Swan conductor Sw(χ) to be the smallest integer
n ≥ 0 such that χp ∈ filn H1(K ,Qp/Zp).

The Swan conductor of a symmetric product. In this subsection, we assume that k is a perfect field of
characteristic p.

Let X1, X2 be smooth schemes over k. Let Z1 and Z2 be smooth irreducible closed subvarieties of X1

and X2. Let X̃1, X̃2, and X̃1× X2 be the blow-ups of X1, X2, and X1× X2 along Z1, Z2, and Z1× Z2.
Denote by R1, R2, and R3 the DVRs at the generic points of the exceptional divisor of X̃1, X̃2, and
X̃1× X2. Let Ki be the field of fractions of Ri for i = 1, 2, 3.

Lemma 2.5. (1) The projections X1× X2→ X1 and X1× X2→ X2 induce the extensions R3/R1 and
R3/R2 of DVRs, which preserve uniformizers.

(2) There is a canonical isomorphism

�̂1
K3
∼= (K̂3⊗K̂1

�̂1
K1
)⊕ (K̂3⊗K̂2

�̂1
K2
).

This isomorphism respects the filtrations, i.e., via this isomorphism, filn �̂1
K3

coincides with

(R̂3⊗R̂1
filn �̂1

K1
)⊕ (R̂3⊗R̂2

filn �̂1
K2
).
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Proof. Let U be the open subscheme of X̃1× X2 obtained by removing the strict transforms of Z1× X2

and X1× Z2. This is the largest open subscheme where the pull-backs of Z1× X2 and X1× Z2 coincide
with the exceptional divisor. By the universality of the blow-ups X̃1 and X̃2, the projections U→ X1 and
U→ X2 induce morphisms U→ X̃1 and U→ X̃2, hence a morphism U→ X̃1× X̃2 of X1×X2-schemes.
Denote by D1 and D2 the exceptional divisors of X̃1 and X̃2. Let (X̃1× X̃2)

′ be the blow-up of X̃1× X̃2

along D1× D2. The morphism U→ X̃1× X̃2 lifts to a morphism U→ (X̃1× X̃2)
′. We claim that this is

an open immersion. Indeed, by the universality of the blow-up, the morphism (X̃1× X̃2)
′
→ X1× X2 lifts

to a morphism (X̃1× X̃2)
′
→ X̃1× X2, which implies that U is quasifinite over (X̃1× X̃2)

′. By Zariski
main theorem, the morphism U → (X̃1× X̃2)

′ is an open immersion.
Taking an affine open neighborhood of the generic point of the exceptional divisors D1 and D2 in X̃1

and X̃2, we may assume that X̃1= Spec(A1) and X̃2= Spec(A2) are affine. We also assume that there are
systems of regular parameters x1, x2, . . . , xn ∈ A1 and y1, y2, . . . , ym ∈ A2 such that the ideal generated
by x1 and y1 define D1 and D2. The scheme U is canonically isomorphic to Spec

(
A1⊗ A2

[ x1
y1
,

y1
x1

])
and

the natural inclusions A1, A2→ A1⊗ A2
[ x1

y1
,

y1
x1

]
define the projections U → X̃1, X̃2. The first assertion

follows from this calculation. The canonical isomorphism

�1
X1×X2

∼= pr∗X1
�1

X1
⊕ pr∗X2

�1
X2
,

where prX1
and prX2

are the projections to X1 and X2, gives an isomorphism

�̂1
K3
∼= (K̂3⊗K̂1

�̂1
K1
)⊕ (K̂3⊗K̂2

�̂1
K2
).

The differentials dx1
x1
, d
( y1

x1

)
, dx2, . . . , dxn, dy2, . . . , dym form a basis of R̂3-module �̂1

R3
(log). The

second assertion follows from this fact and (1). �

Corollary 2.6. Let χi ∈ H1(Ki ,Q/Z) for i = 1, 2. Then, the following holds:

SwR3(χ1 � 1+ 1�χ2)=max{SwR1(χ1),SwR2(χ2)}.

Proof. Taking the p-primary parts of χ1, χ2, and χ1 � 1+ 1 � χ2, we reduce to the case when χi ∈

H1(Ki ,Z/pm+1Z).
First we verify that the morphism

H1(K1,Z/pm+1Z)⊕H1(K2,Z/pm+1Z)→ H1(K3,Z/pm+1Z) (2-6)

respects the filtrations. Since the extensions R3/R1, R3/R2 of DVRs preserve uniformizers the morphism
Wm+1(K1)⊕Wm+1(K2)→Wm+1(K3) respects the filtrations, which implies the assertion.

To show the corollary, it is enough to prove that the morphism induced from (2-6) by taking Grn is
injective. This follows from the injectivity of refined Swan conductors (Proposition 2.3) and Lemma 2.5. �

Let S be a scheme. For a quasiprojective S-scheme X and a natural number d ≥ 1, the d-th symmetry
group Sd acts on Xd

:= X ×S X ×S · · · ×S X (d times) via permutation of coordinates. Define a scheme
X (d)
:= Xd/Sd . X (d) is called the d-th symmetric product of X . It is known that, if X is smooth of
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relative dimension 1 over S, X (d) is smooth and parametrizes effective Cartier divisors of deg= d on X
[SGA 43 1973, Exposé XVII, Application 1; Polishchuk 2003, 16]. In particular, the formation of X (d)

commutes with base change S′→ S.
Let C be a projective smooth geometrically connected curve over k. Let U be a nonempty open

subscheme of C .
Let d be an integer ≥ 1. We construct a map H1(U,Q/Z)→ H1(U (d),Q/Z) as follows. First fix a

finite abelian group G. Let V →U be a G-torsor. Then V d is a Gd -torsor of U d . Let H be the subgroup
of Gd consisting of elements (a1, . . . , ad) satisfying

∑
1≤i≤d ai = 0. Then V d/H is a G-torsor of U d .

This torsor has a natural action by the d-th symmetry group Sd which is equivariant with respect to its
action to U d .

Lemma 2.7. The morphism

(V d/H)/Sd →U (d) (2-7)

induced from the map V d/H →U d , taking the quotients by Sd , is a G-torsor.

Proof. It is sufficient to show that, for every geometric point x of U d , the stabilizer group (Sd)x at x acts
trivially on the fiber (V d/H)x over x , see [SGA 1 1971, Remarque 5.8].

We may assume that k is algebraically closed and that geometric points considered are k-valued points.
Let x be a geometric point of U d . For simplicity, we assume that x= (x1, . . . , x1, x2, . . . , x2, . . . , xr , . . . , xr ),
where x1, . . . , xr are distinct points and xi appears di times for each i . Then the inertia group (Sd)x at x
is isomorphic to

∏
1≤i≤r Sdi .

For each i , take a k-valued point ei of V ×U xi . From the definition of H , the fiber of V d/H over x
can be identified with the set

{(e1, e1, . . . , er , ger ) | g ∈ G}, (2-8)

on which (Sd)x acts trivially. �

In this way, we construct a G-torsor (V d/H)/Sd on U (d). Since this construction is compatible with a
morphism of abelian groups G→ G ′, we obtain a group homomorphism H1(U,Q/Z)→H1(U (d),Q/Z).
We denote by χ (d) the image of χ via this map. Let K be the field of fractions of U , K(d) be that of U (d),
and Kd be that of U d . Taking U smaller and smaller, we also have a map H1(K ,G)→ H1(K(d),G) for
a finite abelian group G and a map H1(K ,Q/Z)→ H1(K(d),Q/Z).

We consider a similar construction on the groups of Witt vectors. Denote by pr∗i the morphism K→ Kd

induced by the i-th projection U d
→U . Consider the map λ :Wm+1(K )→Wm+1(Kd) sending a Witt

vector α to pr∗1 α+· · ·+pr∗d α. Since the extension Kd/K(d), induced by the natural projection U d
→U (d),

is finite Galois with the Galois group Sd , the Sd-fixed part of Wm+1(Kd) coincides with Wm+1(K(d))

(here Wm+1(K(d)) is considered as a subgroup of Wm+1(Kd) via the natural projection U d
→ U (d)).

Thus the map λ factors through Wm+1(K(d)). We also denote the induced map Wm+1(K )→Wm+1(K(d))
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by λ. Note that the diagram

Wm+1(K )
δm+1,K

//

λ

��

H1(K ,Z/pm+1Z)

��

Wm+1(K(d))
δm+1,K(d)

// H1(K(d),Z/pm+1Z)

is commutative. This follows from the commutativity of pr∗i and the boundary maps (see the diagram
(2-1)), and the injectivity of H1(U (d),Z/pm+1Z)→ H1(U d ,Z/pm+1Z) (see Lemma 4.2). Also, the
canonical morphism �̂1

K(d)
⊗K(d) Kd → �̂1

Kd
is an isomorphism and the Sd-fixed part of �̂1

Kd
coincides

with (the image of) �̂1
K(d)

. We define a map µ : �̂1
K → �̂1

K(d)
similarly to λ. The maps λ and µ commute

with Fmd.
Let P be a closed point of U . For simplicity, let us assume that the residue field at P is isomorphic

to k. Let R be the DVR of C at P , and R(d) be the DVR of K(d) at the generic point of the exceptional
divisor of the blow-up of C (d) along the point corresponding to the divisor d P . We define filtrations on
Wm+1(K ) (resp. Wm+1(K(d))) and �̂1

K (resp. �̂1
K(d)

) by R (resp. R(d)) (see (2-1)).
The following theorem, and corollary are key calculations to prove Theorem 1.2 in Section 4.

Theorem 2.8. Let n be an integer.

(1) The homomorphism

λ :Wm+1(K )→Wm+1(K(d))

sends filn Wm+1(K ) into filbn/dcWm+1(K(d)).

(2) The homomorphism

µ : �̂1
K → �̂1

K(d)

sends filn �̂1
K into filbn/dc �̂1

K(d)
. Let j be an integer. The induced map

fil( j+1)d−1 �̂
1
K /fil jd−1 �̂

1
K → Gr j �̂

1
K(d)

is injective, here Gr j := fil j /fil j−1.

Corollary 2.9. Let χ be a character in H1(K ,Q/Z). The following identity holds:

SwR(d)(χ
(d))=

⌊
SwR(χ)

d

⌋
.

Proof of Corollary 2.9. Taking the p-primary part of χ and an isomorphism 1
pm+1 Z/Z∼= Z/pm+1Z, we

reduce to the case when χ ∈H1(K ,Z/pm+1Z). Take α∈Wm+1(K ) such that α maps to χ via the boundary
map Wm+1(K )→ H1(K ,Z/pm+1Z) and vR(α) = −SwR(χ). Since the map Fmd :Wm+1(K )→ �̂1

K

respects the filtrations, we have Fmdα ∈ fil−SwR(χ) �̂
1
K . On the other hand, by Proposition 2.3(2),

we have Fmdα = rsw(χ) /∈ fil−1−SwR(χ) �̂
1
K . By the definition of the filtration on �̂1

K , the equality
v

log
R (Fmdα)=−SwR(χ) holds.
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When SwR(χ)=0, χ is unramified since χ is p-torsion. Thus χ (d) is unramified too by the construction
of χ (d), which implies the assertion in this case.

Assume SwR(χ) > 0. Let r := bSwR(χ)/dc. From Theorem 2.8(1), the inequality vR(d)(λ(α))≥−r
holds. Thus χ (d) is contained in filr H1(K(d),Z/pm+1Z), which implies the inequality SwR(d)(χ

(d))≤ r .
We show that the class of χ (d) in Grr H1(K(d),Z/pm+1Z) is nonzero. Consider the following commu-

tative diagram

filr Wm+1(K(d)) //

Fmd
))

Grr H1(K(d),Z/pm+1Z)

rsw
��

Grr �̂
1
K(d)
,

(2-9)

which is obtained from Proposition 2.3. It suffices to show that rsw(χ (d)) is nonzero. From the
commutativity of (2-9), rsw(χ (d)) coincides with the class containing Fmdλ(α) = µ(Fmdα). Since
v

log
R (Fmdα) = −SwR(χ), the class of Fmdα in fil(r+1)d−1 �̂

1
K /filrd−1 �̂

1
K is nonzero. the assertion

follows from Theorem 2.8(2), i.e., the injectivity of µ. �

To prove Theorem 2.8, we first collect some basic properties of the DVR R(d) and its module of
differentials. Let Rd be the normalization of R(d) in Kd . Rd is a DVR. The natural projection Cd

→ C (d)

and the i-th projection Cd
→ C define extensions of DVRs

R(d) ↪→ Rd
pr∗i←−↩ R.

Fix a uniformizer t of R. Let S1, . . . , Sd be the elementary symmetric polynomials of pr∗1 t, . . . pr∗d t in
Rd , i.e., S1, . . . , Sd satisfy the following identity

(T − pr∗1 t) · · · (T − pr∗d t)= T d
− S1T d−1

+ · · ·+ (−1)d Sd .

Lemma 2.10. (1) The residue field of R(d) is isomorphic to k
(
S1/Sd , . . . , Sd−1/Sd

)
.

(2) The elements S1, . . . , Sd are uniformizers of R(d).

(3) The valuations of pr∗1 t, . . . , pr∗d t with respect to Rd are the same.

Proof. Since the sequence S1, . . . , Sd is a regular system of parameters of the regular local ring of C (d) at
the k-rational point d P , the exceptional divisor of the blow-up of C (d) is isomorphic to a projective space
over k with homogeneous coordinates S1, . . . , Sd .

(1) This follows from the considerations above.

(2) At the generic point of the exceptional divisor, the elements S1, . . . , Sd generate the same ideal.
Since the exceptional divisor is regular, the assertion follows.

(3) The d-th symmetry group Sd acts on Rd permuting the pr∗i t , hence the assertion. �

By Lemmas 2.2 and 2.10(1), �̂1
R(d)(log) is an R̂(d)-free module with a basis d S1/Sd , . . . , d Sd/Sd .
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Lemma 2.11. For each integer i , define

ωi :=
d(pr∗1 t)

pr∗1 t i + · · ·+
d(pr∗d t)

pr∗d t i ∈ �̂
1
Kd
.

Let j be an integer. Then, the differentials ω jd+1, . . . , ω( j+1)d form an R̂(d)-basis of the R̂(d)-free module
(1/S j

d )�̂
1
R(d)(log).

Proof. To avoid notational confusion, we change the notation d to n in this proof.
Since the differentials ω j are Sn-invariant, they are indeed contained in �̂1

K(n)
.

Suppose j ≥ 0. Define a polynomial F(T ) := (T − pr∗1 t) · · · (T − pr∗n t). The following equalities
hold:

−d S1T n−1
+ · · ·+ (−1)nd Sn = d F =−F

∑
1≤i≤n

d pr∗i t
T − pr∗i t

= F
∑

1≤i≤n

1
pr∗i t

d pr∗i t
1− T/pr∗i t

= F
∑
r≥0

ωr+1T r .

Comparing the coefficients of T r , we obtain equalities

Snω1 =±d Sn

Snω2± Sn−1ω1 =±d Sn−1
...

Snωr+1+ (a linear combination of ωr , . . . , ωr−n)= 0 (r ≥ n)
...

The assertion follows by induction on r .
For the case when j < 0, take F as (1− pr∗1 tT ) · · · (1− pr∗n tT ) and argue similarly. �

Proof of Theorem 2.8. (1) Let eRd/R(d) be the ramification index of Rd/R(d). Let eRd/R be the ramification
index of Rd/R induced by pri . By Lemma 2.10, eRd/R is independent of i . From the definition of the
filtrations, the map pr∗i :Wm+1(K )→Wm+1(Kd) sends filn Wm+1(K ) into filneRd /R Wm+1(Kd). Since Sd

is a uniformizer of R(d) by Lemma 2.10, the equality

deRd/R = eRd/R(d)

holds. This shows the identity

filbn/dcWm+1(K(d))= filneRd /R Wm+1(Kd)∩Wm+1(K(d)),

hence the assertion.

(2) Note that the map µ : �̂1
K → �̂1

K(d)
is continuous. The differentials dt/tn+1, dt/tn, . . . ∈ �̂1

K

map to ωn+1, ωn, . . . via µ, all of which are contained in filbn/dc �̂1
K(d)

by Lemma 2.11. Thus the
map µ sends filn �̂1

K into filbn/dc �̂1
K(d)

. Since the classes of dt/t ( j+1)d , . . . , dt/t jd+1 form a k-basis of
fil( j+1)d−1 �̂

1
K /fil jd−1 �̂

1
K, the last assertion follows from Lemma 2.11. �
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3. Generalized jacobians and blow-ups of symmetric powers

In this section, we fix a base scheme S. Let C be a projective smooth S-scheme whose geometric fibers
are connected and of dimension 1. Let m be a relative effective Cartier divisor of C/S, i.e., a closed
subscheme of C which is finite flat of finite presentation over S. We also call m a modulus. Let us denote,
for S-schemes T , the projections C ×S T → T by the same symbol pr. In this section, we recall and
study the notion of generalized jacobian varieties. Let d be an integer and m be a modulus. Let T be an
S-scheme. Consider a datum (L, ψ) such that:

• L is an invertible sheaf of deg= d on CT .

• ψ is an isomorphism OmT → L|mT .

We say that two such data (L, ψ) and (L′, ψ ′) are isomorphic if there exists an isomorphism of invertible
sheaves f : L→ L′ making the following diagram commute:

OmT

ψ
//

ψ ′ ""

L|mT

f |mT{{

L′|mT

For an S-scheme T , define a set

Picd,pre
C,m (T ) := {isomorphism classes of (L, ψ) defined as above}.

Picd,pre
C,m extends in an obvious way to a presheaf on Sch/S, which we also denote by Picd,pre

C,m . Define Picd
C,m

as the étale sheafification of Picd,pre
C,m . Their fundamental properties which we use without proofs are:

(1) Picd
C,m are represented by S-schemes.

(2) When m is faithfully flat over S, Picd,pre
C,m are already étale sheaves.

(3) Pic0
C,m is a smooth commutative group S-scheme with geometrically connected fibers.

(4) Picd
C,m are Pic0

C,m-torsors.

When m= 0, properties (1) and (3) are proved in [Bosch et al. 1990]. For general m, they can be proved
similarly as in [Bosch et al. 1990, 9.3], or can be deduced from the case when m= 0 and Lemma 3.1.

Pic0
C,m is called the generalized jacobian variety of C with modulus m. When m= 0, this is the jacobian

variety of C . In this case, we also denote Picd
C,0 by Picd

C . Let m and m̃ be moduli such that m⊂ m̃. There
exists a natural map from Picd

C,m̃ to Picd
C,m, restricting ψ . Since m̃ is a finite S-scheme, this map is a

surjection as a morphism of étale sheaves.
Assume that C→ S has a section. In this case, Picd

C has an expression as a sheaf as follows [Bosch
et al. 1990, 8.1]. Let T be an S-scheme, and L1 and L2 are invertible sheaves of deg= d on CT . Define an
equivalence relation on Picd,pre

C such that L1 and L2 are equivalent if and only if there exists an invertible
sheaf M on T such that L1 ∼= L2⊗ pr∗M. If C→ S has a section, the quotient presheaf of Picd,pre

C by
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this equivalence relation is an étale sheaf and coincides with the étale sheafification of Picd,pre
C via the

natural surjection. In particular, the identity map Picd
C → Picd

C corresponds to an equivalence class of
invertible sheaves on C ×S Picd

C . In this paper, we call this class the universal class of invertible sheaves
of deg= d .

From now on we fix a modulus m̃. We call a modulus m a submodulus if m⊂ m̃ holds. Until the last
paragraph, we treat the case when submoduli considered are everywhere strictly positive on S. Let m be
a submodulus which is everywhere strictly positive. Then, Picd

C,m has an explicit expression as a sheaf, as
explained before.

Denote the genus of C by g. This is a locally constant function on S. We consider a condition on an
integer d as below:

d ≥max{2g− 1+ deg m̃, deg m̃}. (3-1)

When S is quasicompact, such a d always exists. For an integer d and a submodulus m, denote
dm := d − deg m̃+ degm. If d satisfies (3-1), dm satisfies (3-1) with m̃ replaced by m.

Fix an integer d satisfying (3-1). Let T be an S-scheme and L be an invertible sheaf of deg= d on
CT . For every usual point t ∈ T , R1 pr∗(L(−m̃)|Ct ) and R1 pr∗(L|Ct ) are zero by Serre duality and a
degree argument. In this case, pr∗ L(−m̃) and pr∗ L are locally free sheaves and their formations commute
with any base change, i.e., for any morphism of S-schemes f : T ′→ T , the base change morphisms
f ∗ pr∗ L→ pr∗ f ∗L and f ∗ pr∗(L(−m̃))→ pr∗ f ∗(L(−m̃)) are isomorphisms. Also R1 pr∗ f ∗L and
R1 pr∗ f ∗(L(−m̃)) are zero.

Let m be a submodulus. Denote by U the complement of m in C . The Abel–Jacobi map U (dm)→Picdm
C,m

is a map which sends D∈U (dm) to (OC(D), ιD), where ιD is the one induced from the natural identification
OC\D ∼=OC(D)|C\D . In this section, we define and study a compactification C̃ (dm)

m of the Abel–Jacobi
map by constructing the following commutative diagram of smooth S-schemes:

U (dm)
� _

��

� � // C̃ (dm)
m

//
� _

��

Picdm
C,m

�

� _

(3-7)
��

Xm

∼=
//

##

P(Em) //

(3-5)
��

Pdm
m

(3-2)
��

C (dm) Picdm
C .

The S-scheme C̃ (dm)
m has, on the one hand, a clear moduli description, and, on the other hand, can be

identified by an open subscheme of a blow-up, which will be denoted by Xm, of C (dm).
Let L be an invertible sheaf on CT for an S-scheme T . Denote L/(L(−m)) by Lm.
For an S-scheme T , consider a pair (L, φ) such that L is an invertible sheaf of deg= dm on CT and

φ is an injection OT → pr∗ Lm such that the quotient pr∗ Lm/OT is locally free. Call such pairs (L, φ)
and (L′, φ′) isomorphic if there exists an isomorphism f : L −→∼ L′ such that the following diagram
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commutes:
OT

φ′

##

φ

{{

pr∗ Lm pr∗ f
// pr∗ L′m.

Define Pdm
m (T ) as the set of isomorphism classes of such pairs. This is an étale sheaf on Sch/S. Define

a map
Pdm
m → Picdm

C (3-2)

by forgetting φ. Let X be a scheme, and F be a locally free sheaf of finite rank on X . We use a
contra-Grothendieck notation for a projective space. Thus the X -scheme P(F) parametrizes invertible
subsheaves of F .

Lemma 3.1. The sheaf Pdm
m is represented by a proper smooth S-scheme. Assume that C → S has a

section. Let L′ be a representative invertible sheaf of the universal class. Then, as sheaves on Sch/Picdm
C ,

Pdm
m is isomorphic to the projectivization P(pr∗ L′m) of pr∗ L′m.

Proof. First we consider the case when C(S) is not empty. In this case, Picdm
C has an explicit expression

as a sheaf, as explained before.
Via the map (3-2), we regard Pdm

m as a sheaf on Sch/Picdm
C . Fix a representative invertible sheaf

L′ of the universal class. Let N be an element of P(pr∗ L′m)(T ), where T is a Picdm
C -scheme. Let

φ :OT → pr∗((L′⊗ pr∗N−1)m) be a morphism obtained by tensoring the inclusion N ↪→ pr∗ L′m with
N−1. Then, the assignment N 7→ (L′ ⊗ pr∗N−1, φ) defines a morphism of sheaves on Sch/Picdm

C ,
P(pr∗ L′m)→ Pdm

m . This is an isomorphism. Indeed, we can construct its inverse as follows. Let T be a
Picdm

C -scheme and (L, φ) be an element of Pdm
m (T ). Let a : T → Picdm

C be the structure map. Then, there
exists an invertible sheaf N on T such that L⊗ pr∗N is isomorphic to a∗L′. Such an N is unique since
C→ S has a section. Then, N φ⊗N

−−−→ pr∗((L⊗ pr∗N )m)−→∼ pr∗ a∗L′m is an element of P(pr∗ L′m)(T ).
Next we consider the general case. As the map C→ S has a section étale locally on S, the sheaf Pdm

m

is represented, étale locally on S, by a projective space bundle. Since the dual of the canonical line bundle
of a projective space bundle is relatively ample, the étale descent is effective. �

Let (L, φ) be the universal element on Pdm
m . Define Em as the OPdm

m
- module fitting in the following

diagram of sheaves on Pdm
m :

pr∗(L(−m)) //

��

0

��

Em //

��

OPdm
m

φ

��

pr∗ L p
// pr∗ Lm,

(3-3)
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where the bottom horizontal arrow is the pushforward of the quotient map and each square is cartesian.
Since all the right arrows are locally split injections and p : pr∗ L→ pr∗ Lm is a surjection of locally free
sheaves, Em is locally free of finite rank and all the left arrows are locally split injections.

Let P(Em) be the projectivization of Em. As a sheaf on Sch/S, P(Em) parametrizes triples (L, φ,M)

such that (L, φ) is an element of Pdm
m and M is an invertible subsheaf of pr∗ L⊕ OT such that the

following diagram commutes:
M //

��

OT

φ

��

pr∗ L p
// pr∗ Lm,

(3-4)

where each arrow from M is the composition of the inclusion M ↪→ pr∗ L⊕OT with the respecitve
projection. This is a proper smooth S-scheme.

Lemma 3.2. The map pr∗(L(−m))→ Em in (3-3) induces a closed immersion P(pr∗ L(−m)) ↪→ P(Em).
The closed subspace P(pr∗ L(−m)) is a hyperplane bundle of P(Em).

Proof. The assertion follows from the exact sequence

0→ pr∗(L(−m))→ Em→OPdm
m
→ 0. �

As a subsheaf of P(Em), P(pr∗ L(−m)) parametrizes triples (L, φ,M) such that the first projection
M→ pr∗ L factors through pr∗ L(−m).

Now we define a map P(Em)→ C (dm) of S-schemes taking the homothety class of the left vertical
arrow in (3-4).

Let T be an S-scheme and (L, φ,M) be an element of P(Em)(T ). Since the arrow Em→ pr∗ L in
(3-3) is locally a split injection, the first projection M→ pr∗ L is injective and the cokernel is locally
free. Since these hold after any base change t→ T from the spectrum of a field, the map pr∗Mt → Lt

is injective for a usual point t of T . Thus OCT → L⊗ pr∗M−1 defines an effective Cartier divisor.
Since deg(L−1

⊗ pr∗M) equals to −dm, Spec(OCT /(L−1
⊗ pr∗M)) is finite flat of finite presentation of

deg= dm over T by the Riemann–Roch formula.
Let C (dm) be the dm-th symmetric product of C , which parametrizes effective Cartier divisors of

deg= dm on C . Define a map
P(Em)→ C (dm) (3-5)

sending (L, φ,M) to Spec(OCT /(L−1
⊗ pr∗M))⊂ CT .

Let Z0 be the closed subscheme of C (dm) defined by the map C (d−deg m̃)
→ C (dm), adding m. Let Xm

be the blow-up of C (dm) along Z0. We now construct an isomorphism Xm→ P(Em), by which we will
identify them.

We define a map
h : Xm→ P(Em) (3-6)

as follows.
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Let D be the universal effective Cartier divisor on C (dm). Denote OC×SC (dm)(D) by O(D) and O(D)⊗
Om×SC (dm) by O(D)m for short. The composition of the natural maps OC×SC (dm) → O(D)→ O(D)m
defines a map of locally free sheaves OC (dm)→ pr∗(O(D)m) on C (dm). After a base change T → C (dm),
this map becomes zero if and only if T → C (dm) factors through Z0. Thus the image of the dual
(pr∗O(D)m)∨→OC (dm) of this map is the ideal I defining Z0. Let L :=OC×S Xm(D)⊗pr∗(IOXm). Define
φ :OXm→ pr∗(OC×S Xm(D)⊗ pr∗(IOXm))m to be the morphism obtained from the map (IOXm)

−1
→

pr∗OC×S Xm(D)m by tensoring IOXm . Let IOXm→ pr∗ L be the map induced from the natural inclusion
OXm→pr∗OC×S Xm(D) by tensoring with IOXm . This map and the natural inclusion IOXm→OXm make
the sheaf IOXm into a subsheaf of pr∗ L⊕OXm , which makes the diagram (3-4) commutes. The triple
(L, φ, IOXm) defines a morphism h : Xm→ P(Em). From the construction, h is a morphism over C (dm).

Lemma 3.3. (1) As a subsheaf of P(Em), P(Em)×C (dm) Z0 parametrizes triples (L, φ,M) such that
the second projection M → O are zero. As closed subspaces of P(Em), P(Em) ×C (dm) Z0 and
P(pr∗ L(−m)) are equal. In particular, P(Em)×C (dm) Z0 is a smooth divisor of P(Em).

(2) Let V be the complement of Z0 in C (dm). As a subsheaf of P(Em), P(Em)×C (dm) V parametrizes
triples (L, φ,M) such that the second projection M → O is an isomorphism. The projection
P(Em)×C (dm) V → V is an isomorphism and its inverse coincides with the restriction of h to V .

Proof. We are considering the following diagram:

P(Em)×C (dm) Z0 //

��

P(Em)

��

P(Em)×C (dm) Voo

��

Z0 // C (dm) Voo

(1) Let (L, φ,M) be an element of P(Em)(T ). This maps into Z0 via the map P(Em)→C (dm) if and only
if the composition of pr∗M→ L→ Lm is zero. Since the right vertical arrow of (3-4) is an injection,
this occurs if and only if the second projection M→ OT is zero. The second assertion is obvious
from the definition and the expression of P(pr∗ L(−m)) as a subsheaf. The last assertion is verified for
P(pr∗ L(−m)) in Lemma 3.2.

(2) Let T be an S-scheme and (L, φ,M) be an element of P(Em)(T ). Let t be a usual point of T . By
(1), the pullback of the projection M→OT by t ↪→ T is an isomorphism if and only if the image of t by
the map

T (L,φ,M)
−−−−→P(Em)→ C (dm)

is in V .
Let p : P(Em)×C (dm) V → V be the projection. Since h : Xm→ P(Em) is a C (dm)-morphism, p ◦ h|V

is the identity. Let (L, φ,M) be an element of P(Em)×C (dm) V (T ). Identify M and OT by the second
projection. By this rigidification, (L, φ,OT ) is determined by the first projection. Thus p is an injection
as a morphism of sheaves. The assertion follows. �
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After these preparations, we obtain the following:

Theorem 3.4. The morphism h : Xm→ P(Em) in (3-6) is an isomorphism.

Proof. By Lemma 3.3(1) and the universality of blow-ups, there exists a unique map P(Em)→ Xm which
is a lift of P(Em)→ C (dm). Let V be as in Lemma 3.3(2), i.e., the complement of Z0 in C (dm). By the
lemma, V can be considered as an open subscheme of P(Em). On the other hand, as V and Z0 are disjoint,
V also can be considered as an open subscheme of Xm. Note that the complements of V in P(Em) and
Xm are supports of divisors. Therefore, V is schematically dense in both of P(Em) and Xm. Since the
morphisms Xm→P(Em) and P(Em)→ Xm constructed above induce the identity on V , and both schemes
are separated over S, the assertion follows. �

Let T be an S-scheme and (L, ψ) be an element of Picdm
C,m(T ). Define φ as the composition OT →

pr∗OmT
pr∗ ψ−−−→ pr∗ Lm. Then, the assignment (L, ψ) 7→ (L, φ) defines a morphism

Picdm
C,m→ Pdm

m . (3-7)

Lemma 3.5. The morphism Picdm
C,m→ Pdm

m in (3-7) is an open immersion. The open subscheme Picdm
C,m

parametrizes pairs (L, φ) such that the maps OC → Lm obtained from φ by adjunction are surjective.

Proof. This morphism is an injection of sheaves. Let (L, φ) be an element of Pdm
m (T ). This element is in

Picdm
C,m if and only if the map OCT → Lm obtained from φ by adjunction is a surjection. This is an open

condition. �

Next, we study behavior of various schemes when one replaces the modulus m. Let m be a submodulus
and m′ := m̃−m. Define a closed immersion C (d−degm′)

→ C (d) by adding m′. We denote this closed
subscheme of C (d) by Zm. If m1⊂m2, the inclusion Zm1 ⊂ Zm2 holds. The closed immersion Zm1 ↪→ Zm2

is induced by adding m2−m1. This induces a map

Xm1 ↪→ Xm2 (3-8)

of the blow-ups along Z0. Let m1 and m2 be submoduli such that m1⊂m2. Define a map im1,m2 : P
dm1
m1 →

P
dm2
m2 by sending (L1, φ1) to (L1(m2−m1), φ), where φ is the composition of φ1 and the natural injection

pr∗(L1)m1 → pr∗ L1(m2−m1)m2 . The map im1,m2 is a closed immersion.

Proposition 3.6. (1) Let m1 and m2 be submoduli such that m1 ⊂ m2. As a subsheaf of P
dm2
m2 , P

dm1
m1

parametrizes pairs (L2, φ2) such that the compositions OC
pr∗ φ2−−−→ (L2)m2 → (L2)m2−m1 are zero.

The commutative diagram

Xm1
//

��

P
dm1
m1

��

Xm2
// P

dm2
m2

induced by (3-6), (3-8), and the projections P(Emi )→ P
dmi
mi is a cartesian diagram.
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(2) Assume that a submodulus m is the sum
∑

i mi of submoduli of deg= 1. Let m′i :=
∑

j 6=i m j . Then,

the open subspace Picdm
C,m of Pdm

m is the complement of P
dm′i
m′i

for all i .

Proof. (1) The first assertion is obvious from the definition of im1,m2 . To prove the second assertion, it is
enough to show that Em1

∼= i∗m1,m2
Em2 by Theorem 3.4. Let (Li , φi ) be the universal elements of P

dmi
mi .

The pullback of the cartesian diagram

Em2
//

��

O
P

dm2
m2

��

pr∗ L2 // pr∗(L2)m2

by im1,m2 extends to the diagram

i∗m1,m2
Em2

//

��

O
P

dm1
m1

��

pr∗ L1 //
� _

��

pr∗(L1)m1� _

��

pr∗(L1(m2−m1)) // pr∗(L1(m2−m1))m2,

where the two squares are cartesian diagrams, which shows the assertion.

(2) This follows from Lemma 3.5 and (1). �

Define the S-scheme C̃ (dm)
m as the fibered product

C̃ (dm)
m

//

��

Picdm
C,m

��

Xm
// Pdm

m ,

(3-9)

where the bottom horizontal map Xm→ Pdm
m is the composition Xm −→

∼ P(Em)→ Pdm
m . The S-scheme

C̃ (dm)
m is a projective space bundle on Picdm

C,m.

Proposition 3.7. The first projection C̃ (dm)
m → Xm is an open immersion. Moreover, if m is the sum

∑
i mi

of submoduli of deg= 1, C̃ (dm)
m coincides with the complement of Xm′i

for all i , where m′i :=
∑

j 6=i m j .

Proof. These are consequences of Lemma 3.5 and Proposition 3.6. �
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The Abel–Jacobi map U (dm)→ Picdm
C,m and the canonical open immersion U (dm)→ Xm define the

following commutative diagram

U (dm) //

��

Picdm
C,m

��

Xm
// Pdm

m ,

(3-10)

which induces an Xm-morphism U (dm)→ C̃ (dm)
m . This is an open immersion, since the vertical arrows

of (3-9) and the left vertical arrow of (3-10) are open immersions. Combining the previous results, we
obtain the following:

Corollary 3.8. As an open subscheme of C̃ (dm)
m , U (dm) is the complement of C̃ (dm)×C (dm) Z0.

Proof. After a finite faithfully flat base change of S, we may assume that m decomposes the sum
∑

i mi

of submoduli mi of deg = 1. Let V be the complement of Z0 in C (dm). Since V \U (dm) is included in⋃
i Zm′i

, where m′i :=
∑

j 6=i m j , the assertion follows from Proposition 3.7. �

Now assume m = 0. If C has an S-valued point P , it is well-known that C (d) is a projective space
bundle over Picd

C when d ≥ max{2g− 1, 0}, where g is the genus of C . In other words, there exists a
locally free sheaf F of finite rank on Picd

C such that C (d) is isomorphic to P(F). Classically this is proved
using the Poincaré bundle. On the other hand, using Proposition 3.7, we might prove this fact with an
extra condition d ≥max{2g, 1}, identifying Picd

C,P
∼= Picd

C (see [Bosch et al. 1990, 8.2]).

Corollary 3.9. Assume that S is connected noetherian. Let m be a modulus>0 (resp.=0) of C and d be a
sufficiently large integer. Take a geometric point x on C̃ (d)

m (resp. on C (d)) and denote y its image to Picd
C,m.

Then, the morphism of profinite groups π1(C̃
(d)
m , x)→ π1(Picd

C,m, y) (resp. π1(C (d), x)→ π1(Picd
C , y))

induced from the projection C̃ (d)
m → Picd

C,m (resp. C (d)
→ Picd

C ) is an isomorphism.

Proof. When m= 0, let us also denote C (d) by C̃ (d)
m for. If m> 0 (resp. = 0), C̃ (d)

m is a projective space
bundle over Picd

C,m (resp. after the base change from S to an étale cover). In any case, the morphism
C̃ (d)
m → Picd

C,m is proper surjective smooth with geometrically connected fibers. Take a geometric point s
of C̃ (d)

m,y above x . Since the scheme C̃ (d)
m,y is simply connected, the homotopy exact sequence

π1(C̃
(d)
m,y, s)→ π1(C̃ (d)

m , x)→ π1(Picd
C,m, y)→ 1

implies the assertion. �

4. Proofs

In this section, we prove Theorems 1.1 and 1.2.
First we need to recall basic results on symmetric products of curves.
Let C be a projective smooth geometrically connected curve over a perfect field k. Let m be a modulus

on C and write m = n1 P1+ · · · + nr Pr , where P1, . . . , Pr are distinct closed points of m. Denote the
complement of m in C by U . Let di := deg Pi . Take a positive integer d so that d ≥ degm.
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Lemma 4.1. The morphism π : C (n1d1)× · · · ×C (nr dr )×C (d−degm)
→ C (d), taking the sum, is étale at

the generic point of the closed subvariety {n1 P1}× · · · × {nr Pr }×C (d−degm) of C (n1d1)× · · ·×C (nr dr )×

C (d−degm).

Proof. We may assume that k is algebraically closed (hence di = 1 for all i). Since the map π :
C (n1)× · · ·×C (nr )×C (d−degm)

→ C (d) is finite flat, it is enough to show that there exists a closed point
Q of n1 P1+ · · · nr Pr +C (d−degm) over which there are degπ points on C (n1)× · · ·×C (nr )×C (d−degm).
Choose Q as a point corresponding to a divisor n1 P1 + · · · nr Pr + Pr+1 + · · · + Pr+d−degm, where
P1, . . . , Pr+d−degm are distinct points of U (k). �

Lemma 4.2. The morphism π1(U d)→ π1(U (d)) induced from the natural projection U d
→U (d) (base

points are omitted) is surjective.

Proof. Since U d and U (d) are geometrically connected over k, it is enough to show the surjectivity after
the base change to an algebraic closure k by considering the homotopy exact sequence 1→ π1(U d

k
)→

π1(U d)→ π1(Spec(k))→ 1 and the counterpart of U (d).
Assume that k is algebraically closed. Let V be a connected finite étale covering of U (d). We show that

the pullback V×U (d)U d is also connected, which shows the assertion. Note that, since the schemes U d and
U (d) are normal, V and V ×U (d) U d are normal. In particular, V ×U (d) U d is the disjoint union of integral
schemes. Since the map U d

→U (d) is finite flat, each connected component of V ×U (d) U d surjects onto
V . Take a k-valued point P ∈U (k). Take a k-valued point P ′ ∈ V (k) over d P ∈U (d)(k). Since the fiber
of U d

→U (d) over the point d P consists of one point (P, P, . . . , P), the fiber of V ×U (d) U d
→ V over

P ′ also consists of one point. Thus the scheme V ×U (d) U d has only one connected component. �

Proof of Theorem 1.2. Let C be a projective smooth geometrically connected curve over a perfect field k.
Let m= n1 P1+· · ·+nr Pr (ni ≥ 1) be a modulus on C , and U be its complement. Set A as the subgroup
of H1(U,Q/Z) consisting of characters χ such that SwPi (χ) ≤ ni − 1 for i = 1, . . . , r , and B as the
subgroup of H1(PicC,m,Q/Z) consisting of multiplicative elements.

We construct a map 9 : B→ A. Take ρ ∈ B. Define χ to be the pullback of ρ1 by the natural map
U → Pic1

C,m. We need to show that the ramification is bounded by m. Take a natural number d large
enough so that d satisfies (3-1) for m. Consider the following commutative diagram:

U d
=U × · · ·×U π

//

��

U (d)

p
��

Pic1
C,m× · · ·×Pic1

C,m
// Picd

C,m

(4-1)

By the multiplicativity of ρ, we know that π∗ p∗ρd
= χ�d . Lemma 4.2 implies that p∗ρd

= χ (d). We
show that SwPi (χ) ≤ ni − 1. To do this, it is enough to prove that the Swan conductor of χ (ni ), with
respect to the DVR at the generic point of the blow-up of C (ni ) along ni Pi , is zero, by Corollary 2.9. We
may assume that k is algebraically closed (hence di = 1). Note that the right vertical arrow p in (4-1)
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factors through C̃ (d)
m :

U (d)
→ C̃ (d)

m → Picd
C,m.

Since the pullback of ρd by p is χ (d), we find that χ (d) is unramified at the generic point of the complement
C̃ (d)
m \U (d). Thus, by Lemma 4.1 and Corollary 3.8, the character

χ (n1)� 1� · · ·� 1+ 1�χ (n2)� · · ·� 1+ · · ·+ 1� · · ·�χ (d−degm)

on U (n1)× · · · ×U (nr )×U (d−degm) is unramified at the generic point of the exceptional divisor of the
blow-up of C (n1)×· · ·×C (nr )×C (d−degm) along {n1 P1}×· · ·×{nr Pr }×C (d−degm). Using Corollary 2.6
repeatedly, the assertion is proved.

Thus the map B→ A, pulling back by U → Pic1
C,m, is well-defined. We denote this map by 9.

First we show the injectivity of 9. Take ρ from the kernel of 9. Since the multiplication map
Picn

C,m×Picm
C,m→ Picn+m

C,m and the two projections Picn
C,m×Picm

C,m→ Picn
C,m,Picm

C,m have geometrically
connected fibers, the triviality of two of ρn, ρm, ρn+m implies the triviality of the other. Thus it is enough
to show the triviality of ρd for sufficiently large d . Consider the diagram (4-1). By Lemma 4.2, we know
that p∗ρd is trivial, which implies that ρd is trivial by Corollary 3.9.

The surjectivity of 9 is proved as follows. Take χ ∈ A. Let d be an integer satisfying (3-1) for m.
Corollary 2.9, Proposition 3.7, and Lemma 4.1 imply that the character χ (d) extends to a character χ̃ (d)

on C̃ (d)
m . Corollary 3.9 implies that χ̃ (d) descends to a character ρd on Picd

C,m. Let d1 and d2 be integers
which satisfy (3-1). The commutative diagram

U (d1)×U (d2)

��

// U (d1+d2)

��

Picd1
C,m×Picd2

C,m
q
// Picd1+d2

C,m

and the fact that the left vertical map has geometrically connected fibers show q∗ρd1+d2 =ρd1 �1+1�ρd2 .
Fix a nonzero effective Cartier divisor D on U such that deg D satisfies (3-1). Let ξ be the pullback of
ρdeg D by the map Spec(k)→ Picdeg D

C,m , corresponding to the point D. For an arbitrary integer n, take a
natural number m so large that the integer n+m deg D satisfies (3-1). Define ρn

:= f ∗ρn+m deg D
·a∗ξ−m ,

where f : Picn
C,m→ Picn+m deg D

C,m is multiplication by OC(m D) and a : Picn
C,m→ Spec(k) is the structure

map. This construction does not depend on m, since the multiplicativity of ρn is already verified for
large n. By the same reason, the characters ρn form a multiplicative element on PicC,m. The equality
χ =9(ρ) follows from the commutative diagram

U
(id,g)

// U ×U (deg D) //

��

U (deg D+1)

��

Pic1
C,m×Picdeg D

C,m
// Picdeg D+1

C,m ,
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where g is the composition of the structure map U → Spec(k) and the map Spec(k)→ U (deg D) corre-
sponding to the divisor D. Indeed, the pullback of ρdeg D+1 by the map U→U×U (deg D)

→U (deg D+1)
→

Picdeg D+1
C,m is χ · b∗ξ , where b : U → Spec(k) is the structure map. On the other hand, the pullback of

ρdeg D+1 the other way is 9(ρ) · b∗ξ . �

To deduce Theorem 1.1 from Theorem 1.2, first we recall basic facts on torsors.
Assume that k is algebraically closed. Fix a connected commutative algebraic k-group G. Let C(G)

be the category as follows. The objects are pairs (H, φ : H → G) where H are connected commutative
algebraic k-groups and φ are abelian isogenies. The morphisms (H1, φ1 : H1→G)→ (H2, φ2 : H2→G)
are pairs ( f, g) where f : H1 → H2 is a morphism of k-group schemes such that φ2 ◦ f = φ1 and
g : H1→ H2 is a compatible morphism of torsors such that φ2 ◦ g = φ1. Here we regard H1 (resp. H2)
itself as an H1-torsor (resp. H2-torsor) by the multiplication. Note that the kernels of φi are constant
k-schemes since Hi are Galois coverings of G.

Lemma 4.3. Let the notation be as above. Let (Hi , φi : Hi → G) be objects in C(G) for i = 1, 2.

(1) If there exists a morphism H1→ H2 of G-schemes, there exists a unique morphism f : H1→ H2 of
k-group schemes with φ2 ◦ f = φ1.

(2) The map

Hom((H1, φ1 : H1→ G), (H2, φ2 : H2→ G))→ HomG(H1, H2)

sending ( f, g) 7→ g is bijective. Here the target is the set of morphisms of G-schemes.

Proof. Let ei ∈ Hi (k) be the units.

(1) Uniqueness follows from the fact that Hi are connected étale coverings of G and such an f must
send e1 to e2. Let f : H1→ H2 be the G-morphism which sends e1 to e2. Such an f does exist since H2

is Galois over G. We need to show that the diagram

H1× H1
f× f
//

��

H2× H2

��

H1
f

// H2,

where the vertical maps are the multiplications, is commutative. This follows since H1×H1 is a connected
étale covering of G×G and the two maps send (e1, e1) to e2.

(2) Injectivity follows since a goup homomorphism f : H1→ H2 over G is unique if it exists by (1).
We show the surjectivity. Thus we assume that there is a group homomorphism f : H1→ H2 over G.
Let g : H1→ H2 be a morphism of G-schemes. Since H1 is a connected étale covering of G, this is
uniquely determined by the image a := g(e1), which is contained in kerφ2. Let g′ : H1→ H2 be the
compatible morphism of torsors which sends e1 to a. Since a ∈ kerφ2 and φ2 ◦ f = φ1, this is a morphism
of G-schemes. Thus we have g = g′. �
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Proof of Theorem 1.1. Let (G0,G1) be a connected abelian covering of (Pic0
C,m,Pic1

C,m). Since the d-th
power of Pic1

C,m is isomorphic to Picd
C,m as Pic0

C,m-torsors, the d-th power Gd of G1 is naturally equipped
with a compatible morphism Gd

→ Picd
C,m of torsors. Let K be the kernel of the map G0

→ Pic0
C,m.

This is a finite constant group since G0
→ Pic0

C,m is a Galois isogeny. Take a nontrivial homomorphism
χ : K → Q/Z. This defines characters ρd

∈ H1(Picd
C,m,Q/Z) for all d. From the construction, they

form a multiplicative element on PicC,m. Theorem 1.2 implies that the pullback of ρ1 by U → Pic1
C,m is

nontrivial and its ramification is bounded by m, which shows the first part of Theorem 1.1.
Define the category C1 as the category of geometrically connected abelian coverings of U whose

ramifications are bounded by m and the category C2 as the category of connected abelian coverings of
(Pic0

C,m,Pic1
C,m). We have constructed a functor 8 : C2→ C1. We show that this functor is an equivalence

of categories. We only treat the case when k is algebraically closed. General case follows from this
special case by using an argument of Galois descent.

Assume that k is algebraically closed. Let C := C(Pic0
C,m) be the category defined above. In this case,

fixing a closed point P of U , C2 is isomorphic to C via the isomorphism Pic0
C,m→ Pic1

C,m of torsors,
tensoring OC(P).

We show that the functor 8′ : C → C1, pulling back by the morphism U → Pic0
C,m sending Q to

OC(Q− P) is an equivalence. Faithfulness is obvious since there only occur connected coverings. To
show fullness, let (Gi ,Gi → Pic0

C,m) be elements of C for i = 1, 2 and let Vi :=8
′(Gi ,Gi → Pic0

C,m).
By Lemma 4.3(2) and faithfulness, it is enough to show that, if there is a map V1→ V2, there is a map
G1→ G2. The kernel Ki of Gi → Pic0

C,m is canonically identified with the Galois group of Vi → U .
If there is a map V1→ V2, there is a map of abelian groups h : K1→ K2, which is independent of the
choice of V1→ V2. We show the commutativity of the diagram

π1(Pic0
C,m)

p2
$$

p1
zz

K1
h

// K2

(4-2)

where the downward diagonals are the canonical surjections. Assume that there is an element σ ∈
π1(Pic0

C,m) such that p2(σ ) 6= hp1(σ ). Take a group homomorphism ρ0
: K2→Q/Z such that the images

of p2(σ ) and hp1(σ ) are different. Since the characters ρ0 p2 and ρ0hp1 are multiplicative and are pulled
back to the same character via the map U → Pic0

C,m, they are the same character, a contradiction. Thus
the diagram (4-2) is commutative, which implies that the quotient group G1/ker h of G1 is isomorphic
to G2.

For essential surjectivity, we argue as follows. Let V ∈ C1 be a connected cyclic covering of U . Take
a character on U whose kernel corresponds to V . By Theorem 1.3, this character is the pullback of a
multiplicative character ρ0 on Pic0

C,m. Let G0 be an étale covering of Pic0
C,m corresponding to the kernel

of ρ0. We need to show that G0 has a group structure. By the definition, G0 is connected. From the
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multiplicativity of ρ0, we know that there is a commutative diagram

G0
×G0 mG

//

��

G0

��

Pic0
C,m×Pic0

C,m
// Pic0

C,m.

Let us denote the map mG multiplicatively. Let F be the fiber of G0
→ Pic0

C,m over 1 ∈ Pic0
C,m. For

distinct points y1, y2 ∈ F , the multiplication from right by y1 and y2, G0
→ G0 are distinct. Indeed,

Assume that xy1 = xy2 for all x ∈ G0. Take a point x in F . The multiplication from left by x , G0
→ G0

is a Pic0
C,m-morphism and sends y1 and y2 to the same point, which implies that y1 = y2 since G0 is a

connected covering of Pic0
C,m.

Thus there exists an element e ∈ F such that xe = x for all x ∈ G0. Next we show the commutativity
of mG . This follows from the fact that G0

×G0 is a connected covering of Pic0
C,m×Pic0

C,m and that the
maps G0

×G0
→ G0, (x, y) 7→ xy and (x, y) 7→ yx send (e, e) to the same point e. The associativity

is proved in a similar way. Therefore it is verified that G0 has a commutative group structure such that
G0
→ Pic0

C,m is a group homomorphism, hence an abelian isogeny. It is easy to show that G0 is pulled
back to V . For a general V , use the fact that V is a connected component of the finite projective limit of
cyclic connected coverings which are quotients of V . �
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Algebraic monodromy groups
of l-adic representations of Gal(Q/Q)

Shiang Tang

In this paper we prove that for any connected reductive algebraic group G and a large enough prime l,
there are continuous homomorphisms

Gal(Q̄/Q)→ G(Q̄l)

with Zariski-dense image, in particular we produce the first such examples for SLn,Sp2n,Spinn, E sc
6

and E sc
7 . To do this, we start with a mod-l representation of Gal(Q̄/Q) related to the Weyl group of G

and use a variation of Stefan Patrikis’ generalization of a method of Ravi Ramakrishna to deform it to
characteristic zero.

1. Introduction

For a split connected reductive group G and a prime number l, it is natural to study two types of continuous
representations of 0Q = Gal (Q/Q): the mod l representations

ρ : 0Q→ G(Fl)

and the l-adic representations
ρ : 0Q→ G(Ql)

where we use the discrete topology for G(Fl) and the l-adic topology for G(Ql). Mod l representations
of 0Q are closely related to the inverse Galois problem for finite groups of Lie type, which asks for the
existence of surjective homomorphisms ρ : 0Q � G(k) for k a finite extension of Fl . It is still wide open,
even for small groups such as SL2. If we replace 0Q by 0F for some number field F , it is not hard to
show that every finite group is a Galois group over some number field, but if we insist on 0Q then the
problem becomes very difficult. On the other hand, we can ask for its analogs in the l-adic world:

Question 1. Are there continuous homomorphisms ρ : 0Q→ G(Ql) with Zariski-dense image?

We also ask a refined question which takes geometric Galois representations (in the sense of [Fontaine
and Mazur 1995]) into account:

Question 2. Are there continuous geometric Galois representations ρ : 0Q→ G(Ql) with Zariski-dense
image?

MSC2010: 11F80.
Keywords: Galois representation, Galois deformation theory.
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This paper gives a complete answer to Question 1. We shall call a reductive group G an l-adic algebraic
monodromy group, or simply an l-adic monodromy group for 0Q if the homomorphisms in Question 1
exist, and a geometric l-adic monodromy group for 0Q if the homomorphisms in Question 2 exist. We
prove the following theorem which gives an almost complete answer to Question 1:

Theorem 1.1 (Main Theorem). Let G be a connected reductive algebraic group. Then there are continu-
ous homomorphisms

ρl : 0Q→ G(Ql)

with Zariski-dense image for large enough primes l.

The key cases of our main theorem are contained the following theorem:

Theorem 1.2. For a simple algebraic group G, there are infinitely many continuous homomorphisms

ρl : 0Q→ G(Ql)

with Zariski-dense image for l large enough. We impose the condition l ≡ 1(4) for G = Bsc
n ,C sc

n , and
impose l ≡ 1(3) for G = E sc

7 .

Remark 1.3. Patrikis has shown that Ead
7 , E8, F4,G2 and the L-group of an outer form of Ead

6 are
geometric l-adic monodromy groups for 0Q, so we will not discuss these cases in the proof of the above
theorem. The congruence conditions on l for G = Bsc

n ,C sc
n , E sc

7 can be removed using a theorem proved
by Fakhruddin, Khare and Patrikis [2018]. We record it in Theorem 3.21.

It is shown in [Cornut and Ray 2018] that for sufficiently large regular primes p (i.e., a prime p that
does not divide the class number of Q(µp)) and for a simple, adjoint group G, there exist a continuous
representation of 0Q into G(Qp) with image between the pro-p and the standard Iwahori subgroups of G,
which generalizes a theorem of Greenberg [2016] for GLn . In particular, the image of the Galois group is
Zariski-dense. Their construction is nongeometric and is very different from ours. It is unknown whether
or not there are infinitely many regular primes, however.

It is an interesting question whether (for instance) SLn can be a geometric monodromy group for 0Q.
The following example shows that Question 2 is more subtle than Question 1, and we should not expect
an answer as clean as Theorem 1.1.

Example 1.4. Assuming the Fontaine–Mazur and the Langlands conjectures (see [Fontaine and Mazur
1995; Buzzard and Gee 2014]), there is no homomorphism ρ : 0Q→ SL2(Ql) that is unramified almost
everywhere, potentially semistable at l, and has Zariski-dense image.

Proof. In fact, by the Fontaine–Mazur and the Langlands conjectures, if such ρ exists, then ρ = ρπ for
some cuspidal automorphic representation π on GL2(AQ). But ρ is even, i.e., det ρ(c) = 1, π∞ (the
archimedean component of π) is a principal series representation, and π is associated to a Maass form.
Therefore, by the Fontaine–Mazur conjecture, ρπ has finite image, a contradiction. �
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In contrast, Theorem 1.2 shows in particular that SL2 is an l-adic monodromy group for 0Q. On the
other hand, SL2 can be a geometric l-adic monodromy group for 0F for some finite extension F/Q.

Example 1.5. Let f be a non-CM new eigenform of weight 3, level N , with a nontrivial nebentypus
character ε. Such f exist for suitable N , see [LMFDB 2013]. We write E for the field of coefficients of f .
Then for all l and λ | l, there is a continuous representation r f,λ : 0Q→ GL2(Eλ) which is unramified
outside {v : v | Nl} and Tr(r f,λ(Frp)) = ap for p not dividing Nl, with ap the p-th Hecke eigenvalue
of f . We have det(r f,λ)= κ

2ε where κ is the l-adic cyclotomic character. By a theorem of Ribet [1985,
Theorem 2.1], for almost all l, r f,λ(0Q) contains SL2(k) for a subfield k of kλ (the residue field of Eλ).
It follows that r f,λ has Zariski dense image. If we let F be a finite extension of Q that trivializes ε, then
the image of r ′ := κ−1

· r f,λ|0F lands in SL2(Eλ) and is Zariski-dense.

The classical groups GSpn , GSOn are known as geometric l-adic monodromy groups. Recent work
of Arno Kret and Sug Woo Shin [2016] obtains GSpin2n+1 as a geometric l-adic monodromy group
and Nick Katz [2018] constructs geometric Galois representations with monodromy group GLn . On the
other hand, most of the exceptional algebraic groups are known as geometric l-adic monodromy groups,
established in the work of Dettweiler and Reiter [2010], Zhiwei Yun [2014] and Stefan Patrikis [2016].
Patrikis [2016] constructs geometric Galois representations for 0Q with full algebraic monodromy groups
for essentially all exceptional groups of adjoint type. Along the way, Patrikis has obtained an extension
to general reductive groups of Ravi Ramakrishna’s techniques for lifting odd two-dimensional Galois
representations to geometric l-adic representations in [Ramakrishna 2002].

For the rest of this section, we sketch the strategy for proving Theorem 1.2, which makes use of
Patrikis’ generalization of Ramakrishna’s techniques but is very different from his arguments in many
ways. For the rest of this section, we assume that G is a simple algebraic group defined over Zl with a
split maximal torus T . Let 8=8(G, T ) be the associated root system. Let O be the ring of integers of
an extension of Ql whose reduction modulo its maximal ideal is isomorphic to k, a finite extension of Fl .
We start with a well-chosen mod l representation and then use a variant of Ramakrishna’s method to
deform it to characteristic zero with big image. Achieving this is a balancing act between two difficulties:
the inverse Galois problem for G(k) is difficult, so we want the residual image to be relatively “small”;
on the other hand, Ramakrishna’s method works when the residual image is “big”.

Let us recall a construction used in [Patrikis 2016]. Patrikis uses the principal GL2 homomorphism to
construct the residual representation

ρ : 0Q
r
−→GL2(k)

ϕ
−→G(k)

for r a surjective homomorphism constructed from modular forms and ϕ a principal GL2 homomorphism
(for its definition, see [Serre 1996; Patrikis 2016, Section 7.1]). But the principal GL2 is defined
only when ρ∨ (the half-sum of coroots) is in the cocharacter lattice X∗(T ), which is not the case for
G=SL2n,Sp2n, E sc

7 , etc. On the other hand, the principal SL2 is always defined but it is not known whether
SL2(k) is a Galois group over Q and the surjectivity of r is crucial in applying Ramakrishna’s method.
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For this reason, we use a different construction. To simplify notation, we use G, T to denote G(k), T (k),
respectively. We consider the following exact sequence of finite groups, which we shall refer to as the
N-T sequence:

1→ T → NG(T ) π
−→W→ 1

where W = NG(T )/T is the Weyl group of G. We want to take N = NG(T ) as the image of the residual
representation ρ. It turns out that the adjoint action of N on the Lie algebra g over k decomposes into at
most three irreducible pieces (Corollary 2.2), which is very good for applying Ramakrishna’s techniques.
It has been known for a long time that W is a Galois group over Q, but what we need is to realize N as a
Galois group over Q. A natural approach would be solving the embedding problem posed by the N-T
sequence, i.e., to suppose there is a Galois extension K/Q realizing W , and then to find a finite Galois
extension K ′/Q containing K such that the natural surjective homomorphism Gal (K ′/Q)� Gal (K/Q)
realizes π : N �W .

This embedding problem is solvable when the sequence splits, by an elementary case of a famous
theorem of Igor Shafarevich, see [Serre 1992, Claim 2.2.5]. In [Adams and He 2017], the splitting of the
N-T sequence is determined completely; for instance, it does not split for G = SLn,Sp2n,Spinn, E7. We
find our way out by replacing N with a suitable subgroup N ′ for which the decomposition of the adjoint
representation remains the same, then realizing N ′ as a Galois group over Q with certain properties, see
Sections 2A3–2A6. Finally, we define our residual representation ρ to be the composite

0Q � N ′→ G = G(k)

where the first arrow comes from the realization of N ′ as a Galois group over Q and the second arrow
is the inclusion map. We write ρ(g) for the Lie algebra g/k equipped with a 0Q-action induced by the
homomorphism

0Q
ρ
−→G Ad

−→GL(g).

Now we explain how to deform ρ to characteristic zero. This is the hardest part. For a residual
representation

ρ : 0Q→ G(k)

unramified outside a finite set of places S containing the archimedean place and a global deformation
condition for ρ (which consists of a local deformation condition for each v ∈ S), a typical question in
Galois deformation theory is to find continuous l-adic lifts

ρ : 0Q→ G(O)

of ρ such that for all v, ρ|0Qv
(we fix an embedding Q→Qv) satisfies the prescribed local deformation

condition at v. If this can be done, then we can make the image of ρ Zariski-dense in G(Ql) by specifying
a certain type of local deformation condition at a suitable unramified prime.
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Ravi Ramakrishna [2002] has an ingenious method for obtaining the desired lifts, which has been
generalized and axiomatized in [Taylor 2003; Clozel et al. 2008; Patrikis 2016] and others. By the
Poitou–Tate exact sequence, if the dual Selmer group

H 1
L⊥(0Q,S, ρ(g)(1))

associated to the global deformation condition for ρ vanishes, then such lifts exist. Here L and L⊥ are the
Selmer system and dual Selmer system of tangent spaces and annihilators of the tangent spaces under the
Tate pairing of the given global deformation condition, respectively. Ramakrishna discovered that if one
imposes additional local deformation conditions of “Ramakrishna type” in place of the unramified ones
at a finite set of well-chosen places of Q disjoint from S, then the new dual Selmer group will vanish.
However, this technique is very sensitive to the image of ρ, which has to be “big” to make things work;
if ρ(g) is irreducible then all is good, but finding such a ρ can be very difficult. In practice, we would
prefer those ρ for which ρ(g) does not decompose too much. Unfortunately, the form of Ramakrishna’s
method in [Patrikis 2016] (see Theorem 3.4 and its proof for an account of this) does not work for our ρ.

Inspired by the use of Ramakrishna’s method in [Clozel et al. 2008], we surmount this by making
two observations. For our ρ, ρ(g) decomposes into ρ(t) (the Lie algebra of T over k equipped with an
irreducible action of ρ(0Q)) and a complement (see Corollary 2.2). Our first observation is that if

H 1
L(0Q,S, ρ(t))

(see Definition 3.7) vanishes, then we can kill the full dual Selmer group using Ramakrishna’s method;
moreover, we cannot find an auxiliary prime w /∈ S at which the Ramakrishna deformation condition (see
Definition 3.1) satisfies

h1
L⊥∪LRam,⊥

w
(0Q,S∪w, ρ(g)(1)) < h1

L⊥(0Q,S, ρ(g)(1))

when H 1
L(0Q,S, ρ(t)) 6= {0}. But it is hard to achieve H 1

L(0Q,S, ρ(t))= {0} in general.
Our second observation is as follows: suppose that 0 6= h1

L(0Q,S, ρ(t)) ≤ h1
L⊥(0Q,S, ρ(t)(1)) (the

inequality is easy to guarantee), and let φ be a nontrivial class in H 1
L⊥(0Q,S, ρ(t)(1)). We can then find

an auxiliary prime w /∈ S with a Ramakrishna deformation LRam
w such that φ|0Qw

/∈ LRam,⊥
w , which implies

h1
L⊥∪LRam,⊥

w
(0Q,S∪w, ρ(t)(1)) < h1

L⊥∪L⊥w
(0Q,S∪w, ρ(t)(1)),

where Lw is the intersection of LRam
w and the unramified condition at w. It turns out that (see the proof of

Proposition 3.13) the right side of the inequality equals h1
L⊥(0Q,S, ρ(t)(1)); then a double invocation of

Wiles’ formula gives

h1
L∪LRam

w
(0Q,S∪w, ρ(t)) < h1

L(0Q,S, ρ(t)).

By induction, we can enlarge L finitely many times to make H 1
L(0Q,S, ρ(t)) vanish, which in turn allows

us (see the proof of Theorem 3.16) to enlarge L even further to make H 1
L⊥(0Q,S, ρ(g)(1)) vanish, as
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remarked in the first observation. Thus we obtain an l-adic lift ρ : 0Q→ G(O) satisfying the prescribed
local deformation conditions.

The above variation of Ramakrishna’s method is devised very specifically for the residual represen-
tation we construct. We do not know how to generalize these ideas to the case of an arbitrary residual
representation.

Remark 1.6. For technical reasons, our method does not work for SL2,SL3,Spin7; see Proposition 2.9
and Remark 2.14. Nevertheless, an easy variant of Ramakrishna’s original method applies to SL2, Patrikis’
extension of Ramakrishna’s method applies to SL3 and Spin7. Patrikis’ method also applies to E sc

6 with
minor modifications, and we use it in this paper. Our method should work for E sc

6 as well, modulo an
instance of the inverse Galois theory, but we do not pursue it here.

Notation. For a field F (typically Q or Qp), we let 0F denote Gal (F/F) for some fixed choice of
algebraic closure of F of F . When F is a number field, for each place v of F we fix once and for all
embeddings F→ Fv , giving rise to inclusions 0Fv → 0F . If S is a finite set of places of F . we let 0F,S

denote Gal (FS/F), where FS is the maximal extension of F in F unramified outside of S. If v is a place
of F outside S, we write Frv for the corresponding arithmetic frobenius element in 0F,S . When F =Q,
we will sometimes write 0v for 0Fv and 0S for 0Q,S . For a representation ρ of 0F , we let F(ρ) denote
the fixed field of Ker(ρ).

Consider a group 0, a ring A, an algebraic group G over Spec(A), and a homomorphism ρ :0→G(A).
We write g for both the Lie algebra of G and the A[G]-module induced by the adjoint action. We let ρ(g)
denote the A[0]-module with underlying A-module g induced by ρ. Similarly, for a A[G]-submodule M
of g, we write ρ(M) for the A[0]-module with underlying A-module M induced by ρ.

We call an algebraic group simple if it is connected, nonabelian and has no proper normal algebraic
subgroups except for finite subgroups. It is sometimes called an almost simple group in the literature.
Consider a simple algebraic group G, we write Gsc and Gad for the simply connected form and adjoint
form of G, respectively.

Let O be the ring of integers of a finite extension of Ql . We let CNLO denote the category of complete
noetherian local O-algebras for which the structure map O→ R induces an isomorphism on residue fields.

All the Galois cohomology groups we consider will be k-vector spaces for k a finite extension of Fl .
We abbreviate dim H n(−) by hn(−).

We write κ for the l-adic cyclotomic character, and κ for its mod l reduction.

2. Constructions of residual representations

In this section, we construct residual representations

ρ : 0Q→ G(Fl)

for G a simple, simply connected algebraic group.
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2A. Constructions based on the Weyl groups. Let k be a finite extension of Fl . We consider the group
of k-points of the normalizer of a split maximal torus of G and hope to realize it as the Galois group of
some extension of Q.

2A1. Some group-theoretic results. We recall a property of the Weyl group of an irreducible root
system 8.

Lemma 2.1. The Weyl group W acts irreducibly on the C-vector space spanned by 8 and transitively on
roots of the same length.

Let G = G(k) and T = T (k), a maximal split torus of G. Let 8=8(G, T ) and N = NG(T ).

Corollary 2.2. For any α, β ∈ 8 of the same length, there exists w ∈ N such that Ad(w)gα = gβ . The
adjoint action Ad(N ) on g decomposes into submodules t and

g8 :=
∑
α∈8

gα

when 8 is simply laced, and is the direct sum of t,

gl :=
∑

α∈8,α is long

gα,

and

gs :=
∑

α∈8,α is short

gα

otherwise.
Moreover, as an N-module, t is irreducible, and g8, gl, gs are irreducible if l is sufficiently large.

Proof. It suffices to show that g8, gl, gs are irreducible N -modules. We will only show that g8 is
irreducible, for the other two cases are similar. Take a nonzero vector X ∈ g8, write X =

∑
1≤i≤k X i

where 0 6= X i ∈ gαi for some distinct roots α1, α2, . . . , αk ∈8. Since l is sufficiently large, we can choose
t ∈ T such that α(t), α ∈8 are all distinct. We have

ad(t j )X =
∑

i

αi (t) j X i

where 0≤ j ≤ k−1. As the X i ’s are linearly independent and the determinant of the coefficient matrix is
nonzero,

X, ad(t)X, ad(t2)X, . . . , ad(tk−1)X

are linearly independent and hence they span the same subspace as X1, . . . , Xk do. In particular, X i ∈ gαi

belongs to the N -submodule of g8 generated by X . Because N acts transitively on the set of root spaces,
it follows that X generates g8. Therefore, g8 is irreducible. �

Remark 2.3. Corollary 2.2 remains valid for a subgroup N ′ of N that maps onto a subgroup W ′ of W
acting transitively on roots of the same length.
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2A2. Some results in the inverse Galois theory. We record some elementary results (with proofs) about
inverse Galois theory, some of which are modified in order to satisfy our purposes. See Serre’s lecture
notes [1992] for details.

Theorem 2.4. For n ≥ 2, there are infinitely many polynomials with Q-coefficients that realize the
symmetric group of n letters Sn (or the alternating group of n letters An) as a Galois group over Q.
Moreover, for Sn (or for An with n ≥ 4), the polynomial can be chosen to have at least a pair of nonreal
roots.

Proof. See [Serre 1992, Sections 4.4 and 4.5]. For the last part, we consider the polynomial f (X, T )
on page 42 of [loc. cit.]. For any rational value of T , it has at most three real roots by inspection, so
it must have at least a nonreal root when n ≥ 4. For n = 2, 3, it is easy to find such polynomials. The
demonstration for An is similar, see the polynomial h(X, T ) on page 44. �

The next result is an elementary case of a theorem of Igor Shafarevich, which will be used frequently
in our constructions:

Theorem 2.5. Let G be a finite group. Suppose that there is a finite Galois extension K/Q such that
Gal(K/Q) ∼= G. Let H be a finite abelian group with exponent m. Suppose that there is a split exact
sequence of finite groups

1→ H → S→ G→ 1.

Then there is a finite Galois extension M/Q containing K such that the natural surjective homomorphism
Gal(M/Q)�Gal(K/Q) realizes the surjective homomorphism S � G. In other words, a split embedding
problem with abelian kernel always has a proper solution.

Moreover, for any prime l that is outside the ramification locus of K/Q and prime to m, we can choose
M so that l is unramified in M.

Proof. The argument is a minor modification of the proof of [Serre 1992, Claim 2.2.5]. Put L =
K (µm). H can be regarded as a m-torsion module on which Gal (L/Q) acts. So there is a finite free
(Z/mZ)[Gal (L/Q)]-module F of which H is a quotient. Suppose that r is the number of copies of
(Z/mZ)[Gal (L/Q)] in F . Let S′ be the semidirect product of Gal (L/Q) and F . To solve the embedding
problem posed by 1→ H → S→ G→ 1, it suffices to solve the embedding problem posed by

1→ F→ S′→ Gal(L/Q)→ 1.

Claim. There is a Galois extension M ′/Q that solves the above embedding problem. Moreover, for any
prime l that does not divide m and is outside the ramification locus of K/Q, we can choose M ′ so that l
is unramified in M ′.

To see this, we choose places v1, . . . , vr of Q away from l such that vi splits completely in L . Let wi

be a place of L extending vi , 1≤ i ≤ r . Any place of L extending vi can be written uniquely as σwi for
some σ ∈ Gal (L/Q). Let w0 be a place of L extending l. For 1 ≤ i ≤ r , choose θi ∈ OL such that for
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0 ≤ j ≤ r , (σw j )(θi ) = 1 if σ = 1 and i = j and 0 if not. The existence of θi follows from the weak
approximation theorem. Let

M ′ = L( m
√
σθi | σ ∈ Gal (L/Q), 1≤ i ≤ r),

which is Galois over Q, being the composite of L and the splitting field of the polynomial∏
i

∏
σ

(T m
− σθi ) ∈Q[T ].

It is easy to see that Gal (M ′/L) is isomorphic to F as Gal (L/Q)-modules. In fact, for each i there is an
isomorphism

φi : Gal(L( m
√
σθi | σ ∈ Gal (L/Q))/L)∼= (Z/mZ)[Gal(L/Q)].

For an element g on the left side and any σ ∈Gal (L/Q), g( m
√
σθi )= ζσ ·

m
√
σθi for some ζσ ∈µm ∼=Z/mZ.

We then define
φi (g)=

∑
σ

ζσ · σ ∈ (Z/mZ)[Gal (L/Q)].

It is clear that φi is an isomorphism by our choice of θi . It follows that Gal (M ′/L) ∼= F by linear
disjointness.

Therefore, we obtain an exact sequence

1→ F→ Gal(M ′/Q)→ Gal(L/Q)→ 1.

Since F ∼= IndGal (L/Q)
{1} Z/mZ, by Shapiro’s lemma, H 2(Gal (L/Q), F)= H 2({1},Z/mZ)= {0}, hence

the sequence splits. Thus, Gal(M ′/Q)∼= S′.
It remains to show that l is unramified in M ′. For any σ in Gal (L/Q) and for any i , w0 is unramified

in L( m
√
σθi ), because w0(σθi )= 0 and l does not divide m. So w0 is unramified in their composite M ′.

On the other hand, l is unramified in K by assumption and is unramified in Q(µm) since l does not
divide m, so l is unramified in L . It follows that l is unramified in M ′, proves the claim.

Finally, letting M be the fixed field of the kernel of the natural surjective homomorphism S′� S, we
obtain a solution to the original embedding problem. �

2A3. SLn . Let G = SLn(k), so W ∼= Sn . By [Adams and He 2017], the N-T sequence splits only when
n is odd. We consider the subgroup W ′ = An of W . Let T be the maximal torus of diagonal elements in
SLn(k) and let 8 be 8(G, T ).

Lemma 2.6. Suppose n ≥ 4. Then An , as a subgroup of W , acts transitively on 8.

Proof. This follows from the fact that An acts doubly transitively on {1, 2, . . . , n} if and only if n ≥ 4. �

Let N ′ = π−1(W ′), where π is the natural map from NG(T ) to W .

Lemma 2.7. The following exact sequence of finite groups splits:

1→ T → N ′→W ′→ 1.
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Proof. We think of An as a subgroup of N = NG(T ) by realizing it as the group of n×n even permutation
matrices. Then An normalizes T and N ′ is a semidirect product of them. �

Let l be large enough. Since T is abelian of exponent |k| − 1 which is prime to l, by Theorems 2.4
and 2.5, there is a surjection 0Q � N ′ which is unramified at l. Moreover, by choosing a rational
polynomial with nonreal roots that realizes An as a Galois group over Q, we can make the complex
conjugation map to an element away from the center of G. Define ρ to be the composite

0Q � N ′ i
−→ SLn(k).

Remark 2.8. It is trickier to realize N as a Galois group over Q. This can be reduced to realizing the
“Tits group” T of SLn as a Galois group. T can be identified with the group of n× n signed permutation
matrices with determinant one, which is an index two subgroup of the group of n× n signed permutation
matrices. The latter is isomorphic to the Weyl group of type Bn , hence known to be a Galois group over Q.
As the N-T sequence splits if and only if n is odd, by Theorem 2.5, T can be realized over Q for n odd.
When n is even, this problem is open except for small n, as far as the author knows.

Let g= sln(k).

Proposition 2.9. For l sufficiently large and n ≥ 4, ρ(g) decomposes into irreducible 0Q-modules ρ(t)
and ρ(g8).

Proof. This follows from Corollary 2.2 and Remark 2.3. �

There remains the case when G is SL2 or SL3. For SL3, see Section 2B. For SL2, see Section 4B3.

2A4. Sp2n . Let G = Sp2n(k), then W is isomorphic to a semidirect product of Sn and D := (Z/2Z)n .
We fix a maximal split torus T in Sp2n(k). The N-T sequence does not split by [Adams and He 2017].

Lemma 2.10. Consider the N-T sequence for Sp2n . The group Sn ⊂ W has a section to N , whereas
D⊂W does not have a section to N but there is a subgroup D̃ of N such that π(D̃)= D and D̃∼= (Z/4Z)n .
Moreover, as subgroups of N , Sn normalizes D̃ and Sn ∩ D̃ = {1}.

We let W1 be the subgroup of N generated by Sn and D̃.

Proof. Let V = k2n be the 2n-dimensional vector space over k endowed with a nondegenerate alternating
form ( · , · ). We may choose a basis

e1, . . . , en, e′1, . . . , e′n

of V such that (ei , e′j )= 1 if and only if i = j , and that (ei , e j )= 0, (e′i , e′j )= 0 for all i, j . The Weyl
group of Sp2n is isomorphic to the semidirect product of the group Sn , which acts by permuting e1, . . . , en ,
and the group D := (Z/2Z)n , which acts by ei 7→ (±1)i ei . There is an inclusion Sn→ Sp2n(k) (which
is a section to N →W) given as follows: ∀σ ∈ Sn , σ permutes e1, . . . , en and e′1, . . . , e′n by permuting
the indices, which defines an element in Sp2n(k). There is no such inclusion for D. However, we can
define a 2-group D̃ which embeds into Sp2n(k) as follows: for 1≤ i ≤ n, let di be an endomorphism of
V such that di (ei )=−e′i , di (e′i )= ei , and di fixes all other basis vectors. It is clear that di ∈ Sp2n(k). Let
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D̃ be the subgroup of Sp2n(k) generated by di for 1≤ i ≤ n. Then D̃ ∼= (Z/4Z)n . It is obvious that (as
subgroups of Sp2n(k)) Sn normalizes D̃ and Sn ∩ D̃ = {1}. �

Therefore, by Theorem 2.4 and 2.5, W1 can be realized as a Galois group over Q such that the complex
conjugation corresponds to an element away from the center of G. The group N is generated by W1

and T . We have W1 normalizes T and W1 ∩ T ∼= (Z/2Z)n . Let S be the (abstract) semidirect product of
W1 and T . By Theorem 2.5, for l large enough, S can be realized as a Galois group over Q unramified
at l. Composing the corresponding map 0Q � S with the natural surjection S � N , we obtain a surjection
0Q � N that is unramified at l and for which the complex conjugation maps to an element outside the
center of G. Define ρ to be the composite

0Q � N i
−→ Sp2n(k).

Let g= sp2n(k). The root system 8 of g is not simply laced.

Proposition 2.11. For l sufficiently large, ρ(g) decomposes into irreducible 0Q-modules ρ(t), ρ(gl)

and ρ(gs).

Proof. This follows from Corollary 2.2. �

2A5. Spin2n and Spin2n+1. For spin groups, the N-T sequence does not split by [Adams and He 2017].
For G = Spin2n , W is isomorphic to a semidirect product of Sn and D := (Z/2Z)n−1 and we let W ′ be
the subgroup generated by An and D. For G = Spin2n+1, W is isomorphic to a semidirect product of
Sn and D := (Z/2Z)n and we let W ′ be the subgroup generated by An and D. Similar to the symplectic
case, we will show that N ′ = π−1(W ′) is a Galois group over Q.

Lemma 2.12. Consider the N-T sequence for G = Spin2n(k) or Spin2n+1(k). The map π−1(An)→ An

admits a section, and there is a nilpotent subgroup D̃ of N such that π(D̃)= D. Moreover, as subgroups
of N , An normalizes D̃ and we let W1 be their product.

Proof. Let G := SO2n(k) or SO2n+1(k). We have the standard homomorphism i : GLn(k) → G,
which restricts to a homomorphism Sn → G. Let G̃Ln(k) be the pullback of i along the covering
map G → G. It is a two-fold central extension of GLn(k), which can be identified with the group
of pairs (g, z) with g ∈ GLn(k), z ∈ k×, such that det g = z2, where the multiplication is defined by
(g1, z1) · (g2, z2) = (g1g2, z1z2). A subgroup H of GLn(k) has a section in G̃Ln(k) if and only if the
restriction of det to H is the square of a character of H . In particular, taking H = An , we see that An has
a section to G̃Ln(k). It follows that π−1(An)→ An admits a section.

The map π−1(D)→ D has a section, where π is the natural map NG(T )→W; this follows from
[Adams and He 2017, Theorem 4.16], or can be seen directly from an elementary matrix calculation. Let
D̃⊂G be the preimage of D⊂G under the covering map G→G. As D is abelian, [D̃, D̃] = Z(G)∼=µ2.
In particular, D̃ is nilpotent.

Finally, because An normalizes D in G, An normalizes D̃ in G. �
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Therefore, by Theorem 2.4 and Shafarevich’s theorem (the group D̃ is nilpotent, see [Neukirch et al.
2000, IX, Section 6] for Shafarevich’s theorem), W1 can be realized as a Galois group over Q such that
the complex conjugation corresponds to an element outside the center of G. Let N ′ be the subgroup of G
generated by W1 and T (W1 normalizes T ). Let S be the (abstract) semidirect product of W1 and T . By
Theorem 2.5, for l large enough, S can be realized as a Galois group over Q unramified at l. Composing
the corresponding map 0Q � S with the natural quotient map S � N ′, we obtain a surjection

0Q � N ′

that is unramified at l and for which the complex conjugation maps to an element outside the center of G
(since the complex conjugation corresponds to an element outside the center of G in the realization of
W1 as a Galois group over Q). For G = Spin2n or Spin2n+1, define ρ to be the composite

0Q � N ′ i
−→G(k).

Let g be the Lie algebra of G(k). The corresponding root system 8 is simply laced if G = Spin2n and
is not if G = Spin2n+1.

Proposition 2.13. For l sufficiently large and n ≥ 4, ρ(g) decomposes into irreducible 0Q-modules ρ(t)
and ρ(g8) when G = Spin2n; and it decomposes into irreducible 0Q-modules ρ(t), ρ(gl) and ρ(gs) when
G = Spin2n+1.

Proof. Note that the action of W ′ on 8 is transitive if and only if n ≥ 4. Then the proposition follows
from Corollary 2.2 and Remark 2.3. �

Remark 2.14. There remains the case when G is one of Spin4, Spin5, Spin6, Spin7. But Spin4(Ql) ∼=

SL2(Ql)×SL2(Ql), Spin5(Ql)∼= Sp4(Ql), Spin6(Ql)∼= SL4(Ql) which are included in other cases. For
Spin7, the half sum of coroots ρ∨ = 3α∨1 + 5α∨2 + 3α∨3 has integer coefficients, so the principal GL2 map
is well defined, see Section 2B.

2A6. E sc
7 . Let G = E sc

7 (k). The Weyl group W is isomorphic to the direct product of [W,W] and Z/2Z.
By [Adams and He 2017], the N-T sequence does not split. We choose a subgroup W ′ of W which lifts
to N as follows. Consider the extended Dynkin diagram of type E7, there is a subroot system 8′ of 8
which is of type A7. The alternating group A8 is a subgroup of S8 ∼=W(A7)≤W =W(E7).

Lemma 2.15. The group A8 ≤W lifts to N.

Proof. This is because A8 lifts to SL8. �

Lemma 2.16. The action of A8 on 8 has an orbit of size 56 and an orbit of size 70.

Proof. We first consider the action of S8 ∼=W(A7) on 8. By Lemma 2.1, S8 acts transitively on 8′,
which has 56 roots. A straightforward calculation using Plate E7 in [Bourbaki 1968] shows that for some
α ∈8−8′, S8 · α has exactly 70 roots (in the extended Dynkin diagram, take α to be the simple root
that is not in 8′, then we let the group generated by the simple reflections in 8′ act on α and count
the number of roots in the orbit). So the stabilizer of α in S8 is isomorphic to S4 × S4 ⊂ S8. Since
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56+ 70= 126 is the number of roots in 8, the lemma is true for S8. Now we consider the alternating
group A8. Lemma 2.6 implies that A8 still acts transitively on 8′. As (S4× S4)∩ A8 (the stabilizer of α
in A8) has order 1

2 |S4× S4| = 288, the orbit A8 ·α has exactly |A8|/288= 70 roots. �

It is clear that A8, considered as a subgroup of N , normalizes T and A8 ∩ T = {1}. Let N ′ be the
subgroup of G = E sc

7 (k) generated by A8 and T . By Theorems 2.4 and 2.5, for l large enough, we can
find a continuous surjection

0Q � N ′

that is unramified at l and for which the complex conjugation maps to an element away from the center
of G. Define ρ to be the composite

0Q � N ′ i
−→ E sc

7 (k).

Let ga and gb be the direct sums of the root spaces corresponding to the orbit of size 56 and size 70,
respectively, in Lemma 2.16.

Proposition 2.17. For l sufficiently large, ρ(g) decomposes into irreducible 0Q-modules ρ(t), ρ(ga)

and ρ(gb).

Proof. The proof is very similar to the proof of Corollary 2.2. �

2B. The principal GL2 construction. We record some facts on the principal SL2 and GL2. For more
details, see [Serre 1996, Section 1]. Let G/k be a simple algebraic group with a Borel B containing a
split maximal torus T with unipotent radical U . Let 8=8(G, T ) be the root system of G with the set
of simple roots 1 corresponding to B. We fix a pinning {xα : Ga→Uα} where Uα is the root subgroup
in B corresponding to α. Let Xα = dxα(1) for all α ∈1 and let

X =
∑
α∈1

Xα,

which can be extended to an sl2-triple (X, H, Y ) where

H =
∑
α>0

Hα

with Hα the coroot vector corresponding to α.
When p is large enough relative to G, there is an exponential map

exp : Lie(U )→U

which is an isomorphism.
A principal SL2 homomorphism is a homomorphism

ϕ : SL2→ G
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such that

ϕ

((
1 t
0 1

))
= exp(t X), ϕ

((
t 0
0 t−1

))
= 2ρ∨(t)

where ρ∨ is the half-sum of the coroots. ρ∨ is always defined when G is adjoint. Suppose that ρ∨ :
Gm→ Gad lifts to G and we fix a lift which is again denoted ρ∨. A principal GL2 homomorphism is a
homomorphism

ϕ : GL2→ G

that extends a principal SL2 such that such that

ϕ

((
1 t
0 1

))
= exp(t X), ϕ

((
t 0
0 1

))
= ρ∨(t).

By definition, a principal GL2 factors through PGL2.
By examining the list in [Bourbaki 1968], we get:

Lemma 2.18. For G a simple algebraic group, ρ∨ : Gm→ Gad lifts to Gsc if and only if G is one of the
following types: A2n, B4n, B4n+3, D4n, D4n+1, E6, E8, F4,G2.

The operator ad(H) preserves gX (the centralizer of X in g) and

gX
=

∑
m>0

V2m,

where V2m is the eigenspace of H corresponding to the eigenvalue 2m. The following proposition is due
to Kostant [1959].

Proposition 2.19. The dimension of gX is equal to the rank of g. V2m is nonzero if and only if m is an
exponent of g. Letting GL2 act on g via ϕ, there is an isomorphism of GL2-representations

g∼=
⊕
m>0

Sym2m(k2)⊗ det−m
⊗V2m .

Suppose that ρ∨ : Gm → Gad lifts to G. We take f to be as in Example 1.5. By [Ribet 1985,
Theorem 2.1], the projective image of r f,λ is either PGL2(k) or PSL2(k) for a subfield k of kλ. We then
define

ρ : 0Q
r f,λ
−→GL2(k) ϕ

−→G(k).

This construction works for all exceptional groups but E sc
7 as ρ∨ : Gm → Ead

7 does not lift to E sc
7 . We

will only use this construction for G of type E6, A2 and B3.

3. Ramakrishna’s method and its variants

Given ρ : 0Q→ G(k) defined in the previous section, we want to obtain an l-adic lift ρ : 0Q→ G(O)
with O the ring of integers of a finite extension of Ql whose residue field is k satisfying a given global
deformation condition. Just as in [Patrikis 2016], we use Ramakrishna’s method to annihilate the associated
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dual Selmer group. The new feature is a double use of Patrikis’ extension of Ramakrishna’s method when
the original form fails to work, see Section 3B.

3A. Ramakrishna’s method.

3A1. Ramakrishna deformations. We list the key points and results of Patrikis’ extension of Ramakr-
ishna’s method. For proofs, see [Patrikis 2016, Section 4.2]. For an overview on the deformation theory
of (G-valued) Galois representations, see [loc. cit., Section 3].

We begin by defining a type of local deformation condition called Ramakrishna’s condition, which will
be imposed at the auxiliary primes of ramification in Ramakrishna’s global argument. Let F be a finite
extension of Qp for p 6= l, and let ρ : 0F → G(k) be an unramified homomorphism such that ρ(FrF )

is a regular semisimple element. Let T be the connected component of the centralizer of ρ(FrF ); this
is a maximal k-torus of G, but we can lift it to an O-torus uniquely up to isomorphism, which we also
denote by T , and then we can lift the embedding over k to an embedding over O which is unique up to
Ĝ(O)-conjugation. By passing to an étale extension of O, we may assume that T is split.

The following definition is from [loc. cit.].

Definition 3.1. Let ρ, T be as above. For α ∈8(G, T ), ρ is said to be of Ramakrishna type α if

α(ρ(FrF ))= κ(FrF ).

Let Hα = T · Uα be the subgroup generated by T and the root subgroup Uα corresponding to α.
Ramakrishna deformation is a functor

LiftRam
ρ : CNLO→ Sets

such that for a complete local noetherian O-algebra R, LiftRam
ρ (R) consists of all lifts

ρ : 0F → G(R)

of ρ such that ρ is Ĝ(R)-conjugate to a homomorphism 0F
ρ′
−→ Hα(R) with the resulting composite

0F
ρ′
−→ Hα(R) Ad

−→GL(gα ⊗ R)= R×

equal to κ .
We shall call such a ρ to be of Ramakrishna type α as well. We denote by DefRam

ρ the corresponding
deformation functor.

The following lemma is [loc. cit., Lemma 4.10].

Lemma 3.2. LiftRam
ρ is well defined and smooth.

Consider the subtorus Tα = Ker(α)0 of T , and denote by tα its Lie algebra. There is a canonical
decomposition tα ⊕ lα = t with lα the one-dimensional torus generated by the coroot α∨.

The next lemma [loc. cit., Lemma 4.11] is crucial in the global deformation theory.
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Lemma 3.3. Assume ρ is of Ramakrishna type α. Let W = tα ⊕ gα , and let W⊥ be the annihilator of W
under the Killing form on g. Let LRam

ρ and LRam,⊥
ρ be the tangent space of DefRam

ρ and the annihilator of
LRam
ρ under the local duality pairing, respectively. Then:

(1) LRam
ρ
∼= H 1(0F , ρ(W )).

(2) dim LRam
ρ = h0(0F , ρ(g)).

(3) LRam,⊥
ρ

∼= H 1(0F , ρ(W⊥)(1)).

(4) Let LRam,�
ρ and LRam,⊥,�

ρ be the preimages in Z1(0F , ρ(g)) of LRam
ρ and LRam,⊥

ρ , respectively. Under
the canonical decomposition

g=
⊕
γ

gγ ⊕ tα ⊕ lα,

all cocycles in LRam,�
ρ and LRam,⊥,�

ρ have lα and g−α components equal to zero, respectively.

3A2. The global argument. In this section, we assume G is semisimple. Let ρ : 0Q,S → G(k) be a
continuous homomorphism for which h0(0Q, ρ(g))= h0(0Q, ρ(g)(1))= 0. In particular, the deformation
functor is representable. The following theorem is proved in [Patrikis 2016, Proposition 5.2]. For a review
on global deformation theory and systems of Selmer groups, see [Patrikis 2016, Sections 3.2–3.3].

Theorem 3.4. Suppose that there is a global deformation condition L= {Lv}v∈S consisting of smooth
local deformation conditions for each place v ∈ S. Let K =Q(ρ(g), µl). We assume the following:

(1)
∑
v∈S

(dim Lv)≥
∑
v∈S

h0(0Qv
, ρ(g)).

(2) H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) vanish.

(3) Assume item (2) holds. For any pair of nonzero Selmer classes φ ∈ H 1
L⊥(0Q,S, ρ(g)(1)) and

ψ ∈ H 1
L(0Q,S, ρ(g)), we can restrict them to 0K where they become homomorphisms, which are

nonzero by item (2). Letting Kφ/K and Kψ/K be their fixed fields, we assume that Kφ and Kψ are
linearly disjoint over K .

(4) Consider any φ and ψ as in the hypothesis of item (3). There exists an element σ ∈ 0Q such that
ρ(σ) is a regular semisimple element of G, the connected component of whose centralizer we denote
T , and such that there exists a root α ∈8(G, T ) satisfying

(a) α(ρ(σ ))= κ(σ ),
(b) k[ψ(0K )] has an element with nonzero lα component, and
(c) k[φ(0K )] has an element with nonzero g−α component.

Then there exists a finite set of primes Q disjoint from S, and a lift ρ : 0Q,S∪Q→ G(O) of ρ such that ρ is
of type Lv at all v ∈ S and of Ramakrishna type at all v ∈ Q.

Proof. We sketch the proof for the reader’s convenience. By the arguments in [Taylor 2003, Lemma 1.1]
(which carry without modification to other groups) it suffices to enlarge L to make the dual Selmer group
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H 1
L⊥(0Q,S, ρ(g)(1)) vanish. We may assume the dual Selmer group is nontrivial and take a nonzero class

φ in it. Item (1) implies by Wiles’ formula (Proposition 4.10) that H 1
L(0Q,S, ρ(g)) is nontrivial. So we

can take a nonzero class ψ in it. Item (3), (4) and Chebotarev’s density theorem all together imply there
exists infinitely many w /∈ S such that ψ |w /∈ LRam

ρ |w and φ |w /∈ LRam,⊥
ρ |w . In particular, we have

ψ /∈ H 1
L∪LRam

ρ |w

(0Q,S∪w, ρ(g)), (1)

and
φ /∈ H 1

L⊥∪LRam,⊥
ρ |w

(0Q,S∪w, ρ(g)(1)). (2)

If we can show
H 1

L⊥∪LRam,⊥
ρ |w

(0Q,S∪w, ρ(g)(1))⊂ H 1
L⊥(0Q,S, ρ(g)(1)), (3)

then (2) will imply that (3) is a strict inclusion. The key point now is that if we let Lunr
w denote the

unramified cohomology at w, then Lw = Lunr
w ∩ LRam

ρ |w is codimension one in Lunr
w , which, together with a

double invocation of Wiles’ formula and (1), implies

H 1
L⊥(0Q,S, ρ(g)(1))= H 1

L⊥∪L⊥w
(0Q,S∪w, ρ(g)(1)),

from which (3) follows. A variation of this argument can be found in the proof of Proposition 3.13. Now
for the new Selmer system, item 1 still holds (Lemma 3.3(2)). So we can apply the above argument
finitely many times until the dual Selmer group of the enlarged Selmer system vanishes. �

3B. A variant of the global argument. In this section, we let G be a simple algebraic group and let
ρ : 0Q→ G(k) be as in Section 2A. Recall that ρ(0Q) is a subgroup of NG(T )k . For l = char(k) large
enough, ρ(g) decomposes into the sum of ρ(t) and another one or two summands depending on whether
or not 8(G, T ) is simply laced; see Propositions 2.9, 2.11, 2.13 and 2.17. We fix a Selmer system L.

Proposition 3.5. Assume that l is large enough. Then items (2) and (3) in Theorem 3.4 are satisfied.

Proof. For item (2), note that |Gal (K/Q)| divides (l−1)|ρ(0Q)|, which is prime to l by the construction
of ρ. Since the coefficients field k of H 1 has characteristic l, this implies the vanishing of H 1.

For item (3), since ψ :Gal (Kψ/K )∼=ψ(0K ) and φ :Gal (Kφ/K )∼=φ(0K ) are Gal (K/Q)-equivariant
isomorphisms, it is enough to check that the irreducible summands in g and g(1) are nonisomorphic. We
check this case by case. If G is of type An or Dn , by the construction of ρ, the alternating group An+1

or An , respectively, may be identified with a subgroup of ρ(0Q). We take an element σ ∈ 0Q such that
ρ(σ) ∈ An has order 2. Since Q(ρ) (the fixed field of ρ) is unramified at l, Q(ρ) and Q(µl) are linearly
disjoint over Q, so we may modify σ if necessary to make κ(σ ) 6= 1. Consider the eigenvalues of σ on t

and t(1) (here we recall that t is the Lie algebra of the maximal split torus T of G in the construction
of ρ); the eigenvalues on t are ±1, whereas none of the eigenvalues on t(1) can be 1 or −1. Thus t is
not isomorphic to t(1) as Galois modules. On the other hand, since T := T (k) ⊂ ρ(0Q), we can find
τ ∈ 0Q such that ρ(τ) is a regular semisimple element for which α(ρ(τ))= a for α ∈1, where a is a
generator of (Z/ lZ)× and 1 is a fixed set of simple roots in 8. Again since Q(ρ) and Q(µl) are linearly
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disjoint over Q, we may modify τ if necessary to make κ(τ)= a. Consider the eigenvalues of τ on g8

and g8(1), those on g8 are {α(ρ(τ)) : α ∈8}, whereas those on g8(1) are {a · α(ρ(τ)) : α ∈8}. Note
that α(ρ(τ))= aht(α) and the order of a is l− 1, it is clear that these two sets are different when l is large
enough. Thus, g8 and g8(1) are nonisomorphic as Galois modules.

If G is of type Bn , by the construction of ρ, the alternating group An may be identified with a
subgroup of ρ(0Q). Using the argument in the previous paragraph, we see that t is not isomorphic to
t(1) as Galois modules. On the other hand, we need to show that ρ(gl), ρ(gs), ρ(gl)(1), ρ(gs)(1) are
pairwise nonisomorphic as Galois modules. Just like before we can find τ ∈0Q such that ρ(τ) is a regular
semisimple element for which α(ρ(τ))= a for α ∈1 and κ(τ)= a, where a is a generator of (Z/ lZ)× and
1 is a fixed set of simple roots in8. Since l is large enough, the sets {α(ρ(τ)) :α∈8l}, {α(ρ(τ)) :α∈8s},
{a · α(ρ(τ)) : α ∈ 8l} and {a · α(ρ(τ)) : α ∈ 8s} must be distinct. So τ has different eigenvalues on
ρ(gl), ρ(gs), ρ(gl)(1), ρ(gs)(1) and hence they are pairwise nonisomorphic Galois modules.

The demonstrations are the same for type Cn and E7. �

Let M be a finite dimensional k-vector space with a continuous 0Q-action. Define its Tate dual to be
the space M∨ = Hom(M, µ∞) equipped with the following 0Q-action:

(σ f )(m) := σ( f (σ−1m)).

Proposition 3.6. For any continuous homomorphism ρ : 0Q → G(k), ρ(g)∨ ∼= ρ(g)(1). For ρ as in
Section 2A, ρ(t)∨ ∼= ρ(t)(1).

Proof. As l is sufficiently large, the killing form is a nondegenerate G-invariant symmetric bilinear form
on g, which identifies the contragredient representation g∗ with g, and hence identifies ρ(g)∨ with ρ(g)(1)
as Galois modules. If ρ is as in Section 2A, then the Galois action on t factors through W . It is easy to
see that the standard bilinear form on t is nondegenerate and W -invariant. Just as above, we deduce that
ρ(t)∨ ∼= ρ(t)(1) as Galois modules. �

Definition 3.7. Let L= {Lv}v∈S be the Selmer system corresponding to a global deformation condition
for ρ that is unramified outside a finite set of places S, and let L⊥ = {L⊥v }v∈S be the associated dual
Selmer system. Define the M-Selmer group as follows:

H 1
L(0S,M)= Ker

(
H 1(0S,M)→

⊕
v∈S

H 1(0v,M)/(Lv ∩ H 1(0v,M))
)
,

and define the M-dual Selmer group as follows:

H 1
L⊥(0S,M∨)= Ker

(
H 1(0S,M∨)→

⊕
v∈S

H 1(0v,M∨)/(L⊥v ∩ H 1(0v,M∨))
)
.

To apply Theorem 3.4, we need to make sure that items (1)–(4) in it are satisfied. By choosing an
appropriate L, we can make item (1) hold. Items (2) and (3) are satisfied by Proposition 3.5. It is
tricky to deal with item (4): the images of φ and ψ , which are 0Q-submodules of ρ(g), must satisfy the
group-theoretic properties in (b) and (c); if we can find an element σ as in item (4) such that all summands
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of ρ(g) satisfies these properties, then item (4) will be satisfied. So achieving item (4) crucially depends
on the group-theoretic properties of submodules of ρ(g). We need to find a regular semisimple element
6 in ρ(0Q), the connected component of whose centralizer we denote T ′, for which there exists a root
α′ ∈8′ :=8(G, T ′) such that:

(1) α′(6) ∈ (Z/ lZ)×,

(2) Every irreducible summand of ρ(g) has an element with nonzero lα′ component.

(3) Every irreducible summand of ρ(g) has an element with nonzero g−α′ component.

Unfortunately, for our residual representation, there is no such element which meets all three conditions.
The rest of this section will show how item (4) of Theorem 3.4 can be met by controlling ψ(0K ) for a
given class ψ in the Selmer group.

If we take a regular semisimple element 6 in T (which is the fixed split maximal torus of G(k) we use
when constructing the residual representation), then there is no α ∈8 fulfilling both (2) and (3). Instead,
we look for 6 ∈ N = NG(T ) for which π(6) is a nontrivial element in W , where π : NG(T )�W is the
canonical quotient map.

Lemma 3.8. Assume the characteristic of k is large enough for G. Then for any w ∈ W that fixes a
noncentral element of Lie(T ), there exist a regular semisimple element n ∈ N (regular with respect to G)
such that π(n)= w. If G is of type A1, A2, B2,C2, then for any w ∈W , there exist a regular semisimple
element n ∈ N (regular with respect to G) such that π(n)= w.

Proof. The second part follows from a straightforward calculation. We will prove the first part. We
first make the following observation: if M is a Levi subgroup of G, then (by looking at the action
of simple roots outside M on elements of ZG(M)0) for every M-regular semisimple element t ∈ M ,
there is a G-regular semisimple element of t ZG(M)0. If w fixes a noncentral element of Lie(T ), then
we take M to be ZG(Lie(T )w), which is a proper Levi subgroup of G since the characteristic of k is
large enough for G. By induction on the semisimple rank, there is a M-regular semisimple element n′

such that π(n′)= w, so there is a G-regular semisimple element n = n′z with z ∈ ZG(M)0, and hence
π(n)= π(n′z)= π(n′)π(z)= π(n′)= w. �

Remark 3.9. The above lemma should be true without assuming w fixes a noncentral element of Lie(T ),
but the author does not know how to remove this assumption. For GLn , one can show that (by matrix
calculations) the property holds for all w ∈ Sn as long as the characteristic of k is large enough.

Let t ′ be a regular semisimple element in G and t ∈ T be an element that is conjugate to t ′. Then t
and t ′ determine a unique bijection between 8 =8(G, T ) and 8′ =8(G, T ′) with T ′ = ZG(t ′)0: for
any α ∈8, define α′ ∈8′ such that

α′(h)= α(g−1hg)

for any h ∈ T ′, where g is an element in G such that g−1t ′g = t . Since t is regular semisimple, α′ is
independent of g.
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Recall that for α ∈8, sα is the simple reflection in the Weyl group of 8 associated to α.

Lemma 3.10. Assume the characteristic of k is not 2. For a long root α ∈8, let6 be a regular semisimple
element in N such that π(6)= sα (which exists by Lemma 3.8). We fix an element t ∈ T that is conjugate
to 6 and let T ′ = ZG(6)

0. The elements 6 and t determine a bijection between 8 and 8′ as above.

• If 8 is of type An (n ≥ 1) or Dn (n ≥ 4), then the root α′ ∈8′ corresponding to α fulfills (1) and (3).
For (2), g8 (recall that g8 :=

∑
α∈8 gα) has an element with nonzero lα′ component, but t does not.

• If 8 is of type Bn , Cn (n ≥ 2) or E7, then α′ fulfills (1) and t has a vector with nonzero g−α′

component.

Moreover, t′ ∩ t= t′α′ ∩ t=W ∩ t, where W = t′α′ ⊕ gα′ .

Proof. It is clear that α′(6)=−1, so (1) is satisfied. We need to show:

• The space lα has nonzero g−α′ component.

• The space gα has nonzero lα′ and g−α′ component.

• t′ ∩ t= t′α′ ∩ t=W ∩ t.

This is essentially a GL2-calculation. We may perform the calculation in the subalgebra of g generated
by gα, whose root lattice is isomorphic to {x1e1+ x2e2 | xi ∈ Z, x1+ x2 = 0}. We take α = e1− e2 with
the corresponding root vector

Xα :=
(

0 1
0 0

)
.

We have6=
( 0

1
1
0

)
, P =

( 1
1

1
−1

)
. Then P−16P = diag(1,−1). The first bullet follows from the identity

P−1
· diag(h1, h2) · P =− 1

2

(
−h1− h2 −h1+ h2

−h1+ h2 −h1− h2

)
.

The second bullet follows from the identity

P−1
(

0 1
0 0

)
P =− 1

2

(
−1 1
−1 1

)
.

To show the third bullet, note that elements in t′ are of the form
( h

k
k
h

)
, elements in t′α′ are of the form( h

0
0
h

)
, and elements in gα′ are of the form

( x
x
−x
−x

)
. It follows that all three intersections in the third bullet

are the one dimensional k-vector space spanned by
( 1

0
0
1

)
. �

Lemma 3.11. Suppose the characteristic of k is not 2 or 3. Assume that 8 is of type Bn,Cn (n ≥ 2)
or E7, so ρ(g) = ρ(t)⊕ ρ(gl)⊕ ρ(gs) for Bn and Cn , and ρ(g) = ρ(t)⊕ ρ(ga)⊕ ρ(gb) for E7 (see
Section 2A4-2A6).

(1) (Type Bn and Cn) For a pair of nonperpendicular β, γ ∈ 8 with β long and γ short, let 6 be a
regular semisimple element in N such that π(6) = sβ · sγ (which exists by Lemma 3.8). We fix
an element t ∈ T that is conjugate to 6 and let T ′ = ZG(6)

0. The elements 6 and t determine a
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bijection between 8 and 8′ =8(G, T ′). Then for all long root α′ in the span of β ′ and γ ′ (which
is a subsystem of 8′ of type C2), (3) is satisfied. For (2), gl and gs have elements with nonzero lα′

component, but t does not. The element α′(6) has order 4 in k×, hence (1) is satisfied only for
l ≡ 1(4).

(2) (Type E7) For a pair of nonperpendicular β, γ ∈ 8 with gβ ⊂ ga and gγ ⊂ gb, let 6 be a regular
semisimple element in N such that π(6) = sβ · sγ . We fix an element t ∈ T that is conjugate to 6
and let T ′ = ZG(6)

0. The elements 6 and t determine a bijection between 8 and 8′ =8(G, T ′).
Then for all roots α′ in the span of β ′ and γ ′ (which is a subsystem of 8′ of type A2), (3) is satisfied.
For (2), ga and gb have elements with nonzero lα′ component, but t does not. The elements α′(6) has
order 3 in k×, hence (1) is satisfied only for l ≡ 1(3).

Moreover, W ∩ t⊂ t′, where W = t′α′ ⊕ gα′ .

Proof. We first prove (2). Let α′ be any root in the span of β ′ and γ ′. We need to show:

• lβ ⊕ lγ has nonzero g−α′ component.

• gβ and gγ have nonzero lα′ component and nonzero g−α′ component.

• W ∩ t⊂ t′.

We may perform the calculation in the subalgebra of g generated by gβ and gγ , whose root lattice is
isomorphic to {x1e1+ x2e2+ x3e3 | xi ∈ Z, x1+ x2+ x3 = 0}. We take β = e1− e2, γ = e2− e3 with the
corresponding root vectors

Xβ :=

0 1 0
0 0 0
0 0 0

 , Xγ :=

0 0 0
0 0 1
0 0 0

 .
We have

6 =

0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0

=
0 0 1

1 0 0
0 1 0

 .
Let r be a (fixed) primitive 3-rd root of unity in k, and let

P =

1 1 1
1 r2 r
1 r r2

 ,
then

P−16P = diag(1, r, r2),

which implies α′(6) has order 3 in k×. We have P−1 diag(a, b, c)P is a nonzero scalar multiple ofar + br + cr ar + b+ cr2 ar + br2
+ c

ar + br2
+ c ar + br + cr ar + b+ cr2

ar + b+ cr2 ar + br2
+ c ar + br + cr

 ,
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from which the first bullet follows. On the other hand, we have P−1 Xβ P is a nonzero scalar multiple ofr 1 r2

r 1 r2

r 1 r2

 ,
from which it follows that gβ has nonzero lα′ component and nonzero g−α′ component for any α′. Similarly,
gγ has nonzero lα′ component and nonzero g−α′ component for any α′. The second bullet follows. We
now show the third bullet for α′ = β ′, the calculation is similar for other roots. We have

P

a x 0
0 a 0
0 0 b

 P−1

is a nonzero constant multiple of 2ar + br + xr −a+ b+ xr2
−ar2

+ br2
+ x

−ar2
+ br2

+ xr br + xr2
−a+ b+ x

−a+ b+ xr −ar2
+ br2

+ xr2 2ar + br + x

 .
A simple calculation shows demanding the off-diagonal entries in the above matrix to be zero will force
all of a, b, x to be zero. Thus W ∩ t is trivial in the subalgebra of g generated by gβ and gγ . It follows
that W ∩ t is contained in t′.

The proof of (1) is very similar to that of (2). The computation may be performed in the subalgebra of
g generated by gβ and gγ , which is of type C2. Let α′ be a long root in the span of β ′ and γ ′. We will
show the three bullets above are true. The roots are {±(e1 − e2),±(e1 + e2),±2e1,±2e2}. We fix an
alternating form x1 y4+ x2 y3− x3 y2− x4 y1 on k2 and let β = e1− e2 and γ = 2e1 with corresponding
root vectors

Xβ :=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Xγ :=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .
We have

6 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 0

=


0 1 0 0
0 0 0 1
−1 0 0 0
0 0 1 0

 .
Let r be a (fixed) primitive eighth root of unity in k, and let

P =


1 1 1 1
r r3 r5 r7

r3 r r7 r5

r2 r6 r2 r6

 ,
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then
P−16P = diag(r, r3, r5, r7),

which implies α′(6) has order 4 in k×. We have P−1 diag(a, b,−b,−a)P is a nonzero scalar multiple of
0 a− br6 0 a− br2

a− br6 0 a+ br2 0
0 a+ br6 0 a+ br2

a− br6 0 a− br2 0

 .
Let α′ ∈8′ be any long root, then α′ satisfies the first bullet. On the other hand, P−1 Xβ P is a nonzero
scalar multiple of 

r − r7 0 r5
− r7 r7

− r3

0 r3
+ r 2r5 r7

+ r
r + r7 2r3 r5

+ r7 0
r − r5 r3

− r 0 r7
− r

 ,
and P−1 Xγ P is a nonzero scalar multiple of

r2 r6 r2 r6

r2 r6 r2 r6

r2 r6 r2 r6

r2 r6 r2 r6

 ,
from which the second bullet follows. We check the third bullet for α′ corresponding to 2e2, the calculation
is similar for other long roots in 8′. We have

P


a 0 0 0
0 0 x 0
0 0 0 0
0 0 0 −a

 P−1

is a nonzero scalar multiple of
x a(r5

− r3)+ xr3 a(r5
− r3)− xr5 a(r6

− r2)+ xr6

a(r − r7)+ xr3 r6x 2ar6
− x a(r5

− r3)+ xr
a(r3
− r5)+ xr 2ar2

− x −r6x a(r3
− r5)+ xr7

−2ar6
+ xr6 a(r3

− r5)+ xr a(r7
− r)− xr3

−x

 .
It is easy to see that for the matrix to be diagonal, both of a and x have to be zero. Thus W ∩ t is trivial
in the subalgebra of g generated by gβ and gγ . It follows that W ∩ t is contained in t′. �

Let6,α′ be as in Lemma 3.10, (1) for8 of type An or Dn , and Lemma 3.11 for8 of type Bn,Cn or E7.
We have α(6) ∈ (Z/ lZ)× for primes l satisfying an appropriate congruence condition if necessary. We
need to modify the element6 to make it land in ρ(0Q). When8 is of type An or Dn , π(ρ(0Q))=[W,W]
(see 2.1.3 and 2.1.5). For any α ∈8, we write slα2 for the Lie subalgebra of g generated by gα and g−α.
We replace sα by sαsβ for some root β orthogonal to α such that [slα2 , sl

β

2 ] is trivial (such β exists because



1376 Shiang Tang

n ≥ 4) and replace 6 with a regular semisimple element in NG(T ) that maps to sαsβ when modulo T (k).
Note that sαsβ ∈ [W,W]: The Weyl group W acts transitively on the irreducible root system 8, so there
exists w ∈W such that wα= β, and hence wsαw−1

= sβ ; it follows that sαsβ = [sα, w]. We again denote
this new element by 6, which now lands in ρ(0Q). Lemma 3.10(1) still holds. When 8 is of type Bn ,
we again have π(ρ(0Q)) = [W,W] (see 2.1.5). As sβsγ ∈ [W,W], 6 ∈ ρ(0Q), so no modification is
needed. When 8 is of type Cn , π(ρ(0Q))=W (see 2.1.4), so we automatically have 6 ∈ ρ(0Q). When
8 is of type E7, the corresponding element 6 is in ρ(0Q) as well (see 2.1.6). Since ρ is unramified at l
and Q(µl) is totally ramified at l, Q(ρ) and Q(µl) are linearly disjoint over Q. So there exists an element
σ ∈ 0Q such that ρ(σ)=6 and κ(σ )= α′(6). It follows that α′(ρ(σ ))= κ(σ ).

Lemma 3.12. Suppose there is a Selmer system L= {Lv}v∈S for which the t-Selmer group H 1
L(0S, ρ(t))

is trivial. We take a pair of nonzero Selmer classes φ ∈ H 1
L⊥(0Q,S, ρ(g)(1)) and ψ ∈ H 1

L(0Q,S, ρ(g)).
Then item (4) of Theorem 3.4 is satisfied.

Proof. We need to check Theorem 3.4(4)(b) and (c). First, Proposition 3.5 and the inflation-restriction
sequence imply that ψ(0K ) and φ(0K ) are nontrivial. By Lemmas 3.10 and 3.11, every irreducible
summand of ρ(g) has an element with nonzero g−α′ component. In particular, (c) holds. As H 1

L(0S, ρ(t))

is trivial, ψ(0K )* t, which implies that k[ψ(0K )] contains g8 when 8 is of type An or Dn , k[ψ(0K )]

contains one of gl and gs when 8 is of type Bn or Cn , and k[ψ(0K )] contains one of ga and gb when 8
is of type E7. It then follows from Lemmas 3.10 and 3.11 that k[ψ(0K )] has an element with nonzero lα′

component. So (b) holds as well. �

The next proposition achieves the vanishing assumption of the t-Selmer in Lemma 3.12 by using of a
variant of the cohomological arguments in Ramakrishna’s method.

Proposition 3.13. Suppose that

h1
L(0S, ρ(t))≤ h1

L⊥(0S, ρ(t)(1)).

Then there is a finite set of places Q disjoint from S and a Ramakrishna deformation condition for each
w ∈ Q with tangent space LRam

w such that

H 1
L∪{LRam

w }w∈Q
(0S∪Q, ρ(t))= 0.

We may assume that H 1
L(0S, ρ(t)) is nontrivial, for otherwise we are done. The inequality in

Proposition 3.13 then implies that H 1
L⊥(0S, ρ(t)(1)) is nontrivial. Let 0 6= φ ∈ H 1

L⊥(0S, ρ(t)(1)).

Lemma 3.14. There exists τ ∈ 0Q with the following properties:

(1) ρ(τ) is a regular semisimple element of G(k), the connected component of whose centralizer we
denote T ′.

(2) There exists α′ ∈8(G, T ′), such that α′(ρ(τ ))= κ(τ).

(3) k[φ(0K )] has an element with nonzero g−α′-component.
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Proof. We have seen that the groups H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) are both
trivial. In particular, the groups H 1(Gal (K/Q), ρ(t)) and H 1(Gal (K/Q), ρ(t)(1)) are both trivial.
The restriction-inflation sequence then implies that φ(0K ) is nontrivial. Now we let 6, α′ be as in
Lemma 3.10(1) for 8 of type An or Dn , and Lemma 3.10(2) for 8 of type Bn , Cn or E7. If necessary,
we can modify 6 to make it land in ρ(0Q), as explained in the paragraph preceding Lemma 3.12. We
have α(6) ∈ (Z/ lZ)×. Since ρ is unramified at l and Q(µl) is totally ramified at l, Q(ρ) and Q(µl) are
linearly disjoint over Q. So there exists an element τ ∈ 0Q such that ρ(τ) = 6 and κ(τ) = α′(6). It
follows that α′(ρ(τ ))= κ(τ), proves (2). Statement (3) follows from Lemma 3.10. �

Corollary 3.15. There exist infinitely many places w /∈ S such that ρ|0w is of Ramakrishna type α′ and
φ|0w /∈ LRam,⊥

w .

Proof. This follows from Lemmas 3.3, 3.14 and Chebotarev’s density theorem. See the proof of [Patrikis
2016, Lemma 5.3]. �

Proof of Proposition 3.13. Let w be chosen as in Corollary 3.15. We will show that

h1
L⊥∪LRam,⊥

w
(0S∪w, ρ(t)(1)) < h1

L⊥(0S, ρ(t)(1)) (4)

and

h1
L∪LRam

w
(0S∪w, ρ(t))− h1

L⊥∪LRam,⊥
w

(0S∪w, ρ(t)(1))= h1
L(0S, ρ(t))− h1

L⊥(0S, ρ(t)(1)) (5)

which imply that

h1
L∪LRam

w
(0S∪w, ρ(t)) < h1

L(0S, ρ(t)),

from which Proposition 3.13 follows by induction.
We first show (5). By a double invocation of Wiles’ formula (see Proposition 4.10), the difference

between the two sides equals dim(LRam
w ∩H 1(0w, ρ(t)))−h0(0w, ρ(t))=h1(0w, ρ(W∩t))−h0(0w, ρ(t)).

As H 0(0w, ρ(g))= t′, we have H 0(0w, ρ(t))= t∩ t′; on the other hand, the action of ρ(0w) on W ∩ t
is a sum of the trivial representation and the cyclotomic character. By an elementary calculation in
Galois cohomology, h1(0w, k)= h1(0w, k(1))= 1. It follows that h1(0w, ρ(W ∩ t))= dim W ∩ t and so
h1(0w, ρ(W ∩ t))− h0(0w, ρ(t))= dim(W ∩ t)− dim(t′ ∩ t), which is zero by Lemma 3.10.

It remains to prove (4). Let Lw = Lunr
w ∩ LRam

w , so L⊥w = Lunr,⊥
w + LRam,⊥

w . We have the following
obvious inclusions

H 1
L∪Lw(0S∪w, ρ(t))⊂ H 1

L∪LRam
w
(0S∪w, ρ(t)), (6)

H 1
L⊥∪LRam,⊥

w
(0S∪w, ρ(t)(1))⊂ H 1

L⊥∪L⊥w
(0S∪w, ρ(t)(1)), (7)

H 1
L∪Lw(0S∪w, ρ(t))⊂ H 1

L∪Lunr
w
(0S∪w, ρ(t))= H 1

L(0S, ρ(t)), (8)

H 1
L⊥(0S, ρ(t)(1))= H 1

L⊥∪Lunr,⊥
w

(0S∪w, ρ(t)(1))⊂ H 1
L⊥∪L⊥w

(0S∪w, ρ(t)(1)). (9)
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As φ|0w /∈ LRam,⊥
w , (7) is a strict inclusion. We claim that (9) is an isomorphism, which will imply (4).

To prove our claim, we consider (8) first. There is an exact sequence

0→ H 1
L∪Lw(0S∪w, ρ(t))→ H 1

L(0S, ρ(t))→ (Lunr
w ∩ H 1(0w, ρ(t)))/(Lw ∩ H 1(0w, ρ(t))).

As
Lunr
w = H 1(0w/Iw, ρ(g))

f 7→ f (Frw)
−−−−−→ g/(ρ(Frw)− 1)g∼= t′,

the top of its last term is isomorphic to H 1(0w, ρ(t
′
∩ t)), which has dimension dim(t′∩ t); the bottom of

its last term is isomorphic to H 1(0w, t
′
α ∩ t), which has dimension dim(t′α ∩ t). By Lemma 3.10, these

dimensions are equal. So the last term is zero, and hence (8) is an isomorphism. A double invocation of
Wiles’ formula (Proposition 4.10) shows h1

L⊥∪L⊥w
(0S∪w, ρ(t)(1))− h1

L⊥(0S, ρ(t)(1)) equals

h1
L∪Lw(0S∪w, ρ(t))− h1

L(0S, ρ(t))+ h0(0w, ρ(t))− dim(Lw ∩ H 1(0w, ρ(t))).

Because (8) is an isomorphism and dim(Lw∩H 1(0w, ρ(t)))=h1(0w, ρ(W∩t′∩t))=dim(W∩t′∩t)=
dim(t′ ∩ t)= h0(0w, ρ(t)) (Lemma 3.10), the right hand side of the above identity is zero. Therefore, (9)
is an isomorphism, which completes the proof of the proposition. �

Theorem 3.16. Let L= {Lv}v∈S be a family of smooth local deformation conditions for ρ (the residual
representation defined in Section 2A) unramified outside a finite set of places S containing the real place
and all places where ρ is ramified. Suppose that∑

v∈S

dim Lv ≥
∑
v∈S

h0(0v, ρ(g)) and
∑
v∈S

dim(Lv ∩ H 1(0v, ρ(t)))≤
∑
v∈S

h0(0v, ρ(t)).

Assume l is large enough; in addition, if 8 is of type E7, assume l ≡ 1(3), and if 8 is doubly laced,
assume l ≡ 1(4).

Then there is a finite set of places Q disjoint from S and a continuous lift

ρ : 0S∪Q→ G(O)

of ρ such that ρ is of type Lv for v ∈ S and of Ramakrishna type for v ∈ Q.

Proof. The second inequality and Wiles’ formula (Proposition 4.10) imply that

h1
L(0S, ρ(t))≤ h1

L⊥(0S, ρ(t)(1)).

By Proposition 3.13, we can enlarge L by adding finitely many Ramakrishna deformation conditions to
get a new Selmer system L′ = {Lv}v∈S′ with S′ ⊃ S such that H 1

L′(0S′, ρ(t))= {0}. By Lemma 3.3(2),
replacing L by L′ preserves the first inequality.

We choose σ ∈ 0Q and α′ ∈8(G, T ′) as in the paragraph preceding Lemma 3.12 (this is where the
congruence conditions for8 of type Bn,Cn, E7 come in). Chebotarev’s density theorem implies that there
are infinitely many places w /∈ S′ such that ρ|w is of Ramakrishna type α′. We have for such a prime w,

H 1
L′∪LRam

w
(0S′∪w, ρ(t))= 0.
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In other words, adding a Ramakrishna local deformation conditions does not make the t-Selmer group
jump back to a nontrivial group. Indeed, LRam

w ∩H 1(0w, ρ(t))= H 1(0w, ρ(W∩t))⊂ H 1(0w, ρ(t
′
∩t))=

H 1(0w/Iw, ρ(t)), where the middle inclusion follows from Lemma 3.10 and 3.11. So

H 1
L′∪LRam

w
(0S′∪w, ρ(t))⊂ H 1

L′(0S′, ρ(t))= {0}.

Let us check the assumptions of Theorem 3.4. By Proposition 4.10 and the first inequality in the
assumption, item (1) holds. Item (2) and (3) are satisfied by Proposition 3.5. As H 1

L′(0S′, ρ(t)) = {0},
Item (4) is satisfied by Lemma 3.12. Therefore, by the proof of Theorem 3.4, there is a strict inclusion

H 1
L′⊥∪LRam,⊥

w
(0Q,S′∪w, ρ(g)(1))⊂ H 1

L′⊥(0Q,S′, ρ(g)(1)).

As the t-Selmer group is still trivial for the enlarged Selmer system, item (4) remains valid by Lemma 3.12.
So we can find a primew′ /∈ S′∪w and enlarge the Selmer system L′∪LRam

w in the same way so that the dual
Selmer group shrinks even further. Applying this argument finitely many times, we can kill the dual Selmer
group. Therefore, by the first two lines of the proof of Theorem 3.4, we obtain desired l-adic lifts. �

3C. Deforming principal GL2. We use the notation in Section 2B. Recall that ρ is the composite
0Q→ GL2(k)

ϕ
−→G(k) where the first map is constructed from modular forms and the second map is

the principal GL2-map.
Patrikis has shown that all simple algebraic groups of exceptional types are geometric monodromy

groups for 0Q except for Ead
6 , E sc

6 , E sc
7 [Patrikis 2016]. In this section, we follow Patrikis’ work and use

the principal GL2 to construct full-image Galois representations into Ead
6 , E sc

6 ,SL3,Spin7.
The proof of the following theorem is identical to that of [Patrikis 2016, Theorem 7.4].

Theorem 3.17. Let L= {Lv}v∈S be a family of smooth local deformation conditions for ρ (the residual
representation defined in Section 2B) unramified outside a finite set of places S containing the real place
and all places where ρ is ramified. Suppose that∑

v∈S

dim Lv ≥
∑
v∈S

h0(0v, ρ(g)).

Assume l is large enough.
Then there is a finite set of places Q disjoint from S and a continuous lift

ρ : 0S∪Q→ G(O)

of ρ such that ρ is of type Lv for v ∈ S and of Ramakrishna type for v ∈ Q.

In [Patrikis 2016, Lemma 7.6], the following fact is verified using Magma.

Lemma 3.18. Assume l is large enough for g. For g of exceptional type, there is a root α ∈8 such that
every irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero
g−α component.

For our purpose, we only need to establish its analogs for g of type An and Bn .
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Lemma 3.19. Assume l is large enough for g. For g of type An , there is a root α ∈ 8 such that every
irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero g−α

component.

Proof. Let g= sln+1 and let αi, j = ei − e j , i 6= j be the roots of g. Let Ei, j be the n+ 1 by n+ 1 matrix
that has 1 at the (i, j)-entry and zeros elsewhere. The sl2-triple associated to αi, j is {X i, j := Ei, j , Hi, j =

Ei,i − E j, j , Yi, j := E j,i }. Let

X = X1,2+ X2,3+ · · ·+ Xn,n+1,

H =
∑
i< j

Hi, j = k1 H1,2+ k2 H2,3+ · · ·+ kn Hn,n+1,

Y = k1Y1,2+ k2Y2,3+ · · ·+ knYn,n+1,

where ki := i(n− i + 1). The triple {X, H, Y } is an sl2-triple containing the regular unipotent element X .
A straightforward calculation gives for i < j

[Y, X i, j ] = ki X i+1, j − k j−1 X i, j−1.

Put h = j − i and apply the above identity recursively, we obtain

(adY )h X i, j = (−1)hki, j

(
Hi,i+1−

(h−1
1

)
Hi+1,i+2+

(h−1
2

)
Hi+2,i+3+ · · ·+ (−1)h−1

(h−1
h−1

)
H j−1

)
,

where ki, j = ki ki+1 · · · k j−1. By Proposition 2.19,

gX
=

n∑
h=1

〈v2h〉

where v2h =
∑

j−i=h X i, j . Then we have

(adY )hv2h = h1 H1,2+ · · ·+ hn Hn,n+1

with h1 = (−1)hk1,h+1, h2 = (−1)h−1
(h−1

1

)
k1,h+1 + (−1)hk2,h+2 and hi = (−1)h−1hn−i+1. Since

(adYi,i+1)Hi−1,i = Yi,i+1, (adYi,i+1)Hi,i+1 =−2Yi,i+1 and (adYi,i+1)Hi+1,i+2 = Yi,i+1,

(adY )h+1v2h = (adY )(h1 H1,2+ · · ·+ hn Hn,n+1)

= k1(−2h1+ h2)Y1,2+ k2(h1− 2h2+ h3)Y2,3+ · · ·+ kn(hn−1− 2hn)Yn,n+1.

One computes

h2− 2h1 = (−1)h−1(h+ 1)!h(n− 1)(n− 2) · · · (n− h+ 1) 6= 0.

So if we let α = α1,2 and suppose l is large enough for g, then the submodule of ρ(g) generated by v2h

has a vector with nonzero g−α component, that is, the vector (adY )h+1v2h; the vector (adY )hv2h has
nonzero lα component, as α(h1 H1,2+ · · ·+ hn Hn,n+1)= 2h1− h2 which is nonzero. �
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Corollary 3.20. Assume l is large enough for g. For g of type Bn , there is a root α ∈8 such that every
irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero g−α

component.

Proof. Let g= so2n+1. Let V = k2n+1 be a vector space equipped with a bilinear form x1 y2n+1+ x2 y2n+

· · ·+ x2n+1 y1 with matrix J . Then g can be identified with

{X ∈ M2n+1(k) | X J + J X t
= 0}.

The roots of g are ei − e j , ei + e j , −ei − e j , ±ei for 1 ≤ i 6= j ≤ n. We choose a set of simple
roots 1 = {e1− e2, e2− e3, · · · en−1− en, en}. The sl2-triple associated to ei − ei+1 is {X i := X i,i+1−

X2n−i+1,2n−i+2, Hi :=Hi,i+1+H2n−i+1,2n−i+2, Yi :=Yi,i+1−Y2n−i+1,2n−i+2}, and the sl2-triple associated
to en is {Xn := Xn,n+1− Xn+1,n+2, Hn := 2Hn,n+1+ 2Hn+1,n+2, Yn := 2Yn,n+1− 2Yn+1,n+2}. Let

X =
∑

i

X i ,

H =
∑

1≤i≤n−1

i(2n− i + 1)Hi +
1
2 n(n+ 1)Hn,

Y =
∑

1≤i≤n−1

i(2n− i + 1)Yi +
1
2 n(n+ 1)Yn.

A straightforward calculation shows that X, H, Y form an sl2-triple containing the regular unipotent
element X ∈ g.

Corresponding to the exponents 1, 3, · · · , 2n− 1 of g, we put

v2·1 = X1,2+ · · ·+ Xn,n+1− Xn+1,n+2− · · ·− X2n,2n+1 ∈ so2n+1,

v2·3 = X1,4+ · · ·+ Xn−1,n+2− Xn,n+3− · · ·− X2n−2,2n+1 ∈ so2n+1, . . . , . . . ,

v2·(2n−1) = X1,2n − X2,2n+1 ∈ so2n+1.

Then gX
=
∑

i=1,3,··· ,2n−1 < v2i >. Let α = e1− e2, the same calculation as in the proof of Lemma 3.19
gives (adY )iv2i has a nonzero lα component and (adY )i+1v2i has a nonzero g−α component for any
exponent i . �

3D. Removing the congruence conditions on l. In this section, we use a result in [Fakhruddin et al.
2018] to remove the congruence condition we have imposed for G of type Bn,Cn, E7 in Theorem 3.16.
The following theorem is a simplified version of [Fakhruddin et al. 2018, Theorem 1.3]: as we are not
considering geometric lifts, we relax the condition at l and only require the right hand side of Wiles’
formula (Proposition 4.10) to be nonnegative. It applies to the residual representations we construct
and allows us to deform it to an l-adic representation with Zariski-dense image for almost all primes l.
However, their argument is very different and much more complicated than ours, so we only use it to
remove the congruence conditions.
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Theorem 3.21. Suppose that there is a global deformation condition L= {Lv}v∈S consisting of smooth
local deformation conditions for each place v ∈ S. Let K =Q(ρ(g), µl). We assume the following:

(1)
∑
v∈S

(dim Lv)≥
∑
v∈S

h0(0Qv
, ρ(g)).

(2) The field K does not contain µl2 .

(3) The groups H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) vanish.

(4) The spaces ρ(g) and ρ(g)(1) are semisimple Fl[0Q]-modules (equivalently, k[0Q]-modules) having
no common Fl[0Q]-subquotient, and that neither contains the trivial representation.

(5) The space ρ(g) is multiplicity-free as a Fl[0Q]-module.

Then there exists a finite set of primes Q disjoint from S, and a lift ρ : 0Q,S∪Q→ G(O) of ρ such that ρ is
of type Lv at all v ∈ S.

Lemma 3.22. Let k = Fl and let ρ : 0Q→ G(k) be as in Sections 2A4–2A6. Then Theorem 3.21(2)–(5)
hold.

Proof. By the decomposition of ρ(g) and the proof of Proposition 3.5(3)–(5) hold. It remains to show (2).
Since by construction ρ is unramified at l, Q(ρ(g)) and Q(µl) are linearly disjoint over Q. It follows that

Gal (K/Q)∼= (Im(ρ)/Z)× (Z/ lZ)×

where Z denotes the center of G(k). Assume K contains µl2 , then there would be a surjection

Gal (K/Q)ab � (Z/ l2Z)×.

On the other hand, we have by the construction of ρ that Im(ρ)′= Im(ρ) for G of type Bn and E7, Im(ρ)′

is of index two in Im(ρ) for G of type Cn . It follows that the order of (Im(ρ)/Z)ab is at most two, and
hence the order of Gal (K/Q)ab is at most 2(l − 1). But this is impossible since (Z/ l2Z)× has order
l(l − 1) and l 6= 2. �

4. Simple, simply connected groups as monodromy groups

In this section, we prove Theorem 1.2 for G a simple, simply connected algebraic group. Recall that
there are two different constructions for the residual representation ρ : 0Q→ G(k): one has image a
large index subgroup of NG(T )k with the properties that ρ is unramified at l and ad ρ(c) is nontrivial; the
other factors through a principal GL2 such that ρ(c)= ρ∨(−1).

4A. Local deformation conditions. We need to define several local deformation conditions for deforming
the mod p representations.
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4A1. The archimedean place. Recall that in Sections 2A3–2A5, we construct the residual representations
by first realizing Sn or An as a Galois group over Q and then repeatedly applying Theorem 2.5 to build
the Galois extension realizing N or a subgroup of it over Q. We write c for the nontrivial element in 0R,
the complex conjugation.

Proposition 4.1. Let G be of classical type and ρ : 0Q→ G(k) be as in Sections 2A2-2A5. In particular,
ad ρ(c) is nontrivial. Then:

(1) For G of type An−1, h0(0R, ρ(g))≤ n2
− 2n+ 1.

(2) For G of type Bn , h0(0R, ρ(g))≤ 2n2
− 3n+ 2.

(3) For G of type Cn , h0(0R, ρ(g))≤ 2n2
− 3n+ 4.

(4) For G of type Dn , h0(0R, ρ(g))≤ 2n2
− 5n+ 4.

Proof. Let f be the number of root vectors that are fixed by ρ(c). Let us recall that ad ρ(c) is nontrivial
by Theorem 2.4.

If G is of type An−1, we have G(k)∼= SL(V ) with V = kn . Let d := dim V ρ(c). Then

f = 2
((d

2

)
+

(n−d
2

))
.

If G is of type Bn , G(k)/µ2 ∼= SO(V ) with V = k2n+1 a k-vector space equipped with the nondegen-
erate symmetric bilinear form x1 y2n+1 + x2 y2n + · · · + x2n+1 y1. We may assume ρ(c) is conjugate to
diag(ε1, . . . , εn, 1, εn, . . . , ε1) in SO(V ) and let d be the number of ones among ε1, . . . , εn . Then

f = 4
((d

2

)
+

(n−d
2

))
+ 2d.

If G is of type Cn , G(k) ∼= Sp(V ) with V = k2n a k-vector space equipped with the nondegenerate
alternating bilinear form x1 y2n + · · · xn yn+1− xn+1 yn − · · ·− x2n y1. We may assume ρ(c) is conjugate
to diag(ε1, . . . , εn, εn, . . . , ε1) and let d be the number of 1’s among ε1, . . . , εn . Then

f = 4
((d

2

)
+

(n−d
2

))
+ 2n.

If G is of type Dn , a quotient of G(k) is isomorphic to SO(V ) with V = k2n a k-vector space equipped
with the nondegenerate symmetric bilinear form x1 y2n + x2 y2n−1+ · · · + x2n y1. We may assume ρ(c)
is conjugate to diag(ε1, . . . , εn, εn, . . . , ε1) in SO(V ) and let d be the number of 1’s among ε1, . . . , εn .
Then

f = 4
((d

2

)
+

(n−d
2

))
.

By the construction of ρ (see the paragraph before Remark 2.8 in Section 2A3 for type An; for other
types, see Sections 2A4, 2A5 and 2A6), ad ρ(c) is nontrivial, which implies 0< d < n. So f attains its
maximum when d = n− 1. Since

h0(0R, ρ(g))= rk(g)+ f,
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the upper bounds can then be computed easily. �

Proposition 4.2. Let G be of type E7 and ρ : 0Q→ G(k) be as in Section 2A6. In particular, ad ρ(c) is
nontrivial. Then h0(0R, ρ(g))≤ 7+ 126− 14= 119.

Proof. Suppose that ρ(c)∈ T (k) for a maximal torus T split over k. Let8=8(G, T ), and g8=
∑

α∈8 gα

be the k-subspace of ρ(g) generated by all root vectors. The Lie algebra t of T (k), which has k-dimension 7,
is clearly fixed by ad ρ(c). Thus, it suffices to show that the−1-eigenspace of ad ρ(c) | g8 has k-dimension
at least 14. We consider ad ρ(c) | g8′ where 8′ ⊂ 8 is of type A7. This action is nontrivial. By the
An-calculation in the proof of Proposition 4.1 (letting n = 7), the −1-eigenspace of ad ρ(c) | g8′ has
dimension at least twice the rank of 8′, proves the proposition. �

The following lemma is clear.

Lemma 4.3. The dimension
dimk(Sym2n(k2)⊗ det−n)diag(1,−1)

equals n when n is odd, and n+ 1 when n is even.

Corollary 4.4. Let ρ : 0Q→ G(k) be as in Section 2B. Then

h0(0R, ρ(g))= 4 for G = SL3,

h0(0R, ρ(g))= 9 for G = Spin7,

h0(0R, ρ(g))= 38 for G = E sc
6 .

Proof. This follows from Lemma 4.3 and Proposition 2.19. Note that the complex conjugation maps to
diag(1,−1) in GL2 because the representation r f,λ in the last paragraph of Section 2 is odd. �

4A2. The place l. As we are not looking for geometric l-adic Galois representations in this paper, we
impose no condition at the place l. So the tangent space is H 1(0l, ρ(g)). By the local Euler characteristic
formula,

h1(0l, ρ(g))= h0(0l, ρ(g))+ h2(0l, ρ(g))+ dimk g.

Lemma 4.5. Let ρ be as in Section 2A or 2B. Then h2(0l, ρ(g))= 0 for large enough primes l.

Proof. By local duality, it suffices to show that h0(0l, ρ(g)(1)) = 0. For the representation ρ in
Section 2A, ρ(IQl ) is trivial by construction but κ(IQl ) is nontrivial, so ρ(g)(1)IQv is trivial. In particular,
h0(0l, ρ(g)(1))= 0. For the representation ρ in Section 2B, Proposition 2.19 and the lemma below imply
h0(0l, ρ(g)(1))= 0. �

Lemma 4.6. We have h0(0l,Sym2m(r f )⊗ det(r f )
−m
⊗ κ) = 0 for m ≥ 1 and large enough primes l

(relative to m).

Proof. The argument is similar to the proof of [Weston 2004, Proposition 4.4]. Let K be a finite extension
of Ql with ring of integers O and residue field k. Let v : K×→Q be the valuation on K , normalized so that
v(l)= 1. We briefly recall the setting in Section 4.1 of [Weston 2004]. For a < b, let MFa,b(O) denote
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the category of filtered Dieudonné O-modules D equipped with a decreasing filtration of O-modules
{Di }i∈Z and a family of O-linear maps { fi : Di

→ D} satisfying Da
= D and Db

= 0; see [Weston 2004,
Definition 4.1]. Let Ga,b(O) denote the category of finite type O-module subquotients of crystalline
K -representations V with Da

crys(V )= Dcrys(V ) and Db
crys(V )= 0. Fontaine–Laffaille define a functor

U :MFa,a+l(O)→ Ga,a+l(O)

satisfying a list of properties including U that is stable under formation of subobjects and quotients, and
compatible with tensor products for l large enough. In particular, U is compatible with symmetric powers
for large enough l. Let ε : 0l → O× be an unramified character of finite order and let O(ε) denote a
free O-module of rank 1 with 0l-action via ε. Then O(ε) ∈ G0,1(O), so that there is Dε ∈MF0,1(O)
such that U(Dε)=O(ε). This Dε is a free O-module of rank one with Dε = D0

ε and f0 : D0
ε → Dε the

multiplication by ε−1(l) := ε−1(Frl) where the Frobenius element is arithmetic.
Let f be a newform of weight 3, level N , and character ε. Let K ⊃ Eλ and let r f := r f,λ :0Q→GL2(K )

be the Galois representation associated to f of weight k (see Example 1.5). We fix an embedding 0l→0Q,
and let V f be a two dimensional K -vector space on which 0l acts via r f |0l , and fix a 0l-stable O-lattice
T f ⊂ V f . If l does not divide N , then V f is crystalline and T f ∈ G0,3(O). Thus for l > k there exists
D f ∈MF0,3(O) with U(D f )∼= T f . The filtration on D f satisfies rkO(Di

f )= 2 if i ≤ 0, rkO(Di
f )= 1 if

1≤ i ≤ 2, and rkO(Di
f )= 0 if i ≥ 3. Choose an O-basis x, y of D f with x an O-generator of D1

f . Let
a, b, c, d ∈ O be such that f0x = ax + by, f0 y = cx + dy. Then a+ d = al and ad − bc = l2ε(l). We
have v(a), v(b)≥ 2.

Let r f : 0l→ GL2(k) be the Galois representation T f /λT f . Since det r f = κ
2ε, we have

Sym2m(T f )⊗ det(T f )
−m
⊗ κ = (Sym2m(T f )⊗O(ε−m))(1− 2m).

When l is large enough relative to m, by [Fontaine and Messing 1987, Proposition 1.7] we can take

D = (Sym2m(D f )⊗ Dε−m )(2m− 1).

Further, since (Sym2m(T f )⊗det(T f )
−m
⊗κ)/λ is a realization of Sym2m(r f )⊗det(r f )

−m
⊗κ , we have

H 0(0l,Sym2m(r f )⊗ det(r f )
−m
⊗ κ)= ker(1− f0 : D0/λD0

→ D/λD).

By the definition of Tate twists and tensor products of filtered Dieudonné O-modules, we have

D0
= (Sym2m(D f )⊗Dε−m )2m−1

=

∑
i1+···+i2m+ j=2m−1

Di1
f · · · D

i2m
f ·D

j
ε−m =

∑
i1+···+i2m=2m−1

Di1
f · · · D

i2m
f ·D

0
ε−m .

To make the sum nonzero, there must be at least m indices that are greater than or equal to 1, so at least
m indices must be two since x ∈ D2

f as well as D1
f . It follows that {x i y2m−i−1w | i ≥m} is an O-basis of

D0, where w is an O-generator of Dε−m . We compute

f0(x i y2m−i−1w)=
εm(l)
l2m−1 (ax + by)i (cx + dy)2m−i−1.
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Since v(a), v(b) ≥ 2 and i ≥ m, all the coefficients of x and y have positive valuations. There-
fore, f0(x i y2m−i−1w) ≡ 0 modulo λ, which implies f0 : D0/λD0

→ D/λD is zero. It follows that
H 0(0l,Sym2m(r f )⊗ det(r f )

−m
⊗ κ) is trivial. �

Corollary 4.7. h1(0l, ρ(g))= h0(0l, ρ(g))+ dimk g.

4A3. A zero-dimensional deformation. In order to maximize the Zariski-closure of the image of the
l-adic lift of the residual representation, we need to impose a simple local deformation condition at some
unramified place.

Suppose that p 6= l, F is a finite extension of Qp, and ρ : 0F → G(k) is an unramified representation.
Let g ∈ G(O) be a lift of ρ(Frp).

Definition 4.8. Define
Liftg

ρ : CNLO→ Sets

such that for a complete local noetherian O-algebra R, Liftg
ρ(R) consists of all lifts

ρ : 0F → G(R)

of ρ such that ρ is unramified and ρ(Frp) is Ĝ(R)-conjugate to g.

So the tangent space is zero-dimensional and when Liftg
ρ is a local deformation condition, it is clearly

smooth. But for a given g, Liftg
ρ may not be representable. But at least we have

Proposition 4.9. Suppose that G is simply connected. Let g and g be regular semisimple elements of
G(Fl) and G(Ql), respectively. Then Liftg

ρ is representable.

Proof. By Schlessinger’s criterion, it suffices to show the following: for any A � B in CLNO with kernel
I for which I ·mA = 0, the induced map

ZG(g)(A)→ ZG(g)(B)

is surjective. The group ZG(g) is a scheme over O, we denote the structure map by

f : ZG(g)→ SpecO.

We need to show that ZG(g) is a smooth O-scheme. It suffices to show that:

• The map f is flat over O.

• The generic fiber and the special fiber of f are smooth of the same dimension.

Because G is simply connected and g and g are regular semisimple, ZG(g)(O/λ) and ZG(g)(FracO)
are connected maximal tori of G(O/λ) and G(FracO), respectively, with dimension the rank of G. The
second bullet follows.

To show the first bullet, note that f has a section, that is, ZG(g) has an O-point (for example, the
element g ∈ G(O) itself). Moreover, by the previous paragraph, the generic fiber and the special fiber of
f are both irreducible, reduced and have the same dimension. It follows from Proposition 6.1 of [Gan
and Yu 2003] that f is flat. �
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4A4. Steinberg deformations. In [Patrikis 2016, Section 4.3], a local deformation condition of “Steinberg
type” is taken at a place in order to obtain a regular unipotent element in the image of the l-adic lift.
We will only need this in deforming those ρ constructed from the principal GL2. We refer the reader to
[Patrikis 2016, Section 4.3] for the definition and properties of the Steinberg deformation condition. The
dimension of the tangent space equals h0(0v, ρ(g)).

4A5. Minimal prime to l deformations. This deformation condition is well known; see [Patrikis 2016,
Section 4.4] for its definition. We will use this deformation condition at places v 6= l for which ρ(IQv

) is
nontrivial and ρ(0Qv

) has order prime to l. The tangent space is H 1(0v/Iv, ρ(g)Iv ), whose dimension is
h0(0v, ρ(g)).

4B. Deforming mod p Galois representations. In this section, we specify the global deformation con-
dition and compute the Wiles formula, then use the results in Section 3 to prove Theorem 1.2. Let us
recall Wiles’ formula, for a proof; see [Patrikis 2016, Proposition 9.2].

Proposition 4.10. Let M be a finite-dimensional k-vector space with a continuous 0Q action unramified
outside a finite set of places S. Let L= {Lv}v∈S and L⊥ = {L⊥v }v∈S be a Selmer system and dual Selmer
system, respectively, for M. Then

h1
L(0S,M)− h1

L⊥(0S,M∨)= h0(0S,M)− h0(0S,M∨)+
∑
v∈S

(dimk Lv − h0(0v,M)).

We will compute the right-hand side of the identity for M = ρ(g) or ρ(t) and for a global deformation
condition to be specified below. For ρ(g) from either Section 2A or 2B, note that h0(0S, ρ(g)) =

h0(0S, ρ(g)(1))= 0.

4B1. Weyl group case. For G a simple, simply connected group of classical type or type E7, let ρ :
0Q→ G(k) be as in Section 2A. Here we exclude the A1, A2, B3 cases. We impose no condition at v = l
which is liftable by Lemma 4.5, and impose the minimal prime to l condition at v ∈ S− {∞, l} (note
that ρ(0Q) has order prime to l by our construction). Moreover, we will find a prime p /∈ S for which
ρ(Frp) is regular semisimple, together with a regular semisimple lift g ∈ G(O) of ρ(Frp). Then we take
the deformation condition Liftg

ρ|0p
at p.

Lemma 4.11.
∑
v∈S

dimk Lv ≥
∑
v∈S

h0(0v, ρ(g)).

Proof. This follows directly the local computations in Section 4A, for example Proposition 4.1 and
Corollary 4.7, etc. We record here a lower bound for

∑
v∈S dimk Lv −

∑
v∈S h0(0v, ρ(g)). For G = SLn ,

it is n− 1; for G = Spin2n+1, it is 3n− 2; for G = Sp2n , it is 3n− 4; for G = Spin2n , it is 3n− 4; and for
G = E7, it is 7. �

Lemma 4.12.
∑
v∈S

dimk(Lv ∩ H 1(0v, ρ(t)))≤
∑
v∈S

h0(0v, ρ(t)).
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Proof. For v /∈ {∞, l, p}, Lv corresponds to the minimal prime to l deformation condition and we have

dimk(Lv ∩ H 1(0v, ρ(t)))= dimk H 1(0v/Iv, ρ(t)Iv )= h0(0v, ρ(t)).

So it suffices to compare both sides for v ∈ {∞, l, p}. The left-hand side subtracting the right-hand side
equals

(0− h0(0R, ρ(t)))+ (h1(0l, ρ(t))− h0(0l, ρ(t)))+ (0− h0(0p, ρ(t))).

By local duality and Lemma 4.5,

h1(0l, ρ(t))− h0(0l, ρ(t))= dimk t.

Combining this with the identity
h0(0p, ρ(t))= dimk t,

we see that the difference is −h0(0R, ρ(t))≤ 0. �

Let us make the following observation which is from [Patrikis 2016, Lemma 7.7]. It will be used
frequently in the proof of Propositions 4.14, 4.18, and 4.20; suppose that ρ : 0Q→ G(k) is a continuous
representation with a continuous lift ρ : 0Q→ G(O). Let Gρ be the Zariski closure of G(O) in G(Ql).
Then Lie(Gρ), Lie(Gρ)∩ gO, and (Lie(Gρ)∩ gO)⊗O k are 0Q-modules. Moreover, the last one is a
submodule of ρ(g) and thus is a direct sum of some irreducible summands of ρ(g). If Lie(Gρ)= g(Ql)

(which is equivalent to (Lie(Gρ)∩ gO)⊗O k = g), then Gρ = G(Ql) (since G is connected).

Lemma 4.13. Let G be a semisimple algebraic group defined over O and let C be a proper subvariety of
G. Let g ∈ G(O) and H = gĜ(O) be the corresponding Ĝ(O)-coset of G(O). Then there is a regular
semisimple element in H −C(Ql).

Proof. Let V be the union of C(Ql) and the set of elements of G(Ql) that are not regular semisimple. Then
V is a proper Zariski-closed subset of G(Ql) as the set of regular semisimple elements is Zariski-open
(see for example [Humphreys 1995, Theorem 2.5]). On the other hand, H is Zariski-dense in G(Ql). If
there were no regular semisimple element in H −C(Ql), then H ⊂ V and H could not be Zariski-dense,
a contradiction. �

Proposition 4.14. Let G be a simple, simply connected group of classical type (excluding type A1, A2

and B3) or type E7. Then for almost all primes l when 8 is of type An or Dn , for almost all primes
l ≡ 1(4) when 8 is of type Bn or Cn , and for almost all primes l ≡ 1(3) when 8 is of type E7, there are
l-adic lifts

ρ : 0Q→ G(O)

of ρ : 0Q→ G(k) defined in Section 2A with Zariski-dense image in G(Ql).

Proof. By Lemmas 4.11 and 4.12, we can apply Theorem 3.16 to obtain a lift ρ : 0Q→ G(O) satisfying
the prescribed local conditions. The condition at p implies that Gρ has infinitely many elements and so
Lie(Gρ) is nontrivial.
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If G is of type An or Dn , by Propositions 2.9 and 2.13, (Lie(Gρ)∩ gO)⊗O k (as a Lie subalgebra of
g) is then either t or g. By the previous lemma, there exist a regular semisimple element g ∈ G(O) such
that g = ρ(Frp) and g /∈ NG(T )(Ql). Imposing Liftg

ρ | p at p, we obtain Gρ * NG(T )(Ql), which implies
(Lie(Gρ)∩ gO)⊗O k cannot be t.

If G is of type Bn , by Proposition 2.13, (Lie(Gρ)∩gO)⊗O k (as a Lie subalgebra of g) is t, t⊕gl ∼= so2n

or g. Let H be an algebraic subgroup of G containing T such that (Lie(H)∩gO)⊗O k = t⊕gl (there are
finitely many of them). Let C be the union of NG(T ) and all such H , which is a proper subvariety of G.
By the previous lemma, there exist a regular semisimple element g ∈ G(O) such that g = ρ(Frp) and
g /∈ C(Ql). Imposing Liftg

ρ | p at p, we obtain Gρ * C(Ql), which implies (Lie(Gρ)∩ gO)⊗O k cannot
be t or t⊕ gl .

If G is of type Cn , by Proposition 2.11, (Lie(Gρ)∩gO)⊗Ok (as a Lie subalgebra of g) is t, t⊕gl∼= (sl2)
n

or g. The same argument as for type Bn enables us to impose a suitable condition Liftg
ρ | p at p in order to

force (Lie(Gρ)∩ gO)⊗O k = g.
Finally, suppose that G = E sc

7 . By Proposition 2.17, (Lie(Gρ)∩ gO)⊗O k (as a Lie subalgebra of g)
is either t, t⊕ ga ∼= sl7 or g. We can force (Lie(Gρ)∩ gO)⊗O k to be g in the same way as above. �

Remark 4.15. As we have flexibilities in choosing g ∈ G(O) lifting ρ(Frp), it is easy to see that there
are infinitely many lifts ρ that are nonconjugate in Gad.

4B2. Principal GL2 case. For G a simply connected group of one of the following types: A2, B3, E6,
let ρ : 0Q→ G(k) be as in Section 2B.

We begin with the following proposition due to Tom Weston [2004, Proposition 5.3].

Proposition 4.16. Let π = π f be a cuspidal automorphic representation corresponding to a holomorphic
eigenform f of weight at least 2. Assume that for some prime p, πp is isomorphic to a twist of the
Steinberg representation of GL2(Qp). Then for almost all λ, the local Galois representation r f,λ|0p (in
the notation of Example 1.5) has the form

r f,λ|0p ∼

(
χκ ∗

0 χ

)
where the extension * in H 1(0p, kλ(κ)) is nonzero.

Let f be a non-CM weight 3 cuspidal eigenform that is a newform of level 01(p)∩00(q) for some
primes p and q; the nebentypus of f is a character ε : (Z/pqZ)×→ (Z/pZ)×→ C×. Such a form f
exists, see for example, [LMFDB 2013, 15.3.7.a and 15.3.11.a]. Note that the automorphic representation
π f associated to f is Steinberg at p. Proposition 4.16 together with the definition of principal GL2 then
imply ρ|0p is Steinberg in the sense of [Patrikis 2016, Definition 4.13]. At p we take the Steinberg
deformation condition. As π f is a principal series at q, ρ(Iq) has order prime to l. We then use the
minimal prime to l deformation condition at q. At l we impose no condition. Moreover, choose an
element σ ∈0Q such that ρ(σ) is regular semisimple in T (k) together with a lift g ∈ T (O) such that α(g),
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α ∈1 are distinct. By Chebotarev’s density theorem, there is a prime r /∈ {∞, l, p, q} such that Frr = σ .
We then take Liftg

ρ|0r
at r . Let L be the Selmer system associated to the above local deformations.

Lemma 4.17. The right-hand side of Wiles’ formula is 2 for A2, 9 for B3, and 34 for E6.

Proof. This follows from Corollaries 4.4, 4.7 and Proposition 4.10. �

Proposition 4.18. For G = SL3,Spin7 or E sc
6 and for almost all primes l, there are l-adic lifts

ρ : 0Q→ G(O)

of ρ : 0Q→ G(k) defined as in Section 2B with Zariski-dense image in G(Ql).

Proof. The proof is very similar to the proof of [Patrikis 2016, Theorem 7.4], so we skip a few details here.
We first show that Theorem 3.4 applies to ρ. Item (1) is satisfied by Lemma 4.17; items (2) and (3) are

satisfied by the proof of [Patrikis 2016, Theorem 7.4]; for item (4), take σ ∈ 0Q such that ρ(σ)= 2ρ∨(a)
is regular with 1 6= a ∈ (Z/ lZ)× and κ(σ )= a2 (which is possible, again, see the proof of [Patrikis 2016,
Theorem 7.4]. It follows that item (a) is satisfied for any simple root α. Item (b) and (c) are also satisfied
by Lemmas 3.18, 3.19 and Corollary 3.20.

Therefore, we can deform ρ to a continuous representation ρ : 0Q→ G(O) satisfying the prescribed
local conditions on S and the Ramakrishna condition on a set of auxiliary primes disjoint from S. We
write Gρ for the Zariski closure of the image of ρ in G(Ql). By [Patrikis 2016, Lemma 7.7] Gρ is
reductive. By Proposition 4.16, the Steinberg condition at p ensures that Gρ contains a regular unipotent
element (see the proof of [Patrikis 2016, Theorem 8.4]). By a theorem of Dynkin [Saxl and Seitz 1997,
Theorem A], Gρ is then of type A1 or A2 for G = SL3, type A1,G2 or B3 for G = Spin7, and type A1, F4,
or E6 for G = E sc

6 . But α(ρ(Frr )), α ∈1 are distinct, so Gρ = G(Ql) in all three cases (see the proof
of [Patrikis 2016, Lemma 7.8]). �

Remark 4.19. As we have flexibilities in choosing g ∈ G(O) lifting ρ(Frr ), it is easy to see that there
are infinitely many lifts ρ that are nonconjugate in Gad.

4B3. SL2. The alternating group An admits a unique nontrivial central extension Ãn by Z/2Z for n 6= 6, 7.
By a result of N. Vila and J.-F. Mestre (which was proven independently, see [Serre 1992]), Ãn can be
realized as a Galois group over Q. In particular, we get a surjection r : 0Q � Ã5. On the other hand,
Ã5 can be described as follows: the symmetries of an icosahedron induce a 3-dimensional irreducible
faithful representation of A5, i.e., there is an injective homomorphism A5→ SO(3). The pullback of
A5 along the two-fold covering map SU(2)� SO(3) is a nontrivial central extension of A5 by Z/2Z,
hence is isomorphic to Ã5. In particular, we get an embedding Ã5→ SL2(C). As the matrix entries of
the image lie in a finite extension of Q, we can choose a finite extension k of Fl for which there is an
embedding Ã5→ SL2(k). Precomposing it with r , we obtain a representation 0Q→ SL2(k) which we
denote by ρ. It is easy to see that the adjoint module ρ(sl2(k)) is irreducible.

Let S be a finite set of places containing the archimedean place and all places where ρ is ramified.
We impose no condition at l, and take the minimal prime to l deformation condition at all other places
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in S, which is legitimate since the residual image has order prime to l for l > 120. Let 6 ∈ Ã5 be an
element of order 4, whose image in SL2(k) is conjugate to diag(

√
−1,−

√
−1). As Ã5 has trivial abelian

quotient, Q(µl) and Q(ρ) are linearly disjoint over Q. So there is an element σ ∈ 0Q such that ρ(σ)=6
and κ(σ )=−1. By Chebotarev’s density theorem, there is a prime p /∈ S for which Frp = σ . Therefore,
ρ|0p is of Steinberg type and we take the Steinberg deformation condition at p.

Proposition 4.20. For ρ :0Q→ SL2(k) defined as above and for almost all primes l, there is an l-adic lift

ρ : 0Q→ SL2(O)

of ρ with Zariski-dense image in SL2(Ql).

Proof. We first show that Theorem 3.4 applies to ρ. Item (1) is satisfied: the left hand side of the inequality
equals the right hand side. Item (2) is satisfied since |Gal (K/Q)| has order prime to l by the definition of
ρ. Item (3) is satisfied since ρ(g) and ρ(g)(1) are nonisomorphic. For item (4), we take σ to be as above,
the connected component of whose centralizer is denoted T , and take α to be a root of 8(G, T ). So (a)
is satisfied. As ρ(g) is irreducible, (b) and (c) are satisfied.

Therefore, we can deform ρ to a continuous representation ρ : 0Q→ SL2(O) satisfying the prescribed
local conditions on S and the Ramakrishna condition on a set of auxiliary primes disjoint from S. We
write Gρ for the Zariski closure of the image of ρ in SL2(Ql). As ρ(g) is irreducible, Lie(Gρ) is either
trivial or gQl

. If the former were true, then Gρ would be finite. But ρ|0p is Steinberg, so in particular the
image of ρ is infinite, a contradiction. Thus Lie(Gρ)= gQl

. �

Now we finish the proof of Theorem 1.2 with the congruence conditions removed. For G a simple but
not simply connected group, suppose there is a homomorphism ρl : 0Q→ Gsc(Ql) with Zariski-dense
image. We compose ρl with the covering projection Gsc(Ql)� G(Ql), the resulting map has Zariski-
dense image in G(Ql). Propositions 4.14, 4.18 and 4.20 prove the cases of a simple, simply connected
classical group, E6 and E7. On the other hand, the remaining cases G2, F4, and E8 have already been
established in [Patrikis 2016] in a way similar to the proof of Proposition 4.18. So Theorem 1.2 is proved.

In order to remove the congruence conditions for G of type Bn,Cn and E7, we impose the same local
deformation conditions as specified in the paragraph preceding Lemma 4.11, but then use Theorem 3.21
instead of Theorem 3.16. By Lemmas 4.11 and 3.22, the assumptions in Theorem 3.21 are all met.
Therefore, we obtain a characteristic zero lift of ρ satisfying the prescribed local conditions for all large
enough primes l. Then the proof of Proposition 4.14 shows that the lift has full monodromy group for all
large enough primes.

5. Connected reductive groups as monodromy groups

Following [Milne 2007], a connected algebraic group G is said to be an almost-direct product of its
algebraic subgroups G1, . . . ,Gn if the map

G1× · · ·×Gn→ G : (g1, . . . , gn) 7→ g1 · · · gn
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is a surjective homomorphism with finite kernel; in particular, this means that the Gi ’s commute with
each other and each Gi is normal in G.

The following proposition is [Milne 2007, Corollary 4.4].

Proposition 5.1. An algebraic group is semisimple if and only if it is an almost direct product of simple
algebraic groups. (Here a simple algebraic group is called almost simple in [Milne 2007]).

Proposition 5.2 (Goursat’s lemma). Let G1,G2 be groups, let H be a subgroup of G1×G2 such that the
two projections p1 : H → G1, p2 : H → G2 are surjective. Let N1 and N2 be the kernels of p2 and p1,
respectively. Then the image of H in G1/N1×G2/N2 is the graph of an isomorphism G1/N1 ∼= G2/N2.

Proposition 5.3. Let G be a connected semisimple group, then there are continuous homomorphisms

0Q→ G(Ql)

with Zariski-dense image for large enough l.

Proof. This will follow from Goursat’s lemma, Theorem 1.2 and Remark 1.3. By Proposition 5.1, it suffices
to prove the case when G is the direct product of simply connected simple algebraic groups. We may
decompose G into “isotypic factors”: G=G1×· · ·×Gn , where Gi is the direct product of copies of some
simple algebraic group, and Gi , G j have different types for i 6= j . Suppose we are given ρi :0Q→Gi (Ql)

with Zariski-dense image for each i and let ρ := (ρ1, . . . , ρn) : 0Q→ G(Ql), whose Zariski-closure is
denoted by H . Then H is an algebraic subgroup of G(Ql) for which pri (H) = Gi (Ql). Since Gi (Ql)

and G j (Ql) share no common nontrivial quotients for i 6= j , Proposition 5.2 implies that H = G(Ql).
It remains to prove the case when G is a direct product of copies of some simply connected simple

algebraic group. Write G = K n with K simple. We first assume K 6= SL2. By Section 4B1 and 4B2
(especially Remarks 4.15 and 4.19), there exists a prime p and a homomorphism ρi : 0Q → K (Ql)

for 1 ≤ i ≤ n such that ρi has Zariski-dense image and is unramified at p with ρi (Frp) a regular
semisimple element in K (Ql), and for i 6= j , the images of ρi (Frp) and ρ j (Frp) in K ad(Ql) are not
conjugate by an automorphism of K ad. Now we use Proposition 5.2 and induction on n to show that
ρ :=

∏
i ρi :0Q→G(Ql) has Zariski-dense image. This is clear when n= 1. Suppose this is true for n−1,

so that
∏

i<n ρi :0Q→ K n−1(Ql) has Zariski-dense image. Let H be the Zariski-closure of the image of ρ
and apply Proposition 5.2 to p1 : H→G1= K n−1, p2 : H→G2= K , which are surjective by assumption,
we see that the image of H in G1/N1×G2/N2 is the graph of an isomorphism G1/N1 ∼= G2/N2. But
since G2 = K is a simple, simply connected algebraic group, N2 = K or N2 ⊂ Z(K ). Also note that
N1 is either K n−1 or isogenous to the product of n− 2 factors in K n−1. If N2 = K and N1 = K n−1, H
must be G; otherwise, N2 ⊂ Z(K ) and N1 is isogenous to the product of n− 2 factors in K n−1, so the
isomorphism G1/N1×G2/N2 induces an isomorphism between two factors in Gad

= (K ad)n . But this
is impossible, as for any i 6= j , the images of ρi (Frp) and ρ j (Frp) in K ad(Ql) are not conjugate by an
automorphism of K ad. Therefore, H = G.

Now let K = SL2. By the argument in the previous paragraph, it suffices to show that for any n, we can
construct homomorphisms ρi : 0Q→ SL2(Ql), 1≤ i ≤ n such that ρi has Zariski-dense image and for
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i 6= j , ρad
i and ρad

j are not conjugated by an automorphism of PGL2. By the construction in [Serre 1992,
9.3] there are infinitely many homomorphisms r :0Q � Ã5 such that the composites 0Q

r
−→ Ã5→ A5 are

ramified at different sets of finite primes. By Section 4B3 we then obtain infinitely many homomorphisms
ρ : 0Q → SL2(k) such that the corresponding homomorphisms ρad

: 0Q → PGL2(k) are ramified at
different sets of finite primes. By Proposition 4.20, we can deform ρ to characteristic zero with Zariski-
dense image. We take n of them, denoted by ρ1, . . . , ρn : 0Q→ SL2(Ql). Suppose for some i, j with
1≤ i 6= j ≤ n, ρad

i and ρad
j were conjugate by an automorphism of PGL2, then their mod l reductions ρad

i

and ρad
j would be conjugate as well. But since there exists a prime p for which ρad

i is ramified at p and
ρad

j is unramified at p, ρad
i and ρad

j cannot be conjugate, a contradiction. �

Lemma 5.4. Let n be a positive integer and T = (Gm)
n . Then there is a continuous map ι : Zl→ T (Ql)

with Zariski-dense image.

Proof. The group T has only countably many connected proper Zariski-closed subgroups, so one can pick
a line L in Lie(T )Ql avoiding the tangent spaces to all such proper subgroups (since Ql is uncountable). A
small compact neighborhood of 0 in L exponentiates to a compact subgroup C of T (Ql) whose Zariski clo-
sure has identity component that cannot be a proper algebraic subgroup of T , so C is Zariski-dense in T . �

Now we can prove Theorem 1.1: Let G be a connected reductive group, then G is a quotient of the
product of Gder (a semisimple group) and Z(G)0 (a torus). Proposition 5.3 and Lemma 5.4 then allow us
to build a homomorphism from 0Q to G(Ql) with Zariski-dense image for large enough l.
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Weyl bound for p-power twist of GL(2) L-functions
Ritabrata Munshi and Saurabh Kumar Singh

Let f be a cuspidal eigenform (holomorphic or Maass) for the congruence group 00(N ) with N square-
free. Let p be a prime and let χ be a primitive character of modulus p3r . We shall prove the Weyl-type
subconvex bound

L
( 1

2 + i t, f ⊗χ
)
� f,t,ε pr+ε,

where ε > 0 is any positive real number.

1. Introduction

Bounding automorphic L-functions on the critical line Re(s) = 1
2 is a central problem in the analytic

theory of L-functions. The functional equation and the Phragmen–Lindelöf principle from complex
analysis yield the convexity bound L

( 1
2 + i t, π

)
� C(π, t)1/4+ε where C(π, t) is the analytic conductor

of the L-function, as defined by Iwaniec and Sarnak (see equation (31) of [Iwaniec and Sarnak 1999]),
whereas the grand Riemann hypothesis (GRH) implies the Lindelöf hypothesis which predicts the bound
C(π, t)ε for any ε > 0. Any bound with exponent smaller than 1

4 is called a subconvex bound. In this
context the Weyl exponent 1

6 , which is one-third of the way down from convexity towards Lindelöf, is a
known barrier which has been achieved only for a handful of families. Indeed the only known “arithmetic
case” (level aspect) is given by the fundamental work of Conrey and Iwaniec [2000]. For χq the quadratic
character modulo q (which is square-free and odd) they established: (i) L

( 1
2 + i t, χq

)
�t q1/6+ε with

polynomial dependence on t . (ii) L
( 1

2 , f ⊗ χq
)
� q1/3+ε for f a primitive GL(2) cusp form of level

dividing q. Note that while the former result is flexible and applies to any point on the critical line, the
latter result only applies at the central point, as the nonnegativity of the L-value plays a central role in
their argument. Our main objective here is to establish the following Weyl-type bound.

Theorem 1.1. Let f be a holomorphic Hecke eigenform, or a Maass cusp form for the congruence
subgroup 00(N ) with N square-free. Let χ be a primitive character of modulus p3r where p is a prime
and r is a natural number. We have

L
( 1

2 + i t, f ⊗χ
)
� f,t,ε pr+ε.

MSC2010: primary 11F66; secondary 11F55, 11M41.
Keywords: Maass forms, Hecke eigenforms, Voronoi summation formula, Poisson summation formula.
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This is the first instance where the Weyl exponent is achieved in the level aspect for a family of L-
functions which are not self-dual. Our method is soft and does not rely on the Riemann hypothesis for vari-
eties over finite fields. Indeed the character sums that we encounter are treated in an elementary manner. It
is quite surprising that our method could yield such a strong bound. But recently it has been established (see
[Munshi 2018; Aggarwal and Singh 2017]) that both the Weyl and the Burgess bound, for both GL(1) and
GL(2) L-functions, follow from the method developed in the series [Munshi 2014; 2015a; 2015b; 2015c].

Recall that the twisted automorphic L-function of degree two associated to ( f, χ) is defined by the
Dirichlet series

L(s, f ⊗χ) :=
∞∑

n=1

λ f (n)χ(n)
ns ,

where Re(s) > 1 and λ f (n) are the normalized Fourier coefficients of f . These extend to an entire
function and satisfy a functional equation relating L(s, f ⊗χ) to L(1− s, f ⊗χ). In the family we are
considering the form f and the point 1

2 + i t are fixed, but the character χ varies and p→∞. The above
result will be derived as a special case of the following.

Theorem 1.2. Let f be a holomorphic Hecke eigenform or a Hecke–Maass cusp form for 00(N ) with N
square-free. Let χ be a primitive character of modulus pr , where p is a prime. We have

L
(1

2 + i t, f ⊗χ
)
� f,ε p1/2(r−br/3c)+ε,

where ε > 0 is any positive real number and bxc is the greatest integer less than or equal to x.

Let us briefly recall the history of subconvexity bounds for L-functions. We will only focus on the
results which are related to our case. The convexity bound for the Riemann zeta function is given by
ζ
( 1

2 + i t
)
� t1/4+ε. For a Dirichlet L-function associated with a primitive Dirichlet character χ of

modulus q , the convexity bound is given by L
( 1

2 , χ
)
� q1/4+ε. The Lindelöf hypothesis asserts that the

exponent 1
4 + ε can be replaced by ε. The subconvexity bound for ζ(s) was first proved by Hardy and

Littlewood, based on the work of Weyl [1916]. Establishing a bound for exponential sums, it has been
proved that (see also [Titchmarsh 1986, page 99, Theorem 5.5])

ζ
( 1

2 + i t
)
� t1/6 log3/2 t. (1)

It was first written down by Landau [1924] in a slightly refined form, and has been generalized to all
Dirichlet L-functions. Since then it has been improved by several people. The best known result with
exponent 13

84 ≈ 0.15476 is due to Bourgain [2017]. On the other hand, the q-aspect subconvexity bound
was first proved by Burgess [1963]. Using an ingenious technique of completing short character sums
and utilizing the Riemann hypothesis for curves over finite fields (Weil’s result), he proved that

L(s, χ)�ε q3/16+ε, (2)

for fixed s with Re s = 1
2 and for any ε > 0. Heath-Brown [1978] proved the hybrid bound (bound in both

parameters q and t together) for Dirichlet L-functions. The Burgess exponent 3
16 , which is one-fourth of
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the way down from convexity towards the Lindelöf, has come to be realized as a natural barrier. However,
stronger bounds can be shown under suitable factorization hypothesis on the modulus. Indeed, in principle
the family L

(1
2 , χ

)
where χ runs over characters modulo pr with r→∞ should behave like the family

ζ
( 1

2 + i t
)

with t→∞. Only recently a suitable p-adic analogue of the van der Corput method has been
introduced by Milićević [2016], and he has been able to obtain a sub-Weyl exponent 0.1645 for this
family. More precisely, for χ primitive Dirichlet character modulo q = pn he proved that for any given
θ > θ0 ≈ 0.1645, there is a j ≥ 0 such that

L
( 1

2 , χ
)
� p j qθ (log q)1/2.

So it follows that we have a subconvexity exponent which is less than 1
6 for a prime power modulus

q = pn with n ≥ n0, a sufficiently large number.
The t-aspect Weyl exponent for GL(2) L-functions was first proved by Good [1982], for holomorphic

modular forms, using the spectral theory of automorphic functions. Jutila [1987] has given an alternative
proof, based only on the functional properties of L( f, s) and L(s, f ⊗ψ), where ψ is an additive character.
The arguments used in his proof were flexible enough to be adopted for the Maass cusp forms, as was
shown by Meurman [1990]. However, the character twist aspect subconvexity bound required some more
new ideas. It was first obtained by Duke, Friedlander and Iwaniec using a new form of the circle method
and the amplification technique. Assuming χ to be a primitive character of modulus q and Re s = 1

2 , they
obtained (see [Duke et al. 1993, Theorem 1])

L(s, f ⊗χ)� f |s|2q5/11τ 2(q) log q,

where τ(q) is the divisor function. In the case of a general holomorphic cusp form, Bykovskii [1996] used
a trace formula expressing the mean values of cusp form (see [Bykovskii 1996, page 1, line 1]) to derive
the Burgess exponent 3

8 . In the case of Maass form subconvexity bound obtained by Harcos. Refining the
arguments used in [Bykovskii 1996], Blomer and Harcos [2008] obtained the Burgess exponent 3

8 for a
more general holomorphic or Maass cusp form. To date, the Weyl exponent 1

3 has only been achieved for
quadratic characters, courtesy of the fundamental work of Conrey and Iwaniec [2000], as we have already
mentioned above. Extending the above mentioned result of Milićević to GL(2) L-functions, Blomer and
Milićević [2015, Theorem 2] obtained

L
( 1

2 + i t, f ⊗χ
)
� f,ε (1+ |t |)5/2 p7/6q1/3+ε,

where f is a holomorphic or Maass newform for SL(2,Z), and χ is a primitive character of conductor
q = pn , with p an odd prime. This yields a subconvexity bound for n > 7 and improves the Burgess
exponent as soon as n > 27, and the exponent tends to Weyl exponent as n →∞. Though there is
sufficient room for improvements in the above estimate (as the authors themselves comment in [Blomer
and Milićević 2015]), it is inherent in their method that the Weyl exponent can never be achieved for
any given n. In this paper we propose a different approach which produces an improvement over the
known bounds. In Theorem 1.2, we are able to provide an improvement on the Burgess exponent as
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soon as n ≥ 3, with the exception when n = 4, 8 (in this case our exponent is same as Burgess exponent)
and n = 5. Of course the most interesting outcome of our result is that we are able to achieve the Weyl
exponent when n ≥ 3 and n ≡ 0 (mod 3). In the next section we briefly explain the method of the proof,
which is a rendition of [Munshi 2015a].

2. Sketch of the proof

We start with the approximate functional equation as given in [Iwaniec and Kowalski 2004, Proposition 5.4].
Taking a smooth dyadic subdivision we arrive at

L
( 1

2 + i t, f ⊗χ
)
� f,A N ε sup

N≤P1+ε

|S(N )|
N 1/2 + P−A,

where P = pr is the modulus of the character and S(N ) is a dyadic sum which is given by

S(N ) :=
∞∑

n=1

λ f (n)χ(n)V
(

n
N

)
, (3)

where V (x) is a smooth bump function supported on the interval [1, 2] and satisfies V ( j)(x)� j (1+|t |) j .
As the implied constant in Theorem 1.2 is allowed to depend on t , we can and will from now on assume
that t = 0. Our method is not sensitive to small perturbations like this. A careful study of the proof
shows that the eventual implied constant grows at most polynomially with t . Now trivially estimating, we
obtain S(N )� N 1+ε. We shall examine S(N ) in following steps. For simplicity let us focus on the case
r ≡ 0 (mod 3).

Step 1 (applying circle method). We shall apply Kloosterman’s version of the circle method (see
Lemma 3.3) with the conductor lowering mechanism introduced by the first author in [Munshi 2015a].
We obtain the sum

S(N )= 2 Re
∫ 1

0

∑∑?

1≤q≤Q<q≤q+Q

1
aqp`

∑
b(p`)

{∑
n∼N

λ f (n)e
(
(a+bq)n

p`q

)}{∑
m∼N

χ(m)e
(
−
(a+bq)m

p`q

)}
dx,

where Q is taken to be Q = N 1/2/p`/2. Trivially estimating after first step, we have S(N )� N 2+ε.

Step 2 (applying Poisson summation formula). In this step we shall apply the Poisson summation formula
to the sum over m. The character χ has conductor pr and the additive conductor has a size q. Hence
the total conductor for the sum over m has size pr q. So the dual sum is essentially supported up to the
size qpr/N . We observe that after application of the Poisson formula we are able to save N/

√
pr q from

the sum over m. Evaluating the character sum, we also observe that Q < a ≤ Q+ q can be determined
uniquely by the congruence relation a ≡ m pr−` mod q. In particular a does not depend on n. The total
saving after the first step is given by

N
√

pr q
×
√

q =
N

pr/2 .

Trivially estimating after the second step we obtain S(N )� N pr/2.
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Step 3 (applying Voronoi summation formula). We shall now apply the Voronoi summation formula to
the sum over n, which has conductor of size p`q . The dual length is essentially supported up to the size
p2`q2/N . We are able to save N/p`q from the Voronoi summation formula and p`/2 by assuming square
root cancellation in exponential sum over b. Total saving in the third step is

N
p`q
× p`/2 =

N
p`/2q

.

Trivially estimating after the third step, we observe that S(N )� N 1/2 pr/2+ε, which shows that we are
on the boundary. We are left with a sum of the form:

S(N )=
∑

n�p`N ε

λ f (n)
[ ∑

1≤q≤Q

∑
m� NεQpr

N

χ(q)
aq2 C(n,m, q)e

(
−n

pr p2`m
q

)
I(x, q,m)J (x, n, q)

]
,

where the character sum is given by

C(n,m, q)=
∑?

b mod p`

χ(m− (a+ bq)pr−`)e
(
−n

a+ bqq
p`

)
and the function J (x, n, q) is of size O(1), and is not oscillatory with respect to n.

Step 4 (Cauchy–Schwarz inequality and Poisson summation formula). To obtain additional savings, we
apply the Cauchy–Schwarz inequality to get rid of the Fourier coefficients. But this process also squares
the amount we need to save. We now open the absolute square and then interchange the summation
over n. Applying the Poisson summation formula we are able to save Q2 pr/N = pr−` from the diagonal
terms and p`/2 from the nondiagonal terms. We observe that optimal choice for ` is given by `= 2r/3.
Substituting the value of ` we obtain

S(N )�
N 1/2 pr/2+ε

p`/4
� N 1/2 pr/3+ε.

Upon substituting this bound in the bound we obtained from the approximate functional equation the
Weyl bound follows. Observe that when r is not divisible by 3 then we are not allowed to pick the above
optimal choice for `, and we have to choose the best possible which is [2r/3]. In the following sections
we shall provide the proof of the theorem in detail.

3. Preliminaries

To keep the notations simple we will focus on the case of full level. Our argument is robust and is not
sensitive to the nature of the fixed form f . We will present our argument in detail for Maass forms of full
level. The case of Maass forms is traditionally considered harder. The reader will have no problem to
see how the arguments can be adopted in the case of general square-free level with general nebentypus.
In principle, our method should work even for levels which are not square-free, but we refrain from
including that due to the lack of a suitable Voronoi summation formula. In this section we recall some
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basic facts about SL(2,Z) automorphic forms (for details see [Iwaniec 1997; Iwaniec and Kowalski
2004]). Our requirement is minimal, in fact the Voronoi summation formula and the Rankin–Selberg
bound (see Lemma 3.2) are all that we shall be using.

Maass cusp forms. Let f be a weight zero Hecke–Maass cusp form with Laplace eigenvalue 1
4 + ν

2.
The Fourier series expansion of f at∞ is given by

f (z)=
√

y
∑
n 6=0

λ f (n)Kiν(2π |n|y)e(nx),

where λ f (1) = 1. Let χ be a primitive Dirichlet character of modulus P . The twisted L-function is
defined by

L(s, f ⊗χ) :=
∞∑

n=1

λ f (n)χ(n)
ns

for Re(s) > 1. It extends to an entire function and satisfies the functional equation

3(s, f ⊗χ)= ε( f ⊗χ)3(1− s, f ⊗χ),

where |ε( f ⊗χ)| = 1 and

3(s, f ⊗χ)=
(

P
π

)s

0

(
s+ iν

2

)
0

(
s− iν

2

)
L(s, f ⊗χ).

From the functional equation and Phragmen–Lindelöf principle one can derive the convexity bound

L
( 1

2 + i t, f ⊗χ
)
� f,t,ε P1/2+ε .

We shall require the following Voronoi summation formula for the Maass form. This was first established
by T. Meurman [1988] for full level (for general case see appendix A.4 of [Kowalski et al. 2002]).

Lemma 3.1 (Vornoi summation formula). Let h be a compactly supported smooth function in the interval
(0,∞). Let λ f (n) be the Fourier coefficient of a weight zero Maass form for the full modular group
SL(2,Z), and a, q be positive integers with (a, q)= 1. We have

∞∑
n=1

λ f (n)eq(an)h(n)= 1
q

∑
±

∞∑
n=1

λ f (∓n)eq(±an)H±
(

n
q2

)
, (4)

where aa ≡ 1 (mod q), and

H−(y)=
−π

cosh(πν)

∫
∞

0
h(x){Y2iν + Y−2iν}(4π

√
xy) dx,

H+(y)= 4 cosh(πν)
∫
∞

0
h(x)K2iν(4π

√
xy) dx,

where Y2iν and K2iν are Bessel functions of first and second kind and eq(x)= e2π i x/q .
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Remark. When h is supported on the interval [X, 2X ] and satisfies x j h( j)(x)� 1, then integrating by
parts and using the properties of Bessel’s function, it is easy to see that the sums on the right hand side
of (4) are essentially supported on n� f,ε q2(q X)ε/X . For smaller values of n we will use the trivial
bound, H±(n/q2)� X .

Some lemmas. We first recall the Rankin–Selberg bound for Fourier coefficients.

Lemma 3.2. Let λ f (n) be the normalized Fourier coefficients of a holomorphic cusp form or of a Maass
form. Then for any real number x ≥ 1, we have∑

1≤n≤x

|λ f (n)|2� f,ε x1+ε.

Let δ : Z→ {0, 1} be the Kronecker delta function, which is given by

δ(n)=
{

1 if n = 0,
0 otherwise.

(5)

We have the following lemma, which gives the Fourier–Kloosterman expansion of δ(n) (see [Iwaniec and
Kowalski 2004, page 470, Proposition 20.7]).

Lemma 3.3. Let Q ≥ 1 be a real number. We have

δ(n)= 2 Re
∫ 1

0

∑∑?

1≤q≤Q<q≤q+Q

1
aq

e
(

na
q
−

nx
aq

)
, (6)

where ? restricts the summation by (a, q)= 1 and aa ≡ 1 (mod q).

We also need to estimate the exponential integral of the form

I=

∫ b

a
g(x)e( f (x)) dx, (7)

where f and g are smooth real valued function on the interval [a, b]. Suppose we have | f ′(x)| ≥ B,
| f ( j)(x)| ≤ B1+ε for j ≥ 2 and |g( j)(x)| � j 1 on the interval [a, b]. Then by making the change of
variable

u = f (x), f ′(x) dx = du,

we have

I=

∫ f (b)

f (a)

g(x)
f ′(x)

e(u) du (x = f −1(u)).

By applying integration by parts, differentiating g(x)/ f ′(x) j-times and integrating e(u), we have

I� j,ε B− j+ε. (8)

This will be used at several places to show that certain exponential integrals are negligibly small in the
absence of a stationary phase point. Next we consider the case of stationary phase point(i.e., point where
derivative vanishes).
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Lemma 3.4. Suppose f and g are smooth real valued functions on the interval [a, b] satisfying

f (i)�
2 f

�i
f
, g( j)

�
1

�
j
g

and f (2)�
2 f

�2
f
, (9)

for i = 1, 2 and j = 0, 1, 2. Suppose that g(a)= g(b)= 0.

(1) Suppose f ′ and f ′′ do not vanish on the interval [a, b]. Let 3=minx∈[a,b]| f ′(x)|. Then we have

I�
2 f

�2
f3

3

(
1+

� f

�g
+
�2

f

�2
g

3

2 f /� f

)
.

(2) Suppose that f ′(x) changes sign from negative to positive at x = x0 with a < x0 < b. Let κ =
min{b− x0, x0− a}. Further suppose that bound in (9) holds for i = 4. Then we have the following
asymptotic expansion

I=
g(x0)e( f (x0))+ 1/8

√
f ′′(x0)

+

(
�4

f

22
f κ

3
+
� f

2
3/2
f

+
�3

f

2
3/2
f �2

g

)
.

Proof. See Theorem 1 and Theorem 2 of [Huxley 1994]. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we shall establish the following bound.

Proposition 4.1. We have

S(N )�
{

N 1+ε if 1≤ N � p2r/3+ε,

N 1/2 p1/2(r−br/3c)+ε if p2r/3
� N � pr+ε.

Application of the circle method. We first separate the oscillation of Fourier coefficients λ f (n) and χ(n)
using delta symbol. We write

S(N ) :=
∞∑∑

m,n=1

λ f (n)χ(m)δ(n−m)V
(

n
N

)
V1

(
m
N

)
,

where V1(y) is another smooth function, supported on the interval
[ 1

2 , 3
]
, V1(y)≡ 1 for y ∈ [1, 2] and

satisfies y j V ( j)(y)� j 1. To analyze sum S(N ) we use a conductor lowering mechanism (see [Munshi
2015a] for a discrete version of the conductor lowering method and [Munshi 2015b] for the integral
version). The integral equation n = m is equivalent to the congruence n ≡ m (mod p`) and the integral
equation (n −m)/p` = 0, ` < r . This lowers the conductor, as modulus p` is already present in the
character χ . We obtain

S(N ) :=
∞∑∑

m,n=1
p`|(n−m)

λ f (n)χ(m)δ
(

n−m
p`

)
V
(

n
N

)
V1

(
m
N

)
,
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Now using Lemma 3.3 for the expression of δ(n), we have S(N )= S+(N )+ S−(N ), with

S±(N )

=

∫ 1

0

∑∑?

1≤q≤Q<q≤q+Q

1
aq

∞∑∑
m,n=1

p`|(n−m)

λ f (n)χ(m)e
(
±

a(n−m)/p`

q
∓

x(n−m)/p`

aq

)
V
(

n
N

)
V1

(
m
N

)
dx .

We choose Q = (N/p`)1/2. We detect the congruence relation n ≡ m (mod p`) in the above expression
using an exponential sum. We have

S±(N )=
∫ 1

0

∑∑?

1≤q≤Q<q≤q+Q

1
aqp`

∑
b(p`)

∞∑∑
m,n=1

λ f (n)χ(m)e
(
±
(a+bq)(n−m)

p`q

)
e
(
∓

x(n−m)
ap`q

)
V
(

n
N

)
V1

(
m
N

)
dx .

We will now analyze the sum S+(N ) (analysis of S−(N ) is similar). We rearrange the sum as

S+(N )=
∫ 1

0

∑∑?

1≤q≤Q<q≤q+Q

1
aqp`

∑
b(p`)

{ ∞∑
n=1

λ f (n)e
(
(a+ bq)n

p`q

)
e
(

xn
p`aq

)
V
(

n
N

)}
{ ∞∑

m=1

χ(m)e
(
−
(a+ bq)m

p`q

)
e
(
−mx
p`aq

)
V1

(
m
N

)}
dx . (10)

Applying Poisson summation formula. We shall apply the Poisson summation formula to the sum over m
in (10) as follows. Writing m = β + cpr q, c ∈ Z and then applying the Poisson summation formula to
sum over c, we have

∞∑
m=1

χ(m)e
(
−
(a+ bq)m

p`q

)
e
(
−mx
p`aq

)
V1

(
m
N

)
=

∑
β(pr q)

χ(β)e
(
−
(a+ bq)β

p`q

)∑
m∈Z

∫
R

V1

(
β + ypr q

N

)
e
(
−(β + ypr q)x

p`aq

)
e(−my) dy.

We now substitute the change of variable (β + ypr q)/N = z to obtain

=
N

pr q

∑
m∈Z

{ ∑
β(pr q)

χ(β)e
(
−
(a+ bq)β

p`q
+

mβ
pr q

)}∫
R

V1(y)e
(
−N xz
p`aq

)
e
(
−Nmz

pr q

)
dz

:=
N

pr q
C(b, q)I(x, q,m), (11)

where C(b, q) is the character sum and I(x, q,m) is the integral in the above expression. We now first
evaluate the character sum in the following subsection.
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Evaluation of the character sum. Writing q = pr1q ′ with (p, q ′)= 1, the character sum in (11) can be
written as

C(b, q)=
∑

β(pr+r1 q ′)

χ(β)e
(
−(a+ bq)β

p`+r1q ′
+

mβ
pr+r1q ′

)
.

Writing β = α1q ′q ′+α2 pr+r1 pr+r1 , the above character sum splits as∑
α1(pr+r1 )

χ(α1)e
(
−(a+ bq)α1q ′

p`+r1
+

mα1q ′

pr+r1

) ∑
α2(q ′)

e
(
−(a+ bq)α2 pr+r1 pr−`

q ′
+

mα2 pr+r1

q ′

)
.

Again, writing α1 = β1 pr
+β2, where β2 is modulo pr and β1 modulo pr1 , we obtain

C(b, q)=
∑
β2(pr )

χ(β2)e
(
−(a+bq)pr−`β2q ′

pr+r1
+

mβ2q ′

pr+r1

) ∑
β1(pr1 )

e
(
−(a+bq)β1q ′ pr−`

pr1
+

mβ1q ′

pr1

)
∑
α2(q ′)

e
(
−(a+bq)α2 pr+r1 pr−`

q ′
+

mα2 pr+r1

q ′

)
.

From the last two exponential sums, we obtain the congruence relations m− a pr−`
≡ 0 (mod pri ) and

m − a pr−`
≡ 0 (mod p′). Since we have q = q ′ pr1 , we obtain the congruence relation m − a pr−`

≡

0 (mod 1), from which a (mod q) can be determined. The sum over β2 can be written as∑
β2(pr )

χ(β2)e
(
(m− (a+ bq)pr−`)β2q ′

pr+r1

)
= χ(q ′)χ

(
m− (a+ bq)pr−`

pr1

) ∑
β2(pr )

χ(β2)e
(
β2

pr

)
,

as pr1 | (m− (a+ bq)pr−`). We record this into following lemma.

Lemma 4.2. Let C(b, q) be as given in (11). We have

C(b, q)=
{

qχ(q ′)χ
(m−(a+bq)pr−`

pr1

)
τχ if m ≡ a pr−` mod q

0 otherwise,

where q = q ′ pr1 and τχ denotes the Gauss sum.

For simplicity of notation we assume that q = q ′(r1= 0), as the number of r1 are bounded by O(log pr ).
Next we consider the integral in (11). Integrating by parts j-times and using V ( j)

1 (y)� 1, we have

I(x, q,m)�
(

N x
p`aq

+
Nm
pr q

)− j

.

We observe that this integral is negligibly small if∣∣∣∣ N x
p`aq

+
Nm
pr q

∣∣∣∣� N ε.

From the above inequality we obtain the effective range of x (in the integral originating from the circle
method) as ∣∣∣∣ N x

p`aq
+

Nm
pr q

∣∣∣∣� N ε
⇒

∣∣∣∣x + ma
pr−`

∣∣∣∣� q N ε

Q
, (12)
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as a � Q and N/p` = Q2. Again integrating by parts, taking V1(y)e((−N xy)/(p`aq)) as the first
function, we obtain

I(x, q,m)�
(

1+
N x

p`aq

) j( pr q
Nm

) j

.

Hence the integral is negligibly small if m � (pr QN ε)/N . After a first application of the Poisson
summation formula we are left with the following expression for S+(N ):

Lemma 4.3. Let S+(N ) be as given in (10). We have

S+(N )=
∫

x�(q N ε)/Q

∑
1≤q≤Q

1
aqp`

∑
b(p`)

{ ∞∑
n=1

λ f (n)e
(
(a+ bq)n

p`q

)
e
(

xn
p`aq

)
V
(

n
N

)}
{
τχχ(q)N

pr

∑
m� NεQpr

N

χ(m− (a+ bq)pr−`)I(x, q,m)
}

dx + OA(p−A), (13)

for any real A > 0.

Estimating trivially at this stage, we have

S+(N )�
∑

1≤q≤Q

1
aqp`

∑
b(p`)

2N∑
n=N

|λ f (n)|
|τχ |N

pr

∑
m� NεQpr

N

1� N pr/2.

Hence we are able to save N/pr/2 from the first application of the Poisson summation formula.

Applying Voronoi summation formula. At this stage we need to differentiate between the holomorphic
and the Maass case as the integral transforms appearing in the Voronoi summation formula are different.
Nevertheless they are essentially same as far as our argument is concerned. Below we will present the
details for the Maass case which is traditionally considered to be harder.

We have (a+ bq, q)= 1. Given a, there exists at most one b mod p` such that a+ bq ≡ 0 (mod q`).
For the rest of b we apply the Voronoi summation formula to the sum over n as follows (The case where
a+bq ≡ 0 (mod q`) is similar and even simpler. We first write a+bq = p`q1, and then apply the Voronoi
summation formula, which gives us more saving as the conductor is now smaller than qp`. Also we
have a savings of a whole summation over b modulo p`). We substitute g(n)= e(−nx/p`aq)V (n/N )
in Lemma 3.1 to get

∞∑
n=1

λ f (n)e
(
(a+ bq)n

p`q

)
e
(

xn
p`aq

)
V
(

n
N

)
=

1
p`q

∑
±

∑
n≥1

λ f (∓n)e
(
±n

a+ bq
p`q

)
H±

(
n
q2 ,

N x
aq

)
,

where

H−
(

n
q2 ,

N x
p`aq

)
=

∫
∞

0
e
(
−

xy
p`aq

)
V
(

y
N

)
{Y2iν + Y−2iν}

(
4π
√

ny
p`q

)
dy
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(we have similar expression for H+(x, y)). Substituting y/N = z, we have

H−
(

n
q2 ,

N x
P1aq

)
= N

∫
∞

0
e
(
−

N xz
p`aq

)
V
(

z
)
{Y2iν + Y−2iν}

(
4π
√

nN z
p`q

)
dz := NJ (x, n, q), (14)

where J (x, n, q) denotes the integral in above equation. Pulling out the oscillations, we have the following
asymptotic formulae for Bessel functions (see [Kowalski et al. 2002, Lemma C.2]):

Y±2iν(x)= ei xU±2iν(x)+ e−i xU±2iν(x) and |xk K (k)
ν (x)| �k,ν

e−x(1+ log|x |)
(1+ x)1/2

, (15)

where the function U±2iν(x) satisfies,

x jU ( j)
±2iν(x)� j,ν,k (1+ x)−1/2. (16)

We also have Jk(x)= ei x Wk(x)+ e−i x W (x), where

x j W ( j)
k (x)� j

1
(1+ x)1/2

.

Substituting the above decomposition for Y±2iν(x), the first term of the integral in (14) is given by
(estimation of the second term is similar)

J ±(x, n, q) :=
∫
∞

0
ei(−(2πN xy)/(p`aq)±i(4π

√
nN y)/(p`q))V (y)U±2iν

(
4π
√

nN y
p`q

)
dy, (17)

where we have denoted U+(y) :=U (y) and U−(y)=U (y). The integral J −(x, n, q) has no stationary
point. By (8), J −(x, n, q) is negligibly small. For J +(x, n, q) we apply the second statement of
Lemma 3.4 with

f (y)=−
2πN xy

p`aq
+ i

4π
√

nN y
p`q

and g(y)= V (y)U2iν

(
4π
√

nN y
p`q

)
.

We have

f ′(y)=−
2πN x
p`aq

+
2π
√

nN
√

y p`q
, f ′′(y)=−

π
√

nN
y3/2 p`q

.

We observe that

|F ′′(y0)| �

√
nN

p`q
,

where y0 = na2/(N x2) is the stationary point, which is y0 � 1 as V (y) is supported on the interval [1, 2].
Using U±2iν(x)�ν (1+ x)−1/2, and applying the second statement of Lemma 3.4, we obtain

J (x, n, q)�
p`q
√

nN
, (18)

where J (x, n, q) is given in (14). Also, integrating by parts we have

J (x, n, q)� j

(
N x

p`aq
+ 1

) j( p`q
√

nN

) j

.
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The integral is negligibly small if (note that x � q N ε/Q)

p`q
√

nN
� p−ε⇒ n� pε p`.

We record this result in the following lemma. After applying the Poisson and the Voronoi summation
formula we have the following expression for S+(N ).

Lemma 4.4. We have

S+(N )=
∫

x�(q N ε)/Q

∑
1≤q≤Q

1
qp`

∑?

b(p`)

τχχ(q)N
pr

∑
m� Qpr pε

N

1
aχ(m− (a+ bq)pr−`)I(x, q,m)

{
N

p`q

∑
±

∑
n�p` pε

λ f (∓n)e
(
±n

a+ bq
p`q

)
J (x, n, q)

}
dx + OA(p−A).

Estimating trivially, we have (assuming square-root cancellation in the character sum over b and
Lemma 3.2):

S+(N )�
∑

1≤q≤Q

1
qp`
|τχ |N

pr

∑
m� pεQpr

N

|I(x, q,m)|
a

N
p`q

∑
n�p`N ε

|λ f (∓n)J (x, n, q)|

∣∣∣∣ ∑?

b(p`)

e
(
±n

a+ bq
p`q

)
χ

(
m− (a+ bq)pr−`

)∣∣∣∣
�

1
ap`

pr/2 N
pr

N εQpr

N
×

N
p`q

∑
n�p`

p`q
√

nN
× p`/2

� N ε
√

N pr/2.

This shows that we are on the boundary. To obtain an additional saving, we shall now apply the Cauchy–
Schwarz inequality to the summation over n and then apply the Poisson summation formula. Interchanging
the order of summation, we have

S+(N )=
N 2τχ

pr+2`

∑
n�p` pε

λ f (n)Ŝ1(n)+ OA(p−A), (19)

where

Ŝ1(n)=
∫

x�(q N ε)/Q

∑
1≤q≤Q

∑?

b(p`)

∑
m� pεQpr

N

χ(q)
aq2 χ(m− (a+ bq)pr−`)e

(
−n

a+ bqq
p`

)
e
(
−n

pr p2`m
q

)
I(x, q,m)J (x, n, q) dx .
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5. Proof of Theorem 1.2 — Conclusion

In the previous section we have completed the first three steps of the proof as given in the short sketch. As
expected we are at the threshold and any saving will yield subconvexity. We now apply Cauchy–Schwarz
to escape from the “trap of involution” and to get rid of the Fourier coefficients.

Applying Cauchy inequality. We split the summation over n into dyadic sum. Applying the Cauchy–
Schwarz inequality on the summation over n in (19) and using Lemma 3.2, we have

S+(N )�
N 2
|τχ |

pr+2`

∑
L�P1

L-dyadic

{∑
n�L

|λ f (n)|2
}1/2{∑

n∈Z

|Ŝ1(n)|2U
(

n
L

)}1/2

�
N 2
|τχ |

pr+2`

∑
L�P1

L-dyadic

L1/2
{Ŝ2(L)}1/2, (20)

where P1 = p`+ε and Ŝ2(L) is given by (opening the absolute square and pushing the summation over n
inside):

Ŝ2(L) :=
∫

x�(q N ε)/Q

∫
x ′�(q ′N ε)/Q

∑
m� NεQpr

N

∑
m′� NεQpr

N

∑
1≤q≤Q

∑
1≤q ′≤Q

χ(q)
aq2

χ(q ′)
a′q ′2

∑?

b(p`)

∑?

b′(p`)

χ(m− (a+ bq)pr−`)χ(m′− (a+ b′q ′)pr−`)I(x, q,m)I(x, q ′,m′)T dx dx ′, (21)

where

T :=
∑
n∈Z

e
(

n
{
−

pr p2`m
q
+

pr p2`m′

q ′
−

a+ bqq
p`

+
a+ b′q ′q ′

p`

})
U
(

n
L

)
J (x, n, q)J (x, n, q ′). (22)

Second application of Poisson summation formula. We write a smooth bump function

U (n/L)J (x, n, q)J (x, n, q ′) :=U1(n/L),

where J (x, n, q) is as given in (14). Writing n = α+ qq ′ p`c, c ∈ Z and applying Poisson summation
formula to sum over c, we have

T :=
∑

α(qq ′ p`)

e
(
α

{
−

pr p2`m
q
+

pr p2`m′

q ′
−

a+ bqq
p`

+
a+ bq ′q ′

p`

})∫
R

∑
n∈Z

U1

(
α+ yqq ′ p`

L

)
e(−ny) dy.

We now apply the change of variable (α+ yqq ′ p`)/L = z to get

T =
L

qq ′ p`
∑
n∈Z

∑
α(qq ′ p`)

e
(
α

{
−

pr p2`m
q
+

pr p2`m′

q ′
−

a+ bqq
p`

+
a+ bq ′q ′

p`
+

n
qq ′ p`

})
∫

R

U1

(
y
)

e
(
−

nLy
qq ′ p`

)
dy. (23)
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We have U1(y)=U (y)J (x, Ly, q)J (x, Ly, q ′). From the expression of J (x, Lu, q) in (14) (note that
after change of variable we have u � 1) and (16), we have

∂

∂u
J (x, Lu, q)=

∫
∞

0
e
(
−

N xy
p`aq

)
V (y)

∂

∂u
{Y2iν + Y−2iν}

(
4π
√

LuN y
p`q

)
dy

=

∫
∞

0
e
(
−

N xy
p`aq

)
V (y)

1
u

4π
√

LuN y
p`q

{Y ′2iν + Y ′
−2iν}

(
4π
√

LuN y
p`q

)
dy

� 1.

This shows that there is no oscillation in the function J (x, Ln, q) with respect to variable n. Similarly,
higher order derivatives of J (x, Ln, q) with respect to u are bounded. Also from (18) we have∫

R

U1(y)e
(
−

nLy
qq ′ p`

)
dy =

∫
R

U (y)J (x, Ly, q)J (x, Ly, q ′)e
(
−

nLy
qq ′ p`

)
dy

�
p`q
√

L N

p`q ′
√

L N

∫ 2

1
U (y) dy

�
p2`qq ′

L N
, (24)

as U (y) is supported on the interval [1, 2].
Integrating by parts taking U1(y) as first function, we observe that the integral in (23) is negligible if

n� pεqq ′ p`/L . Evaluating the above character sum we get the following congruence relation:

−pr p2`m p`q ′+ pr p2`m′ p`q − a+ bqqqq ′+ a+ b′q ′q ′qq ′+ n ≡ 0 (mod qq ′ p`).

Here q and q ′ are the inverses of q and q ′ modulo p` respectively. We solve the above congruence modulo
p` and modulo qq ′ respectively to obtain

−a+ bqq ′+a+ b′q ′q+n≡0 (mod p`) and −pr p2`m p`q ′+pr p2`m′ p`q+n≡0 (mod qq ′). (25)

Writing n =−pr p2`m p`q ′+ pr p2`m′ p`q + jqq ′, we observe that the number of n satisfying the above
congruence relation is same as the number of j’s. Since we also have n� N εqq ′ p`/L , we conclude
j � N ε. Hence the number of solutions of n satisfying the above congruence relation modulo qq ′, and
n� qq ′N ε p`/L is bounded by N ε p`/L . For congruence relation modulo p` in the above equation, we
substitute the change of variable a+ bq = α and a+ b′q ′ = α′ to obtain

αq ′+α′q + n ≡ 0 (mod p`). (26)

We record the bound for T in the following lemma:

Lemma 5.1. Let T be as given in (22). We have

T = L
∑†

n�pεqq ′ p`/L

∫
R

U1(y)e
(
−

nLy
qq ′ p`

)
dy,

where † in the above summation denotes that n satisfies the congruence relation given in (25).
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Substituting the bound for T in (21) we obtain

Ŝ2(L)= L
∫

x�(q N ε)/Q

∫
x ′�(q ′N ε)/Q

∑
m� NεQpr

N

∑
m′� NεQpr

N

∑
1≤q≤Q

∑
1≤q ′≤Q

χ(q)
aq2

χ(q ′)
a′q ′2

∑†

n�pεqq ′ p`/L

∑?

α(p`)

∑?

α′(p`)

χ(m−αpr−`)χ(m′−α′ pr−`)I(x, q,m)I(x, q ′,m′)
∫

R

U1(y)e
(
−

nLy
qq ′ p`

)
dy dx dx ′

:= Ŝ2(D)+Ŝ2(N D), (27)

where α and α′ are related by the congruence relation given in (26), and Ŝ2(D) (respectively Ŝ2(N D)) is
contribution of the diagonal terms (respectively the off-diagonal terms). The contribution of the diagonal
terms (α = α′,m = m′ and q = q ′) is bounded by (using I(x, q,m)� 1, bound from the (24) and sum
over n satisfying the congruence relation given in (25) is bounded by pε p`/N ):

Ŝ2(D)� L
∫

x�(q N ε)/Q

∫
x ′�(q ′N ε)/Q

∑
m� Qpr

N

∑
1≤q≤Q

1
q4

∑†

n�pεqq ′ p`/L

∑
α(p`)

|I(x, q,m)|2

a2

∫
R

|U1(y)| dy dx dx ′

� L N ε

∫
x�q/Q

Qpr

N

∑
1≤q≤Q

∑†

n�pεqq ′ p`/N

1
a2q4 p`

p2`q2

L N
dx

�
p3`N ε

N
Qpr

N
p`

L

∑
1≤q≤Q

1
a2q2×

q
Q

�
p3`N ε

Q2 N
pr

N
p`

L
, (28)

as a � Q. Substituting the value of α′ from the congruence relation given in (26), we see that the
contribution of the off-diagonal term is given by:

Ŝ2(N D)= L
∫

x�(q N ε)/Q

∫
x ′�(q ′N ε)/Q

∑
m�Q

∑
m′�Q

∑
1≤q≤Q

∑
1≤q ′≤Q

χ(q)
aq2

χ(q ′)
a′q ′2

∑†

n�pεqq ′ p`/N{∑?

α(p`)

χ(m−αpr−`)χ(m′+αqn+ q ′ pr−`)

}
I(x, q,m)I(x, q ′,m′)∫

R

U1(y)e
(
−

nLy
qq ′ p`

)
dy dx dx ′. (29)

Next we evaluate the exponential sum in the above equation.

Evaluation of the character sum. In this subsection we shall prove the following lemma

Lemma 5.2. Let A be the character sum given by

A :=
∑?

α(p`)

χ(m−αpr−`)χ(m′+αqn+ q ′ pr−`),

with `= 2
⌊ r

3

⌋
. We have

A� p`/2+ε .
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Proof. Applying the change of variable α= α1 p`/2+α2 where α1 and α2 run over residue classes modulo
p`/2, the above character sum reduces to

A=
∑?

α2(p`/2)

∑?

α1(p`/2)

χ(m−α2 pr−`
−α1 p2(r−`))χ(m′+(α1 pr−`

+α2)qn+q ′ pr−`)

=

∑?

α2(p`/2)

∑?

α1(p`/2)

χ{(m′+qn+q ′ pr−`α2+qn+q ′α1 p2(r−`))(m−α2 pr−`+(m−α2 pr−`)2α1 p2(r−`))},

as m−α2 pr−`−α1 p2(r−`) = m−α2 pr−`+ (m−α2 pr−`)2α1 p2(r−`) (mod pr ). Which reduces to

A=
∑?

α2(p`/2)

∑?

α1(p`/2)

χ(A(α2)+ B(α2)α1 p2(r−`))

=

∑?

α2(p`/2)

χ(A(α2))
∑?

α1(p`/2)

χ(1+ A(α2)B(α2)α1 p2(r−`)),

where

A(α2)=m′m−α2 pr−`+qn+q ′α2 pr−`m−α2 pr−` and B(α2)=m′(m−α2 pr−`)2+qn+q ′m−α2 pr−`.

Note that (A(α2), p)= 1, otherwise χ(A(α2)+ B(α2)α1 p2r/3)= 0. For a fixed α2,

χ(1+ A(α2)B(α2)α1 p2(r−`)) := χ(1+C(α2)α1 p2(r−`))

is an additive character of modulus p`/2, as we have

χ(1+C(α2)α1 p2(r−`))χ(1+C(α2)α
′

1 p2(r−`))= χ(1+C(α2)(α1+α
′

1)p
2(r−`)),

as we have 4(r − `)≥ r . Hence there exists an integer b (uniquely determined modulo p`/2) such that

χ(1+C(α2)α1 p2(r−`))= e
(
α1bC(α2)

p`

)
.

Executing the sum over α1 given in Lemma 5.2 we have

A= p`/2
∑?

α2(p`/2)
bC(α2)≡0 (mod p`/2)

χ(A(α2))� p`/2+ε. (30)

This concludes the proof. �

Substituting the bound for the character sum in (29) and using the bounds of U1(y) given in (24), we
have

Ŝ2(N D)� pεL
∑

m� Qpr
N

∑
m′� Qpr

N

∑
1≤q≤Q

∑
1≤q ′≤Q

∑†

n�pεqq ′ p`/L

1
aq2

1
a′q ′2

p`/2
p2`qq ′

L N

� pε
p5`/2

Q2 N

(
Qpr

N

)2 p`

L
� pε

p3`/2

Q2

(
pr

N

)2 p`

L
, (31)
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as a, a′ � Q, Q2
= N/p` and dagger on summation over n shows that n satisfies the congruence relation

modulo qq ′ as given in (25). Substituting the bounds for Ŝ2(D) and Ŝ2(N D) in (27) we have

Ŝ2(L)� pε
p`

L

(
p3`

Q2 N
pr

N
+

p3`/2

Q2

p2r

N 2

)
� pε

p`

L Q2 N 2 p
3`
2 pr (p3`/2

+ pr ).

Substituting the bound for Ŝ2(L) in (20) we obtain

S+2 (N )� pε
N 2
|τχ |

pr+2`

∑
L�P1

L-dyadic

L1/2
×

p`/2
√

L QN
p3`/4 pr/2(p3`/4

+ pr/2)

� pε
N

Qp3`/4 (p
3`/4
+ pr/2)

� pεN 1/2
(

p`/2+
pr/2

p`/4

)
� pεN 1/2 p1/2(r−br/3c)+ε,

(32)

as `= 2
⌊ r

3

⌋
and Q = N 1/2/p`/2. This proves Proposition 4.1. �

Acknowledgement

The second author would also like to thank the Stat-Math unit, Indian Statistical Institute, Kolkata for
wonderful academic atmosphere. During the work, he was supported by the Department of Atomic
Energy, Government of India, NBHM post doctoral fellowship no: 2/40(15)/2016/R&D-II/5765.

References

[Aggarwal and Singh 2017] K. Aggarwal and S. K. Singh, “t-aspect subconvexity bound for GL(2) L-functions”, preprint, 2017.
arXiv

[Blomer and Harcos 2008] V. Blomer and G. Harcos, “Hybrid bounds for twisted L-functions”, J. Reine Angew. Math. 621
(2008), 53–79. MR Zbl
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[Milićević 2016] D. Milićević, “Sub-Weyl subconvexity for Dirichlet L-functions to prime power moduli”, Compos. Math.
152:4 (2016), 825–875. MR

[Munshi 2014] R. Munshi, “The circle method and bounds for L-functions, I”, Math. Ann. 358:1-2 (2014), 389–401. MR Zbl

[Munshi 2015a] R. Munshi, “The circle method and bounds for L-functions, II: Subconvexity for twists of GL(3) L-functions”,
Amer. J. Math. 137:3 (2015), 791–812. MR Zbl

[Munshi 2015b] R. Munshi, “The circle method and bounds for L-functions, III: t-aspect subconvexity for GL(3) L-functions”,
J. Amer. Math. Soc. 28:4 (2015), 913–938. MR Zbl

[Munshi 2015c] R. Munshi, “The circle method and bounds for L-functions, IV: Subconvexity for twists of GL(3) L-functions”,
Ann. of Math. (2) 182:2 (2015), 617–672. MR Zbl

[Munshi 2018] R. Munshi, “A note on Burgess bound”, pp. 273–289 in Geometry, algebra, number theory, and their information
technology applications, edited by A. Akbary and S. Gun, Springer Proc. Math. Stat. 251, Springer, 2018. MR

[Titchmarsh 1986] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, New York, 1986.
MR Zbl

[Weyl 1916] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann. 77:3 (1916), 313–352. MR Zbl

Communicated by Philippe Michel
Received 2018-07-09 Revised 2019-03-12 Accepted 2019-04-10

ritabratamunshi@gmail.com Stat-Math Unit, Indian Statistical Institute, AN Kolmogorov Bhavan,
Kolkata, India

skumar.bhu12@gmail.com Stat-Math Unit, Indian Statistical Institute, AN Kolmogorov Bhavan,
Kolkata, India

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01578069
http://msp.org/idx/mr/0485727
http://msp.org/idx/zbl/0362.10035
http://dx.doi.org/10.1017/S0017089500030962
http://msp.org/idx/mr/1295511
http://msp.org/idx/zbl/0824.11047
http://dx.doi.org/10.1090/gsm/017
http://msp.org/idx/mr/1474964
http://msp.org/idx/zbl/0905.11023
http://dx.doi.org/10.1090/coll/053
http://msp.org/idx/mr/2061214
http://msp.org/idx/zbl/1059.11001
http://msp.org/idx/mr/1689553
http://msp.org/idx/zbl/0929.11025
http://msp.org/idx/mr/910497
http://msp.org/idx/zbl/0671.10031
http://dx.doi.org/10.1215/S0012-7094-02-11416-1
http://msp.org/idx/mr/1915038
http://msp.org/idx/zbl/1035.11018
http://dx.doi.org/10.1007/BF01188074
http://msp.org/idx/mr/1544665
http://msp.org/idx/jfm/50.0232.01
http://dx.doi.org/10.1515/crll.1988.384.192
http://msp.org/idx/mr/929983
http://msp.org/idx/zbl/0627.10017
http://msp.org/idx/mr/1058223
http://msp.org/idx/zbl/0724.11029
http://dx.doi.org/10.1112/S0010437X15007381
http://msp.org/idx/mr/3484115
http://dx.doi.org/10.1007/s00208-013-0968-4
http://msp.org/idx/mr/3158002
http://msp.org/idx/zbl/1312.11037
http://dx.doi.org/10.1353/ajm.2015.0018
http://msp.org/idx/mr/3357122
http://msp.org/idx/zbl/1344.11042
http://dx.doi.org/10.1090/jams/843
http://msp.org/idx/mr/3369905
http://msp.org/idx/zbl/1344.11042
http://dx.doi.org/10.4007/annals.2015.182.2.6
http://msp.org/idx/mr/3418527
http://msp.org/idx/zbl/1344.11042
http://msp.org/idx/mr/3880392
http://msp.org/idx/mr/882550
http://msp.org/idx/zbl/0601.10026
http://dx.doi.org/10.1007/BF01475864
http://msp.org/idx/mr/1511862
http://msp.org/idx/zbl/46.0278.06
mailto:ritabratamunshi@gmail.com
mailto:skumar.bhu12@gmail.com
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 13:6 (2019)

dx.doi.org/10.2140/ant.2019.13.1415

Examples of hypergeometric twistor D-modules
Alberto Castaño Domínguez, Thomas Reichelt and Christian Sevenheck

We show that certain one-dimensional hypergeometric differential systems underlie objects of the category
of irregular mixed Hodge modules, which was recently introduced by Sabbah, and compute the irregular
Hodge filtration for them. We also provide a comparison theorem between two different types of
Fourier–Laplace transformation for algebraic integrable twistor D-modules.

1. Introduction

In a series of papers Sabbah and Yu (partly joint with Esnault) [Yu 2014; Sabbah and Yu 2015; Esnault
et al. 2017; Sabbah 2018] considered a so-called irregular Hodge filtration on certain cohomology groups
and on certain irregular D-modules. It can be seen as a generalization of the Hodge filtration on a mixed
Hodge module in the sense of M. Saito. Geometrically, such a filtration arises by considering a version of
the twisted de Rham cohomology of certain proper maps, and it plays (conjecturally) a role in Hodge
theoretic mirror symmetry (see [Katzarkov et al. 2017]). Sabbah [2018] has defined a category of irregular
mixed Hodge modules, which is (up to a technical equivalence) a certain subcategory of T. Mochizuki’s
category of (integrable) mixed twistor D-modules. He has proved that a rigid irreducible D-module on
the projective line can be uniquely upgraded to an irregular Hodge module if and only if its formal local
monodromies are unitary. Consequently, these objects come equipped with an irregular Hodge filtration
and one can define irregular Hodge numbers for them. They should be seen as interesting numerical
invariants attached to these differential systems, contrary to the case of arbitrary mixed twistor D-modules,
where there is no obvious way to define such numbers. In [Castaño Domínguez and Sevenheck 2019],
the first and the third named author have computed that filtration and its corresponding numbers for the
purely irregular hypergeometric modules, that is for systems of the form DGm/DGm P , where P is the
operator

P =
n∏

i=1

(t∂t −αi )− t

The authors are partially supported by the project SISYPH: ANR-13-IS01-0001-01/02 and DFG grant SE 1114/5-1. Castaño
Domínguez is also partially supported by MTM2014-59456-P, the ERDF and GI-2136. Reichelt is supported by a DFG Emmy
Noether Fellowship (RE 3567/1-1).
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Keywords: D-modules, irregular Hodge filtration, twistor D-modules, Fourier–Laplace transformation, hypergeometric

D-modules.
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for real numbers α1, . . . , αn . Let us consider the noncommutative ring Rint
Gm
:= C[z, t±]〈z2∂z, t z∂t 〉. A

crucial point was to show that a certain quotient of the corresponding sheaf Rint
Gm

on Gm which restricts to
the DGm,t -module DGm/DGm P on z = 1 actually underlies an object in the category IrrMHM(Gm) and
the latter can be uniquely extended to an object in IrrMHM(P1).

In this paper we discuss the case of more general hypergeometric D-module, that is, for quotients
DGm/DGm P , where now P is of the form

P =
n∏

i=1

(t∂t −αi )− t
m∏

j=1

(t∂t −β j )

for positive integers m, n and real numbers α1, . . . , αn, β1, . . . , βm such that there is no integer difference
between any αi and β j (this is the irreducibility assumption). It is worth noticing that the presence of
the factor

∏m
j=1(t∂t −β j ) rules out the usage of the geometric arguments of [Castaño Domínguez and

Sevenheck 2019]. We obtain (see Theorem 5.7) that for certain such systems, the corresponding quotient
of Rint

Gm
still underlies an object of IrrMHM(Gm). As an application, we can completely determine the

irregular Hodge filtration for all systems D/DP as above, where n is arbitrary and where m = 1.
The strategy of the proof (which is rather different from that of [Castaño Domínguez and Sevenheck

2019]) of the main theorem is to reduce these differential systems from (Fourier–Laplace transformed)
A-hypergeometric D-modules (the so-called GKZ-systems of Gelfand, Graev, Zelevinski and Kapranov,
see [Gelfand et al. 1987; Gelfand et al. 1989]), but at the level of (algebraic, integrable, mixed) twistor
D-modules. Notice that the paper [Mochizuki 2015b] also studies twistor structures on GKZ-systems, by
considering twistor D-modules associated to meromorphic functions. We use instead a central result of
[Reichelt and Sevenheck 2015], where the Hodge filtration on certain GKZ-systems has been computed
explicitly. Technically, the main point in our proof consists in showing that for an R-module underlying
an integrable mixed twistor D-module on the affine space, the algebraic Fourier–Laplace transformation
(which is defined very much the same as in the case of algebraic D-modules) coincides with the Fourier–
Laplace transformation that can be defined inside the category MTM, or even IrrMHM. Along the way, we
also obtain (see Theorem 4.7) that an R-module version of the GKZ-D-module underlies an irregular Hodge
module provided that the parameter β ∈Cd of this system satisfies a natural combinatorial condition. Notice
that for the special case β = 0, this theorem can also be deduced from [Mochizuki 2015b, Proposition 1.4].

Our results give concrete representations for objects in the categories MTM and IrrMHM, which
usually are difficult to describe explicitly. We hope that a similar approach can be used to understand the
irregular Hodge filtration for some higher dimensional analogues of the classical hypergeometric systems,
also called Horn systems, which occur in the mirror symmetry picture for toric varieties.

2. Some results on R- and mixed twistor D-modules

Let X be a complex manifold of dimension d . We denote by OX the sheaf of holomorphic functions and
DX the sheaf of differential operators with holomorphic coefficients. Recall that DX is generated by the
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tangent sheaf2X . We put X :=A1
z×X , where the subscript means that z is the canonical coordinate on A1.

Denote by pz : X→ X the projection. We denote by RX the sheaf of subalgebras of DX generated by
zp∗z2X over OX and by Rint

X the sheaf of subalgebras of DX generated by zp∗z2X and z2∂z over OX. In local
coordinates x1, . . . , xd , they are given by OX〈z∂x1, . . . , z∂xd 〉 and OX〈z2∂z, z∂x1, . . . , z∂xd 〉, respectively.
We set �1

X := z−1 p∗z�
1
X as a subsheaf of p∗z�

1
X ⊗OX(∗({0}× X)), �p

X :=
∧p

�1
X and ωX :=�

d
X.

Let f : X→ Y be a morphism of complex manifolds. We consider the transfer R-modules, given by
RX→Y := OX⊗ f −1OY

f −1RY and RY←X := ωX⊗RX→Y⊗ f −1ωY, being respectively a (RX, f −1RY)-
bimodule and a ( f −1RY,RX)-bimodule. We have the inverse image and direct image functors

f +(N ) :=RX→Y

L
⊗ f −1RY

f −1N , f+(M) := R f∗(RY←X

L
⊗RX M), (1)

between the bounded derived categories Db(RX) and Db(RY).
If f : X × Y → Y is a projection and dim X = d , then f+(M) is given by

f+(M)= R f∗DRX×Y/Y(M)[d],

where DRX×Y/Y(M) is the relative de Rham complex with differential

d(η⊗m)= dη⊗m+
d∑

i=1

(
dxi

z
∧ η

)
⊗ z∂xi m,

the (xi )1≤i≤d being local coordinates on X .
Let σ : Gm,z → Gm,z be the automorphism z 7→ −z−1. Set S := {z ∈ A1

z | |z| = 1}. If λ ∈ S then
σ(λ)=−λ. Let E (d,d)S×X/S,c(V ) be the space of C∞-sections of �d,d

S×X/S over any open subset V of S× X
with compact support and C0

c (S) the space of continuous functions on S with compact support. The space
of C∞(S)-linear maps E (n,n)S×X/S,c(V )→ C0

c (S) is denoted by DbS×X/S(V ). This gives rise to the sheaf
DbS×X/S. The abelian category R-Tri(X) consists of triples T = (M1,M2,C) where M1,M2 are RX-
modules and C :M1|S×X⊗σ

∗M2|S×X→DbS×X/S is a RX|S×X⊗σ
∗RX|S×X-linear morphism. If D⊂ X

is a hypersurface, one similarly defines a category R-Tri(X, D) using RX(∗D) :=RX⊗OX OX(∗(A
1
z×D))-

modules (see [Mochizuki 2015a, §2.1] for details).
Now let X := X0×A1

t and let 2X (log X0) be the sheaf of vector fields on X which are logarithmic
along X0. Let V0RX be the sheaf of subalgebras in RX which is generated by zp∗z2X (log X0). For z0 ∈A1

z

we denote by X(z0) a small neighborhood of {z0}×X . A coherent RX-module is called strictly specializable
along t at z0 if M

|X(z0) is equipped with an increasing and exhaustive filtration V (z0)
a (M

|X(z0))a∈R by
coherent (V0RX)|X(z0)-modules satisfying certain conditions (see [Mochizuki 2015a, §§2.1.2.1, 2.1.2.2]).
This filtration is unique if it exists. M is called strictly specializable along t if it is strictly specializable
along t for any z0.

Remark 2.1. If M is itself a coherent V0RX-module, then M is automatically specializable along t and
the corresponding filtration Va(M) exists globally and is trivial, i.e., Va(M)= Vb(M) for all a, b ∈ R.
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If M is a coherent RX(∗t)-module, we define similarly a filtration V (z0)
a (M

|X(z0)) and the notion of
strict specializability along t (see [Mochizuki 2015a, §3.1.1]). In this case we define the RX-submodules
M[∗t] and M[!t] of M, which are locally generated by V (z0)

0 M and V (z0)
<0 M, respectively.

Remark 2.2. If the coherent RX(∗t)-module M is itself V0RX coherent, then

M[!t] =M[∗t] =M(∗t)=M.

Given an RX(∗t)-triple T = (M1,M2,C) which is strictly specializable along t we can define

T [!t] := (M1[∗t],M2[!t],C[!t]), T [∗t] := (M1[!t],M2[∗t],C[∗t])

(see [Mochizuki 2015a, Proposition 3.2.1] for details).
The category of filtered RX-triples (i.e., RX-triples equipped with a finite increasing filtration W )

underlies the category MTM(X) of mixed twistor D-modules (see [Mochizuki 2015a, Definition 7.2.1]).
The full subcategory of objects T ∈MTM(X) satisfying T = T [∗D] for some hypersurface D ⊂ X is
denoted by MTM(X, [∗D]).

If X is a smooth, algebraic variety, we denote by X an the corresponding complex manifold. Let X
be a smooth, complete, algebraic variety such that X ↪→ X is an open immersion and D := X \ X is a
hypersurface. We can define the category of (integrable) algebraic, mixed twistor D-modules as

MTM(int)
alg (X) :=MTM(int)(X an, [∗D]). (2)

We remark that this definition is independent of the completion up to an equivalence of categories
[Mochizuki 2015a, Lemma 14.1.3].

Let f : X → Y be a quasiprojective morphism of smooth, algebraic varieties. We take completions
X ⊂ X and Y ⊂ Y as above, such that DX := X \ X and DY := Y \Y and we have a projective morphism
f : X→ Y which restricts to f . For T ∈MTMalg(X), corresponding to T ∈MTM(X , [∗DX ]), we define

f i
∗
T :=Hi f ∗T ,

where f ∗ is the direct image functor for mixed twistor D-modules arising from the one for R-modules
depicted in (1).

If X is an algebraic variety, we denote by DX the sheaf of algebraic differential operators and by RX

the sheaf of z-differential operators, where here X := A1
z × X . We define the inverse and direct image

functor in the category of algebraic RX-modules as in (1). Analogously to the construction of RX, we can
consider the projection p : P1

× X→ X , and construct the sheaf of subalgebras of DP1×X (∗({∞}× X))
generated by z2∂z and zp∗2X over OP1×X (see [Mochizuki 2015a, §14.4.1.1]), which will be denoted by
Rint

P1×X (∗∞). In that sense, an algebraic integrable RX-module gives rise to a unique Rint
P1×X (∗∞)-module

(see [ibid., Theorem 14.4.8]).
The following lemma, which will be needed later, is due to T. Mochizuki.

Lemma 2.3. Given two good Rint
P1×X (∗∞)-modules P1,P2 and an analytic isomorphism f : Pan

1 → Pan
2 ,

then f is induced by a unique algebraic isomorphism between P1 and P2.
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Proof. Take a coherent OP1×X -submodule N1 ⊂ P1 such that Rint
P1×X (∗∞)⊗N1→ P1 is surjective and a

coherent OP1×X -module N2⊂P2 such that both Rint
P1×X (∗∞)⊗N2→P2 is surjective and f (N an

1 )⊂N an
2 .

According to GAGA we have a morphism g :N1→N2 which after analytification is equal to the morphism
N an

1 →N an
2 induced by f . Denote by K1 the kernel of Rint

P1×X (∗∞)⊗N1→ P1. This gives a morphism
K1→P2 which one obtains as the composition K1→Rint

P1×X (∗∞)⊗N1
ϕ
−→Rint

P1×
(∗∞)⊗N2→P2, where

ϕ is induced by g. Because the induced morphism (Rint
P1×X (∗∞)⊗N1)

an
→ Pan

2 factors through Pan
1 ,

the induced morphism Kan
1 → Pan

2 is 0. Hence, we obtain that K1 → P2 is 0, which means that
Rint

P1×X (∗∞)⊗N1→ P2 factors through P1. This shows the existence. The uniqueness follows from
[Serre 1955–1956, Proposition 10]. �

Since an algebraic, integrable, mixed twistor D-module on X gives rise to an analytic Rint
P1×X (∗∞)-

module which underlies an algebraic Rint
P1×X (∗∞)-module by [Mochizuki 2015a, Theorem 14.4.8], the

lemma above shows that we can define functors (up to canonical isomorphism)

Fori :MTMint
alg(X)→Mod(Rint

X )

(M1,M2,C) 7→Mi for i = 1, 2,

which become faithful if we impose goodness.

3. Fourier transformation of twistor D-modules

In this section we define the Fourier–Laplace transformation in the categories of integrable R-modules
and integrable, algebraic, mixed twistor D-modules, and we prove that these two transformations are
compatible.

Consider the diagram

AN
× ÂN j

//

p

zz

q

$$

PN
× P̂N

q
��

AN ÂN ĵ
// P̂N

,

where p and q are the projections to the first and second factor respectively. Consider the function
ϕ =

∑N
i=1wi · λi on AN

× ÂN .
Let Aϕ/zaff be the R

A1×AN×ÂN -module O
A1×AN×ÂN equipped with the z-connection zd+dϕ, and consider

the reduced divisor D := (PN
× P̂N ) \ (AN

× ÂN ). Then Aϕ/z∗ := j∗A
ϕ/z
aff carries a natural structure of an

R
A1×PN×P̂N (∗D)-module.
We denote by Eϕ/z∗ the analytification of Aϕ/z∗ , which is an R

A1×PN×P̂N (∗D)-module.

Lemma 3.1. Eϕ/z∗ is strictly specializable along D and

Eϕ/z := Eϕ/z
∗
[∗D] = Eϕ/z

∗
.
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Proof. We denote the coordinates on PN
×P̂N by ((w0 :w1 : · · · :wN ), (λ0 : λ1 : · · · : λN )), where the chart

AN
×ÂN is embedded via the map j : (w1, . . . , wN , λ1, . . . , λN ) 7→ ((1 :w1, . . . , wN ), (1 : λ1 : · · · : λN )).

By symmetry it is enough to prove the claim in the charts {w1 6= 0, λ0 6= 0}, {w1 6= 0, λ1 6= 0} and
{w1 6= 0, λ2 6= 0}. We will assume N ≥ 2 and consider the chart X := {w1 6= 0, λ2 6= 0}; the arguments with
the other charts and when N = 1 go similarly. The chart X is embedded as (x1, . . . , xN , µ1, . . . , µN ) 7→

((x1 : 1 : x2 · · · : xN ), (µ1 : µ2 : 1 : µ3 : · · · : µN )), so that the map ϕ is given on X by

1
x1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
.

Set DX := A1
× (D ∩ X) = A1

× {x1 ·µ1 = 0}. The module (Eϕ/z∗ )|X is a cyclic RA1×X (∗DX )-module
RA1×X (∗DX )/I, where the left ideal I is generated by

z∂x1 +
1

x2
1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
x1µ1

, z∂x j −
µ j

x1µ1
,

z∂µ1 +
1

x1µ
2
1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
x1µ1

, zµ j −
x j

x1µ1
,

where j ≥ 3. Consider the map ig : X→ A1
t × X given by

(x1, . . . , xN , µ1, . . . , µN ) 7→ (x1 ·µ1, x1, . . . , xN , µ1, . . . , µN ).

The direct image ig,+(RX(∗DX )/I) is a cyclic RA1
t ×X(∗(A

1
t ×DX ))-module RA1

t ×X(∗(A
1
t ×DX ))/J

′

where J′ is generated by

z∂x1 +µ1z∂t +
1

x2
1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
x1µ1

, z∂x j −
µ j

x1µ1
,

z∂µ1 + x1z∂t +
1

x1µ
2
1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
x1µ1

, z∂µ j −
x j

x1µ1
, t − x1µ1,

where j ≥ 3. Define the cyclic RA1
t ×X(∗t)-module RA1

t ×X(∗t)/J where J is generated by

z∂x1 +µ1z∂t +
µ1

t2

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
t
, z∂x j −

µ j

t
,

z∂µ1 + x1z∂t +
x1

t2

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
t
, z∂µ j −

x j

t
, t − x1µ1,

where j ≥ 3. Then we have the following RA1
t ×X-linear isomorphism

RA1
t ×X(∗(A

1
t ×DX ))/J

′
→RA1

t ×X(∗t)/J

P ·
1

(x1µ1)k
7→ P ·

1
tk .
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Consider the V -filtration along t = 0. The relations 1/tk
= (z∂µ2)

k ,

z∂t =−
1
t

(
z∂x1 x1+

1
t

(
µ2+ x2+

∑
i≥3

µi xi

))
=−z∂x1 x1z∂µ2 −

(
µ2+ x2+

∑
i≥3

µi xi

)
(z∂µ2)

2

and a straightforward induction over k for (z∂t)
k show that ig,+(RX(∗DX )/J) is a cyclic, hence also

coherent, V0RA1
s×X-module. It follows from Remark 2.1 that ig,+(RX(∗DX )/J)= ig,+(RX(∗DX )/J)[∗t],

and as a consequence, we are done by applying [Mochizuki 2015a, §3.3.1.1] and Remark 2.2. �

It follows from [Sabbah and Yu 2015, Proposition 3.3] that Eϕ/z underlies an object T ϕ/z∈MTMint
alg(A

N
×

ÂN ). Let us notice that the preceding lemma, as well as the similar Lemma 3.6 below, are related to a
more general statement in [Mochizuki 2015b, Corollary 3.12] on mixed twistor D-modules associated to
nondegenerate functions. However, in order to keep the paper self-contained, we prefer to give direct
proofs here.

We will now define a Fourier–Laplace transformation for algebraic Rint
A1×AN -modules.

Definition 3.2. The Fourier–Laplace transformation functor from the category of algebraic Rint
A1×AN -

modules to the category of algebraic Rint
A1×ÂN -modules is defined as

M̂ := FL(M) :=H0q+((p+M)⊗Aϕ/zaff ),

for any M in Mod(Rint
A1×AN ).

Remark 3.3. Let M := 0(A1
×AN ,M) be the Rint

A1×AN -module of global sections of M. The Rint
A1×ÂN -

module M̂ := 0(A1
× ÂN ,M̂) is isomorphic to M as a C[z]-module and the full Rint

A1×ÂN -structure is
given by

λi ·m := −z∂wi ·m, z∂λi ·m := wi ·m and z2∂z ·m :=
(

z2∂z −

N∑
i=1

z∂wiwi

)
·m.

On the other hand, there is a similar definition of a Fourier–Laplace transformation in the category of
algebraic DAN -modules (see e.g., [Reichelt 2014, Definition 1.2]) which we also denote by FL.

The Fourier–Laplace transformation for algebraic, integrable, mixed twistor D-modules is defined in
the following way.

Definition 3.4. The Fourier–Laplace transformation in the category of algebraic, integrable mixed twistor
D-modules on AN is defined by

FLMTM(M) :=H0q∗((p∗M)⊗ T ϕ/z),

where M ∈MTMint
alg(A

N ).

Recall that for M=(M1,M2,C)∈MTMint
alg(X)we denote by Fori the forgetful functors Fori (M)=Mi

for i = 1, 2.
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Proposition 3.5. Let M ∈MTMint
alg(A

N ). Then

For1(FLMTM(M))= FL(For1(M)) and For2(FLMTM(M))= z−N FL(For2(M)).

Proof. By [Mochizuki 2015a, §14.3.3.3] it is clear that Fori almost commutes with p∗, more precisely we
have

For1(p∗(M))= zN p+(For1(M)) and For2(p∗(M))= p+(For2(M)).

Then it is enough to prove for N ∈MTMint
alg(A

N
× ÂN ) that q+(Fori (N )⊗Aϕ/zaff )

∼= Fori (q∗(N ⊗ T ϕ/z)).
We have

ĵ+q+(Fori (N )⊗Aϕ/zaff )
∼= q+ j+(Fori (N )⊗Aϕ/zaff )

∼= q+ j∗(Fori (N )⊗Aϕ/zaff )

∼= Rq∗DR
PN×P̂N j∗(Fori (N )⊗Aϕ/zaff ).

Since N , T ϕ/z ∈ MTMint
alg(A

N
× ÂN ), there exist mixed twistor D-modules N , T ϕ/z ∈ MTMint(PN

×

P̂N , [∗D]) whose underlying R-modules are (after stupid localization along D) analytifications of the
j∗ Fori (N ) and j∗A

ϕ/z
aff . Hence

( j∗(Fori (N )⊗Aϕ/zaff ))
an ∼= Fori (N ⊗ T ϕ/z)(∗D)∼= Fori (N ⊗ T ϕ/z),

where the last equation follows from Lemma 3.1. We therefore get

( ĵ+ p+(Fori (N )⊗Aϕ/zaff ))
an ∼= Rq∗DRan

PN×P̂N ( j∗(Fori (N )⊗Aϕ/zaff ))
an

∼= Rq∗DRan
PN×P̂N Fori (N ⊗ T ϕ/z)

∼= Fori (q∗(N ⊗ T ϕ/z)).

The claim follows now from Lemma 2.3, noting that the goodness is a consequence of Lemma 3.1 and
[Mochizuki 2015a, Lemma 14.4.15]. �

We have the following variant, which will be used in the next section. Consider the diagram

AN
×Gm

j
//

p

zz

q

$$

PN
×P1

q
��

AN Gm
ĵ

// P1

and let ψ := w1 · t +w2+ · · ·+wN .
As above we define the RA1×AN×Gm -module Aψ/zaff , being OA1×AN×Gm endowed with the z-connection

zd + dψ . As in the other case, we can consider the divisor H := (PN
×P1) \ (AN

×Gm) and obtain
the RA1×PN×P1(∗H)-module Aψ/z∗ := j∗A

ψ/z
aff . In the same vein as before, we will denote by Eψ/z∗ the

RA1×PN×P1(∗H)-module being the analytification of Aψ/z∗ . The following lemma is similar to Lemma 3.1.

Lemma 3.6. Eψ/z∗ is strictly specializable along H and

Eψ/z := Eψ/z
∗
[∗H ] = Eψ/z

∗
.
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Proof. We denote the coordinates on PN
×P1 by ((w0 :w1 : · · · :wN ), (u : t)), where the chart AN

×Gm

is embedded via the map j : (w1, . . . , wN , t) 7→ ((1 : w1 : · · · : wN ), (1 : t)). We will assume N ≥ 3 and
consider the chart X := {w2 6= 0, u 6= 0}; the other charts behave similarly, as do the cases N = 1, 2. The
chart X is embedded as (x1, . . . , xN , u) 7→ ((x1 : x2 : 1 : x3 : · · · : xN ), (u : 1)). On this chart the map ψ is
given by 1

x1

( x2
u +1+ x3+· · ·+ xN

)
. Set HX := A1

× (H ∩ X)= A1
×{x1 ·u = 0}. The module (Eψ/z∗ )|X

is a cyclic RX(∗HX )-module RX(∗HX )/I, where the left ideal I is generated by

z∂x1 +
1
x2

1

(
x2

u
+ 1+ x3+ · · ·+ xN

)
, z∂x2 −

1
x1u

, z∂x j −
1
x1
, z∂u +

x2

x1u2 ,

with j ≥ 3. Consider the map ig : X→ A1
s × X given by

(x1, . . . , xN , u) 7→ (x1 · u, x1, . . . , xN , u).

Analogous to Lemma 3.1, the direct image ig,+(RX(∗HX )/J) is a cyclic RA1
s×X(∗(A

1
s ×HX ))-module

RA1
s×X(∗(A

1
s ×HX ))/J

′ where J′ is the left ideal generated by

z∂x1+uz∂s+
1
x2

1

(
x2

u
+1+x3+· · ·+xN

)
, z∂x2−

1
x1u

, z∂x j −
1
x1
, z∂u+x1z∂s+

x2

x1u2 , s−x1u,

and j ≥ 3. Define the cyclic RA1
s×X(∗s)-module RA1

s×X(∗s)/J where J is generated by

z∂x1+uz∂s+
1
s2 (x2u+u2

+x3u2
+· · ·+xN u2), z∂x2−

1
s
, z∂x j−

u
s
, z∂u+x1z∂s+

x1x2

s2 , s−x1u,

and where j ≥ 3. We have the following RA1
s×X-linear isomorphism

RA1
s×X(∗(A

1
s ×HX ))/J

′
→RA1

s×X(∗s)/J

P 1
(x1u)k

7→ P 1
sk .

Consider the V -filtration along s = 0. The relations 1/sk
= (z∂x2)

k ,

z∂s =−
1
s

(
z+ uz∂u +

x2

s

)
=−z · z∂x2 − uz∂uz∂x2 − x2(z∂x2)

2

and a straightforward induction over k for (z∂s)
k show that ig,+(RX(∗DX )/J) is a coherent V0RA1

s×X-
module. As in the previous lemma, this shows the claim. �

It follows again from [Sabbah and Yu 2015, Proposition 3.3] that Eψ/z underlies an object T ψ/z ∈
MTMint

alg(A
n
×Gm).

Definition 3.7. (1) The Fourier–Laplace transformation with respect to the kernel ψ in the category of
algebraic RA1×AN -modules is defined as

FLψ(M) :=H0q+((p+M)⊗Aψ/zaff ),

for any M ∈Mod(RAN ).
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(2) Analogously, the Fourier–Laplace transformation with respect to the kernel ψ in the category of
algebraic, integrable twistor D-modules on AN is defined by

FLψMTM(M) :=H0q∗((p∗M)⊗ T ψ/z),

for any M ∈MTMint
alg(A

N ).

We get the following result for the kernel ψ .

Proposition 3.8. Let M ∈MTMint
alg(A

N ). Then

For1(FLψMTM(M))= z1−N FLψ(For1(M)) and For2(FLψMTM(M))= z−N FLψ(For2(M)).

Proof. We have, by [Mochizuki 2015a, §14.3.3.3],

For1(p∗(M))= zp+(For1(M)) and For2(p∗(M))= p+(For2(M)).

The rest of the proof carries over almost word for word from Proposition 3.5, using Lemma 3.6. �

4. GKZ systems and irregular Hodge modules

Let A = (aki ) be a d × N integer matrix with columns (a1, . . . , aN ). We define

NA :=
N∑

i=1

Nai ⊂ Zd

and similarly for ZA and R≥0 A. Throughout this section we assume

ZA = Zd and NA = Zd
∩R≥0 A.

Set AN
:= Spec(C[w1, . . . , wN ]) and ÂN

:= Spec(C[λ1, . . . , λN ]) and

LA :=

{
`= (`1, . . . , `N ) ∈ ZN

:

N∑
i=1

`i ai

}
.

Definition 4.1. The GKZ-hypergeometric system Mβ

A is the cyclic D
ÂN -module D

ÂN /I, where I is the
left ideal generated by

Ek :=

N∑
i=1

akiλi∂λi −βk, for k = 1, . . . , d,

and

�` :=

∏
`i>0

∂
`i
λi
−

∏
`i<0

∂
−`i
λi
, for l ∈ LA.
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The GKZ-hypergeometric system Mβ

A is the Fourier–Laplace transform of the cyclic DAN -module
M̌β

A := DAN /J , where J is the left ideal generated by

Ěk :=

N∑
i=1

aki∂wiwi +βk, for k = 1, . . . , d,

and
�̌` :=

∏
`i>0

w
`i
i −

∏
`i<0

w
−`i
i , for l ∈ LA.

The semigroup ring C[NA] ⊂ C[t±1 , . . . , t±d ] is naturally a C[w1, . . . , wN ]-module under the isomor-
phism

C[w1, . . . , wN ]/((�̌`)`∈LA)→ C[NA]

wi 7→ tai ,

where we are using the multiindex notation tai :=
∏d

k=1 taki
k . We set SA := C[NA]. Notice that the rings

C[w1, . . . , wN ] and SA carry a natural Zd-grading given by deg(wi )= ai . This is compatible with the
grading on the Weyl algebra DAN := 0(AN ,DAN ) given by deg(wi )= ai and deg(∂wi )=−ai .

Definition 4.2 [Matusevich et al. 2005, Definition 5.2]. Let P be a finitely generated Zd-graded
C[w1, . . . , wN ]-module. An element α ∈ Zd is called a true degree of P if the graded part Pα is
nonzero. A vector α ∈ Cd is called a quasidegree of P if α lies in the complex Zariski closure qdeg(P)
of the true degrees of P via the natural embedding Zd ↪→ Cd .

Consider the set of strongly resonant parameters of A:

sRes(A) :=
N⋃

j=1

sRes j (A),

where
sRes j (A) := {β ∈ Cd

| β ∈ −(N+ 1)a j + qdeg(SA/(ta j ))}.

Consider as well the torus Gd
m := Spec(C[t±1 , . . . , t±d ]), together with the torus embedding

h : Gd
m→ AN

(t1, . . . , td) 7→ (ta1, . . . , taN ).

The following proposition is a slight generalization of the results of Schulze and Walther [2009, Theo-
rem 3.6, Corollary 3.8].

Proposition 4.3 [Reichelt and Sevenheck 2015, Proposition 3.11]. Let A be a d × N integer matrix
satisfying ZA = Zd and NA = Zd

∩R≥0 A. Assume that β 6∈ sRes(A). Then

H0(h+O
β

Gd
m
)∼= M̌β

A,

where Oβ

Gd
m

∼= DGd
m
/DGd

m
· (∂t1 t1+β1, . . . , ∂td td +βd).



1426 Alberto Castaño Domínguez, Thomas Reichelt and Christian Sevenheck

For β ∈ Rd , the D-module Oβ

Gd
m

underlies the complex mixed Hodge module pC
H,β
Gd

m
. Hence for

β ∈ Rd
\ sRes(A) the D-module M̌β

A underlies the complex mixed Hodge module H0h∗ pC
H,β
Gd

m
. The

Hodge filtration on M̌β

A can be explicitly computed, provided that β belongs to a certain set AA of so-called
admissible parameters β. We recall its definition from [Reichelt and Sevenheck 2015, Formula (14) right
before Lemma 4.4]: let c := a1+ · · ·+ aN and define for all facets F of R≥0 A the uniquely determined
primitive, inward-pointing, normal vector nF of F , such that 〈nF , F〉 = 0 and 〈nF ,NA〉 ⊂ Z≥0. Set
eF := 〈nF , c〉 ∈ Z>0. The set of admissible parameters of A is then defined by

AA :=
⋂

F facet

{
R · F −

[
0, 1

eF

)
· c
}
.

Theorem 4.4 [Reichelt and Sevenheck 2015, Theorem 4.17]. For β ∈ AA the Hodge filtration on M̌β

A is
equal to the order filtration shifted by N − d , i.e.,

F H
p+N−dM̌

β

A = Ford
p M̌β

A.

Let us define the cyclic RA1×AN -module Ň β

A :=RA1×AN /Jz , where Jz is the left ideal generated by

Ě z
k =

N∑
i=1

aki z∂wiwi + zβk, for k = 1, . . . , d,

and

�̌` =

∏
`i>0

w
`i
i −

∏
`i<0

w
−`i
i , for l ∈ LA.

We will denote by M̌β

A := 0(A
N ,M̌β

A) and Ňβ

A := 0(A
1
×AN , Ň β

A ) the modules of global sections of
M̌β

A and Ň β

A , respectively.
We will also consider the Rees module of M̌β

A with respect to the order filtration Ford
•

, which is given
by RFord

M̌β

A :=
∑

k≥0 zk Ford
k M̌β

A. An easy computation shows RFord
M̌β

A = Ňβ

A , hence

RF H
M̌β

A = zN−d Ňβ

A . (3)

Definition 4.5. The R-GKZ-hypergeometric system N β

A is the cyclic Rint
A1×ÂN -module Rint

A1×ÂN /I, where
the left ideal I is generated by

E z
0 := z2∂z +

N∑
i=1

λi z∂λi ,

E z
k :=

N∑
i=1

akiλi z∂λi − zβk, for k = 1, . . . , d,

and

�z
` :=

∏
`i>0

(z∂λi )
`i −

∏
`i<0

(z∂λi )
−`i , for ` ∈ LA.
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Remark 4.6. Note that, considering Ň β

A as an Rint
A1×ÂN -module with the trivial action of z2∂z , N β

A is its

Fourier–Laplace transform as Rint
A1×ÂN -modules, according to Remark 3.3.

Theorem 4.7. Let A be a d×N-matrix and β ∈AA an admissible parameter. The R-GKZ-hypergeometric
system z−dN β

A underlies an algebraic, integrable, mixed twistor D-module TMβ

A.

Proof. By the remark above, we know that N β

A = FL(Ň β

A ), which in turn, thanks to the choice of β,
Theorem 4.4 and formula (3), is equal to FL(zd−NRF HM̌β

A). Since RF HM̌β

A is the Rees module of a
mixed Hodge module on AN , it gives rise to an algebraic, integrable mixed twistor D-module on AN ,
say TM̌β

A. Then we can apply Proposition 3.5 and get

N β

A = zd−N FL(For2(
TM̌β

A))= zd For2(FLMTM(
TM̌β

A)).

The result follows from writing TMβ

A := FLMTM(
TM̌β

A). �

Corollary 4.8. The analytification of TMβ

A gives rise to an irregular mixed Hodge module on AN which
has a natural extension to an Rint

A1×PN -module underlying an object of IrrMHM(PN ).

Proof. This follows from applying [Sabbah 2018, Corollary 0.5] to the operations performed to get TMβ

A. �

5. Application to confluent hypergeometric systems

In this section we are going to use the results achieved so far for the special case of the matrix

A =

(
1m 0m×(n−1) Idm

1n−1 − Idn−1 0(n−1)×m

)
.

For the sake of simplicity, we will write N = n+m in what follows. Before going on, let us introduce
the main object of study of this section and state some of its basic properties, extending what we mentioned
in the introduction.

Definition 5.1. Let (n,m) 6= (0, 0) be a pair of nonnegative integers, and let α1, . . . , αn and β1, . . . , βm

be elements of C. The hypergeometric D-module of type (n,m) associated with the αi and the β j is
defined as the quotient of DGm by the left ideal generated by the so-called hypergeometric operator

n∏
i=1

(t∂t −αi )− t
m∏

j=1

(t∂t −β j ).

We will denote it by H(αi ;β j ).

Proposition 5.2. Let H := H(αi ;β j ) be a hypergeometric D-module of type (n,m), and let η be any
complex number. Then we have the following:

(1) If we denote the Kummer D-module DGm/(t∂t − η) by Kη, then H⊗OGm
Kη ∼=H(αi + η;β j + η). In

particular, an overall integer shift of the parameters gives us an isomorphic D-module.

(2) H is irreducible if and only if for any pair (i, j) of indices, αi −β j is not an integer.
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(3) If H is irreducible, its isomorphism class depends only on the classes modulo Z of the αi and the β j ,
so we can choose such parameters on a fundamental domain of C/Z.

Proof. A simple calculation shows (1). (2) follows from [Katz 1990, Propositions 2.11.9 and 3.2], whereas
(3) is part of [ibid., Proposition 3.2]. �

As we mentioned in the introduction, we can express any one-dimensional hypergeometric D-module
as the inverse image of a GKZ hypergeometric D-module (see [Castaño Domínguez and Sevenheck
2019, Corollary 2.9]). Notice that there is a similar statement at the level of R-modules (see [ibid.,
Lemma 2.12]), yielding a description of the Rint

A1
z×Gm,t

-module Ĥ from Theorem 5.7 below as an inverse
image of a GKZ-hypergeometric R-module (as defined in [ibid., Definition 2.10]).

Proposition 5.3. Let H(αi ;β j ) be a hypergeometric DGm -module of type (n,m) with α1 = 0, let A ∈
M((N − 1)× N ,Z) as above, and let γ = (β1, . . . , βm, α2, . . . , αn)

t. Let ι : Gm → AN be given by
t 7→ (t, 1 . . . , 1). Then

H(αi ;β j )∼= ι
+Mγ

A.

Since the restriction map ι is not smooth we do not know a priori whether taking inverse image by
it preserves irregular mixed Hodge modules. In order to show that H(αi ;β j ) can be upgraded to an
element of IrrMHM(Gm) we use Proposition 3.8, where the reduction procedure is built in by the use of
the Fourier kernel ψ = w1 · t +w2+ · · ·+wN .

Let A ∈M((N −1)× N ,Z) as above and γ = (γ1, . . . , γN−1)
t
∈AA. The DAN -module M̌γ

A underlies
a mixed Hodge module on AN , so that the Rees module RF H

(M̌γ

A) then gives rise to an algebraic,
integrable mixed twistor D-module on AN that we denote by TM̌γ

A. Then we have the following concrete
description of its Fourier–Laplace transform FLψMTM(

TM̌γ

A)= q∗(p∗(TM̌
γ

A)⊗ T ψ/z).

Proposition 5.4. Let A and γ be as before. Then the Rint
A1×Gm

-module For2(FLψMTM(
TM̌γ

A)) can be
expressed as Rint

A1×Gm
/(P, H), where

P = z2∂z + (n−m)t z∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i )− t
m∏

j=1

z(t∂t − γ j ),

with ε =
∑m

j=1 γ j −
∑N−1

i=m+1 γi + N − 1.

Proof. As said after Theorem 4.4, for any γ inside the domain AA of admissible parameters, the Hodge
filtration of M̌γ

A is the order filtration shifted by N − (N − 1)= 1. Therefore, for such values of γ we
can give an explicit expression of the Rees module of the filtered module (M̌γ

A, F H
•
). Namely, we have

the isomorphism of Rint
A1×AN -modules

RF H
(M̌γ

A)
∼= zŇ γ

A :=Rint
A1×AN /(Ě z

i , Ě z
j , �̌, z2∂z − z),
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where

Ě z
i = z∂w1w1− z∂wiwi + γm+i−1z, for i = 2, . . . , n,

Ě z
j = z∂w1w1+ z∂wn+ jwn+ j + γ j z, for j = 1, . . . ,m,

�̌=
n∏

i=1

wi −

m∏
j=1

wn+ j .

First we compute FLψ(zŇ γ

A ), which involves performing three operations with zŇ γ

A : inverse image
by p : Gm × AN

→ AN , tensor product with the Rint
A1×Gm×AN -module Aψ/zaff and direct image by q :

Gm ×AN
→ Gm . The first one is pretty easy. Namely

p+zŇ γ

A
∼=Rint

A1×Gm×AN /(Ě z
i , Ě z

j , �̌, z2∂z − z, z∂t).

Let us tensor now p+zŇ γ

A with Aψ/zaff . This Rint-module can be presented as Rint
A1×Gm×AN · eψ/z =

Rint
A1×Gm×AN /Iψ , where Iψ is the left ideal generated by

z2∂z +w1t +w2+ · · ·+wN , z∂t −w1, z∂w1 − t, z∂wi − 1, i = 2, . . . , N .

For n ∈ p+zŇ γ

A , we will call nψ the tensor n⊗ eψ/z . Then we can obtain the formulas

(z∂w1w1n⊗ eψ/z)= z∂w1(w1n⊗ eψ/z)− t (n⊗w1eψ/z)= (z∂w1w1− t z∂t) · nψ ,

(z∂wkwkn⊗ eψ/z)= z∂wk (wkn⊗ eψ/z)− (n⊗wkeψ/z)= (z∂wkwk −wk) · nψ , for k = 2, . . . , N ,

(z2∂zn⊗ eψ/z)= z2∂z · nψ − (n⊗ (−ψ)eψ/z)= (z2∂z +w1t +w2+ · · ·+wN ) · nψ ,

(z∂t n⊗ eψ/z)= z∂t · nψ − (n⊗w1eψ/z)= (z∂t −w1) · nψ .

Hence p+zŇ γ

A ⊗Aψ/zaff is the cyclic Rint
A1×Gm×AN -module Rint

A1×Gm×AN /J ψ , with J ψ being the left
ideal generated by

n∏
i=1

wi −

m∏
j=1

wn+ j , z2∂z − z+w1t +w2+ · · ·+wN , z∂t −w1,

z∂w1w1− t z∂t − z∂wiwi +wi + γm+i−1z, for i = 2, . . . , n,

z∂w1w1− t z∂t + z∂wn+ jwn+ j −wn+ j + γ j z, for j = 1, . . . ,m.

We now consider the zeroth cohomology H0q+(p+zŇ γ

A⊗Aψ/zaff ), which is in turn the N -th cohomology
of the de Rham complex q∗DRA1×Gm×AN /A1×Gm (p

+zŇ γ

A ⊗Aψ/zaff ). This is given by the cyclic Rint
A1×Gm

-
module Rint

A1×Gm
/(P ′, H ′), where the operators P ′ and H ′ are given by

P ′ := z2∂z + (n−m)t z∂t + ε
′z, H ′ := zt∂t

n−1∏
i=1

(zt∂t − γm+i z)− (−1)m t
m∏

j=1

(zt∂t − γ j z)
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and ε′ :=
∑m

j=1 γ j−
∑N−1

i=m+1 γi−1. Replacing t by (−1)m t we obtain that FLψ(zŇ γ

A )
∼=Rint

A1×Gm
/(P ′, H),

with

H := zt∂t

n−1∏
i=1

(zt∂t − γm+i z)− t
m∏

j=1

(zt∂t − γ j z).

Now it follows from Proposition 3.8 that

For2(FLψMTM(
TM̌γ

A))
∼= z−N FLψ(zŇ γ

A )
∼=Rint

A1×Gm
/(P, H)

with

P = z2∂z + (n−m)t z∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i )− t
m∏

j=1

z(t∂t − γ j ),

and ε =
∑m

j=1 γ j −
∑N−1

i=m+1 γi + N − 1. �

Remark 5.5. As a matter of fact, we do not have to restrict ourselves to the region AA to find our
admissible parameters. If we have γ ∈ AA and add to it an integer vector k ∈ ZN−1 with no negative
entries, then γ + k /∈ sRes(A) by definition (see the proof of [Reichelt and Sevenheck 2015, Lemma 4.5]).
Therefore, since Oγ

Gd
m

∼=Oγ+k
Gd

m
for any integer vector k, we have M̌γ

A
∼= M̌γ+k

A by Proposition 4.3 and the
statement of the proposition holds true after changing AA by AA+NN−1.

We will also make use of the following result, which calculates the admissible domain AA for the
matrix A in our particular context.

Lemma 5.6. Let A ∈M((N − 1)× N ,Z) be the matrix defined at the beginning of the section. Consider
a point p = (p1, . . . , pm, q1, . . . , qn−1) ∈ [0, 1)N−1. Let us define

p− :=min(({p1, . . . , pm} \ {0})∪ {1}) and p+ :=max{p1, . . . , pm},

that is, the minimum of the pi that do not vanish (taking p− = 1 if all of them are zero) and the maximum
of them all.

Then, p belongs to (AA+NN−1)⊂ RN−1 if and only if , for all i = 1, . . . , n− 1

• qi ∈ [0, p−) if some pi vanishes, or

• qi ∈ [0, p−)∪ [p+, 1), otherwise.

Proof. We will first find the expression for the admissible region AA. For this purpose, we must find a
set of hyperplanes containing the facets of the cone C := R≥0 A ⊂ RN−1. Denote by {u1, . . . , uN−1} the
canonical basis of RN−1 and write x1, . . . , xN−1 for the corresponding coordinates.

Since any face of a cone is generated by a subset of its generators, and for our given matrix A, any
(N − 1)× (N − 1)-minor is nonzero (so that any subset of N − 1 columns generates a full-dimensional
cone), we see that any facet can contain at most N − 2 columns. On the other hand, such facet must
be (N−2)-dimensional, so it cannot be generated by fewer columns. Therefore, we can conclude that it
contains exactly N − 2 columns.
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Any linear functional h defining a facet of C must satisfy that h(C)≥ 0. Denote by Hk,l the hyperplane
not containing ak and a`. There are five classes of these hyperplanes: H1,i , H1,n+ j , Hi1,i2 , Hi,n+ j ,
Hn+ j1,n+ j2 with i, i1, i2 ∈ {2, . . . , n} and j, j1, j2 ∈ {1, . . . ,m}. The linear functionals defining them are,
respectively,

h1,i := xm+i−1,

h1,n+ j := x j ,

hi1,i2 := xm+i1−1− xm+i2−1,

hi,n+ j := x j − xm+i−1,

hn+ j1,n+ j2 := x j1 − x j2 .

All of the linear forms h1,i , hi1,i2 and hn+ j1,n+ j2 (for the corresponding values of i, i1, i2, j1, j2) take both
negative and positive values on some columns of A, so the associated hyperplanes do not contain any
facet.

We conclude that each facet of C is contained in one of the following hyperplanes:

H1,n+ j : x j = 0 for j = 1, . . . ,m,

Hi,n+ j : x j − xm+i−1 = 0 for i = 2, . . . , n, j = 1, . . . ,m.
(4)

These hyperplanes are different from each other and the respective functionals satisfy h1,n+ j (C)≥ 0 and
hi,n+ j (C)≥ 0. Hence each of them contains a different facet of the cone C .

The primitive, inward-pointing normal vectors of the hyperplanes H1,n+ j and Hi,n+ j are n1,n+ j := u j

and ni,n+ j := u j − um+i−1, respectively. Denote by c the sum of all columns of A. We have c =
2(u1+ · · ·+ um) and ek,l := 〈nk,l, c〉 = 2, where k and l take the admissible values corresponding to the
hyperplanes we consider in (4) (i.e., we have either (k, l)= (1, n+ j) or (k, l)= (i, n+ j) for i = 2, . . . , n
and j = 1, . . . ,m). Define

Ak,l := Hk,l −
[
0, 1

ek,l

)
· c

= Hk,l − [0, 1) · (u1+ · · ·+ um)

=

{
H1,n+ j − [0, 1) · u j for j = 1, . . . ,m,
Hi,n+ j − [0, 1) · u j for i = 2, . . . , n, j = 1, . . . ,m,

since for (k, l)= (1, n+ j) and (k, l)= (i, n+ j), the vectors u1, . . . , u j−1, u j+1, . . . , um are contained
in H1,n+ j and Hi,n+ j , respectively. Then we have

A1,n+ j = H1,n+ j − [0, 1) · u j = {(x1, . . . , xN−1) ∈ RN−1
| −1< x j ≤ 0}

for all j = 1, . . . ,m and

Ai,n+ j = Hi,n+ j − [0, 1) · u j = {(x1, . . . , xN−1) ∈ RN−1
| −1< x j − xm+i−1 ≤ 0}
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for all i = 2, . . . , n, j = 1, . . . ,m. According to the construction given before Theorem 4.4, we can
conclude that

AA =
⋂

F facet

{
R · F −

[
0, 1

eF

)
· c
}
=

⋂
k,l from (4)

Ak,l,

so we can describe the admissible region AA as

AA :

{
−1< x j ≤ 0 for j = 1, . . . ,m,
−1< x j − xm+i−1 ≤ 0 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Now let us pick a point p ∈ [0, 1)N−1
∩ (AA +NN−1), and take k = (k1, . . . , kN−1) ∈ NN−1 such that

p ∈ [0, 1)N−1
∩ (AA+ k). The shifted domain is given by

AA+ k :
{
−1+ k j < x j ≤ k j for j = 1, . . . ,m,
−1+ k j − km+i−1 < x j − xm+i−1 ≤ k j − km+i−1 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Assume first there is a vanishing coordinate p j0 . Then we must have k j0 = 0. For such an index and any
i = 1, . . . , n− 1, we can consider the n− 1 inequalities

−1− km+i <−qi ≤−km+i ,

from where we deduce that every qi belongs to [km+i , km+i + 1)∩ [0, 1), for i = 1, . . . , n− 1. In order
for those intersections to be nonempty, we must have km+i +1> 0 and km+i < 1, so necessarily km+i = 0
for all i (and hence qi must lie within [0, 1), which is no new information).

Now, for any nonvanishing p j , it is clear that k j = 1. Then, if we look at the remaining inequalities,
we see that

0< p j − qi ≤ 1,

for every i = 1, . . . , n − 1, and any j ∈ {1, . . . ,m} such that p j 6= 0. Therefore, every qi belongs to
[0, 1)∩

⋂
p j 6=0[p j − 1, p j ) = [0, p−). Obviously, if p j = 0 for all j = 1, . . . ,m, we obtain that the qi

belong all to [0, 1)= [0, p−).
Assume now that no p j vanishes. Then k1 = . . .= km = 1. It follows that we can express the shifted

region AA+ k as

AA+ k :
{

0< x j ≤ 1 for j = 1, . . . ,m,
−km+i−1 < x j − xm+i−1 ≤ 1− km+i−1 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Then, for any j = 1, . . . ,m, we have qi ∈ [0, 1)∩ [p j + km+i − 1, p j + km+i ), for i = 1, . . . , n− 1. As
before, this implies that p j + km+i > 0 and p j + km+i − 1 < 1, for each j = 1, . . . ,m. Since each p j

lives in (0, 1), the km+i−1 can only be either 0 or 1.
Pick an i ∈ {1, . . . , n− 1} such that km+i = 0. Then, as before,

qi ∈

m⋂
j=1

[p j − 1, p j )∩ [0, 1)= [0, p−).
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If our index i is such that km+i = 1, then

qi ∈

m⋂
j=1

[p j , p j + 1)∩ [0, 1)= [p+, 1),

and one direction of the statement is done.
To show the other implication of the lemma, suppose now that every qi lies within [0, p−)∪ [p+, 1)

for i = 1, . . . , n− 1, and no p j vanishes. We can rewrite this as a disjunction: either qi ∈
⋂m

j=1[0, p j )=

[0, 1) ∩
⋂m

j=1[p j − 1, p j ) or qi ∈
⋂m

j=1[p j , 1) = [0, 1) ∩
⋂m

j=1[p j , p j + 1). If qi ∈ [0, p−), define
km+i := 0. Otherwise, we take km+i := 1. Summing up, it is clear that

p ∈ (AA+ (1, (m). . ., 1, km+1, . . . , kN−1))∩ [0, 1)N−1.

If some p j vanishes, and every qi belongs to [0, p−), we can do the same as above to see that

p ∈ (AA+ (k1, . . . , km, 0, . . . , 0))∩ [0, 1)N−1,

where k j vanishes if so does p j and is equal to 1 if p j 6= 0. �

As a consequence of the above calculation of the set of admissible parameters, let us prove a result
extending [Castaño Domínguez and Sevenheck 2019, Theorem 2.13].

Theorem 5.7. Let α1, . . . , αn and β1, . . . , βm be real numbers, lying on the interval [0, 1) and increas-
ingly ordered. Assume moreover that:

• No difference αi −β j is zero, for any i = 1, . . . , n and j = 1, . . . ,m.

• After applying the bijection [0, 1)→ S1 given by x 7→ e2π i x , all the images of the αi are at one arc
of the unit circle, while those of the β j find themselves at the complementary arc. (In other words
and going back to the interval [0, 1), either no αi belongs to any interval (β j , β j+1) or vice versa.)

Consider the operators P and H given by

P = z2∂z + (n−m)t z∂t + εz and H =
n∏

i=1

z(t∂t −αi )− t
m∏

j=1

z(t∂t −β j ),

with ε =
∑m

j=1 β j −
∑n

i=1 αi + N − 1. Let Ĥ(αi ;β j ) be the Rint
A1

z×Gm
-module

Ĥ(αi ;β j ) :=OA1
z×Gm 〈z

2∂z, zt∂t 〉/(P, H).

Then, Ĥ(αi ;β j ) underlies a unique object of IrrMHM(Gm) with associated DGm -module H(αi ;β j ). It
can be uniquely extended to an irreducible Rint

A1
z×P1-module underlying an object of IrrMHM(P1).

Proof. Let us assume first that α1 = 0. Then, by the first assumption on the αi and the β j , we have β j 6= 0
for every j . By the second assumption we can deduce that no αi is between any two β j , but all of the β j

must be between two certain αi . Thanks to Lemma 5.6, this means that γ := (β1, . . . , βm, α2, . . . , αn)
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belongs to AA +NN−1, where A is the matrix of the beginning of the section. As a consequence, by
Proposition 5.4 and Remark 5.5 we have that

For2(FLψMTM(
TM̌γ

A))
∼= Ĥ(αi ;β j )

(recall that TM̌γ

A is the algebraic integrable mixed twistor D-module with underlying Rint
AN -module

RF HM̌γ

A, i.e., such that For2(M̌
γ

A) = RF HM̌γ

A). We have moreover that TM̌γ

A ∈ IrrMHM(AN ) and
thanks to [Sabbah 2018, Corollary 0.5], we know that the functors entering in the definition of FLψMTM

preserve the category of irregular mixed Hodge modules, so we conclude that Ĥ(αi ;β j ) underlies an
element of IrrMHM(Gm).

Assume now that α1 > 0. For any real number η, denote by K̂η the Kummer RA1×Gm -module
Rint

A1×Gm
/(z2∂z, t z∂t − zη).

The tensor product of Rint
A1×Gm

-modules Ĥ(αi ;β j )⊗O
A1×Gm

K̂−α1 gives rise to the corresponding tensor
product of twistor D-modules on Gm . This product can be presented as Ĥ(α′i ;β

′

j ), where α′i = αi −α1

for every i and β ′j = β j −α1 for every j . The assumptions on the parameters imply that α′1 = 0 and the
vector (β ′1, . . . , β

′
m, α

′

2, . . . , α
′
n) lives in AA+NN−1. Then, arguing as before, such tensor product is an

irregular mixed Hodge module of exponential-Hodge origin. Since K̂α1 is the faithful image of a mixed
Hodge module on Gm , the tensor product with it preserves the condition of being in IrrMHM(Gm) due to
[Sabbah 2018, Corollary 0.5], and so is the case of our original Rint

A1
z×Gm

-module

Ĥ(αi ;β j )∼= Ĥ(α′i ;β
′

j )⊗O
A1×Gm

K̂α1 .

This ends the statement on the existence. Let us prove now the claims on the unicity, as in [Castaño
Domínguez and Sevenheck 2019, Theorem 2.13], noting that the condition on the differences αi −β j is
equivalent to H being irreducible, and thus rigid (see [ibid., Proposition 2.5], noting that all the parameters
belong to [0, 1)).

Consider now any twistor D-module Ĥ′ on Gm,t whose underlying DGm,t -module is H. Since the
functor 4DR is faithful by [Mochizuki 2015a, Remark 7.2.9], we have an injection of Hom groups

HomMTM(Gm,t )(Ĥ, Ĥ
′) ↪→ HomDGm,t

(H,H).

But H is irreducible, so its only endomorphism is the identity and then the twistor D-module underlying
H is unique.

On the other hand, let j : Gm,t ↪→ P1 be the canonical inclusion and consider the DP1-module
Hpr := j†+H. It is an irreducible holonomic DP1-module, because so is H by the assumption on the αi

and the β j . Then it gives rise to a unique pure integrable twistor D-module Ĥpr on P1 by [Mochizuki
2011, Theorem 1.4.4; Sabbah 2018, Remark 1.39]. In addition, its underlying DP1-module Hpr is rigid,
as H was. As a consequence, we can invoke [ibid., Theorem 0.7] and claim that such twistor D-module
on P1 is in fact an object of IrrMHM(P1). Take now Ĥ′ := j+Ĥpr , which is an irregular mixed Hodge
module whose underlying DGm,t -module is H, by [Mochizuki 2015a, Proposition 14.1.24]. Then we must
have, as was just shown, Ĥ′ ∼= Ĥ, so that the extension Ĥpr of Ĥ is unique, and we are done. �
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Remark 5.8. Let us consider the last theorem for the case m=n, that is, the case of regular hypergeometric
systems. Consider Ĥ as a RA1

z×Gm -module only, as such it is isomorphic to RA1
z×Gm/(H), where now

H =
m∏

i=1

z(t∂t −αi )− t
m∏

j=1

z(t∂t −β j ).

RA1
z×Gm is graded by degree in z (where z has degree 1), and since H is homogenous (which is not

the case if n 6= m), we see that Ĥ is a graded RA1
z×Gm -module. It is obviously strict, i.e., it has no

z-torsion, and then by [Sabbah and Schnell 2018, A.7(5)], we see that Ĥ is the Rees module of a filtered
DGm -module, namely, the (regular) hypergeometric module H(αi ;β j ) together with the filtration by order
of differential operators. Notice also that if n = m, we have P = z2∂z + εz, which implies that Ĥ has an
action by z∂z and that if we write Ĥ=⊕kĤk (grading with respect to z), then for any m ∈ Ĥk , we have
(z∂z)(m)= (k− ε)m.

Now suppose that we have n = m and that additionally the hypotheses of the last theorem are
satisfied, then since Ĥ(αi ;β j ) is the unique object in IrrMHM(Gm) (lying actually in the essential image
of MHM(Gm)) with underlying DGm -module H(αi ;β j ), it is the Rees module of the filtered module
(H(αi ;β j ), F H

•
), where F H

•
denotes the Hodge filtration of the complex variation of Hodge structures

on H(αi ;β j ). Hence F H
•
H(αi ;β j )= Ford

•
H(αi ;β j ) in this case. Moreover, if we put

Rk :=

k∏
i=1

(t∂t −αi )

for k = 0, . . . , n − 1 (where R0 := 1), then (Rk)k=0,...,n−1 is an OGm -basis of H(αi , β j ) and yields a
splitting of the Hodge filtration F H

•
. In particular, we obtain that the Hodge numbers h p(H(αi ;β j ))=

dim(F H
k /F H

k−1) are all equal to one. This is consistent with [Fedorov 2018, Theorem 1] (up to an
overall shift, as noticed in that theorem) in the version of [Castaño Domínguez and Sevenheck 2019,
Proposition 2.6], since under the assumption of Theorem 5.7, the function #{ j : β j < αk} is constant.

We will finish this section with a calculation of an irregular Hodge filtration, similar to the last section
of [Castaño Domínguez and Sevenheck 2019]. In that reference, the authors computed such a filtration
in the case where the hypergeometric D-module had a purely irregular singularity at infinity, that is,
it was of type (n, 0). It is immediate to see that for modules of type (n, 1), the second assumption of
Theorem 5.7 holds true, so that we obtain an explicit description of the Rint

A1
z×Gm

-module underlying the
irregular Hodge module with associated DGm -module H(α1, . . . , αn;β). In the sequel, we are going to
compute the irregular Hodge filtration of such modules of type (n, 1).

Let us recall the conventions and notations used in [Castaño Domínguez and Sevenheck 2019, §4]
(compare [Sabbah 2018, Notation 2.1]). We will deal with the classical hypergeometric D-module
H = H(αi ;β), where the αi and β are n + 1 real numbers belonging to the interval [0, 1). We will
denote by Ĥ both its associated algebraic, integrable twistor D-module on Gm and its underlying Rint

A1
z×Gm

-
module (as in the statement of Theorem 5.7). From now on, we will write X , θX and τX meaning
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the products A1
z ×Gm,t , X ×Gm,θ , and X × A1

τ , respectively, where θ = 1/τ . Finally, we will write
τX0 = X ×{τ = 0} ⊂ τX .

Theorem 5.9. Let real numbers α1, . . . , αn, β ∈ [0, 1) be given. Suppose that α1 ≤ · · · ≤ αn and that
moreover αi − β /∈ Z for all i = 1, . . . , n. For each k = 1, . . . , n, set ρ(k) = −(n − 1)αk + k. Then
the jumping numbers of the irregular Hodge filtration of H =H(αi ;β) are, up to an overall real shift,
the numbers ρ(k). The irregular Hodge numbers are the multiplicities of those jumping numbers, or
equivalently, the nonzero values of |ρ−1(x)|, for x real.

Moreover, for r = 0, . . . , n− 1, let να(r)= d−α+ r − ε− (n− 1)αr+1e (recall from Theorem 5.7 that
ε = β −

∑n
i=1 αi + n). Let us consider the operators

Qr = (−(n− 1))r
r∏

i=1

(t∂t −αi )

for r = 0, . . . , n− 2 (where the empty product equals one) and

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

(t∂t −αi )+
(−(n− 1))n−1t (β −α1)

1+α1−αn
Q0.

Then, the irregular Hodge filtration F irr
•
H is given by

F irr
α+ jH=

⊕
k: j≥να(k)

OX Qk .

Remark 5.10. In general, the procedure given below can be of use to find an explicit expression for the
irregular Hodge filtration, not only the numbers, of any hypergeometric of type (n,m), provided both
assumptions from Theorem 5.7 are fulfilled. However, the calculations become soon too cumbersome to
be included here.

Proof. We will mimic the arguments of [Castaño Domínguez and Sevenheck 2019, §4], providing almost
no proof of the claims which are similar to some therein.

We must first consider the rescaling of Ĥ: this is the inverse image θĤ := µ∗H (as OθX -module),
endowed with a natural action of Rint

θX as depicted in [Sabbah 2018, (2.4)] (note that θ = τ−1), where µ is
the morphism given in [ibid., Notation 2.1] by

µ : θX → X

(z, t, θ) 7→ (zθ, t).

In this sense, we can apply the same argument of [Castaño Domínguez and Sevenheck 2019, Proposi-
tion 4.1] to get that the Rint

θX -module θĤ associated with Ĥ can be presented as Rint
θX /(P,

θR, θH), where
P = z2∂z + (n−m)t z∂t + εz as in Theorem 5.7, θR = z2∂z − zθ∂θ and

θH =
n∏

i=1

zθ(t∂t −αi )− t zθ(t∂t −β).
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Now we have to invert θ to obtain an Rint
τX (∗

τX0)-module τĤ, to work in the setting given by [Sabbah
2018, §2.3]. In this sense, we will denote by τĤ the Rint

τX (∗
τX0)-module (idX ×( j ◦ inv))∗θĤ, where

inv :Gm,θ→Gm,τ is the inversion operator θ 7→ τ−1 and j :Gm,τ ↪→A1
τ is the canonical inclusion. Then

it is easy to see that τĤ=Rint
τX (∗

τX0)/(P, τR, τH), with P as always, τR = z2∂z + zτ∂τ and

τH =
n∏

i=1

z
τ
(t∂t −αi )− t

z
τ
(t∂t −β).

The next step is forming the basis of τĤ as a OτX (∗
τX0)-module. Let it be given by

Qk = (−(n− 1))k
k∏

i=1

z
τ
(t∂t −αi )

for k = 0, . . . , n− 2 and

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z
τ
(t∂t −αi )+

(−(n− 1))n−1t (β −α1)

1+α1−αn
Q0.

It is indeed a basis: we can use the expressions of τR and P to replace the classes of zτ∂τ and z2∂z ,
respectively, in terms of zt∂t . Now τĤ is generated as a OτX (∗

τX0)-module by the powers of zt∂t , and we
can get rid of those of exponent greater than n− 1 using τH . The remaining n powers can be expressed
as a linear combination of the Qi , forming a triangular matrix (almost diagonal in fact), so the latter
conform a basis as well.

One could wonder about the odd expression of the Qi . In the case with no betas of [Castaño Domínguez
and Sevenheck 2019], the basis considered there was formed just by the successive products

∏k
i=1

z
τ
(t∂t−

αi ), up to some constant. In this case, such a basis does not provide a connection matrix solving the
Birkhoff problem with a diagonal matrix as a coefficient of the pole at infinity in z, which would give
us a way to read the spectrum from that matrix (see [de Gregorio et al. 2009, Proposition 4.8]). As
a consequence, we have to adapt such initial basis, and that is how we get the Qi . Let us write the
connection matrix explicitly.

Let c = (β −α1)/(1+α1+αn), in such a way that

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z
τ
(t∂t −αi )+ (−(n− 1))n−1ct Q0.

A similar (but longer) calculation to the proof of [Castaño Domínguez and Sevenheck 2019, Lemma 4.3]
shows that the integrable connection arising from the Rint

τX (∗
τX0)-module structure associated with τĤ

has the following matrix form:

∇Q = Q
(
(τ A0+ z A∞)

dz
z2 + (−τ A0+ z A′

∞
)

dt
(n− 1)zt

− (τ A0+ z A∞)
dτ
zτ

)
.
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There, if n > 2, A0, A′
∞

and A∞ are the matrices

A0 =


0 · · · −(−(n− 1))n−1ct 0
1
. . . (−(n− 1))n−1(c+ 1)t
. . . 0

...

1 0

 ,
A′
∞
= diag((n− 1)α1, . . . , (n− 1)αn), and

A∞ = diag(0, 1, . . . , n− 1)− ε In − A′
∞
.

(5)

If n = 2, we have

A0 =

(
ct c(c+ 1)t2

1 (c+ 1)t

)
, A′

∞
=

(
α1 0
0 α2

)
and A∞ = diag(0, 1)− ε I2− A′

∞
. (6)

Finally, the irregular Hodge filtration is obtained from a suitable V -filtration along the divisor τ = 0
defined on τĤ, which is called τV -filtration (the new symbol τV is to make clear the variety over which we
are working; note the same convention from Remarks 2.20 on in [Sabbah 2018]). We are actually defining
a filtration on τĤ, and then prove that it equals the τV -filtration, following [Mochizuki 2015a, §2.1.2].

Let us consider

τUα
τĤ :=

{ n−1∑
k=0

fkτ
νk Qk : fk ∈OτX ,max(k− (n− 1)αk+1− ε− νk)≤ α

}
,

τU<α
τĤ :=

{ n−1∑
k=0

fkτ
νk Qk : fk ∈OτX ,max(k− (n− 1)αk+1− ε− νk) < α

}
,

(7)

for any α ∈ R.
The τUα

τĤ form an increasing filtration, indexed by the real numbers but with a discrete set of jumping
numbers, such that τ τUα

τĤ = τUα−1
τĤ for any α (those are conditions i and ii’ in [Mochizuki 2015a,

§2.1.2]). As usual, the graded piece associated with α is Gr
τU
α

τĤ= τUα
τĤ/τU<α

τĤ.
In (7), all the exponents νk of the powers of τ accompanying the fk Qk satisfy that νk ≥ −α+ k −

(n− 1)αk+1− ε. Then we can define the steps of the filtration in the same alternative way as in [Castaño
Domínguez and Sevenheck 2019, Remark 4.5] as the free OτX -modules of finite rank

τUα
τĤ=

n−1⊕
k=0

OτX · τ
να(k)Qk, (8)

where να(k)=d−α+k−ε−(n−1)αk+1e. With that expression, it is clear that the graded pieces Gr
τU
α

τĤ are

Gr
τU
α

τĤ=
n−1⊕
k=0

OX · τ
να(k)Qk,

which are strict RX -modules (condition iv in [Mochizuki 2015a, §2.1.2]).
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The next step in the proof is proving that τĤ is strictly R-specializable along τX0 and its τV -filtration is
actually given by the τUα

τĤ. Although the proof is similar to that of [Castaño Domínguez and Sevenheck
2019, Proposition 4.6], we have to adapt it a bit to our case here.

After what we already showed, it remains to show conditions iii’ and v of [Mochizuki 2015a, §2.1.2]
and prove that the τUα

τĤ are coherent V0RX -modules. Let us start by the second condition. Consider
then the mappings p, e given by

(p, e) : R×C→ R×C

(β, ω) 7→ (β + 2<(zω),−βz+ω−ωz2).

We must check that the operator zτ∂τ − e(β, ω) is nilpotent on the graded pieces Gr
τU
α

τĤ only for a finite
amount of (β, ω) ∈K := {β+2<(z0ω)= α}, for any value z0 of z. Moreover, those (β, ω) should belong
in fact to R×{0} (see [Sabbah 2018, §1.3.a]), if we want to obtain the R-specializability.

Take then (β, ω)∈K and f τ νQk ∈
τUα

τĤ, with f ∈OτX . We must have that k−(n−1)αk+1−ε−ν≤α.
Assume that n > 2 and k < n− 2. Thanks to the matrix form (5) we know that

(zτ∂τ − e(β, ω)) f τ νQk = (zτ∂τ + (ν+ (n− 1)αk+1+ ε− k+β)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1.

Recall that the αi are increasingly ordered, lying within the interval [0, 1). Thus f τ ν+1 Qk+1 lives in
τUα

τĤ, for

k+ 1− (n− 1)αk+2− ε− ν− 1≤ ((k+ 1)− (n− 1)αk+2− ε)− (k− (n− 1)αk+1− ε)− 1+α ≤ α.

Now we should look at what happens to the class of f τ ν+1 Qk+1 in the α-graded piece of τĤ.
Note that [ f τ νQk] 6= 0 if and only if ν+ (n− 1)αk+1+ ε− k+α = 0, so

(zτ∂τ − e(β, ω)) f τ νQk = (zτ∂τ + (β −α)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1

= (zτ∂τ − 2<(z0ω)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1.

Now notice that τ divides τ∂τ ( f ), so in fact zτ∂τ ( f )τ νQk ∈
τUα−1

τĤ and then we can further reduce
our expression to

(zτ∂τ − e(β, ω)) f τ νQk = (−ω− 2<(z0ω)z+ωz2) f τ νQk − f τ ν+1 Qk+1.

On the other hand, τ ν+1 Qk+1 does not vanish either in Gr
τU
α

τĤ if and only if αk+2 = αk+1. Indeed, we
know that ν+ (n−1)αk+1+ε−k+α= 0, so doing the same as before, k+1− (n−1)αk+2−ε−ν−1=
α+ (n− 1)(αk+2−αk+1) and the claim follows. Furthermore, in order to (zτ∂τ − e(β, ω)) to vanish, we
should impose that ω = 0, just by looking at the coefficients of the powers of z in the expression for f .

If k = n− 2, we obtain from (5) that

(zτ∂τ − e(β, ω)) f τ νQn−2

= (zτ∂τ + (ν+ (n− 1)αn−1+ ε− (n− 2)+β)z−ω+ωz2)( f )τ νQn−2

− f τ ν+1 Qn−1+ f τ ν+1(−(n− 1))n−1ct Q0.
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Since −(n− 1)α1− ε− ν − 1 ≤ −(n− 1)(α1− αn−1+ 1)+ α < α because αn−1 < α1+ 1, the last
summand above belongs to τU<α

τĤ, and then the argument can follow as with k < n− 2.
Now if k = n− 1, then everything would be the same again as before except we get the additional

summand − f τ ν+1 Qk+1, which becomes − f τ ν+1(−(n− 1))n−1(c+ 1)t Q1, whose class vanishes in the
graded piece under consideration, too. Indeed,

1− (n− 1)α2− ε− ν− 1≤−(n− 1)(α2−αn + 1)+α < α,

for αn < α2+ 1.
In conclusion, (zτ∂τ − e(β, ω))l f τ νQk can only vanish in Gr

τU
α

τĤ if α = β (and then ω = 0), and
does not do so until we get to an index k + l such that αk+l is strictly bigger than αk . Since there is a
finite set of indexes, (zτ∂τ − e(β, ω)) is nilpotent, of nilpotency index n at most.

When n = 2, we notice from (6) that we have two possibilities. If k = 0, everything is the same as
with k = n− 2 for n > 2, and if k = 1,

(zτ∂τ − e(β, ω)) f τ νQ1

= (zτ∂τ + (ν+α2+ ε− 1+β)z−ω+ωz2)( f )τ νQ1+ f τ ν+1(c+ 1)t Q1+ f τ ν+1c(c+ 1)t2 Q0.

Here the argument runs similarly as in the general case.
Condition iii’ can be rephrased as zτ∂τ τUα

τĤ⊆ τUα
τĤ, using that τUα

τĤ= τ τUα+1
τĤ, and that follows

essentially from the same argument used to prove condition v above. Last, since V0RX =OτX 〈z∂t , zτ∂τ 〉,
it is clear from the computations above and the alternative expression (8) for the filtration steps that they
are cyclic V0RX -modules, and then coherent. Summing up and noting that all the calculations performed
were in fact independent of z0, τĤ is strictly R-specializable along τX0 and the τU•τĤ form its τV -filtration.

We can finally show the expression for the irregular Hodge filtration and then the irregular Hodge
numbers like in [Castaño Domínguez and Sevenheck 2019, Theorem 4.7]. Since we know that Ĥ underlies
an object in IrrMHM(Gm,t) by Theorem 5.7, we deduce by [Sabbah 2018, Definition 2.52] that Ĥ is
well-rescalable (see [ibid., Definition 2.19]) and so we can apply [ibid., Definition 2.22]. After formula (8),
we clearly have

i∗τ=z
τVατĤ= τVατĤ/(τ − z)τVατĤ=

⊕
k

OX zνα(k)Qk,

which is free z-graded of finite rank. Denote by π the projection X → Gm,t . Then, the z-adic filtration
on π∗H[z−1

] induces a filtration on i∗τ=z
τVατĤ, given by

Fr i∗τ=z
τVατĤ :=

⊕
s≤r

( ⊕
k:να(k)≤s

OGm,t Qk

)
zs .

Then, GrF (i∗τ=z
τUα

τĤ) is the Rees module associated to a new good filtration F irr
α+•H on H, which is the

irregular Hodge filtration. More concretely, F irr
•
H is given by

F irr
α+ jH=

⊕
k:να(k)≤ j

OGm,t Qk .
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Therefore, its jumping numbers are −ε+ i −1− (n−1)αi for i = 1, . . . , n. Since the irregular Hodge
filtration is defined up to an overall real shift, we can normalize the jumping numbers to i − (n− 1)αi

and the irregular Hodge numbers will be their multiplicities. �

Acknowledgements

We would like to thank Takuro Mochizuki for communicating the proof of Lemma 2.3 to us. We would
further like to thank Takuro Mochizuki and Claude Sabbah for their interest in our work and for many
stimulating discussions. We are grateful to the participants of the workshop Mixed Twistor D-modules in
Heidelberg in 2017 for their time and effort. We also thank the Max Planck Institute for Mathematics in
the Sciences, where some part of the work presented here has been carried out.

References

[Castaño Domínguez and Sevenheck 2019] A. Castaño Domínguez and C. Sevenheck, “Irregular Hodge filtration of some
confluent hypergeometric systems”, J. Inst. Math. Jussieu (online publication May 2019).

[Esnault et al. 2017] H. Esnault, C. Sabbah, and J.-D. Yu, “E1-degeneration of the irregular Hodge filtration”, J. Reine Angew.
Math. 729 (2017), 171–227. MR Zbl

[Fedorov 2018] R. Fedorov, “Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs
bundles”, Int. Math. Res. Not. 2018:18 (2018), 5583–5608. MR Zbl

[Gelfand et al. 1987] I. M. Gelfand, M. I. Graev, and A. V. Zelevinski, “Holonomic systems of equations and series of
hypergeometric type”, Dokl. Akad. Nauk SSSR 295:1 (1987), 14–19. In Russian; translated in Soviet Math. Dokl. 36:1 (1988),
5–10. MR Zbl

[Gelfand et al. 1989] I. M. Gelfand, A. V. Zelevinski, and M. M. Kapranov, “Gipergeometriqeskie funkcii i tori-
qeskie mnogoobrazi�” “(Hypergeometric functions and toric varieties)”, Funktsional. Anal. i Prilozhen. 23:2 (1989), 12–26.
Translated as “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl. 23:2 (1989), 94–106. MR Zbl

[de Gregorio et al. 2009] I. de Gregorio, D. Mond, and C. Sevenheck, “Linear free divisors and Frobenius manifolds”, Compos.
Math. 145:5 (2009), 1305–1350. MR Zbl

[Katz 1990] N. M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies 124, Princeton University
Press, 1990. MR Zbl

[Katzarkov et al. 2017] L. Katzarkov, M. Kontsevich, and T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg
models”, J. Differential Geom. 105:1 (2017), 55–117. MR Zbl

[Matusevich et al. 2005] L. F. Matusevich, E. Miller, and U. Walther, “Homological methods for hypergeometric families”, J.
Amer. Math. Soc. 18:4 (2005), 919–941. MR Zbl

[Mochizuki 2011] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque 340, Société Mathéma-
tique de France, Paris, 2011. MR Zbl

[Mochizuki 2015a] T. Mochizuki, Mixed twistor D-modules, Lecture Notes in Mathematics 2125, Springer, 2015. MR Zbl

[Mochizuki 2015b] T. Mochizuki, “Twistor property of GKZ-hypergeometric systems”, preprint, 2015. arXiv

[Reichelt 2014] T. Reichelt, “Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules”, Compos. Math.
150:6 (2014), 911–941. MR Zbl

[Reichelt and Sevenheck 2015] T. Reichelt and C. Sevenheck, “Hypergeometric Hodge modules”, preprint, 2015. To appear in
Algebraic Geometry. arXiv

[Sabbah 2018] C. Sabbah, Irregular Hodge theory, Mém. Soc. Math. Fr. (N.S.) 156, Société Mathématique de France, Paris,
2018. MR Zbl

[Sabbah and Schnell 2018] C. Sabbah and C. Schnell, “The MHM project”, electronic reference, 2018, Available at http://
www.cmls.polytechnique.fr/perso/sabbah/MHMProject/mhm.html.

http://dx.doi.org/10.1017/S1474748019000288
http://dx.doi.org/10.1017/S1474748019000288
http://dx.doi.org/10.1515/crelle-2014-0118
http://msp.org/idx/mr/3680374
http://msp.org/idx/zbl/06762464
http://dx.doi.org/10.1093/imrn/rnx044
http://dx.doi.org/10.1093/imrn/rnx044
http://msp.org/idx/mr/3862114
http://msp.org/idx/zbl/07013534
http://msp.org/idx/mr/902936
http://msp.org/idx/zbl/0661.22005
http://mi.mathnet.ru/eng/faa1015
http://mi.mathnet.ru/eng/faa1015
https://link.springer.com/article/10.1007/BF01078777
http://msp.org/idx/mr/1011353
http://msp.org/idx/zbl/0721.33006
http://dx.doi.org/10.1112/S0010437X09004217
http://msp.org/idx/mr/2551998
http://msp.org/idx/zbl/1238.32022
http://dx.doi.org/10.1515/9781400882434
http://msp.org/idx/mr/1081536
http://msp.org/idx/zbl/0731.14008
http://dx.doi.org/10.4310/jdg/1483655860
http://dx.doi.org/10.4310/jdg/1483655860
http://msp.org/idx/mr/3592695
http://msp.org/idx/zbl/1361.35172
http://dx.doi.org/10.1090/S0894-0347-05-00488-1
http://msp.org/idx/mr/2163866
http://msp.org/idx/zbl/1095.13033
http://msp.org/idx/mr/2919903
http://msp.org/idx/zbl/1245.32001
http://dx.doi.org/10.1007/978-3-319-10088-3
http://msp.org/idx/mr/3381953
http://msp.org/idx/zbl/1356.32002
http://msp.org/idx/arx/1501.04146
http://dx.doi.org/10.1112/S0010437X13007744
http://msp.org/idx/mr/3223877
http://msp.org/idx/zbl/1315.14016
http://msp.org/idx/arx/1503.01004
http://msp.org/idx/mr/3858663
http://msp.org/idx/zbl/06973041
http://www.cmls.polytechnique.fr/perso/sabbah/MHMProject/mhm.html


1442 Alberto Castaño Domínguez, Thomas Reichelt and Christian Sevenheck

[Sabbah and Yu 2015] C. Sabbah and J.-D. Yu, “On the irregular Hodge filtration of exponentially twisted mixed Hodge
modules”, Forum Math. Sigma 3 (2015), art. id. e9, 71 pp. MR Zbl

[Schulze and Walther 2009] M. Schulze and U. Walther, “Hypergeometric D-modules and twisted Gauß-Manin systems”, J.
Algebra 322:9 (2009), 3392–3409. MR Zbl

[Serre 1955–1956] J.-P. Serre, “Géométrie algébrique et géométrie analytique”, Ann. Inst. Fourier, Grenoble 6 (1955–1956),
1–42. MR Zbl

[Yu 2014] J.-D. Yu, “Irregular Hodge filtration on twisted de Rham cohomology”, Manuscripta Math. 144:1-2 (2014), 99–133.
MR Zbl

Communicated by Hélène Esnault
Received 2018-07-17 Revised 2019-01-28 Accepted 2019-03-08

alberto.castano@usc.es Instituto de Matemáticas, Universidade de Santiago de Compostela,
Spain

Fakultät für Mathematik, Technische Universität Chemnitz,
Chemnitz, Germany

treichelt@mathi.uni-heidelberg.de Mathematisches Institut, Universität Heidelberg, Heidelberg,
Germany

christian.sevenheck@mathematik.tu-chemnitz.de Fakultät für Mathematik, Technische Universität Chemnitz,
Chemnitz, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1017/fms.2015.8
http://dx.doi.org/10.1017/fms.2015.8
http://msp.org/idx/mr/3376737
http://msp.org/idx/zbl/1319.14028
http://dx.doi.org/10.1016/j.jalgebra.2008.09.010
http://msp.org/idx/mr/2567427
http://msp.org/idx/zbl/1181.13023
https://aif.centre-mersenne.org/item/AIF_1956__6__1_0/
http://msp.org/idx/mr/0082175
http://msp.org/idx/zbl/0075.30401
http://dx.doi.org/10.1007/s00229-013-0642-x
http://msp.org/idx/mr/3193771
http://msp.org/idx/zbl/1291.14040
mailto:alberto.castano@usc.es
mailto:treichelt@mathi.uni-heidelberg.de
mailto:christian.sevenheck@mathematik.tu-chemnitz.de
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 13:6 (2019)

dx.doi.org/10.2140/ant.2019.13.1443

Ulrich bundles on K3 surfaces
Daniele Faenzi

We show that any polarized K3 surface supports special Ulrich bundles of rank 2.

Given an n-dimensional closed subvariety X ⊂PN , a coherent sheaf F on X is Ulrich if H∗(F(−t))= 0
for 1≤ t ≤ n. We refer to [Coskun 2017; Beauville 2018] for an introduction. We mention that Ulrich
sheaves are related to Chow forms (this was their main motivation for the study in [Eisenbud et al. 2003]),
to determinantal representations and generalized Clifford algebras, to Boij–Söderberg theory [Schreyer
and Eisenbud 2010], to the minimal resolution conjecture, and to the representation type of varieties
[Faenzi and Pons-Llopis 2015].

Conjecturally, Ulrich sheaves exist for any X , see [Eisenbud et al. 2003]. They are known to exist for
several classes of varieties e.g., complete intersections, curves, Veronese, Segre, Grassmann varieties.
Low-rank Ulrich bundles on surfaces have been studied intensively, and Ulrich bundles of rank 2 (or
sometimes 1) are known in many cases. We refer to [Casnati 2017; Beauville 2018] for a survey and
further references. Let us only review some of the cases that are most relevant for us, namely among
surfaces with trivial canonical bundle.

In [Beauville 2016], Ulrich bundles of rank 2 are proved to exist on abelian surfaces. In [Aprodu
et al. 2017], it is proved that K3 surfaces support Ulrich bundles of rank 2, provided that some Noether–
Lefschetz open condition is satisfied. The case of quartic surfaces was previously analyzed in detail in
[Coskun et al. 2012]. The main techniques used so far are the Serre construction starting from points on
X and Lazarsfeld–Mukai bundles.

In this note, we show that any K3 surface supports an Ulrich bundle E of rank 2 with c1(E)=3H , for any
polarization H . So these bundles are special [Eisenbud et al. 2003]. We allow singular surfaces with trivial
canonical bundle. The main tool is an enhancement of Serre’s construction based on unobstructedness of
simple sheaves on a K 3 surface.

Let us state the result more precisely. We work over an algebraically closed field k. Let X be an
integral (i.e., reduced and irreducible) projective surface with ωX 'OX and H1(OX )= 0. We denote by
Xsm the smooth locus of X .

Fix a very ample divisor H on X . Under the closed embedding given by the complete linear series
|OX (H)| we may view X as a subvariety of some projective space Pg. A hyperplane section C of X

Author partially supported by ISITE-BFC project (contract ANR-lS-IDEX-OOOB).
MSC2010: primary 14F05; secondary 13C14, 14J60.
Keywords: ACM vector sheaves and bundles, Ulrich sheaves, K3 surfaces.
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is a projective Gorenstein curve of arithmetic genus g with ωC ' OC(H), where H also denotes the
restriction of H to C . We may choose C to be integral too.

A locally Cohen–Macaulay sheaf E on X is arithmetically Cohen–Macaulay (ACM) if H1(E(t H))= 0
for all t ∈ Z. A special class of ACM sheaves are Ulrich sheaves, which are characterized by the property
H∗(E(−t H))= 0 for t = 1, 2. Of course all these notions depend on the polarization H . We call simple
a sheaf whose only endomorphisms are homotheties.

Theorem 1. Let X and H be as above. Then there exists a simple Ulrich vector bundle of rank 2 on X
whose determinant is OX (3H).

The strategy to prove the theorem is the following. First we build an ACM vector bundle E of rank 2
by Serre’s construction applied to a projective coordinate system in X . Then we perform an elementary
modification of E along a single generic point p ∈ X , producing a simple nonreflexive sheaf having the
Chern character of an Ulrich bundle. Finally we flatly deform such sheaf and check that generically this
yields the desired Ulrich bundle.

Prior to all this, we start by observing that the trivial bundle is a (trivial) example of ACM line
bundle. Indeed, using that H1(OX )= 0 and that C is connected, one checks that H1(OX (−H))= 0. In
turn, this easily implies H1(OX (−t H)) = 0 for all t ≥ 2. Also, Serre duality and triviality of ωX give
H1(OX (t H))= 0 for all t ≥ 0. This way, we see that OX is an ACM line bundle on X . Combining this
with Max Noether’s theorem on the generation of the canonical ring of curves (see [Rosenlicht 1952]
for a version for Gorenstein curves) one obtains, working as in [Saint-Donat 1974, Theorem 6.1], that
X ⊂ Pg is an ACM surface of degree 2g− 2.

However this line bundle is never Ulrich, nor is any line bundle of the form OX (d H). So generically
(for instance when X has Picard number 1) the surface X will not support Ulrich line bundles. We thus
move to rank two and start by constructing a simple ACM bundle.

Lemma 2. Let Z ⊂ Xsm be a set of g+2 points in general linear position. Then there is a unique coherent
sheaf E of rank 2 fitting into a nonsplitting exact sequence:

0→OX → E→ IZ (H)→ 0. (1)

The sheaf E is locally free, simple and ACM. It satisfies

E ' E∗(H), h0(E)= 1, h1(E)= h2(E)= 0, ext1X (E, E)= 2g+ 4.

Proof. Taking cohomology of the exact sequence

0→ IZ (H)→OX (H)→OZ → 0, (2)

and using the fact that Z is in general linear position and hence contained in no hyperplane, we get
H0(IZ (H))= 0 and h1(IZ (H))= 1.

By Serre duality we get ext1X (IZ (H),OX )= h1(IZ (H))= 1 so, up to proportionality, there is a unique
nonsplitting extension of the desired form. Correspondingly, there exists a unique coherent sheaf E of
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rank two fitting into a nonsplitting exact sequence of the form (1). The sheaf E we obtain this way satisfies
h0(E)= 1 and H1(E)' Ext1X (E,OX )

∗
= 0 because applying HomX (−,OX ) to (1) we obtain a nonzero

map (and thus an isomorphism) H0(OX )→ Ext1X (IZ (H),OX ).
This map is the dual of the homomorphism H1(IZ (H))→ H2(OX ) obtained by taking global sections

in (1). So H1(E)= H2(E)= 0.
If X is smooth we deduce that E is locally free from the Cayley–Bacharach property, see for instance

[Huybrechts and Lehn 1997, Theorem 5.1.1]. Indeed, since Z is in general linear position (i.e., Z is
a projective frame in Pg), no hyperplane passes through any subset of g + 1 points of Z . Anyway
the statement follows in general by a minor modification of the argument appearing in [Faenzi and
Pons-Llopis 2015, Lemma 7.2]. Indeed by the local-to-global spectral sequence, using H1(OX (−H))= 0
and Hom X (IZ (H),OX )'OX (−H) we get the following exact sequence:

0→ Ext1X (IZ (H),OX )→ H0(Ext1
X (IZ (H),OX ))→ H2(X,OX (−H))→ 0.

In turn, using Ext1
X (IZ (H),OX )' ωZ 'OZ and H2(X,OX (−H))' H0(X,OX (H))∗, if we choose Z

to be a projective coordinate system of Pg, we rewrite this exact sequence as

0→ Ext1X (IZ (H),OX )→ H0(OZ )
M
−→H0(X,OX (H))∗→ 0,

where

M =

1 · · · 0 1
...
. . .

...
...

0 · · · 1 1

 .
So Ext1X (IZ (H),OX ) is generated by the vector (1, . . . , 1,−1)t and since this vector corresponds to an
extension in Ext1

X (IZ (H),OX ) which is nonzero at any point of Z we have that the sequence defining
E is locally nonsplit around each point of Z , which in turn implies that E is locally free at each such
point (and hence everywhere). From c1(E) = H , since E is locally free of rank 2, we get a canonical
isomorphism E ' E∗(H).

Let us prove that E is ACM. We already have h1(E) = 0 and thus by Serre duality h1(E(−H)) =
h1(E∗(H)) = h1(E) = 0. Also h0(E(−H)) = 0 and h2(E(−H)) = 1. Note that, choosing an integral
hyperplane section curve C that avoids Z , (1) becomes:

0→OC → E|C →OC(H)→ 0.

From Hk(E(−H))= 0 for k = 0, 1 we deduce h0(E|C)= 1 so the previous exact sequence does not split.
Then h0(E|C(−H))= 0. This easily implies H1(E(−2H))= 0 and actually H1(E(−t H))= 0 for all t ≥ 2.
Serre duality now gives H1(E(t H))= 0 for all t ≥ 1. In other words E is ACM.

It remains to check that E is simple. Applying HomX (E,−) to the exact sequence (2) we get that the
nonzero space HomX (E, IZ (H)) is contained in HomX (E,OX (H))'H0(E)' k, so homX (E, IZ (H))=1.
As Hom X (E,OZ ) is a skyscraper sheaf of rank 2 at Z we have extkX (E,OZ )= (2g+ 4)δ0,k . We deduce
ext1X (E, IZ (H))= 2g+ 4 and ext0X (E, IZ (H))= 0.
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Therefore, applying HomX (E,−) to the (1), since HomX (E,OX ) ' h2(E) = 0 we get that EndX (E)
is contained in HomX (E, IZ (H)) and is therefore 1-dimensional. This says that E is simple. By Serre
duality ext2X (E, E)= 1. We deduce ext1X (E, E)= ext1X (E, IZ (H))= 2g+ 4. �

Given a reduced subscheme Z ∈ Hilbg+2(Xsm) consisting of points in general linear position, there
is a unique rank-2 bundle associated with Z according to the previous lemma. We denote it by EZ . We
write Op for the skyscraper sheaf of a point p ∈ X .

Lemma 3. Assume η : EZ →Op is surjective. Then Eη = ker(η) is a simple sheaf with

c1(Eη)= H, c2(Eη)= g+ 3, ext1X (E
η, Eη)= 2g+ 8.

Proof. Recall that E = EZ is simple and observe that this implies HomX (E, Eη)= 0, as the composition
of any nonzero map E → Eη with Eη ↪→ E would provide a self-map of E which is not a multiple of
the identity. Also, since E is locally free we have homX (E,Op) = 2 and ExtkX (E,Op) = 0 for k > 0.
Therefore, using Lemma 2 and applying HomX (E,−) to the exact sequence:

0→ Eη→ E→Op→ 0. (3)

we obtain ext1X (E, E
η)= 2g+ 5 and ext2X (E, E

η)= 1.
Next, Serre duality gives extkX (Op, E)= 2δ2,k , while extkX (Op,Op) is the dimension of the k-th exterior

power of the normal bundle of p in X and thus takes value
(2

k

)
. Therefore, applying HomX (Op,−) to (3)

we find ext1X (Op, Eη)= 1 and ext2X (Op, Eη)= 3. Putting these computations together and applying

homX (Eη, Eη)= ext2X (E
η, Eη)= 1, ext1X (E

η, Eη)= 2g+ 8.

The computation of Chern classes is straightforward. �

Lemma 4. Let p ∈ Xsm \ Z. Then, for a generic map η : EZ →Op, the induced map on global sections
H0(η) : H0(EZ )→ H0(Op) is an isomorphism.

Proof. Put E = EZ . It suffices to check that there exists η such that the induced map H0(η) : k'H0(E)→
H0(Op)' k is an isomorphism, for this is an open condition. To do it, we apply HomX (IZ (H),−) to
the exact sequence:

0→ Ip→OX →Op→ 0.

This gives an exact sequence:

Ext1X (IZ (H), Ip)→ Ext1X (IZ (H),OX )→ Ext1X (IZ (H),Op).

Observe that Hom X (IZ (H),Op) ' Op and Ext1
X (IZ (H),Op) = 0 as these sheaves are computed

locally on X and, since p ∩ Z = ∅, we may choose an open cover of X consisting of subsets where
IZ is trivial or Op vanishes. Then the local-to-global spectral sequence gives Ext1X (IZ (H),Op)= 0 so
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the extension corresponding to (1) admits a lifting to Ip. In other words, we get the commutative exact
diagram:

0

��

0

��

0 // Ip

��

// Eη //

��

IZ (H) // 0

0 // OX //

��

E //

η

��

IZ (H) // 0

Op

��

Op

��

0 0

where η and Eη are defined by the diagram. For this choice of η we get, by the top row of the diagram,
H0(Eη)= 0, which implies that H0(η) is an isomorphism. �

By the previous lemma, we may choose EZ as in Lemma 2, a point p ∈ Xsm \ Z , some η : EZ �Op

and consider the sheaf Eη. The goal is to deform Eη(H) to an Ulrich bundle. We use the notation F∗s for
(Fs)

∗ (which is a priori not the same as (F∗)s).

Lemma 5. There exist a smooth connected variety S0 of dimension 2g+ 8 and a flat family of simple
sheaves F on X × S0 such that Fs(H) is an Ulrich bundle for s generic in S0 and Fs0 ' Eη for some
distinguished point s0 of S0.

Proof. We proved in Lemma 3 that Eη is simple. Since the nonlocally free locus of Eη is disjoint from the
singular locus of X , we may apply the arguments of [Mukai 1984, Theorem 0.1]. In particular [Altman
and Kleiman 1980] the moduli functor of simple sheaves on X is prorepresented by a moduli space
SplX which can be constructed in the étale topology and which is smooth of dimension 2g+ 8 at Eη

(this is essentially [Mukai 1984, Theorem 0.3]). Therefore there exists an open piece of SplX which is a
quasiprojective variety S equipped with a flat family F of simple sheaves on X , such that the induced
map S→ SplX is a local isomorphism around the point corresponding to Eη. We denote this point by s0,
so that Fs0 ' Eη.

We may assume that S is smooth and connected of dimension 2g+ 8. Since the reflexive hull E of Eη

is locally free and satisfies the assumption of [Artamkin 1990, Corollary 1.5], we get that Fs is locally
free for all s in an open dense subset S1 of S.

Now observe that H∗(Fs0)= 0 by Lemmas 2 and 4. Then, semicontinuity ensures that H∗(Fs)= 0 for
all s in an open dense subset S0 of S1. Therefore, the isomorphism F∗s ' Fs(−H) and Serre duality give
Hi (Fs(−H))'H2−i (F∗s (H))∗ 'H2−i (Fs)

∗
= 0. This says that Fs(H) is a special Ulrich bundle, for all

s ∈ S0. �
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For the reader’s benefit we also provide a proof of Lemma 5 independent of [Artamkin 1990]. The
point is to check that Fs is locally free for all s in an open dense subset of S. To do this, first recall again
that the nonlocally free locus of Eη is disjoint from the singular locus of X , so up to shrinking S we may
assume that this happens for Fs for all s ∈ S. Then F∗∗s is locally free for s ∈ S.

Next, we may find an integer t0 ≤−1 such that H0(F∗∗s (t0 H))=H1(F∗∗s (t0 H))= 0 for all s ∈ S. This
can be done for instance using Kollar’s theory of husks [2008], which gives a stratification (Si )i=1,...,r

of S such that F∗∗s defines a flat family of sheaves on X parametrized by Si . Using base change over
each Si one finds ti satisfying the required vanishing together with H0(F∗∗s (ti H)|C)= 0, for a fixed curve
C ∈ |OX (H)|. Then t0 can be taken to be the minimum among t1, . . . , tr .

Recall that H∗(Fs0)= 0 and observe that (3) gives:

h1(Fs0(t H))=
{

1 if t ≤−1,
0 if t ≥ 0.

By semicontinuity, we have that H∗(Fs)= 0, h1(Fs(t H))= 0 for all t ≥ 0 and h1(Fs(t H))≤ 1 for t ≤−1
for all s in an open dense subset of S. We still call S this subset.

Next, for all s ∈ S we consider the double dual sequence

0→ Fs→ F∗∗s → τ(Fs)→ 0, (4)

where the torsion sheaf τ(FP) is defined by the sequence. Put `s for the length of τ(Fs).
Since H0(F∗∗s (t0 H))=H1(F∗∗s (t0 H))= 0, from the previous exact sequence we get `s = h0(τ (Fs))=

h1(Fs(t0 H))≤ 1 (we neglect to indicate the twist on zero-dimensional sheaves).
Now we have two alternatives. Namely, either for s general enough in S one has `s = 0, i.e., τ(Fs)= 0;

or otherwise for all s ∈ S we get `s = 1, i.e., τ(Fs)'Ops , for some point ps ∈ X with ps0 = p.
In the first case, we have Fs ' F∗∗s and Fs is locally free. So we would like to rule out the second

alternative. By contradiction we assume that, for all s ∈ S, we have τ(Fs) ' Ops . This gives a map
γ : S→ X associating ps to s. This time F∗∗ is flat over S and (4) is the restriction to X × {s} of a
sequence on X × S:

0→ F→ F∗∗→ τ(F)→ 0,

with (Fs)
∗∗
' (F∗∗)s and where τ(F) is a line bundle supported on the graph of γ .

Also, again the previous exact sequence together with H∗(Fs)= 0 gives h0(F∗∗s )= 1 so that F∗∗s has a
unique nonzero global section up to a scalar. This section vanishes along a subscheme Zs ⊂ X and, up to
shrinking again S we may assume that Zs is zero-dimensional reduced and in general linear position,
because these are open conditions, so that F∗∗s ' EZs .

For each sheaf F∗∗s of this family, we denote by ηs : F∗∗s � Ops the induced surjection of F∗∗s onto
τ(Fs). We think of ηs as an element of P(H0(F∗∗s |ps ))' P1 (we adopt the convention of writing P(V )
for the projective space of hyperplanes of a vector space V ). Plainly, we have F∗∗s0

' Eη, τ(Fs0)' Op

and ηs0 is identified with η. Note that Fs = ker(ηs).
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We assert that the family F is parametrized by an open subset T of the set of triples:

{(W, q, ξ) |W ∈ Hilbg+2(X), q ∈ X, ξ ∈ P(H0(EW |q))}.

The subset T consists of triples (W, q, ξ) with W ⊂ Xsm reduced and in general linear position in X ,
q ∈ Xsm \W and ξ is surjective. Given such a triple, we get that the sheaf ker(ξ) is simple by Lemma 3.
Clearly this gives a flat deformation of Eη so, because S→ SplX is a local isomorphism at Eη, there is a
possibly smaller open subset T0 such that all the resulting sheaves ker(ξ) are of the form Fs , for some
s ∈ S. By construction any sheaf Fs should be of this form by taking q = ps , W = Zs and ξ = ηs .

But T0 is an open dense subset of a P1-bundle over an open subset of Hilbg+2(X)× X and thus has
dimension 1+ 2(g+ 2)+ 2= 2g+ 7. Therefore T0 cannot dominate S, as dim(S)= 2g+ 8. This says
that the second alternative does not take place, so we have proved that Fs(H) is an Ulrich bundle for
general s.

Recall the notation MX (v) for the moduli space of H -semistable sheaves F on X whose Mukai vector
v = (v0, v1, v2) satisfies v0 = rk(F), v1 = c1(F) and v2 = χ(F)− rk(F). From [Qin 1993, Lemma 2.1]
we obtain the following stronger version of Theorem 1.

Corollary 6. If X is smooth, MX (2, H,−2) is of dimension 2g+ 8 and a general point of it corresponds
to a sheaf E which is stable (with respect to all polarizations) and such that E(H) is a special Ulrich
bundle.

Again, we also offer a proof independent of [Qin 1993; Artamkin 1990]. Consider the family of Ulrich
sheaves F(H) with parameter space S0 constructed in the previous lemma. Recall that, for generic s ∈ S0,
the sheaf Fs(H) is Ulrich, hence semistable with Ulrich sheaves as Jordan–Hölder factors [Faenzi and
Pons-Llopis 2015, Lemma 7.1]. So we have to check that Fs is not strictly semistable. If it was, we
would have an exact sequence:

0→ L→ Fs→ L∗(H)→ 0, (5)

where L(H) is an Ulrich sheaf or rank 1 on X . Actually L(H) is an Ulrich line bundle since X is
smooth. Since L and L∗(H) are rigid in view of H1(OX )= 0, they do not depend on s, which justifies the
notation. Since L(H) is an Ulrich line bundle we have χ(L)= χ(L(−H))= 0 which gives L2

=−4 and
L H = g− 1, where L = c1(L). Similar constraints hold for H − L . In particular, L and H − L have the
same degree with respect to H , hence h0(OX (2L − H))≤ 1, with equality being attained if and only if
L ≡ H − L . Likewise, h2(OX (2L − H))= h0(OX (H − 2L))≤ 1. Now we observe the following bound:

ext1X (L
∗(H),L)= h1(OX (2L − H))

= h0(OX (2L − H))+ h2(OX (2L − H))−χ(OX (2L − H))

≤ 2−χ(OX (2L − H))

= g+ 7,
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the last equation being obtained by Riemann–Roch after plugging L2
=−4 and H L = g− 1. In view

of the rigidity of H − L and L , the family of sheaves appearing as an extension (5) is parametrized
by P(Ext1X (L

∗(H),L)) and hence has dimension at most g + 6. So this family cannot dominate the
(2g+ 8)-dimensional family S0, a contradiction.

It follows from Theorem 1 that X is strictly Ulrich wild in the sense of [Faenzi and Pons-Llopis 2015].
The next result refines this fact in terms of moduli spaces. It was proved when Pic(X) is generated by
H in [Aprodu et al. 2017, Theorem 2.7]. A modification of that argument allows to prove the result in
general.

Theorem 7. Let X be a K3 surface and H be a very ample line bundle on X. Then, for any positive
integer r , the moduli space MX (2r, r H,−2r) is of dimension 2(r2(g+ 3)+ 1). Given a general sheaf F
in this space, F(H) is a stable Ulrich bundle.

Proof. Given a coherent sheaf E or rank r > 0 on X we write P(E) ∈Q[t] for the Hilbert polynomial of E
and p(E) for its reduced version, namely P(E)=χ(E(t H)) and p(E)=P(E)/r . We put p0= (g−1)(t+1)t
so that, if E is an Ulrich sheaf, then p(E(−H)) = p0. Note that, if E1 and E2 are nonisomorphic stable
sheaves with p(E1)= p(E2), then ExtkX (Ei , E j )= 0 for k = 0, 2 and i 6= j .

The proof goes by induction on r , the case r = 1 being given by Corollary 6. For r ≥ 1, we select
a stable bundle E2 in MX (2r, r H,−2r) given by the induction hypothesis and a stable bundle E1 in
MX (2, H,−2), with Ei (H) Ulrich for i = 1, 2, taking care that E1 is not isomorphic to E2 for r = 1. This
is of course possible since dim(MX (2, H,−2)) > 0. This way we have:

ExtkX (Ei , E j )= 0, for k = 0, 2 and i 6= j, (6)

ext1X (Ei , E j )= 2r(g+ 3) for i 6= j. (7)

Note that, for any choice of ζ ∈ P(Ext1X (E2, E1)), the sheaf Eζ fitting as middle term of the associated
extension is a locally free semistable sheaf, with Eζ (H) (as extension of sheaves having these properties).
By direct computation, we see that it lies MX (2(r + 1), (r + 1)H,−2(r + 1)). Of course this sheaf is
not stable, as E1 is a subsheaf of Eζ with quotient E2 and the reduced Hilbert polynomial of all these
sheaves is p0. However, it follows by [Faenzi and Pons-Llopis 2015, Theorem A, ii)] that Eζ is simple,
as the representation of the associated Kronecker consists of a single nonzero map of one-dimensional
vector spaces, and as such it is simple. Alternatively one may apply [Pons-Llopis and Tonini 2009,
Proposition 5.3].

We record the defining sequence:

0→ E1→ Eζ → E2→ 0. (8)

In the same spirit as in Lemma 5, we take a deformation of Eζ in the space of simple sheaves, which is
unobstructed of dimension 2((r + 1)2(g+ 3)+ 1) at Eζ . We consider thus an integral quasiprojective
variety S as base of an S-flat family of simple sheaves Fs with Fs(H) Ulrich for all s and Fs0 ' Eζ
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for some s0 ∈ S, the base S being locally isomorphic to the moduli space of simple sheaves around the
point s0. We may assume that Fs is locally free for all s ∈ S.

Claim 8. There is an open dense subset S0 of S such that, for any stable sheaf K with rk(K) < 2(r + 1),
rk(K) 6= 2 and p(K)= p0, we have HomX (K,Fs)= 0, for all s ∈ S0.

Proof of the claim. Clearly it suffices to find such open subset for a fixed rank u of K and take the
intersection of the corresponding open subsets for all u < 2(r + 1), u 6= 2.

So let N be the moduli space of stable sheaves E on X with Hilbert polynomial P(E) = up0. Let U
be a quasiuniversal family over X ×N [Huybrechts and Lehn 1997, Proposition 4.6.2] and denote by σ
and π the projection maps X ×N→ N and X ×N→ X , respectively.

For y ∈ N let Uy be the corresponding sheaf over X . We observe that, applying HomX (Uy,−)

to (8), using the definition of N and ζ and the fact that the Ei ’s are stable with p(Ei ) = p(Uy) we get
HomX (Uy, Eζ )= 0. Indeed, the only case to check is for u = 2r when y corresponds to the sheaf E2, but
HomX (E2, Eζ )= 0, for otherwise by stability of E2 the exact sequence (8) would split, contradicting our
assumption on ζ .

Then, Serre duality gives, for all y ∈ N,

H2((Eζ )∗⊗Uy)' Ext2X (E
ζ ,Uy)= 0. (9)

Now consider X ×N× S, put τ for the projection N× S→ S and denote by σ , π , τ the projection
maps from X ×N× S onto X × S, N× S and X ×N, respectively. Let V = π∗(F∗)⊗ τ ∗(U). Since V is
flat over the integral base N× S and σ has relative dimension 2, base-change gives, for all (y, s) ∈N× S

R2σ ∗(V)(y,s) ' H2(F∗s ⊗Uy). (10)

Let W be the support of R2σ∗(V), i.e., the closed subset of points (y, s) ∈ N× S such that

R2σ∗(V)(y,s) 6= 0.

By (9) and (10), we have W ∩ N × {s0} = ∅, i.e., s0 does not lie in τ(W ). Then there is an open
neighborhood S0 ⊂ S of s0 which is disjoint from τ(W ). Again by (10), we get H2(F∗s ⊗Uy)= 0 for all
(y, s) ∈ N× S0, which proves the claim. �

Let us now conclude the proof of the theorem. In view of the claim, we have two alternatives for s
generic in S0: either Hom(K,Fs) = 0 for any stable sheaf K with rk(K) < 2(r + 1) and p(K) = p0 or
otherwise this happens for all such K except for rk(K)= 2 and there actually exists a stable K in N such
that Hom(K,Fs) 6= 0.

In the first alternative Fs is stable, so we assume that the second one takes place and look for a
contradiction. We go back to Claim 8 and carry out the same argument for u = 2, with y0 being the point
corresponding to E1. Observe that K must lie in MX (2, H,−2) as the proof of Claim 8 applies verbatim
on any other component of N.
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We note that W ∩N× {s0} = {(y0, s0)}, as clearly HomX (K, Eζ ) = 0 for all K in N \ {y0}. So W is
properly contained in N× S. Moreover, we easily have homX (E1, Eζ ) = 1. Recall by construction of
the quasiuniversal family that there is u0 such that rk(U) = 2u0 and that, for y ∈ N, the sheaf Uy is a
direct sum of u0 copies of the stable sheaf of rank 2 in MX (2, H,−2) corresponding to y. Therefore, the
sheaf R2σ ∗(V)(y,s) has rank at least u0 at any (y, s) ∈W , and rank precisely u0 at (y0, s0). So there is an
open dense subset W0 of W where R2σ ∗(V) is free of rank u0. For any (y, s) ∈W0, the stable sheaf K
corresponding to y satisfies homX (K,Fs)= 1; up to proportionality we have thus a unique nonzero map
ηy,s : K→ Fs . Stability easily implies that ηy,s is injective, so there is an exact sequence

0→ K→ Fs→ K′→ 0,

for a well-defined sheaf K′ = coker(ηy,s), for all (y, s) ∈W0.
For s = s0 the sheaf K′ is just E2 so, by openness of stability, up to shrinking W0 we may assume that

K′ is stable for all (y, s) ∈W0. Note that K′ lies in M(2r, r H,−2r).
Under our assumption, such sequence should exist for any s in an open neighborhood of s0. Then the

family of sheaves F should be dominated by the family of extensions of K by K′ as s varies around s0.
We see that the dimension of this family of extensions is

dim(MX (2, H,−2))+ dim(MX (2r, r H,−2r))+ dim(P Ext1X (K
′,K)),

which equals 2(r(r +1)+1)(g+3)+3, as it follows by formulas (6) and (7) applied to K and K′ instead
of E1 and E2. On the other hand, the dimension of S is 2((r + 1)2(g+ 3)+ 1). The difference of these
dimensions is 2r(g+ 3)− 1 and since this is always positive for r ≥ 1, g ≥ 3, we get that the family of
simple sheaves appearing as extensions cannot be dense in S0. This contradiction concludes the proof. �

The previous result is in some sense optimal as general K3 surfaces do not support Ulrich bundles of
odd rank [Aprodu et al. 2017, Corollary 2.2].

Remark. An argument similar to the one of Theorem 1 has been used to construct ACM and Ulrich bundles
on Fano threefolds of index 1. Indeed, it follows from the main result of [Brambilla and Faenzi 2011]
that any smooth Fano threefold of Picard number 1 and index 1, containing a line L with normal bundle
OL ⊕OL(−1) (such a threefold was called “ordinary” in that paper) admits an Ulrich bundle of rank 2.
Ulrich sheaves of rank 2 are precisely ACM sheaves E with c1(E(−H))= H and c2(E(−H))= (g+3)L ,
where L ⊂ X is a line. We do not know if the same result holds for nonordinary threefolds.

Remark. Theorem 1 implies for instance that any integral quartic surface supports an Ulrich bundle of
rank 2. If X is not integral, then X must the union of (possibly multiple) surfaces of degree ≥ 3. For
each component it is possible to find a rank-2 Ulrich bundle, we refer to [Faenzi and Pons-Llopis 2015,
Lemma 7.2] for the slightly delicate case of singular cubic surfaces. This yields existence of an Ulrich
sheaf of rank 2 on an arbitrary quartic surface.

However the resulting sheaf will fail to be locally free over the intersection of the components. Finding
locally free Ulrich sheaves of rank 2 seems more tricky when X is not irreducible and might be impossible
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when X is not reduced. To justify this let us mention that, for instance if X the union of two distinct
double planes, the rank of any locally free Ulrich sheaf on X must be a multiple of 4 by [Ballico et al.
2019, Proposition 4.14].
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Unlikely intersections in semiabelian surfaces
Daniel Bertrand and Harry Schmidt

We consider a family, depending on a parameter, of multiplicative extensions of an elliptic curve with
complex multiplications. They form a 3-dimensional variety G which admits a dense set of special curves,
known as Ribet curves, which strictly contains the torsion curves. We show that an irreducible curve W in
G meets this set Zariski-densely only if W lies in a fiber of the family or is a translate of a Ribet curve by
a multiplicative section. We further deduce from this result a proof of the Zilber–Pink conjecture (over
number fields) for the mixed Shimura variety attached to the threefold G, when the parameter space is the
universal one.

1. Introduction 1455
2. Proof of Theorem 1.w 1461
3. The weakly special case over Z 1466
4. End of proof of Theorem 1 1468
5. The Zilber–Pink conjecture for P0 1470
Acknowledgements 1472
References 1472

1. Introduction

1.1. Statement of the results and plan of the proofs. Let E0/Q
alg be an elliptic curve with complex

multiplications. On any extension G0 of E0 by Gm defined over Qalg, there exists a particular subgroup
00 of G0(Q

alg), whose elements are called Ribet points. We refer to Section 1.2 below for their precise
definition, but point out right now that 00 contains the torsion subgroup G tor

0 of G0(Q
alg). In fact 00=G tor

0

if the extension G0 is isosplit, while 00 has rank 1 otherwise.
Let further X/Qalg be a smooth irreducible algebraic curve and let G/X be an X -extension of E0/X

by Gm/X . Let q be the section of Ê0/X → X representing the isomorphism class of the extension G/X .
We identify q with its image in E0(X) under the standard polarization Ê0' E0, and write G 'Gq . Given
a section s of G/X , we denote by p= π ◦s ∈ E0(X) its composition with the projection π :G→ E0× X .

Let δ 6= 0 be a purely imaginary complex multiplication of E0, and let ξ ∈ X (Qalg). A first property of
Ribet points is that if s(ξ) is a Ribet point of its fiber Gξ ' Gq(ξ), then its projection p(ξ) to E0 and the
point δq(ξ) are linearly dependent over Z. Usually, this condition alone will be satisfied by infinitely

MSC2010: primary 14K15; secondary 11G15, 11G50, 11U09.
Keywords: semiabelian varieties, complex multiplication, Zilber–Pink conjecture, mixed Shimura varieties, heights,

o-minimality, Ribet sections.
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many ξ ’s. But asking that s(ξ) be a Ribet point in the fiber of Gξ → E0 above p(ξ) brings a second
condition, unlikely to be satisfied infinitely often. And indeed, we prove in this paper:

Theorem 1. Let G ' Gq be a nonconstant (hence nonisosplit) extension of E0/X by Gm/X , and let s be a
section of G→ X , all defined over Qalg. Assume that the set

4=4s := {ξ ∈ X (Qalg) | s(ξ) is a Ribet point of its fiber Gξ ' Gq(ξ)}

is infinite. Then, the sections p and q are linearly dependent over End(E0).

Referring again to Section 1.2 for the definition of the Ribet sections of G/X (which in view of the
hypothesis on G, also form a group 0 of rank 1, containing the torsion sections), we deduce the following
(actually equivalent) version of Theorem 1:

Theorem 2. Assume that the hypotheses of Theorem 1 on the extension G, the section s and the set 4 are
satisfied. Then, there exists a nonconstant or trivial section s ′ in Gm(X) such that s− s ′ is a Ribet section
of G/X.

The conclusion of Theorem 2 is best possible. Indeed, let s ′ be such a section in Gm(X) and let s ′′ be
a Ribet section. Then, s ′′(ξ) is a Ribet point of Gξ for any ξ ∈ X , while s ′(ξ) lies in Gtor

m infinitely often.
The set 4s attached to s = s ′+ s ′′ is therefore infinite.

As a corollary to Theorem 1, we consider the case when the curve X = Ê0 ' Ext(E0,Gm) is the
parameter space of the universal extension P0 of E0 by Gm . This extension, which identifies with the
Poincaré biextension of E0 × Ê0 by Gm , is naturally endowed with the structure of a mixed Shimura
variety, for which we prove:

Theorem 3. Let W/Qalg be an irreducible algebraic curve in P0. Assume that W contains infinitely many
points lying on special curves of the mixed Shimura variety P0. Then, W is contained in a special surface
of P0.

Combined with Gao’s work on the André–Oort conjecture, this readily implies the following conclusion,
which answers a question of J. Pila.

Theorem 4. The mixed Shimura variety P0 satisfies the Zilber–Pink conjecture over number fields.

See Section 5 below for the statement of this conjecture, and for the deduction of Theorems 3 and 4
from Theorem 1.

The proof of Theorem 1 will distinguish three cases. In the first one, we establish the following weaker
version, where the conclusion is replaced by a “weakly special” one. Denote by E0(Q

alg)⊂ E0(X) the
group of constant sections of E0/X .

Theorem 1.w. Same hypotheses as in Theorem 1. Then, the sections p and q are linearly dependent over
End(E0) modulo E0(Q

alg).
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The proof of Theorem 1.w (see Section 2) follows the o-minimal strategy of Pila–Zannier and Masser–
Zannier, starting with the observation that if its conclusion does not hold, then the points ξ of 4 have
bounded height.

In the remaining cases, we suppose that p and q are linearly dependent over End(E0) modulo E0(Q
alg).

In the second one (see Section 3), we assume that they are linearly dependent over Z modulo E0(Q
alg),

but that p is not (i.e., p is not constant). Here again, we use the o-minimal strategy, but a new argument
is required to check bounded height.

In the last case (see Section 4), we reduce a weakly special relation over End(E0) to one over Z, and
therefore to a constant section p. We finally show that p must be torsion, thanks to a duality argument
which turns the problem into a special case of the Mordell–Lang theorem (recalled in Section 1.3(v)
below) for a constant semiabelian variety attached not to q , but to p.

1.2. Ribet sections and points. Let X/Qalg be a smooth irreducible variety, let A be an abelian scheme
over X , let q ∈ Â(X ) be a section of the dual abelian scheme Â/X ' ExtX (A,Gm), and let G = Gq be
the corresponding X -extension of A by Gm/X , obtained by removing its zero section from the line bundle
defined by q . We point out that Gq is an isosplit extension (i.e., isogenous to the product Gm × A) if and
only if q is a torsion section. When A/X is a constant group scheme, Gq is a constant group scheme if
and only if q is a constant section (for instance a torsion one).

Let P be the Poincaré biextension of A×X Â by Gm . For any ϕ ∈HomX ( Â, A), with transpose ϕ̂, there
is a canonical isomorphism σϕ,q : P((ϕ− ϕ̂)(q), q)' Gm/X of Gm-torsors over X (see [Chambert-Loir
1999, Proposition 6.3], whose description of σϕ,q works over an arbitrary base scheme [Bertrand and
Edixhoven 2019, Proposition 3.1]). We define the basic Ribet section associated to ϕ as the section
sϕ,q = σ ∗ϕ,q(1X ) of the semiabelian scheme G=Gq = (idA, q)∗P =P|A×q over X . We say “point” instead
of “section” if X is a point, and drop the index q when the context is clear.

The Ribet section sϕ ∈ G(X ) depends additively on ϕ, and in fact only on ϕ− ϕ̂ [Jacquinot and Ribet
1987, Proposition 4.2; Bertrand and Edixhoven 2019, Formula 3.1.2]. Its projection under π : G→ A is
the section

pϕ := π ◦ qϕ = (ϕ− ϕ̂) ◦ q ∈ A(X ).

So, when ϕ varies, the basic Ribet sections form a finitely generated subgroup of G(X ), of rank rq at most
equal to the rank of the Z-module E = {ϕ− ϕ̂, ϕ ∈ HomX ( Â, A)}, and equal to it when q is sufficiently
general. On the other hand, rq = 0 if q is a torsion section. Indeed, although their dependence in q is
not linear, the Ribet sections sϕ satisfy the following “lifting property” (for (i)⇒ (ii), see [Bertrand
2011, §1], [Bertrand et al. 2016, Theorem 3(i)] in the case of points, and [Bertrand and Edixhoven 2019,
Proposition 3.3] in general).

Lemma 1. Let ϕ ∈ HomX ( Â, A), let q ∈ Â(X ) and consider the conditions:

(i) q is a torsion section.

(ii) sϕ is a torsion section.
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(iii) pϕ is a torsion section.

Then, (i)⇒ (ii)⇒ (iii), and if ϕ− ϕ̂ is an isogeny, the three conditions are equivalent.

More generally, let s be a local section of G→ X (for the étale topology). We say that s is a Ribet
section of G/X if there exists a positive integer n satisfying n.s = sϕ for some ϕ, with multiplication
by n in the sense of the group scheme G/X . The projection p of s to A satisfies np = (ϕ− ϕ̂) ◦ q. All
(local) torsion sections of G/X now appear as such Ribet sections, and Lemma 1 extends to this more
general setting. Viewed as points above the generic point η of X , with K =Qalg(Xη), the Ribet sections
form a subgroup 0 of the group Gη(K alg), of same rank rq as above.

The construction of Ribet sections commutes with any base change. For instance, given a basic Ribet
section sϕ,q of G/X , and a point ξ in X (Qalg), sϕ,q(ξ)= sϕξ ,q(ξ) is the basic Ribet point of the fiber Gξ

attached to the specialization ϕξ of ϕ at ξ . Conversely, let sξ be a Ribet point of Gξ (Q
alg). By definition,

there exist nξ ∈ Z>0 and ϕξ ∈ Hom( Âξ , Aξ ) such that nξ sξ = sϕξ ,q(ξ). Assume further that ϕξ extends
to an element ϕ ∈ Hom( Â, A) (which occurs automatically if A/X is a constant abelian scheme as in
Section 1.1). Then, sϕξ ,q(ξ)= sϕ,q(ξ), and there exists a local section s of G/X such that nξ .s = sϕ , whose
image in G contains sξ . So, the Ribet point sξ extends locally to a Ribet section of G/X .

Let us now return to the situation of Section 1.1, where A = E0×X , for a CM elliptic curve E0, and
X is either the curve X or a point ξ on X . Then, the Z-module E above identifies with

E = {ϕ−φ | ϕ ∈ End(E0)} = Zδ,

where δ = α − α 6= 0 is a purely imaginary quadratic number, which will be fixed from now on.
Consequently, for any q ∈ E0(X), the group of basic Ribet sections of G = Gq is cyclic, generated by
the section

s R
:= sα,q ∈ G(X), with pR

:= π ◦ s R
= δq ∈ E0(X).

Viewed at the generic point η of X , the Ribet sections of G/X then form the divisible hull 0 of the group
Z.s R(η) in Gη(K alg). Furthermore, for any ξ ∈ X (Qalg), the value s R(ξ)= sα,q(ξ) of s R at ξ generates
the group of basic Ribet sections of Gξ = Gq(ξ), and the Ribet points of Gξ form the divisible hull

0ξ = {sξ ∈ Gξ (Q
alg) | ∃(n,m) ∈ Z2, n 6= 0, nsξ = ms R(ξ)} ⊃ G tor

ξ

of Z.s R(ξ) in Gξ (Q
alg).

Under the assumptions of Section 1.1, the section q is not constant, hence not torsion, while δ is an
isogeny, so s R is not torsion by Lemma 1, and the rank rq of 0 is equal to 1. On the other hand, by
Lemma 1 (now at the level of points), given a point ξ ∈ X (Qalg),

q(ξ) ∈ E tor
0 ⇔ s R(ξ) ∈ G tor

ξ ⇔ 0ξ = G tor
ξ ,

and this occurs for infinitely many ξ ’s since q is not constant [Bertrand 2011, Theorem 1]. Otherwise, 0ξ
has rank 1, but for s(ξ) ∈ 0ξ , we still have s(ξ) ∈ G tor

ξ ⇔ p(ξ) ∈ E tor
0 .
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In view of these descriptions of the groups 0 and 0ξ , our work can be interpreted as a particular case
of the study of unlikely intersections within an isogeny class [Gao 2017a], or of a relative version of the
Mordell–Lang problem (compare with Section 1.3(v) below).

1.3. The context. We here put the results of Section 1.1 in perspective with other statements of unlikely
intersections. Two sets

4tor
⊂4⊂4`d

related to the section s ∈ G(X) naturally appear in the process.

(i) Theorem 1 gives a positive answer to the “Question 2” raised in [Bertrand 2013, §5], while a positive
answer to its “Question 1” was recently obtained by Barroero [2017]. However, the applications to
Pink’s conjecture given in [Bertrand 2013] require clarification, because of their ambiguous use of
Hecke orbits. We bypass this problem for the mixed Shimura variety P0 studied in Section 5, by
describing all its possible special curves. Theorem 3 will then follow from Theorem 1, along the
method of [Bertrand 2013].

(ii) Contrary to the convention of [Bertrand et al. 2016], the torsion points are here viewed as particular
cases of Ribet points. Therefore, Theorem 2 implies the restriction to the case of our semiabelian
scheme G/X of the main theorem of [Bertrand et al. 2016], which concerns the subset

4tor
=4tor

s := {ξ ∈ X (Qalg), s(ξ) is a torsion point of its fiber Gξ }

of 4, and asserts the following statement.

Lemma 2. Let G/X and s be as in Theorem 1, and assume moreover that the subset 4tor of 4 is infinite.
Then s is a Ribet section or a torsion translate of a nonconstant section in Gm(X).

For ξ ∈4tor, p(ξ) too is torsion, so (by the Manin–Mumford theorem [Hindry 1988] for the image of
(p, s ′) in E0×Gm), the conclusion of Theorem 2 can be sharpened to the same statement.

Let 4tor
s R be the set attached to the Ribet section s R , defined similarly as 4tor

s . We pointed out at the
end of Section 1.2 that 4tor

s R is infinite. Therefore, Lemma 2 too is best possible.

(iii) In relation with the two sections s, s R of G/X , consider the set

4`d =4`ds,s R := {ξ ∈ X (Qalg) | s(ξ) and s R(ξ) are linearly dependent over Z}.

For ξ in this set, either s(ξ) lies in the divisible hull 0ξ of Z.s R(ξ), or s R(ξ) is a torsion point. So 4`d

is the (not necessarily disjoint) union of 4 and 4tor
s R and in particular, is always infinite. More generally,

given two sections s, s ′ in G(X), the similarly defined set 4`ds,s′ will be infinite as soon as the group
generated by s and s ′ in G(X) contains a nontorsion Ribet section. So, in contrast with the case of
abelian schemes (see [Masser and Zannier 2015; Barroero and Capuano 2018]), the subgroup schemes of
G×X G do not suffice to control the finiteness of 4`ds,s′ ; as in [Bertrand and Edixhoven 2019], the special
subvarieties of the corresponding mixed Shimura variety should also be taken into account.
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(iv) Consider the curve W = s(X) in G and define a Ribet curve as the image in G of a Ribet section.
Theorem 2 then says that W is the translate of a Ribet curve by a section in Gm(X). Since any curve
W in G dominating X can be viewed as the image of a section after a base extension, while any
Ribet point of a fiber Gξ locally extends to a Ribet section, this justifies the last but one sentence of
the abstract.

(v) Assume that contrary to the hypothesis of Theorem 1, G = G0× X for some constant semiabelian
surface G0/Q

alg, and that s is not constant. Then, the projection W0 of W = s(X) to G0 is a curve,
which contains infinitely many points of the group 00 of Ribet points of G0. Since 00 has finite
rank (at most 1), the solution by Vojta and McQuillan [McQuillan 1995] of the Mordell–Lang
conjecture for semiabelian varieties implies that s factors through a translate by a Ribet point of a
strict connected algebraic subgroup of G0. If the section q, here constant, is not torsion, the only
such one is Gm . So the conclusions of Theorems 1 and 2 still hold true in this case.

(vi) Same as in (v), but assume furthermore that q is a torsion section, say the trivial one, so G0'Gm×E0.
Then, s = (s ′, p) for some section s ′ ∈ Gm(X), while the group 00 of Ribet points of G0 coincides
with G tor

0 . By Manin–Mumford, 4=4tor is then infinite if and only if s ′ is a torsion section, or p is
a torsion section.

(vii) In this paper, we do not touch on the question of replacing Qalg by C, or of applying Theorem 2 to
generalized Pell equations as in [Masser and Zannier 2015; Barroero and Capuano 2018]. Nor do
we study how effective our results can be made. Note that Lemma 2 above is made effective in the
ongoing work [Jones and Schmidt ≥ 2019]. Due to the use of Pfaffian methods, in particular [Jones
and Thomas 2018; Jones and Schmidt 2017], the bounds for the counting problem in [Jones and
Schmidt ≥ 2019] are uniform and effective.

We take opportunity of these comments to show the following equivalence:

Theorem 1⇔ Theorem 2. Theorem 2 clearly implies Theorem 1. Indeed, the sections s and s ′′ = s− s ′

have the same projection p to E0. Since s ′′ is a Ribet section, p and δq are linearly dependent over Z, so
p and q are linearly dependent over End(E0).

Conversely, assume that the hypotheses and the conclusion of Theorem 1 hold true, and let np−ρq = 0
be a nontrivial relation with n ∈ Z, ρ ∈ End(E0) not both 0 (equivalently, n 6= 0 since q is not a torsion
section). Without loss of generality, we can assume that 4tor is finite, otherwise Lemma 2 readily implies
the conclusion of Theorem 2. For any ξ ∈4, δq(ξ) and the projection p(ξ) of the Ribet point s(ξ) are
linearly dependent over Z, so there exist nξ ,mξ ∈ Z, not both zero, such that nξ p(ξ)−mξδq(ξ) = 0,
while the generic relation implies np(ξ)− ρq(ξ) = 0. If these two relations are linearly independent
over End(E0), then q(ξ), hence s R(ξ), hence s(ξ), are torsion points and ξ lies in 4tor. So, for infinitely
many, hence at least one, ξ , these two relations must be linearly dependent over End(E0), and in fact over
Z, since n does not vanish. This implies that ρ is a rational multiple of δ, and by their very construction,
this in turn implies the existence of a Ribet section s ′′ projecting to p. So, s ′ = s− s ′′ factors through Gm .
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Finally, if s ′ is a constant section, it must be a torsion one since s ′(ξ) is a Ribet point of Gξ projecting
to 0 for one (any) ξ ∈4. In this case, s itself is a Ribet section, and otherwise s ′ is not constant, so the
conclusion of Theorem 2 holds in all cases. �

2. Proof of Theorem 1.w

Recall the hypotheses of Theorem 1.w, as well as the notation s R, 0ξ , . . . of Section 1.2. So, q ∈ E0(X)
is not constant, s is a section of G = Gq → X projecting to the section π ◦ s = p ∈ E0(X), and the set
4= {ξ ∈ X (Qalg), s(ξ) ∈ 0ξ }, concretely described as

4= {ξ ∈ X (Qalg) | ∃(n,m) ∈ Z2, n 6= 0, ns(ξ)−ms R(ξ)= 0}

is infinite. We assume that the sections p and q are linearly independent over End(E0) modulo E0(Q
alg),

and search for a contradiction.
We fix a number field k over which X and G, hence the sections q and s R , as well as the section s,

hence p, and the isogeny δ, are defined. We recall that the basic Ribet section s R projects to E0 on the
section pR

= δq .

2.1. The o-minimal strategy. The proof of Theorem 1.w will be done in 5 steps. The third one is
developed in Section 2.2. By a “constant” c, γ , we mean a positive real number which depends only on
the data X, E0, q, s and the number field k. The constants C may depend on further data introduced in
the proof.

We point out that any finite set of points can without loss of generality be withdrawn from the
curve X . To ease a technical point in the third step, we will for instance require that the sections p, q
and p+ q ∈ E0(X) never vanish on X . The complement is a finite set since q is not constant, p can be
assumed to be so (constant p’s are treated by a direct method in Section 4.2), and if p+q is constant, we
can make it nonconstant by replacing s by 2s, so p by 2p, without modifying the content of the theorems.

2.1.1. Bounded heights of points. Let h denote a height on X (Qalg) attached to a divisor of degree 1 on
the completed curve. Consider the set

4Z`d
p,δq = {ξ ∈ X (Qalg) | p(ξ) and δq(ξ) are linearly dependent over Z}.

Since the projection p(ξ)= π ◦ s(ξ) of a Ribet point s(ξ) lies in the divisible hull of the group Z.δq(ξ)
in E0(Q

alg), this set contains 4.

Lemma 3. Let p, q ∈ E0(X) be linearly independent over End(E0) modulo E0(Q
alg). There exists a

constant c0 such that h(ξ)≤ c0 for any ξ ∈4Z`d
p,δq , and in particular, for any ξ ∈4.

Proof. In view of the hypothesis on p, q, bounded height on 4Z`d
p,δq follows directly from [Viada 2003,

Theorem 4] (and one can even replace Z by End(E0) in the definition of 4Z`d
p,δq). Alternatively, one can

appeal to Silverman’s specialization theorem [1983]. �
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To get the desired contradiction, it remains to show that the degrees

dξ = [k(ξ) :Q]

too are bounded from above on the set 4.

2.1.2. Heights of relations bounded by degrees.

Lemma 4. There exist two constants c, γ such that for any point ξ ∈4, there exist two integers n 6= 0,m
with |n|, |m| ≤ cdγξ such that ns(ξ)−ms R(ξ)= 0.

Proof. By [Bertrand et al. 2016], Corollary of Section 3.1, there exists a constant c′ such that if s(ξ)
is a torsion point of Gξ , its order n is bounded from above by c′d4

ξ , so (n, 0) satisfies the required
condition. We can therefore assume that the Ribet point s(ξ), hence q(ξ) by Lemma 1, is not a torsion
point. For ξ ∈4, there exist a, b ∈ Z, not both 0, such that ap(ξ)− bδq(ξ)= 0, and since q(ξ) /∈ E tor

0 ,
any such relation will automatically imply a 6= 0. The points p(ξ), δq(ξ) are defined over k(ξ), and have
heights ≤ c0. By works of Masser and David (see for instance Lemma 6.1 of [Barroero 2017]), there then
exists such a relation with max(|a|, |b|)≤ c1dγ1

ξ for some constants c1, γ1.
By our running hypothesis that q(ξ) is not torsion, the set of such relations (trivial one included) is a

free Z module of rank 1, and its generator (a0, b0) satisfies the above bound.
Consider now the nontorsion Ribet point s(ξ) (so, s R(ξ) too is nontorsion), and let (n0 6= 0,m0) ∈ Z2

be a generator of the group of relations ns(ξ)−ms R(ξ)= 0, which is again free of rank 1. Projecting
to E0, we then have n0 p(ξ)−m0δq(ξ)= 0. So, there exists d ∈ N such that (n0,m0)= d.(a0, b0), and
a0s(ξ)− bs R

0 (ξ) is a torsion point of Gq(ξ), of exact order d since (n0,m0) is minimal. Since it projects
to 0 on E0, it is actually a d-th root of unity ζd . Now, both s(ξ) and s R(ξ) are defined over k(ξ) (since
s and s R are global sections of G→ X ), so ζd too lies in k(ξ). Since ζd has order d, this implies that
d ≤ c2dγ2

ξ , say with γ2 = 2.
In conclusion, for any ξ ∈4, there is a linear relation ns(ξ)−ms R(ξ)= 0, with (n,m) ∈ Z2, n 6= 0

and max(|n|, |m|)≤ cdγξ for some constants c and γ = γ1+ γ2. �

2.1.3. Counting relations of bounded height. In this step and the next one, we extend the scalars from
Qalg to C, but still write X, K = C(X), etc, instead of XC, K ⊗C, . . .. We sometimes indicate by the
exponent an the analytic object attached to an algebraic one over C.

We now follow the usual procedure of studying the lifts to a universal covering of the relations
considered in Lemma 4, and bounding their number via (generalizations of) the Pila–Wilkie theorem for
a relevant o-minimal structure. There are several ways to implement this method. For instance, we can

(A) choose a fundamental domain F for the uniformization map unif : G̃'Co(C× X̃)→Gan, and count
the relations in G̃ when the transcendence degree over C of the field of definition of (unif|F )−1

◦ s is
large enough. Here, F is unbounded, but by work of Peterzil and Starchenko, a convenient choice
allows to work in the o-minimal structure Ran,exp; or
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(B) fix a simply connected domain D⊂ X an, consider the exponential morphism expG , restricted over D,
and count the relations in (Lie G)/D ' (CoC)× D when the transcendence degree over C(X) of
the field of definition of exp−1

G (s|D) is sufficiently large. Here, D can be compact, and it suffices to
work in the o-minimal structure Ran.

An advantage of (A) is its impact on effectivity, as alluded to in Comment (vii) of Section 1.3 (see also
Remark 3 of Section 4.3). But as in [Bertrand et al. 2016, §3.3], we here follow the more elementary ap-
proach (B), taking advantage of the computation of transcendence degrees already established in this paper.

So, let (D, ξ0) be a pointed set in X an, homeomorphic to a closed disk. The group scheme G/X defines
an analytic family Gan of Lie groups over the Riemann surface X an. Similarly, its relative Lie algebra
(Lie G)/X defines an analytic vector bundle Lie Gan over X an, of rank 2. We denote by5G the Z-local sys-
tem of periods of Gan/X an; it is the kernel of the exponential exact sequence of analytic sheaves over X an:

0→5G→ Lie Gan expG−−−→Gan
→ 0.

For any U0 in Lie(Gξ0(C)) such that expGξ0
(U0)= s(ξ0) ∈ Gξ0(C), there exists a unique analytic section

U of Lie(Gan)/D (meaning over a neighborhood of D), such that

U (ξ0)=U0 and ∀ξ ∈ D, expGan
ξ
(U (ξ))= s(ξ).

Since D is fixed, we will just write U = logG(s), although only its class modulo 5G is well defined.
Similarly, let U R

= logG(s
R) for the Ribet section s R . By the same process for E0/X (and the tacit

assumption that the logarithms at ξ0 are chosen in a compatible way), the projection p = π ◦ s ∈ E0(X)
admits as logarithm logE0

(p) := u = dπ(U ); we also set v = logE0
(q), so dπ(U R) := u R

= δv.
We will use the explicit expressions given in [Bertrand et al. 2016] for U,U R and 5G . These hold on

any simply connected domain of X an where u, v and u+ v do not assume period values. This is ensured
by the hypothesis, made at the beginning of Section 2.1, that p, q and p+ q vanish nowhere on X .

Let K = C(X) be the field of rational functions of X . Since Lie G is a vector bundle over X , it makes
sense to speak of the field of definition K (U ) of U over K . Similarly, let FG = K (5G) be the field of
definition of 5G . Notice that the field FG(U ) now depends only on the section s. Moreover, for the Ribet
section s R , we have:

Lemma 5. The field of definition F R
= K (U R) of any logarithm U R of s R coincides with the field of

periods FG of G.

Proof. The explicit expressions of5G and U R given in [Bertrand et al. 2016, §A.1], show that both fields co-
incide with the field K (v, ζ(v)), where ζ denotes the Weierstrass zeta function of the elliptic curve E0. �

For any real number T ≥ 1, set Z[T ] = {n ∈ Z, |n| ≤ T }, and consider the subset

4[T ] := {ξ ∈ X (Qalg) | ∃(n,m) ∈ (Z[T ])2, n 6= 0, ns(ξ)−ms R(ξ)= 0}

of 4=4s . We then have:
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Proposition 1. Let D be a closed disk in X an. For any ε > 0, there exists a real number Cε , depending
only on X, E0, q, s, D and ε, such that

(a) either, for any T ≥ 1, there are at most CεT ε points in D ∩4[T ]; or

(b) the field FG(U ) has transcendence degree at most 1 over the field FG .

The proof of Proposition 1 is given in Section 2.2 below, as a corollary of Habegger and Pila’s
“semirational” count [2016, Corollary 7.2].

2.1.4. Logarithmic Ax. Assume that conclusion (b) of Proposition 1 holds. Since u = dπ(U ), the field
FG(U ) has transcendence degree at most 1 over FG(u), and

(b1) either u is algebraic over FG = K (v, ζ(v)), in which case we know by the Ax–Schanuel theorem on
the universal vectorial extension of the elliptic curve E0 (see for instance [Bertrand et al. 2016, §6,
Case (SC3)]) that p and q are linearly dependent over End(E0) modulo constants; or

(b2) U = logG(s) is algebraic over FG(u), hence over K (u, ζ(u), v, ζ(v)), in which case we know by
[Bertrand et al. 2016, Lemma 5.1], that s is a translate of a Ribet section by a constant one, i.e., one
in Gm(C) since G is not isosplit. Then, p = π ◦ s and q are linearly dependent over End(E0).

In both cases, we get a contradiction to our hypothesis that p and q are linearly independent over
End(E0) modulo E0(Q

alg). So, conclusion (a) must hold.

2.1.5. Conclusion. It follows from Lemma 3 and a compactness argument (see [Masser and Zannier
2015, Lemma 8.2 and the paragraph after (9.2)]) that there exists a finite set of closed disks Di in X an and
a constant c′ such that the following holds: for any ξ ∈4, a positive proportion 1

c′ dξ of the conjugates of
ξ over k lie in one of the Di ’s, say D1. Now, all these conjugates are still in 4, since σ(s R(ξ))= s R(σξ)

is a Ribet point of Gq(σξ) for σ ∈ Gal(Qalg/k). Actually, by Lemma 4, all the conjugates of ξ over k lie
in 4[T ] with T = cdγξ . Choosing ε = 1

2γ , we deduce from conclusion (a) that D1∩4 has at most c′′d1/2
ξ

(and at least 1
c′ dξ ) elements. Therefore, dξ is bounded from above on 4, and this concludes the proof of

Theorem 1.w.

2.2. The semirational count. The proof of Proposition 1 uses Betti coordinates and maps, defined as
follows. We recall that D ⊂ X an is homeomorphic to a closed complex disk.

The sections of the local system 5G over D form a Z-module 5G(D)⊂ Lie Gan(D) of rank 3, with a
basis {$0,$1,$2} such that $0 generates 5Gm (D), and $1,$2 project to a basis ω1, ω2 of 5E0(D).
Then, any logarithm U := logG(s) of a section s of G/X over the disk D can uniquely be written as

U = b0$0+ b1$1+ b2$2,

where b0, b1, b2 are real analytic functions on D, with values in C for b0, and in R for b1 and b2. We call
(b0, b1, b2) the Betti coordinates of U , and define the Betti map attached to U as

UB = (b0; b1, b2) : D→ C×R2,
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Similarly, we write U R
B = (b

R
0 ; b

R
1 , bR

2 ) for the Betti map attached to U R
= logG(s

R), and denote by S
the image of the disk D under the map

UB := (UB,U R
B ) : D � S ⊂ R4

×R4
= R8.

We will work in the o-minimal structure Ran of globally subanalytic sets.

Lemma 6. S = UB(D) is a compact 2-dimensional set, definable in the structure Ran.

Proof. By definition (or by inspection of the formulae in [Bertrand et al. 2016]), the maps UB and U R
B

extend to real analytic maps on a neighborhood of the compact disk D. Therefore, S = UB(D) is a
compact definable set. Furthermore, the Betti map π ◦U R

B := u R
B = (b

R
1 , bR

2 ) attached to u R
= logE0

(pR)

is an immersion (since pR
= δq ∈ E0(X) is not a constant section), so S is indeed a real surface. �

With this notation in mind, a point ξ of D lies in D ∩4 if and only if

∃(ν 6= 0, µ) ∈ Z2
| ∃(β0, β1, β2) ∈ Z3, νU (ξ)−µU R(ξ)= β0$0(ξ)+β1$1(ξ)+β2$2(ξ),

or alternatively, in terms of the Betti maps,

∃(ν 6= 0, µ) ∈ Z2
| ∃(β0, β1, β2) ∈ Z3, νUB(ξ)−µU R

B (ξ)= (β0;β1, β2) ∈ Z×Z2
⊂ C×R2.

Remark that:

• If |ν|, |µ| are bounded by some number T , then |β0|, |β1|, |β2| ≤ C1T for some constant C1, since
D is compact.

• Given any real numbers ν 6= 0, µ, β0, β1, β2, there are only finitely many ξ ’s in D such that νUB(ξ)−

µU R
B (ξ)= (β0;β1, β2). Otherwise, νu−µδv would be constant on D, contradicting the Ax–Schanuel

theorem invoked in Section 2.1.4(b1).

We can now describe the definable set Z to which Habegger and Pila’s semirational count [2016] will be
applied. On the one hand, we have the affine space R5 with real coordinates (ν, µ, β0, β1, β2); we will
indicate by the index ∗ the complement of the hyperplane ν = 0. On the other hand, we have the affine
space C×R2

= R4 and its square R8, which is the target space of the map UB . We consider the incidence
variety Z in R5

×R8, with projections π1 to R5
∗
⊂ R5 and π2 to S = UB(D)⊂ R8:

Z = {((ν, µ, β0, β1, β2); (w := (w0;w1, w2), w
R
:= (wR

0 ;w
R
1 , w

R
2 ))) ∈ R5

×S ⊂ R5
×R8,

such that ν 6= 0 and ν.w−µ.wR
= (β0;β1, β2) ∈ R×R2

⊂ C×R2
= R4
}

By Lemma 6, Z is a definable subset of R13. Furthermore, UB(D ∩4)= π2(π
−1
1 (Z5

∗
)).

Let ε ∈R>0. Given T ≥ 1, let Z[T ] be the subset π−1
1 ((Z[T ])5

∗
) formed by those elements of Z whose

projection to R5
∗

have integer coordinates of height ≤ T . By [Habegger and Pila 2016, Corollary 7.2],
(with no R`), there is a constant C ′ε such that one of the following holds:
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(a’) π2(Z[T ])⊂ UB(D ∩4[T ])⊂ S has less than C ′εT
ε elements. Recalling the two remarks above, we

then deduce from an o-minimal uniformity argument (or from a zero estimate as in [Bertrand et al.
2016, Proposition 3.3]) that for some constant Cε , there are at most CεT ε points ξ ∈ D∩4 for which
νU (ξ)−µU R(ξ) ∈5Gξ

for some (ν 6= 0, µ) ∈ (Z[T ])2. This is conclusion (a) of Proposition 3.

(b’) There is a definable connected curve C ⊂ Z such that π1(C)⊂ R5
∗

is semialgebraic and π2(C)⊂ S
has (real) dimension 1. Let T ⊂ D⊂ X (C) be the inverse image of π2(C) under the map UB . We can
view C as parametrized by the curve T . The coordinates µ, ν, β0, β1, β2;w0, w1, w2, w

R
0 , w

R
1 , w

R
2

on R5
× R8, restricted to C, then become functions of the (real) variable γ ∈ T . Since π1(C)

is semialgebraic, the functions µ(γ ), ν(γ ), β0(γ ), β1(γ ), β2(γ ) generate a field of transcendence
degree 1 (or 0, if constant) over C. In view of the incidence relations, whose ν-component does not
vanish by definition, the restrictions to T of the functions w0 = b0, w1 = b1, w2 = b2 generate a
field of transcendence degree ≤ 1 over the field generated by the restrictions to T of the functions
wR

0 = bR
0 , w

R
1 = bR

1 , w2 = bR
2 . Recalling that U = b0$0+b1$1+b2$2, and similarly with U R , we

deduce that U|T generate a field of transcendence degree ≤ 1 over the field generated by U R
|T and the

$i |T ’s. By complex analyticity, the corresponding algebraic relation extends to D, so U generates a
field of transcendence degree ≤ 1 over the field F R.FG generated over C(X) by U R and the $i ’s.
In view of Lemma 5, this is Conclusion (b), and the proof of Proposition 1 is completed. �

3. The weakly special case over Z

From now on, we assume that the sections p and q are linearly dependent over End(E0) modulo the
subgroup E0(Q

alg) of constant sections of E0(X), and look for a proof of Theorem 1. Since its statement
is invariant under multiplication of s by a positive integer, and since q is not constant, we can assume
without loss of generality that the generic relation they satisfy takes the form

p = ρq + p0, with ρ ∈ End(E0), p0 ∈ E0(Q
alg), p0 /∈ E tor

0 (Q
alg)

(if p0 is torsion, the conclusion of Theorem 1 is trivially satisfied). In such a case, the initial Step 2.1.1 of
the previous proof simply does not hold; contrary to the situation of Lemma 5, the set

4Z`d
p,δq = {ξ ∈ X (Qalg) | p(ξ) and δq(ξ) are linearly dependent over Z}

may well have unbounded height.
In this section, we show that if

ρ = r ∈ Z, r 6= 0,

upper bounds for the height on 4Z`d
p,δq , hence on its subset 4, can still be recovered, thanks to Silverman’s

theorem and basic orthogonality properties of Néron–Tate pairings. Theorem 1 then follows by reproducing
most of the previous proof.
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3.1. Bounded height. Let again h denote the height on X (Qalg) attached to a divisor of degree 1.

Proposition 2. Let p, q ∈ E0(X), p0 ∈ E0(Q
alg), q not constant, and assume that there exists a nonzero

integer r such that p = rq + p0. Then, there exists a constant c′0 such that h(ξ)≤ c′0 for any ξ ∈4Z`d
p,δq ,

hence for any ξ ∈4.

Proof. This follows from an elementary computation, using the fact that for any ρ ∈ End(E0), the
Néron–Tate height of ρq(ξ) is ρρ times that of q(ξ). The following argument is based solely on
orthogonality properties. Assume for a contradiction that there exists a sequence ξn, n ∈ N, of points
of 4Z`d

p,δq whose heights h(ξn) tend to infinity. Denote by 〈 · , · 〉geo the (geometric) Néron–Tate pairing
on E0(K alg)× E0(K alg), where K = Qalg(X), and by 〈 · , · 〉ari the (arithmetic) Néron–Tate pairing on
E0(Q

alg)× E0(Q
alg).

Recall that for both pairings, the adjoint of ρ ∈ End(E0) is its complex conjugate. In particular,
δq(ξ) = −δq(ξ) is orthogonal to q(ξ), so 〈p(ξn), q(ξn)〉ari = 0 for all n. By Silverman [1983] (or see
[Lang 1983, p. 306]), we deduce that

〈p, q〉geo = lim
n→∞

〈p(ξn), q(ξn)〉ari

h(ξn)
= 0.

Now, p = rq + p0, and the constant part E0(Q
alg) is orthogonal to the full space E0(K alg) for the

geometric pairing. So

〈p, q〉geo = 〈rq, q〉geo+〈p0, q〉geo = r〈q, q〉geo with r 6= 0.

Therefore, the section q has vanishing Néron–Tate height, hence must be constant, contrary to our
hypothesis. �

3.2. Algebraic (in)dependence. Assuming that p = rq + p0 as above, we now follow the proof of
Section 2.1. All its steps go through, except that conclusion (b) of Proposition 1 is now automatically
satisfied. Indeed, we have u = rv + u0, where u0 ∈ Lie E0(C) is a conveniently chosen elliptic loga-
rithm of p0, so K (u) lies in the field K (v) ⊂ FG , and automatically, U = logG(s) generates a field of
transcendence degree at most 1 over FG .

To overcome this difficulty, we will now deduce from the generic relation p=rq+p0 that Conclusion (b)
can here be replaced by the more precise statement that

(b]) the field FG(U ) is algebraic over the field FG(u)= FG

(which is actually conclusion (b2) of Section 2.1.4).
To check this, we use the same incidence variety Z as in Section 2.2, and follow Alternative (b’) of

the discussion. Notice that any relation νU (ξ)−µU R(ξ)= β0$0(ξ)+β1$1(ξ)+β2$2(ξ), projected
to Lie E0, yields νu(ξ)−µu R(ξ)= β1ω1+β2ω1 hence since u R

= δv:

(νr −µδ)v(ξ)= β1ω1+β2ω2− νu0.
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Restricting this relation to the real curve T ⊂ D, and recalling that ν 6= 0, r 6= 0 and δ /∈ R, we deduce
that if Alternative (b’) holds, then the field generated over C by the restriction of the function v to T lies
in the field generated over C by the restriction to T of the real functions µ, ν and the βi ’s, i = 1, 2. Since
the latter field has transcendence degree at most 1 over C, while v is not constant, the two fields have the
same algebraic closure, in which u lies. The full incidence relation then implies that U is algebraic over
the field F R.FG(u) = FG . This is conclusion (b]).

So, logG(s) is algebraic over FG . As explained in case (b2) of Section 2.1.4, Lemma 5.1 of [Bertrand
et al. 2016] then implies that p and q are linearly dependent over End(E0) and Theorem 1 is established
in this “ρ = r ∈ Z, r 6= 0-weakly special” case. �

4. End of proof of Theorem 1

4.1. From weakly special to constant. In this subsection, we assume that the projection p ∈ E0(X) of
s ∈ G(X) and the section q ∈ E0(X) are linked by a generic relation of arbitrary shape:

p = ρq + p0, with ρ ∈ End(E0), p0 ∈ E0(Q
alg).

We will deduce from the previous section that either p and q are linearly dependent over End(E0) (as
predicted by Theorem 1), or we may assume that ρ = 0, i.e., p itself is a constant section.

Replacing s by 2s if necessary, we can write ρ = r + r ′δ ∈ Z⊕Zδ ⊂ End(E0), and consider the basic
Ribet section sr ′α = r ′s R of G =Gq over X . Its projection to E0(X) is the section r ′ pR

= r ′δq . Therefore,
the section s ′ := s− sr ′α of G/X projects to

π(s ′) := p′ = p− r ′δq = rq + p0.

Moreover, for any ξ ∈ X (Qalg), sr ′α(ξ)= sr ′α,q(ξ) is by definition a Ribet point of Gq(ξ). Consequently,
the set 4 := 4s of points of X (Qalg) where s(ξ) is a Ribet point coincides with the set 4s′ similarly
attached to s ′, which is therefore infinite. Since r ∈ Z, we deduce from the result of Section 3 that either
p′ and q , hence p and q , are linearly dependent over End(E0), or that r = 0.

Assume now that r = 0, so the generic relation reads: p = r ′δq + p0, and consider again the section
s ′ = s− r ′s R , which projects to p′ = p0. The corresponding set 4s′ is still infinite. Therefore, we have
reduced the proof of Theorem 1 to the case where ρ = 0, i.e., where the projection p of s is a constant
section p0. We must then show that p0 is necessarily a torsion point.

4.2. The constant case. The word constant here refers not to the semiabelian scheme G/X , which
we still assume to be nonconstant (q /∈ E0(Q

alg)), but to the section π ◦ s := p = p0 ∈ E0(Q
alg).

However, the duality properties of the Poincaré biextension P0 of E0× Ê0 by Gm enable us to permute
the roles of q and p, thereby translating the problem into one on the constant semiabelian variety
G ′p0
= P0|p0×Ê0

∈ Ext(Ê0,Gm) parametrized by the point p0 of (the bidual of) E0. We must then prove
that p0 is torsion, i.e., that G ′p0

is isosplit.
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Assume for a contradiction that p0 is not torsion. Then for each ξ in the set 4, there is a relation
np0 −mδq(ξ) = 0 with nm 6= 0, so q(ξ) lies in the divisible hull of Z.δp0, and is not torsion either.
Consider the constant semiabelian surface G ′p0

∈ Ext(Ê0,Gm). By duality, we can view s as a section
š ∈ G ′p0

(X), and s(ξ) as a point š(ξ) on G ′p0
projecting to q(ξ) in Ê0. Furthermore, š(ξ) is a nontorsion

Ribet point of G ′p0
if and only if s(ξ) is a nontorsion Ribet point of Gq(ξ): in the setting of Section 1.2,

this is clear when ϕ− ϕ̂ is an isomorphism, and it remains true in general via an isogeny. (In fact, it is
proven in [Bertrand and Edixhoven 2019, Remark 5.4.1], that the 1-motive attached to sϕ,q is isogenous
to its Cartier dual as soon as ϕ− ϕ̂ is an isogeny.)

Therefore, the image š(X) of š is an irreducible curve in G ′p0
which contains infinitely many points

of the group 0′0 formed by all the Ribet points of G ′p0
. Since this group has finite rank (at most 1),

McQuillan’s Mordell–Lang theorem [1995], as recalled in Section 1.3(v), can be applied to G ′p0
. We

derive that š factors through a translate by a Ribet point of a strict connected algebraic subgroup of G ′p0
.

Since p0 is not torsion, the only such one is Gm , so q(X) reduces to a point of Ê0. This contradicts our
assumption that q is not constant, and concludes the proof of Theorem 1. �

4.3. Further comments. We here list properties of Ribet points and sections which although not used in
the proof, may be relevant to further studies of unlikely intersections.

Remark 1 (in relation with Proposition 2). Attached to the divisor at infinity Dξ of the standard compact-
ification of Gq(ξ), there is a canonical “relative height” ĥDξ

, which vanishes on the Ribet points of Gq(ξ);
see [Bertrand 1995, §3]. Is there a Zimmer-like comparison of ĥDξ

with a Weil height hDξ
, of the type

ĥDξ
− hDξ

= O((ĥ(q(ξ)))1/2), or even just o(ĥ(q(ξ))), where ĥ is the Néron–Tate height on Ê0(Q
alg)?

Bounded height on 4 would then follow in all cases, “weakly special” or not. See [Chambert-Loir 1999,
Theorem 5.5] for an Arakelov approach to this problem.

Remark 2 (on the Betti maps). Let ξ ∈ 4. By [Bertrand 1995, Theorem 4], the Ribet point s(ξ) lies
in the maximal compact subgroup of its fiber Gan

ξ . So its logarithm U (ξ) lies in 5Gξ
⊗R, and its Betti

coordinate b0(ξ) is a real number. Similarly, the Betti coordinate bR
0 of the Betti map U R

B attached
to U R

= logG(s
R) is actually real-valued. But a priori, not the Betti coordinate b0 of U . It would be

interesting to characterize the sections s ∈ G(X) whose images meet the union of the maximal compact
subgroups of all the fibers infinitely often.

Remark 3 (about effectivity). As suggested in Section 2.1.3(A) (see also Section 1.3(vii)), making the
“constants” of the text effective in terms of the initial datas X, E0, q, s, requires a global version of
Proposition 1. One should here start with the uniformization map Unif : P̃0 ' Co (C×C)→ Pan

0 of the
Poincaré biextension itself, thereby reflecting the symmetric roles played by p and q in the construction
of Ribet sections. As far as the dependence in s is concerned, a first aim would be to show that these
constants are uniformly bounded in terms of the degree of the curve W = s(X) in a projective embedding
of G. We point out that this aim has indeed been reached in various versions of the Mordell–Lang problem
itself; see [Hrushovski and Pillay 2000] for a differential algebraic approach (inspired by work of Buium,
and recently sharpened in [Binyamini 2017]) and [Rémond 2011, Thorem 2.4], for the general case.
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5. The Zilber–Pink conjecture for P0

Pink’s generalization of the conjectures on unlikely intersections proposed by Bombieri, Masser, Zannier
and by Zilber asserts:

Conjecture [Pink 2005, Conjecture 1.3]. Let S/C be a mixed Shimura variety, and let W be an irreducible
algebraic subvariety of S, of dimension d. Assume that the intersection of W with the union of all the
special subvarieties of S of codimension > d is Zariski dense in W . Then, W is contained in a special
subvariety of S of positive codimension.

As in the text, let again E0/Q
alg be an elliptic curve with complex multiplications, with dual Ê0 '

Ext(E0,Gm), and let P0/Q
alg be the Poincaré biextension of E0× Ê0 by Gm . This is a Gm-torsor over

E0× Ê0, which admits two families of group laws. Namely, for any q ∈ Ê0, the restriction of P0 above
E0×{q} is the semiabelian variety attached to q , viewed as a point in Ext(E0,Gm), while for any p ∈ E0,
the restriction of P0 above {p}× Ê0 is the semiabelian variety attached to p, viewed by biduality as a
point in Ext(Ê0,Gm)' E0. The important point in this section is that P0 admits a canonical structure of
a mixed Shimura variety, which is described in detail in [Bertrand and Edixhoven 2019]. However, only a
minimal knowledge of MSV theory will be needed to prove Theorem 3 of the introduction.

Before proving this theorem, we note (as pointed out by J. Pila) that it completely establishes Theorem 4,
i.e., Pink’s conjecture for the MSV S = P0 when the variety W is defined over Qalg. Indeed, if the
dimension d of W is 0 or 3, there is nothing to prove. If d = 2, then the special subvarieties of P0 of
codimension > d are its special points, and the statement reduces to the André–Oort conjecture, which
follows in this case from [Gao 2017b, Theorem 13.6]. So, only the case d = 1, i.e., Theorem 3, needs to
be treated.

Through the first family of group laws above, the projection $ : P0→ Ê0 turns P0 into the universal
extension G of E0 by Gm , over the moduli space Ê0. For any integer n, we will denote by [n]G the
morphism of multiplication by n of the group scheme G/Ê0. Its Ribet sections are well defined, and
we call their images Ribet curves of P0, in the sense of G/Ê0. Similarly, the projection $ ′ : P0→ E0

turns P0 into a group scheme G′/E0, with morphisms [n]G′ and Ribet curves of P0, in the sense of G′/E0.
Furthermore, [n]G and [n]G′ induce the same morphism [n] on the fiber Gm of ($,$ ′) above (0, 0). With
these definitions in mind, we have the following explicit necessary conditions for an irreducible curve to
be special in P0. It follows from [Bertrand and Edixhoven 2019, §5], (see also [Bertrand 2011, §2]) that
they are also sufficient, but we will not need this sharper result.

Proposition 3. Let C be a special curve of the MSV P0. Then:

(i) If $ : C→ Ê0 is dominant, C is a Ribet curve in the sense of G/Ê0.

(ii) If $ ′ : C→ E0 is dominant, C is a Ribet curve in the sense of G′/E0.

(iii) If ($ ′,$)(C) is a point (p0, q0) of E0× Ê0, this point is a torsion point, and C is the fiber of P0

above (p0, q0).
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Notice that most special curves C satisfy both (i) and (ii), and are therefore Ribet curves in both senses.
This reflects the self-duality of nontorsion Ribet sections, already encountered in Section 4.2. As for (iii),
it occurs if neither (i) nor (ii) are satisfied.

Proof. We will use the following facts, for which we refer to [Pink 2005; Gao 2017a]:

(F1) A point P of P0 is special (if and) only if (p, q) = ($ ′,$)(P) is torsion in E0 × Ê0 and P is
torsion in the (isosplit) extension Gq (equivalently, in the isosplit G′p).

(F2) A special curve of P0 contains a Zariski-dense set of special points, hence by F1 a Zariski-dense set
of torsion points of the various fibers of G/Ê0 (or of G′/E0).

(F3) The image of a special subvariety under a Shimura morphism (such as $ ′,$, [n]G, [n]G′) is a
special subvariety.

Let then C ⊂ P0 = G be a special curve, dominating Ê0 as in (i). By base extension along the finite
cover $ : X := C → Ê0, we can view the diagonal map X → CX as a section s of the group scheme
G = GX := G ×Ê0

X over X . We can now apply Lemma 2 of Section 1.3 (relative Manin–Mumford)
to s ∈ G(X): by Facts F1 and F2, the set 4tor

s is infinite and we infer that s is a Ribet section of
G/X , or factors through a torsion translate of Gm/X = Gm × X . In the first case, the image C ⊂ G of
s(X)⊂ CX ⊂ GX is a Ribet curve of P0 in the sense of G/Ê0, as was to be shown.

In the second case, a multiple C ′ := [n]G(C) of C lies in the fiber Gm × Ê0 of P0 above p = 0, and
is still a special curve of P0 by F3. So, by F2, C ′ contains infinitely many special points of P0 lying
in Gm × Ê0. But by F1, these special points are contained in (in fact, fill up) the torsion of the group
Gm × Ê0. We can now apply the standard Manin–Mumford theorem [Hindry 1988] to C ′ ∩ (Gm × Ê0)

tor,
and deduce that C ′ is a torsion translate of Gm ×{0} or of {1}× Ê0. The first conclusion cannot occur
since C ′ too dominates Ê0. So, a multiple [m]C ′ = [mn]G(C) of C is the image of the unit section of
G/Ê0. Therefore, C is in all cases a Ribet curve of P0 in the sense of G/Ê0.

The same proof applies to (ii), while (iii) easily follows from F1 (or from F3, in view of [Gao 2017a]).
This concludes the proof of Proposition 3. �

We can now turn to the proof of Theorem 3. We will need the following complement to Fact F3:

(F4) Under a Shimura morphism, the irreducible components of the inverse image of a special subvariety
are special subvarieties.

Proof of Theorem 3. Let W/Qalg be an irreducible algebraic curve in P0, which contains infinitely many
points lying on special curves of P0. We must show that W is contained in a special surface of P0. We
deduce from Proposition 3 that

(a) W contains infinitely many points lying on Ribet curves in the sense of G/Ê0, and if not,

(b) W contains infinitely many points lying on Ribet curves in the sense of G′/E0, and if not,

(c) W contains infinitely many points lying in the fibers of P0 above the torsion points of E0× Ê0.
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Assume first that $ :W → Ê0 is dominant, and that we are in case (a). Base changing along $ : X =
W → Ê0 as above, we may view the diagonal map X→WX ⊂ GX = G as a section s ∈ G(X), to which
Theorem 1 (or the relative Mordell–Lang Theorem 2) of Section 1.1 applies. By (a), the set 4s is infinite,
and we infer that the sections p and q attached to s are linearly dependent over End(E0). So, ($ ′,$)(W )

lies in a torsion translate of an elliptic curve B ⊂ E0× Ê0 passing through 0. By [Gao 2017a], these are
special curves of the MSV E0× Ê0. Therefore, by F4, W lies in a special surface of P0. Vice versa, the
same conclusion holds if $ ′ :W → E0 is dominant and we are in case (b).

Secondly, assume that W still dominates Ê0, but that we are in case (b). As just pointed out, we can
then assume that W does not dominate E0, and so, projects to a point p ∈ E0 under $ ′. If p is not torsion,
W lies in the nonisosplit extension G′p =$ ′−1(p) (which is then not a special surface of P0). Now, the
Ribet curves in the sense of G′/E0 meet G′p at Ribet points of G′p, so by (b), W contains infinitely many
Ribet points of G′p. We deduce from the standard Mordell–Lang theorem [McQuillan 1995] that W lies
in a translate of Gm by a Ribet point. But then, W cannot dominate Ê0. So, p is a torsion point, and
W lies in $ ′−1(p), which is a special surface of P0 by F4. Vice versa, the same conclusion holds if
$ ′ :W → E0 is dominant and we are in case (a).

Thirdly, assume that W dominates Ê0 or E0, and that we are in case (c). Then, the projection W ′ of W
in E0× Ê0 is a curve which contains infinitely many torsion points of E0× Ê0. By Manin–Mumford, we
deduce that W ′ lies in a torsion translate of an elliptic curve B ⊂ E0× Ê0 passing through 0. So, W lies
in a special surface of P0.

It remains to study the case when W projects to a point (p, q) of E0× Ê0 under ($ ′,$). Then, the
only special curve of type (c) which meets W is the closure of W itself, so in case (c), (p, q) is a torsion
point, and W lies in (many) a special surface of P0. Assume finally that we are in case (a), or in case (b).
Then, W contains a Ribet point of Gq , or of G′p, projecting to p ∈ E0, or to q ∈ Ê0. In both cases, we
deduce that the points p and q are linearly dependent over End(E0). So, the projection to E0× Ê0 of W
lies in a torsion translate of an elliptic curve B passing through 0, and W lies in a special surface of P0.
This concludes the proof of Theorem 3. �
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Congruences of parahoric group schemes
Radhika Ganapathy

Let F be a nonarchimedean local field and let T be a torus over F . With T NR denoting the Néron–Raynaud
model of T , a result of Chai and Yu asserts that the model T NR

×OF OF/p
m
F is canonically determined

by (Trl(F),3) for l � m, where Trl(F)= (OF/p
l
F , pF/p

l+1
F , ε) with ε denoting the natural projection

of pF/p
l+1
F on pF/p

l
F , and 3 := X∗(T ). In this article we prove an analogous result for parahoric group

schemes attached to facets in the Bruhat–Tits building of a connected reductive group over F .

1. Introduction

Let F be a nonarchimedean local field, OF its ring of integers, and pF its maximal ideal. Let T be
a torus over F . Such a torus is canonically determined by the lattice 3 := X∗(T ) together with the
action of 0F = Gal(Fs/F) on it (here Fs is a separable closure of F). For large m, the action of 0F

on 3 factors through the quotient 0F/I m
F of 0F , where I m

F is the m-th higher ramification subgroup
(with upper numbering) of the inertia group IF . This Galois group depends only on truncated data
Trm(F) := (OF/p

m
F , pF/p

m+1
F , ε), where ε is the natural projection of pF/p

m+1
F on pF/p

m
F , via Deligne’s

theory; see (b) below.
Let T NR denote the Néron–Raynaud model of T (see [Bosch et al. 1990]). The main result of [Chai

and Yu 2001] asserts that T NR
×OF OF/p

m
F is canonically determined by (Trl(F),3) for l � m (see

Theorem 8.5 of [Chai and Yu 2001] for the precise statement; the parameters that l depends on are
also explicitly determined there). With T denoting the neutral component of T NR this also implies that
T ×OF OF/p

m
F is canonically determined by (Trl(F),3) with l as above. From the point of view of

Bruhat–Tits theory, when the connected reductive group is a torus, the model T can be thought of as
its Iwahori (or parahoric) group scheme. The purpose of this article is to prove an analogous result for
parahoric group schemes attached to facets in the Bruhat–Tits building of a connected reductive group
over F .

Our motivation for proving such a result arises naturally from the question of generalizing Kazhdan’s
theory of studying representation theory of split p-adic groups over close local fields to general connected
reductive groups. Let us briefly recall the Deligne–Kazhdan correspondence:

(a) Given a local field F ′ of characteristic p and an integer m ≥ 1, there exists a local field F of
characteristic 0 such that F ′ is m-close to F , i.e., OF/p

m
F
∼=OF ′/p

m
F ′ .

MSC2010: primary 22E50; secondary 11F70.
Keywords: parahoric, close local fields.
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(b) Deligne [1984] proved that if Trm(F) ∼= Trm(F ′), then the Galois groups Gal(Fs/F)/I m
F and

Gal(F ′s/F ′)/I m
F ′ are isomorphic. This gives a bijection

{Iso. classes of cont., complex, f.d. representations of Gal(Fs/F) trivial on I m
F }

←→ {Iso. classes of cont., complex, f.d. representations of Gal(F ′s/F ′) trivial on I m
F ′}.

Moreover, all of the above holds when Gal(Fs/F) is replaced by WF , the Weil group of F .

(c) Let G be a split, connected reductive group defined over Z. For an object X associated to the field F ,
we will use the notation X ′ to denote the corresponding object over F ′. Kazhdan [1986] proved that
given m ≥ 1, there exists l ≥ m such that if F and F ′ are l-close, then there is an algebra isomorphism
Kazm :H(G(F), Km)→H(G(F ′), K ′m), where Km is the m-th usual congruence subgroup of G(OF ).
Hence, when the fields F and F ′ are sufficiently close, we have a bijection

{Iso. classes of irr. admissible representations (5, V ) of G(F) such that 5Km 6= 0}

←→ {Iso. classes of irr. admissible representations (5′, V ′) of G(F ′) such that 5′K
′
m 6= 0}.

These results suggest that, if one understands the representation theory of Gal(Fs/F) for all local fields
F of characteristic 0, then one can use it to understand the representation theory of Gal(F ′s/F ′) for a
local field F ′ of characteristic p, and similarly, with an understanding of the representation theory of
G(F) for all local fields F of characteristic 0, one can study the representation theory of G(F ′), for F ′

of characteristic p. This method has proved useful for studying the local Langlands correspondence for
reductive p-adic groups in characteristic p via the corresponding theory in characteristic 0 (see [Badulescu
2002; Lemaire 2001; Ganapathy 2015; Aubert et al. 2016; Ganapathy and Varma 2017]). An obvious
observation, that goes into proving the Kazhdan isomorphism, is

G(OF )/Km ∼= G(OF/p
m
F )
∼= G(OF ′/p

m
F ′)
∼= G(OF ′)/K ′m (1-1)

if the fields F and F ′ are m-close.
A useful variant of the Kazhdan isomorphism is now available for split reductive groups. Let I

be the standard Iwahori subgroup of G. It is shown in [Bruhat and Tits 1984] that there is a smooth
affine group scheme I defined over OF with generic fiber G ×Z F such that I(OF ) = I . Define
Im := Ker(I(OF )→ I(OF/p

m
F )). In Section 3 of [Ganapathy 2015], a presentation has been written

down for this Hecke algebra H(G, Im) (extending Theorem 2.1 of [Howe 1985] for GLn). Furthermore if
the fields F and F ′ are m-close, an argument of J.K. Yu (see Section 3.4.A of [Ganapathy 2015]) gives
an isomorphism

β : I/Im→ I ′/I ′m . (1-2)

Let us note here that unlike (1-1), the above isomorphism is not obvious since the group scheme I
is defined over OF and not over Z. In fact the above isomorphism is obtained by proving that the
reduction I×OF OF/p

m
F depends only on Trm(F) and then evaluating it at the OF/p

m
F -points. Using the

presentation and this isomorphism, one gets an obvious map ζm :H(G(F), Im)→H(G(F ′), I ′m), when
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the fields F and F ′ are m-close (also see [Lemaire 2001] for GLn), which was shown in [Ganapathy
2015] to be an isomorphism of rings. Hence we obtain a bijection

{Iso. classes of irr. ad. representations (5, V ) of G(F) with 5Im 6= 0}

←→ {Iso. classes of irr. ad. representations (5′, V ′) of G(F ′) with 5′I
′
m 6= 0}.

When one wants to prove the Kazhdan isomorphism or its variant for general connected reductive
groups, one is naturally led to consider parahoric subgroups, study the reduction of the underlying
parahoric group schemes mod pm

F , and prove that they are determined by truncated data. That is the goal
of the present article. Our proof is different from J.K.Yu’s approach of proving (1-2) for the Iwahori
group scheme of a split p-adic group. We will use the construction of the parahoric group scheme via the
Artin–Weil theorem (see [Landvogt 1996]). Let us summarize the main results of this paper.

First, given a split connected reductive group over Z, one can unambiguously work with this group
over an arbitrary field after base change. More generally, given a connected reductive group G over F ,
we first need to make sense of what it means to give a group G ′ over F ′ where F ′ is suitably close
to F . Let us first explain how this is done for quasisplit groups. Let (R,1) be a based root datum
and let (G0, T0, B0, {uα}α∈1) be a pinned, split, connected, reductive Z-group with based root datum
(R,1). We know that the F-isomorphism classes of quasisplit groups Gq that are F-forms of G0 are
parametrized by the pointed cohomology set H 1(0F ,Aut(R,1)) (see Theorem 3.2). Let Eqs(F,G0)m

be the set of F-isomorphism classes of quasisplit groups Gq that split (and become isomorphic to
G0) over an at most m-ramified extension of F . It is easy to see that this is parametrized by the
cohomology set H 1(0F/I m

F ,Aut(R,1)). Using the Deligne isomorphism, we prove that there is a
bijection Eqs(F,G0)m → Eqs(F ′,G ′0)m , Gq → G ′q , provided F and F ′ are m-close. Moreover, with
the cocycles chosen compatibly, this will yield data (Gq , Tq , Bq) over F (where Tq is a maximal F-
torus and Bq is an F-Borel containing Tq ), and correspondingly (G ′q , T ′q , B ′q) over F ′, together with an
isomorphism X∗(Tq)→ X∗(T ′q) that is Delm-equivariant (see Lemma 3.4). It is a simple observation that
the maximal F-split subtorus Sq of Tq is a maximal F-split torus in Gq (see Lemma 4.1). We prove
that there is a simplicial isomorphism between the apartments Am :A(Sq , F)→A(S′q , F ′) if the fields
F and F ′ are m-close (see Proposition 4.4 for precise statement). Let F be a facet in A(Sq , F) and
F ′=Am(F). Then F ′ is a facet in A(S′q , F ′). We prove that the parahoric group schemes PF×OF OF/p

m
F

and PF ′ ×OF ′
OF ′/p

m
F ′ are isomorphic provided F and F ′ are l-close for l � m (see Theorem 4.5 and

Proposition 4.10 for precise statements). To prove this theorem, we prove an analogous statement for the
root subgroup schemes if the fields F and F ′ are sufficiently close, invoke the result of Chai–Yu [2001]
that the reduction of the (lft) Néron models of the corresponding tori are isomorphic if the fields are
sufficiently close, and use the Artin–Weil theorem on obtaining group schemes as solutions to birational
group laws.

To move to the general case, we recall that any connected reductive group is an inner form of a
quasisplit group, and the F-isomorphism classes of inner forms of Gq is parametrized by the cohomology



1478 Radhika Ganapathy

set H 1(Gal(Fun/F),Gad
q (Fun)) (where Fun is the maximal unramified extension of F contained in Fs).

With G ′q corresponding to Gq as above, we prove in Lemma 5.1 that

H 1(Gal(Fun/F),Gad
q (Fun))∼= H 1(Gal(F ′un/F ′),Gad

q (F
′

un))

as pointed sets if the fields F and F ′ are m-close using the work of Kottwitz [2014]. Using the work
of DeBacker and Reeder [2009] it is further possible to refine the above and obtain an isomorphism
at the level of cocycles (see Section 5.A). All the above yields data (G, S, A) where G is a connected
reductive group over F that is an inner form of Gq , a maximal Fun-split F-torus S that contains a maximal
F-split torus A of G, and similarly (G ′, S′, A′) over F ′, together with a Gal(F̂un/F)-equivariant simplicial
isomorphism Am,∗ :A(S, F̂un)→A(S′, F̂ ′un) (see Lemma 6.1). Here F̂un denotes the completion of Fun.
Let F̃∗ be a Gal(F̂un/F)-invariant facet in A(S, F̂un) and let F̃ ′

∗
= Am,∗(F̃∗). We prove that there is a

Gal(F̂un/F)-equivariant isomorphism

p̃m,∗ : PF̃∗ ×OF̂un
OF̂un

/pm
F̂un
→ PF̃ ′∗

×O
F̂ ′un

OF̂ ′un
/pm

F̂ ′un

provided F and F ′ are l-close (see Proposition 6.2). With F∗ := (F̃∗)Gal(F̂un/F) and F ′
∗
:= (F̃ ′

∗
)Gal(F̂ ′un/F ′),

the above descends to an isomorphism of group schemes

pm,∗ : PF∗ ×OF OF/p
m
F → PF ′∗ ×OF ′

OF ′/p
m
F ′ .

As a corollary, we obtain that

PF∗(OF/p
m
F )
∼= PF ′∗(OF ′/p

m
F ′)

as groups provided the fields F and F ′ are l-close.

2. Some review

Unless otherwise stated, F will denote a nonarchimedean local field, that is, a complete discretely valued
field with perfect residue field. Let OF denote its ring of integers, pF its maximal ideal, ω = ωF an
additive valuation on F normalized so that ω(F)= Z, and π = πF a uniformizer. Fix a separable closure
Fs of F and let 0F = Gal(Fs/F).

2.A. Deligne’s theory. Let m≥ 1. Let IF be the inertia group of F and I m
F be its m-th higher ramification

subgroup with upper numbering (see Chapter IV of [Serre 1979]). Let us summarize the results of Deligne
[1984] that will be used later in this article. Deligne considered the triplet Trm(F)= (OF/p

m
F , pF/p

m+1
F , ε),

where ε is the natural projection of pF/p
m+1
F on pF/p

m
F , and proved that 0F/I m

F is canonically determined
by Trm(F). Hence an isomorphism of triplets ψm : Trm(F)→ Trm(F ′) gives rise to an isomorphism

0F/I m
F

Delm−−−→0F ′/I m
F ′ (2-1)

that is unique up to inner automorphisms (see Equation 3.5.1 of [Deligne 1984]). More precisely, given
an integer f ≥ 0, let ext(F) f denote the category of finite separable extensions E/F satisfying the
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following condition: The normal closure E1 of E in Fs satisfies Gal(E1/F) f
= 1. Deligne proved that an

isomorphism ψm : Trm(F)→ Trm(F ′) induces an equivalence of categories ext(F)m→ ext(F ′)m . Here
is a partial description of the map Delm (see Section 1.3 of [Deligne 1984]). Let L be a finite totally
ramified Galois extension of F satisfying I (L/F)m = 1 (here I (L/F) is the inertia group of L/F). Then
L = F(α) where α is a root of an Eisenstein polynomial

P(x)= xn
+π

∑
ai x i

for ai ∈OF . Let a′i ∈OF ′ be such that ai mod pm
→ a′i mod p′m . So a′i is well-defined mod p′m . Then

the corresponding extension L ′/F ′ can be obtained as L ′ = F ′(α′) where α′ is a root of the polynomial

P ′(x)= xn
+π ′

∑
a′i x

i

where π mod pm
F → π ′ mod pm

F ′ . The assumption that I (L/F)m = 1 ensures that the extension L ′ does
not depend on the choice of a′i , up to a unique isomorphism.

2.B. The main theorem of Chai–Yu. Let T be a torus over F and let K/F be a Galois extension such
that T is split over K . Let 0K/F =Gal(K/F) and let 3= X∗(T ), the cocharacter group of T . Then T is
determined by the 0-module3 up to a canonical isomorphism. With F ′ denoting another nonarchimedean
local field, we will denote the analogous objects over F ′ with a superscript ′. We introduce the following
series of congruence notation:

• (OF ,OK ) ≡ψm (OF ′,OK ′) (level m): this means that ψm is an isomorphism OK /π
mOK →

OK ′/π
′mOK ′ and induces an isomorphism OF/π

mOF → OF ′/π
′mOF ′ . We denote this induced

isomorphism also by ψm . Having chosen the uniformizers, this also induces an isomorphism
Trm(F)→ Trm(F ′), which we still denote by ψm .

• (OF ,OK , 0K/F )≡ψm ,γ(OF ′,OK ′, 0K ′/F ′)(level m): this means (OF ,OK )≡ψm(OF ′,OK ′)(level m),
γ is an isomorphism 0K/F → 0K ′/F ′ , and ψm is 0K/F -equivariant relative to γ .

• (OF ,OK , 0K/F ,3) ≡ψm ,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′) (level m): this means (OF ,OK , 0K/F ) ≡α,β

(OF ′,OK ′, 0K ′/F ′) (level m) and λ is an isomorphism 3→3′ which is 0K/F -equivariant relative
to γ .

We say that “X is determined by (OF/π
mOF ,OK /π

mOK , 0K/F ,3)
′′ to mean that if

(OF ,OK , 0K/F ,3)≡ψm ,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′)(level m)

then there is a canonical 0K/F -equivariant isomorphism X→ X ′ determined by (ψm, γ, λ).
Let T NR denote the Néron–Raynaud model of T considered in [Chai and Yu 2001]. This is a smooth

model of T with connected generic fiber such that T NR(OF̂un
) is the maximal bounded subgroup of

T (F̂un), where F̂un is the completion of the maximal unramified extension Fun of F contained in Fs . This
model is of finite type over OF .
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Theorem 2.1 [Chai and Yu 2001, Theorem 8.5 ]. Let m ≥ 1. There exists l ≥ m such that the model

T NR
×OF OF/p

m
F is determined by (OF/π

lOF ,OK /π
lOK , 0K/F ,3).

The parameters that l depends on are also explicitly determined in Theorem 8.5 of [Chai and Yu 2001].
Let T denote the neutral component of T NR . This is a smooth model over OF with connected generic
and special fibers, and is of finite type over OF . Its OF̂un

-points is the Iwahori subgroup of T (F̂un).

Lemma 2.2. Let T , l ≥ m as above. Then the model

T ×OF OF/p
m
F is determined by (OF/π

lOF ,OK /π
lOK , 0K/F ,3).

Proof. This lemma follows from Lemma 8.5 of [Chai and Yu 2001] and the observation that the formation
of T commutes with any base change on Spec(OF ), that is,

(T NR
×OF OF/p

m
F )

0
= T ×OF OF/p

m
F . �

When the connected reductive group is a torus T , the model T is its Iwahori (or parahoric) group
scheme. We will study congruences of parahoric group schemes attached to facets in the Bruhat–Tits
building of a connected reductive group G over F . To this end, let us recall some results from Bruhat–Tits
theory and the construction of parahoric group schemes (using Artin–Weil theorem, following [Landvogt
1996]), that will used later in this article.

Given a connected reductive group G over F , let Gder denote the derived subgroup of G, and Gad its
adjoint group. Let B(G, F) denote the reduced Bruhat–Tits building of G over F , that is, the building
of Gder over F . The building is obtained by gluing together apartments A(S, F) where S runs over
the maximal F-split tori in G. The apartment A(S, F) is an affine space under X∗(Sder)⊗Z R where
Sder
= S∩Gder. Let F be a facet in B(G, F) and let PF denote the parahoric subgroup of G(F) attached

to F . Bruhat–Tits show that there exists a smooth affine OF -group scheme PF with generic fiber G such
that PF (OF )= PF . We recall the construction of PF , following Landvogt [1996]. The parahoric group
scheme is first constructed over F̂un (note that G F̂un

is quasisplit), and the model over F is obtained using
étale descent.

2.C. Structure of quasisplit groups. Let G denote a quasisplit connected reductive group over F . Let S
be a maximal F-split torus in G and let T and N be the centralizer and normalizer of S in G, respectively.
Let B be an F-Borel subgroup of G with T ⊂ B. Note that T is a maximal F-torus in G. Further G and
T split over Fs and the Galois group 0F acts on the group of characters X∗(T ) of T , preserves the root
system 8(G, T ) of T in G, and also the base 1̃ of 8(G, T ) associated to the Borel subgroup B. Let
K ⊂ Fs denote the smallest subextension of Fs splitting T (and hence G). Let 8(G, S) denote the set of
roots of S in G.

2.C.1. Root subgroups Ua, a ∈ 8(G, S). The elements of 8(G, S) are restrictions of elements of
8(G, T ) to S, and the restrictions to S of the elements of 1̃ form a basis 1 of 8(G, S). Moreover, the
elements of 1̃ that have the same restriction to S form a single Galois orbit for the action of 0F on 1̃.
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For α ∈8(G, T ), let Ũα be the corresponding root subgroup of G K . The group 0K/F permutes Ũα and
γ (Ũα)= Ũγ (α). Let 6α be the stabilizer of Ũα and let Lα be the corresponding field of invariants. We
say that Lα is the field of definition of α. Note that Ũα is defined over Lα by Galois descent. Let {x̃α :
Ga,Lα → Ũα | α ∈8(G, T )} denote a Chevalley–Steinberg splitting of G. It has the following properties:

(a) If the restriction a of α ∈ 8(G, T ) to S is an indivisible element of 8(G, S), then x̃α is an Lα-
isomorphism of Ga to Ũα and we have x̃γ (α) = γ ◦ x̃α ◦ γ−1 for each γ ∈ Gal(K/F).

(b) If the restriction a of α∈8(G, T ) to S is divisible, then there exists two distinct roots β, β ′∈8(G, T )
of restriction a/2 to S such that α= β+β ′; we have Lβ = Lβ ′ , Lβ is a quadratic separable extension
of Lα and for each γ ∈ Gal(K/F) there exists ε = ±1 such that γ ◦ x̃α(u) ◦ γ−1

= x̃γ (α)(εu); if
γ ∈Gal(K/Lα), we have ε =−1 if and only if γ induces the unique nontrivial automorphism of Lβ .

Now we describe all possible structures for the root subgroups Ua, a ∈8(G, S). We may and do assume
that a∈1. Let 1̃a be the orbit of0K/F in 1̃. Let π :Ga

→〈Ua,U−a〉 be the universal cover of the semisim-
ple group generated by Ua and U−a . The classification of Dynkin diagrams gives two possible cases:

Case I. The group Ga
K is isomorphic to a product of the groups SL2 indexed by 1̃a and are permuted

transitively by Gal(K/F), the field of definition of the factor of index α is Lα and Ga ∼= ResLα/F SL2.
Then Ua ∼= ResLα/FŨα for α ∈ 1̃a . If x̃α : Lα → Ũα, then xa = ResLα/F x̃α is a F-isomorphism of
ResLα/F Ga to Ua; the pair (Lα, xa) is called a pinning of Ua . Via xa , we obtain an isomorphism of Lα
with Ua(F), which we also denote by xa . If (x̃β)β∈1̃ is an Chevalley–Steinberg splitting of G, then we
have for each u ∈ Lα,

xa(u)=
∏
β∈1̃a

x̃β(uβ) (2-2)

In the above, β = γ (α) for some γ ∈ 0K/F and uβ := γ (u). The subgroups U−a and the splitting x−a

are obtained using U−α and x̃−α analogously.

Case II. The group Ga
K is isomorphic to a product of the groups SL3 indexed by the set I consisting of

pairs of two elements {α, α} of 1̃a such that α+α is a root. We have Lα = Lα , Lα is a quadratic extension
of Lα+α . The simple factor G of index {α, α} is defined over Lα+α , split over Lα , and is isomorphic over
Lα+α to the special unitary group of the Hermitian form h : (x−1, x0, x1)→ τ(x−1)x1+τ(x0)x0+τ(x1)x−1

over L3. Here τ is the unique nontrivial element of Gal(Lα/Lα+α). We denote this simple factor as SU3,
and then Ga ∼= ResLα+α/F SU3.

Let H0(Lα, Lα+α) := {(u, v) ∈ Lα × Lα | v+ τ(v)= uτ(u)} denote the Lα+α-group with group law
(u, v) · (ũ, ṽ) = (u + ũ, v+ ṽ+ τ(u)ũ). Then ζ : (u, v)→ x̃α(u)x̃α+α(−v)x̃α(τ (u)) is an Lα+α-group
isomorphism of H0(Lα, Lα+α) with the subgroup U = ŨαŨα+αŨα of G. Then Ua = ResLα+α/F U and
xa = ResLα+α/K ζ is an F-isomorphism of groups H(Lα, Lα+α) = ResLα+α/F H0(Lα, Lα+α) with Ua .
Further, for (u, v) ∈ Lα × Lα,

xa(u, v)=
∏

x̃β(uβ)x̃β+β(−vβ)x̃β(τ (uβ))
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In the above, for each β, we choose γ ∈Gal(K/F) such that β = γ (α); then β = γ (α), x̃β = γ ◦ x̃α ◦γ−1,
x̃β = γ ◦ x̃α ◦ γ−1, x̃β+β = γ ◦ x̃α+α ◦ γ−1, uβ = γ (u), vβ = γ (v).

Note that the root subgroup U2a(K ) associated to the root 2a consists of elements xa(0, v) where v is
an element of L0

α := {v ∈ Lα | v+τ(v)= 0}, and the map v→ xa(0, v) is an F-vector space isomorphism
of L0

α.

2.C.2. On the splitting extension of the root. Let a ∈8red(G, S) with 2a is not a root. We fix a pinning
(Lα, xa) of Ua where α ∈ 1̃a as in Case I above. The subset of endomorphisms of the F-vector space
Ua of the form µxa (t) : xa(u)→ xa(tu) for t ∈ Lα does not depend on the choice of (Lα, xa) (see
Section 4.1.8 of [Bruhat and Tits 1984]). This is denoted by La and is called the field attached of the root
a. It is isomorphic to Lα via the map t→ µxa (t). Its inverse gives an embedding of La ↪→ K . A similar
definition is obtained when 2a is a root in Section 4.1.14 of [Bruhat and Tits 1984].

2.C.3. Valuations. Let ω : F→ R× be as in Section 2.A, and we denote its extension to K also as ω.
The notion of valuation of root datum was defined in [Bruhat and Tits 1972]. For α ∈8(G, T ), put

φα(x̃α(u))= ω(u), u ∈ K×.

Then φ̃ = (φα)α∈8(G,T ) defines a valuation of the root datum (TK , (Ũα)α∈8(G,T )) in the group G(K )
(recall that G K is split). It is shown in [Bruhat and Tits 1984] that φ̃ descends to (T, (Ũa)a∈8(G,S)) and
defines a valuation on it. We explicitly define φa :Ua(F)\{1}→ R from φ̃. For a ∈8(G, S), let A (resp.
B) be the set of α ∈8(G, T ) whose restriction to S is a (resp. 2a). For u ∈Ua(F), there exist unique ũα
such that u =

∏
α∈A∪B ũα for an arbitrary ordering of A∪ B and we put

φa(u)= inf
(

inf
α∈A

φ̃α(ũα), inf
α∈B

1
2 φ̃α(ũα)

)
.

This number is independent of the choice of ordering of A∪B. Then φ= (φa)a∈8(G,S) defines a valuation
of root datum on (T, (Ua)a∈8(G,S)) (see Section 4.2.2 of [Bruhat and Tits 1984]).

2.D. Parahoric group schemes: quasisplit descent. In this section, we assume that F is also strictly
Henselian, that is its residue field is separably closed.

2.D.1. Affine root system and the associated Weyl groups. The apartment A(S, F) can also be thought
of as the set of valuations that are equipollent to φ = (φa)a∈8(G,S), where φ as above. This is an affine
space under X∗(Sder)⊗Z R and N (F) acts on it by affine transformations (see Section 6.2.2 of [Bruhat
and Tits 1972]). Let us denote the point of A(S, F) corresponding to φ as x0. For a ∈ 8(G, S), let
0a = φa(Ua(F)\{1}) and

0̃a = {φa(u) | u ∈Ua(F)\{1}, φa(u)= supφa(uU2a(F))}.

Here we have used the convention that U2a = 1 if 2a is not a root. Let

8af(G, S)= {ψ :A(S, F)→ R | ψ(·)= a(· − x0)+ l, a ∈8(G, S), l ∈ 0̃a}
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denote the set of affine roots of S in G. Choosing x0 allows us to identify A(S, F) with X∗(Sder)⊗Z R.
With this identification, the vanishing hyperplanes coming from 8(G, S)af makes A(S, F) into a
(poly)simplicial complex. The group generated by reflections through the hyperplanes coming from
8(G, S)af is the affine Weyl group denoted by W af. The extended affine Weyl group is defined as
W e
:= N (F)/T (F)1 where T (F)1 is the kernel of the Kottwitz homomorphism κT : T (F)→ X∗(T̂ IF )=

X∗(T )IF (see [Haines and Rapoport 2008]). With W :=W (G, S), the group W e hence fits into an exact
sequence

1→ X∗(T )IF →W e
→W → 1.

2.D.2. The associated root subgroup schemes. Let us recall the filtrations on root subgroups and the
associated root subgroup schemes from Section 4.3 of [Bruhat and Tits 1984]. For a ∈ 8(G, S), let
φa :Ua(F)→R∪{∞} be as above. For k ∈R, Let Ua,k = {u ∈Ua(F) | φa(u)≥ k}. Next, let us describe
the associated root subgroup schemes.

Case I. Let a ∈8red(G, S) such that 2a /∈8(G, S). For k ∈ 0̃a , let La,k = {u ∈ La |ω(u)≥ k}. Then La,k

is a free OF -module of finite type. Let La,k be the canonical smooth OF -group scheme associated to this
module. (More precisely, given a free OF -module M of finite type, the functor taking any OF -algebra R
to the additive group R⊗M is representable by a smooth OF -group scheme M whose affine algebra is
identified with the symmetric algebra of the dual of M .) Let Ua,k be the image under xa of La,k and let
Ua,k be the OF -group scheme obtained by transport of structure using xa . Then Ua,k has generic fiber Ua

and Ua,k(OF )=Ua,k . The definition is extended to k ∈ R\{0} in Section 4.3.2 of [Bruhat and Tits 1984].

Case II. Let a ∈ 8red(G, S) with 2a ∈ 8(G, S). The root subgroup Ua ∼= ResL2a
F H0(La, L2a) via xa .

In order to describe the root subgroup schemes of the filtration Ua,k , we use an alternate description of
H0(La, L2a). Recall that L0

a is the set of trace 0 elements of La . Let L1
a denote the set of trace 1 elements

in La and let

(La)
1
max := {λ ∈ L1

a | ω(λ)= sup{ω(x) | x ∈ L1
a}}.

Note that (La)
1
max 6= ∅ and when the residue field of La is of characteristic 6= 2, 1/2 ∈ (La)

1
max. Let

λ ∈ (La)
1
max and let Hλ

0 := La × L0
a equipped with the action

(u, v) · (ũ, ṽ)= (u+ ũ, v+ ṽ− λuτ(ũ)+ τ(λ)τ(u)ũ). (2-3)

Then Hλ
0 is an algebraic L2a-group and jλ : (u, v)→ (u, v− λτ(u)u) is an L2a-group isomorphism of

H0(La, L2a) onto Hλ
0 . Let Hλ

= ResL2a
F Hλ

0 .
Let γ =− 1

2ω(λ). For k ∈ 0̃a , let l = 2k+ 1
ea

, and

La,k+γ := {u ∈ La | ω(u)≥ k+ γ } and L0
a,l := {u ∈ L0

a | ω(u)≥ l}.

Up to isomorphism, there exists a unique smooth affine OF -group scheme Hλ
k of finite type with generic

fiber Hλ and such that Hλ
k (OF )= La,k+γ × L0

a,l and a group law, which induces the group law (2-3) on
the generic fiber (See Section 4.3.5 of [Bruhat and Tits 1984]). In more detail, let La,k+γ and L0

a,l be the
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canonical OL2a -group schemes associated to La,k+γ and L0
a,l . Let Hλ

0,k = La,k+γ ×L0
a,l . The map

La × La→ L0
a, (u, u′)→ λuτ(ũ)− τ(λ)τ(u)ũ

can be extended uniquely to a morphism La,k+γ ×La,k+γ → L0
a,l . Hence the group law can be extended

to Hλ
0,k . Let Hλ

k :=Res
OL2a
F Hλ

0,k . By transport of structure using xa ◦ResL2a
F j−1

λ , we obtain the OF -group
scheme Ua,k . These definitions are extended to k, l ∈ R\{0} in Section 4.3.8 of [Bruhat and Tits 1984].

Using the isomorphism v→ xa(0, v) from L0
a→U2a , we obtain from the scheme L0

k (for k ∈ω(L0
a)\0),

an OF -scheme whose generic fiber is U2a and denote it as U2a,k (see Section 4.3.7 of [Bruhat and Tits
1984] for further details).

2.D.3. Construction of parahoric group schemes over F. In this section, we recall the construction of para-
horic group schemes, following [Landvogt 1996]. Given x ∈A(S, F), let fx :8(G, S)→R be the function
fx(a) = −a(x − x0), where x0 is the unique point arising from quasisplit descent as in Section 2.D.1.
Let Ua,x := Ua, fx (a). Let Ua,x be the smooth affine group scheme over OF with generic fiber Ua and
with Ua,x(OF )=Ua,x (as in Section 2.D.2). For 9 =8+(G, S) and 9 =8−(G, S), Proposition 3.3.2
of [Bruhat and Tits 1984] gives a unique smooth affine OF -group scheme U9,x of finite type with generic
fiber U9 and the property that for every good ordering of 9red (See Section 3.1.2 of [Bruhat and Tits
1984]), the F-isomorphism

∏
a∈9 Ua→U9 can be extended to an OF -isomorphism

∏
a∈9 Ua,x→ U9,x .

The parahoric subgroup Px is generated by T (OF ) and the Ua,x for a ∈ 8(G, S) (with T is as
in Section 2.B). One of the main results of [Bruhat and Tits 1984] is that there is a unique smooth
affine OF -group scheme Px with generic fiber G and with Px(OF ) = Px . We recall the construction
of Px from [Landvogt 1996]. The idea is to put an OF -birational group law on U8+,x × T × U8−,x
and invoke Artin–Weil theorem (see Chapters 5 and 6 of [Bosch et al. 1990]) to construct Px . Let
us first introduce some notation. Let U±x = U8±(G,S),x and let Xx = U−x T U+x . Since its generic
fiber Xx ×OF F = U−T U+ is an open neighborhood of the 1-section of G, there exists a unique
F-birational group law on the generic fiber of Xx . We want to extend this to Xx . Since U−T U+

and U+T U− are both open neighborhoods of the 1-section of G, there exist f ∈ F[U−T U+] and
f ′ ∈ F[U+T U−] such that F[U−T U+] f = F[U+T U−] f ′ . Without loss of generality, we may assume
that f ∈ OF [U−T U+]\πOF [U−T U+] and f ′ ∈ OF [U+T U−]\πOF [U+T U−]. Proposition 5.16
of [Landvogt 1996] shows that inside F[U−T U+] f = F[U+T U−] f ′ , we have OF [U−x T U+x ] f =
OF [U+x T U−x ] f ′ . So we will identify (U−x T U+x ) f = (U+x T U−x ) f ′ in the following. By Proposition 5.8 of
[Landvogt 1996], we can identify T U+x and U+x T and hence also T U+x U−x and U+x T U−x . In Xx ×Xx =

U−x × (T ×U+x ×U−x )× T U+x , we consider the open subscheme

U−x × (U+x × T ×U−x ) f × T U+x = U−x × (U−x × T ×U+x ) f ′ × T U+x
⊂ U−x ×U−x × T ×U+x × T U+x
= (U−x ×U−x )× (T × T )× (U+x ×U+x )

mult3
−−−→U−x × T ×U+x
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So we obtain a morphism U−x × (U+x × T ×U−x ) f × T U+x → Xx . Since Xx has irreducible fibers over
OF and since f /∈ πOF [U−x T U+x ], we see that (U−x T U+x ) f is OF -dense in Xx (that is, each of its fibers
is Zariski dense in the corresponding fiber of Xx — see Section 2.5 of [Bosch et al. 1990]), and hence
U−x ×(U+x ×T ×U−x ) f ×T U+x is OF -dense in U−x ×(T ×U+x ×U−x )×T U+x =Xx×Xx . Hence we obtain
an OF -rational map m : Xx ×Xx → Xx . By Proposition 5.16 of [Landvogt 1996], m is an OF -birational
group law on Xx . Glue together the schemes G and Xx along Xx ×OF F and denote it as Yx . As in
Proposition 5.17 of [Landvogt 1996], the parahoric group scheme Px with group law m, together with an
open immersion Yx → Px such that the restriction of m to Yx is m, is obtained by applying Theorem 5.1
of [Bosch et al. 1990] to the scheme Yx . The generic fiber of Px is G. Let F be a facet in A(S, F). Then
for x, y ∈F , Px = Py . So we write PF for the parahoric subgroup attached to the facet F and denote the
underlying group scheme as PF .

2.E. Parahoric group schemes: étale descent. Let F be a nonarchimedean local field and F̂un be the
completion of the maximal unramified extension Fun(⊂ Fs) of F . Let G be a connected reductive group
over F . By a theorem of Steinberg (recalled as Theorem 5.2), we know that G Fun is quasisplit. Let A be
a maximal F-split torus in G. By Section 5 of [Bruhat and Tits 1984], there is an F-torus S that contains
A and is maximal Fun-split. Note that X∗(A)= X∗(S)Gal(F̂un/F). Let A(A, F) denote the apartment of
G with respect to A. Let F∗ be a facet in A(A, F). We fix an algebraic closure κF of the residue field
κF and identify the Galois groups Gal(F̂un/F) with Gal(κF/κF ). Let σ denote the Frobenius element of
Gal(Fun/F) under this identification. Then we know that there is a σ -stable facet F̃∗ in A(S, Fun) such
that F̃σ

∗
= F∗ (see Chapter 5 of [Bruhat and Tits 1984]). Since F̃∗ is stable under the action of σ , the

parahoric group scheme PF̃∗ is also stable under the action of σ . In this case, the OF̂un
-group scheme

PF̃∗ admits a unique descent to an OF -group scheme with generic fiber G (see Example B, Section 6.2,
[Bosch et al. 1990]). The affine ring of this group scheme is (OF̂un

[PF̃∗])
Gal(F̂un/F). This is the parahoric

group scheme attached to the facet F∗ of A(A, F).

3. Quasisplit forms over close local fields

Let G0 be a split connected reductive group defined over Z with root datum (R,1). For an extension
K/F , let G0,K := G0×Z K .

Let E(F,G0) be the of F-isomorphism classes of connected reductive F-algebraic groups G with G Fs

isomorphic to G0,Fs . This is in natural bijection with the Galois cohomology set H 1(0F ,Aut(G0,Fs )).
We denote this map

E(F,G0)→ H 1(0F ,Aut(G0,Fs )), [G] → sG . (3-1)

Lemma 3.1. Let IF be the inertia group of F and I m
F denote the m-th higher ramification subgroup

with upper numbering. Let E(F,G0)m denote the set of F-isomorphism classes of F-forms G of
G0,F such that there exists an at most m-ramified finite extension L ⊂ Fs (i.e., Gal(L/F)m = 1) with
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G×F L ∼= G0×Z L. The bijection (3-1) induces a bijection between E(F,G0)m and the cohomology set
H 1(0F/I m

F , (AutFs (G0,Fs ))
I m

F ).

Proof. Let� := (Fs)
I m

F . Then for every finite extension F ⊂ L ⊂ Fs , L ↪→� if and only if Gal(L/F)m = 1
(see Section 3.5 of [Deligne 1984]). Further we know that H 1(Aut(�/F),Aut�(G0,�)) classifies isomor-
phism classes of F-forms [G] with G×F �∼= G0,F ×F �. Now simply note that Aut(�/F)∼= 0F/I m

F

and Aut�(G0,�)= (AutFs (G0,Fs ))
I m

F . �

3.A. Quasisplit forms. Let (G0, T0, B0, {uα}α∈1̃) be a pinned, split, connected, reductive Z-group with
based root datum (R, 1̃) where {uα}α∈1̃ is a splitting as in Section 3.2.2 of [Bruhat and Tits 1984]. Then
Out(G0) can be identified with the constant Z-group scheme associated to the group Aut(R, 1̃). Consider
the exact sequence

1→ Inn(G0(Fs))→ Aut(G0,Fs )→ Aut(R, 1̃)→ 1.

Let H = H(G0, T0, B0, {uα}α∈1̃) be the subgroup of Aut(G0,Fs ) consisting of all a such that a(B0)= B0,
a(T0)= T0 and {a ◦uα | α ∈ 1̃} = {uα | α ∈ 1̃}. Then H ↪→Aut(G0,Fs )→Aut(R, 1̃) is an isomorphism
and Aut(G0,Fs )

∼= H n Inn(G0(Fs)). Hence the natural map H 1(0F ,Aut(G0,Fs ))→ H 1(0F ,Aut(R, 1̃))
has a section given by

q : H 1(0F ,Aut(R, 1̃))−→∼ H 1(0F , H)→ H 1(0F ,Aut(G0,Fs )).

We now recall the following well-known theorem (see [Conrad 2011], Section 7.2).

Theorem 3.2. Let [G] ∈ E(F,G0). Then sG lies in the image of

q : H 1(0F ,Aut(R, 1̃))→ H 1(0F ,Aut(G0,Fs ))

if and only if G is quasisplit over F , that is, it has a Borel subgroup defined over F.

Let Eqs(F,G0) := {[G] ∈ E(F,G0) | sG ∈ I m(q)} and Eqs(F,G0)m = Eqs(F,G0) ∩ E(F,G0)m .
Since G0 is F-split, the action of 0F on (G0, B0, T0) is trivial. Hence

Z1(0F ,Aut(R, 1̃))= Hom(0F ,Aut(R, 1̃)).

Lemma 3.3. We have the following:

(a) The class [G] ∈ Eqs(F,G0)m if and only if sG lies in the image of

q : H 1(0F/I m
F ,Aut(R, 1̃)I m

F )→ H 1(0F/I m
F ,Aut(G0,Fs )

I m
F ).

(b) The isomorphism ψm : Trm(F)−→∼ Trm(F ′) induces an isomorphism

Qm : H 1(0F/I m
F ,Aut(R, 1̃))−→∼ H 1(0F ′/I m

F ′,Aut(R, 1̃))

and
Qc

m : Z
1(0F/I m

F ,Aut(R, 1̃))−→∼ Z1(0F ′/I m
F ′,Aut(R, 1̃)).

(c) The isomorphism ψm induces a bijection Eqs(F,G0)m→ Eqs(F ′,G0)m, [G] → [G ′], where sG ′ =

q ′ ◦Qm(sG).
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Proof. This is clear from Lemma 3.1 and Theorem 3.2. �

As noted in Lemma 3.3, Z1(Gal(�/F),Aut(R, 1̃))= Hom(Gal(�/F),Aut(R, 1̃)) since G0 is split.
Let us fix s ∈ Z1(Gal(�/F),Aut(R, 1̃)) ∼= Z1(Gal(�/F), H). Let (G, φ) be a pair of be a quasisplit
connected reductive group over F and φ : G0×Z�→ G×F � an �-isomorphism such that the Galois
action on G(Fs) is given by s. We may and do assume that there is a finite Galois at most m-ramified
extension K of F over which φ is defined, that is, that s ∈ Z1(Gal(K/F),Aut(R, 1̃)).

More precisely, with ∗F denoting the Galois action on G(K ), we have

γ ∗F φ(x)= φ(s(γ )(γ · x))

for γ ∈Gal(K/F) and x ∈G0(K ). Then φ(T0)=T is a maximal torus of G defined over F and φ(B0)= B
is a Borel subgroup of G containing T and defined over F . Let s ′ ∈ Z1(Gal(K ′/F ′),Aut(R, 1̃)) as in
Lemma 3.3. Here K ′/F ′ is determined by K/F via Delm . Let (G ′, φ′) be a pair of quasisplit connected
reductive group over F ′ and φ′ :G0×Z K ′→G ′×F ′ K ′ such that γ ′∗F ′ φ

′(x ′)= φ(s ′(γ ′)(γ ′ · x ′)), where
γ ′=Delm(γ ). Then φ′(T0)=T ′ and φ′(B0)= B ′ are defined over F ′. Note that X∗(T )∼= X∗(T0)∼= X∗(T ′)
and X∗(T )∼= X∗(T0)∼= X∗(T ′) via φ and φ′.

Recall the notation of Chai–Yu: (OF ,OK , 0K/F )≡ψm ,γ (OF ′,OK ′, 0K ′/F ′) (level m) from Section 2.B.
We write

(OF ,OK , 0K/F , H)≡ψm ,γ,Qc
m
(OF ′,O

′

K ′, 0K ′/F ′, H ′)(level m)

to mean (OF ,OK , 0K/F ) ≡α,β (OF ′,O
′

K ′, 0K ′/F ′) (level m), H and H ′ arise from the same Z-pinned
group (G0, B0, T0, {uα}α∈1̃), and the F-quasisplit data (G, B, T ) with cocycle s corresponds to the
F ′-quasisplit data (G ′, B ′, T ′) with cocycle s ′ via Qc

m as in Lemma 3.3 (b) (but applied to K and K ′

respectively). To abbreviate notation we will write congruence data Dm to mean

Dm : (O,OK , 0K/F , H)≡ψm ,γ,Qc
m
(OF ′,O

′

K ′, 0K ′/F ′, H ′)(level m).

Lemma 3.4. The congruence data Dm induces isomorphisms:

X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′), X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′),

X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′), X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′).

Proof. We know that γ ∗F (φ(x)) = φ(s(γ )(γ · x)) where s(γ ) = φ−1
◦ γ (φ) takes values in H =

H(G0, T0, B0, {uα}α∈1̃). We similarly have ∗F ′ . This action induces the action on X∗(T ) as follows:

γ ∗F (φ ◦ λ)= φ ◦ (s(γ )(λ))

where γ ∈ Gal(�/F) and λ ∈ X∗(T0), where we now view s(γ ) as an element of Aut(R, 1̃)). By
definition s(γ )(λ) = s ′(γ ′)(λ) where γ ′ = Delm(γ ). Hence γ ′ ∗F ′ (φ

′
◦ λ) = φ′ ◦ s ′(γ ′)(λ). Now,

X∗(T )Gal(�/F)
= {φ ◦ λ | s(γ )(λ)= λ}. The lemma is now clear. �
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4. Congruences of parahoric group schemes: quasisplit descent

4.A. Apartment over close local fields. In this section, we additionally assume that F is strictly Henselian.
We begin with the following lemma.

Lemma 4.1. Let T as above and let S be the maximal split subtorus of T . Then S is maximal F-split and
ZG(S)= T .

Proof. Let S ⊂ S̃ with S̃ maximal F-split. Since G is quasisplit over F , T̃ = ZG(S̃) is a maximal torus in
G and we can assume that T̃ ⊂ B̃, with B̃ defined over F . Then B and B̃ are G(F)-conjugate, which
implies that T and T̃ are G(F)-conjugate. But conjugation by an element of G(F) will preserve the split
and anisotropic components of T , which implies that S and S̃ are G(F)-conjugate, which forces S = S̃ to
be maximal F-split. It is now clear that ZG(S)= T . �

Remark 4.2. The torus Sder
:= S∩Gder is a maximal F-split torus of Gder contained in T der

:= T ∩Gder.

4.A.1. Compatibility of Chevalley–Steinberg systems. Recall that we have fixed a Z-pinning {uα}α∈1
of G0. This, via the Galois action given by the cocycles s and s ′, gives rise to a Steinberg splitting {xα}α∈1
of G and a Steinberg splitting {x ′α′}α′∈1′ of G ′ respectively. Let 8m :8(G, T )−→∼ 8(G ′, T ′) (since both
are isomorphic to 8(G0, T0)). This isomorphism is Delm-equivariant. Note that with γ ∈ Gal(�/F)
and γ ′ = Delm(γ ), we have that xγ (α) = γ ◦ xα ◦ γ−1 and x ′γ ′(α′) = γ

′
◦ x ′α′ ◦ γ

′−1 where α′ = 8m(α).
The {xα}α∈1 and {x ′α′}α′∈1′ each extend to Chevalley–Steinberg systems on G and G ′ respectively and
continue to have the compatibility with Delm in the sense described above.

We define

eF :=

{
eF/Q2 = ωF (2) if char(F)= 0 and residue char(F)= 2,
∞ otherwise.

We prove the following refinement of Lemma 4.3.3 of [Bruhat and Tits 1984] when the residue character-
istic of F is 2, using the additional hypothesis that the extension K/F splitting G is at most m-ramified.

Lemma 4.3. Let m ≥ 1 and let F be of residue characteristic 2 with eF ≥m. Let G, B, T as above, where
G splits over K with Gal(K/F)m = 1. Assume that a, 2a ∈8(G, S). Consider the separable quadratic
extension La/L2a inside K . Let ea = eLa/F , e2a = eL2a/F . There exists t ∈ La with La = L2a[t] and the
coefficients A, B ∈ L2a of the equation t2

+ At + B = 0 satisfied by t have the following properties:

(a) ω(B)= 0 or B is a uniformizer of L2a .

(b) ω(B)≤ ω(A) < m
2 +

1
ea

.

In particular A 6= 0.

Proof. By Lemma 4.3.3(ii) of [Bruhat and Tits 1984], (a) holds, and A = 0 or ω(B)≤ ω(A) < ω(2) or
0< ω(B)≤ ω(A)= ω(2). Since Gal(K/F)m = Gal(K/F)ψK/F (m) = 1 where ψK/F denotes the inverse
of the Herbrand function (See Chapter 4 of [Serre 1979]), we have

Gal(K/L2a)
ψL2a/F (m) = Gal(K/L2a)ψK/F (m) = Gal(K/L2a)∩Gal(K/F)ψK/F (m) = 1.
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This implies that Gal(La/L2a)
ψL2a/F (m) = 1. Using the equivalence of (ii) and (iv) of Lemma A.6.1 of

[Deligne 1984], we see that

ω(τ(t)− t) <
ψL2a/F (m)+ 1

2e2a
=
ψL2a/F (m)+ 1

ea
. (4-1)

It is easy to see from the definition that ψL2a/F (m)≤ m · e2a . Hence

ω(τ(t)− t) < m
2 +

1
ea
.

Now, ω(A) = ω(τ(t)+ t) ≥ min(ω(τ(t)− t), ω(2t)), and ω(2t) = ω(2)+ ω(t) = eF +
1
ea

. Since
eF ≥ m > m/2, we see that

ω(A)=min(ω(τ(t)− t), ω(2t))= ω(τ(t)− t) < m
2 +

1
ea

(4-2)

and in particular, A 6= 0.
Note that when the characteristic of F is 2, the claim that A 6= 0 simply follows from the fact that the

extension La/L2a is separable. �

Proposition 4.4. Let G, T and B as in the preceding paragraph. Let m ≥ 1 and let F, F ′ be such that
eF , eF ′ ≥ m. The congruence data Dm induces a simplicial isomorphism Am : A(S, F)→ A(S′, F ′),
where (G ′, B ′, T ′) corresponds to the triple (G, B, T ) as above and S (resp. S′) is the maximal split
subtorus of T (resp. T ′) which is maximal F-split (resp. F ′-split) by Lemma 4.1. Furthermore, with W e

as in Section 2.D.1, we also have a group isomorphism W e ∼=W e′ .

Proof. The reduced apartment A(S, F) is an affine space under X∗(Sder)⊗Z R. Using Lemma 3.4, we
see that Dm induces a unique bijection Am :A(S, F)→A(S′, F ′) such that x0→ x ′0 (where x0, x ′0 are
as in Section 2.D.1 arising from Chevalley–Steinberg systems chosen compatibly as in Section 4.A.1).

It remains to observe that Am is a simplicial isomorphism. Recall that the elements of 8(G, S) are
restrictions to S of the elements of 8(G, T ) and two elements of 8(G, T ) restrict to the same element
of 8(G, S) if and only if they lie in the same Gal(K/F)-orbit. Further, with 1̃ denoting a base of
8(G, T ), the elements α|S, α ∈ 1̃ form a base 1 of 8(G, S). Let 8m :8(G, T )−→∼ 8(G ′, T ′) (since
both are isomorphic to 8(G0, T0)). This isomorphism is Delm-equivariant. Hence the obvious map
8(G, S)→8(G ′, S′), α|S→8m(α)|S′ , which we also denote as 8m , is an isomorphism of the relative
root systems. (In more detail, since S and S′ have the same rank, we have a isomorphism of R-vector
spaces X∗(S)⊗Z R→ X∗(S′)⊗Z R. Further, we have a bijection between 1→ 1′; this is because if
8m(α)|S′ = 8m(β)|S′ , then there is η′ ∈ Gal(�′/F ′) with η′ ·8m(α) = 8m(β). Then η · α = β where
η′ = Delm(η). Finally note that 〈8m(α)|S′,8m(β)|S′〉 = 〈8m(α),8m(β)〉 = 〈α, β〉 = 〈α|S, β|S〉).

The vanishing hyperplanes with respect to the affine roots 8af(G, S) gives the simplicial structure on
A(S, F). Recall that

8af(G, F)= {ψ :A(S, F)→ R | ψ(·)= a(· − x0)+ l, a ∈8(G, S), l ∈ 0̃a}.
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For any a ∈ 8(G, S), let a′ = 8m(a). Let La′ ⊂ K ′ denote splitting extension of the root a′ obtained
by Delm . Since F is strictly Henselian, the extensions La/F and La′/F ′ are totally ramified. To prove
that the bijection 8m extends to a bijection 8af

m : 8
af(G, F)→ 8af(G ′, F ′) making Am a simplicial

isomorphism, we simply have to observe that for each a ∈8(G, S), 0̃a = 0̃a′ . By Section 4.3.4 of [Bruhat
and Tits 1984], we have the following:

Case I. Suppose a ∈8red(G, S), 2a /∈8(G, S). Then 0a = 0̃a =
1
ea

Z.

Case II. Suppose a, 2a ∈8(G, S).

(a) Suppose La/L2a is ramified and the residue characteristic of F is not 2. Then

0̃a =
1
ea

Z and 0̃2a =
1
ea
+

1
e2a

Z.

(b) Suppose La/L2a is ramified and the residue characteristic of F is 2. By Lemma 4.3, A 6= 0. Then

0̃a =
1

2ea
+

1
ea

Z and 0̃2a =
1

e2a
Z.

Since ea = ea′, e2a = e2a′ , and the valuations ω and ω′ are normalized so that ω(F) = ω′(F ′) = Z, we
have 0̃a = 0̃a′ for all a ∈8(G, S). �

4.B. Congruences of parahoric group schemes: strictly Henselian case. In this section, we additionally
assume that F is strictly Henselian.

Theorem 4.5. Let m ≥ 1 and let F and F ′ be such that eF , eF ′ ≥ 2m. Let l be as in Lemma 2.2 and let Dl

and G, S, T, B as in the beginning of this section. Let F ∈A(S, F) and F ′=Am(F) as in Proposition 4.4.
Let PF be the parahoric group scheme over OF attached to F by Bruhat–Tits, and let PF ′ be the group
scheme attached to F ′ over OF ′ . Then the congruence data Dl induces an isomorphism of group schemes

p̃m : PF ×OF OF/p
m
F → PF ′ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular, PF (OF/p
m
F )
∼= PF ′(OF ′/p

m
F ′) as groups.

To prove this theorem, we will study the reduction of root subgroup schemes mod pm
F and prove

that they are determined by congruence data, use the result of Chai–Yu that the reduction of the Néron
model of the torus in determined by congruence data, study the reduction of OF -birational group laws in
Section 2.D.3, and invoke the Artin–Weil theorem to obtain the corresponding result for parahoric group
schemes in Section 4.B.1.

The following lemma is easy.

Lemma 4.6. Let M be a free OF -module of finite type and let A= SymOF
(M∨) be the symmetric algebra

of M∨, where M∨ := HomOF (M,OF ). Then

A⊗OF OF/p
m
F
∼= SymOF/p

m
F
(M∨⊗OF OF/p

m
F )
∼= SymOF/p

m
F
(HomOF/p

m
F
(M ⊗OF OF/p

m
F ,OF/p

m
F )).

Lemma 4.7. Let m ≥ 1, let F and F ′ be such that eF , eF ′ ≥ 2m and let Dm as before. Let a ∈8(G, S)
and k ∈ R. Let Ua,k be the OF -group scheme in Section 2.D.2. Let a′ =8m(a) ∈8(G ′, S′) and let U ′a′,k
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be the OF ′-group scheme in Section 2.D.2. Then the congruence data Dm induces an isomorphism of
group schemes

Ua,k ×OF OF/p
m
F
∼= Ua′,k ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular,
Ua,k(OF/p

m
F )
∼= Ua′,k(OF ′/p

m
F ′).

Proof. We will stick to the notation in Section 2.D.2.

Case I. Suppose a ∈ 8red(G, S), 2a /∈ 8(G, S). The affine ring representing Ua,k is isomorphic to
SymOF

L∨a,k . Note that La,k = p
dk/ee
La

. Since pLa is a free OF -module of rank equal to [La : F], it is clear
that the data Dm induces an isomorphism of La,k ⊗OF OF/p

m
F and La′,k ⊗OF ′

OF ′/p
m
F ′ and we are done

by the previous lemma.

Case II. Suppose a, 2a ∈8(G, S). Since F is strictly Henselian, the extension La/L2a is totally ramified.
Let La = L2a(t), where t2

+ At + B = 0 with A, B satisfying Lemma 4.3.3 of [Bruhat and Tits 1984].
When:

• The residue characteristic of F is not 2, we take λ= 1
2 (See Lemma 4.3.3(ii) of [loc. cit.]).

• The residue characteristic of F is 2, we take λ = t A−1 (using Lemma 4.3.3(ii) of [loc. cit.] and
Lemma 4.3).

Then the affine ring representing the scheme Hλ
0 is

SymOL2a
L∨a,k+γ ⊗OL2a

SymOL2a
(L0

a,l)
∨ ∼= SymOL2a

((La,k+γ × L0
a,l)
∨),

where l = 2k+ 1
ea

. We describe L0
a,l .

(a) If the residue characteristic of F is not 2, then using that ω(2)= 0 in Lemma 4.3.3 of [loc. cit.], we
see that A = 0. Then L0

a = {x ∈ La | τ(x)+ x = 0} = {yt | y ∈ L2a} and

L0
a,l = {yt | y ∈ L2a, ω(yt)≥ l} = {yt | y ∈ L2a, ω(y)≥ 2k}.

(b) If the residue characteristic of F is 2, then:

(i) If char(F)= 2, then L0
a = L2a and L0

a,l = {y ∈ L2a | ω(y)≥ l}.
(ii) If char(F)= 0, then L0

a = {y(1− 2t A−1) | y ∈ L2a}. By Lemma 4.3, we have

ω(2t A−1)= eF +
1
ea
−ω(A) > eF −

m
2 ≥ m

since eF ≥ 2m. Hence 1− 2t A−1
∈ 1+ pmea

La
, and L0

a,l = {y(1− 2t A−1) | y ∈ L2a, ω(y)≥ l}.

Let La′ ⊂ �
′ be obtained from La via the Deligne isomorphism Delm . Then La′ is the splitting

extension of the root a′ (and similarly we obtain L2a′). We may and do assume that La′ = L2a′(t ′), where
t ′2+ A′t ′+ B ′ = 0, with A′, B ′ satisfying:

• ω(A)= ω′(A′) and A mod pme2a
L2a

ψm−→ A′ mod pme2a
L ′2a′

.

• ω(B)= ω′(B ′) and B mod pme2a
L2a

ψm−→ B ′ mod pme2a
L ′2a′

.
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Then t mod pmea
La

ψm−→ t ′ mod pmea
L ′a′

. It is now easy to check that the map ψm induces isomorphisms

La,k+γ ⊗OL2a
OL2a/p

me2a
L2a
∼= L0

a′,k+γ ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′

L0
a,l ⊗OL2a

OL2a/p
me2a
L2a
∼= L0

a′,l ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′
.

In the above, we have used that when the residue characteristic of F is 2, 1− 2t A−1
≡ 1 mod pmea

La
.

Consequently, Dm induces an isomorphism of the reduction of the respective affine rings mod pme2a
L2a

. To
see that this is an isomorphism of group schemes, we observe that reducing the map

j : La,k × L0
a,l × La,k × L0

a,l→ La,k × L0
a,l

((x, y), (x ′, y′))→ (x + x ′, y+ y′− λxτ(x ′)+ λx ′τ(x))

mod pme2a
L2a

is ψm-equivariant. Finally Hλ
= Res

OL2a
OF

Hλ
0 and the result now follows from [Bosch et al.

1990, page 192].
The lemma for U2a,k follows using that

L0
a,k ⊗OL2a

OL2a/p
me2a
L2a
∼= L0

a′,k ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′

and [Bosch et al. 1990, page 192]. �

The following corollary is an obvious consequence of the previous lemma.

Corollary 4.8. With assumptions of Lemma 4.7, and with F ′ =Am(F) where F is a facet in A(S, F),
let Ua,F (resp. Ua′,F ′) be the smooth root subgroup scheme over OF (resp. OF ′) as in Section 2.D.3. The
congruence data Dm induces an isomorphism

Ua,F ×OF OF/p
m
F
∼= Ua,F ′ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular, Ua,F (OF/p
m
F )
∼= Ua′,F ′(OF ′/p

m
F ′) as groups.

4.B.1. Proof of Theorem 4.5. For a scheme X defined over a local ring R with maximal ideal m, we will
denote X (m)

:= X×R R/mm . Let l be as in Lemma 2.2. We want to prove that Dl induces an isomorphism
of OF/p

m
F -group schemes P (m)

F
∼= P (m)

F ′ ×ψ−1
m

OF/p
m
F . Let XF ,XF ′ be as in Section 2.D.3. Let m(m) be

the OF/p
m
F -birational group law on X (m)

F and similarly n(m) on X (m)
F ′ . Note that via Dl , we also have that

(OF ,OK , 0K/F ,3)≡ψe,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′) (level l)

as in the notation of Chai–Yu of Section 2.B, where 3= X∗(T ),3′= X∗(T ′); so the result of Lemma 2.2
holds. We know by Lemmas 2.2 and 4.8 that

X (m)
F
∼= X (m)

F ′ ×ψ−1
m

OF/p
m
F (4-3)

as OF/p
m
F -schemes. Further, by these lemmas, we also have that the OF/p

m
F -birational group laws

n(m)×ψ−1
m

OF/p
m
F and m(m) on X (m)

F are equivalent. Since YF is the OF -scheme obtained by gluing G
and XF along XF ×OF F , we have that Y (m)F is isomorphic to X (m)

F as OF/p
m
F -schemes. Now, P (m)

F with
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group law m(m), and P (m)
F ′ ×ψ−1

m
OF/p

m
F with group law n(m)×ψ−1

m
OF/p

m
F , are both smooth, separated

OF/p
m
F - group schemes that are faithfully flat and of finite type. Recall that the restriction of m to YF

is m, and similarly for n. Hence the group laws m(m) and n(m)×ψ−1
m

OF/p
m
F have the same restriction

to Y (m)F . Following the proof of uniqueness of Artin–Weil theorem (see Proposition 3, Section 5.1 of
[Bosch et al. 1990]), we obtain that the group schemes P (m)

F and P (m)
F ′ ×ψ−1

m
OF/p

m
F are isomorphic. �

4.C. Congruences of parahoric group schemes: descending from G F̂un
to G F . In this section, F de-

notes a nonarchimedean local field and F̂un denotes the completion of the maximal unramified extension
Fun of F . Let A be a maximal F-split torus in G, S maximal Fun-split F-torus that contains A. Let
T = ZG(S). Note that X∗(S)= X∗(T )Gal(�/Fun) and X∗(A)= X∗(T )Gal(�/F).

Lemma 4.9. The simplicial isomorphism

Am :A(S, F̂un)→A(S′, F̂ ′un)

of Proposition 4.4 is Delm-equivariant.

Proof. This is clear from the proof of Proposition 4.4, Section 4.A.1, and Lemma 3.4. �

Let σ ∈Gal(F̂un/F) be as in Section 2.E. Let F be a facet in X∗(A). Then F corresponds to a σ -stable
facet F̃ in X∗(S). Note that Delm induces isomorphisms

Gal(F̂un/F)∼= Gal(Fs/F)/IF ∼= Gal(F ′s/F ′)/IF ′ ∼= Gal(F̂ ′un/F ′).

Let σ ′ = Delm(σ ) under this isomorphism. Let F̃ ′ =Am(F̃) and F ′ = F̃ ′σ
′

.

Proposition 4.10. The isomorphism

p̃m : PF̃ ×OF̂un
OF̂un

/pm
F̂un
→ PF̃ ′ ×O

F̂ ′un
OF̂ ′un

/pm
F̂ ′un

has the property that σ ′ ◦ p̃m = p̃m ◦ σ .

Proof. Recall that the cocycle sG has been chosen to take values in Aut(H) and sG→ sG ′ via Lemma 3.3.
Further, T is defined over OF and TOF̂un

= T ×OF OF̂un
. From this it is clear that σ ′ ◦ p̃m = p̃m ◦ σ on

T ×OF̂un
OF̂un

/pm
F̂un

. In addition, using the fact that Chevalley–Steinberg systems on G and G ′ have been
chosen compatibly (see Section 4.A.1), it is easy to see that σ ′ ◦ p̃m = p̃m ◦ σ on UF̃ ×OF̂un

OF̂un
/pm

F̂un
.

This completes the proof of the proposition. �

5. Inner forms of quasisplit groups over close local fields

Let F be a nonarchimedean local field and let G be a connected reductive group over F . Then there
is a quasisplit group Gq defined over F such that G is an inner form of Gq . In particular, the F-
isomorphism class of G is determined by an element in H 1(0F ,Gad

q (Fs)). Moreover if [G] ∈ E(F,G0)m

then [Gq ] ∈ E(F,G0)m and [G] is determined by an element of H 1(Aut(�/F),Gad
q (�)) (Recall that

�= (Fs)
I m

F ). Let sGq be the element of H 1(0F/I m
F ,Aut(R,1)I m

F ) that determines (Gq , Bq , Tq), up to
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F-isomorphisms. Let Gder
q be the derived subgroup of Gq and let Gad

q ,Gsc
q denote the corresponding

adjoint and simply connected groups. Then the groups Gder
q , Gad

q ,Gsc
q are quasisplit (if Sq is a maximal

F-split torus in Gq whose centralizer Tq is a maximal torus, then Sq ∩Gder
q is a maximal F-split torus

of Gder
q and ZGder

q
(Sq ∩Gder

q )= Tq ∩Gder
q is a maximal torus of Gder

q , similarly for Gad
q and Gsc

q ) and are
in fact forms of Gder

0 , Gad
0 and Gsc

0 respectively (to see this note that Gder
q ×F � ∼= (Gq ×F �)

der and
Z(Gq)×F �∼= Z(Gq ×F �)). Using Proposition 13.1(1) of [Kottwitz 2014] and the fact that Gad

q has
trivial center, we have a canonical bijection

κGq : H
1(Aut(�/F),Gad

q (�))→ (X∗(T ad
q )/X∗(T sc

q ))Aut(�/F).

Let Ei (F,Gq)m denote the F-isomorphism classes of inner forms of Gq that split over an at most
m-ramified extension of F . Let (G ′q , B ′q , T ′q) correspond to the cocycle q ′ ◦Qm(sGq ) and let Ei (F ′,G ′q)m
be the corresponding object over F ′.

Lemma 5.1. The congruence data Dm induces an isomorphism

Im : (X∗(T ad
q )/X∗(T sc

q ))Aut(�/F) −→
∼ (X∗(T ′

ad
q )/X∗(T ′

sc
q ))Aut(�′/F ′).

In particular, Dm induces a bijection Ei (F,Gq)m → Ei (F ′,G ′q)m , [G] → [G ′] where sG ′ = κ
−1
G ′q
◦

Im ◦ κGq (sG).

Proof. Note that X∗(Tq)∼= X∗(T0)∼= X∗(T ′q) as Z-modules and the Galois action on X∗(Tq) is determined
by the cocycle sGq (and similarly for X∗(T ad

q ), X∗(T sc
q )). Now the lemma is obvious by Lemma 3.3. �

To proceed, we need to prove a version of Lemma 5.1 at the level of cocycles. To do this, we will use
some results from Section 2 of [DeBacker and Reeder 2009].

Steinberg’s vanishing theorem. Let G be a connected, reductive F-group. Steinberg’s vanishing theorem
asserts that

Theorem 5.2 [Steinberg 1965, Theorem 56]. H 1(Gal(Fs/Fun),G(Fs))= 1.

As a corollary of this theorem, we obtain that the natural surjection from Gal(Fs/F)→ Gal(Fun/F)
induces an isomorphism

H 1(Gal(Fun/F),G(Fun))∼= H 1(Gal(Fs/F),G(Fs)).

5.A. Congruence data for inner forms: a comparison of cocycles. Let Aq be a maximal F-split torus
in Gq and let Sq be a maximal Fun-split F-torus in Gq that contains Aq . Let Tq = ZGq (Sq). Then Tq is a
maximal torus in Gq,Fun with maximal Fun-split torus Sq . Let Cq be an σ -stable alcove in A(Sq , Fun).

Let PCq be the Iwahori subgroup of Gad
q (Fun) attached to Cq . Let�ad

Cq
⊂ W̃ ad

:= X∗(T ad
q )IF oW consist

of elements which preserve the alcove Cq . Here IF is the inertia subgroup of F and W =W (Gq,Fun, Sq,Fun).
Then

�ad
Cq
∼= (X∗(T ad

q )/X∗(T sc
q ))IF (5-1)
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by Lemma 15 of [Haines and Rapoport 2008]. Let P∗Cq
be the normalizer in Gad

q of PCq . Let N ad
Cq
=

NGad
q
(Sad

q )(Fun)∩ P∗Cq
. Then �ad

Cq
is the image of N ad

Cq
in W̃ ad and �ad

Cq
∼= P∗Cq

/PCq .
The following lemma is proved in Sections 2.3 and 2.4 of [DeBacker and Reeder 2009]. Although

the authors assume that Gq,Fun is split in the beginning of Section 2.3 of [DeBacker and Reeder 2009],
this assumption is not needed in their proof of the following lemma. They use that when Gq,Fun is split,
�ad

Cq
∼= X∗(T ad

q )/X∗(T sc
q ) in Corollary 2.4.2 and Corollary 2.4.3; one should instead use (5-1) when Gq,Fun

is not necessarily split.

Lemma 5.3 [DeBacker and Reeder 2009, Corollary 2.4.3]. We have isomorphisms

H 1(Gal(Fun/F),�ad
Cq
)∼= H 1(Gal(Fun/F), N ad

Cq
)∼= H 1(Gal(Fun/F),Gad

q (Fun)).

Let c be a cocycle in Z1(Gal(Fun/F),�ad
Cq
). By Lemma 2.1.2 of [DeBacker and Reeder 2009], since

�ad
Cq

is finite, we have
Z1(Gal(Fun/F),�ad

Cq
)=�ad

Cq
.

Let G be the inner form of Gq determined by c. Let c(σ )= wσ . Write wσ = (λ,w) with λ ∈ X∗(T ad)IF

and w ∈ W . Let K ⊂ Fs denote the finite at most m-ramified extension of Fun over which Gq,Fun

splits. Let t = Nm(λ̃(πK )) where Nm : T ad
q (K )→ T ad

q (Fun) and λ̃→ λ under the usual surjection
X∗(T ad

q )→ X∗(T ad
q )I . Let w̃ ∈ NGq (Sq)(Fun) be the representative of w chosen using the Chevalley–

Steinberg system we fixed in Section 4.A.1.
Let mσ = tw̃. Since wσ stabilizes Cq , it follows that mσ PCq m−1

σ = PCq . Hence mσ ∈ P∗Cq
. Therefore

c̃(σ )= mσ ∈ Z1(Gal(Fun/F), N ad
Cq
). Denoting

G(Fun)→ Gq(Fun), g∗→ g,

the new action of σ on an element g∗ ∈ G(Fun), which we denote by σ∗, is given by

σ∗ · g∗ = (c̃(σ )(σ · g))∗

(Here σ · g denotes the action of σ on g ∈ Gq(Fun)). Note that c(σ ) ∈ Gad
q (Fun) = Inn(Gq)(Fun). The

maximal Fun-split torus Sq of Gq gives a maximal Fun-split, Fun-torus S in G. Let X∗(S)→ X∗(Sq),
τ∗ → τ . For τ∗ ∈ X∗(S), σ∗ · τ∗ = (wσ (σ · τ))∗. Since Sq is defined over F , σ · τ ∈ X∗(Sq). Since
wσ ∈�

ad
Cq

, we see that X∗(S) is stable under the action of σ , and hence S is defined over F .

Lemma 5.4. Let A be the F-split torus of G determined by the Z-module X∗(S)σ∗ . Then A is a maximal
F-split torus in G.

Proof. Consider the reduced apartment A(Sq , F̂un). We view this as an apartment in the reduced building
of G(F̂un) and denote it as A(S, F̂un). The action σ∗ on x∗ ∈A(S, F̂un) given by σ∗ ·x∗= (wσ (σ ·x))∗. Let
C∗ denote the alcove in A(S, F̂un) corresponding to Cq . Then σ∗ ·C∗ = (wσ (σ ·Cq))∗. Since σ ·Cq =Cq

and sincewσ ∈�ad
Cq

, we see that C∗ is a σ∗-stable alcove in A(S, F̂un). In particular, A(S, F̂un) is σ∗-stable.
By Proposition 5.1.14 of [Bruhat and Tits 1984], Cσ∗

∗ is an alcove in the affine space A(A, F). Since
A(A, F) contains a facet of maximal possible dimension, we see that A is maximal F-split in G. �
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Let (G ′q , T ′q , B ′q , S′q) correspond to (Gq , Tq , Bq , Sq) via congruence data Dm as in Section 4. By
Lemma 3.4, we have

�ad
Cq
∼=�

ad
C ′q
.

Let wσ ′ ∈�ad
C ′q

be the image of wσ under this isomorphism. This isomorphism gives rise to a bijection of
pointed sets

Im : Z1(Gal(Fun/F),�ad
Cq
)→ Z1(Gal(F ′un/F ′),�ad

C ′q
),

c→ c′
(5-2)

where c′(σ ′) = wσ ′ . Let mσ ′ = t ′w̃′ where wσ ′ = (λ′, w′) ∈ X∗(T ad
q )IF ′

o W ′. Here t ′ = Nm(λ̃′(π ′K ′))
where Nm : T ad′

q (K ′)→ T ad′
q (F ′un) and λ̃′→ λ′ under the usual surjection X∗(T ad′

q )→ X∗(T ad′
q )IF ′

, and
λ̃→ λ̃′ under the isomorphism X∗(T ad

q )∼= X∗(T ad′
q ). Also w̃′ is the representative of w chosen using the

Chevalley–Steinberg system fixed in Section 4.A.1. Let c̃′ ∈ Z1(Gal(F ′un/F ′), N ad′
C ′q
) be the cocycle with

c̃′(σ ′)= mσ ′ .
Let G ′ be the inner form of G ′q determined by c′ (or c̃′). Let S′ be the maximal F ′un-split, Fun-torus of

G ′ corresponding to S′q but with the action of σ ′ given by the cocycle c̃′. More precisely, for g′
∗
∈G ′(F ′un),

σ ′
∗
· g′
∗
= (c̃′(σ ′) · (σ ′ · g′))∗

where σ ′ = Delm(σ ) as before, and σ ′ · g′ denotes the action of σ ′ on G ′q(F
′
un).

As in Lemma 5.4, we see that S′ is an F ′-torus that is maximal F ′un-split and whose split component
A′ is a maximal F ′-split torus in G ′.

Corollary 5.5. With G→ G ′ as above, the F-rank of G is equal to the F ′-rank of G ′.

Proof. This is because rank(S)= rank(S′) and the isomorphism X∗(S)→ X∗(S′) is σ∗-equivariant. Hence
rank(A)= rank(A′) by Lemma 5.4. �

6. Congruences of parahoric group schemes: étale descent

The following lemma is easy.

Lemma 6.1. The σ -equivariant isomorphism Ãm :A(Sq , F̂un)→A(S′q , F̂ ′un) induces a σ∗-equivariant
isomorphism Ãm,∗ :A(S, F̂un)→A(S′, F̂ ′un).

Now let F̃∗ be σ∗-invariant facet in A(S, F̂un) and let F̃ ′
∗
= Ãm,∗(F̃∗). Let F∗ = F̃σ∗

∗ and F ′
∗
= F̃ ′σ ′∗ .

Proposition 6.2. Let m≥ 1, F, F ′ nonarchimedean local fields with eF , eF ′ ≥ 2m. Let l as in Theorem 4.5,
let Dl be the congruence data of level l, and let (G ′q , T ′q , B ′q , S′q) correspond to (Gq , Tq , Bq , Sq) via Dl .
Let p̃m :PF̃×OF̂un

OF̂un
/pm

F̂un
→PF̃ ′×O

F̂ ′un
OF̂ ′un

/pm
F̂ ′un

denote the σ -equivariant isomorphism of Theorem 4.5
and Proposition 4.10. Let c→ c′ via Im (see (5-2)). The isomorphism p̃m induces a σ∗-equivariant
isomorphism p̃m,∗ : PF̃∗ ×OF̂un

OF̂un
/pm

F̂un
→ PF̃ ′∗

×O
F̂ ′un

OF̂ ′un
/pm

F̂ ′un
.
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Proof. We begin by understanding the action of σ∗ on an element of PF̃∗ more explicitly. Recall that

PF̃ = 〈U
+

F̃
(OF̂un

), T (OF̂un
),U−

F̃
(OF̂un

)〉

Let g ∈ PF̃ . Then σ∗ · g∗ = (mσ (σ · g)m−1
σ )∗. Let b0 ∈ 8

red(Gq , Sq) such that 2b0 is not a root. Let
y ∈Ub0,F̃ . Fix β0|Sq = b0, fix the pinning (Lβ0, xb0) and write y = xb0(u0) for u0 ∈ Lβ0 (As explained in
Section 2.C.2, Lb0

∼= Lβ0 ↪→ K ). Let σ̃ denote a lift of σ to 0F and let β = σ̃ ·β0, b = σ · b0. Then we
obtain a pinning (Lβ, xb) from the pinning (Lβ0, xb0) via σ̃ and we have σ · xb0(u0) = xb(σ̃ · u0); this
follows using properties of Chevalley–Steinberg system recalled in Section 2.C.1 (a), (b). Let u = σ̃ · u0.
Then u ∈ Lβ . We need to compute w̃xb(u)w̃−1. We will first compute s̃axb(u)s̃−1

a for a ∈1. Note that

s̃a =
∏
α∈1̃a

s̃α (6-1)

and that Lsa ·b = Lb. Now for α1, β1 ∈8(Gq , Tq), we have s̃α1 xβ1(z)s̃
−1
α1
= xsα1 (β1)(dα1,β1 z) for all z ∈ K ,

with dα1,β1 =±1. Using the properties of Chevalley–Steinberg system recalled in Section 2.C.1 (a), (b),
we have

dα1,β1 = dγ (α1),γ (β1) ∀γ ∈ Gal(K/F̂un). (6-2)

With β as above, note that β|Sq = b. Let

da,b :=
∏
α∈1̃a

dα,β

This notation is justified since (6-2) implies that the definition of da,b does not depend on the choice of β.
Using the definition of xb in (2-2), a simple calculation yields that s̃axb(u)s̃−1

a = xsa(b)(da,bu). Since we
chose our Chevalley–Steinberg systems compatibly (see Section 4.A.1), we evidently have da,b = da′,b′ for
all a ∈1, b ∈8(Gq , Sq). Iterating this process, we see that w̃xb(u)w̃−1

= xw·b(dw,bu) where dw,b =±1
and dw,b = dw′,b′ .

Suppose b0 ∈8(Gq , Sq) such that 2b0 is a root. Let β0, β0|Sq = b0. Fix the pinning (Lβ0, Lβ0+β0
, xb0)

and write y = xb0(u0, v0), with u0, v0 ∈ Lβ0 (Recall that Lb0
∼= Lβ0 ⊂ K ). Let β = σ̃ ·β0, β = σ̃ ·β0 and

b= σ ·b0. We then obtain a pinning (Lβ, Lβ+β, xb) via σ̃ and σ · xb0(u0, v0)= xσ ·b0(σ̃ ·u0, σ̃ ·v0) where
σ̃ as before. Let u = σ̃ · u0, v = σ̃ · v0. Then u, v ∈ Lβ . We need to compute s̃axb(u, v)s̃−1

a where sa is
as in (6-1). Let

da,b :=
∏
α∈1̃a

dα,β, da,2b :=
∏
α∈1̃a

dα,β+β

Again, the definitions of da,b and da,2b do not depend on the choice of β by (6-2).
Then a simple calculation yields

s̃axb(u, v)s̃−1
a = xsa(b)(da,bu, da,2bv).

Proceeding as in the previous case, we have w̃xb(u, v)w̃−1
= xw·b(dw,bu, dw,2bv)) where dw,b, dw,2b =

±1 and dw,b = dw′,b′ and dw,2b = dw′,2b′ .
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Recall that t = Nm(λ̃(πK ))∈ T ad
q (Fun). Then for each γ ∈Gal(K/Fun), γ · t = t . Let c ∈8red(Gq , Sq)

with 2c not a root. Let χ ∈8(Gq .Tq) with χ |Sq = c. Note that χ factors through T ad
q . Fixing the pinning

(Lχ , xc) we have that χ : T → Gm is defined over Lχ and χ(t) ∈ L×χ . A simple calculation yields
t xc(u)t−1

= xc(χ(t)u) for each u ∈ Lχ . If c, 2c are roots, then with χ, χ such that χ |Sq = χ |Sq = c and
fixing the pinning (Lχ , Lχ+χ , xc), it follows that t xc(u, v)t−1

= xc(χ(t)u, (χ +χ)(t)v). Hence, if 2b0

is not a root then

σ∗ · (xb0(u0))∗ = (xw·b(dw,bχ(t)u))∗

where χ |Sq = w · b. If 2b0 is a root, then

σ∗ · (xb0(u0, v0))∗ = (xw·b(dw,bχ(t)u, dw,2b(χ +χ)(t)v))∗

where χ, χ ′ ∈8(Gq , Tq) are such that χ, χ |Sq =w · b. It is easy to calculate σ∗ · (x2b0(0, v0))∗ using the
observations above. For x ∈ Tq(OF̂un

),

σ∗ · x∗ = (w(σ · x)w−1)∗.

Combining these observations with the fact that p̃m is σ -equivariant (see Proposition 4.10), it follows that
the map p̃m,∗ has the property that p̃m,∗ ◦σ∗ = σ

′
∗
◦ p̃m,∗ (in this verification, we choose σ̃ ′ to correspond

to σ̃ via Delm). �

Corollary 6.3. The isomorphism p̃m,∗ induces an isomorphism of group schemes

pm,∗ : PF∗ ×OF OF/p
m
F → PF ′∗ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular PF∗(OF/p
m
F ) and PF ′∗(OF ′/p

m
F ′) are isomorphic as groups.

Proof. This follows from Proposition 6.2 and étale descent [Bosch et al. 1990, Example B, Section 6.2]. �
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An improved bound for the lengths of matrix algebras
Yaroslav Shitov

Let S be a set of n× n matrices over a field F. We show that the F-linear span of the words in S of length
at most

2n log2 n+ 4n

is the full F-algebra generated by S. This improves on the n2

3 +
2
3 bound by Paz (1984) and an O(n3/2)

bound of Pappacena (1997).

Let S be a subset of a finite-dimensional associative algebra A over a field F. An element a ∈ A is
said to be a word of length k in S if there are a1, . . . , ak ∈ S such that a = a1 · · · ak . We denote the set of
all such words by Sk , and we write FSk for the F-linear span of Sk . Similarly, FS6k will stand for the
F-linear span of all the words in S that have length at most k.

Definition 1. The length `(S) is the smallest integer k for which FS6k is the full subalgebra generated
by S. We also define `(A) as the maximum value of `(S), where S runs over all subsets of A that generate
A as an F-algebra.

In our paper, we study the length of Matn(F), the set of n× n matrices viewed as an algebra over F.
A. Paz [1984] proved that `(S) 6 n2

3 +
2
3 for all S ⊂ Matn(F) and proposed the following appealing

conjecture.

Conjecture 2. For all S ⊂Matn(F), one has `(S)6 2n− 2.

As shown by T. Laffey [1986, page 131], the upper bound in Conjecture 2 should be sharp. This
conjecture is known to hold if the size of matrices is at most four [Paz 1984] or if FS contains a
nonderogatory matrix [Guterman et al. 2018]. However, the best known general upper bounds on the
lengths of matrix subsets are quite far from the one prescribed by Conjecture 2. It was only in 1997 when
a subquadratic estimate was obtained: C. Pappacena proved an O(n3/2) upper bound on the length of
Matn(F), but no further improvements have been made since then [Guterman et al. 2018; Lambrou and
Longstaff 2009; Longstaff et al. 2006]. The main result of this paper is a much stronger O(n log n) upper
bound on the length of Matn(F).

Theorem 3. For all S ⊂Matn(F), we have `(S)6 2n log2 n+ 4n− 4.

MSC2010: primary 15A03; secondary 15A30.
Keywords: matrix theory, finite-dimensional algebras, generating sets.
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As an additional motivation of our study, we note that the best known upper bounds on a complete set
of unitary invariants for n× n matrices [Laffey 1986] and on the PI degree of semiprime affine algebras
of Gelfand–Kirillov dimension one [Pappacena et al. 2003] come from the estimates of `(Matn(F)), so
the current work also improves our understanding of those invariants.

1. Warm-up

In this section, we explain the idea behind our main construction and illustrate how it works in a simpler
setting. We get a small improvement on one of the results of Pappacena [1997], which allows us to prove
the n = 5 case of Conjecture 2.

We say that a set S ⊂Matn(F) is irreducible if it generates Matn(F) as the F-algebra. If a set S is not
irreducible, and if F is algebraically closed, then there exist p ∈ {1, . . . , n−1} and Q ∈GLn(F) such that,
for any A ∈ S, we have

Q−1 AQ =
(

A11 A12

O A22

)
(1-1)

where A11 is a p× p matrix (and O is the zero matrix of appropriate dimensions). This is Burnside’s
theorem; see [Radjavi and Rosenthal 2000, Theorem 1.5.1].

Lemma 4 [Markova 2005, Corollary 3]. Let A be a matrix algebra whose elements are of the form (1-1),
and let A1,A2 be the sets of all A11, A22 blocks of matrices in A, respectively. Then `(A) 6 `(A1)+

`(A2)+ 1.

We will say that a matrix Z ∈ Matn(F) is square-zero if Z2
= 0. The main idea of the proof of

Theorem 3 is to control the product λρ(λ), where ρ(λ) is the minimal rank of nonzero square-zero
matrices that arise as linear combinations of words of length at most λ. We show in Section 2 below
that we can reduce ρ to 1 whilst saving the property λρ(λ) ∈ O(n log n), and then we apply Pappacena’s
technique to deal with low rank matrices; see [Pappacena 1997, Theorem 4.1] and Corollary 7 below.
More precisely, let H ∈ FS6λ be a square-zero matrix; it can be written as

H =

O O Iρ
O O O
O O O


with respect to some basis. If some matrix A with bottom-left block of small rank r > 0 comes as a linear
combination of words of length l, then the matrix H AH is square-zero, has rank r , and comes as a linear
combination of words of length at most l+2λ. As we will see in Claims 13 and 14 below, we can always
find an appropriate matrix A to reduce the rank of a square-zero matrix. The following lemma illustrates
our approach to the proof of Claim 13.

Lemma 5. Consider an irreducible set S ⊂ Fn×n and a nonzero vector v ∈ Fn . If FS6(n−2)v 6= Fn , then
FS contains a matrix with minimal polynomial of degree n.
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Proof. The sequence
Fv = FS0v ⊂ FS61v ⊂ · · · ⊂ FS6kv = Fn

is strictly increasing [Pappacena 1997, Theorem 4.1], so the assumption of the lemma implies k = n− 1
and dim FS6tv − dim FS6(t−1)v = 1 for all t ∈ {1, . . . , n − 1}. Therefore, we can set B0 = {v} and
inductively complete Bt−1 to a basis Bt of FS6t by adding a single vector vt . With respect to the basis
{v, v1, . . . , vn−1}, every matrix in S has the form

A =


∗ · · · · · · ∗ ∗

a21 ∗ · · · ∗ ∗

0
. . .

. . .
...

...
...

. . .
. . . ∗ ∗

0 · · · 0 an,n−1 ∗


with ∗’s denoting the entries we need not specify. Since S is irreducible, all of the (i + 1, i) entries are
nonzero at some matrix in S, so a generic element of FS has all of them nonzero — which means that its
minimal polynomial has degree n. �

Theorem 6 [Guterman et al. 2018, Theorems 2.4 and 2.5]. If an irreducible set FS ⊂Matn(F) contains a
matrix with minimal polynomial of degree n− 1 or n, then `(S)6 2n− 2.

Lemma 5 and Theorem 6 lead to a tiny improvement of the r = 1 case of Theorem 4.1(a) in [Pappacena
1997], which is nevertheless useful to study the case of small n.

Corollary 7. Let S ⊂Matn(F) be an irreducible set and k > 2. If FS6k contains a rank-one matrix, then
`(S)6 2n+ k− 4.

Proof. If FS contains a matrix with minimal polynomial of degree n, then we are done by Theorem 6.
Otherwise, we use Lemma 5 and get

FS6(n−2)AS6(n−2)
=

∑
Matn(F) · A ·Matn(F)=Matn(F)

for any rank-one matrix A. �

We are almost ready to prove the n = 5 case of Conjecture 2.

Claim 8. Assume that the minimal polynomial of every matrix in FS ⊂Matn(F) has degree at most 2.
Then `(S)6 2 log2 n.

Proof. We denote by w a word in S`(S) that is not spanned by shorter words. For any A, B ∈ S, the
matrices A2 and AB + B A = (A+ B)2− A2

− B2 belong to FS61, which implies that the letters of w
are all different and their permutations do not break the property of w not to be spanned by shorter words.
In particular, the products corresponding to the different 2`(S) subsets of letters of w should be linearly
independent, which implies 2`(S) 6 dim Matn(F). �

Theorem 9. If S ⊂Mat5(F), then `(S)6 8.
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Proof. Since a set of vectors is linearly dependent over F if it is linearly dependent over the algebraic
closure of F, it is sufficient to prove the statement assuming that F is algebraically closed [Guterman
et al. 2018, page 239]. Moreover, Conjecture 2 is known to hold for n 6 4 (see [Paz 1984]), so we can
use Lemma 4 and assume without loss of generality that S is irreducible. According to Theorem 6 and
Claim 8, we can restrict to the case when FS contains a matrix A with minimal polynomial of degree 3.
A straightforward analysis of possible Jordan forms of A shows that the linear span of I, A, A2 must
contain a rank-one matrix, so it remains to apply Corollary 7. �

As said above, the case of n 6 4 in Conjecture 2 was considered by Paz [1984], but the case of n = 5
remained open until now [Guterman et al. 2018]. Let us mention the works [Lambrou and Longstaff
2009; Longstaff et al. 2006], which cover the case n 6 6 under the additional assumption of dim FS 6 2.

2. The proof of Theorem 3

Let A be an n × n matrix over a field F, which is assumed to be algebraically closed in this section.
We recall that there exists Q ∈ GLn(F) such that Q−1 AQ has rational normal form, that is, we have
Q−1 AQ = diag(C f1, . . . ,C fk ), where

C f =


0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1 · · · 0 −c2
...
...
. . .

...
...

0 0 · · · 1 −cm−1


is the companion matrix of a polynomial f = tm

+ cm−1tm−1
+ · · · + c0, and the invariant factors

f1, · · · , fk satisfy f1| · · · | fk .

Claim 10. Let δ be the degree of the minimal polynomial of an n× n matrix A over F. Then the F-linear
span of I, A, . . . , Aδ−1 contains either a nonzero projector of rank at most n/δ or a nonzero square-zero
matrix of rank at most n/δ.

Proof. We recall that the minimal polynomial ϕ of A occurs (one or more times) as an invariant factor
of A. Let ψ be a polynomial that has degree δ− 1, divides ϕ and is a multiple of any invariant factor
different from ϕ. Then ψ(A) has equal rank-one matrices in the places of the largest blocks of the rational
normal form of A and zeros everywhere else. �

Claim 11. For any irreducible set S ⊂Matn(F), there exist nonzero λ, ρ such that λρ 6 2n and FS6λ

contains a square-zero matrix of rank ρ.

Proof. We apply Claim 10 to any nonscalar matrix in S and find a nonzero matrix P ∈ FS6(δ−1) that has
rank at most n/δ and satisfies either P2

= P or P2
=0. We are done if P2

=0; otherwise HB = (I−P)B P
is a square-zero matrix for all B. We can have HB = 0 only when the columns of B P are in the kernel
of I − P , but this kernel being equal to Im P should then be invariant with respect to B, but since S is
irreducible, this obstruction cannot happen for all B ∈ S. �
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Claim 12. Let A ∈ Fn×n and r ∈ N. Assume that the inequality rank(P AQ)6 r holds, with any positive
integers p, q , for all matrices P ∈ Fp×n , Q ∈ Fn×q satisfying P Q = 0. Then rank(A−µI )6 2r for some
µ ∈ F.

Proof. Both the assumption and conclusion are independent of the substitution A→ C−1 AC , so we
can assume that A has rational normal form. We denote the number of diagonal blocks by k and their
sizes by m1, . . . ,mk . Since the ranks of the diagonal blocks cannot decrease by more than one upon
adding a scalar matrix, and since the characteristic polynomials of these blocks have a common factor, we
have minµ rank(A−µI )= n− k. We conclude the proof by constructing an identity square submatrix
A′ = A[I |J ] with I ∩ J = ∅ and |I | = |J | > 0.5(n− k), which would allow us to define P and Q as
having the identity matrices at the I × I and J × J blocks and completed by an appropriate number of
zero columns and rows, respectively. Namely, we pick a family of bmt/2c nonconsecutive subdiagonal
ones from a t-th diagonal block of A, and the union of all such families will be the diagonal of A′. �

Claim 13. Let S ⊂ Fn×n , P ∈ Fp×n , Q ∈ Fn×q . Let k be the smallest integer such that P Sk Q 6= 0. Then,
for any A1, . . . , Ak ∈ S, we have rank(P A1 · · · Ak Q)6 n/k.

Proof. Let V0 = Im Q and Vt =
∑

M∈S6t Im M Q. Let B0, . . . ,Bk ⊂ Fn be vector families such that
B0 ∪ · · · ∪Bt is a basis of Vt for t = 0, . . . , k. Let C ⊂ Fn be such that B0 ∪ · · · ∪Bk ∪ C is a basis of Fn .
Every matrix A ∈ S has the form

B0 B1 · · · Bk−1 Bk C
B0 ∗ · · · · · · · · · ∗ ∗

B1 A(1, 0) ∗ · · · · · · ∗ ∗

B2 O A(2, 1) ∗ · · · ∗ ∗

...
... O

. . . ∗
...
...

Bk
...

...
. . . A(k, k− 1) ∗ ∗

C O O · · · O ∗ ∗


,

where the ∗’s stand for entries that we need not specify, and the left column and top row of the ma-
trix above indicate the basis vectors the respective blocks of rows and columns correspond to. We
also have P = (O| · · · |O|P ′|∗), Q = (Q>|O| · · · |O)> with some matrices P ′,Q at the Bk position
of P and the B0 position of Q, respectively. For A1, . . . , Ak ∈ S, the matrix P Ak · · · A1 Q equals
P ′Ak(k, k − 1) · · · A1(1, 0)Q, so its rank is at most the smallest dimension of any of the matrices
Ak(k, k− 1), . . . , A1(1, 0), which is mint |Bt |6 n/k. �

Claim 14. Let S ⊂Matn(F) be an irreducible set and assume that FS6λ contains a square-zero matrix H
of rank ρ > 2. Then there exist ρ1 ∈ [1, 0.5ρ] and

λ1 6
λρ

ρ1
+

4n(ρ− ρ1)

ρρ1

such that FS6λ1 contains a square-zero matrix of rank equal to ρ1.
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Proof. Let P ∈ Fp×ρ , Q ∈ Fρ×q be nonzero matrices satisfying P Q = 0. We choose a basis such that

H =

O O Iρ
O O O
O O O


and define P ′ = (O|O|P) and Q′ = (Q>|O|O)>. Let k be the smallest integer for which there exist p,
q and matrices P ′, Q′ defined as above, and also A1, . . . , Ak ∈ S satisfying P ′A1 . . . Ak Q′ 6= 0 (such an
integer k exists because S is irreducible). We write A = A1 · · · Ak , and we denote by A′ the bottom left
block of A. Since P A′Q 6= 0, the matrix A′ is nonscalar, that is, its minimal polynomial has degree δ > 1.

Case 1. Assume k 6 4n/ρ. By Claim 10, there is a polynomial ψ of degree at most (δ− 1) such that
ρ1 := rankψ(A′) ∈ [1, ρ/δ]; we see that H1 = ψ(H A)H is a square-zero matrix of rank ρ1. It remains
to note that H1 is spanned by words of length at most

(δ− 1)(λ+ k)+ λ6 λδ+ (δ− 1)k 6 λρ/ρ1+ 4n(ρ/ρ1− 1)/ρ.

Case 2. Now let k > 4n/ρ. The matrix H AH has A′ at the upper right block and zeros everywhere else.
According to Claim 13, we have rank(P A′Q)6 n/k for any choice of p, q and P , Q as above. Using
Claim 12, we find a µ ∈ F for which the matrix H1 := H AH −µH satisfies ρ1 := rank(H1)6 2n/k. So
we have ρ1 6 0.5ρ, and H1 is spanned by words of length at most

2λ+ k 6 λρ/ρ1+ 2n/ρ1 6 λρ/ρ1+ 4n(1− ρ1/ρ)/ρ1. �

Proof of Theorem 3. As in the proof of Theorem 9, we can assume without loss of generality that F is
algebraically closed and S is irreducible. Using Claim 11, we find a square-zero matrix of rank ρ0 > 0
in FS6λ0 with λ0ρ0 6 2n; if ρ0 = 1, then we apply Corollary 7 and complete the proof. Otherwise, we
repeatedly apply Claim 14 and obtain a sequence (λ0, ρ0), . . . , (λτ , ρτ ) such that ρτ = 1 and for all
t ∈ {0, . . . , τ − 1} it holds that ρt+1 ∈ [1, 0.5ρt ],

λt+1 6
λtρt

ρt+1
+

4n(ρt − ρt+1)

ρtρt+1
,

and every FS6λt contains a square-zero matrix of rank ρt . By induction we get

λt 6
λ0ρ0

ρt
+

4n
ρt

(
t −

ρ1

ρ0
− · · ·−

ρt

ρt−1

)
,

which implies (after the substitution αt := ρt/ρt−1) that

λτ 6 2n+ 4n
(
τ −

τ∑
t=1

αt

)
,

and since the minimum value of α1+ · · · + ατ subject to αt > 0 and α1 · · ·ατ = ρ
−1
0 is attained when

α1 = · · · = ατ = ρ
−1/τ
0 , we get

λτ 6 2n+ 4nτ(1− ρ−1/τ
0 ).
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The right-hand side of this inequality is an increasing function of τ , so it attains its maximum at the
largest possible value τ = log2 ρ0. We get λτ 6 2n+ 2n log2 ρ0, and it remains to apply Corollary 7. �

The author does not expect his result to be tight even asymptotically, so this paper does not show any
effort on improving the o(n log n) part of the upper bound.
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